This document is a resource for software developers who develop applications that include WebLogic Server Enterprise JavaBeans (EJBs), Version 3.0.
Contents

Preface ... xxix
 Documentation Accessibility ... xxix
 Conventions .. xxix

1 Introduction and Roadmap
 1.1 Document Scope and Audience... 1-1
 1.2 Guide to this Document ... 1-1
 1.3 Related Documentation ... 1-2
 1.4 Comprehensive Example for the EJB 3.0 Developer ... 1-2
 1.5 New and Changed Features in this Release ... 1-3

2 Understanding Enterprise JavaBeans 3.0
 2.1 Understanding EJB 3.0: New Features and Changes From EJB 2.X ... 2-1
 2.1.1 Changes Between Versions 2.X and 3.0 .. 2-1
 2.1.2 New EJB 3.0 Features ... 2-2
 2.2 WebLogic Server Value-Added EJB 3.0 Features ... 2-3
 2.3 EJB 3.0 Examples .. 2-3
 2.4 Programming 3.0 Entities .. 2-4

3 Simple Enterprise JavaBeans 3.0 Examples
 3.1 Example of a Simple Stateless EJB .. 3-1
 3.2 Example of a Simple Stateful EJB ... 3-2
 3.3 Example of an Interceptor Class .. 3-5
 3.4 Example of Invoking a 3.0 Entity From A Session Bean .. 3-6

4 Iterative Development of Enterprise JavaBeans 3.0
 4.1 Overview of the EJB 3.0 Development Process .. 4-1
 4.2 Create a Source Directory .. 4-2
 4.3 Program the EJB 3.0 Business Interface .. 4-3
 4.3.1 Business Interface Application Exceptions ... 4-3
 4.3.2 Using Generics in EJBs ... 4-4
 4.3.3 Serializing and Deserializing Business Objects ... 4-5
 4.4 Program the Annotated EJB Class ... 4-5
 4.5 Optionally Program Interceptors ... 4-5
7 Using Oracle Kodo with WebLogic Server

7.1 Overview of Oracle Kodo ... 7-1
7.2 Creating an Oracle Kodo Application ... 7-1
7.3 Using Different Oracle Kodo Versions .. 7-2
7.4 Configuring Persistence ... 7-2
7.4.1 Editing the Configuration Property Files 7-2
7.4.2 Using the Configuration Files Together 7-3
7.4.3 Configuring Plug-ins ... 7-3
7.5 Deploying an Oracle Kodo Application .. 7-4
7.6 Configuring an Oracle Kodo Application 7-4
7.6.1 Using the Administration Console .. 7-4
7.6.2 Configuring Oracle Kodo Without Using the Administration Console 7-5

A EJB 3.0 Metadata Annotations Reference

A.1 Overview of EJB 3.0 Annotations ... A-1
A.2 Annotations for Stateless, Stateful, and Message-Driven Beans A-1
A.2.1 javax.ejb.ActivationConfigProperty A-2
A.2.1.1 Description ... A-2
A.2.1.2 Attributes ... A-2
A.2.2 javax.ejb.ApplicationException ... A-2
A.2.2.1 Description ... A-2
A.2.2.2 Attributes ... A-3
A.2.3 javax.ejb.EJB ... A-3
A.2.3.1 Description ... A-3
A.2.3.2 Attributes ... A-3
A.2.4 javax.ejb.EJBs .. A-4
A.2.4.1 Description ... A-4
A.2.4.2 Attribute ... A-4
A.2.5 javax.ejb.Init ... A-4
A.2.5.1 Description ... A-5
A.2.5.2 Attributes ... A-5
A.2.6 javax.ejb.Local .. A-5
A.2.6.1 Description ... A-5
A.2.6.2 Attributes ... A-5
A.2.7 javax.ejb.LocalHome .. A-6
A.2.7.1 Description ... A-6
A.2.7.2 Attributes ... A-6
A.2.8 javax.ejb.MessageDriven .. A-6
A.2.8.1 Description ... A-6
A.2.8.2 Attributes ... A-6
A.2.9 javax.ejb.PostActivate .. A-7
A.2.9.1 Description ... A-7
A.2.10 javax.ejb.PrePassivate ... A-8
A.2.10.1 Description .. A-8
A.2.11 javax.ejb.Remote ... A-9
A.2.11.1 Description .. A-9
B Persistence Configuration Schema Reference

B.1 persistence-configuration.xml Namespace Declaration and Schema Location........ B-1
B.2 persistence-configuration.xml Deployment Descriptor File Structure................ B-1
B.3 persistence-configuration.xml Deployment Descriptor Elements...................... B-5
B.4 abstract-store-broker-factory.. B-5
B.4.1 Function... B-5
B.4.2 Example... B-5
B.5 access-dictionary... B-5
B.5.1 Function... B-5
B.5.2 Example... B-5
B.6 access-unloaded.. B-8
B.6.1 Function... B-9
B.6.2 Example... B-9
B.7 action... B-9
B.7.1 Function... B-9
B.7.2 Example... B-9
B.8 addresses.. B-9
B.8.1 Function... B-9
B.8.2 Example... B-10
B.9 advanced-sql.. B-10
B.9.1 Function... B-10
B.10 aggregate-listeners... B-10
B.10.1 Function... B-10
B.10.2 Example... B-10
B.11 allocate... B-10
B.11.1 Function... B-11
B.11.2 Example... B-11
B.12 assert-allowed-type.. B-11
B.12.1 Function... B-11
B.12.2 Example... B-11
B.13 auto-clear... B-11
B.13.1 Function... B-12
B.13.2 Example... B-12
B.14 auto-detach.. B-12
B.14.1 Function... B-12
B.14.2 Example... B-12
B.15 auto-detaches... B-13
B.15.1 Function... B-13
B.15.2 Example... B-13
B.16 base-name... B-13
B.16.1 Function... B-13
B.16.2 Example... B-13

A.7.9.2 Attributes... A-30
A.7.10.1 Description.. A-30
A.7.10.2 Attributes.. A-30
<table>
<thead>
<tr>
<th>B.17</th>
<th>batching-operation-order-update-manager</th>
<th>B-13</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.17.1</td>
<td>Function</td>
<td>B-14</td>
</tr>
<tr>
<td>B.17.2</td>
<td>Example</td>
<td>B-14</td>
</tr>
<tr>
<td>B.18</td>
<td>buffer-size</td>
<td>B-14</td>
</tr>
<tr>
<td>B.18.1</td>
<td>Function</td>
<td>B-14</td>
</tr>
<tr>
<td>B.18.2</td>
<td>Example</td>
<td>B-14</td>
</tr>
<tr>
<td>B.19</td>
<td>cache-map</td>
<td>B-14</td>
</tr>
<tr>
<td>B.19.1</td>
<td>Function</td>
<td>B-14</td>
</tr>
<tr>
<td>B.19.2</td>
<td>Example</td>
<td>B-14</td>
</tr>
<tr>
<td>B.20</td>
<td>cache-size</td>
<td>B-15</td>
</tr>
<tr>
<td>B.20.1</td>
<td>Function</td>
<td>B-15</td>
</tr>
<tr>
<td>B.20.2</td>
<td>Example</td>
<td>B-15</td>
</tr>
<tr>
<td>B.21</td>
<td>channel</td>
<td>B-15</td>
</tr>
<tr>
<td>B.21.1</td>
<td>Function</td>
<td>B-15</td>
</tr>
<tr>
<td>B.21.2</td>
<td>Example</td>
<td>B-15</td>
</tr>
<tr>
<td>B.22</td>
<td>class-table-jdbc-seq</td>
<td>B-16</td>
</tr>
<tr>
<td>B.22.1</td>
<td>Function</td>
<td>B-16</td>
</tr>
<tr>
<td>B.22.2</td>
<td>Example</td>
<td>B-16</td>
</tr>
<tr>
<td>B.23</td>
<td>classname</td>
<td>B-16</td>
</tr>
<tr>
<td>B.23.1</td>
<td>Function</td>
<td>B-17</td>
</tr>
<tr>
<td>B.24</td>
<td>classpath-scan</td>
<td>B-17</td>
</tr>
<tr>
<td>B.24.1</td>
<td>Function</td>
<td>B-18</td>
</tr>
<tr>
<td>B.24.2</td>
<td>Example</td>
<td>B-18</td>
</tr>
<tr>
<td>B.25</td>
<td>clear-on-close</td>
<td>B-18</td>
</tr>
<tr>
<td>B.25.1</td>
<td>Function</td>
<td>B-18</td>
</tr>
<tr>
<td>B.25.2</td>
<td>Example</td>
<td>B-18</td>
</tr>
<tr>
<td>B.26</td>
<td>client-broker-factory</td>
<td>B-18</td>
</tr>
<tr>
<td>B.26.1</td>
<td>Function</td>
<td>B-18</td>
</tr>
<tr>
<td>B.26.2</td>
<td>Example</td>
<td>B-19</td>
</tr>
<tr>
<td>B.27</td>
<td>close-on-managed-commit</td>
<td>B-19</td>
</tr>
<tr>
<td>B.27.1</td>
<td>Function</td>
<td>B-19</td>
</tr>
<tr>
<td>B.27.2</td>
<td>Example</td>
<td>B-19</td>
</tr>
<tr>
<td>B.28</td>
<td>cluster-remote-commit-provider</td>
<td>B-19</td>
</tr>
<tr>
<td>B.28.1</td>
<td>Function</td>
<td>B-19</td>
</tr>
<tr>
<td>B.28.2</td>
<td>Example</td>
<td>B-19</td>
</tr>
<tr>
<td>B.29</td>
<td>commons-log-factory</td>
<td>B-20</td>
</tr>
<tr>
<td>B.29.1</td>
<td>Function</td>
<td>B-20</td>
</tr>
<tr>
<td>B.29.2</td>
<td>Example</td>
<td>B-20</td>
</tr>
<tr>
<td>B.30</td>
<td>compatibility</td>
<td>B-20</td>
</tr>
<tr>
<td>B.30.1</td>
<td>Function</td>
<td>B-20</td>
</tr>
<tr>
<td>B.30.2</td>
<td>Example</td>
<td>B-20</td>
</tr>
<tr>
<td>B.31</td>
<td>concurrent-hash-map</td>
<td>B-20</td>
</tr>
<tr>
<td>B.31.1</td>
<td>Function</td>
<td>B-21</td>
</tr>
<tr>
<td>B.31.2</td>
<td>Example</td>
<td>B-21</td>
</tr>
<tr>
<td>B.32</td>
<td>connection-decorators</td>
<td>B-21</td>
</tr>
<tr>
<td>B.32.1</td>
<td>Function</td>
<td>B-21</td>
</tr>
<tr>
<td>B.32.2</td>
<td>Example</td>
<td>B-21</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>B.33</td>
<td>connection-driver-name</td>
<td>B-22</td>
</tr>
<tr>
<td>B.33.1</td>
<td>Function</td>
<td>B-22</td>
</tr>
<tr>
<td>B.33.2</td>
<td>Example</td>
<td>B-23</td>
</tr>
<tr>
<td>B.34</td>
<td>connection-factory-mode</td>
<td>B-23</td>
</tr>
<tr>
<td>B.34.1</td>
<td>Function</td>
<td>B-23</td>
</tr>
<tr>
<td>B.34.2</td>
<td>Example</td>
<td>B-23</td>
</tr>
<tr>
<td>B.35</td>
<td>connection-factory-name</td>
<td>B-23</td>
</tr>
<tr>
<td>B.35.1</td>
<td>Function</td>
<td>B-23</td>
</tr>
<tr>
<td>B.35.2</td>
<td>Example</td>
<td>B-24</td>
</tr>
<tr>
<td>B.36</td>
<td>connection-factory-properties</td>
<td>B-24</td>
</tr>
<tr>
<td>B.36.1</td>
<td>Function</td>
<td>B-24</td>
</tr>
<tr>
<td>B.36.2</td>
<td>Example</td>
<td>B-24</td>
</tr>
<tr>
<td>B.37</td>
<td>connection-factory2-name</td>
<td>B-24</td>
</tr>
<tr>
<td>B.37.1</td>
<td>Function</td>
<td>B-24</td>
</tr>
<tr>
<td>B.37.2</td>
<td>Example</td>
<td>B-24</td>
</tr>
<tr>
<td>B.38</td>
<td>connection-factory2-properties</td>
<td>B-25</td>
</tr>
<tr>
<td>B.38.1</td>
<td>Function</td>
<td>B-25</td>
</tr>
<tr>
<td>B.38.2</td>
<td>Example</td>
<td>B-25</td>
</tr>
<tr>
<td>B.39</td>
<td>connection-password</td>
<td>B-25</td>
</tr>
<tr>
<td>B.39.1</td>
<td>Function</td>
<td>B-25</td>
</tr>
<tr>
<td>B.39.2</td>
<td>Example</td>
<td>B-25</td>
</tr>
<tr>
<td>B.40</td>
<td>connection-properties</td>
<td>B-25</td>
</tr>
<tr>
<td>B.40.1</td>
<td>Function</td>
<td>B-25</td>
</tr>
<tr>
<td>B.40.2</td>
<td>Example</td>
<td>B-25</td>
</tr>
<tr>
<td>B.41</td>
<td>connection-retain-mode</td>
<td>B-26</td>
</tr>
<tr>
<td>B.41.1</td>
<td>Function</td>
<td>B-26</td>
</tr>
<tr>
<td>B.41.2</td>
<td>Example</td>
<td>B-26</td>
</tr>
<tr>
<td>B.42</td>
<td>connection-url</td>
<td>B-27</td>
</tr>
<tr>
<td>B.42.1</td>
<td>Function</td>
<td>B-27</td>
</tr>
<tr>
<td>B.42.2</td>
<td>Example</td>
<td>B-28</td>
</tr>
<tr>
<td>B.43</td>
<td>connection-user-name</td>
<td>B-28</td>
</tr>
<tr>
<td>B.43.1</td>
<td>Function</td>
<td>B-28</td>
</tr>
<tr>
<td>B.43.2</td>
<td>Example</td>
<td>B-28</td>
</tr>
<tr>
<td>B.44</td>
<td>connection2-driver-name</td>
<td>B-28</td>
</tr>
<tr>
<td>B.44.1</td>
<td>Function</td>
<td>B-28</td>
</tr>
<tr>
<td>B.44.2</td>
<td>Example</td>
<td>B-28</td>
</tr>
<tr>
<td>B.45</td>
<td>connection2-password</td>
<td>B-29</td>
</tr>
<tr>
<td>B.45.1</td>
<td>Function</td>
<td>B-29</td>
</tr>
<tr>
<td>B.45.2</td>
<td>Example</td>
<td>B-29</td>
</tr>
<tr>
<td>B.46</td>
<td>connection2-properties</td>
<td>B-29</td>
</tr>
<tr>
<td>B.46.1</td>
<td>Function</td>
<td>B-29</td>
</tr>
<tr>
<td>B.46.2</td>
<td>Example</td>
<td>B-29</td>
</tr>
<tr>
<td>B.47</td>
<td>connection2-url</td>
<td>B-30</td>
</tr>
<tr>
<td>B.47.1</td>
<td>Function</td>
<td>B-30</td>
</tr>
<tr>
<td>B.47.2</td>
<td>Example</td>
<td>B-30</td>
</tr>
<tr>
<td>B.48</td>
<td>connection2-user-name</td>
<td>B-30</td>
</tr>
<tr>
<td>B.48.1</td>
<td>Function</td>
<td>B-30</td>
</tr>
<tr>
<td>B.64.1</td>
<td>Function ..</td>
<td>B-37</td>
</tr>
<tr>
<td>B.64.2</td>
<td>Example ..</td>
<td>B-37</td>
</tr>
<tr>
<td>B.65</td>
<td>custom-lock-manager ..</td>
<td>B-37</td>
</tr>
<tr>
<td>B.65.1</td>
<td>Function ..</td>
<td>B-37</td>
</tr>
<tr>
<td>B.65.2</td>
<td>Example ..</td>
<td>B-37</td>
</tr>
<tr>
<td>B.66</td>
<td>custom-log ..</td>
<td>B-38</td>
</tr>
<tr>
<td>B.66.1</td>
<td>Function ..</td>
<td>B-38</td>
</tr>
<tr>
<td>B.66.2</td>
<td>Example ..</td>
<td>B-38</td>
</tr>
<tr>
<td>B.67</td>
<td>custom-mapping-defaults ..</td>
<td>B-38</td>
</tr>
<tr>
<td>B.67.1</td>
<td>Function ..</td>
<td>B-38</td>
</tr>
<tr>
<td>B.67.2</td>
<td>Example ..</td>
<td>B-38</td>
</tr>
<tr>
<td>B.68</td>
<td>custom-mapping-factory ..</td>
<td>B-38</td>
</tr>
<tr>
<td>B.68.1</td>
<td>Function ..</td>
<td>B-39</td>
</tr>
<tr>
<td>B.68.2</td>
<td>Example ..</td>
<td>B-39</td>
</tr>
<tr>
<td>B.69</td>
<td>custom-meta-data-factory ..</td>
<td>B-39</td>
</tr>
<tr>
<td>B.69.1</td>
<td>Function ..</td>
<td>B-39</td>
</tr>
<tr>
<td>B.69.2</td>
<td>Example ..</td>
<td>B-39</td>
</tr>
<tr>
<td>B.70</td>
<td>custom-meta-data-repository ...</td>
<td>B-39</td>
</tr>
<tr>
<td>B.70.1</td>
<td>Function ..</td>
<td>B-39</td>
</tr>
<tr>
<td>B.70.2</td>
<td>Example ..</td>
<td>B-39</td>
</tr>
<tr>
<td>B.71</td>
<td>custom-orphaned-key-action ..</td>
<td>B-40</td>
</tr>
<tr>
<td>B.71.1</td>
<td>Function ..</td>
<td>B-40</td>
</tr>
<tr>
<td>B.71.2</td>
<td>Example ..</td>
<td>B-40</td>
</tr>
<tr>
<td>B.72</td>
<td>custom-persistence-server ..</td>
<td>B-40</td>
</tr>
<tr>
<td>B.72.1</td>
<td>Function ..</td>
<td>B-40</td>
</tr>
<tr>
<td>B.72.2</td>
<td>Example ..</td>
<td>B-40</td>
</tr>
<tr>
<td>B.73</td>
<td>custom-proxy-manager ..</td>
<td>B-40</td>
</tr>
<tr>
<td>B.73.1</td>
<td>Function ..</td>
<td>B-40</td>
</tr>
<tr>
<td>B.73.2</td>
<td>Example ..</td>
<td>B-41</td>
</tr>
<tr>
<td>B.74</td>
<td>custom-query-compilation-cache ..</td>
<td>B-41</td>
</tr>
<tr>
<td>B.74.1</td>
<td>Function ..</td>
<td>B-41</td>
</tr>
<tr>
<td>B.74.2</td>
<td>Example ..</td>
<td>B-41</td>
</tr>
<tr>
<td>B.75</td>
<td>custom-remote-commit-provider ..</td>
<td>B-41</td>
</tr>
<tr>
<td>B.75.1</td>
<td>Function ..</td>
<td>B-41</td>
</tr>
<tr>
<td>B.75.2</td>
<td>Example ..</td>
<td>B-41</td>
</tr>
<tr>
<td>B.76</td>
<td>custom-savepoint-manager ..</td>
<td>B-42</td>
</tr>
<tr>
<td>B.76.1</td>
<td>Function ..</td>
<td>B-42</td>
</tr>
<tr>
<td>B.76.2</td>
<td>Example ..</td>
<td>B-42</td>
</tr>
<tr>
<td>B.77</td>
<td>custom-schema-factory ...</td>
<td>B-42</td>
</tr>
<tr>
<td>B.77.1</td>
<td>Function ..</td>
<td>B-42</td>
</tr>
<tr>
<td>B.77.2</td>
<td>Example ..</td>
<td>B-42</td>
</tr>
<tr>
<td>B.78</td>
<td>custom-seq ..</td>
<td>B-42</td>
</tr>
<tr>
<td>B.78.1</td>
<td>Function ..</td>
<td>B-43</td>
</tr>
<tr>
<td>B.78.2</td>
<td>Example ..</td>
<td>B-43</td>
</tr>
<tr>
<td>B.79</td>
<td>custom-sql-factory ..</td>
<td>B-43</td>
</tr>
<tr>
<td>B.79.1</td>
<td>Function ..</td>
<td>B-43</td>
</tr>
<tr>
<td>B.79.2</td>
<td>Example ..</td>
<td>B-43</td>
</tr>
<tr>
<td>Function</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>B.80 custom-update-manager</td>
<td>B-43</td>
<td></td>
</tr>
<tr>
<td>B.80.1 Function</td>
<td>B-43</td>
<td></td>
</tr>
<tr>
<td>B.80.2 Example</td>
<td>B-43</td>
<td></td>
</tr>
<tr>
<td>B.81 data-caches</td>
<td>B-44</td>
<td></td>
</tr>
<tr>
<td>B.81.1 Function</td>
<td>B-44</td>
<td></td>
</tr>
<tr>
<td>B.81.2 Example</td>
<td>B-44</td>
<td></td>
</tr>
<tr>
<td>B.82 data-cache-manager-impl</td>
<td>B-44</td>
<td></td>
</tr>
<tr>
<td>B.82.1 Function</td>
<td>B-44</td>
<td></td>
</tr>
<tr>
<td>B.82.2 Example</td>
<td>B-44</td>
<td></td>
</tr>
<tr>
<td>B.83 data-cache-timeout</td>
<td>B-44</td>
<td></td>
</tr>
<tr>
<td>B.83.1 Function</td>
<td>B-45</td>
<td></td>
</tr>
<tr>
<td>B.83.2 Example</td>
<td>B-45</td>
<td></td>
</tr>
<tr>
<td>B.84 db2-dictionary</td>
<td>B-45</td>
<td></td>
</tr>
<tr>
<td>B.84.1 Function</td>
<td>B-45</td>
<td></td>
</tr>
<tr>
<td>B.84.2 Example</td>
<td>B-45</td>
<td></td>
</tr>
<tr>
<td>B.85 default-access-type</td>
<td>B-45</td>
<td></td>
</tr>
<tr>
<td>B.85.1 Function</td>
<td>B-45</td>
<td></td>
</tr>
<tr>
<td>B.85.2 Example</td>
<td>B-46</td>
<td></td>
</tr>
<tr>
<td>B.86 default-broker-factory</td>
<td>B-46</td>
<td></td>
</tr>
<tr>
<td>B.86.1 Function</td>
<td>B-46</td>
<td></td>
</tr>
<tr>
<td>B.86.2 Example</td>
<td>B-46</td>
<td></td>
</tr>
<tr>
<td>B.87 default-broker-impl</td>
<td>B-46</td>
<td></td>
</tr>
<tr>
<td>B.87.1 Function</td>
<td>B-46</td>
<td></td>
</tr>
<tr>
<td>B.87.2 Example</td>
<td>B-46</td>
<td></td>
</tr>
<tr>
<td>B.88 default-class-resolver</td>
<td>B-46</td>
<td></td>
</tr>
<tr>
<td>B.88.1 Function</td>
<td>B-47</td>
<td></td>
</tr>
<tr>
<td>B.88.2 Example</td>
<td>B-47</td>
<td></td>
</tr>
<tr>
<td>B.89 default-compatibility</td>
<td>B-47</td>
<td></td>
</tr>
<tr>
<td>B.89.1 Function</td>
<td>B-47</td>
<td></td>
</tr>
<tr>
<td>B.89.2 Example</td>
<td>B-47</td>
<td></td>
</tr>
<tr>
<td>B.90 default-data-cache</td>
<td>B-47</td>
<td></td>
</tr>
<tr>
<td>B.90.1 Function</td>
<td>B-47</td>
<td></td>
</tr>
<tr>
<td>B.90.2 Example</td>
<td>B-47</td>
<td></td>
</tr>
<tr>
<td>B.91 default-detach-state</td>
<td>B-48</td>
<td></td>
</tr>
<tr>
<td>B.91.1 Function</td>
<td>B-48</td>
<td></td>
</tr>
<tr>
<td>B.91.2 Example</td>
<td>B-48</td>
<td></td>
</tr>
<tr>
<td>B.92 default-data-cache-manager</td>
<td>B-48</td>
<td></td>
</tr>
<tr>
<td>B.92.1 Function</td>
<td>B-48</td>
<td></td>
</tr>
<tr>
<td>B.92.2 Example</td>
<td>B-48</td>
<td></td>
</tr>
<tr>
<td>B.93 default-driver-data-source</td>
<td>B-48</td>
<td></td>
</tr>
<tr>
<td>B.93.1 Function</td>
<td>B-48</td>
<td></td>
</tr>
<tr>
<td>B.93.2 Example</td>
<td>B-49</td>
<td></td>
</tr>
<tr>
<td>B.94 default-level</td>
<td>B-49</td>
<td></td>
</tr>
<tr>
<td>B.94.1 Function</td>
<td>B-49</td>
<td></td>
</tr>
<tr>
<td>B.94.2 Example</td>
<td>B-49</td>
<td></td>
</tr>
<tr>
<td>B.95 default-lock-manager</td>
<td>B-49</td>
<td></td>
</tr>
<tr>
<td>B.95.1 Function</td>
<td>B-49</td>
<td></td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>B.111.1</td>
<td>Function</td>
<td>B-56</td>
</tr>
<tr>
<td>B.111.2</td>
<td>Example</td>
<td>B-56</td>
</tr>
<tr>
<td>B.112</td>
<td>Detach-STATE</td>
<td>B-56</td>
</tr>
<tr>
<td>B.112.1</td>
<td>Function</td>
<td>B-57</td>
</tr>
<tr>
<td>B.112.2</td>
<td>Example</td>
<td>B-57</td>
</tr>
<tr>
<td>B.113</td>
<td>Detached-STATE-FIELD</td>
<td>B-57</td>
</tr>
<tr>
<td>B.113.1</td>
<td>Function</td>
<td>B-57</td>
</tr>
<tr>
<td>B.113.2</td>
<td>Example</td>
<td>B-58</td>
</tr>
<tr>
<td>B.114</td>
<td>Detached-STATE-MANAGER</td>
<td>B-58</td>
</tr>
<tr>
<td>B.114.1</td>
<td>Function</td>
<td>B-58</td>
</tr>
<tr>
<td>B.114.2</td>
<td>Example</td>
<td>B-58</td>
</tr>
<tr>
<td>B.115</td>
<td>Detached-STATE-TRANSIENT</td>
<td>B-58</td>
</tr>
<tr>
<td>B.115.1</td>
<td>Function</td>
<td>B-59</td>
</tr>
<tr>
<td>B.115.2</td>
<td>Example</td>
<td>B-59</td>
</tr>
<tr>
<td>B.116</td>
<td>Detached-NEW</td>
<td>B-59</td>
</tr>
<tr>
<td>B.116.1</td>
<td>Function</td>
<td>B-59</td>
</tr>
<tr>
<td>B.116.2</td>
<td>Example</td>
<td>B-59</td>
</tr>
<tr>
<td>B.117</td>
<td>Diagnostic-CONTEXT</td>
<td>B-59</td>
</tr>
<tr>
<td>B.117.1</td>
<td>Function</td>
<td>B-60</td>
</tr>
<tr>
<td>B.117.2</td>
<td>Example</td>
<td>B-60</td>
</tr>
<tr>
<td>B.118</td>
<td>Dynamic-DATA-STRUCTS</td>
<td>B-60</td>
</tr>
<tr>
<td>B.118.1</td>
<td>Function</td>
<td>B-60</td>
</tr>
<tr>
<td>B.118.2</td>
<td>Example</td>
<td>B-60</td>
</tr>
<tr>
<td>B.119</td>
<td>Dynamic-SCHEMA-FACTORY</td>
<td>B-60</td>
</tr>
<tr>
<td>B.119.1</td>
<td>Function</td>
<td>B-60</td>
</tr>
<tr>
<td>B.119.2</td>
<td>Example</td>
<td>B-60</td>
</tr>
<tr>
<td>B.120</td>
<td>Eager-fetch-mode</td>
<td>B-61</td>
</tr>
<tr>
<td>B.120.1</td>
<td>Function</td>
<td>B-61</td>
</tr>
<tr>
<td>B.120.2</td>
<td>Example</td>
<td>B-62</td>
</tr>
<tr>
<td>B.121</td>
<td>Empress-dictionary</td>
<td>B-63</td>
</tr>
<tr>
<td>B.121.1</td>
<td>Function</td>
<td>B-63</td>
</tr>
<tr>
<td>B.121.2</td>
<td>Example</td>
<td>B-63</td>
</tr>
<tr>
<td>B.122</td>
<td>EnableLogMBean</td>
<td>B-63</td>
</tr>
<tr>
<td>B.122.1</td>
<td>Function</td>
<td>B-63</td>
</tr>
<tr>
<td>B.122.2</td>
<td>Example</td>
<td>B-63</td>
</tr>
<tr>
<td>B.123</td>
<td>EnableRuntimeMBean</td>
<td>B-63</td>
</tr>
<tr>
<td>B.123.1</td>
<td>Function</td>
<td>B-64</td>
</tr>
<tr>
<td>B.123.2</td>
<td>Example</td>
<td>B-64</td>
</tr>
<tr>
<td>B.124</td>
<td>Evict-from-data-cache</td>
<td>B-64</td>
</tr>
<tr>
<td>B.124.1</td>
<td>Function</td>
<td>B-64</td>
</tr>
<tr>
<td>B.124.2</td>
<td>Example</td>
<td>B-64</td>
</tr>
<tr>
<td>B.125</td>
<td>Eviction-schedule</td>
<td>B-64</td>
</tr>
<tr>
<td>B.125.1</td>
<td>Function</td>
<td>B-65</td>
</tr>
<tr>
<td>B.125.2</td>
<td>Example</td>
<td>B-65</td>
</tr>
<tr>
<td>B.126</td>
<td>Exception-orphaned-key-action</td>
<td>B-65</td>
</tr>
<tr>
<td>B.126.1</td>
<td>Function</td>
<td>B-65</td>
</tr>
<tr>
<td>B.126.2</td>
<td>Example</td>
<td>B-65</td>
</tr>
</tbody>
</table>
B.174.1 Function.. B-87
B.174.2 Example.. B-87
B.175 kodo-mapping-repository .. B-87
B.175.1 Function.. B-88
B.175.2 Example.. B-88
B.176 kodo-persistence-mapping-factory ... B-88
B.176.1 Function.. B-88
B.176.2 Example.. B-88
B.177 kodo-persistence-meta-data-factory .. B-88
B.177.1 Function.. B-88
B.177.2 Example.. B-88
B.178 kodo-pooling-data-source .. B-88
B.178.1 Function.. B-88
B.178.2 Example.. B-88
B.179 kodo-sql-factory .. B-88
B.179.1 Function.. B-89
B.179.2 Example.. B-89
B.180 large-transaction ... B-89
B.180.1 Function.. B-89
B.180.2 Example.. B-89
B.181 lazy-schema-factory ... B-89
B.181.1 Function.. B-89
B.181.2 Example.. B-89
B.182 level ... B-90
B.182.1 Function.. B-90
B.182.2 Example.. B-90
B.183 local-jmx .. B-90
B.183.1 Function.. B-91
B.183.2 Example.. B-91
B.184 local-profiling .. B-91
B.184.1 Function.. B-91
B.184.2 Example.. B-91
B.185 lock-timeout .. B-91
B.185.1 Function.. B-92
B.185.2 Example.. B-92
B.186 log-factory-impl ... B-92
B.186.1 Function.. B-92
B.186.2 Example.. B-92
B.187 log-orphaned-key-action .. B-92
B.187.1 Function.. B-93
B.187.2 Example.. B-93
B.188 log4j-log-factory ... B-93
B.188.1 Function.. B-93
B.188.2 Example.. B-93
B.189 login-timeout ... B-93
B.189.1 Function.. B-93
B.189.2 Example.. B-93
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.254</td>
<td>sequence</td>
<td>B-126</td>
</tr>
<tr>
<td>B.254.1</td>
<td>Function</td>
<td>B-126</td>
</tr>
<tr>
<td>B.254.2</td>
<td>Example</td>
<td>B-126</td>
</tr>
<tr>
<td>B.255</td>
<td>sequence-column</td>
<td>B-126</td>
</tr>
<tr>
<td>B.255.1</td>
<td>Function</td>
<td>B-126</td>
</tr>
<tr>
<td>B.255.2</td>
<td>Example</td>
<td>B-127</td>
</tr>
<tr>
<td>B.256</td>
<td>sequence-name</td>
<td>B-127</td>
</tr>
<tr>
<td>B.256.1</td>
<td>Function</td>
<td>B-127</td>
</tr>
<tr>
<td>B.256.2</td>
<td>Example</td>
<td>B-127</td>
</tr>
<tr>
<td>B.257</td>
<td>ServiceURL</td>
<td>B-127</td>
</tr>
<tr>
<td>B.257.1</td>
<td>Function</td>
<td>B-127</td>
</tr>
<tr>
<td>B.257.2</td>
<td>Example</td>
<td>B-127</td>
</tr>
<tr>
<td>B.258</td>
<td>simple-driver-data-source</td>
<td>B-127</td>
</tr>
<tr>
<td>B.258.1</td>
<td>Function</td>
<td>B-128</td>
</tr>
<tr>
<td>B.258.2</td>
<td>Example</td>
<td>B-128</td>
</tr>
<tr>
<td>B.259</td>
<td>single-file</td>
<td>B-128</td>
</tr>
<tr>
<td>B.259.1</td>
<td>Function</td>
<td>B-128</td>
</tr>
<tr>
<td>B.259.2</td>
<td>Example</td>
<td>B-128</td>
</tr>
<tr>
<td>B.260</td>
<td>single-jvm-exclusive-lock-manager</td>
<td>B-128</td>
</tr>
<tr>
<td>B.260.1</td>
<td>Function</td>
<td>B-128</td>
</tr>
<tr>
<td>B.260.2</td>
<td>Example</td>
<td>B-128</td>
</tr>
<tr>
<td>B.261</td>
<td>single-jvm-remote-commit-provider</td>
<td>B-129</td>
</tr>
<tr>
<td>B.261.1</td>
<td>Function</td>
<td>B-129</td>
</tr>
<tr>
<td>B.261.2</td>
<td>Example</td>
<td>B-129</td>
</tr>
<tr>
<td>B.262</td>
<td>soft-reference-size</td>
<td>B-129</td>
</tr>
<tr>
<td>B.262.1</td>
<td>Function</td>
<td>B-130</td>
</tr>
<tr>
<td>B.262.2</td>
<td>Example</td>
<td>B-130</td>
</tr>
<tr>
<td>B.263</td>
<td>so-timeout</td>
<td>B-130</td>
</tr>
<tr>
<td>B.263.1</td>
<td>Function</td>
<td>B-130</td>
</tr>
<tr>
<td>B.263.2</td>
<td>Example</td>
<td>B-130</td>
</tr>
<tr>
<td>B.264</td>
<td>sql-server-dictionary</td>
<td>B-130</td>
</tr>
<tr>
<td>B.264.1</td>
<td>Function</td>
<td>B-130</td>
</tr>
<tr>
<td>B.264.2</td>
<td>Example</td>
<td>B-130</td>
</tr>
<tr>
<td>B.265</td>
<td>stack-execution-context-name-provider</td>
<td>B-131</td>
</tr>
<tr>
<td>B.265.1</td>
<td>Function</td>
<td>B-131</td>
</tr>
<tr>
<td>B.265.2</td>
<td>Example</td>
<td>B-131</td>
</tr>
<tr>
<td>B.266</td>
<td>store-mode</td>
<td>B-131</td>
</tr>
<tr>
<td>B.266.1</td>
<td>Function</td>
<td>B-131</td>
</tr>
<tr>
<td>B.266.2</td>
<td>Example</td>
<td>B-132</td>
</tr>
<tr>
<td>B.267</td>
<td>strict</td>
<td>B-132</td>
</tr>
<tr>
<td>B.267.1</td>
<td>Function</td>
<td>B-132</td>
</tr>
<tr>
<td>B.267.2</td>
<td>Example</td>
<td>B-133</td>
</tr>
<tr>
<td>B.268</td>
<td>strict-identity-values</td>
<td>B-133</td>
</tr>
<tr>
<td>B.268.1</td>
<td>Function</td>
<td>B-133</td>
</tr>
<tr>
<td>B.268.2</td>
<td>Example</td>
<td>B-133</td>
</tr>
<tr>
<td>B.269</td>
<td>style</td>
<td>B-133</td>
</tr>
<tr>
<td>B.269.1</td>
<td>Function</td>
<td>B-133</td>
</tr>
</tbody>
</table>
B.285.1 Function... B-142
B.285.2 Example... B-142
B.286 time-seeded-seq... B-142
B.286.1 Function... B-143
B.286.2 Example... B-143
B.287 topic... B-143
B.287.1 Function... B-143
B.287.2 Example... B-143
B.288 topic-connection-factory ... B-143
B.288.1 Function... B-143
B.288.2 Example... B-144
B.289 track-changes.. B-144
B.289.1 Function... B-144
B.289.2 Example... B-144
B.290 transaction-isolation ... B-144
B.290.1 Function... B-144
B.290.2 Example... B-145
B.291 transaction-mode.. B-145
B.291.1 Function... B-145
B.291.2 Example... B-145
B.292 transaction-name-execution-context-name-provider B-145
B.292.1 Function... B-145
B.292.2 Example... B-145
B.293 type... B-145
B.293.1 Function... B-146
B.293.2 Example... B-146
B.294 type-column.. B-146
B.294.1 Function... B-146
B.294.2 Example... B-147
B.295 types.. B-147
B.295.1 Function... B-147
B.295.2 Example... B-147
B.296 URL.. B-147
B.296.1 Function... B-147
B.296.2 Example... B-147
B.297 url.. B-147
B.297.1 Function... B-148
B.297.2 Example... B-148
B.298 urls.. B-148
B.298.1 Function... B-148
B.298.2 Example... B-148
B.299 use-aliases .. B-149
B.299.1 Function... B-149
B.299.2 Example... B-149
B.300 use-schema-validation ... B-149
B.300.1 Function... B-150
B.300.2 Example... B-150
Preface

This preface describes the document accessibility features and conventions used in this guide—*Programming Enterprise JavaBeans, Version 3.0, for Oracle WebLogic Server*.

WLACH0010 and WLACH0020

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation accessible to all users, including users that are disabled. To that end, our documentation includes features that make information available to users of assistive technology. This documentation is available in HTML format, and contains markup to facilitate access by the disabled community. Accessibility standards will continue to evolve over time, and Oracle is actively engaged with other market-leading technology vendors to address technical obstacles so that our documentation can be accessible to all of our customers. For more information, visit the Oracle Accessibility Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The conventions for writing code require that closing braces should appear on an otherwise empty line; however, some screen readers may not always read a line of text that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or organizations that Oracle does not own or control. Oracle neither evaluates nor makes any representations regarding the accessibility of these Web sites.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/support/contact.html or visit http://www.oracle.com/accessibility/support.html if you are hearing impaired.

Conventions

The following text conventions are used in this document:
<table>
<thead>
<tr>
<th>Convention</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>boldface</td>
<td>Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.</td>
</tr>
<tr>
<td>italic</td>
<td>Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.</td>
</tr>
<tr>
<td>monospace</td>
<td>Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.</td>
</tr>
</tbody>
</table>
1

Introduction and Roadmap

This section describes the contents and organization of this guide—Programming Enterprise JavaBeans, Version 3.0, for Oracle WebLogic Server.

- Section 1.1, "Document Scope and Audience"
- Section 1.2, "Guide to this Document"
- Section 1.3, "Related Documentation"
- Section 1.4, "Comprehensive Example for the EJB 3.0 Developer"
- Section 1.5, "New and Changed Features in this Release"

1.1 Document Scope and Audience

This document is a resource for software developers who develop applications that include WebLogic Server Enterprise JavaBeans (EJBs), Version 3.0.

The document mostly discusses the new EJB 3.0 programming model, in particular the use of metadata annotations to simplify development. The document briefly discusses the main differences between EJB 3.0 and 2.X for users who are familiar with programming EJB 2.X and want to know why they might want to use the new 3.0 programming model.

This document does not address EJB topics that are the same between versions 2.X and 3.0, such as design considerations, EJB container architecture, deployment descriptor use, and so on. This document also does not address production phase administration, monitoring, or performance tuning. For links to WebLogic Server documentation and resources for these topics, see Section 1.3, "Related Documentation."

It is assumed that the reader is familiar with Java Platform, Enterprise Edition (Java EE) Version 5 and EJB 2.X concepts.

1.2 Guide to this Document

- This chapter, Chapter 1, "Introduction and Roadmap," introduces the organization of this guide.
- Chapter 2, "Understanding Enterprise JavaBeans 3.0," provides an overview of the new EJB 3.0 features and programming model, as well as a brief description of the differences between EJB 3.0 and 2.X.
- Chapter 3, "Simple Enterprise JavaBeans 3.0 Examples," provides simple examples of programming EJBs using the new metadata annotations specified by EJB 3.0.
Chapter 4, "Iterative Development of Enterprise JavaBeans 3.0," describes the EJB implementation process, and provides guidance for how to get an EJB up and running in WebLogic Server.

Chapter 5, "Programming the Annotated EJB 3.0 Class," describes the requirements and typical steps when programming the EJB bean class that contains the metadata annotations.

Chapter 6, "Using Oracle TopLink with Oracle WebLogic Server," provides an overview of developing an Oracle TopLink application using Oracle WebLogic Server.

Chapter 7, "Using Oracle Kodo with WebLogic Server," describes how to use Oracle Kodo to create entity beans. Oracle Kodo is a product that provides the implementation of the Java Persistence API section of the EJB 3.0 specification, as well as other persistence-related technologies such as Java Data Objects (JDO).

Appendix A, "EJB 3.0 Metadata Annotations Reference," provides reference information for the EJB 3.0 metadata annotations, as well as information about standard metadata annotations that are used by EJB.

1.3 Related Documentation

This document contains EJB 3.0-specific development information. Additionally, it provides information only for session and message-driven beans. For completed information on general EJB design and architecture, the EJB 2.X programming model (which is fully supported in EJB 3.0), and programming 3.0 entities, see the following documents:

- Programming WebLogic Enterprise JavaBeans for Oracle WebLogic Server

For comprehensive guidelines for developing, deploying, and monitoring WebLogic Server applications, see the following documents:

- Developing Applications for Oracle WebLogic Server is a guide to developing WebLogic Server applications.
- Deploying Applications to Oracle WebLogic Server is the primary source of information about deploying WebLogic Server applications in development and production environments.

1.4 Comprehensive Example for the EJB 3.0 Developer

In addition to this document and the basic examples described in Chapter 3, "Simple Enterprise JavaBeans 3.0 Examples," Oracle provides a comprehensive example in the WebLogic Server distribution kit. The example illustrates EJB 3.0 in action and provides practical instructions on how to perform key EJB 3.0 development tasks. In particular, the example demonstrates usage of EJB 3.0 with:

- Java Persistence API
- Stateless Session Bean
- Message Driven Bean
- Asynchronous JavaScript based browser application.
The example uses a persistent domain model for entity EJBs.

WebLogic Server optionally installs this comprehensive example in `WL_HOME\samples\server\examples\src\examples\ejb\ejb30`, where `WL_HOME` is the top-level directory of your WebLogic Server installation. On Windows, you can start the examples server, and obtain information about the samples and how to run them from the WebLogic Server Start menu.

Oracle recommends that you run this example before programming your own application that uses EJB 3.0.

1.5 New and Changed Features in this Release

For a comprehensive listing of the new WebLogic Server features introduced in this release, see "What’s New in Oracle WebLogic Server" in Oracle Fusion Middleware What’s New in Oracle WebLogic Server.
These sections describe the new features and programming model of EJB 3.0. It is assumed the reader is familiar with Java programming, Java Platform, Enterprise Edition (Java EE) Version 5, and EJB 2.x concepts and features.

- Section 2.1, "Understanding EJB 3.0: New Features and Changes From EJB 2.X"
- Section 2.2, "WebLogic Server Value-Added EJB 3.0 Features"
- Section 2.3, "EJB 3.0 Examples"
- Section 2.4, "Programming 3.0 Entities"

2.1 Understanding EJB 3.0: New Features and Changes From EJB 2.X

Enterprise JavaBeans (EJB) is a Java Platform, Enterprise Edition (Java EE) Version 5 technology for the development and deployment of component-based business applications. Although EJB is a powerful and useful technology, the programming model in version 2.X and previous was complex and confusing, requiring the creation of multiple Java files and deployment descriptors for even the simplest of EJB. This complexity hindered the wide adoption of EJBs.

As a consequence, one of the central goals of Version 3.0 of the EJB specification is to make it much easier to program an EJB, in particular by reducing the number of required programming artifacts and introducing a set of EJB-specific metadata annotations that make programming the bean file easier and more intuitive.

Another goal of the EJB 3.0 specification was to standardize the persistence framework and reduce the complexity of the entity bean programming model and object-relational (O/R) mapping model.

Note: This document does not discuss programming 3.0 entity beans; that information is provided in the "Java Persistence API" of the Oracle Kodo documentation set.

The remainder of this section describes, at a high-level, how the programming model and requirements changed in EJB 3.0, as compared to version 2.X, and lists a brief description of the new features of EJB 3.0.

2.1.1 Changes Between Versions 2.X and 3.0

The following summarizes the changes in the EJB programming model and requirements between EJB 2.X and 3.0:
You are no longer required to create the EJB deployment descriptor files (such as ejb-jar.xml). You can now use metadata annotations in the bean file itself to configure metadata. You are still allowed, however, to use XML deployment descriptors if you want; in the case of conflicts, the deployment descriptor value overrides the annotation value.

The bean file can be a plain old Java object (or POJO); it is no longer required to implement javax.ejb.SessionBean or javax.ejb.MessageDrivenBean.

As a result of not having to implement javax.ejb.SessionBean or javax.ejb.MessageDrivenBean, the bean file no longer has to implement the lifecycle callback methods, such as ejbCreate, ejbPassivate, and so on. If, however, you want to implement these callback methods, you can name them anything you want and then annotate them with the appropriate annotation, such as @javax.ejb.PostActivate.

The bean file is required to use a business interface. The bean file can either explicitly implement the business interface or it can specify it using the @javax.ejb.Remote or @javax.ejb.Local annotations.

The business interface is a plain old Java interface (or POJI); it should not extend javax.ejb.EJBObject or javax.ejb.EJBLocalObject.

Because the EJB 3.0 programming model is so simple, Oracle no longer supports using the EJBGen tags and code-generating tool on EJB 3.0 beans. Rather, you can use this tool only on 2.X beans. For information, see the “EJBGen Reference” in Programming WebLogic Enterprise JavaBeans for Oracle WebLogic Server.

