
Agile Product Lifecycle Management

SDK 開発者ガイド

2008 年 5 月

v9.2.2.3

部品番号 : E06159-01

SDK 開発者ガイド

ii Agile Product Lifecycle Management

著作権および商標について
Copyright © 1995, 2008, Oracle.All rights reserved.

このプログラム (ソフトウェアおよびドキュメントを含む) には、オラクル社およびその関連会社に所有権の

ある情報が含まれています。このプログラムの使用または開示は、オラクル社およびその関連会社との契約に

記された制約条件に従うものとします。著作権、特許権およびその他の知的財産権と工業所有権に関する法律

により保護されています。独立して作成された他のソフトウェアとの互換性を得るために必要な場合、もしく

は法律によって規定される場合を除き、このプログラムのリバース エンジニアリング、逆アセンブル、逆コン

パイル等は禁止されています。

このドキュメントの情報は、予告なしに変更される場合があります。オラクル社およびその関連会社は、この

ドキュメントに誤りが無いことの保証は致し兼ねます。これらのプログラムのライセンス契約で許諾されてい

る場合を除き、プログラムを形式、手段 (電子的または機械的)、目的に関係なく、複製または転用することは

できません。

このプログラムが米国政府機関、もしくは米国政府機関に代わってこのプログラムをライセンスまたは使用す

る者に提供される場合は、次の注意が適用されます。

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to
U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations.As such, use, duplication,
disclosure, modification, and adaptation of the Programs, including documentation and technical data, shall be subject to
the licensing restrictions set forth in the applicable Oracle license agreement, and, to the extent applicable, the additional
rights set forth in FAR 52.227-19, Commercial Computer Software--Restricted Rights (June 1987).Oracle USA, Inc., 500
Oracle Parkway, Redwood City, CA 94065.

このプログラムは、核、航空、大量輸送、医療あるいはその他の本質的に危険を伴うアプリケーションで使用

されることを意図しておりません。このプログラムをかかる目的で使用する際、上述のアプリケーションを安

全に使用するために、適切な安全装置、バックアップ、冗長性 (redundancy)、その他の対策を講じることは使

用者の責任となります。万一かかるプログラムの使用に起因して損害が発生いたしましても、オラクル社およ

びその関連会社は一切責任を負いかねます。

Oracle、Agile は米国 Oracle Corporation およびその子会社、関連会社の登録商標です。その他の名称は、他社

の商標の可能性があります。

このプログラムは、第三者の Web サイトへリンクし、第三者のコンテンツ、製品、サービスへアクセスする

ことがあります。オラクル社およびその関連会社は第三者の Web サイトで提供されるコンテンツについては、

一切の責任を負いかねます。当該コンテンツの利用は、お客様の責任になります。第三者の製品またはサービ

スを購入する場合は、第三者と直接の取引となります。オラクル社およびその関連会社は、第三者の製品およ

びサービスの品質、契約の履行 (製品またはサービスの提供、保証義務を含む) に関しては責任を負いかねま

す。また、第三者との取引により損失や損害が発生いたしましても、オラクル社およびその関連会社は一切の

責任を負いかねます。

 iii

目次
著作権および商標について ..ii
導入 ...1
Agile SDK とは..1

SDK のコンポーネント ..2
アーキテクチャ ..2
Agile XML (別名 aXML) ...3

このリリースでの新機能と拡張機能 ..4
システム要件..5
Java の要件 ..5
Agile SDK インストール フォルダ ..5
Agile PLM システムの確認..6
Agile PLM ビジネス オブジェクト ..6
Licensing..7
Agile API の開始 ...9
Agile API の概要 ...9

Agile API のクラスとインターフェースのタイプ ..9
ネットワーク クラスのロード ..10
シングルスレッド アプリケーションとマルチスレッド アプリケーションの対比 ...11
Agile API プログラムのパッケージ化 ..11
サンプル プログラム ..12

Agile API プログラムの開始..12
Agile API ライブラリのクラス パスの設定 ..12
Agile API クラスのインポート ..12
セッションの作成およびログイン ..13
パスワードで保護された URL へのアクセスによるセッションの作成 ...14
Agile Web サービスからのセッションの作成 ...15

Agile PLM オブジェクトのロードおよび作成 ..15
オブジェクトのロード ..16
オブジェクトの作成 ..21

Agile PLM オブジェクトの状態の確認 ..32
関連オブジェクトへの値の継承 ..32
オブジェクトを新規オブジェクトとして保存 ..33

SDK 開発者ガイド

iv Agile Product Lifecycle Management

オブジェクトの共有..33
オブジェクトの削除および削除取消 ..34
セッションを閉じる..36
検索条件の作成およびロード ..37
検索条件について..37
検索条件の作成..37
フォルダへの検索条件の保存 ..38
パラメータ検索の作成 ..39
検索条件作成時の検索属性の指定 ..40

検索条件の指定..42
検索条件..42
クエリ言語のキーワード ..43
検索属性の指定 ..43
検索可能属性の取得 ..44
関係演算子の使用 ..45
検索条件の日付の書式設定 ..48
論理演算子の使用 ..49
Like 演算子でのワイルドカード文字の使用 ...49
検索条件での括弧の使用 ..50

検索条件での SQL 構文の使用 ..50
SQL ワイルドカードの使用...52
SQL 構文の使用による検索結果の並べ替え ...52

検索条件の結果属性の設定 ..53
結果属性の指定 ..59
コンテンツ転送作成者名の取得 ..60
拠点関連オブジェクトと AML の重複する結果..61

検索結果の使用..61
検索結果の並べ替え ..61
検索結果のデータ タイプ ..62
大量の検索結果の管理 ..62
検索のパフォーマンス ..62

使用箇所検索条件の作成..62
検索条件のロード..63
検索条件の削除..64
簡単な検索条件の例..65
テーブルの使用..67
テーブルについて..67
テーブルの取得..68

SDK 開発者ガイド Agile Product Lifecycle Management

 v

新規およびマージされた [関係] テーブルへのアクセス ..69
[関係] テーブルへのアクセス..69
マージされたテーブルへのアクセス ..69
読み取り専用テーブルの使用 ..71

テーブルのメタデータの取得 ..71
テーブル行の追加..71

[BOM] テーブルへのアイテムの追加...72
[添付ファイル] テーブルへの添付ファイルの追加 ..72
[製造元] テーブルへの製造元部品の追加..73
[対象アイテム] テーブルへのアイテムの追加 ..73
[スケジュール] テーブルへのタスクの追加 ..74

複数のテーブル行の追加および更新 ..74
[BOM] テーブルへの複数アイテムの追加...74
複数の BOM 行の更新 ...75

テーブル行の繰り返し処理 ..76
複数ページのテーブルを含む検索結果内のオブジェクトの更新 ...78

テーブルの並べ替え..78
テーブル行の削除..79
行に対する参照オブジェクトの取得 ..80
行のステータス フラグの確認 ..84
[ページ 1]、[ユーザー定義 1] および [ユーザー定義 2] の使用 ..85
レッドライン..85
レッドラインの変更の削除 ..87
レッドライン付きの行およびレッドライン付きのセルの識別...88

ICell.getOldValue の使用...88
データ セルの使用..89
データ セルについて..89
データ タイプ..89
ディスカバリ権限の確認..90
セルが読み取り専用かどうかの確認 ..91
値の取得 ...91

SDK の日付フォーマットおよびユーザー プリファレンスの理解 ...93
値の設定 ...93
ロックされたオブジェクトの例外の捕捉 ..94

リスト値の取得および設定 ..94
シングルリスト セルの値の取得および設定...95

SDK 開発者ガイド

vi Agile Product Lifecycle Management

マルチリスト セルの値の取得および設定 ..95
カスケード リストの値の取得および設定 ..96

参照指示セルの使用..98
フォルダの使用..99
フォルダについて..99
フォルダおよびオブジェクト名でのレベル区切り文字の使用 ...100

フォルダのロード..101
フォルダの作成..101
フォルダ タイプの設定..102
フォルダ要素の追加および削除 ..103
フォルダ要素の追加 ..103
フォルダ要素の削除 ..103

フォルダ要素の取得..104
フォルダの削除..106
アイテム、BOM および AML の使用 ...107
アイテムについて..107
アイテムのリビジョンの取得および設定 ..107
リビジョンの確定済みステータスの変更 ..109
BOM の使用 ..110

BOM へのアイテムの追加 ...110
BOM の展開...111
別の BOM への BOM のコピー ..112
BOM のレッドライン ...113

AML の使用...115
[製造元] テーブルへの承認済み製造元の追加 ..116
AML のレッドライン ...117

リストの使用..119
リストについて..119
リスト ライブラリ ..119
シングルリストのリスト ..120
マルチリストのリスト ..121
カスケード リスト ..122
IAgileList を使用するメソッド..122

リスト値の選択..123
動的リストの使用 ..125
ライフサイクル フェーズ セルの使用 ..127

リスト ライブラリからのリストの選択 ..127
カスタム リストの作成..129

SDK 開発者ガイド Agile Product Lifecycle Management

 vii

簡易リストの作成 ..129
既存リストの変更による新規リストの自動作成...130
カスケード リストの作成 ..131

リストのデータ タイプの確認 ..133
リストの変更..134
リストへの値の追加 ..134
リスト値の破棄 ..135
リスト名と説明の設定 ..135
カスケード リストのレベル名の設定 ..135
リストの有効化または無効化 ..136
リストの削除..136
リスト値の変更および削除 ..137

IAgileList オブジェクトのコンテンツの印刷..138
製造拠点の管理..139
製造拠点について..139
拠点へのアクセスの管理..139
製造拠点の作成..140
製造拠点のロード..140
アイテムの [拠点] テーブルの取得 ...141
[拠点] テーブルへの製造拠点の追加 ...141
アイテムの現在の製造拠点の選択 ..142
拠点の無効化..144
添付ファイルとファイル フォルダの使用 ..145
添付ファイルについて..145
ファイル フォルダの使用 ..146
ファイル フォルダのテーブル ..147
ファイル フォルダの [ファイル] テーブルの使用 ..147
IAttachmentFile インターフェースの使用 ..148

[添付ファイル] テーブルの使用 ...149
ICheckoutable インターフェースの使用 ...150
アイテムのリビジョンの指定 ..151
リビジョンが確定済みかどうかの確認 ..151

ファイル フォルダのチェックアウト ..151
ファイル フォルダのチェックアウトのキャンセル ..151
[添付ファイル] テーブルへのファイルおよび URL の追加 ..152
オブジェクト間での添付ファイルおよびファイルのディープ クローンの作成 ...154

SDK 開発者ガイド

viii Agile Product Lifecycle Management

添付ファイル追加時のファイル フォルダ サブクラスの指定 ...155
ファイル フォルダのファイルのバージョンの設定...156

ファイル フォルダのチェックイン ..156
ファイルの置換..157
添付ファイルの取得..159
ファイル フォルダと添付ファイルの削除 ..160
ワークフローの管理..161
ワークフローについて..161
変更管理プロセス ..161
動的なワークフロー機能 ..162

ワークフローの選択..163
承認者の追加および削除..164

[サインオフ ユーザー二重識別タイプ] プリファレンスの設定 ..166
変更の承認または却下..174
変更のコメント..175
変更の検証 ...175
オブジェクトのワークフロー ステータスの変更 ..176
選択したユーザーへの Agile オブジェクトの送信..179
ユーザー グループへの Agile オブジェクトの送信..179
品質の管理および追跡..181
品質管理について..181
品質関連の API オブジェクト..181
品質関連の役割と権限 ..182

顧客の使用 ...182
顧客について..182
顧客の作成..182
顧客のロード..183
顧客を別の顧客として保存 ..183

製品サービス依頼の使用..184
問題レポートについて ..184
不具合レポートについて ..184
製品サービス依頼の作成 ..184
品質分析者への製品サービス依頼の割り当て...185
製品サービス依頼への対象アイテムの追加 ..185
製品サービス依頼への関連 PSR の追加 ...186

品質変更依頼の使用..187
品質変更依頼の作成 ..187
品質管理者への品質変更依頼の割り当て ..188

SDK 開発者ガイド Agile Product Lifecycle Management

 ix

品質変更依頼を変更として保存 ..188
PSR および QCR でのワークフロー機能の使用 ...189
ワークフローの選択 ..189

プログラムの作成および管理 ..191
プログラムについて..191
プログラム オブジェクトの動作の相違点 ..192
プログラムの作成..192
プログラムのロード..194
プログラム テンプレートの使用 ..194
テンプレートを使用した新規プログラムの作成...194
プログラムの作成および所有権の変更 ..195
プログラムをテンプレートとして保存 ..197

プログラムのスケジュール ..198
プログラムの基準の使用..200
別のユーザーへのプログラム所有権の委譲 ..201
プログラムのチームへのリソースの追加 ..202
プログラム リソースの入れ替え ..205
プログラムのロックまたはロック解除 ..206
ディスカッションの使用..206
ディスカッションの作成 ..206
ディスカッションへの返信 ..208
ディスカッションへの参加 ..210
アクション アイテムの作成 ..211

Product Cost Management の使用 ..213
Product Sourcing について ..213
価格の管理 ...214
価格オブジェクトの作成 ..214
価格オブジェクトのロード ..216
価格ラインの追加 ..216
価格変更の作成 ..218

サプライヤの使用..219
サプライヤのロード ..219
サプライヤ データの変更 ..219

ソーシング プロジェクトの使用 ..220
サポートされている API メソッド ..221
既存のプロジェクトのロード ..222

SDK 開発者ガイド

x Agile Product Lifecycle Management

数量割引の指定によるプロジェクトの作成 ..222
数量割引および価格期間の指定によるプロジェクトの作成 ...223
オブジェクト、テーブルおよび属性へのアクセスと変更...224
PCM のネスト テーブルの理解..225
ソーシング プロジェクトでの追加データの設定...227
見積依頼の使用 ..232

Agile PLM オブジェクトの確認通知 ...237
ユーザー確認通知について ..237
確認通知イベント ..237
確認通知権限..238
確認通知..238
確認通知の対象とするオブジェクトの削除 ..238

オブジェクトに対する確認通知の取得 ..238
オブジェクトに対する確認通知の変更 ..240
確認通知での属性の使用可能化 ..241
親属性と子属性 ..242

[確認通知] テーブルの使用 ...243
製品の規制および適合性の管理 ..245
Agile Product Governance & Compliance について ...245
Agile PG&C のインターフェースとクラス ...246
Agile PG&C の役割 ...246
デクラレーション、含有基準およびサブスタンスの作成...247
デクラレーションの作成 ..247
含有基準の作成 ..248
サブスタンスの作成 ..249

デクラレーションへのアイテム、製造元部品および部品グループの追加 ...251
デクラレーションへのサブスタンスの追加 ..252

BOS (サブスタンス構成表) の構造 ...253
サブスタンスの追加に関するルール ..254
存在しないサブパートとマテリアルの追加 ..254
サブスタンスを追加する例 ..255

含有基準へのサブスタンスの追加 ..259
デクラレーションへの含有基準の追加 ..260
含有基準の追加に関するルール ..260

デクラレーションの送信..261
デクラレーションの入力..262
適合性管理者へのデクラレーションの提出 ..263
デクラレーションの公表..264

SDK 開発者ガイド Agile Product Lifecycle Management

 xi

重量値の取得および設定..264
製造元部品のサブスタンス組成の追加 ..265
適合性データのロールアップ ..268

IPGCRollup インターフェースの理解 ..268
IPGCRollup インターフェースの使用 ..269

管理タスクの実行..273
Agile PLM 管理について..273
Agile PLM の管理に必要な権限 ..274
管理インターフェース..274
IAdmin インスタンスの取得 ...275
ノードの使用..275

[クラス] ノードの使用 ...279
Agile PLM クラスの管理..280
具象クラスと抽象クラス ..282
クラスの参照..283
クラスのターゲット タイプの識別 ..284

属性の使用 ...284
属性の参照..284
属性の取得..286
個々の属性の取得 ..287
属性のプロパティの編集 ..287
ユーザー定義属性の使用 ..287

管理ノードのプロパティの使用 ..288
ユーザーの管理..289
すべてのユーザーの取得 ..289
ユーザーの作成 ..289
サプライヤ ユーザーの作成 ..290
ユーザーを新規ユーザーとして保存 ..291
有効期限が切れたパスワードの確認 ..291
ユーザー設定の構成 ..292
ユーザー パスワードのリセット ..293
ユーザーの削除 ..293

ユーザー グループの管理 ..294
すべてのユーザー グループの取得 ..294
ユーザー グループの作成 ..294
ユーザー グループ内のユーザーのリスト ..296

SDK 開発者ガイド

xii Agile Product Lifecycle Management

例外の処理 ...297
例外について..297
例外定数 ...298
エラー コードの取得..298
エラー メッセージの取得 ..298
警告メッセージの無効化および有効化 ..299

APIException がエラーではなく警告であることの確認 ..300
Agile API で自動的に無効にした警告の削除 ..301
有効または無効にした警告の状態の保存および復元...301

プロセス拡張の開発..303
プロセス拡張について..303
カスタム自動採番ソースの開発 ..304
カスタム自動採番ソースの定義 ..304
カスタム自動採番ソースのパッケージ化および配置...305
Agile Java クライアントでのカスタム自動採番ソースの設定 ..305

カスタム アクションの開発 ..307
カスタム アクションの定義 ..307
カスタム アクションとユーザー セッション...308
カスタム アクションのパッケージ化および配置...308
カスタム アクションの役割と権限 ..309
Agile Java クライアントでのカスタム アクションの設定 ..309

URL ベースのプロセス拡張の定義 ..312
エンコードされた Agile PLM 情報を他のアプリケーションに渡す場合..314
ターゲット システムからの Agile PLM セッションの作成...315
HTTP リクエストからの Agile PLM オブジェクトの取得...316
Agile PLM クラスの識別属性 ..316

SDK ネットワーク クラスローダと Weblogic Server の操作の設定..318
外部レポートの作成..319
クラスタ環境でのプロセス拡張の配置 ..320
プロセス拡張に関するよくある質問 ..320
Web サービス拡張の開発..323
Web サービス拡張について ..323
主な機能..324
WSX アーキテクチャ ...325

Web サービスについて ..325
Web サービス アーキテクチャ...326
セキュリティ..327
ツール..327

SDK 開発者ガイド Agile Product Lifecycle Management

 xiii

Web サービスに関する追加情報の検索 ...328
Web サービスの開発および配置 ..328
デプロイメント ディスクリプタについて ..328
予約されている Web サービス名...329

Web サービスの使用 ..329
Web サービスのエントリ ポイントの定義 ...330

ユーザーの認証..330
クライアント/サーバ アクセスでのシングル サインオン クッキーの使用..331
配置アーキテクチャ ..331
シングル サインオン クッキーを使用した Web サービス クライアントの起動...331

MyFirstWebService サンプルの環境の準備..332
サンプル作成用ツールのダウンロード ..333
Java SDK のインストール ..333
Ant のインストール ..333

MyFirstWebService サンプルの作成..334
Web サービス クライアントについて...335
クライアント プログラミング言語 ..335
Web サービスへのアクセス...336

MyFirstClient の作成 ...336
SOAP リクエストの生成 ..336
SOAP リクエストの発行 ..337
SOAP レスポンスの処理 ..337
MyFirstClient の実行 ...338
WSX 内部における Agile セッションの作成...338

インポート データのサーバ ルール準拠の検証 ..339
データの検証 (インポート前)..339
データのインポート (検証後)..339

Microsoft .NET の相互運用性 ..340
Web サービス拡張に関するよくある質問...341
ダッシュボード管理拡張の開発 ..345
ダッシュボード管理拡張について ..345
ダッシュボード管理拡張の役割と権限 ..346

カスタム チャート ダッシュボード管理拡張の開発 ..346
ChartDataModel および ChartDataSet の理解 ..346
カスタム チャート DX のデータ ソースの定義 ...346
カスタム チャート DX ソースのパッケージ化および配置 ...348

SDK 開発者ガイド

xiv Agile Product Lifecycle Management

Java クライアントでのチャート DX の設定..348
カスタム テーブル ダッシュボード管理拡張の開発 ..350

Collection および CustomTableConstants の理解...350
カスタム テーブル DX のデータ ソースの定義 ...351
カスタム テーブル DX ソースのパッケージ化および配置 ...353
Java クライアントでのテーブル DX の設定..354

カスタム (URL) 拡張の定義 ...355
Agile PLM クライアント機能と Agile API とのマッピング ...357
ログイン機能..357
一般機能 ...358
検索機能 ...358
添付ファイル機能..359
ワークフロー機能..359
製造拠点機能..360
フォルダ機能..360
プログラム機能..361
管理機能 ...361

 xv

はじめに
Oracle|Agile マニュアル セットには Adobe® Acrobat™ PDF ファイルが含まれます。Oracle Technology Network
(OTN) Web サイト (http://www.oracle.com/technology/documentation/agile.html) には、Oracle|Agile PLM の最新版

の PDF ファイルがあります。この Web サイトのマニュアルは、その場で表示することもダウンロードして

使用することもできます。また、使用しているネットワーク上の Oracle|Agile マニュアル フォルダに
Oracle|Agile マニュアル (PDF) ファイルが格納されている場合もあります。詳細は、Agile 管理者にお問い合

わせください。

注意 PDF ファイルを表示するには、Adobe Acrobat Reader™ のバージョン 7.0 以降 (無料) を使用する

必要があります。このプログラムは、Adobe 社の Web サイト (http://www.adobe.com) からダウン

ロードできます。

Oracle Technology Network (OTN) Web サイト (http://www.oracle.com/technology/documentation/agile.html) は、

Agile Web クライアントと Agile Java クライアントのいずれの場合も、[ヘルプ] > [マニュアル] の順に選択し

てアクセスできます。さらに疑問点がある場合やサポートが必要な場合は、サポート
(http://www.oracle.com/agile/support.html) にお問い合わせください。

注意 Oracle|Agile PLM マニュアルに関する問題について Agile サポートにお問い合わせいただく前に、

タイトル ページにある完全な部品番号をご準備ください。

Oracle サポート サービスへの TTY アクセス

アメリカ国内では、Oracle サポート サービスへ 24 時間年中無休でテキスト電話 (TTY) アクセスが提供され

ています。TTY サポートについては、(800) 446-2398 にお電話ください。アメリカ国外からの場合は、

+1-407-458-2479 にお電話ください。

ドキュメントのアクセシビリティについて

オラクル社は、障害のあるお客様にもオラクル社の製品、サービスおよびサポート ドキュメントを簡単にご利

用いただけることを目標としています。オラクル社のドキュメントには、ユーザーが障害支援技術を使用して

情報を利用できる機能が組み込まれています。HTML 形式のドキュメントで用意されており、障害のあるお客

様が簡単にアクセスできるようにマークアップされています。標準規格は改善されつつあります。オラクル社

はドキュメントをすべてのお客様がご利用できるように、市場をリードする他の技術ベンダーと積極的に連携

して技術的な問題に対応しています。オラクル社のアクセシビリティについての詳細情報は、Oracle
Accessibility Program の Web サイト http://www.oracle.com/accessibility/ を参照してください。

Readme

Oracle|Agile PLM の最新情報は、すべて Oracle Technology Network (OTN) Web サイト
(http://www.oracle.com/technology/documentation/agile.html) にある Readme ファイルに記載されています。

http://www.oracle.com/technology/documentation/agile.html
http://www.adobe.com/
http://www.oracle.com/technology/documentation/agile.html
http://www.oracle.com/agile/support.html
http://www.oracle.com/accessibility/
http://www.oracle.com/technology/documentation/agile.html

xvi Agile Product Lifecycle Management

Agile トレーニング支援

Agile トレーニングの講義内容詳細については、Oracle University Web ページ
(http://www.oracle.com/education/chooser/selectcountry_new.html) にアクセスしてください。

ドキュメント内のサンプル コードのアクセシビリティについて

スクリーン リーダーは、ドキュメント内のサンプル コードを正確に読めない場合があります。コード表記規

則では閉じ括弧だけを行に記述する必要があります。しかしスクリーン リーダーは括弧だけの行を読まない場

合があります。

外部 Web サイトのドキュメントのアクセシビリティについて

このドキュメントにはオラクル社およびその関連会社が所有または管理しない Web サイトへのリンクが含ま

れている場合があります。オラクル社およびその関連会社は、それらの Web サイトのアクセシビリティに関

しての評価や言及は行っておりません。

http://www.oracle.com/education/chooser/selectcountry_new.html

Agile Product Lifecycle Management 1 ページ

第 1 章

導入

扱うトピックは次のとおりです。

 Agile SDK とは ... 1
 このリリースでの新機能と拡張機能.. 4
 システム要件 ... 5
 Java の要件 .. 5
 Agile SDK インストール フォルダ.. 5
 Agile PLM システムの確認 ... 6
 Agile PLM ビジネス オブジェクト ... 6
 Licensing ... 7

Agile SDK とは
Agile SDK はソフトウェア開発キットで、一連のツール、アプリケーション プログラミング インターフェー

ス (API)、サンプル アプリケーションおよびマニュアルが組み込まれています。この SDK は、Agile アプリ

ケーション サーバの機能にアクセスするカスタム アプリケーションを構築するために使用します。Agile SDK
を使用すると、Agile PLM システムに対してタスクを自動的に実行するプログラムを作成できます。

Agile SDK によって、次の操作が可能になります。

 Agile PLM システムと ERP アプリケーションまたは他のカスタム アプリケーションとの統合。

 製品データを処理するアプリケーションの開発。

 Agile アプリケーション サーバに対するバッチ操作の実行。

Agile SDK には、次の 3 つのモジュールがあります。

 Agile API - Agile ビジネス オブジェクトを公開するインターフェースを備えた Java API。Agile API は、

追加の Agile PLM クライアントを作成するために使用したり、WSX または PX を使用して開発した拡張

機能の一部として使用します。

 プロセス拡張 (PX) - Agile PLM の顧客が Agile PLM クライアントの機能を拡張できるようにするフレー

ムワーク。拡張するには、外部レポート、ユーザーおよびワークフロー主導型のカスタム アクション、カ

スタム ツールおよびカスタム自動採番ソースを追加します。

 Web サービス拡張 (WSX) - Agile PLM の顧客が、Web サービスを使用して Agile PLM サーバの機能を拡

張し、顧客固有のソリューションを公開できるようにするフレームワーク。

SDK 開発者ガイド

2 ページ Agile Product Lifecycle Management

SDK のコンポーネント
Agile PLM は Agile サーバ上で実行され、管理者とユーザーとのすべての相互作用には、クライアント側のコ

ンポーネントとサーバ側のコンポーネントが組み込まれた SDK が使用されます。

クライアント側のコンポーネント

Agile SDK に組み込まれているクライアント側のコンポーネントは、次のとおりです。

 Agile SDK 開発者ガイド (このマニュアル)

 Agile API HTML リファレンス

 サンプル アプリケーション

 Agile API ライブラリ (AgileAPI.jar)

 プロセス拡張 API ライブラリ (pxapi.jar)

 Apache Axis ライブラリ (axis.jar)

サーバ側のコンポーネント

Agile アプリケーション サーバに組み込まれている Agile SDK のサーバ側のコンポーネントは、次のとおり

です。

 Agile API 実装クラス

 プロセス拡張フレームワーク

 Web サービス拡張フレームワーク

アーキテクチャ
Agile SDK を使用すると、Agile アプリケーション サーバに接続するための様々なタイプのプログラムを簡単

に開発できます。Agile API のみを使用している場合は、サーバに直接接続するプログラムを開発できます。

WSX を使用して Web サービスの拡張機能を開発する場合は、Agile アプリケーション サーバのコンテナ内

に Web サービスを配置できます。WSX に使用する Web サーバは、企業の非武装地帯 (DMZ) コンピュー

ティング ネットワークや防衛ネットワークの内部または外部に配置できます。Agile PLM クライアントでカス

タム アクションを開始する場合は、サーバに配置されているプログラムを実行するか、外部のリソースまたは
URL に接続します。Agile API は、WSX および PX の拡張でも使用できます。これは、Agile SDK のすべて

の開発プロジェクトで使用できるツールです。拡張機能は、他社が提供する API を使用して開発することもで

きます。

 第 1 章

Agile Product Lifecycle Management 3 ページ

Agile XML (別名 aXML)
Agile XML 形式は、Agile のビジネス スキーマの XML 表現です。aXML には、Agile で管理される製品コン

テンツがすべて含まれます。製品コンテンツには、アイテム、変更の詳細、製造元情報、コスト データ、図面

および他のファイルが含まれています。aXML は Agile のすべての製品におけるスキーマ要素の表現であるた

め、Agile のビジネス スキーマとともに長期にわたって展開される予定です。

最新の aXML スキーマについては、次の Web ページを参照してください。
http://support.agile.com/misc/axml/2007/03/aXML.xsd

注意 Agile 9.2.1 から Agile 9.2.2 への移行で、aXML スキーマに変更がありました。詳細は、Agile 9.2.2 の
Readme ファイルを参照してください。

図 1: Agile SDK のアーキテクチャ

注意 Agile API プログラムでは、保護されていない手段を使用して Agile アプリケーション サーバに接

続します。したがって、Agile API プログラムは、企業のファイヤウォール内のみで実行する必要が

あります。一方、Web サービス クライアントは、標準的な HTTP(S) テクノロジを使用して企業の

ファイヤウォールを介してサーバに接続できます。

http://support.agile.com/misc/axml/2007/03/aXML.xsd

SDK 開発者ガイド

4 ページ Agile Product Lifecycle Management

このリリースでの新機能と拡張機能
このリリースでの拡張機能と変更の概要は、次のとおりです。

 プログラム テンプレートを使用したプログラムの作成と所有権の変更 - saveAs () API 呼び出しを使用

してテンプレートからプログラムを作成するときは、プログラムの所有者と新しいプログラムの子の所有

者を変更できます。195 ページの「プログラムの作成および所有権の変更」を参照してください。

 コード例の変更 - マニュアルのコード サンプルが若干変更されました。これらの変更については、107
ページの「アイテムのリビジョンの取得および設定」のコード サンプルを参照してください。

新機能および Agile SDK リリース 9.2.2.2 の既存の機能に対する拡張の概要は、次のとおりです。

重要 AgileAPI.jar リリース 9.2.2.2/9.2.2.3 の PG&C 定数と関係テーブル機能は、前のバージョンの
AgileAPI.jar と互換性がありません。

 Product Collaboration (PC) のユーザー二重識別サインオフ - PC での現在の電子承認プロセスを拡張する

ために、合計 7 個の新しい API が用意されました。この機能は、サインオフ プロセスで二重ユーザー

識別が必要な FDA 規制会社やその他の企業の特定の要件をサポートします。166 ページの「[サインオフ
ユーザー二重識別タイプ] プリファレンスの設定」を参照してください。

 ソーシング プロジェクトに対する PCM SDK の新機能と拡張機能 - 新しい 2 つの API と既存の API
に対する拡張機能の組み合わせによって、SDK を使用してソーシング プロセスの開始から RFQ タスク

までの全体を完了できます。詳細は、次を参照してください。

 227 ページの「ソーシング プロジェクトでのアイテムの数量の設定」

 228 ページの「ソーシング プロジェクトでの数量ロールアップの実行」

 228 ページの「ソーシング プロジェクトでのパートナーの設定」

 230 ページの「ソーシング プロジェクトでのアイテムの目標価格の変更」

 230 ページの「ソーシング プロジェクトでのアイテムの最良回答の設定」

 PG&C の [適合性判定値] フィールドの値を設定する新規 API - 新規 API を使用すると、SDK を使用し

てこのフィールドの値を設定できます。詳細および例は、271 ページの「[適合性判定値] フィールドの値

の設定」を参照してください。

 ITable.getName() の問題を解決する新規 API - この API をネストされた価格テーブルに対して使用

すると、以前はヌル値が返されました。この問題は、価格テーブルの名前を PriceDetails としてハードコー

ド化することで、リリース 9.2.2.2 では解決しています。

 第 1 章

Agile Product Lifecycle Management 5 ページ

システム要件
Agile SDK システムの要件は、『Oracle|Agile PLM Capacity Planning and Deployment Guide』を参照してください。

Java の要件
Agile API は、アプリケーション サーバがサポートする Java のバージョンに依存しています。問題を回避す

るために、Agile API クライアントでは、接続先アプリケーション サーバが使用している Java バージョンと

同一のバージョンを使用する必要があります。相互運用性と 2007 年以降の夏時間に準拠するために、Oracle
Application Server 10g および BEA WebLogic Server 8.1 の両方で、Sun 社の Java Runtime Environment (JRE)
1.4.2_12 を使用する必要があります。

次の表に、Agile PLM がサポートする様々なアプリケーション サーバで Agile API クライアントを使用するた

めに、推奨される Java Runtime Environment (JRE) を示します。

アプリケーション サーバ オペレーティング システム Agile API クライアントに

必要な Java のバージョン

Oracle Application Server 10g Windows 2003 Sun JRE 1.4.2

BEA WebLogic Server Windows 2003 Sun JRE 1.4.2

IBM WebSphere 5.1 Windows/Solaris IBM JDK 1.4.1

Agile SDK インストール フォルダ
コンピュータ上の Agile SDK ファイルには、次のフォルダ構造があります。

lib - ¥agile_home¥integration¥sdk¥lib フォルダには、次のライブラリが含まれます。

重要 axis.jar ファイルと AgileAPI.jar ファイルは同じクラスパスに格納しないでください。SDK クラス

パスは、この設定をサポートしていないため、SDK が正しく機能しません。

 AgileAPI.jar – Agile API ライブラリ。このライブラリには、Agile API のクラスとインターフェースが

含まれています。

 pxapi.jar – PX API ライブラリ。このライブラリには、カスタム自動採番ソースおよびカスタム アク

ションの開発に使用するインターフェースが含まれています。

 axis.jar – Apache Axis ライブラリの Agile 対応バージョン。このライブラリは Web サービス クライ

アントに必要です。

SDK 開発者ガイド

6 ページ Agile Product Lifecycle Management

Agile PLM システムの確認
Agile PLM システムで Agile SDK クライアントを実行するには、その前に、そのシステムが正しく設定され、

稼働していることを確認してください。特に、アプリケーション サーバの HTTP ポートが正しく設定されて

いることを確認してください。詳細は、『Agile PLM Installation Guide』を参照してください。

Agile PLM ビジネス オブジェクト
企業ソフトウェア システムでは、ビジネス オブジェクトを使用して企業のデータを管理します。次の表に、

Agile PLM ビジネス オブジェクトとそれに関連する Agile API インターフェースを示します。

オブジェクト 関連する Agile API インターフェース

変更 IChange

顧客 ICustomer

デクラレーション IDeclaration

ディスカッション IDiscussion

ファイル フォルダ IFileFolder

アイテム IItem

製造元部品 IManufacturerPart

製造元 IManufacturer

パッケージ IPackage

部品グループ (部品分類または部品ファミリ) ICommodity

価格 IPrice

製品サービス依頼 IServiceRequest

プログラム IProgram

ソーシング プロジェクト IProject

品質変更依頼 IQualityChangeRequest

見積依頼 (RFQ) IRequestForQuote

見積依頼回答 ISupplierResponse*

拠点 IManufacturingSite

含有基準 ISpecification

サブスタンス ISubstance

サプライヤ ISupplier

 第 1 章

Agile Product Lifecycle Management 7 ページ

オブジェクト 関連する Agile API インターフェース

転送 ITransferOrder

ユーザー グループ IUserGroup

ユーザー IUser

* 現在のソフトウェア リリースでは、API インターフェースはサポートされていません。

表示できるビジネス オブジェクトや、これらのオブジェクトに対して実行できるアクションは、Agile アプリ

ケーション サーバにインストールされているサーバ コンポーネントや、ライセンス、役割および割り当てら

れている権限によって決まります。権限のレベルは、フィールドごとに異なる場合があります。Agile PLM 管
理者は、ユーザーおよびユーザー グループに加え、管理ノードや Agile PLM クラスなどの管理オブジェクト

を使用します。

すべての Agile PLM ビジネス オブジェクトが Agile API で公開されているわけではありません。たとえば、

レポート オブジェクトは Agile API 経由ではアクセスできません。

Licensing
Agile Software Corporation (Agile) requires any company or individual writing code to the Agile SDK to legally obtain
an Agile SDK license. The Agile SDK license grants the licensee the right to use the Agile SDK in a design environment
and to freely distribute the Agile SDK libraries (such as AgileAPI.jar) with any application written by the licensee that
makes calls to the Agile SDK. The Agile SDK license prohibits the distribution of the Agile SDK documentation, sample
code, and source code to any other party that has not legally obtained an Agile SDK license. It also explicitly prohibits the
development of competing applications.

SDK 開発者ガイド

8 ページ Agile Product Lifecycle Management

Agile Product Lifecycle Management 9 ページ

第 2 章

Agile API の開始

扱うトピックは次のとおりです。

 Agile API の概要 ... 9
 Agile API プログラムの開始 ... 12
 Agile PLM オブジェクトのロードおよび作成.. 15
 Agile PLM オブジェクトの状態の確認.. 32
 関連オブジェクトへの値の継承.. 32
 オブジェクトを新規オブジェクトとして保存 .. 33
 オブジェクトの共有 ... 33
 オブジェクトの削除および削除取消.. 34
 セッションを閉じる ... 36

Agile API の概要
この章では、Agile API が提供する機能の概要を説明します。説明する内容は、次のとおりです。

 Agile API のクラスとインターフェースのタイプ

 クラスのロード方法

 Agile API のスレッドセーフの仕組み

 Agile API アプリケーションのパッケージ方法

 サンプル プログラムの場所

Agile API のクラスとインターフェースのタイプ
Agile API (AgileAPI.jar ライブラリ) には、多様なクラスとインターフェースが含まれています。これらの内容

は、関連するファイルを次の各グループに分類することで、より理解しやすくなります。

 集約インターフェース - これらのインターフェースは、特定のオブジェクト タイプの関連する機能イン

ターフェースを集約します。たとえば、IItem インターフェースは、IDataObject、IRevisioned、
IManufacturingSiteSelectable、IAttachmentContainer、IHistoryManager および
IReferenced を拡張します。ほとんどの SDK 機能は、これらのインターフェースに含まれます。これ

らのインターフェースは、Agile API の基礎となる実装クラス (非公開) によって実装されます。

 機能ユニット インターフェース - これらのインターフェースは、他のインターフェースに拡張される機

能ユニットを保持します。たとえば、IAttachmentContainer は、任意のオブジェクトの添付ファイル
テーブルにアクセスする便利な手段を提供します。つまり、この IAttachmentContainer インター

フェースは、IChange、IItem など、他の複数のインターフェースによって拡張されます。機能ユニッ

トの役目を果たすもう 1 つのクラスは IRoutable です。このクラスは、別の Agile PLM ユーザーに送

信可能なオブジェクトに対してメソッドを提供します。IRoutable は、IChange、IPackage および
ITransferOrder のすべてによって拡張されます。

SDK 開発者ガイド

10 ページ Agile Product Lifecycle Management

 メタデータ インターフェース - クラスのこのグループは、Agile アプリケーション サーバのメタデータ
(およびメタメタデータ) を定義します。メタデータは、単に他のデータを説明するデータです。メタデー

タ インターフェースには、IAgileClass、INode、IRoutableDesc、ITableDesc、IWorkflow な
どのクラスが含まれます。

 ファクトリ クラス - AgileSessionFactory は、セッション (IAgileSession) を作成してトランザ

クション管理にアクセスするために使用するファクトリ クラスです。IAgileSession は、他のオブジェ

クトをインスタンス化できるファクトリ オブジェクトでもあります。多くの Agile API オブジェクトも同

様に、テーブルまたは他の参照オブジェクトに対するファクトリ オブジェクトです。表もまた各行に対す

るファクトリです。

 例外クラス - 例外クラスに該当するのは APIException のみです。

 定数 - これらのクラスには、属性、テーブル、クラスなどの ID が含まれます。定数のみが格納されてい

るクラスはすべて「Constants」で終了するクラス名 (ChangeConstants、ItemConstants、
UserConstants など) が付いています。

ネットワーク クラスのロード
Agile API には、2 つのメイン ソフトウェア コンポーネントがあります。

 クライアント側のライブラリ (AgileAPI.jar)

 サーバ側の実装クラス

サーバ側の実装クラスは、Agile アプリケーション サーバの各インスタンスとともに自動的にインストールさ

れます。

Agile API のクライアント側のライブラリは、ほぼ全体が複数のインターフェースで構成されており、基本的に

はクラス ローダです。Agile API プログラムを実行すると、Agile アプリケーション サーバに接続され、必要

な実装クラスが自動的にダウンロードされます。たとえば、プログラムで IItem のメソッドが使用される場

合は、実行時に IItem の実装がダウンロードされます。

 第 2 章

Agile Product Lifecycle Management 11 ページ

ネットワーク クラス ロードには、サーバからクライアント実装クラスを自動的にダウンロードしてアップ

デートする機能も含めて、多くの利点があります。サーバからダウンロードした Agile API クラスは、ローカ

ル ディスクに自動的にキャッシュされます。Agile API プログラムで特定のクラスをロードする必要がある場

合は、ネットワークからクラスを再度ダウンロードするのではなく、キャッシュからそのクラスを取得します。

キャッシュによって、クラスのロードが迅速化され、ネットワークの負荷が軽減されます。

ネットワーク クラス ローダによって、キャッシュが古い (つまり、サーバ内のクラスよりもキャッシュ内の

クラスが古い) ことが検出された場合は、そのキャッシュは無効にされ、必要なクラスがサーバから再ロード

されます。これによって、企業全体でアプリケーションを再配置せずに最新の実装クラスが使用されるように
Agile SDK クライアントを更新できます。

シングルスレッド アプリケーションとマルチスレッド アプリケー

ションの対比
Agile API はスレッド互換であることが認定されています。Agile API は、シングルスレッドとマルチスレッド

のいずれのアプリケーション開発にも使用できます。Agile API 呼び出しは、各メソッド呼び出し (または一連

のメソッド呼び出し) を外部との同期で囲むことによって、安全にかつ同時に使用できます。

Agile API プログラムのパッケージ化
Agile API を呼び出すプログラムを開発した後は、そのファイルをパッケージ化してインストールできるように

する必要があります。多くの開発環境には、アプリケーションをパッケージ化して配置するためのツールが含

まれています。

プログラムは手動でパッケージ化することもできます。この方法を選択した場合は、プロジェクトの依存関係

を把握する必要があります。多くの開発環境には、依存関係ファイルを生成するためのツールも含まれていま

す。依存関係ファイルには、プログラムのプロジェクト ファイルとともに配布する必要があるランタイム コ
ンポーネントがリストされています。

Agile API Files You Are Allowed to Distribute
You can freely distribute any Java applications or applets that you create that make calls to the Agile API. You can
include the Agile API library, AgileAPI.jar, when you package your application’s files.

Your development environment might require you to distribute other class files or libraries with your program. Check the
documentation for your development environment to see which runtime files should be distributed with your program.
Consult the manufacturer's license agreement for each of the files you plan to distribute to determine whether you have the
right to distribute the file with your application.

Agile API Files You Are Not Allowed to Distribute
Agile requires that any company or individual writing code to the Agile API must obtain an Agile SDK license. The Agile
SDK license grants the right to use the Agile API in a design environment and to freely distribute the AgileAPI.jar with
any application that makes calls to the API. The Agile SDK license explicitly prohibits distribution of the following files
to any other party that has not legally obtained an Agile SDK license:

 Agile SDK documentation

 Sample code provided with the Agile SDK

 Source code

Note The above list is not intended to be a complete list of Agile SDK files you are not allowed to distribute. For
complete information, consult your Agile software license agreement.

SDK 開発者ガイド

12 ページ Agile Product Lifecycle Management

サンプル プログラム
Agile SDK には、その API の使用方法を示す複数のサンプル プログラムが用意されています。サンプル プロ

グラムは、SDK マニュアルに掲載されており、api、dx、px および wsx フォルダに格納されています。

各サンプル プログラムには、それぞれの Readme.txt があります。必ず Readme.txt ファイルを確認してから

サンプル プログラムを実行してください。

Agile API プログラムの開始
Agile API を使用してプログラムを作成する場合は、次の一般的なアプローチに従ってプログラムを構築します。

1. Agile API クラスをインポートする import ステートメントを各クラス ファイルの先頭に追加します。

import com.agile.api.*;

2. Agile アプリケーション サーバのインスタンスを取得します。

3. Agile セッションを作成します。

4. 1 つ以上のビジネス プロセスを完成します。プログラム コードの大半は、このビジネス プロセスに使

用されます。

5. Agile セッションを閉じます。

Agile API ライブラリのクラス パスの設定
Java がソース内で参照するクラスを検索する際は、CLASSPATH 変数に指定されているディレクトリが確認さ

れます。Agile API プログラムを作成するには、クラス パスに AgileAPI.jar を含める必要があります。

Java 開発環境を使用している場合は、通常、プロジェクトごとにクラス パスを変更できます。開発環境に対

して Agile API ライブラリの位置を提示しないと、アプリケーションを構築できません。

Agile API クラスのインポート
プログラムでアクセス権が自動的に付与される唯一の Java パッケージは java.lang です。Agile API クラ

スを参照するには、各クラス ファイルの先頭で com.agile.api パッケージをインポートする必要がありま

す。
import com.agile.api.*;

com.agile.api パッケージをインポートせずに、完全なパッケージ名で Agile API クラスを参照することも

できます。
com.agile.api.IItem source =
(com.agile.api.IItem)m_session.getObject(com.agile.api.IIte
m.OBJECT_TYPE, "1000-02");

 第 2 章

Agile Product Lifecycle Management 13 ページ

このように、com.agile.api パッケージをインポートしない場合は、そのクラスのいずれかを参照するたびに、

完全なパッケージ名を入力する必要があるため煩雑になります。

com.agile.api パッケージがインポートされていない場合や、完全なパッケージ名で Agile API クラスが参照さ

れない場合は、プログラムを構築しようとしたときに Java コンパイラからエラーが返されます。

セッションの作成およびログイン
Agile API プログラムを開始するには、次の 2 つのタスクを完了する必要があります。

1. Agile アプリケーション サーバのインスタンスを取得します。

AgileSessionFactory.getInstance() メソッドを使用して、Agile サーバのインスタンスを取得し

ます。サーバに対して接続 URL を指定する必要があります。指定する URL は、Agile サーバに直接接

続するか、プロキシ Web サーバを介して接続するかによって異なります。

Agile サーバに直接接続するには、次の URL を入力します。

http://appserver:port/virtualPath

プロキシ Web サーバを介して Agile サーバに接続するには、次の URL を入力します。

protocol://webserver:port/virtualPath

ここで、

 appserver は Agile サーバのコンピュータ名です。

 webserver は Web サーバのコンピュータ名です。

 virtualPath は Agile PLM サーバの仮想パスです。デフォルト値は Agile です。仮想パスは、Agile
PLM システムのインストール時に指定されます。詳細は、『Agile PLM Installation Guide』を参照し

てください。

 protocol は HTTP または HTTPS です。

 port は指定のプロトコルに使用されるポート番号です。このポートは、標準以外のポート番号が使用

される場合のみ必要です。それ以外の場合は省略できます。

2. Agile PLM サーバ インスタンスのセッションを作成します。

AgileSessionFactory.createSession() メソッドを使用してセッションを作成します。

createSession() の params パラメータには、ログイン パラメータ (ユーザー名とパスワード) を含

む Map オブジェクトを指定します。

次の例は、Agile API プログラムでセッションを作成し、Agile PLM サーバにログインする方法を示しています。

例: セッションの作成およびログイン
private IAgileSession login(String username, String password) throws
APIException {
 //Create the params variable to hold login parameters
 HashMap params = new HashMap();

 //Put username and password values into params
 params.put(AgileSessionFactory.USERNAME, username);

 params.put(AgileSessionFactory.PASSWORD, password);

 //Get an Agile server instance. ("agileserver" is the
name of the Agile proxy server,
 //and "virtualPath" is the name of the virtual path

http://appserver:port/virtualPath

SDK 開発者ガイド

14 ページ Agile Product Lifecycle Management

used for the Agile system.)
 AgileSessionFactory instance =
AgileSessionFactory.getInstance(
 "http://agileserver/virtualPath"
);
 //Create the Agile PLM session and log in
 return instance.createSession(params);
}

注意 1 つのユーザー アカウントで Agile アプリケーション サーバに同時セッションを開くことができ

る最大数は、Agile PLM ライセンス キーによって決まります。セッションの最大数を超過すること

になる場合はログインできません。したがって、プログラムの実行を終了する際は、

IAgileSession.close() メソッドを使用して適切にログアウトし、セッションを閉じることが

重要です。Agile PLM システムが Oracle Application Server 上でホスティングされている場合は、各

スレッド当たり 1 セッションのみに制限されます。

パスワードで保護された URL へのアクセスによるセッションの作成
ファイヤウォールを越えて Agile PLM にアクセスするユーザーに対して追加のセキュリティを提供するには、

パスワードで保護された URL をプロキシ サーバに指定できます。この場合、サーバ インスタンスを取得し

てセッションを作成する標準的な方法は機能しません。かわりに、

AgileSessionFactory.createSessionEx() メソッドを使用して、ログインに必要なユーザー名、パス

ワードおよび URL パラメータを指定する必要があります。createSessionEx() を使用する場合は、最初

に AgileSessionFactory.getInstance() を呼び出してサーバ インスタンスを取得する必要がないため、

ログイン コードはさらに簡単になります。createSessionEx() メソッドは、1 回の呼び出しでサーバ イ
ンスタンスを取得してセッションを作成します。

注意 この createSessionEx() メソッドはパスワードで保護されていない URL に対しても機能しま

す。したがって、createSession() のかわりに使用することもできます。

例: パスワードで保護されたサーバ URL を使用したセッションの作成
private IAgileSession securelogin(String username, String password)
throws APIException {
 //Create the params variable to hold login parameters
 HashMap params = new HashMap();

 //Put username, password, and URL values into params
 params.put(AgileSessionFactory.USERNAME, username);
 params.put(AgileSessionFactory.PASSWORD, password);
 params.put(AgileSessionFactory.URL,
"http://agileserver.agilesoft.com/Agile");

 //Create the Agile PLM session and log in
 return AgileSessionFactory.createSessionEx(params);
}

http://agileserver/virtualPath
http://agileserver.agilesoft.com/Agile

 第 2 章

Agile Product Lifecycle Management 15 ページ

Agile Web サービスからのセッションの作成
Web サービス拡張を使用して Web サービスを開発し、そのサービスを Agile PLM と同じコンテナに配置し

た場合は、Agile API を利用して Web サービス内から Agile PLM サーバの機能にアクセスできます。Web
サービスの Agile PLM サーバ インスタンスを取得するには、AgileSessionFactory.getInstance() メ
ソッドを使用しますが、url パラメータにはヌル値を指定します。

AgileSessionFactory オブジェクトを取得した後は、セッションを作成することもできます。Web サービ

ス依頼には、ユーザー認証が用意されているため、Agile API セッションの作成時に、ユーザー名やパスワード

を指定する必要はありません。したがって、AgileSessionFactory.createSession() の params パラ

メータには、必ずヌル値を指定してください。
AgileSessionFactory factory =
AgileSessionFactory.getInstance(null);
IAgileSession session = factory.createSession(null);

createSession() の params パラメータにヌル値を指定すると、Agile PLM サーバが Web サービス依頼

をインターセプトしたときに実行されたユーザー認証が、Agile API セッションで再利用されます。再度ログイ

ンする必要はありません。セッションを閉じる際は IAgileSession.close() を使用しないでください。

セッションは、認証ハンドラによって自動的に閉じます。

createSession() メソッドにヌル パラメータを指定すると、認証ハンドラによって作成されたセッション

に対応する IAgileSession が作成されます。Web サービスで認証ハンドラを使用しない場合、または認証

ハンドラに使用されているユーザーとは異なるユーザーのセッションを作成する場合も、

createSession(params) を使用してセッションを作成できます。params パラメータには、ログイン パ
ラメータ (ユーザー名とパスワード) を含む Map オブジェクトを指定します。セッションの作成に認証ハンド

ラを使用しない場合、そのセッションは自分で閉じる必要があります。IAgileSession.close() メソッド

を呼び出してセッションを閉じます。Web サービス拡張の詳細は、323 ページの「Web サービス拡張の開発」

を参照してください。

Agile PLM オブジェクトのロードおよび作成
すべての Agile API プログラムにおける基本的な要件は、オブジェクトを取得して作成する機能です。Agile
API で使用できるオブジェクトには、次のインターフェースがマップされます。

 qIChange qIManufacturerPart qIServiceRequest

 qICommodity qIManufacturingSite qISpecification

 qICustomer qIPackage qISubstance

 qIDeclaration qIPrice qISupplier

 qIDiscussion qIProgram qISupplierResponse

 qIFileFolder qIProject qITransferOrder

 qIFolder qIQualityChangeRequest qIUser

 qIItem qIQuery qIUserGroup

 qIManufacturer qIRequestForQuote

SDK 開発者ガイド

16 ページ Agile Product Lifecycle Management

これらの Agile PLM オブジェクトをロードして作成するには、最初に AgileSessionFactory オブジェク

トのインスタンスを取得してから、Agile PLM セッションを作成する必要があります。次に、

IAgileSession.getObject() を使用して Agile PLM オブジェクトをロードし、

IAgileSession.createObject() を使用してオブジェクトを作成します。

注意 検索条件およびフォルダの作成方法の詳細は、37 ページの第 3 章「検索条件の作成およびロード」

および 99 ページの「フォルダの使用」を参照してください。

オブジェクトのロード
Agile PLM オブジェクトをロードするには、次のいずれかの IAgileSession.getObject() メソッドを使

用します。

 IAgileObject getObject(Object objectType, Object params)

 IAgileObject getObject(int objectType, Object params)

オブジェクト タイプの指定

これら 2 つの getObject() メソッドでは、次の値を使用して objectType パラメータを指定できます。

 いずれかの Agile PLM クラスを表す IAgileClass インスタンス。

 クラス ID (部品クラスに対応する ItemConstants.CLASS_PART など)。事前定義のクラス ID は、Agile
API に付属している様々な「* Constants」ファイルで使用できます。

 OBJECT_TYPE 定数 (IItem.OBJECT_TYPE、IChange.OBJECT_TYPE など)。

 クラス名 (「部品」など)。ただし、クラス名は変更可能であり、一意性が保証されないため、クラス名を

使用してオブジェクトをインスタンス化することはお薦めしません。

注意 getObject() メソッドを使用してオブジェクトをロードするときは、抽象または具象の Agile
PLM クラスを指定できます。詳細は、282 ページの「具象クラスと抽象クラス」を参照してくださ

い。

オブジェクト パラメータの指定

getObject() メソッドの params パラメータは、Map または String の場合があります。

params パラメータに Map オブジェクトを指定する場合は、属性 (属性 ID または IAttribute オブジェ

クト) およびそれに対応する値を含める必要があります。Map には、すべての識別関連情報を指定する必要が

あります。たとえば、IManufacturerPart をロードするときは、製造元名と製造元部品番号の両方を指定

する必要があります。

params パラメータに指定する Map オブジェクトに識別情報以外の追加属性が含まれている場合、それらの

属性は無視されます。サーバは、識別情報のみを使用してオブジェクトを取得します。Agile PLM オブジェク

トを一意に識別する際に使用される属性の完全なリストは、316 ページの「Agile PLM クラスの識別属性」を

参照してください。

次の例は、属性 (ItemConstants.ATT_TITLE_BLOCK_NUMBER) と値を指定する Map パラメータを使用し

て、部品 1000-02 をロードする方法を示しています。

 第 2 章

Agile Product Lifecycle Management 17 ページ

例: Map を使用した部品のロード
try {
 Map params = new HashMap();
 params.put(ItemConstants.ATT_TITLE_BLOCK_NUMBER, "1000-02");
 IItem item = (IItem)m_session.getObject(ItemConstants.CLASS_PART,
params);
} catch (APIException ex) {
 System.out.println(ex);
}

ロードするオブジェクトに一意識別子として機能する単一の属性がある場合は、その属性の String 値を
params パラメータとして入力できます。たとえば、部品番号が部品の一意識別子であるとします。この場合

は、部品番号をパラメータとして入力してオブジェクトをロードできます。

注意 すべてのオブジェクトに一意識別子として機能する単一の属性があるとはかぎりません。たとえば、

製造元部品は、製造元名と製造元部品番号の両方で識別されます。この場合、製造元部品をロード

するには、少なくとも 2 つの属性の値を指定する必要があります。

次の例は、一意の String 識別子を指定して部品 1000-02 をロードする方法を示しています。

例: String を使用した部品のロード
try {
 IItem item = (IItem)m_session.getObject(ItemConstants.CLASS_PART,
"1000-02");
} catch (APIException ex) {
 System.out.println(ex);
}

異なるタイプのオブジェクトのロード

次に示すように、部品グループ オブジェクトには ICommodity インターフェースを使用できます。次の例は、

I Loading の異なるタイプのオブジェクトを使用して、様々なタイプの Agile PLM オブジェクトをロードする

複数の異なる方法を示しています。
try {
 //Load a change
 IChange change = (IChange)m_session.getObject(IChange.OBJECT_TYPE,
"C00002");
 System.out.println("Change : " + change.getName());

 //Load a commodity
 ICommodity comm =
(ICommodity)m_session.getObject(ICommodity.OBJECT_TYPE, "Res");
 System.out.println("Commodity : " + comm.getName());

 //Load a customer
 ICustomer cust =
(ICustomer)m_session.getObject(ICustomer.OBJECT_TYPE,
"CUST00006");
 System.out.println("Customer : " + cust.getName());

SDK 開発者ガイド

18 ページ Agile Product Lifecycle Management

 //Load a declaration
 IDeclaration dec =
(IDeclaration)m_session.getObject(IDeclaration.OBJECT_TYPE,
"MD00001");
 System.out.println("Declaration : " + dec.getName());

 //Load a discussion
 IDiscussion discussion =
(IDiscussion)m_session.getObject(IDiscussion.OBJECT_TYPE,
"D00002");
 System.out.println("Discussion : " + discussion.getName());

 //Load a file folder
 IFileFolder ff =
(IFileFolder)m_session.getObject(IFileFolder.OBJECT_TYPE,
"FOLDER00133");
 System.out.println("File Folder : " + ff.getName());

 //Load a folder
 IFolder folder = (IFolder)m_session.getObject(IFolder.OBJECT_TYPE,
 "/Personal Searches/MyTemporaryQueries");
 System.out.println("Folder : " + folder.getName());

 //Load an item
 IItem item = (IItem)m_session.getObject(IItem.OBJECT_TYPE,
"1000-02");
 System.out.println("Item : " + item.getName());

 //Load a manufacturer
 Map params = new HashMap();
 params.put(ManufacturerConstants.ATT_GENERAL_INFO_NAME, "World
Enterprises");
 IManufacturer mfr =

(IManufacturer)m_session.getObject(IManufacturer.OBJECT_TYPE,
params);
 System.out.println("Manufacturer : " + mfr.getName());
 //Load a manufacturer part
 params.clear();

params.put(ManufacturerPartConstants.ATT_GENERAL_INFO_MANUFACTURER
_NAME, "World Enterprises");

params.put(ManufacturerPartConstants.ATT_GENERAL_INFO_MANUFACTURER
_PART_NUMBER, "WE10023-45");
 IManufacturerPart mfrPart =

(IManufacturerPart)m_session.getObject(IManufacturerPart.OBJECT_TY
PE, params);
 System.out.println("ManufacturerPart : " + mfrPart.getName());
 //Load a manufacturing site
 IManufacturingSite siteHK =
(IManufacturingSite)m_session.getObject(

 第 2 章

Agile Product Lifecycle Management 19 ページ

 ManufacturingSiteConstants.CLASS_SITE, "Hong Kong");
 System.out.println("ManufacturingSite : " + siteHK.getName());
 //Load a package
 IPackage pkg =
(IPackage)m_session.getObject(PackageConstants.CLASS_PACKAGE,
"PKG00010");
 System.out.println("Package : " + pkg.getName());

 //Load a price
 IPrice price = (IPrice)m_session.getObject(IPrice.OBJECT_TYPE,
"PRICE10008");
 System.out.println("Price : " + price.getName());

 //Load a program
 IProgram program =
(IProgram)m_session.getObject(IProgram.OBJECT_TYPE, "PGM10008");
 System.out.println("Program : " + program.getName());

 //Load a PSR
 IServiceRequest psr =
(IServiceRequest)m_session.getObject(IServiceRequest.OBJECT_TYPE,
 "NCR01562");
 System.out.println("PSR : " + psr.getName());
 //Load a QCR
 IQualityChangeRequest qcr =
(IQualityChangeRequest)m_session.getObject(
 IQualityChangeRequest.OBJECT_TYPE, "CAPA02021");
 System.out.println("QCR : " + qcr.getName());
 //Load a query
 IQuery query =
(IQuery)m_session.getObject(IQuery.OBJECT_TYPE,
 "/Personal Searches/Part Numbers Starting with P");
 System.out.println("Query : " + query.getName());
 //Load an RFQ
 IRequestForQuote rfq =
(IRequestForQuote)m_session.getObject(
 IRequestForQuote.OBJECT_TYPE, "RFQ01048");
 System.out.println("RFQ : " + rfq.getName());
 //Load an RFQ response
 params.clear();

params.put(SupplierResponseConstants.ATT_COVERPAGE_RFQ_NUMBER,
"RFQ01048");

params.put(SupplierResponseConstants.ATT_COVERPAGE_SUPPLIER,
"SUP20013");
 ISupplierResponse rfqResp =
(ISupplierResponse)m_session.getObject(
 ISupplierResponse.OBJECT_TYPE, params);
 System.out.println("RFQ Response : " + rfqResp.getName());
 //Load a sourcing project

SDK 開発者ガイド

20 ページ Agile Product Lifecycle Management

 IProject prj = (IProject)m_session.getObject(IProject.OBJECT_TYPE,
"PRJACME_110");
 System.out.println("Project : " + prj.getName());

 //Load a specification
 ISpecification spec =
(ISpecification)m_session.getObject(ISpecification.OBJECT_TYPE,
 "WEEE");
 System.out.println("Specification : " + spec.getName());
 //Load a substance
 ISubstance sub =
(ISubstance)m_session.getObject(ISubstance.OBJECT_TYPE,
"Cadmium");
 System.out.println("Substance : " + sub.getName());

 //Load a supplier
 ISupplier supplier =
(ISupplier)m_session.getObject(ISupplier.OBJECT_TYPE,
"SUP20013");
 System.out.println("Supplier : " + supplier.getName());

 //Load a transfer order
 ITransferOrder to =
(ITransferOrder)m_session.getObject(TransferOrderConstants.
CLASS_CTO,
 "456602");
 System.out.println("TransferOrder : " + to.getName());
 //Load a user
 params.clear();
 params.put(UserConstants.ATT_GENERAL_INFO_USER_ID,
"OWELLES");
 IUser user =
(IUser)m_session.getObject(IUser.OBJECT_TYPE, params);
 System.out.println("User : " + user.getName());

 //Load a user group
 params.clear();
 params.put(UserGroupConstants.ATT_GENERAL_INFO_NAME,
"Designers");
 IUserGroup group =
(IUserGroup)m_session.getObject(IUserGroup.OBJECT_TYPE,
params);
 System.out.println("UserGroup : " + group.getName());

} catch (APIException ex) {
 System.out.println(ex);
}

 第 2 章

Agile Product Lifecycle Management 21 ページ

オブジェクトの作成
Agile PLM オブジェクトを作成するには、次のいずれかの IAgileSession.createObject() メソッドを

使用します。

 IAgileObject createObject(Object objectType, Object params)

 IAgileObject createObject(int objectType, Object params)

重要 SDK では、オブジェクトを作成する際に、そのオブジェクトのライフ サイクル フェーズ (LCP)/
ワークフロー ステータス属性を設定することはできません。これは、オブジェクトが作成されるま

では、LCP に使用できる設定が有効にならないようにするためです。UI に対しても同様のルール

が適用されます。たとえば、IChange は、ワークフローが選択されるまで LCP 値を取得しません。

ただし、SDK を使用してオブジェクトを作成した後は、LCP/ワークフロー ステータス属性を設定

したり、変更することが可能です。オブジェクトが作成され、オブジェクトに関連するアクション

が実行されるまでは、このフィールドの値リストを取得できないことに注意してください。

objectType および params パラメータは、IAgileSession.getObject() メソッドで使用される場合と

同じです。詳細は、16 ページの「オブジェクトのロード」を参照してください。IFolder および IQuery オ
ブジェクト以外は、objectType パラメータに具象クラスを指定する必要があります。たとえば、部品を作成

している場合、そのクラスはインスタンス化できない抽象クラスであるため、

ItemConstants.CLASS_PARTS_CLASS を指定できません。ただし、事前定義またはユーザー定義の具象ク

ラスのクラス ID (ItemConstants.CLASS_PART など) は指定できます。

ユーザー定義のサブクラスのオブジェクトを作成する場合、createObject() の objectType パラメータ

は、サブクラス ID に対応する Integer オブジェクトであることが必要です。Agile PLM システムで使用可

能なすべてのユーザー定義サブクラスに対して定数を定義する場合もあります。

Map または String タイプに加え、IAgileSession.createObject() の params パラメータには、特

定のオブジェクト クラスの自動採番ソースを表す INode オブジェクトを指定することもできます。Agile ア
プリケーション サーバは、次の番号に対する自動採番ソースを一連の番号の中で検索し、その番号が一意識別

子として使用されます。

注意 使用可能な自動採番ソースがないオブジェクトの params パラメータには、INode オブジェクト

を指定できません。

次の例は、属性 (ItemConstants.ATT_TITLE_BLOCK_NUMBER) と値を指定する Map パラメータを使用し

て、部品 1000-02 を作成する方法を示しています。

例: Map を使用した部品の作成
try {
 Map params = new HashMap();
 params.put(ItemConstants.ATT_TITLE_BLOCK_NUMBER, "1000-02");
 IItem item =
(IItem)m_session.createObject(ItemConstants.CLASS_PART, params);
} catch (APIException ex) {
 System.out.println(ex);
}

次の例は、一意の String 識別子を指定して部品 1000-02 を作成する方法を示しています。

SDK 開発者ガイド

22 ページ Agile Product Lifecycle Management

例: String を使用した部品の作成
try {
 IItem item =
(IItem)m_session.createObject(ItemConstants.CLASS_PART,
"1000-02");
} catch (APIException ex) {
 System.out.println(ex);
}

Agile PLM クラスの使用

クラスは Agile アプリケーション サーバごとにカスタマイズされているため、特に複数の Agile アプリケー

ション サーバまたは異なるロケールでプログラムを使用する予定がある場合は、クラス名に対する参照のハー

ドコード化は回避する必要があります。かわりに、実行時には各オブジェクト タイプのクラスを取得できます。

プログラムによって、ユーザーがリストからクラスを選択できるユーザー インターフェースを提供できます。

次の例は、実行時に特定のオブジェクト タイプに対するクラスのリストを取得する方法を示しています。

例: クラスの取得
try {
 //Get the IAdmin interface for this session
 IAdmin m_admin = m_session.getAdminInstance();
 //Get the Item base class
 IAgileClass itemClass =

m_admin.getAgileClass(ItemConstants.CLASS_ITEM_BASE_CLASS);
 // Clear the Item Type combo box
 comboItemType.removeAllItems();

 // Get the Item subclass names and populate the Item Type combo box
 IAgileClass[] subclasses = itemClass.getSubclasses();
 for (int i = 0; i < subclasses.length; ++i) {
 comboItemType.addItem(subclasses[i].getName());
 }
} catch (APIException ex) {
 System.out.println(ex);
}

ユーザー定義サブクラスのオブジェクトの作成

ユーザー定義のサブクラスは、Agile PLM システムのために特別に作成されたクラスです。したがって、Agile
API には、これらのサブクラスに対する事前定義のクラス ID は用意されていません。createObject() の
objectType パラメータにユーザー定義のサブクラスを指定するには、クラス ID に対応する Integer を
渡します。ユーザー定義クラスのクラス ID を取得するには、IAgileClass.getId() メソッドを使用しま

す。

次の例は、レジスタ オブジェクトを作成する方法を示しています。この例で、レジスタは部品クラスのユーザー

定義サブクラスです。

 第 2 章

Agile Product Lifecycle Management 23 ページ

例: ユーザー定義サブクラスのオブジェクトの作成
try {
 //Define a variable for the Resistor subclass
 Integer classResistor = null;
 //Get the Resistor subclass ID
 IAgileClass[] classes =
m_admin.getAgileClasses(IAdmin.CONCRETE);
 for (int i = 0; i < classes.length; i++) {
 if (classes[i].getName().equals("Resistor")) {
 classResistor = (Integer)classes[i].getId();
 break;
 }
 }
 //Create a Resistor object
 if (classResistor != null) {
 IItem resistor =
(IItem)m_session.createObject(classResistor, "R10245");
 }
} catch (APIException ex) {
 System.out.println(ex);
}

もちろん、ユーザー定義サブクラスは、次の例のように名前で参照することもできます。ただし、クラス名は

一意であるとはかぎりません。同じ名前のサブクラスが 2 つある場合は、最初に検出されたサブクラスが照合

されますが、これは意図しているサブクラスではない可能性があります。

例: サブクラス名の参照によるオブジェクトの作成
try {
 IItem resistor =
(IItem)m_session.createObject("Resistor", "R10245");
} catch (APIException ex) {
 System.out.println(ex);
}

