
[image: Oracle Corporation]

Contents

Preface

	Audience
	Related documents
	Conventions
	Documentation Accessibility

What's New

	New features in Release 11.2.2.7.0
	New features in Release 11.2.2.6.0
	New features in Release 11.2.2.5.0
	New features in Release 11.2.2.4.0
	New features in Release 11.2.2.2.0
	New features in Release 11.2.2.1.0

1 Connection Attributes

	Required privileges for attributes
	List of Attributes
	Data store attributes
	Data Source Name
	DataStore
	DatabaseCharacterSet
	Supported character sets

	Description
	Driver
	LogDir
	Preallocate
	RangeIndexType
	ReplicationApplyOrdering
	ReplicationParallelism
	Temporary
	TypeMode

	First connection attributes
	AutoCreate
	CkptFrequency
	CkptLogVolume
	CkptRate
	CkptReadThreads
	Connections
	ForceConnect
	LogAutoTruncate
	LogBufMB
	LogBufParallelism
	LogFileSize
	LogFlushMethod
	LogPurge
	MemoryLock
	Overwrite
	PermSize
	ReceiverThreads
	RecoveryThreads
	TempSize

	General connection attributes
	CommitBufferSizeMax
	ConnectionName
	DDLCommitBehavior
	DDLReplicationAction
	DDLReplicationLevel
	Diagnostics
	DuplicateBindMode
	DurableCommits
	Isolation
	LockLevel
	LockWait
	MatchLogOpts
	PermWarnThreshold
	PrivateCommands
	PWDCrypt
	QueryThreshold
	ReplicationTrack
	SQLQueryTimeout
	TempWarnThreshold
	UID and PWD
	WaitForConnect

	NLS general connection attributes
	ConnectionCharacterSet
	NLS_LENGTH_SEMANTICS
	NLS_NCHAR_CONV_EXCP
	NLS_SORT
	Supported linguistic sorts

	PL/SQL first connection attributes
	PLSQL
	PLSQL_MEMORY_ADDRESS
	PLSQL_MEMORY_SIZE

	PL/SQL general connection attributes
	PLSCOPE_SETTINGS
	PLSQL_CCFLAGS
	PLSQL_CONN_MEM_LIMIT
	PLSQL_OPTIMIZE_LEVEL
	PLSQL_TIMEOUT

	TimesTen Cache first connection attributes
	CacheAWTMethod

	TimesTen Cache database attributes
	CacheAWTParallelism
	CacheGridEnable
	CacheGridMsgWait

	TimesTen Cache general connection attributes
	DynamicLoadEnable
	DynamicLoadErrorMode
	OracleNetServiceName
	OraclePWD
	PassThrough
	RACCallback

	TimesTen Client connection attributes
	TCP_Port
	TCP_Port2
	TTC_FailoverPortRange
	TTC_Server
	TTC_Server2
	TTC_Server_DSN
	TTC_Server_DSN2
	TTC_Timeout

	Server connection attributes
	MaxConnsPerServer
	ServersPerDSN
	ServerStackSize

2 Built-In Procedures

	ttAgingLRUConfig
	ttAgingScheduleNow
	ttApplicationContext
	ttBackupStatus
	ttBlockInfo
	ttBookmark
	ttCacheAllowFlushAwtSet
	ttCacheAutorefIntervalStatsGet
	ttCacheAutorefresh
	ttCacheAutorefreshLogDefrag
	ttCacheAutorefreshStatsGet
	ttCacheAutorefreshSelectLimit
	ttCacheAutorefreshXactLimit
	ttCacheAWTMonitorConfig
	ttCacheAWTThresholdGet
	ttCacheAWTThresholdSet
	ttCacheCheck
	ttCacheConfig
	ttCacheDbCgStatus
	ttCacheDDLTrackingConfig
	ttCachePolicyGet
	ttCachePolicySet
	ttCachePropagateFlagSet
	ttCacheSqlGet
	ttCacheStart
	ttCacheStop
	ttCacheUidGet
	ttCacheUidPwdSet
	ttCkpt
	ttCkptBlocking
	ttCkptConfig
	ttCkptHistory
	ttCommitBufferStats
	ttCommitBufferStatsReset
	ttCompact
	ttCompactTS
	ttComputeTabSizes
	ttConfiguration
	ttContext
	ttDataStoreStatus
	ttDBConfig
	ttDbWriteConcurrencyModeGet
	ttDbWriteConcurrencyModeSet
	ttDurableCommit
	ttGridAttach
	ttGridCheckOwner
	ttGridCreate
	ttGridDestroy
	ttGridDetach
	ttGridDetachAll
	ttGridDetachList
	ttGridFirstMemberAttach
	ttGridGlobalCGResume
	ttGridGlobalCGSuspend
	ttGridInfo
	ttGridNameSet
	ttGridNodeStatus
	ttHostNameGet
	ttHostNameSet
	ttIndexAdviceCaptureDrop
	ttIndexAdviceCaptureEnd
	ttIndexAdviceCaptureInfoGet
	ttIndexAdviceCaptureOutput
	ttIndexAdviceCaptureStart
	ttLoadFromOracle
	ttLockLevel
	ttLockWait
	ttLogHolds
	ttMonitorHighWaterReset
	ttOptClearStats
	ttOptCmdCacheInvalidate
	ttOptEstimateStats
	ttOptGetColStats
	ttOptGetFlag
	ttOptGetMaxCmdFreeListCnt
	ttOptGetOrder
	ttOptSetColIntvlStats
	ttOptSetColStats
	ttOptSetFlag
	ttOptSetMaxCmdFreeListCnt
	ttOptSetMaxPriCmdFreeListCnt
	ttOptSetOrder
	ttOptSetTblStats
	ttOptShowJoinOrder
	ttOptStatsExport
	ttOptUpdateStats
	ttOptUseIndex
	ttPLSQLMemoryStats
	ttRamPolicyAutoReloadGet
	ttRamPolicyAutoReloadSet
	ttRamPolicyGet
	ttRamPolicySet
	ttRedundantIndexCheck
	ttRepDeactivate
	ttReplicationStatus
	ttRepPolicyGet
	ttRepPolicySet
	ttRepQueryThresholdGet
	ttRepQueryThresholdSet
	ttRepStart
	ttRepStateGet
	ttRepStateSave
	ttRepStateSet
	ttRepStop
	ttRepSubscriberStateSet
	ttRepSubscriberWait
	ttRepSyncGet
	ttRepSyncSet
	ttRepSyncSubscriberStatus
	ttRepTransmitGet
	ttRepTransmitSet
	ttRepXactStatus
	ttRepXactTokenGet
	ttSetUserColumnID
	ttSetUserTableID
	ttSize
	ttSQLCmdCacheInfo
	ttSQLCmdCacheInfo2
	ttSQLCmdCacheInfoGet
	ttSQLCmdQueryPlan
	ttSQLExecutionTimeHistogram
	ttStatsConfig
	ttTableSchemaFromOraQueryGet
	ttVersion
	ttWarnOnLowMemory
	ttXactIdGet
	ttXlaBookmarkCreate
	ttXlaBookmarkDelete
	ttXlaSubscribe
	ttXlaUnsubscribe

3 Utilities

	Overview
	Required authentication and authorization for utilities
	Required user authentication for utilities
	Required privileges for executing utilities

	ttAdmin
	ttAdoptStores
	ttBackup
	ttBulkCp
	ttCacheAdvisor
	ttCapture
	ttCheck
	ttCWAdmin
	ttDaemonAdmin
	ttDaemonLog
	ttDestroy
	ttIsql
	ttMigrate
	ttmodinstall
	ttRepAdmin
	Help and version information
	Database information
	Subscriber database operations
	Duplicate a database
	Wait for updates to complete
	Replication status

	ttRestore
	ttSchema
	ttSize
	ttStats
	ttStatus
	ttSyslogCheck (UNIX)
	ttTail
	ttTraceMon
	ttUser
	ttVersion
	ttXactAdmin
	ttXactLog

4 System Limits

	System limits and defaults
	Limits on number of open files
	Path names

Index

Preface

Oracle TimesTen In-Memory Database (TimesTen) is a relational database that is memory-optimized for fast response and throughput. The database resides entirely in memory at runtime and is persisted to disk storage for the ability to recover and restart. Replication features allow high availability. TimesTen supports standard application interfaces SQL, JDBC, ODBC, and ODP.NET, in addition to Oracle interfaces PL/SQL, OCI, and Pro*C/C++. TimesTen is available separately or as a cache for Oracle Database.

Audience

This document provides a reference for TimesTen attributes, built-in procedures, and utilities.This document is intended for readers with a basic understanding of database systems.

Related documents

TimesTen documentation is available on the product distribution media and on the Oracle Technology Network:

http://www.oracle.com/technetwork/database/database-technologies/timesten/documentation/index.html

Conventions

TimesTen supports multiple platforms. Unless otherwise indicated, the information in this guide applies to all supported platforms. The term Windows applies to all supported Windows platforms. The term UNIX applies to all supported UNIX platforms and also to Linux. Refer to the "Platforms" section in Oracle TimesTen In-Memory Database Release Notes for specific platform versions supported by TimesTen.

	
Note:

In TimesTen documentation, the terms "data store" and "database" are equivalent. Both terms refer to the TimesTen database.

This document uses the following text conventions:

	Convention	Meaning
	italic	Italic type indicates terms defined in text, book titles, or emphasis.
	monospace	Monospace type indicates code, commands, URLs, function names, attribute names, directory names, file names, text that appears on the screen, or text that you enter.
	italic monospace	Italic monospace type indicates a placeholder or a variable in a code example for which you specify or use a particular value. For example:
Driver=install_dir/lib/libtten.sl

Replace install_dir with the path of your TimesTen installation directory.

	[]	Square brackets indicate that an item in a command line is optional.
	{ }	Curly braces indicated that you must choose one of the items separated by a vertical bar (|) in a command line.
	|
	A vertical bar (or pipe) separates alternative arguments.
	. . .	An ellipsis (. . .) after an argument indicates that you may use more than one argument on a single command line. An ellipsis in a code example indicates that what is shown is only a partial example.
	%
	The percent sign indicates the UNIX shell prompt.

In addition, TimesTen documentation uses the following special conventions:

	Convention	Meaning
	install_dir	The path that represents the directory where TimesTen is installed.
	TTinstance	The instance name for your specific installation of TimesTen. Each installation of TimesTen must be identified at installation time with a unique instance name. This name appears in the installation path.
	bits or bb	Two digits, either 32 or 64, that represent either a 32-bit or 64-bit operating system.
	release or rr	The first three parts in a release number with or without dots. The first three parts of a release number represent a major TimesTen release. For example, 1122 or 11.2.2 represents TimesTen 11g Release 2 (11.2.2).
	DSN	TimesTen data source name (for the TimesTen database).

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

1 Connection Attributes

The ODBC standard defines four connection attributes:

	
DSN

	
Driver

	
UID

	
PWD

For a description of the ODBC definition of these attributes, see the appropriate ODBC manual for your platform:

	
Microsoft ODBC 3.0 Programmer's Reference and SDK Guide

	
Microsoft ODBC 2.0 Programmer's Reference and SDK Guide

This chapter describes all the connection attributes defined by TimesTen. To view the names and values of most attributes specified in the connection string, an application can use the ttConfiguration built-in procedure.

	
Note:

According to the ODBC standard, when an attribute occurs multiple times in a connection string, the first value specified is used, not the last value.

On UNIX, False means the attribute value is set to 0 and True means the attribute value is set to 1.

On Windows, False means the check box is unchecked and True means the check box is checked.

The following sections provide details on all TimesTen attributes, which are first listed in tables in "List of Attributes". Following the tables, this chapter describes each attribute in detail.

	
Required privileges for attributes

	
List of Attributes

Required privileges for attributes

Only the instance administrator can change a first connection attribute to a value other than the one currently in effect. (No privileges are required to change AutoCreate and ForceConnect.)

List of Attributes

This section includes the tables:

	
Table 1-1, "Data store attributes"

	
Table 1-2, "First connection attributes"

	
Table 1-3, "General connection attributes"

	
Table 1-4, "NLS general connection attributes"

	
Table 1-5, "PL/SQL first connection attributes"

	
Table 1-6, "PL/SQL general connection attributes"

	
Table 1-7, "TimesTen Cache first connection attributes"

	
Table 1-8, "TimesTen Cache database attributes"

	
Table 1-9, "TimesTen Cache general connection attributes"

	
Table 1-10, "TimesTen Client connection attributes"

	
Table 1-11, "TimesTen Server connection attributes"

Table 1-1 Data store attributes

	Name	Description	Default
	
Data Source Name

	
A name that identifies the specific attributes of a connection to the database.

	
None

	
DataStore

	
Identifies the physical database.

	
None

	
DatabaseCharacterSet

	
Identifies the character set used by the database. This attribute is required at database creation time.

	
None

	
Description

	
A statement that identifies the use of the data source name.

	
None

	
Driver

	
Specifies the TimesTen ODBC Driver Manager.

	
None

	
LogDir

	
The directory where transaction log files are stored.

	
Database directory

	
Preallocate

	
Specifies that disk space for the database should be preallocated when creating the database.

	
0 (False)

	
RangeIndexType

	
Determines whether user-created range indexes are T-tree indexes or B-tree indexes.

	
1 (Range indexes are T-tree indexes.)

	
ReplicationApplyOrdering

	
Enables automatic or user-defined track-based parallel replication.

	
0 (Starts automatic parallel replication)

	
ReplicationParallelism

	
Specifies the number of tracks available for user-defined parallel replication.

	
1

	
Temporary

	
Specifies that the database is not saved to disk.

	
0 (False)

	
TypeMode

	
The type mode for the database.

	
0 (Oracle Type Mode)

Table 1-2 First connection attributes

	Name	Description	Default
	
AutoCreate

	
Specifies that the first connection creates the database if it does not exist.

	
1 (True)

	
CkptFrequency

	
Controls the frequency in seconds that TimesTen performs a background checkpoint.

	
600

	
CkptLogVolume

	
Controls the amount of data in megabytes that collects in the log between background checkpoints.

	
0 (Off)

	
CkptRate

	
Controls the maximum rate at which data should be written to disk during a checkpoint operation.

	
0 (Unlimited rate)

	
CkptReadThreads

	
Controls the number of threads used to read a checkpoint file when loading the database into memory.

	
1

	
Connections

	
Indicates the upper bound on the number of user-specified concurrent connections to the database.

	
The lesser of 2000 or the number of semaphores specified in the SEMMSL kernel parameter

	
ForceConnect

	
Specifies whether a connection is allowed to a failed database if it is not properly restored from the corresponding subscriber database.

	
0 (Connection disallowed)

	
LogAutoTruncate

	
Determines whether the first connection to a database should proceed if TimesTen recovery encounters a defective log record.

	
1 (Continues after log is truncated)

	
LogBufMB

	
The size of the internal log buffer in MB.

	
64

	
LogBufParallelism

	
The number of log buffer strands.

	
4

	
LogFileSize

	
The transaction log file size in MB.

	
64

	
LogFlushMethod

	
Controls the method used by TimesTen to write and sync log data to transaction log files.

	
1 (Write data to transaction log files using buffered writes. Use explicit sync operations as needed to sync log data to disk)

	
LogPurge

	
Specifies that unneeded transaction log files are deleted during a checkpoint operation.

	
1 (True)

	
MemoryLock

	
enables applications that connect to a shared database to specify whether the real memory should be locked during database loading.

	
0 (Do not acquire a memory lock)

	
Overwrite

	
Specifies that the existing database should be overwritten with a new one when a connection is attempted.

	
0 (False)

	
PermSize

	
The size in MB for the permanent partition of the database.

	
32

	
ReceiverThreads

	
Controls the number of threads used to apply changes on the active master database to the standby master database in an active standby pair replication scheme.

	
1

	
RecoveryThreads

	
The number of threads used to rebuild indexes during recovery.

	
1

	
TempSize

	
The size in MB for the temporary partition of the database.

	
The default size as determined from the PermSize value

Table 1-3 General connection attributes

	Name	Description	Default
	
CommitBufferSizeMax

	
Specifies the maximum size of the commit buffer in the transaction control block.

	
16 KB

	
ConnectionName

	
Specifies whether there is a symbolic name for the data source.

	
The process name

	
DDLCommitBehavior

	
Controls transactional commit behavior in relation to DDL.

	
0 (Oracle behavior)

	
DDLReplicationAction

	
Determines whether a table or sequence is included in an active standby pair replication scheme when it is created, which can only occur if the DDLReplicationLevel connection attribute is set to 2 or 3.

	
INCLUDE

	
DDLReplicationLevel

	
Enables replication of data definition language (DDL) statements in an active standby replication scheme.

	
2 (Replication of certain objects enabled)

	
Diagnostics

	
Specifies whether diagnostic messages are generated.

	
1 (Messages are generated)

	
DuplicateBindMode

	
Determines whether applications use TimesTen or Oracle parameter binding for duplicate occurrences of a parameter in a SQL statement.

	
0 (Oracle-style binding)

	
DurableCommits

	
Specifies that commit operations should write log records to disk.

	
0 (Records not written to disk)

	
Isolation

	
Specifies whether the isolation level is read committed or serializable.

	
1 (Read committed)

	
LockLevel

	
Specifies whether the connection should use row-level locking (value = 0) or database-level locking (value = 1).

	
0 (Row-level locking)

	
LockWait

	
Enables an application to configure the lock wait interval for the connection.

	
10 seconds

	
MatchLogOpts

	
Specifies that value used for the LogPurge attribute should match those of current connections.

	
0 (False)

	
PermWarnThreshold

	
The threshold at which TimesTen returns a warning and throws an SNMP trap when the permanent partition of the database is low in memory.

	
90%

	
PrivateCommands

	
Determines if commands are shared between connections.

	
0 (On)

	
PWD

See "UID and PWD".

	
Specify the password that corresponds with the specified UID. When caching data from an Oracle database, PWD specifies the TimesTen password. You can specify the Oracle PWD in the connection string, if necessary.

	
None

	
PWDCrypt

	
The value of the encrypted user password.

	
None

	
QueryThreshold

	
Determines whether TimesTen returns a warning and throws an SNMP trap if a query times out before executing.

	
0 (No warning is returned)

	
ReplicationTrack

	
Assigns a connection to a replication track.

	
None

	
SQLQueryTimeout

	
Specifies the time limit in seconds within which the database should execute SQL statements.

	
0 (No timeout)

	
TempWarnThreshold

	
The threshold at which TimesTen returns a warning and throws an SNMP trap when the temporary partition of the database is low in memory.

	
90 (percent)

	
UID

See "UID and PWD".

	
Specify a user name that is defined on the TimesTen server. When caching data from an Oracle database, the UID must match the UID on the Oracle database that is being cached in TimesTen.

	
None

	
WaitForConnect

	
Specifies that the connection attempt should wait if an immediate connection is not possible.

	
1

Table 1-4 NLS general connection attributes

	Name	Description	Default
	
ConnectionCharacterSet

	
The character encoding for the connection, which may be different from the database character set.

	
US7ASCII unless the database character set is TIMESTEN8, then TIMESTEN8

	
NLS_LENGTH_SEMANTICS

	
The default length semantics configuration.

	
BYTE

	
NLS_NCHAR_CONV_EXCP

	
Determines whether an error is reported when there is data loss during an implicit or explicit character type conversion between NCHAR/NVARCHAR data and CHAR/VARCHAR data.

	
0 (False)

	
NLS_SORT

	
The collating sequence to use for linguistic comparisons.

	
BINARY

Table 1-5 PL/SQL first connection attributes

	Name	Description	Default
	
PLSQL

	
Enables or disables whether PL/SQL.

	
1 (Enables PL/SQL)

	
PLSQL_MEMORY_ADDRESS

	
The virtual address at which the shared memory segment is loaded into each process that uses the TimesTen direct drivers.

	
Platform specific

	
PLSQL_MEMORY_SIZE

	
The size in megabytes of the shared memory segment used by PL/SQL.

	
32 MB

Table 1-6 PL/SQL general connection attributes

	Name	Description	Default
	
PLSCOPE_SETTINGS

	
Controls whether the PL/SQL compiler generates cross-reference information.

	
IDENTIFIERS: NONE

	
PLSQL_CCFLAGS

	
Controls conditional compilation of PL/SQL units.

	
NULL

	
	
PLSQL_CONN_MEM_LIMIT

	
Specifies the maximum amount of process heap memory in MB that PL/SQL can use for this connection.

	
100

	
PLSQL_OPTIMIZE_LEVEL

	
The optimization level that the PL/SQL compiler uses to compile PL/SQL library units.

	
2

	
PLSQL_TIMEOUT

	
The number of seconds a PL/SQL procedure can run before being automatically terminated.

	
30 seconds

Table 1-7 TimesTen Cache first connection attributes

	Name	Description	Default
	
CacheAWTMethod

	
Enables the AWT propagation method to be used on Oracle database tables.

	
1 (PL/SQL)

Table 1-8 TimesTen Cache database attributes

	Name	Description	Default
	
CacheAWTParallelism

	
Indicates the number of threads necessary to apply changes to the Oracle database.

	
1

	
CacheGridEnable

	
Enables cache grid.

	
1 (Enabled)

	
CacheGridMsgWait

	
Sets the maximum message wait time in seconds.

	
60

Table 1-9 TimesTen Cache general connection attributes

	Name	Description	Default
	
DynamicLoadEnable

	
Enables or disables transparent load of data from an Oracle database to dynamic cache groups.

	
1 (Enables Dynamic cache group load)

	
DynamicLoadErrorMode

	
Determines if an error message is returned upon a transparent load failure.

	
0 (Errors are not returned)

	
OracleNetServiceName

	
The Oracle Service Name of the Oracle database instance from which data is to be loaded into a TimesTen database. This attribute is only used by the cache agent. Set the OracleNetServiceName attribute to the Oracle Service Name.

	
None

	
OraclePWD

	
Identifies the password for the Oracle database that is being cached in TimesTen.

	
None

	
PassThrough

	
Specifies which SQL statements are executed locally in TimesTen and which SQL statements are passed through to the Oracle database for execution.

	
0

	
RACCallback

	
Specifies whether to enable or disable the installation of Application Failover (TAF) and Fast Application Notification (FAN) callbacks.

	
1 (Install callbacks)

Table 1-10 TimesTen Client connection attributes

	Name	Description	Default
	
TCP_Port

	
The port number on which the TimesTen server is listening.

	
None

	
TCP_Port2

	
The port number on which the TimesTen server should listen if an automatic failover occurs.

	
None

	
TTC_FailoverPortRange

	
A range for the failover port numbers.

	
None

	
TTC_Server

	
Name of the computer where the TimesTen Server is running or a logical TimesTen server name.

	
None

	
TTC_Server2

	
If an automatic failover occurs, the name of the computer where the TimesTen Server should be running or a logical TimesTen server name.

	
None

	
TTC_Server_DSN

	
Server DSN corresponding to the TimesTen database.

	
None

	
TTC_Server_DSN2

	
Server DSN corresponding to the TimesTen database, if an automatic failover occurs.

	
None

	
TTC_Timeout

	
Optional. Timeout period, in seconds, for completion of a TimesTen client/server operation.

	
60

Table 1-11 TimesTen Server connection attributes

	Name	Description	Default
	
MaxConnsPerServer

	
The maximum number of concurrent connections a child TimesTen server process can handle.

	
1

	
ServersPerDSN

	
The desired number of TimesTen server processes for the DSN.

	
1

	
ServerStackSize

	
The size in KB of the thread stack for each connection.

	
128 (32-bit systems)

256 (64-bit systems)

Data store attributes

Data store attributes are set at data store creation time. The data store attributes are listed in Table 1-1, "Data store attributes" and described in detail in this section.

These attributes can be assigned values only during database creation by the instance administrator.

Data Source Name

The data source name (DSN) uniquely identifies the attributes to a connection. It serves two purposes:

	
As a unique identifier to the ODBC driver manager (if one is present), allowing it to associate a Data Store Name with a specific ODBC driver.

	
As one of potentially many name aliases to a single physical database where the name alias has unique attributes associated with it.

The database attributes can apply to either the data source name (connection to a database) or the Data Store Path Name (database).

On Windows, the data source name and all configuration information associated with the data source (including the database path name) are stored in the system registry. The ODBC driver manager and TimesTen use this information.

Required privilege

Only the instance administrator can change the value of this attribute.

Setting

Set Data Source Name as follows:

Built-In Procedures

2 Built-In Procedures

TimesTen built-in procedures extend standard ODBC and JDBC functionality. You can invoke these procedures using the ODBC or JDBC procedure call interface. The procedure takes the position of the SQL statement, as illustrated in the following examples.

The following ODBC SQLExecDirect call invokes the ttOpsSetFlag built-in procedure to tell the optimizer that it should not generate temporary hash indexes when preparing commands:

SQLExecDirect (hstmt, (SQLCHAR*)
 "{CALL ttOptSetFlag ('TmpHash', 0)}", SQL_NTS);

This is the equivalent JDBC call:

CallableStatement cstmt = con.prepareCall
 ("{CALL ttOptSetFlag ('TmpHash', 0)}");
cstmt.execute();

TimesTen built-in procedures can also be called from PL/SQL using the EXECUTE IMMEDIATE statement with CALL, as illustrated in the following example. See the Oracle TimesTen In-Memory Database PL/SQL Developer's Guide for more details on this statement.

For example, to call the built-in procedure ttConfiguration, create a PL/SQL record type and then SELECT INTO that record type. Because ttConfiguration returns multiple rows, use BULK COLLECT.

Command> DECLARE
 > TYPE ttConfig_record IS RECORD
 > (name varchar2(255), value varchar2 (255));
 > TYPE ttConfig_table IS TABLE OF ttConfig_record;
 > v_ttConfigs ttConfig_table;
 > BEGIN
 > EXECUTE IMMEDIATE 'CALL ttConfiguration'
 > BULK COLLECT into v_ttConfigs;
 > DBMS_OUTPUT.PUT_LINE ('Name: ' || v_ttConfigs(1).name
 > || ' Value: ' || v_ttConfigs(1).value);
 > end;
 > /
Name: CacheGridEnable Value: 0

PL/SQL procedure successfully completed.

	
Note:

String parameter values for built-in procedures must be single-quoted as indicated in these examples, unless the value is NULL.

ttAgingLRUConfig

Description

This procedure sets the Least Recently Used (LRU) aging attributes on all regular tables that have been defined with an LRU aging policy. For cache tables, the aging policy is defined on the root table but applies to all tables in the cache group. The aging policy is defined on tables when they are created or altered, using the CREATE TABLE or ALTER TABLE SQL statements.

The LRU aging feature helps applications maintain the usage size of the database under a specified threshold by removing the least recently used data.

Data is removed if the database space in-use exceeds the specified threshold values. For cache groups, aging is defined at the root table for the entire cache instance. LRU aging cannot be specified on a cache group with the AUTOREFRESH attribute, unless the cache group is dynamic. For explicitly loaded cache groups with the AUTOREFRESH attribute, use time-based aging.

Required privilege

This procedure requires no privilege to query the current values. It requires the ADMIN privilege to change the current values.

Syntax

ttAgingLRUConfig([LowUsageThreshHold],
[HighUsageThreshHold], [AgingCycle])

Parameters

ttAgingLRUConfig has these optional parameters:

	Parameter	Type	Description
	lowUsageThreshold	BINARY_FLOAT	Sets, displays or resets the low end of percentage of database PermSize, specified in decimals. The bottom of the threshold range in which LRU aging should be deactivated. Default is 80 percent.
	highUsageThreshold	BINARY_FLOAT	Sets, displays or resets the high end of percentage of database PermSize, specified in decimals. The top of the threshold range in which LRU aging should be activated. Default is 90 percent.
	agingCycle	TT_INTEGER	Sets, displays or resets the number of minutes between aging cycles, specified in minutes. Default is 1 minute. If you use this procedure to change the aging cycle, the cycle is reset based on the time that this procedure is called. For example, if you call this procedure at 12:00 p.m. and specify a cycle of 15 minutes, aging occurs at 12:15, 12:30, 12:45, and so on.
If the cycle is set to a value of 0, aging occurs once every second.

Result set

ttAgingLRUConfig returns these results:

	Column	Type	Description
	lowUsageThreshold	BINARY_FLOAT NOT NULL	The current setting for the low end of percentage of database PermSize, specified in decimals.
	highUsageThreshold	BINARY_FLOAT NOT NULL	The current setting for the high end of percentage of database PermSize, specified in decimals.
	agingCycle	TT_INTEGER NOT NULL	The current setting for the number of minutes between aging cycles, specified in minutes.

Examples

To set the aging threshold to a low of 75 percent and a high of 95 percent and the aging cycle to 5 minutes, use:

CALL ttAgingLRUConfig (.75, .90, 5);
<.7500000, .9000000, 5>

To display the current LRU aging policy for all tables that defined with an LRU aging policy, call ttAgingLRUConfig without any parameters:

Call ttAgingLRUConfig();

If the tables are defined with the default thresholds and aging cycle, the procedure returns:

<.8000000, .9000000, 1>
1 row found.

To change the low usage threshold to 60 percent, the aging cycle to 5 minutes and to retain the previous high usage threshold, use:

Call ttAgingLRUConfig (60,,5);
< .6000000, .9000000, 5 >
1 row found.

Notes

The values of this procedure are persistent, even across system failures.

If no parameters are supplied, this procedure only returns the current LRU aging attribute settings.

See also

ttAgingScheduleNow

Oracle TimesTen Application-Tier Database Cache User's Guide

ttAgingScheduleNow

Description

This procedure starts the aging process, regardless of the value of the aging cycle. The aging process begins right after the procedure is called unless there is an aging process in progress. In that case, the new aging process begins when the aging process that was in process at the time the built-in was called has completed.

Aging occurs only once when you call this procedure. This procedure does not change any aging attributes. The previous aging state is unchanged. For example, if aging state is OFF when you call ttAgingScheduleNow, the aging process starts. When aging is complete, if your aging state is OFF, aging does not continue. To continue aging, you must call ttAgingScheduleNow again or change the aging state to ON, in which case aging occurs next based on the value of the aging cycle.

For tables with aging ON, the aging cycle is reset to the time when ttAgingScheduleNow was called. For example, if you call this procedure at 12:00 p.m. and the aging cycle is 15 minutes, aging occurs immediately and again at 12:15, 12:30, 12:45, and so on.

If used in an external scheduler, such as a cron job, or executed manually, this procedure starts the aging process at the time the procedure is executed, if there is no aging process in progress, or as soon as the current aging process has completed. In the case that you want aging to occur only when the external scheduler executes the ttAgingScheduleNow procedure or you call it manually, set the aging state to OFF.

Aging is performed by a background thread that wakes up every second to check if any work must be done. Calling ttAgingScheduleNow only guarantees that the aging thread works on the specified tables within the next second, at best. If the aging thread is working on a different table at the time the built-in procedure is called, it may take some time to reach the specified table. The rows are visible until the aging thread commits the delete.

Required privilege

This procedure requires the DELETE privilege on the table being aged, or the DELETE ANY TABLE privilege when you do not specify a table.

Syntax

ttAgingScheduleNow ('tblname')

Parameters

ttAgingScheduleNow has the parameter:

	Parameter	Type	Description
	tblname	TT_CHAR (61)	The name of the table on which to start the aging process.
If tblName is omitted, the aging process is started on all tables defined with any aging policy.

Using a synonym to specify a table name is not supported.

Result set

ttAgingScheduleNow returns no results.

Examples

To schedule aging on all tables, including tables defined with both LRU aging and time-based aging, call ttAgingScheduleNow without any parameter values:

CALL ttAgingScheduleNow ();

This examples creates the table agingex with time-based aging policy and the aging state set to OFF. ttAgingScheduleNow is called, using the ttIsql utility, to start the aging process once. Rows are deleted from the table. After ttAgingScheduleNow is called, the aging state remains OFF. To continue aging, alter the table and set the aging state to OFF.

Command> CREATE TABLE agingex (col1 TT_INTEGER PRIMARY KEY NOT NULL,
 ts TIMESTAMP NOT NULL)
 AGING USE ts LIFETIME 1 MINUTES CYCLE 30 MINUTES OFF;

Command> DESCRIBE agingex;

Table TTUSER.AGINGEX:
Columns:
 *COL1 TT_INTEGER NOT NULL
 TS TIMESTAMP (6) NOT NULL
Aging use TS lifetime 1 minute cycle 30 minutes off
1 table found.
(primary key columns are indicated with *)

Command> INSERT INTO agingex VALUES (1, SYSDATE);
1 row inserted.

Command> INSERT INTO agingex VALUES (2, SYSDATE);
1 row inserted.

Command> SELECT * FROM agingex;

< 1, 2011-03-25 13:06:29.000000 >
< 2, 2011-03-25 13:06:42.000000 >
2 rows found.

Command> CALL ttAgingScheduleNow ('agingex');

Command> SELECT * FROM agingex;
0 rows found.

See also

ttAgingLRUConfig

Oracle TimesTen Application-Tier Database Cache User's Guide

ttApplicationContext

Description

This procedure sets application-defined context for the next update record (either an UPDATE or commit) to pass application specific data to XLA readers.

Required privilege

This procedure requires no privilege.

Syntax

ttApplicationContext (cmd)

Parameters

ttApplicationContext has the parameter:

	Parameter	Type	Description
	cmd	VARBINARY(16384) NOT NULL	Context information to be passed to the XLA readers.

Result set

ttApplicationContext returns no results.

Examples

CALL ttApplicationContext (0x123);

See also

"XLA Reference" in Oracle TimesTen In-Memory Database C Developer's Guide

ttBackupStatus

Description

This procedure returns a single row with information about the current or last backup of the database. If a backup is in progress, this information represents the current backup. If no backup is in progress, this information represents the last backup taken.

If no backup has been taken on the database since the last first-connect, the status field is 0 and the rest of the columns are NULL.

Required privilege

This procedure requires the ADMIN privilege.

Syntax

ttBackupStatus ()

Parameters

ttBackupStatus has no parameters.

Result set

ttBackupStatus returns the results:

	Column	Type	Description
	status	TT_INTEGER NOT NULL	An INTEGER code representing the current progress of a backup or the completion status of the last backup. Values are:
0 - No backup has been taken on the database since the last first-connect.

1 - A backup is currently in progress.

2 - The last backup completed successfully.

3 - The last backup failed. In this case the error column contains the error code for the failure.

	destination	TT_INTEGER	The type of backup taken. The value is NULL when no backup has been taken on the database. Value is one of:
0 - Backup is/was being written to a file.

1 - Backup is/was being written to a stream.

2 - Backup is/was taken on behalf of replication duplicate.

	backupType	TT_INTEGER	Backup type, either full or incremental. The value is NULL when no backup has been taken on the database. Value is one of:
0 - Incremental backup.

1 - Full backup.

	startTime	TT_TIMESTAMP	Time when the backup was started. The value is NULL when no backup has been taken on the database.
	endTime	TT_TIMESTAMP	Time when the backup completed. If NULL and startTime is non-NULL, a backup is currently in progress.
	backupLFN	TT_INTEGER	The transaction log file number of the backup point. The value is NULL when no backup has been taken on the database.
	backupLFO	TT_BIGINT	The transaction log file offset of the backup point. The value is NULL when no backup has been taken on the database.
	error	TT_INTEGER	If a backup fails, this column indicates the reason for the failure. The value is one of the TimesTen error numbers. The value is NULL when no backup has been taken on the database.
	processId	TT_INTEGER	The ID of the process or daemon performing the backup (if known).

Examples

CALL ttBackupStatus ();
< 2, 2, 1, 2005-08-12 13:10:32.587557,
2005-08-12 13:10:33.193269, 1, 1531840, 0, 6968 >
1 row found.

Notes

Does not return information about previous backups, other than the current or last one.

Information returned is not persistent across database startup or shutdown.

ttBlockInfo

Description

This procedure provides information about perm blocks and the amount of block-level fragmentation in a database.

Required privilege

This procedure requires no privilege.

Syntax

ttBlockInfo()

Parameters

ttBlockInfo has no parameters.

Result set

ttBlockInfo returns the result set:

	Column	Type	Description
	TotalBlocks	TT_BIGINT NOT NULL	Total number of blocks in the database.
	FreeBlocks	TT_BIGINT NOT NULL	Total number of free blocks in the database.
	FreeBytes	TT_BIGINT NOT NULL	Total size of the free blocks.
	LargestFree	TT_BIGINT NOT NULL	Size of the largest free block.

Examples

CALL ttBlockInfo();
< 288, 3, 128711700, 128698596 >
1 row found.

ttBookmark

Description

This procedure returns information about the TimesTen transaction log. Records in the transaction log are identified by pairs of integers:

	
A transaction log file number.

	
An offset in that transaction log file.

Transaction log file numbers correspond to the file system names given to transaction log files. For example, the transaction log file SalesData.log29 has the transaction log file number 29.

Three log records are identified in the result row of ttBookmark:

	
The identity of the most recently written log record.

	
The identity of the log record most recently forced to the disk.

	
The replication bookmark. The replication bookmark is the oldest log record that represents an update not yet replicated to another system.

Required privilege

This procedure requires no privilege.

Syntax

ttBookmark()

Parameters

ttBookmark has no parameters.

Result set

ttBookmark returns the result set:

	Column	Type	Description
	writeLFN	TT_INTEGER	Last written transaction log file.
	writeLFO	TT_BIGINT	Last written offset in transaction log file.
	forceLFN	TT_INTEGER	Last transaction log file forced to disk.
	forceLFO	TT_BIGINT	Offset of last transaction log file forced to disk.
	holdLFN	TT_INTEGER	Replication bookmark transaction log file.
	holdLFO	TT_BIGINT	Replication bookmark log offset.

Examples

CALL ttBookmark ();

ttCacheAllowFlushAwtSet

Description

The ttCacheAllowFlushAwtSet built-in procedure enables you to execute a FLUSH CACHE GROUP statement against an AWT cache group and should only be used in a specific recovery scenario, as described in "When there is unsynchronized data in the cache groups" section in the Oracle TimesTen In-Memory Database Replication Guide.

Set auto commit to off before executing the ttCacheAllowFlushAwtSet built-in procedure when setting the enableFlush parameter to 1; otherwise, this parameter automatically resets to 0 directly after executing the built-in procedure. Then, perform a commit after you execute the FLUSH CACHE GROUP statement and execute the ttCacheAllowFlushAwtSet built-in procedure to reset the enableFlush parameter back to 0.

Required privilege

This procedure requires no privileges.

Syntax

ttCacheAllowFlushAwtSet (enableFlush)

Parameters

ttCacheAllowFlushAwtSet has the parameters:

	Parameter	Type	Description
	enableFlush	TT_INTEGER	0 - The user is prevented from executing a FLUSH CACHE GROUP statement against an AWT cache group, which is the intended restriction.
1 - The user is allowed to execute a FLUSH CACHE GROUP statement against an AWT cache group, which should only be done for recovery, as described in "When there is unsynchronized data in the cache groups" section in the Oracle TimesTen In-Memory Database Replication Guide.

Result set

ttCacheAllowFlushAwtSet returns no results.

Examples

The following example shows how to execute the ttCacheAllowFlushAwtSet built-in procedure to first allow and then disallow a FLUSH CACHE GROUP statement to be executed against the marketbasket AWT cache group.

Command> set autocommit off;
Command> CALL ttCacheAllowFlushAwtSet(1);
Command> FLUSH CACHE GROUP marketbasket;
Command> CALL ttCacheAllowFlushAwtSet(0);
Command> COMMIT;

See also

"When there is unsynchronized data in the cache groups" section in the Oracle TimesTen In-Memory Database Replication Guide.

ttCacheAutorefIntervalStatsGet

Description

The ttCacheAutorefIntervalStatsGet built-in procedures returns statistical information about the last 10 autorefresh cycles for a particular autorefresh interval.

Required privilege

This procedure requires no privileges.

Syntax

ttCacheAutorefIntervalStatsGet (autoRefInterval, isStatic)

Parameters

ttCacheAutorefIntervalStatsGet has the parameters:

	Parameter	Type	Description
	autoRefInterval	TT_BIGINT NOT NULL	The autorefreshInterval designates the cache group (the one with this autorefresh interval value) on which to gather statistics.
The integer value for the autorefresh interval (in milliseconds) is the same value that was originally specified when the autorefresh cache group was created to indicate how often autorefresh is scheduled.

	isStatic	TT_INTEGER	Indicates if you are to retrieve information on static or dynamic cache groups with the interval value:
0 - dynamic cache groups

1 - static (non-dynamic) cache groups

The default is static.