2.1.2 New EJB 3.0 Features

Bean files can now use metadata annotations to configure metadata, thus eliminating the need for deployment descriptors.

The only required metadata annotation in your bean file is the one that specifies the type of EJB you are writing (@javax.ejb.Stateless, @javax.ejb.Stateful, @javax.ejb.MessageDriven, or @javax.persistence.Entity). The default value for all other annotations reflect typical and standard use of EJBs. This reduces the amount of code in your bean file in the case where you are programming a typical EJB; you only need to use additional annotations if the default values do not suit your needs.

Bean files support dependency injection. Dependency injection is when the EJB container automatically supplies (or injects) a variable or setter method in the bean file with a reference to another EJB or resource or another environment entry in the bean’s context.

Bean files support interceptors, which is a standard way of using aspect-oriented programming with EJB.

You can configure two types of interceptor methods: those that intercept business methods and those that intercept lifecycle callbacks.

You can configure multiple interceptor methods that execute in a chain in a particular order.

You can configure default interceptor methods that execute for all EJBs contained in a JAR file.
2.2 WebLogic Server Value-Added EJB 3.0 Features

The following features are not part of the Enterprise JavaBeans 3.0 specification, but rather, are value-added features to further simplify the EJB 3.0 programming model:

- Automatic persistence unit deployment based on variable name.

If you want to query and update an entity in your session bean, you annotate a variable with either the @javax.persistence.PersistenceContext or @javax.persistence.PersistenceUnit annotation; the variable is then injected with persistence unit information. You can specify the unitName attribute to reference a particular persistence unit in the persistence.xml file of the EJB JAR file; in this case, the EJB container automatically deploys the persistence unit and sets its JNDI name to the persistence unit name, as listed in the persistence.xml file. You can also simply name the injected variable exactly the same as the persistence unit you want injected into the variable; in this case, you no longer need to specify the unitName attribute, but the EJB container still deploys the persistence unit and sets its JNDI name to the persistence unit name.

See Section 5.3.4, "Invoking a 3.0 Entity" for general information about invoking an entity from a session bean and Section A.4, "Annotations Used to Interact With Entity Beans" for reference information about the annotations.

- Support for vendor-specific subinterfaces when injecting an EntityManager from a particular persistence provider.

When you inject a persistence context into a variable using either @javax.persistence.PersistenceContext or @javax.persistence.PersistenceUnit, the standard data type of the injected variable is EntityManager. If your persistence provider provides a subinterface of the EntityManager (such as KodoEntityManager in the case of Oracle Kodo) then as a convenience you can simply set the data type of the injected variable to that subinterface, rather than use the more complicated lookup mechanisms as described in the EJB 3.0 specification. For example:

```java
@PersistenceContext private KodoEntityManager em;
```

See Section 5.3.4, "Invoking a 3.0 Entity" and KodoEntityManager for general information about EntityManager and the Oracle Kodo-provided KodoEntityManager.

2.3 EJB 3.0 Examples

See Chapter 3, "Simple Enterprise JavaBeans 3.0 Examples," for simple examples of stateless and stateful session beans, interceptor classes, and how to invoke an entity. The sections in this guide reference these examples extensively. These examples are meant to simply show how to use the new EJB 3.0 metadata annotations and programming model, rather than how to program the business code of your EJB.

For a more complex example that includes actual business code, see samples directory of the WebLogic Server installation, in particular WL_HOME/samples/server/examples/src/examples.ejb.ejb30, where WL_HOME refers to the installation directory of WebLogic Server, such as /Oracle/Middleware/wls-server_10.3.
2.4 Programming 3.0 Entities

This guide describes how to program 3.0 session and message-driven EJBs, and how to invoke 3.0 entities from a session EJB. It does not describe how to actually program and configure a 3.0 entity. For details instructions on that topic, see "Java Persistence API" in the Oracle Kodo documentation.
The following sections describe simple Java examples of EJBs that use the new metadata annotation programming model:

- Section 3.1, "Example of a Simple Stateless EJB"
- Section 3.2, "Example of a Simple Stateful EJB"
- Section 3.3, "Example of an Interceptor Class"
- Section 3.4, "Example of Invoking a 3.0 Entity From A Session Bean"

Later procedural sections of this guide that describe how to program an EJB make reference to these examples.

3.1 Example of a Simple Stateless EJB

The following code shows a simple business interface for the `ServiceBean` stateless session EJB:

```java
class examples;
/**
 * Business interface of the Service stateless session EJB
 */
class Service {
    public void sayHelloFromServiceBean();
}
```

The code shows that the `Service` business interface has one method, `sayHelloFromServiceBean()`, that takes no parameters and returns void.

The following code shows the bean file that implements the preceding `Service` interface; the code in bold is described after the example:

```java
class examples;
import static javax.ejb.TransactionAttributeType.*;
import javax.ejb.Stateless;
import javax.ejb.TransactionAttribute;
import javax.interceptor.ExcludeDefaultInterceptors;
/**
 * Bean file that implements the Service business interface.
 * Class uses following EJB 3.0 annotations:
 * - @Stateless - specifies that the EJB is of type stateless session
 * - @TransactionAttribute - specifies that the EJB never runs in a
transaction
 * - @ExcludeDefaultInterceptors - specifies any configured default
interceptors should not be invoked for this class
```
Example of a Simple Stateful EJB

The following code shows a simple business interface for the AccountBean stateful session EJB:

```java
package examples;

/**
 * Business interface for the Account stateful session EJB.
 */
public interface Account {
    public void deposit(int amount);
    public void withdraw(int amount);
    public void sayHelloFromAccountBean();
}
```

The code shows that the Account business interface has three methods, deposit, withdraw, and sayHelloFromAccountBean.
The following code shows the bean file that implements the preceding Account interface; the code in bold is described after the example:

```java
package examples;
import static javax.ejb.TransactionAttributeType.*;
import javax.ejb.Stateful;
import javax.ejb.TransactionAttribute;
import javax.ejb.Remote;
import javax.ejb.EJB;
import javax.annotation.PreDestroy;
import javax.interceptor.Interceptors;
import javax.interceptor.ExcludeClassInterceptors;
import javax.interceptor.InvocationContext;
/**
 * Bean file that implements the Account business interface.
 * Uses the following EJB annotations:
 * -  @Stateful: specifies that this is a stateful session EJB
 * -  @TransactionAttribute - specifies that this EJB never runs
 *     in a transaction
 * -  @Remote - specifies the Remote interface for this EJB
 * -  @EJB - specifies a dependency on the ServiceBean stateless
 *     session ejb
 * -  @Interceptors - Specifies that the bean file is associated with an
 *     Interceptor class; by default all business methods invoke the
 *     method in the interceptor class annotated with @AroundInvoke.
 * -  @ExcludeClassInterceptors - Specifies that the interceptor methods
 *     defined for the bean class should NOT fire for the annotated
 *     method.
 * -  @PreDestroy - Specifies lifecycle method that is invoked when the
 *     bean is about to be destroyed by EJB container.
 *
 */
@Stateful
@TransactionAttribute(NEVER)
@Remote({examples.Account.class})
@Interceptors({examples.AuditInterceptor.class})
public class AccountBean
    implements Account
{
    private int balance = 0;
    @EJB(beanName="ServiceBean")
    private Service service;
    public void deposit(int amount) {
        balance += amount;
        System.out.println("deposited: "+amount+" balance: "+balance);
    }
    public void withdraw(int amount) {
        balance -= amount;
        System.out.println("withdrew: "+amount+" balance: "+balance);
    }
    @ExcludeClassInterceptors
    public void sayHelloFromAccountBean() {
        service.sayHelloFromServiceBean();
    }
    @PreDestroy
    public void preDestroy() {
        System.out.println("Invoking method: preDestroy()");
    }
}
```

Example of a Simple Stateful EJB
The main points to note about the preceding code are:

- Use standard `import` statements to import the metadata annotations you use in the bean file:

  ```java
text
import static javax.ejb.TransactionAttributeType.*;
import javax.ejb.Stateful;
import javax.ejb.TransactionAttribute;
import javax.ejb.Remote;
import javax.ejb.EJB;
import javax.annotation.PreDestroy;
import javax.interceptor.Interceptors;
import javax.interceptor.ExcludeClassInterceptors;
```

 The annotations that apply only to EJB 3.0 are in the `javax.ejb` package. Annotations that can be used by other Java Platform, Enterprise Edition (Java EE) Version 5 components are in more generic packages, such as `javax.interceptor` or `javax.annotation`.

- Import the `InvocationContext` class, used to maintain state between interceptors:

  ```java
text
import javax.interceptor.InvocationContext;
```

- The `AccountBean` bean file is a plain Java file that implements the `Account` business interface; it is not required to implement any EJB-specific interface. This means that the bean file does not need to implement the lifecycle methods, such as `ejbCreate` and `ejbPassivate`, that were required in the 2.X programming model.

- The class-level `@Stateful` metadata annotation specifies that the EJB is of type stateful session.

- The class-level `@TransactionAttribute(NEVER)` annotation specifies that the EJB never runs inside of a transaction.

- The class-level `@Remote` annotation specifies the name of the remote interface of the EJB; in this case it is the same as the business interface, `Account`.

- The class-level `@Interceptors({examples.AuditInterceptor.class})` annotation specifies the interceptor class that is associated with the bean file. This class typically includes a business method interceptor method, as well as lifecycle callback interceptor methods. See Section 3.3, "Example of an Interceptor Class" for details about this class.

- The field-level `@EJB` annotation specifies that the annotated variable, `service`, is injected with the dependent `ServiceBean` stateless session bean context. The data type of the injected field, `Service`, is the business interface of the `ServiceBean` EJB. The following code in the `sayHelloFromAccountBean` method shows how to invoke the `sayHelloFromServiceBean` method of the dependent `ServiceBean`:

  ```java
text
service.sayHelloFromServiceBean();
```

- The method-level `@ExcludeClassInterceptors` annotation specifies that the `@AroundInvoke` method specified in the associated interceptor class (AuditInterceptor) should not be invoked for the `sayHelloFromAccountBean` method.

- The method-level `@PreDestroy` annotation specifies that the EJB container should invoke the `preDestroy` method before the container destroys an instance.
of the AccountBean. This shows how you can specify interceptor methods (for both business methods and lifecycle callbacks) in the bean file itself, in addition to using an associated interceptor class.

3.3 Example of an Interceptor Class

The following code shows an example of an interceptor class, specifically the AuditInterceptor class that is referenced by the preceding AccountBean stateful session bean with the @Interceptors({examples.AuditInterceptor.class}) annotation; the code in bold is described after the example:

```java
package examples;
import javax.interceptor.AroundInvoke;
import javax.interceptor.InvocationContext;
import javax.ejb.PostActivate;
import javax.ejb.PrePassivate;
/**
 * Interceptor class.  The interceptor method is annotated with the
 * @AroundInvoke annotation.
 */
public class AuditInterceptor {
    public AuditInterceptor() {}
    @AroundInvoke
    public Object audit(InvocationContext ic) throws Exception {
        System.out.println("Invoking method: "+ic.getMethod());
        return ic.proceed();
    }
    @PostActivate
    public void postActivate(InvocationContext ic) {
        System.out.println("Invoking method: "+ic.getMethod());
    }
    @PrePassivate
    public void prePassivate(InvocationContext ic) {
        System.out.println("Invoking method: "+ic.getMethod());
    }
}    
```

The main points to notice about the preceding example are:

- As usual, import the metadata annotations used in the file:
  ```java
  import javax.interceptor.AroundInvoke;
  import javax.interceptor.InvocationContext;
  import javax.ejb.PostActivate;
  import javax.ejb.PrePassivate;
  ```
- The interceptor class is plain Java class.
- The class has an empty constructor:
  ```java
  public AuditInterceptor() {}
  ```
- The method-level @AroundInvoke specifies the business method interceptor method. You can use this annotation only once in an interceptor class.
- The method-level @PostActivate and @PrePassivate annotations specify the methods that the EJB container should call after reactivating and before passivating the bean, respectively.
3.4 Example of Invoking a 3.0 Entity From A Session Bean

For an example of invoking an entity from a session bean, see the EJB 3.0 example in the distribution kit. After you have installed WebLogic Server, the example is in the following directory:

```
WL_HOME/samples/server/examples/src/examples.ejb/ejb30
```

`WL_HOME` refers to the directory in which you installed WebLogic Server, such as `/Oracle/Middleware/wlserver_10.3`.

Note: These lifecycle callback interceptor methods apply only to stateful session beans.
The sections that follow describe the general EJB 3.0 implementation process, and provide guidance for how to get an EJB 3.0 up and in WebLogic Server.

For a review of WebLogic Server EJB features, see Section 2.2, "WebLogic Server Value-Added EJB 3.0 Features."

- Section 4.1, "Overview of the EJB 3.0 Development Process"
- Section 4.2, "Create a Source Directory"
- Section 4.3, "Program the EJB 3.0 Business Interface"
- Section 4.4, "Program the Annotated EJB Class"
- Section 4.5, "Optionally Program Interceptors"
- Section 4.6, "Compile Java Source"
- Section 4.7, "Optionally Create and Edit Deployment Descriptors"
- Section 4.8, "Packaging EJBs"
- Section 4.9, "Deploying EJBs"

4.1 Overview of the EJB 3.0 Development Process

This section is a brief overview of the EJB 3.0 development process. It describes the key implementation tasks and associated results.

The following section mostly discusses the EJB 3.0 programming model and points out the differences between the 3.0 and 2.X programming model in only a few places. If you are an experienced EJB 2.X programmer and want the full list of differences between the two models, see Section 2.1, "Understanding EJB 3.0: New Features and Changes From EJB 2.X."

<table>
<thead>
<tr>
<th>#</th>
<th>Step</th>
<th>Description</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Section 4.2, "Create a Source Directory"</td>
<td>Create the directory structure for your Java source files, and optional deployment descriptors.</td>
<td>A directory structure on your local drive.</td>
</tr>
<tr>
<td>2</td>
<td>Section 4.3, "Program the EJB 3.0 Business Interface"</td>
<td>Create the required business interface that describes your EJB.</td>
<td>.java file.</td>
</tr>
</tbody>
</table>
4.2 Create a Source Directory

Create a source directory where you will assemble the EJB 3.0.

Oracle recommends a split development directory structure, which segregates source and output files in parallel directory structures. For instructions on how to set up a split directory structure and package your EJB 3.0 as an enterprise application archive (EAR), see "Overview of the Split Development Directory Environment" in Developing Applications for Oracle WebLogic Server.

If you prefer to package and deploy your EJB 3.0 in a JAR file, create a directory for your class files. If you are also creating deployment descriptors (which is optional but supported in the EJB 3.0 programming model) put them in a subdirectory named META-INF.

Example 4–1 Directory Structure for Packaging JAR

myEJB/
 META-INF/
 ejb-jar.xml
4.3 Program the EJB 3.0 Business Interface

The EJB 3.0 business interface is a plain Java interface that describes the full signature of all the business methods of the EJB. For example, assume an Account EJB represents a client's checking account; its business interface might include three methods (withdraw, deposit, and balance) that clients can use to manage their bank accounts.

The EJB 3.0 business interface can extend other interfaces. In the case of message-driven beans, the business interface is typically the message-listener interface that is determined by the messaging type used by the bean, such as javax.jms.MessageListener in the case of JMS. The interface for a session bean has not such defining type; it can be anything that suits your business needs.

Note: The only requirement for an EJB 3.0 business interface is hat it must not extend javax.ejb.EJBObject or javax.ejb.EJBLocalObject, as required in EJB 2.X.

See Section 3.1, "Example of a Simple Stateless EJB" and Section 3.2, "Example of a Simple Stateful EJB" for examples of business interfaces implemented by stateless and stateful session beans.

4.3.1 Business Interface Application Exceptions

When you design the business methods of your EJB, you can define an application exception in the `throws` clause of a method of the EJB's business interface. An application exception is an exception that you program in your bean class to alert a client of abnormal application-level conditions. For example, a `withdraw()` method in an Account EJB that represents a bank checking account might throw an application exception if the client tries to withdraw more money than is available in their account.

Application exceptions are different from system exceptions, which are thrown by the EJB container to alert the client of a system-level exception, such as the unavailability of a database management system. You should not report system-level errors in your application exceptions.

Finally, your business methods should not throw the java.rmi.RemoteException, even if the interface is a remote business interface, the bean class is annotated with the @WebService JWS annotation, or the method is annotated with @WebMethod. The only exception is if the business interface extends java.rmi.Remote. If the EJB container encounters problems at the protocol level, the container throws an EJBException which wraps the underlying RemoteException.
Note: The @WebService and @WebMethod annotations are in the javax.jws package; you use them to specify that your EJB implements a Web Service and that the EJB business will be exposed as public Web Service operations. For details about these annotations and programming Web Services in general, see Getting Started With JAX-WS Web Services for Oracle WebLogic Server.

4.3.2 Using Generics in EJBs

The EJB 3.0 programming model supports the use of generics in the business interface at the class level.

Oracle recommends as a best practice that you first define a super-interface that uses the generics, and then have the actual business interface extend this super-interface with a specific data type.

The following example shows how to do this. First, program the super-interface that uses generics:

```java
public interface RootI<T> {
    public T getObject();
    public void updateObject(T object);
}
```

Then program the actual business interface to extend `RootI<T>` for a particular data type:

```java
@Remote
public interface StatelessI extends RootI<String> { }
```

Finally, program the actual stateless session bean to implement the business interface; use the specified data type, in this case `String`, in the implementation of the methods:

```java
@Stateless
public class StatelessSample implements StatelessI {
    public String getObject() {
        return null;
    }
    public void updateObject(String object) {
    }
}
```

If you define the type variables on the business interface or class, they will be erased. In this case, the EJB application can be deployed successfully only when the bean class parameterizes the business interface with upper bounds of the type parameter and no other generic information. For example, in the following example, the upper bound is `Object`:

```java
public class StatelessSample implements StatelessI<Object> {
    public Object getObject() {
        return null;
    }
    public void updateObject(Object object) {
    }
}
```
4.3.3 Serializing and Deserializing Business Objects

Business object serialization and deserialization are supported by the following interfaces, which are implemented by all business objects:

- `weblogic.ejb.spi.BusinessObject`
- `weblogic.ejb.spi.BusinessHandle`

Use the `BusinessObject._WL_getBusinessObjectHandle()` method to get the business handle object and serialize the business handle object.

To deserialize a business object, deserialize the business handle object and use the `BusinessHandle.getBusinessObject()` method to get the business object.

4.4 Program the Annotated EJB Class

The EJB bean class is the main EJB programming artifact. It implements the EJB business interface and contains the EJB metadata annotations that specify semantics and requirements to the EJB container, request container services, and provide structural and configuration information to the application deployer or the container runtime.

In the 3.0 programming model, there is only one required annotation: either `@javax.ejb.Stateful`, `@javax.ejb.Stateless`, or `@javax.ejb.MessageDriven` to specify the type of EJB. Although there are many other annotations you can use to further configure your EJB, these annotations have typical default values so that you are not required to explicitly use the annotation in your bean class unless you want it to behave other than in the default manner. This programming model makes it very easy to program an EJB that exhibits typical behavior.

For additional details and examples of programming the bean class, see Chapter 5, "Programming the Annotated EJB 3.0 Class."

4.5 Optionally Program Interceptors

An interceptor is a method that intercepts the invocation of a business method or a life cycle callback event.

You can define an interceptor method within the actual bean class, or you can program an interceptor class (distinct from the bean class itself) and associate it with the bean class using the `@javax.ejb.Interceptor` annotation.

See Section 5.3.5, "Specifying Interceptors for Business Methods or Life Cycle Callback Events" for information on programming the bean class to use interceptors.

4.6 Compile Java Source

Once you have written the Java source code for your EJB bean class and optional interceptor class, you must compile it into class files. Typical tools to compile include:

- `weblogic.appc`—The `weblogic.appc` Java class (or its equivalent Ant task `wlappc`) generates and compiles the classes needed to deploy EJBs and JSPs to WebLogic Server. It validates the optional deployment descriptors for compliance with the current specifications at both the individual module level and the application level. The application-level checks include checks between the application-level deployment descriptors and the individual modules as well as
validation checks across the modules. See "Building Modules and Applications Using wlappc" in *Developing Applications for Oracle WebLogic Server*.

- **wlcompile** Ant task—Invokes the *javac* compiler to compile your application's Java components in a split development directory structure. See "Compiling Applications Using wlcompile" in *Developing Applications for Oracle WebLogic Server*.

- **javac**—The *javac* compiler provided with the Sun Java J2SE SDK provides java compilation capabilities. See http://java.sun.com/docs/.

4.7 Optionally Create and Edit Deployment Descriptors

A very important aspect of the new EJB 3.0 programming model is the introduction of metadata annotations. Annotations simplify the EJB development process by allowing a developer to specify within the Java class itself how the bean behaves in the container, requests for dependency injection, and so on. Annotations are an alternative to deployment descriptors that were required by older versions (2.X and earlier) of EJB.

However, EJB 3.0 still fully supports the use of deployment descriptors, even though the standard Java Platform, Enterprise Edition (Java EE) Version 5 ones are not required. For example, you may prefer to use the old 2.X programming model, or might want to allow further customizing of the EJB at a later development or deployment stage; in these cases you can create the standard deployment descriptors in addition to, or instead of, the metadata annotations.

Deployment descriptor elements always override their annotation counterparts. For example, if you specify the `@javax.ejb.TransactionManagement(BEAN)` annotation in your bean class, but then create an `ejb-jar.xml` deployment descriptor for the EJB and set the `<transaction-type>` element to `container`, then the deployment descriptor value takes precedence and the EJB uses container-managed transaction demarcation.

Note: This version of EJB 3.0 also supports all 2.X WebLogic-specific EJB features. However, the features that are configured in the `weblogic-ejb-jar.xml` or `weblogic-cmp-rdbms-jar.xml` deployment descriptor files must continue to be configured that way for this release of EJB 3.0 because currently they do not have any annotation equivalent.

The 2.X version of *Programming WebLogic Enterprise JavaBeans for Oracle WebLogic Server* provides detailed information about creating and editing EJB deployment descriptors, both the Java EE standard and WebLogic-specific ones. In particular, see the following sections:

- "EJB Deployment Descriptors" (Overview Information)
- "Edit Deployment Descriptors"
- "Deployment Descriptor Schema and Document Type Definitions Reference"
- "weblogic-ejb-jar.xml Deployment Descriptor Reference"
- "weblogic-cmp-jar.xml Deployment Descriptor Reference"
4.8 Packaging EJBs

Oracle recommends that you package EJBs as part of an enterprise application. For more information, see "Deploying and Packaging from a Split Development Directory" in Developing Applications for Oracle WebLogic Server.

See "Packaging Considerations for EJBs with Clients in Other Applications" in Programming WebLogic Enterprise JavaBeans for Oracle WebLogic Server for additional EJB-specific packaging information.

4.9 Deploying EJBs

Deploying an EJB enables WebLogic Server to serve the components of an EJB to clients. You can deploy an EJB using one of several procedures, depending on your environment and whether or not your EJB is in production. Deploying an EJB created with the 3.0 programming model is the same as deploying an EJB created with the 2.X programming model.

For general instructions on deploying WebLogic Server applications and modules, including EJBs, see Deploying Applications to Oracle WebLogic Server. For EJB-specific deployment issues and procedures, see "Deployment Guidelines For Enterprise JavaBeans" in the Programming WebLogic Enterprise JavaBeans for Oracle WebLogic Server guide, which concentrates on the 2.X programming model.
Programming the Annotated EJB 3.0 Class

The sections that follow describe how to program the annotated EJB 3.0 class file:

- Section 5.1, "Overview of Metadata Annotations and EJB 3.0 Bean Files"
- Section 5.2, "Programming the Bean File: Requirements and Changes From 2.X"
- Section 5.3, "Programming the Bean File: Typical Steps"
- Section 5.4, "Complete List of Metadata Annotations By Function"

5.1 Overview of Metadata Annotations and EJB 3.0 Bean Files

The new EJB 3.0 programming model uses the JDK 5.0 metadata annotations feature (described at http://java.sun.com/developer/technicalArticles/releases/j2se15) in which you create an annotated EJB 3.0 bean file and then use the WebLogic compile tool weblogic.appc (or its Ant equivalent wlappc) to compile the bean file into a Java class file and generate the associated EJB artifacts, such as the required EJB interfaces and deployment descriptors.

The annotated 3.0 bean file is the core of your EJB. It contains the Java code that determines how your EJB behaves. The 3.0 bean file is an ordinary Java class file that implements an EJB business interface that outlines the business methods of your EJB. You then annotate the bean file with JDK 5.0 metadata annotations to specify the shape and characteristics of the EJB, document your EJB, and provide special services such as enhanced business-level security or special business logic during runtime.

See Section 5.4, "Complete List of Metadata Annotations By Function" for a breakdown of the annotations you can specify in a bean file, by function. These annotations include those described by the following specifications:

See Appendix A, "EJB 3.0 Metadata Annotations Reference," for reference information about the annotations, listed in alphabetical order.

This topic is part of the iterative development procedure for creating an EJB 3.0, described in Chapter 4, "Iterative Development of Enterprise JavaBeans 3.0."
5.2 Programming the Bean File: Requirements and Changes From 2.X

The requirements for programming the 3.0 bean class file are essentially the same as the 2.X requirements. This section briefly describes the basic mandatory requirements of the bean class, mostly for overview purposes, as well as changes in requirements between 2.X and 3.0.

See Programming WebLogic Enterprise JavaBeans for Oracle WebLogic Server for detailed information about the mandatory and optional requirements for programming the bean class.

5.2.1 Bean Class Requirements and Changes From 2.X

The following bullets list the new 3.0 requirements for programming a bean class, as well as the 2.X requirements that no longer apply:

- The class must specify its bean type, typically using one of the following metadata annotations, although you can also override this using a deployment descriptor:
 - @javax.ejb.Stateless
 - @javax.ejb.Stateful
 - @javax.ejb.MessageDriven
 - @javax.ejb.Entity

- If the bean is a session bean, the bean class must implement the bean's business interface(s) or the methods of the bean's business interface(s), if any.

- Session beans no longer need to implement javax.ejb.SessionBean, which means the bean no longer needs to implement the ejbXXX() methods, such as ejbCreate(), ejbPassivate(), and so on.

- Stateful session beans no longer need to implement java.io.Serializable.

- Message-driven beans no longer need to implement javax.ejb.MessageDrivenBean.

The following requirements are the same as in EJB 2.X and are provided only as a brief overview:

- The class must be defined as public, must not be final, and must not be abstract. The class must be a top level class.

- The class must have a public constructor that takes no parameters.

- The class must not define the finalize() method.

- If the bean is message-driven, the bean class must implement, directly or indirectly, the message listener interface required by the messaging type that it supports or the methods of the message listener interface. In the case of JMS, this is the javax.jms.MessageListener interface.

5.2.2 Bean Class Method Requirements

The method requirements have not changed since EJB 2.X and are provided in this section for a brief overview only.
The requirements for programming the session bean class’ methods (that implement the business interface methods) are as follows:

- The method names can be arbitrary.
- The business method must be declared as `public` and must not be `final` or `static`.
- The argument and return value types for a method must be legal types for RMI/IIOP if the method corresponds to a business method on the session bean’s remote business interface or remote interface.
- The `throws` clause may define arbitrary application exceptions.

The requirements for programming the message-driven bean class’ methods are as follows:

- The methods must implement the listener methods of the message listener interface.
- The methods must be declared as `public` and must not be `final` or `static`.

5.3 Programming the Bean File: Typical Steps

The following procedure describes the typical basic steps when programming the 3.0 bean file for a EJB. The steps you follow depends, of course, on what your EJB does.

Refer to Chapter 3, "Simple Enterprise JavaBeans 3.0 Examples," for code examples of the topics discussed in the remaining sections.

1. Import the EJB 3.0 and other common annotations that will be used in your bean file. The general EJB annotations are in the `javax.ejb` package, the interceptor annotations are in the `javax.interceptor` package, the annotations to invoke a 3.0 entity are in the `javax.persistence` package, and the common annotations are in the `javax.common` or `javax.common.security` packages. For example:

   ```java
   import javax.ejb.Stateless;
   import javax.ejb.TransactionAttribute;
   import javax.interceptor.ExcludeDefaultInterceptors;
   ```

2. Specify the business interface that your EJB is going to implement, as well as other standard interfaces. You can either explicitly implement the interface, or use an annotation to specify it.

 See Section 5.3.1, "Specifying the Business and Other Interfaces."

3. Use the required annotation to specify the type of bean you are programming (session or message-driven).

 See Section 5.3.2, "Specifying the Bean Type (Stateless, Stateful, Message-Driven)."

4. Optionally use dependency injection to use external resources, such as another EJB or other Java Platform, Enterprise Edition (Java EE) Version 5 object.

 See Section 5.3.3, "Injecting Resource Dependency into a Variable or Setter Method."

5. Optionally create an `EntityManager` object and use the entity annotations to inject entity information.

 See Section 5.3.4, "Invoking a 3.0 Entity."
6. Optionally program and configure business method or life cycle callback method interceptor method. You can program the interceptor methods in the bean file itself, or in a separate Java file.

See Section 5.3.5, "Specifying Interceptors for Business Methods or Life Cycle Callback Events."

7. If your business interface specifies that business methods throw application exceptions, you must program the exception class, the same as in EJB 2.X.

See Section 5.3.6, "Programming Application Exceptions" for EJB 3.0 specific information.

8. Optionally specify the security roles that are allowed to invoke the EJB methods using the security-related metadata annotations.

See Section 5.3.7, "Securing Access to the EJB."

9. Optionally change the default transaction configuration in which the EJB runs.

See Section 5.3.8, "Specifying Transaction Management and Attributes."

5.3.1 Specifying the Business and Other Interfaces

When using the EJB 3.0 programming model to program a bean, you are required to specify a business interface.

There are two ways you can specify the business interface for the EJB bean class:

- By explicitly implementing the business interface, using the `implements` Java keyword.
- By using metadata annotations (such as `javax.ejb.Local` and `javax.ejb.Remote`) to specify the business interface. In this case, the bean class does not need to explicitly implement the business interface.

Typically, if an EJB bean class implements an interface, it is assumed to be the business interface of the EJB. Additionally, the business interface is assumed to be the local interface unless you explicitly denote it as the remote interface, either by using the `javax.ejb.Remote` annotation or updating the appropriate EJB deployment descriptor. You can specify the `javax.ejb.Remote` annotation, as well as the `javax.ejb.Local` annotation, in either the business interface itself, or the bean class that implements the interface.

A bean class can have more than one interface. In this case (excluding the interfaces listed below), you must specify the business interface of the EJB by explicitly using the `javax.ejb.Local` or `javax.ejb.Remote` annotations in either the business interface itself, the bean class that implements the business interface, or the appropriate deployment descriptor.

The following interfaces are excluded when determining whether the bean class has more than one interface:

- `java.io.Serializable`
- `java.io.Externalizable`
- Any of the interfaces defined by the `javax.ejb` package

The following code snippet shows how to specify the business interface of a bean class by explicitly implementing the interface:

```java
public class ServiceBean
    implements Service
```
For the full example, see Section 3.1, "Example of a Simple Stateless EJB."

5.3.2 Specifying the Bean Type (Stateless, Stateful, Message-Driven)

There is only one required metadata annotation in a 3.0 bean class: an annotation that specifies the type of bean you are programming. You must specify one, and only one, of the following:

- `@javax.ejb.Stateless`—Specifies that you are programming a stateless session bean.
- `@javax.ejb.Stateful`—Specifies that you are programming a stateful session bean.
- `@javax.ejb.MessageDriven`—Specifies that you are programming a message-driven bean.
- `@javax.ejb.Entity`—Specifies that you are programming an entity bean.

Although not required, you can specify attributes of the annotations to further describe the bean type. For example, you can set the following attributes for all bean types:

- name—Name of the bean class; the default value is the unqualified bean class name.
- mappedName—Product-specific name of the bean.
- description—Description of what the bean does.

If you are programming a message-driven bean, then you can specify the following optional attributes:

- `messageListenerInterface`—Specifies the message listener interface, if you haven't explicitly implemented it or if the bean implements additional interfaces.
- `activationConfig`—Specifies an array of activation configuration name-value pairs that configure the bean in its operational environment.

The following code snippet shows how to specify that a bean is a stateless session bean:

```java
@Stateless
public class ServiceBean
  implements Service
```

For the full example, see Section 3.1, "Example of a Simple Stateless EJB."

5.3.3 Injecting Resource Dependency into a Variable or Setter Method

Dependency injection is when the EJB container automatically supplies (or injects) a bean's variable or setter method with a reference to a resource or another environment entry in the bean's context. Dependency injection is simply an easier-to-program alternative to using the `javax.ejb.EJBContext` interface or JNDI APIs to look up resources.
You specify dependency injection by annotating a variable or setter method with one of the following annotations, depending on the type of resource you want to inject:

- `@javax.ejb.EJB`—Specifies a dependency on another EJB.
- `@javax.annotation.Resource`—Specifies a dependency on an external resource, such as a JDBC datasource or a JMS destination or connection factory.

Both annotations have an equivalent grouping annotation to specify a dependency on multiple resources (`@javax.ejb.EJBs` and `@javax.annotation.Resources`).

Although not required, you can specify attributes to these dependency annotations to explicitly describe the dependent resource. The amount of information you need to specify depends upon its usage context and how much information the EJB container can infer from that context. See Section A.2.3, "javax.ejb.EJB" and Section A.5.3, "javax.annotation.Resource" for detailed information on the attributes and when you should specify them.

The following code snippet shows how to use the `@javax.ejb.EJB` annotation to inject a dependency on an EJB into a variable; only the relevant parts of the bean file are shown:

```java
package examples;
import javax.ejb.EJB;
...
@Stateful
public class AccountBean
    implements Account
{
    @EJB(beanName="ServiceBean")
    private Service service;
    ...
    public void sayHelloFromAccountBean() {
        service.sayHelloFromServiceBean();
    }
}
```

In the preceding example, the private variable `service` is annotated with the `@javax.ejb.EJB` annotation, which makes reference to the EJB with a bean name of `ServiceBean`. The data type of the service variable is `Service`, which is the business interface implemented by the `ServiceBean` bean class. As soon as the EJB container creates the `AccountBean` EJB, the container injects a reference to `ServiceBean` into the `service` variable; the variable then has direct access to all the business methods of `SessionBean`, as shown in the `sayHelloFromAccountBean` method implementation in which the `sayHelloFromServiceBean` method is invoked.

5.3.4 Invoking a 3.0 Entity

This section describes how to invoke and update a 3.0 entity from within a session bean.
An entity is a persistent object that represents datastore records; typically an instance of an entity represents a single row of a database table. Entities make it easy to query and update information in a persistent store from within another Java EE component, such as a session bean. A Person entity, for example, might include name, address, and age fields, each of which correspond to the columns of a table in a database.

Using an javax.persistence.EntityManager object to access and manage the entities, you can easily retrieve a Person record, based on either their unique id or by using a SQL query, and then change the information and automatically commit the information to the underlying datastore.

The following sections describe the typical programming tasks you perform in your session bean to interact with entities:

- Section 5.3.4.1, "Injecting Persistence Context Using Metadata Annotations"
- Section 5.3.4.2, "Finding an Entity Using the EntityManager API"
- Section 5.3.4.3, "Creating and Updating an Entity Using EntityManager"

5.3.4.1 Injecting Persistence Context Using Metadata Annotations

In your session bean, use the following metadata annotations inject entity information into a variable:

- @javax.persistence.PersistenceContext—Injects a persistence context into a variable of data type javax.persistence.EntityManager. A persistence context is simply a set of entities such that, for any persistent identity, there is a unique entity instance. The persistence.xml file defines and names the persistence contexts available to a session bean.

- @javax.persistence.PersistenceContexts—Specifies a set of multiple persistence contexts.

- @javax.persistence.PersistenceUnit—Injects a persistence context into a variable of data type javax.persistence.EntityManagerFactory.

- @javax.persistence.PersistenceUnits—Specifies a set of multiple persistence contexts.

The @PersistenceContext and @PersistenceUnit annotations perform a similar function: inject persistence context information into a variable; the main difference is the data type of the instance into which you inject the information. If you prefer to have full control over the life cycle of the EntityManager in your session bean, then use @PersistenceUnit to inject into an EntityManagerFactory instance, and then write the code to manually create an EntityManager and later destroy when you are done, to release resources. If you prefer that the EJB container manage the life cycle of the EntityManager, then use the @PersistenceContext annotation to inject directly into an EntityManager.

The following example shows how to inject a persistence context into the variable `em` of data type EntityManager; relevant code is shown in bold:

```java
package examples;

import javax.ejb.Stateless;
```

Note: It is assumed in this section that you have already programmed the entity, as well as configured the database resources that support the entity. For details on that topic, see "Java Persistence API" in the Oracle Kodo documentation.
import javax.persistence.PersistenceContext;
import javax.persistence.EntityManager;

@Stateless
public class ServiceBean
 implements Service
{
 @PersistenceContext private EntityManager em;

 ...

5.3.4.2 Finding an Entity Using the EntityManager API

Once you have instantiated an EntityManager object, you can use its methods to interact with the entities in the persistence context. This section discusses the methods used to identify and manage the life cycle of an entity; see "EntityManager" in the Oracle Kodo documentation for additional uses of the EntityManager, such as transaction management, caching, and so on.

 Note: For clarity, this section assumes that the entities are configured such that they represent actual rows in a database table.

Use the EntityManager.find() method to find a row in a table based on its primary key. The find method takes two parameters: the entity class that you are querying, such as Person.class, and the primary key value for the particular row you want to retrieve. Once you retrieve the row, you can use standard getXXX methods to get particular properties of the entity. The following code snippet shows how to retrieve a Person with whose primary key value is 10, and then get their address:

 public List<Person> findPerson () {
 Person p = em.find(Person.class, 10);
 Address a = p.getAddress();

 Query q = em.createQuery("select p from Person p where p.name = :name");
 q.setParameter("name", "Patrick");
 List<Person> l = (List<Person>) q.getResultList();
 return l;
 }

The preceding example also shows how to use the EntityManager.createQuery() method to create a Query object that contains a custom SQL query; by contrast, the EntityManager.find() method allows you to query using only the table’s primary key. In the example, the table is queried for all Persons whose first name is Patrick; the resulting set of rows populates the List<Person> object and is returned to the findPerson() invoker.

5.3.4.3 Creating and Updating an Entity Using EntityManager

To create a new entity instance (and thus add a new row to the database), use the EntityManager.persist method, as shown in the following code snippet
@TransactionAttribute(REQUIRED)
public Person createNewPerson(String name, int age) {
 Person p = new Person(name, age);
 em.persist(p); // register the new object with the database
 Address a = new Address();
 p.setAddress(a);
 em.persist(a); // depending on how things are configured, this may or
 // may not be required
 return p;
}

The preceding example shows how to create a new Person, based on parameters passed to the createNewPerson method, and then call the EntityManager.persist method to automatically add the row to the database table.

The preceding example also shows how to update the newly-created Person entity (and thus new table row) with an Address by using the setAddress() entity method. Depending on the cascade configuration of the Person entity, the second persist() call may not be necessary; this is because the call to the setAddress() method might have automatically triggered an update to the database. For more information about cascading operations, see "Cascade Type" in the Oracle Kodo documentation.

If you use the EntityManager.find() method to find an entity instance, and then use a setXXX method to change a property of the entity, the database is automatically updated and you do not need to explicitly call the EntityManager.persist() method, as shown in the following code snippet:

```java
@TransactionAttribute(REQUIRED)
public Person changePerson(int id, int newAge) {
    Person p = em.find(Person.class, id);
    p.setAge(newAge);
    return p;
}
```

In the preceding example, the call to the Person.setAge() method automatically triggered an update to the appropriate row in the database table.

Finally, you can use the EntityManager.merge() method to quickly and easily update a row in the database table based on an update to an entity made by a client, as shown in the following example:

```java
@TransactionAttribute(REQUIRED)
public Person applyOfflineChanges(Person pDTO) {
    return em.merge(pDTO);
}
```

In the example, the applyOfflineChanges() method is a business method of the session bean that takes as a parameter a Person, which has been previously created by the session bean client. When you pass this Person to
EntityManager.merge() method, the EJB container automatically finds the existing row in the database table and automatically updates the row with the new data. The merge() method then returns a copy of this updated row.

5.3.5 Specifying Interceptors for Business Methods or Life Cycle Callback Events

An interceptor is a method that intercepts a business method invocation or a life cycle callback event. There are two types of interceptors: those that intercept business methods and those that intercept life cycle callback methods.

Interceptors can be specified for session and message-driven beans.

You can program an interceptor method inside the bean class itself, or in a separate interceptor class which you then associate with the bean class with the @javax.interceptor.Interceptors annotation. You can create multiple interceptor methods that execute as a chain in a particular order.

Interceptor instances may hold state. The life cycle of an interceptor instance is the same as that of the bean instance with which it is associated. Interceptors can invoke JNDI, JDBC, JMS, other enterprise beans, and the EntityManager. Interceptor methods share the JNDI name space of the bean for which they are invoked. Programming restrictions that apply to enterprise bean components to apply to interceptors as well.

Interceptors are configured using metadata annotations in the javax.interceptor package, as described in later sections.

The following topics discuss how to actually program interceptors for your bean class:

- Section 5.3.5.1, "Specifying Business or Life Cycle Interceptors: Typical Steps"
- Section 5.3.5.2, "Programming the Interceptor Class"
- Section 5.3.5.3, "Programming Business Method Interceptor Methods"
- Section 5.3.5.4, "Programming Life Cycle Callback Interceptor Methods"
- Section 5.3.5.5, "Specifying Default Interceptor Methods"
- Section 5.3.5.6, "Saving State Across Interceptors With the InvocationContext API"

5.3.5.1 Specifying Business or Life Cycle Interceptors: Typical Steps

The following procedure provides the typical steps to specify and program interceptors for your bean class.

See Section 3.2, "Example of a Simple Stateful EJB" for an example of specifying interceptors and Section 3.3, "Example of an Interceptor Class" for an example of programming an interceptor class.

1. Decide whether interceptor methods are programmed in bean class or in a separate interceptor class.

2. If you decide to program the interceptor methods in a separate interceptor class

 a. Program the class, as described in Section 5.3.5.2, "Programming the Interceptor Class."

 b. In your bean class, use the @javax.interceptor.Interceptors annotation to associate the interceptor class with the bean class. The method in the interceptor class annotated with the @javax.interceptor.AroundInvoke annotation then becomes a business method interceptor method of the bean class. Similarly, the methods annotated with the life cycle callback annotations become the life cycle callback interceptor methods of the bean class.
You can specify any number of interceptor classes for a given bean class—the order in which they execute is the order in which they are listed in the annotation. If you specify the interceptor class at the class-level, the interceptor methods apply to all appropriate bean class methods. If you specify the interceptor class at the method-level, the interceptor methods apply to only the annotated method.

3. In the bean class or interceptor class (wherever you are programming the interceptor methods), program business method interceptor methods, as described in Section 5.3.5.3, "Programming Business Method Interceptor Methods."

4. In the bean class or interceptor class (wherever you are programming the interceptor methods), program life cycle callback interceptor methods, as described in Section 5.3.5.3, "Programming Business Method Interceptor Methods."

5. In the bean class, optionally annotate methods with the @javax.interceptor.ExcludeClassInterceptors annotation to exclude any interceptors defined at the class-level.

6. In the bean class, optionally annotate the class or methods with the @javax.interceptor.ExcludeDefaultInterceptors annotation to exclude any default interceptors that you might define later. Default interceptors are configured in the ejb-jar.xml deployment descriptor, and apply to all EJBs in the JAR file, unless you explicitly use the annotation to exclude them.

7. Optionally specify default interceptors for the entire EJB JAR file, as described in Section 5.3.5.5, "Specifying Default Interceptor Methods."

5.3.5.2 Programming the Interceptor Class

The interceptor class is a plain Java class that includes the interceptor annotations to specify which methods intercept business methods and which intercept life cycle callback methods.

Interceptor classes support dependency injection, which is performed when the interceptor class instance is created, using the naming context of the associated enterprise bean.

You must include a public no-argument constructor.

You can have any number of methods in the interceptor class, but restrictions apply as to how many methods can be annotated with the interceptor annotations, as described in the following sections.

For an example, see Section 3.3, "Example of an Interceptor Class."

5.3.5.3 Programming Business Method Interceptor Methods

You specify business method interceptor methods by annotating them with the @AroundInvoke annotation.

An interceptor class or bean class can have only one method annotated with @AroundInvoke. To specify that multiple interceptor methods execute for a given business method, you must associate multiple interceptor classes with the bean file, in addition to optionally specifying an interceptor method in the bean file itself. The order in which the interceptor methods execute is the order in which the associated interceptor classes are listed in the @Interceptor annotation. Interceptor methods in the bean class itself execute after those defined in the interceptor classes.

You cannot annotate a business method itself with the @AroundInvoke annotation.

The signature of an @AroundInvoke method must be:
Object <METHOD>(InvocationContext) throws Exception

The method annotated with the @AroundInvoke annotation must always call InvocationContext.proceed() or neither the business method will be invoked nor any subsequent @AroundInvoke methods. See Section 5.3.5.6, "Saving State Across Interceptors With the InvocationContext API" for additional information about the InvocationContext API.

Business method interceptor method invocations occur within the same transaction and security context as the business method for which they are invoked. Business method interceptor methods may throw runtime exceptions or application exceptions that are allowed in the throws clause of the business method.

For an example, see Section 3.3, "Example of an Interceptor Class."

5.3.5.4 Programming Life Cycle Callback Interceptor Methods
You specify a method to be a life cycle callback interceptor method so that it can receive notification of life cycle events from the EJB container. Life cycle events include creation, passivation, and destruction of the bean instance.

You can name the life cycle callback interceptor method anything you want; this is different from the EJB 2.X programming model in which you had to name the methods ejbCreate(), ejbPassivate(), and so on.

You use the following life cycle interceptor annotations to specify that a method is a life cycle callback interceptor method:

- @javax.ejb.PrePassivate—Specifies the method that the EJB container notifies when it is about to passivate a stateful session bean.
- @javax.ejb.PostActivate—Specifies the method that the EJB container notifies right after it has reactivated a stateful session bean.
- @javax.annotation.PostConstruct—Specifies the method that the EJB container notifies before it invokes the first business method and after it has done dependency injection. You typically apply this annotation to the method that performs initialization.

 Note: This annotation is in the javax.annotation package, rather than javax.ejb.

- @javax.annotation.PreDestroy—Specifies the method that the EJB container notifies right before it destroys the bean instance. You typically apply this annotation to the method that release resources that the bean class has been holding.

 Note: This annotation is in the javax.annotation package, rather than javax.ejb.