自動採番の使用

Agile PLM クラスには、1 つ以上の AutoNumber ソースを指定できます。AutoNumber ソースは、事前定義

の連続番号で、オブジェクトの番号を自動的に割り当てます。AutoNumber ソースは、Agile Java クライアン

トの管理機能で定義されます。

注意 自動採番は、製造元クラス、製造元部品クラスおよびそれらのユーザー定義サブクラスでは、サポー

トされません。

特定のクラスのオブジェクトを作成する場合は、AutoNumber を使用するように Agile アプリケーション
サーバを設定する必要があります。オブジェクトに自動採番が必要かどうかは、

IAgileClass.isAutoNumberRequired() メソッドによって判断されます。ただし、このメソッドは、特

定のクラスに自動採番が必要な場合でも Agile API ではオブジェクトの自動採番が実施されないため、お薦め

できません。自社の環境でこの機能が必要な場合は、必要なルーチンを開発する必要があります。したがって、

ユーザーによる Agile PLM オブジェクトの作成を可能にする GUI プログラムを開発する場合は、必要なとき

にユーザー インターフェースで自動採番が実施されることを確認してください。クライアント プログラムに

よる自動採番の実施方法の例では、Agile Web クライアントを使用して数個のオブジェクトを作成し、ユーザー
インターフェースが機能する様子を確認してください。

SDK 開発者ガイド

24 ページ Agile Product Lifecycle Management

一連の番号の中で次に使用可能な自動採番を取得する手順は、次のとおりです。

一連の番号の中で次に使用可能な AutoNumber を割り当てるには、

IAutoNumber.getNextNumber(IAgileClass) メソッドを使用します。このメソッドは、該当する番号が

別のオブジェクトで使用されていないことを確認します。このプロセスは、指定した Agile サブクラスに使用

可能な最初の自動採番を検出して返すまで継続されます。次に使用可能な自動採番の取得に失敗した場合は、

例外が発生します。該当する番号が別のオブジェクトですでに使用されている場合、

IAutoNumber.getNextNumber() メソッドは、確認を実行せずにスキップします。

次の例は、次の AutoNumber を使用して部品を作成する方法を示しています。

例: 次に使用可能な自動採番の取得
private void createPart(String partNumber) throw APIException {
 IAdmin admin;
 IAgileClass cls;
 IItem part;
 IAutoNumber[] numSources;
 String nextAvailableAutoNumber;

 //Get the Admin instance
 admin = session.getAdminInstance();

 //Get the Part class
 cls = admin.getAgileClass(ItemConstants.CLASS_PART);

 //Check if AutoNumber is required
 if (isAutoNumberRequired(cls)) {

 // Get AutoNumber sources for the Part class
 numSources = cls.getAutoNumberSources();

 // Get the next available AutoNumber using the first
autonumber source
 nextAvailableAutoNumber =
numSources[0].getNextNumber(cls);
 // Create the part using the available AutoNumber
 part =
(IItem)session.createObject(ItemConstants.CLASS_PART,
nextAvailableAutoNumber);
 } else {
 // Create the part using the specified number
 // (if AutoNumber is not required)
 part = (IItem)session.createObject(ItemConstants.CLASS_PART,
partNumber);
}
public boolean isAutoNumberRequired(IAgileClass cls) throws
APIException {
 if (cls.isAbstract()) {
 return false;
 }
 IProperty p =

 第 2 章

Agile Product Lifecycle Management 25 ページ

((INode)cls).getProperty(PropertyConstants.PROP_AUTONUMBER_
REQUIRED);
 if (p != null) {
 IAgileList value = (IAgileList)p.getValue();
 return ((Integer)(value.getSelection()[0]).getId()).intValue()
== 1;
 }
 return false;
}

一連の番号の中で次の自動採番を取得する手順は、次のとおりです。

一連の番号の中で次の自動採番を増分または検索するには、

IAutoNumber.getNextNumber(IAgileClass) メソッドを使用します。このメソッドは、次の自動採番を

生成しますが、その可用性は確認しません。つまり、生成した自動採番が別の Agile オブジェクトで使用され

ているかどうかは検証されません。次の自動採番の取得に失敗した場合は、例外が発生します。

たとえば、可用性を確認せずに次の自動採番を割り当てる場合は、前述の例を次のように変更します。

 String nextAvailableAutoNumber を String nextAutoNumber に置き換えます。

 nextAvailableAutoNumber = numSources[0].getNextNumber(cls); を nextAutoNumber =
numSources[0].getNextNumber(); に置き換えます。

 part = (IItem)session.createObject(ItemConstants.CLASS_PART,
nextAvailableAutoNumber); を part =
(IItem)session.createObject(ItemConstants.CLASS_PART, nextAutoNumber); に置き換え

ます。

必須フィールドの設定

クラスは、複数の必須属性を使用して定義できます。特定の属性を必須にするには、Agile PLM 管理者が属性

の [表示] プロパティと [必須] プロパティを [はい] に設定します。Agile Java クライアントまたは Agile Web
クライアントで、必須フィールドに値を設定せずにオブジェクトを作成しようとした場合、そのオブジェクト

は、すべての必須フィールドに値を設定するまで保存できません。

Agile PLM 管理者は、属性がクラスに対して必須かどうかを定義できますが、ユーザーによる値の設定時に、

Agile API で、必須フィールドへの値の入力を自動的に強制することはありません。したがって、すべての必須

フィールドに値が設定されていない場合でも、API を使用してオブジェクトを作成し、保存できます。クライ

アント プログラムで必須フィールドへの値の入力を強制し、Agile Web クライアントおよび Java クライアン

トと同様に動作させる場合は、対応するコードを記述する必要があります。

必須フィールドを確認する手順は、次のとおりです。

1. ITable.getAttributes() または ITableDesc.getAttributes() を呼び出して、テーブルの属性

リストを取得します。

2. 各属性に対して、

IAttribute.getProperty(PropertyConstants.PROP_REQUIRED).getValue() を呼び出して、

[必須] プロパティの値を取得します。

次の例は、クラスの [ページ 1]、[ユーザー定義 1] および [ユーザー定義 2] について、必須属性の配列を取

得する方法を示しています。

SDK 開発者ガイド

26 ページ Agile Product Lifecycle Management

例: クラスの必須属性の取得
/**
 * Returns true if the specified attribute is required and visible.
 */
public boolean isRequired(IAttribute attr) throws APIException {
 boolean result = false;
 IProperty required =
attr.getProperty(PropertyConstants.PROP_REQUIRED);
 if (required != null) {
 Object value = required.getValue();
 if (value != null) {
 result = value.toString().equals("Yes");
 }
 }
 IProperty visible =
attr.getProperty(PropertyConstants.PROP_VISIBLE);
 if (visible != null) {
 Object value = visible.getValue();
 if (value != null) {
 result &= value.toString().equals("Yes");
 }
 }
 return result;
}
/**
 * Returns an array containing the required attributes for the specified
class.
 */
public IAttribute[] getRequiredAttributes(IAgileClass cls) throws
APIException {
 //Create an array list for the results
 ArrayList result = new ArrayList();

 //Check if the class is abstract or concrete
 if (!cls.isAbstract()) {
 IAttribute[] attrs = null;
 //Get required attributes for Page One
 ITableDesc page1 =
cls.getTableDescriptor(TableTypeConstants.TYPE_PAGE_ONE);
 if (page1 != null) {
 attrs = page1.getAttributes();
 for (int i = 0; i < attrs.length; i++) {
 IAttribute attr = attrs[i];
 if (isRequired(attr)) {
 result.add(attr);
 }
 }
 }
 //Get required attributes for Page Two
 ITableDesc page2 =
cls.getTableDescriptor(TableTypeConstants.TYPE_PAGE_TWO);
 if (page2 != null) {
 attrs = page1.getAttributes();
 for (int i = 0; i < attrs.length; i++) {
 IAttribute attr = attrs[i];

 第 2 章

Agile Product Lifecycle Management 27 ページ

 if (isRequired(attr)) {
 result.add(attr);
 }
 }
 }
 //Get required attributes for Page Three
 ITableDesc page3 =
cls.getTableDescriptor(TableTypeConstants.TYPE_PAGE_THREE);
 if (page3 != null) {
 attrs = page3.getAttributes();
 for (int i = 0; i < attrs.length; i++) {
 IAttribute attr = attrs[i];
 if (isRequired(attr)) {
 result.add(attr);
 }
 }
 }
 }
 return (IAttribute[])result.toArray(new IAttribute[0]);
}

注意 オブジェクトの作成に使用されるプライマリ キー フィールドは、[必須] プロパティの設定に関係

なく必須です。たとえば、新しいアイテムを作成する場合、アイテムの [タイトル ブロック.番号]
フィールドは、それが必須フィールドかどうかに関係なく指定する必要があります。

異なるタイプのオブジェクトの作成

次の例は、様々なタイプの Agile PLM オブジェクトを作成する複数の異なる方法を示しています。コードを簡

単にするために自動採番は使用していません。

例: 異なるタイプのオブジェクトの作成
try {
 //Create a Map object to store parameters
 Map params = new HashMap();
 //Create a change
 IChange eco =
(IChange)m_session.createObject(ChangeConstants.CLASS_ECO,
"C00002");
 System.out.println("Change : " + eco.getName());

 //Create a commodity
 ICommodity comm =
(ICommodity)m_session.createObject(CommodityConstants.CLASS_COMMOD
ITY,"RES");
 System.out.println("Commodity : " + comm.getName());

 //Create a customer
 params.clear();

params.put(CustomerConstants.ATT_GENERAL_INFO_CUSTOMER_NUMBER,
"CUST00006");

params.put(CustomerConstants.ATT_GENERAL_INFO_CUSTOMER_NAME,
"Western Widgets");

SDK 開発者ガイド

28 ページ Agile Product Lifecycle Management

 ICustomer customer =
(ICustomer)m_session.createObject(CustomerConstants.CLASS_CUSTOMER,
params);
 System.out.println("Customer : " + customer.getName());
 //Create a declaration
 params.clear();
 ISupplier supplier =
(ISupplier)m_session.getObject(ISupplier.OBJECT_TYPE, "SUP20013");
 params.put(DeclarationConstants.ATT_COVER_PAGE_NAME, "MD00001");
 params.put(DeclarationConstants.ATT_COVER_PAGE_SUPPLIER,
supplier);
 IDeclaration dec = (IDeclaration)

m_session.createObject(DeclarationConstants.CLASS_SUBSTANCE_DECLAR
ATION, params);
 System.out.println("Declaration : " + dec.getName());
 //Create a discussion
 params.clear();
 params.put(DiscussionConstants.ATT_COVER_PAGE_NUMBER,
"D000201");
 params.put(DiscussionConstants.ATT_COVER_PAGE_SUBJECT,
"Packaging issues");
 IDiscussion discussion =
(IDiscussion)m_session.createObject(
 DiscussionConstants.CLASS_DISCUSSION, params);
 System.out.println("Discussion : " + discussion.getName());
 //Create a file folder
 IFileFolder ff = (IFileFolder)m_session.createObject(
 FileFolderConstants.CLASS_FILE_FOLDER, "FOLDER00133");
 System.out.println("File Folder : " + ff.getName());
 //Create a folder
 params.clear();
 IFolder parentFolder =
(IFolder)m_session.getObject(IFolder.OBJECT_TYPE,
"/Personal Searches");
 params.put(FolderConstants.ATT_FOLDER_NAME,
"MyTemporaryQueries");
 params.put(FolderConstants.ATT_PARENT_FOLDER,
parentFolder);
 IFolder folder =
(IFolder)m_session.createObject(IFolder.OBJECT_TYPE,
params);
 System.out.println("Folder : " + folder.getName());

 //Create an item
 IItem part =

 第 2 章

Agile Product Lifecycle Management 29 ページ

(IItem)m_session.createObject(ItemConstants.CLASS_PART,
"1000-02");
 System.out.println("Item : " + part.getName());

 //Create a manufacturer
 params.put(ManufacturerConstants.ATT_GENERAL_INFO_NAME,
"World Enterprises");
 IManufacturer mfr =
(IManufacturer)m_session.createObject(
 ManufacturerConstants.CLASS_MANUFACTURER, params);
 System.out.println("Manufacturer : " + mfr.getName());
 //Create a manufacturer part
 params.clear();

params.put(ManufacturerPartConstants.ATT_GENERAL_INFO_MANUFACTURER
_NAME, "World Enterprises");

params.put(ManufacturerPartConstants.ATT_GENERAL_INFO_MANUFACTURER
_PART_NUMBER, "WE10023-45");
 IManufacturerPart mfrPart =
(IManufacturerPart)m_session.createObject(
 ManufacturerPartConstants.CLASS_MANUFACTURER_PART, params);
 System.out.println("ManufacturerPart : " + mfrPart.getName());
 //Create a manufacturing site
 IManufacturingSite siteHK =
(IManufacturingSite)m_session.createObject(
 ManufacturingSiteConstants.CLASS_SITE, "Hong Kong");
 System.out.println("ManufacturingSite : " + siteHK.getName());
 //Create a package
 IPackage pkg =
(IPackage)m_session.createObject(PackageConstants.CLASS_PACKAGE,
"PKG00010");
 System.out.println("Package : " + pkg.getName());

 //Create a price
 params.clear();
 params.put(PriceConstants.ATT_GENERAL_INFORMATION_NUMBER,
"PRICE10008");

params.put(PriceConstants.ATT_GENERAL_INFORMATION_CUSTOMER,
"CUST00006");

params.put(PriceConstants.ATT_GENERAL_INFORMATION_ITEM_NUMBER,
"1000-02");

params.put(PriceConstants.ATT_GENERAL_INFORMATION_ITEM_REV, "B");

SDK 開発者ガイド

30 ページ Agile Product Lifecycle Management

params.put(PriceConstants.ATT_GENERAL_INFORMATION_PROGRAM,
"PROGRAM0023");

params.put(PriceConstants.ATT_GENERAL_INFORMATION_MANUFACTURING_SI
TE, "San Jose");
 params.put(PriceConstants.ATT_GENERAL_INFORMATION_SUPPLIER,
"SUP20013");
 IPrice price =
(IPrice)m_session.createObject(PriceConstants.CLASS_PUBLISHED_PRIC
E, params);
 System.out.println("Price : " + price.getName());
 //Create a program
 DateFormat df = new SimpleDateFormat("MM/dd/yy");
 IAttribute attr =
m_admin.getAgileClass(ProgramConstants.CLASS_PROGRAM).

getAttribute(ProgramConstants.ATT_GENERAL_INFO_DURATION_TYPE);
 IAgileList list = attr.getAvailableValues();
 list.setSelection(new Object[] {"Fixed"});
 params.clear();
 params.put(ProgramConstants.ATT_GENERAL_INFO_NAME, "Wingspan
Program");

params.put(ProgramConstants.ATT_GENERAL_INFO_SCHEDULE_START_DATE,
df.parse("06/01/05"));

params.put(ProgramConstants.ATT_GENERAL_INFO_SCHEDULE_END_DATE,
df.parse("06/30/05"));

params.put(ProgramConstants.ATT_GENERAL_INFO_DURATION_TYPE, list);
 IProgram program =
(IProgram)m_session.createObject(ProgramConstants.CLASS_PROGRAM,
params);
 System.out.println("Program : " + program.getName());
 //Create a PSR
 IServiceRequest psr =
(IServiceRequest)m_session.createObject(
 ServiceRequestConstants.CLASS_NCR, "NCR01562");
 System.out.println("PSR : " + psr.getName());
 //Create a QCR
 IQualityChangeRequest qcr =
(IQualityChangeRequest)m_session.createObject(
 QualityChangeRequestConstants.CLASS_CAPA, "CAPA02021");
 System.out.println("QCR : " + qcr.getName());
 //Create a query
 params.clear();
 IFolder parent =

 第 2 章

Agile Product Lifecycle Management 31 ページ

(IFolder)m_session.getObject(IFolder.OBJECT_TYPE,
"/Personal Searches");
 String condition = "[Title Block.Number] starts with 'P'";
 params.put(QueryConstants.ATT_CRITERIA_CLASS,
ItemConstants.CLASS_ITEM_BASE_CLASS);
 params.put(QueryConstants.ATT_CRITERIA_STRING, condition);
 params.put(QueryConstants.ATT_PARENT_FOLDER, parent);
 params.put(QueryConstants.ATT_QUERY_NAME, "Part Numbers Starting
with P");
 IQuery query =
(IQuery)m_session.createObject(IQuery.OBJECT_TYPE, params);
 System.out.println("Query : " + query.getName());

 //Create a specification
 ISpecification spec = (ISpecification)

m_session.createObject(SpecificationConstants.CLASS_SPECIFICATION,
"WEEE");
 System.out.println("Specification : " + spec.getName());
 //Create a substance
 ISubstance sub =
(ISubstance)m_session.createObject(SubstanceConstants.CLASS
_SUBSTANCE,
 "Cadmium");
 System.out.println("Substance : " + spec.getName());
 //Create a transfer order
 ITransferOrder to =
(ITransferOrder)m_session.createObject(
 TransferOrderConstants.CLASS_CTO, "456602");
 System.out.println("TransferOrder : " + to.getName());
 //Create a user
 params.clear();
 params.put(UserConstants.ATT_GENERAL_INFO_USER_ID, "OWELLES");
 params.put(UserConstants.ATT_LOGIN_PASSWORD, “agile”);
 IUser user =
(IUser)m_session.createObject(UserConstants.CLASS_USER, params);
 System.out.println(“User : “ + user.getName());

 //Create a user group
 params.clear();
 params.put(UserGroupConstants.ATT_GENERAL_INFO_NAME,
“Designers”);
 IUserGroup group =
(IUserGroup)m_session.createObject(UserGroupConstants.CLASS
_USER_GROUP,
 params);
 System.out.println(“UserGroup : “ + group.getName());

} catch (APIException ex) {
 System.out.println(ex);
}

注意 SupplierResponse の作成に Agile API を使用することはできません。

SDK 開発者ガイド

32 ページ Agile Product Lifecycle Management

Agile PLM オブジェクトの状態の確認
IStateful インターフェースは、Agile ワークフローまたは Agile ライフサイクルのいずれかの状態を保持

する Agile オブジェクトをサポートしています。このインターフェースをサポートするオブジェクトは、アイ

テムおよび送信可能なオブジェクトです。

送信可能なオブジェクトは、次のとおりです。

 IChange

 IDeclaration

 IFileFolder

 IPackage

 IProgram

 IQualityChangeRequest

 IServiceRequest

 ITransferOrder

次の例では、オブジェクトのすべての状態を示す配列 (状態が未定義の場合はヌル) が返されます。

例: オブジェクトの様々な状態を定義する配列の取得
public interface IStateful {
public IStatus[] getStates()
throws APIException;
}

次の例では、オブジェクトの現在の状態 (状態が未定義の場合はヌル) が返されます。

例: オブジェクトの現在の状態の取得
public interface IStateful {
public IStatus getStatus()
throws APIException;
}

関連オブジェクトへの値の継承
Agile PLM のいくつかのオブジェクトには、関連オブジェクトがあります。たとえば、問題レポートや不具合

レポートには [関連 PSR] テーブルがあります。[関連 PSR] テーブルには、関連オブジェクト (別の問題レ

ポートや不具合レポートなど) での特定の結果をワークフロー イベントによってトリガーすることを指定で

きます。トリガーされた結果は、即時には発生しません。実際には、Agile PLM が値を関連オブジェクトに継

承する際は、数秒程度の明らかな遅延が生じます。

 第 2 章

Agile Product Lifecycle Management 33 ページ

オブジェクトを新規オブジェクトとして保存
Agile API では、既存のオブジェクトを新規オブジェクトとして保存できます。たとえば、プログラムのダイア

ログ ボックスには、[保存] ボタンに加えて、データを新しいオブジェクトとして保存する [名前を付けて保存]
ボタンがあります。IDataObject.saveAs() メソッドを使用する場合は、オブジェクトとオブジェクト番号

の保存に使用するサブクラスを指定する必要があります。自動採番は、サブクラスがサポートしている場合に

使用できます。

次の例は、指定したサブクラスの次の自動採番を使用して、現在のオブジェクトを新しいオブジェクトとして

保存する方法を示しています。

例: オブジェクトを新規オブジェクトとして保存
private void saveAsObject(IDataObject obj, IAgileClass sub) {
 String nextNum;
 try {
 // Get the next autonumber for the sublass
 IAutoNumber[] numSources = sub.getAutoNumberSources();
 nextNum = numSources[0].getNextNumber();

 // Save the object
 obj.saveAs(sub, nextNum);
 } catch (APIException ex) {
 System.out.println(ex);
 }
}

オブジェクトの共有
IShareable インターフェースは、Agile API が公開するすべての Agile PLM ビジネス オブジェクトによっ

て実装されます。したがって、すべてのビジネス オブジェクトは共有可能です。共有機能を利用すると、自分

が持っている 1 つ以上の役割を、別の Agile PLM ユーザーまたはユーザー グループに付与できます (対象と

するオブジェクトは限定されます)。オブジェクトを共有している場合に割り当てることができる役割には、自

分に与えられた役割または永続的な役割と、ユーザー グループのメンバーシップから割り当てられている役割

があります。

オブジェクトを共有しているユーザーが実行できるアクションは、そのプロジェクトの役割で許可されている

アクションのみです。これらのユーザーが、グローバルな方法で役割を取得することはありません。

IShareable インターフェースのメソッドは、getUsersAndRoles() と setUsersAndRoles() の 2 つ
のみです。getUsersAndRoles() メソッドは Map オブジェクトを返します。Map 内の各ユーザーには、関

連付けられている役割の配列があります。setUsersAndRoles() メソッドのパラメータは 1 つで、Map オ
ブジェクトです。このオブジェクトは、getUsersAndRoles() から返される Map と同様に、各ユーザーを

役割の配列にマップします。各ユーザーには、選択した様々な役割を割り当てることができます。

SDK 開発者ガイド

34 ページ Agile Product Lifecycle Management

例: オブジェクトの共有
private void getDataForSharing() throws Exception {
 //Get item
 IItem item =
(IItem)m_session.getObject(ItemConstants.CLASS_ITEM_BASE_CLASS,
"P10011");

 //Get users
 IUser user1 = (IUser)m_session.getObject(UserConstants.CLASS_USER,
"albertl");
 IUser user2 = (IUser)m_session.getObject(UserConstants.CLASS_USER,
"peterl");
 IUser[] users = new IUser[]{user1, user2};

 //Get roles
 INode nodeRoles =
(INode)m_session.getAdminInstance().getNode(NodeConstants.NODE_ROL
ES);
 IRole role1 = (IRole)nodeRoles.getChildNode("Component Engineer");
 IRole role2 = (IRole)nodeRoles.getChildNode("Incorporator");
 IRole[] roles = new IRole[]{role1, role2};

 //Share the item
 shareItem(item, users, roles);
}
private void shareItem(IItem item, IUser[] users, IRole[] roles) throws
Exception {
 Map map = new HashMap();
 for (int i = 0; i < users.length; i++) {
 map.put(users[i], roles);
 }
 IShareable shareObj = (IShareable)item;
 shareObj.setUsersAndRoles(map);
}

注意 ユーザーとユーザー グループには [共有] テーブルがあり、共有されているオブジェクトと、それ

らのオブジェクトに付与されている役割がリストされます。

オブジェクトの削除および削除取消
オブジェクトは、Agile Web クライアントなどの Agile API を使用して削除したり、削除を取り消すことがで

きます。オブジェクトの削除と削除取消には、特定のオブジェクト タイプに対する削除権限と削除取消権限が

それぞれ必要です。

Agile API では、ソフト削除とハード削除をサポートしています。オブジェクトを初めて削除する場合の削除は、

ソフト削除です。データベース内で削除マークが付きますが、完全に削除されたわけではありません。ソフト

削除されたオブジェクトは、その後も取得可能です。たとえば、削除したオブジェクトは、

IAgileSession.getObject() メソッドを使用して取得できます。検索を実行した場合、ソフト削除された

オブジェクトはその検索結果には表示されません。ただし、削除されたオブジェクトを検索できる事前定義の

検索条件 ([変更分析者検索] フォルダの [削除されたアイテム] 検索条件など) が用意されています。

 第 2 章

Agile Product Lifecycle Management 35 ページ

オブジェクトを完全に削除するには、削除を 2 回実行します。これがハード削除です。オブジェクトをハード

削除すると、IDataObject.undelete() メソッドを使用してもオブジェクトを復元できません。

すべての Agile PLM オブジェクトが削除できるわけではありません。たとえば、次のオブジェクトは削除でき

ません。これらのいずれかのオブジェクトを削除しようとした場合は、delete() メソッドで例外が発生しま

す。

 保留中の変更があるアイテム

 リビジョン履歴があるアイテム

 キャンセルされた変更があるアイテム

 リリース済みの変更

 1 つ以上の製造元部品がある製造元

 別のオブジェクトの [製造元] タブで現在使用されている製造元部品

別のアイテムの [BOM] タブで使用されているアイテムを削除しようとすると、Agile PLM サーバにより、

ExceptionConstants.APDM_DELETECOMPINUSE_WARNING という ID の例外が発生します。次の例は、

この警告を無効にしてアイテムを削除する方法を示しています。

例: アイテムの削除
private void deleteItem(IDataObject obj) {
 try {
 // Delete the Item
 obj.delete();
 } catch (APIException ex) {
 // Check for "Item is Used" warning
 if (ex.getErrorCode() ==
ExceptionConstants.APDM_DELETECOMPINUSE_WARNING) {
 int i = JOptionPane.showConfirmDialog(null, "This Item is used
by another Item. " +
 "Would you still like to delete it?", "Item is Used Warning",
JOptionPane.YES_NO_OPTION);
 }
 if (i == 0) {
 try {
 // Disable "Item is Used" warning

m_session.disableWarning(ExceptionConstants.APDM_DELETECOMPINUSE_W
ARNING);
 // Delete the object
 obj.delete();
 // Enable "Item is Used" warning

m_session.enableWarning(ExceptionConstants.APDM_DELETECOMPINUSE_WA
RNING);
 } catch (APIException exc) {
 System.out.println(exc);
 }
 } else {
 System.out.println(ex);
 }
 }
}

SDK 開発者ガイド

36 ページ Agile Product Lifecycle Management

ソフト削除されたオブジェクトを復元するには、IDataObject.undelete() メソッドを使用します。再度、

オブジェクトの削除を取り消すには、そのオブジェクト タイプに対する削除取消権限が必要です。ただし、[対
象アイテム] タブにアイテムがあるソフト削除された変更は、ユーザーの権限に関係なく復元できません。次

の例は、削除したオブジェクトの削除を取り消す方法を示しています。

例: オブジェクトの削除取消
private void undeleteObject(Object obj) throws APIException {
 // Make sure the object is deleted before undeleting it
 if (obj.isDeleted()) {
 // Restore the object
 obj.undelete();
 }
}

セッションを閉じる
Agile PLM の各ユーザーは、同時セッションを最大 3 つまで開くことができます。したがって、Agile API を
使用して開いた各セッションは、適切に閉じる必要があります。セッションを適切に閉じないと、いずれかの

同時セッションがタイムアウトするまで、新しいセッションでログインできない可能性があります。

例: セッションを閉じる
public void disconnect(IAgileSession m_session) {
 m_session.close();
}

Agile Product Lifecycle Management 37 ページ

第 3 章

検索条件の作成およびロード

扱うトピックは次のとおりです。

 検索条件について ... 37
 検索条件の作成 ... 37
 検索条件の指定 ... 42
 検索条件での SQL 構文の使用 .. 50
 検索条件の結果属性の設定 ... 53
 検索結果の使用 ... 61
 使用箇所検索条件の作成 ... 62
 検索条件のロード ... 63
 検索条件の削除 ... 64
 簡単な検索条件の例 ... 65

検索条件について
IQuery は、Agile PLM データの検索方法を定義するオブジェクトです。Agile Web クライアントで使用でき

る検索と同様の検索を定義します。検索には、複数の検索条件 (Agile Web クライアントの詳細検索など) を指

定できます。1 つの条件のみを指定する簡易検索もあります。

検索条件の作成
検索条件を作成して実行するには、最初に IQuery オブジェクトを作成する必要があります。このオブジェク

トは、他の Agile API オブジェクトと同様に、IAgileSession.createObject() メソッドを使用して作成

します。

最も簡単な形式の場合、検索条件を作成する createObject() メソッドとともに渡すパラメータは、IQuery
オブジェクト タイプと検索に使用する検索クラスです。次の例では、検索クラスはアイテム クラスです。

例: 検索条件の作成
try {
 IQuery query =
(IQuery)session.createObject(IQuery.OBJECT_TYPE,

 ItemConstants.CLASS_ITEM_BASE_CLASS);
 query.setCaseSensitive(false);
 query.setCriteria("[Title Block.Number] starts with 'P'");
 ITable results = query.execute();
} catch (APIException ex) {
 System.out.println(ex);
}

SDK 開発者ガイド

38 ページ Agile Product Lifecycle Management

createObject() メソッドで指定する検索クラスには、そのサブクラスのオブジェクトもすべて含まれます。

たとえば、アイテム クラスのオブジェクトを検索すると、その結果には部品とドキュメントが含まれます。変

更クラスのオブジェクトを検索すると、その結果には、すべての変更サブクラス (期限付き設計変更、ECO、

ECR、MCO、PCO、SCO および出荷停止) のオブジェクトが含まれます。特定のサブクラスのみを検索する場

合は、そのクラスを明示的に指定する必要があります。次の例は、Foobar という名前のサブクラスのオブジェ

クトを検索する検索条件の作成方法を示しています。

例: 検索クラスの指定
IAdmin admin = m_session.getAdminInstance();
IAgileClass cls = admin.getAgileClass("Foobar");
IQuery query =
(IQuery)m_session.createObject(IQuery.OBJECT_TYPE, cls);

フォルダへの検索条件の保存
IQuery.setName() メソッドを使用して検索条件に名前を付けた後は、その検索条件をフォルダに追加でき

ます。次の例は、検索条件に名前を付けて [パーソナル検索] フォルダに追加する方法を示しています。検索

条件は、後でフォルダから取得して再利用できます。

例: 検索条件に名前を付けてフォルダに追加
try {
 IQuery query = (IQuery)session.createObject(IQuery.OBJECT_TYPE,
 ItemConstants.CLASS_ITEM_BASE_CLASS);
 query.setCaseSensitive(false);
 query.setCriteria("[Title Block.Number] starts with 'P'");
 query.setName("Items Whose Number Starts with P");
 IFolder folder = (IFolder)m_session.getObject(IFolder.OBJECT_TYPE,
"/Personal Searches");
 folder.addChild(query);
} catch (APIException ex) {
 System.out.println(ex);
}

検索条件は、IQuery.saveAs() メソッドを使用して名前を付けてフォルダに保存することもできます。

例: IQuery.saveAs() を使用して検索条件をフォルダに保存
try {
 IQuery query =
(IQuery)session.createObject(IQuery.OBJECT_TYPE,
 ItemConstants.CLASS_ITEM_BASE_CLASS);
 query.setCaseSensitive(false);
 query.setCriteria("[Title Block.Number] starts with
'P'");
 IFolder folder =
(IFolder)m_session.getObject(IFolder.OBJECT_TYPE,
"/Personal Searches");
 query.saveAs("Items Whose Number Starts with P", folder);
} catch (APIException ex) {
 System.out.println(ex);
}

 第 3 章

Agile Product Lifecycle Management 39 ページ

注意 フォルダに明示的に保存せずに作成した検索条件は、一時的な検索条件とみなされます。すべての

一時的な検索条件は、ユーザー セッションを閉じる際に Agile アプリケーション サーバによって

削除されます。

パラメータ検索の作成
検索条件を指定するときは、パーセント記号 (%) の後ろに数字を指定して、パラメータ プレースホルダを示

すことができます。このパラメータ値は、後で (通常は実行時に) 指定できます。パラメータには、検索条件

に値を渡す便利な方法が用意されており、これによって、時間と余分なコーディング労力を削減できます。パ

ラメータ検索は、保存して後で再利用できます。

注意 右オペランドの検索パラメータは、検索条件の各演算子に対して 1 つのプレースホルダをサポート

しています。このため、検索条件に 3 つの検索条件演算子がある場合、検索条件には、3 つの演算

子に対応する合計 3 つのプレースホルダを指定できます。between と not between の検索条件

演算子には違いがあります。たとえば、[2091] contains none of (%0,%1); は使用できませ

んが、[2091] contains none of (%0); は使用できます。また、query.execute(new
Object[]{new Object[]{"B", "C"}}); も使用できません。

検索パラメータのインデックスは、0 が基準となります。パラメータには、0、1、2 のように番号が設定され

ます。パラメータは、常に昇順で指定する必要があります。

次の例は、IQuery.execute(Object[]) メソッドを使用して値が指定された 3 つのパラメータを持つ検索

条件を示しています。

例: IQuery.execute(Object[]) を使用するパラメータ検索
public ITable runParameterizedQuery() throws Exception {
 String condition = "[Title Block.Number] starts with %0
and" +
 "[Title Block.Part Category] == %1
and" +
 "[Title Block.Description] contains %2";
 IQuery query = (IQuery)
m_session.createObject(IQuery.OBJECT_TYPE,
ItemConstants.CLASS_PART);
 query.setCriteria(condition);
 ITable table = query.execute(new Object[] {"1", "Electrical",
"Resistor"});
 return table;
}

検索パラメータは、次の例のように、IQuery.setParams() メソッドを使用して指定することもできます。

検索パラメータ値は、IQuery.execute() を呼び出す前に設定してください。呼び出す前に設定しないと、

検索を実行したときに前回のパラメータ値が使用されます。パラメータが設定されていない場合は、ヌル値が

使用されます。同様に、検索にパラメータを渡さない場合、IQuery.getParams() メソッドはヌルを返しま

す。

SDK 開発者ガイド

40 ページ Agile Product Lifecycle Management

例: IQuery.setParams() を使用するパラメータ検索
public ITable runParameterizedQuery() throws Exception {
 String condition = "[Title Block.Number] starts with %0
and" +
 "[Title Block.Part Category] == %1
and" +
 "[Title Block.Description] contains %2";
 IQuery query = (IQuery)
m_session.createObject(IQuery.OBJECT_TYPE,
ItemConstants.CLASS_PART);
 query.setCriteria(condition);
 query.setParams(new Object[] {"1", "Electrical", "Resistor"});
 ITable table = query.execute();
 return table;
}

複数のパラメータが 1 つの特定の値のみを参照している場合は、パラメータ検索を引用符で囲まないでくださ

い。これは、これらの引用符によって、検索条件に対して一連の値 (複数の要素) が作成されるためです。次

の例は、パラメータ検索の作成における引用符の正しい使用方法を示しています。

例: パラメータ検索での引用符の正しい使用方法
String criteria = "[NUMBER] == %0";
query.execute(new Object[]{"P1000-02"});
String criteria = "[P2.LIST01] in %0";
query.execute(new Object[]{new Object[]{"A1", "B2"}});

検索条件作成時の検索属性の指定
検索条件を作成するときは、検索クラスのみを渡すかわりに、より高度な形式の createObject() メソッド

を使用して、1 つ以上の属性値を含む Map オブジェクトを渡すことができます。QueryConstants クラス

には、検索条件の作成時に設定できる検索属性に対する定数がいくつか含まれています。これらの定数は、仮

想属性です。この属性は、Agile PLM データベースには存在していませんが、実行時に検索条件を定義する際

に使用できます。

属性の定数 説明

ATT_CRITERIA_CLASS 検索クラス

ATT_CRITERIA_PARAM (パラメータ検索条件に対する) 検索条件パラメータ値

ATT_CRITERIA_STRING 検索条件文字列

ATT_PARENT_FOLDER 検索条件が格納されている親フォルダ

ATT_QUERY_NAME 検索名

次の例は、検索条件の作成時に検索クラス、検索条件、親フォルダおよび検索名を設定する方法を示していま

す。

 第 3 章

Agile Product Lifecycle Management 41 ページ

例: 検索条件作成時の検索属性の指定
try {
String condition = "[Title Block.Number] starts with 'P'";
 IFolder parent =
(IFolder)m_session.getObject(IFolder.OBJECT_TYPE,
"/Personal Searches");
 HashMap map = new HashMap();
 map.put(QueryConstants.ATT_CRITERIA_CLASS,
ItemConstants.CLASS_ITEM_BASE_CLASS);
 map.put(QueryConstants.ATT_CRITERIA_STRING, condition);
 map.put(QueryConstants.ATT_PARENT_FOLDER, parent);
 map.put(QueryConstants.ATT_QUERY_NAME, "Part Numbers
Starting with P");
 IQuery query =
(IQuery)m_session.createObject(IQuery.OBJECT_TYPE, map);
 ITable results = query.execute();
} catch (APIException ex) {
 System.out.println(ex);
}

ワークフロー検索の指定

注意 次の機能は、SDK の現在のリリースではサポートされていません。

Agile SDK では、ワークフロー関連の検索条件を指定して、ワークフロー検索を開始できます。その際は、一

連のワークフロー属性すべてを括弧で囲みます。

次の例は、ワークフロー検索を指定する方法を示しています。この例で、すべてのワークフロー属性が括弧で

囲まれていることに注目してください。

例: 検索条件作成時のワークフロー属性の指定
private void testWorkflowQuery(IAgileSession session)
throws Exception {
 IQuery query =
(IQuery)session.createObject(IQuery.OBJECT_TYPE,
ChangeConstants.CLASS_ECO);
 String criteria = "([Workflow.Workflow Status] equal to
'Default Change Orders.CCB'"
 + " and [Workflow.Approver] contains ([" +
UserConstants.ATT_GENERAL_INFO_USER_ID + "] == 'yvonnec')"+ "
and [1047] starts with 'C'";
 query.setCriteria(criteria);
 ITable result = query.execute();
 System.out.println(result.size());
}

SDK 開発者ガイド

42 ページ Agile Product Lifecycle Management

検索条件の指定
検索から返されるオブジェクトの数は、検索条件を指定して絞り込むことができます。検索条件を指定しない

と、指定した検索クラスのすべてのオブジェクトに対する参照が返されます。返されるデータ量が膨大になる

と、パフォーマンスが低下する可能性があるため、検索条件は、できるかぎり限定することをお薦めします。

検索条件の指定には、3 つの異なる setCriteria() メソッドを使用できます。

 setCriteria(ICriteria criteria) - [条件] 管理ノードに格納されているデータから検索条件を設

定します。[条件] 管理ノードにはワークフローに対する再利用の条件を定義しますが、このノードは、通

常の検索条件として使用することもできます。

注意 ワークフロー検索は、リリース 9.2.2 ではサポートされていませんでした。

 setCriteria(java.lang.String criteria) - 指定の String から検索条件を設定します。

 setCriteria(java.lang.String criteria, java.lang.Object[] params) - 1 つ以上のパラ

メータを参照する指定の String から検索条件を設定します。

最初に setCriteria() メソッド (パラメータとして ICriteria オブジェクトが使用される) を使用しな

いかぎり、検索条件は String として解析されます。

検索条件
Agile API には、検索条件を指定するための簡単で強力なクエリ言語が用意されています。クエリ言語は、フィ

ルタ、条件、属性参照、関係演算子、論理演算子およびその他の要素に適した構文を定義します。

検索条件は、1 つ以上の検索条件で構成されています。各検索条件には、次の要素が含まれます。

1. 左オペランド - 左オペランドは、[Title Block.Number] など、常に大括弧で囲まれた属性です。属性は、

属性名 (完全修飾名または略式名称) または属性 ID 番号で指定できます。属性は、検索で使用するオブ

ジェクトの特性を指定します。

2. 関係演算子 - 関係演算子は、「equal to」、「not equal to」など、指定した値と属性との関係を定義します。

3. 右オペランド - 左オペランドに指定した属性に対する照合値です。右オペランドは、単一の定数式または

一連の定数式になります。一連の定数式は、関係演算子が「between」、「not between」、「in」または「not
in」の場合に必要です。

次に、検索条件の例を示します。

[Title Block.Description] == 'Computer'

次に、右オペランドが一連の定数式である別の例を示します。
[Page Two.Numeric01] between ('1000', '2000')

 第 3 章

Agile Product Lifecycle Management 43 ページ

クエリ言語のキーワード
検索条件を指定するときは、適切なキーワードを使用してステートメントを作成する必要があります。使用で

きるキーワードは、次のとおりです。

and does less or to

asc equal like order union

between from minus phrase where

by greater none select with

contain in not start word

contains intersect null starts words

desc is of than

クエリ言語のキーワードはローカライズされていません。ロケールに関係なく英語のキーワードを使用する必

要があります。キーワードには小文字または大文字を使用できます。Agile API 検索条件には、キーワードの他

に、$USER (現在のユーザー) や $TODAY (今日の日付) などの Agile PLM 変数を使用できます。

注意 in 演算子は、検索条件のマルチリストではサポートされていません。

検索属性の指定
検索できる各 Agile PLM オブジェクトには、一連の属性も関連付けられています。これはオブジェクト固有の

特性です。これらの属性は、検索条件の左オペランドとして使用できます。検索条件の右オペランドには、属

性の値を指定します。

検索属性は、[Title Block.Number] のように大括弧で囲む必要があります。大括弧が必要な理由は、多く

の属性名に空白が使用されているためです。検索属性を大括弧で囲まないと、検索に失敗します。

検索属性は、次のように指定できます。

属性参照 例

属性 ID 番号 [1001]

完全修飾属性名 [Title Block.Number]

略式属性名 [Number]

注意 属性名は変更される場合があるため、属性は ID 番号または定数で参照することをお薦めします。

ただし、この章の多くの例では、読み易さの観点から、属性を名前で参照しています。属性を名前

で参照する場合は、略式名称ではなく完全修飾属性名を使用してください。略式属性名は一意性が

保証されないため、検索に失敗したり、予期しない結果となる可能性があります。

SDK 開発者ガイド

44 ページ Agile Product Lifecycle Management

属性名は、使用する形式 (長い名前または短い名前) に関係なく、大文字と小文字の区別はありません。たと

えば、[Title Block.Number] と [TITLE BLOCK.NUMBER] は両方とも使用できます。また、属性名はロー

カライズされています。Agile PLM 属性の名前は、Agile アプリケーション サーバのロケールによって異なり

ます。異なるロケールのサーバで使用される検索条件を作成する場合は、名前のかわりに、ID 番号 (または同

等の定数) で属性を参照する必要があります。

引用符や円記号などの特殊文字が属性名に使用されている場合は、円記号 (¥) をエスケープ文字として使用し

て、これらの文字を入力できます。たとえば、文字列に引用符を指定するには、¥' と入力します。円記号を記

述する場合は、2 つの円記号 (¥¥) を入力します。属性名に大括弧が使用されている場合は、名前全体を引用

符で囲みます。
['Page Two.Unit of Measure [g or oz]']

属性を指定する方法は他にもありますが、直感性は低くなります。たとえば、setCriteria() メソッドのパ

ラメータを使用して IAttribute 参照で渡すことができます。次の例では、「%0」で Object 配列パラメー

タの属性を参照します。
query.setCriteria("[%0] == 'Computer'", new Object[] { attr });

文字列 (String) の連結を使用して属性定数を参照することもできます。
query.setCriteria("[“ +
ItemConstants.ATT_TITLE_BLOCK_DESCRIPTION + “] ==
'Computer'”);

検索可能属性の取得
検索条件の検索可能属性は、指定した検索クラスまたはサブクラスによって異なります。ただし、サブクラス

の検索可能属性は、その親クラスの検索可能属性とは大きく異なる場合があります。

データベース側の理由から、すべての属性が検索可能なわけではありません。通常、選定された数個の [ペー

ジ 1] 属性 (つまり、[タイトル ページ]、[カバー ページ] および [一般情報]) が、各クラスの検索可能属性で

す。

Java クライアントに表示するタブが設定されていない場合でも、そのタブの属性は、Agile SDK で検索できま

す。ただし、タブ名に対応するテーブル名を検索する必要があります。

注意 IQuery の設定にはテーブル名を使用するため、Agile Java クライアントに指定されているタブ名が
Agile 管理者によって変更されても問題はありません。タブ名の変更が、SDK テーブル名に影響を

与えることはありません。

検索条件の検索可能属性を見つけるには、IQuery.getSearchableAttributes() メソッドを使用します。

注意 属性が検索可能でない場合でも、その属性が検索結果の列として含まれる場合があります。詳細は、

53 ページの「検索条件の結果属性の設定」を参照してください。

 第 3 章

Agile Product Lifecycle Management 45 ページ

関係演算子の使用
次の表に、Agile API クエリ言語でサポートされている関係演算子を示します。

演算子 (英語) 表記法 説明

equal to == 指定の値と完全に一致する内容のみを検索します。

not equal to != 指定の値と完全に一致する内容以外の値を検索します。

greater than > 指定の値より大きい値を検索します。

greater than or equal to >= 指定の値以上の値を検索します。

less than < 指定の値未満の値を検索します。

less than or equal to <= 指定の値以下の値を検索します。

contains、contains all 指定の値を含む値を検索します。

does not contain、
does not contain all

 指定の値を含まない値を検索します。

contains any 指定の値を含む値を検索します。

does not contain any 指定の値を含まない値を検索します。

contains none of 指定の値すべてを含まない値を検索します。

does not contain none of does not contain any と同様に機能します。

starts with 指定の値が先頭にある値を検索します。

does not start with 指定の値で始まらない値を検索します。

is null 選択した属性に値が含まれていないオブジェクトを検索します。

is not null 選択した属性に値が含まれているオブジェクトを検索します。

like 単一の文字または文字列と一致するオブジェクトを検出する

ワイルドカード検索を実行します。

not like 単一の文字または文字列と一致しないオブジェクトを検出す

るワイルドカード検索を実行します。

between 指定の値の範囲に含まれるオブジェクトを検索します。

not between 指定の値の範囲に含まれないオブジェクトを検索します。

in 指定の値のいずれかと一致するオブジェクトを検索します。

not in 指定の値のすべてに一致しないオブジェクトを検索します。

contains phrase 指定の語句が含まれているオブジェクトを検索します。

contains all words 指定の単語のすべてが含まれているオブジェクトを検索します。

contains any word 指定の単語のいずれかが含まれているオブジェクトを検索します。

contains none of 指定の単語すべてが含まれていないオブジェクトを検索します。

SDK 開発者ガイド

46 ページ Agile Product Lifecycle Management

関係演算子は、ローカライズされていません。ロケールに関係なく英語のキーワードを使用する必要がありま

す。関係演算子は、他のクエリ言語キーワードと同様に、小文字または大文字で使用できます。

Unicode エスケープ シーケンスの使用

Agile SDK クエリ言語は、Unicode エスケープ シーケンスをサポートしています。クエリ文字列で Unicode エ
スケープ シーケンスを使用するのは、主に変換不可能な文字セット、または外国のローカル文字セットを検索

する場合です。Unicode 文字は、Unicode エスケープ シーケンス ¥uxxxx で表されます (xxxx は 4 桁の 16
進数)。

たとえば、Unicode 3458 のアイテムを検索する場合は、次の検索条件を使用します。

Select * from [Items] where [Description] contains '¥u3458'

マルチリストの場合は、「contains」のかわりに使用する別の検索演算子があります。

Between、Not Between、In および Not In 演算子の使用

between、not between、in および not in 関係演算子は、Agile Web クライアントなどの Agile PLM クライアン

トでは直接サポートされていません。関係演算子には、equal to、not equal to、greater than or equal to または less
than or equal to 演算子を一連の値で指定する簡便な方法があります。

短い形式 同等の長い形式

[Number] between ('1','6') [Number] >= '1' and [Number] <= '6'

[Number] not between
('1','6')

[Number] < '1' and [Number] > '6'

[Number] in
('1','2','3','4',5','6')

[Number] == '1' or [Number] == '2' or [Number] == '3'
or [Number] == '4' or [Number] == '5' or [Number] ==
'6'

[Number] not in
('1','2','3','4','5','6')

[Number]!= '1' and [Number] != '2' and [Number] !=
'3' and [Number] != '4' and [Number] != '5' and
[Number] != '6'

前述の表に記載されているように、between、not between、in および not in 関係演算子を使用するときは、一

連の値を構成する個々の値を引用符で囲み、カンマで区切る必要があります。次に、between 演算子と in 演算

子を使用する条件の例を示します。
[Title Block.Number] in ('1000-02', '1234-01', '4567-89')
[Title Block.Effectivity Date] between ('01/01/2001', '01/01/2002')
[Page Two.Numeric01] between ('1000', '2000')

注意 関係演算子 any、all、none of および not all は、SDK ではサポートされていません。

 第 3 章

Agile Product Lifecycle Management 47 ページ

ネストされた条件を使用したオブジェクト リスト tohere の値の検索

Agile PLM のいくつかのリストには、Agile PLM ユーザーなどのビジネス オブジェクトが含まれています。こ

れらのリストにあるオブジェクトを検索するには、ネストされた検索条件を指定できます。ネストされた条件

は、括弧で囲み、各条件を論理演算子 AND (&&) または OR (||) で区切ります。ネストされた条件を区切るに

は、カンマを使用することもできます。このカンマは論理 OR と等価です。

次の条件は、Christopher という姓または Nolan という名のユーザーを検索します。
[Page Two.Create User] in ([General Info.First Name] ==
'Christopher',
[General Info.Last Name] == 'Nolan')

次の条件は、Christopher という姓で、かつ Nolan という名のユーザーを検索します。
[Page Two.Create User] in ([General Info.First Name] ==
'Christopher' &&
[General Info.Last Name] == 'Nolan')

パラメータ検索は、ネストされた検索条件ではサポートされません。また、検索パラメータの 1 つのプレース

ホルダに対する複数の値は、二次元配列で指定する必要があります。次の例を参照してください。

例: ネストされた検索条件における適切なパラメータ検索と不適切なパラメータ検索

 次のネストされた検索条件に指定されているパラメータ検索は、正しく実行できません。
[Page Two.User1] in ([General Info.First Name] == %0)

 ただし、プレースホルダではなく文字列値として明示的に指定されている場合は、正常に実行されます。
[Page Two.User1] in ([General Info.First Name] ==
‘Christopher’)

添付ファイル内の単語または語句の検索

2 つの特別な属性 [Attachments.File Document Text] および [Files.Document Text] は、Agile
ファイル管理サーバに格納されているファイルの内容にインデックスを付ける際に使用されます。Oracle で
データベースをホスティングしている場合は、添付ファイル内の単語または語句を検索する機能を利用できま

す。このいずれかの属性を使用する検索条件を作成するときは、さらに 4 つの関係演算子を使用できます。

 contains phrase

 contains all words

 contains any word

 contains none of

注意 これらの関係演算子は IBM 社の DB2 と Microsoft 社の SQL Server ではサポートされていません。

SDK 開発者ガイド

48 ページ Agile Product Lifecycle Management

次の表は、添付ファイル内の単語または語句を検索する検索条件を示しています。

検索条件 検索対象

[Attachments.File Document Text] contains
phrase 'adding new materials'

添付ファイルのいずれかに語句「adding new
materials」が含まれているオブジェクト。

all [Attachments.File Document Text]
contains all words 'adding new materials'

添付ファイルすべてに単語「adding」、「new」および

「materials」が含まれているオブジェクト。

none of [Attachments.File Document Text]
contains any word 'containers BOM return
output'

いずれの添付ファイルにも単語「containers」、「BOM」、

「return」または「output」が含まれていないオブジェクト。

[Attachments.File Document Text] contains
none of 'containers BOM output'

いずれの添付ファイルにも単語「containers」、「BOM」

および「output」が含まれていないオブジェクト。

検索条件の日付の書式設定
いくつかのタイプの検索条件には日付値が必要です。日付を文字列として渡す場合は、

IAgileSession.setDateFormats() メソッドを使用して日付フォーマットを指定します。

setDateFormats() メソッドは、setValue() メソッドで指定したすべての Agile API 値にも適用されま

す。

注意 setDateFormats() メソッドを使用して日付フォーマットを明示的に設定しなかった場合は、

Agile PLM システムのユーザーの日付フォーマットが使用されます。Agile Web クライアントで日

付フォーマットを調べるには、[設定] > [ユーザー プロファイル] の順に選択し、[プリファレンス]
タブをクリックします。

例: 検索条件の日付フォーマットの設定
m_session.setDateFormats(new DateFormat[] {new
SimpleDateFormat("MM/dd/yyyy")});
query.setCriteria("[Title Block.Rev Release Date] between” +
“('9/2/2001', '9/2/2003')");
query.setCriteria("[Title Block.Rev Release Date]
between (%0,%1)", new String[] {"9/2/2001", "9/2/2003"});

setCriteria(String criteria, Object[] params) メソッドを使用する場合は、Date オブジェクト

をメソッドに対するパラメータとして渡すことができます。

例: Date オブジェクトを setCriteria() のパラメータとして渡す場合
DateFormat df = new SimpleDateFormat("MM/dd/yyyy");
query.setCriteria("[Title Block.Rev Release Date] between (%0,%1)",
new Object[] { df.parse("9/2/2001"), df.parse("9/2/2003") });

 第 3 章

Agile Product Lifecycle Management 49 ページ

論理演算子の使用
論理演算子を使用すると、複数の検索条件を複雑なフィルタに組み合わせることができます。一連の検索条件

に 2 つ以上の条件を定義する場合は、各条件の関係を and または or で定義します。

 and を使用すると、両方の条件が満たされる必要があるため、検索条件が絞り込まれます。検索結果の各

アイテムは、必ず両方の条件を満たしています。and 論理演算子は、2 つのアンパサンド (&&) を使用し

て指定することもできます。

 or を使用すると、どちらかの条件を満たすオブジェクトが検索されるため、検索条件が拡大します。検索

結果の各アイテムは必ず一方の条件に一致しますが、両方の条件に一致する場合もあります。or 論理演算

子は、2 つの垂直バー (||) を使用して指定することもできます。

論理演算子では大文字と小文字が区別されません。たとえば、and と AND は両方とも使用できます。

次の検索条件は、部品カテゴリが [電気系] で、かつライフサイクル フェーズが [停止] である両方の条件を

満たす部品を検索します。
[Title Block.Part Category] == 'Electrical' and
[Title Block.Lifecycle Phase] == 'Inactive'

「and」を「or」に置き換えると、部品カテゴリが [電気系] か、ライフサイクル フェーズが [停止] か、いず

れかの条件を満たす部品が検索されます。その結果、より多くの部品が条件を満たすことになります。
[Title Block.Part Category] == 'Electrical' or
[Title Block.Lifecycle Phase] == 'Inactive'

注意 Agile API には、使用箇所検索用の 3 種類の集合演算子が用意されています。詳細は、62 ページの

「使用箇所検索条件の作成」を参照してください。
論理演算子 (使用箇所検索の集合演算子を含む) はローカライズされていません。ロケールに関係な

く英語のキーワードを使用する必要があります。

Like 演算子でのワイルドカード文字の使用
like 演算子を使用して検索条件を定義する場合は、2 つのワイルドカード文字を使用できます。使用できるワ

イルドカード文字は、アスタリスク (*) および疑問符 (?) です。アスタリスクは任意の長さの文字列に相当し

ます。したがって、*at では、「cat」、「splat」および「big hat」が検索されます。次に例を示します。
[Title Block.Description] like '*book*'

この例では、textbook、bookstore、books など、「book」という単語を含んだオブジェクトがすべて返されます。

疑問符は任意の 1 文字に相当します。したがって、?at では、「hat」、「cat」および「fat」が検索され、「splat」
は該当しません。次に例を示します。

[Title Block.Description] like '?al*'

この例では、tall、wall、mall、calendar など、任意の 1 文字の後に「al」が続く単語が返されます。

SDK 開発者ガイド

50 ページ Agile Product Lifecycle Management

検索条件での括弧の使用
使用箇所検索の集合演算子は、次の表に示すように、and および or 論理演算子より優先度が高く設定されて

います。

優先度 演算子

1 union
 intersection
 minus

2 and
 or

したがって、union、intersection および minus 演算子で結合された検索条件は、and または or で結合された

条件より前に評価されます。

検索条件に使用箇所検索の集合演算子 (union、intersect または minus) を使用する場合は、括弧を使用して条

件の評価順序を変更できます。検索条件に and または or 論理演算子のみが使用される場合は、条件の評価結

果が変化しないため、括弧は不要です。

次の 2 つの条件には、同じ検索条件が含まれていますが、異なる位置に括弧が使用されているため、検索結果

は異なります。
([Title Block.Part Category] == 'Electrical' and
 [Title Block.Description] contains 'Resistor') union
([Title Block.Description] contains '400' and
 [Title Block.Product Line(s)] contains 'Taurus')
 [Title Block.Part Category] == 'Electrical' and
([Title Block.Description] contains 'Resistor' union
 [Title Block.Description] contains '400') and
 [Title Block.Product Line(s)] contains 'Taurus'

検索条件での SQL 構文の使用
Agile API では、標準的なクエリ言語に加え、検索条件に SQL 的な構文もサポートされています。SQL ステー

トメントの記述方法を理解している場合は、この拡張されたクエリ言語のほうが、より簡単に使用でき、柔軟

性があって効果を発揮できる可能性があります。この記述方法では、検索結果属性、検索クラス、検索条件お

よび並べ替え列の仕様が 1 つの操作に組み込まれます。

次に、構文の簡単な例を示します。

 検索結果属性: SELECT [Title Block.Number], [Title Block.Description]

 検索クラス: FROM [Items]

 検索条件: WHERE [Title Block.Number] starts with 'P'

 並べ替え列: ORDER BY 1 asc

 第 3 章

Agile Product Lifecycle Management 51 ページ

可読性を考慮して、SELECT や FROM などの SQL キーワードはすべて大文字で入力し、ステートメントの

各部は独立した行に記載することをお薦めします。これは慣例であり要件ではありません。SQL キーワードで

は大文字と小文字が区別されず、クエリ文字列をすべて 1 行に記述することもできます。

SQL 構文の利点を示す最良の方法は、検索条件に Agile API の標準的な検索構文を使用する検索条件と、SQL
構文を使用する検索条件のコードを比較することです。次の例は、Agile API の標準的な検索構文を使用して作

成した検索条件を示しています。

例: Agile API の標準的な検索構文を使用した検索条件
try {
 IQuery query = (IQuery)m_session.createObject(IQuery.OBJECT_TYPE,
"Items");
 query.setCriteria("[Page Two.Nummeric01] between (1000, 2000)");
 //Set result attributes
 String[] attrs = { "Title Block.Number", "Title Block.Description",
 "Title Block.Lifecycle Phase" };
 query.setResultAttributes(attrs);
 //Run the query
 ITable results = query.execute();
} catch (APIException ex) {
 System.out.println(ex);
}

次の例は、SQL 構文で書き換えた同様の検索条件を示しています。記載されているコード例は少ない行数です

が、SQL を理解しているユーザーは特に、Agile API の検索構文より可読性が高いことを確認できます。

例: SQL 構文を使用した検索条件
try {
 IQuery query = (IQuery)m_session.createObject(IQuery.OBJECT_TYPE,
 "SELECT " +
 "[Title Block.Number],[Title Block.Description], " +
 "[Title Block.Lifecycle Phase] " +
 "FROM " +
 "[Items] " +
 "WHERE " +
 "[Title Block.Number] between (1000, 2000)"
);
 //Run the query
 ITable results = query.execute();
} catch (APIException ex) {
 System.out.println(ex);
}

次の例は、ATT_CRITERIA_STRING 検索属性を使用して検索条件を指定する SQL 構文で記述された検索条

件を示しています。検索属性の使用方法の詳細は、40 ページの「検索条件作成時の検索属性の指定」を参照し

てください。

SDK 開発者ガイド

52 ページ Agile Product Lifecycle Management

例: SQL 構文を使用した検索属性の指定
try {
 String statement =
 "SELECT " +
 "[Title Block.Number], [Title Block.Description] " +
 "FROM " +
 "[Items] " +
 "WHERE " +
 "[Title Block.Description] like %0";
 HashMap map = new HashMap();
 map.put(QueryConstants.ATT_CRITERIA_STRING, statement);
 map.put(QueryConstants.ATT_CRITERIA_PARAM, new Object[]
{ "Comp*" });
 IQuery query = (IQuery)m_session.createObject(IQuery.OBJECT_TYPE,
map);
 ITable results = query.execute();
} catch (APIException ex) {
 System.out.println(ex);
}

注意 検索条件の FROM 部分には、検索クラスが指定されていることに注意してください。検索クラスの

指定にも ATT_CRITERIA_CLASS 属性を使用した場合は、SQL 検索条件に指定されている検索ク

ラスのほうが優先されます。

IQuery.setCriteria() メソッドを使用すると、検索条件を SQL 構文で指定できますが、

IQuery.getCriteria() メソッドでは、常に Agile API の標準的な検索構文で検索条件が返されます。

SQL ワイルドカードの使用
SQL 構文を使用する検索条件では、アスタリスク (*) と疑問符 (?) の両方のワイルドカードを使用できます。

Agile API の標準的なクエリ言語と同様に、アスタリスクは任意の文字列に相当し、疑問符は任意の 1 文字に

相当します。ワイルドカードは、SELECT ステートメント (指定された検索結果属性) と WHERE ステートメ

ント (検索条件) で使用できます。たとえば、「SELECT *」は、有効な検索結果属性すべてを指定します。

SQL 構文の使用による検索結果の並べ替え
Agile API の標準的なクエリ言語のかわりに SQL 構文を使用して検索条件を指定する場合は、ORDER BY
キーワードを使用して検索結果を並べ替えることができます。SELECT ステートメントに指定されている属性

に基づいて、結果を昇順または降順に並べ替えることができます。

ORDER BY ステートメントでは、SELECT ステートメントに記載されている順に 1 を基準とする番号で属性

を参照します。昇順または降順に並べ替えるかを指定するには、属性番号の後に asc または desc を入力しま

す。asc または desc を省略すると、昇順がデフォルトで使用されます。

例 説明

ORDER BY 1 最初の SELECT 属性で昇順にソートされます (デフォルト)。

ORDER BY 2 desc 2 番目の SELECT 属性で降順にソートされます。

ORDER BY 1 asc, 3 desc 最初の SELECT 属性で昇順にソートされ、さらに 3 番目の SELECT 属性で

降順にソートされます。

 第 3 章

Agile Product Lifecycle Management 53 ページ

SELECT ステートメントに指定されていない属性を使用して検索結果を並べ替えることはできません。また、

「SELECT *」を使用して有効なすべての結果属性を選択する場合は、属性の順序が明示されないため、結果を

並べ替えることはできません。

次の例では、SELECT ステートメントの 1 番目と 3 番目の属性である [Title Block.Number] と [Title
Block.Sites] に従って結果を昇順に並べ替えています。

例: SQL 構文を使用した検索結果の並べ替え
 IQuery query = (IQuery)m_session.createObject(IQuery.OBJECT_TYPE,
 "SELECT " +
 "[Title Block.Number],[Title Block.Description], " +
 "[Title Block.Sites],[Title Block.Lifecycle Phase] " +
 "FROM " +
 "[Items] " +
 "WHERE " +
 "[Title Block.Number] between (1000, 2000)" +
 "ORDER BY " +
 "1, 3"
);

検索条件の結果属性の設定
検索を実行すると、複数の出力フィールドが返されます。これらは結果属性とも呼ばれます。デフォルトでは、

各検索クラスに対して数個の結果属性があります。結果属性は、IQuery.setResultAttributes() メソッ

ドを使用して追加または削除できます。

次の表に、Agile PLM に事前定義されている各クラスに対するデフォルトの検索結果属性を示します。

SDK 開発者ガイド

54 ページ Agile Product Lifecycle Management

検索クラス デフォルトの結果属性

変更

 設計変更
 ECO

 設計変更依頼
 ECR

 期限付き設計変更
 期限付き設計変更

 製造元変更
 MCO

 価格変更
 PCO

 拠点毎変更
 SCO

 出荷停止
 出荷停止

カバー ページ.変更タイプ

カバー ページ.番号

カバー ページ.説明

カバー ページ.ステータス

カバー ページ.ワークフロー

顧客

 顧客
 顧客

一般情報.顧客タイプ

一般情報.顧客番号

一般情報.顧客名

一般情報.説明

一般情報.ライフサイクル フェーズ

 第 3 章

Agile Product Lifecycle Management 55 ページ

検索クラス デフォルトの結果属性

デクラレーション

 均質材のデクラレーション
 均質材のデクラレーション

 IPC 1752-1 デクラレーション

 IPC 1752-1 デクラレーション

 IPC 1752-2 デクラレーション

 IPC 1752-2 デクラレーション

 JGPSSI デクラレーション

 JGPSSI デクラレーション

 部品のデクラレーション

 部品のデクラレーション

 サブスタンスのデクラレーション

 サブスタンスのデクラレーション

 適合のサプライヤ デクラレーション

 適合のサプライヤ デクラレーション

カバー ページ.名前

カバー ページ.説明

カバー ページ.サプライヤ

カバー ページ.ステータス

カバー ページ.ワークフロー

カバー ページ.適合性管理者

カバー ページ.締切日

カバー ページ.デクラレーション タイプ

ディスカッション

 ディスカッション
 ディスカッション

カバー ページ.件名

カバー ページ.ステータス

カバー ページ.優先度

カバー ページ.タイプ

ファイル フォルダ

 ファイル フォルダ
 ファイル フォルダ

タイトル ブロック.タイプ

タイトル ブロック.番号

タイトル ブロック.説明

タイトル ブロック.ライフサイクル フェーズ

アイテム

 部品
 部品

 ドキュメント
 ドキュメント

タイトル ブロック.アイテム タイプ

タイトル ブロック.番号

タイトル ブロック.説明

タイトル ブロック.ライフサイクル フェーズ

タイトル ブロック.リビジョン

SDK 開発者ガイド

56 ページ Agile Product Lifecycle Management

検索クラス デフォルトの結果属性

製造元

 製造元
 製造元

一般情報.名前

一般情報.市町村区

一般情報.都道府県

一般情報.ライフサイクル フェーズ

一般情報.URL

製造元部品

 製造元部品
 製造元部品

一般情報.製造元部品番号

一般情報.製造元名

一般情報.説明

一般情報.ライフサイクル フェーズ

パッケージ

 パッケージ
 パッケージ

カバー ページ.パッケージ番号

カバー ページ.説明

カバー ページ.アセンブリ番号

カバー ページ.ステータス

カバー ページ.ワークフロー

部品グループ

 部品グループ
 部品分類
 部品ファミリ

一般情報.名前

一般情報.説明

一般情報.ライフサイクル フェーズ

一般情報.部品分類タイプ

一般情報.全体適合性

価格

 公表価格
 契約
 公表価格

 見積履歴
 見積履歴

一般情報.価格番号

一般情報.説明

一般情報.リビジョン

一般情報.価格タイプ

一般情報.ライフサイクル フェーズ

一般情報.プログラム

一般情報.顧客

一般情報.サプライヤ

製品サービス依頼

 不具合レポート
 NCR

 問題レポート
 問題レポート

カバー ページ.PSR タイプ

カバー ページ.番号

カバー ページ.説明

カバー ページ.ステータス

カバー ページ.ワークフロー

 第 3 章

Agile Product Lifecycle Management 57 ページ

検索クラス デフォルトの結果属性

プログラム

 アクティビティ
 プログラム

 フェーズ

 タスク

 ゲート
 ゲート

一般情報.名前

一般情報.説明

一般情報.ステータス

一般情報.ヘルス

一般情報.所有者

一般情報.ルートの親

一般情報.ワークフロー

一般情報.タイプ

プロジェクト

 ソーシング プロジェクト
 ソーシング プロジェクト

一般情報.プロジェクト タイプ

一般情報.番号

一般情報.説明

一般情報.製造元拠点

一般情報.出荷先の場所

一般情報.プログラム

一般情報.顧客

一般情報.ライフサイクル フェーズ

品質変更依頼

 是正処置/予防処置
 CAPA

 検証
 検証

カバー ページ.QCR タイプ

カバー ページ.QCR 番号

カバー ページ.説明

カバー ページ.ステータス

カバー ページ.ワークフロー

見積依頼回答

 見積依頼回答
 見積依頼回答

カバー ページ.見積依頼番号

カバー ページ.見積依頼説明

カバー ページ.ライフサイクル フェーズ

カバー ページ.依頼済み

カバー ページ.完了

カバー ページ.締切日

SDK 開発者ガイド

58 ページ Agile Product Lifecycle Management

検索クラス デフォルトの結果属性

RFQ

 RFQ
 RFQ

カバー ページ.見積依頼番号

カバー ページ.見積依頼説明

カバー ページ.製造元拠点

カバー ページ.出荷先の場所

カバー ページ.プログラム

カバー ページ.顧客

カバー ページ.ライフサイクル フェーズ

カバー ページ.見積依頼タイプ

拠点

 拠点
 拠点

一般情報.名前

一般情報.連絡先

一般情報.電話番号

含有基準

 含有基準
 含有基準

一般情報.名前

一般情報.説明

一般情報.ライフサイクル フェーズ

一般情報.管轄地域

一般情報.検証タイプ

一般情報.含有基準タイプ

サブスタンス

 マテリアル
 マテリアル

 サブパート
 サブパート

 サブスタンス グループ
 サブスタンス グループ

 サブスタンス
 サブスタンス

一般情報.名前

一般情報.説明

一般情報.CAS 番号

一般情報.ライフサイクル フェーズ

一般情報.サブスタンス タイプ

サプライヤ

 サプライヤ
 部品メーカー
 受託製造業者
 ディストリビュータ
 メーカー代表者

一般情報.サプライヤ タイプ

一般情報.番号

一般情報.名前

一般情報.説明

一般情報.ステータス

 第 3 章

Agile Product Lifecycle Management 59 ページ

検索クラス デフォルトの結果属性

転送依頼

 コンテンツ転送
 CTO

 自動転送
 ATO

カバー ページ.転送タイプ (「コンテンツ転

送作成者名の取得」を参照)