Result set

ttCacheAutorefIntervalStatsGet returns statistical information about the last 10 autorefresh cycles for a particular autorefresh interval:

	Column	Type	Description
	autorefInterval	TT_BIGINT	Autorefresh interval in milliseconds.
	isStatic	TT_INTEGER	Indicates that the information is for static or dynamic cache groups with the interval value:
0 - dynamic cache groups

1 - static (non-dynamic) cache groups

	autorefNumber	TT_BIGINT	Autorefresh number.
	startTimestamp	TT_TIMESTAMP	Autorefresh start time.
	selectLimit	TT_BIGINT	Select row limit set for incremental autorefresh cache group.
	numRows	TT_BIGINT	Number of rows refreshed.
	numOps	TT_BIGINT	Number of SQL operations executed.
	numCommits	TT_BIGINT	Number of commits.
	commitBufSize	TT_BIGINT	Maximum commit buffer size in bytes.
	commitBufMaxReached	TT_BIGINT	Amount of memory used for commit processing in bytes.
	commitBufNumOverflows	TT_BIGINT	Number of times the commit buffer overflowed for each transaction.
	totalNumRows	TT_BIGINT	Number of rows refreshed since the autorefresh thread was started.
	totalNumOps	TT_BIGINT	Number of SQL operations were executed since the autorefresh thread was started.
	totalNumCommits	TT_BIGINT	Number of commits since the autorefresh thread was started.
	totalNumRollbacks	TT_BIGINT	Number of rollbacks since the autorefresh thread started
	totalNumSnapshotOld	TT_BIGINT	Number of "Snapshot too old" errors received since the autorefresh thread started

Examples

The following example shows how to execute ttCacheAutorefIntervalStatsGet built-in procedure to retrieve statistics for autorefresh cache groups that have been defined as static and have the interval of seven seconds:

Command> call ttCacheAutorefIntervalStatsGet(7000,1);

< 7000, 1, 41, 2013-04-25 15:17:00.000000, 0, 0, 0, 1, 0, 0, <NULL>,
132121, 132121, 13, 21, 0, 0, 0, 0 >
< 7000, 1, 40, 2013-04-25 15:16:53.000000, 0, 0, 0, 1, 0, 0, <NULL>,
132121, 132121, 12, 21, 0, 0, 0, 0 >
< 7000, 1, 39, 2013-04-25 15:16:46.000000, 0, 0, 0, 1, 0, 0, <NULL>,
132121, 132121, 11, 21, 0, 0, 0, 0 >
< 7000, 1, 38, 2013-04-25 15:16:39.000000, 0, 0, 0, 1, 0, 0, <NULL>,
132121, 132121, 10, 21, 0, 0, 0, 0 >
< 7000, 1, 37, 2013-04-25 15:16:32.000000, 0, 6305, 6305, 1, 0, 131072,
<NULL>, 132121, 132121, 9, 21, 0, 0, 0, 0 >
< 7000, 1, 36, 2013-04-25 15:16:24.000000, 0, 15616, 15616, 1, 0, 131072,
<NULL>, 125816, 125816, 8, 21, 0, 0, 0, 0 >
< 7000, 1, 35, 2013-04-25 15:16:17.000000, 0, 18176, 18176, 1, 0, 131072,
<NULL>, 110200, 110200, 7, 21, 0, 0, 0, 0 >
< 7000, 1, 34, 2013-04-25 15:16:10.000000, 0, 14336, 14336, 1, 0, 131072,
<NULL>, 92024, 92024, 6, 21, 0, 0, 0, 0 >
< 7000, 1, 33, 2013-04-25 15:16:03.000000, 0, 15360, 15360, 1, 0, 131072,
<NULL>, 77688, 77688, 5, 21, 0, 0, 0, 0 >
< 7000, 1, 32, 2013-04-25 15:15:56.000000, 0, 11520, 11520, 1, 0, 131072,
<NULL>, 62328, 62328, 4, 21, 0, 0, 0, 0 >

10 rows found.

Notes

This procedure is available only for TimesTen Cache.

See also

ttCacheAutorefreshSelectLimit

ttCacheAutorefreshXactLimit

"Improving execution of large transactions when using incremental autorefresh for read-only cache groups" and "Configuring a select limit when using incremental autorefresh for read-only cache groups" in the Oracle TimesTen Application-Tier Database Cache User's Guide.

ttCacheAutorefresh

Description

This procedure starts an immediate autorefresh on the set of cache groups that are associated by sharing the same autorefresh interval with the specified cache group. This set of associated cache groups would normally be refreshed together automatically. The effect on the autorefresh process is the same as that of adding a new cache group with the same refresh interval as that of the specified cache group. This procedure is useful if updates have occurred on the Oracle database and you would like to refresh them on the cache group before the next scheduled autorefresh.

If there is an existing transaction with locks on table objects that belong to the set of cache groups to be autorefreshed, this procedure returns an error without taking any action. This procedure establishes a condition that requires that you commit or rollback before you can perform other work in the session.

Required privilege

This procedure requires the CACHE_MANAGER or ADMIN privilege.

Syntax

ttCacheAutorefresh ('cgOwner', 'cgName', synchronous)

Parameters

ttCacheAutorefresh has the parameters:

	Parameter	Type	Description
	cgOwner	VARCHAR2 (30)	Name of the cache group owner.
	cgName	VARCHAR2 (30) NOT NULL	Name of the cache group.
	synchronous	TT_INTEGER	Species whether data is updated on synchronously or asynchronously.
0 or NULL - Asynchronous mode. The procedure returns immediately.

1 - Synchronous mode. The procedure returns after the refresh operation has completed on all associated cache groups.

Result set

ttCacheAutorefresh returns no results.

Examples

This example autorefreshes the testcache cache group and all cache groups with the same autorefresh interval. The procedure returns synchronously.

Command> call ttcacheautorefresh('user1','testcache', 1);

Notes

The specified cache group AUTOREFRESH state must be ON. While, other associated cache groups can be in any state, they are not refreshed if they are not in the autorefresh ON state.An autorefresh of the specified associated cache groups cannot be in progress.You cannot call this procedure on the standby node of an active standby pair.

This procedure is available only for TimesTen Cache.

ttCacheAutorefreshLogDefrag

Description

The ttCacheAutorefreshLogDefrag built-in procedure compact the trigger log space for a cache autorefresh table.

For usage details, see "Defragmenting change log tables in the tablespace" in the Oracle TimesTen Application-Tier Database Cache User's Guide.

Required privilege

This procedure requires the CACHE_MANAGER privilege.

Syntax

ttCacheAutorefreshLogDefrag ('action')

Parameters

ttCacheAutorefreshLogDefrag has the parameters:

	Parameter	Type	Description
	action	VARCHAR (50) NOT NULL	Acceptable values are:
Compact - Defragments only the trigger log space.

CompactAndReclaim - Defragments the trigger log space and the transaction commit buffer (reclaim space).

NOTE: The reclaim phase takes a lock on the trigger log table for a brief moment. This can suspend the workload from writing into the base table.

Result set

ttCacheAutorefreshLogDefrag returns no results.

Examples

In this example, the call compacts or defragments only the trigger log space.

Command> call ttCacheAutorefreshLogDefrag('Compact');

Notes

This procedure is available only for TimesTen Cache.

See also

ttCacheConfig

ttCacheAutorefreshStatsGet

ttCacheAutorefreshStatsGet

Description

This procedure returns information about the last ten autorefresh transactions on the specified cache group. This information is only available when the AUTOREFRESH state is ON or PAUSED, and the cache agent is running.

The information returned by this built-in procedure is reset whenever:

	
The cache agent is restarted

	
The state is set to OFF and then back to ON or PAUSED

	
The cache group is dropped and recreated

Required privilege

This procedure requires no privilege.

Syntax

ttCacheAutorefreshStatsGet ('cgOwner', 'cgname')

Parameters

ttCacheAutorefreshStatsGet has the parameters:

	Parameter	Type	Description
	cgOwner	VARCHAR2 (30)	Name of the cache group owner.
	cgName	VARCHAR2 (30) NOT NULL	Name of the cache group for which autorefresh information should be returned.

Result set

The ttCacheAutorefreshStatsGet built-in procedure returns only a subset of column information for a cache group with autorefresh mode FULL. A column value of 0 returns for information that is not available.

ttCacheAutorefreshStatsGet returns the results:

	Column name	Column type	Description	Returned for full autorefresh
	cgId	TT_BIGINT	The cache group ID.	Y
	startTimestamp	TT_TIMESTAMP	Timestamp when autorefresh started for this interval. See "Notes" below.	Y
	cacheAgentUpTime	TT_BIGINT	Number of cache agent clock ticks in milliseconds at the time the autorefresh transaction started for this interval. This value is cumulative and is reset when the cache agent process starts. See "Notes" below.	Y
	autorefNumber	TT_BIGINT	Autorefresh number for a cache group indicates the number of times this cache group has been incrementally refreshed since the cache agent started. This number is initialized to 0 when the cache agent is started.	Y
	autorefDuration	TT_BIGINT	The number of milliseconds spent in this autorefresh transaction.	Y
	autorefNumRows	TT_BIGINT	The number of rows autorefreshed in this autorefresh. This includes all rows, including those in the root table and the child tables.
If there are cache groups with multiple tables, child table rows get updated multiple times. Therefore, the number of rows autorefreshed may be more than the number of rows updated on the Oracle database.

	N
	numOracleBytes	TT_BIGINT	The number of bytes transferred from the Oracle database in this autorefresh transaction.	N
	autorefNumRootTblRows	TT_BIGINT	The number of root table rows autorefreshed in this autorefresh transaction.	Y
	autorefQueryExecDuration	TT_BIGINT	The duration in milliseconds that it takes for the autorefresh query to execute on the Oracle database.	N
	autorefQueryFetchDuration	TT_BIGINT	The duration in milliseconds that it takes for the autorefresh query to fetch rows from the Oracle database.	N
	autorefTtApplyDuration	TT_BIGINT	The duration in milliseconds that it takes for TimesTen to apply the autorefresh.	N
	totalNumRows	TT_BIGINT	The total number of rows autorefreshed since the cache agent started.
The total number of rows autorefreshed may not be the same as number of rows updated on the Oracle database. This is because of a delay in marking the log; some updates may get autorefreshed and counted multiple times.

	N
	totalNumOracleBytes	TT_BIGINT	The total number of bytes transferred from the Oracle database since the cache agent started.	N
	totalNumRootTblRows	TT_BIGINT	The total number of root table rows autorefreshed since the cache agent started.	Y
	totalDuration	TT_BIGINT	The total autorefresh duration in milliseconds since the cache agent started.	Y
	status	VARCHAR2 (128)	A string description of the status of the current autorefresh. See "Notes" below. Supported values for this field are:
Complete

inProgress

Failed

	Y
	numlogrows	TT_BIGINT	Number of rows fetched from the Oracle database in this autorefresh.	Y
	totalnumlogrows	TT_BIGINT	The cumulative number of rows fetched from the Oracle database in this autorefresh.	Y
	autorefLogFragmentationPct	TT_BIGINT	A low-water mark for table usage by percentage. If less than the specified percent of the table is used, the table is compacted.	Y
	autorefLogFragmentationTs	TT_TIMESTAMP	The timestamp when the last utilization/ fragmentation ratio was calculated	Y
	autorefLogDefragGcnt	TT_BIGINT	The number of times the table has been compacted.	Y

Examples

In this example, testcache is a READONLY cache group with one table and an incremental autorefresh interval of 10 seconds.

Command> call ttcacheautorefreshstatsget('user1','testcache');

< 1164260, 2011-07-23 15:43:52.000000, 850280, 44,
0, 75464, 528255, 75464, 310, 110, 6800, 1890912,
12439795, 1890912, 160020, InProgress, 2, 74 >
< 1164260, 2011-07-23 15:43:33.000000, 831700, 43,
13550, 108544, 759808, 108544, 1030, 230, 12290, 1815448,
11911540, 1815448, 160020, Complete, 2, 72 >
< 1164260, 2011-07-23 15:43:12.000000, 810230, 42,
17040, 115712, 809984, 115712, 610, 330, 16090, 1706904,
11151732, 1706904, 146470, Complete, 2, 70>
< 1164260, 2011-07-23 15:42:52.000000, 790190, 41,
14300, 94208, 659456, 94208,560, 320, 13410, 1591192,
10341748, 1591192, 129430, Complete, 2, 68 >
< 1164260, 2011-07-23 15:42:32.000000, 770180, 40,
12080, 99328, 695296, 99328,450, 290, 11340, 1496984,
9682292, 1496984, 115130, Complete, 2, 66 >
< 1164260, 2011-07-23 15:42:12.000000, 750130, 39,
10380, 86016, 598368, 86016,430, 230, 9720, 1397656,
8986996, 1397656, 103050, Complete, 2, 64 >
< 1164260, 2011-07-23 15:41:52.000000, 730130, 38,
13530, 112640, 700768, 112640, 530, 220, 12780, 1311640,
8388628, 1311640, 92670, Complete, 2, 62 >
< 1164260, 2011-07-23 15:41:32.000000, 710120, 37,
9370, 56320, 326810, 56320, 310, 160, 8900, 1199000,
7687860, 1199000, 79140, Complete, 2, 60 >
< 1164260, 2011-07-23 15:41:22.000000, 700120, 36,
2120, 10240, 50330, 10240, 50, 200, 1870, 1142680,
7361050, 1142680, 69770, Complete, 2, 58 >
< 1164260, 2011-07-23 15:41:12.000000, 690110, 35,
0, 0, 0, 0, 0, 0, 0, 1132440, 7310720, 1132440,
67650, Complete, 2, 56 >
10 rows found.

Notes

Most of the column values reported above are collected at the cache group level. For example, autorefDuration and autorefNumRows only include information for the specified cache group. Exceptions to this rule are column values cacheAgentUpTime, startTimestamp and autorefreshStatus. These values are reported at the autorefresh interval level.

StartTimestamp is taken at the beginning of the autorefresh for the autorefresh interval. A cache group enters the in progress state as soon as the autorefresh for the interval starts. It is not marked complete until the autorefresh for all cache groups in the interval are complete.

This procedure is available only for TimesTen Cache.

ttCacheAutorefreshSelectLimit

Description

Configuring the incremental autorefresh to join the Oracle database base table with a limited number of rows from the autorefresh change log table is known as configuring a select limit. This is accomplished with the ttCacheAutorefreshSelectLimit built-in procedure.

Required privilege

This procedure requires the ADMIN or CACHE_MANAGER privileges.

Syntax

ttCacheAutorefreshSelectLimit (autorefreshInterval, value)

Parameters

ttCacheAutorefreshSelectLimit has the parameters:

	Parameter	Type	Description
	autorefreshInterval	TT_VARCHAR(30) NOT NULL	The autorefreshInterval designates the cache group (the one with this autorefresh interval value) on which to apply the value.
The integer value for the autorefresh interval (in milliseconds) is the same value that was originally specified when the autorefresh cache group was created to indicate how often autorefresh is scheduled.

	value	TT_VARCHAR(30)	The value denotes a limit of the number of rows to select from the autorefresh change log file to apply to the cached table. These changes are applied incrementally until all the rows in the autorefresh change log table have been applied.
If the value changes, it takes effect at the start of the next autorefresh cycle.

The value can be one of the following:

	
'ON': Select at most 1000 rows at a time from the autorefresh change log table to apply for every autorefresh cycle.

	
number: Select at most a user specified number of rows from the autorefresh change log table during the autorefresh cycle. If the user specified a limit size of 2000 rows, then autorefresh selects at most 2000 rows at a time from the autorefresh change log table. If you specify a negative number, an error is returned.

	
'OFF': Disables the select limit. The incremental autorefresh selects all rows from the change log table during the autorefresh cycle.

	
NULL: If the value provided is NULL or not specified, the current setting is returned.

Result set

ttCacheAutorefreshSelectLimit returns the select limit value that has been set for a particular autorefresh interval:

	Column	Type	Description
	autorefreshInterval	TT_VARCHAR(30)	The autorefreshInterval that designates the cache group (the one with this autorefresh interval value).
	value	TT_VARCHAR(30)	The current value that shows the number of rows that is selected from the autorefresh change log file to apply to the cached table.

Examples

You can show the current setting by either providing a NULL value or no parameter. The following example shows the setting for incremental autorefresh cache groups with an interval value of 7 seconds.

Command> call ttCacheAutorefreshSelectLimit('7000', NULL);
< 7000, 2000 >
1 row found.
Command> call ttCacheAutorefreshSelectLimit('7000');
< 7000, 2000 >
1 row found.

The following example set a select limit to 2000 rows for incremental autorefresh cache groups with an interval value of 7 seconds.

Command> call ttCacheAutorefreshSelectLimit('7000', '2000');
< 7000, 2000 >
1 row found.

Notes

	
This procedure is available only for TimesTen Cache.

	
The ttCacheAutotrefreshSelectLimit built-in procedure can set a select limit only on an interval that is defined for a single cache group that contains one table, where the cache group is defined as a static read-only cache group with incremental autorefresh.

	
The setting for ttCacheAutorefreshSelectLimit is not replicated or duplicated. The user must execute the built-in on both the active and standby nodes.

	
The settings do not reset if you drop all cache groups for the interval.

	
The ttMigrate, ttBackup, and ttRestore built-in procedures do not preserve the setting of ttCacheAutorefreshSelectLimit.

	
If you alter the cache group autorefresh interval, it does not modify what was set previously through execution of ttCacheAutorefreshSelectLimit for the cache group. You can only alter the select limit for the cache group with the ttCacheAutorefreshSelectLimit built-in procedure.

See also

ttCacheAutorefIntervalStatsGet

"Configuring a select limit when using incremental autorefresh for read-only cache groups" in the Oracle TimesTen Application-Tier Database Cache User's Guide.

ttCacheAutorefreshXactLimit

Description

This procedure specifies the interval at which an immediate autorefresh on single table cache groups within a specified autorefresh interval and commits after the specified number of operations.

This procedure is useful if updates have occurred on the Oracle database and you want to refresh them on the cache group before the next scheduled autorefresh.

To modify the reclaim buffer size, use the ttDBConfig built-in procedure.

Required privilege

This procedure requires the CACHE_MANAGER or ADMIN privilege.

Syntax

ttCacheAutorefreshXactLimit ('IntervalValue', 'Value')

Parameters

ttCacheAutorefreshXactLimit has the parameters:

	Parameter	Type	Description
	intervalValue	VARCHAR2 (50) NOT NULL	Indicates the interval at which the autorefresh cache groups are defined to occur in units of milliseconds. IntervalValue is an integer value in milliseconds that was specified when the autorefresh cache group was created on how often autorefresh is scheduled.
	value	VARCHAR2 (200)	The Value can be one of the following:
	
'ON' - Enables autorefresh to commit after every 256 operations.

	
'OFF' - Disables the transaction limit for autorefresh cache groups and sets autorefresh back to using a single transaction.

	
number - Denotes when to commit after a certain number of operations. For example, if the user specifies 1024, then autorefresh commits after every 1024 operations in the transaction. If you specify a negative number, an error is returned.

	
NULL - When the value is NULL, 0 or not specified, the current setting is returned.

Result set

ttCacheAutorefreshXactLimit returns the results:

	Column	Type	Description
	intervalValue	VARCHAR2 (50) NOT NULL	The interval at which the autorefresh cache groups are defined to occur in units of milliseconds.
	value	VARCHAR2 (200)	The Value can be one of the following:
	
'ON' - Enables autorefresh to commit after every 256 operations.

	
'OFF' - Disables the transaction limit for autorefresh cache groups and sets autorefresh back to using a single transaction.

	
number - Denotes when to commit after a certain number of operations. For example, if the user specifies 1024, then autorefresh commits after every 1024 operations in the transaction. If you specify a negative number, an error is returned.

	
NULL - When the value is NULL or not specified, the current setting is returned.

Examples

The following example sets up the transaction limit to commit after every 256 operations for all incremental autorefresh read-only cache groups that are defined with an interval value of 10 seconds.

call ttCacheAutorefreshXactLimit('10000', 'ON');

After the month end process has completed and the incremental autorefresh read-only cache groups are refreshed, disable the transaction limit for incremental autorefresh read-only cache groups that are defined with the interval value of 10 seconds.

call ttCacheAutorefreshXactLimit('10000', 'OFF');

To enable the transaction limit for incremental autorefresh read-only cache groups to commit after every 2000 operations, provide 2000 as the value as follows:

call ttCacheAutorefreshXactLimit('10000', '2000');

Notes

	
This procedure is available only for TimesTen Cache. This built-in procedure only applies for static read-only cache groups with incremental autorefresh.

	
While autorefresh is in-progress and is being applied in several small transactions, transactional consistency cannot be maintained. Once the autorefresh cycle has completed, the data is transactional consistent.

	
The setting for ttCacheAutorefreshXactLimit is not replicated or duplicated. The user must execute the built-in procedure on both the active and standby nodes.

	
The settings do not reset if you drop all cache groups for the interval.

	
The ttMigrate, ttBackup, and ttRestore built-in procedures do not preserve the setting of ttCacheAutorefreshXactLimit.

	
If you alter the cache group autorefresh interval, it does not modify the setting of ttCacheAutorefreshXactLimit.

See also

ttCacheAutorefIntervalStatsGet

"Improving execution of large transactions when using incremental autorefresh for read-only cache groups" in the Oracle TimesTen Application-Tier Database Cache User's Guide.

ttCacheAWTMonitorConfig

Description

This procedure enables monitoring to determine the amount of time spent in each component of the workflow of an AWT cache group. To display the monitoring results, use the ttRepAdmin utility with the -awtmoninfo and -showstatus commands.

If the replication agent is restarted, monitoring is turned off. Setting the monitoring state to OFF resets the internal counters of the monitoring tool.

Run this procedure on the replication node that is replicating AWT changes to the Oracle database. If the active standby pair is functioning normally, the node replicating AWT changes is the standby. If the active is operating standalone, the node replicating AWT changes is the active.

If a failure occurs on the node where the active database resides, the standby node becomes the new active node. In that case you would run this procedure on the new active node.

Required privilege

This procedure requires the CACHE_MANAGER privilege.

Syntax

ttCacheAWTMonitorConfig (['state'], [samplingRate])

Parameters

ttCacheAWTMonitorConfig has the optional parameters:

	Parameter	Type	Description
	state	TT_CHAR(10)	Enables and disables AWT monitoring. Its value can be ON or OFF. Default is OFF
	samplingRate	TT_INTEGER	Positive integer that specifies the frequency with which the AWT workflow is sampled. If samplingRate is set to 1, every AWT operation is monitored. Greater values indicate less frequent sampling. The value recommended for accuracy and performance is 16. If state is set to ON, the default for samplingRate is 16. If state is set to OFF, the default for samplingRate is 0.

Result set

ttCacheAWTMonitorConfig returns the following result if you do not specify any parameters. It returns an error if the replication agent is not running or if an AWT cache group has not been created.

	Column	Type	Description
	state	TTVARCHAR (10) NOT NULL	Current state of AWT monitoring. The value can be ON or OFF.
	AWTSamplingFactor	TT_INTEGER NOT NULL	Positive integer that specifies the frequency with which the AWT workflow is sampled.

Examples

Example 2-1

Retrieve the current state and sampling factor when monitoring is disabled.

Command> CALL ttCacheAWTMonitorConfig;
< OFF, 0 >
1 row found.

Example 2-2

Enable monitoring and set the sampling frequency to 16.

Command> CALL ttCacheAWTMonitorConfig ('ON', 16);
< ON, 16 >
1 row found.

Example 2-3

Disable monitoring.

Command> CALL ttCacheAWTMonitorConfig; ('OFF')
< OFF, 0 >
1 row found.

See also

"ttRepAdmin"

ttCacheAWTThresholdGet

Description

This procedure returns the current transaction log file threshold for databases that include AWT cache groups.

Required privilege

This procedure requires no privilege.

Syntax

ttCacheAWTThresholdGet()

Parameters

ttCacheAWTThresholdGet has no parameters.

Result set

ttCacheAWTThresholdGet returns the result:

	Column	Type	Description
	threshold	TT_INTEGER NOT NULL	The number of transaction log files for all AWT cache groups associated with the database. If the result is 0, there is no set limit.

Examples

CALL ttCacheAWTThresholdGet();

Notes

This procedure is available only for TimesTen Cache.

See also

ttCacheAWTThresholdSet

ttCacheAWTThresholdSet

Description

This procedure sets the threshold for the number of transaction log files that can accumulate before AWT is considered either terminated or too far behind to catch up. This setting applies to all subscribers to the database. When the threshold is exceeded, updates are no longer sent to the Oracle database. If no threshold is set then the default is zero.

Using this built-in procedure, the threshold can be set after an AWT cache group has been created.

This setting can be overwritten by a CREATE REPLICATION statement that resets the Log Failure Threshold for the database.

Required privilege

This procedure requires the CACHE_MANAGER privilege.

Syntax

ttCacheAWTThresholdSet(threshold)

Parameters

ttCacheAWTThresholdSet has the parameter:

	Parameter	Type	Description
	threshold	TT_INTEGER	Specifies the number of transaction log files for all AWT cache groups associated with the database. If the threshold is NULL, the log failure threshold is set to zero.

Result set

ttCacheAWTThresholdSet returns no results.

Examples

To set the threshold to allow 12 transaction log files to accumulate, use:

CALL ttCacheAWTThresholdSet(12);

Notes

This procedure is available for TimesTen Cache.

The user is responsible to recover when the threshold is exceeded.

See also

ttCacheAWTThresholdGet

ttCacheCheck

Description

The ttCacheCheck built-in procedure performs a check for missing constraints for cached tables on the Oracle database.

Any unique index, unique constraint, or foreign key constraint on columns in Oracle Database tables that are to be cached should also be created on asynchronous writethrough cache tables within TimesTen. If you have not created these constraints on the AWT cache tables and you have configured the cache group for parallel propagation, TimesTen serializes any transactions with DML operations to those tables with missing constraints.

This procedure provides information about missing constraints and the tables marked for serialized propagation.

Call ttCacheCheck to manually check for missing constraints, under these conditions:

	
After completing a series of DROP CACHE GROUP statements.

	
After creating or dropping a unique index or foreign key on the Oracle database.

	
To determine why some transactions are being serialized.

This procedure updates system tables to indicate if DML executed against a table should or should not be serialized, therefore you must commit or roll back after the ttCacheCheck built-in completes.

For more details on parallel propagation, see "Configuring parallel propagation to Oracle Database tables" in the Oracle TimesTen Application-Tier Database Cache User's Guide.

Required privilege

This procedure requires the CACHE_MANAGER privilege.

Syntax

ttCacheCheck('operation', cgOwner, cgName)

Parameters

ttCacheCheck has these parameters:

	Parameter	Type	Description
	operation	TT_VARCHAR(30)	Specifies the constraint to be checked. Legal values are:
	
ForeignKey -Checks foreign key constraints

	
Unique - Checks unique constraints

	
Awt - Checks both foreign key and unique constraints

	
NULL - Checks both foreign key and unique constraints

	cgOwner	TT_VARCHAR(30)	Specifies the owner of the cached Oracle database table.
If NULL, checks all asynchronous writethrough cache groups owned by the connection user.

If both cgOwner and cgName are NULL, checks all asynchronous cache groups.

	cgName	TT_VARCHAR(30)	Specifies the name of the cached Oracle database table.
If NULL, but the cgOwner is specified checks all asynchronous writethrough cache groups owned by cgOwner.

If both cgOwner and cgName are NULL, checks all asynchronous cache groups.

Result set

ttCacheCheck returns the result set:

	Column	Type	Value
	cgOwner	TT_VARCHAR(30) NOT NULL	The owner of the cache group.
	cgName	TT_VARCHAR(30) NOT NULL	The name of the cache group.
	tblOwner	TT_VARCHAR(30)	The owner of the table.
	tblName	TT_VARCHAR(30)	The name of the table.
	objectType	TT_VARCHAR(15)	The type of Oracle object: unique index, constraint or foreign key.
	objectOwner	TT_VARCHAR(30)	The owner of the Oracle object.
	objectName	TT_VARCHAR(30)	The object name.
	msgType	TT_SMALLINT NOT NULL	The type of message:
0 = Informational

1 = Warning

-1 = Error

	msg	TT_VARCHAR(100000) NOT NULL	Message describing the issue.
	objectDesc	VARCHAR2(200000)	A description of the object. If the object is AWT checking, the description is the SQL statement that describes the object.

Examples

The following example determines if there are any missing constraints for the cache group update_orders that is owned by cacheuser. A result set is returned that includes the warning message. The ordertab table in the update_orders cache group is marked for serially propagated transactions.

Command> call ttCacheCheck(NULL, 'cacheuser', 'update_orders');

< CACHEUSER, UPDATE_ORDERS, CACHEUSER, ORDERTAB, Foreign Key, CACHEUSER,
CUST_FK, 1, Transactions updating this table will be serialized to Oracle
because: The missing foreign key connects two AWT cache groups.,
table CACHEUSER.ORDERTAB constraint CACHEUSER.CUST_FK foreign key(CUSTID)
references CACHEUSER.ACTIVE_CUSTOMER(CUSTID) >
1 row found.

Notes

This procedure is available only for TimesTen Cache.

See also

ttCacheDbCgStatus

ttCachePolicyGet

ttCachePolicySet

ttCacheStart

ttCacheStop

ttCacheUidGet

ttCacheUidPwdSet

"ttAdmin"

ttCacheConfig

Description

For all cache groups that cache data from the same Oracle instance, this procedure specifies a timeout value and recovery policies in the case that the Oracle database server is unreachable and the cache agent or database is considered terminated.

The automatic refresh state of the database and cache groups can be determined from the procedure ttCacheDbCgStatus.

Required privilege

This procedure requires the CACHE_MANAGER privilege.

Syntax

ttCacheConfig(Param, tblOwner, tblName, Value)

Parameters

ttCacheConfig has these parameters:

	Parameter	Type	Description
	Param	

VARCHAR2(50)
NOT NULL

	Specifies the parameter to be set by Value:
	
AgentFailoverTimeout - When working in an Oracle RAC environment, sets the TAF timeout, in minutes. Configures how long TAF retries when establishing a connection. The default is four minutes.

	
AgentTimeout - Number of seconds before a database is declared terminated if the cache agent cannot connect to the Oracle database server.

	
AutoRefreshLogFragmentationWarningPCT - The percent of table usage that must occur before warning the user to compact the table.

	
AutoRefreshLogDeFragmentAction - Compaction mode for the specified tables.

	
AutoRefreshLogTblSpaceUsagePCT - Specifies the cache administration user's tablespace usage warning threshold as a percentage.

	
DeadDbRecovery - Specifies the type of autorefresh recovery when the cache agent restarts.

	
TblSpaceFullRecovery - Specifies the action that TimesTen takes when the cached Oracle database table is updated and the cache administration user's tablespace is full.

	tblOwner	VARCHAR2(30)	Specifies the owner of the cached Oracle database table.
This parameter is required if Param is set TblspaceFullRecovery. Do not specify tblOwner for other values of Param.

A synonym cannot be used to specify a table name.

	tblName	VARCHAR2(30)	Specifies the name of the cached Oracle database table.
This parameter is required if Param is set TblspaceFullRecovery. Do not specify tblOwner for other values of Param.

Using a synonym to specify a table name is not supported.

	Value	VARCHAR2(200)	Specifies the value to be set for Param.
	
When Param is AgentFailoverTimeout, it specifies the number of minutes before TAF retries when establishing a connection, when working in an Oracle RAC environment. The default is four minutes.

	
When Param is AgentTimeout, it specifies the number of seconds before a database is declared terminated if the cache agent cannot connect to the Oracle database server. The default is 0, which means that the database is never declared terminated.

	
When Param is AutoRefreshLogFragmentationWarningPCT, the value of the fourth parameter must be an integer between 1 and 100, representing a percentage of the table.

	
When Param is AutoRefreshLogDeFragmentAction, the value can be Manual, CompactOnly or CompactandReclaim If Manual is specified no action is taken. The user can run ttCacheAutorefreshLogDefrag built-in procedure to defragment the logs. If CompactOnly is specified trigger log space is compacted. If CompactandReclaim is specified both the trigger log space and the transaction log buffer (reclaim space) are compacted. The default is Manual.

	
When Param is AutoRefreshLogTblSpaceUsagePCT, the value can be 0 to 100. The default is 0, which means no warning is returned regardless of the tablespace usage.

	
When Param is DeadDbRecovery, the value can be Normal or Manual. Normal specifies a full automatic refresh. Manual specifies that REFRESH CACHE GROUP statement must be issued. The default is Normal.

	
When Param is TblSpaceFullRecovery, the value can be Reload or None. Reload specifies that rows are deleted from the change log table and a full automatic refresh is performed. None specifies that an Oracle database error is returned when the cached Oracle database table is updated. The default is None.

Or Specifies the value to be set by AwtErrorXmlOutput:

	
ASCII - A text file that contains the AWT error report. (Default)

	
XML - An XML file that contains the AWT error report and the associated DTD file.

Result set

ttCacheConfig returns no results when an application uses it to set parameter values. When it is used to return parameter settings, ttCacheConfig returns the following results.

	Column	Type	Value
	Param	VARCHAR2(50)	Parameter name:
AgentTimeout

AgentFailoverTimeout

AutoRefreshLogTblSpaceUsagePCT

DeadDbRecovery

TblSpaceFullRecovery

	tblOwner	VARCHAR2(30)	Owner of the cached Oracle database table.
	tblName	VARCHAR2(30)	Name of the cached Oracle database table.
Using a synonym to specify a table name is not supported.

	Value	VARCHAR2(200)	Specifies the value set for Param.
	
When Param is AgentTimeout, it specifies the number of seconds before a database is declared terminated if the cache agent cannot connect to the Oracle database server.

	
When Param is AutoRefreshLogTblSpaceUsagePCT, the value can be 0 to 100.

	
When Param is DeadDbRecovery, the value can be Normal or Manual.

	
When Param is TblSpaceFullRecovery, the value can be Reload or None.

Examples

To set the cache agent timeout to 600 seconds (10 minutes), enter:

CALL ttCacheConfig('AgentTimeout',,,'600');

To determine the current cache agent timeout setting, enter:

CALL ttCacheConfig('AgentTimeout');
< AgentTimeout, <NULL>, <NULL>, 600 >
1 row found.

To set the recovery method to Manual for cache groups whose automatic refresh status is dead, enter:

CALL ttCacheconfig('DeadDbRecovery',,,'Manual');

Configure the TimesTen Cache to prevent an automatic full refresh and receive an Oracle database error when there is an update on a cached Oracle database table while the cache administration user's tablespace is full. The Oracle database table is terry.customer.

CALL ttCacheConfig('TblSpaceFullRecovery','terry','customer','None');

To determine the current setting for TblSpaceFullRecovery on the terry.customer cached Oracle database table, enter:

CALL ttCacheConfig('TblSpaceFullRecovery','terry','customer');
< TblSpaceFullRecovery, TERRY, CUSTOMER, none >
1 row found.

To configure a warning to be returned when the cache administration user's tablespace is 85 percent full and an update operation occurs on the cached Oracle database table, enter:

CALL ttCacheConfig('AutoRefreshLogTblSpaceUsagePCT',,,'85');

When working in an Oracle RAC environment, the following shows how to retrieve the value of the failover timeout:

Command> call ttCacheConfig('AgentFailoverTimeout');
< AgentFailoverTimeout, <NULL>, <NULL>, 4 >
1 row found.
.

The following sets the failover timeout to 5 minutes:

Command> call ttCacheConfig('AgentFailoverTimeout',,,5);
< AgentFailoverTimeout, <NULL>, <NULL>, 5 >
1 row found.
Command>

Notes

This procedure is available only for TimesTen Cache.

You must call the ttCacheConfig built-in procedure from every node in a cache grid or a active standby pair.

See also

ttCacheDbCgStatus

ttCachePolicyGet

ttCachePolicySet

ttCacheStart

ttCacheStop

ttCacheUidGet

ttCacheUidPwdSet

"ttAdmin"

"Reporting Oracle Database permanent errors for AWT cache groups", "Managing a Caching Environment", and "Setting up TimesTen Cache in an Oracle RAC environment" (regarding Agent Failover) in Oracle TimesTen Application-Tier Database Cache User's Guide

ttCacheDbCgStatus

Description

This procedure returns the automatic refresh status of the database and the specified cache group. If you do not specify any values for the parameters, the procedure returns the automatic refresh status for the database.

Required privilege

This procedure requires no privilege.

Syntax

ttCacheDbCgStatus([cgOwner], [cgName])

Parameters

ttCacheDbCgStatus has these optional parameters:

	Parameter	Type	Description
	cgOwner	VARCHAR2(30)	Specifies the user name of the cache group owner.
	cgName	VARCHAR2(30)	Specifies the cache group name.

Result set

ttCacheDbCgStatus returns the result:

	Column	Type	Value
	dbStatus	VARCHAR2(20)	Specifies the autorefresh status of all the cache groups in the database. The status is one of:
alive - The database is active. The status of all cache groups is ok. The cache agent has been in contact with the Oracle database server.

dead - The cache agent was not able to contact the Oracle database within the timeout period. The status of all the cache groups with the AUTOREFRESH attribute is terminated.

recovering - Some or all the cache groups with the AUTOREFRESH attribute are being resynchronized with the Oracle database server. The status of at least one cache group is recovering.

	cgStatus	VARCHAR2(20)	Specifies the autorefresh status of the specified cache group. The status is one of:
ok - The specified cache group is synchronized with the Oracle database. The cache agent has been in contact with the Oracle database server.

dead - The cache agent was not able to contact the Oracle database within the timeout period and the specified cache group may be out of sync with the Oracle database server.

recovering - The specified cache group is being resynchronized with the Oracle database server.

Examples

This example shows that the automatic refresh status of the database is alive. The automatic refresh status of the cache group is ok.

CALL ttCacheDbCgStatus ('terry', 'cgemployees');
< alive, ok >
1 row found.

To determine the automatic refresh status of the database, call ttCacheDbCgStatus with no parameters:

CALL ttCacheDbCgStatus;
< dead, <NULL> >
1 row found.

Notes

This procedure is available only for TimesTen Cache.

See also

ttCacheConfig

ttCachePolicyGet

ttCachePolicySet

ttCacheStart

ttCacheStop

ttCacheUidGet

ttCacheUidPwdSet

"ttAdmin"

ttCacheDDLTrackingConfig

This procedure enables or disables tracking of DDL statements issued on cached Oracle database tables. By default, DDL statements are not tracked.

DDL tracking saves the change history for all the cached Oracle database tables. One DDL tracking table is created to store DDL statements issued on any cached Oracle database table. You can use this information to diagnose autorefresh problems.

See "Tracking DDL statements issued on cached Oracle Database tables" in Oracle TimesTen Application-Tier Database Cache User's Guide.

Required privilege

This procedure requires the CACHE_MANAGER privilege.

Syntax

ttCacheDDLTrackingConfig('trackingStatus')

Parameters

ttCacheDDLTrackingConfig has the parameter:

	Parameter	Type	Description
	trackingStatus	TT_VARCHAR(10)	Specifies whether DDL statements issued on cached Oracle database tables are tracked. Valid values are:
enable - Enables tracking.

disable (default) - Disables tracking.

Result set

ttCacheDDLTrackingConfig returns no results.

Examples

Command> CALL ttCacheDDLTrackingConfig('enable');

ttCachePolicyGet

Description

This procedure returns the current policy used to determine when the TimesTen cache agent for the connected database should run. The policy can be either always or manual.

Required privilege

This procedure requires no privilege.

Syntax

ttCachePolicyGet()

Parameters

ttCachePolicyGet has no parameters.

Result set

ttCachePolicyGet returns the result:

	Column	Type	Value
	cachePolicy	TT_VARCHAR(10)	Specifies the policy used to determine when the TimesTen cache agent for the database should run. Valid values are:
always - Specifies that the agent for the database is always running. This option immediately starts the TimesTen cache agent. When the TimesTen daemon restarts, TimesTen automatically restarts the cache agent.

manual (default) - Specifies that you must manually start the cache agent using either the ttCacheStart built-in procedure or the ttAdmin -cacheStart command. You must explicitly stop the cache agent using either the ttCacheStop built-in procedure or the ttAdmin -cacheStop command.

Examples

To get the current policy for the TimesTen cache agent, use:

CALL ttCachePolicyGet ();

Notes

This procedure is available only for TimesTen Cache.

See also

ttCacheConfig

ttCacheDbCgStatus

ttCachePolicySet

ttCacheStart

ttCacheStop

ttCacheUidGet

ttCacheUidPwdSet

"ttAdmin"

ttCachePolicySet

Description

The procedure defines the policy used to determine when the TimesTen cache agent for the connected database should run. The policy can be either always or manual.

Required privilege

This procedure requires the CACHE_MANAGER privilege.

Syntax

ttCachePolicySet('cachePolicy')

Parameters

ttCachePolicySet has these parameters:

	Parameter	Type	Description
	cachePolicy	

TT_VARCHAR(10)
NOT NULL

	Specifies the policy used to determine when the TimesTen cache agent for the database should run. Valid values are:
always - Specifies that the agent for the database is always running. This option immediately starts the TimesTen cache agent. When the TimesTen daemon restarts, TimesTen automatically restarts the cache agent.

manual (default) - Specifies that you must manually start the cache agent using either the ttCacheStart built-in procedure or the ttAdmin -cacheStart command. You must explicitly stop the cache agent using either the ttCacheStop built-in procedure or the ttAdmin -cacheStop command.

norestart - Specifies that the cache agent for the database is not to be restarted after a failure.

Result set

ttCachePolicySet returns no results.

Examples

To set the policy for TimesTen cache agent to always, use:

CALL ttCachePolicySet ('always');

Notes

This procedure is available only for TimesTen Cache.

If you attempt to start the TimesTen cache agent (by changing the policy from manual to always) for a database with a relative path, TimesTen looks for the database relative to where TimesTen Data Manager is running, and fails. For example, on Windows, if you specify the path for the database as DataStore=./payroll and attempt to start the TimesTen cache agent with this built-in procedure, the agent is not started because TimesTen Data Manager looks for the database in the install_dir\srv directory. On UNIX, TimesTen Data Manager looks in the /var/TimesTen/instance directory.

Successfully setting the policy to always automatically starts the cache agent if it was stopped.

See also

ttCacheConfig

ttCacheDbCgStatus

ttCachePolicyGet

ttCacheStart

ttCacheStop

ttCacheUidGet

ttCacheUidPwdSet

"ttAdmin"

ttCachePropagateFlagSet

Description

This procedure enables you to disable propagation of committed updates (the result of executing DML statements) within the current transaction to the Oracle database. Any updates from executing DML statements after the flag is set to zero are never propagated to the back-end Oracle database. Thus, these updates exist only on the TimesTen database. You can then re-enable propagation for DML statements by resetting the flag.

