Contents

Using This Documentation xi

Identifying Components 1
 Power Supply, Hard Drive, and Rear Fan Module Locations 2
 Motherboard, PCIe2 Cards, and SP Locations 3
 Front Fans, Subchassis, Memory Riser, and DIMM Locations 4
 Front Panel Components 5
 Rear Panel Components 7

Detecting and Managing Faults 9
 Diagnostics Overview 9
 Diagnostics Process 11
 Interpreting Diagnostic LEDs 14
 Front Panel LEDs 14
 Rear Panel LEDs 16
 Managing Faults (Oracle ILOM) 18
 Oracle ILOM Troubleshooting Overview 19
 ▼ Access the SP (Oracle ILOM) 21
 ▼ Display FRU Information (show Command) 23
 ▼ Check for Faults (show faulty Command) 24
 ▼ Check for Faults (fmadm faulty Command) 25
 ▼ Clear Faults (clear_fault_action Property) 26
 Service-Related Oracle ILOM Commands 28
 Locating a Faulty Front Fan Module 88
 Remove a Front Fan Module 91
 Install a Front Fan Module 95
 Verify a Front Fan Module 99

 Servicing Hard Drives 101
 Hard Drive LEDs 102
 Locate a Faulty Hard Drive 103
 Remove a Hard Drive 103
 Install a Hard Drive 107
 Verify a Hard Drive 111

 Servicing the DVD Drive 115
 Determine if the DVD Drive Is Faulty 116
 Remove the DVD Drive 116
 Install the DVD Drive 119
 Verify the DVD Drive 123

 Servicing Power Supplies 125
 Power Supply LEDs 126
 Locate a Faulty Power Supply 126
 Remove a Power Supply 129
 Install a Power Supply 133
 Verify a Power Supply 137

 Servicing the Rear Fan Module 139
 Rear Fan Module LEDs 140
 Determine if the Rear Fan Module Is Faulty 140
 Remove the Rear Fan Module 143
 Install the Rear Fan Module 146
► Verify the Rear Fan Module 149

Servicing Memory Risers 151

Memory Riser Configuration 152
Memory Riser LEDs 152
► Locate a Faulty Memory Riser 154
► Remove a Memory Riser 156
► Install a Memory Riser 158
► Verify a Memory Riser 160

Servicing DIMMs 163

DIMM Configuration 164
DIMM IDs 166
DIMM LEDs 168
► Locate a Faulty DIMM (LEDs) 169
► Locate a Faulty DIMM (Oracle ILOM) 169
► Remove a DIMM 172
► Install a DIMM 173
► Verify a DIMM 175

Servicing the Battery 177

► Determine if the Battery Is Faulty 177
► Remove the Battery 179
► Install the Battery 181
► Verify the Battery 183

Servicing PCIe2 Cards 185

► Locate a Faulty PCIe2 Card 186
► Remove a PCIe2 Card 188
► Install a PCIe2 Card 191
▼ Install SAS Cable for Sun Storage 6 Gb SAS PCIe RAID HBA, Internal 194
▼ Verify a PCIe2 Card 195

Servicing the SP 197
▼ Determine if the SP Is Faulty 197
▼ Remove the SP 200
▼ Install the SP 202
▼ Verify the SP 205

Servicing the ID PROM 207
▼ Determine if the ID PROM Is Faulty 208
▼ Remove the ID PROM 210
▼ Install the ID PROM 212
▼ Verify the ID PROM 213

Servicing the Subchassis 215
▼ Remove the Subchassis 215
▼ Install the Subchassis 219

Servicing the LED Board 225
▼ Determine if the LED Board Is Faulty 225
▼ Remove the LED Board 226
▼ Install the LED Board 231
▼ Verify the LED Board 235

Servicing the Motherboard 237
▼ Determine if the Motherboard Is Faulty 238
▼ Remove the Motherboard 240
▼ Install the Motherboard 246
▼ Verify the Motherboard 256
Servicing the Power Distribution Board 259
 ▼ Determine if the Power Distribution Board Is Faulty 260
 ▼ Remove the Power Distribution Board 261
 ▼ Install the Power Distribution Board 266
 ▼ Verify the Power Distribution Board 270

Servicing the Hard Drive Backplane 273
 ▼ Determine if the Hard Drive Backplane Is Faulty 273
 ▼ Remove the Hard Drive Backplane 275
 ▼ Install the Hard Drive Backplane 279
 ▼ Verify the Hard Drive Backplane 283

Returning the Server to Operation 285
 ▼ Install the Top Cover 285
 ▼ Connect Power Cords 289
 ▼ Power On the Server (Oracle ILOM) 290
 ▼ Power On the Server (Power Button) 290

Glossary 291

Index 297
This service manual explains how to replace parts in the Netra SPARC T4-2 server from Oracle, and how to use and maintain the system. This document is written for technicians, system administrators, authorized service providers, and users who have advanced experience troubleshooting and replacing hardware.

- “Product Notes” on page xi
- “Related Documentation” on page xii
- “Feedback” on page xii
- “Support and Accessibility” on page xii

Product Notes

For late-breaking information and known issues about this product, refer to the product notes at:

Related Documentation

<table>
<thead>
<tr>
<th>Documentation</th>
<th>Links</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Oracle products</td>
<td>http://www.oracle.com/documentation</td>
</tr>
<tr>
<td>Oracle Solaris OS and other</td>
<td>http://www.oracle.com/technetwork/indexes/documentation/index.html#sys_sw</td>
</tr>
<tr>
<td>systems software</td>
<td></td>
</tr>
<tr>
<td>Manager (Oracle ILOM) 3.0</td>
<td></td>
</tr>
</tbody>
</table>

Feedback

Provide feedback on this documentation at:

http://www.oracle.com/goto/docfeedback

Support and Accessibility

<table>
<thead>
<tr>
<th>Description</th>
<th>Links</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access electronic support through My Oracle Support</td>
<td>http://support.oracle.com</td>
</tr>
<tr>
<td>For hearing impaired:</td>
<td>http://www.oracle.com/accessibility/support.html</td>
</tr>
<tr>
<td>Learn about Oracle’s commitment to accessibility</td>
<td>http://www.oracle.com/us/corporate/accessibility/index.html</td>
</tr>
</tbody>
</table>
Identifying Components

These topics identify key components of the server.

- “Power Supply, Hard Drive, and Rear Fan Module Locations” on page 2
- “Front Fans, Subchassis, Memory Riser, and DIMM Locations” on page 4
- “Motherboard, PCIe2 Cards, and SP Locations” on page 3
- “Front Panel Components” on page 5
- “Rear Panel Components” on page 7

Related Information

- “Detecting and Managing Faults” on page 9
- “Preparing for Service” on page 59
- “Returning the Server to Operation” on page 285
Power Supply, Hard Drive, and Rear Fan Module Locations

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Service Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hard drives</td>
<td>“Servicing Hard Drives” on page 101</td>
</tr>
<tr>
<td>2</td>
<td>DVD drive</td>
<td>“Servicing the DVD Drive” on page 115</td>
</tr>
<tr>
<td>3</td>
<td>Hard drive backplane</td>
<td>“Servicing the Hard Drive Backplane” on page 273</td>
</tr>
<tr>
<td>4</td>
<td>Chassis</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Power distribution board</td>
<td>“Servicing the Power Distribution Board” on page 259</td>
</tr>
<tr>
<td>6</td>
<td>Power supplies</td>
<td>“Servicing Power Supplies” on page 125</td>
</tr>
<tr>
<td>7</td>
<td>Rear fan module</td>
<td>“Servicing the Rear Fan Module” on page 139</td>
</tr>
</tbody>
</table>

Related Information

- “Front Fans, Subchassis, Memory Riser, and DIMM Locations” on page 4
- “Motherboard, PCle2 Cards, and SP Locations” on page 3
- “Front Panel Components” on page 5
- “Rear Panel Components” on page 7
Identifying Components

“Component Service Task Reference” on page 65

Motherboard, PCIe2 Cards, and SP Locations

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Service Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Chassis</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Motherboard</td>
<td>“Servicing the Motherboard” on page 237</td>
</tr>
<tr>
<td>3</td>
<td>PCIe2 card</td>
<td>“Servicing PCIe2 Cards” on page 185</td>
</tr>
<tr>
<td>4</td>
<td>Alarm board</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>SP</td>
<td>“Servicing the SP” on page 197</td>
</tr>
<tr>
<td>6</td>
<td>Battery</td>
<td>“Servicing the Battery” on page 177</td>
</tr>
<tr>
<td>7</td>
<td>ID PROM</td>
<td>“Servicing the ID PROM” on page 207</td>
</tr>
</tbody>
</table>

Related Information

“Power Supply, Hard Drive, and Rear Fan Module Locations” on page 2
Front Fans, Subchassis, Memory Riser, and DIMM Locations

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Service Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Air filter</td>
<td>“Servicing the Air Filter” on page 75</td>
</tr>
<tr>
<td>2</td>
<td>Front fan modules</td>
<td>“Servicing Front Fan Modules” on page 87</td>
</tr>
<tr>
<td>3</td>
<td>LED board cover</td>
<td>“Servicing the LED Board” on page 225</td>
</tr>
<tr>
<td>No.</td>
<td>Name</td>
<td>Service Link</td>
</tr>
<tr>
<td>-----</td>
<td>-----------------</td>
<td>--</td>
</tr>
<tr>
<td>4</td>
<td>LED board</td>
<td>“Servicing the LED Board” on page 225</td>
</tr>
<tr>
<td>5</td>
<td>Chassis</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Subchassis</td>
<td>“Servicing the Subchassis” on page 215</td>
</tr>
<tr>
<td>7,8</td>
<td>Memory risers</td>
<td>“Servicing Memory Risers” on page 151</td>
</tr>
<tr>
<td>9</td>
<td>DIMMs</td>
<td>“Servicing DIMMs” on page 163</td>
</tr>
</tbody>
</table>

Related Information
- “Power Supply, Hard Drive, and Rear Fan Module Locations” on page 2
- “Motherboard, PCIe2 Cards, and SP Locations” on page 3
- “Front Panel Components” on page 5
- “Rear Panel Components” on page 7
- “Component Service Task Reference” on page 65

Front Panel Components
<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Links</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Locator button</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Power button</td>
<td>“Power Off the Server (Power Button - Graceful)” on page 68</td>
</tr>
<tr>
<td></td>
<td></td>
<td>“Power Off the Server (Emergency Shutdown)” on page 68</td>
</tr>
<tr>
<td></td>
<td></td>
<td>“Power On the Server (Power Button)” on page 290</td>
</tr>
<tr>
<td>3</td>
<td>DVD drive</td>
<td>“Servicing the DVD Drive” on page 115</td>
</tr>
<tr>
<td>4</td>
<td>Hard drives (top row – HDD3, HDD5, HDD7,</td>
<td>“Servicing Hard Drives” on page 101</td>
</tr>
<tr>
<td></td>
<td>bottom row – HDD0, HDD1, HDD2, HDD4,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HDD6)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>USB 2.0 ports (USB3, USB4)</td>
<td>Server Installation, USB ports</td>
</tr>
<tr>
<td>6</td>
<td>Front Fan Modules (FM0 to FM3)</td>
<td>“Servicing Front Fan Modules” on page 87</td>
</tr>
</tbody>
</table>

Related Information

- “Power Supply, Hard Drive, and Rear Fan Module Locations” on page 2
- “Front Fans, Subchassis, Memory Riser, and DIMM Locations” on page 4
- “Motherboard, PCIe2 Cards, and SP Locations” on page 3
- “Front Panel LEDs” on page 14
- “Rear Panel Components” on page 7
Rear Panel Components

The table below lists the components found on the rear panel of the server, along with their descriptions and links to further information:

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Links</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Expansion slots 0 and 1 (PCIe2, x16)</td>
<td>“Servicing PCIe2 Cards” on page 185</td>
</tr>
<tr>
<td>2</td>
<td>Expansion slots 2, 3, and 4 (PCIe2, x8)</td>
<td>“Servicing PCIe2 Cards” on page 185</td>
</tr>
<tr>
<td>3</td>
<td>Physical Presence button access hole</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Alarm port (DB-15)</td>
<td>“Server Installation”, alarm port</td>
</tr>
<tr>
<td>5</td>
<td>Video port (HD-15)</td>
<td>“Server Installation”, video port</td>
</tr>
<tr>
<td>6</td>
<td>Network 10/100/1000 ports (NET0 to NET3) for host</td>
<td>“Server Installation”, Gigabit Ethernet ports</td>
</tr>
<tr>
<td>7</td>
<td>SER MGT RJ-45 serial port for SP</td>
<td>“Server Installation”, SER MGT port</td>
</tr>
<tr>
<td>8</td>
<td>NET MGT RJ-45 network port for SP</td>
<td>“Server Installation”, NET MGT port</td>
</tr>
<tr>
<td>9</td>
<td>Expansion slot NM/XAUI</td>
<td>“Servicing PCIe2 Cards” on page 185</td>
</tr>
<tr>
<td>10</td>
<td>Expansion slots 5 to 7 (PCIe2, x8)</td>
<td>“Servicing PCIe2 Cards” on page 185</td>
</tr>
<tr>
<td>11</td>
<td>Expansion slots 8 and 9 (PCIe2, x16)</td>
<td>“Servicing PCIe2 Cards” on page 185</td>
</tr>
<tr>
<td>12</td>
<td>Power supplies (PS0 to PS3) with status (Note: AC supply shown)</td>
<td>“Servicing Power Supplies” on page 125</td>
</tr>
</tbody>
</table>
Related Information

- “Power Supply, Hard Drive, and Rear Fan Module Locations” on page 2
- “Front Fans, Subchassis, Memory Riser, and DIMM Locations” on page 4
- “Motherboard, PCIe2 Cards, and SP Locations” on page 3
- “Rear Panel LEDs” on page 16
- “Front Panel Components” on page 5

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Links</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Rear fan module (FM4)</td>
<td>“Servicing the Rear Fan Module” on page 139</td>
</tr>
<tr>
<td>14</td>
<td>USB 2.0 ports (USB 0, USB1)</td>
<td>Server Installation, USB ports</td>
</tr>
</tbody>
</table>
Detecting and Managing Faults

These topics explain how to use various diagnostic tools to monitor server status and troubleshoot faults in the server.

- “Diagnostics Overview” on page 9
- “Diagnostics Process” on page 11
- “Interpreting Diagnostic LEDs” on page 14
- “Managing Faults (Oracle ILOM)” on page 18
- “Understanding Fault Management Commands” on page 29
- “Interpreting Log Files and System Messages” on page 35
- “Checking if Oracle VTS Is Installed” on page 36
- “Managing Faults (POST)” on page 38
- “Managing Faults (PSH)” on page 48
- “Managing Components (ASR)” on page 54

Related Information

- “Identifying Components” on page 1
- “Preparing for Service” on page 59
- “Returning the Server to Operation” on page 285

Diagnostics Overview

You can use a variety of diagnostic tools, commands, and indicators to monitor and troubleshoot a server:

- **LEDs** – Provide a quick visual notification of the status of the server and of some of the FRUs.
- **Oracle ILOM 3.0** – Runs on the SP. In addition to providing the interface between the hardware and OS, Oracle ILOM also tracks and reports the health of key server components. Oracle ILOM works closely with POST and PSH to keep the system running even when there is a faulty component.

- **POST** – Performs diagnostics on system components upon system reset to ensure the integrity of those components. POST is configurable and works with Oracle ILOM to take faulty components offline if needed.

- **PSH** – Continuously monitors the health of the CPU, memory, and other components, and works with Oracle ILOM to take a faulty component offline if needed. The PSH technology enables systems to accurately predict component failures and mitigate many serious problems before they occur.

- **Log files and command interface** – Provide the standard Oracle Solaris OS log files and investigative commands that can be accessed and displayed on the device of your choice.

- **Oracle VTS** – Exercises the system, provides hardware validation, and discloses possible faulty components with recommendations for repair.

The LEDs, Oracle ILOM, PSH, and many of the log files and console messages are integrated. For example, when the Oracle Solaris OS detects a fault, the software displays the fault, logs the fault, and passes the information to Oracle ILOM, where the fault is also logged. Depending on the fault, one or more LEDs might also be illuminated.

The diagnostic flowchart in “Diagnostics Process” on page 11 illustrates an approach for using the server diagnostics to identify a faulty FRU. The diagnostics you use, and the order in which you use them, depend on the nature of the problem you are troubleshooting. So you might perform some actions and not others.

Related Information

- “Diagnostics Process” on page 11
- “Interpreting Diagnostic LEDs” on page 14
- “Managing Faults (Oracle ILOM)” on page 18
- “Understanding Fault Management Commands” on page 29
- “Interpreting Log Files and System Messages” on page 35
- “Checking if Oracle VTS Is Installed” on page 36
- “Managing Faults (POST)” on page 38
- “Managing Faults (PSH)” on page 48
- “Managing Components (ASR)” on page 54
Diagnostics Process

This flowchart illustrates the diagnostic process, using different diagnostic tools through a default sequence. See also the table that follows the flowchart.
<table>
<thead>
<tr>
<th>Flowchart No.</th>
<th>Diagnostic Action</th>
<th>Possible Outcome</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Check Power OK and AC Present or DC Present LEDs on the server.</td>
<td>If these LEDs are not on, check the power source and power connections to the server.</td>
<td>• “Interpreting Diagnostic LEDs” on page 14</td>
</tr>
</tbody>
</table>
| 2. | Run the Oracle ILOM *show faulty* command to check for faults. | This command displays these kinds of faults: Environmental, PSH-detected, POST-detected. Faulty FRUs are identified in fault messages using the FRU name. | • “Service-Related Oracle ILOM Commands” on page 28
• “Check for Faults (show faulty Command)” on page 24 |
| 3. | Check the Oracle Solaris log files for fault information. | The Oracle Solaris message buffer and log files record system events, and provide information about faults.
• If system messages indicate a faulty device, replace it.
• For more diagnostic information, review the Oracle VTS report (see number 4). | • “Interpreting Log Files and System Messages” on page 35 |
| 4. | Run the Oracle VTS software. |
• If Oracle VTS reports a faulty device, replace it.
• If Oracle VTS does not report a faulty device, run POST (see number 5). | • “Checking if Oracle VTS Is Installed” on page 36
• “Oracle ILOM Properties That Affect POST Behavior” on page 40 |
| 5. | Run POST. | POST performs basic tests of the server components and reports faulty FRUs. | |
| 6. | Determine if the fault was detected by Oracle ILOM. | Determine if the fault is an environmental fault or a configuration fault.
If the fault listed by the *show faulty* command displays a temperature or voltage fault, then the fault is an environmental fault. Environmental faults can be caused by faulty FRUs (power supply or fan), or by environmental conditions such as ambient temperature that is too high or lack of sufficient airflow through the server. When the environmental condition is corrected, the fault automatically clears.
If the fault indicates that a fan or power supply is bad, you can replace the FRU. You can also use the fault LEDs on the server to identify the faulty FRU. | • “Check for Faults (show faulty Command)” on page 24
• “Check for Faults (fmadm faulty Command)” on page 25 |
Detecting and Managing Faults

Flowchart

<table>
<thead>
<tr>
<th>Flowchart No.</th>
<th>Diagnostic Action</th>
<th>Possible Outcome</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.</td>
<td>Determine if the fault was detected by PSH.</td>
<td>If the fault message does not begin with SPT, the fault was detected by PSH.</td>
<td>• “Managing Faults (PSH)” on page 48
• “Clear PSH-Detected Faults” on page 52</td>
</tr>
<tr>
<td></td>
<td>For additional information on a reported fault, including corrective action, go to:</td>
<td>http://support.oracle.com Search for the message ID contained in the fault message. After you replace the FRU, perform the procedure to clear PSH-detected faults.</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Determine if the fault was detected by POST.</td>
<td>POST performs basic tests of the server components and reports faulty FRUs. When POST detects a faulty FRU, POST logs the fault, and if possible, takes the FRU offline. POST-detected FRUs display the text Forced fail reason in the fault message. For additional information on a reported fault, including corrective action, go to:</td>
<td>• “POST-Detected Fault Example (show faulty Command)” on page 33
• “Managing Faults (POST)” on page 38
• “Clear POST-Detected Faults” on page 45</td>
</tr>
<tr>
<td></td>
<td></td>
<td>In a POST fault message, reason is the name of the power-on routine that detected the failure.</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>Contact technical support.</td>
<td>The majority of hardware faults are detected by the server’s diagnostics. In rare cases a problem might require additional troubleshooting. If you are unable to determine the cause of the problem, contact Oracle Support or go to:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>http://support.oracle.com</td>
<td></td>
</tr>
</tbody>
</table>

Related Information

- “Diagnostics Overview” on page 9
- “Interpreting Diagnostic LEDs” on page 14
- “Managing Faults (Oracle ILOM)” on page 18
- “Understanding Fault Management Commands” on page 29
- “Interpreting Log Files and System Messages” on page 35
- “Checking if Oracle VTS Is Installed” on page 36
- “Managing Faults (POST)” on page 38
- “Managing Faults (PSH)” on page 48
- “Managing Components (ASR)” on page 54
Interpreting Diagnostic LEDs

Use these diagnostic LEDs to determine if a component has failed in the server.

- “Front Panel LEDs” on page 14
- “Rear Panel LEDs” on page 16

Related Information

- “Diagnostics Overview” on page 9
- “Diagnostics Process” on page 11
- “Managing Faults (Oracle ILOM)” on page 18
- “Understanding Fault Management Commands” on page 29
- “Interpreting Log Files and System Messages” on page 35
- “Checking if Oracle VTS Is Installed” on page 36
- “Managing Faults (POST)” on page 38
- “Managing Faults (PSH)” on page 48
- “Managing Components (ASR)” on page 54

Front Panel LEDs
<table>
<thead>
<tr>
<th>No.</th>
<th>LED Description</th>
</tr>
</thead>
</table>
| 1 | Locator LED and button (white)
The Locator LED can be turned on to identify a particular system. When on, the LED blinks rapidly. There are two methods for turning a Locator LED on:
• Typing the Oracle ILOM command `set /SYS/LOCATE value=Fast_Blink`
• Pressing the Locator button
• Through the Oracle ILOM web interface, System Monitoring > Indicators. |
| 2 | Service Action Required LED (amber)
Indicates that service is required. POST and Oracle ILOM are two diagnostics tools that can detect a fault or failure resulting in this indication.
The Oracle ILOM `show faulty` command provides details about any faults that cause this indicator to light.
Under some fault conditions, individual component fault LEDs are turned on in addition to the Service Required LED. |
| 3 | Main Power OK LED (green)
Indicates these conditions:
• Off – System is not running in its normal state. System power might be off. The SP might be running.
• Steady on – System is powered on and is running in its normal operating state. No service actions are required.
• Fast blink – System is running in standby mode and can be quickly returned to full function.
• Slow blink – A normal but transitory activity is taking place. Slow blinking might indicate that system diagnostics are running or that the system is booting. |
| 4 | SP Status LED
Indicates the state of the SP:
• Green – Indicates a steady state, no service action is required.
• Amber – Indicates a fault with the fan. |
| 5 | Rear Fan (FM4) Status LED
Indicates the state of fan module FM4:
• Green – Indicates a steady state, no service action is required.
• Amber – Indicates a fault with the SP. |
| 6 | Critical Alarm LED (red)
Indicates a critical alarm condition. |
| 7 | Major Alarm LED (red)
Indicates a major alarm condition. |
| 8 | Minor Alarm LED (amber)
Indicates a minor alarm condition. |
| 9 | User Alarm LED (amber)
Indicates a user alarm condition. |
| 10 | Hard Drive Status LEDs
Ready to Remove LED (top, blue)
Indicates that the drive can be removed during a hot-plug operation.
Service Required LED (middle, amber)
Indicates that the drive has experienced a fault condition. |
Rear Panel LEDs

<table>
<thead>
<tr>
<th>No.</th>
<th>LED</th>
<th>Description</th>
</tr>
</thead>
</table>
| 11 | DVD Drive LED | Activity LED (green)
Indicates read (fast flashing) or write (slow flashing) operation. |
| 12 | Fan Status LEDs | Service Required LED (left, amber)
Indicates a fault with the fan.
OK LED (right, green)
Indicates a steady state, fan operating normally. |

Related Information

- "Rear Panel LEDs" on page 16
<table>
<thead>
<tr>
<th>No.</th>
<th>LED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Chassis Status LEDs</td>
<td>Locator LED and button (left, white)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The Locator LED can be turned on to identify a particular system. When on, the LED blinks rapidly. There are two methods for turning a Locator LED on:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Typing the Oracle ILOM command <code>set /SYS/LOCATE value=Fast_Blink</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Pressing the Locator button</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Service Action Required LED (center, amber)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indicates that service is required. POST and Oracle ILOM are two diagnostics tools that can detect a fault or failure resulting in this indication.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The Oracle ILOM <code>show faulty</code> command provides details about any faults that cause this indicator to light.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Under some fault conditions, individual component fault LEDs are turned on in addition to the Service Required LED.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Main Power OK LED (right, green)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indicates these conditions:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Off – System is not running in its normal state. System power might be off. The SP might be running.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Steady on – System is powered on and is running in its normal operating state. No service actions are required.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Fast blink – System is running in standby mode and can be quickly returned to full function.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Slow blink – A normal but transitory activity is taking place. Slow blinking might indicate that system diagnostics are running or that the system is booting.</td>
</tr>
<tr>
<td>2</td>
<td>Power Supply Status LEDs</td>
<td>Output Power OK LED (top, green)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indicates that output power is without fault.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Service Action Required LED (middle, amber)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indicates that service for the power supply is required. POST and Oracle ILOM are two diagnostic tools that can detect a fault or failure resulting in this indication.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The Oracle ILOM <code>show faulty</code> command provides details about any faults that cause this indicator to light.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AC or DC Input Power OK LED (bottom, green)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indicates that input power is without fault.</td>
</tr>
<tr>
<td>3</td>
<td>Fan FM4 Status LEDs</td>
<td>Service Required LED (left, amber)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indicates a fault with the fan.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OK LED (right, green)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indicates a steady state, fan operating normally.</td>
</tr>
<tr>
<td>No.</td>
<td>LED</td>
<td>Description</td>
</tr>
<tr>
<td>-----</td>
<td>------------------------------</td>
<td>---</td>
</tr>
</tbody>
</table>
| 4 | NET0 to NET3 Status LEDs | Link and Activity LED (left, green)
Indicates these conditions:
• On or blinking – A link is established.
• Off – No link is established.
Speed LED (right, amber)
Indicates these conditions:
• Amber – The link is operating as a Gigabit connection (1000-Mbps).
• Green – The link is operating as a 100-Mbps connection.
• Off – The link is operating as a 10-Mbps connection or there is no link. |
| 5 | Net Management LEDs | Link and Activity LED (left, amber)
Indicates these conditions:
• On or blinking – A link is established.
• Off – No link is established.
Speed LED (right, green)
Indicates these conditions:
• On or blinking – The link is operating as a 100-Mbps connection.
• Off – The link is operating as a 10-Mbps connection. |

Related Information

- “Front Panel LEDs” on page 14

Managing Faults (Oracle ILOM)

These topics explain how to use Oracle ILOM, the SP firmware, to diagnose faults and verify successful repairs.

- “Oracle ILOM Troubleshooting Overview” on page 19
- “Access the SP (Oracle ILOM)” on page 21
- “Display FRU Information (show Command)” on page 23
- “Check for Faults (show faulty Command)” on page 24
- “Check for Faults (fmadm faulty Command)” on page 25
- “Clear Faults (clear_fault_action Property)” on page 26
- “Service-Related Oracle ILOM Commands” on page 28
Oracle ILOM Troubleshooting Overview

Oracle ILOM enables you to remotely run diagnostics, such as POST, that would otherwise require physical proximity to the server’s serial port. You can also configure Oracle ILOM to send email alerts of hardware failures, hardware warnings, and other events related to the server or to Oracle ILOM.

The SP runs independently of the server, using the server’s standby power. Therefore, Oracle ILOM firmware and software continue to function when the server OS goes offline or when the server is powered off.

Error conditions detected by Oracle ILOM, POST, and PSH are forwarded to Oracle ILOM for fault handling.

The Oracle ILOM fault manager evaluates error messages the manager receives to determine whether the condition being reported should be classified as an alert or a fault.

- **Alerts** – When the fault manager determines that an error condition being reported does not indicate a faulty FRU, the fault manager classifies the error as an alert.
Alert conditions are often caused by environmental conditions, such as computer room temperature, which might improve over time. Alerts might also be caused by a configuration error, such as the wrong DIMM type being installed.

If the conditions responsible for the alert go away, the fault manager detects the change and stops logging alerts for that condition.

- **Faults** – When the fault manager determines that a particular FRU has an error condition that is permanent, that error is classified as a fault. This classification causes the Service Required LEDs to be turned on, the FRUID PROMs updated, and a fault message logged. If the FRU has status LEDs, the Service Required LED for that FRU is also turned on.

 A FRU identified as having a *fault* condition must be replaced.

The SP can automatically detect when a FRU has been replaced. In many cases, the SP does this action even if the FRU is removed while the system is not running (for example, if the system power cables are unplugged during service procedures). This function enables Oracle ILOM to sense that a fault, diagnosed to a specific FRU, has been repaired.

Note – Oracle ILOM does not automatically detect hard drive replacement.

PSH does not monitor hard drives for faults. As a result, the SP does not recognize hard drive faults and does not light the fault LEDs on either the chassis or the hard drive itself. Use the Oracle Solaris message files to view hard drive faults.

For general information about Oracle ILOM, refer to the Oracle ILOM 3.0 documentation.

For detailed information about Oracle ILOM features that are specific to this server, refer to *Server Administration*.

Related Information

- “Access the SP (Oracle ILOM)” on page 21
- “Display FRU Information (show Command)” on page 23
- “Check for Faults (show faulty Command)” on page 24
- “Check for Faults (fmadm faulty Command)” on page 25
- “Clear Faults (clear_fault_action Property)” on page 26
- “Service-Related Oracle ILOM Commands” on page 28
Access the SP (Oracle ILOM)

There are two approaches to interacting with the SP:

- **Oracle ILOM CLI shell (default)** – The Oracle ILOM shell provides access to Oracle ILOM’s features and functions through a CLI.
- **Oracle ILOM web interface** – The Oracle ILOM web interface supports the same set of features and functions as the shell.

Note – Unless indicated otherwise, all examples of interaction with the SP are depicted with Oracle ILOM shell commands.

Note – The CLI includes a feature that enables you to access Oracle Solaris fault manager commands, such as `fmadm`, `fmdump`, and `fmstat`, from within the Oracle ILOM shell. This feature is referred to as the Oracle ILOM `faultmgmt` shell. For more information about the Oracle Solaris fault manager commands, refer to Server Administration and the Oracle Solaris documentation.

You can log into multiple SP accounts simultaneously and have separate Oracle ILOM shell commands executing concurrently under each account.

1. Establish connectivity to the SP using one of these methods:
 - **SER MGT** – Connect a terminal device (such as an ASCII terminal or laptop with terminal emulation) to the serial management port.
 Set up your terminal device for 9600 baud, 8 bit, no parity, 1 stop bit and no handshaking. Use a null-modem configuration (transmit and receive signals crossed over to enable DTE-to-DTE communication). The crossover adapters supplied with the server provide a null-modem configuration.
 - **NET MGT** – Connect this port to an Ethernet network. This port requires an IP address. By default, the port is configured for DHCP, or you can assign an IP address.