カバー ページ.転送番号

カバー ページ.説明

カバー ページ.ステータス

カバー ページ.ワークフロー

結果属性の指定
検索を実行して、結果の ITable オブジェクトに期待した属性が含まれていない場合は、結果属性を指定しな

かったことが原因です。次の例は、検索条件に結果属性を指定する方法を示しています。

例: 検索結果属性の設定
private void setQueryResultColumns(IQuery query) throws APIException
{
 // Get Admin instance
 IAdmin admin = m_session.getAdminInstance();

 // Get the Part class
 IAgileClass cls = admin.getAgileClass("Part");

 // Get some Part attributes, including Page Two and Page Three
attributes
 IAttribute attr1 =
cls.getAttribute(ItemConstants.ATT_TITLE_BLOCK_NUMBER);
 IAttribute attr2 =
cls.getAttribute(ItemConstants.ATT_TITLE_BLOCK_DESCRIPTION);
 IAttribute attr3 =
cls.getAttribute(ItemConstants.ATT_TITLE_BLOCK_LIFECYCLE_PHASE);
 IAttribute attr4 =
cls.getAttribute(ItemConstants.ATT_PAGE_TWO_TEXT01);
 IAttribute attr5 =
cls.getAttribute(ItemConstants.ATT_PAGE_TWO_NUMERIC01);
 IAttribute attr6 =
cls.getAttribute(ItemConstants.ATT_PAGE_THREE_TEXT01);
 // Put the attributes into an array
 IAttribute[] attrs = {attr1, attr2, attr3, attr4, attr5, attr6};

 // Set the result attributes for the query
 query.setResultAttributes(attrs);

}

IQuery.setResultAttributes() メソッドでは、String、Integer または IAttribute の配列をサ

ポートしている Object[] 値が、attrs パラメータとして使用されます。したがって、IAttribute オブ

ジェクトの配列を指定するかわりに、属性名 ({"Title Block.Description", "Title Block.Number"}
など) または属性 ID 定数の配列を指定することもできます。次の例は、ID 定数を使用して結果属性を指定す

る方法を示しています。

SDK 開発者ガイド

60 ページ Agile Product Lifecycle Management

例: ID 定数の指定による検索結果属性の設定
private void setQueryResultColumns(IQuery query) throws APIException
{
 // Put the attribute IDs into an array
 Integer[] attrs = { ItemConstants.ATT_TITLE_BLOCK_NUMBER,
 ItemConstants.ATT_TITLE_BLOCK_DESCRIPTION,
 ItemConstants.ATT_TITLE_BLOCK_LIFECYCLE_PHASE,
 ItemConstants.ATT_PAGE_TWO_TEXT01,
 ItemConstants.ATT_PAGE_TWO_NUMERIC01,
 ItemConstants.ATT_PAGE_THREE_TEXT01 };
 // Set the result attributes for the query
 query.setResultAttributes(attrs);
}

setResultAttributes() メソッドを使用する場合は、有効な結果属性を指定してください。そうでない場

合、setResultAttributes() メソッドは失敗します。検索に使用できる有効な結果属性の配列を取得する

には、次の例のように、getResultAttributes() を使用します。

例: 有効な結果属性の配列の取得
private IAttribute[] getAllResultAttributes(IQuery query) throws
APIException {
 IAttribute[] attrs = query.getResultAttributes(true);
 return attrs;
}

コンテンツ転送作成者名の取得
コンテンツ転送 (CTO) の [カバー ページ] には、コンテンツ転送を作成するユーザーの役割と拠点の割り当

てを指定する [作成者] フィールドがあります。ユーザー名を取得する際、このフィールドは直接検索できな

いため、UserConstants のデータを取得する必要があります。たとえば、次のステートメントはユーザー名

を直接取得しようとしていますが、機能しません。
QueryString = ("[Cover Page.Originator] equal to
'<Last_name>, <First_name>'");

一方、次のステートメントは UserConstants にデータを指定しており、正しく機能します。
QueryString = "[Cover Page.Originator] in
(["+UserConstants.ATT_GENERAL_INFO_USER_ID+"]=='<Use
rID>')";

または
QueryString = "[Cover Page.Originator] in
(["+UserConstants.ATT_GENERAL_INFO_LAST_NAME+"]=='<L
ast_name>'"+
 "&&
["+UserConstants.ATT_GENERAL_INFO_FIRST_NAME+"]=='<F
irst_name>');

 第 3 章

Agile Product Lifecycle Management 61 ページ

注意 IItem、IChange など、数に制限がない属性タイプに対する検索条件は、ネストされた形式にする

必要があります。Agile のすべてのユーザーを指す [作成者] 属性は、これに該当します。

拠点関連オブジェクトと AML の重複する結果
アイテムまたは変更を検索すると、Agile アプリケーション サーバの製造拠点機能が予想外の結果となる可能

性があります。アイテムまたは変更を検索し、結果属性に拠点属性 (アイテムの場合は [タイトル ブロック.
拠点]、変更の場合は [カバー ページ.拠点]) を指定すると、検索結果には、オブジェクトに関連付けられてい

る各拠点に対して、重複するオブジェクトが挿入されます。同様に、アイテムを検索し、結果属性に AML 属
性 ([製造元.製造元部品番号] など) を指定すると、検索結果には、アイテムの製造元テーブルにリストされて

いる各製造元部品に対して、重複するアイテムが挿入されます。

たとえば、番号 1000-02 の部品が、5 箇所の拠点と関連付けられています。その部品を検索し、結果属性に [タ
イトル ブロック.拠点] を指定すると、IQuery.execute メソッドから返る結果の ITable オブジェクトに

は、5 つの行 (1 行ではなく) が含まれます。各行は同じオブジェクト (部品番号 1000-02) を参照しますが、

[拠点] セルの値は異なります。ITable.getReferentIterator を使用して、検索結果の参照オブジェクト

で処理を繰り返すと、重複するオブジェクトがより明確になります。この例では、同じアイテムが 5 回繰り返

されます。

検索結果の使用
検索を実行すると、ITable オブジェクトが返されます。これは、java.Util.Collection を拡張したオブ

ジェクトです。この結果を使用するには、ITable と java.Util.Collection のメソッドを使用できます。

たとえば、次のコードは Collection.iterator() メソッドを使用する方法を示しています。

Iterator it = query.execute().iterator();
ITwoWayIterator インターフェースでは、next() および previous() メソッドを

使用して、いずれの方向にも行のリストを移動できます。
ITwoWayIterator it = query.execute().getTableIterator();
ITwoWayIterator it = query.execute().getReferentIterator();

ITwoWayIterator の使用方法は、76 ページの「テーブル行の繰り返し処理」を参照してください。

検索結果の並べ替え
Agile API の他のテーブルとは異なり、検索結果には、ITable.ISortBy インターフェースを使用して、並べ

替えた Iterator を作成することはできません。検索結果を並べ替えるには、SQL 構文を使用して、検索条件と

ともに ORDER BY ステートメントを指定します。詳細は、50 ページの「検索条件での SQL 構文の使用」を

参照してください。

SDK 開発者ガイド

62 ページ Agile Product Lifecycle Management

検索結果のデータ タイプ
検索結果テーブルの値は、その属性と同じデータ タイプになります。つまり、属性のデータ タイプが
Integer の場合は、検索結果テーブルの値も Integer になります。

重要 Agile 9.0 SDK では、検索結果テーブルのすべての値が文字列 (String) であったことに注意してくだ

さい。Agile 9.2 では、これらの値は整数 (Integer) になりました。

大量の検索結果の管理
Agile PLM には、[検索結果の最大表示数] という名前のシステム プリファレンスがあり、これによって検索

から返すことができる最大行数の制限を設定します。ただし、このプリファレンスは Agile SDK クライアント

には影響を与えません。Agile SDK クライアントから実行する検索では、常にすべての結果が返されます。

ユーザーは、返された ITable オブジェクトを使用して検索結果セット全体にアクセスできますが、Agile API
では、必要に応じて結果を部分的に取得するように内部的に管理されます。たとえば、特定の検索が 5000 件
のレコードを返すとします。ユーザーは、ITable インターフェースを使用して 5000 行のいずれかの行にア

クセスできます。5000 行の中で実際にメモリにロードされる行数について懸念する必要はありません。

注意 他の Agile PLM クライアント (Agile Web クライアントなど) から実行する検索では、[検索結果の

最大表示数] プリファレンスに指定された制限が厳守されます。

検索のパフォーマンス
検索を実行する際の応答時間は、Agile API プログラムの最大のボトルネックとなる可能性があります。パ

フォーマンスを改善するには、返される結果が最大でも数百件程度の検索条件を作成する必要があります。1000
件を超える結果を返す検索条件では、処理を終了するまでに数分の時間が必要です。このような検索条件では、

Agile アプリケーション サーバでの有益な処理手続きが浪費され、場合によっては、すべてのユーザーに対し

てサーバのパフォーマンスが低下する可能性があります。

使用箇所検索条件の作成
この章の前述のセクションでは、Agile PLM オブジェクト (アイテム、変更など) を検索する検索条件の作成

方法について説明しました。さらに、使用箇所検索条件も作成できます。使用箇所検索条件では、検索条件に

よってオブジェクトの BOM に表示されるアイテムを定義します。使用箇所検索条件を使用すると、特定の部

品を使用するアセンブリを検索できます。

使用箇所検索条件のインターフェースは、標準的なオブジェクト検索条件とほぼ同じです。検索クラスがアイ

テム クラスである場合は、オブジェクト検索条件を使用箇所検索条件に変更できます。

注意 使用箇所検索条件は、アイテム クラスに対してのみ定義されます。

使用箇所検索条件を定義するには、IQuery.setSearchType() メソッドを使用します。次の論理演算子 (使
用箇所検索の集合演算子とも呼ばれる) を使用すると、グループ化された検索条件同士の関係をより詳細に定

義できます。各検索条件に使用できるのは、1 つの論理演算子のみです。

 第 3 章

Agile Product Lifecycle Management 63 ページ

使用箇所検索の

集合演算子
説明

intersect 検索条件の 2 つの異なるグループから両方の結果セットに表示されるレコードを作成します。

minus 検索条件の 1 つ目のグループからの結果には存在し、2 つ目のグループからの結果にはない

レコードを作成します。

union 検索条件の 2 つのグループからの結果の組み合わせであるレコードを作成します。

注意 使用箇所検索の集合演算子は、他の論理演算子より優先度が高く設定されています。したがって、

使用箇所検索の集合演算子で結合された検索条件は、and または or で結合された条件より前に評価

されます。

例: 使用箇所検索条件
void btnFind_actionPerformed(ActionEvent e) {
 try {
 // Create the query
 IQuery wuquery =
 (IQuery)m_session.createObject(IQuery.OBJECT_TYPE,
ItemConstants.CLASS_ITEM_BASE_CLASS);
 // Set the where-used type

wuquery.setSearchType(QueryConstants.WHERE_USED_ONE_LEVEL_LATEST_
RELEASED);
 // Add query criteria
 wuquery.setCriteria(
 "[Title Block.Part Category] == 'Electrical'" +
 "and [Title Block.Description] contains 'Resistor'" +
 "union [Title Block.Description] contains '400'" +
 "and [Title Block.Product Line(s)] contains 'Taurus'");
 // Run the query
 ITable results = wuquery.execute();

 // Add code here to display the results
 }
 catch (APIException ex) {System.out.println(ex);}
}

検索条件のロード
検索条件をロードするには、2 つの方法があります。

 IAgileSession.getObject() メソッドを使用して、検索条件の完全パスを指定します。

 IFolder.getChild() メソッドを使用して、フォルダに相対する検索条件の場所を指定します。

次の例は、完全パスを指定して検索条件をロードする方法を示しています。

SDK 開発者ガイド

64 ページ Agile Product Lifecycle Management

例: IAgileSession.getObject() を使用した検索条件のロード
try {
 //Load the "Changes Submitted to Me" query
 IQuery query =
(IQuery)m_session.getObject(IQuery.OBJECT_TYPE,
 "/Workflow Routings/Changes Submitted
To Me");
} catch (APIException ex) {
 System.out.println(ex);
}

次の例は、フォルダ (ここではユーザーの [パブリック受信トレイ] フォルダ) に相対するパスを指定して検索

条件をロードする方法を示しています。

例: IFolder.getChild() を使用した検索条件のロード
try {
 //Get the Workflow Routings folder
 IFolder folder =
(IFolder)m_session.getObject(IFolder.OBJECT_TYPE,
"/Workflow Routings");
 //Load the "Changes Submitted to Me" query
 IQuery query = (IQuery)folder.getChild("Changes Submitted To Me");
} catch (APIException ex) {
 System.out.println(ex);
}

検索条件の削除
保存されている検索条件を削除するには、IQuery.delete() メソッドを使用します。

ユーザー セッションを閉じると、一時的な検索条件 (つまり、作成した後フォルダに保存していない検索条件)
は自動的に削除されます。長いセッションでは、一時的な検索条件の実行が完了した後に、delete() メソッ

ドを使用してその検索条件を明示的に削除できます。

例: 検索条件の削除
void deleteQuery(IQuery query) throws APIException {
 query.delete();
}

 第 3 章

Agile Product Lifecycle Management 65 ページ

簡単な検索条件の例
次の図は、簡単な検索条件を実行するダイアログ ボックスの例を示しています。
図 2: [Simple Query] ダイアログ ボックス

ユーザーは、[Simple Query] ダイアログ ボックスを使用して、検索するアイテム番号を指定します。[Find] ボ
タンをクリックすると、[Item Number] フィールドに指定したテキストが含まれたアイテムをすべて検索す

る検索条件が作成されます。次の例は、ユーザーが [Find] ボタンをクリックしたときに検索条件を実行する

コードを示しています。

例: 簡単な検索条件のコード
void btnFind_actionPerformed(ActionEvent e) {
 try {
 // Create the query
 IQuery query = (IQuery)m_session.createObject(IQuery.OBJECT_TYPE,
 ItemConstants.CLASS_ITEM_BASE_CLASS);
 // Turn off case-sensitivity
 query.setCaseSensitive(false);

 // Specify the criteria data
 query.setCriteria("[Title Block.Number] contains (%0)",
 new String[] { this.txtItemNum.getText().toString() });

 // Run the query
 ITable queryResults = query.execute();
 Iterator i = queryResults.iterator();

 // If there are no matching items, display an error message.
 if (!i.hasNext()) {
 JOptionPane.showMessageDialog(null, "No matching items.",
"Error",
 JOptionPane.ERROR_MESSAGE);

SDK 開発者ガイド

66 ページ Agile Product Lifecycle Management

 return;
 }

 // Define arrays for the table data
 final String[] names = {"Item Number", "Item Description"};
 final Object[][] data = new Object[resultCount][names.length];

 int j = 0;
 while (i.hasNext()) {
 IRow row = (IRow)i.next();
 data[j][0] =
row.getValue(ItemConstants.ATT_TITLE_BLOCK_NUMBER).toString();
 data[j][1] =
row.getValue(ItemConstants.ATT_TITLE_BLOCK_DESCRITPION).toString()
;
 j++;
 }
 catch (APIException ex) {
 System.out.println(ex);
 }

 // Create a table model
 TableModel newDataModel = new AbstractTableModel() {
 // Add code here to implement the table model
 };

 // Populate the table with data from the table model
 myTable.setModel(newDataModel);
}

Agile Product Lifecycle Management 67 ページ

第 4 章

テーブルの使用

扱うトピックは次のとおりです。

 テーブルについて ... 67
 テーブルの取得 ... 68
 新規およびマージされた [関係] テーブルへのアクセス ... 69
 テーブルのメタデータの取得 ... 71
 テーブル行の追加 ... 71
 複数のテーブル行の追加および更新.. 74
 テーブル行の繰り返し処理 ... 76
 テーブルの並べ替え ... 78
 テーブル行の削除 ... 79
 行に対する参照オブジェクトの取得.. 80
 行のステータス フラグの確認 ... 84
 [ページ 1]、[ユーザー定義 1] および [ユーザー定義 2] の使用 .. 85
 レッドライン ... 85
 レッドラインの変更の削除 ... 87
 レッドライン付きの行およびレッドライン付きのセルの識別 .. 88

テーブルについて
プログラムで Agile PLM オブジェクトを使用するときは必ず、オブジェクトのデータを取得して表示する必要

があります。データは、1 つ以上のテーブルに格納されています。Agile Web クライアントでは、これらのテー

ブルは、[製造元] タブや [BOM] タブなど、ウィンドウ内の個別のタブに相当します。

注意 場合によっては、Agile Web クライアントのタブに複数のテーブルが含まれることがあります。たと

えば、アイテムに対する [変更] タブには、[保留中の変更] テーブルと [変更履歴] テーブルが含ま

れます。タブとそのタブに含まれるテーブルは、様々な Agile 製品について常に同じであるとはか

ぎりません。また、これらは、各 Agile PLM データオブジェクトについても同じではありません。

たとえば、部品オブジェクト用のテーブルは、製造元オブジェクト用のテーブルとは異なります。68
ページの「テーブルの取得」を参照してください。

SDK 開発者ガイド

68 ページ Agile Product Lifecycle Management

次の図は、Agile Web クライアントのアイテムに対する [BOM] タブを示しています。
図 3: アイテムの [BOM] タブ

Agile PLM テーブル内のデータを使用するには、次の基本手順に従います。

1. オブジェクト (例: アイテムまたは設計変更) を作成または取得します。

2. テーブル (例: [BOM] テーブル) を取得します。

3. テーブル行で処理を繰り返して、行を取得します。

4. 選択した行に対して 1 つ以上の属性値を取得または設定します。

IFolder などの ITable は、java.util.Collection を拡張し、そのスーパーインターフェースで提供

されるすべてのメソッドをサポートします。したがって、Java の Collection と同様に ITable オブジェ

クトを使用できます。

インターフェース 継承メソッド

java.util.Collection add()、addAll()、clear()、contains()、containsAll()、equals()、
hashCode()、isEmpty()、iterator()、remove()、removeAll()、
retainAll()、size()、toArray()、toArray()

テーブルの取得
オブジェクトの作成または取得後は、IDataObject.getTable() メソッドを使用して特定の Agile PLM
テーブルを取得できます。IDataObject は、データのテーブルが含まれる Agile PLM オブジェクトを表す

汎用オブジェクトです。これは、IItem、IChange および IUser など、他のいくつかのオブジェクトのスー

パーインターフェースです。

 第 4 章

Agile Product Lifecycle Management 69 ページ

注意 PG&C の適合のサプライヤ デクラレーション (SDOC) テーブルを取得すると、

IDataObject.getTable() によって、この基本クラスに属する 14 個すべての SDOC テーブル

が取得されます。ただし、これらの中で 6 つのテーブル ([アイテム]、[製造元部品]、[部品グルー

プ]、[アイテム組成]、[製造元部品の組成]、[部品グループの組成]) は使用不可です。

テーブルは、各 Agile PLM データオブジェクトごとに異なります。変更オブジェクト用のテーブルは、アイテ

ム用のテーブルとは異なります。特定のデータオブジェクト用の各テーブルは、そのデータオブジェクトに対

する定数クラス内の定数で識別されます。アイテム定数は ItemConstants クラスに含まれ、変更定数は
ChangeConstants クラスに含まれ、同様に他の定数も対応するクラスに含まれます。

これらのテーブルの使用に関する情報は、次の Agile 製品管理マニュアルを参照してください。

 『Agile PLM ユーザー・ガイドおよびスタート・ガイド』

 『Agile PLM 管理者ガイド』

 『Agile PLM Product Governance & Compliance ユーザー・ガイド』

 『Agile PLM Product Portfolio Management ユーザー・ガイド』

新規およびマージされた [関係] テーブルへのアクセス
[関係.影響元]、[関係.影響先] および [関係.参照] テーブルは、[関係] という 1 つのテーブルにマージされま

した。さらに、これらのテーブルで使用されていた TABLE_REFERENCES、TABLE_RELATIONSHIPSAFFECTS
および TABLE_RELATIONSHIPSAFFECTEDBY 定数は、サポートされなくなりました。これらの定数が必要な

場合は、ルーチン内に再度記述する必要があります。

これらのテーブルの使用に関する情報は、次の Agile マニュアルを参照してください。

 これらのテーブルを Agile PLM 製品で使用する場合は、『Agile PLM ユーザー・ガイドおよびスタート・

ガイド』および『Agile PLM 管理者ガイド』を参照してください。

 これらのテーブルを Agile PPM 製品で使用する場合は、『Agile PLM Product Portfolio Management ユー

ザー・ガイド』を参照してください。

[関係] テーブルへのアクセス
このテーブルにアクセスするために、IRelationshipContainer インターフェースが実装されました。[関
係] テーブルが含まれるすべての Agile ビジネス オブジェクトで、このインターフェースが実装されています。

このテーブルにアクセスするには、IRelationshipContainer を使用するか、または
CommonConstants.TABLE_RELATIONSHIPS 定数を指定して IDataObject.getTable() を使用します。

IRelationshipContainer container = (IRelationshipContainer) object;
ITable relationship = container.getRelationship();

マージされたテーブルへのアクセス
以前のリリースの Agile PLM でこれらのテーブルを使用していて、提供されていた機能が必要な場合は、コー

ドを次のように変更してください。

SDK 開発者ガイド

70 ページ Agile Product Lifecycle Management

マージされた [関係.影響元] テーブルへのアクセス

 9.2.1.x 以前のリリースで使用されていたコード
ITable affectedBy =
object.getTable(ChangeConstants.TABLE_RELATIONSHIPSAFFECTEDBY);

 このリリースで推奨されるコード
ITable affectedBy =
object.getTable(CommonConstants.TABLE_RELATIONSHIPS)
.where("[2000007912] == 1", null);

マージされた [関係.影響先] テーブルへのアクセス

 9.2.1.x 以前のリリースで使用されていたコード

ITable affects =

object.getTable(ChangeConstants.TABLE_RELATIONSHIPSAFFECTS);

 このリリースで推奨されるコード

ITable affects =

object.getTable(CommonConstants.TABLE_RELATIONSHIPS)

.where("[2000007912] == 2", null);

マージされた [関係.参照] テーブルへのアクセス

 9.2.1.x 以前のリリースで使用されていたコード

ITable references =

object.getTable(ChangeConstants.TABLE_RELATIONSHIPS_REFERENCES);

 このリリースで推奨されるコード

ITable references =

object.getTable(CommonConstants.TABLE_RELATIONSHIPS)

.where("[2000007912] == 3", null);

重要 ITable.where() メソッドは、これらの 3 つのテーブルとともに配置される場合のみ動作が保証

されており、SDK で他のテーブルにアクセスするために使用する場合は、失敗する可能性がありま

す。

次の例は、アイテムに対する [BOM] テーブルを取得し、印刷する方法を示しています。

例: [BOM] テーブルの取得
//Load an item
private static IItem loadPart(String number) throws APIException {
 IItem item = (IItem)m_session.getObject(ItemConstants.CLASS_PART,
number);
 return item;
}
//Get the BOM table
private static void getBOM(IItem item) throws APIException {

 第 4 章

Agile Product Lifecycle Management 71 ページ

 IRow row;
 ITable table = item.getTable(ItemConstants.TABLE_BOM);
 Iterator it = table.iterator();
 while (it.hasNext()) {
 row = (IRow)it.next();
 //Add code here to do something with the BOM table
 }
}

読み取り専用テーブルの使用
いくつかの Agile PLM テーブルには、関連オブジェクトに関する履歴情報またはデータが格納されています。

これらのテーブルは読み取り専用であるため、変更することはできません。テーブルにアクセスするコードを

作成する場合は、ITable.isReadOnly() メソッドを使用して、テーブルが読み取り専用かどうかを確認し

ます。

テーブルのメタデータの取得
ITableDesc は、テーブルのメタデータを表すインターフェースです。メタデータとは、テーブルのプロパティ

を説明する基礎データです。ITableDesc と ITable の関連は、IAgileClass と IDataObject の関連

と同様です。特定のテーブルの属性、その ID、またはそのテーブル名を、データオブジェクトをロードせずに

識別する必要がある場合があります。次の例は、ITableDesc インターフェースを使用して、テーブルに対す

るすべての属性 (非表示の属性も含む) のコレクションを取得する方法を示しています。

例: テーブルのメタデータの取得
private IAttribute[] getBOMAttributes() throws APIException {
 IAgileClass cls = admin.getAgileClass(ItemConstants.CLASS_PART);
 ITableDesc td = cls.getTableDescriptor(ItemConstants.TABLE_BOM);
 IAttribute[] attrs = td.getAttributes();
 return attrs;
}

Agile API を使用してメタデータを使用する方法の詳細は、273 ページの第 17 章「管理タスクの実行」を参照

してください。

テーブル行の追加
テーブル行を作成するには、ITable.createRow(java.lang.Object) メソッドを使用します。このメソッ

ドでは、新規行が作成され、param パラメータで指定したデータで初期化されます。createRow の param パ
ラメータでは、次のデータを渡すことができます。

 行のセルに対する一連の属性と値

 [添付ファイル] テーブルに追加するファイルまたは URL

 テーブルに追加する Agile PLM オブジェクト (例: IItem)

テーブルに行を追加するとき、テーブルの最後に追加されるとはかぎりません。

SDK 開発者ガイド

72 ページ Agile Product Lifecycle Management

注意 空の行を作成する、パラメータなしのバージョンの createRow() メソッドもありますがお薦めでき

ません。このメソッドは、Agile PLM の将来的なリリースでサポートされなくなる予定のため、使

用しないでください。行を作成するときは、データで行を初期化する必要があります。

また、ITable.createRow() を使用して、テーブル行をバッチ形式で追加することもできます。74 ページ

の「複数のテーブル行の追加および更新」を参照してください。

[BOM] テーブルへのアイテムの追加
次の例は、ITable.createRow() メソッドを使用して、[BOM] テーブルにアイテムを追加する方法を示し

ています。

例: 行の追加および値の設定
private static void addToBOM(String number) throws APIException {
 IItem item = (IItem)m_session.getObject(ItemConstants.CLASS_PART,
number);
 ITable table = item.getTable(ItemConstants.TABLE_BOM);
 Map params = new HashMap();
 params.put(ItemConstants.ATT_BOM_ITEM_NUMBER, "1543-01");
 params.put(ItemConstants.ATT_BOM_QTY, "1");

item.setManufacturingSite(ManufacturingSiteConstants.COMMON_SITE);
 IRow row = table.createRow(params);
}

注意 [BOM] テーブルに拠点別の行を追加するには、ITable.createRow() を呼び出す前に、

IManufacturerSiteSelectable.setManufacturingSite() を使用して特定の拠点を選択

します。

[添付ファイル] テーブルへの添付ファイルの追加
次の例は、ITable.createRow(java.lang.Object) メソッドを使用して、[添付ファイル] テーブルに行

を追加する方法を示しています。このコードでは、テーブルに行が追加され、指定したファイルで初期化され

ます。行の追加後、[ファイルの説明] フィールドの値も設定されます。

例: [添付ファイル] テーブルへの行の追加
private static void addAttachmentRow(String number) throws
APIException {
 File file = new File("d:/MyDocuments/1543-01.dwg");
 IItem item = (IItem)m_session.getObject(ItemConstants.CLASS_PART,
number);
 ITable table = item.getTable(ItemConstants.TABLE_ATTACHMENTS);
 IRow row = table.createRow(file);
}

 第 4 章

Agile Product Lifecycle Management 73 ページ

[製造元] テーブルへの製造元部品の追加
次の例は、ITable.createRow(java.lang.Object) メソッドを使用して、アイテムの [製造元] テーブル

に行を追加する方法を示しています。このコードでは、テーブルに行が追加され、指定した
IManufacturerPart オブジェクトで初期化されます。

例: [製造元] テーブルへの行の追加
private static void addMfrPartRow(String number) throws APIException
{
 HashMap info = new HashMap();

info.put(ManufacturerPartConstants.ATT_GENERAL_INFO_MANUFACTURER_P
ART_NUMBER, "TPS100-256");

info.put(ManufacturerPartConstants.ATT_GENERAL_INFO_MANUFACTURER_N
AME, "TPS_POWER");
 IManufacturerPart mfrPart =
(IManufacturerPart)m_session.getObject(
 ManufacturerPartConstants.CLASS_MANUFACTURER_PART, info
);
 IItem item = (IItem)m_session.getObject(ItemConstants.CLASS_PART,
number);

item.setManufacturingSite(ManufacturingSiteConstants.COMMON_SITE);
 ITable table = item.getTable(ItemConstants.TABLE_MANUFACTURERS);
 IRow row = table.createRow(mfrPart);
}

注意 [製造元] テーブルに拠点別の行を追加するには、ITable.createRow() を呼び出す前に、

IManufacturerSiteSelectable.setManufacturingSite() を使用して特定の拠点を選択

します。

[対象アイテム] テーブルへのアイテムの追加
次の例は、ITable.createRow(java.lang.Object) メソッドを使用して、設計変更の [対象アイテム]
テーブルに行を追加する方法を示しています。このコードでは、テーブルに行が追加され、指定した IItem オ
ブジェクトで初期化されます。

例: [対象アイテム] テーブルへの行の追加
private static void addItemRow(String number) throws APIException {
 IItem item = (IItem)m_session.getObject(ItemConstants.CLASS_PART,
"P522-103");
 IChange change =
(IChange)m_session.getObject(ChangeConstants.CLASS_ECO, number);
 ITable table =
change.getTable(ChangeConstants.TABLE_AFFECTEDITEMS);
 IRow row = table.createRow(item);
}

SDK 開発者ガイド

74 ページ Agile Product Lifecycle Management

[BOM] テーブルも IItem オブジェクトを参照するため、前述の例と同様のコードを使用して、[BOM] テー

ブルに行を追加できます。

[スケジュール] テーブルへのタスクの追加
次の例は、ITable.createRow(java.lang.Object) メソッドを使用して、プログラムの [スケジュール]
テーブルに行を追加する方法を示しています。このコードでは、テーブルに行が追加され、指定した IProgram
オブジェクトで初期化されます。

例: [スケジュール] テーブルへの行の追加
private static void addTaskRow(IProgram program, IProgram task) throws
APIException {
 // Get the Schedule table of the program
 ITable table = program.getTable(ProgramConstants.TABLE_SCHEDULE);

 // Add the task to the schedule
 IRow row = table.createRow(task);
}

複数のテーブル行の追加および更新
ITable インターフェースには、1 回の API 呼び出しで複数のテーブル行を追加および更新するための便利

なメソッドが 2 つ用意されています。

 ITable.createRows()

 ITable.updateRows()

これらのメソッドでは、複数のテーブル行が 1 つの API 呼び出しにグループ化されるため、リモート プロ

シージャによる呼び出し (RPC) の回数が削減され、パフォーマンスが向上します。特に、Wide Area Network
(WAN) を通してサーバに接続している場合に有効です。ただし、これらのメソッドは、追加または更新対象の

各行で単純に処理を繰り返している Agile アプリケーション サーバでは、効率的なバッチ操作になりません。

重要 ITable.createRows() および ITable.updateRows() メソッドがサポートされるのは、アイ

テムの [BOM] テーブル、または変更の [対象アイテム] テーブルで複数の行を追加または更新する

場合のみです。

[BOM] テーブルへの複数アイテムの追加
次の例は、ITable.createRows() メソッドを使用して、[BOM] テーブルに複数のアイテムを追加する方法

を示しています。

例: 複数行の追加および値の設定
private static void createBOMRows(String partNumber) throws
APIException {
 IItem[] child = new IItem [3];
 IItem parent = null;
 ITable tab = null;

 第 4 章

Agile Product Lifecycle Management 75 ページ

 // Get the parent item
 parent = (IItem) m_session.getObject(IItem.OBJECT_TYPE,
partNumber);

 // Get the BOM table
 tab = parent.getTable(ItemConstants.TABLE_BOM);

 // Create child items
 child[0] = (IItem) m_session.createObject(ItemConstants.CLASS_PART,
partNumber + "-1");
 child[1] = (IItem) m_session.createObject(ItemConstants.CLASS_PART,
partNumber + "-2");
 child[2] = (IItem) m_session.createObject(ItemConstants.CLASS_PART,
partNumber + "-3");

 // Create a row array
 IRow[] rowArray = new IRow[3];

 // Add the items to the BOM
 rowArray = tab.createRows(new Object[]{child[0], child[1],
child[2]});
}

注意 [BOM] テーブルに拠点別の行を追加するには、ITable.createRow() を呼び出す前に、

IManufacturerSiteSelectable.setManufacturingSite() を使用して特定の拠点を選択

します。

複数の BOM 行の更新
複数の行を更新するには、ITable.updateRows() メソッドを使用します。このメソッドでは、複数の更新

操作が 1 つの呼び出しにまとめられます。テーブル内の複数の行に対して IRow.setValues() を呼び出す

かわりに、この API では、1 回のメソッド呼び出しでテーブル全体が更新されます。

updateRow() の rows パラメータを使用すると、キーとしての IRow インスタンスと値に対するインスタ

ンスを含む Map を渡すことができます。値の Map オブジェクトには、キーとしての属性 ID と値に対する

置換データが必要です。

例: 複数の BOM 行の更新
private static void updateBOMRows(String partNumber) throws
APIException {
 IItem parent = null;
 ITable tab = null;
 HashMap[] mapx = new HashMap[3];
 Map rows = new HashMap();
 IRow[] rowArray = new IRow[3];

 // Get the parent item
 parent = (IItem) m_session.getObject(IItem.OBJECT_TYPE,
partNumber);

 // Get the BOM table
 tab = parent.getTable(ItemConstants.TABLE_BOM);

SDK 開発者ガイド

76 ページ Agile Product Lifecycle Management

 // Create three items
 IItem child1 = (IItem)
m_session.createObject(ItemConstants.CLASS_PART, partNumber + "-1");
 IItem child2 = (IItem)
m_session.createObject(ItemConstants.CLASS_PART, partNumber + "-2");
 IItem child2 = (IItem)
m_session.createObject(ItemConstants.CLASS_PART, partNumber + "-3");

 // Add these items to BOM table
 rowArray = tab.createRows(new Object[]{child1, child2, child3});

 // New values for child[0]
 mapx[0] = new HashMap();
 mapx[0].put(ItemConstants.ATT_BOM_FIND_NUM, new Integer(1));
 mapx[0].put(ItemConstants.ATT_BOM_QTY, new Integer(3));
 mapx[0].put(ItemConstants.ATT_BOM_REF_DES, "A1-A3");
 rows.put(rowArray[0], mapx[0]);

 // New values for child[1]
 mapx[1] = new HashMap();
 mapx[1].put(ItemConstants.ATT_BOM_FIND_NUM, new Integer(2));
 mapx[1].put(ItemConstants.ATT_BOM_QTY, new Integer(3));
 mapx[1].put(ItemConstants.ATT_BOM_REF_DES, "B1-B3");
 rows.put(rowArray[1], mapx[1]);

 // new values for child[2]
 mapx[2] = new HashMap();
 String strA = "BOM-Notes" + System.currentTimeMillis();
 mapx[2].put(ItemConstants.ATT_BOM_BOM_NOTES, strA);
 mapx[2].put(ItemConstants.ATT_BOM_FIND_NUM, new Integer(3));
 rows.put(rowArray[2], mapx[2]);

 // Update the BOM table rows
 tab.updateRows(rows);
}

テーブル行の繰り返し処理
Agile API を使用して [BOM] テーブルなどのテーブルを取得するとき、たいていの場合は、テーブルに含まれ

ている行を参照する必要があります。個々の行にアクセスするには、最初に、テーブルに対する Iterator を取

得する必要があります。次に、各行で処理を繰り返して、セルの値を設定できます。

Agile API では、テーブル内の行のランダム アクセスはサポートされていません。したがって、インデックス

番号で特定の行を取得して更新することはできません。行を追加または削除すると、行全体が再度並べ替えら

れ、既存のテーブル Iterator は無効になります。

 第 4 章

Agile Product Lifecycle Management 77 ページ

テーブル内のデータを参照するには、次のいずれかのメソッドを使用して、テーブルに対する Iterator を作成

します。

 ITable.iterator() - Iterator オブジェクトを返します。このオブジェクトを使用すると、テーブル

を最初の行から最後の行まで移動できます。

 ITable.getTableIterator() - ITwoWayIterator オブジェクトを返します。このオブジェクトを使

用すると、テーブル行を前後に移動できます。また、ITwoWayIterator を使用して、任意の数の行をス

キップすることもできます。ITwoWayIterator は、プログラムでテーブル行をユーザー インターフェース

に表示する場合、Iterator より推奨されます。

 ITable.getTableIterator(ITable.ISortBy[]) - 並べ替えられた ITwoWayIterator オブジェ

クトを返します。

 ITable.getReferentIterator() - テーブルで参照されるオブジェクトに対する
ITwoWayIterator オブジェクトを返します。

テーブルに対する Iterator を使用する場合、テーブル内の行の総数を認識している必要はありません。かわり

に、一度に 1 行ずつ使用します。ITable インターフェースには、テーブル内の行の総数を計算する size()
メソッドが用意されていますが、このメソッドは、パフォーマンスの点でリソース拡張操作と考えられるため、

大規模なテーブルの場合 (特にテーブルの参照にすでに Iterator を使用している場合) はお薦めしません。

次の例は、テーブルに対する Iterator を取得し、ITwoWayIterator メソッドを使用してテーブル行を前後に

移動する方法を示しています。

例: テーブル行の繰り返し処理
try {
 // Get an item
 IItem item = (IItem)m_session.getObject(ItemConstants.CLASS_PART,
"1000-02");
 // Get the BOM table
 ITable bom = item.getTable(ItemConstants.TABLE_BOM);
 ITwoWayIterator i = bom.getTableIterator();
 // Traverse forwards through the table
 while (i.hasNext()) {
 IRow row = (IRow)i.next();
 // Add code here to do something with the row
 }
 // Traverse backwards through the table
 while (i.hasPrevious()) {
 IRow row = (IRow)i.previous();
 // Add code here to do something with the row
 }
} catch (APIException ex) {
 System.out.println(ex);
}

ITwoWayIterator オブジェクトを使用すると、ユーザー インターフェースで複数のページにテーブル行を

表示できます。この方法は、おそらく前述の例で示した ITwoWayIterator の使用方法より実用的です。た

とえば、数百の BOM アイテムを含むスクロール ページを 1 つ表示するかわりに、1 ページに BOM アイテ

ムを 20 個ずつ表示する複数のページにテーブルを分割できます。ページ間を移動するために、プログラムで、

次の図に示されているようなナビゲーション コントロールを提供する必要があります。
図 4: Agile Web クライアントのナビゲーション コントロール

SDK 開発者ガイド

78 ページ Agile Product Lifecycle Management

複数ページのテーブルを含む検索結果内のオブジェクトの更新
200 を超える結果を含む検索結果テーブル内のオブジェクトを getReferentIterator で更新すると、検索

で返されたすべてのオブジェクトが更新されるとはかぎりません。たとえば、あるフィールド内の値と一致す

る検索を実行した後、getReferentIterator を使用して、結果で処理を繰り返している間に同じ値を編集

するとします。検索は、最初のページは問題なく完了します。しかし、残りのページを検索したとき、一部の

テーブル行は更新されません。この制限を解決する方法がいくつかあります。次にその例を示します。

多数の検索結果の繰り返し時にすべてのテーブル行を更新する手順は、次のとおりです。

1. この検索のテーブル ページ サイズを増やして、結果が 1 ページに収まるようにします。

2. 検索を複数回実行し、検索結果が空になるまで結果を更新し続けます。

3. 更新対象の同じフィールドで検索しないようにします。

テーブルの並べ替え
テーブル内の行を特定の属性で並べ替えるには、getTableIterator(ITable.ISortBy[]) を使用して、

並べ替えられた Iterator を返します。getTableIterator() の ISortBy パラメータは、ITable.ISortBy
オブジェクトの配列です。ISortBy オブジェクトを作成するには、createSortBy(IAttribute,
ITable.ISortBy.Order) を使用します。createSortBy() の order パラメータは、

ITable.ISortBy.Order 定数の ASCENDING または DESCENDING のいずれかです。

注意 Agile API では、1 つの属性でのみテーブルを並べ替えることができます。したがって、

getTableIterator() の ISortBy パラメータに指定する ISortBy 配列に含まれるのは、1 つ
の ISortBy オブジェクトのみであることが必要です。

次の例では、[BOM] テーブルを [BOM | アイテム番号] 属性で並べ替えています。

例: テーブル Iterator の並べ替え
try {
 // Get an item
 IItem item = (IItem)m_session.getObject(ItemConstants.CLASS_PART,
"1000-02");

 // Get the BOM table
 ITable bom = item.getTable(ItemConstants.TABLE_BOM);

 // Get the BOM | Item Number attribute
 IAgileClass cls = item.getAgileClass();
 IAttribute attr =
cls.getAttribute(ItemConstants.ATT_BOM_ITEM_NUMBER);

 // Specify the sort attribute for the table iterator
 ITable.ISortBy sortByNumber = bom.createSortBy(attr,
ITable.ISortBy.Order.ASCENDING);

 // Create a sorted table iterator
 ITwoWayIterator i = bom.getTableIterator(new ITable.ISortBy[]
{sortByNumber});

 // Traverse forwards through the table
 while (i.hasNext()) {
 IRow row = (IRow)i.next();

 第 4 章

Agile Product Lifecycle Management 79 ページ

 // Add code here to do something with the row
 }
} catch (APIException ex) {
 System.out.println(ex);
}

次の Product Sourcing および Program Execution の各オブジェクトは、多少異なる方法でテーブルにロードさ

れるため、getTableIterator(ITable.ISortBy[]) メソッドを使用して並べ替えることができません。

これらのオブジェクトのテーブルについては、iterator() または getTableIterator() メソッドを使用

して、並べ替えられていない Iterator を作成します。

 IDiscussion

 IPrice

 IProgram

 IProject

 IRequestForQuote

 ISupplier

 ISupplierResponse

ITable.ISortBy インターフェースは、検索結果テーブルに対してはサポートされません。検索結果を並べ

替えるには、SQL 構文を使用して、検索条件とともに ORDER BY ステートメントを指定します。詳細は、50
ページの「検索条件での SQL 構文の使用」を参照してください。

テーブル行の削除
テーブルから行を削除するには、ITable.removeRow() メソッドを使用します。このメソッドは、IRow オ
ブジェクトという 1 つのパラメータを使用します。テーブル行で処理を繰り返して、行を取得できます。

テーブルが読み取り専用の場合、テーブルから行を削除することはできません。詳細は、71 ページの「読み取り

専用テーブルの使用」を参照してください。アイテムのリリース済みリビジョンを使用している場合は、新しい

リビジョンに対する設計変更を作成するまで、そのアイテムのテーブルから行を削除することはできません。

例: テーブル行の削除
try {
 // get an item
 IItem item = (IItem)m_session.getObject(ItemConstants.CLASS_PART,
"1000-02");
 // get the BOM table
 ITable bom = item.getTable(ItemConstants.TABLE_BOM);
 ITwoWayIterator i = bom.getTableIterator();

 // find the bom component 6642-01 and remove it
 while (i.hasNext()) {
 IRow row = (IRow)i.next();
 String bomitem =
(String)row.getValue(ItemConstants.ATT_BOM_ITEM_NUMBER);
 if (bomitem.equals("6642-01")) {
 bom.removeRow(row);
 break;
 }

SDK 開発者ガイド

80 ページ Agile Product Lifecycle Management

 }
} catch (APIException ex) {
 System.out.println(ex);
}

ITable には Collection インターフェースが実装されているため、Collection メソッドを使用してテー

ブル行を削除できます。テーブル内のすべての行を削除するには、Collection.clear() を使用します。

例: テーブルのクリア
public void clearAML(IItem item) throws APIException {
 // Get the Manufacturers table
 ITable aml = item.getTable(ItemConstants.TABLE_MANUFACTURERS);

 // Clear the table
 aml.clear();

}

行に対する参照オブジェクトの取得
いくつかの Agile PLM テーブルには、他の Agile PLM オブジェクトを参照する情報の行が格納されています。

たとえば、[BOM] テーブルには、部品構成表 (BOM) に含まれているすべてのアイテムがリストされます。

[BOM] テーブルの各行が各アイテムを表します。[BOM] テーブルの行を使用している間、プログラムによっ

て、ユーザーが参照アイテムを開いて、そのデータを表示または変更できるようにします。

次の表に、他の Agile PLM オブジェクトを参照する Agile PLM テーブルを示します。すべての Agile PLM オ
ブジェクトが番号 (例: アイテム番号、変更番号または製造元部品番号) で参照されます。

オブジェクト テーブル 参照オブジェクト

IChange 対象アイテム

対象価格

添付ファイル

関係

IItem

IPrice

IAttachmentFile

複数のオブジェクト タイプ

ICommodity 添付ファイル

組成

部品

含有基準

サブスタンス

サプライヤ

IAttachmentFile

IDeclaration

IItem

ISpecification

ISubstance

ISupplier

 第 4 章

Agile Product Lifecycle Management 81 ページ

オブジェクト テーブル 参照オブジェクト

ICustomer 添付ファイル

関連 PSR

IAttachmentFile

IServiceRequest

IDeclaration 添付ファイル

アイテム組成

アイテム

製造元部品の組成

製造元部品

部品グループの組成

部品グループ

関係

含有基準

IAttachmentFile

ISubstance

IItem

ISubstance

IManufacturerPart

ISubstance

ICommodity

複数のオブジェクト タイプ

ISpecification

IDiscussion 添付ファイル

使用箇所

IAttachmentFile

サポートされていません。

IFileFolder (ファイル)

関係

使用箇所

IAttachmentFile

複数のオブジェクト タイプ

複数のオブジェクト タイプ

IItem 添付ファイル

BOM

変更履歴

組成

製造元

保留中変更使用箇所

保留中の変更

価格

品質

BOM のレッドライン

製造元のレッドライン

拠点

含有基準

サブスタンス

使用箇所

IAttachmentFile

IItem

IChange

IDeclaration

IManufacturerPart

IItem

IChange

IPrice

IServiceRequest または
IQualityChangeRequest

IItem

IManufacturerPart

IManufacturingSite

ISpecification

ISubstance

IItem

SDK 開発者ガイド

82 ページ Agile Product Lifecycle Management

オブジェクト テーブル 参照オブジェクト

IManufacturerPart 添付ファイル

組成

価格

含有基準

サブスタンス

サプライヤ

使用箇所

IAttachmentFile

IDeclaration

IPrice

ISpecification

ISubstance

ISupplier

IItem

IManufacturer 添付ファイル

使用箇所

IAttachmentFile

IManufacturerPart

IManufacturingSite 添付ファイル IAttachmentFile

IPackage 添付ファイル IAttachmentFile

IPrice 添付ファイル

変更履歴

保留中の変更

IAttachmentFile

IChange

IChange

IProgram 添付ファイル

成果物 - 影響元

成果物 - 影響先

依存関係 - 依存対象

依存関係 - 必須対象

ディスカッション

リンク

スケジュール

チーム

IAttachmentFile

複数のオブジェクト タイプ

複数のオブジェクト タイプ

IProgram

IProgram

IDiscussion

複数のオブジェクト タイプ

IProgram

IUser および IUserGroup

IProject 添付ファイル

BOM

アイテムの変更

アイテム

製造元アイテム

保留中の変更

回答

RFQ

IAttachmentFile

IItem

IChange

IItem

IManufacturerPart

IChange

ISupplierResponse

IRequestForQuote

 第 4 章

Agile Product Lifecycle Management 83 ページ

オブジェクト テーブル 参照オブジェクト

IQualityChangeRe
quest

対象アイテム

添付ファイル

PSR アイテム

関係

IItem

IAttachmentFile

IItem

複数のオブジェクト タイプ

IRequestForQuote 添付ファイル IAttachmentFile

IServiceRequest 対象アイテム

添付ファイル

関連 PSR

関係

IItem

IAttachmentFile

IServiceRequest

複数のオブジェクト タイプ

ISpecification 添付ファイル

サブスタンス

IAttachmentFile

ISubstance

ISubstance 添付ファイル

組成

使用箇所

IAttachmentFile

ISubstance

複数のオブジェクト タイプ

ISupplierResponse 添付ファイル IAttachmentFile

ISupplier 添付ファイル

製造元

PSR

IAttachmentFile

IManufacturer

IServiceRequest

ITransferOrder 添付ファイル

選択したオブジェクト

IAttachmentFile

複数のオブジェクト タイプ

IUser 添付ファイル

確認通知

ユーザー グループ

IAttachmentFile

複数のオブジェクト タイプ

IUserGroup

IUserGroup 添付ファイル

ユーザー

IAttachmentFile

IUser

次の例は、アイテムに対する [保留中の変更] テーブルから参照 IChange オブジェクトを取得する方法を示

しています。

例: 参照変更オブジェクトの取得
void getReferencedChangeObject(ITable changesTable) throws
APIException {
 Iterator i = changesTable.iterator();
 while (i.hasNext()) {
 IRow row = (IRow)i.next();
 IChange changeObj = (IChange)row.getReferent();
 if (changeObj != null) {

SDK 開発者ガイド

84 ページ Agile Product Lifecycle Management

 //Add code here to do something with the IChange object
 }
 }
}

次の表は、ITable.getReferentIterator() メソッドを使用してテーブルの参照オブジェクトで処理を繰

り返すことによって、前述の例のコードを単純化する方法を示しています。

例: 参照オブジェクトでの繰り返し処理
void iterateReferencedChangeObjects(ITable changesTable) throws
APIException {
 Iterator i = changesTable.getReferentIterator();
 while (i.hasNext()) {
 IChange changeObj = (IChange)i.next();
 if (changeObj != null) {
 //Add code here to do something with the IChange object
 }
 }
}

行のステータス フラグの確認
特定のステータス条件と一致する場合にのみオブジェクトでアクションを実行する必要がある場合があります。

たとえば、選択したオブジェクトがリリース済みの設計変更の場合は、ユーザーがそのオブジェクトを変更で

きないようにする場合があります。オブジェクトのステータスを確認するには、IRow.isFlagSet() メソッ

ドを使用します。isFlagSet() メソッドは、ブール値 true または false を返します。

ステータス フラグ定数は、次のクラスで定義されます。

 CommonConstants - Agile PLM オブジェクトに共通のステータス フラグ定数が含まれます。

 ChangeConstants - IChange オブジェクトのステータス フラグ定数が含まれます。

 ItemConstants - IItem オブジェクトのステータス フラグ定数が含まれます。

次の例は、isFlagSet() メソッドを使用して、アイテムに添付ファイルがあるかどうかを判断する方法を示

しています。

例: オブジェクトのステータス フラグの確認
private static void checkAttachments(IRow row) throws APIException {
 try {
 boolean b;
 b = row.isFlagSet(CommonConstants.FLAG_HAS_ATTACHMENTS);
 if (!b) {
 JOptionPane.showMessageDialog(null, "The specified row does not
 have attached files.", "Error", JOptionPane.ERROR_MESSAGE);
 }
 } catch (Exception ex) {}
}

 第 4 章

Agile Product Lifecycle Management 85 ページ

[ページ 1]、[ユーザー定義 1] および [ユーザー定義 2]
の使用
[ページ 1] ([タイトル ブロック]、[カバー ページ]、[一般情報] の各ページ)、[ユーザー定義 1] および [ユー

ザー定義 2] には、単一行のデータが含まれているため、形式はテーブルではありません。他のすべての表に

は、複数の行が含まれています。したがって、[ページ 1]、[ユーザー定義 1] および [ユーザー定義 2] のデー

タには直接アクセスできます。これらのページに対する値を取得および設定するために、テーブルを取得して

行を選択する必要はありません。かわりに、指定したセルを取得し、getValue() および setValue() メソッ

ドを使用して、データを表示または修正します。

プログラム全体で一貫した方法でデータ セルにアクセスする場合は、[ページ 1]、[ユーザー定義 1] および
[ユーザー定義 2] の各テーブルを使用して値を取得および設定することも可能です。次の例は、アイテムに対

する [ユーザー定義 1] の複数フィールドの値を編集する 2 つの方法を示しています。最初の方法では、[ユー

ザー定義 1] テーブルを取得し、次に複数のセルの値を設定します。2 番目の方法では、

IDataObject.getCell() メソッドを呼び出し、[ユーザー定義 1] の各セルに直接アクセスします。どちら

の方法も有効ですが、2 番目の方法のほうがコードの行数が少ないことがわかります。

例: [ユーザー定義 1] のセルの編集
// Edit Page Two cells by first getting the Page Two table
private static void editPageTwoCells(IItem item) throws Exception {
 ICell cell = null;
 DateFormat df = new SimpleDateFormat("MM/dd/yy");
 ITable table = item.getTable(ItemConstants.TABLE_PAGETWO);
 Iterator it = table.iterator();
 IRow row = (IRow)it.next();
 cell = row.getCell(ItemConstants.ATT_PAGE_TWO_TEXT01);
 cell.setValue("Aluminum clips");
 cell = row.getCell(ItemConstants.ATT_PAGE_TWO_MONEY01);
 cell.setValue(new Money(new Double(9.95), "USD"));
 cell = row.getCell(ItemConstants.ATT_PAGE_TWO_DATE01);
 cell.setValue(df.parse("12/01/03"));
}
// Edit Page Two cells by calling IDataObject.getCell()
private static void editPageTwoCells2(IItem item) throws Exception {
 ICell cell = null;
 DateFormat df = new SimpleDateFormat("MM/dd/yy");
 cell = item.getCell(ItemConstants.ATT_PAGE_TWO_TEXT01);
 cell.setValue("Aluminum clips");
 cell = item.getCell(ItemConstants.ATT_PAGE_TWO_MONEY01);
 cell.setValue(new Money(new Double(9.95), "USD"));
 cell = item.getCell(ItemConstants.ATT_PAGE_TWO_DATE01);
 cell.setValue(df.parse("12/01/03"));
}

レッドライン
リリース済みのアイテムまたは価格契約に対する変更を発行する場合、Agile API では、変更によって影響を受

ける特定のテーブルをレッドラインできます。Agile PLM クライアントでは、レッドライン テーブルによって、

以前のリビジョンから修正されている値が視覚的に識別されます。赤色の下線が引かれたテキスト (「レッド

ライン」という用語はこれに由来します) は、追加された値を示し、赤色の取り消し線のテキストは、削除さ

れた値を示します。変更を承認する担当者は、レッドライン データをレビューできます。

SDK 開発者ガイド

86 ページ Agile Product Lifecycle Management

Agile PLM システムでは、次のレッドライン テーブルが提供されています。

 BOM のレッドライン

 製造元のレッドライン (AML)

 価格ラインのレッドライン

[BOM]、[製造元] または [価格ライン] テーブルをレッドラインする手順は、次のとおりです。

1. アイテムまたは価格オブジェクトのリリース済みリビジョンを取得します。

2. ECO、MCO、SCO または PCO など、新しい変更を作成します。

 ECO では、アイテムの [BOM] テーブルまたは [製造元] テーブルを変更できます。

 MCO では、アイテムの [製造元] テーブルを変更できます。

 SCO では、アイテムの拠点別の [BOM] テーブルまたは [製造元] テーブルを変更できます。

 PCO では、価格の [価格ライン] テーブルを変更できます。

3. アイテムまたは価格を変更の [対象アイテム] または [対象価格] テーブルに追加します。

4. ECO および PCO の場合は、変更に対する新しいリビジョンを指定します。SCO および MCO は、アイ

テムのリビジョンに影響を与えません。

5. レッドライン テーブル ([BOM のレッドライン]、[製造元のレッドライン] (AML) または [価格ラインの

レッドライン] など) を変更します。

次の例は、アイテムの [製造元] テーブル (AML) をレッドラインするために必要な手順を示しています。

例: アイテムの [製造元] テーブルのレッドライン
private void redlineAML() throws APIException {
 IAttribute attrPrefStat = null;
 IAgileList listvalues = null;
 Map params = new HashMap();

 // Get a released item
 IItem item = (IItem)m_session.getObject("Part", "1000-02");

 // Get the Preferrred status value
 IAgileClass cls = item.getAgileClass();
 attrPrefStat =
cls.getAttribute(ItemConstants.ATT_MANUFACTURERS_PREFERRED_STATUS)
;
 listvalues = attrPrefStat.getAvailableValues();
 listvalues.setSelection(new Object[] { "Preferred" });

 // Create an MCO
 IChange change =
(IChange)m_session.createObject(ChangeConstants.CLASS_MCO,
"M000024");

 // Set the workflow ID of the MCO
 change.setWorkflow(change.getWorkflows()[0]);

 // Get the Affected Items table
 ITable affectedItems =
change.getTable(ChangeConstants.TABLE_AFFECTEDITEMS);

 第 4 章

Agile Product Lifecycle Management 87 ページ

 // Add a new row to the Affected Items table
 IRow affectedItemRow = affectedItems.createRow(item);

 // Get the Redline Manufacturers table
 ITable redlineAML =
item.getTable(ItemConstants.TABLE_REDLINEMANUFACTURERS);

 // Add a manufacturer part to the table
 params.put(ItemConstants.ATT_MANUFACTURERS_MFR_NAME, "AMD");

params.put(ItemConstants.ATT_MANUFACTURERS_MFR_PART_NUMBER,
"1234-009");

params.put(ItemConstants.ATT_MANUFACTURERS_PREFERRED_STATUS,
listvalues);
 redlineAML.createRow(params);
 // Add another manufacturer part to the table
 params.clear();
 params.put(ItemConstants.ATT_MANUFACTURERS_MFR_NAME, "DIGITAL
POWER");

params.put(ItemConstants.ATT_MANUFACTURERS_MFR_PART_NUMBER,
"355355");

params.put(ItemConstants.ATT_MANUFACTURERS_PREFERRED_STATUS,
listvalues);
 redlineAML.createRow(params);
}

レッドラインの変更の削除
[BOM] などのテーブルにレッドラインの変更を加えた場合は、行に対する変更を取り消して、元の状態に復元

する必要がある場合があります。IRedlinedRow.undoRedline() メソッドを使用すると、行に対するレッ

ドラインの変更を取り消すことができます。

行に対するレッドラインを取り消すと、変更されたセルが元の値に復元されます。レッドライン付きの行は、

追加された行または削除された行の場合もあります。追加された行に対するレッドラインを取り消すと、行全

体がそのリビジョンから削除されます。削除された行に対するレッドラインを取り消すと、行全体が復元され

ます。

例: [BOM] テーブルからのレッドラインの変更の削除
private static undoBOMRedlines(IItem item, String rev) throws
APIException {
 item.setRevision(rev);
 ITable redlineBOM = item.getTable(ItemConstants.TABLE_REDLINEBOM);
 Iterator it = redlineBOM.iterator();
 while (it.hasNext()) {
 IRedlinedRow row = (IRedlinedRow)it.next();
 row.undoRedline();
 }
}

SDK 開発者ガイド

88 ページ Agile Product Lifecycle Management

レッドライン付きの行およびレッドライン付きのセル

の識別
IRedlined インターフェースは、レッドライン付きの行およびレッドライン付きのセルを識別するように設

計されています。これは、レッドライン テーブルでのみサポートされます。このインターフェースは、

isRedlineModified() メソッドとともに動作し、オブジェクトがレッドラインされているかどうかを示し

ます。IRow および ICell オブジェクトを次のようにタイプキャストします。

 IRow は、行がレッドライン変更されたかどうかを示します。

 ICell は、セルがレッドライン変更されたかどうかを示します。

例: レッドライン付きの行およびセルの識別
public interface IRedlined {
public boolean isRedlineModified()
throws APIException;
}

IRedlined.isRedlineModified() は、ブール値を返します。返される値は、セルまたは行がレッドライ

ンされている場合は TRUE です。

注意 IRedlined.isRedlineModified() は、レッドラインの追加された行またはレッドラインの削

除された行のセルすべてについて、FALSE の値を返します。

ICell.getOldValue の使用
IRedlined インターフェースの実装により、ICell.getOldValue() メソッドは、レッドラインの追加さ

れた行またはレッドラインの削除された行に対して定義されなくなりました。ICell.getOldValue() メ
ソッドの結果が有効であるのは、FLAG_IS_REDLINE_MODIFIED が行に対して true の場合のみです。

注意 このメソッドは、レッドラインの追加された行またはレッドラインの削除された行に対して呼び出

さないでください。

Agile Product Lifecycle Management 89 ページ

第 5 章

データ セルの使用

扱うトピックは次のとおりです。

 データ セルについて ... 89
 データ タイプ ... 89
 ディスカバリ権限の確認 ... 90
 セルが読み取り専用かどうかの確認.. 91
 値の取得 ... 91
 値の設定 ... 93
 リスト値の取得および設定 ... 94
 参照指示セルの使用 ... 98

データ セルについて
ICell オブジェクトは、プログラムでロードまたは作成した Agile PLM オブジェクトに対するデータ フィー

ルドです。セルは、Agile Web クライアント内のタブのフィールド、またはテーブルの単一のセルに対応しま

す。ICell オブジェクトは、セルの現在の状態を説明する複数のプロパティで構成されます。Agile API プロ

グラムで実行するデータ操作のほとんどに、セルの値またはプロパティに対する変更が含まれます。

データ タイプ
getValue() および setValue() メソッドに関連付けられるオブジェクトのタイプは、セルのデータ タイ

プによって異なります。次の表に、getValue() および setValue() メソッドに対するセル値のオブジェク

ト タイプを示します。

DataTypeConstants getValue および setValue に関連付けられるオブジェクト タイプ

TYPE_DATE Date

TYPE_DOUBLE Double

TYPE_INTEGER Integer

TYPE_MONEY Money

TYPE_MULTILIST IAgileList

TYPE_OBJECT Object

TYPE_SINGLELIST IAgileList

TYPE_STRING String

TYPE_TABLE Table

SDK 開発者ガイド

90 ページ Agile Product Lifecycle Management

注意 TYPE_WORKFLOW などの他の Agile PLM データ タイプがありますが、これらはセル値には使用さ

れません。

ディスカバリ権限の確認
ディスカバリ権限は、最も基本的な Agile PLM 権限です。この権限を使用すると、ユーザーはオブジェクトの存

在を把握できます。オブジェクトに対するディスカバリ権限がない場合、そのオブジェクトは表示できません。

たとえば、ユーザーに製造元部品に対するディスカバリ権限がない場合は、プログラムで、ユーザーに対して
[製造元] テーブルのいくつかのセルを表示することはできません。次の例に示すように、

ICell.hasDiscoveryPrivilege() を使用すると、ユーザーに特定のセルに対するディスカバリ権限があ

るかどうかを確認できます。

注意 ディスカバリ権限のないセルの値を取得すると、Agile API よってヌル文字列 ("") が返されます。

この動作は、他の Agile PLM クライアントと異なります。たとえば、Agile Web クライアントでは、

参照する権限のないフィールドに対しては、値 [権限なし] が表示されます。

例: ディスカバリ権限の確認
Object v;
Integer attrID = ItemConstants.ATT_MANUFACTURERS_MFR_NAME;

try {
 // Get the Manufacturers table
 ITable aml = item.getTable(ItemConstants.TABLE_MANUFACTURERS);

 // Get the first row of the Manufacturers table
 IIterator iterator = aml.getTableIterator();
 if (iterator.hasNext()) {
 IRow amlRow = (IRow)iterator.next();
 }

 // Get the value for the Mfr. Name field.
 // If the user does not have Discovery privilege, the value is a null
String.
 v = amlRow.getValue(attrID);
 txtMfrName.setText(v.toString());

 // If the user does not have the Discovery privilege
 // for the cell, make its text color red.
 ICell cell = amlRow.getCell(attrID);
 if (cell.hasDiscoveryPrivilege()==false) {
 txtMfrName.setForeground(Color.red);
 }
} catch (APIException ex) {
 System.out.println(ex);
}

 第 5 章

Agile Product Lifecycle Management 91 ページ

セルが読み取り専用かどうかの確認
役割と権限 (Agile PLM システムの管理者によりユーザーに割り当てられる) によって、Agile PLM オブジェ

クトとその基礎データに対するユーザーのアクセス範囲が決まります。たとえば、読み取り専用権限のみのユー

ザーは、Agile PLM オブジェクトを表示できますが、変更はできません。

プログラムでセルの値を表示する場合は必ず、現在のユーザーに対してセルが読み取り専用かどうかを確認す

る必要があります。読み取り専用の場合は、ユーザーが値を編集できないようにする必要があります。ユーザー

が読み取り専用のセルに値を設定しようとすると、Agile API で例外が発生します。

例: フィールドが読み取り専用かどうかの確認
// ID for "Title Block.Description"
Integer attrID = ItemConstants.ATT_TITLE_BLOCK_DESCRIPTION;

// Set the value for the Description text field.
try {
 txtDescription.setText(item.getValue(attrID).toString());
 // Get the ICell object for "Title Block.Description"
 ICell cell = item.getCell(attrID);

 // If the cell is read-only, disable it
 if (cell.isReadOnly()) {
 txtDescription.setEnabled(false);
 txtDescription.setBackground(Color.lightGray);
 }
 else {
 txtDescription.setEnabled(true);
 txtDescription.setBackground(Color.white);
 }
} catch (APIException ex) {
 System.out.println(ex);
}

値の取得
次の表に、セルの値を取得するための Agile API メソッドを示します。

メソッド 説明

ICell.getValue() セルの値を取得します。

IRow.getValue() 行内に含まれているセルの値を取得します。

IRow.getValues() 行内に含まれているすべてのセルの値を取得します。

IDataObject.getValue() [ページ 1]、[ユーザー定義 1] または [ユーザー定義 2]
のセルの値を取得します。

セルの値の使用を開始するには、セルを選択する必要があります。Agile PLM のセルは、単に属性のインスタ

ンスです。セルの属性を指定するには、属性の ID 定数、その完全修飾名 (例: [タイトル ブロック.説明]) ま
たは IAttribute オブジェクトのいずれかを指定します。属性の参照に関する詳細は、284 ページの「属性

の参照」を参照してください。

次の例は、属性 ID 定数でセルを参照する方法を示しています。

SDK 開発者ガイド

92 ページ Agile Product Lifecycle Management

例: ID によるセルの指定
Object v;
Integer attrID = ItemConstants.ATT_TITLE_BLOCK_NUMBER;
try {
 v = item.getValue(attrID);
} catch (APIException ex) {
 System.out.println(ex);
}

次の例は、完全修飾属性名でセルを参照する方法を示しています。

例: 完全修飾名によるフィールドの指定
Object v;
String attrName = "Title Block.Number";
try {
 v = item.getValue(attrName);
} catch (APIException ex) {
 System.out.println(ex);
}

セルの値を取得するために使用するメソッドは、プログラムで使用中の現在のオブジェクトによって異なりま

す。ICell オブジェクトをすでに取得していて、値を取得する場合は、ICell.getValue() メソッドを使用

します。

例: ICell.getValue() を使用した値の取得
private static Object getCellVal(ICell cell) throws APIException {
 Object v;
 v = cell.getValue();
 return v;
}

たいていの場合、プログラムでは最初にアイテムなどのオブジェクトを取得し、次に、

IDataObject.getValue(java.lang.Object cellId) メソッドを使用してその値を取得します。

例: IDataObject.getValue(Object cellID) を使用した値の取得
private static Object getDescVal(IItem item) throws APIException {
 Integer attrID = ItemConstants.ATT_TITLE_BLOCK_DESCRIPTION;
 Object v;
 v = item.getValue(attrID);
 return v;
}

getValue() メソッドで返されるオブジェクトは、Agile PLM 属性と同じデータ タイプです。データ タイプ

の詳細は、89 ページの「データ タイプ」を参照してください。

注意 検索で返されるテーブル内のすべてのセルには、そのセルに関連付けられているデータ タイプに関

係なく、String 値が含まれています。検索結果テーブルの詳細は、61 ページの「検索結果の使用」

を参照してください。

Agile PLM テーブル内の行で処理を繰り返している場合は、IRow.getValues() メソッドを使用して、テー

ブル内の特定の行に対するすべてのセルの値が含まれる Map オブジェクトを取得できます。返される Map オ
ブジェクトでは、属性 ID キーがセルの値にマップされます。

 第 5 章

Agile Product Lifecycle Management 93 ページ

SDK の日付フォーマットおよびユーザー プリファレンスの理解
SDK では、日付は Java 日付オブジェクトとして使用可能で、ユーザー プリファレンスに従ってフォーマッ

トされません。ただし、エンド ユーザーは、GUI のユーザー プリファレンスで日付を必要なフォーマットに

変換できます。

重要 エンド ユーザーは、PPM 日付に対して GMT 日付フォーマットを使用する必要があります。詳細

は、『Agile PLM Product Portfolio Managementユーザー・ガイド』を参照してください。

値の設定
次の表に、セルの値を設定するための Agile API メソッドを示します。

メソッド 説明

ICell.setValue() セルの値を設定します。

IRow.setValue() 行内に含まれているセルの値を設定します。

IRow.setValues() 行内に含まれている複数のセルの値を設定します。

IDataObject.setValue() [ページ 1]、[ユーザー定義 1] または [ユーザー定義 2] のセル

の値を設定します。

IDataObject.setValues() [ページ 1]、[ユーザー定義 1] または [ユーザー定義 2] の複数

のセルの値を設定します。

値を設定するために使用するメソッドは、プログラムで使用中の現在のオブジェクトによって異なります。

ICell オブジェクトをすでに取得していて、その値を設定する場合は、ICell.setValue() メソッドを使用

します。

例: ICell.setValue() を使用した値の設定
private static void setDesc(ICell cell, String text) throws APIException
{
 cell.setValue(text);
}