Required privilege

This procedure requires the CACHE_MANAGER privilege.

Syntax

ttCachePropagateFlagSet(CommitsOn)

Parameters

ttCachePropagateFlagSet has the parameter:

	Parameter	Type	Description
	CommitsOn	TT_INTEGER NOT NULL	If 0, sets a flag to stop updates from being sent to the Oracle database. The flag remains set until the end of the transaction or until the procedure is set to 1.
If 1, updates are sent to the Oracle database.

Result set

ttCachePropagateFlagSet returns no results.

Notes

This procedure is available only for TimesTen Cache.

If the value of ttCachePropagateFlagSet is reenabled several times during a single transaction, the transaction is only partially propagated to the Oracle database.

ttCachePropagateFlagSet is the only built-in procedure that applications can use in the same transaction as any of the other cache group operation, such as FLUSH, LOAD, REFRESH and UNLOAD.

The propagate flag is reset after a commit or rollback.

When using this procedure, it is important to turn off AutoCommit, otherwise after the procedure is called the transaction ends and propagation to the Oracle database is turned back on.

Examples

This example sets autocommit off to prevent the propagation flag from toggling from off to on after a commit. Calls the ttCachePropagateFlagSet to turn off propagation. A row is inserted into the TimesTen Cache detail table for oratt.writetab. Then, propagation is reenabled by calling the ttCachePropagateFlagSet built-in procedure and setting the flag to one.

Command> set autocommit off;
Command> call ttCachePropagateFlagSet(0);
Command> INSERT INTO oratt.writetab VALUES (103, 'Agent');
1 row inserted.
Command> COMMIT;
Command> SELECT * FROM oratt.writetab;
< 100, Oracle >
< 101, TimesTen >
< 102, Cache >
< 103, Agent >
4 rows found.
Command> call ttCachePropagateFlagSet(1);

When you select all rows on the Oracle database, the row inserted when propagation was turned off is not present in the oratt.writetab table on Oracle.

Command> set passthrough 3;
Command> SELECT * FROM oratt.writetab;
< 100, Oracle >
< 101, TimesTen >
< 102, Cache >
3 rows found.

ttCacheSqlGet

Description

This procedure generates the Oracle SQL statements to install or uninstall Oracle database objects for:

	
Read-only cache groups

	
User managed cache groups with incremental autorefresh

	
Asynchronous writethrough (AWT) cache groups

This is useful when the user creating the cache group does not have adequate privilege to write on the Oracle database. The Oracle DBA can then use the script generated by this built-in procedure to create the Oracle database objects.

Required privilege

This procedure requires the CACHE_MANAGER privilege.

Syntax

ttCacheSqlGet('feature_name', 'cache_group_name', install_flag)

Parameters

ttCacheSqlGet has these parameters:

	Parameter	Type	Description
	feature_name	TT_VARCHAR (100)	Can be specified as INCREMENTAL_AUTOREFRESH or ASYNCHRONOUS_WRITETHROUGH.
	cache_group_name	TT_VARCHAR (100)	The name of the cache group. Specify NULL when installing objects for asynchronous writethrough cache groups or to uninstall all Oracle database objects in the autorefresh user's account.
	install_flag	TT_INTEGER NOT NULL	If install_flag is 1, ttCacheSqlGet returns Oracle SQL to install the autorefresh or asynchronous writethrough Oracle database objects.
If install_flag is 0, ttCacheSqlGet returns SQL to uninstall the previously created objects.

Result set

ttCacheSqlGet returns the result set:

	Column	Type	Description
	retval	TT_VARCHAR (4096) NOT NULL	The Oracle SQL statement to uninstall or install autorefresh or asynchronous writethrough Oracle database objects.
	continueFlag	TT_SMALLINT NOT NULL	nonzero only if the Oracle SQL statement in the retval result column exceeds 4096 bytes and must be continued into the next result row.

Examples

CALL ttCacheSqlGet('INCREMENTAL_AUTOREFRESH', 'westernCustomers', 1);

To remove all Oracle database objects in the autorefresh user's account, use:

CALL ttCacheSqlGet('INCREMENTAL_AUTOREFRESH', NULL, 0);

Notes

This procedure is available only for TimesTen Cache.

Each returned retval field contains a separate Oracle SQL statement that may be directly executed on the Oracle database. A row may end in the middle of a statement, as indicated by the continueFlag field. In this case, the statement must be concatenated with the previous row to produce a usable SQL statement.

The script output of this procedure is not compatible with Oracle's SQL*Plus utility. However, you can use the ttIsql cachesqlget command to generate a script that is compatible with the SQL*Plus utility.

You can specify NULL for the cache_group_name option to generate Oracle SQL to clean up Oracle database objects after a database has been destroyed by the ttDestroy utility.

ttCacheStart

Description

This procedure starts the TimesTen cache agent for the connected database.

Required privilege

This procedure requires the CACHE_MANAGER privilege.

Syntax

ttCacheStart()

Parameters

ttCacheStart has no parameters.

Result set

ttCacheStart returns no results.

Examples

To start the TimesTen cache agent, use:

CALL ttCacheStart ();

Notes

This procedure is available only for TimesTen Cache.

The cache administration user ID and password must be set with the ttCacheUidPwdSet built-in procedure before starting the cache agent when there are or might be autorefresh or asynchronous writethrough cache groups in the database.

If you attempt to start the TimesTen cache agent (by changing the policy from manual to always) for a database with a relative path, TimesTen looks for the database relative to where the TimesTen Data Manager is running, and fails. For example, on Windows, if you specify the path for the database as DataStore=./payroll and attempt to start the TimesTen cache agent with this built-in procedure, the agent is not started because TimesTen Data Manager looks for the database in the \srv directory. On UNIX, the TimesTen Data Manager looks in the /var/TimesTen/instance directory.

When using this procedure, no application, including the application making the call, can be holding a connection that specifies database-level locking (LockLevel=1).

See also

ttCacheConfig

ttCacheDbCgStatus

ttCachePolicyGet

ttCachePolicySet

ttCacheStop

ttCacheUidPwdSet

ttCacheUidGet

"ttAdmin"

ttCacheStop

Description

This procedure stops the TimesTen cache agent for the connected database.

Required privilege

This procedure requires the CACHE_MANAGER privilege.

Syntax

ttCacheStop(timeout)

Parameters

ttCacheStop has the parameter:

	Parameter	Type	Description
	timeout	TT_INTEGER	Specifies that the TimesTen daemon should stop the cache agent if it does not stop within timeout seconds. If set to 0, the daemon waits forever for the cache agent. The default value is 100.

Result set

ttCacheStop returns no results.

Examples

To stop the TimesTen cache agent, use:

CALL ttCacheStop();

Notes

This procedure is available only for TimesTen Cache.

Do not shut down the cache agent immediately after dropping or altering a cache group. Instead, wait for at least two minutes. Otherwise, the cache agent may not get a chance to clean up the Oracle database objects that were used by the AUTOREFRESH feature.

When using this procedure, no application, including the application making the call, can be holding a connection that specifies database-level locking (LockLevel=1).

See also

ttCachePolicySet

ttCacheStart

ttCacheUidPwdSet

ttCacheUidGet

"ttAdmin"

ttCacheUidGet

Description

This procedure returns the cache administration user ID for the database. If the cache administration user ID and password have not been set for the database with the ttCacheUidPwdSet built-in procedure, ttCacheUidGet returns NULL.

Required privilege

This procedure requires CACHE_MANAGER privilege.

Syntax

ttCacheUidGet()

Parameters

ttCacheUidGet has no parameters.

Result set

ttCacheUidGet returns the results:

	Column	Type	Description
	UID	TT_VARCHAR (30)	The current cache administration user ID, used for autorefresh and asynchronous writethrough cache groups.

Examples

CALL ttCacheUidGet();

Notes

This procedure is available only for TimesTen Cache.

See also

ttCacheUidPwdSet

"ttAdmin"

ttCacheUidPwdSet

Description

This procedure sets the cache administration user ID and password. You only need to specify the cache administration user ID and password once for each new database. The cache administration password can be changed at any time.

Required privilege

This procedure requires the CACHE_MANAGER privilege.

Syntax

ttCacheUidPwdSet('UID', 'PWD')

Parameters

ttCacheUidPwdSet has these parameters:

	Parameter	Type	Description
	UID	TT_VARCHAR (30)	The cache administration user ID, used for autorefresh and asynchronous writethrough cache groups.
	PWD	TT_VARCHAR (30)	The password for the cache administration user.

Result set

ttCacheUidPwdSet returns no results.

Examples

CALL ttCacheUidPwdSet('myid', 'mypwd');

Notes

This procedure cannot be called from a Client/Server connection.

This procedure is available only for TimesTen Cache.

For all levels of DDLReplicationLevel, you can set the cache administration user ID and password while the cache or replication agents are running. For more details on changing the cache administration user ID or password, see "Changing cache user names and passwords" in the Oracle TimesTen Application-Tier Database Cache User's Guide.

The cache administration user ID cannot be reset while there are cache groups on the database. The cache administration password can be changed at any time.

See also

ttCacheUidGet

ttCacheUidPwdSet

"ttAdmin"

ttCkpt

Description

This procedure performs a nonblocking checkpoint operation. For information on blocking checkpoints, see "ttCkptBlocking". A checkpoint operation makes a record of the current state of the database on disk and to purge transaction log files. A nonblocking checkpoint does not require any locks on the database.

Applications should checkpoint databases periodically either by setting the background checkpointing attributes (CkptFrequency and CkptLogVolume) or by explicitly calling this procedure. Applications can call this procedure asynchronously to any other application running on the database.

By default, TimesTen performs background checkpoints at regular intervals.

In the case that your application attempts to perform a checkpoint operation while a backup is in process, the backup waits until the checkpoint finishes. Regardless of whether the checkpoint is a background checkpoint or an application-requested checkpoint, the behavior is:

	
If a backup or checkpoint is running and you try to do a backup, it waits for the running backup or checkpoint to finish.

	
If a backup or checkpoint is running and you try to do a checkpoint, it does not wait. It returns an error immediately.

To turn off background checkpointing, set CkptFrequency=0 and CkptLogVolume=0.

When a database crashes, and the checkpoints on disk are nonblocking checkpoints, TimesTen uses the log to recover.

Required privilege

This procedure requires the ADMIN privilege.

Syntax

ttCkpt([timeout], [retries])

Parameters

ttCkpt has these optional parameters:

	Parameter	Type	Description
	timeout	TT_INTEGER	The time (in seconds) that ttCkpt should wait to get a database lock before timing out. The value of timeout can be between 0 and one million, inclusively. If not specified, the checkpoint never times out.
	retries	TT_INTEGER	The number of times that ttCkpt should attempt to get a database lock, if timeouts occur. The value of retries can be between 0 and 10, inclusive. If not specified, defaults to zero.

Result set

ttCkpt returns no results.

Examples

CALL ttCkpt();

Notes

For a description of checkpoints, see "Transaction Management" in Oracle TimesTen In-Memory Database Operations Guide.

See also

ttCkptBlocking

ttCkptConfig

ttCkptHistory

ttCkptBlocking

Description

This procedure performs a blocking checkpoint operation. A checkpoint operation makes a record of the current state of the database on disk, and to purge transaction log files. This checkpoint requires exclusive access to the database, and so may cause other applications to be blocked from the database while the checkpoint is in progress.

When this procedure is called, TimesTen performs a blocking checkpoint when the current transaction is committed or rolled back. If, at that time, other transactions are in progress, the checkpointing connection waits until the other transactions have committed or rolled back. While the checkpoint connection is waiting, any other new transactions that should start form a queue behind the checkpointing transaction. As a result, if any transaction is long-running, it may cause many other transactions to be held up. So, use this blocking checkpoint with caution. To perform a nonblocking checkpoint, use the ttCkpt procedure.

No log is needed to recover when blocking checkpoints are used. TimesTen uses the log, if present, to bring the database up to date after recovery.

Required privilege

This procedure requires the ADMIN privilege.

Syntax

ttCkptBlocking([timeout], [retries])

Parameters

ttCkptBlocking has these optional parameters:

	Parameter	Type	Description
	timeout	TT_INTEGER	The time (in seconds) that ttCkptBlocking should wait to get a database lock before timing out. The value of timeout can be between 0 and one million, inclusively. If not specified, the checkpoint never times out.
	retries	TT_INTEGER	The number of times that ttCkptBlocking should attempt to get a database lock, if timeouts occur. The value of retries can be between 0 and 10, inclusive. If not specified, defaults to zero.

Result set

ttCkptBlocking returns no results.

Examples

CALL ttCkptBlocking();
CALL ttCkptBlocking(1,10);

Notes

Because the checkpoint takes place at commit or rollback, the call to ttCkptBlocking always succeed. At commit or rollback, any problems with the checkpoint operation, such as a lack of disk space or a timeout, result in a warning being returned to the application. Checkpoint problems are not reflected as errors, since the commit or rollback of which they are a part can succeed even if the checkpoint fails. Warnings are reflected in ODBC with the return code SQL_SUCCESS_WITH_INFO.

For more information on checkpoints, see "Transaction Management" in Oracle TimesTen In-Memory Database Operations Guide.

See also

ttCkpt

ttCkptConfig

ttCkptHistory

ttCkptConfig

Description

This procedure reconfigures the background checkpointer dynamically or returns the currently active settings of the configuration parameters. Changes made using ttCkptConfig become effective immediately. Thus, changes to ckptRate can take effect on a checkpoint that is currently in progress.

Changes made to the background checkpointer using ttCkptConfig are persistent. Subsequent loads of the database retain the new settings, unless the CkptFrequency and CkptLogVolume connection attributes are specified in the DSN or connection string, in which case the attribute values are used instead.

Required privilege

This procedure requires no privilege to query the current values. It requires the ADMIN privilege to change the current values.

Syntax

ttCkptConfig(ckptFrequency, ckptLogVolume, ckptRate)

Parameters

ttCkptConfig has these parameters:

	Parameter	Type	Description
	ckptFrequency	TT_INTEGER	Checkpoint frequency in seconds. Values from 0 to MAXINT are allowed. A value of 0 means that checkpoint frequency is not considered when scheduling checkpoints.
	ckptLogVolume	TT_INTEGER	Log volume between checkpoints in megabytes. Values from 0 to MAXINT are allowed. A value of 0 means that checkpoint log volume is not considered when scheduling checkpoints.
	ckptRate	TT_INTEGER	Specifies the rate in MB per second at which a checkpoint should be written to disk.
A value of 0 indicates that the rate should not be limited, a value of NULL means that the rate should be left unchanged. Changes to this parameter take effect even on a checkpoint that is currently in-progress.

Result set

ttCkptConfig returns the following results.

	Column	Type	Description
	ckptFrequency	TT_INTEGER NOT NULL	Currently active setting for checkpoint frequency in seconds.
	ckptLogVolume	TT_INTEGER NOT NULL	Currently active setting for log volume between checkpoints in MB.
	ckptRate	TT_INTEGER NOT NULL	Current rate at which TimesTen writes checkpoints to disk.

Examples

To view the current settings of the background checkpointer configuration parameters, use:

CALL ttCkptConfig;
< 600, 32, 0 >
1 row found.

To stop the background checkpointer from initiating checkpoints unless the log reaches its limit, use:

CALL ttCkptConfig(0);
< 0, 32, 0 >
1 row found.

To stop the background checkpointer from initiating checkpoints, use:

CALL ttCkptConfig(0, 0);
< 0, 0, 0 >
1 row found.

To set the background checkpointer configuration to initiate a checkpoint every 600 seconds or to checkpoint when the log reaches 32 MB (whichever comes first), use:

CALL ttCkptConfig(600, 32);
< 600, 32, 0 >
1 row found.

Notes

By default, TimesTen performs background checkpoints at regular intervals.

In the case that your application attempts to perform a checkpoint operation while a backup is in process, the backup waits until the checkpoint finishes. Regardless of whether the checkpoint is a background checkpoint or an application-requested checkpoint, the behavior is:

	
If a backup or checkpoint is running and you try to do a backup, it waits for the running backup or checkpoint to finish.

	
If a backup or checkpoint is running and you try to do a checkpoint, it does not wait. It returns an error immediately.

To turn off background checkpointing, set CkptFrequency=0 and CkptLogVolume=0.

See also

CkptFrequency

CkptLogVolume

ttCkpt

ttCkptHistory

ttCkptHistory

Description

This procedure returns information about the last eight checkpoints of any type taken by any agent.

Required privilege

This procedure requires no privilege.

Syntax

ttCkptHistory()

Parameters

ttCkptHistory has no parameters.

Result set

ttCkptHistory returns the result set:

	Column	Type	Description
	startTime	TT_TIMESTAMP NOT NULL	Time when the checkpoint was begun.
	endTime	TT_TIMESTAMP	Time when the checkpoint completed.
	type	TT_CHAR (16) NOT NULL	The type of checkpoint taken. Value is one of:
Static - Automatically taken at database creation and at last disconnect.

Blocking - Transaction-consistent checkpoint.

Fuzzy - nonblocking checkpoint. The background checkpointer performs this type if possible.

None - For temporary databases, which have no checkpoint files.

	status	TT_CHAR (16) NOT NULL	Result status of the checkpoint operation. Value is one of:
In Progress - The checkpoint is currently in progress. Only the most recent result row can have this status.

Completed - The checkpoint completed successfully.

Failed - The checkpoint failed. Only the most recent result row can have this status. In this case the error column indicates the reason for the failure.

	initiator	TT_CHAR (16) NOT NULL	The source of the checkpoint request. Value is one of:
User - A user-level application. This includes TimesTen utilities such as ttIsql.

Checkpointer - The background checkpointer.

Subdaemon - The managing subdaemon of the database. For a shared database, the final disconnect checkpoint is taken by the subdaemon.

	error	TT_INTEGER	If a checkpoint fails, this column indicates the reason for the failure. The value is one of the TimesTen error numbers.
	ckptFileNum	TT_INTEGER NOT NULL	The database file number used by the checkpoint. This corresponds to the number in the checkpoint file extension datastore.ds0 or datastore.ds1.
	ckptLFN	TT_INTEGER	The transaction log file number of the checkpoint log record.
	ckptLFO	TT_BIGINT	The transaction log file offset of the checkpoint log record.
	blksTotal	TT_BIGINT	The number of permanent blocks currently allocated in the database. These blocks are subject to consideration for checkpointing.
	bytesTotal	TT_BIGINT	The number of bytes occupied by blksTotal.
	blksInUse	TT_BIGINT	Of blksTotal, the number of blocks currently in use.
	bytesInUse	TT_BIGINT	The number of bytes occupied by blksInUse.
	blksDirty	TT_BIGINT	The number of dirty blocks written by this checkpoint.
	bytesDirty	TT_BIGINT	The number of bytes occupied by blksDirty.
	bytesWritten	TT_BIGINT	The total number of bytes written by this checkpoint.
	Percent_Complete	TT_INTEGER	If there is an in-progress checkpoint, indicates the percentage of the checkpoint that has been completed. If no checkpoint is in-progress, the value is NULL. The returned value is calculated by comparing the block ID of the last-written block against the database's PermSize. The value does not necessarily indicate the precise time remaining to complete the checkpoint, although it does give some indication of the remaining time needed to complete the disk write. The field shows only the progress of the writing of dirty blocks and does not include additional bookkeeping at the end of the checkpoint. The value is non-NULL if you call this procedure while a checkpoint is in progress.
	ckptVNo	TT_INTEGER NOT NULL	The checkpoint sequence number that is incremented for each checkpoint.

Examples

This example shows a checkpoint in progress:

Call ttckpthistory;
< 2011-04-14 16:56:34.169520, <NULL>, Fuzzy ,
In Progress , User
, <NULL>, 0, <NULL>, <NULL>, <NULL>, <NULL>, <NULL>, <NULL>,
<NULL>, <NULL>, <NULL>, 13, 6 >

< 2011-04-14 16:55:47.703199, 2011-04-14 16:55:48.188764,
Fuzzy , Completed , Checkpointer , <NULL>,
1, 0, 8964304, 294, 33554432, 291, 5677288, 27, 1019512,
1065408, <NULL>, 5 >

< 2011-04-14 16:54:47.106110, 2011-04-14 16:54:47.723379,
Static , Completed , Subdaemon , <NULL>,
0, 0, 8960328, 294, 33554432, 291, 5677288, 256, 33157172,
5321548, <NULL>, 4 >

< 2011-04-14 16:54:41.633792, 2011-04-14 16:54:42.568469,
Blocking , Completed , User , <NULL>,
1, 0, 8958160, 294, 33554432, 291, 5677288, 31, 1162112,
6604976, <NULL>, 3 >

< 2011-04-14 16:54:37.438827, 2011-04-14 16:54:37.977301,
Static , Completed , User , <NULL>,
0, 0, 1611984, 93, 33554432, 92, 1853848, 93, 33554432,
1854052, <NULL>, 2 >

< 2011-04-14 16:54:36.861728, 2011-04-14 16:54:37.438376,
Static , Completed , User , <NULL>,
1, 0, 1609936, 93, 33554432, 92, 1853848, 93, 33554432,
1854052, <NULL>, 1 >

6 rows found.

This example shows that an error occurred during the most recent checkpoint attempt:

call ttckpthistory;
< 2011-04-14 16:57:14.476860, 2011-04-14 16:57:14.477957,
Fuzzy , Failed , User , 847, 1, <NULL>,
<NULL>, 0, 0, 0, 0, 0, 0, 0, <NULL>, 7 >

< 2011-04-14 16:56:34.169520, 2011-04-14 16:56:59.715451,
Fuzzy , Completed , User , <NULL>,
0, 0, 8966472, 294, 33554432, 291, 5677288, 5, 522000,
532928, <NULL>, 6 >

< 2011-04-14 16:55:47.703199, 2011-04-14 16:55:48.188764,
Fuzzy , Completed , Checkpointer , <NULL>,
1, 0, 8964304, 294, 33554432, 291, 5677288, 27, 1019512,
1065408, <NULL>, 5 >

< 2011-04-14 16:54:47.106110, 2011-04-14 16:54:47.723379,
Static , Completed , Subdaemon , <NULL>,
0, 0, 8960328, 294, 33554432, 291, 5677288, 256, 33157172,
5321548, <NULL>, 4 >

< 2011-04-14 16:54:41.633792, 2011-04-14 16:54:42.568469,
Blocking , Completed , User , <NULL>,
1, 0, 8958160, 294, 33554432, 291, 5677288, 31, 1162112,
6604976, <NULL>, 3 >

< 2011-04-14 16:54:37.438827, 2011-04-14 16:54:37.977301,
Static , Completed , User , <NULL>,
0, 0, 1611984, 93, 33554432, 92, 1853848, 93, 33554432,
1854052, <NULL>, 2 >

< 2011-04-14 16:54:36.861728, 2011-04-14 16:54:37.438376,
Static , Completed , User , <NULL>,
1, 0, 1609936, 93, 33554432, 92, 1853848, 93, 33554432,
1854052, <NULL>, 1 >

7 rows found.

Notes

Results are ordered by start time, with the most recent first.

A failed row is overwritten by the next checkpoint attempt.

See also

ttCkpt

ttCkptBlocking

ttCommitBufferStats

Description

This built-in procedure returns the number of commit buffer overflows and the high watermark for memory used by transaction reclaim records during transaction commit process.

The information provided by the results of this procedure call is useful information when you want to explicitly set the maximum size of commit buffer, using the CommitBufferSizeMax connection attribute or the ALTER SESSION SQL statement, described in Oracle TimesTen In-Memory Database SQL Reference. This procedure helps you choose the right size for the reclaim buffer, based on the number of overflows and the maximum memory used by the reclaim records.

If there are buffer overflows, you may consider increasing the commit buffer maximum size. If there are no overflows and the highest amount of memory usage is well under the commit buffer maximum size, you may consider decreasing the maximum size.

For more information on reclaim operations, including details about setting the commit buffer size, see "Transaction reclaim operations" in the Oracle TimesTen In-Memory Database Operations Guide.

Required privilege

This procedure requires no privileges.

Syntax

ttCommitBufferStats()

Parameters

ttCommitBufferStats takes no parameters.

Result set

ttCommitBufferStats returns these results:

	Column	Type	Description
	overflows	TT_BIGINT NOT NULL	Total number of commit buffer overflows.
	maxReached	TT_BIGINT NOT NULL	The currently used maximum for the transaction commit buffer in bytes.

Examples

This shows the result for a session where there have been no commit buffer overflows and the transaction commit buffer is set to 500 MB.

Command> ALTER SESSION SET COMMIT_BUFFER_SIZE_MAX = 500;
Session altered.
Command> CALL ttCommitBufferStats();
< 0, 524288000 >
1 row found

For a session where there have been 10 commit buffer overflows and the transaction commit buffer is set to 2 MB, the output of this procedure is:

Command> ALTER SESSION SET COMMIT_BUFFER_SIZE_MAX = 2;
Session altered.
Command> CALL ttCommitBufferStats();
< 0, 2097152 >
1 row found

Notes

When you call the built-in procedure ttCommitBufferStatsReset, the commit buffer statistics are expressed in bytes. However, the ttConfiguration output and the value set by the connection attribute CommitBufferSizeMax are expressed in MB.

See also

ttCommitBufferStatsReset

ttCommitBufferStatsReset

Description

The ttCommitBufferStatsReset procedure resets transaction commit buffer statistics to 0. This is useful, for example, if you have set a new value for the commit buffer maximum size and want to restart the statistics.

For more information on reclaim operations, including details about setting the commit buffer size, see "Transaction reclaim operations" in the Oracle TimesTen In-Memory Database Operations Guide.

Required privilege

This procedure requires no privileges.

Syntax

ttCommitBufferStatsReset()

Parameters

ttCommitBufferStatsReset takes no parameters.

Result set

ttCommitBufferStatsReset returns no result set.

Examples

CALL ttCommitBufferStatsReset;

See also

ttCommitBufferStats

ttCompact

Description

This procedure compacts both the permanent and temporary data partitions of the database.

ttCompact merges adjacent blocks of free space, but does not move any items that are allocated. Therefore, fragmentation that is caused by small unallocated blocks of memory surrounded by allocated blocks of memory is not eliminated by using ttCompact.'

This procedure is supported for backward compatibility. New applications should not call it.

Required privilege

This procedure requires the ADMIN privilege.

Syntax

ttCompact()

Parameters

ttCompact has no parameters.

Result set

ttCompact returns no results.

Examples

CALL ttCompact;

Notes

Compacting data does not modify result addresses.

See also

ttCompactTS

ttCompactTS

Description

This procedure is similar to ttCompact, except that ttCompactTS may be used to compact a small fraction of the database, while ttCompact compacts the entire database. ttCompactTS is a time-sliced version of ttCompact. ttCompactTS iterates through all the blocks in the database compacting the quantum specified each time. When a sweep is completed, the value of the DS_COMPACTS field in the MONITOR table is incremented.

This procedure is supported for backward compatibility. New applications should not call it.

Required privilege

This procedure requires the ADMIN privilege.

Syntax

ttCompactTS(quantum)

Parameters

ttCompactTS has the parameter:

	Parameter	Type	Description
	quantum	TT_INTEGER NOT NULL	A nonzero positive integer that specifies the number of data blocks a ttCompactTS should compact. Each quantum corresponds to one data block.

Result set

ttCompactTS returns no results.

Examples

CALL ttCompactTS (5);

Notes

Compacting data does not modify result addresses.

See also

ttCompact

ttComputeTabSizes

Description

The ttComputeTabSizes built-in procedure refreshes table size statistics stored in TimesTen system tables. After calling this built-in procedure, you can review the statistics updates by querying the DBA_TAB_SIZES, USER_TAB_SIZES or ALL_TAB_SIZES view.

This procedure computes the different types of storage allocated for the specified table, such as the amount of storage allocated for inline row storage, out-of-line buffers and system usage. If no table is specified, the procedure computes the sizes for all tables on which the user has SELECT privileges.The execution of this built-in behaves like a DDL statement: the transaction commits just before the procedure begins and commits again upon its successful termination.

Required privilege

This procedure requires the SELECT privilege on the specified table.

Syntax

ttComputeTabSizes (['tblName'], [includeOutOfLine])

Parameters

ttComputeTabSizes has the parameters:

	Parameter	Type	Description
	tblName	TT_CHAR(61)	Name of an application table. Can include the table owner. If a value of NULL or an empty string is provided, updates the statistics for all the current tables.
The type of tables that can be estimated are:

	
User tables, including cache group tables

	
Materialized views

	
System tables

	includeOutOfLine	TT_INTEGER	0 (no) or 1 (yes). Default is 1 (yes).
If value is 0 (no), the procedure does not compute the size of out-of-line values for any table that has out-of-line columns. The out-of-line fields are displayed as NULL.

Avoiding the computation of out-of-line values significantly decreases the latency of this procedure.

Result set

ttComputeTabSizes returns no results.

Examples

To compute the size of my_table without including out-of-line columns, use:

CALL ttComputeTabSizes ('my_table', 0);

Notes

The built-in procedure enables concurrent insertions while ttComputeTabSizes is executing. For this reason, the size computed by ttComputeTabSizes for each table is any value between the minimum size of the table during the computation and the maximum size of the table during the computation. For example, if the size of a table is 250 MB when ttComputeTabSizes is executed, and a transaction running concurrently raises the size of the table to 300 MB, ttComputeTabSizes estimates a value between 250 and 300 MB.

See also

ttSize

ttConfiguration

Description

The ttConfiguration built-in procedure returns the values for most, but not all, connection attributes for the current database connection. Specifically, the ttConfiguration built-in procedure returns the values for these connection attributes:

CacheAwtMethod

CacheAwtParallelism

CacheGridEnable

CacheGridMsgWait

CkptFrequency

CkptLogVolume

CkptRate

CkptReadThreads

CommitBufferSizeMax

ConnectionCharacterSet

ConnectionName

Connections

DDLCommitBehavior

DDLReplicationAction

DDLReplicationLevel

DataBaseCharacterSet

DataStore

DynamicLoadEnable

DuplicateBindMode

DurableCommits

DynamicLoadErrorMode

Isolation

RangeIndexType

LockLevel

LockWait

LogAutoTruncate

LogBufMB

LogBufParallelism

LogDir

LogFileSize

LogFlushMethod

LogPurge

MemoryLock

NLS_LENGTH_SEMANTICS

NLS_NCHAR_CONV_EXCP

NLS_SORT

OracleNetServiceName

PLSCOPE_SETTINGS

PLSQL

PLSQL_CCFLAGS

PLSQL_CODE_TYPE

PLSQL_CONN_MEM_LIMIT

PLSQL_MEMORY_ADDRESS

PLSQL_MEMORY_SIZE

PLSQL_OPTIMIZE_LEVEL

PLSQL_TIMEOUT

PassThrough

PermSize

PermWarnThreshold

Preallocate

PrivateCommands

QueryThreshold

RACCallback

ReceiverThreads

RecoveryThreads

ReplicationApplyOrdering

ReplicationParallelism

ReplicationTrack

SQLQueryTimeout

TempSize

TempWarnThreshold

Temporary

TypeMode

UID

Required privilege

This procedure requires no privilege.

Syntax

ttConfiguration(['paramName'])

Parameters

ttConfiguration has the optional parameter:

	Parameter	Type	Description
	paramName	TT_VARCHAR (30)	The name of a connection attribute for which you want this procedure to return the value.

Result set

ttConfiguration returns the result set:

	Column	Type	Description
	paramName	

TT_VARCHAR (30)
NOT NULL

	The names of the connection attributes specified in the connection string, returned in alphabetical order.
	paramValue	TT_VARCHAR (1024)	The values of the connection attributes specified in the connection string.

Examples

To see the value of the QueryThreshold connection attribute, use

CALL ttConfiguration('querythreshold');
<QueryThreshold, 0>
1 row found

To see the values of all attributes, use:

CALL ttConfiguration();
< CacheGridEnable, 1 >
< CacheGridMsgWait, 60 >
< CkptFrequency, 600 >
< CkptLogVolume, 0 >
. . .

Notes

The values of client driver attributes are not returned by this procedure.

The values of other attributes, such as ForceConnect, may not be returned by this procedure, as well.

See also

Chapter 1, "Connection Attributes"

ttContext

Description

This procedure returns the context value of the current connection as a BINARY(8) value. You can use the context to correlate a unique connection to a database from the list of connections presented by the ttStatus utility and the ttDataStoreStatus built-in procedure.

Required privilege

This procedure requires no privilege.

Syntax

ttContext()

Parameters

ttContext has no parameters.

Result set

ttContext returns the result set:

	Column	Type	Description
	context	BINARY(8)	Current connection context value.

Examples

CALL ttContext;

Notes

The context value numbers are unique only within a process. The context value number is not unique within the entire database. Therefore you may see the same context value number for different processes.

See also

ttDataStoreStatus

"ttStatus"

ttDataStoreStatus

Description

This procedure returns the list of processes connected to a database. If the dataStore parameter is specified as NULL, then the status of all active databases is returned.

The result set is similar to the printed output of the ttStatus utility.

Required privilege

This procedure requires no privilege.

Syntax

ttDataStoreStatus('dataStore')

Parameters

ttDataStoreStatus has the parameter:

	Parameter	Type	Description
	dataStore	TT_VARCHAR (256)	Full path name of desired database or NULL for all databases.

Result set

ttDataStoreStatus returns the result set:

	Column	Type	Description
	dataStore	TT_VARCHAR (256) NOT NULL	Full path name of database.
	PID	TT_INTEGER NOT NULL	Process ID.
	Context	BINARY(8) NOT NULL	Context value of connection.
	conType	

TT_CHAR (16)
NOT NULL

	Type of process connected. The result can be one of the following:
application - An ordinary application is connected.

replication - A replication agent is connected.

subdaemon - A subdaemon is connected.

oracleagent - An cache agent is connected.

	ShmID	

TT_VARCHAR (260)
NOT NULL

	A printable version of the shared memory ID that the database occupies.
	connection_Name	

TT_CHAR (30)
NOT NULL

	The symbolic name of the database connection.
	connID	TT_INTEGER NOT NULL	The numeric ID of the database connection.

Examples

CALL ttDataStoreStatus('/data/Purchasing');

See also

ttContext

"ttStatus"

ttDBConfig

Description

The ttDBConfig built-in enables users to set or view the value of a TimesTen database system parameter.

Required privilege

This procedure requires ADMIN privilege.

Syntax

ttDBConfig('param', 'value')

Parameters

ttDBConfig has the parameters:

	Parameter	Type	Description
	param	VARCHAR2(30) NOT NULL	.A system parameter for which you either want to set a value or to see the current value. Accepted values for this argument are:
CacheParAwtBatchSize

CacheAwtMethod

CacheAgentCommitBufSize

ParReplMaxDrift

RepAgentCommitBufSize

	value	VARCHAR2(200)	The value for the system parameter.
If you do not specify a value, this procedure returns the current value of the specified parameter.

Parameter / Value Pairs

These name/value pairs can be returned in the result set:

	Name	Value	Description
	CacheParAwtBatchSize	Number of rows in a batch	Configures a threshold value for the number of rows included in a single batch. Once the maximum number of rows is reached, TimesTen includes the rest of the rows in the transaction (TimesTen does not break up any transactions), but does not add any more transactions to the batch.
NOTE: You should not change the value of this parameter unless advised by Oracle TimesTen technical support.

	CacheAwtMethod	0 - SQL Array execution method
1 - PL/SQL Execution method

	Determines whether PL/SQL execution method or SQL array execution method is used for AWT propagation to apply changes to the Oracle database server.
See the description of the CacheAWTMethod connection attribute for details.

If set with this built-in procedure, overrides the value of the value of the connection attribute value.

	CacheAgentCommitBufSize	Size in MB	Specifies the reclaim buffer maximum size for the cache agent. The cache agent periodically checks to see if the value has changed. The size cannot be greater than the temporary partition size.
For more details, see "Improving performance when reclaiming memory during autorefresh operations" in the Oracle TimesTen Application-Tier Database Cache User's Guide.

	ParReplMaxDrift	Number of seconds	Specifies the number of seconds of drift to allow between the parallel replication tracks. When you use automatic parallel replication and disable commit dependencies, some tracks may move ahead of the others. Once this threshold is passed, TimesTen synchronizes all replication tracks so that they catch up to each other. By default, this is set to zero, which means that checking for drift between tracks is disabled.
For more details, see "Configuring automatic parallel replication with disabled commit dependencies" in the Oracle TimesTen In-Memory Database Replication Guide

	RepAgentCommitBufSize	Size in MB	Specifies the reclaim buffer maximum size for the replication agent. The replication agent periodically checks to see if the value has changed. The size cannot be greater than the temporary partition size.
For more details, see "Improving performance when reclaiming memory during autorefresh operations" in the Oracle TimesTen Application-Tier Database Cache User's Guide.

Result set

ttDBConfig returns the result set:

	Column	Type	Description
	param	VARCHAR2(30)	The name of the system parameter.
	value	VARCHAR2(200)	Displays the current value of the specified parameter.

Examples

To retrieve the current value of the CacheParAwtBatchSize, use:

CALL ttDBConfig('CacheParAwtBatchSize');
<CACHEPARAWTBATCHSIZE, 125>
1 row found.

To set the value of the RepAgentCommitBufSize to 50 MB, use:

CALL ttDBConfig('RepAgentCommitBufSize', '50');
 <REPAGENTCOMMITBUFSIZE, 50>
 1 row found.

To set the current value of the CacheAgentCommitBufSize to 100, use:

Command> call ttDBConfig('CacheAgentCommitBufSize', '100');
 < CACHEAGENTCOMMITBUFSIZE, 100 >
1 row found.

Notes

After using this built-in procedure to set a parameter value, initiate a checkpoint to ensure the persistence of the parameter change. See details about the ttCheckpoint procedure in "Checkpoint operations" in the Oracle TimesTen In-Memory Database Operations Guide. For details about the checkpoint built-in procedure, see "ttCkpt" in this chapter.

Changes to parameter values made by ttDbConfig cannot be rolled back.

See also

"CacheAWTMethod"

"Improving AWT throughput", "Configuring batch size for parallel propagation for AWT cache groups", and "Improving performance when reclaiming memory during autorefresh operations" in the Oracle TimesTen Application-Tier Database Cache User's Guide

ttDbWriteConcurrencyModeGet

Description

The ttDbWriteConcurrencyModeGet built-in returns information about the write concurrency mode of the database and the status of write concurrency mode operations and transitions.

Required privilege

This procedure requires no privilege.

Syntax

ttDbWriteConcurrencyModeGet()

Parameters

ttDbWriteConcurrencyModeGet has no parameters:

Result set

ttDbWriteConcurrencyModeGet returns the result set:

	Column	Type	Description
	ts	TIMESTAMP NOT NULL	Time at which the status information was collected.
	mode	TT_INTEGER NOT NULL	The write concurrency mode:
0 - Optimize according to hints and standard optimization techniques.

1- Optimize for concurrent write operations.

	operation	VARCHAR2 (50)	The transition status of the write concurrency mode. Either:
NULL - Not in transition.

TRANSITIONING TO MODE=n where n= 0 or 1.

	status	VARCHAR2 (100) NOT NULL	The status of the write concurrency mode transition. Either:
IN TRANSITION or COMPLETE.

	msg	VARCHAR2 (5000)	NULL or a status explanation message.

Examples

The following example shows how to determine if your database is optimized for concurrent write operations:

Command> CALL ttDbWriteConcurrencyModeGet();

< 2013-09-23 13:48:21.207599, 1, <NULL>, COMPLETE, <NULL> >
1 row found.

The results indicate that at approximately 1:48 pm on September 23, 2013 the database was optimized for concurrent write operations. The mode was not in transition.

See also

ttDbWriteConcurrencyModeSet

ttDbWriteConcurrencyModeSet

Description

The ttDbWriteConcurrencyModeSet built-in enables control over read optimization during periods of concurrent write operations.

Set the mode to one (1) to enable the enhanced write concurrency mode and disable read optimization. Set the mode to zero (0) to disable the enhanced write concurrency mode and re-enable read optimization.When the mode is set to one (1), all transaction and statement table lock hints are suppressed. This affects hint-triggered Sn table locks for SELECT statements and subqueries and also hint-triggered W table locks for DML statements. Suppression of the table lock hint also suppresses other table-lock hint driven execution plans such as star joins. Regardless of the mode setting, table locks that are not triggered by table-lock hints are not affected.

Required privilege

This procedure requires ADMIN privilege.

Syntax

ttDbWriteConcurrencyModeSet(mode, wait)

Parameters

ttDbWriteConcurrencyModeSet has these parameters:

	Parameter	Type	Description
	mode	TT_INTEGER NOT NULL	The write concurrency mode:
0 - Optimize according to hints and standard optimization techniques.

1 - Optimize for concurrent write operations.

	wait	TT_INTEGER NOT NULL	0 - Return immediately after starting mode transition.
1 - Wait until mode transition is complete before returning. This can be useful when setting the mode to a nonzero value. When setting the mode to zero, it is typically not necessary to specify wait to 1.

Result set

ttDbWriteConcurrencyModeSet returns no result set:

Examples

The following example shows how to enable standard optimization techniques and return immediately after starting the operation:

Command> CALL ttDbWriteConcurrencyModeSet(0,0);

Notes

When the mode is set to one (1), all transaction and statement table lock hints are suppressed. This affects hint-triggered Sn table locks for SELECT statements and subqueries and also hint-triggered W table locks for DML statements. Suppression of the table lock hint also suppresses other table-lock hint driven execution plans such as star joins. Regardless of the mode setting, table locks that are not triggered by table-lock hints are not affected.