You use the preceding annotations the same way, whether the annotated method is in the bean class or in a separate interceptor class. You can annotate the same method with more than one annotation.

You can also specify any subset or combination of life cycle callback annotations in the bean class or in an associated interceptor class. However, the same callback annotation
may not be specified more than once in a given class. If you do specify a callback annotation more than once in a given class, the EJB will not deploy.

To specify that multiple interceptor methods execute for a given life cycle callback event, you must associate multiple interceptor classes with the bean file, in addition to optionally specifying the life cycle callback interceptor method in the bean file itself. The order in which the interceptor methods execute is the order in which the associated classes are listed in the @Interceptor annotation. Interceptor methods in the bean class itself execute after those defined in the interceptor classes.

The signature of the annotated methods depends on where the method is defined:

- Life cycle callback methods defined on a bean class have the following signature:

  ```java
  void <METHOD>()
  ```

- Life cycle callback methods defined on an interceptor class have the following signature:

  ```java
  void <METHOD>(InvocationContext)
  ```

See Section 5.3.5.6, "Saving State Across Interceptors With the InvocationContext API" for additional information about the InvocationContext API.

For an example, see Section 3.3, "Example of an Interceptor Class."

5.3.5.5 Specifying Default Interceptor Methods

Default interceptor methods apply to all components in a particular EJB JAR file or exploded directory, and thus can only be configured in the `ejb-jar.xml` deployment descriptor file and not with metadata annotations, which apply to a particular EJB.

The EJB container invokes default interceptor methods, if any, before all other interceptors defined for an EJB (both business and life cycle). If you do not want the EJB container to invoke the default interceptors for a particular EJB, specify the class-level `@javax.interceptor.ExcludeDefaultInterceptors` annotation in the bean file.

In the `ejb-jar.xml` file, use the `<interceptor-binding>` child element of `<assembly-descriptor>` to specify default interceptors. In particular, set the `<ejb-name>` child element to `*`, which means the class applies to all EJBs, and then the `<interceptor-class>` child element to the name of the interceptor class.

The following snippet from an `ejb-jar.xml` file shows how to specify the default interceptor class `org.mycompany.DefaultIC`:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<ejb-jar version="3.0"
  xmlns="http://java.sun.com/xml/ns/javae/
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
  xsi:schemaLocation="http://java.sun.com/xml/ns/javae/
  http://java.sun.com/xml/ns/javae/ejb-jar_3_0.xsd">...<assembly-descriptor>
```
5.3.5.6 Saving State Across Interceptors With the InvocationContext API

Use the javax.interceptor.InvocationContext API to pass state information between the interceptors that execute for a given business method or life cycle callback. The EJB Container passes the same InvocationContext instance to each interceptor method, so you can, for example save information when the first business method interceptor method executes, and then retrieve this information for all subsequent interceptor methods that execute for this business method. The InvocationContext instance is not shared between business method or life cycle callback invocations.

All interceptor methods must have an InvocationContext parameter. You can then use the methods of the InvocationContext interface to get and set context information. The InvocationContext interface is shown below:

```java
public interface InvocationContext {
    public Object getBean();
    public Method getMethod();
    public Object[] getParameters();
    public void setParameters(Object[]);
    public java.util.Map getContextData();
    public Object proceed() throws Exception;
}
```

The getBean method returns the bean instance. The getMethod method returns the name of the business method for which the interceptor method was invoked; in the case of life cycle callback interceptor methods, getMethod returns null.

The proceed method causes the invocation of the next interceptor method in the chain, or the business method itself if called from the last @AroundInvoke interceptor method.

For an example of using InvocationContext, see Section 3.3, "Example of an Interceptor Class."

5.3.6 Programming Application Exceptions

If you specified in the business interface that a method throws an application method, then you must program the exception as a separate class from the bean class.

Use the @javax.ejb.ApplicationException annotation to specify that an exception class is an application exception thrown by a business method of the EJB. The EJB container reports the exception directly to the client in the event of the application error.
Use the rollback Boolean attribute of the @ApplicationException annotation to specify whether the application error causes the current transaction to be rolled back. By default, the current transaction is not rolled back in event of the error.

You can annotate both checked and unchecked exceptions with this annotation.

The following ProcessingException.java file shows how to use the @ApplicationException annotation to specify that an exception class is an application exception thrown by one of the business methods of the EJB:

```java
package examples;

import javax.ejb.ApplicationException;

/**
 * Application exception class thrown when there was a processing error
 * with a business method of the EJB. Annotated with the
 * @ApplicationException annotation.
 */

@ApplicationException()
public class ProcessingException extends Exception {

    /**
     * Catches exceptions without a specified string
     *
     */
    public ProcessingException() {}

    /**
     * Constructs the appropriate exception with the specified string
     *
     * @param message Exception message
     */
    public ProcessingException(String message) {super(message);}
}
```

5.3.7 Securing Access to the EJB

By default, any user can invoke the public methods of an EJB. If you want to restrict access to the EJB, you can use the following security-related annotations to specify the roles that are allowed to invoke all, or a subset, of the methods:

- `javax.annotation.security.DeclareRoles`—Explicitly lists the security roles that will be used to secure the EJB.
- `javax.annotation.security.RolesAllowed`—Specifies the security roles that are allowed to invoke all the methods of the EJB (when specified at the class-level) or a particular method (when specified at the method-level.)
- `javax.annotation.security.DenyAll`—Specifies that the annotated method can not be invoked by any role.
- `javax.annotation.security.PermitAll`—Specifies that the annotated method can be invoked by all roles.
- `javax.annotation.security.RunAs`—Specifies the role which runs the EJB. By default, the EJB runs as the user who actually invokes it.

The preceding annotations can be used with many Java EE components that allow metadata annotations, not just EJB 3.0.
You create security roles and map users to roles using the WebLogic Server Administration Console to update your security realm. For details, see "Manage Security Roles" in the Oracle WebLogic Server Administration Console Help.

The following example shows a simple stateless session EJB that uses all of the security-related annotations; the code in bold is discussed after the example:

```java
package examples;

import javax.ejb.Stateless;
import javax.annotation.security.DeclareRoles;
import javax.annotation.security.PermitAll;
import javax.annotation.security.DenyAll;
import javax.annotation.security.RolesAllowed;
import javax.annotation.security.RunAs;

/**
 * Bean file that implements the Service business interface.
 */
@Stateless
@DeclareRoles( { "admin", "hr" } )
@RunAs ("admin")
public class ServiceBean implements Service {
    @RolesAllowed ( {"admin", "hr"} )
    public void sayHelloRestricted() {
        System.out.println("Only some roles can invoke this method.");
    }

    @DenyAll
    public void sayHelloSecret() {
        System.out.println("No one can invoke this method.");
    }

    @PermitAll
    public void sayHelloPublic() {
        System.out.println("Everyone can invoke this method.");
    }
}
```

The main points to note about the preceding example are:

- Import the security-related metadata annotations:

```java
import javax.annotation.security.DeclareRoles;
import javax.annotation.security.PermitAll;
import javax.annotation.security.DenyAll;
import javax.annotation.security.RolesAllowed;
import javax.annotation.security.RunAs;
```

- The class-level `@DeclareRoles` annotation explicitly specifies that the `admin` and `hr` security roles will later be used to secure some or all of the methods. This annotation is not required; any security role referenced in, for example, the `@RolesReferenced` annotation is implicitly declared. However, explicitly declaring the security roles makes your code easier to read and understand.
The class-level @RunAs annotation specifies that, regardless of the user who actually invokes a particular method of the EJB, the EJB container runs the method as the admin role, assuming, of course, that the original user is allowed to invoke the method.

The @RolesAllowed annotation on the sayHelloRestricted method specifies that only users mapped to the admin and hr roles are allowed to invoke the method.

The @DenyAll annotation on the sayHelloSecret method specifies that no one is allowed to invoke the method.

The @PermitAll annotation on the sayHelloPublic method specifies that all users mapped to any roles are allowed to invoke the method.

5.3.8 Specifying Transaction Management and Attributes

By default, the EJB container invokes a business method within a transaction context. Additionally, the EJB container itself decides whether to commit or rollback a transaction; this is called container-managed transaction demarcation.

You can change this default behavior by using the following annotations in your bean file:

- javax.ejb.TransactionManagement—Specifies whether the EJB container or the bean file manages the demarcation of transactions. If you specify that the bean file manages it, then you must program transaction management in your bean file, typically using the Java Transaction API (JTA).

- javax.ejb.TransactionAttribute—Specifies whether the EJB container invokes methods within a transaction.

For an example of using the javax.ejb.TransactionAttribute annotation, see Section 3.2, "Example of a Simple Stateful EJB."

5.4 Complete List of Metadata Annotations By Function

Appendix A, "EJB 3.0 Metadata Annotations Reference," provides full reference information about the EJB 3.0 metadata annotations in alphabetical order. The tables in this section group the annotations based on what task they perform.

5.4.1 Annotations to Specify the Bean Type

The following summarize the annotations used to specify the bean type.

<table>
<thead>
<tr>
<th>Annotation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>@javax.ejb.Stateless</td>
<td>Specifies that the bean class is a stateless session bean. For more information, see Section A.2.15, "javax.ejb.Stateless."</td>
</tr>
<tr>
<td>@javax.ejb.Stateful</td>
<td>Specifies that the bean class is a stateful session bean. For more information, see Section A.2.14, "javax.ejb.Stateful."</td>
</tr>
<tr>
<td>@javax.ejb.Init</td>
<td>Specifies the correspondence of a stateful session bean class method with a create<METHOD> method for an adapted EJB 2.1 EJBHome and/or EJBLocalHome client view. For more information, see Section A.2.5, "javax.ejb.Init."</td>
</tr>
</tbody>
</table>
5.4.2 Annotations to Specify the Local or Remote Interfaces

The following summarize the annotations used to specify the local or remote interfaces.

Table 5–2 Annotations to Specify the Local or Remote Interfaces

<table>
<thead>
<tr>
<th>Annotation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>@javax.ejb.Local</td>
<td>Specifies a local interface of the bean. For more information, see Section A.2.6, "javax.ejb.Local."</td>
</tr>
<tr>
<td>@javax.ejb.Remote</td>
<td>Specifies a remote interface of the bean. For more information, see Section A.2.11, "javax.ejb.Remote."</td>
</tr>
</tbody>
</table>

5.4.3 Annotations to Support EJB 2.X Client View

The following summarize the annotations used to support EJB 2.x client view.

Table 5–3 Annotations to Support EJB 2.X Client View

<table>
<thead>
<tr>
<th>Annotation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>@javax.ejb.LocalHome</td>
<td>Specifies a local home interface of the bean. For more information, see Section A.2.7, "javax.ejb.LocalHome."</td>
</tr>
<tr>
<td>@javax.ejb.RemoteHome</td>
<td>Specifies a remote home interface of the bean. For more information, see Section A.2.12, "javax.ejb.RemoteHome."</td>
</tr>
</tbody>
</table>

5.4.4 Annotations to Invoke a 3.0 Entity Bean

The following summarize the annotations used to invoke a 3.0 entity bean.

Table 5–4 Annotations to Invoke a 3.0 Entity Bean

<table>
<thead>
<tr>
<th>Annotation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>@javax.persistence.PersistenceContext</td>
<td>Specifies a dependency on an EntityManager persistence context. For more information, see Section A.4.1, "javax.persistence.PersistenceContext."</td>
</tr>
<tr>
<td>@javax.persistence.PersistenceContexts</td>
<td>Specifies one or more PersistenceContext annotations. For more information, see Section A.4.2, "javax.persistence.PersistenceContexts."</td>
</tr>
<tr>
<td>@javax.persistence.PersistenceUnit</td>
<td>Specifies a dependency on an EntityManagerFactory. For more information, see Section A.4.3, "javax.persistence.PersistenceUnit."</td>
</tr>
</tbody>
</table>
5.4.5 Transaction-Related Annotations

The following summarize the annotations used for transactions.

<table>
<thead>
<tr>
<th>Annotation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>@javax.ejb.TransactionManagement</td>
<td>Specifies the transaction management demarcation type (container- or bean-managed). For more information, see Section A.2.18, “javax.ejb.TransactionManagement.”</td>
</tr>
<tr>
<td>@javax.ejb.TransactionAttribute</td>
<td>Specifies whether a business method is invoked within the context of a transaction. For more information, see Section A.2.18, “javax.ejb.TransactionManagement.”</td>
</tr>
</tbody>
</table>

5.4.6 Annotations to Specify Interceptors

The following summarize the annotations used to specify interceptors.

<table>
<thead>
<tr>
<th>Annotation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>@javax.interceptor.Interceptors</td>
<td>Specifies the list of interceptor classes associated with a bean class or method. For more information, see Section A.3.4, “javax.interceptor.Interceptors.”</td>
</tr>
<tr>
<td>@javax.interceptor.AroundInvoke</td>
<td>Specifies an interceptor method. For more information, see Section A.3.1, “javax.interceptor.AroundInvoke.”</td>
</tr>
<tr>
<td>@javax.interceptor.ExcludeClassInterceptors</td>
<td>Specifies that, when the annotated method is invoked, the class-level interceptors should not invoke. For more information, see Section A.3.2, “javax.interceptor.ExcludeClassInterceptors.”</td>
</tr>
<tr>
<td>@javax.interceptor.ExcludeDefaultInterceptors</td>
<td>Specifies that, when the annotated method is invoked, the default interceptors should not invoke. For more information, see Section A.3.3, “javax.interceptor.ExcludeDefaultInterceptors.”</td>
</tr>
</tbody>
</table>

5.4.7 Annotations to Specify Life Cycle Callbacks

The following summarize the annotations used to specify life cycle callbacks.

<table>
<thead>
<tr>
<th>Annotation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>@javax.ejb.PostActivate</td>
<td>Designates a method to receive a callback after a stateful session bean has been activated. For more information, see Section A.2.9, “javax.ejb.PostActivate.”</td>
</tr>
</tbody>
</table>
Table 5–7 (Cont.) Annotations to Specify Life Cycle Callbacks

<table>
<thead>
<tr>
<th>Annotation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>@javax.ejb.PrePassivate</td>
<td>Designates a method to receive a callback before a stateful session bean is passivated. For more information, see Section A.2.10, "javax.ejb.PrePassivate.”</td>
</tr>
<tr>
<td>@javax.annotation.PostConstruct</td>
<td>Specifies the method that needs to be executed after dependency injection is done to perform any initialization. For more information, see Section A.5.1, "javax.annotation.PostConstruct.”</td>
</tr>
<tr>
<td>@javax.annotation.PreDestroy</td>
<td>Specifies a method to be a callback notification to signal that the instance is in the process of being removed by the container. For more information, see Section A.5.2, "javax.annotation.PreDestroy.”</td>
</tr>
</tbody>
</table>

5.4.8 Security-Related Annotations

The following metadata annotations are not specific to EJB 3.0, but rather, are general security-related annotations in the javax.annotation.security package.

Table 5–8 Security-Related Annotations

<table>
<thead>
<tr>
<th>Annotation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>@javax.annotation.security.DeclareRoles</td>
<td>Specifies the references to security roles in the bean class. For more information, see Section A.6.1, "javax.annotation.security.DeclareRoles.”</td>
</tr>
<tr>
<td>@javax.annotation.security.RolesAllowed</td>
<td>Specifies the list of security roles that are allowed to invoke the bean's business methods. For more information, see Section A.6.4, "javax.annotation.security.RolesAllowed.”</td>
</tr>
<tr>
<td>@javax.annotation.security.PermitAll</td>
<td>Specifies that all security roles are allowed to invoke the method. For more information, see Section A.6.3, "javax.annotation.security.PermitAll.”</td>
</tr>
<tr>
<td>@javax.annotation.security.DenyAll</td>
<td>Specifies that no security roles are allowed to invoke the method. For more information, see Section A.6.2, "javax.annotation.security.DenyAll.”</td>
</tr>
<tr>
<td>@javax.annotation.security.RunAs</td>
<td>Specifies the security role which the method is run as. For more information, see Section A.6.5, "javax.annotation.security.RunAs.”</td>
</tr>
</tbody>
</table>

5.4.9 Context Dependency Annotations

The following summarize the annotations used for context dependency.

Table 5–9 Context Dependency Annotations

<table>
<thead>
<tr>
<th>Annotation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>@javax.ejb.EJB</td>
<td>Specifies a dependency to an EJB business interface or home interface. For more information, see Section A.2.3, "javax.ejb.EJB.”</td>
</tr>
<tr>
<td>@javax.ejb.EJBs</td>
<td>Specifies one or more @EJB annotations. For more information, see Section A.2.4, "javax.ejb.EJBs.”</td>
</tr>
</tbody>
</table>
5.4.10 Timeout and Exceptions Annotations

The following summarize the annotations used for timeout and exceptions.

Table 5–10 Timeout and Exception Annotations

<table>
<thead>
<tr>
<th>Annotation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>@javax.ejb.Timeout</td>
<td>Specifies the timeout method of the bean class. For more information, see Section A.2.16, "javax.ejb.Timeout."</td>
</tr>
<tr>
<td>@javax.ejb.ApplicationException</td>
<td>Specifies that an exception is an application exception and should be reported to the client directly. For more information, see Section A.2.2, "javax.ejb.ApplicationException."</td>
</tr>
</tbody>
</table>
This chapter provides an overview of developing an Oracle TopLink application using Oracle WebLogic Server. The following topics are covered:

- Section 6.1, "Overview of Oracle TopLink"
- Section 6.2, "Integrating Oracle TopLink with Oracle WebLogic Server"
- Section 6.3, "Using JPA 2.0 with TopLink in WebLogic Server"

6.1 Overview of Oracle TopLink

Oracle TopLink is an advanced, object-persistence and object-transformation framework that provides development tools and run-time capabilities that reduce development and maintenance efforts, and increase enterprise application functionality.

Oracle TopLink includes support for EJB 3.0 in Java EE and Java SE environments, as well as support for EJB 2.1 container-managed persistence (CMP). You can integrate Oracle TopLink with a variety of application servers, including Oracle WebLogic Server, OC4J, SunAS, JBoss, and IBM WebSphere.

For more information about developing, deploying, and configuring Oracle TopLink applications, see the Oracle Fusion Middleware Developer’s Guide for Oracle TopLink.

When use use TopLink as the persistence provider in this release of WebLogic Server, you can install a patch that provides support for JPA 2.0. See Section 6.3, "Using JPA 2.0 with TopLink in WebLogic Server."

6.2 Integrating Oracle TopLink with Oracle WebLogic Server

You develop Oracle TopLink applications, as described in "Introduction to TopLink Application Development" in Oracle Fusion Middleware Developer’s Guide for Oracle TopLink.

Before you can deploy Oracle TopLink applications on Oracle WebLogic Server, you must perform the following integration steps:

- If JTA is used, configure the external transaction controller as required.
- Use deployed JMX MBeans to configure your Oracle TopLink sessions at run-time.

For complete details, see "Integrating TopLink with Oracle WebLogic Server" in Oracle Fusion Middleware Developer’s Guide for Oracle TopLink. You also need to meet the
requirements described in "Integrating TopLink with an Application Server" in the same document.

6.3 Using JPA 2.0 with TopLink in WebLogic Server

When you use Oracle TopLink as the persistence provider in this release of WebLogic Server, you can install a patch that provides support for Java Persistence Architecture (JPA) 2.0.

JPA 2.0 includes improvements and enhancements to domain modeling, object/relational mapping, `EntityManager` and `Query` interfaces, and the Java Persistence Query Language (JPQL). It includes a new API for criteria queries, a metamodel API, and support for validation. For the JPA 2.0 Specification, see "JSR-000317 Java Persistence 2.0 (Final Release)" at http://jcp.org/aboutJava/communityprocess/final/jsr317/index.htm.

Note: Support for JPA 2.0 in WebLogic Server is provided as a patch, because JPA 2.0 is part of Java Platform, Enterprise Edition (Java EE) 6. Therefore, enabling JPA 2.0 support in the current release results in WebLogic Server not meeting all Java EE 5 compatibility requirements. To maintain Java EE 5 compatibility in the current release, the files required for the support are not enabled by default, although they are included in a standard WebLogic Server installation.

To use JPA 2.0 in this release of WebLogic Server, do the following:

1. Use Oracle TopLink as the persistence provider, as described in "Integrating TopLink with Oracle WebLogic Server" in Oracle Fusion Middleware Developer’s Guide for Oracle TopLink.

2. Install the patch, using either of the following two methods.
 - Section 6.3.1, "Installing Using Smart Update"
 - Section 6.3.2, "Installing Manually"

6.3.1 Installing Using Smart Update

Oracle Smart Update is a standalone Java application that simplifies the process of applying patches to your WebLogic Server installation. It is automatically installed in the Middleware home directory. You must have an active My Oracle Support account to use Smart Update.

To install the patch using Smart Update, do the following:

1. Ensure that you are logged in to My Oracle Support. For information, see http://support.oracle.com.

2. Start Smart Update, as described in "Starting Smart Update."

3. In the Target Installation panel of the main Smart Update window, select the target installation.

4. Select the Get Patches tab.

5. In the available patches panel, select the check box for patch QWG8 - Enable JPA 2.0 support on WebLogic Server.

6. Click Download Selected.
7. Select the Manage Patches tab.
8. In the Downloaded Patches panel, select the patch, then click the Up Arrow button under Apply.

For more information on using Smart Update, see Oracle Smart Update Installing Patches and Maintenance Packs.

Using Smart Update to apply the patch does the following:

- A folder `FMW_HOME/patch_wls1034` is created, and the patch files are copied to that directory.
- `FMW_HOME\patch_wls1034\profiles\default\sys_manifest_classpath\weblogic_patch.jar` is added in the CLASSPATH by `FMW_HOME/wlsserver_10.3\common\bin\setPatchEnv.cmd`.
- You can use the standard `startWeblogic.cmd` or `startWeblogic.sh` to start the server. No further modification is required.
- If you use a custom script to start the server, you may need to put `FMW_HOME\javax.persistence_1.0.0.0_2-0-0.jar;%wls_modules%\com.oracle.jpa2support_1.0.0.0_2-0.jar` or `FMW_HOME\patch_wls1034\profiles\default\sys_manifest_classpath\weblogic_patch.jar` at the beginning of CLASSPATH. See Section 6.3.2, "Installing Manually," for suggestions on how to do this.

6.3.2 Installing Manually

The files required for supporting JPA 2.0 are included with a default WebLogic Server installation, but they are not enabled by default. The files are installed in the `WL_HOME\modules` directory. The files are:

- The `javax.persistence_1.0.0.0_2-0-0` JAR file contains the JPA 2.0 libraries.
- The `com.oracle.jpa2support_1.0.0.0_2-0.jar` file contains the files for enabling JPA 2.0 support in WebLogic Server.

If you do not have an active My Oracle Support account (which you need to use Smart Update) you can install the patch manually by putting the files at the start of the WebLogic classpath. For example, you can use either of the following ways:

- Define a `PRE_CLASSPATH` environment variable before starting WebLogic Server.

 For example, in a Windows console window, run the following script before running `startWebLogic.cmd`:

  ```bash
  @echo off
  if ":"== ":" goto TellSyntax
  set wls_modules=%1
  set PRE_CLASSPATH=%wls_modules%\javax.persistence_1.0.0.0_2-0-0.jar
  %wls_modules%\com.oracle.jpa2support_1.0.0.0_2-0.jar
  goto End
  :TellSyntax
  echo setJPA2SupportPatch [path-to-weblogic-modules-directory]
  :End
  echo PRE_CLASSPATH=%PRE_CLASSPATH%
  ```

 A similar script can be written for Linux, UNIX, or Macintosh.

- Modify the `commEnv.cmd` or `commEnv.sh` script in the `WL_HOME\common\bin` directory, and define the `PRE_CLASSPATH` at the beginning of the script.
Using Oracle Kodo with WebLogic Server

This chapter provides an overview of developing, deploying, and configuring an Oracle Kodo application using WebLogic Server. The following topics are covered:

- Section 7.1, "Overview of Oracle Kodo"
- Section 7.2, "Creating an Oracle Kodo Application"
- Section 7.3, "Using Different Oracle Kodo Versions"
- Section 7.4, "Configuring Persistence"
- Section 7.5, "Deploying an Oracle Kodo Application"
- Section 7.6, "Configuring an Oracle Kodo Application"

7.1 Overview of Oracle Kodo

Oracle Kodo is an implementation of Sun Microsystem’s Java Persistence API (JPA) specification and Java Data Objects (JDO) specification for transparent data objects. Oracle Kodo is available as a stand-alone product and is integrated within WebLogic Server.

This chapter describes how to implement an application using JPA or JDO in WebLogic Server. Within WebLogic Server, the JPA and JDO implementations are part of WebLogic Server’s overall Enterprise JavaBean 3.0 persistence implementation.

For general information on creating an application using JPA and JDO, see the Kodo 4.2.0 Developers Guide for JPA/JDO.

7.2 Creating an Oracle Kodo Application

The first step in implementing a Oracle Kodo application on WebLogic Server is to write the application code. The following resources provide general information on writing an application that uses Oracle Kodo to manage persistence of your data:

Note: Oracle Kodo JPA/JDO is deprecated in this release. Customers are encouraged to consider using Oracle TopLink. For more information about Oracle TopLink, see "Using Oracle TopLink with Oracle WebLogic Server".

When you use TopLink, you can install a patch to WebLogic Server which provides support for JPA 2.0. For more information, see Section 6.3, "Using JPA 2.0 with TopLink in WebLogic Server." WebLogic Server does not support JPA 2.0 when using Kodo.
Once you are familiar with the steps involved in creating applications using Oracle Kodo and have created your application, the following sections describe how to deploy and configure your application using WebLogic Server.

7.3 Using Different Oracle Kodo Versions

If you choose to use a different version of Oracle Kodo than the one provided by default within WebLogic Server, you must use the FilteringClassloader to specify the packages—in this case Oracle Kodo and OpenJPA—that you want to be loaded from the application, and not from the system classloader.

The following example shows how to load the Oracle Kodo and OpenJPA packages from the application using weblogic-application.xml:

```xml
<prefer-application-packages>
  <package-name>org.apache.openjpa.*</package-name>
  <package-name>kodo.*</package-name>
</prefer-application-packages>
```

For more information on filtering classloaders, see "Understanding WebLogic Server Application Classloading" in Developing Applications for Oracle WebLogic Server.

Then, you can package the Oracle Kodo and OpenJPA packages with your application using the library directory, as described in "Library Directories" in Developing Applications for Oracle WebLogic Server.

7.4 Configuring Persistence

The following sections describe how to configure persistence.

- Section 7.4.1, "Editing the Configuration Property Files"
- Section 7.4.2, "Using the Configuration Files Together"
- Section 7.4.3, "Configuring Plug-ins"

7.4.1 Editing the Configuration Property Files

Oracle Kodo uses two XML files, listed in the following table, to define configuration properties.

<table>
<thead>
<tr>
<th>Table 7–1 Persistence Configuration Files</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration File</td>
</tr>
<tr>
<td>persistence.xml</td>
</tr>
</tbody>
</table>
Edit the contents of the configuration files as required to configure persistence. Persistence units can be packaged as part of a WAR or EJB JAR file, or can be packaged as a JAR file that can be included in a WAR or EAR file. The files should be available as resources in the `META-INF` directory of the root of the persistence unit. For container environments, the root of a persistence unit may be one of the following:

- EJB-JAR file
- `WEB-INF/classes` directory of a WAR file
- JAR file in the `WEB-INF/lib` directory of a WAR file
- JAR file in the root of the EAR
- JAR file in the EAR library directory
- Application client jar file

7.4.2 Using the Configuration Files Together

The following provide considerations for using the configuration files together.

- When using the `persistence-configuration.xml` file, all Oracle Kodo-specific properties must be included in the `persistence-configuration.xml` file and not the `persistence.xml` file. In this case, the WebLogic Server Administration Console and WebLogic Scripting Tool (WLST) recognizes the persistence unit as a Oracle Kodo persistence unit and provide advanced configuration and tunables support.

- If Oracle Kodo-specific properties are included in the `persistence.xml` file, the persistence unit will be treated as a third-party persistence unit by the Administration Console and WLST.

- If the `persistence-configuration.xml` descriptor is available and contains an entry for a given persistence unit, then no Oracle Kodo (`kodo`) or OpenJPA (`openjpa`) properties can be specified in the `<properties>` tag of the `persistence.xml` file for that persistence unit.

7.4.3 Configuring Plug-ins

Because Oracle Kodo is a highly customizable environment, many configuration properties relate to the creation and configuration of system plugins. Plugin properties have a syntax very similar to that of Java annotations. They allow you to specify both
what class to use for the plugin and how to configure the public fields or bean properties of the instantiated plugin instance.

Essentially, plugins are defined using a series of properties using name/value pairs. For example, the following shows how a plugin is defined within persistence.xml:

```xml
<properties>
<property name='myplugin.DataCache' value='com.bea.MyDataCache(CacheSize=1000, RemoteHost='CacheServer')'/>
</properties>
```

7.5 Deploying an Oracle Kodo Application

Before you deploy a Oracle Kodo application, you must perform the following tasks:

- Create a Oracle Kodo application, as described in Section 7.2, "Creating an Oracle Kodo Application."
- Configure persistence, as described in Section 7.4, "Configuring Persistence."
- Created an archive for your application (.ear or .war).

Once completed, you are ready to deploy your application on WebLogic Server. Once your application is configured, an Oracle Kodo application is deployed just like any other application. For complete information on deploying applications, see Deploying Applications to Oracle WebLogic Server.

7.6 Configuring an Oracle Kodo Application

Note: You cannot create a new persistence unit from the Administration Console. To create a new persistence unit, you must edit `persistence.xml` manually.

Once you have deployed your Oracle Kodo application, you can alter the configuration parameters defined in `persistence.xml` and `persistence-configuration.xml`.

The following sections describe how to configure a Oracle Kodo application with or without using the Administration Console.

7.6.1 Using the Administration Console

If your deployed application has defined a persistence unit within `persistence.xml`, you can access configuration from within the Administration Console using the following:

1. Select Deployments.
2. Select the name of the module containing a persistence unit that you want to configure.
3. Select the Configuration tab.
4. Select the Persistence tab.
5. From the list of persistence units, select the one that you want to configure.

From here, you can access all of the Oracle Kodo persistence parameters that can be edited from the Administration Console.
7.6.2 Configuring Oracle Kodo Without Using the Administration Console

If you need to alter parameters that are not available using the Administration Console, use one of the following methods:

- Manually edit the `persistence.xml` and `persistence-configuration.xml` files that are archived with the application.

- Use the `SessionHelper` to access and configure the deployment plan. For more information, see "SessionHelper" in "The Tools Package" in "Understanding the WebLogic Deployment API" in Programming Deployment for Oracle WebLogic Server.

- Use the WLST `loadApplication()` method to load and update the application deployment plan. For more information, see "Updating the Deployment Plan" in Oracle WebLogic Scripting Tool.

- Manually edit your deployment plan. For more information, see "Manually Customizing the Deployment Plan" in "Exporting an Application for Deployment to New Environments" in Deploying Applications to Oracle WebLogic Server.
The following topics provide reference information about the EJB 3.0 metadata annotations:

- Section A.1, "Overview of EJB 3.0 Annotations"
- Section A.2, "Annotations for Stateless, Stateful, and Message-Driven Beans"
- Section A.3, "Annotations Used to Configure Interceptors"
- Section A.4, "Annotations Used to Interact With Entity Beans"
- Section A.5, "Standard JDK Annotations Used By EJB 3.0"
- Section A.6, "Standard Security-Related JDK Annotations Used by EJB 3.0"
- Section A.7, "WebLogic Annotations"

A.1 Overview of EJB 3.0 Annotations

The new EJB 3.0 programming model uses the JDK 5.0 metadata annotations feature (described at http://java.sun.com/developer/technicalArticles/releases/j2se15) in which you create an annotated EJB 3.0 bean file and then use the WebLogic compile tool weblogic.appc (or its Ant equivalent wlappc) to compile the bean file into a Java class file and generate the associated EJB artifacts, such as the required EJB interfaces and deployment descriptors.

The following sections provide reference information for the metadata annotations you can specify in the EJB bean file. Some of the annotations are in the javax.ejb package, and are thus specific to EJBs; others are more common and are used by other Java Platform, Enterprise Edition (Java EE) Version 5 components, and are thus in more generic packages, such as javax.annotation.

A.2 Annotations for Stateless, Stateful, and Message-Driven Beans

This section provides reference information for the following annotations:

- Section A.2.1, "javax.ejb.ActivationConfigProperty"
- Section A.2.2, "javax.ejb.ApplicationException"
- Section A.2.3, "javax.ejb.EJB"
- Section A.2.4, "javax.ejb.EJBs"
- Section A.2.5, "javax.ejb.Init"
- Section A.2.6, "javax.ejb.Local"
A.2.1 javax.ejb.ActivationConfigProperty

The following sections describe the annotation in more detail.

A.2.1.1 Description

Target: Any

Specifies properties used to configure a message-driven bean in its operational environment. This may include information about message acknowledgement modes, message selectors, expected destination or endpoint types, and so on.

This annotation is used only as a value to the activationConfig attribute of the @javax.ejb.MessageDriven annotation. For more information about this annotation, see "Using EJB 3.0 Compliant MDBs" and "Deployment Elements and Annotations for MDBs" in Programming Message-Driven Beans for Oracle WebLogic Server.

A.2.1.2 Attributes

The following table summarizes the attributes.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Data Type</th>
<th>Required?</th>
</tr>
</thead>
<tbody>
<tr>
<td>propertyName</td>
<td>Specifies the name of the activation property.</td>
<td>String</td>
<td>Yes</td>
</tr>
<tr>
<td>propertyValue</td>
<td>Specifies the value of the activation property.</td>
<td>String</td>
<td>Yes</td>
</tr>
</tbody>
</table>

A.2.2 javax.ejb.ApplicationException

The following sections describe the annotation in more detail.

A.2.2.1 Description

Target: Class

Specifies that an exception is an application exception and that it should be reported to the client application directly, or unwrapped.
This annotation can be applied to both checked and unchecked exceptions.

A.2.2.2 Attributes
The following table summarizes the attributes.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Data Type</th>
<th>Required?</th>
</tr>
</thead>
<tbody>
<tr>
<td>rollback</td>
<td>Specifies whether the EJB container should rollback the transaction, if the bean is currently being invoked inside of one, if the exception is thrown. Valid values for this attribute are true and false. Default value is false, or the transaction should not be rolled back.</td>
<td>boolean</td>
<td>No</td>
</tr>
</tbody>
</table>

A.2.3 javax.ejb.EJB
The following sections describe the annotation in more detail.

A.2.3.1 Description
Target: Class, Method, Field

Specifies a dependency or reference to an EJB business or home interface.

You annotate a bean’s instance variable with the @EJB annotation to specify a dependence on another EJB. WebLogic Server automatically initializes the annotated variable with the reference to the EJB on which it depends; this is also called dependency injection. This initialization occurs before any of the bean’s business methods are invoked and after the bean’s EJBContext is set.

You can also annotate a setter method in the bean class; in this case WebLogic Server uses the setter method itself when performing dependency injection. This is an alternative to instance variable dependency injection.

If you apply the annotation to a class, the annotation declares the EJB that the bean will look up at runtime.

Whether using variable or setter method injection, WebLogic Server determines the name of the referenced EJB by either the name or data type of the annotated instance variable or setter method parameter. If there is any ambiguity, you should use the beanName or mappedName attributes of the @EJB annotation to explicitly name the dependent EJB.

A.2.3.2 Attributes
The following table summarizes the attributes.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Data Type</th>
<th>Required?</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>Specifies the name by which the referenced EJB is to be looked up in the environment. This name must be unique within the deployment unit, which consists of the class and its superclass.</td>
<td>String</td>
<td>No</td>
</tr>
</tbody>
</table>
Annotations for Stateless, Stateful, and Message-Driven Beans

A.2.4 javax.ejb.EJBs

The following sections describe the annotation in more detail.

A.2.4.1 Description

Target: Class

Specifies an array of @javax.ejb.EJB annotations.

A.2.4.2 Attribute

The following table summarizes the attributes.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Data Type</th>
<th>Required?</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>Specifies the array of @javax.ejb.EJB annotations</td>
<td>EJB[]</td>
<td>No</td>
</tr>
</tbody>
</table>

A.2.5 javax.ejb.Init

The following sections describe the annotation in more detail.
A.2.5.1 Description
Target: Method

Specifies the correspondence of a method in the bean class with a createMETHOD method for an adapted EJB 2.1 EJBHome or EJBLocalHome client view.

This annotation is used only in conjunction with stateful session beans, or those that have been annotated with the @javax.ejb.Stateful class-level annotation.

The return type of a method annotated with the @javax.ejb.Init annotation must be void, and its parameter types must be exactly the same as those of the referenced createMETHOD method or methods.

The @Init annotation is required only for stateful session beans that provide a Remote-Home or LocalHome interface. You must specify the name of the adapted create method of the Home or LocalHome interface, using the value attribute, if there is any ambiguity.

A.2.5.2 Attributes

The following table summarizes the attributes.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Data Type</th>
<th>Required?</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>Specifies the name of the corresponding createMETHOD method.</td>
<td>String</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>This attribute is required only when the @Init annotation is used to associate an adapted Home interface of a stateful session bean that has more than one create<METHOD> method.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A.2.6 javax.ejb.Local

The following sections describe the annotation in more detail.

A.2.6.1 Description
Target: Class

Specifies the local interface or interfaces of a session bean. The local interface exposes business logic to local clients—those running in the same application as the EJB. It defines the business methods a local client can call.

You are required to specify this annotation if your bean class implements more than a single interface, not including the following:

- java.io.Serializable
- java.io.Externalizable
- javax.ejb.*

This annotation applies only to stateless or stateful session beans.

A.2.6.2 Attributes

The following table summarizes the attributes.
A.2.7 javax.ejb.LocalHome

The following sections describe the annotation in more detail.

A.2.7.1 Description

Target: Class

Specifies the local home interface of the bean class.

The local home interface provides methods that local clients—those running in the same application as the EJB—can use to create, remove, and in the case of an entity bean, find instances of the bean. The local home interface also has **home methods**—business logic that is not specific to a particular bean instance.

This attribute applies only to stateless and stateful session beans.

You typically specify this attribute only if you are going to provide an adapted EJB 2.1 component view of the EJB 3.0 bean. You can also use this annotation with bean classes that have been written to the EJB 2.1 APIs.

A.2.7.2 Attributes

The following table summarizes the attributes.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Data Type</th>
<th>Required?</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>Specifies the list of local interfaces as an array of classes.</td>
<td>Class[]</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>You are required to specify this attribute only if your bean class implements more than a single interface, not including the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>■ java.io.Serializable</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>■ java.io.Externalizable</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>■ javax.ejb.*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A.2.8 javax.ejb.MessageDriven

The following sections describe the annotation in more detail.

A.2.8.1 Description

Target: Class

Specifies that the Enterprise JavaBean is a message-driven bean.

A.2.8.2 Attributes

The following table summarizes the attributes.
Table A–8 Attributes of the `javax.ejb.MessageDriven` Annotation

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Data Type</th>
<th>Required?</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>Specifies the name of the message-driven bean.</td>
<td>String</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>If you do not specify this attribute, the default value is the unqualified name of the bean class.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>messageListenerInterface</td>
<td>Specifies the message-listener interface of the bean class.</td>
<td>Class</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>You must specify this attribute if the bean class does not explicitly implement the message-listener interface, or if the bean class implements more than one interface other than java.io.Serializable, java.io.Externalizable, or any of the interfaces in the javax.ejb package.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The default value for this attribute is Object.class.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>activationConfig</td>
<td>Specifies the configuration of the message-driven bean in its operational environment. This may include information about message acknowledgement modes, message selectors, expected destination or endpoint types, and so on.</td>
<td>Activation ConfigProperty[]</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>You specify activation configuration information using an Array of @javax.ejb.ActivationConfigProperty annotation, specify the property name and value.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mappedName</td>
<td>Specifies the product-specific name to which the message-driven bean should be mapped.</td>
<td>String</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>You can also use this attribute to specify the JNDI name of the message destination of this message-driven bean. For example: <code>mappedName="my.Queue"</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>specifies that this message-driven bean is associated with a JMS queue, whose JNDI name is my.Queue and is deployed in the WebLogic Server JNDI tree.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Note: If you specify this attribute, the message-driven bean may not be portable.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>description</td>
<td>Specifies a description of the message-driven bean.</td>
<td>String</td>
<td>No</td>
</tr>
</tbody>
</table>

A.2.9 `javax.ejb.PostActivate`

The following sections describe the annotation in more detail.
A.2.9.1 Description
Target: Method

Specifies the life cycle callback method that signals that the EJB container has just reactivated the bean instance.

This annotation applies only to stateful session beans. Because the EJB container automatically maintains the conversational state of a stateful session bean instance when it is passivated, you do not need to specify this annotation for most stateful session beans. You only need to use this annotation, along with its partner @PrePassivate, if you want to allow your stateful session bean to maintain the open resources that need to be closed prior to a bean instance’s passivation and then reopened during the bean instance’s activation.

Only one method in the bean class can be annotated with this annotation. If you annotate more than one method with this annotations, the EJB will not deploy.

The method annotated with @PostActivate must follow these requirements:

- The return type of the method must be void.
- The method must not throw a checked exception.
- The method may be public, protected, package private or private.
- The method must not be static.
- The method must not be final.

This annotation does not have any attributes.

A.2.10 javax.ejb.PrePassivate

The following sections describe the annotation in more detail.

A.2.10.1 Description
Target: Method

Specifies the life cycle callback method that signals that the EJB container is about to passivate the bean instance.

This annotation applies only to stateful session beans. Because the EJB container automatically maintains the conversational state of a stateful session bean instance when it is passivated, you do not need to specify this annotation for most stateful session beans. You only need to use this annotation, along with its partner @PostActivate, if you want to allow your stateful session bean to maintain the open resources that need to be closed prior to a bean instance’s passivation and then reopened during the bean instance’s activation.

Only one method in the bean class can be annotated with this annotation. If you annotate more than one method with this annotations, the EJB will not deploy.

The method annotated with @PrePassivate must follow these requirements:

- The return type of the method must be void.
- The method must not throw a checked exception.
- The method may be public, protected, package private or private.
- The method must not be static.
- The method must not be final.
This annotation does not have any attributes.

A.2.11 javax.ejb.Remote

The following sections describe the annotation in more detail.

A.2.11.1 Description

Target: Class

Specifies the remote interface or interfaces of a session bean. The remote interface exposes business logic to remote clients—clients running in a separate application from the EJB. It defines the business methods a remote client can call.

This annotation applies only to stateless or stateful session beans.

A.2.11.2 Attributes

The following table summarizes the attributes.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Data Type</th>
<th>Required?</th>
</tr>
</thead>
</table>
| value | Specifies the list of remote interfaces as an array of classes. You are required to specify this attribute only if your bean class implements more than a single interface, not including the following:
 - java.io.Serializable
 - java.io.Externalizable
 - javax.ejb.* | Class[] | No |

A.2.12 javax.ejb.RemoteHome

The following sections describe the annotation in more detail.

A.2.12.1 Description

Target: Class

Specifies the remote home interface of the bean class.

The remote home interface provides methods that remote clients—those running in a separate application from the EJB—can use to create, remove, and find instances of the bean.

This attribute applies only to stateless and stateful session beans.

You typically specify this attribute only if you are going to provide an adapted EJB 2.1 component view of the EJB 3.0 bean. You can also use this annotation with bean classes that have been written to the EJB 2.1 APIs.

A.2.12.2 Attributes

The following table summarizes the attributes.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Data Type</th>
<th>Required?</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>Specifies the remote home class.</td>
<td>Class</td>
<td>Yes</td>
</tr>
</tbody>
</table>
A.2.13 **javax.ejb.Remove**

The following sections describe the annotation in more detail.

A.2.13.1 Description

Target: Method

Use the `@javax.ejb.Remove` annotation to denote a remove method of a stateful session bean.

When the method completes, the EJB container will invoke the method annotated with the `@javax.annotation.PreDestroy` annotation, if any, and then destroy the stateful session bean.

A.2.13.2 Attributes

The following table summarizes the attributes.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Data Type</th>
<th>Required?</th>
</tr>
</thead>
<tbody>
<tr>
<td>retainIfException</td>
<td>Specifies that the container should not remove the stateful session bean if the annotated method terminates abnormally with an application exception. Valid values are <code>true</code> and <code>false</code>. Default value is <code>false</code>.</td>
<td>boolean</td>
<td>No</td>
</tr>
</tbody>
</table>

A.2.14 **javax.ejb.Stateful**

The following sections describe the annotation in more detail.

A.2.14.1 Description

Target: Class

Specifies that the Enterprise JavaBean is a stateful session bean.

A.2.14.2 Attributes

The following table summarizes the attributes.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Data Type</th>
<th>Required?</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>Specifies the name of the stateful session bean. If you do not specify this attribute, the default value is the unqualified name of the bean class.</td>
<td>String</td>
<td>No</td>
</tr>
</tbody>
</table>
A.2.15 javax.ejb.Stateless

The following sections describe the annotation in more detail.

A.2.15.1 Description

Target: Class

Specifies that the Enterprise JavaBean is a stateless session bean.

A.2.15.2 Attributes

The following table summarizes the attributes.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Data Type</th>
<th>Required?</th>
</tr>
</thead>
<tbody>
<tr>
<td>mappedName</td>
<td>Specifies the product-specific name to which the stateful session bean should be mapped. You can also use this attribute to specify the JNDI name of this stateful session bean. WebLogic Server uses the value of the mappedName attribute when creating the bean’s global JNDI name. In particular, the JNDI name will be: <code>mappedName#name_of_businessInterface</code> where <code>name_of_businessInterface</code> is the fully qualified name of the business interface of this session bean. For example, if you specify <code>mappedName="bank"</code> and the fully qualified name of the business interface is <code>com.CheckingAccount</code>, then the JNDI of the business interface is <code>bank#com.CheckingAccount</code>. Note: If you specify this attribute, the stateful session bean may not be portable.</td>
<td>String</td>
<td>No</td>
</tr>
<tr>
<td>description</td>
<td>Describes the stateful session bean.</td>
<td>String</td>
<td>No</td>
</tr>
</tbody>
</table>
The following sections describe the annotation in more detail.

A.2.16 javax.ejb.Timeout

The following sections describe the annotation in more detail.

A.2.16.1 Description

Target: Method

Specifies the timeout method of the bean class.

This annotation makes it easy to program an EJB timer service in your bean class. The EJB timer service is an EJB-container provided service that allows you to create timers that schedule callbacks to occur when a timer object expires.

Previous to EJB 3.0, your bean class was required to implement javax.ejb.TimedObject if you wanted to program the timer service. Additionally, your bean class had to include a method with the exact name ejbTimeout. These requirements are relaxed in Version 3.0 of EJB. You no longer are required to implement the javax.ejb.TimedObject interface, and you can name your timeout method anything you want, as long as you annotate it with the @Timeout annotation. You can, however, continue to use the pre-3.0 way of programming the timer service if you want.

For details, see “Programming the EJB Timer Service” in Programming WebLogic Enterprise JavaBeans for Oracle WebLogic Server.

This annotation does not have any attributes.

A.2.17 javax.ejb.TransactionAttribute

The following sections describe the annotation in more detail.

Table A–13 (Cont.) Attributes of the javax.ejb.Stateless Annotation

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Data Type</th>
<th>Required?</th>
</tr>
</thead>
<tbody>
<tr>
<td>mappedName</td>
<td>Specifies the product-specific name to which the stateless session bean should be mapped. You can also use this attribute to specify the JNDI name of this stateless session bean. WebLogic Server uses the value of the mappedName attribute when creating the bean’s global JNDI name. In particular, the JNDI name will be: mappedName#name_of_businessInterface where name_of_businessInterface is the fully qualified name of the business interface of this session bean. For example, if you specify mappedName=”bank” and the fully qualified name of the business interface is com.CheckingAccount, then the JNDI of the business interface is bank#com.CheckingAccount. Note: If you specify this attribute, the stateless session bean may not be portable.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>description</td>
<td>Describes the stateless session bean.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A.2.17 javax.ejb.TransactionAttribute

The following sections describe the annotation in more detail.
A.2.17.1 Description

Target: Class, Method

Specifies whether the EJB container invokes an EJB business method within a transaction context.

Note: If you specify this annotation, you are also required to use the @TransactionManagement annotation to specify container-managed transaction demarcation.

You can specify this annotation on either the bean class, or a particular method of the class that is also a method of the business interface. If specified at the bean class, the annotation applies to all applicable business interface methods of the class. If specified for a particular method, the annotation applies to that method only. If the annotation is specified at both the class and the method level, the method value overrides if the two disagree.

If you do not specify the @TransactionAttribute annotation in your bean class, and the bean uses container managed transaction demarcation, the semantics of the REQUIRED transaction attribute are assumed.

A.2.17.2 Attributes

The following table summarizes the attributes.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Data Type</th>
<th>Required?</th>
</tr>
</thead>
</table>
| value | Specifies how the EJB container manages the transaction boundaries when invoking a business method. For details about these values, see the description of the trans-attribute element in the "Container-Managed Transactions Elements" table in Programming WebLogic Enterprise JavaBeans for Oracle WebLogic Server. Valid values for this attribute are:
 - TransactionAttributeType.MANDATORY
 - TransactionAttributeType.REQUIRED
 - TransactionAttributeType.REQUIRED _NEW
 - TransactionAttributeType.SUPPORTS
 - TransactionAttributeType.NOT_ SUPPORTED
 - TransactionAttributeType.NEVER
Default value is TransactionAttributeType.REQUIRED. | TransactionAttributeType | No. |

A.2.18 javax.ejb.TransactionManagement

The following sections describe the annotation in more detail.
A.2.18.1 Description

Target: Class

Specifies the transaction management demarcation type of the session bean or message-driven bean.

A transaction is a unit of work that changes application state—whether on disk, in memory or in a database—that, once started, is completed entirely, or not at all. Transactions can be demarcated—started, and ended with a commit or rollback—by the EJB container, by bean code, or by client code. This annotation specifies whether the EJB container or the user-written bean code manages the demarcation of a transaction.

If you do not specify this annotation in your bean class, it is assumed that the bean has container-managed transaction demarcation.

For additional information about transactions, see "Transaction Design and Management Options" in Programming WebLogic Enterprise JavaBeans for Oracle WebLogic Server.

A.2.18.2 Attributes

The following table summarizes the attributes.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Data Type</th>
<th>Required?</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>Specifies the transaction management demarcation type used by the bean class.</td>
<td>TransactionManagementType</td>
<td>No.</td>
</tr>
</tbody>
</table>

Table A–15 Attributes of the javax.ejb.TransactionManagement Annotation

A.3 Annotations Used to Configure Interceptors

This section provides reference information for the following annotations:

- Section A.3.1, "javax.interceptor.AroundInvoke"
- Section A.3.2, "javax.interceptor.ExcludeClassInterceptors"
- Section A.3.3, "javax.interceptor.ExcludeDefaultInterceptors"
- Section A.3.4, "javax.interceptor.Interceptors"

A.3.1 javax.interceptor.AroundInvoke

The following sections describe the annotation in more detail.

A.3.1.1 Description

Target: Method

Specifies the business method interceptor for either a bean class or an interceptor class.
You can annotate only one method in the bean class or interceptor class with the @AroundInvoke annotation; the method cannot be a business method of the bean class.

This annotation does not have any attributes.

A.3.2 javax.interceptor.ExcludeClassInterceptors

The following sections describe the annotation in more detail.

A.3.2.1 Description

Target: Method

Specifies that any class-level interceptors should not be invoked for the annotated method. This does not include default interceptors, whose invocation are excluded only with the @ExcludeDefaultInterceptors annotation.

This annotation does not have any attributes.

A.3.3 javax.interceptor.ExcludeDefaultInterceptors

The following sections describe the annotation in more detail.

A.3.3.1 Description

Target: Class, Method

Specifies that any defined default interceptors (which can be specified only in the EJB deployment descriptors, and not with annotations) should not be invoked.

If defined at the class-level, the default interceptors are never invoked for any of the bean’s business methods. If defined at the method-level, the default interceptors are never invoked for the particular business method, but they are invoked for all other business methods that do not have the @ExcludeDefaultInterceptors annotation.

This annotation does not include any attributes.

A.3.4 javax.interceptor.Interceptors

The following sections describe the annotation in more detail.

A.3.4.1 Description

Target: Class, Method

Specifies the interceptor classes that are associated with the bean class or method. An interceptor class is a class—distinct from the bean class itself—whose methods are invoked in response to business method invocations and/or life cycle events on the bean.

The interceptor class can include both an business interceptor method (annotated with the @javax.interceptor.AroundInvoke annotation) and life cycle callback methods (annotated with the @javax.annotation.PostConstruct, @javax.annotation.PreDestroy, @javax.ejb.PostActivate, and @javax.ejb.PrePassivate annotations).

Any number of interceptor classes may be defined for a bean class. If more than one interceptor class is defined, they are invoked in the order they are specified in the annotation.
If the annotation is specified at the class-level, the interceptors apply to all business methods of the EJB. If specified at the method-level, the interceptors apply to just that method. You can specify the same interceptor class to more than one method of the bean class. By default, method-level interceptors are invoked after all applicable interceptors (default interceptors, class-level interceptors, and so on).

A.3.4.2 Attributes

The following table summarizes the attributes.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Data Type</th>
<th>Required?</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>Specifies the array of interceptor classes. If there is more than one interceptor class in the array, the order in which they are listed defines the order in which they are invoked.</td>
<td>Class[]</td>
<td>Yes</td>
</tr>
</tbody>
</table>

A.4 Annotations Used to Interact With Entity Beans

This section provides reference information about the following annotations:

- Section A.4.1, "javax.persistence.PersistenceContext"
- Section A.4.2, "javax.persistence.PersistenceContexts"
- Section A.4.3, "javax.persistence.PersistenceUnit"
- Section A.4.4, "javax.persistence.PersistenceUnits"

A.4.1 javax.persistence.PersistenceContext

The following sections describe the annotation in more detail.

A.4.1.1 Description

Target: Class, Method, Field

Specifies a dependency on a container-managed EntityManager persistence context.

You use this annotation to interact with a 3.0 entity bean, typically by performing dependency injection into an EntityManager instance.

The EntityManager interface defines the methods that are used to interact with the persistence context. A persistence context is a set of entity instances; an entity is a lightweight persistent domain object. The EntityManager API is used to create and remove persistent entity instances, to find entities by their primary key, and to query over entities.

A.4.1.2 Attributes

The following table summarizes the attributes.
A.4.2 javax.persistence.PersistenceContexts

The following sections describe the annotation in more detail.

A.4.2.1 Description

Target: Class

Specifies an array of `@javax.persistence.PersistenceContext` annotations.

Table A–17 Attributes of the javax.persistence.PersistenceContextAnnotation

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Data Type</th>
<th>Required?</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>Specifies the name by which the EntityManager and its persistence unit are to be known within the context of the session or message-driven bean. You only need to specify this attribute if you use a JNDI lookup to obtain an EntityManager; if you use dependency injection, then you do not need to specify this attribute.</td>
<td>String</td>
<td>No</td>
</tr>
<tr>
<td>unitName</td>
<td>Specifies the name of the persistence unit. If you specify a value for this attribute that is the same as the name of a persistence unit in the persistence.xml file, the EJB container automatically deploys the persistence unit and sets its JNDI name to its persistence unit name. Similarly, if you do not specify this attribute, but the name of the variable into which you are injecting the persistence context information is the same as the name of a persistence unit in the persistence.xml file, then the EJB container again automatically deploys the persistence unit with its JNDI name equal to its unit name. Note: The persistence.xml file is an XML file, located in the META-INF directory of the EJB JAR file, that specifies the database used with the entity beans and specifies the default behavior of the EntityManager. You must specify this attribute if there is more than one persistence unit within the referencing scope.</td>
<td>String</td>
<td>No</td>
</tr>
<tr>
<td>type</td>
<td>Specifies whether the lifetime of the persistence context is scoped to a transaction or whether it extends beyond that of a single transaction. Valid values for this attribute are: - <code>PersistenceContextType.TRANSACTION</code> - <code>PersistenceContextType.EXTENDED</code> Default value is <code>PersistenceContextType.TRANSACTION</code>.</td>
<td>PersistenceContextType</td>
<td>No</td>
</tr>
</tbody>
</table>

Note: The persistence.xml file is an XML file, located in the META-INF directory of the EJB JAR file, that specifies the database used with the entity beans and specifies the default behavior of the EntityManager.
A.4.2.2 Attributes

The following table summarizes the attributes.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Data Type</th>
<th>Required?</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>Specifies the array of @javax.persistence.PersistenceContext annotations.</td>
<td>PersistenceContext[]</td>
<td>Yes</td>
</tr>
</tbody>
</table>

A.4.3 javaee.persistence.PersistenceUnit

The following sections describe the annotation in more detail.

A.4.3.1 Description

Target: Class, Method, Field

Specifies a dependency on an EntityManagerFactory object.

You use this annotation to interact with a 3.0 entity bean, typically by performing dependency injection into an EntityManagerFactory instance. You can then use the EntityManagerFactory to create one or more EntityManager instances. This annotation is similar to the @PersistenceContext annotation, except that it gives you more control over the life of the EntityManager because you create and destroy it yourself, rather than let the EJB container do it for you.

The EntityManager interface defines the methods that are used to interact with the persistence context. A persistence context is a set of entity instances; an entity is a lightweight persistent domain object. The EntityManager API is used to create and remove persistent entity instances, to find entities by their primary key, and to query over entities.

A.4.3.2 Attributes

The following table summarizes the attributes.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Data Type</th>
<th>Required?</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>Specifies the name by which the EntityManagerFactory is to be known within the context of the session or message-driven bean. You are not required to specify this attribute if you use dependency injection, only if you also use JNDI to look up information.</td>
<td>String</td>
<td>No</td>
</tr>
</tbody>
</table>
A.4.4 javax.persistence.PersistenceUnits

The following sections describe the annotation in more detail.

A.4.4.1 Description

Target: Class

Specifies an array of @javax.persistence.PersistenceUnit annotations.

A.4.4.2 Attributes

The following table summarizes the attributes.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Data Type</th>
<th>Required?</th>
</tr>
</thead>
<tbody>
<tr>
<td>unitName</td>
<td>Refers to the name of the persistence unit as defined in the persistence.xml file. This file is an XML file, located in the META-INF directory of the EJB JAR file, that specifies the database used with the entity beans and specifies the default behavior of the EntityManager. If you set this attribute, the EJB container automatically deploys the referenced persistence unit and sets its JNDI name to its persistence unit name. Similarly, if you do not specify this attribute, but the name of the variable into which you are injecting the persistence context information is the same as the name of a persistence unit in the persistence.xml file, then the EJB container again automatically deploys the persistence unit with its JNDI name equal to its unit name. You are required to specify this attribute only if there is more than one persistence unit in the referencing scope.</td>
<td>String</td>
<td>No</td>
</tr>
</tbody>
</table>

Table A–20 Attributes of the javax.persistence.PersistenceUnits Annotation

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Data Type</th>
<th>Required?</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>Specifies the array of @javax.persistence.PersistenceUnit annotations.</td>
<td>PersistenceUnit[]</td>
<td>Yes</td>
</tr>
</tbody>
</table>

A.5 Standard JDK Annotations Used By EJB 3.0

This section provides reference information about the following annotations:

- Section A.5.1, "javax.annotation.PostConstruct"
- Section A.5.2, "javax.annotation.PreDestroy"
- Section A.5.3, "javax.annotation.Resource"
- Section A.5.4, "javax.annotation.Resources"

A.5.1 javax.annotation.PostConstruct

The following sections describe the annotation in more detail.
A.5.1.1 Description
Target: Method

Specifies the life cycle callback method that the EJB container should execute before the first business method invocation and after dependency injection is done to perform any initialization.

You may specify a @PostConstruct method in any bean class that includes dependency injection.

Only one method in the bean class can be annotated with this annotation. If you annotate more than one method with this annotations, the EJB will not deploy.

The method annotated with @PostConstruct must follow these requirements:

- The return type of the method must be void.
- The method must not throw a checked exception.
- The method may be public, protected, package private or private.
- The method must not be static.
- The method must not be final.

This annotation does not have any attributes.

A.5.2 javax.annotation.PreDestroy

The following sections describe the annotation in more detail.

A.5.2.1 Description
Target: Method

Specifies the life cycle callback method that signals that the bean class instance is about to be destroyed by the EJB container. You typically apply this annotation to methods that release resources that the bean class has been holding.

Only one method in the bean class can be annotated with this annotation. If you annotate more than one method with this annotations, the EJB will not deploy.

The method annotated with @PreDestroy must follow these requirements:

- The return type of the method must be void.
- The method must not throw a checked exception.
- The method may be public, protected, package private or private.
- The method must not be static.
- The method must not be final.

This annotation does not have any attributes.

A.5.3 javax.annotation.Resource

The following sections describe the annotation in more detail.

A.5.3.1 Description
Target: Class, Method, Field

Specifies a dependence on an external resource, such as a JDBC data source or a JMS destination or connection factory.
If you specify the annotation on a field or method, the EJB container injects an instance of the requested resource into the bean when the bean is initialized. If you apply the annotation to a class, the annotation declares a resource that the bean will look up at runtime.

A.5.3.2 Attributes

The following table summarizes the attributes.

Table A–21 Attributes of the java.x.annotation.Resource Annotation

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Data Type</th>
<th>Required?</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>Specifies the name of the resource reference.</td>
<td>String</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>If you apply the @Resource annotation to a field, the default value of the</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>name attribute is the field name, qualified by the class name. If you</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>apply it to a method, the default value is the JavaBeans property name</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>corresponding to the method, qualified by the class name. If you apply the</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>annotation to a class, there is no default value and thus you are required</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>to specify the attribute.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>type</td>
<td>Specifies the Java data type of the resource.</td>
<td>Class</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>If you apply the @Resource annotation to a field, the default value of the</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>type attribute is the type of the field. If you apply it to a method, the</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>default is the type of the JavaBeans property. If you apply it to a class,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>there is no default value and thus you are required to specify this</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>attribute.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>authenticationType</td>
<td>Specifies the authentication type to use for the resource.</td>
<td>AuthenticationType</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>You specify this attribute only for resources representing a connection</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>factory of any supported type.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valid values for this attribute are:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>■ AuthenticationType.CONTAINER</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>■ AuthenticationType.APPLICATION</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Default value is AuthenticationType.CONTAINER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>shareable</td>
<td>Indicates whether a resource can be shared between this EJB and other</td>
<td>boolean</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>EJBs.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>You specify this attribute only for resources representing a connection</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>factory of any supported type or ORB object instances.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valid values for this attribute are true and false. Default value is true.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A.5.4 javax.annotation.Resources

The following sections describe the annotation in more detail.

A.5.4.1 Description

Target: Class

Specifies an array of @Resource annotations.

A.5.4.2 Attributes

The following table summarizes the attributes.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Data Type</th>
<th>Required?</th>
</tr>
</thead>
<tbody>
<tr>
<td>mappedName</td>
<td>Specifies the global JNDI name of the dependent resource. For example: <code>mappedName="my.Datasource"</code> specifies that the JNDI name of the dependent resources is <code>my.Datasource</code> and is deployed in the WebLogic Server JNDI tree.</td>
<td>String</td>
<td>No</td>
</tr>
<tr>
<td>description</td>
<td>Specifies a description of the resource.</td>
<td>String</td>
<td>No</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Data Type</th>
<th>Required?</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>Specifies the array of @Resource annotations.</td>
<td>Resource []</td>
<td>Yes</td>
</tr>
</tbody>
</table>

A.6 Standard Security-Related JDK Annotations Used by EJB 3.0

This section provides reference information about the following annotations:

- Section A.6.1, "javax.annotation.security.DeclareRoles"
- Section A.6.2, "javax.annotation.security.DenyAll"
- Section A.6.3, "javax.annotation.security.PermitAll"
- Section A.6.4, "javax.annotation.security.RolesAllowed"
- Section A.6.5, "javax.annotation.security.RunAs"

A.6.1 javax.annotation.security.DeclareRoles

The following sections describe the annotation in more detail.

A.6.1.1 Description

Target: Class

Defines the security roles that will be used in the EJB.

You typically use this annotation to define roles that can be tested from within the methods of the annotated class, such as using the `isUserInRole` method. You can
also use the annotation to explicitly declare roles that are implicitly declared if you use the @RolesAllowed annotation on the class or a method of the class.

You create security roles in WebLogic Server using the Administration Console. For details, see "Manage Security Roles" in the Oracle WebLogic Server Administration Console Help.

A.6.1.2 Attributes

The following table summarizes the attributes.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Data Type</th>
<th>Required?</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>Specifies an array of security roles that will be used in the bean class.</td>
<td>String[]</td>
<td>Yes.</td>
</tr>
</tbody>
</table>

A.6.2 javax.annotation.security.DenyAll

The following sections describe the annotation in more detail.

A.6.2.1 Description

Target: Method

Specifies that no security role is allowed to access the annotated method, or in other words, the method is excluded from execution in the EJB container.

This annotation does not have any attributes.

A.6.3 javax.annotation.security.PermitAll

The following sections describe the annotation in more detail.

A.6.3.1 Description

Target: Method

Specifies that all security roles currently defined for WebLogic Server are allowed to access the annotated method.

This annotation does not have any attributes.

A.6.4 javax.annotation.security.RolesAllowed

The following sections describe the annotation in more detail.

A.6.4.1 Description

Target: Class, Method

Specifies the list of security roles that are allowed to access methods in the EJB.

If you specify it at the class-level, then it applies to all methods in the bean class. If you specify it at the method-level, then it only applies to that method. If you specify the annotation at both the class- and method-level, the method value overrides the class value.

You create security roles in WebLogic Server using the Administration Console. For details, see "Manage Security Roles" in the Oracle WebLogic Server Administration Console Help.
A.6.4.2 Attributes
The following table summarizes the attributes.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Data Type</th>
<th>Required?</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>List of security roles that are allowed to access methods of the bean class.</td>
<td>String[]</td>
<td>Yes.</td>
</tr>
</tbody>
</table>

A.6.5 `javax.annotation.security.RunAs`

The following sections describe the annotation in more detail.

A.6.5.1 Description

Target: Class

Specifies the security role which actually executes the EJB in the EJB container.

The security role must exist in the WebLogic Server security realm and map to a user or group. For details, see "Manage Security Roles" in the Oracle WebLogic Server Administration Console Help.

A.6.5.2 Attributes

The following table summarizes the attributes.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Data Type</th>
<th>Required?</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>Specifies the security role which the EJB should run as.</td>
<td>String</td>
<td>Yes.</td>
</tr>
</tbody>
</table>

A.7 WebLogic Annotations

This section provides reference information for the following WebLogic annotations:

- Section A.7.1, "weblogic.javaee.AllowRemoveDuringTransaction"
- Section A.7.2, "weblogic.javaee.CallByReference"
- Section A.7.3, "weblogic.javaee.DisableWarnings"
- Section A.7.4, "weblogic.javaee.EJBReference"
- Section A.7.5, "weblogic.javaee.Idempotent"
- Section A.7.6, "weblogic.javaee.jmsClientID"
- Section A.7.7, "weblogic.javaee.JNDIName"
- Section A.7.8, "weblogic.javaee.MessageDestinationConfiguration"
- Section A.7.9, "weblogic.javaee.TransactionIsolation"
- Section A.7.10, "weblogic.javaee.TransactionTimeoutSeconds"
A.7.1 weblogic.javaee.AllowRemoveDuringTransaction

The following sections describe the annotation in more detail.

A.7.1.1 Description

Target: Class (Stateful session EJBs only)

Flag that specifies whether an instance can be removed during a transaction.

Note: This annotation is overridden by the allow-remove-during-transaction element in the weblogic-ejb-jar.xml deployment descriptor. For more information, see "weblogic-ejb-jar.xml Deployment Descriptor Reference" in Programming WebLogic Enterprise JavaBeans for Oracle WebLogic Server.

A.7.2 weblogic.javaee.CallByReference

The following sections describe the annotation in more detail.

A.7.2.1 Description

Target: Class (Stateful or stateless sessions EJBs only)

Flag that specifies whether parameters are copied—or passed by reference—regardless of whether the EJB is called remotely or from within the same EAR.

Note: Method parameters are always passed by value when an EJB is called remotely. This annotation is overridden by the enable-call-by-reference element in the weblogic-ejb-jar.xml deployment descriptor. For more information, see "weblogic-ejb-jar.xml Deployment Descriptor Reference" in Programming WebLogic Enterprise JavaBeans for Oracle WebLogic Server.

A.7.3 weblogic.javaee.DisableWarnings

The following sections describe the annotation in more detail.

A.7.3.1 Description

Target: Class

Specifies that WebLogic Server should disable the warning message whose ID is specified.
A.7.3.2 Attributes
The following table summarizes the attributes.

Table A–26 Attributes of the weblogic.javaee.DisableWarnings

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Data Type</th>
<th>Required?</th>
</tr>
</thead>
<tbody>
<tr>
<td>WarningCode</td>
<td>Specifies the warning code. Set this element to one of the following four values:</td>
<td>String</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>■ BEA-010001—Disables this warning message: “EJB class loaded from system classpath during deployment.”</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>■ BEA-010054—Disables this warning message: “EJB class loaded from system classpath during compilation.”</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>■ BEA-010200—Disables this warning message: “EJB impl class contains a public static field, method or class.”</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>■ BEA-010202—Disables this warning message: “Call-by-reference not enabled.”</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A.7.4 weblogic.javaee.EJBReference
The following sections describe the annotation in more detail.

A.7.4.1 Description
Target: Class, Method, Field
Maps EJB reference name to its JNDI name.

A.7.4.2 Attribute
The following table summarizes the attributes.

Table A–27 Attribute of the weblogic.javaee.EJBReference Annotation

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Data Type</th>
<th>Required?</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>Specifies the name by which the referenced EJB is to be looked up in the environment. This name must be unique within the deployment unit, which consists of the class and its superclass.</td>
<td>String</td>
<td>Yes</td>
</tr>
<tr>
<td>jndiName</td>
<td>Specifies the JNDI name of an actual EJB, resource, or reference available in WebLogic Server.</td>
<td>String</td>
<td>Yes</td>
</tr>
</tbody>
</table>
A.7.5 weblogic.javaee.Idempotent

The following sections describe the annotation in more detail.

A.7.5.1 Description

Target: Class

Specifies an EJB that is written in such a way that repeated calls to the same method with the same arguments has exactly the same effect as a single call. This allows the failover handler to retry a failed call without knowing whether the call actually compiled on the failed server. When you enable idempotent for a method, the EJB stub can automatically recover from any failure as long as it can reach another server hosting the EJB.

Note: This annotation is overridden by the idempotent-method and retry-methods-on-rollback elements in the weblogic-ejb-jar.xml deployment descriptor. For more information, see "weblogic-ejb-jar.xml Deployment Descriptor Reference" in Programming WebLogic Enterprise JavaBeans for Oracle WebLogic Server.

A.7.5.2 Attributes

The following table summarizes the attributes.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Data Type</th>
<th>Required?</th>
</tr>
</thead>
<tbody>
<tr>
<td>retryOnRollbackCount</td>
<td>Number of times to automatically retry container-managed transactions that have rolled back.</td>
<td>int</td>
<td>No</td>
</tr>
</tbody>
</table>

This attribute defaults to 0.

A.7.6 weblogic.javaee.JMSClientID

The following sections describe the annotation in more detail.

A.7.6.1 Description

Target: Method

Specifies a client ID for the MDB when it connects to a JMS destination. Required for durable subscriptions to JMS topics.

If you specify the connection factory that the MDB uses in Section A.7.8, "weblogic.javaee.MessageDestinationConfiguration," the client ID can be defined in the ClientID element of the associated JMSCconnectionFactory element in config.xml.

If JMSCConnectionFactory in config.xml does not specify a ClientID, or if you use the default connection factory, (you do not specify Section A.7.8, "weblogic.javaee.MessageDestinationConfiguration") the MDB uses the jms-client-id value as its client id.
A.7.6.2 Attributes

The following table summarizes the attributes.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Data Type</th>
<th>Required?</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>Client ID.</td>
<td>String</td>
<td>No</td>
</tr>
<tr>
<td>generateUniqueID</td>
<td>Flag that indicates whether or not you want the EJB container to generate a unique client ID for every instance of an MDB. Enabling this flag makes it easier to deploy durable MDBs to multiple server instances in a WebLogic Server cluster.</td>
<td>Class</td>
<td>No</td>
</tr>
</tbody>
</table>

Note: This annotation is overridden by the jms-client-id element in the weblogic-ejb-jar.xml deployment descriptor. For more information, see "weblogic-ejb-jar.xml Deployment Descriptor Reference" in Programming WebLogic Enterprise JavaBeans for Oracle WebLogic Server.

A.7.7 weblogic.javaee.JNDIName

The following sections describe the annotation in more detail.

A.7.7.1 Description

Target: Class (Stateful or stateless session EJBs only)

 Specifies the JNDI name of an actual EJB, resource, or reference available in WebLogic Server. This annotation is valid on the remote interface and the implementation class, if there is only one remote interface.

Note: Assigning a JNDI name to a bean is not recommended. Global JNDI names generate heavy multicast traffic during clustered server startup. See "Using EJB Links" in "Implementing Enterprise JavaBeans" in Programming WebLogic Enterprise JavaBeans for Oracle WebLogic Server for the better practice.

If you have an EAR library that contains EJBs, you cannot deploy multiple applications that reference the library because attempting to do so will result in a JNDI name conflict. This is because global JNDI name cannot be set for individual EJBs in EAR libraries; it can only be set for an entire library.

This annotation is overridden by the jndi-name element in the weblogic-ejb-jar.xml deployment descriptor. For more information, see "weblogic-ejb-jar.xml Deployment Descriptor Reference" in Programming WebLogic Enterprise JavaBeans for Oracle WebLogic Server.

A.7.7.2 Attributes

The following table summarizes the attributes.
A.7.8 weblogic.javaee.MessageDestinationConfiguration

The following sections describe the annotation in more detail.

A.7.8.1 Description

Target: Class (Message-driven EJBs only)

Specifies the JNDI name of the JMS Connection Factory that a message-driven EJB looks up to create its queues and topics.

Note: This annotation is overridden by the connection-factory-jndi-name element in the weblogic-ejb-jar.xml deployment descriptor. For more information, see "weblogic-ejb-jar.xml Deployment Descriptor Reference" in Programming WebLogic Enterprise JavaBeans for Oracle WebLogic Server.

A.7.8.2 Attributes

The following table summarizes the attributes.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Data Type</th>
<th>Required?</th>
</tr>
</thead>
<tbody>
<tr>
<td>connectionFactoryJNDIName</td>
<td>Connection factory JNDI name. This attribute defaults to an empty string.</td>
<td>String</td>
<td>No</td>
</tr>
<tr>
<td>initialContextFactory</td>
<td>WebLogic initial context factory. This attribute defaults to weblogic.jndi.WLInitialContextFactory.class.</td>
<td>Class</td>
<td>No</td>
</tr>
<tr>
<td>providerURL</td>
<td>URL of the provider. This attribute defaults to t3://localhost:7001.</td>
<td>String</td>
<td>No</td>
</tr>
</tbody>
</table>

A.7.9 weblogic.javaee.TransactionIsolation

The following sections describe the annotation in more detail.

A.7.9.1 Description

Target: Method

Method-level transaction isolation settings for an EJB.

Note: This annotation is overridden by the trans-timeout-seconds element in the weblogic-ejb-jar.xml deployment descriptor. For more information, see "weblogic-ejb-jar.xml Deployment Descriptor Reference" in Programming WebLogic Enterprise JavaBeans for Oracle WebLogic Server.
A.7.9.2 Attributes

The following table summarizes the attributes.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Data Type</th>
<th>Required?</th>
</tr>
</thead>
<tbody>
<tr>
<td>IsolationLevel</td>
<td>Isolation level. Valid values include:</td>
<td>int</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>- READ_COMMITTED—Transaction can view only committed updates from other transactions.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- READ_UNCOMMITTED—Transactions can view uncommitted updates from other transactions.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- REPEATABLE_READ—Once the transaction reads a subset of data, repeated reads of the same data return the same values, even if other transactions have subsequently modified the data.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- SERIALIZABLE—Simultaneously executing this transaction multiple times has the same effect as executing the transaction multiple times in a serial fashion.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This attribute defaults to DEFAULT.

A.7.10 weblogic.javaee.TransactionTimeoutSeconds

The following sections describe the annotation in more detail.

A.7.10.1 Description

Target: Class

Defines the timeout for transactions in seconds.

A.7.10.2 Attributes

The following table summarizes the attributes.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Data Type</th>
<th>Required?</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>Transaction timeout value in seconds. This attribute defaults to 30 (seconds).</td>
<td>int</td>
<td>No</td>
</tr>
</tbody>
</table>
The following sections describe the namespace, schema location, file structure, and elements in the Kodo-specific deployment descriptor, persistence-configuration.xml.

- Section B.1, "persistence-configuration.xml Namespace Declaration and Schema Location"
- Section B.2, "persistence-configuration.xml Deployment Descriptor File Structure"
- Section B.3, "persistence-configuration.xml Deployment Descriptor Elements"

B.1 persistence-configuration.xml Namespace Declaration and Schema Location

The correct text for the namespace declaration and schema location for the Kodo persistence-configuration.xml file is as follows.

```xml
<persistence-configuration
    xmlns="http://xmlns.oracle.com/weblogic/persistence-configuration"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xsi:schemaLocation="http://xmlns.oracle.com/weblogic/persistence-configuration
    http://xmlns.oracle.com/weblogic/persistence-configuration/1.0/persistence-configuration.xsd">
...
</persistence-configuration>
```

B.2 persistence-configuration.xml Deployment Descriptor File Structure

The persistence-configuration.xml deployment descriptor file describes the elements that are unique to Oracle Kodo.

The top-level elements in the Kodo persistence-configuration.xml are as follows:

- persistence-configuration
 - persistence-configuration-unit
 * aggregate-listeners
* auto-clear
* auto-detaches
* default-broker-factory | abstract-store-broker-factory | client-broker-factory | jdbc-broker-factory | custom-broker-factory
* default-broker-impl | kodo-broker | custom-broker-impl
* default-class-resolver | custom-class-resolver
* default-compatibility | compatibility | default-compatibility
* connection2-driver-name
* connection2-password
* connection2-properties
* connection2-url
* connection2-user-name
* connection-decorators
* connection-driver-name
* connection-factory2-name
* connection-factory2-properties
* connection-factory-mode
* connection-factory-name
* connection-factory-properties
* connection-password
* connection-properties
* connection-retain-mode
* connection-url
* connection-user-name
* data-caches
* data-cache-timeout
* default-detach-state | detach-options-loaded | detach-options-fetch-groups | detach-options-all | custom-detach-state
* stack-execution-context-name-provider
* transaction-name-execution-context-name-provider
* user-object-execution-context-name-provider
* none-profiling | local-profiling | export-profiling | gui-profiling
* none-jmx | local-jmx | gui-jmx | jmx2-jmx | mx4j1-jmx | wls81-jmx
* dynamic-data-structs
* eager-fetch-mode
* fetch-batch-size
* fetch-direction
* fetch-groups
* filter-listeners
* flush-before-queries
* ignore-changes
* inverse-manager
* jdbc-listeners
* default-lock-manager | pessimistic-lock-manager | none-lock-manager | single-jvm-exclusive-lock-manager | version-lock-manager | custom-lock-manager
* lock-timeout
* commons-log-factory | log4j-log-factory | log-factory-impl | none-log-factory | custom-log
* lrs-size
* mapping
* default-mapping-defaults | deprecated-jdo-mapping-defaults | mapping-defaults-impl | persistence-mapping-defaults | custom-mapping-defaults
* extension-deprecated-jdo-mapping-factory | kodo-persistence-mapping-factory | mapping-file-deprecated-jdo-mapping-factory | orm-file-jdor-mapping-factory | table-deprecated-jdo-mapping-factory | table-jdor-mapping-factory | custom-mapping-factory
* default-meta-data-repository | kodo-mapping-repository | custom-meta-data-repository
* multithreaded
* nontransactional-read
* nontransactional-write
* optimistic
* default-orphaned-key-action | log-orphaned-key-action | exception-orphaned-key-action | none-orphaned-key-action | custom-orphaned-key-action
* http-transport | tcp-transport | custom-persistence-server
* default-proxy-manager | profiling-proxy-manager | proxy-manger-impl
 | custom-proxy-manager
* query-caches
 * default-query-compilation-cache | cache-map | concurrent-hash-map | custom-query-compilation-cache
* read-lock-level
* jms-remote-commit-provider | single-jvm-remote-commit-provider | tcp-remote-commit-provider | cluster-remote-commit-provider | custom-remote-commit-provider
* restore-state
* result-set-type
* retain-state
* retry-class-registration
 * default-savepoint-manager | in-memory-savepoint-manager | jdbc3-savepoint-manager | oracle-savepoint-manager | custom-savepoint-manager
* schema
 * default-schema-factory | dynamic-schema-factory | file-schema-factory | lazy-schema-factory | table-schema-factory | custom-schema-factory
* schemas
 * class-table-jdbc-seq | native-jdbc-seq | table-jdbc-seq | time-seeded-seq | value-table-jdbc-seq | custom-seq
 * default-sql-factory | kodo-sql-factory | custom-sql-factory
* subclass-fetch-mode
* synchronize-mappings
* transaction-isolation
* transaction-mode
 * write-lock-level
 ■ profiling
 – none-profiling
 – local-profiling
 – export-profiling
 – gui-profiling
 ■ execution-context-name-provider
 – stack-execution-context-name-provider
 – transaction-name-execution-context-name-provider
 – user-object-execution-context-name-provider
- jmx
 - none-jmx
 - local-jmx
 - gui-jmx
 - jmx2-jmx
 - mx4j1-jmx
 - wls81-jmx

B.3 persistence-configuration.xml Deployment Descriptor Elements
The following list of the elements in persistence-configuration.xml includes all elements that are supported in this release of Kodo.

B.4 abstract-store-broker-factory

Range of values: N/A
Default value: N/A
Parent elements:
 persistence-configuration
 persistence-configuration-unit

B.4.1 Function
Specifies a plugin string (see “Plugin Configuration” in Kodo 4.2.0 Developers Guide for JPA/JDO) describing the kodo.kernel.BrokerFactory type to use, in this case abstract store. For more information, see “kodo.BrokerFactory” in the Kodo 4.2.0 Developers Guide for JPA/JDO.

B.4.2 Example
<abstract-store-broker-factory/>

B.5 access-dictionary

Range of values: N/A
Default value: N/A
Parent elements:
 persistence-configuration
 persistence-configuration-unit

B.5.1 Function
Defines configuration values for the Access Dictionary. For a complete description of each of the values that you can specify, see “Access Dictionary Configuration” in the Oracle WebLogic Server Administration Console Help.
B.5.2 Example

The default values for each of the configuration values are shown in the example below.

```xml
<access-dictionary>
  <char-type-name>CHAR</char-type-name>
  <outer-join-clause>LEFT OUTER JOIN</outer-join-clause>
  <binary-type-name>BINARY</binary-type-name>
  <clob-type-name>CLOB</clob-type-name>
  <supports-locking-with-distinct-clause>true</supports-locking-with-distinct-clause>
  <simulate-locking>false</simulate-locking>
  <system-tables>true</system-tables>
  <concatenate-function>({0}||{1})</concatenate-function>
  <substring-function-name>SUBSTR</substring-function-name>
  <supports-query-timeout>true</supports-query-timeout>
  <use-set-bytes-for-blobs>true</use-set-bytes-for-blobs>
  <max-constraint-name-length>18</max-constraint-name-length>
  <search-string-escape>\</search-string-escape>
  <supports-cascade-update-action>true</supports-cascade-update-action>
  <string-length-function>CHAR_LENGTH({0})</string-length-function>
  <long-varbinary-type-name>LONGVARBINARY</long-varbinary-type-name>
  <supports-unique-constraints>true</supports-unique-constraints>
  <supports-restrict-delete-action>true</supports-restrict-delete-action>
  <trim-leading-function>LTRIM(LEADING '{1}' from {0})</trim-leading-function>
  <supports-default-delete-action>false</supports-default-delete-action>
  <next-sequence-query></next-sequence-query>
  <long-varchar-type-name>LONGVARCHAR</long-varchar-type-name>
  <cross-join-clause>CROSS JOIN</cross-join-clause>
  <max-embedded-clob-size>-1</max-embedded-clob-size>
  <date-type-name>DATE</date-type-name>
  <supports-schema-for-get-tables>true</supports-schema-for-get-tables>
  <current-time-function>CURRENT_TIME</current-time-function>
  <requires-condition-for-cross-join>false</requires-condition-for-cross-join>
  <ref-type-name>REF</ref-type-name>
  <concatenate-delimiter>'OPENJPATOKEN'</concatenate-delimiter>
  <catalog-separator>.</catalog-separator>
  <supports-mod-operator>false</supports-mod-operator>
  <schema-case>upper</schema-case>
  <java-object-type-name>JAVA_OBJECT</java-object-type-name>
  <driver-vendor></driver-vendor>
  <supports-locking-with-multiple-tables>true</supports-locking-with-multiple-tables>
  <max-column-name-length>128</max-column-name-length>
  <double-type-name>DOUBLE</double-type-name>
  <use-get-string-for-clobs>false</use-get-string-for-clobs>
  <decimal-type-name>DECIMAL</decimal-type-name>
  <smallint-type-name>SMALLINT</smallint-type-name>
  <date-precision>1000000</date-precision>
  <supports-alter-table-with-drop-column>true</supports-alter-table-with-drop-column>
  <max-constraint-name-length>18</max-constraint-name-length>
  <bit-type-name>BIT</bit-type-name>
  <supports-null-table-for-get-columns>true</supports-null-table-for-get-columns>
</access-dictionary>
```
<supports-select-end-index>false</supports-select-end-index>
<supports-auto-assign>false</supports-auto-assign>
<store-large-numbers-as-strings>false</store-large-numbers-as-strings>
<constraint-name-mode>before</constraint-name-mode>
<allows-alias-in-bulk-clause>true</allows-alias-in-bulk-clause>
<supports-select-for-update>true</supports-select-for-update>
<distinct-count-column-separator></distinct-count-column-separator>
<supports-subselect>true</supports-subselect>
<time-type-name>TIME</time-type-name>
<auto-assign-type-name></auto-assign-type-name>
<use-get-object-for-blobs>false</use-get-object-for-blobs>
<max-auto-assign-name-length>31</max-auto-assign-name-length>
<validation-sql></validation-sql>
<struct-type-name>STRUCT</struct-type-name>
<varchar-type-name>VARCHAR</varchar-type-name>
<range-position>0</range-position>
<supports-restrict-update-action>true</supports-restrict-update-action>
<auto-assign-clause></auto-assign-clause>
<supportsmultiple-nontransactional-result-sets>true</supports-multiple-nontransactional-result-sets>
<bit-length-function>(OCTET_LENGTH({0}) * 8)</bit-length-function>
<create-primary-keys>true</create-primary-keys>
<null-type-name>NULL</null-type-name>
<float-type-name>FLOAT</float-type-name>
<use-get-bytes-for-blobs>true</use-get-bytes-for-blobs>
<table-types>TABLE</table-types>
<numeric-type-name>NUMERIC</numeric-type-name>
<table-for-update-clause></table-for-update-clause>
<integer-type-name>INTEGER</integer-type-name>
<blob-type-name>BLOB</blob-type-name>
<for-update-clause>FOR UPDATE</for-update-clause>
<boolean-type-name>BOOLEAN</boolean-type-name>
<supports-foreign-keys>true</supports-foreign-keys>
<drop-table-sql>DROP TABLE {0}</drop-table-sql>
<use-set-string-for-clobs>false</use-set-string-for-clobs>
<supports-locking-with-order-clause>false</supports-locking-with-order-clause>
<platform>Generic</platform>
<fixed-size-type-names></fixed-size-type-names>
<store-chars-as-numbers>true</store-chars-as-numbers>
<max-indexes-per-table>2147483647</max-indexes-per-table>
<requires-cast-for-comparisons>false</requires-cast-for-comparisons>
<supports-having>true</supports-having>
<supports-locking-with-outer-join>true</supports-locking-with-outer-join>
<supports-correlated-subselect>true</supports-correlated-subselect>
<supports-null-table-for-get-imported-keys>false</supports-null-table-for-get-imported-keys>
<bigint-type-name>BIGINT</bigint-type-name>
<last-generated-key-query></last-generated-key-query>
<reserved-words></reserved-words>
<supports-null-update-action>true</supports-null-update-action>
<use-schema-name>true</use-schema-name>
<supports-deferred-constraints>true</supports-deferred-constraints>
<real-type-name>REAL</real-type-name>
<requires-alias-for-subselect>false</requires-alias-for-subselect>
<supports-null-table-for-get-index-info>false</supports-null-table-for-get-index-info>
<trim-trailing-function>TRIM(TRAILING '({1}') FROM {0})</trim-trailing-function>
<supports-locking-with-select-range>true</supports-locking-with-select-range>
<storage-limitations-fatal>false</storage-limitations-fatal>
<supports-locking-with-inner-join>true</supports-locking-with-inner-join>
<current-timestamp-function>CURRENT_TIMESTAMP</current-timestamp-function>
<cast-function>CAST({0} AS {1})</cast-function>
<other-type-name>OTHER</other-type-name>
<max-index-name-length>128</max-index-name-length>
<distinct-type-name>DISTINCT</distinct-type-name>
<character-column-size>255</character-column-size>
<varbinary-type-name>VARBINARY</varbinary-type-name>
<max-table-name-length>128</max-table-name-length>
<close-pool-sql></close-pool-sql>
<current-date-function>CURRENT_DATE</current-date-function>
<join-syntax>sql92</join-syntax>
<max-embedded-blob-size>-1</max-embedded-blob-size>
<trim-both-function>TRIM(BOTH '({1}' FROM {0})</trim-both-function>
<supports-select-start-index>false</supports-select-start-index>
<to-lower-case-function>LOWER({0})</to-lower-case-function>
<array-type-name>ARRAY</array-type-name>
<inner-join-clause>INNER JOIN</inner-join-clause>
<supports-default-update-action>true</supports-default-update-action>
<supports-schema-for-get-columns>true</supports-schema-for-get-columns>
<tinyint-type-name>TINYINT</tinyint-type-name>
<supports-null-table-for-get-primary-keys>false</supports-null-table-for-get-primary-keys>
</system-schemas>
<requires-cast-for-math-functions>false</requires-cast-for-math-functions>
<supports-null-delete-action>true</supports-null-delete-action>
<requires-auto-commit-for-meta-data>false</requires-auto-commit-for-meta-data>
<timestamp-type-name>TIMESTAMP</timestamp-type-name>
<initialization-sql></initialization-sql>
<supports-cascade-delete-action>true</supports-cascade-delete-action>
<supports-timestamp-nanos>true</supports-timestamp-nanos>
</access-dictionary>

B.6 access-unloaded

Range of values: true | false

Default value: true

Parent elements:
- persistence-configuration
 - persistence-configuration-unit
 - detach-options-all
 - persistence-configuration-unit
 - detach-options-fetch-groups
 - persistence-configuration-unit
 - detach-options-loaded
B.6.1 Function
Flag that specifies whether to allow access to unloaded fields of detached objects. Set to false to throw an exception whenever an unloaded field is accessed. This option is only available when you use detached state managers.

For more information about the detach state, see "Defining the Detached Object Graph" in *Kodo 4.2.0 Developers Guide for JPA/JDO*.

B.6.2 Example
<access-unloaded>true</access-unloaded>

B.7 action

Range of values: warn | exception
Default value: N/A
Parent elements:
persistence-configuration
 persistence-configuration-unit
 inverse-manager

B.7.1 Function
Controls the action taken when the inverse manager detects an inconsistent bidirectional relation. Valid options include:

- warn—Log a warning.
- exception—Throw an exception.

For more information, see "Managed Inverses" in *Kodo 4.2.0 Developers Guide for JPA/JDO*.

B.7.2 Example
<action>warn</action>

B.8 addresses

Range of values: Valid IP addresses
Default value: N/A
Parent elements:
persistence-configuration
 persistence-configuration-unit

B.8.1 Function
Specifies a semicolon separated list of IP addresses to which notifications should be sent. For more information, see "TCP" in the *Kodo 4.2.0 Developers Guide for JPA/JDO*.
B.8.2 Example

<addresses>[]</addresses>

B.9 advanced-sql

Range of values: String
Default value: N/A
Parent elements:
persistence-configuration
 persistence-configuration-unit

B.9.1 Function

Configures advanced SQL features. For more information, see "kodo.jdbc.SQLFactory" in the Kodo 4.2.0 Developers Guide for JPA/JDO.

B.10 aggregate-listeners

Range of values: N/A
Default value: N/A
Parent elements:
persistence-configuration
 persistence-configuration-unit

B.10.1 Function

Specifies a list of aggregate listeners to make available to all queries. Each listener must implement the org.apache.openjpa.kernel.exps.AggregateListener interface. For more information, see "kodo.AggregateListeners" in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.10.2 Example

<aggregate-listeners>
 <custom-aggregate-listener>
 <classname>...</classname>
 <properties>...</properties>
 </custom-aggregate-listener>
</aggregate-listeners>

B.11 allocate

Range of values: Integer
Default value: 50
Parent elements:
persistence-configuration
 persistence-configuration-unit
class-table-jdbc-seq
B.11 auto-clear

Range of values:
- **persistence-configuration-unit:** datastore | all
- **kodo-broker:** 0 | 1

Default value: datastore (0)

Parent elements:
- persistence-configuration
- persistence-configuration-unit

B.11.1 Function

Specifies the number of values to allocate on each database trip. Defaults to 50, meaning the class will set aside the next 50 numbers each time it accesses the sequence table. In this case, Kodo only accesses the database to get new sequence numbers once every 50 sequence number requests. For more information, see "Generators" in the *Kodo 4.2.0 Developers Guide for JPA/JDO*.

B.11.2 Example