プログラムで部品などのオブジェクトをすでに取得している場合は、IDataObject.setValue() メソッド

を使用してその値を設定できます。

例: IDataObject.setValue() を使用した値の設定
private void setDesc(IItem item, String text) throws APIException {
 Integer attrID = ItemConstants.ATT_TITLE_BLOCK_DESCRIPTION;
 item.setValue(attrID, text);
}

Agile PLM テーブル内の行で処理を繰り返している場合は、IRow.setValues() メソッドを使用して、行全

体に対してセルの値を設定できます。また、IDataObject.setValues() メソッドを使用すると、オブジェ

クトの [ページ 1]、[ユーザー定義 1] または [ユーザー定義 2] の複数のセルの値を設定できます。

setValues() で指定する Map パラメータでは、属性がセルの値にマップされます。

SDK 開発者ガイド

94 ページ Agile Product Lifecycle Management

例: IRow.setValues() を使用した行内の複数値の設定
private void setBOMRow(IRow row) throws APIException {
 Map map = new HashMap();
 map.put(ItemConstants.ATT_BOM_ITEM_NUMBER, "23-0753");
 map.put(ItemConstants.ATT_BOM_QTY, "1");
 map.put(ItemConstants.ATT_BOM_FIND_NUM, "0");

 row.setValues(map);
}

Agile PLM の値を設定する場合は、セルのデータ タイプを認識している必要があります。誤ったデータ タイ

プのオブジェクトを使用してセルの値を設定しようとすると、メソッドが失敗します。オブジェクトを使用し

て値を設定する前に、オブジェクトを別のクラスにキャストする必要がある場合があります。

注意 コードでトランザクション境界を明示的に定義しない場合は、プログラムで実行するすべての
setValue() 操作が、個別のトランザクションとして処理されます。

ロックされたオブジェクトの例外の捕捉
他のユーザーがオブジェクトを変更している場合、オブジェクトはそのユーザーによって一時的にロックされ

ます。別のユーザーがオブジェクトをロックしているときに、セルに値を設定しようとすると、プログラムで

例外が発生します。したがって、セルの値を設定する場合は必ず、ロックされたオブジェクトに関連する次の
Agile 例外を捕捉してください。

 ExceptionConstants.APDM_ACQUIRE_DBLOCK_FAILED

 ExceptionConstants.APDM_RELEASE_DBLOCK_FAILED

 ExceptionConstants.APDM_OBJVERSION_MISMATCH

ロックされたオブジェクトに関連する例外 813 も捕捉する必要があります。

ロックされたオブジェクトに対して Agile PLM が返す一般的な例外メッセージは、[このオブジェクトを使用

しているユーザーがいます。後で再実行してください。] です。

例外の処理方法の詳細は、297 ページの第 18 章「例外の処理」を参照してください。

リスト値の取得および設定
リスト セルには 2 つの異なるデータ タイプがあります。1 つはシングルリスト セル用で、もう 1 つはマル

チリスト セル用です。シングルリスト セルまたはマルチリスト セルの値を取得する場合、返されるオブジェ

クトは、IAgileList オブジェクトです。そのため、リスト セルの使用は、他のセルの使用より多少複雑で

す。IAgileList インターフェースには、現在のリスト選択項目を取得および設定するためのメソッドが用意

されています。このセクションでは、カスケード リストなど、様々なタイプの Agile PLM リストに対する値

を取得および設定する方法を示す例を提供します。

ICell.getAvailableValues() を使用してリスト セルの使用可能な値を取得する場合は、返される
IAgileList オブジェクトに破棄されたリスト値が含まれている場合があります。プログラムでは、ユーザー

がリスト セルの値に破棄された値を設定できないようにする必要があります。リスト値が破棄されているかど

うかを確認する方法の詳細は、135 ページの「リスト値の破棄」を参照してください。

リストに String 値が含まれている場合、値は大文字と小文字が区別されます。したがって、リスト セルに値

を設定する場合は必ず、値の大文字と小文字が正しいことを確認する必要があります。

 第 5 章

Agile Product Lifecycle Management 95 ページ

シングルリスト セルの値の取得および設定
シングルリスト セルでは、リストから 1 つの値を選択できます。シングルリスト セルの値を取得する場合、

返されるオブジェクトは IAgileList です。その IAgileList オブジェクトから、現在選択されている値

の内容を判断できます。次の例は、アイテムに対する [タイトル ブロック.部品カテゴリ] セルの値を取得およ

び設定する方法を示しています。

例: シングルリスト セルの値の取得および設定
private static String getPartCatValue(IItem item) throws APIException
{
 // Get the Part Category cell
 ICell cell =
item.getCell(ItemConstants.ATT_TITLE_BLOCK_PART_CATEGORY);

 // Get the current IAgileList object for Part Category
 IAgileList cl = (IAgileList)cell.getValue();

 // Get the current value from the list
 String value = null;
 IAgileList[] selected = cl.getSelection();
 if (selected != null && selected.length > 0) {
 value = (selected[0].getValue()).toString();
 }
 return value;
}
private static void setPartCatValue(IItem item) throws APIException
{
 // Get the Part Category cell
 ICell cell =
item.getCell(ItemConstants.ATT_TITLE_BLOCK_PART_CATEGORY);

 // Get available list values for Part Category
 IAgileList values = cell.getAvailableValues();

 // Set the value to Electrical
 values.setSelection(new Object[] { "Electrical" });
 cell.setValue(values);
}

マルチリスト セルの値の取得および設定
マルチリスト セルの動作は、シングルリスト セルとほぼ同じですが、複数の値を選択できる点が異なります。

マルチリスト セルは、カスケード リストにすることはできません。次の例は、アイテムに対するマルチリス

ト セル [タイトル ブロック.製品ライン] の値を取得および設定する方法を示しています。

例: マルチリスト セルの値の取得および設定
private static String getProdLinesValue(IItem item) throws
APIException {
 String prodLines;
 // Get the Product Lines cell
 ICell cell =
item.getCell(ItemConstants.ATT_TITLE_BLOCK_PRODUCT_LINES);

SDK 開発者ガイド

96 ページ Agile Product Lifecycle Management

 // Get the current IAgileList object for Product Lines
 IAgileList list = (IAgileList)cell.getValue();

 // Convert the current value from the list to a string
 prodLines = list.toString();

 return prodLines;
}

private static void setProdLinesValue(IItem item) throws APIException
{
 // Get the Product Lines cell
 ICell cell =
item.getCell(ItemConstants.ATT_TITLE_BLOCK_PRODUCT_LINES);

 // Get available list values for Product Lines
 IAgileList values = cell.getAvailableValues();

 // Set the Product Lines values
 values.setSelection(new Object[] {"Saturn","Titan","Neptune"});
 cell.setValue(values);
}

カスケード リストの値の取得および設定
シングルリスト セルは、カスケード リストになるように設定できます。カスケード リストでは複数の階層レ

ベルでリストが表示されるため、リスト階層をドリル ダウンして特定の値を検索できます。カスケード リス

トの使用に関する詳細は、第 8 章「リストの使用」を参照してください。

カスケード リスト セルの値を取得する場合は、カスケード リスト内の各レベルが垂直バー (パイプ文字とも

呼ばれます) で区切られます。カスケード リストの値を選択するには、IAgileList.setSelection() メ
ソッドを使用します。IAgileList リーフ ノードの配列、または垂直バーで区切られた 1 つの文字列を含む
String 配列のいずれかを指定できます。値を選択した後は、いずれかの setValue() メソッドを使用して

値を保存します。

次の例は、カスケード リストの値を取得および設定する方法を示しています。

例: カスケード リストの値の取得および設定
private String getCascadeValue(IItem item) throws APIException {
 String value = null;
 // Get the Page Two.List01 value
 IAgileList clist =

(IAgileList)item.getValue(ItemConstants.ATT_PAGE_TWO_LIST01);
 // Convert the current value from the list to a string
 value = clist.toString();

 return value;
}
private void setCascadeValue(IItem item) throws APIException {
 String value = null;

 第 5 章

Agile Product Lifecycle Management 97 ページ

 // Get the Page Two List01 cell
 ICell cell = item.getCell(ItemConstants.ATT_PAGE_TWO_LIST01);

 // Get available list values for Page Two List01
 IAgileList values = cell.getAvailableValues();

 // Set the value to "North America|United States|San Jose"
 values.setSelection(new Object[] {"North America|United States|San
Jose"});
 cell.setValue(values);
}

前述の例では、カスケード リストの値を設定する 1 つの方法が示されていますが、リストのツリー構造を示

す別の長い形式も使用できます。カスケード リスト値を表す単一の String を指定するかわりに、リスト内

の各レベルに対して選択項目を設定できます。次の例では、大陸、国および市町村の 3 つのレベルでカスケー

ド リストの値を選択しています。

例: カスケード リストの値の設定 (長い形式)
private void setCascadeValue(IItem item) throws APIException{
String value = null;
// Get the Page Two List01 cell
ICell cell =
item.getCell(CommonConstants.ATT_PAGE_TWO_LIST01);

// Get available list values for Page Two List01
IAgileList values = cell.getAvailableValues();

// Set the continent to "North America"
IAgileList continent =
(IAgileList)values.getChildNode("North America");

// Set the country to "United States"
IAgileList country =
(IAgileList)continent.getChildNode("United States");

// Set the city to "San Jose"
IAgileList city = (IAgileList)country.getChildNode("San Jose");
values.setSelection(new Object[]{city});

// Set the cell value
cell.setValue(values);
}

SDK 開発者ガイド

98 ページ Agile Product Lifecycle Management

参照指示セルの使用
Agile 9 SDK では、参照指示の使用方法を管理できます。参照指示セルは、システム設定によって縮小または

展開できます。IReferenceDesignatorCell インターフェースには 3 つのパブリック API が含まれてお

り、エンド ユーザーは、参照指示情報を 3 つの形式で取得できます。

 縮小 - 例: A1–A3。getCollapsedValue() を使用します。

 展開 - A1, A2, A3。getExpandedValue() を使用します。

 個々の参照指示の配列 - [A1, A2, A3]。getReferenceDesignators[] を使用します。

次の表に、セルの参照指示の値を取得するための Agile API メソッドを示します。

メソッド 説明

IReferenceDesignatorCell.
getCollapsedValue()

参照指示の縮小表示を取得します。たとえば、“A1,A2,A3” は
“A1–A3” と表されます。範囲区切り文字 (–) は、システム プリファ

レンスの一部として定義されます。

IReferenceDesignatorCell.
getExpandedValue()

参照指示の展開値を取得します。たとえば、“A1-A3” の場合は、文

字列 “A1, A2, A3” が返されます。

IReferenceDesignatorCell.
getReferenceDesignators()

個々の参照指示を文字列の配列として取得します。たとえば、

“A1-A3” の場合は、これらの 3 つの文字列の配列 [“A1”, “A2”,
“A3”] が返されます。

注意 以前のリリースの Agile SDK では、参照指示の値は、参照指示のカンマ区切りのリストでした。参照

指示に対する cell.getValue() の機能は、参照指示の表現を制御するシステム設定によって異な

るため、SDK ユーザーは、cell.getValue() または row.getValue() を使用しないでください。

セルを取得して IReferenceDesignatorCell にキャストした後、処理するために必要なデータ構

造に対応するメソッドを呼び出すか、または参照指示情報を表示することをお薦めします。

Agile Product Lifecycle Management 99 ページ

第 6 章

フォルダの使用

扱うトピックは次のとおりです。

 フォルダについて ... 99
 フォルダのロード ... 101
 フォルダの作成 ... 101
 フォルダ タイプの設定 ... 102
 フォルダ要素の追加および削除.. 103
 フォルダ要素の取得 ... 104
 フォルダの削除 ... 106

フォルダについて
IFolder は、IQuery オブジェクトと IFolder オブジェクト、およびメイン Agile PLM オブジェクト
(IChange、IItem、IManufacturer、IManufacturerPart、IPackage) を格納するために使用される汎

用コンテナです。フォルダは、検索を整理するために使用されます。

注意 ファイル フォルダはフォルダとは異なるため、IFolder という独自のインターフェースがありま

す。ファイル フォルダには、他のオブジェクトの [添付ファイル] テーブルから参照できるファイ

ルが 1 つ以上格納されます。ファイル フォルダの詳細は、145 ページの「添付ファイルとファイ

ル フォルダの使用」を参照してください。

Agile PLM フォルダにはいくつかのタイプがあります。

 プライベート - 作成したユーザーのみがアクセスできるフォルダ。ユーザーは、自分のプライベート フォ

ルダを作成または削除できます。

 パブリック - すべての Agile PLM ユーザーがアクセスできるフォルダ。パブリック フォルダは、グロー

バル検索権限のあるユーザーのみが作成、削除および変更できます。

 システム - Agile PLM システムに同梱されている事前定義済みのフォルダ。システム フォルダは、ほとん

どのユーザーが変更または削除できません。

 私のブックマーク (またはお気に入り) - Agile PLM オブジェクトに対する各ユーザーのブックマークが含

まれる事前定義済みのフォルダ。[私のブックマーク] フォルダは削除できません。

 ホーム - 事前定義済みの Agile PLM ホーム フォルダ。[ホーム] フォルダは削除できません。

 パーソナル検索 - 各ユーザーのパーソナル検索に対する事前定義済みの親フォルダ。[パーソナル検索]
フォルダは削除できません。

 最近訪れたところ - 最近訪れたオブジェクトへのリンクが含まれる事前定義済みのフォルダ。このフォル

ダは、SDK では値は挿入されません。クライアント アプリケーションでのみ値が挿入されます。必要な

場合は、アプリケーションでこのフォルダを指定します。

SDK 開発者ガイド

100 ページ Agile Product Lifecycle Management

注意 [最近訪れたところ] フォルダは、データベースに定期的にのみフラッシュされます。し

たがって、ポータルを使用したプロセス拡張などの二次接続、またはスタンドアロン
SDK アプリケーションでは、ユーザーの GUI に表示されるものと同一の情報は参照さ

れません。

 レポート - レポートが含まれるフォルダ。Agile API を使用してレポート フォルダを作成、変更または削

除することはできませんが、Agile PLM クライアントで作成、変更または削除できます。

注意 FolderConstants にも TYPE_MODIFIABLE_CONTENTS という定数がありますが、

現在は使用されていません。

各ユーザーのフォルダの選択は異なる可能性があります。ただし、すべてのユーザーに [ホーム] フォルダが

あります。各ユーザーの [ホーム] フォルダから、様々なサブフォルダを構築でき、パブリックおよびプライ

ベート検索を参照できます。ユーザーに対する [ホーム] フォルダを取得するには、

IUser.getFolder(FolderConstants.TYPE_HOME) メソッドを使用します。

フォルダは、他の Agile API オブジェクトと同じトランザクション モデルを使用します。フォルダのトランザ

クション境界を設定しない場合は、なんらかの項目がフォルダに追加されるか、またはフォルダから削除され

るとすぐに、フォルダが自動的に更新されます。

IFolder は java.util.Collection を拡張し、ITreeNode は、これらのスーパーインターフェースで提

供されるすべてのメソッドをサポートします。したがって、IFolder オブジェクトは Java の Collection
と同様に使用できます。ITreeNode のメソッドを使用すると、子の追加と削除、子の取得、および親フォル

ダの取得によって、フォルダの階層構造を処理できます。

インターフェース 継承メソッド

java.util.Collection add()、addAll()、clear()、contains()、containsAll()、equals()、
hashCode()、isEmpty()、iterator()、remove()、removeAll()、
retainAll()、size()、toArray()、toArray()

ITreeNode addChild()、getChildNode()、getChildNodes()、getParentNode()、
removeChild()

フォルダおよびオブジェクト名でのレベル区切り文字の使用
SDK では、ITreeNode オブジェクトの名前付けで、次のようにレベル区切り文字「|」および「/」をサポー

トしています。

 IAgileList オブジェクト名の「|」

 フォルダ名の「/」

この機能は主に、前述の表に示した継承 ITreeNode メソッドに影響を与えます。これらの文字を使用するに

は、文字の前に明示的に円記号 (¥) を付ける必要があります。

 ¥|

 ¥/

注意 SDK アプリケーションで定義されている Java リテラルで円記号を使用するには、円記号を 2 回
(¥¥) 指定する必要があります。

 第 6 章

Agile Product Lifecycle Management 101 ページ

フォルダのロード
フォルダをロードする方法は、2 通りあります。

 IAgileSession.getObject() メソッドを使用して、フォルダの完全パスを指定します。

 IFolder.getChild() メソッドを使用して、サブフォルダの相対パスを指定します。

フォルダおよび検索名では、大文字と小文字は区別されません。したがって、大文字または小文字を使用して

フォルダ パスを指定できます。たとえば、[Personal Searches] フォルダをロードするには、“/Personal Searches”
または “/PERSONAL SEARCHES” と指定できます。

次の例は、フォルダの完全パスを指定してフォルダをロードする方法を示しています。

例: IAgileSession.getObject() を使用したフォルダのロード
try {
 //Load the Personal Searches folder
 IFolder folder = (IFolder)m_session.getObject(IFolder.OBJECT_TYPE,
"/Personal Searches");
} catch (APIException ex) {
 System.out.println(ex);
}

次の例は、別のフォルダからの相対パス、この場合はユーザーの [ホーム] フォルダからの相対パスを指定し

てフォルダをロードする方法を示しています。

例: IFolder.getChild() を使用したフォルダのロード
try {
 //Get the Home Folder
 IFolder homeFolder =
m_session.getCurrentUser().getFolder(FolderConstants.TYPE_HOME);
 //Load the Personal Searches subfolder
 IFolder folder = (IFolder)homeFolder.getChild("Personal Searches");
} catch (APIException ex) {
 System.out.println(ex);
}

フォルダの作成
フォルダを作成するには、IAgileSession.createObject() メソッドを使用します。フォルダを作成する

とき、フォルダの名前とその親フォルダを指定する必要があります。次の例は、[Personal Searches] フォルダ内

に “MyTemporaryQueries” というフォルダを作成する方法を示しています。

SDK 開発者ガイド

102 ページ Agile Product Lifecycle Management

例:新規フォルダの作成
try {
 //Get an Admin instance
 IAdmin admin = m_session.getAdminInstance();
 //Load the Personal Searches folder
 IFolder parentFolder =
(IFolder)m_session.getObject(IFolder.OBJECT_TYPE, "/Personal
Searches");

 //Create parameters for a new folder
 Map params = new HashMap();
 params.put(FolderConstants.ATT_FOLDER_NAME,
"MyTemporaryQueries");
 params.put(FolderConstants.ATT_PARENT_FOLDER, parentFolder);

 //Create a new folder
 IFolder folder = (IFolder)session.createObject(IFolder.OBJECT_TYPE,
params);

} catch (APIException ex) {
 System.out.println(ex);

フォルダ タイプの設定
デフォルトでは、作成する新規フォルダはすべて、指定されないかぎりプライベート フォルダです。プライベー

ト フォルダをパブリック フォルダに変更するには、IFolder.setType() メソッドを使用します。プライ

ベート フォルダをパブリック フォルダに変更するには、グローバル検索権限が必要です。

フォルダのタイプの設定に使用できる 2 つのフォルダ タイプ定数は、FolderConstants.TYPE_PRIVATE
および FolderConstants.TYPE_PUBLIC です。フォルダを他のフォルダ タイプに設定することはできま

せん。

例:フォルダ タイプの設定
try {
 //Get an Admin instance
 IAdmin admin = m_session.getAdminInstance();
 //Load the My Cool Searches folder
 IFolder folder =
(IFolder)m_session.getObject(IFolder.OBJECT_TYPE,
 "/Personal Searches/My Cool Searches");

 //Make the folder public
 folder.setFolderType(FolderConstants.TYPE_PUBLIC);

} catch (APIException ex) {
 System.out.println(ex);
}

 第 6 章

Agile Product Lifecycle Management 103 ページ

フォルダ要素の追加および削除
Agile PLM フォルダには、IFolder オブジェクト (サブフォルダ)、IQuery オブジェクト、およびあらゆる

データオブジェクト (IChange、IItem、IManufacturer、IManufacturerPart オブジェクトなど) を格

納できます。ITreeNode.addChild() メソッドを使用して、オブジェクトをフォルダに追加します。

フォルダ要素の追加
次の例は、オブジェクトをテーブルに追加する方法を示しています。

例: フォルダへのオブジェクトの追加
public void addFolderItem(IFolder folder, Object obj) {
 try {
 folder.addChild(obj);
 } catch (APIException ex) {
 System.out.println(ex);
 }
}

フォルダ要素の削除
単一のフォルダ要素を削除するには、ITreeNode.removeChild() メソッドを使用します。すべてのフォル

ダ要素をクリアするには、java.util.Collection.clear() メソッドを使用します。

例: フォルダからのオブジェクトの削除
void removeFolderElement(IFolder folder, Object obj) {
 try {
 folder.removeChild(obj);
 } catch (APIException ex) {
 System.out.println(ex);
 }
}
void clearFolder(IFolder folder) {
 try {
 folder.clear();
 } catch (APIException ex) {
 System.out.println(ex);
 }
}

SDK 開発者ガイド

104 ページ Agile Product Lifecycle Management

フォルダ要素の取得
フォルダに含まれているすべてのオブジェクト (サブフォルダを含む) は、名前でロードできます。フォルダ

からオブジェクトを取得するには、IFolder.getChild() メソッドを使用します。フォルダ要素のオブジェ

クト タイプは様々であることに注意してください。オブジェクトに応じて、サブフォルダ、検索、または IItem
などのデータオブジェクトを取得できます。

例: フォルダ要素の取得
public void getFolderChild(IFolder folder, String name) {
 try {
 IAgileObject object = folder.getChild(name);
 //If the object is a query, run it
 if (object.getType()==IQuery.OBJECT_TYPE) {
 IQuery query = (IQuery)object;
 ITable results = query.execute();

 //Add code here to do something with the query results
 }
 } catch (APIException ex) {
 System.out.println(ex);
 }
}

次の例は、IFolder.getChildren() メソッドを使用して IAgileObject 配列を返す方法を示しています。

この場合、コードでは、配列内の各オブジェクトのオブジェクト タイプが確認された後、オブジェクトの名前

が印刷されます。

例: フォルダの子の取得
private void browseFolder(int level, IFolder folder) throws
APIException {
 IAdmin admin = m_session.getAdminInstance();
 Collection subObjects = folder.getChildNodes();

 for (Iterator it = subObjects.iterator();it.hasNext();) {
 IAgileObject obj = (IAgileObject)it.next();
 System.out.println(indent(level * 4));

 switch (obj.getType()) {
 case IItem.OBJECT_TYPE:
 System.out.println("ITEM: " + obj.getName());
 break;

 case IFolder.OBJECT_TYPE:
 System.out.println("FOLDER: " + obj.getName());
 browseFolder(level + 1, (IFolder)obj);
 break;

 case IQuery.OBJECT_TYPE:
 System.out.println("QUERY: " + obj.getName());
 break;

 default:
 System.out.println(

 第 6 章

Agile Product Lifecycle Management 105 ページ

 "UNKNOWN TYPE: " + obj.getType() + ":" + obj.getName());
 }
 }
}
private String indent(int level) {
 if (level <= 0) {
 return "";
 }
 char c[] = new char[level*2];
 Arrays.fill(c, ' ');
 return new String(c);
}
private String indent(int level) {
 if (level <= 0) {
 return "";
 }
 char c[] = new char[level*2];
 Arrays.fill(c, ' ');
 return new String(c);
}

フォルダの子を取得する別の方法は、フォルダの一方の端からもう一方の端に移動しながら、フォルダ要素で

処理を繰り返すことです。IFolder オブジェクトの Iterator を作成するには、

java.util.Collection.iterator() メソッドを使用します。

注意 フォルダのコンテンツを前後に移動する必要がある場合は、IFolder.getFolderIterator() メ
ソッドを使用して ITwoWayIterator オブジェクトを返します。ITwoWayIterator では、

previous()、next() および skip() メソッドなどが提供されます。

例: フォルダ要素での繰り返し処理
try {
 //Load the Project X folder
 IFolder folder = (IFolder)m_session.getObject(IFolder.OBJECT_TYPE,
 "/Personal Searches/Project X");

 //Create a folder iterator
 Iterator it = folder.iterator();

 if (it.hasNext()) {
 //Get the next folder element
 Object obj = it.next();

 //Write code here to display each folder
 //element in your program’s UI
 }
} catch (APIException ex) {
 System.out.println(ex);
}

SDK 開発者ガイド

106 ページ Agile Product Lifecycle Management

フォルダの削除
フォルダを削除するには、IFolder.delete() メソッドを使用します。削除できるフォルダは、空のフォル

ダで、事前定義の Agile PLM システム フォルダ ([グローバル検索] および [私の受信トレイ] フォルダなど)
以外のフォルダです。

他のデータオブジェクトとは異なり、フォルダは最初の削除時にソフト削除されません。フォルダを削除する

と、そのフォルダはシステムから完全に削除されます。

例: フォルダの削除
void deleteFolder(IFolder folder) throws APIException {
 folder.delete();
}

Agile Product Lifecycle Management 107 ページ

第 7 章

アイテム、BOM および AML の使用

扱うトピックは次のとおりです。

 アイテムについて ... 107
 アイテムのリビジョンの取得および設定.. 107
 リビジョンの確定済みステータスの変更.. 109
 BOM の使用 .. 110
 AML の使用 .. 115

アイテムについて
アイテムは、製品の定義に使用するオブジェクトです。アイテムのタイプには、部品およびドキュメントなど

があります。部品は製品の一部として同梱され、コストが関連付けられています。部品はアセンブリの場合も

あります。部品構成表 (BOM) には、アセンブリを構成する個々のコンポーネントがリストされます。ドキュ

メントは通常、部品に関係する社内の文書、図面、または手順です。

アイテムは、他の Agile PLM オブジェクトと次の点で異なります。

 リビジョン履歴があり、各リビジョンに一連のデータがあります。

 確定済み、または将来の変更ができないようにロックされている場合があります。

 拠点別の BOM または承認済み製造元リスト (AML) がある場合があります。

アイテムのリビジョンの取得および設定
アイテムのリビジョンは、Agile PLM 属性の特別なタイプです。リビジョンは常に、その関連変更オブジェク

ト (ECO など) の数である別の値と組み合わせて使用されます。アイテムをロードすると、常に最新のリリー

ス済みリビジョンとともにロードされます。

他の属性とは異なり、アイテムの [タイトル ブロック.リビジョン] フィールド (その ID 定数が
ItemConstants.ATT_TITLE_BLOCK_REV) に直接アクセスすることはできません。したがって、

getValue() および setValue() メソッドを使用して、リビジョン値を取得したり、設定することはできま

せん。たとえば、次のコード内の revValue 変数は常にヌル String です。

例: [タイトル ブロック.リビジョン] フィールドへのアクセスでリビジョンの取得に失敗する場合
IItem item = (IItem)m_session.getObject(IItem.OBJECT_TYPE,
"1000-02");
IAgileList listRevValue =

(IAgileList)item.getValue(ItemConstants.ATT_TITLE_BLOCK_REV);
 String revValue = listRevValue.toString();
if (revValue==null) {
 System.out.println("Failed to get the revision.");
}

SDK 開発者ガイド

108 ページ Agile Product Lifecycle Management

アイテムのリビジョンを取得および設定する正しい方法は、次の例に示すように、IRevisioned インター

フェースのメソッドを使用することです。この方法では、アイテムがロードされた後、アイテムのリビジョン

で処理が繰り返されます。

例: アイテムのリビジョンの取得および設定
try {
 // Get an item
 IItem item = (IItem)m_session.getObject(IItem.OBJECT_TYPE,
"1000-02");

 // Print the item’s current revision
 System.out.println("current rev : " + item.getRevision());

 // Get all revisions for the item
 Map revisions = item.getRevisions();

 // Get the set view of the map
 Set set = revisions.entrySet();

 // Get an iterator for the set
 Iterator it = set.iterator();

 // Iterate through the revisions and set each revision value
 while (it.hasNext()) {
 Map.Entry entry = (Map.Entry)it.next();
 String rev = (String)entry.getValue();
 System.out.println("Setting rev : " + rev + "....");
 item.setRevision(rev);
 System.out.println("current rev : " + item.getRevision());
 }
} catch (APIException ex) {
 System.out.println(ex);
}

IRevisioned.setRevision() メソッドは、リビジョンを指定するいくつかの異なる方法に対応しています。

setRevision() メソッドの change パラメータには、次のタイプのオブジェクトを指定できます。

 初版リビジョンを指定するためのヌル オブジェクト
item.setRevision(null);

 特定のリビジョンと関連付けられる IChange オブジェクト
item.setRevision(changeObject);

 特定のリビジョンと関連付けられる変更番号 (String)
item.setRevision("C00450");

 リビジョン識別子 (“初版”、“A”、“B”、“C”などの String)
item.setRevision("A");

 リビジョン識別子と変更番号が 8 つの空白で区切られた String (“A 23450”)
item.setRevision("A C00450");

 第 7 章

Agile Product Lifecycle Management 109 ページ

change パラメータに指定できる最後のタイプの String オブジェクトでは、Agile PLM テーブルの他のリ

ビジョン セルで使用される同じ値を渡すことができます。たとえば、[BOM.アイテム リビジョン] セルは、[タ
イトル ブロック.リビジョン] とは異なり、直接アクセス可能です。セルの値を取得すると、リビジョン識別子

と変更番号が 8 つの空白で区切られた String が返されます。

例: [BOM.アイテム リビジョン] を使用したリビジョンの設定
try {
 // Get an item
 IItem item = (IItem)m_session.getObject(IItem.OBJECT_TYPE,
"1000-02");

 // Get the BOM table
 ITable bomTable = item.getTable(ItemConstants.TABLE_BOM);

 // Get part 1543-01 in the BOM
 ITwoWayIterator it = bomTable.getTableIterator();
 while (it.hasNext()) {
 IRow row = (IRow)it.next();
 String num =
(String)row.getValue(ItemConstants.ATT_BOM_ITEM_NUMBER);
 if (num.equals("1543-01")) {
 // Get the revision for this BOM item
 // (bomRev = revID + 8 spaces + changeNumber)
 String bomRev =
(String)row.getValue(ItemConstants.ATT_BOM_ITEM_REV);

 // Load the referenced part
 IItem bomItem = (IItem)row.getReferent();

 // Set the revision
 System.out.println("Setting rev : " + bomRev + "....");
 bomItem.setRevision(bomRev);
 System.out.println("current rev : " + bomItem.getRevision());
 break;
 }
 }
} catch (APIException ex) {
 System.out.println(ex);
}

注意 アイテムにリリース済みリビジョンおよび保留中の変更がない場合、

IRevisioned.getRevision() メソッドはヌル String を返し、

IRevisioned.getRevisions() メソッドは空の Map オブジェクトを返します。

リビジョンの確定済みステータスの変更
アイテムの各リビジョンは確定済みにできます。アイテムのリビジョンを確定すると、そのリビジョンのすべ

ての添付ファイルがロックされ、チェックアウトできなくなります。アイテムを確定した後でも、アイテムの

添付ファイルは、Agile Web クライアントを使用して表示できますが、新しい変更を提出するまで修正はでき

ません。

SDK 開発者ガイド

110 ページ Agile Product Lifecycle Management

アイテムを確定または未確定にするには、IAttachmentContainer.setIncorporated() メソッドを使用

します。アイテムを確定または未確定にするには、特別な Agile PLM 権限が必要です。適切な権限がない場合

は、setIncorporated() メソッドで例外が発生します。

リビジョン番号があるアイテムのみを確定できます。したがって、リリースされていないプレリミナリ アイテ

ムは確定できません。そのアイテムに対する ECO が提出され、保留中のリビジョン番号が指定されると、リ

ビジョンを確定できるようになります。次の例では、アイテムの確定済みステータスを変更する方法を示して

います。

例: アイテムの確定済みステータスの変更
try {
 // Get an item
 IItem item = (IItem)m_session.getObject(IItem.OBJECT_TYPE,
"1000-02");

 // Incorporate the item, or unincorporate it,
 // depending on its current state
 item.setIncorporated(!item.isIncorporated());
} catch (APIException ex) {
 System.out.println(ex);
}

BOM の使用
部品構成表 (BOM) には、製品を構成するコンポーネントがリストされます。BOM にリストされるアイテム

は、単体のアイテムの場合も、複数のアイテムで構成されるアセンブリの場合もあります。

[BOM] テーブルは、他の Agile PLM テーブルとは異なり、データの列 (フィールド) で構成されます。各列

が、[BOM.アイテム番号] などの Agile PLM 属性を表します。[BOM] テーブルの各行は、個別のアイテム (部
品、ドキュメントまたはユーザー定義のサブクラスのいずれか) を表します。

[BOM] テーブルの他に、BOM に対するレッドライン変更が記録される [BOM のレッドライン] もあります。

DataObject.getTable() メソッドを使用して [BOM] テーブルをロードする場合は、正しいテーブル ID
定数を指定していることを確認してください。

BOM テーブル ID 定数

現在の [BOM] テーブル ItemConstants.TABLE_BOM

[BOM のレッドライン]
テーブル

ItemConstants.TABLE_REDLINEBOM

[BOM] テーブルの取得方法を示す例は、「テーブルの取得」を参照してください。

BOM へのアイテムの追加
[BOM] テーブルにアイテムを追加する前に、製造拠点を指定します。BOM のアイテムは、拠点別であるか、

またはすべての拠点に共通です。IManufacturingSiteSelectable.setManufacturingSite() メソッ

ドを使用して、拠点を指定します。共通の BOM にアイテムを追加するには、

ManufacturingSiteConstants.COMMON_SITE を使用します。それ以外の場合は、ユーザーのデフォルト

の拠点など、特定の拠点を指定します。

 第 7 章

Agile Product Lifecycle Management 111 ページ

注意 親アイテムが現在すべての拠点を表示するように設定されている場合、その BOM には行を追加で

きません。BOM に行を追加する前に、アイテムの拠点が
ManufacturingSiteConstants.ALL_SITES に設定されていないことを確認してください。

ManufacturingSiteConstants.ALL_SITES に設定されていると、API で例外が発生します。

例: BOM へのアイテムの追加
//Add an item to the common BOM
public void addCommonBOMItem(IItem item, String bomnumber) throws
APIException {
 HashMap map = new HashMap();
 map.put(ItemConstants.ATT_BOM_ITEM_NUMBER, bomnumber);

item.setManufacturingSite(ManufacturingSiteConstants.COMMON_SITE);
 item.getTable(ItemConstants.TABLE_BOM).createRow(map);
}
//Add a site-specific item to the BOM using the user’s default site
public void addSiteBOMItem(IItem item, String bomnumber) throws
APIException {
 HashMap map = new HashMap();
 map.put(ItemConstants.ATT_BOM_ITEM_NUMBER, bomnumber);

item.setManufacturingSite(((IAgileList)m_session.getCurrentUser().
getValue()

UserConstants.ATT_GENERAL_INFO_DEFAULT_SITE)).getSelection()[0].ge
tValue());
);
 item.getTable(ItemConstants.TABLE_BOM).createRow(map);
}

製造拠点の詳細は、139 ページの「製造拠点の管理」を参照してください。

BOM の展開
[BOM] テーブルは、複数のレベルが含まれるテーブルとして表示できます。これは、API でこのように表示さ

れない場合でも可能です。デフォルトでは、[BOM] テーブルにはトップレベルのアイテムのみが含まれていま

す。BOM をその階層が表示されるように展開するには、各 BOM アイテムとそのサブアセンブリを再帰的に

ロードする必要があります。次の例は、複数レベルの BOM を印刷する方法を示しています。

例: 複数レベルの BOM の印刷
private void printBOM(IItem item, int level) throws APIException {
 ITable bom = item.getTable(ItemConstants.TABLE_BOM);
 Iterator i = bom.getReferentIterator();
 while (i.hasNext()) {
 IItem bomItem = (IItem)i.next();
 System.out.print(indent(level));
 System.out.println(bomItem.getName());
 printBOM(bomItem, level + 1);
 }
}
private String indent(int level) {
 if (level <= 0) {
 return "";

SDK 開発者ガイド

112 ページ Agile Product Lifecycle Management

 }
 char c[] = new char[level*2];
 Arrays.fill(c, ' ');
 return new String(c);
}

別の BOM への BOM のコピー
2 つのアイテムの BOM が非常に類似している場合がよくあります。BOM を最初から作成するかわりに、た

いていの場合、あるアイテムの BOM を別のアイテムの BOM にコピーして、多少の変更を加える方が簡単で

す。Collection.addAll() メソッドを使用すると、あるテーブルのコンテンツをターゲット テーブルにコ

ピーできます。addAll() メソッドでは、アイテムの新規リビジョンは設定されません。

注意 あるアイテムの BOM を別のアイテムの BOM にコピーする場合、ターゲット アイテムの関連製

造拠点は、ソース アイテムと同じ必要があります。

例: Collection.addAll() を使用した BOM のコピー
private static void copyBOM(IItem source, IItem target) throws
APIException {
 // Get the source BOM
 ITable sourceBOM = source.getTable(ItemConstants.TABLE_BOM);

 // Get the target BOM
 ITable targetBOM = target.getTable(ItemConstants.TABLE_BOM);

 // Add all rows from the source BOM to the target BOM
 targetBOM.addAll(sourceBOM);
}

BOM をコピーする別の方法は、ソース BOM の行で処理を繰り返して、各行をターゲット BOM にコピーす

ることです。

例: 繰り返し処理による BOM のコピー
private static void copyBOM1(IItem source, IItem target) throws
APIException {
 // Get the source BOM
 ITable sourceBOM = source.getTable(ItemConstants.TABLE_BOM);

 // Get an iterator for the source BOM
 Iterator i = sourceBOM.iterator();

 // Get the target BOM
 ITable targetBOM = target.getTable(ItemConstants.TABLE_BOM);

 // Copy each source BOM row to the target BOM
 while (i.hasNext()) {
 targetBOM.createRow(i.next());
 }
}

 第 7 章

Agile Product Lifecycle Management 113 ページ

BOM のレッドライン
[BOM] テーブルをレッドラインするには、次の手順に従います。

1. リリース済みのアセンブリ アイテムを取得します。

2. アイテムに対する新しい設計変更 (ECO など) を作成します。

3. ECO の [対象アイテム] テーブルにアイテムを追加します。また、変更の新規リビジョンを指定し、関連

する変更にアイテムのリビジョンを設定します。

4. アイテムの [BOM のレッドライン] テーブルを変更します。

次のセクションに、これらの各手順のコード例があります。

注意 [BOM] テーブルの行からレッドラインを削除できます。87 ページの「レッドラインの変更の削除」

を参照してください。

リリース済みのアセンブリ アイテムの取得

次の例は、部品サブクラスからアセンブリ アイテムをロードする方法を示しています。指定する部品がリリー

ス済みであり、BOM があることを確認してください。

例: リリース済みのアセンブリの取得
// Load a released assembly item
private static IItem loadItem(IAgileSession myServer, Integer
ITEM_NUMBER) throws APIException {
 IItem item = (IItem)myServer.getObject("Part", ITEM_NUMBER);
 if (item != null) {
 //Check if the item is released and has a BOM
 if (item.getRevision().equals("Introductory") ||
 !item.isFlagSet(ItemConstants.FLAG_HAS_BOM)) {
 System.out.println("Item must be released and have a BOM.");
 item = null;
 }
 return item;
}

設計変更の作成

BOM をレッドラインするには、ECO などの設計変更を作成する必要があります。次の例は、ECO を作成し、

そのワークフローを選択する方法を示しています。

例: ECO の作成
private static IChange createChange(IAgileSession myServer, Integer
ECO_NUMBER)
 throws APIException {
 IChange change =
(IChange)myServer.createObject(ChangeConstants.CLASS_ECO,
ECO_NUMBER);
 // Set the workflow ID
 change.setWorkflow(change.getWorkflows()[0]);
 return change;
}

SDK 開発者ガイド

114 ページ Agile Product Lifecycle Management

設計変更の [対象アイテム] タブへのアイテムの追加

ECO の作成後は、ECO の [対象アイテム] テーブルに、ロードした部品を追加できます。すべての ECO が
リビジョンに関連付けられます。次の例は、ECO の新規リビジョンを指定した後、部品のリビジョンに、ECO
に関連付けられているリビジョンを設定する方法を示しています。

例: 設計変更の [対象アイテム] テーブルへのアイテムの追加
private static void addAffectedItems(IAgileSession myServer, IItem
item, IChange change)
 throws APIException {
 // Get the Affected Items table
 ITable affectedItems =
change.getTable(ChangeConstants.TABLE_AFFECTEDITEMS);

 // Create a Map object to store parameters
 Map params = new HashMap();

 // Set the value of the item number by specifying the item object

params.put(ChangeConstants.ATT_AFFECTED_ITEMS_ITEM_NUMBER, item);
 // Specify the revision for the change
 params.put(ChangeConstants.ATT_AFFECTED_ITEMS_NEW_REV, "B");

 // Add a new row to the Affected Items table
 IRow affectedItemRow = affectedItems.createRow(params);

 // Select the new revision for the part
 item.setRevision(change);
}

[BOM のレッドライン] テーブルの変更

ECO の [対象アイテム] テーブルに部品が追加され、リビジョンが指定されると、部品の [BOM のレッドラ

イン] テーブルの変更を開始できます。次の例は、[BOM のレッドライン] テーブルを取得し、行を追加およ

び削除し、特定のセル値を設定する方法を示しています。

例: [BOM のレッドライン] テーブルの変更
private static void modifyRedlineBOM(IAgileSession myServer, IItem
item) throws APIException {
 // Get the Redline BOM table
 ITable redlineBOM = item.getTable(ItemConstants.TABLE_REDLINEBOM);

 // Create two new items, 1000-002 and 1000-003
 IItem item1 = (IItem)
myServer.createObject(ItemConstants.CLASS_PART, "1000-002");
 IItem item2 = (IItem)
myServer.createObject(ItemConstants.CLASS_PART, "1000-003");

 // Add item 1000-002 to the table

 第 7 章

Agile Product Lifecycle Management 115 ページ

 IRow redlineRow = redlineBOM.createRow(item1);
 redlineRow.setValue(ItemConstants.ATT_BOM_QTY, new Integer(50));
 redlineRow.setValue(ItemConstants.ATT_BOM_FIND_NUM, new
Integer(777));

 // Add item 1000-003 to the table
 redlineRow = redlineBOM.createRow(item2);
 redlineRow.setValue(ItemConstants.ATT_BOM_QTY, new Integer(50));
 redlineRow.setValue(ItemConstants.ATT_BOM_FIND_NUM, new
Integer(778));

 // Remove item 1000-003 from the table
 IRow delRow;
 String itemNumber;
 Iterator it = redlineBOM.iterator();
 while (it.hasNext()) {
 delRow = (IRow)it.next();
 itemNumber =
(String)delRow.getValue(ItemConstants.ATT_BOM_ITEM_NUMBER);
 if (itemNumber.equals("1000-003")) {
 redlineBOM.removeRow(delRow);
 break;
 }
 }

 // Change the Qty value for item 1000-002
 IRow modRow;
 it = redlineBOM.iterator();
 while (it.hasNext()) {
 modRow = (IRow)it.next();
 itemNumber =
(String)modRow.getValue(ItemConstants.ATT_BOM_ITEM_NUMBER);
 if (itemNumber.equals("1000-002")) {
 modRow.setValue(ItemConstants.ATT_BOM_QTY, new Integer(123));
 }
 }
}

AML の使用
アイテムの [製造元] テーブルは、承認済み製造元リスト (AML) とも呼ばれます。特定のアイテムについてそ

の供給を承認された製造元がリストされます。このリストで、そのアイテムの製造元部品を特定できます。[製
造元] テーブルは、データの列 (フィールド) で構成されます。各列は、[製造元.製造元名] などの Agile PLM 属
性を表します。[製造元] テーブルの各行は、個別の製造元部品を表します。

[製造元] テーブルの他に、レッドライン変更が記録される [製造元のレッドライン] テーブルもあります。

DataObject.getTable() メソッドを使用して [製造元] テーブルをロードする場合は、正しいテーブル ID
定数を指定していることを確認してください。

BOM テーブル ID 定数

現在の [製造元] テーブル ItemConstants.TABLE_MANUFACTURERS

[製造元のレッドライン] テーブル ItemConstants.TABLE_REDLINEMANUFACTURERS

SDK 開発者ガイド

116 ページ Agile Product Lifecycle Management

[製造元] テーブルへの承認済み製造元の追加
[BOM] テーブルとは異なり、[製造元] テーブルでは、テーブルに新規行を追加する前に、製造拠点を指定する

必要があります。承認済み製造元は、拠点別であるか、またはすべての拠点に共通です。

IManufacturingSiteSelectable.setManufacturingSite() メソッドを使用して、拠点を指定します。

共通の [製造元] テーブルに承認済み製造元を追加するには、

ManufacturingSiteConstants.COMMON_SITE を使用します。それ以外の場合は、ユーザーのデフォルト

の拠点など、特定の拠点を選択します。

注意 親アイテムが現在すべての拠点を表示するように設定されている場合、その AML には行を追加で

きません。AML に行を追加する前に、アイテムの拠点が
ManufacturingSiteConstants.ALL_SITES に設定されていないことを確認してください。

ManufacturingSiteConstants.ALL_SITES に設定されていると、API で例外が発生します。

例: AML への承認済み製造元の追加
//Add a MfrPart to the common AML
public void addCommonApprMfr(IItem item, String mfrName, String
mfrPartNum) throws APIException {
 HashMap map = new HashMap();

map.put(ManufacturerPartConstants.ATT_GENERAL_INFO_MANUFACTURER_PA
RT_NUMBER, mfrPartNum);

map.put(ManufacturerPartConstants.ATT_GENERAL_INFO_MANUFACTURER_NA
ME, mfrName);
 IManufacturerPart mfrPart =
(IManufacturerPart)m_session.getObject(
 ManufacturerPartConstants.CLASS_MANUFACTURER_PART, map
);

item.setManufacturingSite(ManufacturingSiteConstants.COMMON_SITE);

item.getTable(ItemConstants.TABLE_MANUFACTURERS).createRow(mfrPart
);
}
//Add a site-specific MfrPart to the AML using the user’s default site
public void addSiteApprMfr(IItem item, String mfrName, String
mfrPartNum) throws APIException {
 HashMap map = new HashMap();

map.put(ManufacturerPartConstants.ATT_GENERAL_INFO_MANUFACTURER_PA
RT_NUMBER, mfrPartNum);

map.put(ManufacturerPartConstants.ATT_GENERAL_INFO_MANUFACTURER_NA
ME, mfrName);
 IManufacturerPart mfrPart =
(IManufacturerPart)m_session.getObject(

 第 7 章

Agile Product Lifecycle Management 117 ページ

 ManufacturerPartConstants.CLASS_MANUFACTURER_PART, map
);

item.setManufacturingSite(((IAgileList)m_session.getCurrentUser().
getValue(

UserConstants.ATT_GENERAL_INFO_DEFAULT_SITE)).getSelection()[0]
);

item.getTable(ItemConstants.TABLE_MANUFACTURERS).createRow(mfrPart
);
}

製造拠点の詳細は、第 9 章「製造拠点の管理」を参照してください。

AML のレッドライン
アイテムがリリースされた後は、新規設計変更を発行することによってのみ、[製造元] テーブルを変更できま

す。設計変更を使用すると、[製造元] テーブルをレッドラインできます。

注意 [製造元] テーブルの行からレッドラインを削除できます。87 ページのレッドラインの変更の削除」

を参照してください。

[製造元] テーブルをレッドラインする手順は、次のとおりです。

1. アイテムのリリース済みリビジョンを取得します。

2. 新規 ECO、MCO または SCO を作成します。

 ECO では、アイテムの [BOM] テーブルまたは [製造元] テーブルを変更できます。

 MCO では、アイテムの [製造元] テーブルを変更できます。

 SCO では、アイテムの拠点別の [BOM] テーブルまたは [製造元] テーブルを変更できます。

3. 変更の [対象アイテム] テーブルにアイテムを追加します。

4. ECO の場合は、変更に対する新しいリビジョンを指定します。SCO および MCO は、アイテムのリビジョ

ンに影響を与えません。

5. [製造元のレッドライン] テーブルを変更します。

SDK 開発者ガイド

118 ページ Agile Product Lifecycle Management

Agile Product Lifecycle Management 119 ページ

第 8 章

リストの使用

扱うトピックは次のとおりです。

 リストについて ... 119
 リスト値の選択 ... 123
 リスト ライブラリからのリストの選択.. 127
 カスタム リストの作成 ... 129
 リストのデータ タイプの確認 ... 133
 リストの変更 ... 134
 IAgileList オブジェクトのコンテンツの印刷 ... 138

リストについて
Agile PLM システムでは、多くの属性がリストとして設定されています。Agile には、リスト フィールドをサ

ポートするために、次の 2 つのデータ タイプが用意されています。

 シングルリスト - 1 つの値のみを選択できるリスト

 マルチリスト - 複数の値を選択できるリスト

属性、プロパティおよびセルはすべてリストにできます。Agile API の IAgileList インターフェースには、

リストを使用するためのメソッドが用意されています。このインターフェースは、すべての Agile リストで使

用する一般化されたデータ構造です。IAgileList は、使用可能なリスト値のツリー構造を表すため、

ITreeNode インターフェースを拡張しています。

ITreeNode.addChild() を使用すると、値をリストに追加できます。すべてのリスト値は一意である必要が

あります。リスト値を追加した後は、そのリスト値を破棄することによって、リスト値を選択できないように

できます。

リスト ライブラリ
Agile Java クライアントで、管理者は、[ユーザー定義 1] および [ユーザー定義 2] リスト属性に使用できるカ

スタム リストを定義できます。カスタム リストは、Agile API を使用して定義することもできます。

IListLibrary インターフェースには、Agile Java クライアントのリスト ライブラリと同等の機能が用意さ

れています。IAdminList インターフェースを使用すると、リストの値またはプロパティを変更できます。

リスト ライブラリを取得するには、IAdmin.getListLibrary() メソッドを使用します。次に、

IListLibrary インターフェースを使用して新規のカスタム リストを作成し、既存のリストを使用します。

AdminListConstants には、リスト ライブラリ内の各リストに対する ID が用意されています。

SDK 開発者ガイド

120 ページ Agile Product Lifecycle Management

注意 Agile API では、Agile Java クライアントのリスト ライブラリに表示されない内部の Agile リスト

をいくつかサポートしています。

図 5: リスト ライブラリ

シングルリストのリスト
シングルリストの属性がセルに表示され、そのリストから 1 つの値だけを選択することができます。次の図は、

Agile Web クライアントの [時刻フォーマット] フィールドです。これはシングルリストのセルになっています。
図 6: Agile Web クライアントのシングルリストのセル

 第 8 章

Agile Product Lifecycle Management 121 ページ

マルチリストのリスト
マルチリストの属性がセルに表示され、そのリストから複数の値を選択することができます。Agile Web クラ

イアントでは、次の図に示すように [複数の値の選択] ウィンドウを使用し、複数の値を選択してマルチリス

トのセルに追加することができます。
図 7: Agile Web クライアントの [複数の値の選択] ウィンドウ

SDK 開発者ガイド

122 ページ Agile Product Lifecycle Management

カスケード リスト
Agile Java クライアントでは、シングルリストの属性を設定して、複数の階層レベルを指定できます。複数の

階層レベルを持つリストは、カスケード リストと呼ばれます。次の図は、Agile Java クライアントに設定され

た [場所] リスト (カスケード リスト) を示しています。このリストは、大陸、国および市町村のレベルに分

かれた構造になっています。
図 8: Agile Java クライアントでのカスケード リストの設定

注意 [場所] リストは、Agile PLM で出荷する唯一のカスケード リストです。ただし、独自のカスケード
リストを定義することもできます。

IAgileList を使用するメソッド
IAgileList インターフェースには、リストから選択した値を取得して設定するのに必要なメソッドが用意さ

れています。IAgileList インターフェースは、値オブジェクトをツリー構造で表すため、ITreeNode を拡

張しています。

次の Agile API メソッドは、IAgileList オブジェクト (または IAgileList オブジェクトの配列) を返し

ます。

 IAdminList.getValues()

 IAdminList.setValues(IAgileList)

 IAttribute.getAvailableValues()

 第 8 章

Agile Product Lifecycle Management 123 ページ

 IAttribute.setAvailableValues(IAgileList)

 IAgileList.getSelection()

 ICell.getAvailableValues()

 IListLibrary.createAdminList(java.util.Map)

 IListLibrary.getAdminList(java.lang.Object)

 IListLibrary.getAdminLists()

 IProperty.getAvailableValues()

次の各メソッドは、関連する属性、セルまたはプロパティがリストの場合 (データ タイプが SingleList ま
たは MultiList の場合)、IAgileList を返すか、IAgileList パラメータを要求します。

 ICell.getValue() - シングルリストおよびマルチリストのセルの場合、返される Object は
IAgileList です。

 ICell.setValue(java.lang.Object value) - シングルリストおよびマルチリストのセルの場合、

value は IAgileList です。

 IProperty.getValue() - シングルリストおよびマルチリストのプロパティの場合、返される Object
は IAgileList です。

 IProperty.setValue(java.lang.Object value) - シングルリストおよびマルチリストのプロパ

ティの場合、value は IAgileList です。

 IRow.getValue(java.lang.Object cellId) - シングルリストおよびマルチリストのセルの場合、

返される Object は IAgileList です。

 IRow.getValues() - 行のシングルリストまたはマルチリストの各セルの場合、返される Map オブジェ

クトには、IAgileList が含まれます。

 IRow.setValue(java.lang.Object cellId, java.lang.Object value) - cellID でシングル

リストまたはマルチリストのセルが指定されている場合、value は IAgileList です。

 IRow.setValues(java.util.Map map) - 行のシングルリストまたはマルチリストの各セルの場合、

map には、IAgileList が含まれます。

リスト値の選択
リスト値を選択するには、そのリストがシングルリストかマルチリストのリストかにかかわらず、最初にリス

トの利用可能な値を取得する必要があります。これによって、選択した値を設定できます。リスト値を選択し

た後は、セルまたはプロパティにその値を設定して選択内容を保存します。

次の例は、属性の [表示] プロパティの値を変更する方法を示しています。[表示] プロパティはシングルリス

ト プロパティで、有効値は No と Yes (つまり 0 と 1) です。

例: 属性の [表示] プロパティの変更
try {
 // Get the Admin instance
 IAdmin admin = m_session.getAdminInstance();
 // Get part sub-class
 IAgileClass partClass =
admin.getAgileClass(ItemConstants.CLASS_PART);

SDK 開発者ガイド

124 ページ Agile Product Lifecycle Management

 // Get the "Page Two.List03" attribute
 IAttribute attr =
partClass.getAttribute(ItemConstants.ATT_PAGE_TWO_LIST03);

 // Get the Visible property
 IProperty propVisible =
attr.getProperty(PropertyConstants.PROP_VISIBLE);

 // Get all available values for the Visible property
 IAgileList values = propVisible.getAvailableValues();

 // Set the selected list value to "Yes"
 values.setSelection(new Object[] { "Yes" });
 // Instead of setting the selection to "Yes", you could also
 // specify the corresponding list value ID, as in the following line:
 // values.setSelection(new Object[] { new Integer(1)});

 // Set the value of the property
 propVisible.setValue(values);

} catch (APIException ex) {
 System.out.println(ex);
}

IAgileList.setSelection() メソッドを使用するときは、childNodes パラメータに対して String[]、
Integer[] または IAgileList[] 値を指定できます。値を IAgileList オブジェクトから選択するとき

は、そのオブジェクトの String 表現または Integer ID を使用できます。

現在リストに対して選択されている値を取得するには、IAgileList.getSelection() メソッドを使用しま

す。シングルリストのセルまたはプロパティの場合、getSelection() は 1 つの IAgileList オブジェク

トを含む配列を返します。マルチリストのセルまたはプロパティの場合、getSelection() は 1 つ以上の
IAgileList オブジェクトを含む配列を返します。

次の例は、getSelection() も含めた複数の IAgileList メソッドを使用する方法を示しています。

例: [表示] プロパティの現在のリスト値の取得
try {
 // Get the Admin instance
 IAdmin admin = m_session.getAdminInstance();
 // Get the Parts class
 IAgileClass partClass =
admin.getAgileClass(ItemConstants.CLASS_PARTS_CLASS);

 // Get the "Page Two.List03" attribute
 IAttribute attr =
partClass.getAttribute(ItemConstants.ATT_PAGE_TWO_LIST03);

 // Get the Visible property
 IProperty propVisible =
attr.getProperty(PropertyConstants.PROP_VISIBLE);

 // Get the current value of the Visible property
 IAgileList value = (IAgileList)propVisible.getValue();

 第 8 章

Agile Product Lifecycle Management 125 ページ

 // Print the current value
 System.out.println(value); // Prints "Yes"

 // Print the list value ID
 System.out.println(value.getSelection()[0].getId()); // Prints 1

 // Print the list value
 System.out.println(value.getSelection()[0].getValue()); // Prints
"Yes"

} catch (APIException ex) {
 System.out.println(ex);
}

リストは複数の属性 (異なるクラスの属性の場合でも) に対して再利用できます。次の例では、[ユーザー定義
1] 属性の利用可能な値のリストを再利用して、[ユーザー定義 2] リスト属性の利用可能な値のリストを設定し

ています。

例: 異なる属性のリスト値の再利用
try {
 // Get the Admin instance
 IAdmin admin = m_session.getAdminInstance();
 // Get the Parts class
 IAgileClass partClass =
admin.getAgileClass(ItemConstants.CLASS_PARTS_CLASS);

 // Get the "Page Two.List01" attribute
 IAttribute attr1 =
partClass.getAttribute(ItemConstants.ATT_PAGE_TWO_LIST01);

 // Get the "Page Three.List01" attribute
 IAttribute attr2 =
partClass.getAttribute(ItemConstants.ATT_PAGE_THREE_LIST01);

 // Set the available values for the list, using values from "Page
Two.List01"
 attr2.setAvailableValues(attr1.getAvailableValues());
} catch (APIException ex) { System.out.println(ex);
}

動的リストの使用
Agile サーバには、静的リストおよび動的リストの両方があります。静的リストには、実行時に変更されない

値が含まれます。動的リストには、実行時に更新される値が含まれます。管理者権限のあるユーザーは、静的

リストを変更し、新しい値を追加して現在値を破棄できます。動的リストは変更できません。したがって、動

的リストの [編集可能] プロパティは、[いいえ] に設定されています。

一部の動的リストには、数千の値のオブジェクトを含めることができます。このようなリストの例には、アイ

テム、変更およびユーザーのリストがあります。これらのリストは、[ユーザー定義 1] と [ユーザー定義 2]
フィールドに使用できますが、それらのリストに対して値を列挙することはできません。

同様に、Agile SDK オブジェクトのリストも値を列挙できる場合と列挙できない場合があります。特定のリス

トが列挙可能な場合は、そのリストの内容を読み取ることができます。リストが列挙不可能な場合、そのリス

トには直接アクセスできません。列挙不可能なリストの場合は、オブジェクトのリストで使用されている Agile
クラスを検索して、リストが参照しているオブジェクトを取得します。オブジェクトの列挙プロパティはサー

バでハードコードされているため、変更できません。

SDK 開発者ガイド

126 ページ Agile Product Lifecycle Management

動的リストの値が列挙可能かどうかを判断するには、次の例に示すように IAgileList.getChildNodes()
を使用します。getChildNodes() がヌルを返した場合、リストの値は列挙できません。ただし、リストの値

を選択することはできます。

例: 動的リストの値が列挙可能かどうかの確認
private void setPageTwoListValue(IItem item) throws APIException {
 // Get the "Page Two.List01" cell
 ICell cell = item.getCell(CommonConstants.ATT_PAGE_TWO_LIST01);

 // Get available values for the list
 IAgileList values = cell.getAvailableValues();

 // If the list cannot be enumerated, set the selection to the current
user
 if (values.getChildNodes() == null) {
 values.setSelection(new
Object[]{m_session.getCurrentUser()});
 cell.setValue(values);
 }
}
private void setPageTwoMultilistValue(IItem item) throws
APIException {
 // Get the "Page Two.Multilist01" cell
 ICell cell =
item.getCell(CommonConstants.ATT_PAGE_TWO_MULTILIST01);

 // Get available values for the list
 IAgileList values = cell.getAvailableValues();

 // If the list cannot be enumerated, set the selection to
an array of users
 if (values.getChildNodes() == null) {
 IAgileClass cls =
cell.getAttribute().getListAgileClass();
 if (cls != null) {
 IUser user1 = (IUser)m_session.getObject(cls,
"hhawkes");
 IUser user2 = (IUser)m_session.getObject(cls,
"ahitchcock");
 IUser user3 = (IUser)m_session.getObject(cls,
"jhuston");
 Object[] users = new Object[] {user1, user2, user3};
 values.setSelection(users);
 cell.setValue(values);
 }
 }
}

 第 8 章

Agile Product Lifecycle Management 127 ページ

ライフサイクル フェーズ セルの使用
[ライフサイクル フェーズ] 属性はシングルリスト データ タイプです。Agile PLM システム内の各サブクラ

スは、異なるライフサイクル フェーズを使用して定義できます。したがって、リストの利用可能な値を取得す

るには、その前に、サブクラスのライフサイクル フェーズ セルを取得する必要があります。

IAttribute.getAvailableValues() を使用して、サブクラス固有のセルではなく [ライフサイクル
フェーズ] 属性の利用可能な値を取得した場合は、空の IAgileList オブジェクトが返されます。次の例は、

ライフサイクル フェーズ セルを使用する方法を示しています。

例: ライフサイクル フェーズ セルの使用
private static void setLifecyclePhase(IItem item) throws APIException
{
 // Get the Lifecycle Phase cell
 ICell cell =
item.getCell(ItemConstants.ATT_TITLE_BLOCK_LIFECYCLE_PHASE);

 // Get available list values for Lifecycle Phase
 IAgileList values = cell.getAvailableValues();

 // Set the value to the second phase
 values.setSelection(new Object[] { new Integer(1)});
 cell.setValue(values);
}

リスト ライブラリからのリストの選択
IListLibrary インターフェースを使用すると、Agile リストのライブラリを使用できます。既存のリストを

ロードしたり、新規リストを作成することができます。既存のリストをロードするには、

IListLibrary.getAdminList() を使用します。リストの文字列名は「Disposition」のように指定できます。

また、ID または AdminListConstants のいずれかでリストを指定することもできます
(LIST_DISPOSITION_SELECTION など)。リスト ライブラリからリストを使用するには、その前に、そのリ

ストが有効であることを確認してください。

カスケード リストは、シングルリストの属性でのみ使用し、マルチリストの属性では使用しません。リスト ラ
イブラリからリストを選択するときは、IAdminList.isCascaded() を使用して、そのリストがカスケード
リストかどうかを確認してください。

次の例は、[ユーザー定義 1] リスト属性を設定して「Users」というリストを使用する方法を示しています。

例: 属性の設定による Agile リストの使用
try {
 IAgileList values = null;
 // Get the Admin instance
 IAdmin admin = m_session.getAdminInstance();

 // Get the List Library
 IListLibrary listLib = admin.getListLibrary();

 // Get the Parts class
 IAgileClass partClass =
admin.getAgileClass(ItemConstants.CLASS_PARTS_CLASS);

SDK 開発者ガイド

128 ページ Agile Product Lifecycle Management

 // Get the "Page Two.List01" attribute
 IAttribute attr =
partClass.getAttribute(ItemConstants.ATT_PAGE_TWO_LIST01);

 // Make the list visible
 IProperty propVisible =
attr.getProperty(PropertyConstants.PROP_VISIBLE);
 values = propVisible.getAvailableValues();
 values.setSelection(new Object[] { "Yes" });
 propVisible.setValue(values);

 // Change the name of the attribute to "Project Manager"
 IProperty propName =
attr.getProperty(PropertyConstants.PROP_NAME);
 propName.setValue("Project Manager");

 // Get the list property
 IProperty propList =
attr.getProperty(PropertyConstants.PROP_LIST);

 // Use the Users list from the list library.
 IAdminList users =
listLib.getAdminList(AdminListConstants.LIST_USER_OBJECTS);
 if (users != null) {
 if (users.isEnabled()) {
 propList.setValue(users);
 } else {
 System.out.println("Users list is not enabled.");
 }
 }

 // Specify the Default Value to the current user
 IProperty propDefValue =
attr.getProperty(PropertyConstants.PROP_DEFAULTVALUE);
 values = propDefValue.getAvailableValues();
 values.setSelection(new
Object[]{m_session.getCurrentUser()});
 propDefValue.setValue(values);

} catch (APIException ex) {
 System.out.println(ex);
}

IListLibrary.getAdminList() を使用してユーザー定義リストを選択するときは、名前または ID でリ

ストを指定できます。すべてのリスト名は一意である必要があります。次の例は、「Colors」という Agile リ
ストを選択する方法を示しています。

例:「Colors」という名前のリストの選択
private void selectColorsList(IAttribute attr, IListLibrary
m_listLibrary) throws APIException {
 // Get the List property
 IProperty propList =
attr.getProperty(PropertyConstants.PROP_LIST);

 // Use the Colors list
 IAdminList listColors =
m_listLibrary.getAdminList("Colors");
 if (listColors != null) {

 第 8 章

Agile Product Lifecycle Management 129 ページ

 if (listColors.isEnabled()) {
 propList.setValue(listColors);
 } else {
 System.out.println("Colors list is not enabled.");
 }
 }
}

カスタム リストの作成
Agile API を使用すると、異なるクラスのリスト属性を変更して、[ユーザー定義 1] および [ユーザー定義 2]
のカスタム リスト属性を設定できます。また、これらのリスト属性をカスタマイズして、簡易リストまたはマ

ルチリストを作成することができます。さらに、リストを重ねて表示し、複数のレベルを設定することもでき

ます。

Agile Java クライアントで、管理者は [管理] > [データ設定] > [リスト] の順に選択して、カスタム リストのラ

イブラリを設定できます。Agile API の IListLibrary インターフェースには、[管理] > [データ設定] > [リス

ト] を順に選択した場合と同等の機能が用意されています。IAdminList インターフェースには、各リストを

設定およびカスタマイズするための機能が用意されています。

簡易リストの作成
新規リストを作成するには、IListLibrary.createAdminList() メソッドを使用します。このメソッドに

は map パラメータを指定します。createAdminList() とともに渡す map には、次の IAdminList
フィールドの値が含まれている必要があります。

 ATT_NAME - リストの文字列名。これは必須フィールドです。リスト名は一意である必要があります。

 ATT_DESCRIPTION - リストの文字列の説明。これはオプションのフィールドです。デフォルト値は空の

文字列です。

 ATT_ENABLED - リストが有効かどうかを指定するブール値。これはオプションのフィールドです。デフォ

ルト値は false です。

 ATT_CASCADED - リストに複数のレベルを含めるかどうかを指定するブール値。これはオプションの

フィールドです。デフォルト値は false です。リストを作成した後は、ATT_CASCADED の値は変更できま

せん。

リストを作成した後は、IAdminList インターフェースを使用してそのリストを有効または無効にし、値を設

定できます。

次の例は、「Colors」という新規リストを作成する方法を示しています。このリストは、1 レベルのみの簡易

リストです。

例: 簡易リストの作成
try {
 // Get the Admin instance
 IAdmin admin = m_session.getAdminInstance();
 // Get the List Library
 IListLibrary listLib = admin.getListLibrary();

 // Create a new Admin list
 HashMap map = new HashMap();
 String name = "Colors";

SDK 開発者ガイド

130 ページ Agile Product Lifecycle Management

 map.put(IAdminList.ATT_NAME, name);
 map.put(IAdminList.ATT_DESCRIPTION, name);
 map.put(IAdminList.ATT_ENABLED, new Boolean(true));
 map.put(IAdminList.ATT_CASCADED, new Boolean(false));
 IAdminList listColors = listLib.createAdminList(map);

 // Add values to the list
 IAgileList list = listColors.getValues(); //The list is empty at this
point.
 list.addChild("Black");
 list.addChild("Blue");
 list.addChild("Green");
 list.addChild("Purple");
 list.addChild("Red");
 list.addChild("White");
 listColors.setValues(list);
} catch (APIException ex) {
 System.out.println(ex);
}

文字列値を含むリストでは、大文字と小文字が区別されます。つまり、リストには、同じ値を大文字、小文字

およびそれらの混合で含めることができますが、これは適切でない場合があります。たとえば、次のコード例

では、1 つの色について 3 種類の値を「Colors」リストに追加しています。

例: リストへの大文字と小文字を区別した値の追加
 IAgileList list = listColors.getValues(); //The list is empty at this
point.
 list.addChild("Black");
 list.addChild("BLACK");
 list.addChild("black");
 list.addChild("Blue");
 list.addChild("BLUE");
 list.addChild("blue");
 list.addChild("Green");
 list.addChild("GREEN");
 list.addChild("green");
 list.addChild("Purple");
 list.addChild("PURPLE");
 list.addChild("purple");
 list.addChild("Red");
 list.addChild("RED");
 list.addChild("red");
 list.addChild("White");
 list.addChild("WHITE");
 list.addChild("white");

既存リストの変更による新規リストの自動作成
各リスト属性は、その値について Agile リストを参照する必要があります。Agile リストを取得してその値を

変更し、リストを保存せずにリスト属性に対してその値を使用すると、Agile API では新規リストが自動的に作

成されます。次の例では、「Colors」リストを取得した後、このリストを使用してリスト フィールドに値が挿

入される前に、新しい値 “Violet” がリストに追加されます。IAttribute.setAvailableValues() が呼び出されると、

新規リストが作成されます。

注意 Agile API で自動的に作成されたリストの名前は、接頭辞「SDK」の後にランダム番号が続きます。

このリスト名は、必要に応じて変更できます。

 第 8 章

Agile Product Lifecycle Management 131 ページ

例: 既存リストの変更による新規リストの自動作成
try {
 // Get the Colors list
 IAdminList listColors = m_listLibrary.getAdminList("Colors");

 // Get the Parts class
 IAgileClass partsClass =
admin.getAgileClass(ItemConstants.CLASS_PARTS_CLASS);

 // Get the "Page Two.List01" attribute
 IAttribute attr =
partsClass.getAttribute(ItemConstants.ATT_PAGE_TWO_LIST01);

 // Get the color values
 IAgileList values = listColors.getValues();

 // Add a new color
 values.addChild("Violet");

 // Set the available list values for "Page Two.List01". Because the
list
 // was modified, a new AdminList is created automatically.
 attr.setAvailableValues(values);
} catch (APIException ex) { System.out.println(ex);
}

カスケード リストの作成
カスケード リストは、複数のレベルがあるリストです。シングルリストの属性とセルは、簡易リストのかわり

にカスケード リストを使用して設定できます。

注意 リストをカスケード リストとして設定した後は、そのリストをフラット リストに変更することは

できません。リストを作成した後は、IAdminList.ATT_CASCADED の値は変更できません。

次の例は、「Field Office」という新規のカスケード リストを作成する方法を示しています。このリストには、

2 つのレベルがあります。

重要 カスケード リストにレベル名を設定するときは、次の 2 つの例に示すように、最初のレベルは常

にインデックス 0 から開始し、後続のレベルのインデックスを 1 ずつ増分します。

例: カスケード リストの作成
try {
 // Get the Admin instance
 IAdmin admin = m_session.getAdminInstance();
 // Get the List Library
 IListLibrary listLib = admin.getListLibrary();

 // Create a new Admin list
 HashMap map = new HashMap();
 String name = "Field Office";
 map.put(IAdminList.ATT_NAME, name);
 map.put(IAdminList.ATT_DESCRIPTION, name);

SDK 開発者ガイド

132 ページ Agile Product Lifecycle Management

 map.put(IAdminList.ATT_ENABLED, new Boolean(true));
 map.put(IAdminList.ATT_CASCADED, new Boolean(true));
 IAdminList listFO = listLib.createAdminList(map);

 // Get the empty list
 IAgileList list = listFO.getValues();

 // Add the list of countries
 IAgileList india = (IAgileList)list.addChild("India");
 IAgileList china = (IAgileList)list.addChild("China");
 IAgileList usa = (IAgileList)list.addChild("USA");
 IAgileList australia = (IAgileList)list.addChild("Australia");

 // Add the list of cities
 india.addChild("Bangalore");
 china.addChild("Hong Kong");
 china.addChild("Shanghai");
 china.addChild("Suzhou");
 usa.addChild("San Jose");
 usa.addChild("Milpitas");
 usa.addChild("Seattle");
 usa.addChild("Jersey City");
 australia.addChild("Sidney");

 // Save the list values
 listFO.setValues(list);

// Set level names starting with index 0 for level 1.
 list.setLevelName(0, "Field Office Country");
 list.setLevelName(1, "Field Office City");

} catch (APIException ex) {
 System.out.println(ex);
}

カスケード リストでは、リストで使用するレベル名は一意である必要があり、リスト間でレベル名を共有する

ことはできません。レベル名は内部的に保存されますが、現在は、Agile Java クライアントおよび Web クラ

イアントでは表示されません。レベル名が必要なのは、作成したカスケード リストの UI にレベル名を表示す

る場合のみです。

IAdminList.setValues() メソッドを呼び出すと、有効な ID が各リスト値に割り当てられます。有効な
ID があるのは、リーフ ノード (カスケード リストの最低レベルのノード) のみです。前述の例では、city ノー

ドがリーフ ノードです。他のすべてのノードの ID はヌルです。IAgileList オブジェクトを選択するには、

この ID を使用できます。

リスト値とその親ノードは、親ノードを追加してからそのサブノードを追加するのではなく、1 つのステート

メントで追加できます。ノードを区切るには | 文字を使用します。これらのノードは、文字列でレベルを表し

ます。次の例では、前述の例のコードが一部置き換えられています。どちらの例も同じリスト値を追加する方

法を示していますが、次の例ではコードの行数が少なくなっています。

例: カスケード リストへの親ノードとサブノードの追加
// Get the list values
IAgileList list = listFO.getValues(); // The list is empty
at this point.