See also

ttDbWriteConcurrencyModeGet

ttDurableCommit

Description

This procedure specifies that the current transaction should be made durable when it is committed. It only has an effect if the application is connected to the database with DurableCommits disabled.

Calling ttDurableCommit also makes durable the current transaction and any previously committed delayed durability transactions. There is no effect on other transactions that are committed after calling ttDurableCommit. ttDurableCommit does not commit transactions. The application must do the commit, for example with a call to SQLTransact.

Required privilege

This procedure requires no privilege.

Syntax

ttDurableCommit()

Parameters

ttDurableCommit has no parameters.

Result set

ttDurableCommit returns no results.

Examples

CALL ttDurableCommit;

Notes

Some controllers or drivers may only write data into cache memory in the controller or may write to disk some time after the operating system is told that the write is done. In these cases, a power failure may mean that some information you thought was durably committed does not survive the power failure. To avoid this loss of data, configure your disk to write all the way to the recording media before reporting completion or you can use an Uninterruptable Power Supply (UPS).

ttGridAttach

Description

This procedure attaches a grid member to an existing local cache grid. A grid member can be a standalone TimesTen database or a TimesTen active standby pair.

If a member is an active standby pair, both nodes of the pair must attach to the grid. When calling the ttGridAttach built-in procedure from each node of the active standby pair, specify the IP address or host name of both nodes.

The ttGridAttach built-in procedure automatically starts the cache agent if it is not already running. In addition, the ttGridAttach built-in procedure sets the specified TCP/IP port for the cache agent to facilitate global cache groups.

To retrieve the information set by this procedure call the built-in procedure ttGridNodeStatus.

This procedure starts the cache agent if it is not already running. This procedure cannot be used remotely.

Required privilege

This procedure requires the CACHE_MANAGER privilege.

Syntax

For a standalone TimesTen database:

ttGridAttach(currentNode, 'name1', IPAddr1, port1)

For a node of an active standby pair:

ttGridAttach(currentNode, 'name1', IPAddr1, port1 'name2', IPAddr2, port2)

Parameters

ttGridAttach has the parameters:

	Parameter	Type	Description
	currentNode	TT_INTEGER NOT NULL	The node number for the master database. Valid values for this parameter are:
1 - Standalone or active master database.

2 - Standby master database.

	name1	TT_VARCAR (30)	Fully qualified name that uniquely identifies the grid member for the active master database.
	IPAddr1	TT_VARCHAR (128) NOT NULL	IP address of the node where the active master database resides.
	port1	TT_INTEGER NOT NULL	Port number for the cache agent process of the active master database or a standalone database.
	name2	TT_VARCAR (30)	Fully qualified name that uniquely identifies the grid member for the standby master database.
	IPAddr2	TT_VARCHAR (128)	IP address of the node where the standby master database resides.
	port2	TT_INTEGER	Port number for the cache agent process of the standby master database.

Result set

ttGridAttach returns no results.

Examples

To attach to a standalone TimesTen database to a grid:

CALL ttGridAttach (1, 'alone2','sys2',5002);

To attach an active master database to a grid:

CALL ttGridAttach(1,'cacheact','sys1',5003,'cachestand','sys2',5004);

To attach a standby master database to a grid:

CALL ttGridAttach(2,'cacheact','sys1',5003,'cachestand','sys2',5004);

The only difference between the calls for attaching the active and the standby master stores is the node number.

See also

ttGridCheckOwner

ttGridCreate

ttGridDestroy

ttGridDetach

ttGridDetachList

ttGridDetachAll

ttGridGlobalCGResume

ttGridGlobalCGSuspend

ttGridNameSet

ttGridNodeStatus

"Configuring a cache grid" in Oracle TimesTen Application-Tier Database Cache User's Guide

ttGridCheckOwner

Description

This procedure checks if the number of rows in global cache groups match number of rows in the ownership tables. Call this procedure only when the cache grid is quiet.

Required privilege

This procedure requires the CACHE_MANAGER privilege.

Syntax

ttGridCheckOwner(['cvName'], ['cvOwner'])

Parameters

ttGridCheckOwner has the optional parameters:

	Parameter	Type	Description
	cvName	TT_VARCHAR (30)	The name of the cache group to be checked. If NULL, all cache groups owned by the owner, if one is specified, are checked. If NULL, and no owner is specified, all cache groups are checked.
	cvOwner	TT_VARCHAR (30)	The owner of the cache group to be checked. If NULL, all cache groups are checked.

Result set

ttGridCheckOwner displays no results.

Examples

To get information on the mygroup cache group, owned by user terry, use:

CALL ttGridCheckOwner ('mygroup', 'terry');

To get information on all cache groups, use:

CALL ttGridCheckOwner();

See also

ttGridAttach

ttGridCreate

ttGridDestroy

ttGridDetach

ttGridDetachAll

ttGridDetachList

ttGridGlobalCGResume

ttGridGlobalCGSuspend

ttGridNameSet

ttGridNodeStatus

"Configuring a cache grid" in Oracle TimesTen Application-Tier Database Cache User's Guide

ttGridCreate

Description

This procedure creates a cache grid. Run this procedure only one time to create a grid. You can run it from any standalone database or from the active or standby master database in an active standby pair.

You must commit after calling this procedure if AUTOCOMMIT=0.

Required privilege

This procedure requires the CACHE_MANAGER privilege.

Syntax

ttGridCreate('gridName')

Parameters

ttGridCreate has the parameter:

	Parameter	Type	Description
	gridName	TT_VARCHAR (30) NOT NULL	Specifies the name of the grid.

Result set

ttGridCreate returns no results.

Examples

To create a grid named mygrid:

CALL ttGridCreate ('mygrid');

See also

ttGridAttach

ttGridCheckOwner

ttGridDestroy

ttGridDetach

ttGridDetachAll

ttGridDetachList

ttGridGlobalCGResume

ttGridGlobalCGSuspend

ttGridNameSet

ttGridNodeStatus

"Configuring a cache grid" in Oracle TimesTen Application-Tier Database Cache User's Guide

ttGridDestroy

Description

This procedure destroys a cache grid by removing all cache grid objects stored on the Oracle database.

By default, this built-in procedure does not destroy the grid if there are still attached members or existing cache groups.

Before destroying a cache grid, detach all the TimesTen databases from the cache grid. To force the grid to be destroyed, supply a value of 1 as an argument to the force parameter.

Required privilege

This procedure requires the CACHE_MANAGER privilege.

Syntax

ttGridDestroy('gridName', [force])

Parameters

ttGridDestroy has the parameters:

	Parameter	Type	Description
	gridName	TT_VARCHAR (30) NOT NULL	The fully qualified name of the grid to be destroyed.
	force	TT_INTEGER	This optional parameter forces the cache grid to be destroyed even if there are still grid members attached to the cache grid or if it still contains cache groups. Valid value is 1.

Result set

ttGridDestroy returns no results.

Examples

To destroy the mygrid cache grid with force, use:

CALL ttGridDestroy ('mygrid', 1);

See also

ttGridAttach

ttGridCheckOwner

ttGridCreate

ttGridDetach

ttGridDetachAll

ttGridDetachList

ttGridGlobalCGResume

ttGridGlobalCGSuspend

ttGridNameSet

ttGridNodeStatus

"Configuring a cache grid" in Oracle TimesTen Application-Tier Database Cache User's Guide

ttGridDetach

Description

This procedure detaches a node from a cache grid.

Use this procedure before destroying a cache grid. You cannot destroy a cache grid if there are any nodes attached to the cache grid.

Required privilege

This procedure requires the CACHE_MANAGER privilege.

Syntax

ttGridDetach(['nodeMemberName',] [force] [oraclePropWaitSec])

Parameters

ttGridDetach has the optional parameters:

	Parameter	Type	Description
	nodeMemberName	TT_VARCHAR (200)	Specifies the node to detach from the grid.
Each node of an active standby pair must be detached separately.

	force	TT_INTEGER	Forces a node to be detached without checking whether it is terminated. Valid value is 1.
	oraclePropWaitSec	TT_INTEGER	Specifies the number of seconds to wait for all transactions to propagate to the Oracle database before detaching the node. A value of -1 indicates to wait forever. If no value is specified, ttGridDetach waits 1 second.

Result set

ttGridDetach returns no results.

Examples

To detach the current node from the grid, use:

CALL ttGridDetach();

To detach the remote node TTGRID_alone2_2 from the grid, use:

CALL ttGridDetach('TTGRID_alone2_2',1);

See also

ttGridAttach

ttGridCheckOwner

ttGridCreate

ttGridDetachAll

ttGridDetachList

ttGridDestroy

ttGridGlobalCGResume

ttGridGlobalCGSuspend

ttGridNameSet

ttGridNodeStatus

"Configuring a cache grid" in Oracle TimesTen Application-Tier Database Cache User's Guide

ttGridDetachAll

Description

This procedure detaches all attached members from the grid. A grid member can be a standalone TimesTen database or a TimesTen active standby pair.

This procedure starts the cache agent if it is not already running.

Required privilege

This procedure requires the CACHE_MANAGER privilege.

Syntax

ttGridDetachAll([oraclePropWaitSec])

Parameters

ttGridDetachAll has the optional parameter:

	Parameter	Type	Description
	oraclePropWaitSec	TT_INTEGER	Specifies the number of seconds to wait for all transactions to propagate to the Oracle database before detaching all nodes. A value of -1 indicates to wait forever. If no value is specified, ttGridDetachAll waits 1 second.

Result set

ttGridDetachAll returns no results.

Examples

To detach all grid members, use:

CALL ttGridDetachAll();

See also

ttGridAttach

ttGridCheckOwner

ttGridCreate

ttGridDestroy

ttGridDetach

ttGridDetachList

ttGridGlobalCGResume

ttGridGlobalCGSuspend

ttGridNameSet

ttGridNodeStatus

"Configuring a cache grid" in Oracle TimesTen Application-Tier Database Cache User's Guide

ttGridDetachList

Description

This procedure detaches the nodes in the list. It is useful for remote nodes, because they are unavailable.

Required privilege

This procedure requires the CACHE_MANAGER privilege.

Syntax

ttGridDetachList('nodeMemberName1 [nodeMemberName2 ...]'
[,force] [oraclePropWaitSec])

Parameters

ttGridDetachList has the parameters:

	Parameter	Type	Description
	nodeMemberName	TT_VARCHAR (8192) NOT NULL	The fully qualified name of the node to be removed.
	force	TT_INTEGER	This optional parameter forces nodes to be detached without checking whether they are terminated. Valid value is 1.
	oraclePropWaitSec	TT_INTEGER	The optional parameter specifies the number of seconds to wait for all transactions to propagate to the Oracle database before detaching the listed nodes. A value of -1 indicates to wait forever. If no value is specified, ttGridDetachList waits 1 second.

Result set

ttGridDetachList returns no results.

Examples

CALL ttGridDetachList('TTGRID_cacheact_3A TTGRID_cachestand_3B',1,);

See also

ttGridAttach

ttGridCheckOwner

ttGridCreate

ttGridDetach

ttGridDetachAll

ttGridDestroy

ttGridGlobalCGResume

ttGridGlobalCGSuspend

ttGridNameSet

ttGridNodeStatus

"Configuring a cache grid" in Oracle TimesTen Application-Tier Database Cache User's Guide

ttGridFirstMemberAttach

Description

This procedure is similar to the ttGridAttach built-in procedure. Call this procedure instead to attach the first member of the grid in the case that all attached members of the grid have died.

Call this procedure only from one member. Ensure that the cache agents of all other members are stopped before calling this built-in procedure or the procedure fails.

The ttGridFirstMemberAttach built-in procedure automatically starts the cache agent if it is not already running. In addition, the ttGridFirstMemberAttach built-in procedure sets the specified TCP/IP port for the cache agent to facilitate global cache groups.

To retrieve the information set by this procedure call the built-in procedure ttGridNodeStatus.

This procedure starts the cache agent if it is not already running. This procedure cannot be used remotely.

Required privilege

This procedure requires the CACHE_MANAGER privilege.

Syntax

For a standalone TimesTen database:

ttGridFirstMemberAttach(currentNode, 'name1', IPAddr1, port1)

For a node of an active standby pair:

ttGridFirstMemberAttach(currentNode, 'name1',
 IPAddr1, port1 'name2', IPAddr2, port2)

Parameters

ttGridFirstMemberAttach has the parameters:

	Parameter	Type	Description
	currentNode	TT_INTEGER NOT NULL	The node number for the master database. Valid values for this parameter are:
1 - Standalone or active master database.

2 - Standby master database.

	name1	TT_VARCHAR (30)	Fully qualified name that uniquely identifies the grid member for the active master database.
	IPAddr1	TT_VARCHAR (128) NOT NULL	IP address of the node where the active master database resides.
	port1	TT_INTEGER NOT NULL	Port number for the cache agent process of the active master database or a standalone database.
	name2	TT_VARCAR (30)	Fully qualified name that uniquely identifies the grid member for the standby master database.
	IPAddr2	TT_VARCHAR (128)	IP address of the node where the standby master database resides.
	port2	TT_INTEGER	Port number for the cache agent process of the standby master database.

Result set

ttGridFirstMemberAttach returns no results.

Examples

To attach to a standalone TimesTen database to a grid:

CALL ttGridFirstMemberAttach (1, 'alone2','sys2',5002);

See also

ttGridCheckOwner

ttGridCreate

ttGridDestroy

ttGridDetach

ttGridDetachList

ttGridDetachAll

ttGridGlobalCGResume

ttGridGlobalCGSuspend

ttGridNameSet

ttGridNodeStatus

"Configuring a cache grid" in Oracle TimesTen Application-Tier Database Cache User's Guide

ttGridGlobalCGResume

Description

This procedure resumes operations that were blocked after a call to ttGridGlobalCGSuspend.

Required privilege

This procedure requires the CACHE_MANAGER privilege.

Syntax

ttGridGlobalCGResume()

Parameters

ttGridGlobalCGResume has no parameters.

Result set

ttGridGlobalCGResume returns no results.

Examples

To detach all grid members, use:

CALL ttGridGlobalCGResume();

See also

ttGridAttach

ttGridCheckOwner

ttGridCreate

ttGridDestroy

ttGridDetach

ttGridDetachAll

ttGridDetachList

ttGridGlobalCGSuspend

ttGridNameSet

ttGridNodeStatus

"Configuring a cache grid" in Oracle TimesTen Application-Tier Database Cache User's Guide

ttGridGlobalCGSuspend

Description

This procedure temporarily blocks dynamic loading and deleting cache instances for global cache groups. Use the ttGridGlobalCGResume procedure to re-enable these actions.

Required privilege

This procedure requires the CACHE_MANAGER privilege.

Syntax

ttGridGlobalCGSuspend(wait)

Parameters

ttGridGlobalCGSuspend has the parameter:

	Parameter	Type	Description
	wait	TT_INTEGER	The number of seconds that the command waits for a pending delete to be propagated to the Oracle database or a pending transparent load operation to complete before returning.TimesTen returns an error if either the pending delete or the pending transparent load operation cannot complete in the specified time.
If no value is specified, there is no wait interval.

Result set

ttGridGlobalCGSuspend returns no results.

Examples

To set a wait interval of 10 seconds:

CALL ttGridGlobalCGSuspend(10);

See also

ttGridAttach

ttGridCheckOwner

ttGridCreate

ttGridDestroy

ttGridDetach

ttGridDetachAll

ttGridDetachList

ttGridGlobalCGResume

ttGridNameSet

ttGridNodeStatus

"Configuring a cache grid" in Oracle TimesTen Application-Tier Database Cache User's Guide

ttGridInfo

Description

This procedure returns information about the specified cache grid or all cache grids.

Required privilege

This procedure requires the CACHE_MANAGER privilege.

Syntax

ttGridInfo(['gridName'])

Parameters

ttGridInfo has the optional parameter:

	Parameter	Type	Description
	gridName	TT_VARCHAR (30)	If gridName is specified, displays information about the specified grid. Otherwise, displays information about all grids.

Result set

ttGridInfo returns information about the cache grid.

	Column	Type	Description
	gridName	TT_VARCHAR (30)	The name of the grid specified
	cacheAdminID	TT_VARCHAR (30)
NOT NULL

	The cache administration user ID associated with the grid.
	platform	TT_VARCHAR (100)	The operating system platform on which the grid is operating.
The platform value is displayed as:

operating system, bit-level

For example:

<. . ., Solaris x86, 64-bit, . . .>

	major1	TT_VARCHAR (10)	The first number of the major TimesTen release associated with the grid. For example, 11, if the release is 11.2.2.
	major2	TT_VARCHAR (10)	The second number of the major TimesTen release associated with the grid. For example, 2, if the release is 11.2.2.
	major3	TT_VARCHAR (10)	The third number of the major TimesTen release associated with the grid. For example, 2, if the release is 11.2.2.

Examples

To get information on the mygrid cache grid, use:

CALL ttGridInfo ('mygrid');
< MYGRID, CACHEUSER, Linux Intel x86, 32-bit, 11, 2, 2 >

To get information on all grids, use:

CALL ttGridInfo();

See also

ttGridAttach

ttGridCheckOwner

ttGridCreate

ttGridDestroy

ttGridDetach

ttGridDetachAll

ttGridDetachList

ttGridGlobalCGResume

ttGridGlobalCGSuspend

ttGridNameSet

ttGridNodeStatus

"Configuring a cache grid" in Oracle TimesTen Application-Tier Database Cache User's Guide

ttGridNameSet

Description

This procedure associates a TimesTen database with a grid.

Required privilege

This procedure requires the CACHE_MANAGER privilege.

Syntax

ttGridNameSet('gridName')

Parameters

ttGridNameSet has the parameter:

	Parameter	Type	Description
	gridName	TT_VARCHAR (30)	Associates the TimesTen database that calls the procedure with the grid specified by gridName.

Result set

ttGridNameSet returns no results.

Examples

To associate the database with the grid mygrid, use:

CALL ttGridNameSet('mygrid');

See also

ttGridAttach

ttGridCheckOwner

ttGridCreate

ttGridDestroy

ttGridDetach

ttGridDetachAll

ttGridDetachList

ttGridGlobalCGResume

ttGridGlobalCGSuspend

ttGridNodeStatus

"Configuring a cache grid" in Oracle TimesTen Application-Tier Database Cache User's Guide

ttGridNodeStatus

Description

This procedure returns information about all members of the specified cache grid. If no grid name is specified, then it displays information about all members of all cache grids associated with the Oracle database.

Required privilege

This procedure requires the CACHE_MANAGER privilege.

Syntax

ttGridNodeStatus(['gridName'])

Parameters

ttGridNodeStatus has the optional parameter:

	Parameter	Type	Description
	gridName	TT_VARCHAR (30)	If gridName is specified, displays information about all members of the named grid. Otherwise, displays information about all grids.

Result Set

ttGridNodeStatus returns the results:

	Column	Type	Description
	gridName	TT_VARCHAR (30)	The name of the grid.
	nodeID	TT_INTEGER NOT NULL	The unique ID of the grid node.
	activeNode	TT_INTEGER NOT NULL	The number of the node on which the active master database or a standalone database currently resides.
	node1Attached	CHAR (1) NOT NULL	Indicates if the active node is attached to the grid:
T - The active is attached.

F - The active is detached.

	Host1	TT_VARCHAR (200) NOT NULL	The host name where the active database is located.
	memberName1	TT_VARCHAR (200) NOT NULL	The unique member name for the standalone database or active standby database.
	IPaddr1	TT_VARCHAR (128) NOT NULL	The IP address where the active master or standalone database is located.
	port1	TT_INTEGER NOT NULL	The port number for the cache agent process of the active master or standalone database.
	node2Attached	CHAR (1)	Indicates if the standby node is attached to the grid:
T - The standby is attached.

F - The standby is detached.

	host2	TT_VARCHAR (200)	The host name where the standby master database is located.
	memberName2	TT_VARCHAR (200)	The unique member name for the standalone database or active standby database.
	IPaddr2	TT_VARCHAR (128)	The IP address where the standby master database is located.
	port2	TT_INTEGER	The port number for the cache agent process of the standby master database.

For a grid member that is a standalone database, the number of columns in the result set is fewer than for a member that is an active standby pair.

Examples

If ttgrid is the only cache grid in the database, display information about its members:

Command> call ttGridNodeStatus;

< TTGRID, 1, 1, T, sys1, TTGRID_alone1_1, 140.87.0.201, 5001, <NULL>,
<NULL>,<NULL>, <NULL>, <NULL> >
< TTGRID, 2, 1, T, sys2, TTGRID_alone2_2, 140.87.0.202, 5002, <NULL>,
<NULL>,<NULL>, <NULL>, <NULL> >
< TTGRID, 3, 1, T, sys3, TTGRID_cacheact_3A, 140.87.0.203, 5003, T,
sys4, TTGRID_cachestand_3B, 140.87.0.204, 5004 >

See also

ttGridAttach

ttGridCheckOwner

ttGridCreate

ttGridDestroy

ttGridDetach

ttGridDetachAll

ttGridDetachList

ttGridGlobalCGResume

ttGridGlobalCGSuspend

ttGridNameSet

"Configuring a cache grid" in Oracle TimesTen Application-Tier Database Cache User's Guide

ttHostNameGet

Description

This procedure returns the name of the current local host for the database. The value returned is only for the current session. It is not a systemwide setting and does not persist after the current session has been disconnected.

Use this procedure to check whether a particular store name in a scheme refers to the current host. This can be helpful when configuring replication schemes.

Required privilege

This procedure requires no privilege.

Syntax

ttHostnameGet()

Parameters

ttHostNameGet has no parameters.

Result set

ttHostNameGet returns the result:

	Column	Type	Description
	hostName	TT_VARCHAR (200)	The current default local host setting for the database. If a default has not been supplied then the current host name is returned.

Examples

CALL ttHostNameGet ();

See also

ttHostNameSet

"Setting Up a Replicated System" in Oracle TimesTen In-Memory Database Replication Guide

ttHostNameSet

Description

This procedure specifies the name of the default local host for the current database. The value is only used in the current session, it is not a systemwide setting and does not persist after the current session has been disconnected.

To configure master/subscriber relationships and replication object permissions correctly, Replication DDL processing relies on being able to determine whether a host name used in a replication scheme refers to the computer on which the script is currently being run. This procedure enables an application to set a default host name for the current session that Replication DDL processing uses whenever there is a need to establish the name of the current host.

Required privilege

This procedure requires the ADMIN privilege.

Syntax

ttHostnameSet('hostName')

Parameters

ttHostNameSet has the parameter:

	Parameter	Type	Description
	hostName	TT_VARCHAR (200)	The required default name for the local computer. To clear the default value, specify NULL.

Result set

ttHostNameSet returns no results.

Examples

CALL ttHostNameSet ('alias1');

Notes

The legal value of hostName can be any host name or IP address string except 'localhost', '127.0.0.1' or '::1'. You cannot set the default host name to a value that is different from a local host name used in an existing replication scheme.

See also

ttHostNameGet

"Setting Up a Replicated System" in Oracle TimesTen In-Memory Database Replication Guide

ttIndexAdviceCaptureDrop

Description

This procedure drops existing capture data for either the current connection or for the database. Subsequent calls to ttIndexAdviceCaptureOutput at that level return no rows.

This procedure and the procedures related to it are referred to as the Index Advisor. For details on using these procedures, see "Using the Index Advisor to recommend indexes" in the Oracle TimesTen In-Memory Database Operations Guide.

Required privilege

This procedure requires no privileges to drop a connection level capture.

This procedure requires ADMIN privileges to drop a database level capture.

Syntax

ttIndexAdviceCaptureDrop([captureLevel])

Parameters

ttIndexAdviceCaptureDrop has this optional parameter:

	Parameter	Type	Description
	captureLevel	TT_INTEGER	Legal values for the capture level are:
0 - Index advice capture is dropped at the connection level for the current connection. This is the default.

1 - Index advice capture is dropped at the database level.

Result set

ttIndexAdviceCaptureDrop returns no results.

Examples

CALL ttIndexAdviceCaptureDrop;

Notes

To drop both connection level and database level captures, invoke the command twice, once for each capture level.

It is an error to call this command while a capture is in progress at the level you are attempting to drop.

See also

ttIndexAdviceCaptureEnd

ttIndexAdviceCaptureInfoGet

ttIndexAdviceCaptureOutput

ttIndexAdviceCaptureStart

"Using the Index Advisor to recommend indexes" in the Oracle TimesTen In-Memory Database Operations Guide

ttIndexAdviceCaptureEnd

Description

This procedure ends either an active connection level capture from the current connection or an active database level capture.

This procedure and the procedures related to it are referred to as the Index Advisor. For details on using these procedures, see "Using the Index Advisor to recommend indexes" in the Oracle TimesTen In-Memory Database Operations Guide.

Required privilege

This procedure requires no privilege to end a connection level capture.

This procedure requires ADMIN privileges to end a database level capture.

Syntax

ttIndexAdviceCaptureEnd([captureLevel])

Parameters

ttIndexAdviceCaptureEnd has this optional parameter:

	Parameter	Type	Description
	captureLevel	TT_INTEGER	Legal values for the capture level are:
0 - Ends index advice capture at the connection level for the current connection. This is the default.

1 - Ends index advice capture at the database level.

Result set

ttIndexAdviceCaptureEnd returns no results.

Examples

The following example ends the collection for the connection level capture:

Call ttIndexAdviceCaptureEnd(0)

Notes

To end both connection level and database level captures, invoke the command twice, once for each capture level.

It is an error to call this procedure without first starting a capture at the specified level by calling the ttIndexAdviceCaptureStart procedure.

See also

ttIndexAdviceCaptureDrop

ttIndexAdviceCaptureInfoGet

ttIndexAdviceCaptureOutput

ttIndexAdviceCaptureStart

"Using the Index Advisor to recommend indexes" in the Oracle TimesTen In-Memory Database Operations Guide

ttIndexAdviceCaptureInfoGet

Description

This procedure returns a row for each active capture. A capture is active if it has started capturing index advice or if it has stopped capturing index advice, but the capture data is still available.

One row relates to a connection level capture, if one exists. Another row relates to a database level capture, if one exists. At most there is one connection level and one database capture.

If no capture is in progress or no data exists, this procedure does not return any rows.

This procedure and the procedures related to it are referred to as the Index Advisor. For details on using these procedures, see "Using the Index Advisor to recommend indexes" in the Oracle TimesTen In-Memory Database Operations Guide.

Required privilege

This procedure requires no privilege to get information on a connection level capture.

This procedure requires ADMIN privileges to get information on a database level capture.

Syntax

ttIndexAdviceCaptureInfoGet()

Parameters

ttIndexAdviceCaptureInfoGet has no parameters.

Result set

ttIndexAdviceCaptureInfoGet returns the result set:

	Columns	Type	Description
	captureState	TT_INTEGER NOT NULL	The state of the capture:
0 - A capture is not in progress.

1 - A capture is in progress.

	connID	TT_INTEGER	The connection ID of the connection that initiated the last capture, or the current capture if one is in progress.
This row is not returned if no capture has been initiated.

	captureLevel	TT_INTEGER	The level of the most recent capture.
This row is not returned if no capture has been initiated.

	captureMode	TT_INTEGER	The mode of the most recent capture.
This row is not returned if no capture has been initiated.

	numPrepared	TT_INTEGER	The number of prepared statements during the capture period.
This value is NULL if no capture has been initiated.

	numExecuted	TT_INTEGER	The number of executed statements during the capture period.
This value is NULL if no capture has been initiated.

	captureStartTime	TT_TIMESTAMP	The time stamp taken at the start of the capture period.
This row is not returned if no capture has been initiated.

	captureEndTime	TT_TIMESTAMP	The time stamp taken at the end of the capture period.
This value is NULL if no capture is still in progress.

Examples

This example shows capture information for a completed connection level capture for 363 prepared statements and 369 executed statements:

Command> CALL ttIndexAdviceCaptureInfoGet();
< 0, 1, 0, 0, 363, 369, 2012-07-27 11:44:08.136833,
2012-07-27 12:07:35.410993 >
1 row found.

Notes

If there is an active database level capture and you call this procedure on a connection that does not have ADMIN privilege, TimesTen returns an error.

See also

ttIndexAdviceCaptureDrop

ttIndexAdviceCaptureEnd

ttIndexAdviceCaptureOutput

ttIndexAdviceCaptureStart

"Using the Index Advisor to recommend indexes" in the Oracle TimesTen In-Memory Database Operations Guide

ttIndexAdviceCaptureOutput

Description

This built-in returns a list of index recommendations from the last recorded capture at the specified level. It also returns an executable CREATE INDEX SQL statement for creating the recommended index.

This procedure and the procedures related to it are referred to as the Index Advisor. For details on using these procedures, see "Using the Index Advisor to recommend indexes" in the Oracle TimesTen In-Memory Database Operations Guide.

For a connection level capture, run this procedure in the same connection that initiated the capture. For a database level capture, run this procedure in a connection with ADMIN privileges.

Required privilege

This procedure requires no privilege to get output on a connection level capture.

This procedure requires ADMIN privileges to get output on a database level capture.

Syntax

ttIndexAdviceCaptureOutput([captureLevel])

Parameters

ttIndexAdviceCaptureOutput has this optional parameter:

	Parameter	Type	Description
	captureLevel	TT_INTEGER	Legal values for the capture level are:
0 - Outputs index advice at the connection level for the current connection. This is the default value.

1 - Outputs index advice at the database level.

Result set

ttIndexAdviceCaptureOutput returns the result set:

	Column	Type	Description
	stmtCount	TT_INTEGER	The number of statements in the captured workload that would have benefited from this index if it were present.
	createStmt	TT_VARCHAR (8300) NOT NULL	The executable statement that can create the recommended index.

Examples

The following example provides the CREATE INDEX statement for an index called PURCHASE_i1 on the HR.PURCHASE table. There are four distinct statements that would benefit from the index in this SQL workload.

CALL ttIndexAdviceCaptureOutput();
< 4, create index PURCHASE_i1 on HR.PURCHASE(AMOUNT); >
1 row found.

Notes

All names returned are fully schema qualified.

See also

ttIndexAdviceCaptureDrop

ttIndexAdviceCaptureEnd

ttIndexAdviceCaptureInfoGet

ttIndexAdviceCaptureStart

"Using the Index Advisor to recommend indexes" in the Oracle TimesTen In-Memory Database Operations Guide

ttIndexAdviceCaptureStart

Description

This procedure enables index advice capture. It is recommended that statistics be updated before you call this procedure, using ttOptEstimateStats and setting the 'invalidate' parameter set to 'yes'. Updating the statistics in this way ensures statistics are up to date and forces statements to be re-prepared during the capture. To set statistics to known values instead, call ttOptSetTblStats with the 'invalidate' parameter set to 'yes'.

This procedure and the procedures related to it are referred to as the Index Advisor. For details on using these procedures, see "Using the Index Advisor to recommend indexes" in the Oracle TimesTen In-Memory Database Operations Guide.

Required privilege

This procedure requires no privilege to start a connection level capture.

This procedure requires ADMIN privileges to start a database level capture.

Syntax

ttIndexAdviceCaptureStart([captureLevel], [captureMode])

Parameters

ttIndexAdviceCaptureStart has these optional parameters:

	Parameter	Type	Description
	captureLevel	TT_INTEGER	Legal values for the capture level are:
0 - Outputs index advice at the connection level for the current connection. This is the default value.

1 - Outputs index advice at the database level.

	captureMode	TT_INTEGER	Legal values for the capture mode are:
0 - Provides complete capture of index advice including execution of the SQL statements. This is the default.

31 - Capture is based only on the computed statistics and plan analysis. Queries (SELECT statements only) are prepared but not executed. This mode can only be used with connection level captures (captureLevel=0).

Result set

ttIndexAdviceCaptureStart returns no results

Examples

The following example starts a collection for the Index Advisor at the connection-level.

Call ttIndexAdviceCaptureStart(0,0);

Notes

It is an error to call this procedure if index advice is already being captured at the level specified by the captureLevel parameter or at the connection level if no level is specified. Connection level captures can be issued concurrently on independent connections without conflict. Outstanding connection level captures that are in progress when a database level capture begins complete as intended.

See also

ttIndexAdviceCaptureDrop

ttIndexAdviceCaptureEnd

ttIndexAdviceCaptureInfoGet

ttIndexAdviceCaptureOutput

"Using the Index Advisor to recommend indexes" in the Oracle TimesTen In-Memory Database Operations Guide

ttLoadFromOracle

Description

This procedure takes a TimesTen table name, an Oracle SELECT statement and the number of threads for parallel load. It executes the query on the Oracle database and loads the result set into the specified TimesTen table.

No character set conversion is performed when loading data from an Oracle database into a TimesTen table. The TimesTen database and the Oracle database must use the same character set.

The procedure requires the connection attribute UID, the connection attribute OraclePWD and the connection attribute OracleNetServiceName to be specified. You must commit after calling this procedure.

For more details and usage information, see "Loading data from an Oracle database into a TimesTen table" in the Oracle TimesTen In-Memory Database Operations Guide.

Required privilege

This procedure requires INSERT privileges to the table to be loaded.The session must have all the required privileges to execute the query on the Oracle database.

Syntax

ttLoadFromOracle(['tblOwner'], 'tblName', 'Query' [,numThreads])

Parameters

ttLoadFromOracle has these parameters:

	Parameter	Type	Description
	tblOwner	TT_CHAR (30)	TimesTen table owner (optional). If not provided, the connection ID is used.
	tblName	TT_CHAR (30) NOT NULL	Name of the table to be loaded with data from the Oracle database. You can use the built-in procedure ttTableSchemaFromOraQueryGet to get a schema with which to build the table, if one does not already exist.
The specified TimesTen table cannot be a system table, a synonym, a view, a materialized view or a detail table of a materialized view, a global temporary table or a cache group table.

	Query	TT_VARCHAR (409600) NOT NULL	A SELECT query on an Oracle database to derive the table column definition.
The query on an Oracle database cannot have any parameter bindings. Provide any expressions in the SELECT list with a column alias. Otherwise, an implementation dependent column name is assumed and the expression is not evaluated.

	numThreads	TT_INTEGER	Number of threads for parallel load (optional). If NULL, defaults to four.
Provides parallel loading for tables. Specifies the number of loading threads to run concurrently. One thread performs the bulk fetch from Oracle and the other threads perform the inserts into TimesTen. Each thread uses its own connection or transaction.

The minimum value for NumThreads is 2. The maximum value is 10. If you specify a value greater than 10, TimesTen assigns the value 10.

Result set

ttLoadFromOracle returns the result set:

	Column	Type	Description
	numRows	TT_BIGINT NOT NULL	A single number indicating the number of rows loaded.

Examples

The following example selects information about employees from the Oracle database HR.EMPLOYEES table and loads it into the TimesTen HR.EMPLOYEES table. In this example information was found for 107 employees.

Command> CALL ttLoadFromOracle ('HR','EMPLOYEES',
'SELECT * FROM HR.EMPLOYEES');
< 107 >
1 row found.

Notes

TimesTen does not empty the table before the load. The target table does not require a primary key.TimesTen returns an error if the query output cannot be converted to rows in the target table due to a mismatch of column types or number of columns.Loading data into TimesTen LOB columns is not supported. If the query on the Oracle database has LOB output, it is mapped to a VAR type.

The load process does not check that the column data types and sizes in the TimesTen table match the data types and sizes of the result set. Instead, the insert is attempted and if the column data types cannot be mapped or the Oracle Database data from the SQL query exceeds the TimesTen column size, TimesTen returns an error. LOB columns are truncated to 4 MB.

When a table is altered to add columns, secondary partitions are added. Loading a table with multiple partitions is not supported by ttLoadFromOracle.

See also

ttTableSchemaFromOraQueryGet

ttLockLevel

Description

Changes the lock level between row-level and database-level locking on the next transaction and for all subsequent transactions for this connection. Applications can change the lock level again by calling ttLockLevel again. The initial value depends on the LockLevel connection attribute. See "LockLevel" for full details of the different locking levels.

Required privilege

This procedure requires the ADMIN privilege.

Syntax

ttLockLevel('lockLevel')

Parameters

ttLockLevel has the parameter:

	Parameter	Type	Description
	lockLevel	TT_CHAR (20) NOT NULL	Locking level for the connection.

The value of lockLevel may be one of two case-insensitive strings:

Row: Locking should be set to row-level locking.

DS: Locking should be set to database-level locking.

Result set

ttLockLevel returns no results.

Examples

CALL ttLockLevel ('Row');

Notes

This procedure does not affect the current transaction.

Row-level locking is required when caching tables from an Oracle database.

This procedure must be called from within a transaction. It has the effect of setting the locking level for subsequent transactions for the connection that invoked it. The new lock level does not affect the current transaction. It takes effect at the beginning of the next transaction.

See also

ttLockWait

ttLockWait

Description

This procedure enables an application to change the lock timeout interval of the current connection. The change takes effect immediately and applies to all subsequent statements in the current transaction and all subsequent transactions on the connection.

The lock wait interval is the number of seconds to wait for a lock when there is contention on it. You can also indicate a fraction of a second.

Lock wait intervals are imprecise, and may be exceeded, generally by no more than 100 milliseconds, due to the scheduling of the agent that detects timeouts. This imprecision does not apply to zero second timeouts, which are always reported immediately.

Cache grid uses message wait time with lock wait time. When using cache grid, lock wait times are approximately half the value you have specified. If your applications require the full lock wait time, specify twice the desired seconds.

Required privilege

This procedure requires no privilege.

Syntax

ttLockWait(seconds)

Parameters

ttLockWait has the required parameters:

	Parameter	Type	Description
	seconds	NUMBER (8,1) NOT NULL	Number of seconds to wait for a lock when there is contention on it. You can also specify fractions of a second. Valid values are 0.0 to 1000000.0 inclusive.

Result set

ttLockWait returns no results.

Examples

To indicate a six second lock wait, use:

CALL ttLockWait (6);

To indicate a tenth of a second lock wait, use:

CALL ttLockWait (0.1);

Notes

When a lock is not immediately available to a TimesTen transaction, it waits a predetermined amount of time to try to get the lock. After that it times out the lock request and returns error TT6003 to the application. By default, TimesTen uses a value of 10 seconds for lock timeouts. If a value of 0 is specified, transactions do not wait for any unavailable locks.

See also

ttLockLevel

"LockLevel"

ttLogHolds

Description

This procedure returns information about transaction log holds, including those created on behalf of incremental backups, replication peers, active standby pairs (and any subscribers), AWT cache groups, persistent XLA subscribers, XA, long-running transactions and checkpoints. This procedure can help diagnose situations where it appears that checkpoint operations are not purging all unneeded transaction log files.

Applications should monitor log holds and the accumulation of log files. For more information, see "Show replicated log holds" in the Oracle TimesTen In-Memory Database Replication Guide and "Monitoring accumulation of transaction log files" in the Oracle TimesTen In-Memory Database Operations Guide.

Required privilege

This procedure requires no privilege.

Syntax

ttLogHolds()

Parameters

ttLogHolds has no parameters.

Result set

ttLogHolds returns the result set:

	Column	Type	Description
	HoldLFN	TT_INTEGER NOT NULL	Returns the transaction log file number of the hold.
	HoldLFO	TT_BIGINT NOT NULL	Returns the transaction log file offset of the hold.
	type	TT_CHAR (30) NOT NULL	Returns the type of hold, one of:
Checkpoint

Replication

Backup

XLA

Long-Running Transaction

Long-Running XA Transaction

	description	TT_VARCHAR (1024) NOT NULL	Describes the type-specific object for which the hold was created. Each description corresponds with the Type returned. Descriptions are one of:
	
The name of the checkpoint file

	
The name of the standby master

	
The name of the replication subscriber

	
_ORACLE when tracking AWT cache group propagation

	
The parallel replication track ID used by the subscriber

	
The backup path

	
The name of the persistent XLA subscription and the process ID of the last process to open it, if it is open

	
The XID (transaction ID) of the XA transaction

	
The TimesTen transaction ID of the long-running transaction

Examples

CALL ttLogHolds();
< 0, 1148544, Long-Running XA Transaction ,
0x1-476c6f62616c-5861637431 >
< 0, 1149752, Long-Running Transaction, 4.2 >
< 0, 1149992, Checkpoint , sample.ds1 >
< 0, 1150168, Checkpoint , sample.ds0 >

The following example shows the output of ttLogHolds built-in procedure for an active standby pair replication scheme, where the active master is master1 and the standby master is master2 with a single subscriber, subscriber1.

Command> call ttLogHolds;
< 0, 3569664, Checkpoint , master1.ds0 >
< 0, 15742976, Checkpoint , master1.ds1 >
< 0, 16351496, Replication , ADC6160529:SUBSCRIBER1 >
< 0, 16351640, Replication , ADC6160529:MASTER2 >
4 rows found.

The following example shows the progress of the asynchronous propagation for an AWT cache group to the Oracle database. The description field contains "_ORACLE" to identify the transaction log hold for the AWT cache group propagation.

Command> call ttLogHolds();
< 0, 18958336, Checkpoint , cachealone1.ds0 >
< 0, 19048448, Checkpoint , cachealone1.ds1 >
< 0, 19050904, Replication , ADC6160529:_ORACLE >
3 rows found.

ttMonitorHighWaterReset

Description

This procedures sets the value of PERM_IN_USE_HIGH_WATER column in the MONITOR table to the current value of the PERM_IN_USE_SIZE column and sets the value of the TEMP_IN_USE_HIGH_WATER column in the MONITOR table to the current value of TEMP_IN_USE_SIZE column. These columns are useful for sizing databases during application development and deployment.