2. Decide which interface to use, the Oracle ILOM CLI or the Oracle ILOM web interface.

3. Open an SSH session and connect to the SP by specifying its IP address.
 The Oracle ILOM default username is `root`, and the default password is `changeme`.

```
% ssh root@xxx.xxx.xxx.xxx
...  
Are you sure you want to continue connecting (yes/no) ? yes
...
```
Note – To provide optimum server security, change the default server password.

The Oracle ILOM prompt (→) indicates that you are accessing the SP with the Oracle ILOM CLI.

4. Perform Oracle ILOM commands that provide the diagnostic information you need.

These Oracle ILOM commands are commonly used for fault management:

- **show command** – Displays information about individual FRUs. See “Display FRU Information (show Command)” on page 23.
- **show faulty command** – Displays environmental, POST-detected, and PSH-detected faults. See “Check for Faults (show faulty Command)” on page 24.

Note – You can use fmadm faulty in the faultmgmt shell as an alternative to the show faulty command. See “Check for Faults (fmadm faulty Command)” on page 25.

Related Information

- “Oracle ILOM Troubleshooting Overview” on page 19
- “Display FRU Information (show Command)” on page 23
- “Check for Faults (show faulty Command)” on page 24
- “Check for Faults (fmadm faulty Command)” on page 25
- “Clear Faults (clear_fault_action Property)” on page 26
- “Service-Related Oracle ILOM Commands” on page 28
Display FRU Information (show Command)

- At the Oracle ILOM prompt, type the `show` command.
 In this example, the `show` command displays information about a DIMM.

```
-> show /SYS/MB/CMP1/MR1/BOB1/CH1/D0

/SYS/MB/CMP1/MR1/BOB1/CH1/D0
  Targets: 
    T_AMB 
    SERVICE

  Properties:
    type = DIMM 
    ipmi_name = P1/M1/B1/C1/D0 
    component_state = Enabled 
    fru_name = 8192MB DDR3 SDRAM 
    fru_description = DDR3 DIMM 8192 Mbytes 
    fru_manufacturer = Samsung 
    fru_version = 01 
    fru_part_number = 511-1617 
    fru_serial_number = 00CE01104244571506 
    fault_state = OK 
    clear_fault_action = (none)

  Commands:
    cd
    set
    show
```

Related Information
- Oracle ILOM 3.0 documentation
- “Oracle ILOM Troubleshooting Overview” on page 19
- “Access the SP (Oracle ILOM)” on page 21
- “Check for Faults (show faulty Command)” on page 24
- “Check for Faults (fmadm faulty Command)” on page 25
- “Clear Faults (clear_fault_action Property)” on page 26
- “Service-Related Oracle ILOM Commands” on page 28
Check for Faults (show faulty Command)

Use the `show faulty` command to display information about faults and alerts diagnosed by the system.

See “Understanding Fault Management Commands” on page 29 for examples of the kind of information the command displays for different types of faults.

- At the Oracle ILOM prompt, type the `show faulty` command.

<table>
<thead>
<tr>
<th>Target</th>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>/SP/faultmgmt/0</td>
<td>fru</td>
<td>/SYS/PS0</td>
</tr>
<tr>
<td>/SP/faultmgmt/0</td>
<td>class</td>
<td>fault.chassis.power.fail</td>
</tr>
<tr>
<td>faults/0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>/SP/faultmgmt/0</td>
<td>sunw-msg-id</td>
<td>SPT-8000-MJ</td>
</tr>
<tr>
<td>faults/0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>/SP/faultmgmt/0</td>
<td>component</td>
<td>/SYS/PS0</td>
</tr>
<tr>
<td>faults/0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>/SP/faultmgmt/0</td>
<td>uuid</td>
<td>d7d67b9b-ba67-e257-8d8d-bcef2db2</td>
</tr>
<tr>
<td>faults/0</td>
<td></td>
<td>971b</td>
</tr>
<tr>
<td>/SP/faultmgmt/0</td>
<td>timestamp</td>
<td>2011-09-13/15:47:41</td>
</tr>
<tr>
<td>faults/0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>/SP/faultmgmt/0</td>
<td>fru_part_number</td>
<td>300-2304</td>
</tr>
<tr>
<td>faults/0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>/SP/faultmgmt/0</td>
<td>fru_serial_number</td>
<td>C40003</td>
</tr>
<tr>
<td>faults/0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>/SP/faultmgmt/0</td>
<td>product_serial_number</td>
<td>1133BDN082</td>
</tr>
<tr>
<td>faults/0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>/SP/faultmgmt/0</td>
<td>chassis_serial_number</td>
<td>1133BDN082</td>
</tr>
<tr>
<td>faults/0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>/SP/faultmgmt/0</td>
<td>detector</td>
<td>/SYS/PS0/PWROK</td>
</tr>
</tbody>
</table>

Related Information

- “Diagnostics Process” on page 11
- “Oracle ILOM Troubleshooting Overview” on page 19
- “Access the SP (Oracle ILOM)” on page 21
- “Display FRU Information (show Command)” on page 23
- “Check for Faults (fmadm faulty Command)” on page 25
- “Clear Faults (clear_fault_action Property)” on page 26
- “Service-Related Oracle ILOM Commands” on page 28
Check for Faults (fmadm faulty Command)

This is an example of the fmadm faulty command reporting on the same power supply fault as shown in the show faulty example. See “Check for Faults (show faulty Command)” on page 24. Note that the two examples show the same UUID value.

The fmadm faulty command was run from within the Oracle ILOM faultmgmt shell.

Note – The characters SPT at the beginning of the message ID indicate that the fault was detected by Oracle ILOM.

1. At the Oracle ILOM prompt, access the faultmgmt shell.

```
--> start /SP/faultmgmt/shell
Are you sure you want to start /SP/faultmgmt/shell (y/n)? y
```

2. At the faultmgmt> prompt, type the fmadm faulty command.

```
faultmgmt> fmadm faulty
------------------- ------------------------------------ --------------
--------
Time     UUID           msgid      Severity
--------

Fault class : fault.chassis.power.fail
FRU         : /SYS/PS0
            (Part Number: 300-2304)
            (Serial Number: C40003)

Description : A Power Supply has failed and is not providing power to the server.

Response   : The service required LED on the chassis and on the affected Power Supply may be illuminated.

Impact     : Server will be powered down when there are insufficient Power Supply may be illuminated.

Action     : The administrator should review the ILOM event log for additional information pertaining to this diagnosis. Please refer to the Details section of the Knowledge Article for
3. Exit the faultmgmt shell.

faultmgmtsp> exit

Related Information
- “Diagnostics Process” on page 11
- “Oracle ILOM Troubleshooting Overview” on page 19
- “Access the SP (Oracle ILOM)” on page 21
- “Display FRU Information (show Command)” on page 23
- “Check for Faults (show faulty Command)” on page 24
- “Clear Faults (clear_fault_action Property)” on page 26
- “Service-Related Oracle ILOM Commands” on page 28

▼ Clear Faults (clear_fault_action Property)

Use the clear_fault_action property of a FRU with the set command to manually clear Oracle ILOM-detected faults from the SP.

If Oracle ILOM detects the FRU replacement, Oracle ILOM automatically clears the fault. For PSH-diagnosed faults, if the replacement of the FRU is detected by the system or you manually clear the fault on the host, the fault is also cleared from the SP. In such cases, you do not need to clear the fault manually.

---

Note – For PSH-detected faults, this procedure clears the fault from the SP but not from the host. If the fault persists in the host, clear the fault manually as described in “Clear PSH-Detected Faults” on page 52.

• At the Oracle ILOM prompt, use the set command with the clear_fault_action=True property.

This example begins with an excerpt from the fmadm faulty command showing power supply 0 with a voltage failure. After the fault condition is corrected (a new power supply has been installed), the fault state is cleared.
Note – In this example, the characters SPT at the beginning of the message ID indicate that the fault was detected by Oracle ILOM.

```
[...]

faultmgmtsp> fmadm faulty
------------------------------------ -------------- -------
Time UUID msgid Severity
------------------------------------ -------------- -------
2010-08-11/14:54:23 59654226-50d3-cdc6-9f09-e591f39792ca SPT-8000-LC Critical

Fault class : fault.chassis.power.volt-fail

Description : A Power Supply voltage level has exceeded acceptable limits.

[...]

-> set /SYS/PS0 clear_fault_action=true
Are you sure you want to clear /SYS/PS0 (y/n)? y
Set ‘clear_fault_action’ to ‘true’

-> show /SYS/PS0

/SYS/PS0
 Targets:
 PRSNT
 VINOK
 PWROK
 CUR_FAULT
 VOLT_FAULT
 FAN_FAULT
 TEMP_FAULT
 V_IN
 I_IN
 V_OUT
 I_OUT
 INPUT_POWER
 OUTPUT_POWER

Properties:
 type = Power Supply
 ipmi_name = PS0
 fru_name = /SYS/PS0
 fru_description = Powersupply
 fru_manufacturer = Delta Electronics
```
fru_version = 01
fru_part_number = 300-2304
fru_serial_number = C40003
fault_state = OK
clear_fault_action = (none)

Commands:
  cd
  set
  show

## Related Information
- “Oracle ILOM Troubleshooting Overview” on page 19
- “Access the SP (Oracle ILOM)” on page 21
- “Display FRU Information (show Command)” on page 23
- “Check for Faults (show faulty Command)” on page 24
- “Check for Faults (fmadm faulty Command)” on page 25
- “Service-Related Oracle ILOM Commands” on page 28

## Service-Related Oracle ILOM Commands

These are the Oracle ILOM shell commands most frequently used when performing service-related tasks.

<table>
<thead>
<tr>
<th>Oracle ILOM Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>help [command]</td>
<td>Displays a list of all available commands with syntax and descriptions. Specifying a command name as an option displays help for that command.</td>
</tr>
<tr>
<td>set /HOST send_break_action=break</td>
<td>Takes the host server from the OS to either kmdb or OPB (equivalent to a Stop-A), depending on the mode Oracle Solaris software was booted.</td>
</tr>
<tr>
<td>set /SYS/component clear_fault_action=true</td>
<td>Manually clears host-detected faults.</td>
</tr>
<tr>
<td>start /SP/console</td>
<td>Connects to the host system.</td>
</tr>
<tr>
<td>show /SP/console/history</td>
<td>Displays the contents of the system’s console buffer.</td>
</tr>
<tr>
<td>set /HOST/bootevent property=value [where property is state, config, or script]</td>
<td>Controls the host server OPB firmware method of booting.</td>
</tr>
<tr>
<td>stop /SYS; start /SYS</td>
<td>Performs a poweroff followed by a poweron.</td>
</tr>
<tr>
<td>stop /SYS</td>
<td>Powers off the host server.</td>
</tr>
</tbody>
</table>
Detecting and Managing Faults

Related Information

- “Oracle ILOM Troubleshooting Overview” on page 19
- “Access the SP (Oracle ILOM)” on page 21
- “Display FRU Information (show Command)” on page 23
- “Check for Faults (show faulty Command)” on page 24
- “Check for Faults (fmadm faulty Command)” on page 25
- “Clear Faults (clear_fault_action Property)” on page 26

Understanding Fault Management Commands

These topics provide example output from use of the show faulty and fmadm faulty commands.

- “No Faults Detected Example” on page 30
- “Power Supply Fault Example (show faulty Command)” on page 31

---

<table>
<thead>
<tr>
<th>Oracle ILOM Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>start /SYS</td>
<td>Powers on the host server.</td>
</tr>
<tr>
<td>reset /SYS</td>
<td>Generates a hardware reset on the host server.</td>
</tr>
<tr>
<td>reset /SP</td>
<td>Reboots the SP.</td>
</tr>
<tr>
<td>set /SYS keyswitch_state=value normal</td>
<td>standby</td>
</tr>
<tr>
<td>set /SYS/LOCATE value=value [Fast_blink</td>
<td>Off]</td>
</tr>
<tr>
<td>show faulty</td>
<td>Displays current system faults. See “Check for Faults (show faulty Command)” on page 24.</td>
</tr>
<tr>
<td>show /SYS keyswitch_state</td>
<td>Displays the status of the virtual keyswitch.</td>
</tr>
<tr>
<td>show /SYS/LOCATE</td>
<td>Displays the current state of the Locator LED as either on or off.</td>
</tr>
<tr>
<td>show /SP/logs/event/list</td>
<td>Displays the history of all events logged in the SP event buffers (in RAM or the persistent buffers).</td>
</tr>
<tr>
<td>show /HOST</td>
<td>Displays information about the operating state of the host system, the system serial number, and whether the hardware is providing service.</td>
</tr>
</tbody>
</table>
No Faults Detected Example

When no faults have been detected, the `show faulty` command output looks like this:

```
-> show faulty
Target | Property | Value
--------------------+-------------------------------+-------------------
```

Related Information

- “Power Supply Fault Example (show faulty Command)” on page 31
- “Power Supply Fault Example (fmadm faulty Command)” on page 32
- “POST-Detected Fault Example (show faulty Command)” on page 33
- “PSH-Detected Fault Example (show faulty Command)” on page 34
- “Service-Related Oracle ILOM Commands” on page 28
Power Supply Fault Example (show faulty Command)

This is an example of the `show faulty` command reporting a power supply fault.

Note – The characters SPT at the beginning of the message ID indicate that the fault was detected by Oracle ILOM.

```
-- show faulty
Target	Property	Value
/SP/faultmgmt/0 | fru | /SYS/PS0
/SP/faultmgmt/0 | class | fault.chassis.power.volt-fail
faults/0 | | |
/SP/faultmgmt/0 | sunw-msg-id | SPT-8000-LC
faults/0 | | |
/SP/faultmgmt/0 | uuid | 59654226-50d3-cdc6-9f09-e591f39792ca
faults/0 | timestamp | 2010-08-11/14:54:23
faults/0 | fru_part_number | 3002235
faults/0 | fru_serial_number | 003136
faults/0 | product_serial_number| BDL1024FDA
faults/0 | chassis_serial_number| BDL1024FDA
faults/0 | detector | /SYS/PS0/VOLT_FAULT
faults/0 | | |
```

Related Information

- “No Faults Detected Example” on page 30
- “Power Supply Fault Example (fmadm faulty Command)” on page 32
- “POST-Detected Fault Example (show faulty Command)” on page 33
- “PSH-Detected Fault Example (show faulty Command)” on page 34
- “Service-Related Oracle ILOM Commands” on page 28
Power Supply Fault Example (fmadm faulty Command)

This is an example of the `fmadm faulty` command reporting on the same power supply fault as shown in the `show faulty` example. See “Power Supply Fault Example (show faulty Command)” on page 31. The two examples show the same UUID value.

The `fmadm faulty` command was run from within the Oracle ILOM `faultmgmt` shell.

Note – The characters `SPT` at the beginning of the message ID indicate that the fault was detected by Oracle ILOM.

```
--> start /SP/faultmgmt/shell
Are you sure you want to start /SP/faultmgmt/shell (y/n)? y

faultmgmtsp> fmadm faulty
------------------------------- ------------------------------------ -------------- -------
Time UUID msgid Severity
------------------------------- ------------------------------------ -------------- -------
2010-08-11/14:54:23 59654226-50d3-cdc6-9f09-e591f39792ca SPT-8000-LC Critical

Fault class : fault.chassis.power.volt-fail
Description : A Power Supply voltage level has exceeded acceptable limits.
Response : The service required LED on the chassis and on the affected Power Supply might be illuminated.
Impact : Server will be powered down when there are insufficient operational power supplies
Action : The administrator should review the ILOM event log for additional information pertaining to this diagnosis. Please refer to the Details section of the Knowledge Article for additional information.

faultmgmtsp> exit
```

Related Information

- “No Faults Detected Example” on page 30
- “Power Supply Fault Example (show faulty Command)” on page 31
POST-Detected Fault Example (show faulty Command)

This is an example of the `show faulty` command displaying a fault that was detected by POST. These kinds of faults are identified by the message ` Forced fail reason`, where `reason` is the name of the power-on routine that detected the fault.

```
<table>
<thead>
<tr>
<th>Target</th>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>/SP/faultmgmt/0</td>
<td>fru</td>
<td>/SYS/MB/CMP1/MR1/BOB1/CH1/D0</td>
</tr>
<tr>
<td>/SP/faultmgmt/0</td>
<td>timestamp</td>
<td>Oct 12 16:40:56</td>
</tr>
<tr>
<td>/SP/faultmgmt/0/</td>
<td>timestamp</td>
<td>Oct 12 16:40:56</td>
</tr>
<tr>
<td>faults/0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>/SP/faultmgmt/0/</td>
<td>sp_detected_fault</td>
<td>/SYS/MB/CMP1/MR1/BOB1/CH1/D0</td>
</tr>
<tr>
<td>faults/0</td>
<td></td>
<td>Forced fail(POST)</td>
</tr>
</tbody>
</table>
```

Related Information

- “No Faults Detected Example” on page 30
- “Power Supply Fault Example (show faulty Command)” on page 31
- “Power Supply Fault Example (fmadm faulty Command)” on page 32
- “PSH-Detected Fault Example (show faulty Command)” on page 34
- “Service-Related Oracle ILOM Commands” on page 28
PSH-Detected Fault Example (show faulty Command)

This is an example of the show faulty command displaying a fault that was detected by PSH. These kinds of faults are identified by the absence of the characters SPT at the beginning of the message ID.

```
- show faulty
Target | Property | Value
--------------------+------------------------+--------------------------------
/SP/faultmgmt/0 | fru | /SYS/PM0
/SP/faultmgmt/0/ | class | fault.cpu.generic-sparc.strand
faults/0 | |
/SP/faultmgmt/0/ | sunw-msg-id | SUN4V-8002-6E
faults/0 | |
/SP/faultmgmt/0/ | uuid | 21a8b59e-89ff-692a-c4bc-f4c5cccc
faults/0 | | 7a8a
/SP/faultmgmt/0/ | timestamp | 2010-08-13/15:48:33
faults/0 | |
/SP/faultmgmt/0/ | chassis_serial_number | BDL1024FDA
faults/0 | |
/SP/faultmgmt/0/ | product_serial_number | BDL1024FDA
faults/0 | |
/SP/faultmgmt/0/ | fru_serial_number | 1005LCB-1018B2009T
faults/0 | |
/SP/faultmgmt/0/ | fru_part_number | 541-3857-07
faults/0 | |
/SP/faultmgmt/0/ | mod-version | 1.16
faults/0 | |
/SP/faultmgmt/0/ | mod-name | eft
faults/0 | |
/SP/faultmgmt/0/ | fault_diagnosis | /HOST
faults/0 | |
/SP/faultmgmt/0/ | severity | Major
faults/0
```

Related Information

- “No Faults Detected Example” on page 30
- “Power Supply Fault Example (show faulty Command)” on page 31
- “Power Supply Fault Example (fmadm faulty Command)” on page 32
- “POST-Detected Fault Example (show faulty Command)” on page 33
- “Service-Related Oracle ILOM Commands” on page 28
Interpreting Log Files and System Messages

With the Oracle Solaris OS running on the server, you have the full complement of Oracle Solaris OS files and commands available for collecting information and for troubleshooting.

If POST or PSH do not indicate the source of a fault, check the message buffer and log files for notifications for faults. Hard drive faults are usually captured by the Oracle Solaris message files.

- “Check the Message Buffer” on page 35
- “View System Message Log Files” on page 36

Related Information

- “Diagnostics Overview” on page 9
- “Diagnostics Process” on page 11
- “Interpreting Diagnostic LEDs” on page 14
- “Managing Faults (Oracle ILOM)” on page 18
- “Understanding Fault Management Commands” on page 29
- “Checking if Oracle VTS Is Installed” on page 36
- “Managing Faults (POST)” on page 38
- “Managing Faults (PSH)” on page 48
- “Managing Components (ASR)” on page 54

▼ Check the Message Buffer

The `dmesg` command checks the system buffer for recent diagnostic messages and displays them.

1. Log in as superuser.
2. Type.

```
dmesg
```
Related Information
■ “View System Message Log Files” on page 36

▼ View System Message Log Files

The error logging daemon, syslogd, automatically records various system warnings, errors, and faults in message files. These messages can alert you to system problems such as a device that is about to fail.

The /var/adm directory contains several message files. The most recent messages are in the /var/adm/messages file. After a period of time (usually every week), a new messages file is automatically created. The original contents of the messages file are rotated to a file named messages.1. Over a period of time, the messages are further rotated to messages.2 and messages.3, and then deleted.

1. Log in as superuser.
2. Type.

```
more /var/adm/messages
```

3. If you want to view all logged messages, type.

```
more /var/adm/messages*
```

Related Information
■ “Check the Message Buffer” on page 35

---

Checking if Oracle VTS Is Installed

Oracle VTS is a validation test suite that you can use to test this server. These topics provide an overview and a way to check if the Oracle VTS software is installed. For comprehensive Oracle VTS information, refer to the SunVTS 6.1 and Oracle VTS 7.0 documentation.

■ “Oracle VTS Overview” on page 37
■ “Check if Oracle VTS Is Installed” on page 38
Related Information

- “Diagnostics Overview” on page 9
- “Diagnostics Process” on page 11
- “Interpreting Diagnostic LEDs” on page 14
- “Managing Faults (Oracle ILOM)” on page 18
- “Understanding Fault Management Commands” on page 29
- “Interpreting Log Files and System Messages” on page 35
- “Managing Faults (POST)” on page 38
- “Managing Faults (PSH)” on page 48
- “Managing Components (ASR)” on page 54

Oracle VTS Overview

Oracle VTS is a validation test suite that you can use to test this server. The Oracle VTS software provides multiple diagnostic hardware tests that verify the connectivity and functionality of most hardware controllers and devices for this server. The software provides these kinds of test categories:

- Audio
- Communication (serial and parallel)
- Graphic and video
- Memory
- Network
- Peripherals (hard drives, CD-DVD devices, and printers)
- Processor
- Storage

Use the Oracle VTS software to validate a system during development, production, receiving inspection, troubleshooting, periodic maintenance, and system or subsystem stressing.

You can run the Oracle VTS software through a web browser, a terminal interface, or a CLI.

You can run tests in a variety of modes for online and offline testing.

The Oracle VTS software also provides a choice of security mechanisms.

The Oracle VTS software is provided on the preinstalled Oracle Solaris OS that shipped with the server, however, Oracle VTS might not be installed.
Check if Oracle VTS Is Installed

1. Log in as superuser.
2. Check for the presence of Oracle VTS packages using the `pkginfo` command.

```bash
pkginfo -l SUNvts SUNWvtsr SUNWvtsts SUNWvtsmn
```

- If information about the packages is displayed, then the Oracle VTS software is installed.
- If you receive messages reporting `ERROR: information for package was not found`, then the Oracle VTS software is not installed. You must install the software before you can use it. You can obtain the Oracle VTS software from these places:
  - Oracle Solaris OS media kit (DVDs)
  - As a download from the web.

Related Information
- “Oracle VTS Overview” on page 37
- Oracle VTS documentation

Managing Faults (POST)

These topics explain how to use POST as a diagnostic tool.
- “POST Overview” on page 39
- “Oracle ILOM Properties That Affect POST Behavior” on page 40
- “Configure POST” on page 42
- “Run POST With Maximum Testing” on page 43
- “Interpret POST Fault Messages” on page 44
- “Clear POST-Detected Faults” on page 45
- “POST Output Reference” on page 46
Related Information

- “Diagnostics Overview” on page 9
- “Diagnostics Process” on page 11
- “Interpreting Diagnostic LEDs” on page 14
- “Managing Faults (Oracle ILOM)” on page 18
- “Understanding Fault Management Commands” on page 29
- “Interpreting Log Files and System Messages” on page 35
- “Checking if Oracle VTS Is Installed” on page 36
- “Managing Faults (PSH)” on page 48
- “Managing Components (ASR)” on page 54

POST Overview

POST is a group of PROM-based tests that run when the server is powered on or is reset. POST checks the basic integrity of the critical hardware components in the server (CMP, memory, and I/O subsystem).

You can also run POST as a system-level hardware diagnostic tool. Use the Oracle ILOM `set` command to set the parameter `keyswitch_state` to `diag`.

You can also set other Oracle ILOM properties to control various other aspects of POST operations. For example, you can specify the events that cause POST to run, the level of testing POST performs, and the amount of diagnostic information POST displays. These properties are listed and described in “Oracle ILOM Properties That Affect POST Behavior” on page 40.

If POST detects a faulty component, the component is disabled automatically. If the system is able to run without the disabled component, the system boots when POST completes its tests. For example, if POST detects a faulty processor core, the core is disabled. Once POST completes its test sequence, the system boots and run, using the remaining cores.

Related Information

- “Oracle ILOM Properties That Affect POST Behavior” on page 40
- “Configure POST” on page 42
- “Run POST With Maximum Testing” on page 43
- “Interpret POST Fault Messages” on page 44
- “Clear POST-Detected Faults” on page 45
- “POST Output Reference” on page 46
Oracle ILOM Properties That Affect POST Behavior

These Oracle ILOM properties determine how POST performs its operations. See also the flowchart that follows the table.

**Note** – The value of `keyswitch_state` must be `normal` when individual POST parameters are changed.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/SYS keyswitch_state</td>
<td>normal</td>
<td>The system can power on and run POST (based on the other parameter settings). This parameter overrides all other commands.</td>
</tr>
<tr>
<td></td>
<td>diag</td>
<td>The system runs POST based on predetermined settings: <code>level=max</code>, <code>verbosity=max</code>, <code>trigger=all-reset</code></td>
</tr>
<tr>
<td></td>
<td>standby</td>
<td>The system cannot power on.</td>
</tr>
<tr>
<td></td>
<td>locked</td>
<td>The system can power on and run POST, but no flash updates can be made.</td>
</tr>
<tr>
<td>/HOST/diag mode</td>
<td>off</td>
<td>POST does not run.</td>
</tr>
<tr>
<td></td>
<td>normal</td>
<td>Runs POST according to <code>diag level</code> value.</td>
</tr>
<tr>
<td></td>
<td>service</td>
<td>Runs POST with preset values for <code>diag level</code> and <code>diag verbosity</code>.</td>
</tr>
<tr>
<td>/HOST/diag level</td>
<td>max</td>
<td>If <code>mode = normal</code>, runs all the minimum tests plus extensive processor and memory tests.</td>
</tr>
<tr>
<td></td>
<td>min</td>
<td>If <code>mode = normal</code>, runs the minimum set of tests.</td>
</tr>
<tr>
<td>/HOST/diag trigger</td>
<td>none</td>
<td>Does not run POST on reset.</td>
</tr>
<tr>
<td></td>
<td>hw-change</td>
<td>(Default) Runs POST following an AC power cycle and when the top cover is removed.</td>
</tr>
<tr>
<td></td>
<td>power-on-reset</td>
<td>Runs POST only for the first power on.</td>
</tr>
<tr>
<td></td>
<td>error-reset</td>
<td>(Default) Runs POST if fatal errors are detected.</td>
</tr>
<tr>
<td></td>
<td>all-resets</td>
<td>Runs POST after any reset.</td>
</tr>
<tr>
<td>/HOST/diag verbosity</td>
<td>normal</td>
<td>POST output displays all test and informational messages.</td>
</tr>
<tr>
<td></td>
<td>min</td>
<td>POST output displays functional tests with a banner and pinwheel.</td>
</tr>
</tbody>
</table>
Detecting and Managing Faults

Related Information

- “POST Overview” on page 39
- “Configure POST” on page 42
- “Run POST With Maximum Testing” on page 43

Parameter	Values	Description
max	POST displays all test and informational messages, and some debugging messages.	
debug	POST displays extensive debugging output on the system console, including the devices being tested and the debug output of each test.	
none	No POST output is displayed.	


Configure POST

1. Access the Oracle ILOM prompt.
   See “Access the SP (Oracle ILOM)” on page 21.

2. Set the virtual keyswitch to the value that corresponds to the POST configuration you want to run.
   This example sets the virtual keyswitch to normal, which configures POST to run according to other parameter values.

   ```
 -> set /SYS keyswitch_state=normal
 Set 'keyswitch_state' to 'Normal'
   ```

   For possible values for the keyswitch_state parameter, see “Oracle ILOM Properties That Affect POST Behavior” on page 40.

3. If the virtual keyswitch is set to normal, and you want to define the mode, level, verbosity, or trigger, set the respective parameters.
   Syntax:
   ```
 set /HOST/diag property=value
   ```
   See “Oracle ILOM Properties That Affect POST Behavior” on page 40 for a list of parameters and values.

   ```
 -> set /HOST/diag mode=normal
 -> set /HOST/diag verbosity=max
   ```

4. To see the current values for settings, use the show command.

   ```
 -> show /HOST/diag
 /HOST/diag
 Targets:
 Properties:
 level = min
 mode = normal
 trigger = power-on-reset error-reset
 verbosity = normal
   ```
Run POST With Maximum Testing

1. Access the Oracle ILOM prompt:
   
   See “Access the SP (Oracle ILOM)” on page 21.

2. Set the virtual keyswitch to **diag** so that POST runs in service mode.

   ```
 -> set /SYS/keyswitch_state=diag
 Set ‘keyswitch_state’ to ‘Diag’
   ```

3. Reset the system so that POST runs.
   
   There are several ways to initiate a reset. This example shows a reset by using commands that power cycle the host.

   ```
 -> stop /SYS
 Are you sure you want to stop /SYS (y/n)? y
 Stopping /SYS
 -> start /SYS
 Are you sure you want to start /SYS (y/n)? y
 Starting /SYS
   ```

   **Note** – The server takes about one minute to power off. Use the `show /HOST` command to determine when the host has been powered off. The console displays `status=Powered Off`. 
4. Switch to the system console to view the POST output.

```
> start /HOST/console
```

5. If you receive POST error messages, learn how to interpret them.
   See “Interpret POST Fault Messages” on page 44.

Related Information
- “POST Overview” on page 39
- “Oracle ILOM Properties That Affect POST Behavior” on page 40
- “Configure POST” on page 42
- “Interpret POST Fault Messages” on page 44
- “Clear POST-Detected Faults” on page 45
- “POST Output Reference” on page 46

▼ Interpret POST Fault Messages

1. Run POST.
   See “Run POST With Maximum Testing” on page 43.

2. View the output and watch for messages that look similar to the POST syntax.
   See “POST Output Reference” on page 46.

3. To obtain more information on faults, run the `show faulty` command.
   See “Check for Faults (show faulty Command)” on page 24.

Related Information
- “POST Overview” on page 39
- “Oracle ILOM Properties That Affect POST Behavior” on page 40
- “Configure POST” on page 42
- “Run POST With Maximum Testing” on page 43
- “Clear POST-Detected Faults” on page 45
- “POST Output Reference” on page 46
Clear POST-Detected Faults

Use this procedure if you suspect that a fault was not automatically cleared. This procedure describes how to identify a POST-detected fault and, if necessary, manually clear the fault.

In most cases, when POST detects a faulty component, POST logs the fault and automatically takes the failed component out of operation by placing the component in the ASR blacklist. See “Managing Components (ASR)” on page 54.

Usually, when a faulty component is replaced, the replacement is detected when the SP is reset or power cycled. The fault is automatically cleared from the system.

1. Replace the faulty FRU.
2. At the Oracle ILOM prompt, type the show faulty command to identify POST-detected faults.

   POST-detected faults are distinguished from other kinds of faults by the text: Forced fail. No UUID number is reported. For example:

```
 $ show faulty

<table>
<thead>
<tr>
<th>Target</th>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>/SP/faultmgmt/0</td>
<td>fru</td>
<td>/SYS/MB/CMP1/MR1/BOB1/CH1/D0</td>
</tr>
<tr>
<td>/SP/faultmgmt/0</td>
<td>timestamp</td>
<td>Dec 21 16:40:56</td>
</tr>
<tr>
<td>/SP/faultmgmt/0/</td>
<td>timestamp</td>
<td>Dec 21 16:40:56</td>
</tr>
<tr>
<td>faults/0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>/SP/faultmgmt/0/</td>
<td>sp_detected_fault</td>
<td>/SYS/MB/CMP1/MR1/BOB1/CH1/D0</td>
</tr>
<tr>
<td>faults/0</td>
<td></td>
<td>Forced fail(POST)</td>
</tr>
</tbody>
</table>
```

3. Take one of these actions based on the output:
   - No fault is reported – The system cleared the fault and you do not need to manually clear the fault. Do not perform the subsequent steps.
   - Fault reported – Go to Step 4.
4. **Use the component_state property of the component to clear the fault and remove the component from the ASR blacklist.**

Use the FRU name that was reported in the fault in Step 2.