 第 8 章

Agile Product Lifecycle Management 133 ページ

 // Add nodes
 list.addChild(“India|Bangalore”);
 list.addChild(“Hong Kong|Hong Kong”);
 list.addChild(“China|Suzhou”);
 list.addChild(“USA|San Jose”);
 list.addChild(“USA|Milpitas”);
 list.addChild(“USA|Jersey City”);
 list.addChild(“Australia|Sidney”);

// Save the list values
listFO.setValues(list);

 // Set level names
 list.setLevelName(0, “Field Office Country”);
 list.setLevelName(1, “Field Office City”);

リストのデータ タイプの確認
リストには、任意の Agile データ タイプのオブジェクトを含めることができます。したがって、リスト値を

取得したり設定する前には、リスト内のオブジェクトのデータ タイプを確認する必要があります。カスケード
リストを使用する場合、データ タイプが各レベルで異なっている場合があります。リストのデータ タイプを

確認するにはいくつかの方法があります。

 リスト ライブラリの事前定義済みのリストの場合は、IAdminList.getListDataType() を使用して

データ タイプを取得します。

 リスト レベルが 1 つのみのシングルリスト属性およびマルチリスト属性の場合は、

IAttribute.getListDataType() メソッドを使用してリスト全体のデータ タイプを取得します。

 カスケード リスト内のレベルの場合は、IAgileList.getLevelType() メソッドを使用して特定レベ

ルのデータ タイプを取得します。

例: リストのデータ タイプの確認
public void setDefaultValue() throws APIException {
 // Get the Parts class
 IAgileClass partClass =
m_admin.getAgileClass(ItemConstants.CLASS_PARTS_CLASS);

 // Get the "Page Two.List01" attribute
 IAttribute attr =
partClass.getAttribute(ItemConstants.ATT_PAGE_TWO_LIST01);

 switch (attr.getListDataType()) {
 case DataTypeConstants.TYPE_OBJECT:
 //Add code here to handle Object values
 break;

 case DataTypeConstants.TYPE_STRING:
 //Add code here to handle String values
 break;
 default:
 //Add code here to handle other datatypes
 }
}

SDK 開発者ガイド

134 ページ Agile Product Lifecycle Management

リストの変更
作成したリストは、次の方法で変更できます。

 リストへの値の追加

 リスト値の破棄

 リスト名と説明の設定

 カスケード リストのレベル名の設定

 リストの有効化または無効化

 リストの削除

 リストに追加した値の変更または削除

リストへの値の追加
次の例は、リストにいくつかの値を追加する方法を示しています。リストに値を追加する前に、

ITreeNode.getChildNode() メソッドを使用して、値がすでに存在していないことを確認します。

例: リストへの値の追加
private static void updateProductLinesList() throws APIException {
 // Get the Admin instance
 IAdmin admin = m_session.getAdminInstance();

 // Get the List Library
 IListLibrary listLib = admin.getListLibrary();

 // Get the Product Lines list
 IAdminList listProdLine = listLib.getAdminList("Product Line");

 // Add values to the list
 IAgileList listValues = listProdLine.getValues();
 addToList(listValues, "Saturn");
 addToList(listValues, "Titan");
 addToList(listValues, "Neptune");
 listProdLine.setValues(listValues);
}
private static void addToList(IAgileList list, String value) throws
APIException {
 if (list.getChildNode(value) == null) {
 list.addChild(value);
 }
}

 第 8 章

Agile Product Lifecycle Management 135 ページ

リスト値の破棄
リスト エントリを破棄することによって、リスト値を選択できないようにできます。ただし、

IProperty.getAvailableValues() メソッドを呼び出すと、返された IAgileList オブジェクトに破棄

されたリスト値が含まれる場合があります。これは、リスト値が破棄としてマークされると、サーバでは、破

棄されたリスト値を使用する既存のオブジェクト用にその値を保持し続けるためです。

次の例は、リスト値が破棄済みかどうかを確認し、リスト値を破棄する方法を示しています。

例: リスト値の破棄
public void checkIfObsolete(IAgileList list) throws APIException {
 if (list != null) {
 if (list.isObsolete() == false) {
 System.out.println(list.getValue());
 }
 }
}
public void setObsolete(IAgileList list, String value) throws
APIException {
 if (list != null) {
 list.setObsolete(true);
 System.out.println(list.getValue() + " is now obsolete.");
 }
}

リスト名と説明の設定
リストを作成するには、そのリストに一意の名前を指定する必要があります。したがって、

IListLibrary.createAdminList() を使用する場合は、IAdminList.ATT_NAME フィールドの値を渡す

必要があります。他の IAdminList フィールド (ATT_DESCRIPTION など) はオプションです。リストを作

成した後は、名前と説明を変更できます。次の例は、リストの名前と説明を設定する方法を示しています。

例: リスト名と説明の設定
try {
 IAdminList list = m_listLibrary.getAdminList("Packaging Styles");
 list.setName("Packaging Color Codes");
 list.setDescription("Color codes for product packaging");
} catch (APIException ex) {
 System.out.println(ex);
}

カスケード リストのレベル名の設定
リスト名と同様に、リストのレベル名は一意である必要があります。別のカスケード リストで使用されている

レベル名を再利用することはできません。特定の名前のリストがすでに存在するかどうかを確認するには、

IListLibrary.getAdminList() を使用します。次のいずれかの方法でカスケード リストのレベル名を設

定します。

 IAgileList.setLevelName(int, String) - 指定したレベルにレベル名を設定する

 IAgileList.setLevelName(String) - 現在のレベルのレベル名を設定する

SDK 開発者ガイド

136 ページ Agile Product Lifecycle Management

カスケード リストのレベル名を設定する方法の例については、131 ページの「カスケード リストの作成」を

参照してください。

注意 カスケード リストのレベル名は、Agile Java クライアントまたは Web クライアントに表示されま

せん。ただし、Agile SDK を使用して作成したクライアントにはレベル名を表示できます。

リストの有効化または無効化
カスタム リストを作成するときは、IAdminList.ATT_ENABLED フィールドを使用して、そのリストを有効

にするかどうかを指定することができます。このフィールドを省略すると、リストはデフォルトで無効になり

ます。次の例は、作成したリストを有効または無効にする方法を示しています。

例: リストの有効化または無効化
public void enableList(IAdminList list) throws APIException {
 list.enable(true);
 System.out.println("List " + list.getName() + " enabled.");
}
public void disableList(IAdminList list) throws APIException {
 list.enable(false);
 System.out.println("List " + list.getName() + " disabled.");
}

リストの削除
読み取り専用でなく、Agile データオブジェクトで現在使用されていないリストは、削除できます。それ以外

の場合は、IAdminList.delete() メソッドで例外が発生します。リストを削除すると、そのリストは完全

に削除されます。削除を取り消すことはできません。

次の例は、リストを削除する方法を示しています。

例: リストの削除
public void deleteList(IAdminList list) throws APIException {
 // Make sure the list is not read-only
 if (!list.isReadOnly()) {
 // Delete the list
 list.delete();
 System.out.println("List " + list.getName() + " deleted.");
 } else {
 System.out.println("List " + list.getName() + " is read-only.");
 }
}

 第 8 章

Agile Product Lifecycle Management 137 ページ

リスト値の変更および削除
SDK には、文字列要素エントリを変更したり Agile リストのエントリを削除するために、次のメソッドが用

意されています。

 IAgileList.setValue(Object) メソッドは、Agile 管理リストの文字列リスト要素エントリを変更す

る場合に使用します。

注意 このメソッドは、文字列値にのみ適用されます。このメソッドを使用できるのは、文字列エントリ

を変更する場合のみで、オブジェクト エントリには使用できません。

 IAgileList.clear() および ITree.removeChild(Object) メソッドは、適用されるビジネス
ルールで制限されていない Agile リスト エントリを削除する場合に使用します。

次の例では、これらのメソッドを使用して、Agile リストの値を変更およびクリアしています。

例: 管理リスト エントリの名前変更および削除
public void exampleClearList() throws Exception {
 IAdmin admin = m_session.getAdminInstance();
 IListLibrary listLibrary = admin.getListLibrary();
 HashMap map = new HashMap();
 String name = "Color";
 String desc = "Example";
 map.put(IAdminList.ATT_NAME, name);
 map.put(IAdminList.ATT_DESCRIPTION, desc);
 map.put(IAdminList.ATT_ENABLED, new Boolean(true));
 map.put(IAdminList.ATT_CASCADED, new Boolean(false));
 IAdminList newList = listLibrary.createAdminList(map);

IAgileList list = newList.getValues();
list.addChild("RED");
list.addChild("GREEN");
list.addChild("BLUE");
newList.setValues(list);
list = newList.getValues();

 // Removing the selection
 IAgileList agList = (IAgileList)list.getChild("BLUE");
 Object errorCode = null;
 try {
 list.removeChild(agList);
 }catch(APIException e){
 errorCode = e.getErrorCode();
 }

 // Clear the list
 list = newList.getValues();
 list.clear();
 newList.setValues(list);

 // Clean up
 newList.delete();
 }

SDK 開発者ガイド

138 ページ Agile Product Lifecycle Management

IAgileList オブジェクトのコンテンツの印刷
IAgileList オブジェクトを使用するとき、特にそのオブジェクトに複数のレベルがある場合は、リストの階

層全体を印刷すると便利です。次のコードでは、IAgileList オブジェクト内に含まれるリスト ノードを印

刷します。

例: IAgileList オブジェクトのリスト ノードの印刷
private void printList(IAgileList list, int level) throws APIException
{
 if (list != null) {
 System.out.println(indent(level*4) + list.getLevelName() + ":" +
 list.getValue() + ":" + list.getId());
 Object[] children = list.getChildren();
 if (children != null) {
 for (int i = 0; i < children.length; ++i) {
 printList((IAgileList)children[i], level + 1);
 }
 }
 }
}
private String indent(int level) {
 if (level <= 0) {
 return "";
 }
 char c[] = new char[level*2];
 Arrays.fill(c, ' ');
 return new String(c);
}

Agile Product Lifecycle Management 139 ページ

第 9 章

製造拠点の管理

扱うトピックは次のとおりです。

 製造拠点について ... 139
 拠点へのアクセスの管理 ... 139
 製造拠点の作成 ... 140
 製造拠点のロード ... 140
 アイテムの [拠点] テーブルの取得 ... 141
 [拠点] テーブルへの製造拠点の追加 ... 141
 アイテムの現在の製造拠点の選択.. 142
 拠点の無効化 ... 144

製造拠点について
分散型製造を実践している企業は、自社の製品を複数箇所の製造拠点で製造しています。企業では、Agile PLM
拠点オブジェクトを使用して、製品の部品に関する拠点別の情報を維持することができます。たとえば、製造

場所が異なると新規リビジョンの有効日が異なる場合があります。また、製造場所に応じて製造手順書が異な

り、コンポーネントを購入する製造元も異なる場合があります。

アイテムのすべての製造拠点または特定の拠点を対象として、変更を反映することができます。変更の [対象

アイテム] テーブルを使用すると、変更を適用する製造拠点を選択できます。アイテムの有効日と対応策は、

拠点ごとに異なるものとすることができます。有効日および対応策は、ECO や SCO の [対象アイテム] タブ

で指定します。新しい有効日または対応策を割り当てる際に新規リビジョンを作成するには、ECO を使用しま

す。リビジョンを進めずに拠点別の有効日および対応策を割り当てるには、SCO を使用します。

Agile PLM の製造拠点機能の詳細は、『Product Collaboration Guide』を参照してください。

拠点へのアクセスの管理
拠点の使用は、組織のライセンスに加えて、ユーザーのライセンス、役割、権限およびデフォルトの拠点プロ

パティによって管理されます。必要な数の製造拠点を作成できますが、有効にできる拠点の数は、組織のライ

センスによって異なります。組織によっては、ユーザーが特定の拠点に関する情報のみにアクセスできるよう

に、Agile PLM システムを設定している場合があります。

アイテムに対して拠点別の BOM を作成するには、そのアイテムのサブクラスで [拠点別の BOM] を [可] に
設定する必要があります。設定しない場合、そのサブクラスのアイテムには、すべての拠点に共通の BOM が
設定されます。

SDK 開発者ガイド

140 ページ Agile Product Lifecycle Management

製造拠点の作成
製造拠点は、名前によって一意に識別されます。製造拠点を作成するには、IAgileSession.createObject
メソッドを使用してクラスと拠点名の両方を指定します。

すべてのユーザーが製造拠点を作成できるわけではありません。製造拠点を作成できるのは、製造拠点オブジェ

クトの作成権限があるユーザーのみです。

注意 製造拠点を作成すると、そのライフサイクル フェーズがデフォルトで Disabled に設定されます。

拠点を使用するには、その拠点を有効にしてください。

例: 製造拠点の作成および有効化
try {
 // Create a manufacturing site
 HashMap params = new HashMap();

params.put(ManufacturingSiteConstants.ATT_GENERAL_INFO_NAME,
"Taipei");
 IManufacturingSite mfrSite =
(IManufacturingSite)m_session.createObject(

ManufacturingSiteConstants.CLASS_SITE, params);
 // Enable the manufacturing site
 ICell cell = mfrSite.getCell(

ManufacturingSiteConstants.ATT_GENERAL_INFO_LIFECYCLE_PHASE);
 IAgileList values = cell.getAvailableValues();
 values.setSelection(new Object[] { "Enabled" });
 cell.setValue(values);
} catch (APIException ex) {
 System.out.println(ex);
}

製造拠点のロード
IManufacturingSite オブジェクトをロードするには、IAgileSession.getObject() メソッドの 1 つ
を使用します。次の例は、製造拠点のオブジェクト タイプを指定する 3 種類の方法を示しています。

例: 製造拠点のロード
try {
 // Load the Hong Kong site
 IManufacturingSite siteHK =

(IManufacturingSite)m_session.getObject(ManufacturingSiteConstants
.CLASS_SITE, "Hong Kong");
 // Load the Taipei site
 IManufacturingSite siteTaipei =

(IManufacturingSite)m_session.getObject(IManufacturingSite.OBJECT_
TYPE, "Taipei");

 第 9 章

Agile Product Lifecycle Management 141 ページ

 // Load the San Francisco site
 IManufacturingSite siteSF =
(IManufacturingSite)m_session.getObject("Site", "San Francisco");
} catch (APIException ex) {
 System.out.println(ex);
}

アイテムの [拠点] テーブルの取得
各アイテムには、そのアイテムを使用できる製造拠点をリストした [拠点] テーブルがあります。アイテムの
[拠点] テーブルを取得するには、DataObject.getTable() メソッドを使用します。

例: [拠点] テーブルの取得
//Get the Sites table
private static void getSites(IItem item) throws APIException {
 IRow row;
 ITable table = item.getTable(ItemConstants.TABLE_SITES);
 ITwoWayIterator it = table.getTableIterator();
 while (it.hasNext()) {
 row = (IRow)it.next();
 //Add code here to do something with the Sites table
 }
}

アイテムに関連付けられた製造拠点を確認するには、

IManufacturingSiteSelectable.getManufacturingSites() メソッドを使用します。[拠点] テーブ

ルを繰り返し処理して同じ情報を取得することも可能ですが、getManufacturingSites() メソッドを使用

すると、より簡単で迅速に取得できます。getManufacturingSites() の使用例は、142 ページの「アイテ

ムの現在の製造拠点の選択」を参照してください。

[拠点] テーブルへの製造拠点の追加
[拠点] テーブルの各行は、異なる IManufacturingSite オブジェクトを参照しています。製造拠点を [拠
点] テーブルに追加するには、ITable.createRow() メソッドを使用します。

アイテムの [拠点] テーブルに製造拠点がリストされていない場合、そのアイテムはその製造拠点固有の親ア

イテムの BOM 内に表示されません。たとえば、アイテム P1001 を別アイテムの Taipei 固有の BOM に追

加するには、P1001 の [拠点] テーブルに Taipei 拠点がリストされている必要があります。

例: [拠点] テーブルへの行の追加
private static void addSite(String itemNumber, IManufacturingSite
site)
 throws APIException {
 //Load the item
 IItem item = (IItem)session.getObject(IItem.OBJECT_TYPE,
itemNumber);

 //Get the Sites table
 ITable table = item.getTable(ItemConstants.TABLE_SITES);

 //Add the manufacturing site to the table
 IRow row = table.createRow(site);
}

SDK 開発者ガイド

142 ページ Agile Product Lifecycle Management

アイテムの現在の製造拠点の選択
[BOM] テーブルと [製造元] テーブル (または AML) は、アセンブリで使用する製造拠点ごとに異なる場合が

あります。アイテムの [BOM] テーブルまたは [製造元] テーブルを取得するときは、すべての拠点の情報また

は特定の拠点の情報を表示できます。特定の拠点を選択すると、その拠点の情報のみがテーブルに表示されま

す。

IManufacturingSiteSelectable インターフェースには、アイテムの製造拠点を取得したり、設定するた

めのメソッドが用意されています。アイテムに対して選択した現在の製造拠点を取得するには、

IManufacturingSiteSelectable.getManufacturingSite() メソッドを使用します。

例: アイテムに対して現在選択されている製造拠点の取得
private static IManufacturingSite getCurrentSite(IItem
item)
 throws APIException {
 IManufacturingSite site = item.getManufacturingSite();
 return site;
}

IManufacturingSiteSelectable.getManufacturingSites() メソッドは、アイテムの [拠点] テーブ

ルに追加された利用可能なすべての製造拠点を取得します。

例: アイテムに関連付けられたすべての製造拠点の取得
private static void getItemSites(IItem item)
 throws APIException {
 IManufacturingSite[] sites =
item.getManufacturingSites();
 //Print the name of each site
 for (int i = 0; i < sites.length; ++i) {
 String siteName = (String)sites[i].getValue(
 ManufacturingSiteConstants.ATT_GENERAL_INFO_NAME
);
 System.out.println(siteName);
 }
}

IManufacturingSiteSelectable.setManufacturingSite() メソッドは、アイテムに対して現在の製

造拠点を設定します。アイテムには、特定の製造拠点を設定すること、拠点別でないこと、すべての拠点を使

用することを指定できます。アイテムが拠点別でないことを指定するには、

ManufacturingSiteConstants.COMMON_SITE を使用します。すべての拠点の使用を指定するには、

ManufacturingSiteConstants.ALL_SITES 値を渡します。

アイテムに対して製造拠点を設定すると、そのアイテムは更新され、拠点別の情報が反映されます。したがっ

て、プログラムでは、行に対しても処理を繰り返して、[BOM] テーブルと [製造元] テーブルを更新する必要

があります。

 第 9 章

Agile Product Lifecycle Management 143 ページ

例: アイテムに対する現在の製造拠点の設定
try {
 // Load sites
 IManufacturingSite siteSF =
(IManufacturingSite)m_session.getObject("Site", "San Francisco");
 IManufacturingSite siteHK =
(IManufacturingSite)m_session.getObject("Site", "Hong Kong");
 // Load an item
 IItem item = (IItem)m_session.getObject("Part", "1000-02");
 // Set the Hong Kong site
 item.setManufacturingSite(siteHK);
 String desc =
(String)item.getValue(ItemConstants.ATT_TITLE_BLOCK_DESCRIPTION);
 System.out.println("Hong Kong description = " + desc);
 // Set the San Francisco site
 item.setManufacturingSite(siteSF);
 desc =
(String)item.getValue(ItemConstants.ATT_TITLE_BLOCK_DESCRIPTION);
 System.out.println("San Francisco description = " + desc);
 // Set the item to use all sites

item.setManufacturingSite(ManufacturingSiteConstants.ALL_SITES);
 desc =
(String)item.getValue(ItemConstants.ATT_TITLE_BLOCK_DESCRIPTION);
 System.out.println("All Sites description = " + desc);
 // Set the item to be common site (the item is not site-specific)

item.setManufacturingSite(ManufacturingSiteConstants.COMMON_SITE);
 desc =
(String)item.getValue(ItemConstants.ATT_TITLE_BLOCK_DESCRIPTION);
 System.out.println("Global description = " + desc);
 // Set the item to use the user's default site

item.setManufacturingSite(((IAgileList)m_session.getCurrentUser().
getValue(

UserConstants.ATT_GENERAL_INFO_DEFAULT_SITE)).getSelection()[0].ge
tValue());
 desc =
(String)item.getValue(ItemConstants.ATT_TITLE_BLOCK_DESCRIPTION);
 System.out.println("User's Default Site description = " + desc);
} catch (APIException ex) {
 System.out.println(ex);
}

SDK 開発者ガイド

144 ページ Agile Product Lifecycle Management

拠点の無効化
製造拠点には 2 つのライフサイクル フェーズがあり、有効または無効のいずれかになります。拠点が無効の

場合、その拠点は、拠点別の BOM、AML および変更の作成には使用できません。

製造拠点を無効にするには、[ライフサイクル フェーズ] 属性の値を Disabled に設定します。

例: 製造拠点の無効化
private static void disableSite(IManufacturingSite site)
 throws APIException {
 // Get the Lifecycle Phase cell
 ICell cell = site.getCell(
 ManufacturingSiteConstants.ATT_GENERAL_INFO_LIFECYCLE_PHASE
);

 // Get available list values for Lifecycle Phase
 IAgileList values = cell.getAvailableValues();

 // Set the value to Disabled
 values.setSelection(new Object[] { "Disabled" });
 cell.setValue(values);
}

Agile Product Lifecycle Management 145 ページ

第 10 章

添付ファイルとファイル フォルダの使用

扱うトピックは次のとおりです。

 添付ファイルについて ... 145
 ファイル フォルダの使用 ... 146
 [添付ファイル] テーブルの使用 ... 149
 ファイル フォルダのチェックアウト.. 151
 ファイル フォルダのチェックアウトのキャンセル .. 151
 [添付ファイル] テーブルへのファイルおよび URL の追加 ... 152
 ファイル フォルダのチェックイン.. 156
 ファイルの置換 ... 157
 添付ファイルの取得 ... 159
 ファイル フォルダと添付ファイルの削除.. 160

添付ファイルについて
ほとんどの主要な Agile API オブジェクト (IItem、IChange、IManufacturerPart、IManufacturer、
IPackage、ITransferOrder、IUser、IUserGroup など) には、[添付ファイル] テーブルがあります。

このテーブルには、個別のファイル フォルダ内にあるファイルまたは URL への間接参照がリストされていま

す。[添付ファイル] テーブル内の各行は、参照先ファイル フォルダから 1 ファイルまたはすべてのファイル

を参照できます。ファイル フォルダは、ファイル サーバ格納庫に保存されている 1 つ以上の URL (インター

ネット アドレス) またはファイルを指定するビジネス オブジェクトです。

次の図は、複数のビジネス オブジェクト (この例ではアイテムと変更) の [添付ファイル] テーブルから、ファ

イル フォルダに含まれているファイルまたは URL を間接的に参照する例を示しています。
図 9: [添付ファイル] テーブル行からファイル フォルダのファイルまたは URL を間接的に参照する方法

SDK 開発者ガイド

146 ページ Agile Product Lifecycle Management

Agile API は、添付ファイルの表示または印刷をサポートしていません。ただし、ファイルは、ダウンロードし

てから、別のアプリケーションを使用して表示、編集または印刷できます。

重要 Agile PLM 添付ファイルを追加してファイル フォルダを使用するには、その前に、Agile Java クライ

アントで [ファイル マネージャ内部ロケーター] プロパティを設定してください。[管理] > [設定] >
[サーバ設定] > [場所] > [ファイル マネージャ] > [詳細] > [ファイル マネージャ内部ロケーター] の
順に選択します。値の形式は、<protocol>://<machinename>:<port>/<virtualPath>/services/FileServer で
す。たとえば、http://agileserver.agile.agilesoft.com:8080/Filemgr/services/FileServer は有効な値です。

Agile PLM サーバ設定の詳細は、『Agile PLM管理者ガイド』を参照してください。

ファイル フォルダの使用
ファイル フォルダは、独自のテーブルのセットを備えた Agile PLM ビジネス オブジェクトです。これは、独

立したファイル フォルダを作成およびロードして、1 つ以上のファイルをその [ファイル] テーブルに追加で

きることを意味します。また、ファイル フォルダは、アイテムや変更を検索するのと同様に検索することもで

きます。現在、デフォルトのファイル フォルダ クラスには、ファイル フォルダと履歴レポート ファイル フォ

ルダがあり、それぞれのクラスにはサブクラスがあります。Agile PLM 管理者は、新規ファイル フォルダのサ

ブクラスを定義できます。

IFileFolder は、ファイル フォルダ ビジネス オブジェクトに対応するインターフェースです。次の例は、

ファイル フォルダの作成方法を示しています。

例: ファイル フォルダの作成
public void createFileFolder() throws Exception {
 IAgileClass attClass =
m_admin.getAgileClass(FileFolderConstants.CLASS_FILE_FOLDER);
 IAutoNumber an = cls.getAutoNumberSources()[0];
 String attNumber = an.getNextNumber();
 IFileFolder ff = (IFileFolder)m_session.createObject(attClass,
attNumber);
}

ファイルまたは URL をビジネス オブジェクトの [添付ファイル] テーブルの行に追加すると、関連するファ

イルまたは URL が含まれた新規のファイル フォルダが自動的に作成されます。参照先ファイル フォルダは、

次の例に示すように、IRow.getReferent() メソッドを使用してロードできます。

例: [添付ファイル] テーブルへの行の追加によるファイル フォルダの作成
public IFileFolder addRowToItemAttachments(IItem item, File file)
throws Exception {
 ITable attTable = item.getTable(ItemConstants.TABLE_ATTACHMENTS);
 IRow row = attTable.createRow(file);
 IFileFolder ff = (IFileFolder)row.getReferent();
 return ff;
}

http://agileserver.agile.agilesoft.com:8080/Filemgr/services/FileServer

 第 10 章

Agile Product Lifecycle Management 147 ページ

ファイル フォルダのテーブル
テーブル 定数 読み取り/書き込みモード

タイトル ブロック TABLE_TITLEBLOCK 読み取り/書き込み

ユーザー定義 1 TABLE_PAGETWO 読み取り/書き込み

ユーザー定義 2 TABLE_PAGETHREE 読み取り/書き込み

ファイル TABLE_FILES 読み取り/書き込み

ワークフロー TABLE_WORKFLOW 読み取り/書き込み

関係 - 影響先 TABLE_RELATIONSHIPSAFFECTS 読み取り専用

関係 - 影響元 TABLE_RELATIONSHIPSAFFECTEDBY 読み取り専用

関係 - 参照 TABLE_RELATIONSHIPSREFERENCES 読み取り/書き込み

使用箇所 TABLE_HISTORY 読み取り専用

履歴 TABLE_ATTACHMENTS 読み取り専用

ファイル フォルダの [ファイル] テーブルの使用
ファイル フォルダの [ファイル] テーブルには、オブジェクトに関連付けられているファイルと URL がリス

トされています。テーブルを編集するには、最初にファイル フォルダをチェックアウトする必要があります。

[ファイル] テーブルに対するファイルや URL の追加または削除は、ファイル フォルダをチェックアウトし

ないかぎり実行できません。

次の例は、ファイル フォルダをチェックアウトしてから、ファイルと URL を [ファイル] テーブルに追加す

る方法を示しています。

例: ファイル フォルダの [ファイル] テーブルへのファイルおよび URL の追加
public void addFiles(IFileFolder ff, File[] files, URL[] urls) throws
Exception {
 // Check out the file folder
 ff.checkOutEx();

 // Get the Files table
 ITable filesTable = ff.getTable(FileFolderConstants.TABLE_FILES);

 // Add files to the Files table
 for (int i = 0; i < files.length; ++i) {
 filesTable.createRow(files[i]);
 }
 // Add URLs to the Files table
 for (int i = 0; i < urls.length; ++i) {
 filesTable.createRow(urls[i]);
 }
 // Check in the file folder
 ff.checkIn();
}

SDK 開発者ガイド

148 ページ Agile Product Lifecycle Management

IAttachmentFile インターフェースの使用
IAttachmentFile は、Agile PLM ファイル格納庫に保存されているファイルへの一般化されたアクセスを提

供するインターフェースです。このインターフェースは、次の Agile API オブジェクトでサポートされていま

す。

 ファイル フォルダ - IFileFolder を IAttachmentFile にクラス キャストできます。

 ファイル フォルダの [ファイル] テーブルの行 - [ファイル] テーブルから IAttachmentFile に
IRow をクラス キャストできます。

 ビジネス オブジェクトの [添付ファイル] テーブルの行 - [添付ファイル] テーブルから
IAttachmentFile に IRow をクラス キャストできます。

IAttachmentFile には、添付ファイルを使用するために次のメソッドが用意されています。

 getFile()

 isSecure()

注意 IAttachmentFile には、添付ファイルのファイルを変更できる setFile() メソッドもありま

すが、これは [添付ファイル] テーブルの行に対してのみサポートされています。

IAttachmentFile メソッドから返される結果は、次の表に示すように、使用するオブジェクトによって異な

ります。

呼び出し側オブジェクト getFile() 戻り値 isSecure() 戻り値

ビジネス オブジェクトの [添付

ファイル] テーブルの行

単一ファイル InputStream (行がファイ

ル フォルダから特定のファイルを参照す

る場合)、またはファイル フォルダのすべ

てのファイルを含む ZIP された
InputStream が返されます。

参照先ファイルが URL でない場合、

またはすべてのファイルが URL で
ない場合は true。

FileFolder オブジェクト ファイル フォルダのすべてのファイルを

含む ZIP された InputStream が返さ

れます。

ファイル フォルダに含まれるすべて

のファイルが URL でない場合は
true。

ファイル フォルダの [ファイル]
テーブルの行

ファイル フォルダから特定の行を参照す

る単一ファイル InputStream が返されま

す。

参照先ファイルが URL でない場合

は true。

注意 ZIP された InputStream 内のファイルを読み取るには、java.util.zip.ZipInputStream
クラスのメソッドを使用します。

次の例は、アイテムの [添付ファイル] テーブルの行から IAttachmentFile.isSecure() および
IAttachmentFile.getFile() を使用する方法を示しています。

 第 10 章

Agile Product Lifecycle Management 149 ページ

例: isSecure() および getFile() の使用
public InputStream getItemAttachment(IItem item) throws Exception {
 InputStream content = null;
 ITable attachments =
item.getTable(ItemConstants.TABLE_ATTACHMENTS);
 IRow row = (IRow)attachments.iterator().next();
 if (((IAttachmentFile)row).isSecure())
 content = ((IAttachmentFile)row).getFile();
 return content;
}

[添付ファイル] テーブルの使用
オブジェクトの [添付ファイル] テーブルを使用するには、次の手順に従います。

1. 対象の添付ファイルがあるオブジェクトを取得します。

たとえば、IAgileSession.getObject() メソッドを使用して特定のオブジェクトを取得したり、検

索条件を作成してオブジェクトを返すことができます。

2. [添付ファイル] テーブルを取得します。テーブルを取得するには、IDataObject.getTable() または
IAttachmentContainer.getAttachments() メソッドを使用します。

3. [添付ファイル] テーブルの行を選択します。

テーブルに対して Iterator を作成し、特定の行を選択します。テーブルの双方向の Iterator を取得するに

は、ITable.getTableIterator() メソッドを使用します。

次の例は、アイテムを取得して、そのアイテムの [添付ファイル] テーブルを取得してから、最初の添付ファ

イルを選択する方法を示しています。

例: アイテムの添付ファイルの取得
try {
 // Get Item P1000
 Map params = new HashMap();
 params.put(ItemConstants.ATT_TITLE_BLOCK_NUMBER,
"P1000");
 IItem item =
(IItem)m_session.getObject(IItem.OBJECT_TYPE, params);

 // Get the attachment table for file attachments
 ITable attTable = item.getAttachments();

 // Get a table iterator
 ITwoWayIterator it = attTable.getTableIterator();

 // Get the first attachment in the table
 if (it.hasNext()) {
 IRow row = (IRow)it.next();
 // Read the contents of the stream
 InputSteam stream = ((IAttachmentFile)row).getFile();
 }
 else {
 JOptionPane.showMessageDialog(null, "There are no files
listed.",

SDK 開発者ガイド

150 ページ Agile Product Lifecycle Management

 "Error", JOptionPane.ERROR_MESSAGE);
 }
} catch (APIException ex) {
 System.out.println(ex);
}

ICheckoutable インターフェースの使用
ICheckoutable は、オブジェクトに関連付けられているファイルをチェックインおよびチェックアウトでき

るインターフェースです。このインターフェースは、[添付ファイル] テーブルの行に対してのみ適用されます。

IRow は、[添付ファイル] テーブルから ICheckoutable にクラス キャストできます。

ICheckoutable には、添付ファイルを使用するために次のメソッドが用意されています。

 cancelCheckout()

 checkIn()

 checkOutEx()

 isCheckedOut()

次の例は、ICheckoutable インターフェースを使用して、[添付ファイル] テーブルの行からファイルを

チェックアウトおよびチェックインする方法を示しています。

例: ICheckoutable メソッドを使用した添付ファイルのチェックアウトおよびチェックイン
public InputStream checkOutRow(IRow row) throws
APIException {
 // Check out the attachment
 ((ICheckoutable)row).checkOutEx();

 // Read the contents of the stream
 InputStream stream = ((IAttachmentFile)row).getFile();
 return stream;
}
public checkInRow(IRow row, String filePath) throws
APIException {
 if (row.isCheckedOut()) {
 // Set the new file
 ((IAttachmentFile)row).setFile(new File(filePath));

 // Check in the file
 ((ICheckoutable)row).checkIn();
 }
 else {
 JOptionPane.showMessageDialog(null, "The attachment is
not checked out.",
 "Error", JOptionPane.ERROR_MESSAGE);
 }
}

 第 10 章

Agile Product Lifecycle Management 151 ページ

アイテムのリビジョンの指定
アイテムを使用するときは、リビジョンごとに添付ファイルが異なる場合があります。1 つのアイテムに複数

のリビジョンがある場合は、プログラムでユーザーがリビジョンを選択できるようにする必要があります。リ

ビジョンの指定については、107 ページの「アイテムのリビジョンの取得および設定」を参照してください。

リビジョンが確定済みかどうかの確認
通常は、アイテムのリビジョンがリリースされると、そのリビジョンも確定されます。確定アイテムの添付ファ

イルはロックされるため、チェックアウトすることはできません。添付ファイルは表示できますが、新規の変

更を提出 (つまり、新規のリビジョンを作成) しないかぎり、その添付ファイルは変更できません。リビジョ

ンが確定済みかどうかを確認する方法の詳細は、109 ページの「リビジョンの確定済みステータスの変更」を

参照してください。

ファイル フォルダのチェックアウト
ファイル フォルダに含まれているファイルを追加、削除または変更するには、その前に、そのファイル フォ

ルダをチェックアウトする必要があります。ファイル フォルダは、別のユーザーがすでにチェックアウトして

いないかぎり、適切な権限を使用してチェックアウトできます。ファイル フォルダをチェックアウトすると、

他のユーザーはそのファイル フォルダをチェックアウトしたり変更することはできません。

変更分析者やコンポーネント エンジニアと同様に、ファイル フォルダをチェックアウトしたユーザーは、そ

のファイル フォルダをチェックインできます。ファイル フォルダがネットワーク上のある場所、または共有

のドライブやディレクトリにチェックアウトされた場合、そのネットワークの場所または共有ディレクトリに

アクセスできるユーザーは、そのファイル フォルダをチェックインできます。

次の例は、ファイル フォルダをチェックアウトする方法を示しています。

例: ファイル フォルダのチェックアウト
void checkOutFileFolder(IFileFolder ff) throws Exception {
 ff.checkOutEx();
}

注意 [添付ファイル] テーブルの行は、ICheckoutable.checkOutEx() を使用してチェックアウトす

ることもできます。150 ページの「ICheckoutable インターフェースの使用」を参照してください。

ファイル フォルダのチェックアウトのキャンセル
ファイル フォルダをチェックアウトして変更を行わない場合、または変更を破棄して元のファイル フォルダ

に戻す場合は、そのチェックアウトをキャンセルできます。チェックアウトをキャンセルすると、他のユーザー

がそのファイル フォルダをチェックアウトできるようになります。

注意 チェックアウトをキャンセルできるのは、ファイル フォルダをチェックアウトしたユーザーのみです。

次の例は、ファイル フォルダのチェックアウトをキャンセルする方法を示しています。

SDK 開発者ガイド

152 ページ Agile Product Lifecycle Management

例: ファイル フォルダのチェックアウトのキャンセル
void cancelCheckOut(IFileFolder ff) {
 // Show a confirmation dialog box
 int i = JOptionPane.showConfirmDialog(null,
 "Are you sure you want to cancel checkout?",
 "Cancel Checkout", JOptionPane.YES_NO_OPTION);

 // If the user clicks Yes, cancel checkout
 try {
 if (i == 0) {
 ff.cancelCheckout();
 }
 } catch (APIException ex) {
 System.out.println(ex);
 }
}

注意 [添付ファイル] テーブルの行のチェックアウトは、ICheckoutable.cancelCheckout() を使用

してキャンセルすることもできます。150 ページの「ICheckoutable インターフェースの使用」を参

照してください。

[添付ファイル] テーブルへのファイルおよび URL の
追加
Agile API を使用すると、多くのタイプのオブジェクト (IItem、IChange、IManufacturerPart、
IManufacturer など) の [添付ファイル] テーブルにファイルと URL を追加できます。添付ファイルは、1
つ以上の物理ファイルまたはインターネット アドレス (URL) です。ファイルは Agile PLM ファイル格納庫

に保存されているため、セキュアな添付ファイルとみなされます。これに対して、URL は保護されていない添

付ファイルです。

ファイルまたは URL をビジネス オブジェクトの [添付ファイル] テーブルに追加すると、サーバでは、関連

するファイルまたは URL が含まれた新規のファイル フォルダが自動的に作成されます。[添付ファイル]
テーブルの新規の行は、新規のファイル フォルダを参照します。

URL 添付ファイルを追加すると、サーバではインターネットの場所への参照が保存されますが、ファイルは

アップロードされません。したがって、URL 添付ファイルはダウンロードできません。Agile API では、添付

ファイルとしてチェックインする URL 文字列が検証されます。URL が無効な場合、Agile API は、その文字

列を URL ではなくファイル名とみなします。

次の場合は、ファイルまたは URL をアイテムの [添付ファイル] テーブルに追加できません。

 現在のリビジョンに保留中またはリリース済みの MCO がある場合。

 現在のリビジョンが確定済みの場合。

ITable.createRow(java.lang.Object) メソッドを使用して行を [添付ファイル] テーブルに追加する

と、param メソッドは次のいずれかのオブジェクト タイプになります。

 String - ローカル パスで指定した 1 つの添付ファイルを追加します。

 String[] - ローカル パスの配列で指定した複数の添付ファイルを追加します。

 File - 1 つの添付ファイルを追加します。

 File[] - 複数の添付ファイルを追加します。

 InputStream - 1 つの添付ファイルを追加します。

 第 10 章

Agile Product Lifecycle Management 153 ページ

 InputStream[] - 複数の添付ファイルを追加します。

 URL - 1 つの URL 添付ファイルを追加します。

 URL[] - 複数の URL 添付ファイルを追加します。

 ([添付ファイル] または [ファイル] テーブルの) IRow - ファイルまたは URL 添付ファイルを追加しま

す。

 IFileFolder - 指定したファイル フォルダのすべてのファイルと URL を追加します。

 Map - 添付ファイル パラメータを含むハッシュ テーブルで指定した 1 つ以上のファイルを追加します。

注意 添付ファイルを追加するとき、パフォーマンスが最も高いのは File オブジェクト タイプです。

次の例は、addAttachment() メソッドを使用して行を [添付ファイル] テーブルに追加する方法をいくつか

示しています。

例: [添付ファイル] テーブルへのファイルの追加
// Add a single file to the Attachments table row by specifying a file
path
public static IRow addAttachment(ITable attTable, String path) throws
APIException {
 IRow row = attTable.createRow(path);
 return row;
}
// Add a single file to the Attachments table
public static IRow addAttachment(ITable attTable, File file) throws
APIException {
 IRow row = attTable.createRow(file);
 return row;
}
// Add multiple files to the Attachments table
public static IRow addAttachment(ITable attTable, File[] files) throws
APIException {
 IRow row = attTable.createRow(files);
 return row;
}
// Add a URL attachment to the Attachments table
public static IRow addAttachment(ITable attTable, URL url) throws
APIException {
 IRow row = attTable.createRow(url);
 return row;
}
// Add a file folder to the Attachments table
public static IRow addAttachment(ITable attTable, IFileFolder ff)
throws APIException {
 IRow row = attTable.createRow(ff);
 return row;
}
// Add an FileFolder.Files row object or a [BusinessObject].Attachments
row object
// to the Attachments table. The Agile API validates the row object
at run time to
// determine if it is from a valid table (Files or Attachments).
public static IRow addAttachment(ITable attTable, IRow filesRow) throws
APIException {
 IRow row = attTable.createRow(filesRow);

SDK 開発者ガイド

154 ページ Agile Product Lifecycle Management

 return row;
}
// Add a file folder to the Attachments table and specify the version
for all files
public static IRow addAttachmentWithVersion(ITable attTable,
IFileFolder ff) throws APIException {
 ff.setCurrentVersion(new Integer(1));
 IRow row = attTable.createRow(ff);
 return row;
}

オブジェクト間での添付ファイルおよびファイルのディープ クローン

の作成
オブジェクト間で添付ファイルを簡単にコピーするには、CommonConstants.MAKE_DEEP_COPY 仮想属性を
ITable.createRow(Object) のブール パラメータとして使用します。このパラメータを使用すると、元の

ファイルを参照するかわりに、プログラムで Agile ファイル マネージャの格納庫にファイルの新規コピーを

作成できます。

例: [添付ファイル] テーブル行のディープ クローンの作成
// Clone an attachment table row and its file from one item to another
public static cloneAttachment(IItem item1, IItem item2, File file)
throws APIException {
 // Get the attachments tables of item1 and item2
 ITable tblAttach1 = item1.getAttachments();
 ITable tblAttach2 = item2.getAttachments();

 // Prepare params for the first row
 HashMap params = new HashMap();
 params.put(CommonConstants.ATT_ATTACHMENTS_CONTENT, file);

 // Add the file to the attachments table of item1
 IRow row1 = tblAttach1.createRow(params);

 // Prepare params for the second row
 params.clear();
 params.put(CommonConstants.ATT_ATTACHMENTS_CONTENT, row1);
 params.put(CommonConstants.MAKE_DEEP_COPY, Boolean.TRUE);
 // Add the same file to the attachments table of item2
 IRow row2 = tblAttach2.createRow(params);
}

例: ファイル フォルダの [ファイル] テーブル行のディープ クローンの作成
// Clone a Files table row and its file from one File Folder to another
public static cloneFilesRow(IFileFolder folder1, IFileFolder folder2,
File file) throws APIException {
 // Check out folder1 and folder2
 folder1.checkOutEx();
 folder2.checkOutEx();

 // Get the Files tables of folder1 and folder2
 ITable tblFiles1 =
folder1.getTable(FileFolderConstants.TABLE_FILES);
 ITable tblFiles2 =
folder2.getTable(FileFolderConstants.TABLE_FILES);

 第 10 章

Agile Product Lifecycle Management 155 ページ

 // Prepare params for the first row
 HashMap params = new HashMap();
 params.put(CommonConstants.ATT_ATTACHMENTS_CONTENT, file);

 // Add the file to the attachments table of folder1
 IRow row1 = tblFiles1.createRow(params);

 // Prepare params for the second row
 params.clear();
 params.put(CommonConstants.ATT_ATTACHMENTS_CONTENT, row1);
 params.put(CommonConstants.MAKE_DEEP_COPY, Boolean.TRUE);
 // Add the same file to the Files table of folder2
 IRow row2 = tblFiles2.createRow(params);

 // Check in folder1 and folder2
 folder1.checkIn();
 folder2.checkIn();
}

添付ファイル追加時のファイル フォルダ サブクラスの指定
Agile PLM システムは、複数のファイル フォルダ サブクラスを使用して設定できます。その場合は、ファイ

ル フォルダをビジネス オブジェクトの [添付ファイル] テーブルに追加するときに、使用するファイル フォ

ルダ サブクラスを指定できます。サブクラスを指定しない場合、Agile API ではデフォルトのファイル フォル

ダ サブクラスが使用されます。仮想属性 CommonConstants.ATT_ATTACHMENTS_FOLDERCLASS を使用す

ると、必要なファイル フォルダ サブクラスを簡単に指定できます。これによって、属性を任意のファイル フォ

ルダ サブクラスに設定できます。

次の例は、ファイル フォルダを [添付ファイル] テーブルに追加するときに、

ATT_ATTACHMENTS_FOLDERCLASS 属性を使用してサブクラスを指定する方法を示しています。

例: 添付ファイル追加時のファイル フォルダ サブクラスの指定
IAgileClass ffclass = m_admin.getAgileClass("MyFileFolder");
// init item
IItem item = (IItem)session.createObject(ItemConstants.CLASS_PART,
"P0001");

// get attachments table
ITable tab_attachment = item.getAttachments();

// prepare map
HashMap map = new HashMap();
map.put(CommonConstants.ATT_ATTACHMENTS_CONTENT, new
File("files/file.txt"));
map.put(CommonConstants.ATT_ATTACHMENTS_FOLDERCLASS, ffclass);
// add file
IRow row = tab_attachment.createRow(map);

SDK 開発者ガイド

156 ページ Agile Product Lifecycle Management

ファイル フォルダのファイルのバージョンの設定
ファイル フォルダには、複数のバージョンを指定できます。ファイル フォルダを別のビジネス オブジェクト

の [添付ファイル] テーブルに追加するときは、使用するファイル バージョンを指定できます。ファイル バー

ジョンを指定しない場合、Agile API ではデフォルトまたは最新のバージョンが使用されます。ファイル バー

ジョンを指定すると、[添付ファイル] テーブルの行はそのバージョンにリンクされます。

[添付ファイル] テーブルが含まれる親オブジェクトがアイテムの場合は、そのアイテムを確定して、添付ファ

イルの指定したバージョンをロックできます。アイテムを確定する方法の詳細は、109 ページの「リビジョン

の確定済みステータスの変更」を参照してください。

例: [添付ファイル] テーブルへの行追加時のバージョンの設定
// Add a file folder to the Attachments table and use version 1 of all
files
public static IRow addAttachment(ITable attTable, IFileFolder ff)
throws APIException {
 ff.setCurrentVersion(new Integer(1));
 IRow row = attTable.createRow(ff);
 return row;
}
// Add a file folder to the Attachments table and use version 1 of all
files.
// This method passes a hash table for the params parameter of createRow().
public static IRow addAttachment(ITable attTable, IFileFolder ff)
throws APIException {
 HashMap map = new HashMap();
 map.put(CommonConstants.ATT_ATTACHMENTS_CONTENT, ff);
 map.put(CommonConstants.ATT_ATTACHMENTS_FOLDER_VERSION, new
Integer(1));
 IRow row = attTable.createRow(map);
 return row;
}
// Add a row from the Files table of a file folder to the Attachments
table and use version 2 of the file
public static IRow addAttachment(ITable attTable, IFileFolder ff)
throws APIException {
 ff.setCurrentVersion(new Integer(2));
 IRow filesRow =
(IRow)ff.getTable(FileFolderConstants.TABLE_FILES).iterator().next
();
 IRow row = attTable.createRow(filesRow);
 return row;
}

ファイル フォルダのチェックイン
チェックアウトしたファイル フォルダの編集が完了した後は、そのファイル フォルダを再度チェックインで

きます。チェックインすると、他のユーザーがそのファイル フォルダをチェックアウトできるようになります。

ファイル フォルダは、チェックアウトに使用したコンピュータだけでなく、すべてのコンピュータからチェッ

クインできます。

ファイル フォルダには、複数のファイルが含まれている場合があります。1 つのファイル フォルダをチェッ

クインすると、そのファイル フォルダに含まれるすべてのファイルが自動的にチェックインされます。した

がって、ファイル フォルダに含まれるファイルをリストする必要は特にありません。

 第 10 章

Agile Product Lifecycle Management 157 ページ

例: ファイル フォルダのチェックイン
void checkInFiles(IFileFolder ff) throws Exception {
 // Set the local file path
 String path = "d:¥files¥file1.doc";

 // Get the Files table
 ITable files = ff.getTable(FileFolderConstants.TABLE_FILES);

 // Get the first row
 IRow row = (IRow)files.iterator().next();

 // Replace the file
 row.setValue(FileFolderConstants.ATT_FILES_FILE_NAME, new
File(path));

 ff.checkIn();
}

注意 [添付ファイル] テーブルの行は、ICheckoutable.checkIn() を使用してチェックインすること

もできます。150 ページの「ICheckoutable インターフェースの使用」を参照してください。

ファイルの置換
ファイル フォルダの [ファイル] テーブルにリストされているファイルを置換するには、IRow.setValue()
メソッドを使用します。IRow.setValue() の cellID パラメータには、[ファイル名] フィールドの属性 ID
定数を指定します。また、IRow.setValue() の value パラメータには、String (ファイルのローカル パ
ス)、File オブジェクトまたは InputStream オブジェクトのいずれかを指定します。

例: ファイルの置換
// Replacing a file by specifying the path to a file
String path = "d:¥files¥file1.doc";
row.setValue(FileFolderConstants.ATT_FILES_FILE_NAME, path);

// Replacing a file by specifying a File object
String path = "d:¥files¥file1.doc";
row.setValue(FileFolderConstants.ATT_FILES_FILE_NAME, new
File(path));

IRow.setValue() のかわりに IRow.setValues() を使用する場合は、Map オブジェクトを渡してコンテ

ンツとファイル名を同時に変更できます。この Map には、

FileFolderConstants.ATT_FILES_FILE_NAME と FileFolderConstants.ATT_FILES_CONTENT の
2 つのキー パラメータを含める必要があります。これらのキーに対する可能な値は、String、File または
InputStream です。

例: ファイル コンテンツとファイル名の同時更新
void changeContentAndFilename(IFileFolder ff, String newFilename,
File newFile) throws Exception {
 // Check out the file folder
 ff.checkOutEx();

 // Get the Files table
 ITable files = ff.getTable(FileFolderConstants.TABLE_FILES);

SDK 開発者ガイド

158 ページ Agile Product Lifecycle Management

 // Get the first row
 IRow row = (IRow)files.iterator().next();

 // Create a Map containing the new file and filename
 Map map = new HashMap();
 map.put(FileFolderConstants.ATT_FILES_CONTENT, newFile);
 map.put(FileFolderConstants.ATT_FILES_FILE_NAME, newFilename);

 // Set values for content and file name
 row.setValues(map);

 // Check in
 ff.checkIn();
}

ファイル名を変更しない場合は、次の例に示すように、ファイル コンテンツのみを更新できます。

例: ファイル コンテンツのみの更新
 ...
 // Create a Map containing the new file
 Map map = new HashMap();
 map.put(FileFolderConstants.ATT_FILES_CONTENT, newFile);

 // Set values
 row.setValues(map);
 ...

ビジネス オブジェクトの [添付ファイル] テーブルにリストされているファイルを置換するには、

IFileFolder.setFile() メソッドを使用することもできます。setFile() の param パラメータには、

File、InputStream または Map オブジェクトを指定します。Map オブジェクトを指定する場合は、次の
Agile API 定数で表される 2 つのキー パラメータを含める必要があります。

CommonConstants.ATT_ATTACHMENTS_FILE_NAME
CommonConstants.ATT_ATTACHMENTS_CONTENT

 ファイル コンテンツ属性に対する可能な値は、String、File または InputStream です。

例: [添付ファイル] テーブルの行に対するファイルの置換
public replaceFileInRow(IRow row, String filename, String filePath)
throws Exception {
 ((ICheckoutable)row).checkOutEx();
 Map map = new HashMap();
 map.put(CommonConstants.ATT_ATTACHMENTS_FILE_NAME, filename);
 map.put(CommonConstants.ATT_ATTACHMENTS_CONTENT, new
File(filePath));
 ((IAttachmentFile)row).setFile(map);
 ((ICheckoutable)row).checkIn();
}

 第 10 章

Agile Product Lifecycle Management 159 ページ

添付ファイルの取得
別のユーザーがファイル フォルダをチェックアウトした場合は、そのファイル フォルダのファイルのコピー

を取得してローカル マシンに保存できます。IAttachmentFile.getFile() メソッドは、[添付ファイル]
テーブルの行に関連付けられたファイル ストリームを返します。このファイル ストリームは、関連するファ

イル フォルダに含まれるファイルの数に応じて、1 ファイルのファイル ストリーム、または ZIP されたファ

イル ストリーム (ファイルが複数の場合) になります。また、IAttachmentFile.getFile() を使用する

と、別のビジネス オブジェクトの [添付ファイル] テーブルにアクセスせずに、ファイル フォルダから 1 つ
以上のファイルを直接取得できます。ファイル フォルダ オブジェクトから getFile() を呼び出した場合は、

[ファイル] テーブルにリストされているすべてのファイルの ZIP されたファイル ストリームを返します。

ファイル フォルダの [ファイル] テーブルの行から getFile() を呼び出した場合は、その行に関連付けられ

た特定のファイルのファイル ストリームを返します。

注意 IAttachmentFile.getFile() を使用した場合、返されるファイル ストリームに含まれるのは

添付ファイルのみです。URL 添付ファイルには、関連付けられたファイルがありません。

次の例は、添付ファイルのコピーを取得する方法を示しています。

例: 添付ファイルの取得
// Get one or more files associated with the row of an Attachments table
or a Files table
public InputStream getAttachmentFile(IRow row) throws APIException {
 InputStream content = ((IAttachmentFile)row).getFile();
 return content;
}
// Get all files associated with a file folder
public InputStream getAttachmentFiles(IFileFolder ff) throws
APIException {
 InputStream content = ((IAttachmentFile)ff).getFile();
 return content;
}

IFileFolder.getFile() を使用して、ファイル フォルダに含まれるすべてのファイルの ZIP されたファ

イル ストリームを返す場合は、次の例に示すように、java.util.zip.ZipInputStream クラスのメソッ

ドを使用して、ZIP された InputStream からファイルを抽出できます。

例: ZIP されたファイル ストリームからのファイルの抽出
static void unpack(InputStream zippedStream) throws IOException {
 ZipInputStream izs = new ZipInputStream(zippedStream);
 ZipEntry e = null;
 while ((e = izs.getNextEntry()) != null) {
 if (!e.isDirectory()) {
 FileOutputStream ofs = new FileOutputStream(e.getName());
 byte[] buf = new byte[1024];
 int amt;
 while ((amt = izs.read(buf)) != -1) {
 ofs.write(buf, 0, amt);
 }
 ofs.close();
 }
 }
 zippedStream.close();
}

SDK 開発者ガイド

160 ページ Agile Product Lifecycle Management

Agile API では、添付ファイルを直接開くためのメソッドは提供されていません。ただし、ファイルを取得して

から、プログラムよって別のアプリケーションでそのファイルを開いたり、ブラウザ ウィンドウに表示するこ

とはできます。

ファイル フォルダと添付ファイルの削除
ファイル フォルダ (複数のファイルが含まれている場合があります) を削除するには、

IDataObject.delete() メソッドを使用します。ファイル フォルダを削除するには、ファイル フォルダの

削除権限が必要です。オブジェクトの削除の詳細は、2-21 ページの「オブジェクトの削除および削除取消」を

参照してください。

注意 ファイル フォルダを削除しても、関連付けられたファイルはファイル サーバから自動的に削除さ

れません。Agile PLM 管理者には、削除されたファイルをパージする責任があります。

ビジネス オブジェクトの [添付ファイル] テーブルから行を削除するには、ITable.removeRow() メソッド

を使用します。詳細は、4-11 ページの「テーブル行の削除」を参照してください。[添付ファイル] テーブルか

ら行を削除しても、関連付けられたファイル フォルダは削除されません。

次の場合は、[添付ファイル] テーブルから行を削除できません。

 親オブジェクトが、リビジョンが確定しているアイテムである場合。

 選択した添付ファイルが、現在チェックアウトされている場合。

Agile Product Lifecycle Management 161 ページ

第 11 章

ワークフローの管理

扱うトピックは次のとおりです。

 ワークフローについて ... 161
 ワークフローの選択 ... 163
 承認者の追加および削除 ... 164
 変更の承認または却下 ... 174
 変更のコメント ... 175
 変更の検証 ... 175
 オブジェクトのワークフロー ステータスの変更 .. 176
 選択したユーザーへの Agile オブジェクトの送信 ... 179
 ユーザー グループへの Agile オブジェクトの送信 ... 179

ワークフローについて
Agile には、電子送信、通知およびサインオフの機能があるため、変更管理プロセスが自動化され、簡潔で強

力なワークフロー メカニズムが提供されます。これらのワークフロー機能を使用すると、次の処理を実行でき

ます。

 変更を承認または監視する必要のあるユーザーに、該当する変更を自動的に送信します。

 承認者およびオブザーバに、変更が送信されたことを通知する電子メールの警告を自動的に送信します。

 オンラインで変更を承認または却下します。

 変更にコメントを添付します。

変更管理プロセス
変更管理プロセスは、送信可能なオブジェクトに対して定義されたワークフローごとに異なる場合があります。

次の表に、送信可能なオブジェクトの各タイプに対するデフォルトのワークフローの順序を示します。変更の

場合、順序の最初の 4 つのステップは同じで、最後のステップのみ異なります。

ワークフロー デフォルトの順序

デフォルトのアクティビティ 未開始 > 進行中 > 完了

デフォルトの添付ファイル レビュー

デフォルトの検証 準備完了 > 開始済み > 検証済み > 発行済み > 改善済み > 検証済み > 終了

デフォルトの是正・予防処置 確認 > 認定 > 調査 > 実施 > 検証済み > 終了

デフォルトの設計変更 保留中 > 提出済み > CCB > リリース済み > 実施

デフォルトの設計変更依頼 保留中 > 提出済み > CCB > リリース済み > 終了

SDK 開発者ガイド

162 ページ Agile Product Lifecycle Management

ワークフロー デフォルトの順序

デフォルトのコンテンツ転送 保留中 > レビュー > リリース済み > 完了

デフォルトのデクラレーション 保留中 > サプライヤへ開示 > マネージャに送信 > レビュー > リリース済み >
実施

デフォルトの期限付き設計変更 保留中 > 提出済み > CCB > リリース済み > 期限切れ

デフォルトのゲート 終了 > レビュー中 > オープン

デフォルトの製造元依頼 保留中 > 提出済み > CCB > リリース済み > 検収済み

デフォルトの不具合レポート 保留中 > 提出済み > レビュー > リリース済み > 終了

デフォルトのパッケージ 保留中 > 提出済み > レビュー > 承認済み > 終了

デフォルトの価格変更 保留中 > 提出済み > 価格のレビュー > リリース済み > 実施

デフォルトの問題レポート 保留中 > 提出済み > レビュー > リリース済み > 終了

デフォルトの拠点毎変更 保留中 > 提出済み > CCB > リリース済み > 実施

デフォルトの出荷停止 保留中 > 提出済み > CCB > リリース済み > 再開

動的なワークフロー機能
特定の送信可能なオブジェクトに対して各ユーザーが使用できるワークフロー機能は、その送信可能なオブ

ジェクトのステータスとユーザーの権限によって異なります。Agile API プログラムでは、ワークフローのこれ

らの動的機能を考慮する必要があるため、可能な場合はプログラムを適切に調整してください。

変更のステータスがワークフロー機能に与える影響

保留中の変更に使用できるワークフローのアクションは、リリース済みの変更に対するアクション処理とは異

なります。変更が保留中またはリリース済みであるかどうかを判断するためにそのステータスを確認するには、

IRoutable.getStatus() メソッドを使用します。getStatus() メソッドは、ワークフロー ステータス

に対応する IStatus オブジェクトを返します。IStatus は INode インターフェースを拡張し、ステータ

ス ノードで使用するための便利なメソッドを提供します。次の例は、getStatus() を使用して変更がリリー

ス済みかどうかを判断する方法を示しています。

例: 変更オブジェクトのステータスの取得
private static boolean isReleased(IChange change) throws APIException
{
 return
(change.getStatus().getStatusType().equals(StatusConstants.TYPE_RE
LEASED);
}

 第 11 章

Agile Product Lifecycle Management 163 ページ

ユーザー権限がワークフロー機能に与える影響

Agile 権限によって、ユーザーが変更に対して実行できるワークフロー アクションのタイプが決まります。

Agile システム管理者は、各ユーザーに役割と権限を割り当てます。次の表に、ワークフロー アクションの実

行に必要な権限を示します。

権限 関連 API

ステータスの変更 IRoutable.changeStatus()

コメント IRoutable.comment()

送信 DataObject.send()

ユーザーにアクションを実行するための適切な権限があるかどうかを実行時に判断するには、

IUser.hasPrivilege() メソッドを使用します。プログラムの UI は、ユーザーの権限に基づいて調整でき

ます。次の例は、IRoutable.changeStatus() メソッドを呼び出す前に、ユーザーに変更のステータスを

変更する権限があるかどうかを確認する方法を示しています。

例: 変更のステータス変更前のユーザーの権限の確認
private void goToNextStatus(IChange change, IUser user) throws
APIException {
 // Check if the user can change status
 if(user.hasPrivilege(UserConstants.PRIV_CHANGESTATUS, change)) {
 IUser[] approvers = new IUser[] { user };
 IStatus nextStatus = change.getDefaultNextStatus();
 change.changeStatus(nextStatus, true, "", true, true, null,
approvers, null, false);
 } else {
 System.out.println("Insufficient privileges to change status.");
 }
}

ワークフローの選択
新規の変更、パッケージ、製品サービス依頼または品質変更依頼を作成する場合は、ワークフローを選択する

必要があります。選択しない場合は、オブジェクトが未割り当ての状態になり、ワークフロー プロセスを進行

できません。Agile システムでは、送信可能なオブジェクトの各タイプに対して複数のワークフローを定義で

きます。オブジェクトに対して有効なワークフローを取得するには、IRoutable.getWorkflows() メソッ

ドを使用します。送信可能なオブジェクトにワークフローが割り当てられていない場合は、

IRoutable.getWorkflows() メソッドを使用してワークフローを選択できます。

変更のステータスが [保留中] の間は、別のワークフローを選択できます。変更が [保留中] ステータスから移

動した後は、ワークフローを変更できません。

例: ワークフローの選択
private IChange createECO(IAgileSession session) throws APIException
{
 // Get an Admin instance
 IAdmin admin = session.getAdminInstance();

SDK 開発者ガイド

164 ページ Agile Product Lifecycle Management

 // Create a change
 IAgileClass ecoClass =
admin.getAgileClass(ChangeConstants.CLASS_ECO);
 IAutoNumber[] autoNumbersPart = ecoClass.getAutoNumberSources();
 IChange change = (IChange)m_session.createObject(ecoClass,
autoNumbersPart[0]);

 // Get the current workflow (a null object,
 // since the workflow has not been set yet)
 IWorkflow wf = change.getWorkflow();

 // Get all available workflows
 IWorkflow[] wfs = change.getWorkflows();

 // Set the change to use the first workflow
 change.setWorkflow(wfs[0]);

 // Set the change to use the second workflow
 change.setWorkflow(wfs[1]);

 return change;
}

変更が [保留中] ステータス タイプの場合は、ワークフローの選択を解除して変更を未割り当てにできます。

変更を未割り当てにするには、IRoutable.setWorkflow() メソッドを使用してワークフロー パラメータ

にヌルを指定します。

例: 変更の未割り当て
private void unassign(IChange change) throws APIException {
 change.setWorkflow(null);
}

承認者の追加および削除
変更が送信され、オンライン承認プロセスが開始された後で、担当者を承認者またはオブザーバのリストに追

加したり、リストから削除する必要が生じる場合があります。承認者やオブザーバを追加または削除するには、

ユーザーに、Agile Product Change Server ライセンスと送信権限の両方が必要です。

承認者のリストを変更するために [ワークフロー] テーブルをロードする必要はありません。ECO (設計変更)
などの送信可能なオブジェクトがある場合は、IRoutable.addApprovers() および
IRoutable.removeApprovers() メソッドを使用して承認者のリストを変更できます。addApprovers()
または removeApprovers() を使用する場合は、承認者とオブザーバのリスト、通知が緊急かどうか、およ

びオプションのコメントを指定します。Agile API には、ユーザーまたはユーザー グループを承認者リストに

追加したり、承認者リストから削除するために、オーバーロードされた addApprovers() および
removeApprovers() のメソッドが用意されています。詳細は、API リファレンスを参照してください。

承認者またはオブザーバとして選択するユーザーに変更を表示する適切な権限がない場合は、プログラムで
APIException が発生します。例外の発生を回避するために、ユーザーを承認者またはオブザーバのリスト

に追加する前に、それぞれのユーザーの権限を確認してください。

次の例は、変更に対する承認者を追加および削除する方法を示しています。

 第 11 章

Agile Product Lifecycle Management 165 ページ

例: 承認者とオブザーバの追加および削除
public void modifyApprovers(IChange change) {
 try {
 // Get current approvers for the change
 IDataObject[] currApprovers =
change.getApproversEx(change.getStatus());

 // Get current observers for the change
 IDataObject[] currObservers =
change.getObserversEx(change.getStatus());

 // Add hhawkes to approvers
 IUser user = (IUser)m_session.getObject(IUser.OBJECT_TYPE,
"hhawkes");
 IUser[] approvers = new IUser[]{user};

 // Add flang to observers
 user = (IUser)m_session.getObject(IUser.OBJECT_TYPE, "flang");
 IUser[] observers = new IUser[]{user};

 // Add approvers and observers
 change.addApprovers(change.getStatus(), approvers,
observers, true,
 "Adding jsmith to approvers and jdoe to observers");
 // Add skubrick to approvers
 user = (IUser)m_session.getObject(IUser.OBJECT_TYPE, "skubrick");
 approvers[0] = user;

 // Add kwong to observers
 user = (IUser)m_session.getObject(IUser.OBJECT_TYPE, "kwong");
 observers[0] = user;

 // Remove skubrick from approvers and kwong from observers
 change.removeApprovers(change.getStatus(), approvers, observers,
 "Removing skubrick from approvers and kwong from observers");
 } catch (APIException ex) {
 System.out.println(ex);
 }
}

変更に対する承認者のリストまたはオブザーバのリストのみを変更する場合、変更する必要のないパラメータ

にはヌル値を渡すことができます。次の例は、オブザーバのリストを変更せずに、承認者のリストに現在のユー

ザーを追加する方法を示しています。

SDK 開発者ガイド

166 ページ Agile Product Lifecycle Management

例: オブザーバを変更せずに承認者を追加する場合
public void addMeToApprovers(IChange change) {
 try {
 // Get the current user
 IUser user = m_session.getCurrentUser();

 // Add the current user to the approvers list for the change
 IUser[] approvers = new IUser[]{user};
 change.addApprovers(change.getStatus(), approvers, null, true,
 "Adding current user to approvers list");
 } catch (APIException ex) {
 System.out.println(ex);
 }
}

[サインオフ ユーザー二重識別タイプ] プリファレンスの設定
サインオフ ユーザー二重識別機能は、承認または却下のサインオフに二重識別が必要か、または 2 番目のサ

インオフが必要かどうかを制御するシステム全体のプリファレンスです。この機能は、FDA 規制会社で必要と

なり、設計変更の承認または却下時にユーザー識別の二重認証を必要とする企業ポリシーがある会社で活用で

きます。詳細は、『Agile PLM 管理者ガイド』を参照してください。

次に、サインオフ ユーザー二重識別機能をサポートする API の説明と、これらのメソッドを使用するコード
サンプルを示しています。

送信可能なオブジェクトの承認

このメソッドは、オブジェクトが承認者によって承認されたり、1 つ以上のユーザー グループの代理として承

認者がオブジェクトを承認したときにユーザーに通知します。このメソッドを使用して、サーバの [プリファ

レンス] 設定に設定されている secondSignature、escalations、transfers または signoffForSelf
パラメータを指定することもできます。

// Approving a user
/*
Parameters:
password:User's approval password
secondSignature:User's second signature for approval
comment:A character string for user comments (4000
characters maximum)
notifyList:List of users and user groups to notify
approveForGroupList:List of user groups to approve for
escalations:Escalated from other users and user groups
to approve for
transfers:From other users and user groups to approve for
signoffForSelf:True to signoff for self and False
otherwise
APIException:
Thrown if the method fails to approve the routable object
*/
public void approve (String password, String
secondSignature,
 String comment, Collection notifyList,
 Collection approveForGroupList, Collection
escalations,
 Collection transfers, boolean signoffForSelf)
 throws APIException;

 第 11 章

Agile Product Lifecycle Management 167 ページ

次のコードの例では、二重識別が必要な送信オブジェクトを承認します。その他の条件は、次のとおりです。

 [サーバ設定] > [プリファレンス] > [サインオフ ユーザー二重識別タイプ] が選択されている場合は、[ユー

ザー ID] を表示します。

 [ワークフロー ステータス] が [CCB] のワークフロー設定: [デフォルトの設計変更] の [二重識別が必

要] を [はい] に設定します。

 変更オブジェクトを作成し、admin などのユーザーを承認者として [CCB] ステータスと [リリース済み]
ステータスに追加します。

例: 送信可能なオブジェクトの承認
// Admin approves the change by supplying approval password and "User
// ID" as the second signature
IWorkflow [] wfs = chg.getWorkflows();
IWorkflow wf = wfs[0];
chg.setWorkflow(wf);

// Advance ECO to submitted state
IStatus [] sts;
sts = wf.getStates(StatusConstants.TYPE_SUBMIT);
IStatus submit = sts[0];

// Change status to submit
m_session.disableWarning(new Integer(553));
m_session.disableWarning(new Integer(574));

Object [] nullObjectList = null;
chg.changeStatus(submit, false, null, false, false, nullObjectList,
nullObjectList, nullObjectList, false);

// Add approvers to CCB status and to Released status
IUser usr = (IUser) m_session.getObject(IUser.OBJECT_TYPE, "admin");
Object [] apprList = new IUser [] {usr};
sts = wf.getStates(StatusConstants.TYPE_REVIEW);
IStatus ccb = sts[0];
chg.addApprovers(ccb, apprList, nullObjectList, false,
"ADDAPPROVER_OBSERVER");

// Change it to CCB status
chg.changeStatus(ccb, false, null, false, false, nullObjectList,
nullObjectList, nullObjectList, false);
m_session.enableWarning(new Integer(553));
m_session.enableWarning(new Integer(574));

// Admin approves the change by supplying approval password and "User
// ID" as the second signature
String userName = session.getCurrentUser().getName();
chg.approve ("agile", userName, "OK, Approved", null, null, null, null,
true);

SDK 開発者ガイド

168 ページ Agile Product Lifecycle Management

送信可能なオブジェクトの却下

このメソッドは、送信可能なオブジェクトが承認者によって却下されたり、1 つ以上のユーザー グループの代

理として承認者がオブジェクトを却下したときにユーザーに通知します。このメソッドを使用して、サーバの
[プリファレンス] 設定に設定されている secondSignature、escalations、transfers または
signoffForSelf パラメータを指定することもできます。

// Rejecting a user
/*
Parameters
 password:User's approval password
 secondSignature:User's second signature for approval
 comment:A character string for user comments (4000 characters
maximum)
 notifyList:List of users and user groups to notify
 approveForGroupList:List of user groups to approve for
 escalations:Escalated from other users and user groups to approve
for
 transfers:From other users and user groups to approve for
 signoffForSelf:True to signoff for self and False otherwise
APIException
 Thrown if the method fails to approve the routable object
*/
public void reject(String password, String secondSignature,
 String comment, Collection notifyList,
 Collection approveForGroupList, Collection escalations,
 Collection transfers, boolean signoffForSelf)
 throws APIException;

次のコード サンプルでは、送信オブジェクトを却下するために二重識別が必要です。その他の条件は、次のと

おりです。

 [サーバ設定] > [プリファレンス] > [サインオフ ユーザー二重識別タイプ] が選択されている場合は、[ユー

ザー ID] を表示します。

 [ワークフロー ステータス] が [CCB] のワークフロー設定: [デフォルトの設計変更] の [二重識別が必

要] を [はい] に設定します。

 変更オブジェクトを作成し、admin などのユーザーを [CCB] ステータスと [リリース済み] ステータス

の承認者として追加します。

例: 送信可能なオブジェクトの却下
// Admin rejects the change by supplying approval password and "User
// ID" as the second signature
IChange chg;
String chgNo;

IUser curUser = session.getCurrentUser();
String userName = curUser.getName();

chg = (IChange) session.getObject(ChangeConstants.CLASS_ECO, chgNo);
chg.reject("agile", userName, "Rejected", null, null, null, null,
true);

 第 11 章

Agile Product Lifecycle Management 169 ページ

送信可能なオブジェクトを承認する承認者およびユーザーのユーザー グループの

追加

このメソッドは、特定のワークフロー ステータスの承認者として追加され、現在のユーザーまたは承認者もそ

のグループ メンバーであるユーザー グループの配列を取得するように設計されています。
/*
Parameters

status:A node corresponding to the desired workflow
status.You can
retrieve the current status using getStatus().To retrieve
the default next status, use getDefaultNextStatus().