Required privilege

This procedure requires the ADMIN privilege.

Syntax

ttMonitorHighWaterReset()

Parameters

ttMonitorHighWaterReset has no parameters.

Result set

ttMonitorHighWaterReset returns no results.

Examples

CALL ttMonitorHighWaterReset();

ttOptClearStats

Description

This procedure clears the statistics for the specified table, causing the TimesTen query optimizer to use estimates or default values for subsequent queries involving the table. The procedure is useful if statistics are assumed to be out of date and an application wants to use built-in default values. This procedure removes all rows from the TBL_STATS and COL_STATS system tables that pertain to the specified tables. See "SYS.TBL_STATS" and "SYS.COL_STATS" in Oracle TimesTen In-Memory Database System Tables and Views Reference.

Required privilege

This procedure requires no privilege for the table owner. This procedure requires no privilege if tblName is not specified, because the procedure operates on the current user's tables if tblName is not specified.

This procedure requires the ALTER ANY TABLE privilege if user is not the table owner.

Syntax

ttOptClearStats('tblName', invalidate)

Parameters

ttOptClearStats has these parameters:

	Parameter	Type	Description
	tblName	TT_CHAR (61)	Name of an application table. Can include table owner. If tblName is the empty string or is not specified, statistics are cleared for all the current user's tables in the database.
Using a synonym to specify a table name is not supported.

	invalidate	TT_INTEGER	0 (no) or 1 (yes). Default is 0.
If invalidate is 1, all commands that reference the affected tables are reprepared automatically when they are re-executed, including commands prepared by other users.

If invalidate is 0, the statistics are not considered modified and existing commands are not reprepared.

Result set

ttOptClearStats returns no results.

Examples

CALL ttOptClearStats ('SALLY.ACCTS', 1);

Clears the statistics for the SALLY.ACCTS table and reprepares all commands that affect the ACCTS table.

CALL ttOptClearStats();

Clears the statistics for all the current user's tables and reprepares all commands that affect these tables.

CALL ttOptClearStats('', 0);

Clears the statistics for all the current user's tables without repreparing commands that reference these tables.

See also

ttOptEstimateStats

ttOptSetColIntvlStats

ttOptSetFlag

ttOptSetOrder

ttOptSetTblStats

ttOptUpdateStats

ttPLSQLMemoryStats

ttOptCmdCacheInvalidate

Description

This built-in procedure either forces a recompilation should a dependent command be invoked again, or removes such command from the cache and it must be re-prepared by the user.

Scenarios in which you may want to call this procedure include:

	
After all needed statistics have been collected.

	
When table cardinalities have been changed significantly.

The procedure either marks a command as needing recompilation or as invalidated.

Neither option stops execution of a command.

Required privilege

This procedure requires the DDL privilege.

Syntax

ttOptCmdCacheInvalidate('tblName', invalidate)

Parameters

ttOptCmdCacheInvalidate has these parameters:

	Parameter	Type	Description
	tblname	TT_CHAR(61)	The name of the table for which the dependent commands should be invalidated or recompiled.
	invalidate	TT_INTEGER	Forces recompilation or invalidates the dependent commands.
1 - Indicates that the commands should be recompiled. The command is recompiled during its first use after calling this built-in procedure. (default)

2 - Indicates that the commands should be invalidated. The command is not reused or recompiled again. If you call the command after you have marked it for invalidation, TimesTen returns an error.

Result set

ttOptCmdCacheInvalidate returns no results.

Examples

To recompile dependent commands on the table tab1, use:

CALL ttOptCmdCacheInvalidate ('tab1', 1);

To invalidate the dependent commands on table tab1, use:.

CALL ttOptCmdCacheInvalidate ('tab1', 2);

See also

ttOptClearStats

ttOptEstimateStats

ttOptSetColIntvlStats

ttOptSetFlag

ttOptSetOrder

ttOptSetTblStats

ttOptUpdateStats

ttPLSQLMemoryStats

ttOptEstimateStats

Description

The ttOptEstimateStats procedure updates the statistics for the specified table. This procedure estimates statistics by looking at a random sample of the rows in the specified table(s). The sample size is the number of rows specified (if sampleStr has the form 'n ROWS') or a percentage of the total number of rows (if sampleStr has the form 'p PERCENT').

The procedure operates on all tables of the current user if tblName is not specified.

Required privilege

This procedure requires no privilege if the user is the table owner, or if tblName is not specified.This procedure requires the ALTER ANY TABLE privilege if the user is not the table owner.

Syntax

ttOptEstimateStats(['tblName'], [invalidate], 'sampleStr')

Parameters

ttOptEstimateStats has these parameters:

	Parameter	Type	Description
	tblName	TT_CHAR(61)	Name of an application table. Can include table owner. If tblName is an empty string, statistics are estimated for all the current user's tables in the database.
Using a synonym to specify a table name is not supported.

	invalidate	TT_INTEGER	0 (no) or 1 (yes). If invalidate is 1, all commands that reference the affected tables are automatically prepared again when re-executed, including commands prepared by other users. If invalidate is 0, the statistics are not considered to have been modified and existing commands are not reprepared.
The invalidate parameter is optional and defaults to 0.

	sampleStr	TT_VARCHAR (255) NOT NULL	String of the form 'n ROWS', where n is an INTEGER greater than zero; or 'p PERCENT', where p is a floating point number between 0.0 and 100.0 inclusive.

Result set

ttOptEstimateStats returns no results.

Examples

CALL ttOptEstimateStats ('ACCTS', 1, '5 PERCENT');

CALL ttOptEstimateStats ('ACCTS', 1, '75 ROWS');

Notes

The TimesTen statistics include the number of rows in each table, the number of unique values in each column, and the minimum and maximum values in each column. TimesTen assumes a uniform distribution of column values.

This procedure only runs faster than ttOptUpdateStats when you sample less than 50 percent of the rows in the table.

Estimates are not computed on columns that are longer than 2,048 bytes, and statistics for these columns are not updated. To update statistics on columns longer than 2,048 bytes, use the ttOptUpdateStats built-in procedure. (For varying length columns, this procedure updates statistics only if the column has a maximum length of 2,048 bytes or less.)

If a very small value is chosen for the sampleStr parameter, this procedure runs quickly but may result in suboptimal execution plans. For "good" distributions of data, a 10 percent selection is a good choice for computing statistics quickly without sacrificing plan accuracy. If the number of rows specified is sufficiently large or the table in question is sufficiently small, to improve performance TimesTen computes exact statistics on all columns that have a length of 2,048 bytes or less. For example, the only difference between

ttOptEstimateStats ('ACCTS', 1, '100 PERCENT')

and

ttOptUpdateStats('ACCTS', 1)

is that the former does not compute statistics for long columns.

The statistics are stored in the TBL_STATS and COL_STATS system tables.

For performance reasons, ttOptEstimateStats does not hold a lock on tables or rows when computing statistics. Computing statistics can still slow performance. Estimating statistics generally provides better performance than computing exact statistics.

If you estimate or update statistics with an empty table list, statistics on system tables are updated also, if you have privileges to update the system tables.

See also

ttOptSetColIntvlStats

ttOptSetFlag

ttOptSetOrder

ttOptSetTblStats

ttOptUpdateStats

ttPLSQLMemoryStats

ttOptGetColStats

Description

This procedure returns statistics information in text format.

Required privilege

This procedure requires the SELECT privilege on the specified tables.

Syntax

ttOptGetColStats('tblName', 'colName')

Parameters

ttOptGetColStats has these parameters:

	Parameter	Type	Description
	tblName	TT_CHAR (61)	Name of the table whose statistics are to be returned. If NULL is passed, then values for all tables are returned.
Using a synonym to specify a table name is not supported.

	colName	TT_CHAR (30)	Name of the column for which statistics should be returned. If NULL is passed, statistics for all columns in the specified table are returned.

Result set

ttOptGetColStats returns the result set:

	Column	Type	Description
	tblName	TT_CHAR (30)	Name of the table.
Using a synonym to specify a table name is not supported.

	colName	TT_CHAR (30)	Name of the column.
	stats	TT_VARCHAR (409600) NOT NULL	Statistics in text form.

Examples

CALL ttOptGetColStats ();
< T1 , X1, (2, 10, 10, 100 (,4, 40, 10 ,1, 10, 5) ,
(4, 20, 20 ,11, 20, 15))>

See also

ttOptSetColStats

ttOptSetColIntvlStats

ttOptGetFlag

Description

This procedure returns the optimizer flag settings for the current transaction. The results are returned as a result set that can be retrieved using the ODBC SQLFetch function or the JDBC ResultSet.getXXX() method, just like the result of a SQL SELECT statement. Applications can request the value of a specific optimizer flag by passing the flag name to ttOptGetFlag. Alternatively, applications can request the values of all the optimizer flags by passing NULL. The optimizer flags and their meanings are described under the ttOptSetFlag built-in procedure.

Required privilege

This procedure requires no privilege.

Syntax

ttOptGetFlag('flagName')

Parameters

ttOptGetFlag has the parameter:

	Parameter	Type	Description
	flagName	TT_CHAR (32)	Name of the flag whose value is to be returned. If NULL is passed, the values of all flags are returned.

Result set

ttOptGetFlag returns the result set:

	Column	Type	Description
	flagName	TT_VARCHAR (32) NOT NULL	Name of the flag. See "ttOptSetFlag" for a description of possible flag values.
	value	TT_INTEGER NOT NULL	Current flag value, either 0 or 1.

Examples

CALL ttOptGetFlag('TmpHash');

See also

ttOptSetFlag

ttOptGetMaxCmdFreeListCnt

Description

This procedure returns the size of the free list of SQL compiled command cache. To reset the size of the cache, use ttOptSetMaxPriCmdFreeListCnt for materialized views and ttOptSetMaxCmdFreeListCnt for regular tables.

Required privilege

This procedure requires no privilege.

Parameters

ttOptGetMaxCmdFreeListCnt has no parameters.

Syntax

ttOptGetMaxCmdFreeListCnt()

Result set

ttOptGetMaxCmdFreeListCnt returns the results.

	Column	Type	Description
	retVal	TT_VARCHAR (200) NOT NULL	The size of the SQL compiled command cache.

Examples

CALL ttOptGetMaxCmdFreeListCnt();

See also

ttOptSetMaxPriCmdFreeListCnt

ttOptSetMaxCmdFreeListCnt

ttOptGetOrder

Description

This procedure returns a single-row result set containing the join order for the current transaction. This result set can be retrieved using the ODBC SQLFetch function or the JDBC ResultSet.getXXX() method, just like the result of a SQL SELECT statement. Join orders are described under the ttOptSetOrder built-in procedure.

Required privilege

This procedure requires no privilege.

Syntax

ttOptGetOrder()

Parameters

ttOptGetOrder has no parameters.

Result set

ttOptGetOrder returns the result set:

	Column	Type	Description
	joinOrder	TT_VARCHAR(1024) NOT NULL	Optimizer join order for the current transaction.

Examples

CALL ttOptGetOrder;

See also

ttOptSetOrder

ttOptSetColIntvlStats

Description

This procedure modifies the statistics for the specified columns with interval information. This procedure enables an application to set statistics manually rather than have TimesTen automatically compute them. This feature is useful for preparing commands before the data has been inserted or for seeing how table characteristics can affect the choice of execution plan. This procedure modifies the relevant row(s) in the COL_STATS system table. Modifying interval statistics for a column that is not currently indexed has no effect.

Because this procedure can be used before any data is in the table, the values specified do not need to bear any relation to the actual values, although some basic validity checking is performed.

Required privilege

This procedure requires no privilege (if owner) or ALTER ANY TABLE privilege (if not owner).

Syntax

ttOptSetColIntvlStats('tblName', 'colName', invalidate, (stats))

Parameters

ttOptSetColIntvlStats has these parameters:

	Parameter	Type	Description
	tblName	TT_CHAR(61) NOT NULL	Name of an application table. Can include table owner. Using a synonym to specify a table name is not supported.
	colName	TT_CHAR(30) NOT NULL	Name of a column in that table.
	invalidate	TT_INTEGER	0 (no) or 1 (yes). If invalidate is 1, all commands that reference the affected tables are automatically prepared again when re-executed. This includes commands prepared by other users. If invalidate is 0, the statistics are not considered to have been modified and existing commands are not reprepared.
	stats	VARBINARY (409600) NOT NULL	Sets stats for the column, using the format:
(numInterval integer, numNull integer, totUniq integer, totTups integer,

/* information for interval 1 */

(numUniq integer, numTups integer, frequency of most occurred value integer, minVal, maxVal, modalVal),

/* information for interval 2 */...)

The modal value (modalVal) is the value that occurs most often in a specified interval.

Because this parameter is a compound structure it cannot be parameterized using ODBC functions or described using the ttIsql describe command. For example, a statement like the following fails: SQLPrepare(hstmt, "call ttOptSetColIntvlStats('t1', 'c1', 1, ?)", SQL_NTS)).

Result set

ttOptSetColIntvlStats returns no results.

Examples

To set the following statistics for column t1.x1:

	
Two intervals

	
Integer type

	
10 rows with null value

	
10 unique value

	
100 rows

	
Interval 1 (4 unique values besides the most frequently occurring value, 40 rows with values other than most frequently occurring value, 10 rows with most frequently occurring value, min = 1, max = 10, mod = 5)

	
Interval 2 (4 unique values besides the most frequently occurring value, 20 rows with values other than most frequently occurring, 20 rows with most frequently occurring value, min = 11, max = 20, mod = 15)

Use the statement:

CALL ttOptSetColIntvlStats('t1', 'x1', 1, (2, 10, 10, 100,
(4, 40, 10, 1, 10, 5), (4, 20, 20, 11, 20, 15)));

Notes

You must specify the minimum and maximum values in the interval as VARBINARY. NULL values are not permitted as minimum or maximum values. The value is stored in the platform-specific endian format.

See also

ttOptEstimateStats

ttOptGetColStats

ttOptSetColStats

ttOptSetTblStats

ttOptUpdateStats

ttOptSetColStats

Description

This procedure modifies the statistics for the specified columns. This procedure enables an application to set statistics manually rather than have TimesTen automatically compute them. This feature is useful for preparing commands before the data has been inserted or for seeing how table characteristics can affect the choice of execution plan. This procedure modifies the relevant row(s) in the COL_STATS system table.

Because this procedure can be used before the table is populated with data, the values specified do not need to bear any relation to the actual values, although some basic validity checking is performed.

Required privilege

This procedure requires no privilege (if owner) or ALTER ANY TABLE privilege (if not owner).

Syntax

ttOptSetColStats('tblName', 'colName', numUniq, minVal,maxVal,
 invalidate, numNull)

Parameters

ttOptSetColStats has these parameters:

	Parameter	Type	Description
	tblName	TT_CHAR(61) NOT NULL	Name of an application table. Can include table owner.
Using a synonym to specify a table name is not supported.

	colName	TT_CHAR(30) NOT NULL	Name of a column in that table.
	num_Uniq	TT_INTEGER NOT NULL	Number of unique values in the column.
	minVal	VARBINARY(1024) NOT NULL	Minimum value in the column (possibly truncated).
	maxVal	VARBINARY(1024) NOT NULL	Maximum value in the column (possibly truncated).
	invalidate	TT_INTEGER	0 (no) or 1 (yes). If invalidate is 1, all commands that reference the affected tables are automatically prepared again when re-executed. This includes commands prepared by other users. If invalidate is 0, the statistics are not considered to have been modified and existing commands are not reprepared.
	num_Null	TT_INTEGER	Indicates the total number of NULLs in the column.

Result set

ttOptSetColStats returns no results.

Examples

CALL ttOptSetColStats ('SALLY.ACCTS, 'BALANCE, 400,
0x00001388, 0x000186A0, 1, 0);

Notes

You must specify the minimum and maximum values as VARBINARY. NULL values are not permitted as minimum or maximum values. The value is stored in the platform-specific endian format.

The statistics are treated as a single interval of column values that are uniformly distributed between the minimum value and the maximum value.

See also

ttOptEstimateStats

ttOptGetColStats

ttOptSetColIntvlStats

ttOptSetTblStats

ttOptUpdateStats

ttOptSetFlag

Description

This procedure enables applications to alter the generation of execution plans by the TimesTen query optimizer. It sets flags to enable or disable the use of various access methods. The changes made by this call take effect during preparation of statements and affect all subsequent calls to the ODBC functions SQLPrepare and SQLExecDirect or the JDBC methods Connection.prepareCall and Statement.execute in the current transaction. All optimizer flags are reset to their default values when the transaction has been committed or rolled back. If optimizer flags are set while AutoCommit is on, they are ignored.

Required privilege

This procedure requires no privilege.

Syntax

ttOptSetFlag('optFlag', optVal)

Parameters

ttOptSetFlag has these parameters:

	Parameter	Type	Description
	optFlag	TT_CHAR(32) NOT NULL	Name of optimizer flag.
	optVal	TT_INTEGER NOT NULL	The value of the optimizer flag. The value is generally 0 (disable/disallow) or 1 (enable/allow), except as described under "Optimizer flags" below.

Optimizer flags

When setting the optimizer flags, use the following character strings, which are not case sensitive:

	Flag	Description
	BranchAndBound	Enables or disables branch and bound optimization. If enabled, TimesTen calculates the maximum cost of the query plan during a "zero phase," at the very beginning of the optimization process. If disabled, TimesTen does not perform this cost analysis.
	DynamicLoadEnable	Enables or disables dynamic load of data from an Oracle database to a TimesTen dynamic cache group. By default, dynamic load of data from an Oracle database is enabled.
	DynamicLoadErrorMode	Enables or disables dynamic load error mode. It controls output of error messages upon failure of a transparent load operation on a TimesTen dynamic cache group. Disabled by default.
	FirstRow	Enables or disables first row optimization in a SELECT, UPDATE or DELETE statement. If the SQL keyword FIRST is used in the SQL statement, it takes precedence over this optimizer hint. The FIRST keyword enables first row optimization.
	ForceCompile	Enables or disables forced compilation. If enabled, TimesTen recompiles the query and regenerates the query plan each time. If disabled, TimesTen does not compile the query plan even if it is available.
	GenPlan	Enables or disables the creation of entries in the PLAN table for the rest of the transaction.
For an example, see "Instruct TimesTen to store the plan in the system PLAN table" in Oracle TimesTen In-Memory Database Operations Guide.

	GlobalLocalJoin	Enables or disables global execution of SELECT and UNLOAD CACHE GROUP statements that contain a join in a grid. By default, these statements are executed locally.
0 - SELECT and UNLOAD CACHE GROUP statements and the join both are executed locally.

1 - SELECT and UNLOAD CACHE GROUP statements are executed globally, the join is executed locally.

See Oracle TimesTen Application-Tier Database Cache User's Guide for more details.

	GlobalProcessing	Enables or disables global execution of SELECT and UNLOAD CACHE GROUP statements in a grid. By default, these statements are executed locally.
0 - SELECT and UNLOAD CACHE GROUP statements are executed locally.

1 - SELECT and UNLOAD CACHE GROUP statements are executed globally.

See Oracle TimesTen Application-Tier Database Cache User's Guide for more details.

	Hash	Enables or disables the use of existing hash indexes in indexed table scans.
	HashGb	Enables or disables the use of hash groups.
	IndexedOR	Enables or disables serialized table scans. If disabled, TimesTen uses serialized table scans for IN...list conditions, else TimesTen uses multiple index scans for an OR condition.
	MergeJoin	Enables or disables the use of merge joins.
	NestedLoop	Refers to a common way of joining two tables.
	NoRemRowIdOpt	Enables or disables internal generation of RowIDs. If enabled, RowIDs are not internally generated for optimization purposes. If disabled, RowIDs may be internally generated, even if the row is not in the SELECT list.
	PassThrough	Temporarily changes the pass through level for TimesTen Cache applications. The pass through level can be set at any time and takes effect immediately. Legal values for this flag are:
0 - (default) - SQL statements are executed only on TimesTen.

1 - INSERT, UPDATE and DELETE statements are executed on TimesTen unless they reference one or more tables that are not in TimesTen. If they reference one or more tables not in TimesTen, they are passed through to the Oracle database. DDL statements are executed on TimesTen. Other statements are passed through to the Oracle database if they generate a syntax error in TimesTen or if one or more tables referenced within the statement are not in TimesTen.

2 - INSERT, UPDATE and DELETE statements performed on tables in read-only cache groups or user managed cache groups with the READONLY cache table attribute are passed through to the Oracle database. Passthrough behavior for other cache group types is the same as PassThrough=1.

3 - All statements are passed through to the Oracle database for execution, except that INSERT, UPDATE and DELETE statements issued on cache tables in a dynamic AWT global cache group result in a TimesTen error.

4 - SELECT statements issues on cache tables in a dynamic AWT global cache group that do not satisfy the criteria for a dynamic load query are passed through to the Oracle database for execution. Otherwise, statements are executed in the TimesTen database.

5 - SELECT statements issued on cache tables in a dynamic AWT global cache group that do not satisfy the criteria for a dynamic load query are passed through to the Oracle database for execution when all committed updates on cache tables in dynamic AWT global cache groups by previous transactions within the connection have been propagated to the Oracle database. Otherwise, statements are executed in the TimesTen database.

	Range	Enables or disables the use of existing range indexes in indexed table scans.
	Rowid	Enables or disables the use of Row IDs.
	RowLock	Allows or disallows the optimizer to consider using row locks.
	Scan	Refers to full table scans.
	ShowJoinOrder	Shows the join order of the tables in an optimizer scan.
	TblLock	Enables or disables the optimizer to consider using table locks.
	TmpHash	Enables or disables the use of a temporary hash scan. This is an index that is created during execution for use in evaluating the statement. Though index creation is time-consuming, it can save time when evaluating join predicates.
	TmpRange	Performs a temporary range scan. Can also be used so that values are sorted for a merge join. Though index creation is time-consuming, it can save time when evaluating join predicates.
	TmpTable	Stores intermediate results into a temporary table. This operation is sometimes chosen to avoid repeated evaluation of predicates in join queries or sometimes just to allow faster scans of intermediate results in joins.
	UseBoyerMooreStringSearch	Enables or disables the Boyer-Moore string search algorithm. If enabled, Boyer-Moore string search algorithm is enabled. This can improve performance of LIKE operations.

In addition, you can use the string AllFlags to refer to all optimizer flags, and the string Default to refer to the default flags. Default excludes the GenPlan flag but includes all other optimizer flags.

Flag description

The value of each flag can be 1 or 0:

	
If 1, the operation is enabled

	
If 0, the operation is disabled unless absolutely necessary

Initially, all the flag values except GenPlan are 1 (all operations are permitted).

For example, an application can prevent the optimizer from choosing a plan that stores intermediate results:

ttOptSetFlag ('TmpTable', 0)

Similarly, an application can specify a preference for MergeJoin:

ttOptSetFlag ('MergeJoin', 0)

In the second example, the optimizer may still choose a nested loop join if a merge join is impossible (for example, if there is no merge-join predicate). Similarly, the optimizer may occasionally not be able to satisfy an application request to avoid table scans (when the Scan flag is set to 0).

You cannot specify that a particular operation is prohibited only at a certain step of a plan or that a particular join method always be done between two specific tables. Similarly, there is no way to specify that certain indexes be used or that a hash index be used to evaluate a specific predicate. Each operation is either fully permitted or fully restricted.

When a command is prepared, the current optimizer flags, index hints and join order are maintained in the structure of the compiled form of the command and are used if the command is ever reprepared by the system. See "The TimesTen Query Optimizer" in Oracle TimesTen In-Memory Database Operations Guide for an example of reprepared statements.

If both RowLock and TblLock are disabled, TimesTen uses row-locking. If both RowLock and TblLock are enabled, TimesTen uses the locking scheme that is most likely to have better performance:

	TblLock status	RowLock status	Effect on the optimizer
	Disabled	Disabled	Use row-level locking.
	Enabled	Disabled	Use table-level locking.
	Disabled	Enabled	Use row-level locking.
	Enabled	Enabled	Optimizer chooses row-level or table-level locking.

In general, table-level locking is useful when a query accesses a significant portion of the rows of a table or when there are very few concurrent transactions accessing the table.

Result set

ttOptSetFlag returns no results.

Examples

CALL ttOptSetFlag ('TmpHash', 1);

Notes

You can also set the join order using statement level optimizer hints in certain SQL statements. For details, see "Statement level optimizer hints" in the Oracle TimesTen In-Memory Database SQL Reference. Specifically, see the table, "Differences between statement level and transaction level optimizer hints" to understand the behavior of each style of hint.

See also

ttOptEstimateStats

ttOptGetFlag

ttOptGetOrder

ttOptSetColIntvlStats

ttOptSetOrder

ttOptSetTblStats

ttOptUpdateStats

ttPLSQLMemoryStats

ttOptSetMaxCmdFreeListCnt

Description

This procedure sets the maximum count of the free list of SQL compiled commands for regular tables. To get the current setting use the ttOptGetMaxCmdFreeListCnt procedure.

Required privilege

This procedure requires the ADMIN privilege.

Syntax

ttOptSetMaxCmdFreeListCnt(maxCnt)

Parameters

ttOptSetMaxCmdFreeListCnt has the required parameter:

	Parameter	Type	Description
	maxCnt	TT_INTEGER NOT NULL	The max number of free SQL compiled commands for regular tables.

Result set

ttOptSetMaxCmdFreeListCnt returns no results.

Examples

CALL ttOptSetMaxCmdFreeListCnt(40);

See also

ttOptGetMaxCmdFreeListCnt

ttOptSetMaxPriCmdFreeListCnt

Description

This procedure sets the maximum count of the free list of SQL compiled commands that perform materialized view maintenance.

When this command is set, freeable materialized view compiled commands are counted separately from those of regular tables. If this command is not set, materialized view compiled commands are counted as regular commands.

Required privilege

This procedure requires the ADMIN privilege.

Syntax

ttOptSetMaxCmdPriFreeListCnt(maxCnt)

Parameters

ttOptSetMaxPriCmdFreeListCnt has the required parameter:

	Parameter	Type	Description
	maxCnt	TT_INTEGER NOT NULL	The size of the SQL compiled command cache.

Result set

ttOptSetMaxPriCmdFreeListCnt returns no results.

Examples

CALL ttOptSetMaxPriCmdFreeListCnt(40);

See also

ttOptGetMaxCmdFreeListCnt

ttOptSetMaxCmdFreeListCnt

ttOptSetOrder

Description

This procedure specifies the order in which tables should be joined by the optimizer. The character string is a list of table names or table correlation names referenced in the query or a subquery, separated by spaces (not commas). The table listed first is scanned first by the plan. (It is outermost in a nested loop join, for example.) A correlation name is a shortcut or alias for a qualified table name. AutoCommit must be set to OFF when running this built-in procedure.

Required privilege

This procedure requires no privilege.

Syntax

ttOptSetOrder('joinOrder')

Parameters

ttOptSetOrder has the required parameter:

	Parameter	Type	Description
	join_Order	TT_VARCHAR(1024)	List of space-separated table or table correlation names. If an owner is required to distinguish the table name, use a table correlation name. If the joinOrder is not specified the query optimizer reverts to its default behavior.

Result set

ttOptSetOrder returns no results.

Examples

CALL ttOptSetOrder ('EMPS DEPTS ACCTS');

If an application makes the call:

call ttOptSetOrder('ORDERS CUSTOMERS');

The optimizer scans the ORDERS table before scanning the CUSTOMERS when evaluating the following query that lists all the customers who have at least one unshipped order:

SELECT CUSTOMERS.NAME
FROM CUSTOMERS
WHERE EXISTS (SELECT 1
 FROM ORDERS
 WHERE CUSTOMERS.ID = ORDERS.CUSTID
 AND ORDER.STATUS ='UN-SHIPPED');

Consider an application that makes the following call.

ttOptSetOrder('DEPTS EMPS ACCTS');

The optimizer is prevented from executing a join between DEPTS and ACCTS when evaluating the number of employees working on a specific account:

SELECT COUNT(DISTINCT EMPS.ID)
FROM ACCTS, DEPTS, EMPS
WHERE ACCTS.DEPTS = DEPTS.ID
AND EMPS.DEPTS = DEPTS.ID
AND ACCTS.NUM = :AcctNum

If the application does not reset the join order and tries to prepare a command that does not reference each of the three tables (and no others), the optimizer issues warning number 965. The specified join order is not applicable. TimesTen considers valid join orders and ignores the specified join order when preparing the command.

Notes

A table alias name for a derived table is not supported in the join order. If you specify a table alias name, TimesTen returns the warning message 965 that indicates the order cannot be honored.

The string length is limited to 1,024 bytes. If a string exceeds this length, it is truncated and a warning is issued.

When correlation names referenced in subqueries are in included in the order, TimesTen may internally change the isolation mode.

When a command is prepared, the current optimizer flags, index hints, and join order are maintained in the structure of the compiled form of the command and are used if the command is ever reprepared by the system. See "The TimesTen Query Optimizer" in Oracle TimesTen In-Memory Database Operations Guide for an example of reprepared statements.

The changes made by this call take effect immediately and affect all subsequent calls to the ODBC function SQLPrepare or the JDBC method Connection.prepareCall in the current transaction. The query optimizer reverts to its default behavior for subsequent transactions.

The tables referenced by a query must exactly match the names given if the join order is to be used (the comparisons are not case sensitive). A complete ordering must be specified; there is no mechanism for specifying partial orders. If the query has a subquery then the join order should also reference the correlation names in the subquery. In essence, the join order should reference all the correlation names referenced in the query. The TimesTen optimizer internally implements a subquery as a special kind of join query with a GROUP BY. For the join order to be applicable it should reference all the correlation names. If there is a discrepancy, Times issues a warning and ignores the specified join order completely.

You can also set the join order using statement level optimizer hints in certain SQL statements. For details, see "Statement level optimizer hints" in the Oracle TimesTen In-Memory Database SQL Reference. Specifically, see the section, "Differences between statement level and transaction level optimizer hints" to understand the behavior of each style of hint.

See also

ttOptEstimateStats

ttOptGetFlag

ttOptGetOrder

ttOptSetColIntvlStats

ttOptSetFlag

ttOptSetTblStats

ttOptUpdateStats

ttPLSQLMemoryStats

ttOptSetTblStats

Description

This procedure modifies the statistics for the specified table. This procedure enables an application to set statistics explicitly rather than have TimesTen automatically compute them.

Required privilege

This procedure requires no privilege (if owner) or ALTER ANY TABLE privilege (if not owner).

Syntax

ttOptSetTblStats('tblName', numRows, invalidate)

Parameters

ttOptSetTblStats has these parameters:

	Parameter	Type	Description
	tblName	TT_CHAR(61) NOT NULL	Name of an application table. Can include table owner.
Using a synonym to specify a table name is not supported.

	num_Rows	TT_INTEGER NOT NULL	Number of rows in the table.
	invalidate	TT_INTEGER	0 (no) or 1 (yes). If invalidate is 1, all commands that reference the affected tables are automatically prepared again when re-executed, including commands prepared by other users. If invalidate is 0, the statistics are not considered to have been modified and existing commands are not reprepared.

Result set

ttOptSetTblStats returns no results.

Examples

CALL ttOptSetTblStats ('ACCTS', 10000, 0);

Notes

This feature is useful for preparing commands before the data has been inserted or for seeing how table size can affect the choice of an execution plan. Because the command can be used before any data is in the table, the values specified do not need to bear any relation to the actual values. This procedure modifies the relevant row(s) in the TBL_STATS system table. See "SYS.TBL_STATS" in Oracle TimesTen In-Memory Database System Tables and Views Reference.

See also

ttOptEstimateStats

ttOptGetFlag

ttOptGetOrder

ttOptSetColIntvlStats

ttOptSetFlag

ttOptSetOrder

ttOptUpdateStats

ttPLSQLMemoryStats

ttOptShowJoinOrder

Description

This procedure returns the join order of the last prepared or executed SQL statement (SELECT, UPDATE, DELETE, and INSERT SELECT) in the current transaction. For a join order to be collected, use ttOptSetFlag('ShowJoinOrder', 1) or set the ttIsql ShowJoinOrder command to ON (1) first in the same transaction. AUTOCOMMIT must be off when using either of these commands. The join order is represented by the order of the table names.

Required privilege

This procedure requires no privilege.

Syntax

ttOptShowJoinOrder()

Parameters

ttOptShowJoinOrder has no parameters.

Result set

ttOptShowJoinOrder returns the result:

	Column	Type	Description
	joinOrder	TT VARCHAR (4096) NOT NULL	Table names, including owner name quantifiers and correlation name for each table if specified. Table names are returned in parentheses.
Using a synonym to specify a table name is not supported.

Examples

>AUTOCOMMIT 0;
> CALL ttOptSetFlag ('ShowJoinOrder', 1);
>PREPARE SELECT * FROM t1;
>CALL ttOptShowJoinOrder();
>(T1)

Notes

You must call ttOptSetFlag('ShowJoinOrder', 1) or set the ttIsql ShowJoinOrder command to ON (1) before using this procedure.

This procedure works within one transaction and is not persistent across transactions.

See also

ttOptEstimateStats

ttOptGetFlag

ttOptGetOrder

ttOptSetColIntvlStats

ttOptSetFlag

ttOptSetOrder

ttOptSetTblStats

ttOptUpdateStats

ttPLSQLMemoryStats

ttOptStatsExport

Description

This procedure returns the set of statements required to restore the table statistics to the current state. If no table is specified, it returns the set of statements required to restore the table statistics for all user tables that the calling user has permission to access.

Required privilege

This procedure requires ADMIN privilege.

Syntax

ttOptStatsExport('tblName')

Parameters

ttOptStatsExport has the parameter:

	Parameter	Type	Description
	tblName	TT_CHAR (61) NOT NULL	Name of the table whose statistics are to be returned. If NULL is passed, then values for all tables are returned.
Using a synonym to specify a table name is not supported.

Result set

ttOptStatsExport returns the result set:

	Column	Type	Description
	stmt	TT_VARCHAR (8300) NOT NULL	The set of statements required to restore the table(s) statistics to the current state.

Examples

CALL ttOptStatsExport('MyTable');

See also

"Create script to regenerate current table statistics" in the Oracle TimesTen In-Memory Database Operations Guide.

ttOptUpdateStats

Description

This procedure updates the statistics for the specified table. TimesTen looks at the data in the table and updates the TBL_STATS and COL_STATS system tables. If the table is large, this process can take some time. Statistics are not computed automatically as rows are updated; an application must compute them explicitly by calling this procedure.

The procedure operates on all tables of the current user if tblName is not specified.

Required privilege

This procedure requires no privilege if the user is the table owner, or if tblName is not specified.This procedure requires the ALTER ANY TABLE privilege if the user is not the table owner.

Syntax

ttOptUpdateStats(['tblName'], [invalidate], [option])

Parameters

ttOptUpdateStats has these parameters:

	Parameter	Type	Description
	tblName	TT_CHAR(61)	Name of an application table. Can include table owner. If a value of NULL or an empty string is provided, the statistics for all the current user's tables are updated.
Using a synonym to specify a table name is not supported.

	invalidate	TT_INTEGER	0 (no) or 1 (yes). If invalidate is 1, marks all commands for reprepare on next execution except ALTER TABLE DROP TABLE, and the ALTER TABLE ADD COLUMN FOR SELECT * FROM TABLE statements. These exceptions require manual reprepare. If invalidate is 0, the statistics are not considered to have been modified and existing commands are not reprepared.
The invalidate parameter is optional and defaults to 0.

	option	TT_INTEGER	Specifies whether to collect complete interval statistics information. Valid values for this option are:
NULL or 0 - Collect complete interval statistics only if a range index exists on the column. If a range index does not exist, only single interval statistics are collected.

1 - Do not collect complete interval statistics. Only single interval statistics are collected.

The option parameter is optional and defaults to 0.

See the notes below for more information.

Result set

ttOptUpdateStats returns no results.

Examples

CALL ttOptUpdateStats ('ACCTS', 1);

Updates the ACCTS table and causes all commands that reference the ACCTS table to be re-prepared when they are next executed.

CALL ttOptUpdateStats('', 1);

Updates all the current user's tables and causes commands on those tables to be reprepared when they are next executed.

CALL ttOptUpdateStats('ACCTS', 0, 1);

Forces single interval statistics to be collected.

Notes

If the table name specified is an empty string, statistics are updated for all the current user's tables.

When complete interval statistics are collected, the total number of rows in the table is divided into 20 or less intervals and the distribution of each interval is recorded in the statistics. The new statistics contain the information:

	
Number of intervals

	
Total number of NULL values in the column

	
Total number of NON NULL UNIQUE values in the column

	
Total number of rows in the table

	
Interval information, where each interval contains:

	
The minimum value

	
The maximum value

	
The most frequently occurring value

	
The number of times the most frequent value occurred

	
The number of rows that have different values than the most frequent value

	
The number of unique values besides the most frequent value

Collection of complete interval statistics requires the data to be sorted.

If complete interval statistics are not selected, then statistics are collected by treating the entire distribution as a single interval.

For performance reasons, TimesTen does not hold a lock on tables or rows when computing statistics. However, computing statistics can still slow performance. Estimating statistics generally provides better performance than computing exact statistics. See "ttOptEstimateStats" for information on estimating statistics.

If you estimate or update statistics with an empty table list, statistics on system tables are updated also, if you have privileges to update the system tables.

See also

ttOptEstimateStats

ttOptGetColStats

ttOptSetColStats

ttOptSetColIntvlStats

ttOptSetTblStats

ttOptUpdateStats

ttOptUseIndex

Description

This procedure enables applications to alter the generation of execution plans by the TimesTen query optimizer. Applications can call this procedure to disable the use of a set of indexes or enable the consideration of only a set of indexes for each correlation used in a query. Enabling the consideration of an index does not guarantee that the plan generated uses the index. Depending on the estimated cost, the optimizer might choose to use a serialization scan or a materialization scan to access the associated correlation if these scans resulted in a better plan than the ones that use the specified index.

The changes made by this call take effect immediately and affect all subsequent calls to the ODBC functions SQLPrepare and SQLExecDirect or the JDBC methods Connection.prepareCall and Statement.execute in the current transaction until the applications explicitly issue a call to clear it. The setting is cleared whenever a new transaction is started.

AutoCommit must be set to OFF when running this built-in procedure.

Required privilege

This procedure requires no privilege.

Syntax

ttOptUseIndex('IndexName, CorrelationName, 0 | 1 [;...]')

Parameters

ttOptUseIndex has a single comma-delimited string parameter, indOption, of type TT_VARCHAR(1024) with these components:

	Component	Description
	IndexName	The name of the user-defined index or '_TMPRANGE' for temporary range index or '_TMPHASH' for temporary hash index. If index name is omitted, the setting applies to all indexes of the specified correlation.
	CorrelationName	The correlation name of the table. If a table is defined with a correlation name in the FROM clause, use this correlation name instead of the table name when specifying the index hint for this table. If correlation name is omitted for an entry, the setting affects all tables with the specified index name.
	0 | 1	Disables(0) or enables (1) the use of the index specified by IndexName.

Result set

ttOptUseIndex returns no results.

Examples

CALL ttOptUseIndex('"3456"."1234", t1, 0');

CALL ttOptUseIndex('data1.i1, data1.t1, 0');

CALL ttOptUseIndex('i1, t1, 0');

Notes

If ttOptUseIndex is called without a parameter or with a NULL value, TimesTen clears the previous index hint.

See also

ttOptEstimateStats

ttOptGetFlag

ttOptGetOrder

ttOptSetColIntvlStats

ttOptSetFlag

ttOptSetOrder

ttOptSetTblStats

ttOptUpdateStats

ttPLSQLMemoryStats

ttPLSQLMemoryStats

Description

This procedure returns result statistics about PL/SQL library cache performance and activity.

Required privilege

This procedure requires no privilege.

Syntax

ttPLSQLMemoryStats()

Parameters

ttPLSQLMemoryStats takes no parameters.

Result Set

ttPLSQLMemoryStats returns the results in the following columns:

	Columns	Type	Description
	paramName	TT_VARCHAR(30) NOT NULL	The name of the result statistic returned in this row.
	paramValue	BINARY_FLOAT NOT NULL	The value of the result statistic returned in this row.

The following statistics are returned:

	
Gets: Number of times a lock was requested for a PL/SQL object.

	
GetHits: Number of times a PL/SQL object's handle was found in memory.

	
GetHitRatio: Ratio of GetHits to Gets.

	
Pins: Number of times a PIN was requested for PL/SQL objects.

	
PinHits: Number of times all the metadata pieces of the library object were found in memory.

	
PinHitRatio: Ratio of PinHits to Pins.

	
Reloads: Any PIN of an object that is not the first PIN performed since the object handle was created, and which requires loading the object from the database.

	
Invalidations: Total number of times objects in this namespace were marked invalid because a dependent object was modified.

	
CurrentConnectionMemory: The total amount of heap memory, in MB, allocated to PL/SQL on this database connection.

	
DeferredCleanups: Total number of times a deferred cleanup occurred.

Examples

connect "DSN=sample";
Connection successful:
DSN=sample;UID=timesten;DataStore=/scratch/timesten/sample;
DatabaseCharacterSet=AL32UTF8;ConnectionCharacterSet=AL32UTF8;
PermSize=128;TypeMode=0;PLSQL_MEMORY_SIZE=32;
PLSQL_MEMORY_ADDRESS=20000000;PLSQL=1;(Default setting AutoCommit=1)
Command> create procedure hello is begin
dbms_output.put_line('Hello, World!');
end;
 > /
Procedure created.
Command> call ttPlsqlMemoryStats;
< Gets, 485.00000 >
< GetHits, 444.000000 >
< GetHitRatio, .9154639 >
< Pins, 260.00000 >
< PinHits, 178.000000 >
< PinHitRatio, .6846154 >
< Reloads, 4.000000 >
< Invalidations, 0.000000e+00 >
< CurrentConnectionMemory, 56.00000 >
9 rows found.

ttRamPolicyAutoReloadGet

Description

This procedure returns the RAM autoreload policy used to determine if a database is reloaded into RAM after an invalidation. The policy can be either autoreload or noautoreload.