```xml
<allocate>50</allocate>
```

B.12 assert-allowed-type

Range of values: true | false

Default value: false

Parent elements:
- persistence-configuration
- persistence-configuration-unit

B.12.1 Function

Flag that specifies whether to immediately throw an exception if you attempt to add an element to a collection or map that is not assignable to the element type declared in metadata. For more information, see "Custom Proxies" in the *Kodo 4.2.0 Developers Guide for JPA/JDO*.

B.12.2 Example

```xml
<assert-allowed-type>false</assert-allowed-type>
```
B.13.1 Function

Controls whether an object’s field values are cleared when entering a transaction. Valid values include:

- **datastore (0)**—Clear object field values when entering a datastore transaction. This is the default.
- **all (1)**—Clear object field values when entering any transaction.

B.13.2 Example

```xml
<auto-clear>datastore</auto-clear>
```

B.14 auto-detach

Range of values:

- **auto-detaches**: close | commit | nontx-read
- **kodo-broker**: 0 | 1 | 2
- **Default value**: close (0)

Parent elements:

```xml
persistence-configuration
d persistence-configuration-unit
kodo-broker

persistence-configuration
d persistence-configuration-unit
d auto-detaches
d

persistence-configuration
d persistence-configuration-unit
d kodo-broker
d auto-detach
```

B.14.1 Function

Specifies the event on which the managed instances are automatically detached. When specified as a child of the **auto-detaches** element, valid event types include:

- **close (0)**—Detach all objects when the PersistenceManager closes. This is the default.
- **commit (1)**—Detach all objects when a transaction ends.
- **nontx-read (2)**—Reads outside of transactions will automatically detach instances before returning them.

For more information, see ”Automatic Detachment” in *Kodo 4.2.0 Developers Guide for JPA/JDO*.

B.14.2 Example

```xml
<auto-detach>close</auto-detach>
```
B.15 auto-detaches

Range of values: N/A
Default value: N/A
Parent elements:
- persistence-configuration
- persistence-configuration-unit

B.15.1 Function

Specifies a list of events on which the managed instances are automatically detached. Specifies one or more Section B.14, "auto-detach" elements. For more information, see "Automatic Detachment" in *Kodo 4.2.0 Developers Guide for JPA/IDO*.

B.15.2 Example

```xml
<auto-detaches>
  <auto-detach>close</auto-detach>
</auto-detaches>
```

B.16 base-name

Range of values: String
Default value: N/A
Parent elements:
- profiling
- export-profiling

B.16.1 Function

Defines the basename of the exported data file to create. See "Dumping Profiling Data to Disk from a Batch Process" in *Kodo 4.2.0 Developers Guide for JPA/IDO*.

B.16.2 Example

```xml
<base-name>base</base-name>
```

B.17 batching-operation-order-update-manager

Range of values: N/A
Default value: N/A
Parent elements:
- profiling
B.17.1 Function

Defines an update manager capable of statement batching, that ignores foreign keys and table-level locking, but optimizes based on the order in which the application has modified objects. For more information, see "kodo.jdbc.UpdateManager" and "Statement Batching" in *Kodo 4.2.0 Developers Guide for JPA/JDO*.

B.17.2 Example

```xml
<batching-operation-order-update-manager>
  <maximize-batch-size>true</maximize-batch-size>
</batching-operation-order-update-manager>
```

B.18 buffer-size

- **Range of values**: Integer
- **Default value**: 10
- **Parent elements**: persistence-configuration, persistence-configuration-unit, cluster-remote-commit-provider

B.18.1 Function

Specifies the buffer size of the remote commit provider. For more information, see "Remote Commit Provider Configuration" in the *Kodo 4.2.0 Developers Guide for JPA/JDO*.

B.18.2 Example

```xml
<buffer-size>10</buffer-size>
```

B.19 cache-map

- **Range of values**: N/A
- **Default value**: N/A
- **Parent elements**: persistence-configuration, persistence-configuration-unit

B.19.1 Function

Defines the cache map used to associate query strings and their parsed form. For more information, see "Query Compilation Cache" in the *Kodo 4.2.0 Developers Guide for JPA/JDO*.

B.19.2 Example

```xml
<cache-map>
  <cache-size>1000</cache-size>
  <soft-reference-size>-1</soft-reference-size>
</cache-map>
```
B.20 cache-size

Range of values: Integer

Default value: 1000

Parent elements:
 persistence-configuration
 persistence-configuration-unit
 kodo-concurrent-data-cache
 persistence-configuration
 persistence-configuration-unit
 lru-data-cache
 persistence-configuration
 persistence-configuration-unit
 kodo-query-cache
 persistence-configuration
 persistence-configuration-unit
 lru-query-cache

B.20.1 Function

Set the data or query cache size. For more information, see "Configuring the Data Cache Size" and "Query Cache" in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.20.2 Example

<cache-size>1000</cache-size>

B.21 channel

Range of values: String

Default value: openjpa.Runtime

Parent elements:
 persistence-configuration
 persistence-configuration-unit

B.21.1 Function

Specifies the channel to which you want to log. For more information, see "Orphaned Keys" in the Kodo 4.2.0 Developers Guide for JPA/JDO.

B.21.2 Example

<channel>openjpa.Runtime</channel>
B.22 **class-table-jdbc-seq**

Range of values: N/A
Default value: N/A
Parent elements:
- `persistence-configuration`
- `persistence-configuration-unit`

B.22.1 Function

Specifies a plugin string (see "Plugin Configuration" in *Kodo 4.2.0 Developers Guide for JPA/JDO*) describing the `kodo.kernel.Seq` interface to use to create your own custom generators, in this case `kodo.jdbc.kernel.TableJDBCSeq`.

The `TableJDBCSeq` uses a special single-row table to store a global sequence number. If the table does not already exist, it is created the first time you run the mapping tool on a class that requires it. You can also use the class' `main` method or the `sequencetable` shell/bat script to manipulate the table; see the `TableJDBCSeq.main` method Javadoc for usage details.

For more information, see "Generators" in the *Kodo 4.2.0 Developers Guide for JPA/JDO*.

B.22.2 Example

```xml
<class-table-jdbc-seq>
  <type>0</type>
  <allocate>50</allocate>
  <table-name>OPENJPA_SEQUENCES_TABLE</table-name>
  <ignore-virtual>false</ignore-virtual>
  <ignore-unmapped>false</ignore-unmapped>
  <table>OPENJPA_SEQUENCES_TABLE</table>
  <primary-key-column>ID</primary-key-column>
  <use-aliases>false</use-aliases>
  <sequence-column>SEQUENCE_VALUE</sequence-column>
  <increment>1</increment>
</class-table-jdbc-seq>
```

B.23 **classname**

Range of values: Valid classname
Default value: N/A
Parent elements:
- `persistence-configuration`
- `persistence-configuration-unit`
- `aggregate-listener`
- `custom-aggregate-listener`
- `persistence-configuration`
- `persistence-configuration-unit`
- `custom-broker-factory`
- `persistence-configuration`
- `persistence-configuration-unit`
- `custom-broker-impl`
B.23.1 Function

Name of the class associated with the custom feature.

B.24 classpath-scan

Range of values: true | false

Default value: true

Parent elements:

```xml
persistence-configuration
  persistence-configuration-unit
    deprecated-jdo-meta-data-factory

persistence-configuration
  persistence-configuration-unit
    extension-deprecated-jdo-mapping-factory

persistence-configuration
  persistence-configuration-unit
    jdo-meta-data-factory

persistence-configuration
  persistence-configuration-unit
    jdor-mapping-factory

persistence-configuration
  persistence-configuration-unit
    kodo-persistence-mapping-factory

persistence-configuration
  persistence-configuration-unit
    kodo-persistence-meta-data-factory

persistence-configuration
  persistence-configuration-unit
    mapping-file-deprecated-jdo-mapping-factory
```
clear-on-close

B.24.1 Function
Specifies a semicolon-separated list of directories or jar archives listed in your classpath. Each directory and jar archive is scanned for annotated JP entities or JDO metadata files based on your metadata factory. For more information, see "Metadata Factory" in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.24.2 Example
<classpath-scan>build</classpath-scan>

B.25 clear-on-close
Range of values: true | false
Default value: false
Parent elements:
persistence-configuration
 persistence-configuration-unit
tangosol-data-cache

B.25.1 Function
Flag that specifies whether the Tangosol named cache should be completely cleared when the EntityManagerFactory or PersistenceManagerFactory is closed.

B.25.2 Example
<clear-on-close>false</clear-on-close>

B.26 client-broker-factory
Range of values: N/A
Default value: N/A
Parent elements:
persistence-configuration
 persistence-configuration-unit

B.26.1 Function
A plugin string (see "Plugin Configuration" in Kodo 4.2.0 Developers Guide for JPA/JDO) describing the kodo.kernel.BrokerFactory type to use, in this case remote. For more information, see "kodo.BrokerFactory" in the Kodo 4.2.0 Developers Guide for JPA/JDO.
B.26.2 Example

```xml
<client-broker-factory/>
```

B.27 close-on-managed-commit

- **Range of values:** true | false
- **Default value:** true
- **Parent elements:**
 - persistence-configuration
 - persistence-configuration-unit
 - compatibility

B.27.1 Function

Flag that specifies whether the JDO PersistenceManager closes after a managed transaction commits, assuming you have invoked the close method.

If set to false, then the PersistenceManager will not close. This means that objects passed to a processing tier in the same JVM will still be usable, as their owning PersistenceManager will still be open. This behavior is not in strict compliance with the JDO specification, but is convenient for applications that were coded against Kodo 2.x, which did not close the PersistenceManager in these situations.

For more information, see "Compatibility Configuration" in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.27.2 Example

```xml
<close-on-managed-commit>false</close-on-managed-commit>
```

B.28 cluster-remote-commit-provider

- **Range of values:** N/A
- **Default value:** N/A
- **Parent elements:**
 - persistence-configuration
 - persistence-configuration-unit

B.28.1 Function

Configures Kodo to share commit notifications among persistenceManagerFactories in a cluster. For more information, see "Remote Commit Provider Configuration" in the Kodo 4.2.0 Developers Guide for JPA/JDO.

B.28.2 Example

```xml
<cluster-remote-commit-provider>
  <name>kodo.RemoteCommitProvider</name>
  <buffer-size>10</buffer-size>
  <recover-action>none</recover-action>
</cluster-remote-commit-provider>
```
B.29 commons-log-factory

Range of values: N/A
Default value: N/A
Parent elements:
 persistence-configuration
 persistence-configuration-unit

B.29.1 Function
Specifies the Apache Jakarta Commons Logging thin library for issuing log messages. The Commons Logging libraries act as a wrapper around a number of popular logging APIs, including the Jakarta Log4j project, and the native `java.util.logging` package in JDK 1.4. If neither of these libraries are available, then logging will fall back to using simple console logging.

For more information, see "Apache Commons Logging" in *Kodo 4.2.0 Developers Guide for JPA/JDO*.

B.29.2 Example

```
<commons-log-factory/>
```

B.30 compatibility

Range of values: N/A
Default value: N/A
Parent elements:
 persistence-configuration
 persistence-configuration-unit

B.30.1 Function
Configure backwards compatibility settings for certain runtime behaviors. For more information, see "Compatibility Configuration" in *Kodo 4.2.0 Developers Guide for JPA/JDO*.

B.30.2 Example

```
<compatibility>
  <copy-object-ids>false</copy-object-ids>
  <close-on-managed-commit>true</close-on-managed-commit>
  <validate-true-checks-store>false</validate-true-checks-store>
  <validate-false-returns-hollow>true</validate-false-returns-hollow>
  <strict-identity-values>false</strict-identity-values>
  <quoted-numbers-in-queries>false</quoted-numbers-in-queries>
</compatibility>
```

B.31 concurrent-hash-map

Range of values: N/A
B.31.1 Function
Defines the concurrent hash map used to associate query strings and their parsed form. For more information, see "Query Compilation Cache" in the *Kodo 4.2.0 Developers Guide for JPA/JDO*.

B.31.2 Example
```xml
<concurrent-hash-map>
  <max-size>2147483647</max-size>
</concurrent-hash-map>
```

B.32 connection-decorators
Range of values: N/A
Default value: N/A
Parent elements:
- persistence-configuration
- persistence-configuration-unit

B.32.1 Function
A plugin string (see "Plugin Configuration" in *Kodo 4.2.0 Developers Guide for JPA/JDO*) describing `org.apache.openjpa.lib.jdbc.ConnectionDecorator` implementations to install on the connection factory. Specify one or more Section B.57, "custom-connection-decorator" elements.

These decorators can wrap connections passed from the underlying `DataSource` to add functionality. Kodo will pass all connections through the list of decorators before using them.

Note: By default Kodo JPA/JDO employs all of the built-in decorators in the `com.solarmetric.jdbc` package already; you do not need to list them here.

For more information, see "kodo.jdbc.ConnectionDecorators" in *Kodo 4.2.0 Developers Guide for JPA/JDO*.

B.32.2 Example
```xml
<connection-decorators>
  <custom-connection-decorator>
    <classname>...</classname>
    <properties>...</properties>
  </custom-connection-decorator>
</connection-decorators>
```
B.33 connection-driver-name

Range of values: Valid classname

Default value: N/A

Parent elements:
- persistence-configuration
- persistence-configuration-unit

- persistence-configuration
 - persistence-configuration-unit
 - kodo-pooling-data-source

- persistence-configuration
 - persistence-configuration-unit
 - simple-driver-data-source

B.33.1 Function

Full class name of either the JDBC `java.sql.Driver` or a `javax.sql.DataSource` implementation to use to connect to the database. For more information, see "JDBC" in *Kodo 4.2.0 Developers Guide for JPA/JDO*.

The following provides sample values:

- COM.FirstSQL.Dbcp.DbcpDriver
- COM.cloudbase.core.JDBCDriver
- COM.ibm.db2.jdbc.app.DB2Driver
- COM.ibm.db2.jdbc.net.DB2Driver
centura.java.sqlbase.SqlbaseDriver
com.ddtek.jdbc.db2.DB2Driver
com.ddtek.jdbc.oracle.OracleDriver
com.ddtek.jdbc.sqlserver.SQLServerDriver
com.ddtek.jdbc.sybase.SybaseDriver
com.ibm.as400.access.AS400JDBCDriver
com.imaginary.sql.mssql.MssqlDriver
com.inet.tds.TdsDriver
com.informix.jdbc.IfxDriver
com.internetcds.jdbc.tds.Driver
com.jnetdirect.jdbc.JSQLDriver
com.mckoi.JDBCDriver
com.microsoft.jdbc.sqlserver.SQLServerDriver
com.mysql.jdbc.DatabaseMetaData
com.mysql.jdbc.Driver
com.pointbase.jdbc.jdbcUniversalDriver
com.sap.dbtech.jdbc.DriverSapDB
com.sybase.jdbc.SybDriver
com.sybase.jdbc2.jdbc.SybDriver
com.thinweb.tds.Driver
in.co.daffodil.db.jdbc.DaffodilDBDriver
interbase.interclient.Driver
intersolv.jdbc.sequellink.SequeLinkDriver
openlink.jdbc2.Driver
oracle.jdbc.driver.OracleDriver
oracle.jdbc.pool.OracleDataSource
org.axiondb.jdbc.AxionDriver
org.enhydra.instantdb.jdbc.idbDriver
org.gjt.mm.mysql.Driver
org.hsql.jdbcDriver
org.hsqldb.jdbcDriver
B.33.2 Example

<connection-driver-name>oracle.jdbc.driver.OracleDriver</connection-driver-name>

B.34 connection-factory-mode

Range of values: local | managed
Default value: local
Parent elements:
 persistence-configuration
 persistence-configuration-unit

B.34.1 Function

The connection factory mode to use when integrating with the application server's managed transactions. Valid options include:

- local—Specifies a standard data source under Kodo control.
- managed—Specifies a data source managed by an application server and automatically enlisted in global transactions.

For more information, see "Managed and XA DataSources" in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.34.2 Example

<connection-factory-mode>local</connection-factory-mode>

B.35 connection-factory-name

Range of values: JNDI name
Default value: N/A
Parent elements:
 persistence-configuration
 persistence-configuration-unit

B.35.1 Function

The JNDI location of a javax.sql.DataSource to use to connect to the database. For more information, see "JDBC" in Kodo 4.2.0 Developers Guide for JPA/JDO.
B.35.2 Example

<connection-factory-name>java:/OracleSource</connection-factory-name>

B.36 connection-factory-properties

Range of values: N/A
Default value: N/A
Parent elements:
 persistence-configuration
 persistence-configuration-unit

B.36.1 Function

A plugin string (see “Plugin Configuration” in Kodo 4.2.0 Developers Guide for JPA/JDO) listing properties for configuration of the javax.sql.DataSource, described at http://java.sun.com/javase/6/docs/api/javax/sql/DataSource.html, in use. For more information, see “JDBC” in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.36.2 Example

<connection-factory-properties>
 <property>
 <name>QueryTimeout</name>
 <value>5000</value>
 <name>MaxIdle</name>
 <value>1</value>
 </property>
</connection-factory-properties>

B.37 connection-factory2-name

Range of values: JNDI name
Default value: N/A
Parent elements:
 persistence-configuration
 persistence-configuration-unit

B.37.1 Function

The JNDI location of an unmanaged javax.sql.DataSource to use to connect to the database. For more information, see "XA Transactions" in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.37.2 Example

<connection-factory2-name>java:/OracleXASource</connection-factory2-name>
B.38 connection-factory2-properties

Range of values: N/A
Default value: N/A
Parent elements:
 persistence-configuration
 persistence-configuration-unit

B.38.1 Function
Properties used to configure the javax.sql.DataSource, described at http://java.sun.com/javase/6/docs/api/javax/sql/DataSource.html, used as the unmanaged ConnectionFactory. For more information, see “Managed and XA DataSources” in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.38.2 Example

```xml
<connection-factory2-properties>
  <property>
    <name>MaxActive</name>
    <value>20</value>
  </property>
  <property>
    <name>MaxIdle</name>
    <value>1</value>
  </property>
</connection-factory2-properties>
```

B.39 connection-password

Range of values: Valid password
Default value: N/A
Parent elements:
 persistence-configuration
 persistence-configuration-unit

B.39.1 Function
Password for the user specified by connection-user-name. For more information, see "JDBC" in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.39.2 Example

```xml
<connection-password>tiger</connection-password>
```

B.40 connection-properties

Range of values: N/A
Default value: N/A
Parent elements:
 persistence-configuration
 persistence-configuration-unit
B.40.1 Function
A plugin string (see “Plugin Configuration” in *Kodo 4.2.0 Developers Guide for JPA/JDO*) listing properties to configure the driver listed in the `connection-driver-name` element. If the given driver class is a DataSource, these properties will be used to configure the bean properties of the DataSource. For more information, see “JDBC” in *Kodo 4.2.0 Developers Guide for JPA/JDO*.

B.40.2 Example

```xml
<connection-properties>
  <property>
    <name>PortNumber</name>
    <value>1521</value>
  </property>
  <property>
    <name>ServerName</name>
    <value>saturn</value>
  </property>
  <property>
    <name>DatabaseName</name>
    <value>solarisid</value>
  </property>
  <property>
    <name>DriverType</name>
    <value>thin</value>
  </property>
</connection-properties>
```

B.41 `connection-retain-mode`

Range of values: always | on-demand | persistence-manager | transaction

Default value: N/A

Parent elements:
- persistence-configuration
- persistence-configuration-unit

B.41.1 Function

Controls how Kodo uses datastore connections. Valid values include:

- **always**—Each EntityManager or PersistenceManager obtains a single connection and uses it until the EntityManager or PersistenceManager closes.
- **on-demand**—Connection is obtained only when needed. This option is equivalent to the transaction option when datastore transactions are used. For optimistic transactions, though, it means that a connection will be retained only for the duration of the datastore flush and commit process.
- **persistence-manager**—Connection is obtained from the persistence manager.
- **transaction**—Connection is obtained when each transaction begins (optimistic or datastore), and is released when the transaction completes. Non-transactional connections are obtained on-demand.
For more information, see "Configuring the Use of JDBC Connections" in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.41.2 Example

<connection-retain-mode>on-demand</connection-retain-mode>

B.42 connection-url

Range of values: Valid URL

Default value: N/A

Parent elements:

- persistence-configuration
 - persistence-configuration-unit
- persistence-configuration
 - persistence-configuration-unit
 - kodo-pooling-data-source
- persistence-configuration
 - persistence-configuration-unit
 - simple-driver-data-source

B.42.1 Function

The JDBC URL for the database. For more information, see "JDBC" in Kodo 4.2.0 Developers Guide for JPA/JDO.

The following provides possible values:

- jdbc:JSQLConnect://<hostname>/database=<database>
- jdbc:cloudscape:<database>;create=true
- jdbc:daffodilDB_embedded:<database>;create=true
- jdbc:datadirect:db2://<hostname>:50000;databaseName=<database>
- jdbc:datadirect:oracle://<hostname>:1521;SID=<database>;MaxPooledStatements=0
- jdbc:datadirect:sqlserver://<hostname>:1433;SelectMethod=cursor;DatabaseName=<database>
- jdbc:datadirect:sybase://<hostname>:5000
- jdbc:db2://<hostname>/<database>
- jdbc:db2://<hostname>:8889/<database>
- jdbc:hsqldb:<database>
- jdbc:iddb:<database>.properties
- jdbc:inetdae:<hostname>:1433
- jdbc:interbase://<hostname>://<database>.gdb
- jdbc:ms SQLserver://<hostname>:1433;DatabaseName=<database>;SelectMethod=cursor
- jdbc:mysql://<hostname>/database?autoReconnect=true
- jdbc:odbc:<database>
- jdbc:openlink://<hostname>/DSN=SQLServerDB/UID=sa/PWD=
- jdbc:oracle:thin:@<hostname>:1521:<database>
- jdbc:postgresql://<hostname>:5432/<database>
- jdbc:postgresql:net//<hostname>/<database>
- jdbc:sequelink://<hostname>:4003/[Oracle]
- jdbc:sequelink://<hostname>:4004/[Informix];Database=<database>
- jdbc:sequelink://<hostname>:4005/[Sybase];Database=<database>
- jdbc:sequelink://<hostname>:4006/[SQLServer];Database=<database>
jdbc:sequelink://<hostname>:4011/[ODBC MS Access];Database=<database>
jdbc:solid://<hostname>:/<port>://<UID>://<PWD>
jdbc:twtds:sqlserver://<hostname>:/<database>
jdbc:weblogic:mssqlserver4:<database>@<hostname>:1433

B.42.2 Example
<connection-url>
jdbc:oracle:thin:@<hostname>:1521:<database>
</connection-url>

B.43 connection-user-name

Range of values: Valid username
Default value: N/A
Parent elements:
persistence-configuration
 persistence-configuration-unit
persistence-configuration
 persistence-configuration-unit
 kodo-pooling-data-source
persistence-configuration
 persistence-configuration-unit
 simple-driver-data-source

B.43.1 Function
Username to use when connecting to the data source specified by Section B.42, "connection-url." For more information, see "JDBC" in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.43.2 Example
<connection-user-name>scott</connection-user-name>

B.44 connection2-driver-name

Range of values: Valid username
Default value: N/A
Parent elements:
persistence-configuration
 persistence-configuration-unit

B.44.1 Function
Full class name of either the JDBC java.sql.Driver or a javax.sql.DataSource implementation to use to connect to the unmanaged...
database. For more information, see "Managed and XA DataSources" in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.44.2 Example

<connection2-driver-name>oracle.jdbc.driver.OracleDriver</connection2-driver-name>

B.45 connection2-password

Range of values: Valid password
Default value: N/A
Parent elements:
 persistence-configuration
 persistence-configuration-unit

B.45.1 Function

Password for the unmanaged data source specified by connection2-url.

B.45.2 Example

<connection2-password>tiger</connection2-password>

B.46 connection2-properties

Range of values: N/A
Default value: N/A
Parent elements:
 persistence-configuration
 persistence-configuration-unit

B.46.1 Function

Properties for the unmanaged data source specified by connection2-driver-name
For more information, see "Managed and XA DataSources" in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.46.2 Example

<connection2-properties>
 <property>
 <name>PortNumber</name>
 <value>1521</value>
 </property>
 <property>
 <name>ServerName</name>
 <value>saturn</value>
 </property>
 <property>
 <name>DatabaseName</name>
 <value>solarisid</value>
 </property>
</connection2-properties>
B.47 connection2-url

Range of values: Valid URL
Default value: N/A
Parent elements:
 persistence-configuration
 persistence-configuration-unit

B.47.1 Function
The JDBC URL for the unmanaged datasource. For more information, see "Managed and XA DataSources" in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.47.2 Example
<connection2-url>jdbc:oracle:thin:@CROM:1521:KodoDB</connection2-url>

B.48 connection2-user-name

Range of values: Valid username
Default value: N/A
Parent elements:
 persistence-configuration
 persistence-configuration-unit

B.48.1 Function
Username to use when connecting to the data source specified by Section B.44, "connection2-driver-name."

B.48.2 Example
<connection2-user-name>scott</connection2-user-name>

B.49 constraint-names

Range of values: true | false
Default value: false
Parent elements:
 persistence-configuration
 persistence-configuration-unit
 table-jdor-mapping-factory
B.49.1 Function
Flag that specifies whether to include the names of foreign key and unique constraints in all generated mappings. For more information, see “Mapping Factory” in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.49.2 Example

```xml
<constraint-names>false</constraint-names>
```

B.50 constraint-update-manager

- **Range of values:** N/A
- **Default value:** N/A
- **Parent elements:**
 - persistence-configuration
 - persistence-configuration-unit

B.50.1 Function
Defines the standard update manager, capable of statement batching and foreign key constraint evaluation. For more information, see “kodo.jdbc.UpdateManager” and “Statement Batching” in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.50.2 Example

```xml
<constraint-update-manager>
  <maximize-batch-size>true</maximize-batch-size>
</constraint-update-manager>
```

B.51 copy-object-ids

- **Range of values:** true | false
- **Default value:** false
- **Parent elements:**
 - persistence-configuration
 - persistence-configuration-unit
 - compatibility

B.51.1 Function
Flag that specifies whether to copy oid objects before returning them to you. Kodo versions prior to 3.0 always copied oid objects before returning them to you. This prevents possible errors resulting from you mutating the oid object by reference, but was not very efficient for the majority of users who do not modify oid instances. Thus Kodo 3.0 and higher does not copy oids by default. Set this property to true to force Kodo to copy the oids.

For more information, see “Compatibility Configuration” in Kodo 4.2.0 Developers Guide for JPA/JDO.
B.51.2 Example

```xml
<copy-object-ids>false</copy-object-ids>
```

B.52 custom-aggregate-listener

Range of values: N/A
Default value: N/A
Parent elements:
- persistence-configuration
 - persistence-configuration-unit
 - aggregate-listeners

B.52.1 Function

Defines a custom aggregate listener. Each listener must implement the `org.apache.openjpa.kernel.exps.AggregateListener` interface. For more information, see "kodo.AggregateListeners" in *Kodo 4.2.0 Developers Guide for JPA/JDO*.

B.52.2 Example

```xml
<aggregate-listeners>
  <custom-aggregate-listener>
    <classname>...</classname>
    <properties>...</properties>
  </custom-aggregate-listener>
</aggregate-listeners>
```

B.53 custom-broker-factory

Range of values: N/A
Default value: N/A
Parent elements:
- persistence-configuration
 - persistence-configuration-unit

B.53.1 Function

Enables you to specify a custom broker factory. For more information, see "kodo.BrokerFactory" in *Kodo 4.2.0 Developers Guide for JPA/JDO*.

B.53.2 Example

```xml
<custom-broker-factory>
  <classname>...</classname>
  <properties>...</properties>
</custom-broker-factory>
```

B.54 custom-broker-impl

Range of values: N/A
B.54 custom-broker-impl

Default value: N/A
Parent elements:
persistence-configuration
persistence-configuration-unit

B.54.1 Function

Enables you to define a custom broker implementation. For more information, see "kodo.BrokerImpl" in *Kodo 4.2.0 Developers Guide for JPA/JDO*.

B.54.2 Example

```xml
<custom-broker-impl>
  <classname>...</classname>
  <properties>...</properties>
</custom-broker-impl>
```

B.55 custom-class-resolver

Range of values: N/A
Default value: N/A
Parent elements:
persistence-configuration
persistence-configuration-unit

B.55.1 Function

Enables you to define a custom class resolver for class name resolution. For more information, see "kodo.ClassResolver" in *Kodo 4.2.0 Developers Guide for JPA/JDO*.

B.55.2 Example

```xml
<custom-class-resolver>
  <classname>...</classname>
  <properties>...</properties>
</custom-class-resolver>
```

B.56 custom-compatibility

Range of values: N/A
Default value: N/A
Parent elements:
persistence-configuration
persistence-configuration-unit

B.56.1 Function

Enables you to define your own custom compatibility flag. For more information, see "Compatibility Configuration" in *Kodo 4.2.0 Developers Guide for JPA/JDO*.
B.56.2 Example

```
<custom-compatibility>
  <classname>...</classname>
  <properties>...</properties>
</custom-compatibility>
```

B.57 custom-connection-decorator

- **Range of values:** N/A
- **Default value:** N/A
- **Parent elements:**
 - persistence-configuration
 - persistence-configuration-unit
 - connection-decorators

Function

Enables you to define a custom `org.apache.openjpa.lib.jdbc.ConnectionDecorator` implementation to install on all connection pools. For more information, see "kodo.jdbc.ConnectionDecorators" in *Kodo 4.2.0 Developers Guide for JPA/JDO*.

Example

```
<connection-decorators>
  <custom-connection-decorator>
    <classname>...</classname>
    <properties>...</properties>
  </custom-connection-decorator>
</connection-decorators>
```

B.58 custom-data-cache

- **Range of values:** N/A
- **Default value:** N/A
- **Parent elements:**
 - persistence-configuration
 - persistence-configuration-unit
 - data-caches

Function

Enables you to define a custom data cache. For more information, see "kodo.DataCache" in *Kodo 4.2.0 Developers Guide for JPA/JDO*.

Example

```
<data-caches>
  <custom-data-cache>
    <name>...</name>
    <classname>...</classname>
  </custom-data-cache>
</data-caches>
```
<properties>...</properties>
</custom-data-cache>
</data-caches>

B.59 custom-data-cache-manager

Range of values: N/A
Default value: N/A
Parent elements:
persistence-configuration
 persistence-configuration-unit

B.59.1 Function
Enables you to define a custom data cache manager. For more information, see "kodo.DataCacheManager" in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.59.2 Example

 <custom-data-cache-manager>
 <classname>...</classname>
 <properties>...</properties>
 </custom-data-cache-manager>

B.60 custom-detach-state

Range of values: N/A
Default value: N/A
Parent elements:
persistence-configuration
 persistence-configuration-unit

B.60.1 Function
Enables you to define a custom detach state. For more information, see "kodo.DetachState" in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.60.2 Example

 <custom-detach-state>
 <classname>...</classname>
 <properties>...</properties>
 </custom-detach-state>

B.61 custom-dictionary

Range of values: N/A
Default value: N/A
Parent elements:
custom-driver-data-source

B.61.1 Function
Enables you to define a custom dictionary. For more information, see "Custom Dictionary Configuration" in the Oracle WebLogic Server Administration Console Help.

B.61.2 Example

```xml
<custom-dictionary>
  <name>custom-dictionary</name>
  <classname>..</classname>
  <properties>...</properties>
</custom-dictionary>
```

B.62 custom-driver-data-source

<table>
<thead>
<tr>
<th>Range of values</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Parent elements:

- persistence-configuration
- persistence-configuration-unit

B.62.1 Function
Enables you to define a custom datasource driver. For more information, see "kodo.jdbc.DriverDataSource" in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.62.2 Example

```xml
<custom-driver-data-source>
  <classname>...</classname>
  <properties>...</properties>
</custom-driver-data-source>
```

B.63 custom-filter-listener

<table>
<thead>
<tr>
<th>Range of values</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Parent elements:

- persistence-configuration
- persistence-configuration-unit
- filter-listeners

B.63.1 Function
Enables you to define a custom filter listener. For more information, see "kodo.FilterListeners" in Kodo 4.2.0 Developers Guide for JPA/JDO.
B.63.2 Example

<filter-listeners>
 <custom-filter-listener>
 <classname>...</classname>
 <properties>...</properties>
 </custom-filter-listener>
</filter-listeners>

B.64 custom-jdbc-listener

Range of values: N/A
Default value: N/A
Parent elements:
 persistence-configuration
 persistence-configuration-unit
 jdbc-listeners

B.64.1 Function

Enables you to define a custom JDBC listener. For more information, see "kodo.JDBCListeners" in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.64.2 Example

<jdbc-listeners>
 <custom-jdbc-listener>
 <classname>...</classname>
 <properties>...</properties>
 </custom-jdbc-listener>
</jdbc-listeners>

B.65 custom-lock-manager

Range of values: N/A
Default value: N/A
Parent elements:
 persistence-configuration
 persistence-configuration-unit

B.65.1 Function

Enables you to define a custom lock manager. For more information, see "Lock Manager" in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.65.2 Example

<custom-lock-manager>
 <classname>...</classname>
 <properties>...</properties>
</custom-lock-manager>
B.66 custom-log

Range of values: N/A
Default value: N/A
Parent elements:
 persistence-configuration
 persistence-configuration-unit

B.66.1 Function
Enables you to define a custom log file. For more information, see "Custom Log" in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.66.2 Example
<custom-log>
 <classname>...</classname>
 <properties>...</properties>
</custom-log>

B.67 custom-mapping-defaults

Range of values: N/A
Default value: N/A
Parent elements:
 persistence-configuration
 persistence-configuration-unit

B.67.1 Function
Enables you to define custom mapping defaults. For more information, see "Mapping Factory" in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.67.2 Example
<custom-mapping-defaults>
 <classname>...</classname>
 <properties>...</properties>
</custom-mapping-defaults>

B.68 custom-mapping-factory

Range of values: N/A
Default value: N/A
Parent elements:
 persistence-configuration
 persistence-configuration-unit
B.68 custom-mapping-factory

Function

Specifies a custom mapping factory. For more information, see "Mapping Factory" in *Kodo 4.2.0 Developers Guide for JPA/JDO*.

Example

```xml
<custom-mapping-factory/>
```

B.69 custom-meta-data-factory

Range of values: N/A

Default value: N/A

Parent elements:

- persistence-configuration
- persistence-configuration-unit

Function

Enables you to specify a custom metadata factory. For more information, see "Metadata Factory" in the *Kodo 4.2.0 Developers Guide for JPA/JDO*.

Example

```xml
<custom-meta-data-factory>
  <classname>...</classname>
  <properties>...</properties>
</custom-meta-data-factory>
```

B.70 custom-meta-data-repository

Range of values: N/A

Default value: N/A

Parent elements:

- persistence-configuration
- persistence-configuration-unit

Function

Enables you to specify a custom metadata repository. For more information, see "Metadata Factory" in the *Kodo 4.2.0 Developers Guide for JPA/JDO*.

Example

```xml
<custom-meta-data-repository>
  <classname>...</classname>
  <properties>...</properties>
</custom-meta-data-repository>
```
B.71 custom-orphaned-key-action

Range of values: N/A
Default value: N/A
Parent elements:
 persistence-configuration
 persistence-configuration-unit

B.71.1 Function

Enables you to define a custom orphaned key action. For more information, see "Orphaned Keys" in the Kodo 4.2.0 Developers Guide for JPA/JDO.

B.71.2 Example

```xml
<custom-orphaned-key-action>
  <channel>openjpa.Runtime</channel>
  <level>4</level>
  <classname>...</classname>
  <properties>...</properties>
</custom-orphaned-key-action>
```

B.72 custom-persistence-server

Range of values: N/A
Default value: N/A
Parent elements:
 persistence-configuration
 persistence-configuration-unit

B.72.1 Function

Enables you to define a custom persistence server. For more information, see "Standalone Persistence Server" in the Kodo 4.2.0 Developers Guide for JPA/JDO.

B.72.2 Example

```xml
<custom-persistence-server>
  <classname>...</classname>
  <properties>...</properties>
</custom-persistence-server>
```

B.73 custom-proxy-manager

Range of values: N/A
Default value: N/A
Parent elements:
 persistence-configuration
 persistence-configuration-unit
B.73.1 Function

Enables you to define a custom proxy manager. For more information, see "Custom Proxies" in the Kodo 4.2.0 Developers Guide for JPA/JDO.

B.73.2 Example

```xml
<custom-proxy-manager>
  <classname>...</classname>
  <properties>...</properties>
</custom-proxy-manager>
```

B.74 custom-query-compilation-cache

Range of values: N/A
Default value: N/A
Parent elements:
persistence-configuration
 persistence-configuration-unit

B.74.1 Function

Enables you to define a custom query compilation cache. For more information, see "Query Compilation Cache" in the Kodo 4.2.0 Developers Guide for JPA/JDO.

B.74.2 Example

```xml
<custom-query-compilation-cache>
  <classname>...</classname>
  <properties>...</properties>
</custom-query-compilation-cache>
```

B.75 custom-remote-commit-provider

Range of values: N/A
Default value: N/A
Parent elements:
persistence-configuration
 persistence-configuration-unit

B.75.1 Function

Enables you to specify a custom remote commit provider. For more information, see "JMS" in the Kodo 4.2.0 Developers Guide for JPA/JDO.

B.75.2 Example

```xml
<custom-remote-commit-provider>
  <name>kodo.RemoteCommitProvider</name>
  <classname>...</classname>
  <properties>...</properties>
</custom-remote-commit-provider>
```
B.76 custom-savepoint-manager

Range of values: N/A
Default value: N/A
Parent elements:
persistence-configuration
 persistence-configuration-unit

B.76.1 Function

Enables you to specify a custom savepoint manager. For more information, see "Savepoints" in the Kodo 4.2.0 Developers Guide for JPA/JDO.

B.76.2 Example

<custom-savepoint-manager>
 <classname>...</classname>
 <properties>...</properties>
</custom-savepoint-manager>

B.77 custom-schema-factory

Range of values: N/A
Default value: N/A
Parent elements:
persistence-configuration
 persistence-configuration-unit

B.77.1 Function

Specifies a custom schema factory. For more information, see "Schema Factory" in the Kodo 4.2.0 Developers Guide for JPA/JDO.

B.77.2 Example

<custom-schema-factory>
 <classname>...</classname>
 <properties>...</properties>
</custom-schema-factory>

B.78 custom-seq

Range of values: N/A
Default value: N/A
Parent elements:
persistence-configuration
 persistence-configuration-unit
B.78.1 Function

Enables you to define a custom generator. For more information, see "Generators" in the Kodo 4.2.0 Developers Guide for JPA/JDO.

B.78.2 Example

<custom-seq>
 <classname>...</classname>
 <properties>...</properties>
</custom-seq>

B.79 custom-sql-factory

Range of values: N/A
Default value: N/A
Parent elements:
 persistence-configuration
 persistence-configuration-unit

B.79.1 Function

Enables you to define a custom SQL factory. For more information, see "kodo.jdbc.SQLFactory" in the Kodo 4.2.0 Developers Guide for JPA/JDO.

B.79.2 Example

<custom-sql-factory>
 <classname>...</classname>
 <properties>...</properties>
</custom-sql-factory>

B.80 custom-update-manager

Range of values: N/A
Default value: N/A
Parent elements:
 persistence-configuration
 persistence-configuration-unit

B.80.1 Function

Enables you to define a custom update manager to use to flush persistent object changes to the datastore. For more information, see "kodo.jdbc.UpdateManager" in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.80.2 Example

<custom-update-manager>
 <classname>...</classname>
 <properties>...</properties>
</custom-update-manager>
B.81 data-caches

Range of values: N/A
Default value: N/A
Parent elements:
 persistence-configuration
 persistence-configuration-unit

B.81.1 Function
Specifies plugins used to cache data loaded from the data store. Must implement org.apache.openjpa.datacache.DataCache. For more information, see "Data Cache" in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.81.2 Example
<data-caches>
 <default-data-cache>...</default-data-cache>
 <kodo-concurrent-data-cache>...</kodo-concurrent-data-cache>
 <gem-fire-data-cache>...</gem-fire-data-cache>
 <lru-data-cache>...</lru-data-cache>
 <tangosol-data-cache>...</tangosol-data-cache>
 <custom-data-cache>...</custom-data-cache>
</data-caches>

B.82 data-cache-manager-impl

Range of values: N/A
Default value: N/A
Parent elements:
 persistence-configuration
 persistence-configuration-unit

B.82.1 Function
Enables the kodo.datacache.DataCacheManager that manages the system data caches. For more information, see "kodo.DataCacheManager" in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.82.2 Example
<data-cache-manager-impl/>

B.83 data-cache-timeout

Range of values: Integer
Default value: -1
Parent elements:
 persistence-configuration
 persistence-configuration-unit
B.83.1 Function

Specifies the amount of time in milliseconds that a class' data is valid. A value of -1 specifies no expiration. See "Setting the Data Cache Timeout Value" in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.83.2 Example

<data-cache-timeout>-1</data-cache-timeout>

B.84 db2-dictionary

Range of values: N/A
Default value: N/A
Parent elements:

- persistence-configuration
- persistence-configuration-unit

B.84.1 Function

Defines the configuration values for the DB2 Dictionary persistence plugin. For a complete description of each of the values that you can specify, see "DB2 Dictionary Configuration" in the Oracle WebLogic Server Administration Console Help

B.84.2 Example

The <data-access-type> element shares the same subelements as "access-dictionary" on page B-5.

B.85 default-access-type

Range of values: FIELD | PROPERTY
Default value: FIELD
Parent elements:

- persistence-configuration
- persistence-configuration-unit
- kodo-persistence-mapping-factory
- kodo-persistence-meta-data-factory

B.85.1 Function

Specifies the default access type. Valid values include:

- FIELD—Injects state directly into your persistent fields, and retrieves changed state from your fields as well.
- PROPERTY—Retrieves and loads state through JavaBean "getter" and "setter" methods.

For more information, see "Field and Property Metadata" in Kodo 4.2.0 Developers Guide for JPA/JDO.
B.85.2 Example

<default-access-type>FIELD</default-access-type>

B.86 default-broker-factory

Range of values: N/A
Default value: N/A
Parent elements:

persistence-configuration
 persistence-configuration-unit

B.86.1 Function

Specifies a plugin string (see "Plugin Configuration" in Kodo 4.2.0 Developers Guide for JPA/JDO) describing the kodo.kernel.BrokerFactory type to use, in this case the default, which is JDBC. For more information, see "kodo.BrokerFactory" in the Kodo 4.2.0 Developers Guide for JPA/JDO.

B.86.2 Example

<default-broker-factory/>

B.87 default-broker-impl

Range of values: N/A
Default value: N/A
Parent elements:

persistence-configuration
 persistence-configuration-unit

B.87.1 Function

Specifies a plugin string (see "Plugin Configuration" in Kodo 4.2.0 Developers Guide for JPA/JDO) describing the kodo.kernel.Broker type to use at runtime, in this case the default. For more information, see "kodo.BrokerImpl" in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.87.2 Example

<default-broker-impl/>

B.88 default-class-resolver

Range of values: N/A
Default value: N/A
Parent elements:

persistence-configuration
 persistence-configuration-unit
B.88.1 Function
Specifies a plugin string (see "Plugin Configuration" in Kodo 4.2.0 Developers Guide for JPA/JDO) describing the kodo.util.ClassResolver implementation to use for class name resolution, in this case the default. You may wish to plug in your own resolver if you have special class loading needs. For more information, see "kodo.ClassResolver" in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.88.2 Example
<default-class-resolver/>

B.89 default-compatibility
Range of values: N/A
Default value: N/A
Parent elements:
persistence-configuration
 persistence-configuration-unit

B.89.1 Function
Sets the default compatibility settings. For more information, see "Compatibility Configuration" in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.89.2 Example
<default-compatibility/>

B.90 default-data-cache
Range of values: N/A
Default value: N/A
Parent elements:
persistence-configuration
 persistence-configuration-unit
data-caches

B.90.1 Function
Defines the default data cache. For more information, see "Data Cache" in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.90.2 Example
<data-caches>
 <default-data-cache>
 <name>kodo.DataCache</name>
 </default-data-cache>
</data-caches>
default-detach-state

B.91 default-detach-state

Range of values: N/A
Default value: N/A
Parent elements:
 persistence-configuration
 persistence-configuration-unit

B.91.1 Function
Specifies the default detached state, in this case loaded. For more information, see "Defining the Detached Object Graph" in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.91.2 Example
<default-detach-state/>

B.92 default-data-cache-manager

Range of values: N/A
Default value: N/A
Parent elements:
 persistence-configuration
 persistence-configuration-unit

B.92.1 Function
Specifies a plugin string (see "Plugin Configuration" in Kodo 4.2.0 Developers Guide for JPA/JDO) describing the kodo.datacache.DataCacheManager that manages the system data caches, in this case the default. For more information, see "Data Cache" in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.92.2 Example
<default-data-cache-manager>...</default-data-cache-manager>

B.93 default-driver-data-source

Range of values: N/A
Default value: N/A
Parent elements:
 persistence-configuration
 persistence-configuration-unit

B.93.1 Function
Specifies the default kodo.jdbc.schema.DriverDataSource implementation to use to wrap JDBC Driver classes with javax.sql.DataSource instances. The provided default implementation, kodo.jdbc.schema.KodoPoolingDataSource,
will perform connection pooling as described at "JDBC" in *Kodo 4.2.0 Developers Guide for JPA/JDO*.

B.93.2 Example

```xml
<default-driver-data-source/>
```

B.94 default-level

- **Range of values:** TRACE | DEBUG | INFO | WARN | ERROR
- **Default value:** INFO
- **Parent elements:**
 - persistence-configuration
 - persistence-configuration-unit
 - log-factory-impl

B.94.1 Function

Specifies the default logging level of unconfigured channels. For more information, see "Kodo Logging" in *Kodo 4.2.0 Developers Guide for JPA/JDO*.

B.94.2 Example