APIExceptions and Returns

- throws APIException if the method fails

- returns an array of IUserGroup objects
*/
public IDataObject[] getPossibleUserGroupsForSignoff(IStatus status)
 throws APIException;

次のコード サンプルでは、[CCB] ステータスで ECO を承認し、現在のユーザーがそのメンバーとして含ま

れるユーザー グループを追加します。二重識別に加えて、次の条件も必須です。

 [サーバ設定] > [プリファレンス] > [サインオフ ユーザー二重識別タイプ] が選択されている場合は、[ユー

ザー ID] を表示します。

 [ワークフロー ステータス] が [CCB] のワークフロー設定: [デフォルトの設計変更] の [二重識別が必

要] を [はい] に設定します。

例: 現在のユーザーがユーザー グループのメンバーとして含まれる、承認者のユーザー グループ

の追加
// IChange change;
//Set Workflow
IWorkflow[] wfs=change.getWorkflows();
IWorkflow workflow = wfs[0];
change.setWorkflow(workflow);

//Add the User Group as approver for CCB
Object[] appr=new Object[] {user_group};
IStatus current=change.getStatus();
StatusConstants type=current.getStatusType();

m_session.disableWarning(new Integer(574));
while(!(type == (StatusConstants.TYPE_REVIEW))){ IStatus
nextstatus=change.getDefaultNextStatus();
 change.changeStatus(nextstatus,true,"",true,true,(Object[])n
ull,(Object[])null, (Object[])null,false);
 current=change.getStatus();
 type=change.getStatus().getStatusType();
}
m_session.enableWarning(new Integer(574));
change.addApprovers(current, appr, (Object [])null, false, "");
IDataObject[] u = change.getPossibleUserGroupsForSignoff(status);

SDK 開発者ガイド

170 ページ Agile Product Lifecycle Management

/* APPROVE */
Collection gl = new ArrayList();

//Group list
gl.add(u[0]);
change.approve("agile", session.getCurrentUser().getName(),
 "ESIGN-FIRST", null, gl, null, null, false);

転送元ユーザーを代行するユーザーによる送信可能なオブジェクトの承認

このメソッドは、特定のワークフロー ステータスについて、現在のユーザーの権限委譲として追加されたユー

ザーの配列を取得するように設計されています。
/*
Parameters

status:A node corresponding to the desired workflow
status.You can
retrieve the current status using getStatus().To retrieve
the default next status, use getDefaultNextStatus().

APIExceptions and Returns
- throws APIException if the method fails
- returns an array of IUserGroup objects

*/
public IDataObject[] getPossibleTransferredFromUsers(IStatus status)
 throws APIException;

次のコード サンプルでは、ユーザー A から別のユーザー B に権限委譲を設定し、ECO を作成し、[CCB] ス
テータスの承認者としてユーザー A を追加します。

注意 ユーザー B の [CCB] ステータスに対する getPossibleTransferredFromUsers(IStatus
status) の戻り値は、サインオフ権限がユーザー B に委譲されるユーザーの配列です。

二重識別に加えて、次の条件も必須です。

 [サーバ設定] > [プリファレンス] > [サインオフ ユーザー二重識別タイプ] が選択されている場合は、[ユー

ザー ID] を表示します。

 [ワークフロー ステータス] が [CCB] のワークフロー設定: [デフォルトの設計変更] の [二重識別が必

要] を [はい] に設定します。

例: ユーザー間の権限委譲の設定
Log in and execute the following code as User B
IDataObject [] usrs = chg.getPossibleTransferredFromUsers(status);

// Prepare the collection
Collection col = new ArrayList ();

for (int i=0; i < usrs.length; i++){
col.add(usrs[i]);
}

// approve the change
chg.approve(“agile”, userName, “OK, Approved”, null, null, null, col,
false);

 第 11 章

Agile Product Lifecycle Management 171 ページ

送信可能なオブジェクトを承認する現在のユーザーの有効なエスカレーションの

追加

このメソッドは、特定のワークフロー ステータスについて、現在のユーザーの有効なエスカレーションとして

機能するユーザーの配列を取得するように設計されています。このメソッドは、ユーザーのカバー ページにあ

る [エスカレーションの指定承認を許可] 属性の設定を上書きします。
/*
Parameters

status:A node corresponding to the desired workflow
status.You can
retrieve the current status using getStatus().To retrieve
the default next status, use getDefaultNextStatus().

APIExceptions and Returns
- throws APIException if the method fails
- returns an array of IUser and IUserGroup objects

*/
public IDataObject[] getPossibleEscalatedFromUsers(IStatus status)
 throws APIException;

次のコード サンプルでは、ユーザー A からユーザー B にエスカレーションを設定し、ECO を作成し、[CCB]
ステータスの承認者としてユーザー A を追加します。

注意 [CCB] ステータスに対するユーザー B の getPossibleEscalatedFromUsers(IStatus
status) は、エスカレーションがユーザー B に設定されるユーザーの配列を返します。

二重識別に加えて、次の条件も必須です。

 [サーバ設定] > [プリファレンス] > [サインオフ ユーザー二重識別タイプ] が選択されている場合は、[ユー

ザー ID] を表示します。

 [ワークフロー ステータス] が [CCB] のワークフロー設定: [デフォルトの設計変更] の [二重識別が必

要] を [はい] に設定します。

例: ユーザーへのエスカレーションの設定
// Log in and execute the following code as “User B”
IDataObject [] usrs = chg. getPossibleEscalatedFromUsers(IStatus
status);

// Prepare the collection
Collection col = new ArrayList ();

for (int i=0; i < usrs.length; i++){
 col.add(usrs[i]);
}

// approve the change
chg.approve("agile", userName, "OK, Approved", null, null, null, col,
false);

SDK 開発者ガイド

172 ページ Agile Product Lifecycle Management

送信可能なオブジェクトを承認する 2 番目の署名の指定

このメソッドは、送信可能なオブジェクトの承認に 2 番目の署名が必要かどうかを検証するように設計されて

います。このメソッドは、secondSignature パラメータも設定する 173 ページの「送信可能なオブジェク

トを承認する 2 番目の署名としてユーザー ID を追加」、166 ページの「送信可能なオブジェクトの承認」お

よび 168 ページの「送信可能なオブジェクトの却下」で説明されているメソッドを組み合わせたメソッドとと

もに使用します。
/*
Parameters

Status:The status (IStatus) of the object checked for
the next workflow status.

Returns
true if a second signature is required, false otherwise

*/
public boolean isSecondSignatureRequired(IStatus status)
 throws APIException;

次のコード サンプルでは、ECO (設計変更) の chg を作成します。[CCB] ステータスの
chg.isSecondSignatureRequired (IStatus status) は、true を返します。

二重識別に加えて、次の条件も必須です。

 [サーバ設定] > [プリファレンス] > [サインオフ ユーザー二重識別タイプ] が選択されている場合は、[ユー

ザー ID] を表示します。

 [ワークフロー ステータス] が [CCB] のワークフロー設定: [デフォルトの設計変更] の [二重識別が必

要] を [はい] に設定します。

例: 送信可能なオブジェクトを承認する 2 番目の署名の指定
// set the “Signoff User Dual Identification Type” preferences Node
IAdmin admin = session.getAdminInstance();
INode node = admin.getNode(NodeConstants.NODE_PREFERENCES);

// Node Properties
IProperty propSecondSignature = node.getProperty(“Signoff User Dual
Identification Type”);

IAgileList lst = propSecondSignature.getAvailableValues();
lst.setSelection(new Object [] {“User ID”});
propSecondSignature.setValue(lst);

// set the “Dual Identification Required” property for “Workflow Status
CCB: Default Change Orders” to “Yes”
IAdmin admin = session.getAdminInstance();
INode root=admin.getNode(NodeConstants.NODE_AGILE_WORKFLOWS);
INode CCBStatus=(INode)root.getChildNode(“Default Change
Orders/Status List/CCB”);
IProperty propDualIdentification = CCBStatus.getProperty(“Dual
Identification Required”);

IAgileList lst = propDualIdentification.getAvailableValues();
lst.setSelection(new Object [] {“Yes”});
propDualIdentification.setValue(lst);

// Get and print the “Second Signature Required Property” for the
// various states of a workflow
IWorkflow [] wfs = chg.getWorkflows();

 第 11 章

Agile Product Lifecycle Management 173 ページ

IWorkflow wf = wfs[0];
chg.setWorkflow(wf);
IStatus [] sts = wf.getStates();
boolean secondSigReqd;

for (int i=0; i< sts.length; i++) {

IStatus st = sts[i];
System.out.println(“Status Name =" + st.getName());
System.out.println("IS Second Signature Reqd =
"+ chg.isSecondSignatureRequired(st));
System.out.println("IS Second Signature UserId = "
+ chg.isSecondSignatureUserId(st));

secondSigReqd = chg.isSecondSignatureRequired(st);

}

送信可能なオブジェクトを承認する 2 番目の署名としてユーザー ID を追加

このメソッドは、送信可能なオブジェクトを承認する 2 番目の署名としてユーザー ID を設定するように設計

されています。このメソッドは、secondSignature パラメータも設定する 172 ページの「送信可能なオブ

ジェクトを承認する 2 番目の署名の指定」、166 ページの「送信可能なオブジェクトの承認」および 168 ペー

ジの「送信可能なオブジェクトの却下」で説明されているメソッドを組み合わせたメソッドとともに使用しま

す。
/*
Parameters

Status:The status (IStatus) of the object checked for
the next workflow status.

Returns
true if a second signature required is User ID, false
otherwise

*/
public boolean isSecondSignatureUserId(IStatus status)
 throws APIException;

次のコード サンプルでは、ECO (設計変更) の chg を作成します。[CCB] ステータスの
chg.isSecondSignatureRequired (IStatus status) は、true を返します。

二重識別に加えて、次の条件も必須です。

 [サーバ設定] > [プリファレンス] > [サインオフ ユーザー二重識別タイプ] が選択されている場合は、[ユー

ザー ID] を表示します。

 [ワークフロー ステータス] が [CCB] のワークフロー設定: [デフォルトの設計変更] の [二重識別が必

要] を [はい] に設定します。

例: 2 番目の署名としてユーザー ID を指定
boolean secondSigUserID;
secondSigUserID = chg.isSecondSignatureUserId (status);

SDK 開発者ガイド

174 ページ Agile Product Lifecycle Management

変更の承認または却下
変更がグループ承認者に送信されると、オンライン承認プロセスが開始します。変更の [ワークフロー] テー

ブルにリストされたユーザーは、変更を承認または却下できます。

変更を承認すると、Agile システムによって承認が [ワークフロー] テーブルに記録されます。すべての承認者

が変更を承認すると、変更をリリースする準備が整ったことを示す電子メール通知が変更分析者またはコン

ポーネント エンジニアに送信されます。

注意 変更を承認または却下するには、ユーザーに、作成および管理ユーザー ライセンスまたは依頼およ

び承認ユーザー ライセンスが必要です。

IRoutable.approve() メソッドを使用する場合は、ユーザーの承認用パスワードとオプションのコメント

を指定します。オーバーロードされた approve() メソッドを使用すると、通知リストおよび承認するユーザー
グループのコレクションを指定できます。詳細は、API リファレンスを参照してください。

次に、特定の送信可能なオブジェクトの承認または却下について説明します。2 番目の署名が必須の場合は、

PC 変更オブジェクトの承認または却下をサポートする API の詳細について、166 ページの「[サインオフ
ユーザー二重識別タイプ] プリファレンスの設定」を参照してください。

次の例は、変更を承認する方法を示しています。

例: 変更の承認
public void approveChange(IChange change) {
 try {
 change.approve("agile", "Looks good to me");
 } catch (APIException ex) {
 System.out.println(ex);
 }
}

変更に根本的な欠陥がある場合、[ワークフロー] テーブルにリストされたユーザーはその変更を却下できます。

変更を却下すると、その変更の [ワークフロー] タブに却下が記録され、電子メール通知が変更分析者または

コンポーネント エンジニアに送信されます。変更分析者またはコンポーネント エンジニアは、却下された変

更を作成者に差し戻すことを決定し、そのステータスを [保留中] に戻す場合があります。

IRoutable.reject() メソッドを使用する場合は、ユーザーの承認用パスワードとオプションのコメントを

指定する必要があります。オーバーロードされた reject() メソッドを使用すると、通知リストおよび承認

するユーザー グループのコレクションを指定できます。詳細は、API リファレンスを参照してください。

次の例は、変更を却下する方法を示しています。

例: 変更の却下
public void rejectChange(IChange change) {
 try {
 change.reject("agile", "Incorrect replacement part!");
 } catch (APIException ex) {
 System.out.println(ex);
 }
}

 第 11 章

Agile Product Lifecycle Management 175 ページ

変更のコメント
変更をコメントする場合は、オンライン承認プロセス時に他の CCB レビューアにコメントを送信します。コ

メントに加えて、作成者、変更分析者および変更管理委員会に通知するかどうかを指定できます。オーバーロー

ドされた comment() メソッドを使用すると、通知リストを指定できます。詳細は、API リファレンスを参照

してください。

次の例は、変更をコメントする方法を示しています。

例: 変更のコメント
public void commentChange(IChange change) {
 try {
 change.comment(true, true, true, "Change flagged for transfer to
ERP.");
 } catch (APIException ex) {
 System.out.println(ex);
 }
}

変更の検証
変更のライフサイクルの任意の時点で、必須の入力セルが未完了かどうか、または変更が Agile スマートルー

ルに違反するかどうかを判断するために変更を検証できます。IRoutable.audit() メソッドを使用する場

合、このメソッドは、キーとして ICell オブジェクトを、値として APIException オブジェクトのリスト

を含む Map オブジェクトを返します。変更に問題がない場合、ICell キーはヌルになります。APIException
オブジェクトは、関連する入力セルの問題を記述します。

audit() メソッドが返す Map オブジェクトにも、ヌル オブジェクトがキーとして含まれる場合があります。

ヌル オブジェクトに関連付けられている APIException オブジェクトは、データ セルに関連しない問題を

記述します。

次の例は、変更を検証する方法を示しています。

例: 変更の検証
public void auditChange(IChange change) {
 try {
 // Audit the release
 Map results = change.audit();

 // Get the set view of the map
 Set set = results.entrySet();

 // Get an iterator for the set
 Iterator it = set.iterator();

 // Iterate through the cells and print each cell name and exception
 while (it.hasNext()) {
 Map.Entry entry = (Map.Entry)it.next();
 ICell cell = (ICell)entry.getKey();
 if(cell != null) {
 System.out.println("Cell : " + cell.getName());
 } else {

SDK 開発者ガイド

176 ページ Agile Product Lifecycle Management

 System.out.println("Cell : No associated data cell");
 }
 //Iterate through exceptions for each map entry.
 //(There can be multiple exceptions for each data cell.)
 Iterator jt = ((Collection)entry.getValue()).iterator();
 while (jt.hasNext()) {
 APIException e = (APIException)jt.next();
 System.out.println("Exception : " + e.getMessage());
 }
 }
 } catch (APIException ex) {
 System.out.println(ex);
 }
}

オブジェクトのワークフロー ステータスの変更
IRouteable.changeStatus() メソッドは、Agile オブジェクトのステータスを変更するための汎用メソッ

ドです。たとえば、changeStatus() を使用すると変更を提出、リリースまたはキャンセルできます。検証

の失敗などのインスタンスでは、複合例外 ExceptionConstants.API_SEE_MULTIPLE_ROOT_CAUSES が
発生します。この例外を無効にするには、例外が検出されたコードを変更します。次の例を参照してください。

例: 複合例外の発生
while (true) {
 try {
 change.changeStatus(

wf.getStates(expectStatus)[0],
false,
"comment",
false,
false,
null,
null,
null,
false

);
 } catch (APIException ae) {
 try {
 if
(ae.getErrorCode().equals(ExceptionConstants.API_SEE_MULTIPLE_ROOT
_CAUSES)){
 Throwable[] causes = ae.getRootCauses();
 for (int i = 0; i < causes.length; i++) {
 m_session.disableWarning(
 (Integer)((APIException)causes[i]).getErrorCode()
);
 }
 } else {
 m_session.disableWarning((Integer)ae.getErrorCode()
);

 第 11 章

Agile Product Lifecycle Management 177 ページ

 }
 } catch (Exception e) {
 throw ae;
 }
 continue;
 }
 break;
}

変更は通常、CCB メンバーによってサインオフされた後にリリースします。changeStatus() を使用すると、

変更のステータスの変更に加えて、通知リスト、オプションのコメント、および作成者と変更管理委員会に通

知するかどうかも指定できます。

使用するオーバーロードされた changeStatus() メソッドに応じて、notifyList パラメータは、変更の

ステータスについて通知する IUser または IUserGroup オブジェクトの配列になります。詳細は、API リ
ファレンスを参照してください。ワークフロー ステータスについてデフォルトの通知リストを使用するには、

ヌル値を指定します。ユーザーに通知しないことを示すには、空の配列を指定します。

changeStatus() メソッドの approvers と observers の両方のパラメータには、ユーザーまたはユー

ザー グループの配列を明示的に渡す必要があります。ヌルを渡すと、承認者またはオブザーバが使用されませ

ん。特定のワークフロー ステータスについてデフォルトの承認者およびオブザーバを取得するには、

getApproversEx() と getObserversEx() をそれぞれ使用します。

次の例は、変更のワークフロー ステータスを確認する方法を示しています。

例: 変更のステータスの確認
void checkStatus(IChange change) {
 try {
 // Get current workflow status (an IStatus object)
 IStatus status = change.getStatus();
 System.out.println("Status name = " + status.getName());

 // Get next available workflow statuses
 IStatus[] nextStatuses = change.getNextStatuses();
 for (int i = 0; i < nextStatuses.length; i++) {
 System.out.println("nextStatuses[" + i +"] = " +
 nextStatuses[i].getName());
 }
 // Get next default workflow status
 IStatus nextDefStatus = change.getDefaultNextStatus();
 System.out.println("Next default status = " +
nextDefStatus.getName());

 } catch (APIException ex) {
 System.out.println(ex);
 }
}

次の例は、変更のステータスを変更する方法を示しています。

SDK 開発者ガイド

178 ページ Agile Product Lifecycle Management

例: 変更のステータスの変更
public void nextStatus(IChange change, IUser[] notifyList,
 IUser[] approvers, IUser[] observers) {
 try {
 // Check if the user has privileges to change to the next status
 IStatus nextStatus = change.getDefaultNextStatus();
 if (nextStatus == null) {
 System.out.println("Insufficient privileges to change status.");
 return;
 }
 // Change to the next status
 else {
 change.changeStatus(nextStatus, true, "", true, true,
notifyList,
 approvers, observers, false);
 }
 } catch (APIException ex) {
 System.out.println(ex);
 }
}

次の例は、送信可能なオブジェクトのステータスを変更するときに、デフォルトの承認者とオブザーバを使用

する方法を示しています。

例: ステータスの変更およびデフォルトの承認者とオブザーバへの送信
public void changeToDefaultNextStatus(IChange change) throws
APIException {
 // Get the next status of the change
 IStatus nextStatus = change.getDefaultNextStatus();

 // Get default approvers for the next status
 IDataObject[] defaultApprovers =
change.getApproversEx(nextStatus);

 // Get default observers for the next status
 IDataObject[] defaultObservers =
change.getObserversEx(nextStatus);

 // Change to the next status
 change.changeStatus(nextStatus, false, "", false, false, null,
defaultApprovers,
 defaultObservers, false);

}

 第 11 章

Agile Product Lifecycle Management 179 ページ

選択したユーザーへの Agile オブジェクトの送信
Agile オブジェクトは、選択したユーザーのグループに送信できます。ECO などのオブジェクトを送信する場

合、サインオフは必要ありません。選択した受信者は、オブジェクトへのリンクが添付された電子メール メッ

セージを受信します。IDataObject.send() メソッドを使用すると、Agile ユーザーの配列とオプションの

コメントを指定できます。他のワークフロー コマンドとは異なり、send() メソッドは送信可能なオブジェク

トに限定されません。このメソッドを使用すると、アイテムを含む任意のタイプの Agile データオブジェクト

を送信できます。

次の例は、オブジェクトをすべてのユーザーに送信する方法を示しています。

例: 選択したユーザーへの Agile オブジェクトの送信
public void sendToAll(IDataObject object) {
 try {
 // Get all users
 IQuery q = (IQuery)m_session.createObject(IQuery.OBJECT_TYPE,
"select * from [Users]");
 ArrayList userList = new ArrayList();
 Iterator i = q.execute().getReferentIterator();
 while (i.hasNext()) {
 userList.add(i.next());
 }
 IUser[] users = (IUser[])(userList.toArray());
 // Send the object to all users
 object.send(users, "Please read this important document.");
 } catch (APIException ex) {
 System.out.println(ex);
 }
}

ユーザー グループへの Agile オブジェクトの送信
Agile 変更オブジェクトまたはアイテム オブジェクトは、ユーザー グループに送信できます。ECO などのオ

ブジェクトを送信する場合、サインオフは必要ありません。選択した受信者は、オブジェクトへのリンクが添

付された電子メール メッセージを受信します。IDataObject.send(IDataObject[] to, String
Comment) メソッドを使用すると、Agile ユーザー グループの配列とオプションのコメントを指定できます。

IDataObject 親インターフェースは、IUserGroup Agile オブジェクトを表します。他のワークフロー コ
マンドとは異なり、send() メソッドは送信可能なオブジェクトに限定されません。このメソッドを使用する

と、アイテムを含む任意のタイプの Agile データオブジェクトを送信できます。

次の例は、オブジェクトをすべてのユーザー グループに送信する方法を示しています。

SDK 開発者ガイド

180 ページ Agile Product Lifecycle Management

例: 選択したユーザー グループへの Agile オブジェクトの送信
public void sendToAll(IDataObject[] object) {
 try {
 // Get all user groups
 IQuery q = (IQuery)m_session.createObject(IQuery.OBJECT_TYPE,
"select * from [UserGroup]");
 ArrayList userList = new ArrayList();
 Iterator i = q.execute().getReferentIterator();
 while (i.hasNext()) {
 usergroupList.add(i.next());
 }
 IUserGroup[] group = (IUserGroup[])(usergroupList.toArray());
 // Send the object to all user groups
 object.send(usergroups, "Please read this important document.");
 } catch (APIException ex) {
 System.out.println(ex);
 }
}

Agile Product Lifecycle Management 181 ページ

第 12 章

品質の管理および追跡

扱うトピックは次のとおりです。

 品質管理について ... 181
 顧客の使用 ... 182
 製品サービス依頼の使用 ... 184
 品質変更依頼の使用 ... 187
 PSR および QCR でのワークフロー機能の使用... 189

品質管理について
Agile PLM システムには、企業が次の品質関連アイテムを追跡および管理できるツールが用意されています。

 顧客の不満

 製品および製造の品質問題

 拡張と是正処置の依頼

Agile PLM システムの是正処置プロセスは柔軟性があり、様々な方法で実装できます。たとえば、Agile PLM シ
ステムをカスタマイズする 1 つの方法は、Agile API を使用してこのシステムと顧客関係管理 (CRM) システ

ムを統合することです。

品質関連の API オブジェクト
Agile API には、次の新規インターフェースが含まれています。

 ICustomer - Customer クラスのインターフェース。顧客は、企業の製品を使用するユーザーです。Agile
PLM の実装によっては、顧客と問題レポートが顧客関係管理 (CRM) システムから直接インポートされる

場合があります。

 IServiceRequest - ServiceRequest クラスのインターフェース。IServiceRequest は IRoutable
のサブインターフェースです。IServiceRequest を使用すると、問題レポートと不具合レポート (NCR)
の 2 つのタイプのサービス依頼を作成できます。

 IQualityChangeRequest - ECR や他のタイプの変更依頼に類似した QualityChangeRequest クラ

スのインターフェース。このインターフェースは、品質問題に対応する閉ループ方式ワークフロー プロセ

スを表します。検証および CAPA (是正処置/予防処置) は、QualityChangeRequest のサブクラスです。

SDK 開発者ガイド

182 ページ Agile Product Lifecycle Management

品質関連の役割と権限
問題レポート、問題点、NCR、CAPA および QCR を作成、表示および変更するには、適切な権限が必要です。

Agile PLM システムには 2 つのデフォルトのユーザー役割があり、これによって、ユーザーに次の品質関連オ

ブジェクトを使用する権限が提供されます。

 品質分析者 - 問題レポート、問題点および NCR を管理するユーザーの役割です。

 品質管理者 - 検証および CAPA を管理するユーザーの役割です。

役割と権限の詳細は、『Agile PLM 管理者ガイド』を参照してください。

顧客の使用
このセクションでは、ICustomer オブジェクトを作成、ロードおよび保存する方法について説明します。

顧客について
ICustomer オブジェクトには、顧客の連絡先情報が格納されます。Agile PLM システムでは、顧客に役割が

あります。顧客は、企業の製品についてフィードバックを提供し、品質の問題点または検出した問題を警告し

ます。

ICustomer オブジェクトは、CRM システムなど別のシステムで作成できます。Agile API を使用すると、顧

客データと問題レポートを CRM システムから Agile PLM システムにインポートできます。

顧客の作成
顧客を作成するには、IAgileSession.createObject() メソッドを使用します。少なくとも、General
Info.Customer Name 属性および General Info.Customer Number 属性に値を指定する必要がありま

す。

例: 顧客の作成
try {
 //Create a Map object to store parameters
 Map params = new HashMap();
 //Initialize the params object
 params.put(CustomerConstants.ATT_GENERAL_INFO_CUSTOMER_NUMBER,
"CUST00006");
 params.put(CustomerConstants.ATT_GENERAL_INFO_CUSTOMER_NAME,
"Western Widgets");
 //Create a new customer
 ICustomer cust1 =
(ICustomer)m_session.createObject(CustomerConstants.CLASS_CUSTOMER,
params);

 } catch (APIException ex) {
 System.out.println(ex);
 }

 第 12 章

Agile Product Lifecycle Management 183 ページ

顧客のロード
顧客をロードするには、IAgileSession.getObject() メソッドを使用します。顧客を一意に識別するには、

[一般情報 | 顧客番号] 属性に値を指定します。

例: 顧客のロード
try {
 // Load a customer by specifying a CustomerNumber
 ICustomer cust =
(ICustomer)m_session.getObject(ICustomer.OBJECT_TYPE,
"CUST00006");
} catch (APIException ex) {
 System.out.println(ex);
}

顧客を別の顧客として保存
顧客を別の顧客として保存するには、IDataObject.saveAs() メソッドを次の構文で使用します。

public IAgileObject saveAs(java.lang.Object type, java.lang.Object
params)

params パラメータには、[一般情報 | 顧客名] 属性と [一般情報 | 顧客番号] 属性を指定します。

例: 顧客を別の顧客として保存
try {
 // Load an existing customer
 ICustomer cust1 =
(ICustomer)m_session.getObject(ICustomer.OBJECT_TYPE,
"CUST00006");

 //Create a Map object to store parameters
 Map params = new HashMap();

 //Initialize the params object
 params.put(CustomerConstants.ATT_GENERAL_INFO_CUSTOMER_NUMBER,
"CUST00007");
 params.put(CustomerConstants.ATT_GENERAL_INFO_CUSTOMER_NAME,
"Wang Widgets");
 // Save the customer
 ICustomer cust2 =
(ICustomer)cust1.saveAs(CustomerConstants.CLASS_CUSTOMER, params);

} catch (APIException ex) {
 System.out.println(ex);
}

SDK 開発者ガイド

184 ページ Agile Product Lifecycle Management

製品サービス依頼の使用
このセクションでは、問題レポートと不具合レポートの 2 つのクラスの製品サービス依頼を使用する方法につ

いて説明します。

問題レポートについて
問題レポートには、製品に発生した問題が顧客の観点から記載されます。問題レポートは、顧客、販売代理店

または顧客サービス担当者が提出できます。

通常、問題レポートは顧客によって作成されるため、問題の実際の原因が正確に説明されていない場合があり

ます。問題の根本原因を把握するには、品質分析者が問題を調査する必要があります。

問題レポートは調査のために送信できます。品質分析者で構成された調査チームは、問題の根本原因を確認し、

その問題を問題点にエスカレートするかどうかを判断します。

不具合レポートについて
不具合レポート (NCR) は、顧客またはサプライヤが受け取る製品のマテリアルの破損、不良モードまたは欠

陥をレポートするために使用します。NCR は通常、サプライヤから製品を受理した後、製品出荷を検査すると

きに識別されます。顧客の要件または含有基準を満たさない製品は、不適合製品です。そのような製品は通常

却下されるか、分離されて処分待ちになります。不具合レポートでは、品質分析者が問題を調査し、是正措置

が必要かどうかを判断することが必要になる場合があります。

NCR はレビューのために送信できます。レビューは通常、承認および却下以外に、追加情報を収集するために

使用されます。

製品サービス依頼の作成
問題レポートまたは不具合レポートを作成するには、IAgileSession.createObject() メソッドを使用し

ます。指定する必要のある必須属性値はオブジェクトの番号のみです。次の例では、問題レポートおよび NCR
を作成する方法を示しています。

例: 問題レポートまたは NCR の作成
public IServiceRequest createPR(String strNum) throws APIException {
 IServiceRequest pr = (IServiceRequest)m_session.createObject(
 ServiceRequestConstants.CLASS_PROBLEM_REPORT, strNum);
 return pr;
}
public IServiceRequest createNCR(String strNum) throws APIException
{
 IServiceRequest ncr = (IServiceRequest)m_session.createObject(
 ServiceRequestConstants.CLASS_NCR, strNum);
 return ncr;
}

 第 12 章

Agile Product Lifecycle Management 185 ページ

品質分析者への製品サービス依頼の割り当て
問題レポートまたは NCR を品質分析者に割り当てるには、リスト フィールドである [カバー ページ | 品質

分析者] フィールドに値を設定します。リスト フィールドで使用可能な値は、Agile PLM ユーザーで構成され

ています。次の例は、問題レポートまたは NCR の Cover Page.Quality Analyst フィールドに値を設

定する方法を示しています。

例: 問題レポートまたは不具合レポートの割り当て
void assignServiceRequest(IServiceRequest sr) throws APIException {
 Integer attrID;
 //Set attrID equal to the Quality Analyst attribute ID
 attrID = ServiceRequestConstants.ATT_COVER_PAGE_QUALITY_ANALYST;

 //Get the Cover Page.Quality Analyst cell
 ICell cell = sr.getCell(attrID);

 //Get available list values for the list
 IAgileList values = cell.getAvailableValues();

 //Set the value to the current user
 IUser user = m_session.getCurrentUser();
 values.setSelection(new Object[] { user });
 cell.setValue(values);
}

製品サービス依頼への対象アイテムの追加
問題レポートまたは不具合レポートを 1 つ以上のアイテムに関連付けるには、アイテムを [対象アイテム]
テーブルに追加します。各製品サービス依頼には、複数のアイテムを関連付けることができます。

注意 製品サービス依頼 (PSR) が [関連 PSR] テーブルに追加されている場合、[対象アイテム] テーブル

は変更できません。

例: 製品サービス依頼への対象アイテムの追加
void addAffectedItem(IServiceRequest sr, String strItemNum) throws
APIException {
 //Get the class
 IAgileClass cls = sr.getAgileClass();

 //Attribute variable
 IAttribute attr = null;

 //Get the Affected Items table
 ITable affItems =
sr.getTable(ServiceRequestConstants.TABLE_AFFECTEDITEMS);

 //Create a HashMap to store parameters
 HashMap params = new HashMap();

 //Set the Item Number value

SDK 開発者ガイド

186 ページ Agile Product Lifecycle Management

params.put(ServiceRequestConstants.ATT_AFFECTED_ITEMS_ITEM_NUMBER,
strItemNum);
 //Set the Latest Change value
 attr =
cls.getAttribute(ServiceRequestConstants.ATT_AFFECTED_ITEMS_LATEST
_CHANGE);
 IAgileList listvalues = attr.getAvailableValues();
 listvalues.setSelection(new Object[] { new Integer(0)});

params.put(ServiceRequestConstants.ATT_AFFECTED_ITEMS_LATEST_CHANG
E, listvalues);
 //Set the Affected Site value
 attr =
cls.getAttribute(ServiceRequestConstants.ATT_AFFECTED_ITEMS_AFFECT
ED_SITE);
 IAgileList listvalues = attr.getAvailableValues();
 listvalues.setSelection((new Object[] { "Hong Kong" });

params.put(ServiceRequestConstants.ATT_AFFECTED_ITEMS_AFFECTED_SIT
E, listvalues);
 //Create a new row in the Affected Items table
 IRow row = affItems.createRow(params);
}

製品サービス依頼への関連 PSR の追加
製品サービス依頼は、複数の問題レポートまたは NCR を 1 つのマスターに集約するために使用できます。そ

のためには、新規の製品サービス依頼を作成し、アイテムは [対象アイテム] テーブルに追加しません。かわ

りに、[関連 PSR] テーブルを選択し、関連製品サービス依頼ごとに 1 行追加します。

注意 アイテムが [対象アイテム] テーブルに追加されている場合、[関連 PSR] テーブルは変更できません。

例: 製品サービス依頼への関連 PSR の追加
void addRelatedPSRs(IServiceRequest sr, String[] psrNum) throws
APIException {
 //Get the Related PSR table
 ITable relPSR =
sr.getTable(ServiceRequestConstants.TABLE_RELATEDPSR);

 //Create a HashMap to store parameters
 HashMap params = new HashMap();

 //Add PSRs to the Related PSR table
 for (int i = 0; i < psrNum.length; i++)
 {
 //Set the PSR Number value
 params.put(ServiceRequestConstants.ATT_RELATED_PSR_PSR_NUMBER,
psrNum[i]);
 //Create a new row in the Related PSR table
 IRow row = relPSR.createRow(params);

 //Reset parameters
 params = null;
 }
}

 第 12 章

Agile Product Lifecycle Management 187 ページ

品質変更依頼の使用
品質分析者は、品質変更依頼 (QCR) を使用して、製品、ドキュメント、サプライヤおよび顧客に関連する問

題が集約された品質記録を管理できます。QCR はレビューおよび承認のために送信でき、問題点は是正または

予防処置を使用して解決できます。その結果、ECO や MCO が開始され、製品、プロセスまたはサプライヤ

が変更される場合があります。QCR では、問題、是正処置、予防処置および設計変更間の検証記録も提供され

ます。

Agile PLM には、次の 2 つのクラスの品質変更依頼があります。

 CAPA - (通常) 問題レポートから表面化した欠陥に対応する是正処置または予防処置を表します。問題が
CAPA 段階に到達するまでに、チームは特定のアイテムに修正が必要であることを把握します。その結果、

CAPA の対象アイテムは、関連する問題レポートの対象アイテムとは異なる場合があります。たとえば、

顧客が DVD-ROM ドライブに関する問題をレポートしたとします。CAPA が開始され、根本原因が IDE
コントローラの欠陥であることが識別されます。その結果、CAPA と関連する問題レポートの対象アイテ

ムは異なるアイテムになります。

 検証 - 根拠を取得して客観的に評価することで、条件を満たす範囲を判断するための一貫した独立性のあ

るドキュメント化されたプロセス。検証は、問題がレポートされていないアイテムに対して実行できます。

品質変更依頼の作成
QCR を作成するには、IAgileSession.createObject() メソッドを使用します。指定する必要のある必

須属性値はオブジェクトの番号のみです。次の例は、CAPA と検証の両方の QCR を作成する方法を示してい

ます。

例: QCR の作成
public IQualityChangeRequest createCAPA(String strNum) throws
APIException {
 IQualityChangeRequest capa =
(IQualityChangeRequest)m_session.createObject(
 QualityChangeRequestConstants.CLASS_CAPA, strNum);
 return capa;

}
public IQualityChangeRequest createAudit(String strNum) throws
APIException {
 IQualityChangeRequest audit =
(IQualityChangeRequest)m_session.createObject(
 QualityChangeRequestConstants.CLASS_AUDIT, strNum);
 return audit;
}

SDK 開発者ガイド

188 ページ Agile Product Lifecycle Management

品質管理者への品質変更依頼の割り当て
QCR を品質管理者に割り当てるには、[カバー ページ | 品質管理者] フィールドに値を設定します。このプロ

セスは、製品サービス依頼を品質分析者に割り当てる方法に類似しています。

例: QCR の割り当て
void assignQCR(IQualityChangeRequest qcr) throws APIException {
 Integer attrID;
 //Set attrID equal to the Quality Administrator attribute ID
 attrID =
QualityChangeRequestConstants.ATT_COVER_PAGE_QUALITY_ADMINISTRATOR
;
 //Get the Cover Page.Quality Administrator cell
 ICell cell = qcr.getCell(attrID);

 //Get available list values for the list
 IAgileList values = cell.getAvailableValues();

 //Set the value to the current user
 IUser user = m_session.getCurrentUser();
 values.setSelection(new Object[] { user });
 cell.setValue(values);
}

品質変更依頼を変更として保存
IDataObject.saveAs() メソッドを使用すると、QCR を別の QCR または ECO (つまり、変更依頼の別の

タイプ) として保存できます。QCR を ECO として保存する場合、QCR の対象となるアイテムは ECO の [対
象アイテム] タブに自動的に転送されません。対象アイテムを QCR から ECO に転送する場合は、その機能

を提供するようにプログラムにコードを記述する必要があります。

注意 QCR を品質変更依頼または変更のスーパークラスのサブクラスではないオブジェクトとして保存

しようとすると、Agile API で例外が発生します。

例: QCR を ECO として保存
public IChange saveQCRasECO(IQualityChangeRequest qcr) throws
APIException {
 // Get the ECO class
 IAgileClass cls =
m_admin.getAgileClass(ChangeConstants.CLASS_ECO);

 // Get autonumber sources for the ECO class
 IAutoNumber[] numbers = cls.getAutoNumberSources();

 // Save the QCR as an ECO
 IChange eco = (IChange)qcr.saveAs(ChangeConstants.CLASS_ECO,
numbers[0]);

 // Add code here to copy affected items from the QCR to the ECO
 return eco;
}

 第 12 章

Agile Product Lifecycle Management 189 ページ

PSR および QCR でのワークフロー機能の使用
PSR と QCR では、すべてのワークフロー機能を IRoutable インターフェースから導出します。次の表に、

製品品質オブジェクトの管理に使用できるワークフロー コマンドを示します。

機能 対応する API

PSR または QCR の検証 IRoutable.audit()

PSR または QCR のステータスの変更 IRoutable.changeStatus()

別のユーザーへの PSR または QCR の送信 IDataObject.send()

PSR または QCR の承認 IRoutable.approve()

PSR または QCR の却下 IRoutable.reject()

PSR または QCR に関するコメント IRoutable.comment()

PSR または QCR の承認者の追加または削除 IRoutable.addApprovers()
IRoutable.removeApprovers()

ワークフローの選択
新規の製品サービス依頼または品質変更依頼を作成する場合は、ワークフローを選択する必要があります。

Agile PLM システムでは、製品サービス依頼および品質変更依頼の各タイプに対して複数のワークフローを定

義できます。オブジェクトに対して有効なワークフローを取得するには、IRoutable.getWorkflows() を
使用します。ワークフローが未割り当ての場合は、次の例に示すように IRoutable.getWorkflows() を使

用してワークフローを選択できます。

例: ワークフローの選択
public static IServiceRequest createPSR() throws APIException {
 // Create a problem report
 IAgileClass prClass =
admin.getAgileClass(ServiceRequestConstants.CLASS_PROBLEM_REPORT);
 IAutoNumber[] numbers = prClass.getAutoNumberSources();
 IServiceRequest pr =
(IServiceRequest)m_session.createObject(prClass, numbers[0]);

 // Get the current workflow (a null object, since the workflow has
not been set yet)
 IWorkflow wf = pr.getWorkflow();
 // Get all available workflows
 IWorkflow[] wfs = pr.getWorkflows();

 // Set the problem report to use the first workflow
 pr.setWorkflow(wfs[0]);

 return pr;
}

SDK 開発者ガイド

190 ページ Agile Product Lifecycle Management

次の例に示すように、Cover Page.Workflow フィールドの値を選択して製品サービス依頼または品質変更

依頼にワークフローを設定することもできます。

例 12-12: [カバー ページ.ワークフロー] 属性の値の設定によるワークフローの選択
void selectWorkflow(IServiceRequest psr) throws APIException {
 int nAttrID;
 //Set nAttrID equal to the Workflow attribute ID
 nAttrID = ServiceRequestConstants.ATT_COVER_PAGE_WORKFLOW;

 //Get the Workflow cell
 ICell cell = psr.getCell(nAttrID);

 //Get available list values for the list
 IAgileList values = cell.getAvailableValues();

 //Select the first workflow
 values.setSelection(new Object[] {new Integer(0));
 cell.setValue(values);
}

Agile Product Lifecycle Management 191 ページ

第 13 章

プログラムの作成および管理

扱うトピックは次のとおりです。

 プログラムについて ... 191
 プログラム オブジェクトの動作の相違点.. 192
 プログラムの作成 ... 192
 プログラムのロード ... 194
 プログラム テンプレートの使用.. 194
 プログラムのスケジュール ... 198
 プログラムの基準の使用 ... 200
 別のユーザーへのプログラム所有権の委譲.. 201
 プログラムのチームへのリソースの追加.. 202
 プログラム リソースの入れ替え.. 205
 プログラムのロックまたはロック解除.. 206
 ディスカッションの使用 ... 206

プログラムについて
Agile Program Execution (PE) のプログラム管理機能を使用すると、プログラムとすべての関連要素 (アクティ

ビティ スケジュール、成果物、ディスカッションなど) を定義できます。これらの機能では、必要なリソース

の可用性の判別、タスクへのリソースの割り当て、ボトルネックの識別、割り当て超過および割り当て不足の

リソース状況への対応が可能です。また、プログラム テンプレートを作成し、再利用することもできます。

プログラムをスケジュールし、実行するには、プログラム オブジェクトを使用します。各プログラムには、ス

ケジュール情報のみでなく、添付ファイル、ディスカッションとアクション アイテム、リソースと役割、プロ

グラムに関連するアクティビティすべての履歴が含まれています。データはルールと親子関係に基づいて上位

レベルにロールアップされるため、管理状況の識別が容易になります。

Agile API では、プログラムの作成、ロードおよび使用がサポートされています。IProgram インターフェー

スは、プログラム、フェーズ、タスクおよびゲートなど、すべてのプログラム オブジェクトを表します。

他の Agile PLM ビジネス オブジェクトと同様に、IProgram インターフェースには IRoutable が実装さ

れています。したがって、プログラムのワークフロー ステータスの変更、および他のユーザーへの送信には、

同じ IRouteable.changeStatus() メソッドが使用されます。詳細は、176 ページの「オブジェクトのワー

クフロー ステータスの変更」を参照してください。

SDK 開発者ガイド

192 ページ Agile Product Lifecycle Management

プログラム オブジェクトの動作の相違点
IProgram インターフェースには、他の Agile PLM オブジェクトで一般的に使用されるインターフェースが

いくつか実装されています。ただし、他のオブジェクトとは区別される次の固有の機能も提供されます。

 プログラム オブジェクトは、フェーズ、タスクおよびゲートなど、他の基礎となるプログラム オブジェ

クトのコンテナです。基礎となるプログラム オブジェクトは、[スケジュール] テーブルを介して、親オ

ブジェクト (通常はプログラム) と関連付けられます。

 プログラムには、スケジュールの変更を追跡できる基準があります。したがって、IProgram インター

フェースには、基準を作成、取得または削除できるメソッドが用意されています。

 プログラムはアーカイブ可能です。ルート プログラムをアーカイブすると、プログラム ツリー全体がシ

ステムからソフト削除されます。

 プログラムは、ロックまたはロック解除可能です。

プログラムの作成
プログラムを作成するには、IAgileSession.createObject() メソッドを使用します。プログラム パラ

メータを指定するときは、プログラムのサブクラス (例: プログラム、フェーズ、タスクまたはゲート) を指定

する必要があります。プログラム、フェーズおよびタスクについては、次の必須プログラム属性を指定する必

要があります。

 General Info.Name

 General Info.Schedule Start Date

 General Info.Schedule End Date

 General Info.Duration Type

ゲートについては、General Info.Name および General Info.Schedule End Date の 2 つの属性の

みが必須です。

次の例は、新規プログラムを作成し、必須属性を指定する方法を示しています。

例: プログラムの作成
try {
 // Create a Map object to store parameters
 Map params = new HashMap();
 // Set program name
 String name = "APOLLO PROGRAM";

 // Set program start date
 Date start = new Date();
 start.setTime(1);

 // Set program end date
 Date end = new Date();
 end.setTime(1 + 2*24*60*60*1000);

 第 13 章

Agile Product Lifecycle Management 193 ページ

 // Set program duration type
 IAttribute attr =
m_admin.getAgileClass(ProgramConstants.CLASS_PROGRAM).

getAttribute(ProgramConstants.ATT_GENERAL_INFO_DURATION_TYPE);
 IAgileList avail = attr.getAvailableValues();
 avail.setSelection(new Object[] {"Fixed"});

 // Initialize the params object
 params.put(ProgramConstants.ATT_GENERAL_INFO_NAME, name);
 params.put(ProgramConstants.ATT_GENERAL_INFO_SCHEDULE_START_DATE,
start);
 params.put(ProgramConstants.ATT_GENERAL_INFO_SCHEDULE_END_DATE,
end);
 params.put(ProgramConstants.ATT_GENERAL_INFO_DURATION_TYPE,
avail);
 // Create the program
 IProgram program =
(IProgram)m_session.createObject(ProgramConstants.CLASS_PROGRAM,
params);

} catch (APIException ex) {
 System.out.println(ex);
}

プログラムには、フェーズ、タスク、ゲートなど、他のタイプのアクティビティが含まれます。ゲートとは、

一連の関連フェーズ、タスクまたはプログラムの完了を示す特別なマイルストーンで、終了日はあるが期間の

ないタスクです。次の図は、プログラム オブジェクトの階層を示しています。
図 10: プログラム階層

SDK 開発者ガイド

194 ページ Agile Product Lifecycle Management

フェーズ、タスクおよびゲートは、IAgileSession.createObject() メソッドを使用して、他のプログラ

ム オブジェクトと同じ方法で作成できます。これらの様々なタイプのアクティビティを作成した後は、プログ

ラムの [スケジュール] テーブルに追加できます。詳細は、198 ページの「プログラムのスケジュール」を参

照してください。

プログラムのロード
プログラムをロードするには、IAgileSession.getObject() メソッドを使用します。プログラムを一意に

識別するために、General Info.Number 属性に値を指定します。また、プログラムを名前で検索して、そ

の検索結果から選択する方法でプログラムをロードすることもできます。

注意 IProgram.getName() メソッドは、実際には General Info.Name ではなく General
Info.Number 属性の値を返します。

例: プログラムのロード
public IProgram loadProgram(String number) throws APIException {
 IProgram program =
(IProgram)m_session.getObject(IProgram.OBJECT_TYPE, number);
 return program;
}

注意 プログラムに対する [ニュース] テーブルは、デフォルトで無効になっています。有効にするには、

管理者として Java クライアントにログインし、[ニュース] タブを表示状態にします。

プログラム テンプレートの使用
プログラム テンプレートを使用すると、新しいプログラム、アクティビティまたはタスクの定義が簡単になり

ます。テンプレートは、General Info.Template 属性が「Template」に設定されているプログラムです。

テンプレートを使用すると、テンプレートをロードして IProgram.saveAs() メソッドを使用することに

よって、新規プログラムを作成できます。

この特別なバージョンの saveAs() メソッドでは、SDK を使用して次のことができます。

 テンプレートから新規プログラムを作成し、コピーするテーブルを指定できます。

 プログラムの所有者および子の所有者を変更できます。

 プログラムをテンプレートとして保存して、新規プログラム テンプレートを作成できます。

テンプレートを使用した新規プログラムの作成
この特別なバージョンの saveAs() メソッドを使用すると、元のプログラムから新規プログラムにコピーす

るプログラム テーブルを指定できます。すべてのテーブルを指定する必要はありません。[一般情報]、[スケ

ジュール]、[依存関係の依存対象]、[依存関係の必須対象] および [ワークフロー] テーブルは、自動的にコピー

されます。[ディスカッション]、[ニュース] および [履歴] テーブルはコピーできません。通常、次の例に示す

ように、[ユーザー定義 1]、[ユーザー定義 2] (使用される場合) および [チーム] テーブルはコピーする必要が

あります。

 第 13 章

Agile Product Lifecycle Management 195 ページ

例: テンプレートからの新規プログラムの作成
try {
 // Get the program template whose number is PGM00004
 IProgram template =
(IProgram)m_session.getObject(IProgram.OBJECT_TYPE, "PGM00004");
 if (template != null) {

 // Create a hash map of the program attributes to use for the new
program
 HashMap map = new HashMap();
 String name = "Scorpio Program";
 IAttribute att =
m_admin.getAgileClass(ProgramConstants.CLASS_PROGRAM).getAttribute
(

ProgramConstants.ATT_GENERAL_INFO_TEMPLATE);
 IAgileList templateList = att.getAvailableValues();
 // Note: Available values for the Template attribute are Active,
Proposed, and Template
 templateList.setSelection(new Object[] {"Active"});
 map.put(ProgramConstants.ATT_GENERAL_INFO_NAME, name);

map.put(ProgramConstants.ATT_GENERAL_INFO_SCHEDULE_START_DATE, new
Date());
 map.put(ProgramConstants.ATT_GENERAL_INFO_TEMPLATE,
templateList);
 // Define the tables to copy to the new program from the template
 Integer pagetwo = ProgramConstants.TABLE_PAGETWO;
 Integer pagethree = ProgramConstants.TABLE_PAGETHREE;
 Integer team = ProgramConstants.TABLE_TEAM;
 Object[] tables = new Object[]{pagetwo, pagethree, team};

 // Save the template as a new program
 IProgram program =
(IProgram)template.saveAs(ProgramConstants.CLASS_PROGRAM,
 tables, map);
 }
} catch (APIException ex) {
 System.out.println(ex);
}

プログラムの作成および所有権の変更
saveAs() API 呼び出しを使用してテンプレートからプログラムを作成する場合は、プログラムの所有権を変

更し、その変更をプログラムの子に継承できます。SDK では、公開されている API は、次のとおりです。
public IAgileObject saveAs(Object type, Object[] tablesToCopy,Object
params, boolean applyToChildren)
throws APIException;

これを実行するには、ProgramConstants と OWNER 属性の両方の値を指定します。OWNER 属性の値は、プ

ログラム所有者を変更するためには必須です。所有者の値をすべての子に適用する場合は、ブールの
applyToChildren を true に設定します。

SDK 開発者ガイド

196 ページ Agile Product Lifecycle Management

UI では、テンプレートからプログラムを作成するとき、プログラムの所有権を変更し、その変更を子に適用で

きます。この場合、SDK では、UI の動作がミラー化されます。ただし、SDK の saveAs() API を介してテン

プレートからプログラムを作成するには、元のプログラムがテンプレートである必要があります。

注意 SDK では、元のプログラムの General Info.Template 属性の値が「Template」に設定されている場合、

プログラムはテンプレートです。

例: テンプレートからのプログラムの作成、所有者の変更および変更の継承
 public IProgram saveTemplateAndSetOwner (IProgram template, String
userID, boolean applyToChildren) throws APIException {
 // "template" is a program template
 // userID -- The "userID" of the user that is specified as the
owner of the Saved program object
 // applyToChildren -- true or false. If "true" the "specified
owner" will be the owner of the entire program tree
 // If "false", the specified owner will be the owner of the Root
Parent object only

 HashMap map = new HashMap () ;
 String newPgmName = "PROG" + System.currentTimeMillis() ; //
Generate a random name for the Saved Program object
 IUser user = session.getObject(UserConstants.CLASS_USER, userID) ;
 map.put(ProgramConstants.ATT_GENERAL_INFO_NAME, newPgmName);
 map.put(ProgramConstants.ATT_GENERAL_INFO_OWNER, User);

map.put(ProgramConstants.ATT_GENERAL_INFO_SCHEDULE_START_DATE, new
Date());
 // Define the tables to copy from the template
 // If you do not want any tables to be copied, specify "null" for
the "tables" param

 Integer pageTwo = ProgramConstants.TABLE_PAGETWO ;
 Integer pageThree = ProgramConstants.TABLE_PAGETHREE ;
 Integer team = ProgramConstants.TABLE_TEAM ;

 Object[] tables = { pageTwo, pageThree, team } ;
 IProgram pgm = (IProgram)
root.saveAs(ProgramConstants.CLASS_PROGRAM, tables, map,
applyToChildren);
 System.out.println("New Program Number = " + pgm.getName()) ;
 System.out.println("Owner Value = " +
pgm.getValue(ProgramConstants.ATT_GENERAL_INFO_OWNER).toString())
return pgm ;
}

 第 13 章

Agile Product Lifecycle Management 197 ページ

プログラムをテンプレートとして保存
プログラムを作成するとき、テンプレート属性 (ProgramConstants.ATT_GENERAL_INFO_TEMPLATE) の
値を「Template」に設定すると、プログラムがテンプレートであることを指定できます。テンプレートとして

指定できるのは、プログラムを作成するとき、または新規プログラムとして保存するときのみです。既存のプ

ログラムを、「Active」または「Proposed」の状態から「Template」に変更することはできません。次の例は、

プログラムを開いて、テンプレートとして保存する方法を示しています。

例: プログラムをテンプレートとして保存
try {
 // Get the program whose number is PGM00005
 IProgram program =
(IProgram)m_session.getObject(IProgram.OBJECT_TYPE, "PGM00005");
 if (program != null) {

 // Create a hash map of the program attributes to use for the new
program
 HashMap map = new HashMap();
 String name = "Rapid Development");
 IAttribute att =
m_admin.getAgileClass(ProgramConstants.CLASS_PROGRAM).getAttribute
(

ProgramConstants.ATT_GENERAL_INFO_TEMPLATE);
 IAgileList templateList = att.getAvailableValues();
 // Note: Available values for the Template attribute are Active,
Proposed, and Template
 templateList.setSelection(new Object[] {"Template"});
 map.put(ProgramConstants.ATT_GENERAL_INFO_NAME, name);

map.put(ProgramConstants.ATT_GENERAL_INFO_SCHEDULE_START_DATE, new
Date());
 map.put(ProgramConstants.ATT_GENERAL_INFO_TEMPLATE,
templateList);
 //Define the tables to copy to the template
 Integer pagetwo = ProgramConstants.TABLE_PAGETWO;
 Integer pagethree = ProgramConstants.TABLE_PAGETHREE;
 Integer team = ProgramConstants.TABLE_TEAM;
 Object[] tables = new Object[]{pagetwo, pagethree, team};

 // Save the program as a template
 IProgram program =
(IProgram)template.saveAs(ProgramConstants.CLASS_PROGRAM,
 tables, map);
 }
} catch (APIException ex) {
 System.out.println(ex);
}

SDK 開発者ガイド

198 ページ Agile Product Lifecycle Management

プログラムのスケジュール
プログラムをスケジュールするには、[スケジュール] テーブルを編集します。[スケジュール] テーブルでは、

スケジュール アイテムを追加、編集および削除できます。[スケジュール] テーブルに新規行を追加するには、

ITable.createRow() メソッドを使用し、パラメータに IProgram オブジェクトを指定します。

例: [スケジュール] テーブルの変更
try {
 // Define a row variable
 IRow row = null;

 // Set the date format
 DateFormat df = new SimpleDateFormat("MM/dd/yy");

 // Get a program
 IProgram program =
(IProgram)m_session.getObject(ProgramConstants.CLASS_PROGRAM,
"PGM00012");
 if (program != null) {
 // Get the Schedule table
 ITable schedule =
program.getTable(ProgramConstants.TABLE_SCHEDULE);
 Iterator i = schedule.iterator();

 // Find task T000452 and remove it
 while (i.hasNext()) {
 row = (IRow)i.next();
 String num =
(String)row.getValue(ProgramConstants.ATT_GENERAL_INFO_NUMBER);
 if (num.equals("T000452")) {
 schedule.removeRow(row);
 break;
 }
 }
 // Add a phase
 HashMap info = new HashMap();
 info.put(ProgramConstants.ATT_GENERAL_INFO_NAME,
"Specifications phase");

info.put(ProgramConstants.ATT_GENERAL_INFO_SCHEDULE_START_DATE,
df.parse("06/01/05"));

info.put(ProgramConstants.ATT_GENERAL_INFO_SCHEDULE_END_DATE,
df.parse("06/10/05"));
 IAttribute attr =
m_admin.getAgileClass(ProgramConstants.CLASS_PHASE).

getAttribute(ProgramConstants.ATT_GENERAL_INFO_DURATION_TYPE);
 IAgileList list = attr.getAvailableValues();
 list.setSelection(new Object[] {"Fixed"});

 第 13 章

Agile Product Lifecycle Management 199 ページ

info.put(ProgramConstants.ATT_GENERAL_INFO_DURATION_TYPE, list);
 IProgram phase =
(IProgram)m_session.createObject(ProgramConstants.CLASS_PHASE,
info);
 row = schedule.createRow(phase);
 // Add a task
 info = null;
 list = null;
 info.put(ProgramConstants.ATT_GENERAL_INFO_NAME, "Write
specifications");
 info.put(ProgramConstants.ATT_GENERAL_INFO_NUMBER, "T000533");

info.put(ProgramConstants.ATT_GENERAL_INFO_SCHEDULE_START_DATE,
df.parse("06/01/05"));

info.put(ProgramConstants.ATT_GENERAL_INFO_SCHEDULE_END_DATE,
df.parse("06/05/05"));
 attr = m_admin.getAgileClass(ProgramConstants.CLASS_TASK).

getAttribute(ProgramConstants.ATT_GENERAL_INFO_DURATION_TYPE);
 list = attr.getAvailableValues();
 list.setSelection(new Object[] {"Fixed"});

info.put(ProgramConstants.ATT_GENERAL_INFO_DURATION_TYPE, list);
 IProgram task =
(IProgram)m_session.createObject(ProgramConstants.CLASS_TASK,
info);
 row = schedule.createRow(task);
 // Add a gate
 info = null;
 info.put(ProgramConstants.ATT_GENERAL_INFO_NAME,
"Specifications complete");

info.put(ProgramConstants.ATT_GENERAL_INFO_SCHEDULE_END_DATE,
df.parse("06/10/05"));
 IProgram gate =
(IProgram)m_session.createObject(ProgramConstants.CLASS_GATE,
info);
 row = schedule.createRow(gate);
 }
} catch (APIException ex) {
 System.out.println(ex);
}

プログラムのスケジュールが定義されていると、IProgram.reschedule() メソッドを使用してプログラム

を簡単に再スケジュールできます。reschedule() メソッドで使用されるのは、いくつかのパラメータ、

IProgram.RESCHEDULE 定数およびそのスケジュール オプションに対する新しい値です。次は、使用可能な
IProgram.RESCHEDULE 定数のリストです。

 STARTDATE - スケジュールの開始日を指定した日付に移動します。

 ENDDATE - スケジュールの終了日を指定した日付に移動します。

 BACKWARDDAYS - スケジュールを指定した日数だけ前の日付に移動します。

 FORWARDDAYS - スケジュールを指定した日数だけ先の日付に移動します。

SDK 開発者ガイド

200 ページ Agile Product Lifecycle Management

例: プログラムの再スケジュール
try {
 // Get a program
 IProgram program =
(IProgram)m_session.getObject(IProgram.OBJECT_TYPE, "PGM00012");
 if (program != null) {

 // Define new start and end dates
 String startDate = "02/01/2005 GMT";
 String endDate = "06/01/2005 GMT";
 SimpleDateFormat df = new SimpleDateFormat("MM/dd/yyyy z");
 Date start = df.parse(startDate);
 Date end = df.parse(endDate);

 // Change the schedule start date
 program.reschedule(IProgram.RESCHEDULE.STARTDATE, start);

 // Change the schedule end date
 program.reschedule(IProgram.RESCHEDULE.ENDDATE, end);

 // Move the schedule backward three days
 program.reschedule(IProgram.RESCHEDULE.BACKWARDDAYS, new
Integer(3));

 // Move the schedule forward two days
 program.reschedule(IProgram.RESCHEDULE.FORWARDDAYS, new
Integer(2));
 }
} catch (Exception ex) {
 System.out.println(ex);
}

プログラムの基準の使用
プログラムの基準を使用すると、実際の進行状況を元の計画と比較できます。基準を作成すると、プログラム

のスケジュールのスナップショットが保持されます。基準に含まれる予測データは、更新されたタスク構造、

スケジュール、実際の日付などを比較するための恒久的な基準です。

基準は、ルート プログラム オブジェクトに対してのみ作成できます。複数の基準を保存でき、比較のために

後で取得できます。IProgram インターフェースには、基準を作成、取得および削除するための次のメソッド

が用意されています。

 createBaseline(java.lang.Object)

 getBaseline()

 getBaselines()

 removeBaseline(java.lang.Object)

 selectBaseline(java.lang.Object)

 第 13 章

Agile Product Lifecycle Management 201 ページ

例: 基準の作成および取得
try {
 // Get a program
 IProgram program =
(IProgram)m_session.getObject(IProgram.OBJECT_TYPE, "PGM00012");
 if (program != null) {

 // Create a baseline
 Object baseline = program.createBaseline("august 8 baseline");

 // Get all baselines
 Map map = program.getBaselines();

 // Get the first baseline
 Set keys = map.keySet();
 Object[] objs = keys.toArray();
 baseline = map.get(objs[0]);

 // Remove the first baseline
 program.removeBaseline(baseline);

 // Get all baselines again
 map = program.getBaselines();