```bash
-> set /SYS/MB/CMP1/MR1/BOB1/CH1/D0 component_state=Enabled
```

The fault is cleared and should not show up when you run the `show faulty` command. Additionally, the System Fault (Service Required) LED is no longer lit.

5. **Reset the server.**

You must reboot the server for the component_state property to take effect.

6. **At the Oracle ILOM prompt, type the show faulty command to verify that no faults are reported.**

```bash
-> show faulty
```

<table>
<thead>
<tr>
<th>Target</th>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Related Information**

- “POST Overview” on page 39
- “Oracle ILOM Properties That Affect POST Behavior” on page 40
- “Configure POST” on page 42
- “Run POST With Maximum Testing” on page 43
- “Interpret POST Fault Messages” on page 44
- “POST Output Reference” on page 46

**POST Output Reference**

POST error messages use this syntax:

- `n:c:s > ERROR: TEST = failing-test`
- `n:c:s > H/W under test = FRU`
- `n:c:s > Repair Instructions: Replace items in order listed by H/W under test above`
- `n:c:s > MSG = test-error-message`
- `n:c:s > END_ERROR`

In this syntax, `n` = the node number, `c` = the core number, `s` = the strand number.
Warning messages use this syntax:

\[
\text{WARNING: message}
\]

Informational messages use this syntax:

\[
\text{INFO: message}
\]

In this example, POST reports an uncorrectable memory error affecting DIMM locations /SYS/PM0/CMP0/B0B0/CH0/D0 and /SYS/PM0/CMP0/B0B1/CH0/D0. The error was detected by POST running on node 0, core 7, strand 2.
Related Information

- “POST Overview” on page 39
- “Oracle ILOM Properties That Affect POST Behavior” on page 40
- “Configure POST” on page 42
- “Run POST With Maximum Testing” on page 43
- “Interpret POST Fault Messages” on page 44
- “Clear POST-Detected Faults” on page 45

Managing Faults (PSH)

These topics describe PSH and how to use it.

- “PSH Overview” on page 49
- “PSH-Detected Fault Example” on page 50
- “Check for PSH-Detected Faults” on page 51
- “Clear PSH-Detected Faults” on page 52
Related Information

- “Diagnostics Overview” on page 9
- “Diagnostics Process” on page 11
- “Interpreting Diagnostic LEDs” on page 14
- “Managing Faults (Oracle ILOM)” on page 18
- “Understanding Fault Management Commands” on page 29
- “Interpreting Log Files and System Messages” on page 35
- “Checking if Oracle VTS Is Installed” on page 36
- “Managing Faults (POST)” on page 38
- “Managing Components (ASR)” on page 54

PSH Overview

PSH enables the server to diagnose problems while the Oracle Solaris OS is running and mitigate many problems before they negatively affect operations.

The Oracle Solaris OS uses the fault manager daemon, fmd(1M), which starts at boot time and runs in the background to monitor the system. If a component generates an error, the daemon correlates the error with data from previous errors and other relevant information to diagnose the problem. Once diagnosed, the fault manager daemon assigns a UUID to the error. This value distinguishes this error across any set of systems.

When possible, the fault manager daemon initiates steps to self-heal the failed component and take the component offline. The daemon also logs the fault to the syslogd daemon and provides a fault notification with a MSGID. You can use the MSGID to get additional information about the problem from the knowledge article database.

The PSH technology covers these server components:

- CPU
- Memory
- I/O subsystem

The PSH console message provides this information about each detected fault:

- Type
- Severity
- Description
- Automated response
- Impact
Suggested action for a system administrator

If PSH detects a faulty component, use the `fmadm faulty` command to display information about the fault. Alternatively, you can use the Oracle ILOM command `show faulty` for the same purpose.

Related Information

- “PSH-Detected Fault Example” on page 50
- “Check for PSH-Detected Faults” on page 51
- “Clear PSH-Detected Faults” on page 52

PSH-Detected Fault Example

When a PSH fault is detected, an Oracle Solaris console message similar to this example is displayed.

```
SUNW-MSG-ID: SUN4V-8000-DX, TYPE: Fault, VER: 1, SEVERITY: Minor
PLATFORM: SUNW,system_name, CSN: -, HOSTNAME: server48-37
SOURCE: cpumem-diagnosis, REV: 1.5
EVENT-ID: f92e9fbc-735e-c218-cf87-9e1720a28004
DESC: The number of errors associated with this memory module has exceeded acceptable levels. Refer to http://sun.com/msg/SUN4V-8000-DX for more information.
AUTO-RESPONSE: Pages of memory associated with this memory module are being removed from service as errors are reported.
IMPACT: Total system memory capacity will be reduced as pages are retired.
REC-ACTION: Schedule a repair procedure to replace the affected memory module. Use fmdump -v -u <EVENT_ID> to identify the module.
```

Note – The Service Required LED is also turned on for PSH-diagnosed faults.

Related Information

- “PSH Overview” on page 49
- “Check for PSH-Detected Faults” on page 51
- “Clear PSH-Detected Faults” on page 52
Check for PSH-Detected Faults

The `fmadm faulty` command displays the list of faults detected by PSH. You can run this command either from the host or through the Oracle ILOM `fmadm` shell.

As an alternative, you can display fault information by running the Oracle ILOM command `show`.

1. Check the event log.

```
fmadm faulty
TIME EVENT-ID MSG-ID SEVERITY
Aug 13 11:48:33 21a8b59e-89ff-692a-c4bc-f4c5ccccca8c8 SUN4V-8002-6E Major

Platform : sun4v Chassis_id :
Product_sn :

Fault class : fault.cpu.generic-sparc.strand
Affects : cpu:///cpuid=21/serial=00000000000000000000000000000000
faulted and taken out of service
FRU : */SYS/PM0*
{hc://product-id=sun4v:product-sn=BDL1024FDA:server-id=
 s4v-t5160a-bur02:chassis-id=BDL1024FDA:serial=1005LCB-1019B100A2:part=
 511127809:revision=05/chassis=0/motherboard=0)
faulty

Description : The number of correctable errors associated with this strand has exceeded acceptable levels.
Refer to http://sun.com/msg/SUN4V-8002-6E for more information.

Response : The fault manager will attempt to remove the affected strand from service.

Impact : System performance might be affected.

Action : Schedule a repair procedure to replace the affected resource, the identity of which can be determined using 'fmadm faulty'.
```

In this example, a fault is displayed, indicating these details:

- Date and time of the fault (Aug 13 11:48:33).
- EVENT-ID, which is unique for every fault (21a8b59e-89ff-692a-c4bc-f4c5ccccca8c8).
- MSG-ID, which can be used to obtain additional fault information (SUN4V-8002-6E).
Faulted FRU. The information provided in the example includes the part number of the FRU (part=511127809) and the serial number of the FRU (serial=1005LCB-1019B100A2). The FRU field provides the name of the FRU (/SYS/PM0 for processor module 1 in this example).

2. Use the message ID to obtain more information about this type of fault.
   a. Obtain the MSGID from console output or from the Oracle ILOM show faulty command.
   b. Go to:
      http://support.oracle.com
      Search for the message ID in the Knowledge Base.

3. Follow the suggested actions to repair the fault.

Related Information
   ■ “PSH Overview” on page 49
   ■ “PSH-Detected Fault Example” on page 50
   ■ “Clear PSH-Detected Faults” on page 52

▼ Clear PSH-Detected Faults

When the PSH detects faults, the faults are logged and displayed on the console. In most cases, after the fault is repaired, the server detects the corrected state and automatically repairs the fault. However, you should verify this repair. In cases where the fault condition is not automatically cleared, you must clear the fault manually.

1. After replacing a faulty FRU, power on the server.

2. At the host prompt, determine whether the replaced FRU still shows a faulty state.

```bash
fmadm faulty
TIME EVENT-ID MSG-ID SEVERITY
Aug 13 11:48:33 21a8b59e-89ff-692a-c4bc-f4c5ccca8c8 SUN4V-8002-6E Major

Platform : sun4v Chassis_id :
Product_sn :

Fault class : fault.cpu.generic-sparc.strand
Affects : cpu:///cpuid=21/serial=00000000000000000000000000000000 faulted and taken out of service
```
If no fault is reported, you do not need to do anything else. Do not perform the subsequent steps. If a fault is reported, continue to Step 3.

3. Clear the fault from all persistent fault records.

In some cases, even though the fault is cleared, some persistent fault information remains and results in erroneous fault messages at boot time. To ensure that these messages are not displayed, type this Oracle Solaris command:

```sh
fmadm repair UUID
```

For the UUID in the example shown in Step 2, type this command:

```sh
fmadm repair 21a8b59e-89ff-692a-c4bc-f4c5cccc
```

4. Use the clear_fault_action property of the FRU to clear the fault.

```sh
-> set /SYS/PM0 clear_fault_action=True
Are you sure you want to clear /SYS/PM0 (y/n)? y
set 'clear_fault_action' to 'true'
```

Related Information

- “PSH Overview” on page 49
- “PSH-Detected Fault Example” on page 50
- “Check for PSH-Detected Faults” on page 51
Managing Components (ASR)

These topics explain the role played by ASR and how to manage the components that ASR controls.

- “ASR Overview” on page 54
- “Display System Components” on page 55
- “Disable System Components” on page 56
- “Enable System Components” on page 57

Related Information
- “Diagnostics Overview” on page 9
- “Diagnostics Process” on page 11
- “Interpreting Diagnostic LEDs” on page 14
- “Managing Faults (Oracle ILOM)” on page 18
- “Understanding Fault Management Commands” on page 29
- “Interpreting Log Files and System Messages” on page 35
- “Checking if Oracle VTS Is Installed” on page 36
- “Managing Faults (POST)” on page 38
- “Managing Faults (PSH)” on page 48

ASR Overview

The ASR feature enables the server to automatically configure failed components out of operation until they can be replaced. In the server, ASR manages these components:

- CPU strands
- Memory DIMMs
- I/O subsystem

The database that contains the list of disabled components is the ASR blacklist (`asr-db`).

In most cases, POST automatically disables a faulty component. After the cause of the fault is repaired (FRU replacement, loose connector reseated, and so on), you might need to remove the component from the ASR blacklist.
These ASR commands enable you to view, add, or remove components (asrkeys) from the ASR blacklist. You run these commands from the Oracle ILOM prompt.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show components</td>
<td>Displays system components and their current state.</td>
</tr>
<tr>
<td>set asrkey component_state=Enabled</td>
<td>Removes a component from the asr-db blacklist, where asrkey is the component to enable.</td>
</tr>
<tr>
<td>set asrkey component_state=Disabled</td>
<td>Adds a component to the asr-db blacklist, where asrkey is the component to disable.</td>
</tr>
</tbody>
</table>

**Note** – The asrkeys vary from system to system, depending on how many cores and memory are present. Use the show components command to see the asrkeys on a given system.

After you enable or disable a component, you must reset (or power cycle) the system for the component’s change of state to take effect.

**Related Information**
- “Display System Components” on page 55
- “Disable System Components” on page 56
- “Enable System Components” on page 57

**▼ Display System Components**

The show components command displays the system components (asrkeys) and reports their status.

- **At the Oracle ILOM prompt, type show components.**
  In this example, PCI-EM3 is shown as disabled.

```
$ show components
Target | Property | Value
--------------------+------------------------+-------------------------------
/SYS/MB/REM0/ | component_state | Enabled
SASHBA0 | |
/SYS/MB/REM1/ | component_state | Enabled
SASHBA1 | |
/SYS/MB/VIDEO | component_state | Enabled
/SYS/MB/PCI- | component_state | Enabled
```

Detecting and Managing Faults  55
Disable System Components

You disable a component by setting its component_state property to Disabled. This action adds the component to the ASR blacklist.

1. At the Oracle ILOM prompt, set the component_state property to Disabled.

```bash
-> set /SYS/MB/CMP1/MR1/BOB1/CH1/D0 component_state=Disabled
```

2. Reset the server so that the ASR command takes effect.

```bash
-> stop /SYS
Are you sure you want to stop /SYS (y/n)? y
Stopping /SYS

-> start /SYS
Are you sure you want to start /SYS (y/n)? y
Starting /SYS
```

**Note** – In the Oracle ILOM shell, there is no notification when the system is powered off. Powering off takes about a minute. Use the `show /HOST` command to determine if the host has powered off.

**Related Information**
- “View System Message Log Files” on page 36
- “ASR Overview” on page 54
“Display System Components” on page 55
“Enable System Components” on page 57

Enable System Components

You enable a component by setting its `component_state` property to `Enabled`. This action removes the component from the ASR blacklist.

1. At the Oracle ILOM prompt, set the `component_state` property to `Enabled`.

```
-> set /SYS/MB/CMP1/MR1/BOB1/CH1/D0 component_state=Enabled
```

2. Reset the server so that the ASR command takes effect.

```
-> stop /SYS
Are you sure you want to stop /SYS (y/n)? y
Stopping /SYS
-> start /SYS
Are you sure you want to start /SYS (y/n)? y
Starting /SYS
```

Note – In the Oracle ILOM shell, there is no notification when the system is powered off. Powering off takes about a minute. Use the `show /HOST` command to determine if the host has powered off.

Related Information

- “View System Message Log Files” on page 36
- “ASR Overview” on page 54
- “Display System Components” on page 55
- “Disable System Components” on page 56
Preparing for Service

These topics describe how to prepare the server for servicing.

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Review safety and handling information.</td>
<td>“Safety Information” on page 59</td>
</tr>
<tr>
<td>2.</td>
<td>Gather the tools for service.</td>
<td>“Tools Needed for Service” on page 61</td>
</tr>
<tr>
<td>3.</td>
<td>Consider filler panel options.</td>
<td>“Filler Panels” on page 62</td>
</tr>
<tr>
<td>4.</td>
<td>Find the server serial number.</td>
<td>“Find the Server Serial Number” on page 63</td>
</tr>
<tr>
<td>5.</td>
<td>Identify the server to be serviced.</td>
<td>“Locate the Server” on page 64</td>
</tr>
<tr>
<td>6.</td>
<td>Locate the component service information.</td>
<td>“Component Service Task Reference” on page 65</td>
</tr>
<tr>
<td>7.</td>
<td>For cold-service operations, shut down the OS and move the server out of the rack.</td>
<td>“Removing Power From the Server” on page 66</td>
</tr>
<tr>
<td>8.</td>
<td>Gain access to internal components.</td>
<td>“Accessing Internal Components” on page 69</td>
</tr>
</tbody>
</table>

Related Information
- “Identifying Components” on page 1
- “Detecting and Managing Faults” on page 9
- “Returning the Server to Operation” on page 285

Safety Information

For your protection, observe these safety precautions when setting up your equipment:
- Follow all cautions and instructions marked on the equipment and described in the documentation shipped with your system.
- Follow all cautions and instructions marked on the equipment and described in the Netra SPARC T4-2 Server Safety and Compliance Guide.
■ Ensure that the voltage and frequency of your power source match the voltage and frequency inscribed on the equipment’s electrical rating label.
■ Follow the electrostatic discharge safety practices as described here.

Safety Symbols

Note the meanings of these symbols that might appear in this document.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>⚠️</td>
<td>Caution – There is a risk of personal injury or equipment damage. To avoid personal injury and equipment damage, follow the instructions.</td>
</tr>
<tr>
<td>⚠️⚠️⚠️</td>
<td>Caution – Hot surface. Avoid contact. Surfaces are hot and might cause personal injury if touched.</td>
</tr>
<tr>
<td>⚠️ ⚡</td>
<td>Caution – Hazardous voltages are present. To reduce the risk of electric shock and danger to personal health, follow the instructions.</td>
</tr>
</tbody>
</table>

ESD Measures

ESD-sensitive devices, such as PCI cards, hard drives, and DIMMs require special handling.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>⚠️</td>
<td>Caution – Circuit boards and hard drives contain electronic components that are extremely sensitive to static electricity. Ordinary amounts of static electricity from clothing or the work environment can destroy the components located on these boards. Do not touch the components along their connector edges.</td>
</tr>
<tr>
<td>⚠️</td>
<td>Caution – You must disconnect all power supplies before servicing any of the components that are inside the chassis.</td>
</tr>
</tbody>
</table>
Antistatic Wrist Strap Use

Wear an antistatic wrist strap and use an antistatic mat when handling components such as hard drive assemblies, circuit boards, or express modules. When servicing or removing server components, attach an antistatic strap to your wrist and then to a metal area on the chassis. Following this practice equalizes the electrical potentials between you and the server.

Antistatic Mat

Place ESD-sensitive components such as motherboards, memory, and other PCBs on an antistatic mat. These items can be used as an antistatic mat:

- Antistatic bag used to wrap a replacement part
- ESD mat
- A disposable ESD mat (shipped with some replacement parts or optional system components)

Related Information

- “Tools Needed for Service” on page 61
- “Filler Panels” on page 62
- “Find the Server Serial Number” on page 63
- “Locate the Server” on page 64
- “Component Service Task Reference” on page 65
- “Removing Power From the Server” on page 66
- “Accessing Internal Components” on page 69

Tools Needed for Service

You need these tools for most service operations:

- Antistatic wrist strap
- Antistatic mat
- No. 1 Phillips screwdriver
- No. 2 Phillips screwdriver
- No. 1 flat-blade screwdriver (battery removal)
Related Information

- “Safety Information” on page 59
- “Tools Needed for Service” on page 61
- “Filler Panels” on page 62
- “Find the Server Serial Number” on page 63
- “Locate the Server” on page 64
- “Component Service Task Reference” on page 65
- “Removing Power From the Server” on page 66
- “Accessing Internal Components” on page 69

Filler Panels

Each server is shipped with replacement filler panels for hard drives and PCI cards. A filler panel is an empty metal or plastic enclosure that does not contain any functioning system hardware or cable connectors.

The filler panels are installed at the factory and must remain in the server until you replace them with a functional component to ensure proper airflow through the system. If you remove a filler panel and continue to operate your system with an empty slot, the server might overheat due to improper airflow. For instructions on removing or installing a filler panel for a server component, refer to the topic in this document about servicing that component.

Related Information

- “Safety Information” on page 59
- “Tools Needed for Service” on page 61
- “Find the Server Serial Number” on page 63
- “Locate the Server” on page 64
- “Component Service Task Reference” on page 65
- “Removing Power From the Server” on page 66
- “Accessing Internal Components” on page 69
Find the Server Serial Number

If you require technical support for your server, you will be asked to provide the chassis serial number. You can find the chassis serial number on a sticker located on the front of the server and on another sticker on the side of the server.

If it is not convenient to read either sticker, you can type the Oracle ILOM `show /SYS` command to obtain the chassis serial number.

- **Type** `show /SYS` at the Oracle ILOM prompt.

```
-> show /SYS

/SYS
 Targets:
 MB
 MB_ENV
 USBBD
 RIO

 Properties:
 type = Host System
 ipmi_name = /SYS
 keyswitch_state = Normal
 product_name = Netra SPARC T4-2
 product_part_number = 12345678+6+1
 product_serial_number = 1133BDN082
 product_manufacturer = Oracle Corporation
 fault_state = OK
 clear_fault_action = (none)
 power_state = On

 Commands:
 cd
 reset
 set
 show
 start
 stop

->
```

Related Information

- “Safety Information” on page 59
You can use the Locator LEDs to pinpoint the location of a server. This procedure is helpful when you need to identify one particular server from many other servers.

1. At the Oracle ILOM command line, type:

```
set /SYS/LOCATE value=Fast_Blink
```

The white Locator LEDs (one on the front panel and one on the rear panel) blink.

2. After locating the server with the blinking Locator LED, turn the LED off by pressing the Locator button.

---

**Note** – Alternatively, you can turn off the Locator LED by running the Oracle ILOM `set /SYS/LOCATE value=off` command.

---

**Related Information**

- “Safety Information” on page 59
- “Tools Needed for Service” on page 61
- “Filler Panels” on page 62
- “Find the Server Serial Number” on page 63
- “Component Service Task Reference” on page 65
- “Removing Power From the Server” on page 66
- “Accessing Internal Components” on page 69
Component Service Task Reference

This table identifies the server components that are FRUs or that you must remove as part of a service operation.

<table>
<thead>
<tr>
<th>Name</th>
<th>FRU Name</th>
<th>Service Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air filter</td>
<td>/SYS/MB/BAT</td>
<td>“Servicing the Air Filter” on page 75</td>
</tr>
<tr>
<td>Battery</td>
<td>/SYS/MB/MBP/BAT</td>
<td>“Servicing the Battery” on page 177</td>
</tr>
<tr>
<td>DIMM</td>
<td>/SYS/MB/CMPx/MRy/BOBX/CHy/Dz</td>
<td>“Servicing DIMMs” on page 163</td>
</tr>
<tr>
<td>DVD drive</td>
<td>/SYS/MB/MBP/BAT</td>
<td>“Servicing the DVD Drive” on page 115</td>
</tr>
<tr>
<td>Front fan module</td>
<td>/SYS/PMx</td>
<td>“Servicing Front Fan Modules” on page 87</td>
</tr>
<tr>
<td>Hard drive</td>
<td>/SYS/HDDx</td>
<td>“Servicing Hard Drives” on page 101</td>
</tr>
<tr>
<td>Hard drive backplane</td>
<td>/SYS/SASBP</td>
<td>“Servicing the Hard Drive Backplane” on page 273</td>
</tr>
<tr>
<td>LED board</td>
<td>/SYS/MB/SCC</td>
<td>“Servicing the LED Board” on page 225</td>
</tr>
<tr>
<td>Memory riser card</td>
<td>/SYS/MB/CMPx/MBP</td>
<td>“Servicing Memory Risers” on page 151</td>
</tr>
<tr>
<td>Motherboard</td>
<td>/SYS/MB</td>
<td>“Servicing the Motherboard” on page 237</td>
</tr>
<tr>
<td>ID PROM</td>
<td>/SYS/MB/SCC</td>
<td>“Servicing the ID PROM” on page 207</td>
</tr>
<tr>
<td>PCIe2 card</td>
<td>/SYS/MB/PCIEx/charitable</td>
<td>“Servicing PCIe2 Cards” on page 185</td>
</tr>
<tr>
<td>Power distribution board</td>
<td>/SYS/PDB</td>
<td>“Servicing the Power Distribution Board” on page 259</td>
</tr>
<tr>
<td>Power supply</td>
<td>/SYS/PSx</td>
<td>“Servicing Power Supplies” on page 125</td>
</tr>
<tr>
<td>Rear fan module</td>
<td>/SYS/PM4</td>
<td>“Servicing the Rear Fan Module” on page 139</td>
</tr>
<tr>
<td>SP</td>
<td>/SYS/MB/SP</td>
<td>“Servicing the SP” on page 197</td>
</tr>
<tr>
<td>Subchassis</td>
<td>/SYS/MB/SP</td>
<td>“Servicing the Subchassis” on page 215</td>
</tr>
</tbody>
</table>

Related Information

- “Safety Information” on page 59
- “Tools Needed for Service” on page 61
- “Filler Panels” on page 62
- “Find the Server Serial Number” on page 63
Removing Power From the Server

These topics describe different procedures for removing power from the chassis.

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Prepare the server for powering off.</td>
<td>“Prepare to Power Off the Server” on page 66</td>
</tr>
<tr>
<td>2.</td>
<td>Power off the server by one of three methods.</td>
<td>“Power Off the Server (SP Command)” on page 67</td>
</tr>
<tr>
<td></td>
<td></td>
<td>“Power Off the Server (Power Button - Graceful)” on page 68</td>
</tr>
<tr>
<td></td>
<td></td>
<td>“Power Off the Server (Emergency Shutdown)” on page 68</td>
</tr>
<tr>
<td>3.</td>
<td>Disconnect the power cords.</td>
<td>“Disconnect Power Cords” on page 69</td>
</tr>
</tbody>
</table>

**Related Information**

- “Safety Information” on page 59
- “Tools Needed for Service” on page 61
- “Filler Panels” on page 62
- “Find the Server Serial Number” on page 63
- “Locate the Server” on page 64
- “Component Service Task Reference” on page 65
- “Accessing Internal Components” on page 69

▼ Prepare to Power Off the Server

Perform this procedure before powering off the server.

1. **Notify affected users that the server will be shut down.**

   Refer to the Oracle Solaris system administration documentation for additional information.
2. **Save any open files and quit all running programs.**
   Refer to your application documentation for specific information for these processes.

3. **Shut down all logical domains.**
   Refer to the Oracle Solaris system administration documentation for additional information.

4. **Shut down the Oracle Solaris OS.**
   Refer to the Oracle Solaris system administration documentation for additional information.

5. **Power off the server.**
   See:
   - “Power Off the Server (SP Command)” on page 67
   - “Power Off the Server (Power Button - Graceful)” on page 68
   - “Power Off the Server (Emergency Shutdown)” on page 68

---

**Related Information**

- “Power Off the Server (SP Command)” on page 67
- “Power Off the Server (Power Button - Graceful)” on page 68
- “Power Off the Server (Emergency Shutdown)” on page 68
- “Disconnect Power Cords” on page 69

---

**Power Off the Server (SP Command)**

You can use the SP to perform a graceful shutdown of the server. This type of shutdown ensures that all of your data is saved and that the server is ready for restart.

---

**Note** – Additional information about powering off the server is provided in *Server Administration*.

1. **Log in as superuser or equivalent.**
   Depending on the type of problem, you might want to view server status or log files. You also might want to run diagnostics before you shut down the server.

2. **Switch from the system console to the Oracle ILOM prompt by typing the #. (Hash Period) key sequence.**

3. **At the Oracle ILOM prompt, type the stop /SYS command.**
Note – You can also use the Power button on the front of the server to initiate a graceful server shutdown. (See “Power Off the Server (Power Button - Graceful)” on page 68.) This button is recessed to prevent accidental server power off.

Related Information
- “Prepare to Power Off the Server” on page 66
- “Power Off the Server (Power Button - Graceful)” on page 68
- “Power Off the Server (Emergency Shutdown)” on page 68
- “Disconnect Power Cords” on page 69

Power Off the Server (Power Button - Graceful)
This procedure places the server in the power standby mode. In this mode, the Power OK LED blinks rapidly.

● Press and release the recessed Power button.

Related Information
- “Prepare to Power Off the Server” on page 66
- “Power Off the Server (SP Command)” on page 67
- “Power Off the Server (Emergency Shutdown)” on page 68
- “Disconnect Power Cords” on page 69

Power Off the Server (Emergency Shutdown)

Caution – For this procedure, all applications and files are closed abruptly without saving changes. File system corruption might occur.

● Press and hold the Power button for four seconds.

Related Information
- “Prepare to Power Off the Server” on page 66
- “Power Off the Server (SP Command)” on page 67
- “Power Off the Server (Power Button - Graceful)” on page 68
- “Disconnect Power Cords” on page 69
Disconnect Power Cords

1. **Power off the server.**
   
   See:
   - “Power Off the Server (SP Command)” on page 67
   - “Power Off the Server (Power Button - Graceful)” on page 68
   - “Power Off the Server (Emergency Shutdown)” on page 68

2. **Unplug all power cords from the server.**
   
   **Caution** – Because 3.3 VDC standby power is always present in the system, you must unplug the power cords before accessing any cold-serviceable components.

**Related Information**
- “Prepare to Power Off the Server” on page 66
- “Power Off the Server (SP Command)” on page 67
- “Power Off the Server (Power Button - Graceful)” on page 68
- “Power Off the Server (Emergency Shutdown)” on page 68

---

Accessing Internal Components

These topics provide procedures and guidelines when accessing internal components.

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Take antistatic precautions now.</td>
<td>“Prevent ESD Damage” on page 70</td>
</tr>
<tr>
<td>2.</td>
<td>Move the server out of the rack and gain access to the internal components.</td>
<td>“Remove the Top Cover” on page 70</td>
</tr>
</tbody>
</table>

**Related Information**
- “Safety Information” on page 59
- “Tools Needed for Service” on page 61
- “Filler Panels” on page 62
- “Find the Server Serial Number” on page 63
Prevent ESD Damage

Many components housed within the chassis can be damaged by electrostatic discharge. To protect these components from damage, perform these steps before opening the chassis for service. See “Safety Information” on page 59.

1. **Prepare an antistatic surface to set parts on during the removal, installation, or replacement process.**
   Place ESD-sensitive components such as the printed circuit boards on an antistatic mat.

2. **Attach an antistatic wrist strap.**
   When servicing or removing server components, attach an antistatic strap to your wrist and then to a metal area on the chassis.

### Related Information
- “Safety Information” on page 59
- “Remove the Top Cover” on page 70

Remove the Top Cover

1. **Shut down the server.**
   See “Removing Power From the Server” on page 66.

2. **Remove the power cords from the server.**
   See “Remove a Power Supply” on page 129.

3. **Disconnect all cables from the rear of the server.**
   Label the cables for ease of reconnection.

4. **Remove the four screws at the front of the server and slide the server out of the rack to its service position.**
5. Loosen the captive screw at the front of the top cover by 1/4 turn.
6. Release the latches and lift the top cover up and off the chassis.
You are now able to perform any of these service procedures:

- “Servicing the Battery” on page 177
- “Servicing DIMMs” on page 163
- “Servicing the Hard Drive Backplane” on page 273
- “Servicing the LED Board” on page 225
- “Servicing Memory Risers” on page 151
- “Servicing the Motherboard” on page 237
- “Servicing the ID PROM” on page 207
- “Servicing PCIe2 Cards” on page 185
- “Servicing the Power Distribution Board” on page 259
- “Servicing the SP” on page 197
- “Servicing the Subchassis” on page 215

Related Information

- “Safety Information” on page 59
- “Prevent ESD Damage” on page 70
“Install the Top Cover” on page 285
Servicing the Air Filter

The air filter is constructed of foam rubber and is used to trap larger particles from entering the server chassis. The air filter is located within the filter tray, at the air intake end of the server. See “Front Fans, Subchassis, Memory Riser, and DIMM Locations” on page 4.

<table>
<thead>
<tr>
<th>Description</th>
<th>Links</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replace the faulty air filter.</td>
<td>“Remove the Air Filter” on page 75</td>
</tr>
<tr>
<td></td>
<td>“Install the Air Filter” on page 80</td>
</tr>
<tr>
<td>Remove the filter tray as part of another component’s service operation.</td>
<td>“Remove the Air Filter” on page 75</td>
</tr>
<tr>
<td>Install the filter tray as part of another component’s service operation.</td>
<td>“Install the Air Filter” on page 80</td>
</tr>
</tbody>
</table>

Related Information

- “Identifying Components” on page 1
- “Component Service Task Reference” on page 65
- “Detecting and Managing Faults” on page 9
- “Preparing for Service” on page 59
- “Returning the Server to Operation” on page 285

▼ Remove the Air Filter

Removing the air filter is a hot-plug operation. You do not need to power off the server before you remove the air filter.

1. Consider your first step:
- If you have not prepared for service, do so now. See “Preparing for Service” on page 59.
- If you are removing the filter tray as part of another component’s removal or installation procedure, go to Step 2.

2. Press down on the two latches to release the filter tray from the chassis.

3. Swing the filter tray down and lift it away from the chassis.
4. Consider your next steps:
   ■ If you removed the filter tray as part of another component’s removal or
     installation procedure, return to that procedure. See “Component Service Task
     Reference” on page 65 for assistance.
   ■ If you removed the filter tray to service the air filter, go to Step 5.

5. Flip the filter tray over to access the air filter.

6. Consider your next steps:
   ■ If you are cleaning the air filter, blow compressed air from the exposed surface,
     through the air filter, and out the grill of the filter tray. Then install the filter
     tray. See “Install the Air Filter” on page 80.
   ■ If you are replacing the air filter, go to Step 7.

7. Swing out the two release levers to loosen the frame.
8. Lift the frame up, and remove it from the filter tray.
9. Lift the air filter out of the filter tray and set it aside.

10. Install a new air filter.
See “Install the Air Filter” on page 80.
Related Information

- “Install the Air Filter” on page 80
- “Preparing for Service” on page 59
- “Returning the Server to Operation” on page 285

▼ Install the Air Filter

Installing the air filter is a hot-plug operation. You do not need to power off the server before installing the air filter.

1. Consider your first steps:
   - If you are replacing an air filter, remove the faulty air filter first, then return to this procedure, Step 2. See “Remove the Air Filter” on page 75.
   - If you are installing the filter tray as part of another component’s removal or installation procedure, go to Step 6.

2. Lay the air filter into the filter tray.
3. Insert the frame into the bottom edge of the filter tray.
4. Lower the frame down to the filter tray.
5. Return the release levers to the locked position, securing the frame in the filter tray.
6. Set the filter tray into the chassis at an angle, then swing it up so that it is vertical.

The filter tray clicks into place.
7. Consider your next steps:
   - If you installed the filter tray as part of another component’s removal or installation procedure, return to that procedure. See “Component Service Task Reference” on page 65 for assistance.
   - If you installed the air filter as part of a replacement operation, you are finished.

Related Information
   - “Remove the Air Filter” on page 75
   - “Preparing for Service” on page 59
   - “Returning the Server to Operation” on page 285
Servicing Front Fan Modules

The front fan module is comprised of redundant fan elements. This redundancy enables the fan module to continuously supply air flow, even if one fan element fails. The four front fan modules are located behind the filter tray. See “Power Supply, Hard Drive, and Rear Fan Module Locations” on page 2. The front fan modules force air through the chassis from the front to the rear.

<table>
<thead>
<tr>
<th>Description</th>
<th>Links</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replace a faulty front fan module.</td>
<td>“Locate a Faulty Front Fan Module” on page 88</td>
</tr>
<tr>
<td></td>
<td>“Front Fan Module LEDs” on page 88</td>
</tr>
<tr>
<td></td>
<td>“Remove a Front Fan Module” on page 91</td>
</tr>
<tr>
<td></td>
<td>“Install a Front Fan Module” on page 95</td>
</tr>
<tr>
<td></td>
<td>“Verify a Front Fan Module” on page 99</td>
</tr>
<tr>
<td>Remove the front fan modules as part of another component’s service operation.</td>
<td>“Remove a Front Fan Module” on page 91</td>
</tr>
<tr>
<td>Install the front fan modules as part of another component’s service operation.</td>
<td>“Install a Front Fan Module” on page 95</td>
</tr>
<tr>
<td>Identify a faulty front fan module.</td>
<td>“Front Fan Module LEDs” on page 88</td>
</tr>
<tr>
<td></td>
<td>“Locate a Faulty Front Fan Module” on page 88</td>
</tr>
<tr>
<td></td>
<td>“Detecting and Managing Faults” on page 9</td>
</tr>
</tbody>
</table>

**Related Information**
- “Identifying Components” on page 1
- “Component Service Task Reference” on page 65
- “Servicing the Subchassis” on page 215
- “Detecting and Managing Faults” on page 9
- “Preparing for Service” on page 59
- “Returning the Server to Operation” on page 285
Front Fan Module LEDs

The status of each front fan module is represented by the same two LEDs. The LEDs are located above each fan grille.

<table>
<thead>
<tr>
<th>Icon</th>
<th>Location</th>
<th>Name</th>
<th>Color</th>
<th>State and Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Warning Icon]</td>
<td>Left</td>
<td>Service Required</td>
<td>Amber</td>
<td>On – Normal fault detected.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Off – No faults detected.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Flashing – No function.</td>
</tr>
<tr>
<td>![OK Icon]</td>
<td>Right</td>
<td>OK</td>
<td>Green</td>
<td>On – Fan is functional without fault.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Off – Fan is off or initializing.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Flashing – No function.</td>
</tr>
</tbody>
</table>

Related Information

- “Front Panel LEDs” on page 14
- “Locate a Faulty Front Fan Module” on page 88
- “Remove a Front Fan Module” on page 91
- “Install a Front Fan Module” on page 95
- “Verify a Front Fan Module” on page 99

▼ Locate a Faulty Front Fan Module

You must determine if the fan module is faulty before you replace it.

1. **Check to see if any System Service Required LEDs are lit or flashing.**
   - See “Interpreting Diagnostic LEDs” on page 14.

2. **Visually inspect the fan module to see if any of its status LEDs are lit or flashing.**
   - See “Front Fan Module LEDs” on page 88.

3. **If the fan module is faulty, replace it.**
   - See “Remove a Front Fan Module” on page 91.
4. Within the Oracle ILOM interface, type the `show faulty` command to verify that the fan module is faulty.

If the fan module is faulty, you will see `/SYS/FMx` under the Value heading. For example:

```
$ show faulty
Target | Property | Value
-------+----------+------------------------
/SP/faultmgmt/0 | fru | /SYS/FM3
```

where `x` is 0 (left fan module) to 3 (right fan module).

If the fan module is faulty, replace it. See “Remove a Front Fan Module” on page 91.

If a FRU value different from `/SYS/FMx` is displayed, see “Component Service Task Reference” on page 65 to identify which component is faulty.

5. Start the Oracle ILOM `faultmgmt shell`.

```
$ start /SP/faultmgmt/shell
Are you sure you want to start /SP/faultmgmt/shell (y/n)? y
faultmgmtsp>
```
6. Identify the faulty component.
   For example:

   ```
 faultmgmtsp> fmadm faulty
 Time UUID msgid Severity
 2010-08-11/14:54:23 59654226-50d3-cdc6-9f09-e591f39792ca SPT-8000-LC Critical
 Fault class : fault.chassis.power.volt-fail
 Description : A Power Supply voltage level has exceeded acceptable limits.
 .
 .
 faultmgmtsp>
   ```

   Check the Fault class and Description fields for more information.
   If the fan module is faulty, replace it. See “Remove a Front Fan Module” on page 91.

7. Exit the Oracle ILOM faultmgmt shell.

   ```
 faultmgmtsp> exit
 =>
   ```

8. Within the Oracle ILOM interface, verify the fan module speeds.

   ```
 => show /SYS/FM/x/Fy/TACH value
 /SYS/FM0/F0/TACH
 Properties:
 value = 5000.000 RPM
 =>
   ```

   where:
   - **x** is the fan module, 0 (left fan module) to 3 (right fan module).
   - **y** is the fan element, 0 (primary) or 1 (secondary).

   If the fan module is faulty, replace it. See “Remove a Front Fan Module” on page 91.

9. If you are unable to identify the faulty fan module, seek further information.
   See “Detecting and Managing Faults” on page 9.
Related Information

- “Front Fan Module LEDs” on page 88
- “Remove a Front Fan Module” on page 91
- “Install a Front Fan Module” on page 95
- “Verify a Front Fan Module” on page 99
- “Detecting and Managing Faults” on page 9

▼ Remove a Front Fan Module

Removing a fan module is a hot-plug operation. You do not need to power off the server before you remove the fan module.

**Note** – For proper thermal management, there must always be at least three fan modules operating.

1. **Consider your first step:**
   - If you have not prepared for service, do so now. See “Preparing for Service” on page 59.
   - If you are removing the fan module as part of another component’s removal or installation procedure, go to Step 2.

2. **Remove the filter tray.**
   
   See “Remove the Air Filter” on page 75.

3. **Determine which fan module to remove.**
   
   See “Locate a Faulty Front Fan Module” on page 88.

4. **Pinch the lever release buttons at the bottom of the fan module.**
5. Pull the release lever out and up.
6. Pull the fan module out from the chassis by the lever.
7. Set the fan module aside.

8. Consider your next steps:
   - If you removed the fan module as part of a replacement operation, install a new
     fan module. See “Install a Front Fan Module” on page 95.
   - If you removed the fan module as part of another component’s removal or
     installation procedure, return to that procedure. See “Component Service Task
     Reference” on page 65 for assistance.
   - If you are not replacing the fan module, go to Step 9.

9. Install the filter tray.
   See “Install the Air Filter” on page 80.

10. Finish the removal procedure.
    See “Returning the Server to Operation” on page 285.

**Related Information**

- “Front Fan Module LEDs” on page 88
Install a Front Fan Module

Installing a fan module is a hot-plug operation. You do not need to power off the server before installing the fan module.

Note – The fan module automatically spins up on insertion.

1. Consider your first steps:
   - If you are replacing a fan module, remove the faulty or obsolete fan module first, then return to this procedure, Step 2. See “Remove a Front Fan Module” on page 91.
   - If you are installing a new or additional fan module, see these topics in order:
     - “Remove the Air Filter” on page 75
     - “Preparing for Service” on page 59.
   - If you are installing the fan module as part of another component’s removal or installation procedure, go to Step 2.

2. Lift the lever to the raised position and align the fan module to the location where it installs into the chassis.

3. Push the fan module into the chassis until the lever moves slightly down.
4. Lower the lever down to secure the fan module into the chassis.
5. Push on the release lever so that it clicks.
6. Consider your next steps:
   ■ If you installed the fan module as part of a replacement operation, go to Step 7.
   ■ If you installed the fan module as part of another component’s removal or installation procedure, return to that procedure. See “Component Service Task Reference” on page 65 for assistance.

7. Install the filter tray.
   See “Install the Air Filter” on page 80.

8. Finish the installation procedure.
   See:
   ■ “Returning the Server to Operation” on page 285
   ■ “Verify a Front Fan Module” on page 99

Related Information
   ■ “Front Fan Module LEDs” on page 88
   ■ “Locate a Faulty Front Fan Module” on page 88
■ “Remove a Front Fan Module” on page 91
■ “Verify a Front Fan Module” on page 99
■ “Preparing for Service” on page 59
■ “Returning the Server to Operation” on page 285

▼ Verify a Front Fan Module

After you install a fan module, you can verify its functionality.

1. Reset the fan module.

```
-> set /SYS/FMx clear_fault_action=true
Are you sure you want to clear /SYS/FM3 (y/n)? y
Set 'clear_fault_action' to 'true'
```

where \( x \) is 0 (left fan module) to 3 (right fan module).

2. Verify that the fan module is no longer considered faulty, then return to this procedure.

   See “Locate a Faulty Front Fan Module” on page 88.

3. Verify the fan module speeds.

```
-> show /SYS/FM/:Fy/TACH value
/ SYS/FM0/F0/TACH
Properties:
 value = 5000.000 RPM
->
```

where:
- \( x \) is the fan module, 0 (left fan module) to 3 (right fan module).
- \( y \) is the fan element, 0 (primary) or 1 (secondary).

Related Information
- “Front Fan Module LEDs” on page 88
- “Locate a Faulty Front Fan Module” on page 88
- “Remove a Front Fan Module” on page 91
“Install a Front Fan Module” on page 95
Servicing Hard Drives

Eight hard drives are located at the lower front of the chassis, behind the filter tray. See “Power Supply, Hard Drive, and Rear Fan Module Locations” on page 2.

<table>
<thead>
<tr>
<th>Description</th>
<th>Links</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replace a faulty hard drive.</td>
<td>“Locate a Faulty Hard Drive” on page 103</td>
</tr>
<tr>
<td></td>
<td>“Hard Drive LEDs” on page 102</td>
</tr>
<tr>
<td></td>
<td>“Remove a Hard Drive” on page 103</td>
</tr>
<tr>
<td></td>
<td>“Install a Hard Drive” on page 107</td>
</tr>
<tr>
<td></td>
<td>“Verify a Hard Drive” on page 111</td>
</tr>
<tr>
<td>Remove the hard drives as part of another component’s service operation.</td>
<td>“Remove a Hard Drive” on page 103</td>
</tr>
<tr>
<td>Install the hard drives as part of another component’s service operation.</td>
<td>“Install a Hard Drive” on page 107</td>
</tr>
<tr>
<td>Add an additional hard drive.</td>
<td>“Install a Hard Drive” on page 107</td>
</tr>
<tr>
<td></td>
<td>“Verify a Hard Drive” on page 111</td>
</tr>
<tr>
<td>Remove an existing hard drive.</td>
<td>“Remove a Hard Drive” on page 103</td>
</tr>
<tr>
<td>Identify a faulty hard drive.</td>
<td>“Hard Drive LEDs” on page 102</td>
</tr>
<tr>
<td></td>
<td>“Locate a Faulty Hard Drive” on page 103</td>
</tr>
<tr>
<td></td>
<td>“Detecting and Managing Faults” on page 9</td>
</tr>
</tbody>
</table>

Related Information

- “Identifying Components” on page 1
- “Component Service Task Reference” on page 65
- “Servicing the DVD Drive” on page 115
- “Detecting and Managing Faults” on page 9
- “Preparing for Service” on page 59
- “Returning the Server to Operation” on page 285
Hard Drive LEDs

The status of each drive is represented by the same three LEDs. The LEDs are located to the left of the release button of each hard drive.

<table>
<thead>
<tr>
<th>No.</th>
<th>LED</th>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ready to Remove (blue)</td>
<td>![Blue Icon]</td>
<td>Indicates that a drive can be removed during a hot-plug operation.</td>
</tr>
<tr>
<td>2</td>
<td>Service Required (amber)</td>
<td>![ Amber Icon]</td>
<td>Indicates that the drive has experienced a fault condition.</td>
</tr>
</tbody>
</table>
| 3   | OK/Activity (green) | ![Green Icon] | Indicates the drive’s availability for use.  
• On – Read or write activity is in progress.  
• Off – Drive is idle and available for use. |

Related Information

- “Front Panel LEDs” on page 14
- “Locate a Faulty Hard Drive” on page 103
- “Remove a Hard Drive” on page 103
- “Install a Hard Drive” on page 107
- “Verify a Hard Drive” on page 111
Locate a Faulty Hard Drive

You must determine which if the hard drive is faulty before you replace it.

1. **Check to see if any System Service Required LEDs are lit or flashing.**
   
   See “Interpreting Diagnostic LEDs” on page 14.

2. **Visually inspect the hard drive to see if any of its status LEDs are lit or flashing.**
   
   See “Hard Drive LEDs” on page 102.
   
   If the hard drive is faulty, replace it. See “Remove a Hard Drive” on page 103.

3. **If you are unable to identify the faulty hard drive, seek further information.**
   
   See “Detecting and Managing Faults” on page 9.

Related Information

- “Hard Drive LEDs” on page 102
- “Remove a Hard Drive” on page 103
- “Install a Hard Drive” on page 107
- “Verify a Hard Drive” on page 111
- “Detecting and Managing Faults” on page 9

Remove a Hard Drive

Removing the hard drive is a hot-swap operation. You must run commands on the server before you remove the hard drive.

1. **Consider your first step:**
   
   - If you have not prepared for service, do so now. See “Preparing for Service” on page 59.
   - If you are removing the hard drive as part of another component’s removal or installation procedure, go to Step 2.

2. **Remove the filter tray.**
   
   See “Remove the Air Filter” on page 75.

3. **Determine which hard drive to remove.**
   
   See “Locate a Faulty Hard Drive” on page 103.
4. Determine if you need to shut down the OS to replace the drive, and perform one of these actions:

- If the drive cannot be taken offline without shutting down the OS, follow instructions in “Power Off the Server (SP Command)” on page 67 then go to Step 6.
- If the drive can be taken offline without shutting down the OS, go to Step 5.

5. Take the drive offline:

a. At the Oracle Solaris prompt, type the `cfgadm -al` command to list all drives in the device tree, including drives that are not configured:

```
cfgadm -al
```

This command lists dynamically reconfigurable hardware resources and shows their operational status. In this case, look for the status of the drive you plan to remove. This information is listed in the Occupant column.

For example:

```
<table>
<thead>
<tr>
<th>Ap_id</th>
<th>Type</th>
<th>Receptacle</th>
<th>Occupant</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c2</td>
<td>scsi-sas</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c3</td>
<td>scsi-sas</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c2::w5000cca00a76d1f5,0</td>
<td>disk-path</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c4</td>
<td>scsi-sas</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c3::w5000cca00a772bd1,0</td>
<td>disk-path</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c4::w5000cca00a59b0a9,0</td>
<td>disk-path</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

You must unconfigure any drive whose status is listed as configured, as described in Step b.

b. **Unconfigure the drive using the `cfgadm -c unconfigure` command.**

For example:

```
cfgadm -c unconfigure c2::w5000cca00a76d1f5,0
```

Replace `c2::w5000cca00a76d1f5,0` with the drive name that applies to your situation.
c. Verify that the drive’s blue Ready-to-Remove LED is lit.

6. Push the release button of the hard drive and pull the release lever out.

7. Grasp the release lever and pull the hard drive out of the chassis.
8. Set the hard drive aside.

9. Consider your next steps:
   - If you removed the hard drive as part of a replacement operation, install a new hard drive. See “Install a Hard Drive” on page 107.
   - If you removed the hard drive as part of another component’s removal or installation procedure, return to that procedure. See “Component Service Task Reference” on page 65 for assistance.
   - If you are not replacing the hard drive, go to Step 10.

10. Install a hard drive filler.
    See “Install a Hard Drive” on page 107.

11. Install the filter tray.
    See “Install the Air Filter” on page 80.
12. Finish the removal procedure.
    See “Returning the Server to Operation” on page 285.

Related Information
■ “Hard Drive LEDs” on page 102
■ “Locate a Faulty Hard Drive” on page 103
■ “Install a Hard Drive” on page 107
■ “Verify a Hard Drive” on page 111
■ “Preparing for Service” on page 59
■ “Returning the Server to Operation” on page 285

▼ Install a Hard Drive

Installing the hard drive is a hot-plug operation. You do not need to power off the server before installing the hard drive.

1. Consider your first steps:
   ■ If you are replacing a hard drive, remove the faulty or obsolete hard drive first, then return to this procedure, Step 2. See “Remove a Hard Drive” on page 103.
   ■ If you are installing a new or an additional hard drive, see these topics in order:
     ■ “Remove the Air Filter” on page 75
     ■ “Preparing for Service” on page 59.
   ■ If you are installing the hard drive as part of another component’s removal or installation procedure, go to Step 2.

2. Push the release button of the hard drive.

3. Align the hard drive with the slot where the hard drive installs into the chassis.
The connector is at the rear of the hard drive. The release lever is at the right front of the hard drive.

4. Slide the hard drive into the chassis until the release lever moves slightly.
5. Press the release lever closed to fully seat the hard drive into the chassis.
   The lever clicks secure.
6. Consider your next steps:
   ■ If you installed the hard drive as part of a replacement operation, go to Step 7.
   ■ If you installed the hard drive as part of another component’s removal or installation procedure, return to that procedure. See “Component Service Task Reference” on page 65 for assistance.

7. Install the filter tray.
   See “Install the Air Filter” on page 80.

8. Finish the installation procedure.
   See:
   ■ “Returning the Server to Operation” on page 285
   ■ “Verify a Hard Drive” on page 111

Related Information
■ “Hard Drive LEDs” on page 102
■ “Locate a Faulty Hard Drive” on page 103
■ “Remove a Hard Drive” on page 103
■ “Verify a Hard Drive” on page 111
■ “Preparing for Service” on page 59
Verify a Hard Drive

After you install a hard drive, you can verify its functionality.

1. Consider your first steps:
   - If you installed a new hard drive as part of a replacement operation, verify that the hard drive is no longer considered faulty, then return to this procedure. See “Locate a Faulty Hard Drive” on page 103.
   - If you installed a new hard drive to increase functionality, go to Step 2.

2. If the OS is shut down, and the drive you replaced was not the boot device, boot the OS.

   Depending on the nature of the replaced drive, you might need to perform administrative tasks to reinstall software before the server can boot. Refer to the Oracle Solaris OS administration documentation for more information.

3. At the Oracle Solaris prompt, type the `cfgadm -al` command to list all drives in the device tree, including any drives that are not configured:

```
cfgadm -al
```

This command helps you identify the drive you installed. For example:

<table>
<thead>
<tr>
<th>Ap_id</th>
<th>Type</th>
<th>Receptacle</th>
<th>Occupant</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c2</td>
<td>scsi-sas</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c3</td>
<td>scsi-sas</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c2::w5000cca00a76d1f5,0</td>
<td>disk-path</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c4</td>
<td>scsi-sas</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c3::sd2</td>
<td>disk-path</td>
<td>connected</td>
<td>unconfigured</td>
<td>unknown</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c4::w5000cca00a59b0a9,0</td>
<td>disk-path</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4. Configure the drive using the `cfgadm -c configure` command. For example:

```
cfgadm -c configure c2::w5000cca00a76d1f5,0
```

Replace `c2::w5000cca00a76d1f5,0` with the drive name for your configuration.

5. Verify that the blue Ready-to-Remove LED is no longer lit on the drive that you installed. See “Hard Drive LEDs” on page 102.

6. At the Oracle Solaris prompt, type the `cfgadm -al` command to list all drives in the device tree, including any drives that are not configured.

```
cfgadm -al
```

The replacement drive is now listed as configured. For example:

<table>
<thead>
<tr>
<th>Ap_id</th>
<th>Type</th>
<th>Receptacle</th>
<th>Occupant</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c2</td>
<td>scsi-sas</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c3</td>
<td>scsi-sas</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c2::w5000cca00a76d1f5,0</td>
<td>disk-path</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c4</td>
<td>scsi-sas</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c3::w5000cca00a772bd1,0</td>
<td>disk-path</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c4::w5000cca00a59b0a9,0</td>
<td>disk-path</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7. Perform one of these tasks based on your verification results:
   - If the previous steps did not verify the drive, see “Diagnostics Process” on page 11.
   - If the previous steps indicate that the drive is functioning properly, perform the tasks required to configure the drive. These tasks are covered in the Oracle Solaris OS administration documentation.

For additional drive verification, you can run the Oracle VTS software. Refer to the Oracle VTS documentation for details.
Related Information

- “Hard Drive LEDs” on page 102
- “Locate a Faulty Hard Drive” on page 103
- “Remove a Hard Drive” on page 103
- “Install a Hard Drive” on page 107
Servicing the DVD Drive

The DVD drive is an SATA optical storage device with DVD DL-RW capabilities. The DVD drive is located above the hard drives at the front left of the chassis. See “Front Fans, Subchassis, Memory Riser, and DIMM Locations” on page 4.

<table>
<thead>
<tr>
<th>Description</th>
<th>Links</th>
</tr>
</thead>
</table>
| Replace the faulty DVD drive. | “Determine if the DVD Drive Is Faulty” on page 116  
Remove the DVD Drive” on page 116  
“Install the DVD Drive” on page 119  
“Verify the DVD Drive” on page 123 |
| Remove the DVD drive as part of another component’s service operation. | “Remove the DVD Drive” on page 116 |
| Install the DVD drive as part of another component’s service operation. | “Install the DVD Drive” on page 119 |
| Determine whether the DVD drive is faulty. | “Determine if the DVD Drive Is Faulty” on page 116  
“Detecting and Managing Faults” on page 9 |

Related Information

■ “Identifying Components” on page 1  
■ “Component Service Task Reference” on page 65  
■ “Servicing Hard Drives” on page 101  
■ “Detecting and Managing Faults” on page 9  
■ “Preparing for Service” on page 59  
■ “Returning the Server to Operation” on page 285
Determine if the DVD Drive Is Faulty

You must determine if the DVD drive is faulty before you replace it.

1. Check to see if any System Service Required LEDs are lit or flashing.
   See “Interpreting Diagnostic LEDs” on page 14.

2. Visually inspect the DVD drive to see if its status LED is lit or flashing.
   If the DVD drive is faulty, replace it. See “Remove the DVD Drive” on page 116.

3. Within the Oracle ILOM interface, verify the presence of the DVD drive.

   ```
 -> show /SYS/SASBP/DVD type
 /SYS/SASBP/DVD
 Properties:
 type = DVD
 ->
   ```

   If the DVD drive is not recognized, replace it. See “Remove the DVD Drive” on page 116.

4. If you are unable to determine if the DVD drive is faulty, seek further information.
   See “Detecting and Managing Faults” on page 9.

Related Information

- “Remove the DVD Drive” on page 116
- “Install the DVD Drive” on page 119
- “Verify the DVD Drive” on page 123
- “Detecting and Managing Faults” on page 9

Remove the DVD Drive

Removing the DVD drive is a hot-plug operation. You do not need to power off the server before you remove the DVD drive.

1. Consider your first step:
Servicing the DVD Drive

- If you have not prepared for service, do so now. See “Preparing for Service” on page 59.
- If you are removing the DVD drive as part of another component’s removal or installation procedure, go to Step 2.

2. Remove the two hard drives located beneath the DVD drive.
   See “Remove a Hard Drive” on page 103.

3. Grasp the tab under the right side of the DVD drive and pull the tab out.

4. Continue to pull the tab, to slide the DVD drive out of the chassis.
5. Set the DVD drive aside.

6. Consider your next steps:
   - If you removed the DVD drive as part of a replacement operation, install a new DVD drive. See “Install the DVD Drive” on page 119.
   - If you removed the DVD drive as part of another component’s removal or installation procedure, return to that procedure. See “Component Service Task Reference” on page 65 for assistance.

**Related Information**
- “Determine if the DVD Drive Is Faulty” on page 116
- “Install the DVD Drive” on page 119
- “Verify the DVD Drive” on page 123
- “Preparing for Service” on page 59
“Returning the Server to Operation” on page 285

Install the DVD Drive

Installing the DVD drive is a hot-plug operation. You do not need to power off the server before installing the DVD drive.

1. Consider your first steps:
   - If you are replacing a DVD drive, remove the faulty or obsolete DVD drive first, then return to this procedure, Step 2. See “Remove the DVD Drive” on page 116.
   - If you are installing the DVD drive as part of another component’s removal or installation procedure, go to Step 2.

2. Extend the tab out from the underside of the DVD drive.

3. Align the DVD drive to the location where it installs into the chassis.
   - The DVD drive is oriented with the tab at the right front.

4. Slide the DVD drive into the chassis.
5. Press on the right side of the DVD drive to firmly seat it into the slot.
6. Push the tab in under the DVD drive.
7. Consider your next steps:
   - If you installed the DVD drive as part of a replacement operation, go to Step 8.
   - If you installed the DVD drive as part of another component’s removal or installation procedure, return to that procedure. See “Component Service Task Reference” on page 65 for assistance.

8. Finish the installation procedure.
   See:
   - “Returning the Server to Operation” on page 285
   - “Verify the DVD Drive” on page 123

Related Information
   - “Determine if the DVD Drive Is Faulty” on page 116
   - “Remove the DVD Drive” on page 116
   - “Verify the DVD Drive” on page 123
“Preparing for Service” on page 59
“Returning the Server to Operation” on page 285

▼ Verify the DVD Drive

After you install a DVD drive, you can verify its functionality.

- Verify the presence of the DVD drive.

```bash
-> show /SYS/SASBP/DVD type
/SYS/SASBP/DVD
 Properties:
 type = DVD
->
```

Related Information
- “Determine if the DVD Drive Is Faulty” on page 116
- “Remove the DVD Drive” on page 116
- “Install the DVD Drive” on page 119
Servicing Power Supplies

The power supply takes the supplied AC or DC input and converts the power to 12 VDC main power and 3.3 VDC standby power. The four power supplies are located at the rear of the chassis, across the lower half. See “Power Supply, Hard Drive, and Rear Fan Module Locations” on page 2. Fans within the power supplies draw air from the chassis interior and expel the air out the rear of the chassis.

<table>
<thead>
<tr>
<th>Description</th>
<th>Links</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replace a faulty power supply.</td>
<td>“Locate a Faulty Power Supply” on page 126</td>
</tr>
<tr>
<td></td>
<td>“Power Supply LEDs” on page 126</td>
</tr>
<tr>
<td></td>
<td>“Remove a Power Supply” on page 129</td>
</tr>
<tr>
<td></td>
<td>“Install a Power Supply” on page 133</td>
</tr>
<tr>
<td></td>
<td>“Verify a Power Supply” on page 137</td>
</tr>
<tr>
<td>Remove the power supplies as part of another component’s service operation.</td>
<td>“Remove a Power Supply” on page 129</td>
</tr>
<tr>
<td>Install the power supplies as part of another component’s service operation.</td>
<td>“Install a Power Supply” on page 133</td>
</tr>
<tr>
<td>Identify a faulty power supply.</td>
<td>“Power Supply LEDs” on page 126</td>
</tr>
<tr>
<td></td>
<td>“Locate a Faulty Power Supply” on page 126</td>
</tr>
<tr>
<td></td>
<td>“Detecting and Managing Faults” on page 9</td>
</tr>
</tbody>
</table>

Related Information

- “Identifying Components” on page 1
- “Component Service Task Reference” on page 65
- “Detecting and Managing Faults” on page 9
- “Preparing for Service” on page 59
- “Returning the Server to Operation” on page 285
Power Supply LEDs

The status of each power supply is represented by the same three LEDs. The LEDs are located to the right of the fan of each power supply.

<table>
<thead>
<tr>
<th>Icon</th>
<th>Location</th>
<th>Name</th>
<th>Color</th>
<th>State and Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image" alt="OK" /></td>
<td>Top</td>
<td>OK</td>
<td>Green</td>
<td>On – Power supply is functional without fault.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Off – Power supply is off or initializing.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Flashing – No function.</td>
</tr>
<tr>
<td><img src="image" alt="⚠️" /></td>
<td>Middle</td>
<td>Attention</td>
<td>Amber</td>
<td>On – Normal fault detected.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Off – No faults detected.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Flashing – No function.</td>
</tr>
<tr>
<td><img src="image" alt="∼AC" /></td>
<td>Bottom</td>
<td>AC or DC</td>
<td>Green</td>
<td>On – Input power present and good.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Off – Input power not present.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Flashing – No function.</td>
</tr>
</tbody>
</table>

Related Information

- “Rear Panel LEDs” on page 16
- “Locate a Faulty Power Supply” on page 126
- “Remove a Power Supply” on page 129
- “Install a Power Supply” on page 133
- “Verify a Power Supply” on page 137

▼ Locate a Faulty Power Supply

You must determine which power supply is faulty before you replace it.

1. **Check to see if any System Service Required LEDs are lit or flashing.**
   
   See “Interpreting Diagnostic LEDs” on page 14.
2. Visually inspect the power supply to see if any of its status LEDs are lit or flashing.