Required privilege

This procedure requires no privilege.

Syntax

ttRamPolicyAutoReloadGet()

Result set

ttRamPolicyAutoReloadGet returns the results:

	Column	Type	Description
	flag	TT_INTEGER	The policy used to determine if the database is reloaded into RAM after an invalidation. Valid values are:
0 - The database is not automatically reloaded into memory after an invalidation. This is the equivalent of the command ttAdmin -noAutoReload.

1 - The database is automatically reloaded into memory after an invalidation. This is the equivalent of the command ttAdmin -autoReload. This is the default autoreload policy.

Parameters

ttRamPolicyAutoReloadGet has no parameters.

Examples

To view the RAM autoreload policy, use:

CALL ttRamPolicyAutoReloadGet();

See also

ttRamPolicyAutoReloadSet

"ttAdmin"

ttRamPolicyAutoReloadSet

Description

This procedure determines the RAM autoreload policy if a database is invalidated. The policy can be either autoreload or noautoreload.

Required privilege

This procedure requires the ADMIN privilege.

Syntax

ttRamPolicyAutoReloadSet(flag)

Parameters

ttRamPolicyAutoReloadSet has the parameters:

	Parameter	Type	Description
	flag	TT_INTEGER NOT NULL	The policy used to determine if the database is reloaded into RAM after an invalidation. Valid values are:
0 - The database is not automatically reloaded into memory after an invalidation. This is the equivalent of the command ttAdmin -noAutoReload.

1 - The database is automatically reloaded into memory after an invalidation. This is the equivalent of the command ttAdmin -autoReload. This is the default autoreload policy.

Result set

ttRamPolicyAutoReloadSet returns no results.

Examples

To automatically reload a database into RAM after an invalidation, use:

CALL ttRamPolicyAutoReloadSet(1);

See also

ttRamPolicyAutoReloadGet

"ttAdmin"

ttRamPolicyGet

Description

This procedure returns the RAM policy used to determine when a database is loaded into memory. The policy can be either always, manual, or inUse.

Required privilege

This procedure requires no privilege.

Syntax

ttRamPolicyGet()

Result set

ttRamPolicyGet returns the results:

	Column	Type	Description
	ramPolicy	TT_VARCHAR (10)	The policy used to determine when the database is loaded into system RAM. Valid values are:
always - Specifies that the database should remain in system RAM all the time.

manual - Specifies that the database is only to be loaded in system RAM when explicitly loaded by the user, using the ttAdmin -ramLoad command.

inUse - Specifies that the database is only loaded in system RAM when in use (when applications are connected). This option cannot be used with temporary databases. TimesTen only allows a temporary database to be loaded into RAM manually. Trying to set the policy generates a warning.

	ramGrace	TT_INTEGER	If the ramPolicy is inUse, this field reports the number of seconds the database is kept in RAM after the last application has disconnected. Otherwise, this field is NULL.

Parameters

ttRamPolicyGet has no parameters.

Examples

To view the RAM policy, use:

CALL ttRamPolicyGet();

See also

ttRamPolicySet

"ttAdmin"

"Specifying a RAM policy" in Oracle TimesTen In-Memory Database Operations Guide

ttRamPolicySet

Description

This procedure defines the policy used to determine when a database is loaded into memory. The policy can be either always, manual, or inUse.

Required privilege

This procedure requires the ADMIN privilege.

Syntax

ttRamPolicySet('ramPolicy', [ramGrace])

Parameters

ttRamPolicySet has the parameters:

	Parameter	Type	Description
	ramPolicy	TT_VARCHAR (10) NOT NULL	The policy used to determine when the database is loaded into system RAM. Valid values are:
always - Specifies that the database should remain in system RAM all the time.

manual - Specifies that the database is only to be loaded in system RAM when explicitly loaded by the user, using the ttAdmin -ramLoad command.

inUse - Specifies that the database is only loaded in system RAM when in use (when applications are connected). This option cannot be used with temporary databases. TimesTen only allows a temporary database to be loaded into RAM manually. Trying to set the policy generates a warning.

	ramGrace	TT_INTEGER	Sets the number of seconds the database is kept in RAM after the last application has disconnected. This number is only effective if ramPoliy is inUse. This parameter is optional, and when omitted or set to NULL, the existing ramGrace period is left unchanged.

Result set

ttRamPolicySet returns no results.

Examples

To set the policy for loading a database into RAM to be inUse and for the database to kept in RAM for 10 seconds after the last application has disconnected, use:

CALL ttRamPolicySet('inUse', 10);

See also

ttRamPolicyGet

"ttAdmin"

"Specifying a RAM policy" in Oracle TimesTen In-Memory Database Operations Guide

ttRedundantIndexCheck

Description

This procedure scans the indicated table (or all the current user's tables) to find redundant indexes. It returns the names of the redundant indexes and a suggestion for which to drop.

Required privilege

This procedure requires no privilege.

Syntax

ttRedundantIndexCheck('tblname')

Parameters

ttRedundantIndexCheck has the parameter:

	Parameter	Type	Description
	tblName	TT_CHAR(61)	Name of an application table. Can include table owner. If a value of NULL or an empty string is provided, the redundant indexes for all the current user's tables.
Using a synonym to specify a table name is not supported.

Result Set

ttRedundantIndexCheck returns the result:

	Column	Type	Description
	redundancy	TT_VARCHAR (1024) NOT NULL	The names of redundant indexes and a suggestion for which index to drop.

Examples

Create table y with a primary key. Then create index i. TimesTen returns a warning that a redundant index is being created. Create another index, i1. The command fails and TimesTen returns an error. Call this procedure to show the warnings.

CREATE TABLE y (ID tt_integer primary key);
CREATE INDEX i ON y (id);

Warning 2240: New non-unique index I has the same key
columns as existing unique index Y; consider dropping index I

CREATE INDEX i1 ON y (id);

2231: New index I1 would be identical to existing index I
The command failed.

CALL ttredundantindexcheck ('y');

< Non-unique index SCOTT.Y.I has the same key columns
as unique index SCOTT.Y.Y;
consider dropping index SCOTT.Y.I >
1 row found.

ttRepDeactivate

Description

This procedure changes the state of the active database in an active standby pair from ACTIVE to IDLE. Use this procedure when reversing the roles of the master databases in an active standby pair.

Required privilege

This procedure requires the ADMIN privilege.

Syntax

ttRepDeactivate()

Parameters

ttRepDeactivate has no parameters.

Result set

ttRepDeactivate returns no results.

Examples

To deactivate the active database in an active standby pair, use:

CALL ttRepDeactivate();

See also

ttRepTransmitGet

ttRepTransmitSet

ttReplicationStatus

ttRepPolicySet

ttRepStateSave

ttRepStateSet

ttRepStop

ttRepSubscriberStateSet

ttRepSubscriberWait

"ttRepDuplicateEx" in Oracle TimesTen In-Memory Database C Developer's Guide

ttReplicationStatus

Description

This procedure returns the status of one or more replication peer databases.

Required privilege

This procedure requires no privilege.

Syntax

ttReplicationStatus(['subscriber'], ['hostname'])

Parameters

ttReplicationStatus has the optional parameters:

	Parameter	Type	Description
	subscriber	TT_VARCHAR(200)	Subscriber of interest or NULL for all subscribers. If the parameter is provided, then it names a replication subscriber about which information is sought. If the parameter is not provided, then information on replication subscribers defined for the current database is returned.
	hostname	TT_VARCHAR(200)	The host name of one or more stores that are configured to receive updates from the executing store; if NULL, then receiving stores are identified by subscriber alone. If both receiver and host name are NULL, then all receiving stores are selected.

Result set

ttReplicationStatus returns the result set:

	Column	Type	Description
	subscriber	TT_VARCHAR(200) NOT NULL	Subscriber name.
	hostName	TT_VARCHAR(200) NOT NULL	Name of the system that hosts the subscriber.
	port	TT_INTEGER NOT NULL	TCP/IP port used by the subscriber agent to receive updates from the master. A value of 0 indicates replication has automatically assigned the port.
	pState	TT_CHAR(10) NOT NULL	Current replication state of the subscriber with respect to its master database. The values of the result column are:
start - Replication is enabled to this peer.

pause - Replication is temporarily paused to this peer. TimesTen preserves updates. See "Setting the replication state of subscribers" in Oracle TimesTen In-Memory Database Replication Guide for more information.

stop - Replication updates are NOT being collected for this peer.

failed - Replication to a subscriber is considered failed because the threshold limit (log data) has been exceeded. This state is set by the system.

	logs	TT_INTEGER NOT NULL	Number of transaction log files the master database is retaining for a subscriber.
	lastMsg	TT_INTEGER	Seconds since last interaction or NULL.
	replicationName	TT_CHAR(30) NOT NULL	Name of replication scheme.
	replicationOwner	TT_CHAR(30) NOT NULL	Owner of replication scheme.

Examples

Command> call ttReplicationStatus();
< MASTER2, HOST1, 0, start , 1, 257142, \
 _ACTIVESTANDBY , TTREP >
1 row found.

Command> call ttReplicationStatus('master2', 'host1');
< MASTER2, HOST1, 0, start , 1, 266439, \
 _ACTIVESTANDBY , TTREP >
1 row found.

Notes

If the receiver parameter is not NULL, only the status of the given receiver is returned. If the receiver parameter is NULL, the status of all subscribers is returned.

This procedure is supported only for TimesTen Data Manager ODBC applications. It is not supported for TimesTen Client or JDBC applications.

See also

ttRepDeactivate

ttRepPolicySet

ttRepStop

ttRepSubscriberStateSet

ttRepSyncGet

ttRepSyncSet

ttRepTransmitSet

"ttRepDuplicateEx" in Oracle TimesTen In-Memory Database C Developer's Guide

ttRepPolicyGet

Description

This procedure returns the replication restart policy used to determine when the TimesTen for the connected database should run. The policy can be always, manual, or norestart.

Required privilege

This procedure requires no privilege.

Syntax

ttRepPolicyGet()

Parameters

ttRepPolicyGet has no parameters.

Result set

ttRepPolicyGet returns the results:

	Column	Type	Description
	repPolicy	TT_VARCHAR (10)	The policy used to determine when the TimesTen replication agent for the database should run. Valid values are:
always - Specifies that the replication agent for the database is always running. This option immediately starts the TimesTen replication agent. When the TimesTen daemon restarts, TimesTen automatically restarts the replication agent.

manual - Specifies that you must manually start the replication agent using either the ttRepStart built-in procedure or the ttAdmin -repStart command. You must explicitly stop the replication agent using either the ttRepStop built-in procedure or the ttAdmin -repStop command.

norestart - Specifies that the replication agent for the database is not to be restarted after a failure.

Examples

To set the policy for TimesTen replication agent to always, use:

CALL ttRepPolicyGet();

See also

ttRepDeactivate

ttRepTransmitSet

ttReplicationStatus

ttRepPolicySet

ttRepStart

ttRepStop

ttRepSubscriberStateSet

ttRepSubscriberWait

ttRepSyncGet

ttRepSyncSet

"ttRepDuplicateEx" in Oracle TimesTen In-Memory Database C Developer's Guide

ttRepPolicySet

Description

This procedure defines the replication restart policy used to determine when the TimesTen for the connected database should run. The policy can be either always, manual, or norestart.

Required privilege

This procedure requires the ADMIN privilege.

Syntax

ttRepPolicySet('repPolicy')

Parameters

ttRepPolicySet has this parameter:

	Parameter	Type	Description
	repPolicy	TT_VARCHAR (10) NOT NULL	Specifies the policy used to determine when the TimesTen replication agent for the database should run. Valid values are:
always - Specifies that the replication agent for the database is always running. This option immediately starts the TimesTen replication agent. When the TimesTen daemon restarts, TimesTen automatically restarts the replication agent.

manual - Specifies that you must manually start the using either the ttRepStart built-in procedure or the ttAdmin -repStart command. You must explicitly stop the replication agent using either the ttRepStop built-in procedure or the ttAdmin -repStop command.

norestart - Specifies that the replication agent for the database is not to be restarted after a failure.

Result set

ttRepPolicySet returns no results.

Examples

To set the policy for TimesTen replication agent to always, use the following.

CALL ttRepPolicySet('always');

See also

ttRepDeactivate

ttRepTransmitSet

ttReplicationStatus

ttRepPolicyGet

ttRepStart

ttRepStop

ttRepSubscriberStateSet

ttRepSubscriberWait

ttRepSyncGet

ttRepSyncSet

"ttRepDuplicateEx" in Oracle TimesTen In-Memory Database C Developer's Guide

ttRepQueryThresholdGet

Description

This procedure returns the number of seconds that was most recently specified as the query threshold for the replication agent. The number of seconds returned may not be the same as the query threshold in effect. Setting a new value for the query threshold takes effect the next time the replication agent is started.

Required privilege

This procedure requires the ADMIN privilege.

Syntax

ttRepQueryThresholdGet()

Parameters

ttRepQueryThresholdGet has no parameters.

Result set

ttRepQueryThresholdGet returns the result:

	Column	Type	Description
	repQueryThreshold	TT_INTEGER	The number of seconds that a replication query executes before returning an error.

Examples

To get the replication query threshold value, use:

CALL ttRepQueryThresholdGet;
< 4 >
1 row found.

See also

ttRepDeactivate

ttReplicationStatus

ttRepPolicyGet

ttRepQueryThresholdSet

ttRepStart

ttRepStop

ttRepSubscriberStateSet

ttRepSubscriberWait

ttRepSyncGet

ttRepSyncSet

ttRepTransmitSet

"ttRepDuplicateEx" in Oracle TimesTen In-Memory Database C Developer's Guide

ttRepQueryThresholdSet

Description

This procedure specifies the number of seconds that a query can be executed by the replication agent before TimesTen writes a warning to the support log and throws an SNMP trap. The specified value takes effect the next time the replication agent is started. The query threshold for the replication agent applies to SQL execution on detail tables of materialized views, ON DELETE CASCADE operations and some internal operations that execute SQL statements.

Required privilege

This procedure requires the ADMIN privilege.

Syntax

ttRepQueryThresholdSet(seconds);

Parameters

ttRepQueryThresholdSet has the parameter:

	Parameter	Type	Description
	seconds	TT_INTEGER NOT NULL	Number of seconds a SQL statement can be executed by the replication agent before TimesTen writes a warning to the support log and throws an SNMP trap. The value must be greater than or equal to 0. Default is 0 and indicates that Timesten does not write any warnings.

Result set

ttRepQueryThresholdSet returns no results.

Examples

To set the replication query threshold value to four seconds, use:

CALL ttRepQueryThresholdSet(4);

See also

ttRepDeactivate

ttReplicationStatus

ttRepPolicyGet

ttRepQueryThresholdGet

ttRepStart

ttRepStop

ttRepSubscriberStateSet

ttRepSubscriberWait

ttRepSyncGet

ttRepSyncSet

ttRepTransmitSet

"ttRepDuplicateEx" in Oracle TimesTen In-Memory Database C Developer's Guide

ttRepStart

Description

This procedure starts the TimesTen replication agent for the connected database.

Required privilege

This procedure requires the CACHE_MANAGER privilege.

Syntax

ttRepStart()

Parameters

ttRepStart has no parameters.

Result set

ttRepStart returns no results.

Examples

To start the replication agent, use:

CALL ttRepStart();

Notes

The replication agent does not start if the database does not participate in any replication scheme.

When using this procedure, no application, including the application making the call, can be holding a connection that specifies database-level locking (LockLevel=1).

See also

ttRepDeactivate

ttRepTransmitGet

ttRepTransmitSet

ttReplicationStatus

ttRepPolicySet

ttRepStop

ttRepSubscriberStateSet

ttRepSubscriberWait

ttRepSyncSet

ttRepSyncGet

"ttRepDuplicateEx" in Oracle TimesTen In-Memory Database C Developer's Guide

ttRepStateGet

Description

This procedure returns the current replication state of a database in an active standby pair.

Required privilege

This procedure requires no privilege.

Syntax

ttRepStateGet()

Parameters

ttRepStateGet has no parameters.

Result set

ttRepStateGet returns the result:

	Column	Type	Description
	state	TT_VARCHAR (20) NOT NULL	The current replication state of the database. One of:
ACTIVE - The database is currently the active master database. Applications may update its replicated tables.

STANDBY - The database is the standby master database. Applications may only update its non-replicated tables.

FAILED - The database is a failed master database. No updates are replicated to it.

IDLE - The database has not yet been assigned its role in the active standby pair. It cannot be updated by applications or replication. Every store comes up in the IDLE state.

RECOVERING - The store is in the process of synchronizing updates with the active store after a failure.

	gridState	TT_VARCHAR (20) NOT NULL	The current grid state of the database. One of:
NO GRID - The node is not attached.

AVAILABLE - The node is attached and the role of the node is consistent with the replication store state, either active or standby. Operations that could cause ownership change can be performed. These operations include AGING, DELETE, INSERT, LOAD, SELECT, and UNLOAD.

IN TRANSITION - The node is attached and is in transition to active state from standby state. This state can occur during the failover of an active standby state. The replication store is active but not available for operations that can change ownership. Operations that can change ownership are disallowed.

UNAVAILABLE - The node is attached but could not be switched to active grid state during the last failover due to an error. Replication store state is already in active state, but operations that can change ownership are disallowed. The user must fix the error condition and explicitly execute the ttGridAttach procedure to bring the node to active state.

Examples

To determine the replication and the grid state of the active standby pair, use:

Call ttRepStateGet();
<STANDBY, NO GRID>

Call ttRepStateGet();
<ACTIVE, NO GRID>

Call ttRepStateGet();
<ACTIVE, AVAILABLE>

Call ttRepStateGet();
<ACTIVE, UNAVAILABLE>

See also

ttRepDeactivate

ttRepTransmitSet

ttReplicationStatus

ttRepPolicySet

ttRepStateSave

ttRepStateSet

ttRepStop

ttRepSubscriberStateSet

ttRepSubscriberWait

"ttRepDuplicateEx" in Oracle TimesTen In-Memory Database C Developer's Guide

ttRepStateSave

Description

This procedure saves the state of a remote peer database in an active standby pair to the currently connected database. Currently, may only be used to indicate to the active database that the standby database, storeName on hostName, has failed, and that all updates on the active database should be replicated directly to the read-only subscribers.

Required privilege

This procedure requires the ADMIN privilege.

Syntax

ttRepStateSave('state', 'storeName', 'hostName')

Parameters

ttRepStateSave has these parameters:

	Parameter	Type	Description
	state	TT_VARCHAR (20) NOT NULL	The replication state of the indicated database. May only be specified as FAILED in this release. Recording that a standby database has failed indicates that all replicated updates are to be sent directly from the active database to the read-only subscribers.
	storeName	TT_VARCHAR (200) NOT NULL	Name of the database for which the state is indicated.
	hostName	TT_VARCHAR (200)	Name of the host where the database resides.

Result set

ttRepStateSave returns no results.

Examples

To indicate to the active database that the standby database standby on host backup1 has failed, use:

ttRepStateSave('FAILED', 'standby', 'backup1');

See also

ttRepDeactivate

ttRepTransmitSet

ttReplicationStatus

ttRepPolicySet

ttRepStateGet

ttRepStateSet

ttRepStop

ttRepSubscriberStateSet

ttRepSubscriberWait

ttRepSyncGet

ttRepSyncSet

"ttRepDuplicateEx" in Oracle TimesTen In-Memory Database C Developer's Guide

ttRepStateSet

Description

This procedure sets the replication state of a database in an active standby pair replication scheme. Currently, ttRepStateSet may only be used to set the state of a database to ACTIVE, indicating that it is to take the active role in an active standby pair. ttRepStateSet may only be executed in the following situations:

	
A database has had a CREATE ACTIVE STANDBY PAIR command executed and no failures have occurred since.

	
A database is currently in the STANDBY state, and the other database in the active standby pair has had its state changed from ACTIVE to IDLE using the ttRepDeactivate procedure.

	
A database has just recovered from the local transaction log and was in the ACTIVE state before it went down.

Required privilege

This procedure requires the ADMIN privilege.

Syntax

ttRepStateSet('state')

Parameters

ttRepStateSet has the parameter:

	Parameter	Type	Description
	state	TT_VARCHAR (20) NOT NULL	The replication state of the database. Must be ACTIVE, in this release. Setting a store to ACTIVE designates it as the active database in an active standby pair.

Result set

ttRepStateSet returns no results.

Examples

To set the replication state of the database to ACTIVE, use:

CALL ttRepStateSet('ACTIVE');

See also

ttRepDeactivate

ttRepTransmitSet

ttReplicationStatus

ttRepPolicySet

ttRepStateGet

ttRepStateSave

ttRepStop

ttRepSubscriberStateSet

ttRepSubscriberWait

ttRepSyncGet

ttRepSyncSet

"ttRepDuplicateEx" in Oracle TimesTen In-Memory Database C Developer's Guide

ttRepStop

Description

This procedure stops the TimesTen replication agent for the connected database.

Required privilege

This procedure requires the CACHE_MANAGER privilege.

Syntax

ttRepStop()

Parameters

ttRepStop has no parameters.

Result set

ttRepStop returns no results.

Examples

To stop the replication agent, use:

CALL ttRepStop();

Notes

When using this procedure, no application, including the application making the call, can be holding a connection that specifies database-level locking (LockLevel=1).

See also

ttRepDeactivate

ttRepTransmitSet

ttReplicationStatus

ttRepPolicySet

ttRepStart

ttRepSubscriberStateSet

ttRepSubscriberWait

ttRepSyncGet

ttRepSyncSet

"ttRepDuplicateEx" in Oracle TimesTen In-Memory Database C Developer's Guide

ttRepSubscriberStateSet

Description

This procedure changes a replicating subscriber's state with respect to the executing master store.

Required privilege

This procedure requires the ADMIN privilege.

Syntax

ttRepSubscriberStateSet('replicationName', 'replicationOwner',
 'subscriberStoreName', 'subscriberHostName', newStateCode)

Parameters

ttRepSubscriberStateSet has these parameters:

	Parameter	Type	Description
	replicationName	TT_CHAR (30)	The name of the replication scheme on which to operate. May be NULL to indicate all replication schemes.
	replicationOwner	TT_CHAR (30)	The owner of the replication scheme. May be NULL to indicate all replication scheme owners.
	subscriberStoreName	TT_VARCHAR (200)	The name of the subscribing database whose state is to be set. May be NULL to indicate all stores on host subscriberHostName.
	subscriberHostName	TT_VARCHAR (200)	The subscriber's host. May be NULL to indicate all hosts of subscribing peers.
	newStateCode	TT_INTEGER	An integer code representing the specified subscriber's new state:
0/NULL - Start (default). Starts replication to the subscriber.

1 - Pause. Pauses the replication agent, preserving updates.

2 - Stop. Stops replication to the subscriber, discarding updates.

All other state codes are disallowed. (This procedure cannot set a subscriber state to "failed.") "Setting the replication state of subscribers" in the Oracle TimesTen In-Memory Database Replication Guide for more information.

Result set

ttRepSubscriberStateSet returns no results.

Examples

For the replication scheme named REPL.REPSCHEME, the following directs the master database to set the state of the subscriber database (SUBSCRIBERDS ON SYSTEM1) to Stop (2):

CALL ttRepSubscriberStateSet('REPSCHEME', 'REPL',
'SUBSCRIBERDS','SYSTEM1', 2);

To direct the master database to set the state of all its subscribers to Pause (1), use:

CALL ttRepSubscriberStateSet(, , , , 1);

Leaving a parameter empty is equivalent to using NULL.

See also

ttRepDeactivate

ttRepTransmitSet

ttReplicationStatus

ttRepPolicySet

ttRepStart

ttRepStop

ttRepSubscriberWait

ttRepTransmitGet

ttRepTransmitSet

"ttRepDuplicateEx" in Oracle TimesTen In-Memory Database C Developer's Guide

ttRepSubscriberWait

Description

This procedure causes the caller to wait until all transactions that committed before the call have been transmitted to the subscriber subscriberStoreName. It also waits until the subscriber has acknowledged that the updates have been durably committed at the subscriber database.

Call this procedure in a separate transaction, when no other transaction is pending on the active database. This call returns an error if any transactions on the active database are open.

If you set the waitTime parameter to -1 and the subscriberStoreName parameter to NULL, the ttRepSubscriberWait procedure does not return until all updates committed up until the time of the procedure call have been transmitted to all subscribers, and all subscribers have acknowledged that the updates have been durably committed.

The ttRepSubscriberWait procedure should not be used when an urgent response is required. Instead, you should use the return receipt service.

	
Note:

If this procedure is called after all write transaction activity is quiesced at a store (there are no active transactions and no transactions have started), it may take 60 seconds or longer before the subscriber sends the acknowledgment that all updates have been durably committed at the subscriber.

Required privilege

This procedure requires no privilege.

Syntax

ttRepSubscriberWait('replicationName', 'replicationOwner',
'subscriberStoreName', 'subscriberHostName', waitTime)

Parameters

ttRepSubscriberWait has these parameters:

	Parameter	Type	Description
	replicationName	TT_CHAR (30)	The name of the replication scheme on which to operate. May be NULL to indicate all replication schemes.
	replicationOwner	TT_CHAR (30)	The owner of the replication scheme. May be NULL to indicate all replication scheme owners.
	subscriberStoreName	TT_VARCHAR (200)	The name of the subscribing database whose state is to be set. May be NULL to indicate all stores on host subscriberHostName.
	subscriberHostName	TT_VARCHAR(200)	The subscriber's host. May be NULL to indicate all hosts of subscribing peers.
	waitTime	TT_INTEGER NOT NULL	Number of seconds to wait for the specified subscriber(s). A value of -1 indicates to wait forever. This parameter is required and may not be NULL.

Result Set

ttRepSubscriberWait returns the result set:

	Column	Type	Description
	timeOut	BINARY(1)	0x00 - The wait succeeded within the allotted waitTime; the specified subscribers are up to date at the time this procedure was called. TimesTen returns 0x01 if not enough time has been granted.

Examples

If there is one defined replication scheme REPOWNER.REPSCHEME, to direct the transmitting database to wait ten minutes for subscriber REP2 on SERVER2 to catch up, use:

CALL ttRepSubscriberWait('REPSCHEME','REPOWNER',
'REP2', 'SERVER2', 600);

See also

ttRepDeactivate

ttRepTransmitSet

ttReplicationStatus

ttRepPolicySet

ttRepStart

ttRepStop

ttRepSubscriberStateSet

ttRepSyncGet

ttRepSyncSet

"ttRepDuplicateEx" in Oracle TimesTen In-Memory Database C Developer's Guide

ttRepSyncGet

Description

This procedure returns static attributes associated with the caller's use of the replication- based return service. This procedure operates with either the RETURN RECEIPT or RETURN TWOSAFE service.

Required privilege

This procedure requires no privilege.

Syntax

ttRepSyncGet()

Parameters

ttRepSyncGet has no parameters.

Result set

ttRepSyncGet returns the result set:

	Column	Type	Description
	requestReturn	BINARY(1)descr	0 (default) - Don't wait for return notification configured with the RETURN RECEIPT BY REQUEST or RETURN TWOSAFE BY REQUEST option.
1 - Wait for the return notification. Commit resets this attribute to its default value of 0 ("off").

	returnWait	TT_INTEGER	Specifies the number of seconds to wait for return service acknowledgment. The default value is 10 seconds. A value of `0' means that there is no wait time.This attribute persists across transaction boundaries and applies to all RETURN services independent of the BY REQUEST option.
	localAction	TT_INTEGER	The current LOCAL ACTION configuration for RETURN services.
1 (default) - NO ACTION. When a COMMIT times out, it returns the application unblocked, leaving the transaction in the same state it was when the COMMIT began. The application may only reissue the COMMIT.

2 - COMMIT. When the COMMIT times out, the transaction is committed locally. No more operations are possible on this transaction, and the replicated databases diverge.This attribute persists across transactions and for the life of the connection.

Examples

To retrieve the caller's requestReturn value, use:

SQLCHAR requestReturn[1];
SQLINTEGER len;
rc = SQLExecDirect (hstmt
 , (SQLCHAR *) "{CALL ttRepSyncGet(NULL)}"
 , SQL_NTS)
rc = SQLBindCol (hstmt
 , /* ColumnNumber */ 1
 , /* TargetType */ SQL_C_BINARY)
 , /* TargetValuePtr */ requestReturn
 ,./* BufferLength */ sizeof requestReturn
 , /* StrLen_ */ &len);
rc = SQLFetch(hstmt);
if (requestReturn[0]) {
...
}

Notes

When called within a standalone transaction, ttRepSyncGet always returns the default value for requestReturn.

Applications can call ttRepSyncGet at any point within a transaction in which it is used to request the BY REQUEST return service for that transaction.

If you call ttRepSyncGet in a transaction that does not update any RETURN RECEIPT BY REQUEST or RETURN TWOSAFE BY REQUEST replication elements, the call has no external effect.

See also

ttRepDeactivate

ttRepTransmitSet

ttReplicationStatus

ttRepPolicySet

ttRepStart

ttRepStop

ttRepSubscriberStateSet

ttRepSubscriberWait

ttRepSyncSet

"ttRepDuplicateEx" in Oracle TimesTen In-Memory Database C Developer's Guide

ttRepSyncSet

Description

This procedure sets static attributes associated with the caller's use of the replication-based return service. This procedure operates with either the RETURN RECEIPT or RETURN TWOSAFE service.

Required privilege

This procedure requires no privilege.

Syntax

ttRepSyncSet([requestReturn], [returnWait], [localAction])

Parameters

ttRepSyncSet has these optional parameters:

	Parameter	Type	Description
	requestReturn	BINARY(1)	0x00 - Turn off the return service for the current transaction.
0x01 - Turn on return services for the current transaction. Committing the transaction resets this attribute to its default value of 0 ("off").

You can use this parameter to turn on or turn off return services only when the replication subscribers have been configured with RETURN RECEIPT BY REQUEST or RETURN TWOSAFE BY REQUEST.

	returnWait	TT_INTEGER	Specifies the number of seconds to wait for return service acknowledgment. The default value is 10. A value of 0 means there is no wait time.
This timeout value overrides the value set by the RETURN WAIT TIME attribute in the CREATE REPLICATION or ALTER REPLICATION statement.

The timeout set by this parameter persists across transaction boundaries and applies to all return services independent of the BY REQUEST option.

	localAction	TT_INTEGER	Action to be performed in the event the subscriber cannot acknowledge commit of the transaction within the timeout period specified by returnWait. This parameter can only be used for return twosafe transactions. Set to NULL when using the RETURN service.
1 (default) - NO ACTION. When a COMMIT times out, it returns the application unblocked, leaving the transaction in the same state it was when the COMMIT began,. The application may only reissue the COMMIT.

2 - COMMIT. When the COMMIT times out, the transaction is committed locally. No more operations are possible on this transaction, and the replicated databases diverge.This attribute persists across transactions and for the life of the connection.

Result set

ttRepSyncSet has no result set.

Examples

To enable the return receipt service in the current transaction for all the replication elements configured with RETURN RECEIPT BY REQUEST or RETURN TWOSAFE BY REQUEST, use:

rc = SQLExecDirect (hstmt,
 (SQLCHAR *)"{CALL ttRepSyncSet(0x01)}",
 SQL_NTS)

Notes

The call to enable the return receipt service must be part of the transaction (AutoCommit must be off).

See also

ttRepDeactivate

ttRepTransmitSet

ttReplicationStatus

ttRepPolicySet

ttRepStart

ttRepStop

ttRepSubscriberStateSet

ttRepSubscriberWait

ttRepSyncGet

"ttRepDuplicateEx" in Oracle TimesTen In-Memory Database C Developer's Guide

ttRepSyncSubscriberStatus

Description

This procedure queries a subscriber database in a replication scheme configured with a return service and a RETURN DISABLE failure policy to determine whether return service blocking for the subscriber has been disabled by the failure policy.

The ttRepSyncSubscriberStatus procedure returns the failure status of the subscriber database with the specified name on the specified host. You can specify only the storeName. However, an error is generated if the replication scheme contains multiple subscribers with the same name on different hosts.

Required privilege

This procedure requires no privilege.

Syntax

ttRepSyncSubscriberStatus('subscriber', 'hostName')

Parameters

ttRepSyncSubscriberStatus has these parameters:

	Parameter	Type	Description
	subscriber	TT_VARCHAR (200) NOT NULL	The name of the subscribing database to be queried.
	hostName	TT_VARCHAR (200)	The host name of one or more stores that are configured to receive updates from the executing store; if NULL, then receiving stores are identified by receiver alone. If both receiver and host name are NULL, then all receiving stores are selected.

Result set

ttRepSyncSubscriberStatus returns:

	Column	Type	Description
	disabled	TT_INTEGER	Value is either:
1 - The return service has been disabled on the subscriber database.

0 - The return service is still enabled on the subscriber database.

Notes

If the replication scheme specifies DISABLE RETURN ALL, then you must use ttRepSyncSubscriberStatus to query the status of each individual subscriber in the replication scheme.

ttRepTransmitGet

Description

This procedure returns the status of transmission of updates to subscribers for the current transaction. The corresponding ttRepSyncSet built-in procedure enables you to stop transmission of updates to subscribers for the length of a transaction.

Required privilege

This procedure requires the ADMIN privilege.

Syntax

ttRepTransmitGet()

Parameters

ttRepTransmitGet has no parameters.

Result set

ttRepTransmitGet returns the result:

	Column	Type	Description
	transmit	TT_INTEGER	0 - Updates are not being transmitted to any subscribers for the remainder of the transaction on the connection.
1 (default) - Updates are being transmitted to subscribers on the connection.

Examples

To return the transmit status on the active database in an active standby pair, use:

CALL ttRepTransmitGet();

See also

ttRepDeactivate

ttReplicationStatus

ttRepPolicySet

ttRepStateSave

ttRepStateSet

ttRepStop

ttRepSubscriberStateSet

ttRepSubscriberWait

ttRepTransmitSet

"ttRepDuplicateEx" in Oracle TimesTen In-Memory Database C Developer's Guide

ttRepTransmitSet

Description

This procedure stops subsequent updates on the connection it is executed in from being replicated to any subscriber. Use this procedure with care since it could easily lead to transactional inconsistency of remote stores if partial transactions are replicated. If updates are disallowed from getting replicated, the subscriber stores diverge from the master store.

Required privilege

This procedure requires the ADMIN privilege.

Syntax

ttRepTransmitSet(transmit)

Parameters

ttRepTransmitSet has the parameter:

	Parameter	Type	Description
	transmit	TT_INTEGER NOT NULL	When set to 1, updates are transmitted to subscribers on the connection after the built-in is executed. (This is the default.)
When set to 0, updates are not transmitted to any subscribers for the remainder of the transaction in which this call was issued on the connection that issued it.

Result set

ttRepTransmitSet returns no results.

Examples

To activate the active database in an active standby pair, use:

CALL ttRepTransmitSet(1);

To deactivate the active database in an active standby pair, use:

CALL ttRepTransmitSet(0);

See also

ttRepDeactivate

ttReplicationStatus

ttRepPolicySet

ttRepStateSave

ttRepStateSet

ttRepStop

ttRepSubscriberStateSet

ttRepSubscriberWait

ttRepTransmitGet

"ttRepDuplicateEx" in Oracle TimesTen In-Memory Database C Developer's Guide

ttRepXactStatus

Description

This procedure checks on the status of a RETURN RECEIPT or RETURN TWOSAFE replication transaction. Using the built-in procedure ttRepXactTokenGet, you can get the token of a RETURN RECEIPT or RETURN TWOSAFE transaction. This is then passed as an input parameter to this built-in procedure. Only a token received from ttRepXactTokenGet may be used. The procedure returns a list of rows each of which have three parameters, a subscriber name, the replication status with respect to the subscriber and an error string that is only returned if a RETURN TWOSAFE replication transaction began but did not complete commit processing.

	
Note:

The error parameter is only returned for RETURN TWOSAFE transactions.

Required privilege

This procedure requires no privilege.

Syntax

ttRepXactStatus(xactID)

Parameters

ttRepXactStatus has the parameter:

	Parameter	Type	Description
	xactID	VARBINARY (10000)	If no parameter is specified, status is returned for one of the following:
	
If called in a transaction that has begun, but not completed, commit processing, it returns the status of the transaction.

	
If called at any other time, it returns status for the most recently committed transaction on the connection that was in RETURN RECEIPT or RETURN TWOSAFE mode.

Result set

ttRepXactStatus returns the result set:

	Column	Type	Description
	subscriberName	TT_CHAR (61)	The name of the database that subscribes to tables updated in the transaction. The name returns as: store_name@host_name.
	state	TT_CHAR (2)	The state of the transaction with respect to the subscribing database. The return values are one of the following:
'NS' - Transaction not sent to the subscriber.

'RC' - Transaction received by the subscriber agent.

'CT' - Transaction applied at the subscriber store. (Does not convey whether the transaction ran into an error when being applied.)

'AP' - Transaction has been durably applied on the subscriber.

	errorString	TT_VARCHAR (2000)	Error string retuned by the subscriber agent describing the error it encountered when applying the twosafe transaction. If no error is encountered, this parameter is NULL. Non-null values are only returned when this procedure is called inside a twosafe replication transaction that has begun, but has not yet completed, processing a commit.

See also

ttRepDeactivate

ttRepTransmitSet

ttReplicationStatus

ttRepPolicySet

ttRepStart

ttRepStop

ttRepSubscriberStateSet

ttRepSubscriberWait

ttRepSyncGet

ttRepSyncSet

ttRepXactTokenGet

"ttRepDuplicateEx" in Oracle TimesTen In-Memory Database C Developer's Guide

ttRepXactTokenGet

Description

This procedure returns a token for RETURN RECEIPT or RETURN TWOSAFE replication transactions. Depending on the input parameter, type, it returns either:

	
A token to the most recently committed RETURN RECEIPT transaction on the connection handle in which it is invoked.

	
A token to the most recent transaction on the connection handle in which it is invoked that has begun commit processing on a transaction in RETURN TWOSAFE mode.

This procedure can be executed in any subsequent transaction or in the same transaction after commit processing has begun for a transaction in RETURN TWOSAFE replication.

Required privilege

This procedure requires no privilege.

Syntax

ttRepXactTokenGet('type')

Parameters

ttRepXactTokenGet has these parameters:

	Parameter	Type	Description
	type	TT_CHAR (2) NOT NULL	The type of transaction desired:
'RR' - Return receipt.

'R2' - Return twosafe.

Result set

ttRepXactTokenGet returns the result set:

	Column	Type	Description
	token	VARBINARY (10000)	A VARBINARY token used to represent the transaction desired.

See also

ttRepDeactivate

ttRepTransmitSet

ttReplicationStatus

ttRepPolicySet

ttRepStart

ttRepStop

ttRepSubscriberStateSet

ttRepSubscriberWait

ttRepSyncGet

ttRepSyncSet

ttRepXactStatus

"ttRepDuplicateEx" in Oracle TimesTen In-Memory Database C Developer's Guide

ttSetUserColumnID

Description

This procedure explicitly sets the value for the user-specified column ID. Updates presented to the application by the Transaction Log API may contain information about the columns of a table. This column information contains a system-specified column number and a user-specified column identifier. The user-specified column ID has the value 0 until set explicitly by this call.

The system assigns an ID to each column during a CREATE TABLE or ALTER TABLE operation. Setting a user-assigned value for the column ID enables you to have a unique set of column numbers across the entire database or a specific column numbering system for a given table.

Required privilege

This procedure requires the XLA privilege.

Syntax

ttSetUserColumnID('tblName', 'colName', repID)

Parameters

ttSetUserColumnID has these parameters:

	Parameter	Type	Description
	tblName	TT_CHAR(61) NOT NULL	Table name.
Using a synonym to specify a table name is not supported.

	colName	TT_CHAR(30) NOT NULL	Column name.
	repID	TT_INTEGER NOT NULL	Integer identifier.

Result set

ttSetUserColumnID returns no results.

Examples

CALL ttSetUserColumnID('APP.SESSION', 'SESSIONID', 15);

See also

ttSetUserTableID

Oracle TimesTen In-Memory Database Replication Guide

ttSetUserTableID

Description

This procedure explicitly sets the value of the user table ID. The table that each row is associated with is expressed with two codes: an application-supplied code called the user table ID and a system-provided code called the system table ID. Updates are presented to the application by the Transaction Log API in the form of complete rows. The user table ID has the value zero until explicitly set with the ttSetUserTableID procedure.

Required privilege

This procedure requires the XLA privilege.

Syntax

ttSetUserTableID('tblName', repID)

Parameters

ttSetUserTableID has these parameters:

	Parameter	Type	Description
	tblName	TT_CHAR (61) NOT NULL	Table name.
Using a synonym to specify a table name is not supported.

	repID	BINARY(8) NOT NULL	Integer identifier.

Result set

ttSetUserTableID returns no results.