```xml
<default-level>INFO</default-level>
```

B.95 default-lock-manager

- **Range of values:** N/A
- **Default value:** N/A
- **Parent elements:**
 - persistence-configuration
 - persistence-configuration-unit

B.95.1 Function

Specifies to use the default lock manager. For more information, see "Configuring Default Locking" in *Kodo 4.2.0 Developers Guide for JPA/JDO*.

B.95.2 Example

```xml
<default-lock-manager/>
```

B.96 default-mapping-defaults

- **Range of values:** String
- **Standard implementations include:** jdo and jpa
- **Default value:** N/A
- **Parent elements:**
B.96 default-meta-data-factory

Function
Specifies a plugin string (see "Plugin Configuration" in *Kodo 4.2.0 Developers Guide for JPA/JDO*) describing the kodo.jdbc.meta.GetMappingDefaults to use to define default column names, table names, and constraints for your persistent classes. For more information and a list of standard implementations, see "Mapping Defaults" in *Kodo 4.2.0 Developers Guide for JPA/JDO*.

Example
```
<default-mapping-defaults>jpa</default-mapping-defaults>
```

B.97 default-meta-data-factory

Range of values: N/A
Default value: N/A
Parent elements:
- persistence-configuration
- persistence-configuration-unit

Function
Specifies a plugin string (see "Plugin Configuration" in *Kodo 4.2.0 Developers Guide for JPA/JDO*) describing the kodo.meta.MetaDataFactory type to use, in this case the default, which is kodo.jdo.JDOMetaDataFactory. For more information, see "Metadata Factory" in the *Kodo 4.2.0 Developers Guide for JPA/JDO*.

Example
```
<default-meta-data-factory/>
```

B.98 default-meta-data-repository

Range of values: N/A
Default value: N/A
Parent elements:
- persistence-configuration
- persistence-configuration-unit

Function
Specifies a plugin string (see "Plugin Configuration" in *Kodo 4.2.0 Developers Guide for JPA/JDO*) describing the kodo.meta.MetaDataRepository to use to store the metadata for your persistent classes, in this case the default. For more information, see "Metadata Factory" in the *Kodo 4.2.0 Developers Guide for JPA/JDO*.
B.98.2 Example

<default-meta-data-repository/>

B.99 default-orphaned-key-action

Range of values: N/A
Default value: N/A
Parent elements:
 persistence-configuration
 persistence-configuration-unit

B.99.1 Function

Specifies a plugin string (see "Plugin Configuration" in Kodo 4.2.0 Developers Guide for JPA/JDO) describing the kodo.event.OrphanedKeyAction to invoke when Kodo discovers an orphaned datastore key, in this case the default which is kodo.event.LogOrphanedKeyAction. In this case, Kodo logs a message for each orphaned key. For more information, see "Orphaned Keys" in the Kodo 4.2.0 Developers Guide for JPA/JDO.

B.99.2 Example

<default-orphaned-key-action>
 <channel>openjpa.Runtime</channel>
 <level>4</level>
</default-orphaned-key-action>

B.100 default-proxy-manager

Range of values: N/A
Default value: N/A
Parent elements:
 persistence-configuration
 persistence-configuration-unit

B.100.1 Function

 Specifies a plugin string (see "Plugin Configuration" in Kodo 4.2.0 Developers Guide for JPA/JDO) describing the kodo.util.ProxyManager to use for proxying mutable second class objects, in this case the default, which is kodo.util.ProxyManagerImpl. For more information, see "Custom Proxies" in the Kodo 4.2.0 Developers Guide for JPA/JDO.

B.100.2 Example

<default-proxy-manager/>
B.101 default-query-compilation-cache

Range of values: N/A
Default value: N/A
Parent elements:
 persistence-configuration
 persistence-configuration-unit

B.101.1 Function
Specifies a plugin string (see "Plugin Configuration" in Kodo 4.2.0 Developers Guide for JPA/IDO) describing the Map used to associate query strings and their parsed form, in this case the default. For more information, see "Query Compilation Cache" in the Kodo 4.2.0 Developers Guide for JPA/IDO.

B.101.2 Example

<default-query-compilation-cache/>

B.102 default-savepoint-manager

Range of values: N/A
Default value: N/A
Parent elements:
 persistence-configuration
 persistence-configuration-unit

B.102.1 Function
Specifies a plugin string (see "Plugin Configuration" in Kodo 4.2.0 Developers Guide for JPA/IDO) describing the kodo.kernel.SavepointManager to use for managing transaction savepoints, in this case the default which is kodo.kernel.InMemorySavepointManager. This plugin stores all state, including field values, in memory. Because of this behavior, each set savepoint is designed for small to medium transactional object counts. For more information, see "Savepoints" in the Kodo 4.2.0 Developers Guide for JPA/IDO.

B.102.2 Example

<default-savepoint-manager/>

B.103 default-schema-factory

Range of values: N/A
Default value: N/A
Parent elements:
 persistence-configuration
 persistence-configuration-unit
B.103.1 Function

Specifies a plugin string (see "Plugin Configuration" in *Kodo 4.2.0 Developers Guide for JPA/JDO*) describing the `kodo.jdbc.schema.SchemaFactory` to use to store and retrieve information about the database schema, in this case the default which is `kodo.jdbc.schema.DynamicSchemaFactory`.

The `DynamicSchemaFactory` is the most performant schema factory, because it does not validate mapping information against the database. Instead, it assumes all object-relational mapping information is correct, and dynamically builds an in-memory representation of the schema from your mapping metadata. When using this factory, it is important that your mapping metadata correctly represent your database’s foreign key constraints so that Kodo can order its SQL statements to meet them.

For more information, see "Schema Factory" in the *Kodo 4.2.0 Developers Guide for JPA/JDO*.

B.103.2 Example

```
<default-schema-factory/>
```

B.104 default-sql-factory

- **Range of values:** N/A
- **Default value:** N/A
- **Parent elements:**
 - `persistence-configuration`
 - `persistence-configuration-unit`

B.104.1 Function

Specifies a plugin string (see "Plugin Configuration" in *Kodo 4.2.0 Developers Guide for JPA/JDO*) describing the `kodo.jdbc.SQLFactory` to use to abstract common SQL constructs, in this case the default. For more information, see "kodo.jdbc.SQLFactory" in the *Kodo 4.2.0 Developers Guide for JPA/JDO*.

B.104.2 Example

```
<default-meta-data-factory/>
```

B.105 default-update-manager

- **Range of values:** N/A
- **Default value:** N/A
- **Parent elements:**
 - `persistence-configuration`
 - `persistence-configuration-unit`
B.105 Function

Specifies to use the default update manager, kodo.jdbc.kernel.ConstraintUpdateManager. For more information, see "kodo.jdbc.UpdateManager" in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.105 Example

<default-update-manager/>

B.106 deprecated-jdo-mapping-defaults

<table>
<thead>
<tr>
<th>Range of values</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
<td>N/A</td>
</tr>
<tr>
<td>Parent elements:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B.106 Function

Specifies the mapping defaults for JDO 1.0. For more information, see "Mapping Defaults" in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.106 Example

The deprecated-jdo-mapping-defaults element shares the same subelements as mapping-defaults-impl.

B.107 deprecated-jdo-meta-data-factory

<table>
<thead>
<tr>
<th>Range of values</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
<td>N/A</td>
</tr>
<tr>
<td>Parent elements:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B.107 Function

Specifies a plugin string (see "Plugin Configuration" in Kodo 4.2.0 Developers Guide for JPA/JDO) describing the kodo.meta.MetaDataFactory type to use, in this case kodo.jdo.DeprecatedJDOMetaDataFactory. For more information, see "Metadata Factory" in the Kodo 4.2.0 Developers Guide for JPA/JDO.

B.107 Example

<deprecated-jdo-meta-data-factory>
 <use-schema-validation>false</use-schema-validation>
 <urls>t3://localhost:7001/metadata.jar</urls>
 <files>com/file1;com/file2</files>
 <classpath-scan>build</classpath-scan>
 <types>classname1;classname2</types>
 <store-mode>1</store-mode>
 <strict>false</strict>
</deprecated-jdo-meta-data-factory>
<resources>com/aaa/package.jdo;com/bbb/package.jdo</resources>
<scan-top-down>false</scan-top-down>
</deprecated-jdo-meta-data-factory>

B.108 derby-dictionary
Range of values: N/A
Default value: N/A
Parent elements:
 persistence-configuration
 persistence-configuration-unit

B.108.1 Function
Configures the Derby Dictionary. For a complete description of each of the values that
you can specify, see "Derby Dictionary Configuration" in the Oracle WebLogic Server
Administration Console Help.

B.108.2 Example
The derby-dictionary element shares the same subelements as, plus the following
subelement (default shown):
 <derby-dictionary>
 ...
 <shutdown-on-close>true</shutdown-on-close>
 </derby-dictionary>

B.109 detach-options-all
Range of values: N/A
Default value: N/A
Parent elements:
 persistence-configuration
 persistence-configuration-unit

B.109.1 Function
Sets the detach state to all to detach all fields and relations. Be very careful when
using this mode; if you have a highly-connected domain model, you could end up
bringing every object in the database into memory. For more information, see
"Defining the Detached Object Graph" in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.109.2 Example
 <detach-options-all>
 <detached-state-manager>true</detached-state-manager>
 <detached-state-transient>false</detached-state-transient>
 <access-unloaded>true</access-unloaded>
 <detached-state-field>true</detached-state-field>
 </detach-options-all>
B.110 detach-options-fetch-groups

Range of values: N/A
Default value: N/A

Parent elements:
 persistence-configuration
 persistence-configuration-unit

B.110.1 Function
Sets the detach state to detach all fields and relations in the default fetch group, and any other fetch groups that you have added to the current fetch configuration. For more information on custom fetch groups, see "Fetch Groups" in Kodo 4.2.0 Developers Guide for JPA/JDO. For more information about the detach state, see "Defining the Detached Object Graph" in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.110.2 Example

```xml
<detach-options-fetch-groups>
  <detached-state-manager>true</detached-state-manager>
  <detached-state-transient>false</detached-state-transient>
  <access-unloaded>true</access-unloaded>
  <detached-state-field>true</detached-state-field>
</detach-options-fetch-groups>
```

B.111 detach-options-loaded

Range of values: N/A
Default value: N/A

Parent elements:
 persistence-configuration
 persistence-configuration-unit

B.111.1 Function
Sets the detach state to detach all fields and relations that are already loaded, but do not include unloaded fields in the detached graph. This is the default. For more information about the detach state, see "Defining the Detached Object Graph" in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.111.2 Example

```xml
<detach-options-loaded>
  <detached-state-manager>true</detached-state-manager>
  <detached-state-transient>false</detached-state-transient>
  <access-unloaded>true</access-unloaded>
  <detached-state-field>true</detached-state-field>
</detach-options-loaded>
```

B.112 detach-state

Range of values: 1 | 2 | 3
detached-state-field

Default value: 1

Parent elements:

- persistence-configuration
 - persistence-configuration-unit
 - kodo-broker

B.112.1 Function

Configures the detach state. Valid values include:

- 1—*(loaded)* Detach all fields and relations that are already loaded, but do not include unloaded fields in the detached graph.
- 2—*(fetch-groups)* Detach all fields and relations in the current fetch configuration.
- 3—*(all)* Detach all fields and relations. Be very careful when using this mode; if you have a highly-connected domain model, you could end up bringing every object in the database into memory.

Any field that is not included in the set determined by the detach mode is set to its Java default value in the detached instance. For more information, see "Defining the Detached Object Graph" in *Kodo 4.2.0 Developers Guide for JPA/JDO*.

B.112.2 Example

```xml
<detach-state>1</detach-state>
```

B.113 detached-state-field

Range of values: true | false

Default value: true

Parent elements:

- persistence-configuration
 - persistence-configuration-unit
 - detach-options-all

- persistence-configuration
 - persistence-configuration-unit
 - detach-options-fetch-groups

- persistence-configuration
 - persistence-configuration-unit
 - detach-options-loaded

B.113.1 Function

Flag that specifies whether Kodo should take advantage of a detached state field to make the attach process more efficient. This field is added by the enhancer and is not visible to your application. For more information, see "Attach Behavior" in *Kodo 4.2.0 Developers Guide for JPA/JDO*.

For more information about the detach state, see "Defining the Detached Object Graph" in *Kodo 4.2.0 Developers Guide for JPA/JDO*.
B.113.2 Example

<detached-state-field>true</detached-state-field>

B.114 detached-state-manager

Range of values: true | false
Default value: true
Parent elements:
persistence-configuration
 persistence-configuration-unit
 detach-options-all

B.115 detached-state-transient

Range of values: true | false
Default value: true
Parent elements:
persistence-configuration
 persistence-configuration-unit
 detach-options-all

B.114.1 Function

Flag that specifies whether to use a detached state manager. A detached state manager makes attachment much more efficient. Like a detached state field, however, it breaks serialization compatibility with the unenhanced class if it is not transient.

This setting piggybacks on the Section B.113, "detached-state-field" element. If your detached state field is transient, the detached state manager will also be transient. If the detached state field is disabled, the detached state manager will also be disabled. This is typically what you want.

By setting the detach-state-field element to true (or transient) and setting this property to false, however, you can use a detached state field without using a detached state manager. This may be useful for debugging or for legacy Kodo users who find differences between Kodo's behavior with a detached state manager and Kodo's older behavior without one.

For more information about the detach state, see "Defining the Detached Object Graph" in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.114.2 Example

<detached-state-manager>true</detached-state-manager>
B.115.1 Function

Flag that specifies whether to use a transient detached state field. Setting this to true provides the benefits of a detached state field to local objects that are never serialized, but retains serialization compatibility for client tiers without access to the enhanced versions of your classes.

For more information about the detach state, see "Defining the Detached Object Graph" in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.115.2 Example

<detached-state-transient>false</detached-state-transient>

B.116 detached-new

Range of values: true | false
Default value: true
Parent elements:

persistence-configuration
persistence-configuration-unit
kodo-broker

B.116.1 Function

Flag that specifies whether to use a non-transient detached state field so that objects crossing serialization barriers can still be attached efficiently. This requires, however, that your client tier have the enhanced versions of your classes and the Kodo libraries.

For more information about the detach state, see "Defining the Detached Object Graph" in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.116.2 Example

<detached-new>true</detached-new>

B.117 diagnostic-context

Range of values: String
Default value: kodo.ID property, if set
Parent elements:

persistence-configuration
persistence-configuration-unit
B.117 Function

String that is prepended to all log messages. The kodo.ID property is used by default, if specified. For more information, see "Kodo Logging" in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.117 Example

<diagnostic-context>KodoID</diagnostic-context>

B.118 dynamic-data-structs

- **Range of values:** true | false
- **Default value:** false
- **Parent elements:**
 - persistence-configuration
 - persistence-configuration-unit

B.118.1 Function

Flag that specifies whether to dynamically generate customized structs to hold persistent data. Both the Kodo data cache and the remote framework rely on data structs to cache and transfer persistent state. With dynamic structs, Kodo can customize data storage for each class, eliminating the need to generate primitive wrapper objects. This saves memory and speeds up certain runtime operations.

The cost is a longer warm-up time for the application—generating and loading custom classes into the JVM takes time. Therefore, only set this property to true if you have a long-running application where the initial cost of class generation is offset by memory and speed optimization over time.

For more information, see "kodo.DynamicDataStructs" in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.118.2 Example

<dynamic-data-structs>false</dynamic-data-structs>

B.119 dynamic-schema-factory

- **Range of values:** N/A
- **Default value:** N/A
- **Parent elements:**
 - persistence-configuration
 - persistence-configuration-unit

B.119.1 Function

Specifies a plugin string (see "Plugin Configuration" in Kodo 4.2.0 Developers Guide for JPA/JDO) describing the kodo.jdbc.schema.SchemaFactory to use to store and
retrieve information about the database schema, in this case the default which is

The DynamicSchemaFactory is the most performant schema factory, because it does
not validate mapping information against the database. Instead, it assumes all
object-relational mapping information is correct, and dynamically builds an
in-memory representation of the schema from your mapping metadata. When using
this factory, it is important that your mapping metadata correctly represent your
database’s foreign key constraints so that Kodo can order its SQL statements to meet
them.

For more information, see “Schema Factory” in the Kodo 4.2.0 Developers Guide for
JPA/JDO.

B.119.2 Example

<dynamc-schema-factory/>

B.120 eager-fetch-mode

Range of values: join | multiple | none | parallel | single

Default value: parallel

Parent elements:

persistence-configuration
 persistence-configuration-unit

B.120.1 Function

Configures eager fetching. Eager fetching is the ability to efficiently load subclass data
and related objects along with the base instances being queried. For complete details,
see “Eager Fetching” in Kodo 4.2.0 Developers Guide for JPA/JDO.

You can set this value to one of the following:

- join—In this mode, Kodo joins to-one relations in the configured fetch groups. If
 Kodo is loading data for a single instance, then Kodo will also join to any
 collection field in the configured fetch groups. When loading data for multiple
 instances, though, (such as when executing a Query) Kodo will not join to
 collections by default. Instead, Kodo defaults to parallel mode for collections, as
 described below. You can force Kodo to use a join rather than parallel mode for a
 collection field using the metadata extension described in "Eager Fetch Mode” in
 Kodo 4.2.0 Developers Guide for JPA/JDO.

Under join mode, Kodo uses a left outer join (or inner join, if the relations’ field
metadata declares the relation non-nullable) to select the related data along with
the data for the target objects. This process works recursively for to-one joins, so
that if Person has an Address, and Address has a TelephoneNumber, and the fetch
groups are configured correctly, Kodo might issue a single select that joins across
the tables for all three classes. To-many joins can not recursively spawn other
to-many joins, but they can spawn recursive to-one joins.

Under the join subclass fetch mode, subclass data in joined tables is selected by
outer joining to all possible subclass tables of the type being queried. Unjoined
subclass data is selected with a SQL UNION where possible. As you’ll see below,
subclass data fetching is configured separately from relation fetching, and can be
disabled for specific classes.
- **multiple**—Same as parallel.

- **none**—No eager fetching is performed. Related objects are always loaded in an independent select statement. No joined subclass data is loaded unless it is in the table(s) for the base type being queried. Unjoined subclass data is loaded using separate select statements rather than an SQL UNION operation.

- **parallel**—Under this mode, Kodo selects to-one relations and joined collections as outlined in the join mode description above. Unjoined collection fields, however, are eagerly fetched using a separate select statement for each collection, executed in parallel with the select statement for the target objects. The parallel selects use the WHERE conditions from the primary select, but add their own joins to reach the related data. Thus, if you perform a query that returns 100 Company objects, where each company has a list of Employee objects and Department objects, Kodo will make three queries. The first will select the company objects, the second will select the employees for those companies, and the third will select the departments for the same companies. Just as for joins, this process can be recursively applied to the objects in the relations being eagerly fetched. Continuing our example, if the Employee class had a list of Projects in one of the fetch groups being loaded, Kodo would execute a single additional select in parallel to load the projects of all employees of the matching companies.

Using an additional select to load each collection avoids transferring more data than necessary from the database to the application. If eager joins were used instead of parallel select statements, each collection added to the configured fetch groups would cause the amount of data being transferred to rise dangerously, to the point that you could easily overwhelm the network.

Polymorphic to-one relations to table-per-class mappings use parallel eager fetching because proper joins are impossible. You can force other to-one relations to use parallel rather than join mode eager fetching using the metadata extension described in "Eager Fetch Mode" in Kodo 4.2.0 Developers Guide for JPA/JDO.

Setting your subclass fetch mode to parallel affects table-per-class and vertical inheritance hierarchies. Under parallel mode, Kodo issues separate selects for each subclass in a table-per-class inheritance hierarchy, rather than UNIONing all subclass tables together as in join mode. This applies to any operation on a table-per-class base class: query, by-id lookup, or relation traversal.

When dealing with a vertically-mapped hierarchy, on the other hand, parallel subclass fetch mode only applies to queries. Rather than outer-joining to subclass tables, Kodo will issue the query separately for each subclass. In all other situations, parallel subclass fetch mode acts just like join mode in regards to vertically-mapped subclasses.

When Kodo knows that it is selecting for a single object only, it never uses parallel mode, because the additional selects can be made lazily just as efficiently. This mode only increases efficiency over join mode when multiple objects with eager relations are being loaded, or when multiple selects might be faster than joining to all possible subclasses.

- **single**—Same as join.

B.120.2 Example

```xml
<eager-fetch-mode>parallel</eager-fetch-mode>
```
B.121 empress-dictionary

Range of values: N/A
Default value: N/A
Parent elements:
 persistence-configuration
 persistence-configuration-unit

B.121.1 Function

Configures the Empress Dictionary. For a complete description of each of the values that you can specify, see "Empress Dictionary Configuration" in the Oracle WebLogic Server Administration Console Help.

B.121.2 Example

The empress-dictionary element shares the same subelements as Section B.5, "access-dictionary," plus the following subelement (default shown):

<empress-dictionary>
 ...
 <allow-concurrent-read>false</allow-concurrent-read>
</empress-dictionary>

B.122 EnableLogMBean

Range of values: true | false
Default value: N/A
Parent elements:
 jmx
 local-jmx

B.122.1 Function

Flag that specifies whether the LogMBean should be registered. For more information, see "Optional Parameters in Management Group" in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.122.2 Example

<EnableLogMBean>true</EnableLogMBean>

B.123 EnableRuntimeMBean

Range of values: true | false
Default value: N/A
Parent elements:
 jmx
 local-jmx
B.123.1 Function
Flag that specifies whether the RuntimeMBean should be registered. For more information, see “Optional Parameters in Management Group” in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.123.2 Example
<EnableRuntimeMBean>true</EnableRuntimeMBean>

B.124 evict-from-data-cache

Range of values: true | false
Default value: false
Parent elements:
- persistence-configuration
 - persistence-configuration-unit
 - kodo-broker

B.124.1 Function
Flag that specifies whether to evict data from the data cache at specific times. You defined the eviction schedule using the Section B.125, “eviction-schedule” element. For more information, see “Data Cache” in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.124.2 Example
<evict-from-data-cache>true</evict-from-data-cache>

B.125 eviction-schedule

Range of values: N/A
Default value: N/A
Parent elements:
- persistence-configuration
 - persistence-configuration-unit
 - data-caches
 - gem-fire-data-cache
 - persistence-configuration-unit
 - data-caches
 - kodo-current-data-cache
 - persistence-configuration-unit
 - data-caches
 - lru-data-cache
 - persistence-configuration-unit
 - data-caches
B.125.1 Function
You can clear a data cache at specific times. The EvictionSchedule property of Kodo’s cache implementation accepts a cron style eviction schedule. The format of this property is a whitespace-separated list of five tokens. You can use the * symbol (asterisk) as a wildcard to match all values. The following lists the tokens in the order that they must be specified:

- Minute
- Hour of Day
- Day of Month
- Month
- Day of Week

For more information, see "Configuring the Eviction Schedule" in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.125.2 Example
The following setting schedules the default cache to evict values from the cache at 15 and 45 minutes past 3:00 pm on Sunday.

<eviction-schedule>15,45 15 * * 1</eviction-schedule>

B.126 exception-orphaned-key-action

Range of values: N/A
Default value: N/A
Parent elements:
- persistence-configuration
- persistence-configuration-unit

B.126.1 Function
Specifies a plugin string (see "Plugin Configuration" in Kodo 4.2.0 Developers Guide for JPA/JDO) describing the kodo.event.OrphanedKeyAction to invoke when Kodo discovers an orphaned datastore key, in this case kodo.event.ExceptionOrphanedKeyAction. In this case, Kodo throws an exception for each orphaned key. In JPA, the exception will be javax.persistence.EntityNotFoundException. In JDO, the exception type will be javax.jdo.JDOObjectNotFoundException. For more information, see "Orphaned Keys" in the Kodo 4.2.0 Developers Guide for JPA/JDO.

B.126.2 Example

<exception-orphaned-key-action/>
B.127 exception-reconnect-attempts

Range of values: Integer
Default value: 0
Parent elements:
 persistence-configuration
 persistence-configuration-unit
 jms-remote-commit-provider

B.127.1 Function
Specifies the number of time to attempt to reconnect if the JMS system notifies Kodo of a serious connection error. A value of 0 (the default) indicates that Kodo will log the error but otherwise ignore it, hoping the connection is still valid. For more information, see "JMS" in the Kodo 4.2.0 Developers Guide for JPA/JDO.

B.127.2 Example

<exception-reconnect-attempts>0<exception-reconnect-attempts>

B.128 execution-context-name-provider

Range of values: N/A
Default value: N/A
Parent elements: N/A

B.128.1 Function
Configure the execution context name provider. For more information, see "kodo.ExecutionContextNameProvider" in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.128.2 Example

<execution-context-name-provider>
 <stack-execution-context-name-provider>...
 </stack-execution-context-name-provider>
 <transaction-name-execution-context-name-provider>...
 </transaction-name-execution-context-name-provider>
 <user-object-execution-context-name-provider>...
 </user-object-execution-context-name-provider>
</execution-context-name-provider>

B.129 export-profiling

Range of values: N/A
Default value: N/A
Parent elements:
 persistence-configuration
 persistence-configuration-unit
 profiling
B.129 fetch-batch-size

B.129.1 Function
Configure export profiling data. See "Dumping Profiling Data to Disk from a Batch Process" in *Kodo 4.2.0 Developers Guide for JPA/JDO*.

B.129.2 Example

```xml
<profiling>
  <export-profiling>
    <interval-millis>-1</interval-millis>
    <base-name>name</base-name>
  </export-profiling>
</profiling>
```

B.130 extension-deprecated-jdo-mapping-factory

Range of values: N/A

Default value: N/A

Parent elements:

- persistence-configuration
- persistence-configuration-unit

B.130.1 Function
A plugin string (see "Plugin Configuration" in *Kodo 4.2.0 Developers Guide for JPA/JDO*) describing the kodo.meta.MetaDataFactory to use to store and retrieve object-relational mapping information for your persistent classes. This setting is valid for JDO 1.0. For more information, see "Mapping Factory" in *Kodo 4.2.0 Developers Guide for JPA/JDO*.

B.130.2 Example

```xml
<extension-deprecated-jdo-mapping-factory>
  <use-schema-validation>true</use-schema-validation>
  <urls>t3://localhost:7001/metadata.jar</urls>
  <files>com/file1;com/file2</files>
  <classpath-scan>build</classpath-scan>
  <types>classname1;classname2</types>
  <store-mode>1</store-mode>
  <strict>false</strict>
  <resources>com/aaa/package.jdo;com/bbb/package.jdo</resources>
  <scan-top-down>false</scan-top-down>
</extension-deprecated-jdo-mapping-factory>
```

B.131 fetch-batch-size

Range of values: Integer

Default value: -1

Parent elements:

- persistence-configuration
- persistence-configuration-unit
B.131 Fetch-Batch-Size

B.131.1 Function
The number of rows to fetch at one time when scrolling through a result set. The fetch size can also be set at runtime, as described in "Large Result Sets" in the Kodo 4.2.0 Developers Guide for JPA/JDO.

B.131.2 Example

```xml
<fetch-batch-size>-1</fetch-batch-size>
```

B.132 Fetch-Direction

Range of values: forward | reverse | unknown

Default value: true

Parent elements:
- persistence-configuration
- persistence-configuration-unit

B.132.1 Function
The expected order in which query result lists are accessed. This value affects the type of data structure Kodo uses to store the results, and is passed to the JDBC driver in case it can optimize for certain access patterns. This element accepts the following values, each of which corresponds exactly to the same-named java.sql.ResultSet FETCH constant:
- **forward**—Query results are listed in order. This is the default.
- **reverse**—Query results are listed in reverse order.
- **unknown**—The order is not specified.

This property can also be varied at runtime, as described in "Large Result Sets" in the Kodo 4.2.0 Developers Guide for JPA/JDO.

B.132.2 Example

```xml
<fetch-direction>forward</fetch-direction>
```

B.133 Fetch-Group

Range of values: N/A

Default value: N/A

Parent elements:
- persistence-configuration
- persistence-configuration-unit
- fetch-group

B.133.1 Function
Name of a fetch group. Fetch group names are global, and are expected to be shared among classes. For example, a shopping website may use a detail fetch group in each product class to efficiently load all the data needed to display a product’s "detail" page.
The website might also define a sparse list fetch group containing only the fields needed to display a table of products, as in a search result.

The following names are reserved for use by Kodo: default, values, all, none, and any name beginning with jdo, ejb, or kodo.

For more information, see "Custom Fetch Groups" in the Kodo 4.2.0 Developers Guide for JPA/JDO.

B.133.2 Example
<fetch-groups>
 <fetch-group>detail</fetch-group>
</fetch-groups>

B.134 fetch-groups

Range of values: N/A
Default value: N/A
Parent elements:
 persistence-configuration
 persistence-configuration-unit

B.134.1 Function
Define one or more custom fetch groups.

By default, Kodo places any field that is eagerly loaded according to the JPA metadata rules into the built-in default fetch group. You may define your own named fetch groups and activate or deactivate them at runtime. Kodo will eagerly-load the fields in all active fetch groups when loading objects from the datastore. For more information, see “Custom Fetch Groups” in the Kodo 4.2.0 Developers Guide for JPA/JDO.

B.134.2 Example
<fetch-groups>
 <fetch-group>detail</fetch-group>
</fetch-groups>

B.135 field-override

Range of values: true | false
Default value: true
Parent elements:
 persistence-configuration
 persistence-configuration-unit
 kodo-persistence-mapping-factory
 persistence-configuration
 persistence-configuration-unit
 kodo-persistence-meta-data-factory
B.135.1 Function
Flag that specifies whether to enable field override.

B.135.2 Example
<field-override>true</field-override>

B.136 file
Range of values: String
Default value: Described below
Parent elements:
 persistence-configuration
 persistence-configuration-unit
 file-schema-factory
 persistence-configuration
 persistence-configuration-unit
 log-factory-impl

B.136.1 Function
If the parent element is Section B.138, "file-schema-factory," specifies the resource name of the XML schema file. By default, the factory looks for a resource called package.schema located in any top-level directory of the CLASSPATH or in the top level of any JAR in your CLASSPATH. For more information, see "Schema Factory" in the Kodo 4.2.0 Developers Guide for JPA/JDO.

If the parent element is Section B.186, "log-factory-impl," specifies the name of the file to which messages are logged. Specify stdout or stderr to log messages to standard out and standard error, respectively. The default is stderr. For more information, see "Kodo Logging" in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.136.2 Example
<file>stdout</file>

B.137 file-name
Range of values: String
Default value: package.schema
Parent elements:
 persistence-configuration
 persistence-configuration-unit
 file-schema-factory

B.137.1 Function
Specifies the resource name of the XML schema file. By default, the factory looks for a resource called package.schema located in any top-level directory of the
CLASSPATH or in the top level of any JAR in your CLASSPATH. For more information, see "Schema Factory" in the Kodo 4.2.0 Developers Guide for JPA/JDO.

B.137.2 Example

<file-name>package.schema</file-name>

B.138 file-schema-factory

Range of values: N/A
Default value: N/A
Parent elements:
persistence-configuration
 persistence-configuration-unit

B.138.1 Function

Specifies a plugin string (see "Plugin Configuration" in Kodo 4.2.0 Developers Guide for JPA/JDO) describing the kodo.jdbc.schema.SchemaFactory to use to store and retrieve information about the database schema, in this case kodo.jdbc.schema.FileSchemaFactory.

This factory is a lot like the Section B.280, "table-schema-factory," and has the same advantages and disadvantages. Instead of storing its XML schema definition in a database table, though, it stores it in a file.

For more information, see "Schema Factory" in the Kodo 4.2.0 Developers Guide for JPA/JDO.

B.138.2 Example

<file-schema-factory>
 <file-name>package.schema</file-name>
 <file>package.schema</file>
</file-schema-factory>

B.139 files

Range of values: N/A
Default value: N/A
Parent elements:
persistence-configuration
 persistence-configuration-unit
 deprecated-jdo-meta-data-factory
 persistence-configuration-unit
 extension-deprecated-jdo-mapping-factory
 persistence-configuration-unit
 jdo-meta-data-factory
filter-listeners

B.139.1 Function
Specifies a semicolon-separated list of metadata files or JAR archives. Each jar archive will be scanned for annotated JPA entities or JDO metadata files based on your metadata factory. For more information, see "Metadata Factory" in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.139.2 Example
<files>com/file1;com/file2</files>

B.140 filter-listeners

Range of values: N/A
Default value: N/A
Parent elements:
 persistence-configuration
 persistence-configuration-unit

B.140.1 Function
Defines one or more full plugin strings (see "Plugin Configuration" in Kodo 4.2.0 Developers Guide for JPA/JDO) for custom kodo.FilterListeners to make available to all queries, in addition to the standard set of listeners. You can also add filter listeners to individual queries, as described in "Query Language Extensions" in the Kodo 4.2.0 Developers Guide for JPA/JDO.

For more information, see "kodo.FilterListeners" in Kodo 4.2.0 Developers Guide for JPA/JDO.
B.140.2 Example

```xml
<filter-listeners>
  <custom-filter-listener>detail</custom-filter-listener>
</filter-listeners>
```

B.141 foreign-keys

Range of values: true | false
Default value: false
Parent elements: persistence-configuration
 persistence-configuration-unit
 lazy-schema-factory

B.141.1 Function

Flag that specifies whether to read automatically foreign key information during schema validation. For more information, see "Schema Factory" in the *Kodo 4.2.0 Developers Guide for JPA/JDO*.

B.141.2 Example

```xml
<foreign-keys>false</foreign-keys>
```

B.142 format

Range of values: String
Default value: N/A
Parent elements: persistence-configuration
 persistence-configuration-unit
 native-jdbc-seq

B.142.1 Function

Specifies the format. For more information, see "Generators" in the *Kodo 4.2.0 Developers Guide for JPA/JDO*.

B.143 foxpro-dictionary

Range of values: N/A
Default value: N/A
Parent elements: persistence-configuration
 persistence-configuration-unit
flush-before-queries

B.143.1 Function

Configuration values for the FoxPro Dictionary persistence plugin. For a complete description of each of the values that you can specify, see "FoxPro Dictionary Configuration" in the Oracle WebLogic Server Administration Console Help.

B.143.2 Example

The foxpro-dictionary element shares the same subelements as Section B.5, "access-dictionary."

B.144 flush-before-queries

Range of values: true | false | with-connection
Default value: true
Parent elements:
 persistence-configuration
 persistence-configuration-unit

B.144.1 Function

Flag that specifies whether to flush any changes made in the current transaction to the datastore before executing a query. Valid values include:

- true—Always flush rather than executing the query in-memory. If the current transaction is optimistic, Kodo will begin a non-locking datastore transaction. This is the default.
- false—Never flush before a query.
- with-connection—Flush only if the EntityManager or PersistenceManager has already established a dedicated connection to the datastore, otherwise execute the query in-memory.

This option is useful if you use long-running optimistic transactions and want to ensure that these transactions do not consume database resources until commit. Kodo's behavior with this option is dependent on the transaction status and mode, as well as the configured connection retain mode described earlier in this section.

For more information, see "Configuring the Use of JDBC Connections" in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.144.2 Example

<flush-before-queries>true</flush-before-queries>

B.145 hsql-dictionary

Range of values: N/A
Default value: N/A
Parent elements:
 persistence-configuration
 persistence-configuration-unit
B.145.1 Function
Configuration values for the HSQL Dictionary persistence plugin. For a complete
description of each of the values that you can specify, see "HSQL Dictionary
Configuration" in the Oracle WebLogic Server Administration Console Help.

B.145.2 Example
The hsql-dictionary element shares the same subelements as Section B.5,
"access-dictionary."

B.146 gem-fire-data-cache

Range of values: N/A
Default value: N/A
Parent elements:
 persistence-configuration
 persistence-configuration-unit
data-caches

B.146.1 Function
Integrates with GemStone's GemFire v5.0.1 caching system. For more information, see
"GemStone GemFire Integration" in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.146.2 Example
<data-caches>
 <gem-fire-data-cache>
 <name>kodo.DataCache</name>
 <gem-fire-cache-name>root/kodo-data-cache</gem-fire-cache-name>
 <eviction-schedule>15, 45 15 * * 1</eviction-schedule>
 </gem-fire-data-cache>
</data-caches>

B.147 gem-fire-data-cache-name

Range of values: Valid GemFire region name
Default value:
Data cache: root/kodo-data-cache
Query cache: root/kodo-query-cache
Parent elements:
 persistence-configuration
 persistence-configuration-unit
data-caches
gem-fire-data-cache

B.147.1 Function
GemFire region name. For more information, see "GemStone GemFire Integration" in
Kodo 4.2.0 Developers Guide for JPA/JDO.
B.147.2 Example

<gem-fire-data-cache-name>root/kodo-data-cache</gem-fire-data-cache-name>

B.148 gui-jmx

Range of values: N/A
Default value: N/A
Parent elements:
jmx

B.148.1 Function
Enable management and invoke the JMX management console in the local JVM. Supports optional parameters in the Management Group, as described in "Optional Parameters in Management Group" in the Kodo 4.2.0 Developers Guide for JPA/JOQL.

B.148.2 Example

<gui-jmx>
 <MBeanServerStrategy>any-create</MBeanServerStrategy>
 <EnableLogMBean>true</EnableLogMBean>
 <EnableRuntimeMBean>true</EnableRuntimeMBean>
</gui-jmx>

B.149 gui-profiling

Range of values: N/A
Default value: N/A
Parent elements:
persistence-configuration
 persistence-configuration-unit
 profiling

B.149.1 Function
Turns on the local profiling GUI. See "Profiling in an Embedded GUI" in the Kodo Developer's Guide for more information.

B.149.2 Example

<profiling>
 <gui-profiling/>
</profiling>

B.150 Host

Range of values: N/A
Default value: N/A
Parent elements:

- jmx
- mx4j1-jmx

B.150.1 Function

Hostname on which the RMI registry naming service listens. Defaults to localhost. For more information, see "Optional Parameters in Remote Group" in the Kodo 4.2.0 Developers Guide for JPA/JDO.

B.150.2 Example

```xml
<Host>localhost</Host>
```

B.151 host

- **Range of values**: Valid hostname
- **Default value**: localhost
- **Parent elements**:
 - persistence-configuration
 - persistence-configuration-unit
 - tcp-transport

B.151.1 Function

Specifies the host name of the server. This setting is used by clients, not by the server. For more information, see "Standalone Persistence Server" in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.151.2 Example

```xml
<host>localhost</host>
```

B.152 http-transport

- **Range of values**: N/A
- **Default value**: N/A
- **Parent elements**:
 - persistence-configuration
 - persistence-configuration-unit

B.152.1 Function

Specifies the URL of the remote server. For more information, see "Client Managers" in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.152.2 Example

```xml
<http-transport>
  <url>servlet-url</url>
</http-transport>
```
B.153 ignore-changes

Range of values: true | false
Default value: false
Parent elements:
 - persistence-configuration
 - persistence-configuration-unit
 - kodo-broker

B.153.1 Function

Flag that specifies whether to consider modifications to persistent objects made in the current transaction when evaluating queries. Setting this to true allows Kodo to ignore changes and execute the query directly against the datastore. A value of false forces Kodo to consider whether the changes in the current transaction affect the query, and if so to either evaluate the query in-memory or flush before running it against the datastore. For more information, see "kodo.IgnoreChanges" in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.153.2 Example

```xml
<ignore-changes>false</ignore-changes>
```

B.154 ignore-unmapped

Range of values: true | false
Default value: false
Parent elements:
 - persistence-configuration
 - persistence-configuration-unit
 - class-table-jdbc-seq

B.154.1 Function

Flag that specifies whether to ignore unmapped base classes and instead use one row per least-derived mapped class. For more information, see "Generators" in the Kodo 4.2.0 Developers Guide for JPA/JDO.

B.154.2 Example

```xml
<ignore-unmapped>false</ignore-unmapped>
```

B.155 ignore-virtual

Range of values: true | false
Default value: true
Parent elements:
B.155.1 Function
Flag that specifies whether to ignore virtual classes. For more information, see "Generators" in the Kodo 4.2.0 Developers Guide for JPA/JDO.

B.155.2 Example
<ignore-virtual>false</ignore-virtual>

B.156 in-memory-savepoint-manager

Range of values: N/A
Default value: N/A
Parent elements:
persistence-configuration
 persistence-configuration-unit

B.156.1 Function
Specifies a plugin string (see "Plugin Configuration" in Kodo 4.2.0 Developers Guide for JPA/JDO) describing the kodo.kernel.SavepointManager to use for managing transaction savepoints, in this case kodo.kernel.InMemorySavepointManager. This plugin stores all state, including field values, in memory. Because of this behavior, each set savepoint is designed for small to medium transactional object counts. For more information, see "Savepoints" in the Kodo 4.2.0 Developers Guide for JPA/JDO.

B.156.2 Example
<in-memory-savepoint-manager/>

B.157 increment

Range of values: Integer
Default value: 1
Parent elements:
persistence-configuration
 persistence-configuration-unit
 class-table-jdbc-seq
 persistence-configuration
 persistence-configuration-unit
 native-jdbc-seq
 persistence-configuration
 persistence-configuration-unit
 table-jdbc-seq
 persistence-configuration
indexes

B.157.1 Function
Specifies the amount of sequence increments. For more information, see "Generators" in the Kodo 4.2.0 Developers Guide for JPA/JDO.

B.157.2 Example

<increment>1</increment>

B.158 indexes

Range of values: true | false
Default value: false

Parent elements:
persistence-configuration
 persistence-configuration-unit
 lazy-schema-factory

B.158.1 Function
Flag that specifies whether to read automatically index information during schema validation. For more information, see "Schema Factory" in the Kodo 4.2.0 Developers Guide for JPA/JDO.

B.158.2 Example

<indexes>false</indexes>

B.159 informix-dictionary

Range of values: N/A
Default value: N/A

Parent elements:
persistence-configuration
 persistence-configuration-unit

B.159.1 Function
Configuration values for the Informix Dictionary persistence plugin. For a complete description of each of the values that you can specify, see "Informix Dictionary Configuration" in the Oracle WebLogic Server Administration Console Help.
B.159.2 Example

The `informix-dictionary` element shares the same subelements as Section B.5, "access-dictionary," plus the following subelements (defaults shown):

```
<informix-dictionary>
  ...
  <lock-mode-enabled>false</lock-mode-enabled>
  <lock-wait-seconds>30</lock-wait-seconds>
  <swap-schema-and-catalog>true</swap-schema-and-catalog>
</informix-dictionary>
```

B.160 initial-value

Range of values: N/A
Default value: 1
Parent elements:
- persistence-configuration
- persistence-configuration-unit
- native-jdbc-seq

B.160.1 Function

Specifies the initial sequence value. For more information, see "Generators" in the Kodo 4.2.0 Developers Guide for JPA/JDO.

B.160.2 Example

```
<initial-value>1</initial-value>
```

B.161 interval-millis

Range of values: N/A
Default value: N/A
Parent elements:
- persistence-configuration
- persistence-configuration-unit
- export-profiling

B.161.1 Function

Number of milliseconds between exports. This value defaults to -1, indicating that there will be a single export upon exit. See "Dumping Profiling Data to Disk from a Batch Process" in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.161.2 Example

```
<interval-millis>-1</interval-millis>
```
B.162 inverse-manager

Range of values: true | false
Default value: false
Parent elements:
 persistence-configuration
 persistence-configuration-unit

B.162.1 Function

A plugin string (see "Plugin Configuration" in Kodo 4.2.0 Developers Guide for JPA/JDO) describing a kodo.kernel.InverseManager to use for managing bidirectional relations upon a flush. For more information, see "Managed Inverses" in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.162.2 Example

```xml
<inverse-manager>
  <action>warn</action>
  <manage-lrs>false</manage-lrs>
</inverse-manager>
```

B.163 jdatastore-dictionary

Range of values: N/A
Default value: N/A
Parent elements:
 persistence-configuration
 persistence-configuration-unit

B.163.1 Function

Configuration values for the JDataStore Dictionary persistence plugin. For a complete description of each of the values that you can specify, see "JDataStore Dictionary Configuration" in the Oracle WebLogic Server Administration Console Help.

B.163.2 Example

The jdatastore-dictionary element shares the same subelements as Section B.5, "access-dictionary."

B.164 jdbc-broker-factory

Range of values: N/A
Default value: N/A
Parent elements:
 persistence-configuration
 persistence-configuration-unit
B.164.1 Function
A plugin string (see "Plugin Configuration" in *Kodo 4.2.0 Developers Guide for JPA/JDO*) describing the `kodo.kernel.BrokerFactory` type to use, in this case JDBC. For more information, see "kodo.BrokerFactory" in the *Kodo 4.2.0 Developers Guide for JPA/JDO*.

B.164.2 Example

```xml
<jdbc-broker-factory/>
```

B.165 jdbc-listeners

- **Range of values:** N/A
- **Default value:** N/A
- **Parent elements:**
 - `persistence-configuration`
 - `persistence-configuration-unit`

B.165.1 Function
Defines one or more full plugin strings (see "Plugin Configuration" in *Kodo 4.2.0 Developers Guide for JPA/JDO*) for custom `kodo.jdbc.kernel.exps.JDBCFilterListeners` to make available to all queries, in addition to the standard set of listeners. You can also add filter listeners to individual queries, as described in "Query Language Extensions" in the *Kodo 4.2.0 Developers Guide for JPA/JDO*.

B.165.2 Example

```xml
<jdbc-listeners>detail</jdbc-listeners>
```

B.166 jdbc3-savepoint-manager

- **Range of values:** N/A
- **Default value:** N/A
- **Parent elements:**
 - `persistence-configuration`
 - `persistence-configuration-unit`

B.166.1 Function
Specifies a plugin string (see "Plugin Configuration" in *Kodo 4.2.0 Developers Guide for JPA/JDO*) describing the `kodo.kernel.SavepointManager` to use for managing transaction savepoints, in this case the default which is `kodo.jdbc.kernel.JDBCSavepointManager`. This plugin implements savepoints by issuing a flush to the database. For more information, see "Savepoints" in the *Kodo 4.2.0 Developers Guide for JPA/JDO*.