See “Power Supply LEDs” on page 126.

If the power supply is faulty, replace it. See “Remove a Power Supply” on page 129.

3. Within the Oracle ILOM interface, type the `show faulty` command to verify that the power supply is faulty.

If the power supply is faulty, you will see `/SYS/PSx` under the Value heading. For example:

```
- show faulty
<table>
<thead>
<tr>
<th>Target</th>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>/SP/faultmgmt/0</td>
<td>fru</td>
<td>/SYS/PS0</td>
</tr>
</tbody>
</table>

- start /SP/faultmgmt/shell
Are you sure you want to start /SP/faultmgmt/shell (y/n)? y
```

where x is 0 (left power supply) to 3 (right power supply).

If the power supply is faulty, replace it. See “Remove a Power Supply” on page 129.

If a FRU value different from `/SYS/PSx` is displayed, see “Component Service Task Reference” on page 65 to identify which component is faulty.

4. Start the Oracle ILOM `faultmgmt shell`.

```
- start /SP/faultmgmt/shell
Are you sure you want to start /SP/faultmgmt/shell (y/n)? y
```
5. Identify the faulty component.
   For example:

   ```
 faultmgmtsp> fmadm faulty
 -- ------------------------- -------------- -------
 Time UUID msgid Severity
 -- ------------------------- -------------- -------
 2010-08-11/14:54:23 59654226-50d3-cdc6-9f09-e591f39792ca SPT-8000-LC Critical
 Fault class : fault.chassis.power.volt-fail
 Description : A Power Supply voltage level has exceeded acceptable limits.
 .
 .
 faultmgmtsp>
   ```

   Check the Fault class and Description fields for more information.
   If the power supply is faulty, replace it. See “Remove a Power Supply” on page 129.

6. Exit the Oracle ILOM faultmgmt shell.

   ```
 faultmgmtsp> exit
 ->
   ```

7. Within the Oracle ILOM interface, verify the voltage output.

   ```
 -> show /SYS/PS/x/V_OUT value
 /SYS/PS0/V_OUT
 Properties:
 value = 12.000 Volts
 ->
   ```

   where x is 0 (left power supply) to 3 (right power supply).
   If the power supply is faulty, replace it. See “Remove a Power Supply” on page 129.

8. If you are unable to identify the faulty power supply, seek further information.
   See “Detecting and Managing Faults” on page 9.

Related Information
- “Power Supply LEDs” on page 126
- “Remove a Power Supply” on page 129
“Install a Power Supply” on page 133
“Verify a Power Supply” on page 137
“Detecting and Managing Faults” on page 9

▼ Remove a Power Supply

Removing the power supply is a hot-plug operation. You do not need to power off the server before you remove the power supply.

**Note** – The server can still function with one power supply, however removing all four power supplies effectively powers off the server.

1. Consider your first step:
   - If you have not prepared for service, do so now. See “Preparing for Service” on page 59.
   - If you are removing the power supply as part of another component’s removal or installation procedure, go to Step 2.

2. Determine which power supply to remove.
   See “Locate a Faulty Power Supply” on page 126.

3. Disconnect the power cord from the power supply.
4. Move the release tab to the right and pull on the handle.
5. Continue to pull on the handle to slide the power supply out of the chassis.
6. When the power supply is almost free of the chassis, use your other hand to support the weight of the power supply.

7. Set the power supply aside.

8. Consider your next steps:
   - If you removed the power supply as part of a replacement operation, install a new power supply. See “Install a Power Supply” on page 133.
   - If you removed the power supply as part of another component’s removal or installation procedure, return to that procedure. See “Component Service Task Reference” on page 65 for assistance.
   - If you are not replacing the power supply, go to Step 9.

   See “Returning the Server to Operation” on page 285.

Related Information
- “Power Supply LEDs” on page 126
- “Locate a Faulty Power Supply” on page 126
- “Install a Power Supply” on page 133
**Install a Power Supply**

Installing the power supply is a hot-plug operation. You do not need to power off the server before installing the power supply.

**Note** – The power supply automatically transitions from standby voltage to main power when you attach the power cord.

1. **Consider your first steps:**
   - If you are replacing a power supply, remove the faulty or obsolete power supply first, then return to this procedure, Step 2. See “Remove a Power Supply” on page 129.
   - If you are installing a new or an additional power supply, see “Preparing for Service” on page 59.
   - If you are installing the power supply as part of another component’s removal or installation procedure, go to Step 2.

2. **Align the power supply to the location where it installs into the chassis.**
   The power distribution board connector is toward the chassis, and the release tab is on the left.
3. Slide the power supply into the chassis until the power supply seats and the release tab clicks.
4. Attach the power cord.
5. **Consider your next steps:**
   - If you installed the power supply as part of a replacement operation, go to **Step 6**.
   - If you installed the power supply as part of another component’s removal or installation procedure, return to that procedure. See “Component Service Task Reference” on page 65 for assistance.

6. **Finish the installation procedure.**
   See:
   - “Returning the Server to Operation” on page 285
   - “Verify a Power Supply” on page 137
Verify a Power Supply

After you install a power supply, you can verify its functionality.

1. Reset the power supply.

   ```
 -> set /SYS/PS:x clear_fault_action=true
 Are you sure you want to clear /SYS/PS0 (y/n)? y
 Set 'clear_fault_action' to 'true'
 ->
   ```

   where x is 0 (left power supply) to 3 (right power supply).

2. Verify that the power supply is no longer considered faulty, then return to this procedure.

   See “Locate a Faulty Power Supply” on page 126.

3. Within the Oracle ILOM interface, verify the voltage output.

   ```
 -> show /SYS/PS:x/V_OUT value
 /SYS/PS0/V_OUT
 Properties:
 value = 12.000 Volts
 ->
   ```

   where x is 0 (left power supply) to 3 (right power supply).

Related Information

- “Power Supply LEDs” on page 126
- “Locate a Faulty Power Supply” on page 126
• “Remove a Power Supply” on page 129
• “Install a Power Supply” on page 133
Servicing the Rear Fan Module

The fan module is comprised of redundant fan elements. This redundancy enables the fan module to continuously supply air flow, even if one fan element fails. The rear fan module is located at the rear of the chassis, between power supplies 1 and 2. See “Power Supply, Hard Drive, and Rear Fan Module Locations” on page 2. The rear fan module draws air through the chassis from the front to the rear.

<table>
<thead>
<tr>
<th>Description</th>
<th>Links</th>
</tr>
</thead>
</table>
| Replace the faulty rear fan module.                              | “Determine if the Rear Fan Module Is Faulty” on page 140  
|                                                                 | “Rear Fan Module LEDs” on page 140               
|                                                                 | “Remove the Rear Fan Module” on page 143        
|                                                                 | “Install the Rear Fan Module” on page 146       
|                                                                 | “Verify the Rear Fan Module” on page 149        |
| Remove the rear fan module as part of another component’s service operation. | “Remove the Rear Fan Module” on page 143        |
| Install the rear fan module as part of another component’s service operation. | “Install the Rear Fan Module” on page 146       |
| Determine whether the rear fan module is faulty.                 | “Rear Fan Module LEDs” on page 140               
|                                                                 | “Determine if the Rear Fan Module Is Faulty” on page 140  
|                                                                 | “Detecting and Managing Faults” on page 9        |

Related Information
- “Identifying Components” on page 1
- “Component Service Task Reference” on page 65
- “Servicing the Power Distribution Board” on page 259
- “Detecting and Managing Faults” on page 9
- “Preparing for Service” on page 59
- “Returning the Server to Operation” on page 285
Rear Fan Module LEDs

The status of the rear fan module is represented by two LEDs. The LEDs are located above the rear fan module.

<table>
<thead>
<tr>
<th>Icon</th>
<th>Location</th>
<th>Name</th>
<th>Color</th>
<th>State and Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>⚠️</td>
<td>Left</td>
<td>Service Required</td>
<td>Amber</td>
<td>On – Normal fault detected.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Off – No faults detected.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Flashing – No function.</td>
</tr>
<tr>
<td>![OK]</td>
<td>Right</td>
<td>OK</td>
<td>Green</td>
<td>On – Fan is functional without fault.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Off – Fan is off or initializing.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Flashing – No function.</td>
</tr>
</tbody>
</table>

Related Information

- “Rear Panel LEDs” on page 16
- “Determine if the Rear Fan Module Is Faulty” on page 140
- “Remove the Rear Fan Module” on page 143
- “Install the Rear Fan Module” on page 146
- “Verify the Rear Fan Module” on page 149

▼ Determine if the Rear Fan Module Is Faulty

You must determine if the fan module is faulty before you replace it.

1. Check to see if any System Service Required LEDs are lit or flashing.
   See “Interpreting Diagnostic LEDs” on page 14.

2. Visually inspect the fan module to see if any of its status LEDs are lit or flashing.
   See “Rear Fan Module LEDs” on page 140.
3. If the fan module is faulty, replace it.
   See “Remove the Rear Fan Module” on page 143.

4. Within the Oracle ILOM interface, type the `show faulty` command to verify that the fan module is faulty.
   If the fan module is faulty, you will see `/SYS/FMx` under the Value heading. For example:

```
-- show faulty
Target | Property | Value
--------|------------|-------
/SP/faultmgmt/0 | fru | /SYS/FM4

If the fan module is faulty, replace it. See “Remove the Rear Fan Module” on page 143.

If a FRU value different from `/SYS/FM4` is displayed, see “Component Service Task Reference” on page 65 to identify which component is faulty.

5. Start the Oracle ILOM `faultmgmt` shell.

```
-- start /SP/faultmgmt/shell
Are you sure you want to start /SP/faultmgmt/shell (y/n)? y

faultmgmtsp>
```
6. Identify the faulty component.
 For example:

   ```
faultmgmt> fmadm faulty
                   ------------------------------- -------------- -------
                   | Time   | UUID               | msgid     | Severity |
                   +--------+-------------------+-----------+----------
                   | 2010-08-11/14:54:23 59654226-50d3-cdc6-9f09-e591f39792ca SPT-8000-LC | SPT-8000-LC | Critical |
                   +--------+-------------------+-----------+----------
                   Fault class : fault.chassis.power.volt-fail
                   Description : A Power Supply voltage level has exceeded acceptable limits.
                   .
                   .
   ```

 Check the Fault class and Description fields for more information.
 If the fan module is faulty, replace it. See “Remove the Rear Fan Module” on page 143.

7. Exit the Oracle ILOM faultmgmt shell.

   ```
faultmgmt> exit
   ```

8. Within the Oracle ILOM interface, verify the fan module speeds.

   ```
   -> show /SYS/FM4/Fy/TACH value
   /SYS/FM4/F0/TACH
   Properties:
   value = 5000.000 RPM
   ->
   ```

 where y is the fan element, 0 (primary) or 1 (secondary).
 If the fan module is faulty, replace it. See “Remove the Rear Fan Module” on page 143.

9. If you are unable to identify the faulty fan module, seek further information.
 See “Detecting and Managing Faults” on page 9.

Related Information
- “Rear Fan Module LEDs” on page 140
- “Remove the Rear Fan Module” on page 143
Remove the Rear Fan Module

Removing a fan module is a hot-plug operation. You do not need to power off the server before you remove the fan module.

Note – For proper thermal management, there must always be at least three fan modules operating.

1. **Consider your first step:**
 - If you have not prepared for service, do so now. See “Preparing for Service” on page 59.
 - If you are removing the fan module as part of another component’s removal or installation procedure, go to Step 2.

2. Grasp the handle of the fan module and move the lever to the right (pane 1).
3. Pull the fan module out from the chassis by the lever (pane 2).
4. Set the fan module aside.

5. Consider your next steps:
 ■ If you removed the fan module as part of a replacement operation, install a new fan module. See “Install the Rear Fan Module” on page 146.
 ■ If you removed the fan module as part of another component’s removal or installation procedure, return to that procedure. See “Component Service Task Reference” on page 65 for assistance.
 ■ If you are not replacing the fan module, go to Step 6.

6. Finish the removal procedure.
 See “Returning the Server to Operation” on page 285.

Related Information
■ “Rear Fan Module LEDs” on page 140
■ “Determine if the Rear Fan Module Is Faulty” on page 140
■ “Install the Rear Fan Module” on page 146
Install the Rear Fan Module

Installing a fan module is a hot-plug operation. You do not need to power off the server before installing the fan module.

Note – The fan module automatically spins up on insertion.

1. **Consider your first steps:**
 - If you are replacing a fan module, remove the faulty or obsolete fan module first, then return to this procedure, Step 2. See “Remove the Rear Fan Module” on page 143.
 - If you are installing a new or additional fan module, see these topics in order:
 - “Remove the Air Filter” on page 75
 - “Preparing for Service” on page 59.
 - If you are installing the fan module as part of another component’s removal or installation procedure, go to Step 2.

2. **Align the fan module to the location where it installs into the chassis.**
 The lever is on the bottom rear of the fan module, the connector is on the top front.
3. Slide the fan module into the chassis until the lever clicks, securing the fan module in place.
4. Consider your next steps:
 ■ If you installed the fan module as part of a replacement operation, go to Step 5.
 ■ If you installed the fan module as part of another component’s removal or installation procedure, return to that procedure. See “Component Service Task Reference” on page 65 for assistance.

5. Install the filter tray.
 See “Install the Air Filter” on page 80.

6. Finish the installation procedure.
 See:
 ■ “Returning the Server to Operation” on page 285
 ■ “Verify the Rear Fan Module” on page 149

Related Information
■ “Rear Fan Module LEDs” on page 140
■ “Determine if the Rear Fan Module Is Faulty” on page 140
■ “Remove the Rear Fan Module” on page 143
- “Verify the Rear Fan Module” on page 149
- “Preparing for Service” on page 59
- “Returning the Server to Operation” on page 285

▼ Verify the Rear Fan Module

After you install a fan module, you can verify its functionality.

1. Reset the fan module.

```bash
-> set /SYS/FM4 clear_fault_action=true
Are you sure you want to clear /SYS/FM4 (y/n)? y
Set ‘clear_fault_action’ to ‘true’
```

2. Verify that the fan module is no longer considered faulty, then return to this procedure.

 See “Determine if the Rear Fan Module Is Faulty” on page 140.

3. Verify the fan module speeds.

```bash
-> show /SYS/FM4/Fy/TACH value
/SYS/FM4/F0/TACH
Properties:
value = 5000.000 RPM
```

where \(y \) is the fan element, 0 (primary) or 1 (secondary).

Related Information
- “Rear Fan Module LEDs” on page 140
- “Determine if the Rear Fan Module Is Faulty” on page 140
- “Remove the Rear Fan Module” on page 143
- “Install the Rear Fan Module” on page 146
Servicing Memory Risers

Memory rises are a receptacle for DIMMs. The memory risers are located symmetrically on both the left and right sides of the CPU. See “Motherboard, PCIe2 Cards, and SP Locations” on page 3.

<table>
<thead>
<tr>
<th>Description</th>
<th>Links</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replace a faulty memory riser.</td>
<td>“Memory Riser Configuration” on page 152</td>
</tr>
<tr>
<td></td>
<td>“Locate a Faulty Memory Riser” on page 154</td>
</tr>
<tr>
<td></td>
<td>“Memory Riser LEDs” on page 152</td>
</tr>
<tr>
<td></td>
<td>“Remove a Memory Riser” on page 156</td>
</tr>
<tr>
<td></td>
<td>“Install a Memory Riser” on page 158</td>
</tr>
<tr>
<td></td>
<td>“Verify a Memory Riser” on page 160</td>
</tr>
<tr>
<td>Remove the memory risers as part of another component’s service operation.</td>
<td>“Remove a Memory Riser” on page 156</td>
</tr>
<tr>
<td>Install the memory risers as part of another component’s service operation.</td>
<td>“Install a Memory Riser” on page 158</td>
</tr>
<tr>
<td>Add an additional memory riser.</td>
<td>“Memory Riser Configuration” on page 152</td>
</tr>
<tr>
<td></td>
<td>“Install a Memory Riser” on page 158</td>
</tr>
<tr>
<td></td>
<td>“Verify a Memory Riser” on page 160</td>
</tr>
<tr>
<td>Remove an existing memory riser.</td>
<td>“Remove a Memory Riser” on page 156</td>
</tr>
<tr>
<td>Identify a faulty memory riser.</td>
<td>“Memory Riser LEDs” on page 152</td>
</tr>
<tr>
<td></td>
<td>“Locate a Faulty Memory Riser” on page 154</td>
</tr>
<tr>
<td></td>
<td>“Detecting and Managing Faults” on page 9</td>
</tr>
</tbody>
</table>

Related Information
- “Identifying Components” on page 1
- “Component Service Task Reference” on page 65
- “Servicing the Subchassis” on page 215
- “Detecting and Managing Faults” on page 9
- “Preparing for Service” on page 59
- “Returning the Server to Operation” on page 285
Memory Riser Configuration

You must follow these rules when configuring memory risers into the server.

- All four memory risers must be configured identically.
- All memory risers must be of the same Sun or Oracle part number.

Use this table as a guide when facing the front of the system chassis.

<table>
<thead>
<tr>
<th>Memory Riser Location</th>
<th>Oracle ILOM Target*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Far left</td>
<td>/SYS/MB/CMP0/MR0</td>
</tr>
<tr>
<td>Left of center</td>
<td>/SYS/MB/CMP0/MR1</td>
</tr>
<tr>
<td>Right of center</td>
<td>/SYS/MB/CMP1/MR0</td>
</tr>
<tr>
<td>Far right</td>
<td>/SYS/MB/CMP1/MR1</td>
</tr>
</tbody>
</table>

* The memory riser target is also the prefix for the DIMM target.

Related Information

- “DIMM Configuration” on page 164
- “Memory Riser LEDs” on page 152
- “Locate a Faulty Memory Riser” on page 154
- “Remove a Memory Riser” on page 156
- “Install a Memory Riser” on page 158
- “Verify a Memory Riser” on page 160

Memory Riser LEDs

The motherboard has a feature that enables you to locate a faulty memory riser, even when power has been removed from the system. A SuperCapacitor provides sufficient current to keep the faulty memory riser locating circuit active for several minutes after the power cords have been disconnected. If you see the system Fault Remind LED illuminated, the feature is still available. By pressing the system Fault Remind button adjacent to the lit LED, any faulty memory riser are identified by their respective LEDs lighting.
The memory riser Fault LEDs are located on the top of each memory riser. Each memory riser has a faulty DIMM Remind button to identify any onboard faulty DIMMs. See “DIMM LEDs” on page 168.

Related Information
- “Memory Riser Configuration” on page 152
- “Locate a Faulty Memory Riser” on page 154
- “Remove a Memory Riser” on page 156
- “Install a Memory Riser” on page 158
Locate a Faulty Memory Riser

You must determine which memory riser is faulty before you replace it.

1. **Check to see if any System Service Required LEDs are lit or flashing.**
 See “Interpreting Diagnostic LEDs” on page 14.

2. **Visually inspect the memory riser to see if any of its status LEDs are lit or flashing.**
 See “Memory Riser LEDs” on page 152.
 If the memory riser is faulty, replace it. See “Remove a Memory Riser” on page 156.

3. **Within the Oracle ILOM interface, type the `show faulty` command to verify that the memory riser is faulty.**
 If the memory riser is faulty, you will see `/SYS/MB/CMPxy` under the Value heading where:
 - x is 0 or 1.
 - y is 0 or 1.
 For example:

   ```
   -> show faulty
   Target     | Property   | Value
   ----------------+------------+---------------------
   /SP/faultmgmt/0 | fru        | /SYS/MB/CMP0/MR1
   ...
   ...
   ...
   ->
   ```

 If the memory riser is faulty, replace it. See “Remove a Memory Riser” on page 156.
 If a FRU value different from `/SYS/MB/CMPxy` is displayed, see “Component Service Task Reference” on page 65 to identify which component is faulty.
4. Start the Oracle ILOM `faultmgmt` shell.

```
--> start /SP/faultmgmt/shell
Are you sure you want to start /SP/faultmgmt/shell (y/n)? y

```

5. Identify the faulty component.

For example:

```
faultmgmtsp> fmadm faulty
                        -------------------------- ------------- ------
Time    UUID          magid   Severity
-------------------------- ------------- ------
2010-08-11/14:54:23  59654226-50d3-cdc6-9f09-e591f39792ca SPT-8000-LC Critical

Fault class : fault.chassis.power.volt-fail
Description : A Power Supply voltage level has exceeded acceptable limits.
...
```

Check the Fault class and Description fields for more information.
If the memory riser is faulty, replace it. See “Remove a Memory Riser” on page 156.

6. Exit the Oracle ILOM `faultmgmt` shell.

```
faultmgmtsp> exit
```

7. If you are unable to identify the faulty memory riser, seek further information.
See “Detecting and Managing Faults” on page 9.

Related Information

- “Memory Riser Configuration” on page 152
- “Memory Riser LEDs” on page 152
- “Remove a Memory Riser” on page 156
- “Install a Memory Riser” on page 158
- “Verify a Memory Riser” on page 160
- “Detecting and Managing Faults” on page 9
Remove a Memory Riser

Removing a memory riser is a cold-service operation. You must power off the server before you remove the memory riser.

1. **Determine which memory riser to remove.**

 See “Locate a Faulty Memory Riser” on page 154.

2. **Consider your next step:**

 - If you have not prepared for service, do so now. See “Preparing for Service” on page 59.
 - If you are removing the memory riser as part of another component’s removal or installation procedure, go to Step 3.

3. **Grasp the handle of the memory riser and lift it straight up and out of the chassis.**
4. Set the memory riser aside.

5. Repeat from Step 3 for any additional memory risers to be removed.

6. Consider your next steps:
 - If you removed the memory riser as part of a replacement operation, install a new memory riser. See “Install a Memory Riser” on page 158.
 - If you removed the memory riser as part of another component’s removal or installation procedure, return to that procedure. See “Component Service Task Reference” on page 65 for assistance.
 - If you are not replacing the memory riser, go to Step 7.

7. Finish the removal procedure.
 See “Returning the Server to Operation” on page 285.
Install a Memory Riser

Installing a memory riser is a cold-service operation. You must power off the server before installing a memory riser.

1. **Consider your first steps:**
 - If you are replacing a memory riser, remove the faulty or obsolete memory riser first, then return to this procedure, Step 2. See “Remove a Memory Riser” on page 156.
 - If you are installing a new or an additional memory riser, see “Preparing for Service” on page 59.
 - If you are installing the memory riser as part of another component’s removal or installation procedure, go to Step 2.

2. **Align the memory riser to the location where it installs into the chassis.**
 Ensure that the notch in the memory riser lines up with the key in the slot.

3. **Lower the memory riser into the slot, pressing firmly so that it is seated into the motherboard.**
4. Repeat from Step 2 for any additional memory risers to be installed.

5. Consider your next steps:
 - If you installed the memory riser as part of a replacement operation, go to Step 6.
 - If you installed the memory riser as part of another component’s removal or installation procedure, return to that procedure. See “Component Service Task Reference” on page 65 for assistance.
 - If you have installed a new memory riser, go to Step 6.

6. Finish the installation procedure.
 See:
 - “Returning the Server to Operation” on page 285
Verify a Memory Riser

After you install a memory riser, you can verify its functionality.

1. Reset the memory riser.

```bash
-> set /SYS/MB/CMP:x/MRy clear_fault_action=true
Are you sure you want to clear /SYS/MB/CMPx/MRy (y/n)? y
Set ‘clear_fault_action’ to ‘true’

->
```

where:

- **x** is 0 or 1.
- **y** is 0 or 1.

2. Consider your next steps:

- If you installed a new memory riser as part of a replacement operation, verify that the memory riser is no longer considered faulty, then return to this procedure. See “Locate a Faulty Memory Riser” on page 154.
- If you installed a new memory riser to increase functionality, go to Step 3.
3. Verify that the memory riser can provide the DIMM temperature.

```
-> show /SYS/MB/CMP/x/MR/y/BOB1/CH1/D0/T_AMB value
/SYS/MB/CMPx/MRy/BOB1/CH1/D0/T_AMB
Properties:
  value = 32.000 degree C
->
```

where:
- x is 0 or 1.
- y is 0 or 1.

Related Information
- “Memory Riser Configuration” on page 152
- “Memory Riser LEDs” on page 152
- “Locate a Faulty Memory Riser” on page 154
- “Remove a Memory Riser” on page 156
- “Install a Memory Riser” on page 158
Servicing DIMMs

DIMMs are random access memory devices. The DIMMs are located symmetrically on the memory risers. See “Motherboard, PCIe2 Cards, and SP Locations” on page 3.

<table>
<thead>
<tr>
<th>Description</th>
<th>Links</th>
</tr>
</thead>
</table>
| Replace a faulty DIMM. | “DIMM Configuration” on page 164
“DIMM IDs” on page 166
“DIMM LEDs” on page 168
“Locate a Faulty DIMM (LEDs)” on page 169
“Locate a Faulty DIMM (Oracle ILOM)” on page 169
“Remove a DIMM” on page 172
“Install a DIMM” on page 173
“Verify a DIMM” on page 175 |
| Remove the DIMMs as part of another component’s service operation. | “Remove a DIMM” on page 172 |
| Install the DIMMs as part of another component’s service operation. | “Install a DIMM” on page 173 |
| Add additional DIMMs. | “DIMM Configuration” on page 164
“Install a DIMM” on page 173
“Verify a DIMM” on page 175 |
| Remove existing DIMMs. | “Remove a DIMM” on page 172 |
| Identify a faulty DIMM. | “DIMM IDs” on page 166
“DIMM LEDs” on page 168
“Locate a Faulty DIMM (LEDs)” on page 169
“Locate a Faulty DIMM (Oracle ILOM)” on page 169
“Detecting and Managing Faults” on page 9 |

Related Information
- “Identifying Components” on page 1
- “Component Service Task Reference” on page 65
DIMM Configuration

You must follow these rules when configuring DIMMs into the memory risers.

- Only 4 GB, 8 GB and 16 GB DIMM capacities are supported.
- All DIMMs must be of the same Sun or Oracle part number.
- All DIMMs must be of the same capacity and rank.
 - 16 GB dual-rank (2Rx4) DIMMs can not be mixed with the 16 GB quad-rank (4Rx4) DIMMs.
 - The 16 GB dual-rank (2Rx4) DIMMs require system firmware version 8.2.1.b or newer.
- All memory risers must be identically populated.
- For half configuration, populate the two blue slots and two white slots on each memory riser.
- For a full configuration, populate all of the slots on each memory riser.

Use this table and illustration as a guide.
The Oracle ILOM target for individual DIMMs is of this format:

```
memory_riser_target/slot_on_riser_target
```

where:

- `memory_riser_target` is of the form `/SYS/MB/CMPv/MRw`.
- `slot_on_riser_target` is of the form `/BOBx/CHy/Dz`.
- `v, w, x, y,` and `z` can each be either 0 or 1.

For example, the complete Oracle ILOM target for the DIMM in the lower blue slot (BOB0/CH1/D0) in the memory riser on the far right of the chassis (/SYS/MB/CMP1/MR1), is `/SYS/MB/CMP1/MR1/BOB0/CH1/D0`.

Configuration Table

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Slot Color</th>
<th>Slot on Riser Labels</th>
<th>Oracle ILOM Slot on Riser Target</th>
<th>Memory Riser Capacity With 4 GB DIMMs</th>
<th>Memory Riser Capacity With 8 GB DIMMs</th>
<th>Memory Riser Capacity With 16 GB DIMMs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Half</td>
<td>Blue</td>
<td>D0</td>
<td>BOB0/CH1/D0</td>
<td>4 x 4 GB = 16 GB</td>
<td>4 x 8 GB = 32 GB</td>
<td>4 x 16 GB = 64 GB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D4</td>
<td>BOB1/CH1/D0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>White</td>
<td>D2</td>
<td>BOB0/CH0/D0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>D6</td>
<td>BOB1/CH0/D0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full</td>
<td>Blue</td>
<td>D0</td>
<td>BOB0/CH1/D0</td>
<td>8 x 4 GB = 32 GB</td>
<td>8 x 8 GB = 64 GB</td>
<td>8 x 16 GB = 128 GB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D4</td>
<td>BOB1/CH1/D0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>White</td>
<td>D2</td>
<td>BOB0/CH0/D0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>D6</td>
<td>BOB1/CH0/D0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Black</td>
<td>D1</td>
<td>BOB0/CH1/D1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>D5</td>
<td>BOB1/CH1/D1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Green</td>
<td>D3</td>
<td>BOB0/CH0/D1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>D7</td>
<td>BOB1/CH0/D1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

System capacity full

| 4 x 32 = 128 GB | 4 x 64 = 256 GB | 4 x 128 = 512 GB |
Related Information

- “Memory Riser Configuration” on page 152
- “DIMM IDs” on page 166
- “DIMM LEDs” on page 168
- “Locate a Faulty DIMM (Oracle ILOM)” on page 169
- “Remove a DIMM” on page 172
- “Install a DIMM” on page 173
- “Verify a DIMM” on page 175

DIMM IDs

DIMMs can be identified differently by different programs, reports, and tools.

<table>
<thead>
<tr>
<th>Node Name</th>
<th>System NAC (Oracle ILOM Target)</th>
<th>Memory Riser [Dx]</th>
<th>Error Log DIMM_ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMP0/BOB2/CH0/D1</td>
<td>/SYS/MB/CMP0/BOB0/CH0/D1</td>
<td>[D3]</td>
<td>9</td>
</tr>
<tr>
<td>CMP0/BOB2/CH0/D0</td>
<td>/SYS/MB/CMP0/BOB0/CH0/D0</td>
<td>[D2]</td>
<td>8</td>
</tr>
<tr>
<td>CMP0/BOB2/CH1/D1</td>
<td>/SYS/MB/CMP0/BOB0/CH1/D1</td>
<td>[D1]</td>
<td>11</td>
</tr>
<tr>
<td>CMP0/BOB2/CH1/D0</td>
<td>/SYS/MB/CMP0/BOB0/CH1/D0</td>
<td>[D0]</td>
<td>10</td>
</tr>
<tr>
<td>CMP0/BOB0/CH0/D1</td>
<td>/SYS/MB/CMP0/BOB1/CH0/D1</td>
<td>[D7]</td>
<td>1</td>
</tr>
<tr>
<td>CMP0/BOB0/CH0/D0</td>
<td>/SYS/MB/CMP0/BOB1/CH0/D0</td>
<td>[D6]</td>
<td>0</td>
</tr>
<tr>
<td>CMP0/BOB0/CH1/D1</td>
<td>/SYS/MB/CMP0/BOB1/CH1/D1</td>
<td>[D5]</td>
<td>3</td>
</tr>
<tr>
<td>CMP0/BOB0/CH1/D0</td>
<td>/SYS/MB/CMP0/BOB1/CH1/D0</td>
<td>[D4]</td>
<td>2</td>
</tr>
<tr>
<td>CMP0/BOB3/CH0/D1</td>
<td>/SYS/MB/CMP0/BOB1/CH0/D1</td>
<td>[D3]</td>
<td>13</td>
</tr>
<tr>
<td>CMP0/BOB3/CH0/D0</td>
<td>/SYS/MB/CMP0/BOB1/CH0/D0</td>
<td>[D2]</td>
<td>12</td>
</tr>
<tr>
<td>CMP0/BOB3/CH1/D1</td>
<td>/SYS/MB/CMP0/BOB1/CH1/D1</td>
<td>[D1]</td>
<td>15</td>
</tr>
<tr>
<td>CMP0/BOB3/CH1/D0</td>
<td>/SYS/MB/CMP0/BOB1/CH1/D0</td>
<td>[D0]</td>
<td>14</td>
</tr>
<tr>
<td>CMP0/BOB1/CH0/D1</td>
<td>/SYS/MB/CMP0/BOB1/CH0/D1</td>
<td>[D7]</td>
<td>5</td>
</tr>
<tr>
<td>CMP0/BOB1/CH0/D0</td>
<td>/SYS/MB/CMP0/BOB1/CH0/D0</td>
<td>[D6]</td>
<td>4</td>
</tr>
<tr>
<td>CMP0/BOB1/CH1/D1</td>
<td>/SYS/MB/CMP0/BOB1/CH1/D1</td>
<td>[D5]</td>
<td>7</td>
</tr>
<tr>
<td>CMP0/BOB1/CH1/D0</td>
<td>/SYS/MB/CMP0/BOB1/CH1/D0</td>
<td>[D4]</td>
<td>6</td>
</tr>
</tbody>
</table>
Related Information

- “Memory Riser Configuration” on page 152
- “DIMM Configuration” on page 164
- “DIMM LEDs” on page 168
- “Locate a Faulty DIMM (Oracle ILOM)” on page 169
- “Remove a DIMM” on page 172
DIMM LEDs

Each memory riser has a Power LED, a Remind button, and DIMM Fault LEDs. Pressing the system Remind button on the motherboard illuminates the Power LED on a memory riser with a faulty DIMM. Pressing the memory riser Remind button illuminates the LED next to a faulty DIMM.

<table>
<thead>
<tr>
<th>No.</th>
<th>LED</th>
<th>Color</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Memory riser Remind button</td>
<td>Blue</td>
<td>Push this button to identify the faulty or misconfigured DIMMs.</td>
</tr>
<tr>
<td>2</td>
<td>Memory riser Fault LED</td>
<td>Green</td>
<td>Indicates that the riser is operating normally.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Amber</td>
<td>Indicates that the riser has a fault.</td>
</tr>
<tr>
<td>3</td>
<td>DIMM Fault LED</td>
<td>Amber</td>
<td>Identifies a faulty or misconfigured DIMM.</td>
</tr>
<tr>
<td>4</td>
<td>DIMM keys</td>
<td></td>
<td>Notches that ensure the DIMMs are correctly oriented.</td>
</tr>
</tbody>
</table>

Related Information

- “DIMM Configuration” on page 164
- “Locate a Faulty DIMM (Oracle ILOM)” on page 169
Locate a Faulty DIMM (LEDs)

Each memory riser has a Remind button, a Power LED, and Fault LEDs adjacent to each DIMM. See “DIMM LEDs” on page 168. This procedure describes how to identify a faulty DIMM using these buttons and LEDs.

1. Press the system Remind button to identify the memory riser that contains the faulty DIMM.
 See “Memory Riser LEDs” on page 152 for location of system Remind button.

2. Lift and remove the faulty memory riser.
 See “Remove a Memory Riser” on page 156.

3. Press the Remind button on the memory riser to identify the faulty DIMM. An amber Fault LED will light next to the faulty DIMM.

 Note – The front and rear panel Service Required LEDs are also lit when the system detects a DIMM fault.

Related Information

- “Locate a Faulty DIMM (Oracle ILOM)” on page 169
- “Remove a DIMM” on page 172
- “DIMM LEDs” on page 168
- “Memory Riser LEDs” on page 152

Locate a Faulty DIMM (Oracle ILOM)

You must determine which DIMM is faulty before you replace it.

1. Check to see if any System Service Required LEDs are lit or flashing.
 See “Interpreting Diagnostic LEDs” on page 14.
2. Within the Oracle ILOM interface, type the `show faulty` command to verify that the DIMM is faulty.

If the DIMM is faulty, you will see `/SYS/MB/CMP/v/MR/w/BOB/x/CH/y/D/z` under the Value heading where:

- v is 0 or 1.
- w is 0 or 1.
- x is 0 or 1.
- y is 0 or 1.
- z is 0 or 1.

For example:

```
2. Within the Oracle ILOM interface, type the `show faulty` command to verify that the DIMM is faulty.