Examples

CALL ttSetUserTableID('APP.SESSION', 0x123456);

See also

ttSetUserColumnID

Oracle TimesTen In-Memory Database Replication Guide

ttSize

Description

This procedure estimates the size of a table or view and the size of indexes. It returns a single row with a single DOUBLE column with the estimated number of bytes for the table. The table can be specified as either a table name or a fully qualified table name. A non-NULL nrows parameter causes the table size to be estimated assuming the statistics of the current table scaled up to the specified number of rows. If the nrows parameter is NULL, the size of the table is estimated with the current number of rows.

The current contents of the table are scanned to determine the average size of each VARBINARY and VARCHAR column. If the table is empty, the average size of each VARBINARY and VARCHAR column is estimated to be one-half its declared maximum size. The estimates computed by ttSize include storage for the table itself, VARBINARY and VARCHAR columns and all declared indexes on the table.

The table is scanned when this built-in procedure is called. The scan of the table can be avoided by specifying a non-NULL frac value, which should be between 0 and 1. This value estimates the average size of varying-length columns. The maximum size of each varying-length column is multiplied by the frac value to compute the estimated average size of VARBINARY or VARCHAR columns. If the frac parameter is not given, the existing rows in the table are scanned and the average length of the varying-length columns in the existing rows is used. If frac is omitted and the table has no rows in it, then frac is assumed to have the value 0.5.

Required privilege

This procedure requires the SELECT privilege on the specified table.

Syntax

ttSize('tblName', [nRows], frac)

Parameters

ttSize has these parameters:

	Parameter	Type	Description
	tblName	TT_CHAR(61) NOT NULL	Name of an application table. Can include table owner. This parameter is required.
Using a synonym to specify a table name is not supported.

	nRows	TT_INTEGER	Number of rows to estimate in a table. This parameter is optional.
	frac	BINARY_DOUBLE	Estimated average fraction of VARBINARY or VARCHAR column sizes. This parameter is optional.

Result set

ttSize returns the following result set.

	Column	Type	Description
	size	BINARY_DOUBLE NOT NULL	Estimated size of the table, in bytes.

Examples

CALL ttSize('ACCTS', 1000000, NULL);

CALL ttSize('ACCTS', 30000, 0.8);

CALL ttSize('SALES.FORECAST', NULL, NULL);

When using ttSize, you must first execute the command and then fetch the results. For example:

ODBC

double size;
SQLLEN len;

rc = SQLExecDirect(hstmt, "call ttSize('SalesData', 250000,
0.75)", SQL_NTS);
rc = SQLBindColumn(hstmt, 1, SQL_C_DOUBLE, &size, sizeof double,
&len);
rc = SQLFetch(hstmt);
rc = SQLFreeStmt(hstmt, SQL_CLOSE);

JDBC

.
String URL="jdbc:timesten:MyDataStore";
Connection con;
double tblSize=0;
.
con = DriverManager.getConnection(URL);
CallableStatement cStmt = con.prepareCall("
{CALL ttSize('SalesData', 250000, 0.75) }");
if(cStmt.execute())
 {
 rs=cStmt.getResultSet();
 if (rs.next()) {
 tblSize=rs.getDouble(1);
 }
 rs.close();
 }
cStmt.close();
con.close();

.

Notes

The ttSize procedure enables you to estimate how large a table will be with its full population of rows based on a small sample. For the best results, populate the table with at least 1,000 typical rows.

See also

ttComputeTabSizes

ttSQLCmdCacheInfo

Description

This procedure returns information about all prepared SQL statements in the TimesTen SQL command cache.

Required privilege

This procedure requires the ADMIN privilege.

Syntax

ttSQLCmdCacheInfo([sqlCmdID])

Parameters

ttSQLCmdCacheInfo has the optional parameter:

	Parameter	Type	Description
	sqlCmdID	TT_INTEGER for 32-bit systems
TT_BIGINT for 64-bit systems

	The unique identifier of a SQL command in the TimesTen command cache. If no value is supplied, information is displayed for all commands.

Result set

ttSQLCmdCacheInfo returns the result set:

	Column	Type	Description
	sqlCmdID	TT_INTEGER NOT NULL for 32-bit systems
TT_BIGINT NOT NULL for 64-bit systems

	The unique identifier of a command.
	privateCommandConnectionID	TT_INTEGER	If the command is private, this is the connection ID of the connection where it was prepared. If not a private command, this value is 2048.
	executions	TT_BIGINT
NOT NULL

	Counts the number of executions of the command.
	prepares	TT_BIGINT NOT NULL	Counts the number of prepares for the command.
	reprepares	TT_BIGINT NOT NULL	Counts the number of reprepares for the command.
	freeable	TT_TINYINT NOT NULL	Indicates whether this command can be garbage collected by the subdaemon.
1 - Indicates freeable.

0 - Indicates non-freeable.

	size	TT_INTEGER NOT NULL	The total space (bytes) allocated for this command in the command cache.
	owner	TT_CHAR(31) NOT NULL	The user who created the command.
	queryText	TT_VARCHAR (409600) NOT NULL	The full SQL text for the current command.

Examples

To display command information in ttIsql for all the current valid commands, use:

Command> call ttsqlcmdcacheinfo;
< 51635464, 2048, 12, 12, 0, 1, 3056, SYS , delete fr
om sys.idl_sb4$ where obj#=:1 and part=:2 >
< 43437072, 2048, 5, 5, 0, 1, 1960, SYS , select obj#
 from sys.objerror$ >
< 51620736, 2048, 4, 4, 0, 1, 2736, SYS , delete from
 sys.obj$ where obj# = :1 >
< 51680216, 2048, 1, 1, 0, 1, 3592, BWAF4EVR , call ttsqlc
mdcacheinfo(51623232) >
< 51676856, 2048, 2, 2, 0, 0, 3552, BWAF4EVR , call ttsqlc
mdcacheinfo >
< 43438936, 2048, 5, 5, 0, 1, 3200, SYS , select obj#
 from sys.syn$ where owner=:1 and name=:2 >
< 44066504, 2048, 0, 14, 0, 1, 5640, SYS , select nul
l from sys.obj$ where obj#=:1 and type#=:2 and obj# not in (select p_obj# from d
ependency$ where p_obj# = sys.obj$.obj#) >
< 51649488, 2048, 1, 1, 0, 1, 2344, BWAF4EVR , create tabl
e tab1 (c1 number primary key not null, c2 number) >
< 51671608, 2048, 1, 1, 0, 1, 4656, BWAF4EVR , call ttSQLC
mdCacheInfo2(51635464) >
< 51666232, 2048, 1, 1, 0, 1, 2048, BWAF4EVR , call ttSQLC
mdCacheInfoGet >
< 51612064, 2048, 4, 4, 0, 1, 8424, SYS , select o.ow
ner#, o.name, o.namespace, o.obj#, d.d_timestamp, nvl(d.property,0), o.type#,
 d.d_attrs from sys.dependency$ d, sys.obj$ o where d.p_obj#=:1 and (d.p_ti
mestamp=nvl(:2,d.p_timestamp) or d.property=2) and o.owner#=nvl(:3,o.owner#)
 and d.d_obj#=o.obj# order by o.obj# >
< 43415648, 2048, 4, 4, 0, 1, 4544, BWAF4EVR , create acti
ve standby pair sampledb_1122, bwaf4evr_dummy1 subscriber bwaf4evr_dummy2 >
< 43431912, 2048, 5, 5, 0, 1, 4720, SYS , select owne
r#,name,namespace,obj#,type#,ctime,mtime,stime,status,flags from sys.obj$ where
obj#=:1 >
< 51657712, 2048, 4, 4, 0, 1, 3552, BWAF4EVR , call ttSQLC
mdCacheInfo >
< 51653200, 2048, 1, 1, 0, 1, 1816, BWAF4EVR , call ttxlab
ookmarkcreate('mybookmark', 0x01) >
< 43420768, 2048, 1, 1, 0, 1, 2064, BWAF4EVR , create tabl
e tab1 (c1 number, c2 number) >
< 44058168, 2048, 14, 14, 0, 1, 7760, SYS , select o.
owner#,o.obj#,u.name,o.name,o.namespace from sys.user$ u, sys.obj$ o where u.use
r#=o.owner# and o.type#=:1 and not exists (select p_obj# from sys.dependen
cy$ where p_obj# = o.obj#) order by o.obj# for update >
< 49370616, 2048, 1, 1, 0, 0, 4024, SYS , select u.us
er#, u.password, u.identification, u.astatus from sys.user$ u where u.name = :na
me and u.type# = 1 >
< 51655376, 2048, 2, 2, 0, 1, 2528, BWAF4EVR , select * fr
om tab1 >
< 51638280, 2048, 4, 4, 0, 1, 2544, SYS , delete from
 sys.objauth$ where obj#=:1 >
< 43423200, 2048, 14, 14, 0, 1, 5520, SYS , select ow
ner#,name,namespace,obj#,type#,ctime,mtime,stime,status,flags from sys.obj$ wher
e owner#=:1 and name=:2 and namespace=:3 >
< 51668216, 2048, 1, 1, 0, 1, 3592, BWAF4EVR , call ttSQLC
mdCacheInfo(51635464) >
< 51661208, 2048, 3, 3, 0, 1, 4640, BWAF4EVR , call ttSQLC
mdCacheInfo2 >
< 43428992, 2048, 5, 5, 0, 1, 2800, SYS , select sys.
objectSequence.nextval from dual >
< 51629120, 2048, 12, 12, 0, 1, 3040, SYS , delete fr
om sys.idl_char$ where obj#=:1 and part=:2 >
< 51641192, 2048, 2, 2, 0, 1, 2112, BWAF4EVR , create tabl
e tab1 (c1 number not null, c2 number) >
< 43442488, 2048, 5, 5, 0, 1, 4616, SYS , insert into
 sys.obj$(owner#,name,namespace,obj#,type#,ctime,mtime,stime,status,flags) value
s(:1,:2,:3,:4,:5,:6,:7,:8,:9,:10) >
< 51632072, 2048, 12, 12, 0, 1, 3040, SYS , delete fr
om sys.idl_ub2$ where obj#=:1 and part=:2 >
< 49375216, 2048, 0, 1, 0, 0, 4232, SYS , select 1 fr
om sys.sysauth$ s where (s.grantee# = :userid or s.grantee# = 1) and (s.privileg
e# = :priv or s.privilege# = 67) >
< 51626304, 2048, 12, 12, 0, 1, 3040, SYS , delete fr
om sys.idl_ub1$ where obj#=:1 and part=:2 >
< 51645776, 2048, 1, 1, 0, 1, 2344, BWAF4EVR , create tabl
e tab1 (c1 number primary key not null, col2 number) >
< 51623232, 2048, 4, 4, 0, 1, 2704, SYS , delete from
 sys.source$ where obj#=:1 >
32 rows found.

To display command information in ttIsql for sqlCmdID 527973892, use:

Command> call ttSQLCmdCacheInfo(527973892);
< 527973892, 2048, 0, 1, 0, 1, 2872, TTUSER,
select * from t1 where x1 in (select x2 from t2) or
x1 in (select x3 from t3) order by 1, 2, 3 >
1 row found.

To display the information formatted vertically in ttIsql, use:

Command> vertical call ttSQLCmdCacheInfo;
...

To display the information vertically in ttIsql for sqlCmdID 51623232, use:

Command> vertical call ttsqlcmdcacheinfo(51623232);

 SQLCMDID: 51623232
 PRIVATE_COMMAND_CONNECTION_ID: 2048
 EXECUTIONS: 4
 PREPARES: 4
 REPREPARES: 0
 FREEABLE: 1
 SIZE: 2704
 OWNER: SYS
 QUERYTEXT: delete from sys.source$ where obj#=:1

1 row found.

See also

ttSQLCmdCacheInfo2

ttSQLCmdCacheInfoGet

ttSQLCmdCacheInfo2

Description

This procedure returns information about all prepared SQL statements in the TimesTen SQL command cache.

It is similar to ttSQLCmdCacheInfo, but returns additional columns, as indicated by the result set documentation.

Required privilege

This procedure requires the ADMIN privilege.

Syntax

ttSQLCmdCacheInfo2([sqlCmdID])

Parameters

ttSQLCmdCacheInfo2 has the optional parameter:

	Parameter	Type	Description
	sqlCmdID	TT_INTEGER for 32-bit systems
TT_BIGINT for 64-bit systems

	The unique identifier of a SQL command in the TimesTen command cache. If no value is supplied, information is displayed for all commands.

Result set

ttSQLCmdCacheInfo2 returns the result set:

	Column	Type	Description
	sqlCmdID	TT_INTEGER NOT NULL for 32-bit systems
TT_BIGINT NOT NULL for 64-bit systems

	The unique identifier of a command.
	privateCommandConnectionID	TT_INTEGER	If the command is private, this is the connection ID of the connection where it was prepared. If not a private command, this value is 2048.
	executions	TT_BIGINT
NOT NULL

	Counts the number of executions of the command.
	prepares	TT_BIGINT NOT NULL	Counts the number of prepares for the command.
	reprepares	TT_BIGINT NOT NULL	Counts the number of reprepares for the command.
	freeable	TT_TINYINT NOT NULL	Indicates whether this command can be garbage collected by the subdaemon.
1 - Indicates freeable.

0 - Indicates non-freeable.

	size	TT_INTEGER NOT NULL	The total space (bytes) allocated for this command in the command cache.
	owner	TT_CHAR(31) NOT NULL	The user who created the command.
	queryText	TT_VARCHAR (409600) NOT NULL	The full SQL text for the current command.
	fetchCount	TT_BIGINT	The total number of fetch executions done for this statement. The number of fetches depends on TT_PREFETCH_COUNT. The pre-fetch count has a default value of 5 in Read Committed isolation mode and a default of 128 in Serializable mode.
	startTime	TT_TIMESTAMP	The time when the statement was last executed. The value is in the form: YYYY-MM-DD HH:MI:SS.FFF
	maxExecuteTime	NUMBER	The maximum wall clock execute time in seconds for this statement.
	lastExecuteTime	NUMBER	Last measured execution time in seconds of the command.
	minExecuteTime	NUMBER	If SqlCmdSampleFactor > 0, minimum execute time in seconds, otherwise 0.0.

Examples

To display command information in ttIsql for all the current valid commands, use:

Command> call ttSQLCmdCacheInfo2;
...

The following example shows the difference in output between ttSQLCmdCacheInfo and ttSQLCmdCacheInfo2:

Command> call ttSQLCmdCacheInfo;
...
< 51635464, 2048, 12, 12, 0, 1, 3056, SYS , delete from
sys.idl_sb4$ where obj#=:1 and part=:2 >
...

Command> call ttSQLCmdCacheInfo2;
...
< 51635464, 2048, 12, 12, 0, 1, 3056, SYS, delete
from sys.idl_sb4$ where obj#=:1 and part=:2, 0,
2013-10-28 16:47:09.173000, 0, 0,
0 >
...

See also

ttSQLCmdCacheInfo

ttSQLCmdCacheInfoGet

ttSQLCmdCacheInfoGet

Description

This procedure displays information about the commands in the TimesTen SQL command cache.

Required privilege

This procedure requires no privilege.

Syntax

ttSQLCmdCacheInfoGet()

Parameters

ttSQLCmdCacheInfoGet has no parameters.

Result set

ttSQLCmdCacheInfoGet returns the result set:

	Column	Type	Description
	cmdCount	TT_INTEGER NOT NULL	Number of commands in the cache.
	freeableCount	TT_INTEGER NOT NULL	Count of number of freeable commands that can be garbage collected by the subdaemon at that moment. This number is obtained by examining the command information.
	size	TT_BIGINT NOT NULL	The current total space allocated to store all the cached commands, in bytes.

Examples

To display the command count, freeable command count, and total space allocated to the command cache, use:

Command> call ttSQLCmdCacheInfoGet;
< 5,4,12316 >
1 row found

See also

ttSQLCmdCacheInfo

ttSQLCmdCacheInfo2

ttSQLCmdQueryPlan

Description

This procedure returns all detailed runtime query plans for SQL statements in the TimesTen SQL command cache. If no argument is supplied, this procedure displays the query plan for all valid commands in the TimesTen cache. For invalid commands, an error is returned that displays the text of the query and the syntax problems.

Required privilege

This procedure requires the ADMIN privilege.

Syntax

ttSQLCmdQueryPlan([sqlCmdID])

Parameters

ttSQLCmdQueryPlan has the optional parameter:

	Parameter	Type	Description
	sqlCmdID	TT_INTEGER for 32-bit systems
TT_BIGINT for 64-bit systems

	The unique identifier of a SQL command in the TimesTen command cache. If no value is supplied displays the query plan for all valid commands in the TimesTen cache.

Result set

ttSQLCmdQueryPlan returns the result set:

	Column	Type	Description
	sqlCmdID	TT_INTEGER NOT NULL for 32-bit systems
TT_BIGINT NOT NULL for 64-bit systems

	The unique identifier of a command in the TimesTen command cache.
	queryText	TT_VARCHAR(409600)	The first 1024 characters of the SQL text for the current command.
	step	TT_INTEGER	The step number of current operation in this run-time query plan.
	level	TT_INTEGER	The level number of current operation in this run-time query plan.
	operation	TT_CHAR(31)	The operation name of the current step in this run-time query plan.
	tblName	TT_CHAR(31)	Name of the table used in this step, if any.
Using a synonym to specify a table name is not supported.

	tblOwnerName	TT_CHAR(31)	Name of the owner of the table used in this step, if any.
	indexName	TT_CHAR(31)	Name of the index used in this step, if any.
	indexedPred	TTVARCHAR(1024)	In this step, if an index is used, the indexed predicate is printed if available. Not all expressions can be printed out and the output may be fragmented and truncated. "..." represents the unfinished portion of the expression.
	nonIndexedPred	TT_VARCHAR(1024)	In this step, if a non-indexed predicate is used, the non-indexed predicate is printed if available. Not all expressions can be printed out and the output may be fragmented and truncated. "..." represents the unfinished portion of the expression.

Examples

To display the query plan for SQLCmdID 528078576:

Command> call ttSqlCmdQueryPlan(528078576);
< 528078576, select * from t1 where 1=2 or (x1 in
(select x2 from t2, t5 where y2 in (select y3 from t3))
and y1 in (select x4 from t4)), <NULL>, <NULL>, <NULL>,
 <NULL>, <NULL>, <NULL>, <NULL>, <NULL> >
< 528078576, <NULL>, 0, 4, RowLkSerialScan , T1 , TTUSER , , , >
< 528078576, <NULL>, 1, 7, RowLkRangeScan , T2 , TTUSER , I2 , , >
< 528078576, <NULL>, 2, 7, RowLkRangeScan , T5 , TTUSER , I2 , , >
< 528078576, <NULL>, 3, 6, NestedLoop , , , , , >
< 528078576, <NULL>, 4, 6, RowLkRangeScan , T3 , TTUSER , I1 ,
((Y3=Y2;)) , >
< 528078576, <NULL>, 5, 5, NestedLoop , , , , , >
< 528078576, <NULL>, 6, 4, Filter , , , , , X1 = X2; >
< 528078576, <NULL>, 7, 3, NestedLoop(Left OuterJoin) , , , , , >
< 528078576, <NULL>, 8, 2, Filter , , , , , >
< 528078576, <NULL>, 9, 2, RowLkRangeScan , T4 , TTUSER , I2 , ,
Y1 = X4; >
< 528078576, <NULL>, 10, 1, NestedLoop(Left OuterJoin) , , , , , >
< 528078576, <NULL>, 11, 0, Filter , , , , , >
13 rows found.

To display query plans for all valid queries, omit the argument for ttSqlCmdQueryPlan:

< 528079360, select * from t7 where x7 is not null
or exists (select 1 from t2,t3 where not 'tuf' like 'abc'),
<NULL>, <NULL>, <NULL>, <NULL>, <NULL>, <NULL>, <NULL>, <NULL> >
< 528079360, <NULL>, 1, 3, RowLkRangeScan , T2
 , TTUSER , I2 , , NOT(LIKE(tuf ,abc ,NULL)) >
< 528079360, <NULL>, 2, 3, RowLkRangeScan , T3 , TTUSER ,
I2 , , >
< 528079360, <NULL>, 3, 2, NestedLoop , , , , , >
< 528079360, <NULL>, 4, 1, NestedLoop(Left OuterJoin) , , , , , >
< 528079360, <NULL>, 5, 0, Filter , , , , , X7 >
< 527576540, call ttSqlCmdQueryPlan(527973892), <NULL>, <NULL>,
<NULL>, <NULL>, <NULL>, <NULL>, <NULL>, <NULL> >
< 527576540, <NULL>, 0, 0, Procedure Call , , , , , >
< 528054656, create table t2(x2 int,y2 int, z2 int), <NULL>,
<NULL>, <NULL>, <NULL>, <NULL>, <NULL>, <NULL>, <NULL> >
< 528066648, insert into t2 select * from t1, <NULL>, <NULL>,
<NULL>, <NULL>, <NULL>, <NULL>, <NULL>, <NULL> >
< 528066648, <NULL>, 0, 0, Insert , T2 , TTUSER , , , >
< 528013192, select * from t1 where exists (
select * from t2 where x1=x2) or y1=1,
<NULL>, <NULL>, <NULL>, <NULL>, <NULL>, <NULL>, <NULL>, <NULL> >
< 528061248, create index i1 on t3(y3), <NULL>, <NULL>, <NULL>,
<NULL>, <NULL>, <NULL>, <NULL>, <NULL> >
< 528070368, call ttOptSetOrder('t3 t4 t2 t1'), <NULL>, <NULL>,
<NULL>, <NULL>, <NULL>, <NULL>, <NULL>, <NULL> >
< 528070368, <NULL>, 0, 0, Procedure Call , , , , , >
< 528018856, insert into t2 select * from t1, <NULL>, <NULL>,
<NULL>, <NULL>, <NULL>, <NULL>, <NULL>, <NULL> >
< 527573452, call ttsqlCmdCacheInfo(527973892), <NULL>, <NULL>,
<NULL>, <NULL>, <NULL>, <NULL>, <NULL>, <NULL> >
< 527573452, <NULL>, 0, 0, Procedure Call , , , , , >
….. /* more rows here */

ttSQLExecutionTimeHistogram

Description

The ttSQLExecutionTimeHistogram built-in procedure returns a histogram of SQL execution times for either a single SQL command or all SQL commands if command cache sampling is enabled.

Required privilege

This procedure requires the ADMIN privilege.

Syntax

ttSQLExecutionTimeHistogram(sqlCommandID)

Parameters

ttSQLExecutionTimeHistogram has the optional parameter:

	Parameter	Type	Description
	sqlCommandID	TT_INTEGER for 32-bit systems
TT_BIGINT for 64-bit systems

	The unique identifier of a SQL command in the TimesTen command cache. If no value is supplied displays information about all current commands in the TimesTen command cache.

Result set

ttSQLExecutionTimeHistogram returns the result set:

	Column	Type	Description
	histogramSamples	TT_BIGINT	The number of SQL command execution time operations have been measured since either the database was started or the ttStatsConfig built-in procedure was used to reset the statistics.
	totalExecuteTime	NUMBER	The accumulated wall clock execution time when sampling in seconds.
	bucketUpperBound	NUMBER	The upper limit in seconds of execution time.
	count	TT_BIGINT	The number of SQL commands with time less than or equal to ExecutionTimeLimit and greater than ExecutionTimeLimit from the previous row or 0.

Examples

The following example shows the output for the ttSQLExecutionTimeHistogram built-in procedure:

The following example of the ttSQLExecutionTimeHistogram built-in procedure shows that a total of 1919 statements executed. The total time for all 1919 statements to execute was 1.090751 seconds. This example shows that SQL statements ran in the following time frames:

	
278 statements executed in a time frame that was less than or equal to .00001562 seconds.

	
1484 statements executed in a time frame that was greater than .00001562 seconds and less than or equal to .000125 seconds.

	
35 statements executed in a time frame that was greater than .000125 seconds and less than or equal to .001 seconds.

	
62 statements executed in a time frame that was greater than .001 seconds and less than or equal to .008 seconds.

	
60 statements executed in a time frame that was greater than .008 seconds and less than or equal to .064 seconds.

Command> call ttSQLExecutionTimeHistogram;
< 1919, 1.090751, .00001562, 278 >
< 1919, 1.090751, .000125, 1484 >
< 1919, 1.090751, .001, 35 >
< 1919, 1.090751, .008, 62 >
< 1919, 1.090751, .064, 60 >
< 1919, 1.090751, .512, 0 >
< 1919, 1.090751, 4.096, 0 >
< 1919, 1.090751, 32.768, 0 >
< 1919, 1.090751, 262.144, 0 >
< 1919, 1.090751, 9.999999999E+125, 0 >
10 rows found.

See also

ttStatsConfig

ttSQLCmdCacheInfo2

ttStatsConfig

Description

The ttStatsConfig built-in procedure controls statistics collection and parameters. This procedure takes a name/value pair as in put and outputs a single row result set corresponding to the name/value pair parameters.

Required privilege

This procedure requires the ADMIN privilege.

Syntax

ttStatsConfig("param", [value])

Parameters

ttStatsConfig has the parameters:

	Parameter	Type	Description
	param	VARCHAR2(50) NOT NULL	The unique identifier of a SQL command in the TimesTen command cache.
	value	VARCHAR2(200)	The value of the specified command. If no value is supplied displays the query plan for all valid commands in the TimesTen cache.

Result set

ttStatsConfig returns the result set:

	Column	Type	Description
	param	VARCHAR2(50) NOT NULL	The unique identifier of a SQL command in the TimesTen command cache.
	value	VARCHAR2(200)	The value of the specified command. If no value was supplied, this is the current value of the command.

Parameter / Value Pairs

These name/value pairs can be returned in the result set:

	Name	Value	Description
	SQLCmdSampleFactor	0 <= value <= 60000	The frequency at which a SQL command sample is taken. The default is 0. A value of 0 indicates that sampling is turned off. A value greater than 0 indicates that a sample is taken at that interval of SQL statements. For example, a value of 10 indicates that for every 10th SQL statement executed, the wall clock time of that execution is captured.
	ConnSampleFactor	C,S
0<=C<=Connections

0<=S<=60000

	The unique identifier of a SQL command in the TimesTen command cache. If you do not supply a value, TimesTen displays the current value of the command.
	SQLCmdHistogramReset	0 or not	The existing SQL execution time statistics are reset if the specified value is nonzero.
	StatsLevel	NONE
TYPICAL

ALL

BASIC

	Specifies the level of collection for database and operating system statistics. TimesTen collects these statistics for a variety of purposes, including making self-management decisions.
Setting the StatsLevel parameter to NONE disables the collection of system statistics.

The default setting of TYPICAL ensures collection of all major statistics required for database self-management functionality and provides best overall performance. The default value should be adequate for most environments.

When the StatsLevel parameter is set to ALL, additional statistics are added to the set of statistics collected with the TYPICAL setting. The additional statistics are timed operating system statistics and plan execution statistics.

Setting the StatsLevel parameter to BASIC disables the collection of many of the important statistics required by many TimesTen features.

Examples

Sample every command:

Command> call ttStatsConfig('SqlCmdSampleFactor',1);
< SQLCMDSAMPLEFACTOR, 1 >
1 row found.

Check whether sampling:

Command> call ttStatsConfig('SqlCmdSampleFactor');
< SQLCMDSAMPLEFACTOR, 1 >
1 row found.

Sample every fifth statement on connection 1.

Command> call ttStatsConfig('ConnSampleFactor', '1,5');
< CONNSAMPLEFACTOR, 1,5 >
1 row found.

Turn off sampling on connection 1.

Command> call ttStatsConfig('ConnSampleFactor', '1,0');
< CONNSAMPLEFACTOR, 1,0 >
1 row found.

Check data store statistics collection level.

Command> call ttstatsconfig('StatsLevel');
< STATSLEVEL, TYPICAL >
1 row found.

Turn off data store statistics collection.

Command> call ttstatsconfig('StatsLevel','None');
< STATSLEVEL, NONE >
1 row found.

ttTableSchemaFromOraQueryGet

Description

This built-in procedure evaluates a SELECT query on a table in an Oracle database and generates a CREATE TABLE SQL statement that you can choose to execute. The TimesTen CREATE TABLE statement matches the result set column names and types.

This procedure does not create the TimesTen table, it only returns a statement that identifies the table schema.

For more details and usage information, see "Loading data from an Oracle database into a TimesTen table" in the Oracle TimesTen In-Memory Database Operations Guide.

Required privilege

This procedure requires no privileges. The session user must have all required privileges to execute the query on the Oracle database.

Syntax

ttTableSchemaFromOraQueryGet(['tblOwner'], 'tblName', 'Query')

Parameters

ttTableSchemaFromOraQueryGet has the parameters:

	Parameter	Type	Description
	tblOwner	TT_CHAR (30)	TimesTen table owner (optional). If not provided, the connection ID is used.
	tblName	TT_CHAR (30) NOT NULL	Table name for the CREATE TABLE statement.
The specified TimesTen table cannot be a system table, a synonym, a view, a materialized view or a detail table of a materialized view, a global temporary table or a cache group table.

	Query	TT_VARCHAR (409600) NOT NULL	A SELECT query on an Oracle database to derive the table column definition.
Any expressions in the SELECT list should be provided with a column alias; otherwise, an implementation dependent column name is assumed and the expression is not evaluated.

Result set

ttTableSchemaFromOraQueryGet returns the result set:

	Column	Type	Description
	createSQL	TT_VARCHAR (409600) NOT NULL	A CREATE TABLE statement that matches the result set of the SELECT query on an Oracle database.

Examples

This example, returns the CREATE TABLE statement to create the TimesTen HR.EMPLOYEES table with all columns found in the Oracle database HR.EMPLOYEES table.

Command> call ttTableSchemaFromOraQueryGet('hr','employees',
 'SELECT * FROM hr.employees');
< CREATE TABLE "HR"."EMPLOYEES" (
"EMPLOYEE_ID" number(6,0) NOT NULL,
"FIRST_NAME" varchar2(20 byte),
"LAST_NAME" varchar2(25 byte) NOT NULL,
"EMAIL" varchar2(25 byte) NOT NULL,
"PHONE_NUMBER" varchar2(20 byte),
"HIRE_DATE" date NOT NULL,
"JOB_ID" varchar2(10 byte) NOT NULL,
"SALARY" number(8,2),
"COMMISSION_PCT" number(2,2),
"MANAGER_ID" number(6,0),
"DEPARTMENT_ID" number(4,0)
) >
1 row found.

Notes

The query on the Oracle database cannot have any parameter bindings.

TimesTen returns an error if the query cannot be described on the Oracle database, for example, if there is a syntax error.

If an output column type does not have a matching type in TimesTen, TimesTen outputs a warning and the following line for the column definition: >>>>column_name column_type /* reason */

If the query on the Oracle database outputs types not supported by TimesTen, you can add a CAST clause in the SELECT list to explicitly change the output to a TimesTen supported type. Column aliases can be specified for expressions in the SELECT list.

If the query on the Oracle database has LOB output, it is mapped to a VAR type.

ttVersion

Description

The ttVersion utility lists the TimesTen release information, including: number, platform, instance name, instance administrator, instance home directory, daemon home directory, port number and build timestamp. You can specify various levels of output:

	
You can specify ttVersion with no options to list abbreviated output.

	
You can specify the -m option to list enhanced output.

	
You can specify an attribute to list output only for a specific attribute.

Required privilege

This procedure requires no privilege.

Syntax

ttVersion()

Parameters

ttVersion has no parameters.

Result set

ttVersion returns the result set:

	Column	Type	Description
	major1	TT_INTEGER NOT NULL	The major release number. Indicates releases with major infrastructure and functionality changes.
	major2	TT_INTEGER NOT NULL	The second major release number. Indicates a version with new functionality changes, but no infrastructure changes.
	minor	TT_INTEGER NOT NULL	The minor release number. Indicates a release that contains all bug fixes since the previous maintenance release.
	patch	TT_INTEGER NOT NULL	Indicates a release with minor bug fixes.
	portpatch	TT_INTEGER NOT NULL	Indicates a release with patch fixes for particular platforms.

Examples

CALL ttVersion();
<11, 2, 2 , 5, 0>
1 row found.

In this case, the TimesTen release number is: 11.2.2.5.0.

ttWarnOnLowMemory

Description

This procedure enables applications to specify that operations executed on the current connection should return a warning if they allocate memory and find that memory is low. If the value is set, a warning is returned for any operation that does an allocation and finds total memory in use to be above the connection's threshold value as specified by the PermWarnThreshold and TempWarnThreshold connection attributes.

Required privilege

This procedure requires no privilege.

Syntax

ttWarnOnLowMemory(permanent, temporary)

Parameters

ttWarnOnLowMemory has these parameters:

	Parameter	Type	Description
	permanent	TT_INTEGER NOT NULL	1- Enable warnings for the permanent data partition
0 - Disable warnings for the permanent data partition

	temporary	TT_INTEGER NOT NULL	1- Enable warnings for the permanent data partition
0 - Disable warnings for the permanent data partition

Result set

ttWarnOnLowMemory returns no results.

Examples

CALL ttWarnOnLowMemory(1, 0);

Enables low memory warnings for the permanent data partition only.

Notes

By default, TimesTen does not issue low memory warnings for either partition. Applications that want to receive these warnings must call this procedure. This procedure is connection specific, and so you must issue it for each connection upon which warnings are desired. Also, the current setting does not persist to subsequent connections.

ttXactIdGet

Description

This procedure returns transaction ID information for interpreting lock messages. The two result columns of ttXactIdGet are used in combination to uniquely identify a transaction in a database. Taken individually, the columns are not interesting. The result should only be used to correlate with other sources of transaction information. The numbers may not follow a strict pattern.

Required privilege

This procedure requires no privilege.

Syntax

ttXactIdGet()

Parameters

ttXactIdGet has no parameters.

Result set

ttXactIdGet returns the result set:

	Column	Type	Description
	xactID	TT_INTEGER	Connection ID.
	counter	TT_BIGINT	An increasing number that distinguish successive transactions of the same transaction ID.

Examples

Command > automcommit 0;
Command > call ttXactIdGet;
<2,11>
1 row found
Command > commit;
Command > call ttXactIdGet
<3, 12>
1 row found

Notes

The output correlates to the values printed in lock error messages and ttXactAdmin lock information output.

See also

ttXactAdmin

"ttXactIdRollback" in the Oracle TimesTen In-Memory Database C Developer's Guide

ttXlaBookmarkCreate

Description

This procedure creates the specified bookmark.

Required privilege

This procedure requires the XLA privilege.

Syntax

ttXlaBookmarkCreate('bookmark', 'replicated')

Parameters

ttXlaBookmarkCreate has the parameter:

	Parameter	Type	Description
	bookmark	TT_CHAR (31) NOT NULL	The name of the bookmark to be created.
	replicated	BINARY(1)	0x00 or NULL (equivalent) for non-replicated bookmarks (default setting).
0x01 for replicated bookmarks.

If NULL, non-replicated bookmarks are used.

Result set

ttXlaBookmarkCreate returns no results.

Examples

For non-replicated bookmark, execute the following:

Command > call ttXlaBookmarkCreate('mybookmark');

or:

Command> call ttxlabookmarkcreate('mybkmk2',0x00);

For a replicated bookmark, execute the following:

Command > call ttXlaBookmarkCreate('mybookmark', 0x01);

For more details on XLA bookmarks, including replicated XLA bookmarks, see "About XLA bookmarks" in the Oracle TimesTen In-Memory Database C Developer's Guide.

Notes

You can also create a bookmark when you call ttXlaPersistOpen function to initialize an XLA handle. See "Creating or reusing a bookmark" in Oracle TimesTen In-Memory Database C Developer's Guide.

See also

ttXlaSubscribe

ttXlaUnsubscribe

ttXlaBookmarkDelete

ttXlaBookmarkDelete

Description

This procedure deletes the specified bookmark. The bookmark cannot be deleted while it is in use.

Required privilege

This procedure requires the XLA privilege.

Syntax

ttXlaBookmarkDelete('bookmark')

Parameters

ttXlaBookmarkDelete has the parameter:

	Parameter	Type	Description
	bookmark	TT_CHAR (31) NOT NULL	The name of the bookmark to be deleted.

Result set

ttXlaBookmarkDelete returns no results.

Examples

Command > call ttXlaBookmarkDelete('mybookmark');

Notes

Before dropping a table that is subscribed to by an XLA bookmark, you must first drop all XLA bookmarks or unsubscribe from XLA tracking.

See also

ttXlaBookmarkCreate

ttXlaSubscribe

ttXlaUnsubscribe

ttXlaSubscribe

Description

This procedure configures persistent XLA tracking of a table. This procedure cannot be executed when the specified bookmark is in use.

Required privilege

This procedure requires the XLA privilege.

Syntax

ttXlaSubscribe('tblName', 'bookmark')

Parameters

ttXlaSubscribe has the parameters:

	Parameter	Type	Description
	tblName	TT_CHAR (61) NOT NULL	The name of the table to be tracked.
Using a synonym to specify a table name is not supported.

	bookmark	TT_CHAR (31) NOT NULL	The name of the bookmark that the application uses to track this table.

Result set

ttXlaSubscribe returns no results.

Examples

Command > call ttXlaSubscribe ('SALLY.ACCTS', mybookmark);

Notes

Alternatively, the ttXlaTableStatus function subscribes the current bookmark to updates to the specified table, or determines whether the current bookmark is already monitoring DML records associated with the table. See "Specifying which tables to monitor for updates" in Oracle TimesTen In-Memory Database C Developer's Guide

See also

ttXlaBookmarkCreate

ttXlaBookmarkDelete

ttXlaUnsubscribe

ttXlaUnsubscribe

Description

This procedure stops persistent XLA tracking of a table. This procedure cannot be executed when the specified bookmark is in use.

Required privilege

This procedure requires the XLA privilege.

Syntax

ttXlaUnsubscribe('tblName', 'bookmark')

Parameters

ttXlaUnsubscribe has the parameters:

	Parameter	Type	Description
	tblName	TT_CHAR (61) NOT NULL	The name of the table on which XLA tracking should be stopped.
Using a synonym to specify a table name is not supported.

	bookmark	TT_CHAR (31) NOT NULL	The name of the bookmark that the application uses to track this table.

Result set

ttXlaSubscribe returns no results.

Examples

Command > call ttXlaUnsubscribe ('SALLY.ACCTS', mybookmark);

Notes

Before dropping a table that is subscribed to by an XLA bookmark, you must first drop all XLA bookmarks or unsubscribe from XLA tracking.

See also

ttXlaBookmarkCreate

ttXlaBookmarkDelete

ttXlaSubscribe

System Limits

4 System Limits

The following sections list all TimesTen system limits and defaults.

	
System limits and defaults

	
Limits on number of open files

	
Path names

System limits and defaults

Specific operating system limits may take precedence over these values. For more information, see "Installation prerequisites" in Oracle TimesTen In-Memory Database Installation Guide.

	Description	32-bit Value	64-bit Value
	Maximum number of subscriber databases in a replication scheme that is not an active standby pair.	128	128
	Maximum number of propagators in a replication scheme. Each propagator can have the maximum number of subscribers.	128	128
	Maximum number of subscriber databases in an active standby pair.	127	127
	Minimum database size (bytes). Size includes both the permanent and temporary space required to perform operations on the database.	32 MB	32 MB
	Maximum length for a fixed-length column (bytes).	8,300	8,300
	Maximum number of columns in a table.	1,000	1,000
	Maximum number of columns in an ORDER BY clause.	1,000	1,000
	Maximum number of columns in a GROUP BY clause.	1,000	1,000
	Maximum cumulative length of a row's fixed-length columns (bytes).	32,768	32,768
	Maximum length for a varying-length column (bytes).	222 = 4,194,304	222 = 4,194,304
	Maximum length for a replicated column.	4 MB
16 MB for columns with BLOB type

	4 MB
16 MB for columns with BLOB type

	Maximum number of concurrent connections to a database (including system connections).	2047	2047
	Maximum number of concurrent application connections to a database (may be limited by semaphore configuration or Connections DSN attribute or both).	2000	2000
	Maximum number of connections (system and application) across all databases in an instance.	2048	2048
	Maximum number of concurrent client connections to a TimesTen instance.
Note: Some instances may support a slightly smaller maximum number of connections depending on such things as whether the database is shared or replicated and operating system limits. Most configurations support no less than 2,000 connections.

	2048	2048
	Maximum length of database names.	32	32
	Maximum length of the path name for a database in an asynchronous writethrough cache group	248	248
	Maximum number of projected expressions in a SELECT statement.	32,767	32,767
	Maximum length of string specifying a join order.	1,024	1,024
	Maximum number of columns in an index (or primary key).	16	16
	Maximum length of basic names.	30	30
	Maximum length of displayed predicate string in the SYS.PLAN table.	1,024	1,024
	Maximum length of SQL statement, including the NULL terminator.	409,600	409,600
	Maximum number of table references in an SQL query.	24	24
	Maximum number of indexes on a table.	500	500
	Maximum number of partitions in a table.	999	999
	Maximum number of prepared PL/SQL statements per connection.	5000	5000
	Maximum number of recently-used PL/SQL blocks that can be cached per session.	5000	5000
	Maximum number of concurrent shared memory segment client/server connections per TimesTen instance.	512	512
	Maximum size of IPC shared memory segment for client/server connections	1 gigabyte	1 gigabyte
	Maximum number of allocated statement handles per shared memory segment client/server connection.	512	512
	Maximum depth of nesting subqueries.	Equal to the maximum number of table references in a SQL query.	Equal to the maximum number of table references in a SQL query.
	Maximum error message length for applications that specify an error message length (for example, through a call to SQLError).	512	512

Limits on number of open files

Each process connected to a TimesTen database keeps at least one operating-system file descriptor open from the time of the first connection until the process terminates. Additional file descriptors may be opened for each database connection:

	
Connections to databases that have logging to disk enabled require an additional two file descriptors for the duration of the connection.