 // Select the first baseline
 If (map.size() > 0) {
 keys = map.keySet();
 objs = keys.toArray();
 baseline = map.get(objs[0]);
 program.selectBaseline(baseline);
 }
 }
} catch (APIException ex) {
 System.out.println(ex);
}

別のユーザーへのプログラム所有権の委譲
プログラム オブジェクトの所有者またはプログラム マネージャは、プログラムの所有権を委譲することに

よって、それを他のユーザーに割り当てることができます。委譲されたユーザーは、承認または拒否できる依

頼を受け取ります。承認すると、委譲されたユーザーがそのタスクの所有者になります。委譲された所有者に

は、委譲されたプログラム オブジェクトに対する [プログラム マネージャ] 役割が自動的に付与されます。

プログラムの所有権を委譲するには、IProgram.delegateOwnership() メソッドを使用します。プログラ

ムの所有権を委譲すると、[委任された所有者] フィールドが自動的に更新されます。このフィールドは読み取

り専用です。delegateOwnership() メソッドを使用すると、委譲された所有権をプログラムの子にも適用

するかどうかを指定できます。

SDK 開発者ガイド

202 ページ Agile Product Lifecycle Management

例: プログラム オブジェクトの所有権の委譲
try {
 // Get the task whose number is T00012
 IProgram task = (IProgram)m_session.getObject(IProgram.OBJECT_TYPE,
"T00012");
 if (task != null) {
 // Get a user
 IUser user1 = (IUser)m_session.getObject(UserConstants.CLASS_USER,
"kkieslowski");
 if (user1 != null) {
 // Delegate the task to the user
 task.delegateOwnership(user1, false);
 }
 }
} catch (APIException ex) {
 System.out.println(ex);
}

プログラムのチームへのリソースの追加
[チーム] テーブルを使用すると、プログラム オブジェクトに対するチーム メンバー リストを管理できます。

チーム メンバーの追加または削除、チーム メンバーの役割の変更、チーム メンバーの割り当ての変更を行う

ことができます。プログラムの [チーム] テーブルを変更するには、適切な権限が必要です。

[チーム] テーブルにリソースを追加する場合は、そのプログラム オブジェクトに対してユーザーまたはユー

ザー グループに割り当てる役割を指定します。使用可能な役割は、Agile PLM の役割の完全なセットではあり

ません。これらは、Program Execution 機能に特に関連している役割です。次は、チーム メンバーに割り当て

ることができる役割のリストです。

 エグゼクティブ

 変更分析者

 プログラム チーム メンバー

 プログラム マネージャ

 リソース プール所有者

 プログラム管理者

これらの各役割の説明は、『Agile PLM 管理者ガイド』を参照してください。

[チーム] テーブルには、特別な注意が必要な 2 つの属性 ProgramConstants.ATT_TEAM_NAME および
ProgramConstants.ATT_TEAM_ROLES があります。これらはそれぞれ、シングルリスト属性とマルチリス

ト属性です。これらの属性に対して使用可能な値を取得するには、IAttribute.getAvailableValues() で
はなく、ITable.getAvailableValues() メソッドを使用します。このメソッドを使用しない場合は、メ

ソッドから返される IAgileList オブジェクトに無効なリスト値が含まれる場合があります。

 第 13 章

Agile Product Lifecycle Management 203 ページ

例: プログラムのチームへのリソースの追加
try {
 // Get users
 IUser user1 = (IUser)session.getObject(UserConstants.CLASS_USER,
"daveo");
 IUser user2 = (IUser)session.getObject(UserConstants.CLASS_USER,
"yvonnec");
 IUser user3 = (IUser)session.getObject(UserConstants.CLASS_USER,
"albertl");
 IUser user4 = (IUser)session.getObject(UserConstants.CLASS_USER,
"brians");

 // Get a resource pool (user group)
 IUserGroup pool =
(IUserGroup)session.getObject(IUserGroup.OBJECT_TYPE,
"Development");
 // Add all four users to the resource pool
 ITable usersTable =
pool.getTable(UserGroupConstants.TABLE_USERS);
 usersTable.createRow(user1);
 usersTable.createRow(user2);
 usersTable.createRow(user3);
 usersTable.createRow(user4);

 // Get a program
 IProgram program =
(IProgram)session.getObject(IProgram.OBJECT_TYPE, "PGM02423");
 if (program != null) {

 // Get the Team table of the program
 ITable teamTable =
program.getTable(ProgramConstants.TABLE_TEAM);

 // Get Roles attribute values (use ITable.getAvailableValues)
 IAgileList attrRolesValues =
teamTable.getAvailableValues(ProgramConstants.ATT_TEAM_ROLES);
 // Create a hash map to hold values for row attributes
 Map map = new HashMap();
 // Add the first user to the team
 attrRolesValues.setSelection(new Object[]{"Change
Analyst","Program Manager"});
 map.put(ProgramConstants.ATT_TEAM_NAME, user1);
 map.put(ProgramConstants.ATT_TEAM_ROLES, attrRolesValues);

 IRow row1 = teamTable.createRow(map);
 // Add the second user to the team
 attrRolesValues.setSelection(new Object[]{"Program
Administrator"});
 map.put(ProgramConstants.ATT_TEAM_NAME, user2);
 IRow row2 = teamTable.createRow(map);

 // Add the resource pool to the team
 attrRolesValues.setSelection(new Object[]{"Program Team
Member"});
 map.put(ProgramConstants.ATT_TEAM_NAME, pool);
 IRow row3 = teamTable.createRow(map);

 }

SDK 開発者ガイド

204 ページ Agile Product Lifecycle Management

Agile Web クライアントでは、[チーム] テーブルにリソース プールを追加する場合は、プールをその中に含ま

れている 1 つ以上のリソースで置き換えることができます。つまり、リソース プール全体を割り当てるかわ

りに、プールから選択したユーザーを割り当てることができます。この機能を使用するには、

IProgram.assignUsersFromPool() メソッドを使用します。assignUsersFromPool() を使用するには、

プログラムの [チーム] テーブルにすでに追加されているユーザー グループを指定する必要があります。

例: リソース プールからのユーザーの割り当て
public void replaceUserGroupWithUser(IProgram program) throws
Exception {
 // Get the Team table
 ITable teamTable = program.getTable(ProgramConstants.TABLE_TEAM);

 // Get a table iterator
 Iterator it = teamTable.iterator();

 // Find a user group and replace it with one of its members, kwong
 while(it.hasNext()){
 IRow row = (IRow)it.next();
 IDataObject object = row.getReferent();
 if(object instanceof IUserGroup){
 IUserGroup ug = (IUserGroup)object;
 ITable users = ug.getTable(UserGroupConstants.TABLE_USERS);
 Iterator ref_it = users.getReferentIterator();
 while(ref_it.hasNext()){
 IUser user = (IUser)ref_it.next();
 if(user.getName().equals("kwong")) {
 program.assignUsersFromPool(new IUser[]{user}, ug, true);
 break;
 }
 }
 }
 }
}

 第 13 章

Agile Product Lifecycle Management 205 ページ

プログラム リソースの入れ替え
リソースの可用性は、過負荷、再割り当て、休暇および病気によって頻繁に変わる可能性があります。既存の

リソースを別のリソースに入れ替えることができます。現在のリソースの役割は、入れ替えられたリソースに

割り当てられます。ただし、割り当てられるのはそのプログラムに対してのみです。プログラム リソースを入

れ替えるには、IProgram.substituteResource() メソッドを使用します。

リソースを入れ替える場合は、ユーザーおよびユーザー グループを指定できます。また、リソース割り当てを

プログラムの子に適用するかどうかも指定できます。

例: プログラム リソースの入れ替え
try {
 // Get a program
 IProgram program =
(IProgram)m_session.getObject(IProgram.OBJECT_TYPE, "PGM00012");
 if (program != null) {

 // Get users
 IUser u1 = (IUser)m_session.getObject(UserConstants.CLASS_USER,
"akurosawa");
 IUser u2 = (IUser)m_session.getObject(UserConstants.CLASS_USER,
"creed");
 IUser u3 = (IUser)m_session.getObject(UserConstants.CLASS_USER,
"dlean");
 IUser u4 = (IUser)m_session.getObject(UserConstants.CLASS_USER,
"jford");

 // Get a user group
 IUserGroup ug =
(IUserGroup)m_session.getObject(IUserGroup.OBJECT_TYPE,
 "Directors");
 // Substitute u1 with u3 and do not apply to children
 program.substituteResource(u1, u3, false);

 // Substitute u2 with u4 and apply to children
 program.substituteResource(u2, u4, true);

 // Substituete u4 with a user group, and apply to children
 program.substituteResource(u4, ug, true);
 }
} catch (APIException ex) {
 System.out.println(ex);
}

SDK 開発者ガイド

206 ページ Agile Product Lifecycle Management

プログラムのロックまたはロック解除
プログラムの所有者は、プログラムをロックまたはロック解除できます。プログラムがロックされていると、

そのスケジュールは変更できません。プログラムをロックまたはロック解除するには、IProgram.setLock()
メソッドを使用します。

注意 Agile Web クライアントでガント チャートまたは Microsoft Project 統合機能を使用すると、プログ

ラムは自動的にロックされます。

例: プログラムのロック

try {

 // Get a program
 IProgram program =
(IProgram)m_session.getObject(IProgram.OBJECT_TYPE, "PGM00012");
 if (program != null) {
 // Lock it
 program.setLock(true);
 }
} catch (APIException ex) {
 System.out.println(ex);
}

ディスカッションの使用
プロジェクトの進行中に、ユーザーが協力して、情報を交換する必要がある問題が発生します。Agile PLM に
は、チーム メンバーがそのフィードバックに返信し、自分の意見や考えの記録を提供できるスレッド ディス

カッション機能が用意されています。ディスカッションは非同期です。つまり、すべてのディスカッション参

加者が同時に接続する必要はありません。参加者は、ディスカッションのどのスレッドにも自由に返信できま

す。問題を終了するために、アクション アイテムをチーム リソースに割り当てることができます。ディスカッ

ション オブジェクトは、スレッド ディスカッションとそれに関連するアクション アイテムの両方を管理する

ために使用されます。

ディスカッション オブジェクトは、プログラムとは異なり送信可能なオブジェクトではありません。したがっ

て、ディスカッションにワークフローは関連付けられていません。

注意 [アクション アイテム]、[カバー ページ] および [返信] テーブルは、Agile PLM クライアントの
[ディスカッション] タブに表示されます。[ユーザー定義 1] テーブルは、Agile PLM クライアント

の [詳細] タブに表示されます。[使用箇所] テーブルはサポートされていません。その機能は、

General Info.Related To フィールドで置き換えられています。

ディスカッションの作成
ディスカッションを作成するには、IAgileSession.createObject() メソッドを使用します。ディスカッ

ション パラメータを指定するとき、ディスカッションのサブクラスと、次の必須ディスカッション属性を指定

する必要があります。

 カバー ページ.番号

 カバー ページ.件名

 第 13 章

Agile Product Lifecycle Management 207 ページ

[カバー ページ.通知リスト] および [カバー ページ.メッセージ] 属性のデータも指定する必要があります。指

定しない場合は、ユーザーが返信できる通知リストまたはメッセージがディスカッションに対して設定されま

せん。

次の例は、新規ディスカッションを作成して、プログラムの [ディスカッション] テーブルに追加する方法を

示しています。

例: ディスカッションの作成
try {
 // Create a hash map variable
 Map map = new HashMap();

 // Set the Number field
 IAgileClass discussionClass =
m_session.getAdminInstance().getAgileClass(

DiscussionConstants.CLASS_DISCUSSION);
 String number =
discussionClass.getAutoNumberSources()[0].getNextNumber();
 // Set the Subject field
 String subject = "Packaging issues";

 // Make the Message field visible
 IAttribute attr =
discussionClass.getAttribute(DiscussionConstants.ATT_COVER_PAGE_ME
SSAGE);
 IProperty propVisible =
attr.getProperty(PropertyConstants.PROP_VISIBLE);
 IAgileList list = propVisible.getAvailableValues();
 list.setSelection(new Object[] { "Yes" });

 // Set the Message field
 String message = "We still have problems with the sleeves and inserts."
+
 "Let's resolve these things at the team meeting on
Friday.";
 // Set the Notify List field
 IUser user1 = m_session.getCurrentUser();
 IUser user2 = (IUser)m_session.getObject(UserConstants.CLASS_USER,
"jdassin");
 attr =
discussionClass.getAttribute(DiscussionConstants.ATT_COVER_PAGE_NO
TIFY_LIST);
 list = attr.getAvailableValues();
 list.setSelection(new Object[] {user1, user2});

 // Put the values into the hash map
 map.put(DiscussionConstants.ATT_COVER_PAGE_NUMBER, number);
 map.put(DiscussionConstants.ATT_COVER_PAGE_SUBJECT, subject);
 map.put(DiscussionConstants.ATT_COVER_PAGE_MESSAGE, message);
 map.put(DiscussionConstants.ATT_COVER_PAGE_NOTIFY_LIST, list);

SDK 開発者ガイド

208 ページ Agile Product Lifecycle Management

 // Create a Discussion object
 IDiscussion discussion = (IDiscussion)m_session.createObject(

DiscussionConstants.CLASS_DISCUSSION, map);
 // Get a program
 IProgram program =
(IProgram)m_session.getObject(IProgram.OBJECT_TYPE, "PGM00012");

 if (program != null) {
 // Get the Discussion table
 ITable discTable =
program.getTable(ProgramConstants.TABLE_DISCUSSION);

 // Add the new discussion to the table
 discTable.createRow(discussion);
 }

} catch (APIException ex) {
 System.out.println(ex);
}

ディスカッションへの返信
チーム メンバーまたは通知ユーザー、つまり、ディスカッションの [カバー ページ.通知リスト] フィールド

にリストされているユーザーは、ディスカッションに返信できます。ディスカッションに返信する場合は、[返
信] テーブルに別のネスト テーブルを作成します。

例: ディスカッションへの返信
private void replyToDiscussion() throws Exception {
 Iterator it;
 IDiscussion discussion;

 // Get a program
 IProgram program =
(IProgram)m_session.getObject(IProgram.OBJECT_TYPE, "PGM00012");

 // Get the Discussion table
 ITable discTable =
program.getTable(ProgramConstants.TABLE_DISCUSSION);

 // Get the first Discussion listed
 if (discTable.size()!=0) {
 it = discTable.iterator();
 if (it.hasNext()) {
 IRow row = (IRow)it.next();
 discussion = (IDiscussion)row.getReferent();
 }
 // Get the Replies table
 ITable repliesTable =
discussion.getTable(DiscussionConstants.TABLE_REPLIES);

 第 13 章

Agile Product Lifecycle Management 209 ページ

 // Iterate to the only row of the Replies table and send a reply
 it = repliesTable.iterator();
 if (it.hasNext()) {
 IRow row = (IRow)it.next();
 IMessage message = (IMessage)row;
 HashMap response = new HashMap();

 // Set the Subject field (use the same Subject as the parent)
 response.put(MessageConstants.ATT_COVERPAGE_SUBJECT,

row.getValue(DiscussionConstants.ATT_REPLIES_SUBJECT));
 // Make the Message field visible
 IAgileClass discussionClass =
m_session.getAdminInstance().getAgileClass(

DiscussionConstants.CLASS_DISCUSSION);
 IAttribute attr =
discussionClass.getAttribute(DiscussionConstants.ATT_COVER_PAGE_ME
SSAGE);
 IProperty propVisible =
attr.getProperty(PropertyConstants.PROP_VISIBLE);
 IAgileList list = propVisible.getAvailableValues();
 list.setSelection(new Object[] { "Yes" });

 // Set the Message field
 response.put(MessageConstants.ATT_COVERPAGE_MESSAGE,
 "The spec needs to be updated to reflect the latest
decisions.");
 // Send a reply
 message.reply(response);
 }
 }
}

この例は、ルート ディスカッションに返信する方法を示しています。次に、ディスカッションに複数の返信が

あり、最新の返信に返信する場合はどのように処理するかを考えてみます。この場合はもう少し複雑で、[返信]
テーブルをさらに理解する必要があります。

ディスカッションの [返信] テーブルは、他の Agile PLM テーブルとは異なります。このテーブルには、複数

の返信がある場合でも、行が 1 つしか含まれません。ディスカッションに複数の返信がある場合、返信は一連

のネスト テーブル内に含まれます。最新の返信を選択するには、最後のネスト テーブルまで [返信] テーブ

ルを展開します。次の図は、Agile Web クライアントの展開された [返信] テーブルを示しています。
図 1: 展開された [返信] テーブル

次の例に示すように、再帰メソッド (それ自身を呼び出すメソッド) を使用すると、[返信] テーブルのすべて

のレベルを展開できます。[返信] テーブルの次に続く各レベルは、子テーブル属性
(DiscussionConstants.ATT_REPLIES_CHILD_TABLE) の値を取得することによって取得されます。

SDK 開発者ガイド

210 ページ Agile Product Lifecycle Management

例: [返信] テーブルの展開方法
// Read the Replies table
public void readRepliesTable(IDiscussion discussion) throws Exception
{
 ITable replies =
discussion.getTable(DiscussionConstants.TABLE_REPLIES);
 browseReplies(0, replies);
}
// Recursively browse through all levels of the Replies table
void browseReplies(int indent, ITable replies) throws Exception {
 Iterator i = replies.iterator();
 while (i.hasNext()) {
 IRow row = (IRow) i.next();
 System.out.print(indent(indent*4));
 readRow(row);
 System.out.println();
 ITable followup =
(ITable)row.getValue(DiscussionConstants.ATT_REPLIES_CHILD_TABLE);
 browseReplies(indent + 1, followup);
 }
}
// Read each cell in the row and print the attribute name and value
static protected void readRow(IRow row) throws Exception {
 ICell[] cells = row.getCells();
 for (int j = 0; j < cells.length; ++j) {
 Object value = cells[j].getValue();
 System.out.print("\t" + cells[j].getAttribute().getName() + "="+
value);
 }
}
// Indent text
private String indent(int level) {
 if (level <= 0) {
 return "";
 }
 char c[] = new char[level*2];
 Arrays.fill(c, ' ');
 return new String(c);
}

ディスカッションへの参加
Agile Web クライアントでは、プログラムの [ディスカッション] タブをクリックし、[参加] ボタンをクリッ

クすると、ディスカッションに参加できます。ディスカッションに参加すると、ディスカッション オブジェク

トの [通知リスト] フィールドにユーザー名が追加されます。Agile API を使用してディスカッションに参加す

るには、自分自身を [通知リスト] フィールドに追加します。ディスカッションに参加できるのは、そのプロ

グラムのチーム メンバーである場合のみです。

注意 ディスカッション オブジェクトの通知リストに含まれていない場合、返信を表示することはできま

せん。ただし、プログラムの [チーム] テーブルにリストされているユーザーは、そのプログラムに

関連付けられているディスカッションに参加できます。

 第 13 章

Agile Product Lifecycle Management 211 ページ

例: ディスカッションへの参加
try {
 // Get a program
 IProgram program =
(IProgram)m_session.getObject(ProgramConstants.CLASS_PROGRAM,
"PGM00012");
 if (program != null) {
 // Get the Discussion table
 ITable discTable =
program.getTable(ProgramConstants.TABLE_DISCUSSION);

 // Get the first discussion
 IRow row = (IRow)discTable.iterator().next();
 IDiscussion discussion = (IDiscussion)row.getReferent();

 // Add yourself and another user to the Notify List field
 IUser user1 = m_session.getCurrentUser();
 IUser user2 = (IUser)m_session.getObject(UserConstants.CLASS_USER,
"owelles");
 ICell cell =
discussion.getCell(DiscussionConstants.ATT_COVER_PAGE_NOTIFY_LIST)
;
 IAgileList list = (IAgileList)cell.getAvailableValues();
 list.setSelection(new Object[] {user1, user2});
 }
} catch (APIException ex) {
 System.out.println(ex);
}

アクション アイテムの作成
アクション アイテムは、ディスカッション オブジェクトの一部として作成できます。ディスカッションで、

他のユーザーがアクションを実行する必要がある問題が発生した場合は、そのアクションを別のユーザーに割

り当てることができます。アクション アイテムには、件名、ステータス、締切日および割り当てられたユーザー

が設定されます。アクション アイテムを作成すると、割り当てられたユーザーの [通知と依頼] 受信トレイに

表示されます。

アクション アイテムを作成するには、ITable.createRow() メソッドを使用して、プログラム オブジェク

トの [アクション アイテム] テーブルに行を追加します。行の初期化に使用されるマップ オブジェクトに、[件
名]、[割り当て先] および [締切日] フィールドに対するパラメータが含まれていることを確認してください。

例: アクション アイテムの作成
private void replyToDiscussion() throws Exception {
 // Get a program
 IProgram program =
(IProgram)m_session.getObject(IProgram.OBJECT_TYPE, "PGM00012");
 if (program != null) {
 // Create a hash map for Action Item parameters
 HashMap map = new HashMap();

 // Set the Subject field
 String subj = "Update packaging requirements";
 map.put(ProgramConstants.ATT_ACTION_ITEMS_SUBJECT, subj);

SDK 開発者ガイド

212 ページ Agile Product Lifecycle Management

 // Set the Assigned To field
 IUser user1 = (IUser)m_session.getObject(UserConstants.CLASS_USER,
"akurosawa");
 IAttribute attr = m_session.getAdminInstance().getAgileClass(

ProgramConstants.CLASS_PROGRAM).getAttribute(

ProgramConstants.ATT_ACTION_ITEMS_ASSIGNED_TO);
 IAgileList list = attr.getAvailableValues();
 list.setSelection(new Object[] {user1});
 map.put(ProgramConstants.ATT_ACTION_ITEMS_ASSIGNED_TO, list);

 // Set the Due Date field
 DateFormat df = new SimpleDateFormat("MM/dd/yy");
 map.put(ProgramConstants.ATT_ACTION_ITEMS_DUE_DATE,
df.parse("03/30/05"));

 // Get the Action Items table
 ITable table =
program.getTable(ProgramConstants.TABLE_ACTIONITEMS);

 // Add the new Action Item to table
 table.createRow(map);
 }
} catch (APIException ex) {
 System.out.println(ex);
}

Agile Product Lifecycle Management 213 ページ

第 14 章

Product Cost Management の使用

扱うトピックは次のとおりです。

 Product Sourcing について ... 213
 価格の管理 ... 214
 サプライヤの使用 ... 219
 ソーシング プロジェクトの使用.. 220

Product Sourcing について
Agile PLM の Product Sourcing モジュールでは、製品のライフサイクル全体を通して、製品コスト関連の全デー

タの処理がサポート、強化および簡略化されます。この結果、ソーシング コンテンツの効率的な管理と操作、

サプライヤとの協力による新しいソーシング コンテンツの設定、およびデータの分析が可能になります。

Product Sourcing では、次の機能がサポートされています。

 ソーシング プロジェクトの作成

 製品コンテンツの収集および準備

 価格契約および履歴の利用

 見積依頼の作成

 サプライヤ見積依頼回答の管理および価格の交渉 (PCM SDK では未サポート)

 プロジェクト分析の実施

Agile API では、次の Product Sourcing オブジェクトがサポートされています。

 IChange - Change クラスのインターフェース。価格変更 (PCO) が含まれます。

 IPrice - Price クラスのインターフェース。公表価格と履歴価格の両方が処理されます。

 IProject - Project クラスのインターフェース。プロダクト ソーシング データ用に使用されるコン

テナです。

 IRequestForQuote - RequestForQuote クラスのインターフェース。ソーシング プロジェクトの見

積依頼を表します。

 ISupplier - Supplier クラスのインターフェース。

ISupplierResponse オブジェクトを除いて、Agile API では、すべての Product Sourcing オブジェクトを読

み取りおよび変更できます。次の表に、Product Sourcing オブジェクトに対する作成、読み取りおよび変更権限

を示します。

SDK 開発者ガイド

214 ページ Agile Product Lifecycle Management

オブジェクト 作成 読み取り 変更

IChange (PCO を含む) 可能 可能 可能

IPrice 可能 可能 可能

IProject 可能 可能 可能

IRequestForQuote 可能 可能 可能

ISupplier 可能 可能 可能

価格の管理
非効率的な手動システムは、Agile PLM の価格管理ソリューションによって置き換えられます。手動システム

では、たいていの場合、価格は異なる場所にあるファイル、スプレッドシートまたはデータベースに格納され

ます。Agile PLM システムを使用すると、アイテムと製造元部品の価格と条件を作成でき、中央で管理できま

す。

次の 2 つのデフォルトの価格クラスがシステムに付属しています。

 見積履歴 - 見積履歴オブジェクトには、以前のプロジェクトまたはレガシー データからの価格見積が含

まれています。

 公表価格 - 公表価格には、対象のアイテムおよび製造元部品に関する公表価格または契約価格が含まれて

います。

次は、アイテムまたは製造元部品の価格の定義に使用される基本ステップです。

1. 適切な役割があるユーザーが、番号、説明、アイテムまたは製造元部品、サプライヤ、拠点および顧客を

指定して、新しい価格オブジェクトを作成できます。

2. 価格オブジェクトの作成後、ユーザーは、各関連アイテムまたは製造元部品に対する価格/条件のマトリッ

クスを作成できます。価格と条件のマトリックスには、有効日、数量、価格およびキャンセル期間が含ま

れます。

3. 価格オブジェクトが提出され、ワークフロー承認プロセスに従って処理されます。他のユーザーは、オブ

ジェクトを承認または却下できます。

4. 適切な役割があるユーザーが、価格変更 (PCO) を作成してリリース済みの価格オブジェクトを変更でき

ます。更新された価格オブジェクトは、承認のために再度提出されます。

価格オブジェクトの作成
価格オブジェクトを作成するには、いくつかの手順があります。最初に、オブジェクト クラスと一意の識別属

性を指定し、次に、新しい価格オブジェクトを返す IAgileSession.createObject() を使用します。

価格オブジェクトは、指定する必要があるキー属性が複数あるため、他の Agile API オブジェクトより複雑で

す。他のほとんどの Agile API オブジェクトでは、キー オブジェクトは、オブジェクトの番号などの 1 つの

みです。価格オブジェクトでは、番号、顧客、アイテムまたは製造元部品、リビジョン (アイテムの場合)、プ

ログラム、拠点およびサプライヤを指定する必要があります。これらの属性のいずれかが指定されない場合は、

例外が発生し、価格オブジェクトは作成されません。

 第 14 章

Agile Product Lifecycle Management 215 ページ

注意 拠点別の情報を処理していない場合は、製造拠点属性にグローバル拠点を指定します。

価格オブジェクトの作成後は、[カバー ページ]、[ユーザー定義 1]、[ユーザー定義 2] のフィールドに値を設

定して、価格オブジェクトを詳細に定義できます。アイテムおよび製造元部品の価格と条件を定義するには、[価
格ライン] テーブルに行を追加します。添付するファイルまたはドキュメントがある場合は、[添付ファイル]
テーブルに追加します。

デフォルト

価格を Program==All and Customer==All で作成する場合は、価格作成時に
PriceConstants.ATT_GENERAL_INFORMATION_CUSTOMER および
PriceConstants.ATT_GENERAL_INFORMATION_Program に値を渡す必要はありません。デフォルトで、

価格は Progam==All and Customer==All で作成されます。

アイテム リビジョンの指定

価格作成時にアイテム リビジョンを指定する場合は、リビジョン番号のかわりに変更番号を渡す必要がありま

す。

例: 変更番号を渡してアイテム リビジョンを指定する場合
//Pass the change number
params.put(Priceconstants.ATT_GENERAL_INFORMATION_ITEM_REV,
"CO-35884");

//Instead of the revision number
params.put(PriceConstants.ATT_GENERAL_INFORMATION_ITEM_REV, "B")

公表価格の作成

次の例は、公表価格を作成する方法を示しています。

例: 公表価格の作成
public void createPublishedPrice(ICustomer customer, ISupplier
supplier) throws Exception {
 HashMap params = new HashMap();
 IAgileClass cls =
m_admin.getAgileClass(PriceConstants.CLASS_PUBLISHED_PRICE);
 IAutoNumber an = cls.getAutoNumberSources()[0];
 params.put(PriceConstants.ATT_GENERAL_INFORMATION_NUMBER, an);

params.put(PriceConstants.ATT_GENERAL_INFORMATION_CUSTOMER,
customer);

params.put(PriceConstants.ATT_GENERAL_INFORMATION_ITEM_NUMBER,
"1000-02");

params.put(PriceConstants.ATT_GENERAL_INFORMATION_ITEM_REV,
"CO-35884");

params.put(PriceConstants.ATT_GENERAL_INFORMATION_PROGRAM,
"PROGRAM0023");

params.put(PriceConstants.ATT_GENERAL_INFORMATION_MANUFACTURING_SI
TE, "San Jose");

SDK 開発者ガイド

216 ページ Agile Product Lifecycle Management

params.put(PriceConstants.ATT_GENERAL_INFORMATION_SUPPLIER,
supplier);
 IPrice price = (IPrice)m_session.createObject(cls, params);
}

価格オブジェクトのロード
価格オブジェクトをロードするには、IAgileSession.getObject() メソッドを使用します。価格オブジェ

クトを一意に識別するために、[タイトル ブロック | 番号] 属性に値を指定します。

例: 価格オブジェクトのロード

public IPrice getPrice() throws Exception {
 IPrice price = (IPrice)m_session.getObject(IPrice.OBJECT_TYPE,
"PRICE10008");
 return price;
}

価格オブジェクトのテーブルのリストについては、SDK コードが記述されている、Javadoc で生成された
HTML ファイルを参照してください。このファイルは、Agile ドキュメント Web サイト (http://docs.agile.com)
の Agile 9.2.2.3 SDK Sample (Zip ファイル) フォルダにあります。パスは samples¥html¥pages.html です。

価格ラインの追加
価格オブジェクトの [価格ライン] テーブルでは、関連アイテムまたは製造元部品の価格と条件を定義できま

す。[価格ライン] テーブルに行を追加する場合は、行を値で初期化する必要があります。少なくとも、次の属

性に値を指定する必要があります。

 ATT_PRICE_LINES_SHIP_FROM

 ATT_PRICE_LINES_SHIP_TO

 ATT_PRICE_LINES_PRICE_EFFECTIVE_FROM_DATE

 ATT_PRICE_LINES_PRICE_EFFECTIVE_TO_DATE

 ATT_PRICE_LINES_QTY

これらの属性のいずれかに値を指定しない場合、価格ライン行は作成されません。

例: 価格ラインの追加
public void addPriceLines(IPrice price) throws Exception {
DateFormat df = new SimpleDateFormat("MM/dd/yy");
 IAgileClass cls = price.getAgileClass();
 ITable table = price.getTable(PriceConstants.TABLE_PRICELINES);
 IAttribute attr = null;
 IAgileList listvalues = null;
 HashMap params = new HashMap();

http://docs.agile.com/

 第 14 章

Agile Product Lifecycle Management 217 ページ

 //Set Ship-To Location (List field)
 attr = cls.getAttribute(PriceConstants.ATT_PRICE_LINES_SHIP_TO);
 listvalues = attr.getAvailableValues();
 listvalues.setSelection(new Object[] { "San Jose" });
 params.put(PriceConstants.ATT_PRICE_LINES_SHIP_TO, listvalues);

 //Set Ship-From Location (List field)
 attr =
cls.getAttribute(PriceConstants.ATT_PRICE_LINES_SHIP_FROM);
 listvalues = attr.getAvailableValues();
 listvalues.setSelection(new Object[] { "Hong Kong" });
 params.put(PriceConstants.ATT_PRICE_LINES_SHIP_FROM, listvalues);

 //Set Effective From (Date field)

params.put(PriceConstants.ATT_PRICE_LINES_PRICE_EFFECTIVE_FROM_DAT
E, df.parse("10/01/03"));
 //Set Effective To (Date field)

params.put(PriceConstants.ATT_PRICE_LINES_PRICE_EFFECTIVE_TO_DATE,
df.parse("10/31/03"));
 //Set Quantity (Number field)
 params.put(PriceConstants.ATT_PRICE_LINES_QTY, new
Integer(1000));

 //Set Currency Code (List field)
 attr =
cls.getAttribute(PriceConstants.ATT_PRICE_LINES_CURRENCY_CODE);
 listvalues = attr.getAvailableValues();
 listvalues.setSelection(new Object[] { "USD" });
 params.put(PriceConstants.ATT_PRICE_LINES_CURRENCY_CODE,
listvalues);

 //Set Total Price (Money field)
 params.put(PriceConstants.ATT_PRICE_LINES_TOTAL_PRICE, new
Money(new Double(52.95), "USD"));

 //Set Total Material Price (Money field)

params.put(PriceConstants.ATT_PRICE_LINES_TOTAL_MATERIAL_PRICE,
new Money(new Double(45.90), "USD"));
 //Set Total Non-Materials Price (Money field)

params.put(PriceConstants.ATT_PRICE_LINES_TOTAL_NON_MATERIAL_PRICE,
new Money(new Double(7.05),
 "USD"));
 //Set Lead Time (Number field)
 params.put(PriceConstants.ATT_PRICE_LINES_LEAD_TIME, new
Integer(5));

SDK 開発者ガイド

218 ページ Agile Product Lifecycle Management

 //Set Transportation Time (List field)
 attr =
cls.getAttribute(PriceConstants.ATT_PRICE_LINES_TRANSPORTATION_TIM
E);
 listvalues = attr.getAvailableValues();
 listvalues.setSelection(new Object[] { "FOB" });

params.put(PriceConstants.ATT_PRICE_LINES_TRANSPORTATION_TIME,
listvalues);
 //Set Country of Origin (List field)
 attr =
cls.getAttribute(PriceConstants.ATT_PRICE_LINES_COUNTRY_OF_ORIGIN)
;
 listvalues = attr.getAvailableValues();
 listvalues.setSelection(new Object[] { "United States" });

params.put(PriceConstants.ATT_PRICE_LINES_COUNTRY_OF_ORIGIN,
listvalues);
 //Create a new Price Lines row and initialize it with data
 IRow row = table.createRow(params);
}

価格変更の作成
公表価格や契約などの価格オブジェクトには、リビジョン履歴があります。価格オブジェクトがリリースされ

ている場合、変更するには、最初に価格変更 (PCO) を作成し、価格オブジェクトを [対象価格] テーブルに追

加する必要があります。次に、PCO が承認のために提出されます。価格オブジェクトへの変更は、PCO のワー

クフロー承認プロセスが完了すると有効になります。

PCO は、ECO や ECR などの他の変更オブジェクトと同じです。IAgileSession.createObject() メ
ソッドを使用して PCO を作成できます。

例 14-5: PCO の作成
public void createPCO(IPrice price) throws Exception {
 //Get the PCO class
 IAgileClass cls =
m_admin.getAgileClass(ChangeConstants.CLASS_PCO);

 //Get autonumber sources for the PCO class
 IAutoNumber[] numbers = cls.getAutoNumberSources();

 //Create the PCO
 IChange pco =
(IChange)m_session.createObject(ChangeConstants.CLASS_PCO,
numbers[0]);

 //Get the Affected Prices table
 ITable affectedPrices =
pco.getTable(ChangeConstants.TABLE_AFFECTEDPRICES);

 //Add the Price object to the Affected Prices table
 IRow row = affectedPrices.createRow(price);
}

 第 14 章

Agile Product Lifecycle Management 219 ページ

サプライヤの使用
Agile PLM システムには、次の 5 種類のサプライヤ クラスが用意されています。

 ブローカー

 部品メーカー

 受託製造業者

 ディストリビュータ

 メーカー代表者

各サプライヤを一意に識別する 2 つのプライマリ キー属性 GENERAL_INFO_NUMBER および
GENERAL_INFO_NAME があります。

サプライヤのロード
サプライヤをロードするには、IAgileSession.getObject() メソッドを使用します。サプライヤを一意に

識別するために、[一般情報 | 番号] 属性に値を指定します。

例 14-6: サプライヤのロード
public ISupplier getSupplier() throws APIException {
 ISupplier supplier =
(ISupplier)m_session.getObject(ISupplier.OBJECT_TYPE, "SUP20013");
 return supplier;
}

注意 Agile API では、[サプライヤ] テーブルへの新規行の追加はサポートされていません。

サプライヤ データの変更
Agile API を使用すると、[サプライヤ] のすべての読み取り/書き込みフィールドを読み取りおよび更新できま

す。[一般情報]、[ページ 1] および [ユーザー定義 2] のフィールドについては、セルに直接アクセスできます。

[コンタクト ユーザー] テーブルなど、複数行のテーブルのセルにアクセスするには、最初にテーブルをロー

ドし、特定の行を選択する必要があります。

例: サプライヤ データの変更
public void updateSupplierGenInfo(ISupplier supplier) throws
Exception {
 ICell cell = null;
 IAgileList listvalues = null;

 //Update Name (Text field)
 cell = supplier.getCell(SupplierConstants.ATT_GENERAL_INFO_NAME);
 cell.setValue("Global Parts");

 //Update URL (Text field)
 cell = supplier.getCell(SupplierConstants.ATT_GENERAL_INFO_URL);
 cell.setValue("http://wwww.globalpartscorp.com");

http://wwww.globalpartscorp.com/

SDK 開発者ガイド

220 ページ Agile Product Lifecycle Management

 //Update Corporate Currency (List field)
 cell =
supplier.getCell(SupplierConstants.ATT_GENERAL_INFO_CORPORATE_CURR
ENCY);
 listvalues = cell.getAvailableValues();
 listvalues.setSelection(new Object[] { "EUR" });
 cell.setValue(listvalues);
}

public void updateSupplierContactUsers(ISupplier supplier) throws
Exception {
 ICell cell = null;
 IAgileList listvalues = null;

 //Load the Contact Users table
 ITable contactusers =
supplier.getTable(SupplierConstants.TABLE_CONTACTUSERS);

 //Get the first row
 ITwoWayIterator i = contactusers.getTableIterator();
 IRow row = (IRow)i.next();

 //Update Email (Text field)
 cell = row.getCell(SupplierConstants.ATT_CONTACT_USERS_EMAIL);
 cell.setValue("wangsh@globalpartscorp.com");
}

ソーシング プロジェクトの使用
ソーシング プロジェクトでは、見積依頼 (RFQ) やソーシング分析など、ソーシング タスクのコンテンツを準

備できます。プロジェクトは、中央で管理される協力性の高いソリューションです。複数のユーザーがプロジェ

クトにデータを追加でき、ソーシング結果の分析を実行できます。ソーシング プロジェクトは、すべてのソー

シング活動のホームの役割を果たすため、Supplier、RequestForQuote (RFQ) および
SupplierResponse など、多数のオブジェクト クラスにリンクされます。

Agile API を使用すると、次のアクションを実行できます。

 既存のソーシング プロジェクトのロード

 数量割引の指定によるプロジェクトの作成

 価格期間の指定によるプロジェクトの作成

 プロジェクトを開くおよび閉じる

 アイテムの追加 (プロジェクト アイテムへの AML の追加を含む)

 プロジェクト内のオブジェクト、テーブルおよび属性へのアクセスと変更

 プロジェクト ステータスへのアクセスおよび変更

 プロジェクト AML の更新

 プロジェクト内の [ページ 1]、[ユーザー定義 1] および [ユーザー定義 2] の更新

 プロジェクト内のネストされた [価格] テーブルの読み取りおよび更新

mailto:wangsh@globalpartscorp.com

 第 14 章

Agile Product Lifecycle Management 221 ページ

 ソーシング プロジェクトのアイテムの数量の設定

 ソーシング プロジェクトのアイテムの目標価格の更新

 ソーシング プロジェクトのアイテムに対するパートナーの設定

 ソーシング プロジェクトでの数量ロールアップの実行

 ソーシング プロジェクト内の「最良」に指定された回答の設定

ソーシング プロジェクトに追加機能を提供する Web クライアントとは異なり、Agile API では、簡易データ

抽出および更新の目的でプロジェクトが公開されます。したがって、Agile API では、次の機能はサポートされ

ていません。

 アイテム、部品分類または製造元部品の検証

 プロジェクト テーブルのフィルタリング

 プロジェクトの価格算出ケースの変更 (数量割引および有効期間の変更)

サポートされている API メソッド
ソーシング プロジェクトに対して、次の API 9.2.1.5 メソッドがサポートされています。これらのインター

フェースの詳細は、SDK コードが記述されている HTML ファイルを参照してください。このファイルは、Agile
ドキュメント Web サイト (http://docs.agile.com) の 9.2.1.5 SDK Sample (Zip ファイル) フォルダにあります。

パスは samples¥html¥pages.html です。

 IAgileSession.createObject(Object, Object)

 IAgileSession.createObject(int, Object)

 IAgileSession.getObject(Object, Object)

 IAgileSession.getObject(int, Object)

 IProject

 assinSupplier (Object partnerParams)

 rollupQuantity ()

 IProject.getName()

 IProject.changeStatusToOpen()

 IProject.changeStatusToClose()

 IProject.getTable(Object)

 IRow.getValue(Object)

 IRow.setValue(Object, Object)

 ITable.iterator()

 ITable.getName()

 ITable.getTableDescriptor()

 ITable.size()

 ITable.createRow(Object)

http://docs.agile.com/

SDK 開発者ガイド

222 ページ Agile Product Lifecycle Management

注意 PCM SDK では IRow.getReferent() メソッドはサポートされていません。

既存のプロジェクトのロード
既存のプロジェクトをロードするには、IAgileSession.getObject() メソッドを使用します。ソーシング
プロジェクトを一意に識別するために、[カバー ページ | 番号] 属性に値を指定します。

例: プロジェクトのロード
public IProject getProject() throws APIException {
 String prjnum = "PRJACME_110";
 IProject prj = (IProject)m_session.getObject(IProject.OBJECT_TYPE,
prjnum);

 return prj;
}

数量割引の指定によるプロジェクトの作成
プロジェクトの定義には、汎用 IAgileSession メソッドを使用します。

例: プロジェクトの作成
IAgileObject createObject (Object objectType, Object params)

 throws APIException;

プロジェクトの作成では、次のパラメータ セットのいずれかを指定する必要があります。

 プロジェクト番号と数量割引

または

 プロジェクト番号、数量割引および価格期間情報

注意 数量割引は必須パラメータであり、必ず指定されます。次の例では、数量割引パラメータを使用し

てプロジェクトを作成しています。

例: 数量割引の指定によるプロジェクトの作成
IAgileClass agClass =
m_admin.getAgileClass(ProjectConstants.CLASS_SOURCING_PROJECT);
IAutoNumber number = agClass.getAutoNumberSources()[0];
HashMap map = new HashMap();
map.put(ProjectConstants.ATT_GENERAL_INFORMATION_NUMBER, number);
map.put(ProjectConstants.ATT_GENERAL_INFORMATION_NUMBER_OF_QTY_BRE
AKS, new Integer(4));

 IProject prj = (IProject) m_session.createObject(agClass, map);

重要 QUANTITY_BREAK 属性に 2 桁を超える数値を渡さないでください。

 第 14 章

Agile Product Lifecycle Management 223 ページ

数量割引および価格期間の指定によるプロジェクトの作成
別の方法として、数量割引と価格期間情報 (期間数、期間タイプおよび開始日) を指定してプロジェクトを作

成できます。次の例では、これらのパラメータを使用してプロジェクトを作成しています。

重要 価格期間情報を期間タイプに設定してソーシング プロジェクトを作成する場合は、

Period Type 属性を指定する必要があります。サポートされている値は、[毎月]、[四半

期ごと]、[半年ごと] および [毎年] です。ただし、後で、

getValue(ProjectConstants.ATT_GENERAL_INFORMATION_PERIOD_TYPE) を起

動するなどの方法で期間タイプの値を確認すると、Period Type は正しく返されません。

つまり、プロジェクトの作成時に設定した値ではなく、将来返される値は常に “Weekly”
です。これはエラーではありません。正常な SDK の動作であり、指定した期間タイプの

値は、内部のみで使用されるため変更されません。

例: 数量割引および価格期間の指定によるプロジェクトの作成
/*
Descriptions

ATT_GENERAL_INFORMATION_PERIOD_TYPE is described in
ProjectConstants
Name: Period Type
Description: Period Type indicates the recurrence of
price periods in a sourcing project.
Type: List
List: Period Type List
List Id: 4565
List Valid Values: {Monthly, Quarterly, Semi-Annually,
Yearly}
Restrictions: Required, Read Only. Used only when
creating sourcing project. Internal use only. Not
available through Agile UI clients.
ATT_GENERAL_INFORMATION_PERIOD_START_DATE is described
in ProjectConstants
Name: Period Start Date
Description: Period Start Date indicates the start date
for price periods in a sourcing project
Type: Date
Valid Values: any Date object.
Restrictions: Required, Read only, Used only when
creating sourcing project, Internal use only /Not
available through Agile UI clients

*/

IAgileClass agClass =
m_admin.getAgileClass(ProjectConstants.CLASS_SOURCING_PROJECT);
 IAutoNumber number = agClass.getAutoNumberSources()[0];
 HashMap map = new HashMap();

map.put(ProjectConstants.ATT_GENERAL_INFORMATION_NUMBER, number);

SDK 開発者ガイド

224 ページ Agile Product Lifecycle Management

map.put(ProjectConstants.ATT_GENERAL_INFORMATION_NUMBER_OF_QTY_BRE
AKS, new Integer(4));

map.put(ProjectConstants.ATT_GENERAL_INFORMATION_NUMBER_OF_PERIODS,
new Integer(4));
IAgileList list =
agClass.getAttribute(PERIODTYPE).getAvailableValues();
String TYPE = “Monthly”;
list.setSelection(new Object[]{TYPE});

map.put(ProjectConstants.ATT_GENERAL_INFORMATION_PERIOD_TYPE,
list);

map.put(ProjectConstants.ATT_GENERAL_INFORMATION_PERIOD_START_DATE,
(new GregorianCalendar()).getTime());
 IProject prj = (IProject) m_session.createObject(agClass, map);

オブジェクト、テーブルおよび属性へのアクセスと変更
汎用の IDataObject メソッドを、getObject、getTable、getValue、setValue などの標準呼び出し

で使用すると、次のように、オブジェクト、テーブルおよび属性にアクセスし、続いてこれらを変更できます。

 [ページ 1] ([カバー ページ])、[ユーザー定義 1]、[ユーザー定義 2]、[アイテム]、[AML]、[分析] および

ネストされた [価格] テーブルの読み取り

 [ページ 1] ([カバー ページ])、[ユーザー定義 1]、[ユーザー定義 2] および [AML] テーブルの更新

 アイテムの追加 ([アイテム] テーブルへの AML の追加を含む)

 見積依頼テーブルの読み取り

 見積依頼テーブルのロード

com.agile.api.ProjectConstants.java ファイルには、クラス、テーブルおよび属性に関する情報が含

まれています。

PCM では、次のテーブル操作はサポートされていません。

 PCM 固有のテーブルの並べ替え。これらのテーブルにはデフォルトの並べ替え順がありません。該当す

るテーブルは、[プロジェクト アイテム]、[AML]、[分析]、[見積依頼]、[見積依頼回答]、[回答ステータス]、
[サプライヤ回答] および [変更] です。

 [見積依頼回答] および [ソーシング プロジェクト] テーブルからのアイテムの削除。PCM SDK では、

ITable.clear() または ITable.removeRow() がサポートされていないためです。

プロジェクトの [カバー ページ] の値の設定

プロジェクトのすべての読み取り/書き込みセルを読み取りおよび更新できます。次の例では、プロジェクトの
[カバー ページ] ([ページ 1]) のセルを更新しています。

 第 14 章

Agile Product Lifecycle Management 225 ページ

例: プロジェクトの [カバー ページ] の値の設定
public void updateProjectGenInfo (IProject project) throws Exception
{
 ICell cell = null;
 IAgileList listvalues = null;

 //Update Customer (List field)
 cell =
project.getCell(ProjectConstants.ATT_GENERAL_INFORMATION_CUSTOMER)
;
 listvalues = cell.getAvailableValues();
 listvalues.setSelection(new Object[] { "CUST00010" });
 cell.setValue(listvalues);

 //Update Description (Text field)
 cell =
project.getCell(ProjectConstants.ATT_GENERAL_INFORMATION_DESCRIPTI
ON);
 cell.setValue("Sourcing project for Odyssey III");

 //Update Manufacturing Site (List field)
 cell =
project.getCell(ProjectConstants.ATT_GENERAL_INFORMATION_MANUFACTU
RING_SITE);
 listvalues = cell.getAvailableValues();
 listvalues.setSelection(new Object[] { "Global" });
 cell.setValue(listvalues);

 //Update Ship To Location (List field)
 cell =
project.getCell(ProjectConstants.ATT_GENERAL_INFORMATION_SHIP_TO_L
OCATION);
 listvalues = cell.getAvailableValues();
 listvalues.setSelection(new Object[] { "San Jose" });
 cell.setValue(listvalues);
}

PCM のネスト テーブルの理解
ネスト テーブルは、テーブル内のテーブルです。これらは、AML を含む BOM やアイテムなど、多段階オブ

ジェクト内のデータにアクセスし、変更するために使用されます。SDK でこの機能を実現する方法は、ネスト
テーブル内のセル値をテーブルとして処理することです。たとえば、SDK で [BOM] テーブル内のセルに次の

レベルがあることが検出された場合、セルはテーブルとして処理されます。ネスト テーブルは、PCM SDK に
固有です。

プロジェクトの親テーブルとネスト子テーブルの定数

親プロジェクト テーブルと対応するネスト子テーブルの定数のリストを、「親プロジェクト テーブルと対応

するネスト プロジェクト テーブル」に示します。

親テーブルの定数 ネスト子テーブルの定数 読み取り/書き込みモード

TABLE_ITEMS ATT_ITEMS_AML 読み取り/書き込み

TABLE_ITEMS ATT_ITEMS_PRICING 読み取り/書き込み

SDK 開発者ガイド

226 ページ Agile Product Lifecycle Management

親テーブルの定数 ネスト子テーブルの定数 読み取り/書き込みモード

TABLE_AML ATT_AML_PRICETABLE 読み取り/書き込み

TABLE_ITEM ATT_ITEM_PRICE_TABLE 読み取り/書き込み

TABLE_ITEM ATT_ITEM_BOM_TABLE 読み取り

TABLE_ANALYSIS ATT_ANALYSIS_AML 読み取り

TABLE_ANALYSIS ATT_ANALYSIS_PRICING 読み取り

プロジェクトまたは見積依頼のネスト テーブルへのアクセスおよび変更

次の例は、ネスト テーブルにアクセスする読み取りの例です。ネスト テーブルを変更/更新する場合は、14-19
ページの「ネストされた見積依頼テーブルの更新例」を参照してください。

注意 ネストされた PCM 価格テーブル内の通貨タイプ属性では、デフォルトの通貨単位として常に USD
が使用されます。これは、バイヤーが別の通貨単位を指定した場合でも適用されます。この場合、

United State Dollar (米国ドル) がデフォルトであり、サポートされている唯一の通貨です。

例: ネスト テーブルへのアクセス
Row row = (IRow) table.iterator.next();
ITable nested_table =
(ITable)row.getValue(ProjectConstants.ATT_ITEMS_AML);

ネスト テーブル変更後の更新の表示

ネスト テーブルを変更した後、変更を有効にするには、後述の例のようにテーブルを再ロードする必要があり

ます。次の例のように、テーブルで処理を繰り返しているのみの場合は、古いデータが再表示され、新しい値

は表示されません。

例: ネスト テーブルでの繰り返し処理
/*
 * In nested AML table, make modifications.
 * For example, insert a row, assign suppliers
 *
 */
row.getValue(attribute);

プロジェクト ステータスへのアクセスおよび変更

プロジェクトにはワークフローが結び付けられていないため、そのステータス変更は内部的に制御されます。

ステータスは一連のメソッドで制御されます。これは、プロジェクトや見積依頼など、一部の PCM オブジェ

クトに対する特別なケースです。このリリースでは、[ドラフト] から [オープン] および [オープン] から [ク
ローズ] へのプロジェクトのステータス変更がサポートされています。

プロジェクトのステータスにアクセスするには、[カバー ページ] ([ページ 1]) の [ライフサイクル フェーズ]
フィールドに対して標準の IDataObject メソッドを使用します。プロジェクトのステータスを変更するには、

IProject メソッドを使用します。このメソッドでは、プロジェクトを開く、変更する、および閉じることが

できます。プロジェクトを開くには、次の例に示すように、出荷先パラメータを設定する必要があります。

 第 14 章

Agile Product Lifecycle Management 227 ページ

例: プロジェクトの [カバー ページ] の値の設定
// add Ship To //
String sj = “San Jose”;
IAgileList ship2List = (IAgileList)
prj.getValue(ProjectConstants.ATT_GENERAL_INFORMATION_SHIP_TO_LOCA
TION);
ship2List.setSelection(new Object[]{sj});
prj.setValue(ProjectConstants.ATT_GENERAL_INFORMATION_SHIP_TO_LOCA
TION, ship2List);

// open project //
prj.changeStatusToOpen();

// close project //
prj.changeStatusToClose();

ソーシング プロジェクトでの追加データの設定
次に、ソーシング プロジェクトで見積依頼を発行するための準備について説明し、例を示します。これによっ

て、SDK を使用して見積依頼関連のタスクを完了できるようになります。

ソーシング プロジェクトのアイテムの数量の設定

SDK を使用して、ソーシング プロジェクト内のアイテム オブジェクトに対する必要な数量を設定できます。

次のコード サンプルでは、単一の価格目標に対する [アイテム] タブで、[アイテム] テーブルのこの値を設定

しています。エンド ユーザーは、表示された名前 (例: 次の例の QuantityBreak2) を使用して目標価格を

指定できます。

例: アイテムの数量の設定
// Setting Quantity for an Item //
ITable tab_item = dObj.getTable(ProjectConstants.TABLE_ITEM);
IRow row = (IRow) tab_item.iterator().next()
ITable priceTable =
row.getValue(ProjectConstants.ATT_ITEM_PRICE_TABLE);

for (Iterator iterator = priceTable.iterator(); iterator.hasNext();)
{
 IRow row = (IRow) iterator.next();
 String name = row.getName();
 if(name.equals("QuantityBreak2")){
 row.setValue(ProjectConstants.ATT_PRICEDETAILS_QUANTITY,
new Double(123));
 }
}

注意 アイテムの場合、数量はルート レベルでのみ設定されます。したがって、アイテムがルートでない

場合は、例外 ExceptionConstants.PCM_PROJECT_ITEM_IS_NOT_ROOT が発生します。

さらに、priceTable はネスト テーブルであるため、数量の更新された値を取得するには、テーブルを再ロー

ドする必要があります。これは、次の例で示されています。

SDK 開発者ガイド

228 ページ Agile Product Lifecycle Management

例: ネスト テーブルの再ロードによる、更新された値の取得
// Getting the updated value //
priceTable = row.getValue(ProjectConstants.ATT_ITEM_PRICE_TABLE);
for (Iterator iterator = priceTable.iterator(); iterator.hasNext();)
{
 IRow iRow = (IRow) iterator.next();
 String name = iRow.getName();
 if(name.equals("QuantityBreak2")){
 Object qty =
row.getValue(ProjectConstants.ATT_PRICEDETAILS_QUANTITY));
 }
}

ソーシング プロジェクトでの数量ロールアップの実行

数量ロールアップでは、ソーシング プロジェクト内の選択したアイテムに対する数量値に関連するデータが生

成されます。SDK では、次の API を使用して、ソーシング プロジェクトで数量ロールアップを起動できます。
public void rollupQuantity() throws APIException, RemoteException,
Exception;

次のコード サンプルでは、rollupQuantity() を使用して数量ロールアップを実行しています。

例: 数量ロールアップ
IProject prj =
(IProject)m_session.getObject(ProjectConstants.CLASS_SOURCING_PROJ
ECT,"PRJ00001");
prj.rollupQuantity();

注意 数量の更新された値を取得するには、前述の例と同様に、プロジェクトで rollupQuantity() を
起動する必要があります。これは、getValue() では、数量設定後の対象アイテムの更新された値

が返されないために必要です。

ソーシング プロジェクトでのパートナーの設定

パートナーは、見積依頼の完了プロジェクトの BOM を表示できます。アイテムをパートナーに送信する見積

依頼に追加するとき、プロジェクトのアイテムにパートナーを割り当てることもできます。複数のパートナー

が選択されている場合は、各サプライヤから受信するアイテムの割合を指定して、パートナーの間で数量を分

割できます。たとえば、2 つのパートナーが同じアイテムを供給する場合は、両方のパートナーをリストに追

加し、それぞれに特定の割合 (例: 50%-50% または 60%-40% など) を割り当てることができます。

SDK では、次の API を使用して、ソーシング プロジェクト内のアイテムに対するパートナーを設定し、パー

トナーの間で割合を分割できます。
public void assignSupplier(Object partnerParams) throws APIException,
RemoteException, Exception;

この API の動作と使用ケースは、IRequestForQuote.assignSupplier() と同じです。ただし、この API
でアイテムに対する新しいパートナーを追加すると、既存のパートナーが上書きされます。したがって、既存

のパートナーを削除しないようにするには、既存のパートナーを再度追加して、各パートナーに対する分割 (そ
れぞれの割合) レベルを設定する必要があります。これは SDK でのみ発生する問題であり、GUI では、新し

いパートナーを追加するときに既存のパートナーを追加する必要はありません。アイテムに対するパートナー

は削除できませんが、split = 0 (所有権/参加の割合) を割り当てるとそのパートナーは削除されます。GUI の
動作の詳細は、『Agile Product Lifecycle Management - Product Cost Management Supplier Guide』を参照してくだ

さい。

 第 14 章

Agile Product Lifecycle Management 229 ページ

次のコード サンプルでは、パートナーを設定し、割り当てられたパートナーの間で割合を分割しています。

例: パートナーの設定およびパートナー間での割合の分割
HashMap map = new HashMap();
HashMap supplierSplit = new HashMap();
HashMap partnerMap = new HashMap();

map.put(ProjectConstants.ATT_ITEM_NUMBER, item);
Double split1 = new Double(55);
Double spl1it2 = new Double(75);
supplierSplit.put(supplier1, split1);
supplierSplit.put(supplier2, split2);
partnerMap.put(ProjectConstants.ATT_PARTNERS_PARTNER,
supplierSplit);
map.put(ProjectConstants.ATT_ITEM_PARTNER_TABLE, partnerMap);
prj.assignSupplier(map);

item または supplier には、IItem オブジェクト、ISupplier オブジェクトまたは String オブジェ

クトを指定できます。パートナーは、アイテム部品番号 (IPN) に割り当てることはできますが、製造元部品番

号 (MPN) に割り当てることはできません。アイテムがプロジェクトに存在しない場合は、

ExceptionConstants.PCM_ERROR_INVALID_PROJECT_ITEM が発生します。

分割割合には、数値を表す任意のオブジェクトを指定できます。数値以外の場合は、

ExceptionConstants.API_INVALID_PARAM 例外が発生します。

特定のパートナーのデータを取得するには、次の例に示すように、[アイテム] または [AML] タブを使用でき

ます。

例: アイテムまたは AML の使用によるパートナー データの取得
ITable tab_item = prj.getTable(ProjectConstants.TABLE_ITEMS);
IRow row = (IRow) tab_item.iterator().next();
ITable partnerTable = (ITable)
row.getValue(ProjectConstants.ATT_ITEMS_PARTNERS);

または
ITable tab_item = prj.getTable(ProjectConstants.TABLE_ITEM);
IRow row = (IRow) tab_item.iterator().next();
ITable partnerTable = (ITable)
row.getValue(ProjectConstants.ATT_ITEM_PARTNER_TABLE);

for (Iterator iterator = partnerTable.iterator();
iterator.hasNext();) {
IRow iRow = (IRow) iterator.next();
String partner =
iRow.getValue(ProjectConstants.ATT_PARTNERS_PARTNER).toString();
String split =
iRow.getValue(ProjectConstants.ATT_PARTNERS_PARTNER_SPLIT).toStrin
g();
}

SDK 開発者ガイド

230 ページ Agile Product Lifecycle Management

ソーシング プロジェクトでのアイテムの目標価格の変更

目標価格とは、アイテムまたは製造元部品のユニット当たりの市場コストです。目標価格は、アイテムの注文

時に指定されます。各アイテムごと、各価格ポイントごとに、[AML] タブで、目標価格が [アイテム] テーブ

ルに設定されます。価格ポイントは、アイテムの特定数量に対して見積られる目標価格です。たとえば、タイ

ヤ X 個に対して見積られる価格などです。これは、同じタイヤ Y 個に対して見積られる価格と異なる場合が

あります。

注意 目標価格は常に正数です。目標価格に負の値を設定すると、

ExceptionConstants.PCM_NEGATIVE_TARGET_PRICE 例外が発生します。

目標価格は、アイテム レベルでのみ設定されます。AML レベルで設定することはできません。エンド ユー

ザーは、価格ポイントに表示される名前を使用して価格ポイントを指定します。たとえば、次の例では
QuantityBreak2 です。

例: ソーシング プロジェクトでの目標価格の設定
ITable tab_item = dObj.getTable(ProjectConstants.TABLE_ITEMS);
IRow row = (IRow) tab_item.iterator().next();
ITable priceTable =
row.getValue(ProjectConstants.ATT_ITEMS_PRICING);

for (Iterator iterator = priceTable.iterator(); iterator.hasNext();)
{
 IRow row = (IRow) iterator.next();
 String name = row.getName();
 if(name.equals("QuantityBreak2")){
 row.setValue(ProjectConstants.ATT_PRICEDETAILS_TARGET_
COST,
 new Money(new Double(1.23), "USD"));
 }
}

priceTable はネスト テーブルであるため、目標価格の更新された値を取得するには、次の例に示すように、

このテーブルを再ロードする必要があります。これは、227 ページの「ソーシング プロジェクトのアイテムの

数量の設定」と同じです。

例 14-22: priceTable の再ロードによる、更新された目標価格の値の取得
priceTable = row.getValue(ProjectConstants. ATT_ITEMS_PRICING);
for (Iterator iterator = priceTable.iterator(); iterator.hasNext();)
{
 IRow iRow = (IRow) iterator.next();
 String name = iRow.getName();
 if(name.equals("QuantityBreak2")){
 Object qty =
row.getValue(ProjectConstants.ATT_PRICEDETAILS_TARGET_COST));
 }
}

ソーシング プロジェクトでのアイテムの最良回答の設定

最良回答は、アイテムおよび製造元部品番号オブジェクトの両方に対して、[分析] タブで [分析] テーブルに

設定されます。エンド ユーザーは、最低コスト、リード タイム制約中の最低コスト、最短リード タイム、サ

プライヤ格付および AML 推奨ステータスのパラメータの中から 3 つを指定します。詳細は、『Agile Product
Lifecycle Management - Product Cost Management Supplier Guide』を参照してください。

 第 14 章

Agile Product Lifecycle Management 231 ページ

SDK を使用すると、次のコード サンプルに示すように、アイテム部品番号 (IPN)、製造元部品番号 (MPN)、
および IPN と MPN に対する最良回答を検索できます。

例: IPN に対する最良回答の設定
//set best response for ipn //
ITable table_analysis =
prj.getTable(ProjectConstants.TABLE_ANALYSIS);
Iterator it = table_analysis.iterator();
while(it.hasNext()) {
 IRow row = (IRow) it.next();
 String itemName =
row.getValue(ProjectConstants.ATT_ANALYSIS_NUMBER);
 String suppName =
row.getValue(ProjectConstants.ATT_ANALYSIS_SUPPLIER);
 if (itemName.equals("IPN1") && suppName.equals("suppName1
(suppNumber1)")) {
 row.setValue(ProjectConstants.ATT_ANALYSIS_BEST_RES
PONSE, “Yes”);
 }
}

例: MPN に対する最良回答の設定
ITable table_aml = (ITable)
row.getValue(ProjectConstants.ATT_ANALYSIS_AML);
Iterator _it = table_aml.iterator();
while(it.hasNext()){
 String itemName =
row.getValue(ProjectConstants.ATT_ANALYSIS_NUMBER);
 String suppName =
row.getValue(ProjectConstants.ATT_ANALYSIS_SUPPLIER);
 String mfrName = row.getValue(ProjectConstants.
ATT_ANALYSIS_MANUFACTURER);
 if (itemName.equals("MPN1") && suppName.equals("suppName1
(suppNumber1)"
 && mfrName.equals("MFR1"))) {
 row.setValue(ProjectConstants.ATT_ANALYSIS_BEST_RESPONS
E, "Yes");
 }
}

注意 最良回答に設定できるのは Yes のみであるため、Yes 以外の値を渡すと、

ExceptionConstants.API_INVALID_PARAM 例外が発生します。

例: IPN と MPN に対する最良回答の取得
String bResp =
row.getValue(ProjectConstants.ATT_ANALYSIS_BEST_RESPONSE).toString
();

SDK 開発者ガイド

232 ページ Agile Product Lifecycle Management

見積依頼の使用
見積依頼 (RFQ) を使用すると、サプライヤからの価格情報を依頼できます。見積依頼は、アイテムまたは製造

元部品の価格と条件を交渉するための手段の役割を果たします。見積依頼はプロジェクトに対して定義されま

す。したがって、見積依頼を定義するには、最初にプロジェクトを作成し、次にそのプロジェクトに対する必

要な見積依頼を作成する必要があります。

単一のプロジェクトで複数の見積依頼を生成できます。見積依頼では、サプライヤとの一対多の関係がサポー

トされます。つまり、1 つの見積依頼で、サプライヤからの複数の回答が生成される場合があります。

Agile API では、次の見積依頼関連タスクがサポートされています。

 プロジェクトに対する見積依頼の作成

 見積依頼オブジェクト、テーブルおよび属性のロードと変更

 [ページ 1]、[ユーザー定義 1] および [見積依頼回答] テーブルへのアクセスと変更

 見積依頼のプロジェクトから [見積依頼回答] テーブルへのアイテムの追加

 [ページ 1]、[ユーザー定義 1] および [見積依頼回答] テーブル内のネスト テーブルの読み取りと更新

 [見積依頼回答] テーブル内のアイテムまたは製造元部品へのサプライヤの割り当て

これらの見積依頼機能をサポートしている API メソッドのリストは、14-8 ページの「サポートされている API
メソッド」を参照してください。

注意 PCM SDK 見積依頼オブジェクトには [ユーザー定義 2] がなく、[ユーザー定義 2] の見積依頼定数

はサポートされていません。見積依頼で予測した結果が生成されなくなるため、これらの定数は呼

び出さないでください。

サポートされている API メソッド

次の API メソッドが見積依頼に対してサポートされています。これらのインターフェースの詳細は、SDK コー

ドが記述されている HTML ファイルを参照してください。このファイルは、Agile ドキュメント Web サイト
(http://docs.agile.com) の SDK Sample (Zip ファイル) フォルダにあります。

 IAgileSession.createObject(Object, Object)

 IAgileSession.createObject(int, Object)

 IAgileSession.getObject(Object, Object)

 IAgileSession.getObject(int, Object)

 IRequestForQuote.getName()

 IRequestForQuote.assignSupplier(Object)

 IRequestForQuote.getTable(Object)

 ITable.iterator()

 ITable.getTableDescriptor()

 ITable.size()

http://docs.agile.com/

 第 14 章

Agile Product Lifecycle Management 233 ページ

 ITable.createRow(Object)

 IRow.getValue(Object)

 IRow.setValue(Object, Object)

ソーシング プロジェクトに対する見積依頼の作成

見積依頼は、特定のプロジェクトに対して定義されます。見積依頼の作成では、汎用 IAgileSession メソッ

ドを使用します。

ソーシング プロジェクトと同様に、14-10 ページの「オブジェクト、テーブルおよび属性へのアクセスと変更」

を参照してください。IDataObject メソッドを、getObject、getTable、getValue、setValue などの

標準呼び出しで使用すると、次のように、オブジェクト、テーブルおよび属性にアクセスし、続いてこれらを

変更できます。

 [ページ 1] ([カバー ページ])、[ユーザー定義 1] テーブルの読み取り

 [ページ 1] ([カバー ページ])、[ユーザー定義 1] テーブルの更新

例: オブジェクトの作成
IAgileObject createObject(Object objectType, Object params)
throws APIException;

見積依頼を作成するには、プロジェクトを開く必要があります。ただし、プロジェクトを開くには、最初に出

荷先を設定する必要があります。226 ページの「プロジェクト ステータスへのアクセスおよび変更」のコード

例を参照してください。

プロジェクト番号のみを指定して見積依頼を作成することはできません。関連プロジェクトも必須パラメータ

であるため、指定する必要があります。これは、次の例で示されています。

例: プロジェクトに対する見積依頼の作成
IAgileClass rfqClass =
m_admin.getAgileClass(RequestForQuoteConstants.CLASS_RFQ);

IAutoNumber rfqNumber =
rfqClass.getAutoNumberSources()[0];
HashMap map = new HashMap();

map.put(RequestForQuoteConstants.ATT_COVERPAGE_RFQ_NUMBER,
rfqNumber);
map.put(RequestForQuoteConstants.ATT_COVERPAGE_PROJECT_NUMBER,
pnumber);

IRequestForQuote rfq = (IRequestForQuote)
m_session.createObject(rfqClass, map);

既存の見積依頼のロード

既存の見積依頼をロードするには、IAgileSession.getObject() メソッドを使用するか、またはプロジェ

クト オブジェクトの [見積依頼] テーブルから選択します。

見積依頼をロードするには、IAgileSession.getObject() メソッドを使用します。見積依頼を一意に識別

するために、[カバー ページ | 見積依頼番号] 属性に値を指定します。

SDK 開発者ガイド

234 ページ Agile Product Lifecycle Management

例: 見積依頼のロード
public IRequestForQuote getRFQ() throws APIException {
 IRequestForQuote rfq =
(IRequestForQuote)m_session.getObject(IRequestForQuote.OBJECT_TYPE
,
 "RFQ01004");
 return rfq;
}