If the DIMM is faulty, you will see `/SYS/MB/CMP/v/MR/w/BOB/x/CH/y/D/z` under the Value heading where:

- v is 0 or 1.
- w is 0 or 1.
- x is 0 or 1.
- y is 0 or 1.
- z is 0 or 1.

For example:

```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
4. **Identify the faulty component.**

 For example:

   ```
faultmgmtsp> faadm faulty
   ----------------------------------------------------------------------
   Time       UUID                      msgid         Severity
   ----------------------------------------------------------------------
   2010-08-11/14:54:23 59654226-50d3-cdc6-9f09-e591f39792ca SPT-8000-LC Critical
   Fault class : fault.chassis.power.volt-fail
   Description : A Power Supply voltage level has exceeded acceptable limits.
   
   faultmgmtsp>
   ```

 Check the **Fault class** and **Description** fields for more information.

 If the DIMM is faulty, replace it. See “**Remove a DIMM**” on page 172.

5. **Exit the Oracle ILOM faadm shell.**

   ```
faultmgmtsp> exit
   ->
   ```

6. **Within the Oracle ILOM interface, verify that the DIMM temperature is normal.**

   ```
   -> show /SYS/MB/CMP/v/MR/w/BOB/x/CH/y/Dz/T_AMB value
   /SYS/MB/CMP/v/MR/w/BOB/x/CH/y/Dz/T_AMB
   Properties:
   value = 32.000 degree C
   ->
   ```

 where:

 - v is 0 or 1.
 - w is 0 or 1.
 - x is 0 or 1.
 - y is 0 or 1.
 - z is 0 or 1.

 If the DIMM is faulty, replace it. See “**Remove a DIMM**” on page 172.

7. **If you are unable to identify the faulty DIMM, seek further information.**

 See “**Detecting and Managing Faults**” on page 9.
Related Information
- “DIMM Configuration” on page 164
- “DIMM LEDs” on page 168
- “Remove a DIMM” on page 172
- “Install a DIMM” on page 173
- “Verify a DIMM” on page 175
- “Detecting and Managing Faults” on page 9

Remove a DIMM

Removing a DIMM is a cold-service operation. You must power off the server before you remove the DIMM.

1. Determine which DIMM to remove.
 See “Locate a Faulty DIMM (Oracle ILOM)” on page 169.

2. Consider your next step:
 - If you have not prepared for service, do so now. See “Preparing for Service” on page 59.
 - If you are removing the DIMM as part of another component’s removal or installation procedure, go to Step 3.

3. Remove the appropriate memory riser.
 See “Remove a DIMM” on page 172.

4. Locate the DIMM to remove.

5. Press down and out on the release levers at both ends of the DIMM slot.
6. Lift the DIMM up and out the memory riser.
7. Set the DIMM aside.
8. Repeat from Step 5 for any additional DIMMs to be removed.
9. Consider your next steps:
 ■ If you removed the DIMM as part of a replacement operation, install a new
 DIMM. See “Install a DIMM” on page 173.
 ■ If you removed the DIMM as part of another component’s removal or
 installation procedure, return to that procedure. See “Component Service Task
 Reference” on page 65 for assistance.
 ■ If you are not replacing the DIMM, go to Step 10.
10. Finish the removal procedure.
 See “Returning the Server to Operation” on page 285.

Related Information
■ “DIMM Configuration” on page 164
■ “DIMM LEDs” on page 168
■ “Locate a Faulty DIMM (Oracle ILOM)” on page 169
■ “Install a DIMM” on page 173
■ “Verify a DIMM” on page 175
■ “Preparing for Service” on page 59
■ “Returning the Server to Operation” on page 285

▼ Install a DIMM

Installing a DIMM is a cold-service operation. You must power off the server before
installing a DIMM.

1. Consider your first steps:
 ■ If you are replacing a DIMM, remove the faulty or obsolete DIMM first, then
 return to this procedure, Step 2.
 See “Remove a DIMM” on page 172.
 ■ If you are installing a new or an additional DIMM, prepare for service.
 See “Preparing for Service” on page 59.
If you are installing the DIMM as part of another component’s removal or installation procedure, go to Step 2.

2. Open the release levers of the slot where you are installing the DIMM.

3. Align the DIMM to the location where it installs into the memory riser. Ensure that the notch in the DIMM lines up with the key in the slot.

4. Insert the DIMM into the slot, pressing firmly so that both release levers click closed.

5. Repeat from Step 2 for any additional DIMMs to be installed.
6. Consider your next steps:
 - If you installed the DIMM as part of a replacement operation, go to Step 7.
 - If you installed the DIMM as part of another component’s removal or installation procedure, return to that procedure. See “Component Service Task Reference” on page 65 for assistance.
 - If you have installed a new DIMM, go to Step 7.

7. Finish the installation procedure.
 See:
 - “Returning the Server to Operation” on page 285
 - “Verify a DIMM” on page 175

Related Information
 - “DIMM Configuration” on page 164
 - “DIMM LEDs” on page 168
 - “Locate a Faulty DIMM (Oracle ILOM)” on page 169
 - “Remove a DIMM” on page 172
 - “Verify a DIMM” on page 175
 - “Preparing for Service” on page 59
 - “Returning the Server to Operation” on page 285

▼ Verify a DIMM

After you install a DIMM, you can verify its functionality.

1. Reset the DIMM.

```
-> set /SYS/MB/CMPr/MBr/BORx/CHry/Dz clear_fault_action=true
Are you sure you want to clear /SYS/MB/CMPr/MBr/BORx/CHry/Dz (y/n)?
  y
Set ‘clear_fault_action’ to ‘true’
->
```

2. Consider your next steps:
 - If you installed a new DIMM as part of a replacement operation, verify that the DIMM is no longer considered faulty, then return to this procedure. See “Locate a Faulty DIMM (Oracle ILOM)” on page 169.
If you installed a new DIMM to increase functionality, go to Step 3.

3. Within the Oracle ILOM interface, verify the DIMM temperature is normal.

```
$ show /SYS/MB/CMP/v/MR/w/BOB/x/CH/y/Dz/T_AMB value
/SYS/MB/CMP/v/MR/w/BOB/x/CH/y/Dz/T_AMB
Properties:
value = 32.000 degree C
```

where:
- v is 0 or 1.
- w is 0 or 1.
- x is 0 or 1.
- y is 0 or 1.
- z is 0 or 1.

Related Information
- “DIMM Configuration” on page 164
- “DIMM LEDs” on page 168
- “Locate a Faulty DIMM (Oracle ILOM)” on page 169
- “Remove a DIMM” on page 172
- “Install a DIMM” on page 173
Servicing the Battery

The battery is a type CR2032 3 volt lithium disc battery. The battery is located vertically at the right rear of the motherboard. See “Motherboard, PCIe2 Cards, and SP Locations” on page 3.

<table>
<thead>
<tr>
<th>Description</th>
<th>Links</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replace the faulty battery.</td>
<td>“Determine if the Battery Is Faulty” on page 177</td>
</tr>
<tr>
<td></td>
<td>“Remove the Battery” on page 179</td>
</tr>
<tr>
<td></td>
<td>“Install the Battery” on page 181</td>
</tr>
<tr>
<td></td>
<td>“Verify the Battery” on page 183</td>
</tr>
<tr>
<td>Determine whether the battery is faulty.</td>
<td>“Determine if the Battery Is Faulty” on page 177</td>
</tr>
<tr>
<td></td>
<td>“Detecting and Managing Faults” on page 9</td>
</tr>
</tbody>
</table>

Related Information

- “Identifying Components” on page 1
- “Component Service Task Reference” on page 65
- “Detecting and Managing Faults” on page 9
- “Preparing for Service” on page 59
- “Returning the Server to Operation” on page 285

▼ Determine if the Battery Is Faulty

You must determine if the battery is faulty before you replace it.

1. Check to see if any System Service Required LEDs are lit or flashing.
 See “Interpreting Diagnostic LEDs” on page 14.
2. Within the Oracle ILOM interface, type the `show faulty` command to verify that the battery is faulty.

 If the battery is faulty, you will see `/SYS/MB/BAT` under the Value heading. For example:

    ```
    -> show faulty
    Target | Property | Value
    -------------------|------------------------------------|------------------------+------------------------+
    /SP/faultmgmt/0 | fru | /SYS/MB/BAT
    ...
    ...
    ->
    ```

 If the battery is faulty, replace it. See “Remove the Battery” on page 179.

 If a FRU value different from `/SYS/MB/BAT` is displayed, see “Component Service Task Reference” on page 65 to identify which component is faulty.

3. Start the Oracle ILOM `faultmgmt` shell.

    ```
    -> start /SP/faultmgmt/shell
    Are you sure you want to start /SP/faultmgmt/shell (y/n)? y
    faultmgmtsp>
    ```

4. Identify the faulty component.

 For example:

    ```
    faultmgmtsp> fmadm faulty
    Time   UUID           msgid  Severity
    ------------------- ------------------------------------ -------------- -------
    2010-08-11/14:54:23 59654226-50d3-cdc6-9f09-e591f39792ca SPT-8000-LC Critical
    Fault class : fault.chassis.power.volt-fail
    Description : A Power Supply voltage level has exceeded acceptable limits.
    .
    .
    .
    faultmgmtsp>
    ```

 Check the Fault class and Description fields for more information.

 If the battery is faulty, replace it. See “Remove the Battery” on page 179.
5. Exit the Oracle ILOM `faultmgmt` shell.

```
faultmgmtsp> exit
```

6. Within the Oracle ILOM interface, verify the battery voltage.

```
-> show /SYS/MB/V_BAT value
/SYS/MB/V_BAT
Properties:
  value = 3.120 Volts
->
```

If the battery voltage is below 2.95 VDC, replace the battery. See “Remove the Battery” on page 179.

7. If you are unable to determine if the battery is faulty, seek further information.
 See “Detecting and Managing Faults” on page 9.

Related Information

- “Remove the Battery” on page 179
- “Install the Battery” on page 181
- “Verify the Battery” on page 183
- “Detecting and Managing Faults” on page 9

▼ Remove the Battery

Removing the battery is a cold-service operation. You must power off the server before you remove the battery.

1. Consider your first step:
 - If you have not prepared for service, do so now. See “Preparing for Service” on page 59.
 - If you are removing the battery as part of another component’s removal or installation procedure, go to Step 2.

2. Remove the PCI card in slot 0PCIe2, if installed.
 See “Remove a PCIe2 Card” on page 188.

3. Grasp the battery, and pull it straight up and out of its receptacle.
4. Set the battery aside.

5. Consider your next steps:
 - If you removed the battery as part of a replacement operation, install a new battery. See “Install the Battery” on page 181.
 - If you removed the battery as part of another component’s removal or installation procedure, return to that procedure. See “Component Service Task Reference” on page 65 for assistance.

Related Information
 - “Determine if the Battery Is Faulty” on page 177
 - “Install the Battery” on page 181
 - “Verify the Battery” on page 183
 - “Preparing for Service” on page 59
 - “Returning the Server to Operation” on page 285
Install the Battery

Installing the battery is a cold-service operation. You must power off the server before installing the battery.

1. Consider your first steps:
 - If you are replacing a battery, remove the faulty or obsolete battery first, then return to this procedure, Step 2. See “Remove the Battery” on page 179.
 - If you are installing the battery as part of another component’s removal or installation procedure, go to Step 2.

2. Align the battery to the location where it installs into the chassis.
 The positive (+) side of the battery is toward the center of the chassis.

3. Insert the battery into the receptacle.
4. Consider your next steps:
 - If you installed the battery as part of a replacement operation, go to Step 5.
 - If you installed the battery as part of another component’s removal or installation procedure, return to that procedure. See “Component Service Task Reference” on page 65 for assistance.

5. **Install the PCIe2 card into slot 0PCIe2, if it was removed previously.**
 See “Install a PCIe2 Card” on page 191.

6. **Finish the installation procedure.**
 See:
 - “Returning the Server to Operation” on page 285
 - “Verify the Battery” on page 183
Verify the Battery

After you install a battery, you can verify its functionality.

1. Reset the battery.

```bash
-> set /SYS/MB/BAT clear_fault_action=true
Are you sure you want to clear /SYS/MB/BAT (y/n)? y
Set ‘clear_fault_action’ to ‘true’
```

2. Verify that the battery is no longer considered faulty, then return to this procedure.

 See “Determine if the Battery Is Faulty” on page 177.

3. Verify the battery voltage.

```bash
-> show /SYS/MB/V_BAT value
/SYS/MB/V_BAT
Properties:
  value = 3.120 Volts
```

Related Information

- “Determine if the Battery Is Faulty” on page 177
- “Remove the Battery” on page 179
- “Verify the Battery” on page 183
- “Preparing for Service” on page 59
- “Returning the Server to Operation” on page 285
Servicing PCIe2 Cards

PCIe2 cards are industry-standard form factor peripheral components. PCIe2 cards can be of either PCIe or PCIx technology. The PCIe2 cards are located at the rear of the motherboard. See “Motherboard, PCIe2 Cards, and SP Locations” on page 3.

<table>
<thead>
<tr>
<th>Description</th>
<th>Links</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replace a faulty PCIe2 card.</td>
<td>“Locate a Faulty PCIe2 Card” on page 186 “Remove a PCIe2 Card” on page 188 “Install a PCIe2 Card” on page 191 “Verify a PCIe2 Card” on page 195</td>
</tr>
<tr>
<td>Remove the PCIe2 cards as part of another component’s service operation.</td>
<td>“Remove a PCIe2 Card” on page 188</td>
</tr>
<tr>
<td>Install the PCIe2 cards as part of another component’s service operation.</td>
<td>“Install a PCIe2 Card” on page 191</td>
</tr>
<tr>
<td>Add an additional PCIe2 card. Install SAS cable for Sun Storage 6 Gb SAS PCIe RAID HBA, Internal card</td>
<td>“Install a PCIe2 Card” on page 191 “Install SAS Cable for Sun Storage 6 Gb SAS PCIe RAID HBA, Internal” on page 194 “Verify a PCIe2 Card” on page 195</td>
</tr>
<tr>
<td>Remove an existing PCIe2 card. Identify a faulty PCIe2 card.</td>
<td>“Remove a PCIe2 Card” on page 188 “Locate a Faulty PCIe2 Card” on page 186 “Detecting and Managing Faults” on page 9</td>
</tr>
</tbody>
</table>

Related Information
- “Identifying Components” on page 1
- “Component Service Task Reference” on page 65
- “Detecting and Managing Faults” on page 9
- “Preparing for Service” on page 59
- “Returning the Server to Operation” on page 285
▼ Locate a Faulty PCIe2 Card

You must determine which PCIe2 card is faulty before you replace it.

1. Check to see if any System Service Required LEDs are lit or flashing.
 See “Interpreting Diagnostic LEDs” on page 14.

2. Visually inspect the PCIe2 card to see if any of its status LEDs are lit or flashing.
 If the PCIe2 card is faulty, replace it. See “Remove a PCIe2 Card” on page 188.

3. Within the Oracle ILOM interface, type the show faulty command to verify that the PCIe2 card is faulty.
 If the PCIe2 card is faulty, you will see /SYS/MB/PCIEx/card_type under the Value heading. For example:

```plaintext
-> show faulty
Target               | Property     | Value
---------------------+--------------+-----------------------------------------------
/SP/faultmgmt/0      | fru          | /SYS/MB/PCIE0/XAUI0
.                    | .            | .                                             
.                    | .            | .                                             
.                    | .            | .                                             
->
```

where:
- x is 0 to 9.
- card_type is the Oracle ILOM target for the type of PCIe2 card.

If the PCIe2 card is faulty, replace it. See “Remove a PCIe2 Card” on page 188.

If a FRU value different from /SYS/MB/PCIEx/card_type is displayed, see “Component Service Task Reference” on page 65 to identify which component is faulty.

4. Start the Oracle ILOM faultmgmt shell.

```plaintext
-> start /SP/faultmgmt/shell
Are you sure you want to start /SP/faultmgmt/shell (y/n)? y

faultmgmtsp>
```
5. Identify the faulty component.

For example:

```
faultmgmtsp> fmadm faulty
--------------------------------------------------------------------------
| Time             | UUID                                      | msgid         | Severity |
--------------------------------------------------------------------------
| 2010-08-11/14:54:23 59654226-50d3-cdc6-9f09-e591f39792ca | SPT-8000-LC    |
--------------------------------------------------------------------------
Fault class : fault.chassis.power.volt-fail
Description : A Power Supply voltage level has exceeded acceptable limits.
```

Check the Fault class and Description fields for more information.
If the PCIe2 card is faulty, replace it. See “Remove a PCIe2 Card” on page 188.

6. Exit the Oracle ILOM faultmgmt shell.

```
faultmgmtsp> exit
```

7. Within the Oracle ILOM interface, verify the presence of the PCIe2 card.

```
-> show -d targets /SYS/MB/PCIEx
/SYS/MB/PCI_MEZZ/PCIE4
Targets:
    XAUI0
    
-
```

where x is the PCIe2 slot, 0 (left slot) to 9 (right slot).
If the PCIe2 card is faulty, replace it. See “Remove a PCIe2 Card” on page 188.

8. If you are unable to identify the faulty PCIe2 card, seek further information.
 See “Detecting and Managing Faults” on page 9.

Related Information
- “Remove a PCIe2 Card” on page 188
■ “Install a PCIe2 Card” on page 191
■ “Verify a PCIe2 Card” on page 195
■ “Detecting and Managing Faults” on page 9

▼ Remove a PCIe2 Card

Removing the PCIe2 card is a cold-service operation. You must power off the server before you remove the PCIe2 card.

1. Consider your first step:
 ■ If you have not prepared for service, do so now. See “Preparing for Service” on page 59.
 ■ If you are removing the PCIe2 card as part of another component’s removal or installation procedure, go to Step 2.
 ■ If you are removing a Sun Storage 6 Gb SAS PCIe RAID HBA, Internal, see “Install SAS Cable for Sun Storage 6 Gb SAS PCIe RAID HBA, Internal” on page 194 for the SAS cable connections.

2. Determine which PCIe2 card to remove.
 See “Locate a Faulty PCIe2 Card” on page 186 if necessary.

3. Remove the screw securing the PCIe2 card to the chassis.
4. Unseat the PCIe2 card from the card edge connector, lift the PCIe2 card out of the chassis, and set the PCIe2 card aside.
5. Consider your next steps:
 ■ If you removed the PCIe2 card as part of a replacement operation, install a new PCIe2 card. See “Install a PCIe2 Card” on page 191.
 ■ If you removed the PCIe2 card as part of another component’s removal or installation procedure, return to that procedure. See “Component Service Task Reference” on page 65 for assistance.
 ■ If you are not replacing the PCIe2 card, go to Step 6.

6. Finish the removal procedure.
 See “Returning the Server to Operation” on page 285.

Related Information
■ “Locate a Faulty PCIe2 Card” on page 186
■ “Install a PCIe2 Card” on page 191
■ “Verify a PCIe2 Card” on page 195
■ “Preparing for Service” on page 59
“Returning the Server to Operation” on page 285
Sun Storage 6 Gb SAS PCIe RAID HBA, Internal Installation Guide

▼ Install a PCIe2 Card

Installing the PCIe2 card is a cold-service operation. You must power off the server before installing the PCIe2 card.

1. Consider your first steps:
 ■ If you are replacing a PCIe2 card, remove the faulty or obsolete PCIe2 card first, then return to this procedure, Step 2. See “Remove a PCIe2 Card” on page 188.
 ■ If you are installing a new or an additional PCIe2 card, see “Preparing for Service” on page 59.
 ■ If you are installing a Sun Storage 6 Gb SAS PCIe RAID HBA, Internal, go to “Install SAS Cable for Sun Storage 6 Gb SAS PCIe RAID HBA, Internal” on page 194.
 ■ If you are installing the PCIe2 card as part of another component’s removal or installation procedure, go to Step 2.

2. Align the PCIe2 card to the location where it installs into the motherboard.
 The PCIe2 card bracket is to the rear of the chassis.

Note – The Sun Storage 6 Gb SAS PCIe RAID HBA, Internal PCIe card must be installed in PCIe slot 5 only. This HBA also requires a special SAS cable. See “Install SAS Cable for Sun Storage 6 Gb SAS PCIe RAID HBA, Internal” on page 194 for more information.
3. Press the PCIe2 card into the card edge connector so that the PCIe2 card is fully seated.

4. Secure the PCIe2 card to the chassis with the screw.
5. Consider your next steps:
 - If you installed the PCIe2 card as part of a replacement operation, go to Step 6.
 - If you installed the PCIe2 card as part of another component’s removal or installation procedure, return to that procedure. See “Component Service Task Reference” on page 65 for assistance.
 - If you are installed a Sun Storage 6 Gb SAS PCIe RAID HBA, Internal, go to “Install SAS Cable for Sun Storage 6 Gb SAS PCIe RAID HBA, Internal” on page 194.
 - If you have installed a new PCIe2 card, go to Step 6.

6. Finish the installation procedure.
 See:
Install SAS Cable for Sun Storage 6 Gb SAS PCIe RAID HBA, Internal

Refer to the Sun Storage 6 Gb SAS PCIe RAID HBA, Internal Installation Guide for additional details.

1. Install the card in PCIe slot 5.
 See “Install a PCIe2 Card” on page 191.

2. Disconnect the existing SAS cable from the Disk 4-7 connector on the motherboard (pane 1).

3. Route the SAS cable as shown and connect to the Port 4-7 connector (or lower connector) on the HBA card (pane 2).

4. Disconnect the existing SAS cable from the Disk 0-3 connector on the motherboard (pane 1).

5. Route the SAS cable as shown and connect to the Port 0-3 connector (or upper connector) on the HBA card (pane 2).
6. Finish the installation procedure.

See:
- “Returning the Server to Operation” on page 285
- “Verify a PCIe2 Card” on page 195

Related Information
- “Remove a PCIe2 Card” on page 188
- “Install a PCIe2 Card” on page 191
- “Verify a PCIe2 Card” on page 195
- “Preparing for Service” on page 59
- “Returning the Server to Operation” on page 285
- Sun Storage 6 Gb SAS PCIe RAID HBA, Internal Installation Guide

▼ Verify a PCIe2 Card

After you install a PCIe2 card, you can verify its functionality.
1. Reset the PCIe2 card.

```
-> set /SYS/MB/PCIE\x/card_type clear_fault_action=true
Are you sure you want to clear /SYS/MB/PCIE4/XAUI0 (y/n)? y
Set ‘clear_fault_action’ to ‘true’
```

where:
- x is 0 to 9.
- card_type is the Oracle ILOM target for the type of PCIe2 card.

2. Consider your next steps:
- If you installed a new PCIe2 card as part of a replacement operation, verify that the PCIe2 card is no longer considered faulty, then return to this procedure. See “Locate a Faulty PCIe2 Card” on page 186.
- If you installed a new PCIe2 card to increase functionality, go to Step 3.

3. Verify the presence of the PCIe2 card.

```
-> show -d targets /SYS/MB/PCIE\x
/SYS/MB/PCIE4
Targets:
XAUI0

->
```

where x is the PCIe2 slot, 0 (left slot) to 9 (right slot).

Related Information
- “Locate a Faulty PCIe2 Card” on page 186
- “Remove a PCIe2 Card” on page 188
- “Install a PCIe2 Card” on page 191
Servicing the SP

The SP is an independent server management device providing Oracle ILOM control of the server. The SP is socketed at the left rear of the motherboard. See “Motherboard, PCIe2 Cards, and SP Locations” on page 3.

Description	**Links**
Replace the faulty SP.	“Determine if the SP Is Faulty” on page 197
“Remove the SP” on page 200	
“Install the SP” on page 202	
“Verify the SP” on page 205	

Remove the SP as part of another component’s service operation. | “Remove the SP” on page 200

Install the SP as part of another component’s service operation. | “Install the SP” on page 202

Determine whether the SP is faulty. | “Determine if the SP Is Faulty” on page 197
 | “Detecting and Managing Faults” on page 9

Related Information

- “Identifying Components” on page 1
- “Component Service Task Reference” on page 65
- “Detecting and Managing Faults” on page 9
- “Preparing for Service” on page 59
- “Returning the Server to Operation” on page 285

▼ Determine if the SP Is Faulty

You must determine if the SP is faulty before you replace it.
1. Check to see if any System Service Required LEDs are lit or flashing.
 See “Interpreting Diagnostic LEDs” on page 14.

2. Within the Oracle ILOM interface, type the `show faulty` command to verify that the SP is faulty.
 If the SP is faulty, you will see `/SYS/MB/SP` under the Value heading. For example:

   ```
   -> show faulty
   Target       | Property  | Value
   ----------------+------------+-------------------
   /SP/faultmgmt/0 | fru        | /SYS/MB/SP
   ...
   ->
   ```

 If the SP is faulty, replace it. See “Remove the SP” on page 200.

 If a FRU value different from `/SYS/MB/SP` is displayed, see “Component Service Task Reference” on page 65 to identify which component is faulty.

3. Start the Oracle ILOM `faultmgmt shell`.

   ```
   -> start /SP/faultmgmt/shell
   Are you sure you want to start /SP/faultmgmt/shell (y/n)? y
   faultmgmtsp>
   ```
4. Identify the faulty component.

For example:

```
faultmgmtsp> fmadm faulty
----------------------------------- ------------------------------------ ----------
Time     UUID                     msgid      Severity
----------------------------------- ------------------------------------ ----------
2010-08-11/14:54:23 59654226-50d3-cdc6-9f09-e591f39792ca SPT-8000-LC Critical

Fault class : fault.chassis.power.volt-fail
Description : A Power Supply voltage level has exceeded acceptable limits.
```

Check the Fault class and Description fields for more information.
If the SP is faulty, replace it. See “Remove the SP” on page 200.

5. Exit the Oracle ILOM faultmgmt shell.

```
faultmgmtsp> exit
->
```

6. Within the Oracle ILOM interface, verify the presence of the SP.