	
An additional file descriptor is needed for the duration of database checkpoints issued by the process.

	
Additional file descriptors may be opened during transaction commit or rollback operations.

For multithreaded applications that maintain many concurrent TimesTen database connections, the default number of open files permitted to each process by the operating system may be too low.

	
On Solaris, the default limit is 256 open files and may be raised for a session with the ulimit command (limit for csh users). You can also set the per-process limit programmatically with setrlimit.

	
On AIX, the limit is 2,048 open files, so you are not likely to encounter problems.

	
On Linux, the default limit is 1,024 open files, so you are not likely to encounter problems.

	
On Windows, the default limit is at least 2,000 open files, so you are not likely to encounter problems.

Most of the open file descriptors are used for reading and writing database recovery log files. If a process fails to open a log file, the database is marked as requiring recovery and all current connections to the database are terminated.

Path names

TimesTen does not support file path names that contain multibyte characters. Ensure the installation path, database path, transaction log path, and temporary file path do not contain any multibyte characters.

Index

Index

A B C D E F G H I J L M N O P Q R S T U V W X

A

	access control
	
	connection attributes, 1.1
	utilities, 1.2, 3.2.1

	administration
	
	daemon, ttDaemonAdmin utility, 3.2.2
	database, ttAdmin utility, 3.2.2

	AllFlags optimizer flag, 2
	attributes--see connection attributes
	authentication, utilities, 1.2
	AutoCreate connection attribute, 1.2

B

	backup
	
	ttBackup utility, 3.2.2
	ttBackupStatus built-in procedure, 2

	BranchAndBound optimizer flag, 2
	built-in procedures
	
	calling, 2
	ttAgingLRUConfig, 2
	ttAgingScheduleNow, 2
	ttApplicationContext, 2
	ttBackupStatus, 2
	ttBlockInfo, 2
	ttBookmark, 2
	ttCacheAllowFlushAwtSet, 2
	ttCacheAutorefIntervalStatsGet, 2
	ttCacheAutorefresh, 2
	ttCacheAutorefreshLogDefrag, 2
	ttCacheAutorefreshSelectLimit, 2
	ttCacheAutorefreshStatsGet, 2
	ttCacheAutorefreshXactLimit, 2
	ttCacheAWTMonitorConfig, 2
	ttCacheAWTThresholdGet, 2
	ttCacheAWTThresholdSet, 2
	ttCacheCheck, 2
	ttCacheConfig, 2
	ttCacheDbCgStatus, 2
	ttCachePolicyGet, 2
	ttCachePolicySet, 2
	ttCachePropagateFlagSet, 2
	ttCacheSqlGet, 2
	ttCacheStart, 2
	ttCacheStop, 2
	ttCacheUidGet, 2
	ttCacheUidPwdSet, 2
	ttCkpt, 2
	ttCkptBlocking, 2
	ttCkptConfig, 2
	ttCkptHistory, 2
	ttCommitBufferStats, 2
	ttCommitBufferStatsReset, 2
	ttCompact, 2
	ttCompactTS, 2
	ttComputeTabSizes, 2
	ttConfiguration, 2
	ttContext, 2
	ttDataStoreStatus, 2
	ttDBConfig, 2
	ttDbWriteConcurrencyModeGet, 2
	ttDbWriteConcurrencyModeSet, 2
	ttDurableCommit, 2
	ttGridAttach, 2
	ttGridCheckOwner, 2
	ttGridCreate, 2
	ttGridDestroy, 2
	ttGridDetach, 2
	ttGridDetachAll, 2
	ttGridDetachList, 2
	ttGridFirstMemberAttach, 2
	ttGridGlobalCGResume, 2
	ttGridGlobalCGSuspend, 2
	ttGridInfo, 2
	ttGridNameSet, 2
	ttGridNodeStatus, 2
	ttHostNameGet, 2
	ttHostNameSet, 2
	ttIndexAdviceCaptureDrop, 2
	ttIndexAdviceCaptureEnd, 2
	ttIndexAdviceCaptureInfoGet, 2
	ttIndexAdviceCaptureOutput, 2
	ttIndexAdviceCaptureStart, 2
	ttLoadFromOracle, 2
	ttLockLevel, 2
	ttLockWait, 2
	ttLogHolds, 2
	ttMonitorHighWaterReset, 2
	ttOptClearStats, 2
	ttOptCmdCacheInvalidate, 2
	ttOptEstimateStats, 2
	ttOptGetColStats, 2
	ttOptGetFlag, 2
	ttOptGetMaxCmdFreeListCnt, 2
	ttOptGetOrder, 2
	ttOptSetColIntvlStats, 2
	ttOptSetColStats, 2
	ttOptSetFlag, 2
	ttOptSetMaxCmdFreeListCnt, 2
	ttOptSetMaxPriCmdFreeListCnt, 2
	ttOptSetOrder, 2
	ttOptSetTblStats, 2
	ttOptShowJoinOrder, 2
	ttOptStatsExport, 2
	ttOptUpdateStats, 2
	ttOptUseIndex, 2
	ttPLSQLMemoryStats, 2
	ttRamPolicyAutoReloadGet, 2
	ttRamPolicyAutoReloadSet, 2
	ttRamPolicyGet, 2
	ttRamPolicySet, 2
	ttRedundantIndexCheck, 2
	ttRepDeactivate, 2
	ttReplicationStatus, 2
	ttRepPolicyGet, 2
	ttRepPolicySet, 2
	ttRepQueryThresholdGet, 2
	ttRepQueryThresholdSet, 2
	ttRepStart, 2
	ttRepStateGet, 2
	ttRepStateSave, 2
	ttRepStateSet, 2
	ttRepStop, 2
	ttRepSubscriberStateSet, 2
	ttRepSubscriberWait, 2
	ttRepSyncGet, 2
	ttRepSyncSet, 2
	ttRepSyncSubscriberStatus, 2
	ttRepTransmitGet, 2
	ttRepTransmitSet, 2
	ttRepXactStatus, 2
	ttRepXactTokenGet, 2
	ttSetUserColumnID, 2
	ttSetUserTableID, 2
	ttSize, 2
	ttSQLCmdCacheInfo, 2
	ttSQLCmdCacheInfo2, 2
	ttSQLCmdCacheInfoGet, 2
	ttSQLCmdQueryPlan, 2
	ttSQLExecutionTimeHistogram, 2
	ttStatsConfig, 2
	ttTableSchemaFromOraQueryGet, 2
	ttVersion, 2
	ttWarnOnLowMemory, 2
	ttXactIdGet, 2
	ttXlaBookmarkCreate, 2
	ttXlaBookmarkDelete, 2
	ttXlaSubscribe, 2
	ttXlaUnsubscribe, 2

	bulk copy, ttBulkCp utility, 3.2.2

C

	cache
	
	DynamicLoadEnable connection attribute, 1.2
	DynamicLoadErrorMode connection attribute, 1.2
	OracleNetServiceName connection attribute, 1.2
	OraclePWD connection attribute, 1.2
	PassThrough connection attribute, 1.2
	policy, ttAdmin utility, 3.2.2
	RACCallback connection attribute, 1.2
	ttCacheAdvisor utility, 3.2.2

	cache grid--see ttGridXXX built-in procedures
	cache--also see TimesTen Cache
	CacheAWTMethod connection attribute, 1.2
	CacheAWTParallelism connection attribute, 1.2
	CacheGridEnable connection attribute, 1.2
	CacheGridMsgWait connection attribute, 1.2
	cache--see ttCacheXXX built-in procedures
	character sets
	
	ConnectionCharacterSet connection attribute, 1.2
	DatabaseCharacterSet connection attribute, 1.2
	supported character sets, 1.2

	checkpoints
	
	CkptFrequency connection attribute, 1.2
	CkptLogVolume connection attribute, 1.2
	CkptRate connection attribute, 1.2
	ttCkpt built-in procedure, 2
	ttCkptBlocking built-in procedure, 2
	ttCkptConfig built-in procedure, 2
	ttCkptHistory built-in procedure, 2

	CkptFrequency connection attribute, 1.2
	CkptLogVolume connection attribute, 1.2
	CkptRate connection attribute, 1.2
	client connection
	
	attributes, 1.2, 1.2
	concurrent shared memory segment connections per TimesTen instance, maximum, 4.1
	shared memory segment size, maximum, 4.1
	statement handles, maximum per shared memory segment, 4.1
	TCP_Port connection attribute, 1.2
	TCP_Port2 connection attribute, 1.2
	TTC_FailoverPortRange connection attribute, 1.2
	TTC_Server connection attribute, 1.2
	TTC_Server_DSN connection attribute, 1.2
	TTC_Server_DSN2 connection attribute, 1.2
	TTC_Server2 connection attribute, 1.2
	TTC_Timeout connection attribute, 1.2
	UID and PWD connection attributes, 1.2

	clusterware, ttCWAdmin utility, 3.2.2
	COL_STATS system table, 2
	column ID, XLA, ttSetUserColumnID built-in procedure, 2
	columns
	
	fixed-length column, maximum length, 4.1
	maximum length, varying-length column, 4.1
	maximum number in index, 4.1
	maximum per table, 4.1
	maximum, GROUP BY clause, 4.1
	maximum, ORDER BY clause, 4.1
	replicated column, maximum length, 4.1

	command cache, SQL
	
	query plans, ttSQLCmdQueryPlan built-in procedure, 2
	ttSQLCmdCacheInfo built-in procedure, 2
	ttSQLCmdCacheInfo2 built-in procedure, 2
	ttSQLCmdCacheInfoGet built-in procedure, 2
	ttSQLCmdQueryPlan built-in procedure, 2

	commit
	
	DDLCommitBehavior connection attribute, 1.2
	DurableCommits connection attribute, 1.2

	CommitBufferSizeMax connection attribute, 1.2
	compacting database
	
	ttCompact built-in procedure, 2
	ttCompactTS built-in procedure, 2

	concurrency
	
	concurrent application connections, maximum, 4.1
	concurrent client connections, maximum, 4.1
	concurrent connections, maximum, 4.1
	concurrent connections, system plus applications, maximum, 4.1
	LockLevel connection attribute, 1.2
	LockWait connection attribute, 1.2

	connection
	
	concurrent application connections, maximum, 4.1
	concurrent client connections, maximum, 4.1
	concurrent connections, maximum, 4.1
	concurrent connections, system plus applications, maximum, 4.1
	conflicts, 1.2
	ConnectionCharacterSet connection attribute, 1.2
	failure, MatchLogOpts connection attribute, 1.2
	MaxConnsPerServer connection attribute, 1.2
	PL/SQL statements, prepared, maximum, 4.1
	UID and PWD connection attributes, 1.2
	WaitForConnect connection attribute, 1.2

	connection attributes
	
	access control, 1.1
	AutoCreate, 1.2
	CacheAWTMethod, 1.2
	CacheAWTParallelism, 1.2
	CacheGridEnable, 1.2
	CacheGridMsgWait, 1.2
	CkptFrequency, 1.2
	CkptLogVolume, 1.2
	CkptRate, 1.2
	client connection attributes, 1.2, 1.2
	CommitBufferSizeMax, 1.2
	ConnectionCharacterSet, 1.2
	ConnectionName, 1.2
	Connections, 1.2
	Data Source Name, 1.2
	data store attributes, 1.2, 1.2
	DatabaseCharacterSet, 1.2
	DataStore, 1.2
	DDLCommitBehavior, 1.2
	DDLReplicationAction, 1.2
	DDLReplicationLevel, 1.2
	Description, 1.2
	Diagnostics, 1.2
	Driver, 1.2
	DuplicateBindMode, 1.2
	DurableCommits, 1.2
	DynamicLoadEnable, 1.2
	DynamicLoadErrorMode, 1.2
	first connection attributes, 1.2, 1.2
	ForceConnect, 1.2
	general connection attributes, 1.2, 1.2
	Isolation, 1.2
	LockLevel, 1.2
	LockWait, 1.2
	LogAutoTruncate, 1.2
	LogBufMB, 1.2
	LogBufParallelism, 1.2
	LogDir, 1.2
	LogFileSize, 1.2
	LogFlushMethod, 1.2
	LogPurge, 1.2
	MatchLogOpts, 1.2
	MaxConnsPerServer, 1.2
	MemoryLock, 1.2
	NLS general connection attributes, 1.2, 1.2
	NLS_LENGTH_SEMANTICS, 1.2
	NLS_NCHAR_CONV_EXCP, 1.2
	NLS_SORT, 1.2
	OracleNetServiceName, 1.2
	OraclePWD, 1.2
	Overwrite, 1.2
	PassThrough, 1.2
	PermSize, 1.2
	PermWarnThreshold, 1.2
	PLSCOPE_SETTINGS, 1.2
	PLSQL, 1.2
	PL/SQL first connection attributes, 1.2, 1.2
	PL/SQL general connection attributes, 1.2, 1.2
	PLSQL_CCFLAGS, 1.2
	PLSQL_MEMORY_ADDRESS, 1.2
	PLSQL_MEMORY_SIZE, 1.2
	PLSQL_OPTIMIZE_LEVEL, 1.2
	PLSQL_TIMEOUT, 1.2
	Preallocate, 1.2
	PrivateCommands, 1.2
	privileges, 1.1
	PWD, 1.2
	PWDCrypt, 1.2
	QueryThreshold, 1.2
	RACCallback, 1.2
	RangeIndexType, 1.2
	ReceiverThreads, 1.2
	RecoveryThreads, 1.2
	ReplicationApplyOrdering, 1.2
	ReplicationParallelism, 1.2
	ReplicationTrack, 1.2
	server connection attributes, 1.2, 1.2
	ServersPerDSN, 1.2
	ServerStackSize, 1.2
	SQLQueryTimeout, 1.2
	TCP_Port, 1.2
	TCP_Port2, 1.2
	Temporary, 1.2
	TempSize, 1.2
	TempWarnThreshold, 1.2
	TimesTen Cache database attributes, 1.2, 1.2
	TimesTen Cache first connection attributes, 1.2, 1.2
	TimesTen Cache general connection attributes, 1.2, 1.2
	TTC_FailoverPortRange, 1.2
	TTC_Server, 1.2
	TTC_Server_DSN, 1.2
	TTC_Server_DSN2, 1.2
	TTC_Server2, 1.2
	TTC_Timeout, 1.2
	ttConfiguration built-in procedure (check values), 2
	TypeMode, 1.2
	UID, 1.2
	WaitForConnect, 1.2

	ConnectionCharacterSet connection attribute, 1.2
	ConnectionName connection attribute, 1.2
	Connections connection attribute, 1.2
	consistency checking, ttCheck utility, 3.2.2
	correlation name, optimizer, 2
	creation, database
	
	AutoCreate connection attribute, 1.2
	Overwrite connection attribute, 1.2
	PermSize connection attribute, 1.2
	Preallocate connection attribute, 1.2
	RecoveryThreads connection attribute, 1.2
	TempSize connection attribute, 1.2

D

	daemon
	
	administration, ttDaemonAdmin utility, 3.2.2
	log, ttDaemonLog utility, 3.2.2

	Data Source Name connection attribute, 1.2
	data store attributes, 1.2, 1.2
	data types, TypeMode connection attribute, 1.2
	DatabaseCharacterSet connection attribute, 1.2
	DataStore connection attribute, 1.2
	DDLCommitBehavior connection attribute, 1.2
	DDLReplicationAction connection attribute, 1.2
	DDLReplicationLevel connection attribute, 1.2
	Default optimizer flag, 2
	Description connection attribute, 1.2
	destroy, ttDestroy utility, 3.2.2
	Diagnostics connection attribute, 1.2
	disk space, file system, Preallocate connection attribute, 1.2
	Driver connection attribute, 1.2
	DuplicateBindMode connection attribute, 1.2
	durable commits, ttDurableCommit built-in procedure, 2
	DurableCommits connection attribute, 1.2
	DynamicLoadEnable connection attribute, 1.2
	DynamicLoadEnable optimizer flag, 2
	DynamicLoadErrorMode connection attribute, 1.2
	DynamicLoadErrorMode optimizer flag, 2

E

	error message, maximum length, 4.1
	expressions, SELECT statement, maximum, 4.1

F

	file system disk space, Preallocate connection attribute, 1.2
	files, open, maximum, 4.2
	Firs tRow optimizer flag, 2
	first connection attributes, 1.2, 1.2
	fixed-length column, maximum length, 4.1
	ForceCompile optimizer flag, 2
	ForceConnect connection attribute, 1.2
	fragmentation
	
	eliminating with ttCompact built-in procedure, 2
	eliminating with ttCompactTS built-in procedure, 2

G

	general connection attributes, 1.2, 1.2
	GenPlan optimizer flag, 2
	GlobalLocalJoin optimizer flag, 2
	GlobalProcessing optimizer flag, 2
	grid, cache--see ttGridXXX built-in procedures
	GROUP BY clause, maximum columns, 4.1

H

	Hash optimizer flag, 2
	HashGb optimizer flag, 2
	host name
	
	ttHostNameGet built-in procedure, 2
	ttHostNameSet built-in procedure, 2

I

	IF-THEN-ELSE command, ttIsql utility, 3.2.2
	Index Advisor--see ttIndexAdviceXXX built-in procedures
	IndexedOR optimizer flag, 2
	indexes
	
	columns, maximum, 4.1
	maximum per table, 4.1
	RangeIndexType connection attribute, 1.2
	redundant indexes check, 2

	Isolation connection attribute, 1.2

J

	join order, maximum length, 4.1

L

	limits, system, 4
	limits--also see maximum
	Load from Oracle
	
	ttIsql createandloadfromoraquery command, 3.2.2
	ttLoadFromOracle built-in procedure, 2
	ttTableSchemaFromOraQueryGet built-in procedure, 2

	locking, database
	
	LockLevel connection attribute, 1.2
	LockWait connection attribute, 1.2
	ttLockLevel built-in procedure, 2
	ttLockWait built-in procedure, 2

	LockLevel connection attribute, 1.2
	LockWait connection attribute, 1.2
	log
	
	buffer size, LogBufMB connection attribute, 1.2
	daemon, ttDaemonLog utility, 3.2.2
	directory, LogDir connection attribute, 1.2
	file size, LogFileSize connection attribute, 1.2
	flush, LogFlushMethod connection attribute, 1.2
	holds, ttLogHolds built-in procedure, 2
	parallelism, LogBufParallelism connection attribute, 1.2
	purge, LogPurge connection attribute, 1.2
	purge, MatchLogOpts connection attribute, 1.2

	LogAutoTruncate connection attribute, 1.2
	LogBufMB connection attribute, 1.2
	LogBufParallelism connection attribute, 1.2
	LogDir connection attribute, 1.2
	LogFileSize connection attribute, 1.2
	LogFlushMethod connection attribute, 1.2
	LogPurge connection attribute, 1.2

M

	MatchLogOpts connection attribute, 1.2
	MaxConnsPerServer connection attribute, 1.2
	maximum
	
	basic name, length, 4.1
	columns per table, 4.1
	columns, GROUP BY clause, 4.1
	columns, ORDER BY clause, 4.1
	concurrent application connections, 4.1
	concurrent client connections, 4.1
	concurrent connections, 4.1
	concurrent connections system plus applications, 4.1
	concurrent shared memory segment client connections per TimesTen instance, 4.1
	database name, length, 4.1
	error message length, 4.1
	expressions, SELECT statement, 4.1
	files open, 4.2
	fixed-length column, length, 4.1
	index, number of columns, 4.1
	indexes per table, 4.1
	join order length, 4.1
	nesting subqueries, depth, 4.1
	partitions per table, 4.1
	path name, length, database in AWT cache group, 4.1
	PL/SQL blocks, recently used, cached, 4.1
	PL/SQL statements, prepared, per connection, 4.1
	predicate string, SYS.PLAN table, length, 4.1
	propagator databases, 4.1
	replicated column, length, 4.1
	row, cumulative length of fixed-length columns, 4.1
	shared memory segment size, client connections, 4.1
	SQL statement, length, 4.1
	statement handles per shared memory segment, client connections, 4.1
	subscriber databases, 4.1
	subscriber databases, active standby pair, 4.1
	table references, SQL query, 4.1
	varying-length column, length, 4.1

	memory
	
	low memory warning, ttWarnOnLowMemory built-in procedure, 2
	MemoryLock connection attribute, 1.2
	out-of-memory warnings, PermWarnThreshold connection attribute, 1.2
	out-of-memory warnings, TempWarnThreshold connection attribute, 1.2
	permanent, PermSize connection attribute, 1.2
	temporary, TempSize connection attribute, 1.2

	MemoryLock connection attribute, 1.2
	MergeJoin optimizer flag, 2
	metrics--see ttStats
	migrate, ttMigrate utility, 3.2.2
	minimum database size, 4.1
	multibyte characters, path name, non-support, 4.3

N

	name
	
	basic, maximum length, 4.1
	database, maximum length, 4.1

	NestedLoop optimizer flag, 2
	nesting subqueries, maximum depth, 4.1
	NLS general connection attributes, 1.2, 1.2
	NLS_LENGTH_SEMANTICS connection attribute, 1.2
	NLS_NCHAR_CONV_EXCP connection attribute, 1.2
	NLS_SORT connection attribute, 1.2
	NoRemRowIdOpt optimizer flag, 2

O

	optimizer
	
	correlation name, 2
	execution plans, generation, ttOptUseIndex built-in procedure, 2
	ttOptSetOrder built-in procedure, 2

	optimizer flags
	
	AllFlags, 2
	BranchAndBound, 2
	Default, 2
	DynamicLoadEnable, 2
	DynamicLoadErrorMode, 2
	FirstRow, 2
	ForceCompile, 2
	GenPlan, 2
	GlobalLocalJoin, 2
	GlobalProcessing, 2
	Hash, 2
	HashGb, 2
	IndexedOR, 2
	MergeJoin, 2
	NestedLoop, 2
	NoRemRowIdOpt, 2
	PassThrough, 2
	Range, 2
	Rowid, 2
	RowLock, 2, 2
	Scan, 2
	settings, ttOptGetFlag built-in procedure, 2
	settings, ttOptSetFlag built-in procedure, 2
	ShowJoinOrder, 2
	TblLock, 2, 2
	TmpHash, 2
	TmpRange, 2
	TmpTable, 2
	UseBoyerMooreStringSearch, 2

	OracleNetServiceName connection attribute, 1.2
	OraclePWD connection attribute, 1.2
	ORDER BY clause, maximum columns, 4.1
	Overwrite connection attribute, 1.2

P

	parallel replication
	
	ReplicationApplyOrdering connection attribute, 1.2
	ReplicationParallelism connection attribute, 1.2

	partitions, maximum per table, 4.1
	PassThrough connection attribute, 1.2
	PassThrough optimizer flag, 2
	password
	
	OraclePWD connection attribute, 1.2
	PWD connection attribute, 1.2
	PWDCrypt connection attribute, 1.2
	ttUser utility, 3.2.2

	path name
	
	maximum length, database in AWT cache group, 4.1
	multibyte characters, non-support, 4.3

	PermSize connection attribute, 1.2
	PermWarnThreshold connection attribute, 1.2
	PLSCOPE_SETTINGS connection attribute, 1.2
	PL/SQL blocks, recently used, maximum cached per session, 4.1
	PLSQL connection attribute, 1.2
	PL/SQL first connection attributes, 1.2, 1.2
	PL/SQL general connection attributes, 1.2, 1.2
	PL/SQL statements, prepared, maximum per connection, 4.1
	PLSQL_CCFLAGS connection attribute, 1.2
	PLSQL_MEMORY_ADDRESS connection attribute, 1.2
	PLSQL_MEMORY_SIZE connection attribute, 1.2
	PLSQL_OPTIMIZE_LEVEL connection attribute, 1.2
	PLSQL_TIMEOUT connection attribute, 1.2
	Preallocate connection attribute, 1.2
	predicate string, SYS.PLAN table, maximum length, 4.1
	PrivateCommands connection attribute, 1.2
	propagator databases, maximum, 4.1
	PWD connection attribute, 1.2
	PWDCrypt connection attribute, 1.2

Q

	query
	
	nesting subqueries, maximum depth, 4.1
	plans, ttSQLCmdQueryPlan built-in procedure, 2
	table references, maximum, 4.1

	QueryThreshold connection attribute, 1.2

R

	RACCallback connection attribute, 1.2
	ram policy, ttAdmin utility, 3.2.2
	ram policy--see ttRamPolicyXXX built-in procedures
	Range optimizer flag, 2
	RangeIndexType connection attribute, 1.2
	ReceiverThreads connection attribute, 1.2
	RecoveryThreads connection attribute, 1.2
	replicated column, maximum length, 4.1
	replication
	
	DDLReplicationAction connection attribute, 1.2
	DDLReplicationLevel connection attribute, 1.2
	policy, ttAdmin utility, 3.2.2
	ReceiverThreads connection attribute, 1.2
	ttCWAdmin utility, 3.2.2
	ttRepAdmin utility, 3.2.2

	replication--also see ttRepXXX built-in procedures
	ReplicationApplyOrdering connection attribute, 1.2
	ReplicationParallelism connection attribute, 1.2
	ReplicationTrack connection attribute, 1.2
	restore, ttRestore utility, 3.2.2
	row, maximum cumulative length of fixed-length columns, 4.1
	Rowid optimizer flag, 2
	row-level locking, optimizer flag, 2, 2
	RowLock optimizer flag, 2, 2

S

	Scan optimizer flag, 2
	schema, ttSchema utility, 3.2.2
	SELECT statement, expressions, maximum, 4.1
	server connection attributes, 1.2, 1.2
	ServersPerDSN connection attribute, 1.2
	ServerStackSize connection attribute, 1.2
	session, PL/SQL blocks, recently used, maximum cached, 4.1
	shared memory segment
	
	concurrent client connections per TimesTen instance, maximum, 4.1
	size, maximum, client connections, 4.1

	ShowJoinOrder optimizer flag, 2
	size, database, minimum, 4.1
	size, table
	
	ttSize built-in procedure, 2
	ttSize utility, 3.2.2

	SQL command cache
	
	query plans, ttSQLCmdQueryPlan built-in procedure, 2
	ttSQLCmdCacheInfo built-in procedure, 2
	ttSQLCmdCacheInfo2 built-in procedure, 2
	ttSQLCmdCacheInfoGet built-in procedure, 2
	ttSQLCmdQueryPlan built-in procedure, 2

	SQL query, table references, maximum, 4.1
	SQL statement, maximum length, 4.1
	SQLQueryTimeout connection attribute, 1.2
	statement handles, maximum per shared memory segment, client connections, 4.1
	statement, SQL, maximum length, 4.1
	statistics
	
	clearing stats, ttOptClearStats built-in procedure, 2
	configuration, ttStatsConfig built-in procedure, 2
	estimating, ttOptEstimateStats built-in procedure, 2
	getting, ttOptGetColStats built-in procedure, 2
	modifying explicitly (column), ttOptSetColIntvlStats built-in procedure, 2
	modifying explicitly (column), ttOptSetColStats built-in procedure, 2
	modifying explicitly (table), ttOptSetTblStats built-in procedure, 2
	PL/SQL memory, ttPLSQLMemoryStats built-in procedure, 2
	TBL_STATS and COL_STATS system tables, 2
	ttStats utility, 3.2.2
	updating explicitly, ttOptUpdateStats built-in procedure, 2

	status
	
	ttDataStoreStatus built-in procedure, 2
	ttStatus utility, 3.2.2

	subqueries, nesting, maximum depth, 4.1
	subscriber databases
	
	maximum, 4.1
	maximum, active standby pair, 4.1

	syslog (UNIX), 3.2.2
	SYS.PLAN table, predicate string, maximum length, 4.1
	system table ID, XLA, ttSetUserTableID built-in procedure, 2

T

	table
	
	columns, maximum, 4.1
	indexes, maximum, 4.1
	partitions, maximum, 4.1
	references, SQL query, maximum, 4.1
	size, ttSize built-in procedure, 2
	size, ttSize utility, 3.2.2

	TBL_STATS system table, 2
	TblLock optimizer flag, 2, 2
	TCP_Port connection attribute, 1.2
	TCP_Port2 connection attribute, 1.2
	Temporary connection attribute, 1.2
	temporary database, Temporary connection attribute, 1.2
	TempSize connection attribute, 1.2
	TempWarnThreshold connection attribute, 1.2
	threads
	
	ReceiverThreads connection attribute, 1.2
	RecoveryThreads connection attribute, 1.2

	timeout
	
	PLSQL_TIMEOUT connection attribute, 1.2
	SQLQueryTimeout connection attribute, 1.2
	TTC_Timeout connection attribute, 1.2

	TimesTen Cache database attributes, 1.2, 1.2
	TimesTen Cache first connection attributes, 1.2, 1.2
	TimesTen Cache general connection attributes, 1.2, 1.2
	TmpHash optimizer flag, 2
	TmpRange optimizer flag, 2
	TmpTable optimizer flag, 2
	tracing
	
	enabling/disabling, ttTraceMon utility, 3.2.2
	information display, ttTail utility, 3.2.2

	transaction
	
	administration, ttXactAdmin utility, 3.2.2
	commit, DDLCommitBehavior connection attribute, 1.2
	commit, DurableCommits connection attribute, 1.2
	ID, ttXactIdGet built-in procedure, 2
	log, ttXactLog utility, 3.2.2

	transaction log API--see XLA
	ttAdmin utility, 3.2.2
	ttAdoptStores utility, 3.2.2
	ttAgingLRUConfig built-in procedure, 2
	ttAgingScheduleNow built-in procedure, 2
	ttApplicationContext built-in procedure, 2
	ttBackup utility, 3.2.2
	ttBackupStatus built-in procedure, 2
	ttBlockInfo built-in procedure, 2
	ttBookmark built-in procedure, 2
	ttBulkCp utility, 3.2.2
	TTC_FailoverPortRange connection attribute, 1.2
	TTC_Server connection attribute, 1.2
	TTC_Server_DSN connection attribute, 1.2
	TTC_Server_DSN2 connection attribute, 1.2
	TTC_Server2 connection attribute, 1.2
	TTC_Timeout connection attribute, 1.2
	ttCacheAdvisor utility, 3.2.2
	ttCacheAllowFlushAwtSet built-in procedure, 2
	ttCacheAutorefIntervalStatsGet built-in procedure, 2
	ttCacheAutorefresh built-in procedure, 2
	ttCacheAutorefreshLogDefrag built-in procedure, 2
	ttCacheAutorefreshSelectLimit built-in procedure, 2
	ttCacheAutorefreshStatsGet built-in procedure, 2
	ttCacheAutorefreshXactLimit built-in procedure, 2
	ttCacheAWTMonitorConfig built-in procedure, 2
	ttCacheAWTThresholdGet built-in procedure, 2
	ttCacheAWTThresholdSet built-in procedure, 2
	ttCacheCheck built-in procedure, 2
	ttCacheConfig built-in procedure, 2
	ttCacheDbCgStatus built-in procedure, 2
	ttCachePolicyGet built-in procedure, 2
	ttCachePolicySet built-in procedure, 2
	ttCachePropagateFlagSet built-in procedure, 2
	ttCacheSqlGet built-in procedure, 2
	ttCacheStart built-in procedure, 2
	ttCacheStop built-in procedure, 2
	ttCacheUidGet built-in procedure, 2
	ttCacheUidPwdSet built-in procedure, 2
	ttCapture utility, 3.2.2
	ttCheck utility, 3.2.2
	ttCkpt built-in procedure, 2
	ttCkptBlocking built-in procedure, 2
	ttCkptConfig built-in procedure, 2
	ttCkptHistory built-in procedure, 2
	ttCommitBufferStats built-in procedure, 2
	ttCommitBufferStatsReset built-in procedure, 2
	ttCompact built-in procedure, 2
	ttCompactTS built-in procedure, 2
	ttComputeTabSizes built-in procedure, 2
	ttConfiguration built-in procedure, 2
	ttContext built-in procedure, 2
	ttCWAdmin utility, 3.2.2
	ttDaemonAdmin utility, 3.2.2
	ttDaemonLog utility, 3.2.2
	ttDataStoreStatus built-in procedure, 2
	ttDBConfig built-in procedure, 2
	ttDbWriteConcurrencyModeGet built-in procedure, 2
	ttDbWriteConcurrencyModeSet built-in procedure, 2
	ttDestroy utility, 3.2.2
	ttDurableCommit built-in procedure, 2
	ttGridAttach built-in procedure, 2
	ttGridCheckOwner built-in procedure, 2
	ttGridCreate built-in procedure, 2
	ttGridDestroy built-in procedure, 2
	ttGridDetach built-in procedure, 2
	ttGridDetachAll built-in procedure, 2
	ttGridDetachList built-in procedure, 2
	ttGridFirstMemberAttach built-in procedure, 2
	ttGridGlobalCGResume built-in procedure, 2
	ttGridGlobalCGSuspend built-in procedure, 2
	ttGridInfo built-in procedure, 2
	ttGridNameSet built-in procedure, 2
	ttGridNodeStatus built-in procedure, 2
	ttHostNameGet built-in procedure, 2
	ttHostNameSet built-in procedure, 2
	ttIndexAdviceCaptureDrop built-in procedure, 2
	ttIndexAdviceCaptureEnd built-in procedure, 2
	ttIndexAdviceCaptureInfoGet built-in procedure, 2
	ttIndexAdviceCaptureOutput built-in procedure, 2
	ttIndexAdviceCaptureStart built-in procedure, 2
	ttIsql utility, 3.2.2
	ttLoadFromOracle built-in procedure, 2
	ttLockLevel built-in procedure, 2
	ttLockWait built-in procedure, 2
	ttLogHolds built-in procedure, 2
	ttMigrate utility, 3.2.2
	ttmodinstall utility, 3.2.2
	ttMonitorHighWaterReset built-in procedure, 2
	ttOptClearStats built-in procedure, 2
	ttOptCmdCacheInvalidate built-in procedure, 2
	ttOptEstimateStats built-in procedure, 2
	ttOptGetColStats built-in procedure, 2
	ttOptGetFlag built-in procedure, 2
	ttOptGetMaxCmdFreeListCnt built-in procedure, 2
	ttOptGetOrder built-in procedure, 2
	ttOptSetColIntvlStats built-in procedure, 2
	ttOptSetColStats built-in procedure, 2
	ttOptSetFlag built-in procedure, 2
	ttOptSetMaxCmdFreeListCnt built-in procedure, 2
	ttOptSetMaxPriCmdFreeListCnt built-in procedure, 2
	ttOptSetOrder built-in procedure, 2
	ttOptSetTblStats built-in procedure, 2
	ttOptShowJoinOrder built-in procedure, 2
	ttOptStatsExport built-in procedure, 2
	ttOptUpdateStats built-in procedure, 2
	ttOptUseIndex built-in procedure, 2
	ttPLSQLMemoryStats built-in procedure, 2
	ttRamPolicyAutoReloadGet built-in procedure, 2
	ttRamPolicyAutoReloadSet built-in procedure, 2
	ttRamPolicyGet built-in procedure, 2
	ttRamPolicySet built-in procedure, 2
	ttRedundantIndexCheck built-in procedure, 2
	ttRepAdmin utility, 3.2.2
	ttRepDeactivate built-in procedure, 2
	ttReplicationStatus built-in procedure, 2
	ttRepPolicyGet built-in procedure, 2
	ttRepPolicySet built-in procedure, 2
	ttRepQueryThresholdGet built-in procedure, 2
	ttRepQueryThresholdSet built-in procedure, 2
	ttRepStart built-in procedure, 2
	ttRepStateGet built-in procedure, 2
	ttRepStateSave built-in procedure, 2
	ttRepStateSet built-in procedure, 2
	ttRepStop built-in procedure, 2
	ttRepSubscriberStateSet built-in procedure, 2
	ttRepSubscriberWait built-in procedure, 2
	ttRepSyncGet built-in procedure, 2
	ttRepSyncSet built-in procedure, 2
	ttRepSyncSubscriberStatus built-in procedure, 2
	ttRepTransmitGet built-in procedure, 2
	ttRepTransmitSet built-in procedure, 2
	ttRepXactStatus built-in procedure, 2
	ttRepXactTokenGet built-in procedure, 2
	ttRestore utility, 3.2.2
	ttSchema utility, 3.2.2
	ttSetUserColumnID built-in procedure, 2
	ttSetUserTableID built-in procedure, 2
	ttSize built-in procedure, 2
	ttSize utility, 3.2.2
	ttSQLCmdCacheInfo built-in procedure, 2
	ttSQLCmdCacheInfo2 built-in procedure, 2
	ttSQLCmdCacheInfoGet built-in procedure, 2
	ttSQLCmdQueryPlan built-in procedure, 2
	ttSQLExecutionTimeHistogram built-in procedure, 2
	ttStats utility
	
	description, 3.2.2
	example, monitor, 3.2.2
	example, snapshot, 3.2.2
	examples, reports, 3.2.2

	ttStatsConfig built-in procedure, 2
	ttStatus utility, 3.2.2
	ttSysLogCheck utility, 3.2.2
	ttTableSchemaFromOraQueryGet built-in procedure, 2
	ttTail utility, 3.2.2
	ttTraceMon utility, 3.2.2
	ttUser utility, 3.2.2
	ttVersion built-in procedure, 2
	ttVersion utility, 3.2.2
	ttWarnOnLowMemory built-in procedure, 2
	ttXactAdmin utility, 3.2.2
	ttXactIdGet built-in procedure, 2
	ttXactLog utility, 3.2.2
	ttXlaBookmarkCreate built-in procedure, 2
	ttXlaBookmarkDelete built-in procedure, 2
	ttXlaSubscribe built-in procedure, 2
	ttXlaUnsubscribe built-in procedure, 2
	TypeMode connection attribute, 1.2

U

	UID connection attribute, 1.2
	UseBoyerMooreStringSearch optimizer flag, 2
	user table ID, XLA, ttSetUserTableID built-in procedure, 2
	utilities
	
	access control, 3.2.1
	authentication, 1.2, 3.2.1
	privileges, 3.2.1
	ttAdmin, 3.2.2
	ttAdoptStores, 3.2.2
	ttBackup, 3.2.2
	ttBulkCp, 3.2.2
	ttCacheAdvisor, 3.2.2
	ttCapture, 3.2.2
	ttCheck, 3.2.2
	ttCWAdmin, 3.2.2
	ttDaemonAdmin, 3.2.2
	ttDaemonLog, 3.2.2
	ttDestroy, 3.2.2
	ttIsql, 3.2.2
	ttMigrate, 3.2.2
	ttmodinstall, 3.2.2
	ttRepAdmin, 3.2.2
	ttRestore, 3.2.2
	ttSchema, 3.2.2
	ttSize, 3.2.2
	ttStats, 3.2.2
	ttStatus, 3.2.2
	ttSysLogCheck, 3.2.2
	ttTail, 3.2.2
	ttTraceMon, 3.2.2
	ttUser, 3.2.2
	ttVersion, 3.2.2
	ttXactAdmin, 3.2.2
	ttXactLog, 3.2.2

V

	varying-length column, maximum length, 4.1
	version, TimesTen
	
	ttVersion built-in procedure, 2
	ttVersion utility, 3.2.2

W

	WaitForConnect connection attribute, 1.2
	WHENEVER SQLERROR command, ttIsql utility, 3.2.2

X

	XLA
	
	bookmark, managing, ttIsql utility, 3.2.2
	column ID, ttSetUserColumnID built-in procedure, 2
	system table ID, ttSetUserTableID built-in procedure, 2
	ttBookmark built-in procedure, 2
	ttXlaBookMarkCreate built-in procedure, 2
	ttXlaBookmarkDelete built-in procedure, 2
	ttXlaSubscribe built-in procedure, 2
	ttXlaUnsubscribe built-in procedure, 2
	user table ID, ttSetUserTableID built-in procedure, 2

Oracle Legal NoticesOracle Legal Notices
Copyright Notice
Copyright © 1994-2016, Oracle and/or its affiliates. All rights reserved.
License Restrictions Warranty/Consequential Damages Disclaimer
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
Warranty Disclaimer
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
Restricted Rights Notice
If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable:
U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.
Hazardous Applications Notice
This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.
Trademark Notice
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.
Third-Party Content, Products, and Services Disclaimer
This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth in an applicable agreement between you and Oracle.
Alpha and Beta Draft Documentation Notice
If this document is in preproduction status:
This documentation is in preproduction status and is intended for demonstration and preliminary use only. It may not be specific to the hardware on which you are using the software. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to this documentation and will not be responsible for any loss, costs, or damages incurred due to the use of this documentation.
Private Alpha and Beta Draft Documentation Notice
If this document is in private preproduction status:
The information contained in this document is for
informational sharing purposes only and should be considered in your
capacity as a customer advisory board member or pursuant to your beta
trial agreement only. It is not a commitment to deliver any material,
code, or functionality, and should not be relied upon in making
purchasing decisions. The development, release, and timing of any
features or functionality described in this document remains at the
sole discretion of Oracle.
This document in any form, software or printed matter, contains proprietary information that is the exclusive property
of Oracle. Your access to and use of this confidential material is
subject to the terms and conditions of your Oracle Master Agreement, Oracle License and Services Agreement, Oracle PartnerNetwork Agreement, Oracle distribution agreement, or other license agreement which has been executed by you and Oracle and with which you agree to
comply. This document and information contained herein may not be
disclosed, copied, reproduced, or distributed to anyone outside Oracle
without prior written consent of Oracle. This document is not part of
your license agreement nor can it be incorporated into any contractual
agreement with Oracle or its subsidiaries or affiliates.
Documentation Acce