```xml
<jdbc3-savepoint-manager/>
```
B.166.2 Example

<jdbc3-savepoint-manager/>

B.167 jdo-meta-data-factory

Range of values: N/A
Default value: N/A
Parent elements:

persistence-configuration
persistence-configuration-unit

B.167.1 Function

Specifies a plugin string (see "Plugin Configuration" in Kodo 4.2.0 Developers Guide for JPA/JDO) describing the kodo.meta.MetaDataFactory type to use, in this case kodo.jdo.JDOMetaDataFactory. For more information, see "Metadata Factory" in the Kodo 4.2.0 Developers Guide for JPA/JDO.

B.167.2 Example

<jdo-meta-data-factory>
 <use-schema-validation>false</use-schema-validation>
 <urls>t3://localhost:7001/metadata.jar</urls>
 <files>com/file1;com/file2</files>
 <classpath-scan>build</classpath-scan>
 <constraint-names>false</constraint-names>
 <types>classname1;classname2</types>
 <store-mode>1</store-mode>
 <strict>false</strict>
 <resources>com/aaa/package.jdo;com/bbb/package.jdo</resources>
 <scan-top-down>false</scan-top-down>
</jdo-meta-data-factory>

B.168 jms-remote-commit-provider

Range of values: N/A
Default value: N/A
Parent elements:

persistence-configuration
persistence-configuration-unit

B.168.1 Function

Configures the JMS remote commit provider. For more information, see "JMS" in the Kodo 4.2.0 Developers Guide for JPA/JDO.

B.168.2 Example

<jms-remote-commit-provider>
 <name>kodo.RemoteCommitProvider</name>
 <topic>topic/KodoCommitProviderTopic</topic>
</jms-remote-commit-provider>
<exception-reconnect-attempts>0</exception-reconnect-attempts>
<topic-connection-factory>java:/ConnectionFactory</topic-connection-factory>
</jms-remote-commit-provider>

B.169 jmx

Range of values: N/A
Default value: N/A
Parent elements:

B.169.1 Function

Enables for the configuration of management capabilities. For more information, see "Management and Monitoring" in the *Kodo 4.2.0 Developers Guide for JPA/JDO*.

B.169.2 Example

```xml
<jmx>
  <none-jmx/>
  <local-jmx>...</local-jmx>
  <gui-jmx>...</gui-jmx>
  <jmx2-jmx>...</jmx2-jmx>
  <mx4j1-jmx>...</mx4j1-jmx>
  <wls81-jmx>...</wls81jmx>
</jmx>
```

B.170 jmx2-jmx

Range of values: N/A
Default value: N/A
Parent elements:

```xml
  jmx
```

B.170.1 Function

Enable remote management via JMX v.1.2 implementations (supporting JSR 160 for remote management). Supports optional parameters in the Management Group and the JSR 160 Group, as described in "Optional Parameters in Management Group" and "Optional Parameters in JSR 160 Group" in the *Kodo 4.2.0 Developers Guide for JPA/JDO*, respectively.

B.170.2 Example

```xml
<jmx2-jmx>
  <MBeanServerStrategy>any-create</MBeanServerStrategy>
  <EnableLogMBean>true</EnableLogMBean>
  <EnableRuntimeMBean>true</EnableRuntimeMBean>
  <NamingImpl>mx4j.tools.naming.NamingService</NamingImpl>
  <ServiceURL>service:jmx:rmi://localhost/jndi/jmxservice</ServiceURL>
</jmx2-jmx>
```
B.171 JNDIName

Range of values: N/A
Default value: N/A
Parent elements:
persistence-configuration
persistence-configuration-unit
JNDIName

B.171.1 Function
JNDI name under which to register the remote JMX adaptor. Defaults to jnp. For more information, see "Optional Parameters in Remote Group" in the Kodo 4.2.0 Developers Guide for JPA/JDO.

B.171.2 Example
<JNDIName>jnp</JNDIName>

B.172 kodo-broker

Range of values: N/A
Default value: N/A
Parent elements:
persistence-configuration
persistence-configuration-unit

B.172.1 Function
Configures the kodo.BrokerImpl. For more information, see "kodo.BrokerImpl" in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.172.2 Example
<kodo-broker>
 <large-transaction>false</large-transaction>
 <auto-clear>datastore</auto-clear>
 <detach-state>1</detach-state>
 <nontransactional-read>true</nontransactional-read>
 <retain-state>false</retain-state>
 <evict-from-data-cache>false</evict-from-data-cache>
 <detached-new>true</detached-new>
 <optimistic>true</optimistic>
 <nontransactional-write>false</nontransactional-write>
 <sync-with-managed-transacations>false</sync-with-managed-transacations>
 <multithreaded>false</multithreaded>
 <populate-data-cache>true</populate-data-cache>
 <ignore-changes>false</ignore-changes>
 <auto-detach>0</auto-detach>
 <restore-state>1</restore-state>
 <order-dirty-objects>false</order-dirty-objects>
</kodo-broker>
B.173 kodo-concurrent-data-cache

Range of values: N/A
Default value: N/A
Parent elements:
 persistence-configuration
 persistence-configuration-unit
data-caches

B.173.1 Function

Enables the basic concurrent data cache. For more information, see "Data Cache" in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.173.2 Example

<data-caches>
 <kodo-concurrent-data-cache>
 <name>default</name>
 <cache-size>1000</cache-size>
 <soft-reference-size>0</soft-reference-size>
 <eviction-schedule>15,45 15 * * 1</eviction-schedule>
 </kodo-concurrent-data-cache>
</data-caches>

B.174 kodo-data-cache-manager

Range of values: N/A
Default value: N/A
Parent elements:
 persistence-configuration
 persistence-configuration-unit

B.174.1 Function

Enables the kodo.datacache.DataCacheManager that manages the system data caches. For more information, see "kodo.DataCacheManager" in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.174.2 Example

<kodo-data-cache-manager/>

B.175 kodo-mapping-repository

Range of values: N/A
Default value: N/A
Parent elements:
 persistence-configuration
 persistence-configuration-unit
B.175 kodo-persistence-mapping-factory

Range of values: N/A
Default value: N/A
Parent elements:
 - persistence-configuration
 - persistence-configuration-unit

B.175.1 Function

Specifies a plugin string (see "Plugin Configuration" in Kodo 4.2.0 Developers Guide for JPA/JDO) describing the kodo.meta.MetaDataRepository to use. For more information, see "kodo.MetaDataRepository" in the Kodo 4.2.0 Developers Guide for JPA/JDO.

B.175.2 Example

```xml
<kodo-mapping-repository>
  <resolve>3</resolve>
  <validate>7</validate>
  <source-mode>7</source-mode>
</kodo-mapping-repository>
```

B.176 kodo-persistence-mapping-factory

Range of values: N/A
Default value: N/A
Parent elements:
 - persistence-configuration
 - persistence-configuration-unit

B.176.1 Function

A plugin string (see "Plugin Configuration" in Kodo 4.2.0 Developers Guide for JPA/JDO) describing the kodo.meta.MetaDataFactory to use to store and retrieve object-relational mapping information for your persistent classes. This setting is valid for JPA 1.0. For more information, see "Mapping Factory" in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.176.2 Example

```xml
<kodo-persistence-mapping-factory>
  <urls>t3://localhost:7001/metadata.jar</urls>
  <files>com/file1;com/file2</files>
  <classpath-scan>build</classpath-scan>
  <default-access-type>FIELD</default-access-type>
  <field-override>true</field-override>
  <types>classname1;classname2</types>
  <store-mode>1</store-mode>
  <strict>false</strict>
  <resources>com/aaa/package.jdo;com/bbb/package.jdo</resources>
</kodo-persistence-mapping-factory>
```

B.177 kodo-persistence-meta-data-factory

Range of values: N/A
Default value: N/A
Parent elements:
 - persistence-configuration
 - persistence-configuration-unit
B.177.1 Function

Specifies a plugin string (see "Plugin Configuration" in Kodo 4.2.0 Developers Guide for JPA/JDO) describing the kodo.meta.MetaDataFactory type to use, in this case org.apache.openjpa.persistence.PersistenceMetaDataFactory. For more information, see "Metadata Factory" in the Kodo 4.2.0 Developers Guide for JPA/JDO.

B.177.2 Example

```xml
<kodo-persistence-meta-data-factory>
    <urls>t3://localhost:7001/metadata.jar</urls>
    <files>com/file1;com/file2</files>
    <classpath-scan>build</classpath-scan>
    <default-access-type>FIELD</default-access-type>
    <field-override>true</field-override>
    <types>classname1;classname2</types>
    <store-mode>1</store-mode>
    <strict>false</strict>
    <resources>com/aaa/package.jdo;com/bbb/package.jdo</resources>
</kodo-persistence-meta-data-factory>
```

B.178 kodo-pooling-data-source

Range of values: N/A
Default value: N/A
Parent elements:
persistence-configuration
 persistence-configuration-unit

B.178.1 Function

Configures the kodo.jdbc.schema.KodoPoolingDataSource which by default performs connection pooling. For more information, see "JDBC" in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.178.2 Example

```xml
<kodo-pooling-data-source>
    <connection-user-name>KodoPool</connection-user-name>
    <login-timeout>10</login-timeout>
    <connection-password>password</connection-password>
    <connection-url>jdbc:hsqldb:db-hypersonic</connection-url>
    <connection-driver-name>org.hsqldb.jdbcDriver</connection-driver-name>
</kodo-pooling-data-source>
```

B.179 kodo-sql-factory

Range of values: N/A
Default value: N/A
Parent elements:
persistence-configuration
B.179.1 Function

Specifies a plugin string (see "Plugin Configuration" in *Kodo 4.2.0 Developers Guide for JPA/JDO*) describing the kodo.jdbc.SQLFactory to use to abstract common SQL constructs. For more information, see "kodo.jdbc.SQLFactory" in the *Kodo 4.2.0 Developers Guide for JPA/JDO*.

B.179.2 Example

```xml
<kodo-sql-factory>
  <advanced-sql>...</advanced-sql>
</kodo-sql-factory>
```

B.180 large-transaction

Range of values: true | false
Default value: true
Parent elements:
 persistence-configuration
 persistence-configuration-unit
 kodo-broker

B.180.1 Function

Flag that specifies whether the transaction will generate a large number of objects.

B.180.2 Example

```xml
.large-transaction>true</large-transaction>
```

B.181 lazy-schema-factory

Range of values: N/A
Default value: N/A
Parent elements:
 persistence-configuration
 persistence-configuration-unit

B.181.1 Function

Specifies a plugin string (see "Plugin Configuration" in *Kodo 4.2.0 Developers Guide for JPA/JDO*) describing the kodo.jdbc.schema.SchemaFactory to use to store and retrieve information about the database schema, in this case kodo.jdbc.schema.LazySchemaFactory.

As persistent classes are loaded by the application, Kodo reads their metadata and object-relational mapping information. This factory uses the java.sql.DatabaseMetaData interface to reflect on the schema and ensure that it is consistent with the mapping data being read. Because the factory does not reflect on
a table definition until that table is mentioned by the mapping information, it is referred to as lazy. Use this factory if you want up-front validation that your mapping metadata is consistent with the database during development.

For more information, see "Schema Factory" in the Kodo 4.2.0 Developers Guide for JPA/JDO.

B.181.2 Example

```xml
<lazy-schema-factory>
  <foreign-keys>false</foreign-keys>
  <indexes>false</indexes>
  <primary-keys>false</primary-keys>
</lazy-schema-factory>
```

B.182 level

Range of values: 1 | 2 | 3 | 4 | 5

Default value: 4

Parent elements:

- persistence-configuration
- persistence-configuration-unit

B.182.1 Function

Specifies the level at which to log. Valid values include: 1 (TRACE), 2 (DEBUG), 3 (INFO), 4 (WARN), and 5 (ERROR). For more information, see "Orphaned Keys" in the Kodo 4.2.0 Developers Guide for JPA/JDO.

B.182.2 Example

```xml
<level>4</level>
```

B.183 local-jmx

Range of values: N/A

Default value: N/A

Parent elements:

- jmx

B.183.1 Function

Enabled local management. This setting is suitable for use in JBoss and other environments where all MBeans should be registered with a JMX MBeanServer for either management via a user defined mechanism, or via a mechanism defined by the MBeanServer. Supports optional parameters in the Management Group, as described in "Optional Parameters in Management Group" in the Kodo 4.2.0 Developers Guide for JPA/JDO.
B.183.2 Example

```xml
<local-jmx>
  <MBeanServerStrategy>true</MBeanServerStrategy>
  <EnableLogMBean>true</EnableLogMBean>
  <EnableRuntimeMBean>true</EnableRuntimeMBean>
</local-jmx>
```

B.184 local-profiling

- **Range of values**: N/A
- **Default value**: N/A
- **Parent elements**:
 - persistence-configuration
 - persistence-configuration-unit
 - profiling

B.184.1 Function

Enable profiling without export or GUI. Useful when trying to access the ProfilingAgent programmatically. For more information, see "Profiling" in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.184.2 Example

```xml
<profiling>
  <local-profiling/>
</profiling>
```

B.185 lock-timeout

- **Range of values**: Integer
- **Default value**: -1
- **Parent elements**:
 - persistence-configuration
 - persistence-configuration-unit

B.185.1 Function

Default amount of time that Kodo waits when trying to obtain a lock. A value of -1 specifies that there is no limit. For more information, see "Configuring Default Locking" in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.185.2 Example

```xml
<lock-timeout>-1</lock-timeout>
```

B.186 log-factory-impl

- **Range of values**: N/A
Default value: N/A

Parent elements:
- persistence-configuration
- persistence-configuration-unit

B.186 Function

Configures the default logging system. For more information, see "Kodo Logging" in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.186 Example

```xml
<log-factory-impl>
  <diagnostic-context>ID</diagnostic-context>
  <default-level>INFO</default-level>
  <file>stdout</file>
</log-factory-impl>
```

B.187 log-orphaned-key-action

Range of values: N/A

Default value: N/A

Parent elements:
- persistence-configuration
- persistence-configuration-unit

B.187 Function

Specifies a plugin string (see "Plugin Configuration" in Kodo 4.2.0 Developers Guide for JPA/JDO) describing the `kodo.event.OrphanedKeyAction` to invoke when Kodo discovers an orphaned datastore key, in this case `kodo.event.LogOrphanedKeyAction`. In this case, Kodo logs a message for each orphaned key. For more information, see "Orphaned Keys" in the Kodo 4.2.0 Developers Guide for JPA/JDO.

B.187 Example

```xml
<log-orphaned-key-action>
  <channel>openjpa.Runtime</channel>
  <level>4</level>
</log-orphaned-key-action>
```

B.188 log4j-log-factory

Range of values: N/A

Default value: N/A

Parent elements:
- persistence-configuration
- persistence-configuration-unit
B.188.1 Function

Specifies to use Log4J for logging. In a standalone application, Log4J logging levels are controlled by a resource named `log4j.properties`, which should be available as a top-level resource (either at the top level of a jar file, or in the root of one of the CLASSPATH directories). When deploying to a web or EJB application server, Log4J configuration is often performed in a `log4j.xml` file instead of a properties file. For further details on configuring Log4J, please see the Log4J Manual at http://jakarta.apache.org/log4j/docs/manual.html. For more information, see "Log4J" in Kodo 4.2.0 Developers Guide for JPA/IDO.

B.188.2 Example

```xml
<log4j-log-factory/>
```

B.189 login-timeout

Range of values: Valid classname

Default value: Section B.178, "kodo-pooling-data-source": 10

Section B.258, "simple-driver-data-source": 0

Parent elements:

```
persistence-configuration
  persistence-configuration-unit
    kodo-pooling-data-source

persistence-configuration
  persistence-configuration-unit
    simple-driver-data-source
```

B.189.1 Function

Specifies the login timeout. For more information, see "Using the Kodo Data Source" in Kodo 4.2.0 Developers Guide for JPA/IDO.

B.189.2 Example

```xml
<login-timeout>0</login-timeout>
```

B.190 lrs-size

Range of values: query | last | unknown

Default value: query

Parent elements:

```
persistence-configuration
  persistence-configuration-unit
```

B-94 Programming Enterprise JavaBeans, Version 3.0, for Oracle WebLogic Server
B.190.1 Function

Specifies the size of results sets. This property is only used if you change the fetch batch size from its default of -1 so that Kodo uses the on-demand results loading. Valid values include:

- **query**—The first time you ask for the size of a query result, Kodo will perform a `SELECT COUNT(*)` query to determine the number of expected results. Note that depending on transaction status and settings, this can mean that the reported size is slightly different than the actual number of results available. This is the default.

- **last**—If you have chosen a scrollable result set type, this setting will use the `ResultSet.last` method to move to the last element in the result set and get its index. Unfortunately, some JDBC drivers will bring all results into memory in order to access the last one. Note that if you do not choose a scrollable result set type, then this will behave exactly like `unknown`. The default result set type is `forward-only`, so you must change the result set type in order for this property to have an effect.

- **unknown**—Kodo returns `Integer.MAX_VALUE` as the size for any query result that uses on-demand loading.

For more information, see "Large Result Sets" in *Kodo 4.2.0 Developers Guide for JPA/JDO*.

B.190.2 Example

```xml
<lrs-size>query</lrs-size>
```

B.191 lru-data-cache

Range of values: N/A

Default value: N/A

Parent elements:

- `persistence-configuration`
- `persistence-configuration-unit`
- `data-caches`

B.191.1 Function

Sets the least-recently-used (LRU) data caching option. For more information, see "Configuring the LRU Caching Option" in *Kodo 4.2.0 Developers Guide for JPA/JDO*.

B.191.2 Example

```xml
<data-caches>
  <lru-data-cache>
    <name>kodo.DataCache</name>
    <cache-size>1000</cache-size>
    <soft-reference-size>0</soft-reference-size>
    <eviction-schedule>15,45 15 * * 1</eviction-schedule>
  </lru-data-cache>
</data-caches>
```
B.192 manage-lru

Range of values: true | false
Default value: false

Parent elements:
- persistence-configuration
 - persistence-configuration-unit
- inverse-manager

B.192.1 Function
Flag that specifies whether large result set fields are included from management. For more information, see "Managed Inverses" in *Kodo 4.2.0 Developers Guide for JPA/JDO*.

B.192.2 Example

```xml
<manage-lrs>false</manage-lrs>
```

B.193 mapping

Range of values: String
Default value: N/A

Parent elements:
- persistence-configuration
 - persistence-configuration-unit
- persistence-configuration
 - persistence-configuration-unit
 - orm-file-mapping-factory

B.193.1 Function
When a child element of Section B.225, "persistence-configuration-unit," specifies the symbolic name of the object-to-datastore mapping to use. For more information, see "Mapping Metadata" (JPA) or "Mapping Metadata Placement" (JDO) in *Kodo 4.2.0 Developers Guide for JPA/JDO*.

When a child element of Section B.221, "orm-file-jdor-mapping-factory," specifies the logical name of these mappings. Mapping files are suffixed with logicalname.orm. If not specified, the kodo.Mapping configuration property is used. For more information, see "Mapping Factory" in *Kodo 4.2.0 Developers Guide for JPA/JDO*.

B.193.2 Example

```xml
<mapping>org/mag/Magazine-hsql.orm</mapping>
```

B.194 mapping-column

Range of values: String
Default value: MAPPING_DEF

Parent elements:
B.194 Function

Specifies the name of the column that holds the XML mapping. For more information, see "Mapping Factory" in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.194 Example

```xml
<mapping-column>MAPPING_DEF</mapping-column>
```

B.195 mapping-defaults-impl

Range of values: N/A
Default value: N/A
Parent elements:

```xml
  persistence-configuration
  persistence-configuration-unit
```

B.195 Function

Configures the mapping defaults if you set Section B.96, "default-mapping-defaults" to jdo. For a complete description of each of the values that you can specify, see "Mapping Defaults" in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.195 Example

```xml
<mapping-defaults-impl>
  <use-class-criteria>false</use-class-criteria>
  <base-class-strategy>ColumnPerLockGroupVersionStrategy</base-class-strategy>
  <version-strategy>version-number</version-strategy>
  <discriminator-column-name>test</discriminator-column-name>
  <subclass-strategy>vertical</subclass-strategy>
  <index-version>false</index-version>
  <index-logical-foreign-keys>true</index-logical-foreign-keys>
  <null-indicator-column-name>null</null-indicator-column-name>
  <foreign-key-delete-action></foreign-key-delete-action>
  <join-foreign-key-delete-action>1</join-foreign-key-delete-action>
  <discriminator-strategy>final</discriminator-strategy>
  <defer-constraints>false</defer-constraints>
  <field-strategies>none</field-strategies>
  <version-column-name>version</version-column-name>
  <data-store-id-column-name>ID</data-store-id-column-name>
  <index-discriminator>true</index-discriminator>
  <store-enum-ordinal>false</store-enum-ordinal>
  <order-lists>true</order-lists>
  <store-column-name>false</store-column-name>
  <add-null-indicator>false</add-null-indicator>
</mapping-defaults-impl>
```
B.196 mapping-file-deprecated-jdo-mapping-factory

Range of values: N/A
Default value: N/A
Parent elements:
 persistence-configuration
 persistence-configuration-unit

B.196.1 Function
A plugin string (see "Plugin Configuration" in Kodo 4.2.0 Developers Guide for JPA/JDO) describing the kodo.meta.MetaDataFactory to use to store and retrieve object-relational mapping information for your persistent classes. This setting is valid for JDO 1.0. For more information, see "Mapping Factory" in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.196.2 Example

<mapping-file-deprecated-jdo-mapping-factory>
 <use-schema-validation>true</use-schema-validation>
 <urls>t3://localhost:7001/metadata.jar</urls>
 <files>com/file1;com/file2</files>
 <classpath-scan>build</classpath-scan>
 <single-file>false</single-file>
 <types>classname1;classname2</types>
 <store-mode>1</store-mode>
 <strict></strict>
 <resources>com/aaa/package.jdo;com/bbb/package.jdo</resources>
 <scan-top-down>false</scan-top-down>
</mapping-file-deprecated-jdo-mapping-factory>

B.197 max-active

Range of values: Integer
Default value: 2
Parent elements:
 persistence-configuration
 persistence-configuration-unit
 tcp-remote-commit-provider

B.197.1 Function
Specifies the maximum allowed number of TCP sockets (channels) to open simultaneously between each peer in the cluster. For more information, see "TCP" in the Kodo 4.2.0 Developers Guide for JPA/JDO.

B.197.2 Example

<max-active>2</max-active>
B.198 max-idle

Range of values: Integer
Default value: 2
Parent elements:
- persistence-configuration
- persistence-configuration-unit
- tcp-remote-commit-provider

B.198.1 Function

Specifies the maximum allowed number of TCP sockets (channels) to open simultaneously between each peer in the cluster. For more information, see "TCP" in the *Kodo 4.2.0 Developers Guide for JPA/JDO*.

B.198.2 Example

```xml
<max-idle>2</max-idle>
```

B.199 max-size

Range of values: Integer
Default value: 2147483647
Parent elements:
- persistence-configuration
- persistence-configuration-unit

B.199.1 Function

Defines the maximum size of the concurrent hash map used to associate query strings and their parsed form. For more information, see "Query Compilation Cache" in the *Kodo 4.2.0 Developers Guide for JPA/JDO*.

B.199.2 Example

```xml
<max-size>2147483647</max-size>
```

B.200 maximize-batch-size

Range of values: true | false
Default value: true
Parent elements:
- persistence-configuration
- persistence-configuration-unit
- constraint-update-manager
- batching-operation-order-update-manager
B.200.1 Function
Flag that specifies whether to sort statements in order to optimize batch size when statement batching is on. For more information, see "kodo.jdbc.UpdateManager" in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.200.2 Example

<maximize-batch-size>true</maximize-batch-size>

B.201 MBeanServerStrategy

Range of values: any-create | create | agentID:<agentID>
Default value: any-create
Parent elements:
jmx
 local-jmx

B.201.1 Function
If JMX-based management is enabled, Kodo needs to locate an existing MBeanServer or create a new one, based on one of the following options:

- any-create—Locate an existing MBeanServer. If multiple are found, use the first one. If none are found, create a new server. This is the default.
- create—Create a new server. Do not attempt to find an existing MBeanServer.
- agentId:<agentID>—Locate an existing MBeanServer with the given agent id. If not found, create a new server.

For more information, see "Optional Parameters in Management Group" in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.201.2 Example

<MBeanServerStrategy>any-create</MBeanServerStrategy>

B.202 multithreaded

Range of values: true | false
Default value: false
Parent elements:
persistence-configuration
 persistence-configuration-unit

kodo-broker
B.202.1 Function
Flag that specifies whether persistent instances and Kodo components are accessed by multiple threads at once. For more information, see "kodo.Multithreaded" in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.202.2 Example

 <multithreaded>false</multithreaded>

B.203 mx4j1-jmx

Range of values: N/A
Default value: N/A
Parent elements:

 jmx

B.203.1 Function
Enable remote management via MX4J v.1.x implementations (supporting versions of the JMX specification prior to 1.2). Supports optional parameters in the Management Group and the Remote Group, as described in "Optional Parameters in Management Group" and "Optional Parameters in Remote Group" in the Kodo 4.2.0 Developers Guide for JPA/JDO, respectively.

B.203.2 Example

 <mx4j1-jmx>
 <MBeanServerStrategy>any-create</MBeanServerStrategy>
 <EnableLogMBean>true</EnableLogMBean>
 <EnableRuntimeMBean>true</EnableRuntimeMBean>
 <Host>localhost</Host>
 <Port>1099</Port>
 <JNDIName>jrmp</JNDIName>
 </mx4j1-jmx>

B.204 mysql-dictionary

Range of values: N/A
Default value: N/A
Parent elements:

 persistence-configuration
 persistence-configuration-unit

B.204.1 Function
Configuration values for the MySQL Dictionary persistence plugin. For a complete description of each of the values that you can specify, see "MySQL Dictionary Configuration" in the Oracle WebLogic Server Administration Console Help.
B.204.2 Example

The `mysql-dictionary` element shares the same subelements as Section B.5, "access-dictionary," plus the following subelements (defaults shown):

```xml
<mysql-dictionary>
  ...
  <table-type>innodb</table-type>
  <use-clobs>true</use-clobs>
  <driver-deserializes-blobs>true</driver-deserializes-blobs>
</mysql-dictionary>
```

B.205 name

Range of values: N/A

Default value: N/A

Parent elements:
- persistence-configuration
 - persistence-configuration-unit
 - data-cache
 - persistence-configuration-unit
 - db-dictionary
 - persistence-configuration-unit
 - jms-remote-commit-provider
 - persistence-configuration-unit
 - property-type
 - persistence-configuration-unit
 - query-cache
 - persistence-configuration-unit
 - single-jvm-remote-commit-provider
 - persistence-configuration-unit
 - tcp-remote-commit-provider
 - persistence-configuration-unit
 - cluster-remote-commit-provider

B.205.1 Function

Specifies the name of the corresponding element.

B.206 name-column

Range of values: String
Default value: Name

Parent elements:

- `persistence-configuration`
- `persistence-configuration-unit`
 - `table-deprecated-jdo-mapping-factory`

- `persistence-configuration`
- `persistence-configuration-unit`
 - `table-jdor-mapping-factory`

B.206.1 Function

Name of the column that holds the mapping name. For class mappings, the mapping name is the class name. For named queries and sequences, it is the sequence or query name. For more information, see “Mapping Factory” in *Kodo 4.2.0 Developers Guide for JPA/JDO*.

B.206.2 Example

```xml
<name-column>NAME</name-column>
```

B.207 NamingImpl

Range of values: Valid classname

Default value: N/A

Parent elements:

- `jmx`
 - `jmx2-jmx`

B.207.1 Function

Classname of the naming service implementation to start in order to register the RMI connector with a JNDI name. Defaults to `mx4j.tools.naming.NamingService`, which is appropriate for MX4J v. 2.x. If set to the empty string, no naming service will be started. This setting is appropriate if a naming service is already running, or if a non-RMI connector is used. For more information, see "Optional Parameters in JSR 160 Group" in *Kodo 4.2.0 Developers Guide for JPA/JDO*.

B.207.2 Example

```xml
<NamingImpl>mx4j.tools.naming.NamingService</NamingImpl>
```

B.208 native-jdbc-seq

Range of values: N/A

Default value: N/A

Parent elements:

- `persistence-configuration`
 - `persistence-configuration-unit`
B.208.1 Function

Specifies a plugin string (see "Plugin Configuration" in *Kodo 4.2.0 Developers Guide for JPA/JDO*) describing the `kodo.kernel.Seq` interface to use to create your own custom generators, in this case `kodo.jdbc.kernel.NativeJDBCSeq`.

Many databases have a concept of *native sequences*—a built-in mechanism for obtaining incrementing numbers. For example, in Oracle, you can create a database sequence with a statement like `CREATE SEQUENCE MYSEQUENCE`. Sequence values can then be atomically obtained and incremented with the statement `SELECT MYSEQUENCE.NEXTVAL FROM DUAL`. Kodo provides support for this common mechanism of sequence generation with the `NativeJDBCSeq`.

For more information, see "Generators" in the *Kodo 4.2.0 Developers Guide for JPA/JDO*.

B.208.2 Example

```xml
<native-jdbc-seq>
  <type>0</type>
  <allocate>50</allocate>
  <table-name>DUAL</table-name>
  <initial-value>1</initial-value>
  <sequence>OPENJPA_SEQUENCE</sequence>
  <sequence-name>OPENJPA_SEQUENCE</sequence-name>
  <format>format</format>
  <increment>1</increment>
</native-jdbc-seq>
```

B.209 none-jmx

- **Range of values**: N/A
- **Default value**: N/A
- **Parent elements**:
 - jmx

B.209.1 Function

No management is turned on. This is the default. For more information, see "Configuration" in *Kodo 4.2.0 Developers Guide for JPA/JDO*.

B.209.2 Example

```xml
<none-jmx/>
```

B.210 none-lock-manager

- **Range of values**: N/A
- **Default value**: N/A
- **Parent elements**:
 - `persistence-configuration`
 - `persistence-configuration-unit`

B-104 Programming Enterprise JavaBeans, Version 3.0, for Oracle WebLogic Server
B.210.1 Function
Specifies the kodo.kernel.NoneLockManager which does not perform any locking. For more information, see “Lock Manager” in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.210.2 Example
<none-lock-manager/>

B.211 none-log-factory

Range of values: N/A
Default value: N/A
Parent elements:
 persistence-configuration
 persistence-configuration-unit

B.211.1 Function
Disable logging. For more information, see “Disable Logging” in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.211.2 Example
<none-log-factory/>

B.212 none-orphaned-key-action

Range of values: N/A
Default value: N/A
Parent elements:
 persistence-configuration
 persistence-configuration-unit

B.212.1 Function
Specifies a plugin string (see "Plugin Configuration" in Kodo 4.2.0 Developers Guide for JPA/JDO) describing the kodo.event.OrphanedKeyAction to invoke when Kodo discovers an orphaned datastore key, in this case kodo.event.NoneOrphanedKeyAction. In this case, Kodo ignores orphaned keys. For more information, see "Orphaned Keys" in the Kodo 4.2.0 Developers Guide for JPA/JDO.

B.212.2 Example
<none-orphaned-key-action/>
B.213 none-profiling

Range of values: N/A
Default value: N/A
Parent elements:
 persistence-configuration
 persistence-configuration-unit

profiling

B.213.1 Function

Turns off profiling of your code. For more information, see "Profiling" in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.213.2 Example

<profiling>
 <none-profiling/>
</profiling>

B.214 nontransactional-read

Range of values: true | false
Default value:
 persistence-configuration: false
 kodo-broker: true
Parent elements:
 persistence-configuration
 persistence-configuration-unit

profiling

B.214.1 Function

Flag that specifies whether the Kodo runtime allows you to read data outside of a transaction. For more information, see "kodo.NontransactionalRead" in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.214.2 Example

<nontransactional-read>true</nontransactional-read>

B.215 nontransactional-write

Range of values: true | false
Default value: false
Parent elements:
 persistence-configuration
 persistence-configuration-unit
 persistence-configuration
 persistence-configuration-unit
 kodo-broker

B.215.1 Function
Flag that specifies whether the you can modify persistent objects and perform persistence operations outside of a transaction. Changes will take effect in the next transaction. For more information, see "kodo.NontransactionalWrite" in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.215.2 Example
 <nontransactional-write>false</nontransactional-write>

B.216 num-broadcast-threads

Range of values: N/A
Default value: N/A
Parent elements:
 persistence-configuration
 persistence-configuration-unit
 tcp-remote-commit-provider

B.216.1 Function
 Specifies the number of threads to create for the purpose of transmitting events to peers. You should increase this value as the number of concurrent transactions increases. The maximum number of concurrent transactions is a function of the size of the connection pool. See the MaxActive property of kodo.ConnectionFactoryProperties in "Using the Kodo Data Source" in Kodo 4.2.0 Developers Guide for JPA/JDO. Setting a value of 0 will result in behavior where the thread invoking commit will perform the broadcast directly. For more information, see "TCP" in the Kodo 4.2.0 Developers Guide for JPA/JDO.

B.216.2 Example
 <num-broadcast-threads>2</num-broadcast-threads>

B.217 operation-order-update-manager

Range of values: N/A
Default value: N/A
Parent elements:
 persistence-configuration
 persistence-configuration-unit
B.217.1 Function
Defines an update manager that writes SQL in object-level operation order. For more information, see "kodo.jdbc.UpdateManager" in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.217.2 Example
<operation-order-update-manager/>

B.218 optimistic

- **Range of values:** true | false
- **Default value:** true
- **Parent elements:**
 - persistence-configuration
 - persistence-configuration-unit

B.218.1 Function
Flag that specifies whether the datastore transactional mode is optimistic. For more information, see "kodo.Optimistic" in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.218.2 Example
<optimistic>true</optimistic>

B.219 oracle-dictionary

- **Range of values:** N/A
- **Default value:** N/A
- **Parent elements:**
 - persistence-configuration
 - persistence-configuration-unit

B.219.1 Function
Configuration values for the Oracle Dictionary persistence plugin. For a complete description of each of the values that you can specify, see "Oracle Dictionary Configuration" in the Oracle WebLogic Server Administration Console Help.

B.219.2 Example
The oracle-dictionary element shares the same subelements as Section B.5, "access-dictionary," plus the following subelements (defaults shown):

<oracle-dictionary>
 ...
</oracle-dictionary>
B.220 oracle-savepoint-manager

Range of values: N/A

Default value: N/A

Parent elements:

persistence-configuration
 persistence-configuration-unit

B.220.1 Function

Specifies a plugin string (see "Plugin Configuration" in Kodo 4.2.0 Developers Guide for JPA/JDO) describing the `kodo.kernel.SavepointManager` to use for managing transaction savepoints, in this case the default which is `kodo.jdbc.sql.OracleSavepointManager`. This plugin operates similarly to Section B.166, "jdbc3-savepoint-manager," but it uses Oracle-specific calls. This plugin requires using the Oracle JDBC driver and database, versions 9.2 or higher. This plugin implements savepoints by issuing a flush to the database. For more information, see "Savepoints" in the Kodo 4.2.0 Developers Guide for JPA/JDO.

B.220.2 Example

```xml
<oracle-savepoint-manager/>
```

B.221 orm-file-jdor-mappingFactory

Range of values: N/A

Default value: N/A

Parent elements:

persistence-configuration
 persistence-configuration-unit

B.221.1 Function

A plugin string (see "Plugin Configuration" in Kodo 4.2.0 Developers Guide for JPA/JDO) describing the `kodo.jdo.jdbc.ORMFileJDORMappingFactory` that stores mapping metadata in .orm files. This setting is valid for JDO 1.0. For more information, see "Mapping Factory" in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.221.2 Example

```xml
<orm-file-jdor-mappingFactory>
  <use-schema-validation>true</use-schema-validation>
  <mapping>mapping</mapping>
  <urls>t3://localhost:7001/metadata.jar</urls>
  <files>com/file1;com/file2</files>
  <classpath-scan>build</classpath-scan>
  <types>classname1;classname2</types>
</orm-file-jdor-mappingFactory>
```
<store-mode>true</store-mode>
<strict>false</strict>
<resources>com/aaa/package.jdo;com/bbb/package.jdo</resources>
<scan-top-down>false</scan-top-down>
</orm-file-jdor-mapping-factory>

B.222 order-dirty-objects

Range of values: true | false
Default value: false
Parent elements:
- persistence-configuration
 - persistence-configuration-unit
 - kodo-broker

B.222.1 Function
Flag that specifies whether Kodo maintains the order that changes were made to dirty objects when writing the changes back to the database.

B.222.2 Example

```xml
<order-dirty-objects>false</order-dirty-objects>
```

B.223 Password

Range of values: N/A
Default value: N/A
Parent elements:
- jmx
 - wls81-jmx

B.223.1 Function
Password that Kodo should use to access the WebLogic MBeanServer. This must be set. For more information, see "Optional Parameters in WebLogic 8.1 Group" in the Kodo 4.2.0 Developers Guide for JPA/JDO.

B.223.2 Example

```xml
<Password>admin</Password>
```

B.224 persistence-configuration

Range of values: N/A
Default value: N/A
Parent elements: N/A
B.224.1 Function

Root element of the persistence deployment descriptor.

B.225 persistence-configuration-unit

Range of values: N/A
Default value: N/A
Parent elements:
persistence-configuration

B.225.1 Function

Contains the deployment information for a persistence unit that is available in WebLogic Server.

B.226 pessimistic-lock-manager

Range of values: N/A
Default value: N/A
Parent elements:
persistence-configuration
 persistence-configuration-unit

B.226.1 Function

Specifies the kodo.jdbc.kernel.PessimisticLockManager, which uses SELECT FOR UPDATE statements (or the database’s equivalent) to lock the database rows corresponding to locked objects. This lock manager does not distinguish between read locks and write locks; all locks are write locks. For more information, see “Lock Manager” in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.226.2 Example

<pessimistic-lock-manager>
 <version-check-on-read-lock>false</version-check-on-read-lock>
 <version-update-on-write-lock>false</version-update-on-write-lock>
</pessimistic-lock-manager>

B.227 persistence-mapping-defaults

Range of values: N/A
Default value: N/A
Parent elements:
persistence-configuration
 persistence-configuration-unit
B.227.1 Function

Configures the mapping defaults if you set Section B.96, "default-mapping-defaults" to jpa. For a complete description of each of the values that you can specify, see "Mapping Defaults" in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.227.2 Example

The persistence-mapping-defaults element shares the same subelements as Section B.195, "mapping-defaults-impl."

B.228 populate-data-cache

Range of values: true | false
Default value: true
Parent elements: persistence-configuration, persistence-configuration-unit, kodo-broker

B.228.1 Function

Flag that specifies whether to populate the data cache. If your transaction will visit objects that you know are very unlikely to be accessed by other transactions, for example an exhaustive report run only once a month, you can turn off population of the datacache so that the transaction does not fill the entire data cache with objects that will not be accessed again.

B.228.2 Example

```xml
<populate-data-cache>true</populate-data-cache>
```

B.229 Port

Range of values: N/A
Default value: N/A
Parent elements: jmx, mx4j1-jmx

B.229.1 Function

Port on which the RMI registry naming service listens. Defaults to 1099. For more information, see "Optional Parameters in Remote Group" in the Kodo 4.2.0 Developers Guide for JPA/JDO.

B.229.2 Example

```xml
<Port>1099</Port>
```
B.230 port

Range of values: Valid port
Default value: See below (depends on parent element)

Parent elements:
- persistence-configuration
 - persistence-configuration-unit
 - tcp-transport
- persistence-configuration
 - persistence-configuration-unit
 - tcp-remote-commit-provider

B.230.1 Function

Specifies the port on which the server will listen. This setting is used by clients, not by the server.

If the parent element is Section B.285, "tcp-transport," the element defaults to 5637. For more information, see "Standalone Persistence Server" in *Kodo 4.2.0 Developers Guide for JPA/JDO*.

If the parent element is Section B.284, "tcp-remote-commit-provider," the element defaults to 5636. For more information, see "TCP" in *Kodo 4.2.0 Developers Guide for JPA/JDO*.

B.230.2 Example

```
<port>5637</port>
```

B.231 postgres-dictionary

Range of values: N/A
Default value: N/A

Parent elements:
- persistence-configuration
 - persistence-configuration-unit

B.231.1 Function

Configuration values for the Postgres Dictionary persistence plugin. For a complete description of each of the values that you can specify, see "Postgres Dictionary Configuration" in the *Oracle WebLogic Server Administration Console Help*.

B.231.2 Example

The `postgres-dictionary` element shares the same subelements as Section B.5, "access-dictionary," plus the following subelements (defaults shown):

```
<postgres-dictionary>
  ...
  <all-sequences-sql>SELECT NULL AS SEQUENCE_SCHEMA, relname AS SEQUENCE_NAME
  FROM pg_class WHERE relkind='S'</all-sequences-sql>
  <named-sequences-from-all-schemas-sql>SELECT NULL AS SEQUENCE_SCHEMA, relname
```
AS SEQUENCE_NAME FROM pg_class WHERE relkind='S' AND relname = ?
</named-sequences-from-all-schemas-sql>
<all-sequences-from-one-schema-sql>SELECT NULL AS SEQUENCE_SCHEMA, relname AS SEQUENCE_NAME FROM pg_class, pg_namespace WHERE relkind='S' AND pg_class.relnamespace = pg_namespace.oid AND nspname = ?</all-sequences-from-one-schema-sql>
<named-sequences-from-one-schema-sql>SELECT NULL AS SEQUENCE_SCHEMA, relname AS SEQUENCE_NAME FROM pg_class, pg_namespace WHERE relkind='S' AND pg_class.relnamespace = ?</named-sequences-from-one-schema-sql>
</supports-set-fetch-size>true</supports-set-fetch-size>
</postgres-dictionary>

B.232 primary-key-column

Range of values: String
Default value: ID
Parent elements:
persistence-configuration
 persistence-configuration-unit
 class-table-jdbc-seq
 persistence-configuration-unit
 table-jdbc-seq
 persistence-configuration-unit
 table-schema-factory
 persistence-configuration-unit
 value-table-jdbc-seq

B.232.1 Function
Specifies the name of the table’s numeric primary key column. For more information, see "Generators" or "Schema Factory" in the Kodo 4.2.0 Developers Guide for JPA/JDO.

B.232.2 Example

<primary-key-column>ID</primary-key-column>

B.233 primary-key-value

Range of values: String
Default value: DEFAULT
Parent elements:
persistence-configuration
 persistence-configuration-unit
 value-table-jdbc-seq
B.233.1 Function
Specifies the primary key that is used by this instance. For more information, see "Generators" in the Kodo 4.2.0 Developers Guide for JPA/JDO.

B.233.2 Example
<primary-key-value>DEFAULT</primary-key-value>

B.234 primary-keys
Range of values: true | false
Default value: false
Parent elements:
 - persistence-configuration
 - persistence-configuration-unit
 - lazy-schema-factory

B.234.1 Function
Flag that specifies whether to read automatically primary key information during schema validation. For more information, see "Schema Factory" in the Kodo 4.2.0 Developers Guide for JPA/JDO.

B.234.2 Example
<primary-keys>false</primary-keys>

B.235 profiling
Range of values: N/A
Default value: N/A
Parent elements: N/A

B.235.1 Function
Enables you to configure profiling of your application code. For more information, see "Profiling" in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.235.2 Example
<profiling>
 <export-profiling>
 <interval-millis>-1</interval-millis>
 <base-name>name</base-name>
 </export-profiling>
</profiling>
<profiling>
 <gui-profiling/>
</profiling>
<profiling>
 <local-profiling/>
</profiling>
<profiling>
 <none-profiling/>
</profiling>

B.236 profiling-proxy-manager

Range of values: N/A
Default value: N/A
Parent elements:
 persistence-configuration
 persistence-configuration-unit

B.236.1 Function

Configures the profiling proxy manager. For more information, see "Custom Proxies" in the Kodo 4.2.0 Developers Guide for JPA/JDO.

B.236.2 Example

<profiling-proxy-manager>
 <assert-allowed-type>false</assert-allowed-type>
 <track-changes>true</track-changes>
</profiling-proxy-manager>

B.237 properties

Range of values: N/A
Default value: N/A
Parent elements:
 persistence-configuration
 persistence-configuration-unit
 aggregate-listener
 custom-aggregate-listener
 persistence-configuration-unit
 custom-broker-factory
 persistence-configuration-unit
 custom-broker-impl
 custom-class-resolver
 custom-compatibility
 custom-connection-decorator
persistence-configuration
persistence-configuration-unit
custom-data-cache

persistence-configuration
persistence-configuration-unit
custom-dictionary

persistence-configuration
persistence-configuration-unit
custom-driver-data-source

persistence-configuration
persistence-configuration-unit
custom-filter-listener

persistence-configuration
persistence-configuration-unit
custom-jdbc-listener

persistence-configuration
persistence-configuration-unit
custom-lock-manager

persistence-configuration
persistence-configuration-unit
custom-logType

persistence-configuration
persistence-configuration-unit
custom-mapping-defaults

persistence-configuration
persistence-configuration-unit
custom-meta-data-repository

persistence-configuration
persistence-configuration-unit
custom-orphaned-key-action

persistence-configuration
persistence-configuration-unit
custom-persistence-server

persistence-configuration
persistence-configuration-unit
custom-proxy-manager

persistence-configuration
persistence-configuration-unit
custom-query-cache

persistence-configuration
persistence-configuration-unit
custom-query-compilation

persistence-configuration
persistence-configuration-unit
custom-remote-commit-provider
B.237.1 Function

Specifies one or more Section B.238, "property" elements.

B.238 property

Range of values: N/A

Default value: N/A

Parent elements:

persistence-configuration
 persistence-configuration-unit
 properties

B.238.1 Function

Enables you to specify the name and value of a property.

B.238.2 Example

<property>
 <name>timeout</name>
 <value>1000</value>
</property>

B.239 proxy-manger-impl

Range of values: N/A

Default value: N/A

Parent elements:

persistence-configuration
 persistence-configuration-unit

B.239.1 Function

Configures the default proxy manager. For more information, see "Custom Proxies" in the Kodo 4.2.0 Developers Guide for JPA/JDO.
B.239.2 Example

```xml
<proxy-manager-impl>
  <assert-allowed-type>false</assert-allowed-type>
  <track-changes>true</track-changes>
</proxy-manager-impl>
```

B.240 query-caches

Range of values: N/A

Default value: N/A

Parent elements:

- persistence-configuration
 - persistence-configuration-unit

B.240.1 Function

A plugin string (see "Plugin Configuration" in *Kodo 4.2.0 Developers Guide for JPA/JDO*) describing the kodo.datacache.QueryCache implementation to use for caching of queries loaded from the data store. For more information, see "Query Cache" in *Kodo 4.2.0 Developers Guide for JPA/JDO*.

B.240.2 Example