```
-> show /SYS/MB/SP type
/SYS/MB/SP
   Properties:
      type = SP Board Module
->
```

If the SP does not report its type, replace it. See “Remove the SP” on page 200.

7. If you are unable to determine if the SP is faulty, seek further information.
 See “Detecting and Managing Faults” on page 9.

Related Information

- “Remove the SP” on page 200
- “Install the SP” on page 202
- “Verify the SP” on page 205
- “Detecting and Managing Faults” on page 9
Remove the SP

Note – If you are removing the SP as part of a replacement operation, you must first backup the current SP’s Oracle ILOM configuration. Refer to the Oracle ILOM documentation for instructions on backing up and restoring the Oracle ILOM configuration. Also note the current version of the SP firmware.

Removing the SP is a cold-service operation. You must power off the server before you remove the SP.

1. Consider your first step:
 - If you have not prepared for service, do so now. See “Preparing for Service” on page 59.
 - If you are removing the SP as part of another component’s removal or installation procedure, go to Step 2.

2. Remove the PCIe2 card in slot 4PCle2, if installed.
 See “Remove a PCIe2 Card” on page 188.

3. Remove the two screws securing the SP to the motherboard.
4. Lift the SP out of the chassis and set the SP aside.

5. Consider your next steps:
 - If you removed the SP as part of a replacement operation, install a new SP. See “Install the SP” on page 202.
 - If you removed the SP as part of another component’s removal or installation procedure, return to that procedure. See “Component Service Task Reference” on page 65 for assistance.

Related Information
- “Determine if the SP Is Faulty” on page 197
- “Install the SP” on page 202
- “Verify the SP” on page 205
- “Preparing for Service” on page 59
- “Returning the Server to Operation” on page 285
Install the SP

Installing the SP is a cold-service operation. You must power off the server before installing the SP.

1. Consider your first steps:
 - If you are replacing a SP, remove the faulty or obsolete SP first, then return to this procedure, Step 2. See “Remove the SP” on page 200.
 - If you are installing the SP as part of another component’s removal or installation procedure, go to Step 2.

2. Align the SP to where it installs into the chassis.
 The connector on the bottom of the SP aligns to the connector left of the left PCIe2 socket.

3. Press the right side of the SP down firmly into the connector.
4. Secure the SP in place with the two screws.

5. Consider your next steps:
 - If you installed the SP as part of a replacement operation, go to Step 6.
 - If you installed the SP as part of another component’s removal or installation procedure, return to that procedure. See “Component Service Task Reference” on page 65 for assistance.

6. Install the PCIe2 card into slot PCIe2, if it was removed previously.
 See “Install a PCIe2 Card” on page 191.

7. Return the SP to an operational condition.
 a. Install the top cover and install the server into the rack.
 See “Install the Top Cover” on page 285.
 b. Connect the power cords.
 See “Connect Power Cords” on page 289
8. Prior to powering on the server, connect a terminal or a terminal emulator (PC or workstation) to the SER MGT port.

Refer to Server Installation for instructions.

If the replacement SP detects that the SP firmware is not compatible with the existing host firmware, further action is suspended and the following message is displayed:

| Unrecognized Chassis: This module is installed in an unknown or unsupported chassis. You must upgrade the firmware to a newer version that supports this chassis. |

If you see this message, continue to the next step. Otherwise, skip to Step 10.

9. Download the system firmware.

a. Configure the NET MGT port so that it can access the network, and log in to the SP through the NET MGT port.

Refer to the Oracle ILOM documentation for network configuration instructions.

b. Download the system firmware.

Follow the firmware download instructions in the Oracle ILOM documentation.

Note – You can load any supported system firmware version, including the firmware version that was installed prior to replacing the SP.

10. If you created a backup of your Oracle ILOM configuration, use the Oracle ILOM restore utility to restore the configuration to the replacement SP.

Refer to the Oracle ILOM documentation for instructions.

11. Power on the server.

See “Power On the Server (Oracle ILOM)” on page 290

12. Verify the SP.

See: “Verify the SP” on page 205

Related Information

- “Determine if the SP Is Faulty” on page 197
- “Remove the SP” on page 200
- “Verify the SP” on page 205
- “Preparing for Service” on page 59
- “Returning the Server to Operation” on page 285
Verify the SP

After you install a SP, you can verify its functionality.

1. **Reset the SP.**

   ```bash
   -> set /SYS/MB/SP clear_fault_action=true
   Are you sure you want to clear /SYS/MB/SP (y/n)? y
   Set 'clear_fault_action' to 'true'
   ->
   ```

2. **Verify that the SP is no longer considered faulty, then return to this procedure.**

 See “Determine if the SP Is Faulty” on page 197.

3. **Verify the presence of the SP.**

   ```bash
   -> show /SYS/MB/SP type
   /SYS/MB/SP
   Properties:
   type = SP Board Module
   ->
   ```

Related Information

- “Determine if the SP Is Faulty” on page 197
- “Remove the SP” on page 200
- “Install the SP” on page 202
Servicing the ID PROM

The ID PROM is a nonvolatile memory device that stores basic boot and network configuration information. The ID PROM is socketed at the right rear of the motherboard. See “Motherboard, PCIe2 Cards, and SP Locations” on page 3.

<table>
<thead>
<tr>
<th>Description</th>
<th>Links</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replace the faulty ID PROM.</td>
<td>“Determine if the ID PROM Is Faulty” on page 208</td>
</tr>
<tr>
<td></td>
<td>“Remove the ID PROM” on page 210</td>
</tr>
<tr>
<td></td>
<td>“Install the ID PROM” on page 212</td>
</tr>
<tr>
<td></td>
<td>“Verify the ID PROM” on page 213</td>
</tr>
<tr>
<td>Remove the ID PROM as part of another component’s service operation.</td>
<td>“Remove the ID PROM” on page 210</td>
</tr>
<tr>
<td>Install the ID PROM as part of another component’s service operation.</td>
<td>“Install the ID PROM” on page 212</td>
</tr>
<tr>
<td>Determine whether the ID PROM is faulty.</td>
<td>“Determine if the ID PROM Is Faulty” on page 208</td>
</tr>
<tr>
<td></td>
<td>“Detecting and Managing Faults” on page 9</td>
</tr>
</tbody>
</table>

Related Information

- “Identifying Components” on page 1
- “Component Service Task Reference” on page 65
- “Detecting and Managing Faults” on page 9
- “Preparing for Service” on page 59
- “Returning the Server to Operation” on page 285
▼ Determine if the ID PROM Is Faulty

You must determine if the ID PROM is faulty before you replace it.

1. **Check to see if any System Service Required LEDs are lit or flashing.**
 See “Interpreting Diagnostic LEDs” on page 14.

2. **Within the Oracle ILOM interface, type the show faulty command to verify that the ID PROM is faulty.**
 If the ID PROM is faulty, you will see /SYS/MB/SCC under the Value heading.
 For example:

   ```
   --> show faulty
   Target                  | Property | Value
   ------------------------+----------+-------------------------------
   /SP/faultmgmt/0         | fru      | /SYS/MB/SCC
   .
   .
   .
   -->
   ```

 If the ID PROM is faulty, replace it. See “Remove the ID PROM” on page 210.
 If a FRU value different from /SYS/MB/SCC is displayed, see “Component Service Task Reference” on page 65 to identify which component is faulty.

3. **Start the Oracle ILOM faultmgmt shell.**

   ```
   --> start /SP/faultmgmt/shell
   Are you sure you want to start /SP/faultmgmt/shell (y/n)? y
   faultmgmtsp>
   ```
4. Identify the faulty component.
 For example:

   ```
   faultmgmt> fmadm faulty
   Time          UUID                                 magid         Severity
   ------------------- ------------------------------------ -------------- -------
   2010-08-11/14:54:23 59654226-50d3-cdc6-9f09-e591f39792ca SPT-8000-LC Critical

   Fault class : fault.chassis.power.volt-fail
   Description : A Power Supply voltage level has exceeded acceptable limits.
   .
   .
   faultmgmt>
   ```

 Check the Fault class and Description fields for more information.
 If the ID PROM is faulty, replace it. See “Remove the ID PROM” on page 210.

5. Exit the Oracle ILOM faultmgmt shell.

   ```
   faultmgmt> exit
   ->
   ```

6. Within the Oracle ILOM interface, verify the presence of the ID PROM.

   ```
   -> show /SP/network macaddress
   /SP/network
          Properties:
          macaddress = 00:21:28:A6:1A:23
   -> show /SP/clock datetime
   /SP/clock
          Properties:
          datetime = Wed Jan 12 03:50:33 2011
   ->
   ```

 If the ID PROM does not report its MAC address or time, replace it. See “Remove the ID PROM” on page 210.

7. If you are unable to determine if the ID PROM is faulty, seek further information.
 See “Detecting and Managing Faults” on page 9.
Related Information

- “Remove the ID PROM” on page 210
- “Install the ID PROM” on page 212
- “Verify the ID PROM” on page 213
- “Detecting and Managing Faults” on page 9

▼ Remove the ID PROM

Removing the ID PROM is a cold-service operation. You must power off the server before you remove the ID PROM.

1. Consider your first step:
 - If you have not prepared for service, do so now. See “Preparing for Service” on page 59.
 - If you are removing the ID PROM as part of another component’s removal or installation procedure, go to Step 2.

2. Remove the PCIe2 cards in slots 1PCIe2, 2PCIe2, and 3PCIe2, if installed.
 See “Remove a PCIe2 Card” on page 188.

3. Grasp the left and right of the ID PROM and pull straight up.
4. Lift the ID PROM out of the chassis and set the ID PROM aside.

5. Consider your next steps:
 - If you removed the ID PROM as part of a replacement operation, install a new ID PROM. See “Install the ID PROM” on page 212.
 - If you removed the ID PROM as part of another component’s removal or installation procedure, return to that procedure. See “Component Service Task Reference” on page 65 for assistance.

Related Information
- “Determine if the ID PROM Is Faulty” on page 208
- “Install the ID PROM” on page 212
- “Verify the ID PROM” on page 213
- “Preparing for Service” on page 59
- “Returning the Server to Operation” on page 285
Install the ID PROM

Installing the ID PROM is a cold-service operation. You must power off the server before installing the ID PROM.

1. Consider your first steps:
 - If you are replacing an ID PROM, remove the faulty or obsolete ID PROM first, then return to this procedure, Step 2. See “Remove the ID PROM” on page 210.
 - If you are installing the ID PROM as part of another component’s removal or installation procedure, go to Step 2.

2. Align the ID PROM to the location where it installs into the chassis.
 The key on the underside of the ID PROM lines up with the notch at the rear of the socket.

3. Press the center of the ID PROM straight into the socket.
4. Consider your next steps:
 ■ If you installed the ID PROM as part of a replacement operation, go to Step 5.
 ■ If you installed the ID PROM as part of another component’s removal or installation procedure, return to that procedure. See “Component Service Task Reference” on page 65 for assistance.

5. Install the PCIe2 cards into slots 1PCIe2, 2PCIe2, and 3PCIe2, if removed previously.
 See “Install a PCIe2 Card” on page 191.

6. Finish the installation procedure.
 See:
 ■ “Returning the Server to Operation” on page 285
 ■ “Verify the ID PROM” on page 213

Related Information
■ “Determine if the ID PROM Is Faulty” on page 208
■ “Remove the ID PROM” on page 210
■ “Verify the ID PROM” on page 213
■ “Preparing for Service” on page 59
■ “Returning the Server to Operation” on page 285

▼ Verify the ID PROM

After you install an ID PROM, you can verify its functionality.

1. Reset the ID PROM.
   ```
   -> set /SYS/MB/SCC clear_fault_action=true
   Are you sure you want to clear /SYS/MB/SCC (y/n)? y
   Set ‘clear_fault_action’ to ‘true’
   ->
   ```

2. Verify that the ID PROM is no longer considered faulty, then return to this procedure.
 See “Determine if the ID PROM Is Faulty” on page 208.
3. Verify the presence of the ID PROM.

```
-> show /SP/network macaddress
/SP/network
  Properties:
    macaddress = 00:21:28:A6:1A:23
-> show /SP/clock datetime
/SP/clock
  Properties:
    datetime = Wed Jan 12 03:50:33 2011
->
```

Related Information
- “Determine if the ID PROM Is Faulty” on page 208
- “Remove the ID PROM” on page 210
- “Install the ID PROM” on page 212
Servicing the Subchassis

The subchassis provides a supportive structure for the front fan modules and memory risers, and is located at the front of the chassis. See “Power Supply, Hard Drive, and Rear Fan Module Locations” on page 2.

<table>
<thead>
<tr>
<th>Description</th>
<th>Links</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remove the subchassis as part of another component’s service operation.</td>
<td>“Remove the Subchassis” on page 215</td>
</tr>
<tr>
<td>Install the subchassis as part of another component’s service operation.</td>
<td>“Install the Subchassis” on page 219</td>
</tr>
</tbody>
</table>

Related Information

- “Identifying Components” on page 1
- “Component Service Task Reference” on page 65
- “Servicing Front Fan Modules” on page 87
- “Servicing Memory Risers” on page 151
- “Detecting and Managing Faults” on page 9
- “Preparing for Service” on page 59
- “Returning the Server to Operation” on page 285

▼ Remove the Subchassis

Removing the subchassis is a cold-service operation. You must power off the server before you remove the subchassis.

1. Consider your first step:
If you have not prepared for service, do so now. See “Preparing for Service” on page 59.

If you are removing the subchassis as part of another component’s removal or installation procedure, go to Step 2.

2. **Remove the fan modules.**
 See “Remove a Front Fan Module” on page 91.

3. **Remove the memory risers.**
 See “Remove a Memory Riser” on page 156.

4. **Remove the three screws from the rear of the subchassis, freeing it from the motherboard.**

5. **Loosen the two captive screws from the inside left and right of the subchassis.**
6. Remove the three countersunk screws from the upper left and right sides of the chassis.

7. Lift the subchassis straight up and out of the chassis.
8. Set the subchassis aside.

9. Consider your next steps:
 - If you removed the subchassis as part of a replacement operation, install a new subchassis. See “Install the Subchassis” on page 219.
 - If you removed the subchassis as part of another component’s removal or installation procedure, return to that procedure. See “Component Service Task Reference” on page 65 for assistance.

Related Information
- “Install the Subchassis” on page 219
- “Preparing for Service” on page 59
- “Returning the Server to Operation” on page 285
Install the Subchassis

Installing the subchassis is a cold-service operation. You must power off the server before installing the subchassis.

1. Consider your first steps:
 - If you are replacing a subchassis, remove the faulty or obsolete subchassis first, then return to this procedure, Step 2. See “Remove the Subchassis” on page 215.
 - If you are installing the subchassis as part of another component’s removal or installation procedure, go to Step 2.

2. Align the subchassis to the location where it installs into the chassis.
 The front fan module bays are toward the front of the chassis.

3. Lower the subchassis into the chassis.
4. Loosely install the three countersunk screws at the upper left and right sides of the chassis.
5. Loosely install the three screws at the rear of the subchassis.
6. Tighten two captive screws at the inside left and right of the subchassis.
7. Tighten all loose screws.
 See Step 4 and Step 5.

8. Consider your next steps:
 ■ If you installed the subchassis as part of a replacement operation, go to Step 9.
 ■ If you installed the subchassis as part of another component’s removal or installation procedure, return to that procedure. See “Component Service Task Reference” on page 65 for assistance.

9. Install the memory risers.
 See “Install a Memory Riser” on page 158.

10. Install the fan modules.
 See “Install a Front Fan Module” on page 95.

11. Finish the installation procedure.
 See: “Returning the Server to Operation” on page 285

Related Information
■ “Remove the Subchassis” on page 215
■ “Preparing for Service” on page 59
■ “Returning the Server to Operation” on page 285
Servicing the LED Board

The LED board provides indicators of chassis and alarm status. The LED board is located vertically at the front left of the chassis. See “Power Supply, Hard Drive, and Rear Fan Module Locations” on page 2.

<table>
<thead>
<tr>
<th>Description</th>
<th>Links</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replace the faulty LED board.</td>
<td>“Determine if the LED Board Is Faulty” on page 225</td>
</tr>
<tr>
<td></td>
<td>“Remove the LED Board” on page 226</td>
</tr>
<tr>
<td></td>
<td>“Install the LED Board” on page 231</td>
</tr>
<tr>
<td></td>
<td>“Verify the LED Board” on page 235</td>
</tr>
<tr>
<td>Determine whether the LED board is</td>
<td>“Determine if the LED Board Is Faulty” on page 225</td>
</tr>
<tr>
<td>faulty.</td>
<td>“Detecting and Managing Faults” on page 9</td>
</tr>
</tbody>
</table>

Related Information

- “Identifying Components” on page 1
- “Component Service Task Reference” on page 65
- “Servicing the Subchassis” on page 215
- “Detecting and Managing Faults” on page 9
- “Preparing for Service” on page 59
- “Returning the Server to Operation” on page 285

▼ Determine if the LED Board Is Faulty

You must determine if the LED board is faulty before you replace it.

1. Check to see if any System Service Required LEDs are lit or flashing.
 See “Interpreting Diagnostic LEDs” on page 14.
2. Within the Oracle ILOM interface, turn on the LED board LEDs.

```
-> set /SYS/USER_ALARM value=On
Set 'value' to 'On'
-> set /SYS/MINOR_ALARM value=On
Set 'value' to 'On'
-> set /SYS/MAJOR_ALARM value=On
Set 'value' to 'On'
-> set /SYS/CRITICAL_ALARM value=On
Set 'value' to 'On'
-> set /SYS/LOCATE value=fast_blink
Set 'value' to 'fast_blink'
->
```

3. Go to the server and verify the LED board operation.

With the exception of the Service Required LED, all LEDs on the left side of the front panel should be on or flashing.

If the LED board is faulty, replace it. See “Remove the LED Board” on page 226.

Related Information

- “Remove the LED Board” on page 226
- “Install the LED Board” on page 231
- “Verify the LED Board” on page 235
- “Detecting and Managing Faults” on page 9

▼ **Remove the LED Board**

Removing the LED board is a cold-service operation. You must power off the server before you remove the LED board.

1. **Consider your first step:**
 - If you have not prepared for service, do so now. See “Preparing for Service” on page 59.
 - If you are removing the LED board as part of another component’s removal or installation procedure, go to Step 2.

2. **Remove the fan modules.**

 See “Remove a Front Fan Module” on page 91.
3. Remove the memory risers.
 See “Remove a Memory Riser” on page 156.

4. Remove the subchassis.
 See “Remove the LED Board” on page 226.

5. Remove the two screws from the right side of the LED board cover.

6. Remove the screw from the left side of the LED board cover.

7. Remove the LED board cover.
8. Remove the three screws that secure the LED board to the chassis.
9. Gently disconnect the cable from the LED board.
10. Set the LED board aside.

11. Install a new LED board.
 See “Install the LED Board” on page 231.

Related Information
- “Determine if the LED Board Is Faulty” on page 225
- “Install the LED Board” on page 231
- “Verify the LED Board” on page 235
- “Preparing for Service” on page 59
- “Returning the Server to Operation” on page 285
▼ Install the LED Board

Installing the LED board is a cold-service operation. You must power off the server before installing the LED board.

1. Consider your first steps:
 ■ If you are replacing a LED board, remove the faulty or obsolete LED board first, then return to this procedure, Step 2. See “Remove the LED Board” on page 226.
 ■ Otherwise, go to Step 2.

2. Align the LED board to the location where it installs into the chassis.
 The connector is at the lower rear of the LED board.

3. Attach the cable to the LED board.

4. Install the three screws that secure the LED board to the chassis.
5. Install the LED board cover.
6. Install the screw on the left side of the LED board cover.
7. Install the two screws on the right side of the LED board cover.

8. Install the subchassis.
 See “Install the LED Board” on page 231.

9. Install the memory risers.
 See “Install a Memory Riser” on page 158.

10. Install the fan modules.
 See “Install a Front Fan Module” on page 95.
11. Finish the installation procedure.
 See:
 - “Returning the Server to Operation” on page 285
 - “Verify the LED Board” on page 235

Related Information
- “Determine if the LED Board Is Faulty” on page 225
- “Remove the LED Board” on page 226
- “Verify the LED Board” on page 235
- “Preparing for Service” on page 59
- “Returning the Server to Operation” on page 285

▼ Verify the LED Board

After you install the LED board, you can verify its functionality.

1. Within the Oracle ILOM interface, turn on the LED board LEDs.

```
-> set /SYS/USER_ALARM value=On
   Set 'value' to 'On'
-> set /SYS/MINOR_ALARM value=On
   Set 'value' to 'On'
-> set /SYS/MAJOR_ALARM value=On
   Set 'value' to 'On'
-> set /SYS/Critical_ALARM value=On
   Set 'value' to 'On'
-> set /SYS/LOCATE value=fast_blink
   Set 'value' to 'fast_blink'
```

2. Go to the server and verify the LED board operation.
 With the exception of the Service Required LED, all LEDs on the left side of the front panel should be on or flashing.

Related Information
- “Determine if the LED Board Is Faulty” on page 225
- “Remove the LED Board” on page 226
- “Install the LED Board” on page 231
Servicing the Motherboard

The motherboard is the main hardware component of the server. The motherboard is located at the bottom of the chassis. See “Motherboard, PCIe2 Cards, and SP Locations” on page 3.

<table>
<thead>
<tr>
<th>Description</th>
<th>Links</th>
</tr>
</thead>
</table>
| Replace the faulty motherboard. | “Determine if the Motherboard Is Faulty” on page 238
“Remove the Motherboard” on page 240
“Install the Motherboard” on page 246
“Verify the Motherboard” on page 256 |
| Remove the motherboard as part of another component’s service operation. | “Remove the Motherboard” on page 240 |
| Install the motherboard as part of another component’s service operation. | “Install the Motherboard” on page 246 |
| Determine whether the motherboard is faulty. | “Determine if the Motherboard Is Faulty” on page 238
“Detecting and Managing Faults” on page 9 |

Related Information
- “Identifying Components” on page 1
- “Component Service Task Reference” on page 65
- “Detecting and Managing Faults” on page 9
- “Preparing for Service” on page 59
- “Returning the Server to Operation” on page 285
Determine if the Motherboard Is Faulty

You must determine if the motherboard is faulty before you replace it.

1. Check to see if any System Service Required LEDs are lit or flashing.
 See “Interpreting Diagnostic LEDs” on page 14.

2. Within the Oracle ILOM interface, type the show faulty command to verify that the motherboard is faulty.
 If the motherboard is faulty, you will see /SYS/MB under the Value heading. For example:

   ```
   -> show faulty
   Target       | Property | Value
   ------------------+----------+-------------------
   /SP/faultmgmt/0 | fru      | /SYS/MB
   .              .
   .              .
   ->
   ```

 If the motherboard is faulty, replace it. See “Remove the Motherboard” on page 240.

 If a FRU value different from /SYS/MB is displayed, see “Component Service Task Reference” on page 65 to identify which component is faulty.

3. Start the Oracle ILOM faultmgmt shell.

   ```
   -> start /SP/faultmgmt.shell
   Are you sure you want to start /SP/faultmgmt/shell (y/n)? y
   faultmgmtsp>
   ```
4. Identify the faulty component.
 For example:

```
faultmgmtsp> fmadm faulty
------------------- ------------------------------------ -------------- -----
Time          UUID                    magid     Severity
------------------- ------------------------------------ -------------- -----
2010-08-11/14:54:23 59654226-50d3-cdc6-9f09-e591f39792ca SPT-8000-LC Critical

Fault class : fault.chassis.power.volt-fail
Description : A Power Supply voltage level has exceeded acceptable limits.
```

Check the Fault class and Description fields for more information.
If the motherboard is faulty, replace it. See “Remove the Motherboard” on page 240.

5. Exit the Oracle ILOM faultmgmt shell.

```
faultmgmtsp> exit
->
```

6. Within the Oracle ILOM interface, verify the presence of the motherboard.

```
-> show /SYS/MB type
/SYS/MB
   Properties:
       type = Motherboard
->
```

If the motherboard does not report its presence, replace it. See “Remove the Motherboard” on page 240.

7. If you are unable to determine if the motherboard is faulty, seek further information.
 See “Detecting and Managing Faults” on page 9.

Related Information
- “Remove the Motherboard” on page 240
- “Install the Motherboard” on page 246
■ “Verify the Motherboard” on page 256
■ “Detecting and Managing Faults” on page 9

▼ Remove the Motherboard

Flash memory on the motherboard stores this information:
■ OBP NVRAM configuration variables
■ POST configuration variables
■ SC configuration variables (IO reconfig, power mgmt, boot mode)
■ ASR database
■ Saved Oracle VM Server for SPARC logical domains configuration
■ Console log
■ System error report log
■ Time of day data (tod-offset)

If you are removing the motherboard for replacement, this information will be lost. Record the information as necessary before powering off the server. Refer to the Oracle Solaris documentation for more information.

Removing the motherboard is a cold-service operation. You must power off the server before you remove the motherboard.

1. Consider your first step:
■ If you have not prepared for service, do so now. See “Preparing for Service” on page 59.
■ If you are removing the motherboard as part of another component’s removal or installation procedure, go to Step 2.

2. Remove the front fan modules.
 See “Remove a Front Fan Module” on page 91.

3. Remove the PCIe2 cards.
 See “Remove a PCIe2 Card” on page 188.

4. Remove the SP.
 See “Remove the SP” on page 200.

5. Remove the NVRAM.
 See “Remove the ID PROM” on page 210.
6. Remove the memory risers.
 See “Remove a Memory Riser” on page 156.

7. Remove the subchassis.
 See “Remove the Subchassis” on page 215.

8. Disconnect all cables from the motherboard.

9. Loosen the four captive screws of the bus bar blocks.
10. Remove the two bus bar blocks.
11. Loosen the 4 captive screws at the rear panel of the chassis.
12. Loosen the four captive screws at the front edge of the motherboard.
13. Slide the motherboard forward and lift it slightly.

14. Raise the right side of the motherboard up and lift the motherboard out of the chassis, toward the right.
15. **Consider your next steps:**

- If you removed the motherboard as part of a replacement operation, install a new motherboard. See “Install the Motherboard” on page 246.
- If you removed the motherboard as part of another component’s removal or installation procedure, return to that procedure. See “Component Service Task Reference” on page 65 for assistance.

Related Information

- “Determine if the Motherboard Is Faulty” on page 238
- “Install the Motherboard” on page 246
- “Verify the Motherboard” on page 256
- “Preparing for Service” on page 59
- “Returning the Server to Operation” on page 285

▼ **Install the Motherboard**

Flash memory on the motherboard stores this information:
OBP NVRAM configuration variables
- POST configuration variables
- SC configuration variables (IO reconfig, power mgmt, boot mode)
- ASR database
- Saved Oracle VM Server for SPARC logical domains configuration
- Console log
- System error report log
- Time of day data (tod-offset)

Note – If you are installing a new motherboard as a replacement operation, you can restore this information from values you recorded previously. Refer to the Oracle Solaris documentation for more information.

Installing the motherboard is a cold-service operation. You must power off the server before installing the motherboard.

1. **Consider your first steps:**
 - If you are replacing a motherboard, remove the faulty or obsolete motherboard first, then return to this procedure, Step 2. See “Remove the Motherboard” on page 240.
 - If you are installing the motherboard as part of another component’s removal or installation procedure, go to Step 2.

2. Collect the cables to the left of the chassis.
3. Align the motherboard to the location where it installs into the chassis.
The components point up, and the connectors are at the rear of the chassis.
4. Lower the left side of the motherboard, so that the edge rests in the left corner.
5. Lower the motherboard completely into the chassis, and slide it back toward the rear of the chassis.
6. Secure the 4 captive screws at the rear panel of the chassis.
7. Secure the four captive screws at the front edge of the motherboard.

8. Install the two bus bar blocks.
9. Tighten the four captive screws of the bus bar blocks.
10. Connect all cables to the motherboard.
11. Consider your next steps:
 ■ If you installed the motherboard as part of a replacement operation, go to Step 12.
 ■ If you installed the motherboard as part of another component’s removal or installation procedure, return to that procedure. See “Component Service Task Reference” on page 65 for assistance.

12. Install the subchassis.
 See “Install the Subchassis” on page 219.

13. Install the memory risers.
 See “Install a Memory Riser” on page 158.
14. Install the NVRAM.
 See “Install the ID PROM” on page 212.

15. Install the SP.
 See “Install the SP” on page 202.

16. Install the PCIe2 cards.
 See “Install a PCIe2 Card” on page 191.

17. Install the front fan modules.
 See “Install a Front Fan Module” on page 95.

18. Finish the installation procedure.
 See:
 - “Returning the Server to Operation” on page 285
 - “Verify the Motherboard” on page 256

Related Information
- “Determine if the Motherboard Is Faulty” on page 238
- “Remove the Motherboard” on page 240
- “Verify the Motherboard” on page 256
- “Preparing for Service” on page 59
- “Returning the Server to Operation” on page 285

▼ Verify the Motherboard

After you install a motherboard, you can verify its functionality.

1. Reset the motherboard.

   ```
   --> set /SYS/MB clear_fault_action=true
   Are you sure you want to clear /SYS/MB (y/n)? y
   Set ‘clear_fault_action’ to ‘true’
   -->
   ```

2. Verify that the motherboard is no longer considered faulty, then return to this procedure.
 See “Determine if the Motherboard Is Faulty” on page 238.
3. Verify the presence of the motherboard.

```bash
-> show /SYS/MB type
/SYS/MB
  Properties:
    type = Motherboard
->
```

Related Information

- “Determine if the Motherboard Is Faulty” on page 238
- “Remove the Motherboard” on page 240
- “Install the Motherboard” on page 246
Servicing the Power Distribution Board

The power distribution board is routes power and signals from the power supplies to the bus bars and the motherboard. The power distribution board is centrally located underneath the motherboard. See “Power Supply, Hard Drive, and Rear Fan Module Locations” on page 2.

<table>
<thead>
<tr>
<th>Description</th>
<th>Links</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replace the faulty power distribution board.</td>
<td>“Determine if the Power Distribution Board Is Faulty” on page 260</td>
</tr>
<tr>
<td></td>
<td>“Remove the Power Distribution Board” on page 261</td>
</tr>
<tr>
<td></td>
<td>“Install the Power Distribution Board” on page 266</td>
</tr>
<tr>
<td></td>
<td>“Verify the Power Distribution Board” on page 270</td>
</tr>
<tr>
<td>Remove the power distribution board as part of another component’s service operation.</td>
<td>“Remove the Power Distribution Board” on page 261</td>
</tr>
<tr>
<td>Install the power distribution board as part of another component’s service operation.</td>
<td>“Install the Power Distribution Board” on page 266</td>
</tr>
<tr>
<td>Determine whether the power distribution board is faulty.</td>
<td>“Determine if the Power Distribution Board Is Faulty” on page 260</td>
</tr>
<tr>
<td></td>
<td>“Detecting and Managing Faults” on page 9</td>
</tr>
</tbody>
</table>

Related Information

- “Identifying Components” on page 1
- “Component Service Task Reference” on page 65
- “Servicing Power Supplies” on page 125
- “Servicing the Rear Fan Module” on page 139
- “Detecting and Managing Faults” on page 9
- “Preparing for Service” on page 59
- “Returning the Server to Operation” on page 285
▼ Determine if the Power Distribution Board Is Faulty

You must determine if the power distribution board is faulty before you replace it.

1. **Check to see if any System Service Required LEDs are lit or flashing.**
 See “Interpreting Diagnostic LEDs” on page 14.

2. **Within the Oracle ILOM interface, verify the power distribution board.**

   ```
   -> show /SYS/MB/V_+12V0_MAIN value
   /SYS/MB/V_+12V0_MAIN
   Properties:
   value = 12.036 Volts
   -> show /SYS/MB/V_+3V3_STBY value
   /SYS/MB/V_+3V3_STBY
   Properties:
   value = 3.360 Volts
   ->
   ```

 If the power distribution board is faulty, replace it. See “Remove the Power Distribution Board” on page 261.

3. **Start the Oracle ILOM faultmgmt shell.**

   ```
   -> start /SP/faultmgmt/shell
   Are you sure you want to start /SP/faultmgmt/shell (y/n)? y
   faultmgmtsp>
   ```
4. Identify the faulty component.

```
faultmgmtsp> fmadm faulty
------------------- ------------------------------------ -------------- -------
             Time   UUID                          msgid               Severity
------------------- ------------------------------------ -------------- -------
2010-08-11/14:54:23 59654226-50d3-cdc6-9f09-e591f39792ca SPT-8000-LC Critical

Fault class : fault.chassis.power.volt-fail
Description : A Power Supply voltage level has exceeded acceptable limits.
```

Check the Fault class and Description fields for more information.
If the power distribution board is faulty, replace it. See “Remove the Power Distribution Board” on page 261.

5. Exit the Oracle ILOM faultmgmt shell.