```xml
<query-caches>
  <default-query-cache>...</default-query-cache>
</query-caches>
<query-caches>
  <kodo-concurrent-query-cache>...</kodo-concurrent-query-cache>
</query-caches>
<query-caches>
  <gem-fire-query-cache>...</gem-fire-query-cache>
</query-caches>
<query-caches>
  <lru-query-cache>...</lru-query-cache>
</query-caches>
<query-caches>
  <tangosol-query-cache>...</tangosol-query-cache>
</query-caches>
<query-caches>
  <disabled-query-cache>...</disabled-query-cache>
</query-caches>
<query-caches>
  <custom-query-cache>...</custom-query-cache>
</query-caches>
```

B.241 quoted-numbers-in-queries

Range of values: true | false

Default value: false

Parent elements:

- persistence-configuration
 - persistence-configuration-unit
read-lock-level

B.241.1 Function
Flag that specifies whether to interpret quoted numbers in query strings as numbers, as opposed to strings. Set to `true` to mimic the behavior of Kodo 3.1 and earlier and treat quoted numbers as numbers. For more information, see "Compatibility Configuration" in *Kodo 4.2.0 Developers Guide for JPA/JDO*.

B.241.2 Example

```xml
<quote-numbers-in-queries>false</quote-numbers-in-queries>
```

B.242 read-lock-level

Range of values: none | read | write | numeric values for lock manager-specific lock levels

Default value: read

Parent elements:
- persistence-configuration
- persistence-configuration-unit

B.242.1 Function
Sets the default read level at which to lock objects retrieved during a non-optimistic transaction. Valid values include:

- none—No lock level.
- read—Read lock level.
- write—Write lock level.
- Numeric values for lock-manager specific lock levels.

Note: For the default JDBC lock manager, the read and write lock levels are equivalent.

For more information, see "Object Locking" in the *Kodo 4.2.0 Developers Guide for JPA/JDO*.

B.242.2 Example

```xml
<read-lock-level>read</read-lock-level>
```

B.243 recover-action

Range of values: none | clear

Default value: none

Parent elements:
- persistence-configuration
- persistence-configuration-unit
cluster-remote-commit-provider

B.243.1 Function
Specifies the action to take during recovery. Valid values include:

- none—No action is performed.
- clear—Clears the notifications.

For more information, see "Remote Commit Provider Configuration" in the *Kodo 4.2.0 Developers Guide for JPA/JDO*.

B.243.2 Example

```xml
<recover-action>none</recover-action>
```

B.244 recovery-time-millis

Range of values: Integer
Default value: 15000
Parent elements:

- persistence-configuration
 - persistence-configuration-unit
 - tcp-remote-commit-provider

B.244.1 Function
Specifies the amount of time to wait in milliseconds before attempting to reconnect to a peer of the cluster when connectivity to the peer is lost. For more information, see "TCP" in the *Kodo 4.2.0 Developers Guide for JPA/JDO*.

B.244.2 Example

```xml
<recovery-time-millis>15000</recovery-time-millis>
```

B.245 resources

Range of values: Valid resource path
Default value: N/A
Parent elements:

- persistence-configuration
 - persistence-configuration-unit
 - tangosol-data-cache

B.245.1 Function
Specifies a semicolon-separated list of resource paths to metadata files or jar archives. Each jar archive will be scanned for annotated JPA entities or JDO metadata files based on your metadata factory. For more information, see "Metadata Factory" in *Kodo 4.2.0 Developers Guide for JPA/JDO*.
B.245.2 Example

```xml
<resources>com/aaa/package.jdo;com/bbb/package.jdo</resources>
```

B.246 restore-state

Range of values: true

- **persistence-configuration-unit:** all | immutable | none | true | false
- **kodo-broker:** 1 | 2 | 3 | 4 | 5

Default value: none

Parent elements:

- persistence-configuration
 - persistence-configuration-unit

- persistence-configuration
 - persistence-configuration-unit
 - kodo-broker

B.246.1 Function

Flag that specifies whether to restore managed fields to their pre-transaction values when a rollback occurs.

Valid values include:

- **all** (1)—Restores all managed values.
- **none** (2)—Do not roll back state. The object becomes hollow and will reload its state the next time it is accessed.
- **immutable** (3)—Restores immutable values (primitives, primitive wrappers, strings) and clears mutable values so that they are reloaded on next access.
- **true** (4)—Same as all.
- **false** (5)—Same as none.

For more information, see "Restoring State" in *Kodo 4.2.0 Developers Guide for JPA/JDO*.

B.246.2 Example

```xml
<restore-state>none</restore-state>
```

B.247 result-set-type

Range of values: forward-only | scroll-sensitive | scroll-insensitive

Default value: forward-only

Parent elements:

- persistence-configuration
 - persistence-configuration-unit
B.247.1 Function
Specifies the JDBC result set type to use when fetching return lists. This setting can also be varied at runtime.

Valid values include:

- forward-only—Result set whose cursor may move only forward. The result set is not updatable.
- scroll-sensitive—Scrollable result set that is sensitive to changes made by others. The result set is updatable.
- scroll-insensitive—Scrollable result set that is not sensitive to changes made by others. The result set is updatable.

For more information, see "Large Result Sets" in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.247.2 Example

```xml
<result-set-type>forward-only</result-set-type>
```

B.248 retain-state

Range of values: true | false

Default value: See below (depends on parent)

Parent elements:

- persistence-configuration
- persistence-configuration-unit

- persistence-configuration
- persistence-configuration-unit
 - kodo-broker

B.248.1 Function
Flag that specifies whether persistent fields retain their values on transaction commit. This element defaults to true when a child element of the Section B.225, "persistence-configuration-unit" and false when a child element of the Section B.172, "kodo-broker" element.

For more information, see "kodo.RetainState" in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.248.2 Example

```xml
<retain-state>true</retain-state>
```

B.249 retry-class-registration

Range of values: true | false

Default value: false

Parent elements:
B.249.1 Function
Flag that specifies whether to log a warning and defer registration instead of throwing an exception when a persistent class cannot be fully processed. This element should only be used in complex classloader situations where security is preventing Kodo from reading registered classes. Setting this to true unnecessarily may obscure more serious problems. For more information, see "kodo.RetryClassRegistration" in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.249.2 Example

```xml
<retry-class-registration>false</retry-class-registration>
```

B.250 scan-top-down

Range of values: true | false
Default value: false
Parent elements:
- persistence-configuration
 - persistence-configuration-unit
 - deprecated-jdo-meta-data-factory
- persistence-configuration
 - persistence-configuration-unit
 - extension-deprecated-jdo-mapping-factory
- persistence-configuration
 - persistence-configuration-unit
 - jdo-meta-data-factory
- persistence-configuration
 - persistence-configuration-unit
 - jdor-mapping-factory
- persistence-configuration
 - persistence-configuration-unit
 - mapping-file-deprecated-jdo-mapping-factory
- persistence-configuration
 - persistence-configuration-unit
 - orm-file-jdor-mapping-factory
- persistence-configuration
 - persistence-configuration-unit
 - table-deprecated-jdo-mapping-factory

B.250.1 Function
Flag that specifies whether to search for metadata files top-down in the package tree. Kodo defaults to bottom-up scanning. For example, when scanning metadata for class C, Kodo looks first for C.jdo, then package.jdo in C's package, then package.jdo...
in the parent package, and so on to the package root. For more information, see "Metadata Factory" in *Kodo 4.2.0 Developers Guide for JPA/JDO*.

B.250.2 Example

```xml
<scan-top-down>false</scan-top-down>
```

B.251 schema

- **Range of values**: String
- **Default value**: N/A
- **Parent elements**:
 - `persistence-configuration`
 - `persistence-configuration-unit`

B.251.1 Function

 Speifies the default schema name to prepend to unqualified table names. In addition, specifies the schema in which Kodo creates new tables. For more information, see "Default Schema" in the *Kodo 4.2.0 Developers Guide for JPA/JDO*.

B.251.2 Example

```xml
<schema>SCHEMA</schema>
```

B.252 schema-column

- **Range of values**: String
- **Default value**: `SCHEMA_DEF`
- **Parent elements**:
 - `persistence-configuration`
 - `persistence-configuration-unit`
 - `table-schema-factory`

B.252.1 Function

Specifies the name of the table's string column for holding the schema definition as an XML string. For more information, see "Schema Factory" in the *Kodo 4.2.0 Developers Guide for JPA/JDO*.

B.252.2 Example

```xml
<schema-column>SCHEMA_DEF</schema-column>
```

B.253 schemas

- **Range of values**: N/A
- **Default value**: N/A
- **Parent elements**:
B.253.1 Function
Specifies a comma-separated list of the schemas and/or tables used for your persistent data. For more information, see “Schemas List” in the Kodo 4.2.0 Developers Guide for JPA/JDO.

B.253.2 Example
<schemas>BUSOBJS,GENERALADDRESS,SYSTEM_INFO</schemas>

B.254 sequence
Range of values: N/A
Default value: OPENJPA_SEQUENCE
Parent elements:
 persistence-configuration
 persistence-configuration-unit
 native-jdbc-seq

B.254.1 Function
Specifies the name of the database sequence. For more information, see “Generators” in the Kodo 4.2.0 Developers Guide for JPA/JDO.

B.254.2 Example
<sequence>OPENJPA_SEQUENCE</sequence>

B.255 sequence-column
Range of values: String
Default value: SEQUENCE_VALUE
Parent elements:
 persistence-configuration
 persistence-configuration-unit
 class-table-jdbc-seq
 persistence-configuration
 persistence-configuration-unit
 table-jdbc-seq
 persistence-configuration
 persistence-configuration-unit
 value-table-jdbc-seq

B.255.1 Function
Specifies the name of the column that holds the current sequence value. For more information, see “Generators” in the Kodo 4.2.0 Developers Guide for JPA/JDO.
B.255.2 Example

<sequence-column>SEQUENCE_VALUE</sequence-column>

B.256 sequence-name

Range of values: String
Default value: OPENJPA_SEQUENCE
Parent elements:
 persistence-configuration
 persistence-configuration-unit
 native-jdbc-seq

B.256.1 Function

Specifies the name of the database sequence. For more information, see "Generators" in the Kodo 4.2.0 Developers Guide for JPA/JDO.

B.256.2 Example

<sequence-name>OPENJPA_SEQUENCE</sequence-name>

B.257 ServiceURL

Range of values: Valid service URL
Default value: service:jmx:rmi://localhost/jndi/jmxservice
Parent elements:
 jmx
 jmx2-jmx

B.257.1 Function

JMX service URL name under which to register the JMX Connector Server. This value defaults to service:jmx:rmi://localhost/jndi/jmxservice, indicating that the RMI connector will be used and registered under the JNDI name jmxservice. For more information, see "Optional Parameters in JSR 160 Group" in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.257.2 Example

<ServiceURL>service:jmx:rmi://localhost/jndi/jmxservice</ServiceURL>

B.258 simple-driver-data-source

Range of values: N/A
Default value: N/A
Parent elements:
 persistence-configuration
 persistence-configuration-unit
B.258.1 Function

Configures the Kodo datasource implementation. For more information, see "Using the Kodo DataSource" in *Kodo 4.2.0 Developers Guide for JPA/JDO*.

B.258.2 Example

```xml
<simple-driver-data-source>
  <connection-user-name>user</connection-user-name>
  <login-timeout>10</login-timeout>
  <connection-password>password</connection-password>
  <connection-url>jdbc:hsqldb:db-hypersonic</connection-url>
  <connection-driver-name>org.hsqldb.jdbcDrier</connection-driver-name>
</simple-driver-data-source>
```

B.259 single-file

Range of values: true | false
Default value: false
Parent elements:
 - persistence-configuration
 - persistence-configuration-unit
 - mapping-file-deprecated-jdo-mapping-factory

B.259.1 Function

Flag specifying whether or not to use a single file.

B.259.2 Example

```xml
<single-file>false</single-file>
```

B.260 single-jvm-exclusive-lock-manager

Range of values: N/A
Default value: N/A
Parent elements:
 - persistence-configuration
 - persistence-configuration-unit

B.260.1 Function

Specifies the `kodo.kernel.SingleJVMExclusiveLockManager`. This lock manager uses in-memory mutexes to obtain exclusive locks on object ids. It does not perform any database-level locking. Also, it does not distinguish between read and write locks; all locks are write locks. For more information, see "Lock Manager" in *Kodo 4.2.0 Developers Guide for JPA/JDO*.

B.260.2 Example

```xml
<single-jvm-exclusive-lock-manager>
  <version-check-on-read-lock>false</version-check-on-read-lock>
</single-jvm-exclusive-lock-manager>
```
<version-check-on-write-lock>false</version-check-on-write-lock>
</single-jvm-exclusive-lock-manager>

B.261 single-jvm-remote-commit-provider

Range of values: N/A
Default value: N/A
Parent elements:
- persistence-configuration
- persistence-configuration-unit

B.261.1 Function

Configures Kodo to share commit notifications among persistenceManagerFactories in the same JVM. For more information, see "Remote Commit Provider Configuration" in the *Kodo 4.2.0 Developers Guide for JPA/JDO*.

B.261.2 Example

```
<single-jvm-remote-commit-provider>
  <name>kodo.RemoteCommitProvider</name>
</single-jvm-remote-commit-provider>
```

B.262 soft-reference-size

Range of values: Integer
Default value: -1
Parent elements:
- persistence-configuration
- persistence-configuration-unit
- kodo-concurrent-data-cache
- kodo-concurrent-query-cache
- lru-data-cache
- lru-query-cache
- query-compilation-cache
B.262.1 Function

Sets the number of soft references that Kodo maintains. When the maximum cache or query size is reached, random entries are moved to a soft reference map so that they are maintained for awhile longer. By default, this value is set to \(-1\) which specifies that an unlimited number of soft references are maintained. Set the property to 0 to disable soft references. For more information, see "Configuring the Data Cache Size" and "Query Cache" in *Kodo 4.2.0 Developers Guide for JPA/JDO*.

B.262.2 Example

```xml
<soft-reference-size>-1</soft-reference-size>
```

B.263 so-timeout

Range of values: Integer
Default value: 0
Parent elements:
 - persistence-configuration
 - persistence-configuration-unit
 - http-transport

B.263.1 Function

Specifies the socket read timeout in milliseconds. For more information, see "Standalone Persistence Server" in *Kodo 4.2.0 Developers Guide for JPA/JDO*.

B.263.2 Example

```xml
<so-timeout>0</so-timeout>
```

B.264 sql-server-dictionary

Range of values: N/A
Default value: N/A
Parent elements:
 - persistence-configuration
 - persistence-configuration-unit

B.264.1 Function

Configuration values for the SQLServer Dictionary persistence plugin. For a complete description of each of the values that you can specify, see "SQLServer Dictionary Configuration" in the *Oracle WebLogic Server Administration Console Help*.

B.264.2 Example

The `sql-server-dictionary` element shares the same subelements as *Section B.5, "access-dictionary,"* plus the following subelements (defaults shown):

```xml
<sql-server-dictionary>
...
```
B.265 stack-execution-context-name-provider

Range of values: N/A
Default value: N/A
Parent elements:
execution-context-name-provider

B.265.1 Function
Provider examines the current thread’s stack and builds an execution context name based on that information. For more information, see “Configuring the Execution Context Name Provider” in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.265.2 Example
<stack-execution-context-name-provider>
<style>full</style>
</stack-execution-context-name-provider>

B.266 store-mode

Range of values: Integer
Default value: N/A
Parent elements:
persistence-configuration
 persistence-configuration-unit
 deprecated-jdo-meta-data-factory

persistence-configuration
 persistence-configuration-unit
 extension-deprecated-jdo-mapping-factory

persistence-configuration
 persistence-configuration-unit
 jdo-meta-data-factory

persistence-configuration
 persistence-configuration-unit
 jdor-mapping-factory

persistence-configuration
 persistence-configuration-unit
 kodo-persistence-mapping-factory

persistence-configuration
 persistence-configuration-unit
 kodo-persistence-meta-data-factory

persistence-configuration
 persistence-configuration-unit
B.266.1 Function

Specifies the data store mode.

B.266.2 Example

<store-mode>1</store-mode>

B.267 strict

Range of values: true | false
Default value: false
Parent elements:

persistence-configuration
 persistence-configuration-unit
 deprecated-jdo-meta-data-factory

persistence-configuration
 persistence-configuration-unit
 extension-deprecated-jdo-mapping-factory

persistence-configuration
 persistence-configuration-unit
 jdo-meta-data-factory

persistence-configuration
 persistence-configuration-unit
 jdor-mapping-factory

persistence-configuration
 persistence-configuration-unit
 kodo-persistence-mapping-factory

persistence-configuration
 persistence-configuration-unit
 kodo-persistence-meta-data-factory

persistence-configuration
 persistence-configuration-unit
 mapping-file-deprecated-jdo-mapping-factory

persistence-configuration
B.267.1 Function
Flag that specifies whether strict mode is enabled.

B.267.2 Example
<strict>true</strict>

B.268 strict-identity-values
Range of values: true | false
Default value: false
Parent elements:
persistence-configuration
 persistence-configuration-unit
 compatibility

B.268.1 Function
Flag that specifies whether to require identity values used for finding application identity instances to be of the exact right type. By default, Kodo allows stringified identity values, and performs conversions between numeric types. For more information, see "Compatibility Configuration" in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.268.2 Example
<strict-identity-values>false</strict-identity-values>

B.269 style
Range of values: line | partial | full
Default value: N/A
Parent elements:
 execution-context-name-provider
 stack-execution-context-name-provider

B.269.1 Function
Provider examines the current thread’s stack and builds an execution context name based on that information and the following setting:
subclass-fetch-mode

- **line**—Name will be the first non-Kodo stack line, including class name, method name, and line number, if available.
- **partial**—Full stack trace minus the Kodo lines will be used.
- **full**—Entire stack trace will be used.

For more information, see "Configuring the Execution Context Name Provider" in *Kodo 4.2.0 Developers Guide for JPA/JDO*.

B.269.2 Example

```xml
<subclass-fetch-mode>full</subclass-fetch-mode>
```

B.270 subclass-fetch-mode

Range of values: join | multiple | none | parallel | single

Default value: join

Parent elements:
- execution-context-name-provider
- stack-execution-context-name-provider

B.270.1 Function

Specifies the method to use to select subclass data when it is in other tables. For a description of the valid values, see under Section B.120, "eager-fetch-mode." For complete details, see "Eager Fetching" in *Kodo 4.2.0 Developers Guide for JPA/JDO*.

B.270.2 Example

```xml
<subclass-fetch-mode>join</subclass-fetch-mode>
```

B.271 sybase-dictionary

Range of values: N/A

Default value: N/A

Parent elements:
- persistence-configuration
 - persistence-configuration-unit

B.271.1 Function

Configuration values for the Sybase Dictionary persistence plugin. For a complete description of each of the values that you can specify, see "Sybase Dictionary Configuration" in the *Oracle WebLogic Server Administration Console Help*.

B.271.2 Example

The `sybase-dictionary` element shares the same subelements as Section B.5, "access-dictionary," plus the following subelements (defaults shown):

```xml
<sybase-dictionary>
...`

---

B-134  Programming Enterprise JavaBeans, Version 3.0, for Oracle WebLogic Server
<create-identity-column>true</create-identity-column>
<identity-column-name>UNQ_INDEX</identity-column-name>
</sybase-dictionary>

B.272 sync-with-managed-transactions

Range of values: true | false
Default value: false
Parent elements:
persistence-configuration
  persistence-configuration-unit
    kodo-broker

B.272.1 Function
Flag that specifies whether to sync with managed transactions. For more information, see "kodo.BrokerImpl" in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.272.2 Example

<sync-with-managed-transactions>false</sync-with-managed-transactions>

B.273 synchronize-mappings

Range of values: true | false
Default value: false
Parent elements:
persistence-configuration

B.273.1 Function
Controls whether Kodo attempts to run the mapping tool on all persistent classes to synchronize their mappings and schema at runtime. This element save you the trouble of running the mapping tool manually, and is useful for rapid test and debug cycles. For more information, see "Runtime Forward Mapping" in Kodo Developer’s Guide.

B.273.2 Example

<synchronize-mappings>false</synchronize-mappings>

B.274 table

Range of values: String
Default value: See below
Parent elements:
persistence-configuration
  persistence-configuration-unit
    class-table-jdbc-seq
B.274.1 Function
Specifies the name of the table. For more information, see "Mapping Factory" in Kodo 4.2.0 Developers Guide for JPA/JDO. The default value depends on the parent element:

- class-table-jdbc-seq: OPENJPA_SEQUENCE_TABLE
- table-jdbc-seq: OPENJPA_SEQUENCE_TABLE
- table-jdor-mapping-factory: KODO_JDO_MAPPINGS
- table-schema-factory: OPENJPA_SCHEMA
- value-table-jdbc-seq: OPENJPA_SEQUENCES_TABLE

B.274.2 Example
<table>JDO_MAPPING</table>

B.275 table-deprecated-jdo-mapping-factory

Range of values: N/A
Default value: N/A
Parent elements:
  persistence-configuration
  persistence-configuration-unit

B.275.1 Function
A plugin string (see "Plugin Configuration" in Kodo 4.2.0 Developers Guide for JPA/JDO) describing the kodo.jdo.jdbc.TableJDORMappingFactory that stores mapping metadata as XML strings in a database table. This setting is valid for JDO 1.0. For more information, see "Mapping Factory" in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.275.2 Example
<table-deprecated-jdo-mapping-factory>
  <table-name>JDO_MAPPING</table-name>
  <urls>t3://localhost:7001/metadata.jar</urls>
  <classpath-scan>build</classpath-scan>
</table-deprecated-jdo-mapping-factory>
<types>classname1;classname2</types>
<mapping-column>MAPPING_DEF</mapping-column>
<store-mode></store-mode>
<strict>false</strict>
<name-column>NAME</name-column>
<use-schema-validation>false</use-schema-validation>
<single-row>false</single-row>
<files>com/file1;com/file2</files>
<resources>com/aaa/package.jdo;com/bbb/package.jdo</resources>
</table-deprecated-jdo-mapping-factory>

B.276 table-jdbc-seq

Range of values: N/A
Default value: N/A
Parent elements:
  persistence-configuration
  persistence-configuration-unit

B.276.1 Function

Specifies a plugin string (see "Plugin Configuration" in Kodo 4.2.0 Developers Guide for JPA/JDO) describing the kodo.kernel.Seq interface to use to create your own custom generators, in this case kodo.jdbc.kernel.TableJDBCSeq.

The TableJDBCSeq uses a special single-row table to store a global sequence number. If the table does not already exist, it is created the first time you run the mapping tool's on a class that requires it. You can also use the class' main method or the sequencetable shell/bat script to manipulate the table; see the TableJDBCSeq.main method Javadoc for usage details. For more information, see "Generators" in the Kodo 4.2.0 Developers Guide for JPA/JDO.

B.276.2 Example

<table-jdbc-seq>
  <type>0</type>
  <allocate>50</allocate>
  <table-name>OPENJPA_SEQUENCE_TABLE</table-name>
  <table>OPENJPA_SEQUENCE_TABLE</table>
  <primary-key-column>ID</primary-key-column>
  <sequence-column>SEQUENCE_VALUE</sequence-column>
  <increment>1</increment>
</table-jdbc-seq>

B.277 table-jdor-mapping-factory

Range of values: N/A
Default value: N/A
Parent elements:
  persistence-configuration
  persistence-configuration-unit
B.277 table-lock-update-manager

**B.277.1 Function**

A plugin string (see "Plugin Configuration" in *Kodo 4.2.0 Developers Guide for JPA/JDO*) describing the kodo.jdo.jdbc.TableJDORMappingFactory that stores mapping metadata as XML strings in a database table. This setting is valid for JDO 2.0. For more information, see "Mapping Factory" in *Kodo 4.2.0 Developers Guide for JPA/JDO*.

**B.277.2 Example**

```xml
<table-jdor-mapping-factory>
 <use-schema-validation>false</use-schema-validation>
 <type-column>0</type-column>
 <constraint-names>false</constraint-names>
 <table>KODO_JDO_MAPPINGS</table>
 <types>classname1;classname2</types>
 <store-mode></store-mode>
 <mapping-column>false</mapping-column>
 <strict>false</strict>
 <name-column>NAME</name-column>
</table-jdor-mapping-factory>
```

B.278 table-lock-update-manager

**Range of values:** N/A

**Default value:** N/A

**Parent elements:**

- persistence-configuration
- persistence-configuration-unit

**B.278.1 Function**

Defines an update manager capable of statement batching, that ignores foreign keys and autoincrement, but optimizes for table level locking. This is useful when using table-level locking and trying to avoid deadlocks. For more information, see "kodo.jdbc.UpdateManager" and "Statement Batching" in *Kodo 4.2.0 Developers Guide for JPA/JDO*.

**B.278.2 Example**

```xml
<table-lock-update-manager>
 <maximize-batch-size>true</maximize-batch-size>
</table-lock-update-manager>
```

B.279 table-name

**Range of values:** String

**Default value:** See below

**Parent elements:**

- persistence-configuration
- persistence-configuration-unit
- class-table-jdbc-seq
B.279.1 Function

Specifies the name of the table.

The default varies based on the parent element, as follows:

- **class-table-jdbc-seq**: OPENJPA_SEQUENCES_TABLE. For more information, see "Generators" in the Kodo 4.2.0 Developers Guide for JPA/JDO.

- **Section B.208, "native-jdbc-seq":** DUAL. For more information, see "Generators" in the Kodo 4.2.0 Developers Guide for JPA/JDO.

- **Section B.275, "table-deprecated-jdo-mapping-factory":** JDO_MAPPING. For more information, see "Mapping Factory" in Kodo 4.2.0 Developers Guide for JPA/JDO.

- **Section B.276, "table-jdbc-seq":** OPENJPA_SEQUENCE_TABLE. For more information, see "Generators" in the Kodo 4.2.0 Developers Guide for JPA/JDO.

- **Section B.275, "table-deprecated-jdo-mapping-factory":** JDO_MAPPING. For more information, see "Mapping Factory" in Kodo 4.2.0 Developers Guide for JPA/JDO.

- **Section B.280, "table-schema-factory":** OPENJPA_SCHEMA. For more information, see "Schema Factory" in the Kodo 4.2.0 Developers Guide for JPA/JDO.

- **Section B.305, "value-table-jdbc-seq":** OPENJPA_SEQUENCE_TABLE. For more information, see "Generators" in the Kodo 4.2.0 Developers Guide for JPA/JDO.

B.279.2 Example

```
<table-name>JDO_MAPPING</table-name>
```

B.280 table-schema-factory

- **Range of values**: N/A
- **Default value**: N/A
- **Parent elements**:
  - persistence-configuration
  - persistence-configuration-unit
B.280.1 Function

Specifies a plugin string (see "Plugin Configuration" in *Kodo 4.2.0 Developers Guide for JPA/JDO*) describing the `kodo.jdbc.schema.SchemaFactory` to use to store and retrieve information about the database schema, in this case `kodo.jdbc.schema.TableSchemaFactory`.

This schema factory stores schema information as an XML document in a database table it creates for this purpose. If your JDBC driver doesn’t support the `java.sql.DatabaseMetaData` standard interface, but you still want some schema validation to occur at runtime, you might use this factory. It is not recommended for most users, though, because it is easy for the stored XML schema definition to get out-of-sync with the actual database.

For more information, see "Schema Factory" in the *Kodo 4.2.0 Developers Guide for JPA/JDO*.

B.280.2 Example

```xml
<table-schema-factory>
 <schema-column>SCHEMA_DEF</schema-column>
 <table-name>OPENJPA_SCHEMA</table-name>
 <table>OPENJPA_SCHEMA</table>
 <primary-key-column>ID</primary-key-column>
</table-schema-factory>
```

B.281 tangosol-cache-name

- **Range of values:** String
- **Default value:** kodo
- **Parent elements:**
  - persistence-configuration
  - persistence-configuration-unit
  - tangosol-data-cache

B.281.1 Function

Name of the Tangosol Coherence cache to use. For more information, see "Tangosol Integration" in *Kodo 4.2.0 Developers Guide for JPA/JDO*.

B.281.2 Example

```xml
<tangosol-cache-name>kodo</tangosol-cache-name>
```

B.282 tangosol-cache-type

- **Range of values:** named | distributed | replicated
- **Default value:** named
- **Parent elements:**
  - persistence-configuration
  - persistence-configuration-unit
  - tangosol-data-cache
B.282.1 Function

Type of Tangosol Coherence cache to use. Valid values include:

- **named**—Cache is looked up via the
  `com.tangosol.net.CacheFactory.getCache(String)` method. This method looks up the cache by the name as defined in the Coherence configuration.
- **distributed**
- **replicated**

For more information, see "Tangosol Integration" in *Kodo 4.2.0 Developers Guide for JPA/JDO*.

B.282.2 Example

```xml
<tangosol-cache-type>name</tangosol-cache-type>
```

B.283 **tangosol-data-cache**

**Range of values:** N/A  
**Default value:** N/A  
**Parent elements:**

- persistence-configuration  
- persistence-configuration-unit  
- data-caches

B.283.1 Function

Integrates with Tangosol's Coherence caching system. For more information, see "Tangosol Integration" in *Kodo 4.2.0 Developers Guide for JPA/JDO*.

B.283.2 Example

```xml
<data-caches>
 <tangosol-data-cache>
 <name>kodo.dataCache</name>
 <clear-on-close>false</clear-on-close>
 <tangosol-cache-type>name</tangosol-cache-type>
 <tangosol-cache-name>kodo</tangosol-cache-name>
 <eviction-schedule>15,45 15 * * 1</eviction-schedule>
 </tangosol-data-cache>
</data-caches>
```

B.284 **tcp-remote-commit-provider**

**Range of values:** N/A  
**Default value:** N/A  
**Parent elements:**
bb-142
Programming Enterprise JavaBeans, Version 3.0, for Oracle WebLogic Server

B.284 tcp-transport

B.284.1 Function
Configures the TCP remote commit provider. For more information, see "TCP" in the Kodo 4.2.0 Developers Guide for JPA/JDO.

B.284.2 Example

```xml
<tcp-remote-commit-provider>
 <name>kodo.RemoteCommitProvider</name>
 <max-idle>2</max-idle>
 <num-broadcast-threads>2</num-broadcast-threads>
 <recovery-time-millis>15000</recovery-time-millis>
 <max-active>2</max-active>
 <port>5636</port>
 <addresses>[][]</addresses>
</tcp-remote-commit-provider>
```

B.285 tcp-transport

Range of values: N/A

Default value: N/A

Parent elements:

- persistence-configuration
- persistence-configuration-unit

B.285.1 Function
Specifies the transport layer for the remote communication. For more information, see "Standalone Persistence Server" in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.285.2 Example

```xml
<tcp-transport>
 <so-timeout>0</so-timeout>
 <host>localhost</host>
 <port>5637</port>
</tcp-transport>
```

B.286 time-seeded-seq

Range of values: N/A

Default value: N/A

Parent elements:

- persistence-configuration
- persistence-configuration-unit
B.286.1 Function

Specifies a plugin string (see "Plugin Configuration" in *Kodo 4.2.0 Developers Guide for JPA/JDO*) describing the `kodo.kernel.Seq` interface to use to create your own custom generators, in this case `kodo.jdbc.kernel.TimeSeededSeq`.

This type uses an in-memory static counter, initialized to the current time in milliseconds and monotonically incremented for each value requested. It is only suitable for single-JVM environments. For more information, see "Generators" in the *Kodo 4.2.0 Developers Guide for JPA/JDO*.

B.286.2 Example

```xml
<time-seeded-seq>
 <type>0</type>
 <increment>1</increment>
</time-seeded-seq>
```

B.287 topic

**Range of values:** Valid topic

**Default value:** `topic/KodoCommitProviderTopic`

**Parent elements:**
- `persistence-configuration`
- `persistence-configuration-unit`
- `jms-remote-commit-provider`

B.287.1 Function

Specifies the topic to which the remote commit provider should publish notifications and subscribe for notifications sent from other JVMs. For more information, see "JMS" in the *Kodo 4.2.0 Developers Guide for JPA/JDO*.

B.287.2 Example

```xml
<topic>topic/KodoCommitProviderTopic</topic>
```

B.288 topic-connection-factory

**Range of values:** Valid connection factory

**Default value:** `java:/ConnectionFactory`

**Parent elements:**
- `persistence-configuration`
- `persistence-configuration-unit`
- `jms-remote-commit-provider`

B.288.1 Function

Specifies the JNDI name of a `javax.jms.TopicConnectionFactory` factory to use for finding topics. This setting may vary depending on the application server in use; consult the application server's documentation for details about the default JNDI name for the topic instance. For WebLogic, the JNDI name for the
TopicConnectionFactory is `javax.jms.TopicConnectionFactory`. For more information, see "JMS" in the *Kodo 4.2.0 Developers Guide for JPA/JDO*.

**B.288.2 Example**

```xml
<topic-connection-factory>java:/ConnectionFactory</topic-connection-factory>
```

**B.289 track-changes**

- **Range of values**: true | false
- **Default value**: true
- **Parent elements**:
  - persistence-configuration
  - persistence-configuration-unit

**B.289.1 Function**

Flag that specifies whether to use smart proxies. For more information, see "Custom Proxies" in the *Kodo 4.2.0 Developers Guide for JPA/JDO*.

**B.289.2 Example**

```xml
<track-changes>true</track-changes>
```

**B.290 transaction-isolation**

- **Range of values**: default | none | read-committed | read-uncommitted | repeatable-read | serializable
- **Default value**: default
- **Parent elements**:
  - persistence-configuration
  - persistence-configuration-unit

**B.290.1 Function**

Specifies the JDBC transaction isolation level to use.

- **default**—JDBC driver’s default level. This is the default.
- **none**—No transaction isolation.
- **read-committed**—Dirty reads are prevented; non-repeatable reads and phantom reads can occur.
- **read-uncommitted**—Dirty reads, non-repeatable reads, and phantom reads can occur.
- **repeatable-read**—Dirty reads and non-repeatable reads are prevented; phantom reads can occur.
- **serializable**—Dirty reads, non-repeatable reads, and phantom reads are prevented.
For more information, see "Setting the Transaction Isolation" in Kodo Developer's Guide.

B.290.2 Example

```
<transaction-isolation>default</transaction-isolation>
```

B.291 transaction-mode

**Range of values:** local | managed  
**Default value:** local  
**Parent elements:**  
  - persistence-configuration  
  - persistence-configuration-unit

B.291.1 Function

Specifies the transaction mode to use. You can override this setting per session.
- **local**—Perform transaction operations locally. This is the default.
- **managed**—Integrate with the application server's managed global transactions.

For more information, see "Integrating with the Transaction Manager" in Kodo Developer's Guide.

B.291.2 Example

```
<transaction-mode>local</transaction-mode>
```

B.292 transaction-name-execution-context-name-provider

**Range of values:** N/A  
**Default value:** N/A  
**Parent elements:**  
  - execution-context-name-provider

B.292.1 Function

Provider returns the current transaction's name, as defined by WebLogic transaction naming semantics. For more information, see "Configuring the Execution Context Name Provider" in *Kodo 4.2.0 Developers Guide for JPA/JDO*.

B.292.2 Example

```
<transaction-name-execution-context-name-provider/>
```

B.293 type

**Range of values:** N/A
Default value: 0

Parent elements:

- persistence-configuration
  - persistence-configuration-unit
    - class-table-jdbc-seq
- persistence-configuration
  - persistence-configuration-unit
    - native-jdbc-seq
- persistence-configuration
  - persistence-configuration-unit
    - table-jdbc-seq
- persistence-configuration
  - persistence-configuration-unit
    - time-seeded-seq
- persistence-configuration
  - persistence-configuration-unit
    - value-table-jdbc-seq

B.293.1 Function

Specifies the type of generator. For more information, see "Generators" in the Kodo 4.2.0 Developers Guide for JPA/JDO.

B.293.2 Example

```xml
<type>0</type>
```

B.294 type-column

Range of values: 0 | 1 | 2 | 3

Default value: 0

Parent elements:

- persistence-configuration
  - persistence-configuration-unit
    - table-jdor-mapping-factory

B.294.1 Function

Specifies the name of the column that holds the mapping type. Valid types constants include:

- 0—Class mapping.
- 1—Named sequence.
- 2—System-level named query.
- 3—Class-level named query.

For more information, see "Mapping Factory" in Kodo 4.2.0 Developers Guide for JPA/JDO.
B.294.2 Example

    <type-column>0</type-column>

B.295 types

Range of values: Valid persistent class names
Default value: N/A
Parent elements:
  persistence-configuration
  persistence-configuration-unit
tangosol-data-cache

B.295.1 Function

Specifies a semicolon-separated list of fully-qualified persistent class names. For more information, see “Metadata Factory” in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.295.2 Example

    <types>classname1; classname2</types>

B.296 URL

Range of values: Valid URL
Default value: t3://localhost:7001
Parent elements:
  jmx
  wls81-jmx

B.296.1 Function

URL to which Kodo should connect to access the WebLogic MBeanServer. For more information, see “Optional Parameters in WebLogic 8.1 Group” in the Kodo 4.2.0 Developers Guide for JPA/JDO.

B.296.2 Example

    <URL>t3://localhost:7001</URL>

B.297 url

Range of values: Valid URL
Default value: N/A
Parent elements:
  persistence-configuration
  persistence-configuration-unit
  http-transport
B.297.1 Function

URL to which Kodo should connect to access the remote server. For more information, see "Client Managers" in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.297.2 Example

<url>t3://localhost:7001/remote-server</url>

B.298 urls

Range of values: Valid URL
Default value: t3://localhost:7001

Parent elements:
- persistence-configuration
  - persistence-configuration-unit
    - deprecated-jdo-meta-data-factory
- persistence-configuration
  - persistence-configuration-unit
    - extension-deprecated-jdo-mapping-factory
- persistence-configuration
  - persistence-configuration-unit
    - jdo-meta-data-factory
- persistence-configuration
  - persistence-configuration-unit
    - jdor-mapping-factory
- persistence-configuration
  - persistence-configuration-unit
    - kodo-persistence-mapping-factory
- persistence-configuration
  - persistence-configuration-unit
    - kodo-persistence-meta-data-factory
- persistence-configuration
  - persistence-configuration-unit
    - mapping-file-deprecated-jdo-mapping-factory
- persistence-configuration
  - persistence-configuration-unit
    - orm-file-jdor-mapping-factory
- persistence-configuration
  - persistence-configuration-unit
    - table-deprecated-jdo-mapping-factory

B.298.1 Function

Specifies a semicolon-separated list of URLs of metadata files or jar archives. Each jar archive will be scanned for annotated JPA entities or JDO metadata files based on your metadata factory. For more information, see "Metadata Factory" in Kodo 4.2.0 Developers Guide for JPA/JDO.
B.298.2 Example

<urls>t3://localhost:7001/metadata.jar</urls>

B.299 use-aliases

**Range of values:** true | false

**Default value:** false

**Parent elements:**
- persistence-configuration
  - persistence-configuration-unit
    - class-table-jdbc-seq

B.299.1 Function

Flag that specifies whether to use each class’ entity name as the primary key value of each row rather than the full classname. For more information, see "Generators" in the *Kodo 4.2.0 Developers Guide for JPA/JDO*.

B.299.2 Example

<use-aliases>false</use-aliases>

B.300 use-schema-validation

**Range of values:** true | false

**Default value:** N/A

**Parent elements:**
- persistence-configuration
  - persistence-configuration-unit
    - deprecated-jdo-meta-data-factory
  - persistence-configuration-unit
    - extension-deprecated-jdo-mapping-factory
  - persistence-configuration-unit
    - jdo-meta-data-factory
  - persistence-configuration-unit
    - jdor-mapping-factory
  - persistence-configuration-unit
    - mapping-file-deprecated-jdo-mapping-factory
  - persistence-configuration-unit
    - orm-file-jdor-mapping-factory
  - persistence-configuration
B.300.1 Function
Flag that specifies whether to use schema validation.

B.300.2 Example
<use-schema-validation>true</use-schema-validation>

B.301 user-object-execution-context-name-provider
- **Range of values**: N/A
- **Default value**: N/A
- **Parent elements**: execution-context-name-provider

B.301.1 Function
Provider returns the user object specified in the current EntityManager/PersistenceManager whose key is com.solarmetric.profile.ExecutionContextNameProvider. User objects can be set using the OpenJPAEntityManager.putUserObject(Object, Object) or PersistenceManager.putUserObject(Object, Object). For more information, see "Configuring the Execution Context Name Provider" in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.301.2 Example
<user-object-execution-context-name-provider/>

B.302 UserName
- **Range of values**: N/A
- **Default value**: N/A
- **Parent elements**: jmx
  - wsl81-jmx

B.302.1 Function
Specifies the username that Kodo should use to access the WebLogic MBeanServer. This must be set. For more information, see "Optional Parameters in WebLogic 8.1 Group" in the Kodo 4.2.0 Developers Guide for JPA/JDO.
B.302.2 Example

```xml
<wls81-jmx>
 <MBeanServerStrategy>any-create</MBeanServerStrategy>
 <EnableLogMBean>true</EnableLogMBean>
 <EnableRuntimeMBean>true</EnableRuntimeMBean>
 <URL>t3://localhost:7001</URL>
 <UserName>admin</UserName>
 <Password>admin</Password>
</wls81-jmx>
```

B.303 validate-false-returns-hollow

**Range of values:** true | false  
**Default value:** true  
**Parent elements:**
- persistence-configuration  
- persistence-configuration-unit  
- compatibility

**B.303.1 Function**

Flag that specifies whether to return hollow objects (objects for which no state has been loaded) from calls to PersistenceManager.getObjectById(oid, false). This is the default behavior of Kodo 4.0 and above. Previous Kodo versions, however, always loaded the object from the datastore. Set this property to false to get the old behavior.

For more information, see "Compatibility Configuration" in Kodo 4.2.0 Developers Guide for JPA/JDO.

**B.303.2 Example**

```xml
<validate-false-returns-hollow>true</validate-false-returns-hollow>
```

B.304 validate-true-checks-store

**Range of values:** true | false  
**Default value:** false  
**Parent elements:**
- persistence-configuration  
- persistence-configuration-unit  
- compatibility

**B.304.1 Function**

Flag that specifies whether to check the datastore to be sure the given oid exists. Prior to Kodo 4.0, calling PersistenceManager.getObjectById(oid, true) always checked the datastore to be sure the given oid existed, even when the corresponding object was already cached. Kodo 4.0 and above does not check the datastore when the instance is already cached and loaded. Set this property to true to mimic previous behavior.
For more information, see "Compatibility Configuration" in *Kodo 4.2.0 Developers Guide for JPA/JDO*.

**B.304.2 Example**

```xml
<validate-true-checks-store>false</validate-true-checks-store>
```

**B.305 value-table-jdbc-seq**

- **Range of values:** N/A
- **Default value:** N/A
- **Parent elements:**
  - persistence-configuration
  - persistence-configuration-unit

**B.305.1 Function**

Specifies a plugin string (see "Plugin Configuration" in *Kodo 4.2.0 Developers Guide for JPA/JDO*) describing the `kodo.kernel.Seq` interface to use to create your own custom generators, in this case `kodo.jdbc.kernel.ValueTableJDBCSeq`.

This Seq is like the Section B.276, "table-jdbc-seq," but has an arbitrary number of rows for sequence values, rather than a fixed pattern of one row per class. For more information, see "Generators" in the *Kodo 4.2.0 Developers Guide for JPA/JDO*.

**B.305.2 Example**

```xml
<value-table-jdbc-seq>
 <type>0</type>
 <allocate>50</allocate>
 <table-name>OPENJPA_SEQUENCE_TABLE</table-name>
 <primary-key-value>DEFAULT</primary-key-value>
 <table>OPENJPA_SEQUENCE_TABLE</table>
 <primary-key-column>ID</primary-key-column>
 <sequence-column>SEQUENCE_VALUE</sequence-column>
 <increment>1</increment>
</value-table-jdbc-seq>
```

**B.306 version-check-on-read-lock**

- **Range of values:** true | false
- **Default value:** false
- **Parent elements:**
  - persistence-configuration
  - persistence-configuration-unit
  - pessimistic-lock-manager

**B.306.1 Function**

Specifies whether to perform version checking and incrementing behavior of the pessimistic lock manager on read operations. For more information, see "Lock Manager" in *Kodo 4.2.0 Developers Guide for JPA/JDO*. 
B.306.2 Example

<version-check-on-read-lock>false</version-check-on-read-lock>

B.307 version-check-on-write-lock

Range of values: true | false
Default value: false
Parent elements:
  persistence-configuration
  persistence-configuration-unit
  pessimistic-lock-manager

B.307.1 Function

Specifies whether to perform version checking and incrementing behavior of the pessimistic lock manager on write operations. For more information, see "Lock Manager" in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.307.2 Example

<version-check-on-write-lock>false</version-check-on-write-lock>

B.308 version-lock-manager

Range of values: N/A
Default value: N/A
Parent elements:
  persistence-configuration
  persistence-configuration-unit

B.308.1 Function

Specifies the kodo.kernel.VersionLockManager. This lock manager does not perform any exclusive locking, but instead ensures read consistency by verifying that the version of all read-locked instances is unchanged at the end of the transaction. Furthermore, a write lock will force an increment to the version at the end of the transaction, even if the object is not otherwise modified. This ensures read consistency with non-blocking behavior. For more information, see "Lock Manager" in Kodo 4.2.0 Developers Guide for JPA/JDO.

B.308.2 Example

<version-lock-manager>
  <version-check-on-read-lock>false</version-check-on-read-lock>
  <version-check-on-write-lock>false</version-check-on-write-lock>
</version-lock-manager>
B.309 wls81-jmx

**Range of values:** N/A

**Default value:** N/A

**Parent elements:**

jmx

B.309.1 Function

Enable management and invoke the JMX management console in the local JVM. Supports optional parameters in the Management Group and WebLogic 8.1 Group, as described in "Optional Parameters in Management Group" and "Optional Parameters in WebLogic 8.1 Group" in the *Kodo 4.2.0 Developers Guide for JPA/JDO*.

B.309.2 Example

```xml
<wls81-jmx>
 <MBeanServerStrategy>any-create</MBeanServerStrategy>
 <EnableLogMBean>true</EnableLogMBean>
 <EnableRuntimeMBean>true</EnableRuntimeMBean>
 <URL>t3://localhost:7001</URL>
 <UserName>admin</UserName>
 <Password>admin</Password>
</wls81-jmx>
```

B.310 write-lock-level

**Range of values:** none | read | write | numeric values for lock-manager specific lock levels

**Default value:** read

**Parent elements:**

persistence-configuration

```xml
 persistence-configuration-unit
```

B.310.1 Function

Sets the default write level at which to lock objects retrieved during a non-optimistic transaction. Valid values include:

- **none**—No lock level.
- **read**—Read lock level.
- **write**—Write lock level.
- Numeric values for lock-manager specific lock levels.

**Note:** For the default JDBC lock manager, the read and write lock levels are equivalent.

For more information, see "Object Locking" in the *Kodo 4.2.0 Developers Guide for JPA/JDO*.
B.310.2 Example

<write-lock-level>read</write-lock-level>