```
faultmgmtsp> exit
->
```

6. If you are unable to determine if the power distribution board is faulty, seek further information.
 See “Detecting and Managing Faults” on page 9.

Related Information
- “Remove the Power Distribution Board” on page 261
- “Install the Power Distribution Board” on page 266
- “Verify the Power Distribution Board” on page 270
- “Detecting and Managing Faults” on page 9

▼ **Remove the Power Distribution Board**

Removing the power distribution board is a cold-service operation. You must run commands on the server before you remove the power distribution board.

1. Consider your first step:
If you have not prepared for service, do so now. See “Preparing for Service” on page 59.

If you are removing the power distribution board as part of another component’s removal or installation procedure, go to Step 2.

2. Remove the power supplies.
 See “Remove a Power Supply” on page 129.

3. Remove the rear fan module.
 See “Remove the Rear Fan Module” on page 143.

4. Remove the front fan modules.
 See “Remove a Front Fan Module” on page 91.

5. Remove the PCIe2 cards.
 See “Remove a PCIe2 Card” on page 188.

6. Remove the memory risers.
 See “Remove a Memory Riser” on page 156.

7. Remove the subchassis.
 See “Remove the Subchassis” on page 215.

8. Remove the motherboard.
 See “Remove the Motherboard” on page 240.

9. Disconnect the cables from the power distribution board.
10. Remove the eight screws from the power distribution board.
11. Lift the power distribution board out of the chassis.
12. Separate the power distribution board from the hard drive backplane and set them aside.

13. Consider your next steps:
 ■ If you removed the power distribution board as part of a replacement operation, install a new power distribution board. See “Install the Power Distribution Board” on page 266.
 ■ If you removed the power distribution board as part of another component’s removal or installation procedure, return to that procedure. See “Component Service Task Reference” on page 65 for assistance.

Related Information
 ■ “Determine if the Power Distribution Board Is Faulty” on page 260
Install the Power Distribution Board

Installing the power distribution board is a cold-service operation.

1. Consider your first steps:
 - If you are replacing a power distribution board, remove the faulty or obsolete power distribution board first, then return to this procedure, Step 2. See “Remove the Power Distribution Board” on page 261.
 - If you are installing the power distribution board as part of another component’s removal or installation procedure, go to Step 2.

2. Position power distribution board over the location where it installs into the chassis.
 The bus bars of the power distribution board lie over the hard drive backplane and point toward the front of the chassis. The bracket of the hard drive backplane is up and points toward the front of the chassis.

3. Lower the hard drive backplane and power distribution board into the chassis, aligning the screw holes.
4. Install the eight screws into the power distribution board.
5. Connect the cables to the power distribution board.
6. Consider your next steps:
 ■ If you installed the power distribution board as part of a replacement operation, go to Step 7.
 ■ If you installed the power distribution board as part of another component’s removal or installation procedure, return to that procedure. See “Component Service Task Reference” on page 65 for assistance.

7. Install the motherboard.
 See “Install the Motherboard” on page 246.

8. Install the subchassis.
 See “Install the Subchassis” on page 219.

9. Install the memory risers.
 See “Install a Memory Riser” on page 158.

10. Install the PCIe2 cards.
 See “Install a PCIe2 Card” on page 191.

11. Install the front fan modules.
 See “Install a Front Fan Module” on page 95.
12. Install the rear fan module.
 See “Install the Rear Fan Module” on page 146.

13. Install the power supplies.
 See “Install a Power Supply” on page 133.

14. Finish the installation procedure.
 See:
 ■ “Returning the Server to Operation” on page 285
 ■ “Verify the Power Distribution Board” on page 270

 After replacing the power distribution board, you might see this message in either the CLI or web interface:

 Warning: Product identification data missing. System may not function properly.
 Service must update product identification data. Contact Service immediately.

 If you see this message, schedule a service call as soon as possible.

 Related Information
 ■ “Determine if the Power Distribution Board Is Faulty” on page 260
 ■ “Remove the Power Distribution Board” on page 261
 ■ “Verify the Power Distribution Board” on page 270
 ■ “Preparing for Service” on page 59
 ■ “Returning the Server to Operation” on page 285

 ▼ Verify the Power Distribution Board

 After you install a power distribution board, you can verify its functionality.

 • Verify the power distribution board.

 --> show /SYS/MB/V_+12V0_MAIN value
 /SYS/MB/V_+12V0_MAIN
 Properties:
 value = 12.036 Volts
 --> show /SYS/MB/V_+3V3_STBY value
 /SYS/MB/V_+3V3_STBY
Properties:
value = 3.360 Volts

Related Information
- “Determine if the Power Distribution Board Is Faulty” on page 260
- “Remove the Power Distribution Board” on page 261
- “Install the Power Distribution Board” on page 266
Servicing the Hard Drive Backplane

The hard drive backplane is a mechanical interconnect for hard drives to the motherboard. The hard drive backplane is located vertically between the power distribution board and the hard drives. See “Power Supply, Hard Drive, and Rear Fan Module Locations” on page 2.

<table>
<thead>
<tr>
<th>Description</th>
<th>Links</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replace the faulty hard drive backplane.</td>
<td>“Determine if the Hard Drive Backplane Is Faulty” on page 273</td>
</tr>
<tr>
<td>Determine whether the hard drive backplane is faulty.</td>
<td>“Detecting and Managing Faults” on page 9</td>
</tr>
</tbody>
</table>

Related Information

- “Identifying Components” on page 1
- “Component Service Task Reference” on page 65
- “Servicing Hard Drives” on page 101
- “Detecting and Managing Faults” on page 9
- “Preparing for Service” on page 59
- “Returning the Server to Operation” on page 285

▼ Determine if the Hard Drive Backplane Is Faulty

You must determine if the hard drive backplane is faulty before you replace it.
1. Check to see if any System Service Required LEDs are lit or flashing.
 See “Interpreting Diagnostic LEDs” on page 14.

2. Within the Oracle ILOM interface, type the `show faulty` command to verify
 that the hard drive backplane is faulty.
 If the hard drive backplane is faulty, you will see `/SYS/SASBP` under the Value
 heading. For example:

   ```
   -> show faulty
   Target | Property | Value
   --------------------+------------------------+-------------------------------
   /SP/faultmgmt/0 | fru                     | /SYS/SASBP
   .
   .
   .
   ->
   ```

 If the hard drive backplane is faulty, replace it. See “Remove the Hard Drive
 Backplane” on page 275.

 If a FRU value different from `/SYS/SASBP` is displayed, see “Component Service
 Task Reference” on page 65 to identify which component is faulty.

3. Start the Oracle ILOM `faultmgmt` shell.

   ```
   -> start /SP/faultmgmt/shell
   Are you sure you want to start /SP/faultmgmt/shell (y/n)? y
   faultmgmtp>
   ```
4. Identify the faulty component.
 For example:

   ```
   faultmgmtsp> fmadm faulty
   ------------------- ------------------------------------ -------------- -------
   Time    UUID                          msgid       Severity
   ------------------- ------------------------------------ -------------- -------
   2010-08-11/14:54:23 59654226-50d3-cdc6-9f09-e591f39792ca SPT-8000-LC Critical
   Fault class : fault.chassis.power.volt-fail
   Description : A Power Supply voltage level has exceeded acceptable limits.
   ...
   ...
   faultmgmtsp>
   ```

 Check the Fault class and Description fields for more information.
 If the hard drive backplane is faulty, replace it. See “Remove the Hard Drive Backplane” on page 275.

5. Exit the Oracle ILOM faultmgmt shell.

   ```
   faultmgmtsp> exit
   ->
   ```

6. If you are unable to determine if the hard drive backplane is faulty, seek further information.
 See “Detecting and Managing Faults” on page 9.

Related Information
- “Remove the Hard Drive Backplane” on page 275
- “Install the Hard Drive Backplane” on page 279
- “Verify the Hard Drive Backplane” on page 283
- “Detecting and Managing Faults” on page 9

▼ Remove the Hard Drive Backplane

Removing the hard drive backplane is a cold-service operation. You must power off the server before you remove the hard drive backplane.
1. Consider your first step:
 ■ If you have not prepared for service, do so now. See “Preparing for Service” on page 59.
 ■ Otherwise, go to Step 2.

2. Remove the power supplies.
 See “Remove a Power Supply” on page 129.

3. Remove the rear fan module.
 See “Remove the Rear Fan Module” on page 143.

4. Remove the front fan modules.
 See “Remove a Front Fan Module” on page 91.

5. Remove the hard drives.
 See “Remove a Hard Drive” on page 103.

6. Remove the DVD drive.
 See “Remove the DVD Drive” on page 116.

7. Remove the PCIe2 cards.
 See “Remove a PCIe2 Card” on page 188.

8. Remove the memory risers.
 See “Remove a Memory Riser” on page 156.

9. Remove the subchassis.
 See “Remove the Subchassis” on page 215.

10. Remove the motherboard.
 See “Remove the Motherboard” on page 240.

11. Remove the power distribution board.
 See “Remove the Power Distribution Board” on page 261.

12. Disconnect the cables from the hard drive backplane.
13. Remove the five screws from the hard drive backplane.
14. Lift the hard drive backplane out of the chassis.
15. Install a new hard drive backplane.

See “Install the Hard Drive Backplane” on page 279.

Related Information

- “Determine if the Hard Drive Backplane Is Faulty” on page 273
- “Install the Hard Drive Backplane” on page 279
- “Verify the Hard Drive Backplane” on page 283
- “Preparing for Service” on page 59
- “Returning the Server to Operation” on page 285

▼ Install the Hard Drive Backplane

Installing the hard drive backplane is a cold-service operation. You must power off the server before installing the hard drive backplane.
1. Consider your first steps:
 - If you are replacing a hard drive backplane, remove the faulty or obsolete hard drive backplane first, then return to this procedure, Step 2. See “Remove the Hard Drive Backplane” on page 275.
 - If you have already removed the faulty hard drive backplane, go to Step 2.

2. Bring the hard drive backplane and the power distribution board together.

3. Position the hard drive backplane over the location where it installs into the chassis.
 The bracket of the hard drive backplane is up and points toward the front of the chassis.

4. Lower the hard drive backplane and power distribution board into the chassis, aligning the screw holes.

5. Install the five screws into the hard drive backplane.
6. Connect the cables to the hard drive backplane and to the power distribution board.
7. Install the power distribution board.
 See “Install the Power Distribution Board” on page 266.

8. Install the motherboard.
 See “Install the Motherboard” on page 246.

9. Install the subchassis.
 See “Install the Subchassis” on page 219.

10. Install the memory risers.
 See “Install a Memory Riser” on page 158.

11. Install the PCIe2 cards.
 See “Install a PCIe2 Card” on page 191.

12. Install the DVD drive.
 See “Install the DVD Drive” on page 119.

13. Install the hard drives.
 See “Install a Hard Drive” on page 107.
14. Install the front fan modules.
 See “Install a Front Fan Module” on page 95.

15. Install the rear fan module.
 See “Install the Rear Fan Module” on page 146.

16. Install the power supplies.
 See “Install a Power Supply” on page 133.

17. Finish the installation procedure.
 See:
 ■ “Returning the Server to Operation” on page 285
 ■ “Verify the Hard Drive Backplane” on page 283

After replacing the hard drive backplane, you might see this message in either the
CLI or web interface:

```
Warning: Product identification data missing. System may not function properly.
Service must update product identification data. Contact Service immediately.
```

If you see this message, schedule a service call as soon as possible.

Related Information

- “Determine if the Hard Drive Backplane Is Faulty” on page 273
- “Remove the Hard Drive Backplane” on page 275
- “Verify the Hard Drive Backplane” on page 283
- “Preparing for Service” on page 59
- “Returning the Server to Operation” on page 285

▼ Verify the Hard Drive Backplane

After you install a hard drive backplane, you can verify its functionality.

1. Reset the hard drive backplane.

```
-> set /SYS/SASBP clear_fault_action=true
Are you sure you want to clear /SYS/SASBP (y/n)? y
Set 'clear_fault_action' to 'true'
```

->
2. Verify that the hard drive backplane is no longer considered faulty, then return to this procedure.

See “Determine if the Hard Drive Backplane Is Faulty” on page 273.

3. Verify the hard drive backplane by reporting each installed drive’s presence.

```
--> show /SYS/SASBP/HDD\x type
 /SYS/HDD0
   Properties.
     type = Hard Disk
-->
```

where \(x\) is 0 to 7.

Related Information
- “Determine if the Hard Drive Backplane Is Faulty” on page 273
- “Remove the Hard Drive Backplane” on page 275
- “Install the Hard Drive Backplane” on page 279
Returning the Server to Operation

These topics explain how to return the Netra SPARC T4-2 server from Oracle to operation after you perform service procedures.

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Install the top cover and move the server back into the rack.</td>
<td>“Install the Top Cover” on page 285</td>
</tr>
<tr>
<td>2.</td>
<td>Connect power cords to the server.</td>
<td>“Connect Power Cords” on page 289</td>
</tr>
<tr>
<td>3.</td>
<td>Power on the server by one of two methods.</td>
<td>“Power On the Server (Oracle ILOM)” on page 290</td>
</tr>
<tr>
<td></td>
<td></td>
<td>“Power On the Server (Power Button)” on page 290</td>
</tr>
</tbody>
</table>

Related Information

- “Identifying Components” on page 1
- “Detecting and Managing Faults” on page 9
- “Preparing for Service” on page 59

▼ Install the Top Cover

Perform this task when you have previously removed the top cover.

1. Fit the rear of top cover to the rear of the chassis.
2. Lower the top cover into place.
3. Secure the top cover with the captive screw.
4. Slide the server back into the rack and secure it into position with the four screws.
5. Reconnect all cables to the rear of the server.

6. Connect the power cords to the server.
 See “Connect Power Cords” on page 289.

7. Power on the server.
 See “Power On the Server (Oracle ILOM)” on page 290 or “Power On the Server (Power Button)” on page 290.

Related Information
- “Remove the Top Cover” on page 70
- “Connect Power Cords” on page 289
- “Power On the Server (Oracle ILOM)” on page 290
- “Power On the Server (Power Button)” on page 290

▼ Connect Power Cords

- Reconnect the power cords to the power supplies.

Note – As soon as the power cords are connected, standby power is applied. Depending on how the firmware is configured, the system might boot at this time.
Related Information
- “Install the Top Cover” on page 285
- “Power On the Server (Oracle ILOM)” on page 290
- “Power On the Server (Power Button)” on page 290

▼ Power On the Server (Oracle ILOM)
- At the SP prompt, type.

```
-> start /SYS
```

Related Information
- “Install the Top Cover” on page 285
- “Connect Power Cords” on page 289
- “Power On the Server (Power Button)” on page 290

▼ Power On the Server (Power Button)
- Momentarily press and release the Power button on the front panel.
 See “Front Panel Components” on page 5 for the location of the Power button.

Related Information
- “Install the Top Cover” on page 285
- “Connect Power Cords” on page 289
- “Power On the Server (Oracle ILOM)” on page 290
Glossary

A

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSI SIS</td>
<td>American National Standards Institute Status Indicator Standard.</td>
</tr>
<tr>
<td>ASF</td>
<td>Alert standard format (Netra products only).</td>
</tr>
<tr>
<td>ASR</td>
<td>Automatic system recovery.</td>
</tr>
<tr>
<td>AWG</td>
<td>American wire gauge.</td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>blade</td>
<td>Generic term for server modules and storage modules. See server module and storage module.</td>
</tr>
<tr>
<td>blade server</td>
<td>Server module. See server module.</td>
</tr>
<tr>
<td>BMC</td>
<td>Baseboard management controller.</td>
</tr>
<tr>
<td>BOB</td>
<td>Memory buffer on board.</td>
</tr>
</tbody>
</table>

C

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>chassis</td>
<td>For servers, refers to the server enclosure. For server modules, refers to the modular system enclosure.</td>
</tr>
<tr>
<td>CMA</td>
<td>Cable management arm.</td>
</tr>
</tbody>
</table>
CMM Chassis monitoring module. The CMM is the service processor in the modular system. Oracle ILOM runs on the CMM, providing lights out management of the components in the modular system chassis. See Modular system and Oracle ILOM.

CMM Oracle ILOM Oracle ILOM that runs on the CMM. See Oracle ILOM.

D

DHCP Dynamic Host Configuration Protocol.

disk module or disk blade Interchangeable terms for storage module. See storage module.

DTE Data terminal equipment.

E

EIA Electronics Industries Alliance.

ESD Electrostatic discharge.

F

FEM Fabric expansion module. FEMs enable server modules to use the 10GbE connections provided by certain NEMs. See NEM.

FRU Field-replaceable unit.

H

HBA Host bus adapter.

host The part of the server or server module with the CPU and other hardware that runs the Oracle Solaris OS and other applications. The term host is used to distinguish the primary computer from the SP. See SP.
Glossary

I

ID PROM Chip that contains system information for the server or server module.

IP Internet Protocol.

K

KVM Keyboard, video, mouse. Refers to using a switch to enable sharing of one keyboard, one display, and one mouse with more than one computer.

L

LwA Sound power level.

M

MAC Machine access code.

MAC address Media access controller address.

Modular system The rackmountable chassis that holds server modules, storage modules, NEMs, and PCI EMs. The modular system provides Oracle ILOM through its CMM.

MSGID Message identifier.

N

NAC Network Access Control.

name space Top-level Oracle ILOM CMM target.
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEBS</td>
<td>Network Equipment-Building System (Netra products only).</td>
</tr>
<tr>
<td>NEM</td>
<td>Network express module. NEMs provide 10/100/1000 Mbps Ethernet, 10GbE Ethernet ports, and SAS connectivity to storage modules.</td>
</tr>
<tr>
<td>NET MGT</td>
<td>Network management port. An Ethernet port on the server SP, the server module SP, and the CMM.</td>
</tr>
<tr>
<td>NIC</td>
<td>Network interface card or controller.</td>
</tr>
<tr>
<td>NMI</td>
<td>Nonmaskable interrupt.</td>
</tr>
<tr>
<td>O</td>
<td>OpenBoot PROM.</td>
</tr>
<tr>
<td>Oracle ILOM</td>
<td>Oracle Integrated Lights Out Manager. Oracle ILOM firmware is preinstalled on a variety of Oracle systems. Oracle ILOM enables you to remotely manage your Oracle servers regardless of the state of the host system.</td>
</tr>
<tr>
<td>Oracle Solaris OS</td>
<td>Oracle Solaris operating system.</td>
</tr>
<tr>
<td>P</td>
<td>Peripheral component interconnect.</td>
</tr>
<tr>
<td>PCI</td>
<td>Peripheral component interconnect.</td>
</tr>
<tr>
<td>PCI EM</td>
<td>PCIe ExpressModule. Modular components that are based on the PCI Express industry-standard form factor and offer I/O features such as Gigabit Ethernet and Fibre Channel.</td>
</tr>
<tr>
<td>POST</td>
<td>Power-on self-test.</td>
</tr>
<tr>
<td>PROM</td>
<td>Programmable read-only memory.</td>
</tr>
<tr>
<td>PSH</td>
<td>Predictive self healing.</td>
</tr>
<tr>
<td>Q</td>
<td>Quad small form-factor pluggable.</td>
</tr>
</tbody>
</table>
Glossary

<table>
<thead>
<tr>
<th>R</th>
<th>REM</th>
<th>RAID expansion module. Sometimes referred to as an HBA. See HBA. Supports the creation of RAID volumes on drives.</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>SAS</td>
<td>Serial attached SCSI.</td>
</tr>
<tr>
<td></td>
<td>SCC</td>
<td>System configuration chip.</td>
</tr>
<tr>
<td></td>
<td>SER MGT</td>
<td>Serial management port. A serial port on the server SP, the server module SP, and the CMM.</td>
</tr>
<tr>
<td></td>
<td>server module</td>
<td>Modular component that provides the main compute resources (CPU and memory) in a modular system. Server modules might also have onboard storage and connectors that hold REMs and FEMs.</td>
</tr>
<tr>
<td></td>
<td>SP</td>
<td>Service processor. In the server or server module, the SP is a card with its own OS. The SP processes Oracle ILOM commands providing lights out management control of the host. See host.</td>
</tr>
<tr>
<td></td>
<td>SSD</td>
<td>Solid-state drive.</td>
</tr>
<tr>
<td></td>
<td>SSH</td>
<td>Secure shell.</td>
</tr>
<tr>
<td></td>
<td>storage module</td>
<td>Modular component that provides computing storage to the server modules.</td>
</tr>
<tr>
<td>T</td>
<td>TIA</td>
<td>Telecommunications Industry Association (Netra products only).</td>
</tr>
<tr>
<td></td>
<td>Tma</td>
<td>Maximum ambient temperature.</td>
</tr>
<tr>
<td>U</td>
<td>UCP</td>
<td>Universal connector port.</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>UI</td>
<td>User interface.</td>
<td></td>
</tr>
<tr>
<td>UL</td>
<td>Underwriters Laboratory Inc.</td>
<td></td>
</tr>
<tr>
<td>US NEC</td>
<td>United States National Electrical Code.</td>
<td></td>
</tr>
<tr>
<td>UTC</td>
<td>Coordinated Universal Time.</td>
<td></td>
</tr>
<tr>
<td>UUID</td>
<td>Universal unique identifier.</td>
<td></td>
</tr>
</tbody>
</table>

W

| **WWN** | World wide name. A unique number that identifies a SAS target. |
Index

A
- accessing
 - internal components, 69
 - SP, 21
- adding
 - DIMM, 173
 - front fan module, 95
 - hard drive, 107
 - PCIe2 card, 191
- air filter
 - installing, 80
 - location, 4
 - removing, 75
 - servicing, 75
- alarm board location, 3
- alarm port (Service), 7
- ASR
 - blacklist, 45, 54
 - components
 - disabling, 56
 - displaying, 55
 - enabling, 57
 - managing, 54
 - overview, 54
- asrkeys (system components), 55

B
- battery
 - determining faulty, 177
 - installing, 181
 - location, 3
 - removing, 179
 - resetting, 183
 - servicing, 177
 - verifying, 183

C
- cfgadm command, 111
- checking
 - message buffer, 35
- clear_fault_action property, 26
- clearing
 - faults, 26
 - POST faults, 45
 - PSH-detected faults, 52
- components
 - accessing, 69
 - disabled by POST, 54
 - displaying, 55
 - identifying, 1
 - replaceable, 2, 3, 4
- configuring
 - DIMM, 164
 - hard drive, 111
 - memory riser, 152
 - POST, 42
- connecting power cords, 289

D
- detecting faults, 9
- determining faulty
 - battery, 177
 - DVD drive, 116
 - hard drive backplane, 273
 - ID PROM, 208
 - LED board, 225
 - motherboard, 238
 - power distribution board, 260
 - rear fan module, 140
 - SP, 197
- diagnostics
 - flowchart, 11
 - overview, 9
process, 11
DIMM
adding, 173
configuration, 164
Identifications, 166
installing, 173
locating faulty, 169
locations, 4
removing, 172
resetting, 175
servicing, 163
status LEDs, 168
verifying, 175
disconnecting power cords, 69
displaying
chassis serial number, 63
faults, 24, 25
FRU information, 23
dmesg command, 35
DVD drive
determining faulty, 116
installing, 119
location, 2
removing, 116
resetting, 123
servicing, 115
verifying, 123
E
evacuation, 68
environmental faults, 24
ESD
antistatic
mat, 61
wrist strap, 61
measures, 60
preventing, 70
example fault
fmadm faulty command, 32
none, 30
POST-detected, 33
PSH-detected, 34
show faulty command, 31
F
Fault Remind button
on memory riser, 168
on motherboard, 152, 168
faulted
DIMMs, locating (LEDs), 169
DIMMs, locating (Oracle ILOM), 169
faults
clearing, 26, 45
detecting, 9
displaying, 24, 25
example, 29
fmadm faulty command, 32
none, 30
POST-detected, 33
PSH-detected, 34
show faulty command, 31
managing, 9, 18
POST messages, 44
PSH-detected
checking, 51
clearing, 52
example, 50
faulty
battery, 177
DIMM, 169
DVD drive, 116
front fan module, 88
hard drive, 103
hard drive backplane, 273
ID PROM, 208
LED board, 225
memory riser, 154
motherboard, 238
PCIe2 card, 186
power distribution board, 260
power supply, 126
rear fan module, 140
SP, 197
filler panels, 62
flowchart
diagnostic, 11
POST, 40
fmadm faulty command, 25
fmadm repair command, 52
fmdump command, 51
front fan module
adding, 95
installing, 95
locating faulty, 88
locations, 4
removing, 91
resetting, 99
servicing, 87
status LEDs, 88
verifying, 99

FRU
 illustration, 2, 3, 4
 information, 23
 service procedures, 65
 values, 65

G
graceful shutdown, 67, 68

H
hard drive
 adding, 107
 configuring, 111
 installing, 107
 locating faulty, 103
 locations, 2
 removing, 103
 resetting, 111
 servicing, 101
 status LEDs, 102
 verifying, 111
hard drive backplane
 determining faulty, 273
 installing, 279
 location, 2
 removing, 275
 resetting, 283
 servicing, 273
 verifying, 283

I
ID PROM
 determining faulty, 208
 installing, 212
 location, 3
 removing, 210
 resetting, 213
 servicing, 207
 verifying, 213
identifying
 DIMM, 166
 identifying components, 1
installing
 air filter, 80
 battery, 181
 DIMM, 173
 DVD drive, 119
 front fan module, 95
 hard drive, 107
 hard drive backplane, 279
 ID PROM, 212
 LED board, 231
 memory riser, 158
 motherboard, 246
 PCIe2 card, 191
 power distribution board, 266
 power supply, 133
 rear fan module, 146
 SAS cable, 194
 SP, 202
 subchassis, 219
 top cover, 285
interpreting
 log files, 35
 POST fault messages, 44

K
keys switch states
 diag, 39
 normal, 40

L
LED board
 determining faulty, 225
 installing, 231
 location, 4
 removing, 226
 resetting, 235
 servicing, 225
 verifying, 235
LEDs
 DIMM status, 168
 front fan module status, 88
 front panel, 14
 hard drive status, 102
 interpreting, 14
 Locator, 64
 memory riser status, 152
 power supply status, 126
 rear fan module status, 140
rear module, 16
locate the server (Service), 64
locating faulty
 DIMM, 169
 front fan module, 88
 hard drive, 103
 memory riser, 154
 PCIe2 card, 186
 power supply, 126
Locator LED location, 64
log files, 35
 interpreting, 35
 viewing, 36
login, 21

M
managing
 components of ASR, 54
 faults, 9
 through Oracle ILOM, 18
memory riser
 configuration, 152
 installing, 158
 locating faulty, 154
 location, 4
 removing, 156
 resetting, 160
 servicing, 151
 status LEDs, 152
 verifying, 160
message buffer
 checking, 35
message identifier, 51
motherboard
 determining faulty, 238
 installing, 246
 location, 3
 removing, 240
 resetting, 256
 servicing, 237
 verifying, 256

N
NET MGT port, 21

O
Oracle ILOM
 accounts, 21
 browser interface, 21
 CLI interface, 21
 commands for service, 28
 default password, 21
 fault manager, 19
 managing faults, 18
 properties affecting POST, 40
 troubleshooting overview, 19
Oracle Solaris
 files and commands, 35
 PSH, 48
Oracle VTS
 overview, 37
 packages, 38
 test types, 37
 verifying installation, 36, 38
overview
 ASR, 54
 diagnostics, 9
 Oracle ILOM troubleshooting, 19
 POST, 39
 PSH, 49
P
password for Oracle ILOM, 21
PCIe2 card
 adding, 191
 installing, 191
 locating faulty, 186
 locations, 3
 removing, 188
 resetting, 195
 servicing, 185
 verifying, 195
POST, 38
 clearing faults, 45
 components disabled, 54
 configuring, 42
 flowchart, 40
 interpreting fault messages, 44
 maximum testing, 43
 Oracle ILOM properties effect, 40
 output, 46
 overview, 39
 running, 38, 43
 POST-detected faults, 24
 power button
power off, 68
power on, 290
power cords
 connecting, 289
 disconnecting, 69
power distribution board
 determining faulty, 260
 installing, 266
 location, 2
 removing, 261
 resetting, 270
 servicing, 259
 verifying, 270
power supply
 installing, 133
 locating faulty, 126
 locations, 2
 removing, 129
 resetting, 137
 servicing, 125
 status LEDs, 126
 verifying, 137
powering off the server
 emergency shutdown, 68
 power button, 68
 preparing, 66
 SP, 67
powering on the server
 power button, 290
 SP, 290
preparing
 for service, 59
 to power off the server, 66
PSH
 detected faults, 24
 checking, 51
 example, 50
 knowledge article web site, 51
 managing faults, 48
 overview, 49

R
rear fan module
 determining faulty, 140
 installing, 146
 location, 2
 removing, 143
 resetting, 149

 servicing, 139
 status LEDs, 140
 verifying, 149
removing
 air filter, 75
 battery, 179
 DIMM, 172
 DVD drive, 116
 front fan module, 91
 hard drive, 103
 hard drive backplane, 275
 ID PROM, 210
 LED board, 226
 memory riser, 156
 motherboard, 240
 PCIe2 card, 188
 power distribution board, 261
 power from the server, 66
 power supply, 129
 rear fan module, 143
 SP, 200
 subchassis, 215
 top cover, 70
replaceable components, 2, 3, 4
resetting
 battery, 183
 DIMM, 175
 DVD drive, 123
 front fan module, 99
 hard drive, 111
 hard drive backplane, 283
 ID PROM, 213
 LED board, 235
 memory riser, 160
 motherboard, 256
 PCIe2 card, 195
 power distribution board, 270
 power supply, 137
 rear fan module, 149
 SP, 205
returning the server to operation, 285
running
 POST, 38, 43
S
safety
 information, 59
 symbols, 60
SAS cable
 installing, 194
SER MGT port
 accessing, 21
server
 locating, 64
 powering
 off, 67, 68
 on, 290
service
 preparing, 59
 procedures, 65
servicing
 air filter, 75
 battery, 177
 DIMM, 163
 DVD drive, 115
 front fan module, 87
 hard drive, 101
 hard drive backplane, 273
 ID PROM, 207
 LED board, 225
 memory riser, 151
 motherboard, 237
 PCIe2 card, 185
 power distribution board, 259
 power supply, 125
 rear fan module, 139
 SP, 197
 subchassis, 215
setting keyswitch
 diag state, 43
 normal state, 42
show command, 23
show components command, 55
show faulty command, 24
shutting down
 power button, 68
 SP, 67
SP
 accessing, 21
 determining faulty, 197
 installing, 202
 location, 3
 powering on, 290
 removing, 200
 resetting, 205
 servicing, 197
 verifying, 205
start /SYS command, 290
stop /SYS command, 67
subchassis
 installing, 219
 location, 4
 removing, 215
 servicing, 215
SunVTS, 36
symbols in documentation, 60
system message log files
 viewing, 36
T
 tools for service, 61
top cover
 installing, 285
 removing, 70
troubleshooting, 11
U
 UUID, 51
 UUID value, 32
V
 verifying
 battery, 183
 DIMM, 175
 DVD drive, 123
 front fan module, 99
 hard drive, 111
 hard drive backplane, 283
 ID PROM, 213
 LED board, 235
 memory riser, 160
 motherboard, 256
 Oracle VTS installation, 36, 38
 PCIe2 card, 195
 power distribution board, 270
 power supply, 137
 rear fan module, 149
 SP, 205
viewing
 log files/var/adm/messages file, 36
 system message log files, 36