プロジェクトの [見積依頼] テーブルからの見積依頼のロード

IAgileSession.getObject() メソッドを使用して見積依頼をロードする方法の他に、プロジェクト オブ

ジェクトの [見積依頼] テーブルから見積依頼を選択することもできます。

例: プロジェクトの [見積依頼] テーブルからの見積依頼のロード
ITable table = prj.getTable(ProjectConstants.TABLE_RFQS);
Iterator it = table.iterator();
IRow row1 = (IRow) it.next();
IDataObject obj1 = (IDataObject)
m_session.getObject(IRequestForQuote.OBJECT_TYPE,

row1.getValue(ProjectConstants.ATT_RFQS_RFQ_NUMBER));

注意 getReferent() メソッドでは、見積依頼テーブルなど、PCM SDK はサポートされていません。

サポートされている見積依頼テーブルのリストを、次の表に示します。

サポートされている見積依頼テーブル

サポートされている見積依頼テーブルとそれぞれの定数は、次の表のとおりです。

テーブル 定数 読み取り/書き込みモード

カバー ページ TABLE_COVERPAGE 読み取り/書き込み

ユーザー定義 1 TABLE_PAGETWO 読み取り/書き込み

回答 TABLE_RESPONSES 読み取り/書き込み

注意 Agile API では、見積依頼テーブルへの新規行の追加はサポートされていません。ただし、[見積

依頼回答] テーブルに新規行を追加することはできます。

見積依頼のオブジェクト、テーブル、ネスト テーブルおよび属性へのアクセスと

変更

汎用の IAgileSession メソッドと IDataObject メソッド、および getObject、getValue、setValue
などの標準呼び出しを使用して、見積依頼のオブジェクト、テーブルおよび属性にアクセスできます。これら

のクラス、テーブルおよび属性に関する情報は、com.agile.api.RequestForQuoteConstants.java ファ

イルに記載されています。

 第 14 章

Agile Product Lifecycle Management 235 ページ

見積依頼の親テーブルとネスト子テーブルの定数

親の見積依頼テーブルと対応するネスト子テーブルの定数のリストを、次の表に示します。

親テーブルの定数 ネスト子テーブルの定数 読み取り/書き込みモード

TABLE_RESPONSES ATT_RESPONSES_AML 読み取り/書き込み

TABLE_RESPONSES ATT_RESPONSES_PRICING 読み取り/書き込み

ソーシング プロジェクトと同様に、ネストされた見積依頼テーブルには、そのセル値をテーブルとして処理す

ることによってアクセスできます。226 ページの「プロジェクトまたは見積依頼のネスト テーブルへのアクセ

スおよび変更」を参照してください。次の例では、ネスト テーブルを更新しています。

注意 見積依頼のステータスの取得に Project.ATT_RFQ_RFQ_STATE を使用しないでください。これ

は、SDK には表示されず、見積依頼の行の正しい値がレンダリングされないためです。見積依頼の

ステータスを取得するには、最初に見積依頼をロードし、次に見積依頼自体からステータスを取得

する必要があります。

例: ネストされた見積依頼テーブルの更新例
ITable subtab1 =
(ITable)row.getValue(RequestForQuoteConstants.ATT_RESPONSES_PRICIN
G);
IRow pricing1 = (IRow)subtab1.iterator().next();
Integer nest = ProjectConstants.ATT_PRICEDETAILS_MATERIAL_PRICE;
Object nre = pricing1.getValue(nest);
Money tc = new Money(new Integer(100), “USD”);
pricing1.setValue(nest, (Object)tc);

注意 [見積依頼回答] テーブルのエントリを更新する前に、サプライヤを割り当てる必要があります。

見積依頼回答の処理

PCM SDK では、見積依頼回答、アイテム回答のネスト テーブルおよび子 AML 回答に対して、次の操作がサ

ポートされています。

 様々なビュー (価格算出ケース、通貨モード) での見積依頼テーブルの読み取り

これは、汎用 SDK API によってサポートされます。

 見積依頼へのアイテムの追加

 回答ラインの追加 (サプライヤの割り当て)

PCM の見積依頼には、アイテムまたは製造元部品にサプライヤを割り当てるための新規メソッドが用意

されています。
public void assignSupplier(Object supplierParams)
 throws APIException, RemoteException, Exception;

次に示すように、サプライヤを割り当てることができます。
IRequestForQuote dObj =
(IRequestForQuote)m_session.getObject(RequestForQuot
eConstants.CLASS_RFQ, number);
ITable tab =
dObj.getTable(RequestForQuoteConstants.TABLE_RESPONS
ES);

SDK 開発者ガイド

236 ページ Agile Product Lifecycle Management

Map mp = new HashMap();
mp.put(ProjectConstants.ATT_RESPONSES_NUMBER,
“P00007”);
mp.put(ProjectConstants.ATT_RESPONSES_SUPPLIER,
“SDKSUP”);
dObj.assignSupplier(mp);

注意 RequestForQuote.TABLE_RESPONSE を呼び出してサプライヤをアイテム コンポーネントに割

り当てると、そのアイテム コンポーネントに対して複数のサプライヤが存在する場合は、テーブル
サイズが変更される可能性があります。つまり、アイテムのサプライヤが 1 つの場合は、各アイテ

ムとその対応するサプライヤで、TABLE_RESPONSE テーブル内のそれぞれに固有の独立した行が

占有されます。ただし、アイテムのサプライヤが複数の場合、このアイテム コンポーネントに対す

る行はサプライヤ数に分割されるため、テーブル内の行数が増えて TABLE_RESPONSE が変更され

ます。したがって、ITERATOR をすぐに再ロードして、TABLE_RESPONSE テーブルの変更を反映

する必要があります。これは SDK の欠陥ではなく、SUN J2SE ITERATOR の動作が原因です。

 回答ラインの更新

PCM SDK では、汎用 SDK API によって [見積依頼回答] テーブルがサポートされます。見積依頼回答ク

ラスまたはサプライヤ回答はサポートされていません。

注意 見積依頼回答ラインの回答通貨は、回答通貨属性によって決まります。このため、サー

バでは、マテリアル価格の通貨パラメータは無視されます。バイヤーは回答ラインの回

答通貨を変更でき、その変更は、回答ライン内のすべての価格属性に適用されます。サ

プライヤの見積依頼回答通貨は、見積依頼回答プリファレンスに設定され、サプライヤ

回答では変更できません。回答ラインがサプライヤに対して公開された場合、回答ライ

ンをロックしないと、バイヤーは回答ラインを変更できません。

Agile Product Lifecycle Management 237 ページ

第 15 章

Agile PLM オブジェクトの確認通知

扱うトピックは次のとおりです。

 ユーザー確認通知について ... 237
 オブジェクトに対する確認通知の取得.. 238
 オブジェクトに対する確認通知の変更.. 240
 確認通知での属性の使用可能化.. 241
 [確認通知] テーブルの使用... 243

ユーザー確認通知について
Agile PLM ビジネス オブジェクト (アイテムや変更など) をロードするとき、そのオブジェクトの確認通知を

有効にできます。オブジェクトの確認通知を有効にすると、そのオブジェクトでトリガーとなるイベントが発

生した場合に通知を受信します。どのイベントを通知のトリガーとするかを指定できます。確認通知イベント

には、ライフサイクルの変更、添付ファイルへの変更、または確認通知に使用可能にしているセルの値の変更

などがあります。

送信可能なオブジェクトと送信不可能なオブジェクトの両方の確認通知を有効にできます。Agile API には、

ISubscribable というインターフェースが用意されており、オブジェクトに対するすべての確認通知を取得

して変更できます。ユーザーが確認通知を有効にしているすべてのオブジェクトが、ユーザーの [確認通知]
テーブルにリストされます。

確認通知イベント
確認通知イベントは、オブジェクト クラスによって異なります。確認通知を有効にできる完全なイベント セッ

トは、次の表のとおりです。

確認通知イベント SubscriptionConstants

ステータスの変更 (送信可能なオブジェクトの場合) EVENT_STATUS_CHANGE

ライフサイクル フェーズの変更
(送信不可能なオブジェクトの場合)

EVENT_LIFECYCLE_CHANGE

フィールドの変更 EVENT_FIELD_CHANGE

ファイルの追加 EVENT_ADD_FILE

ファイルの削除 EVENT_DELETE_FILE

ファイルのチェックイン EVENT_CHECKIN_FILE

ファイルのチェックアウト EVENT_CHECKOUT_FILE

ファイルのチェックアウトのキャンセル EVENT_CANCELCHECKOUT_FILE

注意 Program Execution オブジェクトに対する追加の確認通知イベントがありますが、Agile API ではサ

ポートされていません。

SDK 開発者ガイド

238 ページ Agile Product Lifecycle Management

ほとんどの送信可能なオブジェクトおよび送信不可能なオブジェクトで、前述の表にリストされている 7 つの

確認通知がサポートされていますが、例外がいくつかあります。

 ユーザー オブジェクトでは、ライフサイクルの変更確認通知イベントはサポートされていません。

 ファイル フォルダ オブジェクトでは、ファイルの追加およびファイルのチェックアウトのキャンセル確

認通知イベントはサポートされていません。

フィールドの変更確認通知イベントは、[確認通知に使用可能] プロパティが [はい] に設定されている属性に

関連付けられます。したがって、各クラスとサブクラスに、確認通知可能な属性の異なるセットを設定できま

す。

確認通知権限
オブジェクトの確認通知を有効にするには、そのクラスに対する確認通知権限が必要です。作成者など、事前

定義の多数の Agile PLM 役割には、いくつかのオブジェクト クラスに対する確認通知権限がすでに含まれて

います。役割と権限を変更するには、Agile PLM システムの管理者にお問い合わせください。

確認通知
確認通知イベントは、電子メールと受信トレイという 2 種類の通知のトリガーとなります。Agile PLM の受信

トレイ通知は、ユーザー プリファレンスに関係なく自動的に発生します。電子メールによる通知は、ユーザー

の [電子メール通知を受信] プリファレンスが [はい] に設定されている場合にのみ送信されます。

注意 Agile API では、現在通知オブジェクトは公開されていません。ただし、Agile API を使用すると、

電子メール通知プリファレンスを設定できます。

確認通知の対象とするオブジェクトの削除
Agile PLM ビジネス オブジェクトは、IDataObject.delete() メソッドを使用して削除できます。ただし、

オブジェクトは、その確認通知が削除されるまで削除できません。ユーザーは自分自身の確認通知を削除でき

ますが、他のユーザーの確認通知は削除できません。

オブジェクトに対する確認通知の取得
オブジェクトに対する現在の確認通知を取得するには、ISubscribable.getSubscriptions() を使用し

ます。このメソッドは、有効と無効の両方の ISubscription オブジェクトすべての配列を返します。次の

例は、オブジェクトに対する確認通知を取得する方法を示しています。

例: オブジェクトに対する確認通知の取得
public void getSubscriptionStatus(IAgileObject obj) throws
APIException {
 ISubscription[] subs = ((ISubscribable)obj).getSubscriptions();
 for (int i = 0; i < subs.length; ++i) {
 if
(subs[i].getId().equals(SubscriptionConstants.EVENT_ADD_FILE)) {
 if (subs[i].isEnabled()) {
 System.out.println("Add File subscription is enabled");

 第 15 章

Agile Product Lifecycle Management 239 ページ

 }
 }
 else if
(subs[i].getId().equals(SubscriptionConstants.EVENT_CANCELCHECKOUT
_FILE)) {
 if (subs[i].isEnabled()) {
 System.out.println("Cancel Checkout File subscription is
enabled");
 }
 }
 else if
(subs[i].getId().equals(SubscriptionConstants.EVENT_CHECKIN_FILE))
{
 if (subs[i].isEnabled()) {
 System.out.println("Checkin File subscription is enabled");
 }
 }
 else if
(subs[i].getId().equals(SubscriptionConstants.EVENT_CHECKOUT_FILE)
) {
 if (subs[i].isEnabled()) {
 System.out.println("Checkout File subscription is enabled");
 }
 }
 else if
(subs[i].getId().equals(SubscriptionConstants.EVENT_DELETE_FILE))
{
 if (subs[i].isEnabled()) {
 System.out.println("Delete File subscription is enabled");
 }
 }
 else if
(subs[i].getId().equals(SubscriptionConstants.EVENT_FIELD_CHANGE))
{
 if (subs[i].isEnabled()) {
 IAttribute attr = subs[i].getAttribute();
 if (attr != null) {
 String attrName = attr.getFullName();
 System.out.println("Field Change subscription is enabled for
" + attrName);
 }
 }
 }
 else if
(subs[i].getId().equals(SubscriptionConstants.EVENT_LIFECYCLE_CHAN
GE)) {
 if (subs[i].isEnabled())
 System.out.println("Lifecycle Change subscription is
enabled");
 }
 else if

SDK 開発者ガイド

240 ページ Agile Product Lifecycle Management

(subs[i].getId().equals(SubscriptionConstants.EVENT_STATUS_CHANGE)
) {
 if (subs[i].isEnabled())
 System.out.println("Status Change subscription is enabled");
 }
 else
 System.out.println("Unrecognized subscription event: " +
subs[i].getId());
 }
}

オブジェクトに対する確認通知の変更
Agile API を使用して、現在のユーザーに対する確認通知のみを変更できます。特定のビジネス オブジェクト

に対する確認通知を変更する場合、そのオブジェクトに対する他のユーザーの確認通知は影響を受けません。

オブジェクトに対する確認通知イベントのリストは、サーバで設定され、Agile API では変更できません。ただ

し、確認通知を有効にするフィールド (属性) は選択できます。管理者権限がある場合は、確認通知に使用可

能にするフィールドを定義するためにクラスを変更することもできます。詳細は、次のセクションを参照して

ください。

確認通知を処理するには、次の ISubscription メソッドを使用します。

 enable(boolean) - 確認通知を有効または無効にします。

 getAttribute() - 確認通知に関連付けられている IAttribute オブジェクトを返します。フィール

ドの変更確認通知にのみ関連属性があります。

 isEnabled() - 確認通知が有効な場合は true、無効な場合は false を返します。

 getId() - 確認通知 ID を返します。この ID は、SubscriptionConstants のいずれかと同じです。

ISubscription は、値オブジェクト インターフェースです。したがって、確認通知に変更を加えた場合 (例:
確認通知を有効にする)、Agile PLM システムでは、ISubscribable.modifySubscriptions() を呼び出

すまで変更されません。

次の例は、ライフサイクルの変更およびフィールドの変更確認通知イベントを有効にし、[ユーザー定義 1] の
2 つのフィールドの確認通知を有効にする方法を示しています。他の確認通知イベントはすべて無効です。

例: オブジェクトに対する確認通知の有効化および無効化
public void setSubscriptions(IAgileObject obj) throws APIException {
 ISubscription[] subs = ((ISubscribable)obj).getSubscriptions();
 for (int i = 0; i < subs.length; ++i) {
 // Enable the Status Change subscription event
 if
(subs[i].getId().equals(SubscriptionConstants.EVENT_STATUS_CHANGE)
) {
 subs[i].enable(true);
 }

 第 15 章

Agile Product Lifecycle Management 241 ページ

 // Enable the Field Change subscription event for Page Two.Text01
and Page Two.List01
 else if
(subs[i].getId().equals(SubscriptionConstants.EVENT_FIELD_CHANGE))
{
 if (subs[i].getAttribute() != null)
 System.out.println(subs[i].getAttribute().getFullName() + ":
" +
 subs[i].getAttribute().getId());
 if ((subs[i].getAttribute() != null) &&

((subs[i].getAttribute().getId().equals(CommonConstants.ATT_PAGE_T
WO_LIST01)) ||

(subs[i].getAttribute().getId().equals(CommonConstants.ATT_PAGE_TW
O_TEXT01))))
 subs[i].enable(true);
 else
 subs[i].enable(false);
 }
 // Disable all other subscription events
 else
 subs[i].enable(false);
 }
 ((ISubscribable)obj).modifySubscriptions(subs);
}

確認通知での属性の使用可能化
確認通知可能な属性は、Agile PLM クラスによって異なります。通常、ほとんどの [ページ 1] ([タイトル ペー

ジ]、[カバー ページ] および [一般情報]) の属性が確認通知可能であるため、確認通知に使用可能にできます。

ATT_PAGE_TWO_CREATE_USER を除く [ユーザー定義 1] のすべての属性、および [ユーザー定義 2] のすべ

ての属性も確認通知可能です。

属性の [確認通知に使用可能] プロパティが [はい] に設定されている場合、ユーザーは属性の確認通知を有効

にできます。オブジェクトに対して ISubscribable.getSubscriptions() を呼び出した場合、返される
ISubscription[] 配列には、各確認通知イベントに対する ISubscription オブジェクトが含まれます。

1 つのフィールドの変更イベント (定数は SubscriptionConstants.EVENT_FIELD_CHANGE) のみの場

合でも、確認通知の対象とする各属性は、確認通知のトリガーとなる別々のイベントとして処理されます。Agile
PLM システムの設定方法によっては、特定のオブジェクトに対して、確認通知に使用可能な属性が多数存在す

る場合があります。

属性の表示が有効になっていない場合、その [確認通知に使用可能] プロパティが [はい] に設定されている場

合でも、その属性は確認通知可能ではありません。したがって、[確認通知に使用可能] プロパティを [はい] に
設定する前に、[表示] プロパティも [はい] に設定されていることを確認してください。次の例は、ECO に対

する [ユーザー定義 1] のすべての属性を確認通知で使用可能にする方法を示しています。

SDK 開発者ガイド

242 ページ Agile Product Lifecycle Management

例: 確認通知での [ユーザー定義 1] 属性の使用可能化
try {
 // Get the ECO subclass
 IAgileClass classECO = m_admin.getAgileClass("ECO");
 // Get Page Two attributes
 IAttribute[] attr =
classECO.getTableAttributes(ChangeConstants.TABLE_PAGETWO);

 // Make all visible Page Two attributes subscribable
 for (int i = 0; i < attr.length; ++i) {
 IProperty prop = null;
 IAgileList listValues = null;
 String strVal = "";

 // Check if the attribute is visible
 prop = attr[i].getProperty(PropertyConstants.PROP_VISIBLE);
 listValues = (IAgileList)prop.getValue();
 strVal = listValues.toString();

 // If the attribute is visible, make it subscribable
 if (strVal.equals("Yes")) {
 prop =
attr[i].getProperty(PropertyConstants.PROP_AVAILABLE_FOR_SUBSCRIBE
);
 if (prop != null) {
 listValues = prop.getAvailableValues();
 listValues.setSelection(new Object[] { "Yes" });
 prop.setValue(listValues);
 }
 }
 }
} catch (APIException ex) {
 System.out.println(ex);
}

親属性と子属性
いくつかの読み取り専用属性には、親属性と子の関係にあるものがあります。子属性には、親属性の値が反映

されます。したがって、親属性は確認通知に使用可能ですが、子属性は使用可能ではありません。子属性の例

には、[BOM.アイテム リスト02] や [BOM.アイテム テキスト01] などの [BOM] テーブルの属性があります。

 第 15 章

Agile Product Lifecycle Management 243 ページ

[確認通知] テーブルの使用
ユーザーの [確認通知] テーブルには、ユーザーが有効にしているすべての確認通知がリストされます。[確認

通知] テーブルには、限定された編集機能があります。たとえば、テーブルに新しい行を追加することはでき

ません。Agile API を使用して確認通知を追加する唯一の方法は、データオブジェクトに対して
ISubscribable.modifySubscriptions() を呼び出すことです。ただし、テーブルから確認通知を削除す

ることはできます。

次の例は、現在のユーザーの [確認通知] テーブルを取得する方法を示しています。また、番号が 1000-02 の
部品に対する確認通知を削除する方法も示しています。

例: 確認通知の削除
try {
 // Get the current user
 IUser user = m_session.getCurrentUser();
 // Get the Subscription table
 ITable tblSubscriptions =
user.getTable(UserConstants.TABLE_SUBSCRIPTION);
 Iterator i = tblSubscriptions.iterator();

 // Stop subscribing to part 1000-02
 while (i.hasNext()) {
 IRow row = (IRow)i.next();
 String n =
(String)row.getValue(UserConstants.ATT_SUBSCRIPTION_NUMBER);
 if (n.equals("1000-02")) {
 tblSubscriptions.removeRow(row);
 break;
 }
 }
} catch (APIException ex) {
 System.out.println(ex);
}

[確認通知] テーブルから個々の行を削除する以外に、Collection.clear() メソッドを使用してテーブルを

クリアすることもできます。

例: [確認通知] テーブルのクリア
public void clearSubscriptionTable(IUser user) throws APIException {
 // Get the Subscription table
 ITable tblSubscriptions =
user.getTable(UserConstants.TABLE_SUBSCRIPTION);

 // Clear the table
 tblSubscriptions.clear();
}

[確認通知] テーブルには、確認通知を有効にしているイベントがオブジェクトごとにはリストされません。こ

の情報を検索するには、各参照オブジェクトを開く必要があります。次の例は、

ITable.getReferentIterator() を使用して、テーブル内の参照オブジェクトで処理を繰り返す方法を示

しています。

SDK 開発者ガイド

244 ページ Agile Product Lifecycle Management

例: [確認通知] テーブルで参照されるオブジェクトの取得
try {
 // Get the current user
 IUser user = m_session.getCurrentUser();
 // Get the Subscription table
 ITable tblSubscriptions =
user.getTable(UserConstants.TABLE_SUBSCRIPTION);
 Iterator i = tblSubscriptions.getReferentIterator();

 // Get each object referenced in the table
 while (i.hasNext()) {
 IAgileObject obj = (IAgileObject)i.next();
 if (obj instanceof ISubscribable) {
 ISubscription[] subscriptions =
((ISubscribable)obj).getSubscriptions();
 for (int j = 0; j < subscriptions.length; j++) {
 ISubscription subscription = subscriptions[j];
 System.out.println(subscription.getName());
 // Add code here to handle each subscription
 }
 System.out.println(obj.getName());
 }
 }
} catch (APIException ex) {
 System.out.println(ex);
}

Agile Product Lifecycle Management 245 ページ

第 16 章

製品の規制および適合性の管理

扱うトピックは次のとおりです。

 Agile Product Governance & Compliance について... 245
 Agile PG&C のインターフェースとクラス ... 246
 Agile PG&C の役割 .. 246
 デクラレーション、含有基準およびサブスタンスの作成 .. 247
 デクラレーションへのアイテム、製造元部品および部品グループの追加 .. 251
 デクラレーションへのサブスタンスの追加.. 252
 含有基準へのサブスタンスの追加.. 259
 デクラレーションへの含有基準の追加.. 260
 デクラレーションの送信 ... 261
 デクラレーションの入力 ... 262
 適合性管理者へのデクラレーションの提出.. 263
 デクラレーションの公表 ... 264
 重量値の取得および設定 ... 264
 製造元部品のサブスタンス組成の追加.. 265
 適合性データのロールアップ ... 268

Agile Product Governance & Compliance について
Agile Product Governance & Compliance (PG&C) は、製品の定義や、規制されたサブスタンスのインポート、エ

クスポートおよび廃棄に影響を与える多くの環境規制や企業の環境ポリシーに対処します。Agile PG&C は、

OEM メーカーが自社の製品で使用する規制サブスタンスの量を検証し、それらのサブスタンスが含まれる電

子機器を責任を持って廃棄、リサイクルまたは再利用できるように設計されています。

Agile PG&C によって、企業は環境規制にコスト効率よく準拠できます。また、Agile PG&C を使用すると、部

品の適合性データをサプライヤから取得できます。このデータによって、企業は次のことを実現できます。

 サブスタンス制限の適合

 規制のレポート要件の達成

 リサイクル可能製品の設計

 適合性コストの最小化

 将来の製品における不適合の除去

Agile PG&C は適合性管理者とサプライヤとの間のコミュニケーションを支援するツールです。適合性管理者

は、企業の製品が政府規制と企業のポリシーに従っていることを確認します。サプライヤ側では、マテリアル プ
ロバイダがマテリアル デクラレーションを完成してサインオフし、提供するコンポーネントやサブアセンブリ

に含まれる有害化学物質の種類を公表します。

Agile PG&C 機能の詳細は、別途『Product Governance & Compliance ユーザー・ガイド』を参照してください。

SDK 開発者ガイド

246 ページ Agile Product Lifecycle Management

Agile PG&C のインターフェースとクラス
次の表に、Agile PG&C に関連するインターフェースとクラスを示します。

オブジェクト インターフェース 定数クラス

デクラレーション IDeclaration DeclarationConstants

含有基準 ISpecification SpecficationConstants

サブスタンス ISubstance SubstanceConstants

部品グループ ICommodity PartGroupConstants

アイテム、製造元部品および部品グループは、Agile PG&C にも関連するオブジェクトです。これらのオブジェ

クトには [含有基準]、[組成] および [サブスタンス] テーブルがあり、デクラレーションをリリースするとデー

タが挿入されます。製造元部品の場合は、デクラレーションを提出せずに [組成] および [サブスタンス] テー

ブルを直接編集できます。

注意 このマニュアルで使用される「部品グループ」と「部品分類」という用語は同じ意味で、ICommodity
オブジェクトを指します。ICommodity は、[部品分類] および [部品ファミリ] サブクラスを含む
[部品グループ] 基本クラスを表します。

Agile PG&C オブジェクトを使用するために、ITable、IDataObject および ICell など、他の共通の Agile
API インターフェースも使用されます。

Agile PG&C の役割
Agile PLM には、Agile PG&C ユーザー用に設計されたデフォルトの役割が 2 つあります。

 適合性管理者 - デクラレーション、サブスタンス、含有基準などの Agile PG&C オブジェクトの作成およ

び管理に必要な権限を提供し、Agile PG&C レポートを実行します。適合性管理者はマテリアル デクラ

レーションをサプライヤに送信する役割を果たします。

 (限定) マテリアル プロバイダ - デクラレーションの作成と変更、およびその他すべてのタイプの Agile
PG&C オブジェクトの読み取りに必要な権限を提供します。この役割は、通常、Agile PLM システムに制

限付きのアクセスを持つサプライヤ ユーザーに割り当てられます。マテリアル プロバイダは、マテリア

ル デクラレーションを完成してサインオフする役割を果たします。

この章で説明する Agile PG&C API を使用するには、[適合性管理者] または [(限定) マテリアル プロバイダ]
の役割が割り当てられたユーザーでログインしてください。Agile PLM 役割の詳細は、『Agile PLM 管理者ガ

イド』を参照してください。

 第 16 章

Agile Product Lifecycle Management 247 ページ

デクラレーション、含有基準およびサブスタンスの作成
このセクションでは、Agile PG&C の各クラスを作成する方法を示します。

デクラレーションの作成
デクラレーション オブジェクトは Agile PG&C のメイン レコードです。アイテム、製造元部品および部品グ

ループで使用されるサブスタンスおよびマテリアルを追跡します。デクラレーションをリリースすると、収集

した情報はプロダクト レコードに公表され、デクラレーションによってリストされたアイテム、製造元部品、

部品グループ内に含まれる組成データが更新されます。

Agile PLM に付属しているデクラレーション サブクラスは次の 7 つです。

 均質材のデクラレーション - マテリアル レベルの含有基準を使用する均質材組成デクラレーション。

 IPC 1752-1 デクラレーション - IPC 標準に適合し、1 部品レベルの含有基準のみを使用する電子製品のマ

テリアル組成デクラレーション。

 IPC 1752-2 デクラレーション - IPC 標準に適合し、1 マテリアル レベルの含有基準のみを使用する電子

製品の均質材組成デクラレーション。

 JGPSSI デクラレーション - 日本グリーン調達 (JGP) 標準に準拠し、部品レベルの含有基準を使用するマ

テリアル組成デクラレーション。

 部品のデクラレーション - 部品レベルまたはマテリアル レベルの含有基準を使用するマテリアル組成デ

クラレーション。

 サブスタンスのデクラレーション - 部品レベルの含有基準内にある各サブスタンスのマテリアル組成デ

クラレーション。

 適合のサプライヤ デクラレーション - サプライヤの適合性を顧客と政府機関の含有基準で評価するアン

ケート。調査は、一般の会社レベルで適合性に対処します。CSR タイプのデクラレーションで使用できま

す。

デクラレーションを作成する手順は、すべてのデクラレーション サブクラスについて同じです。デクラレー

ション サブクラスを指定し、[カバー ページ.名前] および [カバー ページ.サプライヤ] 属性に値を指定する

必要があります。他のデクラレーション属性はオプションです。

デフォルトで、[カバー ページ.名前] フィールドは (「Material Declaration」の) 接頭辞「MD」を持つ [自動採

番] フォーマットを使用します。[自動採番] フォーマットは必須ではありませんが、検索を簡単にするために

すべてのデクラレーションに対して同じ接頭辞を使用すると合理的です。

注意 [カバー ページ.名前] フィールドに大文字と小文字のいずれで入力する必要があるかは、フィール

ドに対して選択された文字セットに基づきます。

[(限定) マテリアル プロバイダ] の役割を持つサプライヤ ユーザーは、デクラレーションを作成することもで

きます。ただし、オブジェクトの作成に必要な属性は [カバー ページ.名前] のみです。[カバー ページ.サプラ

イヤ] 属性にはユーザーのサプライヤ組織が自動的に入力されます。

次の例は、JGPSSI デクラレーションを作成する方法を示しています。

SDK 開発者ガイド

248 ページ Agile Product Lifecycle Management

例: JGPSSI デクラレーションの作成
public void CreateJGPSSIDeclaration(String num, ISupplier supplier)
throws Exception {
 // Create a Map object to store parameters
 Map params = new HashMap();

 // Initialize the params object
 params.put(DeclarationConstants.ATT_COVER_PAGE_NAME, num);
 params.put(DeclarationConstants.ATT_COVER_PAGE_SUPPLIER,
supplier);

 // Get the JGPSSI Declaration subclass
 IAgileClass declClass =
m_session.getAdminInstance().getAgileClass(

DeclarationConstants.CLASS_JGPSSI_DECLARATION);
 // Create a new JGPSSI declaration
 IDeclaration object =
(IDeclaration)m_session.createObject(declClass, params);
}

含有基準の作成
含有基準は、製品が適合するまたは超える条件を示すために使用されます。通常は、製品に含まれる規制サブ

スタンスの量を制限するために使用されます。含有基準は、企業または業界が発行する内部文書の場合があり

ますが、一般的には管理機関が発行する規制です。次に、政府規制の例を示します。

 欧州連合 (EU) によって発行された、電子電気機器の指針における特定有害化学物質の使用に関する規制
(RoHS)

 EU によって発行された、電子電気機器廃棄 (WEEE) の指針

 米食品医薬品局 (FDA) によって発行された、アレルゲン表示および消費者保護法 (FALCPA)

含有基準は、サブスタンスのリスト、各サブスタンスの PPM (100 万分の 1 単位) しきい値、および特定のサ

ブスタンスが制限されるかどうかを定義します。適合性管理者は、含有基準を使用して適切なサブスタンスが

含まれたマテリアル デクラレーションを事前に作成し、適合性を確認できます。

含有基準の作成時に指定する必要のある必須属性は [一般情報.名前] のみです。この名前は一意である必要が

あります。名前は大文字と小文字を区別しません。これは、「ROHS」が「Rohs」と同じように扱われること

を意味します。

[一般情報.検証タイプ] 属性は、含有基準が [部品レベル] (デフォルト) か [均質材レベル] かを判断し、含有

基準で使用可能なデクラレーションのタイプに影響を与えるため、重要な属性です。別のオプションの属性は
[一般情報.ライフサイクル フェーズ] です。含有基準を作成する場合、デフォルトのライフサイクル フェーズ

は [アクティブ] です。含有基準を破棄するには、そのライフサイクル フェーズの属性の値を [破棄] に変更

します。

 第 16 章

Agile Product Lifecycle Management 249 ページ

例: 含有基準の作成
public void createSpecification(String name) throws Exception {
 ISpecification spec = (ISpecification)

m_session.createObject(SpecificationConstants.CLASS_SPECIFICATION,
name);

}

サブスタンスの作成
Agile PLM に付属しているサブスタンス サブクラスは次の 4 つです。

 サブパート - コンポーネントの製造元部品のサブユニット。サブパートの [組成] テーブルには、その他

のサブパート、マテリアル、サブスタンス グループ、サブスタンスを含めることができます。

 マテリアル - 複数のサブスタンスで構成される複合物。マテリアルの [組成] テーブルには、サブスタン

ス グループまたはサブスタンスを含めることができます。

 サブスタンス グループ - サブスタンスのグループ。サブスタンス グループの [組成] テーブルには、サ

ブスタンスのみを含めることができます。

 サブスタンス - 鉛、クロミウム、カドミウムなどの単一の要素。サブスタンスに [組成] テーブルはあり

ません。

これらのサブスタンス サブクラスは、[組成] テーブルに表示可能なオブジェクトの階層 (サブスタンス構成表

とも呼ばれます) で構成されます。

サブパートの作成

サブパート オブジェクトは Agile PLM で追跡されるコンポーネントのサブユニットです。サブパートは部品

番号のない部品で、製造元部品または組成内の部品の部品構成表 (BOM) を作成するために使用されます。

例: サブパートの作成
public void createSubpart(String num) throws Exception {
 // Create a Map object to store parameters
 Map params = new HashMap();

 // Initialize the map object
 params.put(SubstanceConstants.ATT_GENERAL_INFO_NAME, num);

 // Get the Subpart subclass
 IAgileClass subsClass = m_session.getAdminInstance().

getAgileClass(SubstanceConstants.CLASS_SUBPART);
 // Create a new Subpart
 ISubstance sub = (ISubstance)m_session.createObject(class,
params);
}

SDK 開発者ガイド

250 ページ Agile Product Lifecycle Management

サブスタンス グループの作成

サブスタンス グループ オブジェクトは、共通のベース サブスタンスを含む複数のサブスタンスのグループで、

Agile PLM で追跡されます。グループ内のすべてのサブスタンスには、そのグループのベース サブスタンスの

重量を換算するために使用する換算係数があります。

例: サブスタンス グループの作成
public void createSubstanceGroup(String num, ISubstance sub) throws
Exception {
 // Create a Map object to store parameters
 Map params = new HashMap();

 // Initialize the map object
 params.put(SubstanceConstants.ATT_GENERAL_INFO_NAME, num);
 params.put(SubstanceConstants.ATT_GENERAL_INFO_BASE_SUBSTANCE,
sub);
 // Get the Substance Group subclass
 IAgileClass subsClass = m_session.getAdminInstance().

getAgileClass(SubstanceConstants.CLASS_SUBSTANCE_GROUP);
 // Create a new Substance Group
 ISubstance sub = (ISubstance)m_session.createObject(class,
params);
}

マテリアルの作成

マテリアル オブジェクトを作成する場合、指定する必要のある属性は、サブスタンス番号に相当する [一般情

報.名前] 属性のみです。マテリアル オブジェクトの作成後は、その [組成] テーブルにサブスタンスを追加で

きます。

例: マテリアル オブジェクトの作成
public void createMaterial(String num, ISubstance[] substances) throws
Exception {
 // Create a Map object to store parameters
 Map params = new HashMap();

 // Initialize the params object
 params.put(SubstanceConstants.ATT_GENERAL_INFO_NAME, num);

 // Create a new material
 ISubstance material = (ISubstance)m_session.createObject(
 SubstanceConstants.CLASS_MATERIAL, params);
 // Get the Composition table
 ITable composition =
material.getTable(SubstanceConstants.TABLE_COMPOSITION);

 // Add substances to the Composition table
 for (int i = 0; i < substances.length; ++i) {
 IRow row = composition.createRow(substances[i]);
 }
}

 第 16 章

Agile Product Lifecycle Management 251 ページ

サブスタンスの作成

マテリアル オブジェクトと同様に、サブスタンスを作成する際に指定する必要のある属性は、サブスタンス番

号に相当する [一般情報.名前] 属性のみです。[一般情報.CAS 番号] などの他のオプション属性を指定するこ

ともできます。

例: サブスタンスの作成
public void createSubstance(String num, String casNumber) throws
Exception {
 // Create a Map object to store parameters
 Map params = new HashMap();

 // Initialize the params object
 params.put(SubstanceConstants.ATT_GENERAL_INFO_NAME, num);
 params.put(SubstanceConstants.ATT_GENERAL_INFO_CAS_NUMBER,
casNumber);
 // Get the Substance subclass
 IAgileClass subsClass = m_session.getAdminInstance().

getAgileClass(SubstanceConstants.CLASS_SUBSTANCE);
 // Create a new substance
 ISubstance substance =
(ISubstance)m_session.createObject(subsClass, params);
}

デクラレーションへのアイテム、製造元部品および部品

グループの追加
各デクラレーションには、アイテム、製造元部品および部品グループごとに個別のテーブルがあります。また、

各デクラレーションには、関連する組成テーブルである [アイテム組成]、[製造元部品の組成] および [部品グ

ループの組成] があります。

アイテムをデクラレーションの [アイテム] テーブルに追加する際は、そのアイテムの最新のリリース済みリ

ビジョンが使用されます。アイテムにリリース済みリビジョンがない場合は、初版リビジョンが使用されます。

次の例は、アイテム、製造元部品および部品グループをデクラレーションに追加する方法を示しています。

例: デクラレーションへのアイテム、製造元部品および部品グループの追加
public void addDecObjects(IDeclaration dec) throws APIException {
 try {
 HashMap params = new HashMap();
 //Add an Item to the Items table
 ITable tblItems =
dec.getTable(DeclarationConstants.TABLE_ITEMS);
 params.clear();
 params.put(DeclarationConstants.ATT_ITEMS_ITEM_NUMBER,
"1000-02");
 IRow rowItems = tblItems.createRow(params);

SDK 開発者ガイド

252 ページ Agile Product Lifecycle Management

 //Add a Manufacturer Part to the Manufacturer Parts table
 ITable tblMfrParts =
dec.getTable(DeclarationConstants.TABLE_MANUFACTURERPARTS);
 params.clear();

params.put(DeclarationConstants.ATT_MANUFACTURER_PARTS_MFR_PART_NU
MBER, "Widget103");

params.put(DeclarationConstants.ATT_MANUFACTURER_PARTS_MFR_NAME,
"ACME");
 IRow rowMfrParts = tblMfrParts.createRow(params);
 //Add a Commodity to the Part Groups table
 ITable tblPartGroups =
dec.getTable(DeclarationConstants.TABLE_PARTGROUPS);
 params.clear();
 params.put(DeclarationConstants.ATT_PART_GROUPS_NAME, "RES");
 IRow rowPartGroups = tblPartGroups.createRow(params);

 } catch (APIException ex) {
 System.out.println(ex);
 }
}

デクラレーションへのサブスタンスの追加
サブスタンスは、デクラレーション内に含まれる [アイテム組成]、[製造元部品の組成] および [部品グループ

の組成] の各テーブルに追加できます。サブスタンスをアイテム、製造元部品および部品グループに公表する

には、デクラレーションをリリースします。デクラレーションがリリースされると、サブスタンスが対応する

アイテム、製造元部品および部品グループの [サブスタンス] テーブルに自動的に追加されます。

デクラレーションの組成テーブルはマッピング テーブルであり、部品をそれぞれのサブスタンスにマップしま

す。親オブジェクトにサブスタンスがない場合、組成テーブルには行が設定されません。

デクラレーションの組成テーブルに行を追加するには、ITable.createRow() メソッドを使用します。組成

テーブルはマッピング テーブルであるため、ISubstance オブジェクトを渡して行を作成することはできま

せん。かわりに、属性と値のペアを含む Map オブジェクトを指定します。

重要 アイテムと部品グループの [サブスタンス] および [組成] テーブルは読み取り専用です。これらの

テーブルにデータが挿入されるのは、デクラレーションがリリースされた場合のみです。

 第 16 章

Agile Product Lifecycle Management 253 ページ

サブスタンスをデクラレーションの [組成] テーブルのいずれかに追加する手順は、次のとおりです。

1. アイテム、製造元部品または部品グループをデクラレーションの [アイテム]、[製造元部品] または [部品

グループ] の各テーブルに追加します。

2. サブスタンス行を、[アイテム]、[製造元部品] または [部品グループ] テーブルの親行を参照する [組成]
テーブルに追加します。仮想属性 DeclarationConstants.ATT_PARENT_ROW を使用して親行を指定

します。サブスタンスを追加するときに、サブスタンス名とサブスタンス タイプを指定します。

重要 Agile SDK の場合、デクラレーションの [組成] テーブルには、[アイテム]、[製造元部品] お
よび [部品グループ] テーブルに含まれるすべての親オブジェクトがリストされます。

Agile Web クライアントでは、異なる方法で [組成] テーブルが表示されます。親オブジェ

クトごとに個別の [組成] テーブルが表示されます。

[組成] テーブルに行を作成するときに、属性と値のペアを含む Map オブジェクトを渡します。次の表に、Map
オブジェクトに含める必要がある属性を示します。

[組成] テーブル 必須属性 DeclarationConstants

アイテム組成 アイテム行
サブスタンス名

ATT_PARENT_ROW

ATT_ITEM_COMPOSITION_SUBSTANCE_NAME

製造元部品の組成 製造元部品行
サブスタンス名

ATT_PARENT_ROW

ATT_MANUFACTURER_PART_COMPOSITION_SUBSTANCE_
NAME

部品グループの組

成
部品グループ行
サブスタンス名

ATT_PARENT_ROW

ATT_PART_GROUP_COMPOSITION_SUBSTANCE_NAME

BOS (サブスタンス構成表) の構造
サブスタンスをデクラレーションの [組成] テーブルに追加するときに、それらを複数レベルで構成できます。

使用できるレベルの数はデクラレーションのタイプによって異なります。

 均質材のデクラレーション - サブパート、マテリアル、サブスタンス グループおよびサブスタンスが含

まれた複数レベルのサブスタンス構成表を作成できます。組成には、サブパートまたはマテリアルを直接

の子として含める必要があります。また、サブスタンスとサブスタンス グループを含めることもできます

が、それらはサブパートまたはマテリアルに関連付ける必要があります。

 サブスタンス デクラレーション/JGPSSI デクラレーション - ユーザーは、サブスタンスまたはサブスタ

ンス グループを [組成] テーブルに追加できます。

 部品のデクラレーション/適合のサプライヤ デクラレーション - これらのデクラレーションには [組成]
テーブルはありません。

次の図は、4 つの子レベルが含まれるサブスタンス構成表 (組成) の階層を示しています。

SDK 開発者ガイド

254 ページ Agile Product Lifecycle Management

サブスタンスの追加に関するルール
サブスタンスを [組成] テーブルに追加する場合は、次のルールに従います。

 親オブジェクトを追加してからそれぞれの子を追加する必要があります。

 サブパートには、他のサブパート、マテリアル、サブスタンス グループまたはサブスタンスを子として追

加できます。

 サブパートには、サブパート、マテリアル、サブスタンス グループおよびサブスタンスをすべて同

じレベルで含めることはできません。

 サブパートには、他のサブパートとマテリアルを同じレベルで含めることができます。

 サブパートには、サブスタンス グループとサブスタンスを同じレベルで含めることができます。

 マテリアルには、サブスタンス グループまたはサブスタンスを子として追加できます。

 サブスタンス グループには、サブスタンスのみを子として追加できます。

存在しないサブパートとマテリアルの追加
サブスタンスをデクラレーションの [組成] テーブルに追加するときに、Agile PLM システムに存在しないダ

ミーのサブパートとマテリアルを指定できます。このようなサブパートとマテリアルは [組成] テーブル内で

のみ表示されます。ダミーのサブパートとマテリアルを [組成] テーブルに追加する場合は、次の [サブスタン

ス タイプ] 属性を指定する必要があります。

 第 16 章

Agile Product Lifecycle Management 255 ページ

 ATT_ITEM_COMPOSITION_SUBSTANCE_TYPE

 ATT_MANUFACTURER_PART_COMPOSITION_SUBSTANCE_TYPE

 ATT_PART_GROUP_COMPOSITION_SUBSTANCE_TYPE

次の例は、ダミーのサブパートまたはマテリアルを [製造元部品の組成] テーブルに追加する方法を示してい

ます。Substance Type フィールドはリスト フィールドであるため、渡される値は IAgileList です。

例: [製造元部品の組成] テーブルへのダミーのサブパートまたはマテリアルの追加
public IRow addDummy(IDeclaration dec, IRow parentRow, String dummyName,
IAgileList subtype)
 throws APIException {
 try {

 HashMap params = new HashMap();
 ITable tblMfrPartComp = dec.getTable(

DeclarationConstants.TABLE_MANUFACTURERPARTCOMPOSITION);
 params.put(DeclarationConstants.ATT_PARENT_ROW, parentRow);

params.put(DeclarationConstants.ATT_MANUFACTURER_PART_COMPOSITION_
SUBSTANCE_NAME,
 dummyName);

params.put(DeclarationConstants.ATT_MANUFACTURER_PART_COMPOSITION_
SUBSTANCE_TYPE,
 subtype);
 IRow dummyRow = tblMfrPartComp.createRow(params);
 return dummyRow;

 } catch (APIException ex) {
 System.out.println(ex);
 }
}

サブスタンスを追加する例
次の例は、サブスタンスを追加する方法を示しています。

 均質材のデクラレーションの [製造元部品の組成] テーブルへのサブスタンスの追加

 サブスタンス デクラレーションの [製造元部品の組成] テーブルへのサブスタンスの追加

均質材のデクラレーションの [製造元部品の組成] テーブルへのサブスタンスの追加

次の例は、サブスタンスを均質材のデクラレーションの [製造元部品の組成] テーブルに追加する方法を示し

ています。このテーブルには、サブパート、マテリアル、サブスタンス グループおよびサブスタンスの 4 つ
のレベルがあります。サブスタンス行をテーブルに追加するときに、入力パラメータとしてサブスタンス名
(String) のかわりにサブスタンス オブジェクト (ISubstance) を渡すことをお薦めします。

SDK 開発者ガイド

256 ページ Agile Product Lifecycle Management

例: [製造元部品の組成] テーブルへの均質材レベルのサブスタンスの追加
public void addHomogeneousMaterialComp(IAgileSession m_session)
throws APIException {
 try {
 HashMap params = new HashMap();
 // Create a Declaration
 String num = "MDTEST001";
 ISupplier supplier =
(ISupplier)m_session.getObject(ISupplier.OBJECT_TYPE,
 "DISTRIBUTOR00007");
 params.put(DeclarationConstants.ATT_COVER_PAGE_NAME, num);
 params.put(DeclarationConstants.ATT_COVER_PAGE_SUPPLIER,
supplier);
 IAgileClass declClass =
m_session.getAdminInstance().getAgileClass(

DeclarationConstants.CLASS_HOMOGENEOUS_MATERIAL_DECLARATION);
 IDeclaration dec = (IDeclaration)m_session.createObject(declClass,
params);
 // Add a Homogeneous Material Level spec to the Specifications table
 ITable tblSpec =
dec.getTable(DeclarationConstants.TABLE_SPECIFICATION);
 params.clear();
 ISpecification spec =
(ISpecification)m_session.getObject(ISpecification.OBJECT_TYPE,
 "Lead Homogeneneous Material Level");
 IRow rowSpec = tblSpec.createRow(spec);
 // Add a Manufacturer Part to the Manufacturer Parts table
 ITable tblMfrParts =
dec.getTable(DeclarationConstants.TABLE_MANUFACTURERPARTS);
 params.clear();

params.put(DeclarationConstants.ATT_MANUFACTURER_PARTS_MFR_PART_NU
MBER, "Widget103");

params.put(DeclarationConstants.ATT_MANUFACTURER_PARTS_MFR_NAME,
"ACME");
 IManufacturerPart mfrPart = (IManufacturerPart) m_session.

getObject(IManufacturerPart.OBJECT_TYPE, params);
 IRow rowMfrParts = tblMfrParts.createRow(mfrPart);
 // Add a subpart to the Composition table
 ITable tblMfrPartComp = dec.getTable(

DeclarationConstants.TABLE_MANUFACTURERPARTCOMPOSITION);
 ISubstance subpart = (ISubstance)m_session.

 第 16 章

Agile Product Lifecycle Management 257 ページ

getObject(SubstanceConstants.CLASS_SUBPART, "Steel Casing");
 params.clear();
 params.put(DeclarationConstants.ATT_PARENT_ROW, rowMfrParts);

params.put(DeclarationConstants.ATT_MANUFACTURER_PART_COMPOSITION_
SUBSTANCE_NAME,
 subpart);
 IRow rowSubpart = tblMfrPartComp.createRow(params);
 // Add a material
 ISubstance material =
(ISubstance)m_session.getObject(SubstanceConstants.CLASS_MATERIAL,
 "Steel");
 params.clear();
 params.put(DeclarationConstants.ATT_PARENT_ROW, rowSubpart);

params.put(DeclarationConstants.ATT_MANUFACTURER_PART_COMPOSITION_
SUBSTANCE_NAME, material);
 IRow rowMaterial = tblMfrPartComp.createRow(params);
 // Add a substance group
 ISubstance sg =
(ISubstance)m_session.getObject(SubstanceConstants.CLASS_SUBSTANCE
_GROUP,
 "Lead Componds");
 params.clear();
 params.put(DeclarationConstants.ATT_PARENT_ROW, rowMaterial);

params.put(DeclarationConstants.ATT_MANUFACTURER_PART_COMPOSITION_
SUBSTANCE_NAME, sg);
 IRow rowSubGroup = tblMfrPartComp.createRow(params);
 // Add a substance
 ISubstance sub =
(ISubstance)m_session.getObject(SubstanceConstants.CLASS_SUBSTANCE
,
 "Lead");
 params.clear();
 params.put(DeclarationConstants.ATT_PARENT_ROW, rowSubGroup);

params.put(DeclarationConstants.ATT_MANUFACTURER_PART_COMPOSITION_
SUBSTANCE_NAME, sub);
 IRow rowSubs = tblMfrPartComp.createRow(params);
 } catch (APIException ex) {
 System.out.println(ex);
 }

}

サブスタンス デクラレーションの [製造元部品の組成] テーブルへのサブスタンス

の追加

次の例は、サブスタンスをサブスタンス デクラレーションの [製造元部品の組成] テーブルに追加する方法を

示しています。このテーブルには、サブスタンス グループとサブスタンスの 2 つのレベルがあります。

SDK 開発者ガイド

258 ページ Agile Product Lifecycle Management

例: [製造元部品の組成] テーブルへの部品レベルのサブスタンスの追加
public void addSubstanceComp(IAgileSession m_session) throws
APIException {
 try {
 HashMap params = new HashMap();
 //Create a Declaration
 String num = "MDTEST001";
 ISupplier supplier =
(ISupplier)m_session.getObject(ISupplier.OBJECT_TYPE,
 "DISTRIBUTOR00007");
 params.put(DeclarationConstants.ATT_COVER_PAGE_NAME, num);

params.put(DeclarationConstants.ATT_COVER_PAGE_SUPPLIER,
supplier);
 IAgileClass declClass =
m_session.getAdminInstance().getAgileClass(

DeclarationConstants.CLASS_SUBSTANCE_DECLARATION);
 IDeclaration dec = (IDeclaration)m_session.createObject(declClass,
params);
 //Add a Specification to the Specifications table
 ITable tblSpec =
dec.getTable(DeclarationConstants.TABLE_SPECIFICATION);
 params.clear();
 // Part Level
 ISpecification spec =
(ISpecification)m_session.getObject(ISpecification.OBJECT_TYPE,
 "Lead Part Level");
 IRow rowSpec = tblSpec.createRow(spec);
 //Add a Manufacturer Part to the Manufacturer Parts table
 ITable tblMfrParts =
dec.getTable(DeclarationConstants.TABLE_MANUFACTURERPARTS);
 params.clear();

params.put(DeclarationConstants.ATT_MANUFACTURER_PARTS_MFR_PART_NU
MBER, "Widget103");

params.put(DeclarationConstants.ATT_MANUFACTURER_PARTS_MFR_NAME,
"ACME");
 IManufacturerPart mfrPart = (IManufacturerPart)
m_session.getObject(

IManufacturerPart.OBJECT_TYPE, params);
 IRow rowMfrParts = tblMfrParts.createRow(mfrPart);
 //Add a substance group
 ITable tblMfrPartComp = dec.getTable(

DeclarationConstants.TABLE_MANUFACTURERPARTCOMPOSITION);
 ISubstance sg =
(ISubstance)m_session.getObject(SubstanceConstants.CLASS_SUBSTANCE
_GROUP,
 "Lead Componds");
 params.clear();
 params.put(DeclarationConstants.ATT_PARENT_ROW, rowMfrParts);

 第 16 章

Agile Product Lifecycle Management 259 ページ

params.put(DeclarationConstants.ATT_MANUFACTURER_PART_COMPOSITION_
SUBSTANCE_NAME, sg);
 IRow rowSubGroup = tblMfrPartComp.createRow(params);
 //Add a substance
 ISubstance sub =
(ISubstance)m_session.getObject(SubstanceConstants.CLASS_SUBSTANCE
,
 "Lead");
 params.clear();
 params.put(DeclarationConstants.ATT_PARENT_ROW, rowSubGroup);

params.put(DeclarationConstants.ATT_MANUFACTURER_PART_COMPOSITION_
SUBSTANCE_NAME, sub);
 IRow rowSubs = tblMfrPartComp.createRow(params);
 } catch (APIException ex) {
 System.out.println(ex);
 }
}

含有基準へのサブスタンスの追加
含有基準の [サブスタンス] テーブルは、制限されるサブスタンスとそのしきい値 PPM (100 万分の 1 単位)
を識別するため、Agile PG&C では重要です。含有基準の [サブスタンス] テーブルに追加できるのは、サブス

タンスとサブスタンス グループのみです。サブスタンスを [サブスタンス] テーブルに追加するには、

ITable.createRow() メソッドを使用します。ISubstance または Map オブジェクトを渡すと、新規行を

作成できます。

例: 含有基準へのサブスタンスの追加
public void addSubstanceToSpec(ISpecification spec, ISubstance
substance)
 throws Exception {
 IRow row = null;
 //Add a substance to the Substances table
 ITable tableSub =
spec.getTable(SpecificationConstants.TABLE_SUBSTANCES);
 row = tableSub.createRow(substance);

 if (row!=null){
 //Set value of Restricted
 ICell cell =
row.getCell(SpecificationConstants.ATT_SUBSTANCES_RESTRICTED);
 IAgileList list = (IAgileList)cell.getAvailableValues();
 list.setSelection(new Object[] {"Yes"});
 cell.setValue(list);

 //Set value of Threshold Mass PPM

row.setValue(SpecificationConstants.ATT_SUBSTANCES_THRESHOLD_MASS_
PPM, new Integer(10));
 }
}

SDK 開発者ガイド

260 ページ Agile Product Lifecycle Management

デクラレーションへの含有基準の追加
デクラレーションの [含有基準] テーブルは、デクラレーションに含まれたアイテム、製造元部品および部品

グループに関連する含有基準をリストします。デクラレーションの目的は、サプライヤが含有基準に記載され

たすべての規制に準拠できるようにすることです。

含有基準の追加に関するルール
デクラレーションでは含有基準はオプションです。デクラレーションを含有基準なしで提出する場合は、生デー

タ (質量または PPM) をサブスタンス レベルで収集することを意味します。サプライヤは、すべてのマテリ

アルとサブスタンスに関する情報を提供する必要があります。

含有基準をデクラレーションに追加する場合は、デクラレーション クラスが様々なタイプの含有基準をサポー

トすることに注意してください。次の表に、各タイプのデクラレーションに対する含有基準の要件を示します。

デクラレーション タイプ サポートされる含有基準の検証タイプ

均質材のデクラレーション 均質材レベル

IPC 1752-1 デクラレーション 部品レベル

IPC 1752-2 デクラレーション 均質材レベル

JGPSSI デクラレーション 部品レベル

部品のデクラレーション 部品レベルおよび均質材レベル

サブスタンスのデクラレーション 部品レベル

適合のサプライヤ デクラレーション 部品レベルおよび均質材レベル

含有基準は、デクラレーションに含まれる部品で使用されていないサブスタンスも含め、多くのサブスタンス

に影響を与えます。デクラレーションがサプライヤに開示されると、含有基準の関連サブスタンスが [アイテ

ム組成]、[製造元部品の組成] および [部品グループの組成] の各テーブルに自動的に追加されます。これに

よって、デクラレーションにリストされている部品に含まれたすべての規制サブスタンスを適切に追跡できま

す。

例: [含有基準] テーブルへの含有基準の追加
private void addSpecifications(IDeclaration dec, ISpecification[]
specs) throws Exception {
 ITable tableSpecs =
dec.getTable(DeclarationConstants.TABLE_SPECIFICATION);
 for (int i = 0; i < specs.length; ++i) {
 ISpecification spec = specs[i];
 IRow row = tableSpecs.createRow(spec);
 }
}

 第 16 章

Agile Product Lifecycle Management 261 ページ

デクラレーションの送信
[デフォルト デクラレーション] ワークフローは、次の図に示すように、簡単な操作で行うことができます。
図 11: [デフォルト デクラレーション] ワークフロー

次の表に、[デフォルト デクラレーション] ワークフローの各ステータスを示します。

ステータス 説明

保留中 適合性管理者は、新規デクラレーションを作成し、新規のアイテム、製造元部品または

部品グループを追加します。また、デクラレーションに含有基準を追加します。

サプライヤへ開示 適合性管理者は、デクラレーションをサプライヤに開示し、部品が含有基準に準拠して

いるかどうかを問い合わせます。

デクラレーションのワークフロー ステータスが [保留中] から [サプライヤへ開示]
に変更されると、Agile PLM サーバによって、含有基準にリストされているサブスタ

ンスがデクラレーションの [サブスタンス] テーブルに自動的に挿入されます。

マネージャに送信 サプライヤは電子的に署名し、デクラレーションを適合性管理者に返信します。

レビュー 適合性管理者と他のレビューアは、デクラレーションのコンテンツを確認して承認し

ます。

リリース済み 適合性管理者はデクラレーションをリリースして、マテリアルをプロダクト レコード

に公表します。

実施 部品が製造されてフィールドに配布された後、適合性管理者はデクラレーションを実施

し、ワークフローを完了します。

デクラレーションを送信するには、その前に、次の 3 つの Cover Page フィールドに値を設定する必要があ

ります。

 Cover Page.Compliance Manager

 Cover Page.Workflow

 Cover Page.Due Date

技術的には、デクラレーションの送信に必要なのは、Compliance Manager フィールドと Workflow フィー

ルドのみです。Due Date フィールドはオプションですが、追跡の目的では指定する必要があります。次の例

は、これらの 3 つのフィールドに値を設定する方法を示しています。

SDK 開発者ガイド

262 ページ Agile Product Lifecycle Management

例: Compliance Manager、Workflow および Due Date フィールドの値の設定
public void setFieldsNeededForRouting(IDeclaration dec) throws
Exception {
 //Set the Compliance Manager field
 IUser user = m_session.getCurrentUser();

dec.setValue(DeclarationConstants.ATT_COVER_PAGE_COMPLIANCE_MANAGE
R, user);
 //Set the Workflow field
 IWorkflow workflow = dec.getWorkflows()[0];
 dec.setWorkflow(workflow);

 //Set the Due Date field
 DateFormat df = new SimpleDateFormat("MM/dd/yy");
 dec.setValue(DeclarationConstants.ATT_COVER_PAGE_DUE_DATE,
df.parse("05/01/05"));

}

デクラレーションのステータスを変更するには、IRoutable.changeStatus() メソッドを使用します。デ

クラレーションがサプライヤに開示された後は、サプライヤのコンタクト ユーザーのみがデクラレーションを

編集できます。適合性管理者を含むその他のユーザーに対して、デクラレーションは読み取り専用になります。

次の例は、適合性管理者がデクラレーションのステータスを [サプライヤへ開示] に変更する方法を示してい

ます。

例: サプライヤへのデクラレーションの開示
public void openToSupplier(IDeclaration dec) throws Exception {
 IStatus status = null;
 // Get the Open to Supplier status type
 IStatus[] stats = dec.getNextStatuses();
 for (int i = 0; i < stats.length; i++) {
 if (stats[i].toString().equals("Open To Supplier")) {
 status = stats[i];
 break;
 }
 }
 // Change to the Open to Supplier status
 dec.changeStatus(status, false, null, false, false, null, null, null,
false);
}

ワークフロー プロセスに関連する Agile API の詳細は、161 ページの「ワークフローの管理」を参照してくだ

さい。

デクラレーションの入力
デクラレーションがサプライヤに開示された場合、サプライヤには、デクラレーションを完成し、提供するコ

ンポーネントとサブアセンブリに規制サブスタンスが含まれている場合は、それらのサブスタンスが含有基準

に準拠しているかどうかを公表する責任があります。デクラレーションを完成してサインオフするには、サプ

ライヤの 1 人以上のコンタクト ユーザーに [(限定) マテリアル プロバイダ] の役割が割り当てられている

必要があります。

 第 16 章

Agile Product Lifecycle Management 263 ページ

[(限定) マテリアル プロバイダ] ユーザーはデクラレーションを完成するために、次の操作を実行する必要が

あります。

 [アイテム組成]、[製造元部品の組成] および [部品グループの組成] テーブルにリストされたすべてのサブ

スタンスの中で、特に含有基準によって制限されているサブスタンスに対して、[質量]、[PPM 宣言値] お
よび [適合性宣言値] フィールドを入力します。

 必要に応じて、[組成] テーブルのその他のユーザー設定フィールドを完成させます。

 デクラレーションに対してサブスタンスを追加または削除します。

デクラレーションが完成した後、[(限定) マテリアル プロバイダ] ユーザーはサインオフし、デクラレーショ

ンを適合性管理者に提出できます。詳細は、次のセクションを参照してください。

適合性管理者へのデクラレーションの提出
サプライヤがデクラレーションのステータスを [サプライヤへ開示] から [適合性管理者に提出済み] に変更

するときは、デクラレーションをサインオフする必要があります。したがって、サプライヤは、追加の
password パラメータを指定する changeStatus() メソッドを使用する必要があります。

changeStatus(IStatus newStatus, boolean auditRelease, String comment,
boolean notifyOriginator, boolean notifyCCB, Object[] notifyList,
Object[] approvers, Object[] observers, boolean urgent, String
password)

次の例は、サプライヤがサインオフし、デクラレーションを適合性管理者に提出する方法を示しています。

例: デクラレーションのサインオフおよび適合性管理者への提出
public void submitToCM(IDeclaration dec) throws Exception {
 IStatus status = null;
 // Get the Submitted to Compliance Manager status type
 IStatus[] stats = dec.getNextStatuses();
 for (int i = 0; i < stats.length; i++) {
 if (stats[i].toString().equals("Submit To Manager")) {
 status = stats[i];
 break;
 }
 }
 // Change to the Submitted to Compliance Manager status (signoff
password is "agile")
 dec.changeStatus(status, false, null, false, false, null, null, null,
false, "agile");
}

SDK 開発者ガイド

264 ページ Agile Product Lifecycle Management

デクラレーションの公表
Agile API には、マテリアル デクラレーションをプロダクト レコードに公表するためのメソッドはありません。

かわりに、デクラレーションはリリースすると自動的に公表されます。したがって、API に関するかぎりは、

アイテム、製造元部品または部品グループの [サブスタンス] テーブルには最新のリリース済みデクラレー

ションが常に反映されます。ただし、Agile Web クライアントでは、以前のデクラレーションを選択して公表

し、プロダクト レコードのサブスタンス情報を更新できます。

重量値の取得および設定
Agile PG&C オブジェクトの質量 (重量) 値をサポートするために、Agile PLM には、単位フィールドが実装さ

れています。単位のデータ タイプは、数値と単位 (グラムやオンスなど) を含む複合データ タイプです。

重量フィールドは、次のインターフェースを使用して設定および管理できます。

 IMeasure

 IUnit

 IUnitOfMeasure

 IUnitOfMeasureManager

Agile PLM 管理者は Agile Java クライアントの UOM ノードから新規の計測を定義できますが、Agile API で
は、Agile PG&C オブジェクトに対して重量の計測のみをサポートしています。Agile API を使用して新規の計

測を定義することはできません。

Agile 9.2.1 で、アイテムの Title Block.Weight フィールドは、Title Block.Mass に変更されました。

ただし、このフィールドに対する Agile API 定数は ItemConstants.TITLE_BLOCK_WEIGHT のままです。

次の例は、アイテムの [タイトル ブロック.質量] フィールドに対する値を取得および設定する方法を示してい

ます。

例: アイテムの質量 (重量) 値の取得および設定
private IUnitOfMeasure getMassValue(IItem item) throws APIException
{
 IUnitOfMeasure uom =
(IUnitOfMeasure)item.getValue(ItemConstants.ATT_TITLE_BLOCK_WEIGHT
);
 System.out.println("Value: " + uom.getValue());
 System.out.println("Unit: " + uom.getUnit().toString());

 return uom;
}
private void setMassValue(IItem item, double value, String unit) throws
APIException {
 IUnitOfMeasure uom = null;
 IUnitOfMeasureManager uomm =
(IUnitOfMeasureManager)m_session.getManager(
 IUnitOfMeasureManager.class);
 uom = uomm.createUOM(value, unit);
 item.setValue(ItemConstants.ATT_TITLE_BLOCK_WEIGHT, uom);
 System.out.println("Value: " + uom.getValue());
 System.out.println("Unit: " + uom.getUnit().toString());

}

 第 16 章

Agile Product Lifecycle Management 265 ページ

アイテムを質量で検索する検索条件を作成すると、数値のみが検索され、単位は検索されません。サーバは、

質量値を標準単位に変換してから検索結果を返します。たとえば、次の検索条件は、質量値が 1.0 ～ 2.0 グラ

ム (デフォルト標準単位) の間にあるすべてのアイテムを返します。検索結果には、質量が 1000 ～ 2000 ミ
リグラムのアイテムも含まれます。

例: アイテムを質量で検索
try {
 IQuery query = (IQuery)m_session.createObject(IQuery.OBJECT_TYPE,
 "select * from [Items] where [Title Block.Weight] between (1.0,
2.0)"
);
 ITable results = query.execute();
} catch (APIException ex) {
 System.out.println(ex);

製造元部品のサブスタンス組成の追加
適切な権限を使用すると、デクラレーションを提出せずに、製造元部品の [含有基準]、[組成] および [サブス

タンス] テーブルを直接変更できます。この機能は、製造パートナーが自社の部品に関する組成情報を指定す

る場合に便利です。[含有基準]、[組成] および [サブスタンス] テーブルに行を追加するには、

ITable.createRow(Object) メソッドを使用します。

注意 製造元部品の [組成] および [サブスタンス] テーブルに追加された行は、更新または削除できま

せん。

製造元部品の [サブスタンス] テーブルに行を追加する手順は、デクラレーションの [組成] テーブルに行を追

加する方法に類似しています。サブスタンス組成を製造元部品に追加するには、次の手順に従います。

1. (オプション) [含有基準] テーブルに含有基準を追加します。

2. [組成] テーブルに行を追加します。

ManufacturerPartConstants.ATT_COMPOSITIONS_COMPOSITION_TYPE 属性に値を指定する必要

があります。

3. [サブスタンス] テーブルに 1 つ以上の行を追加します。各行は [組成] テーブルの親行を参照する必要が

あります。仮想属性 ManufacturerPartConstants.ATT_PARENT_ROW を使用して親行を指定します。

サブスタンスを追加するときに、サブスタンス名とサブスタンス タイプを指定します。

[サブスタンス] テーブルへのサブスタンスの追加に関するその他のルールは、「サブスタンスの追加に関する

ルール」を参照してください。

SDK 開発者ガイド

266 ページ Agile Product Lifecycle Management

親行の [組成タイプ] 属性によって、[サブスタンス] テーブルに追加できるサブスタンスのタイプが決まりま

す。[組成タイプ] には、次の 3 つの有効値があります。

 均質材組成 - サブパート、マテリアル、サブスタンス グループおよびサブスタンスが含まれた複数レベ

ルのサブスタンス構成表を作成できます。組成には、サブパートまたはマテリアルを直接の子として含め

る必要があります。また、サブスタンスとサブスタンス グループを含めることもできますが、それらはサ

ブパートまたはマテリアルにのみ関連付けることができます。

 サブスタンス組成 - [サブスタンス] テーブルには、サブスタンス グループとサブスタンスのみを含める

ことができます。

 部品組成 - [サブスタンス] テーブルに行を追加することはできません。

[組成] テーブルの行で参照する含有基準は、その行の [組成タイプ] 属性と一致する必要があります。たとえ

ば、行の [組成タイプ] が [均質材組成] である場合、その行で参照する含有基準の [検証タイプ] は [均質材

レベル] である必要があります。

次の例は、製造元部品に対して均質材組成を定義する方法を示しています。[サブスタンス] テーブルには、サ

ブパート、マテリアル、サブスタンス グループおよびサブスタンスの 4 つのレベルがあります。

例: 製造元部品への含有基準、組成およびサブスタンスの追加
public void addMfrPartSubs(IAgileSession m_session) throws
APIException {
 try {
 // Create a Manufacturer Part
 HashMap params = new HashMap();

params.put(ManufacturerPartConstants.ATT_GENERAL_INFO_MANUFACTURER
_PART_NUMBER,
 "Widget");

params.put(ManufacturerPartConstants.ATT_GENERAL_INFO_MANUFACTURER
_NAME, "ACME");
 IManufacturerPart mfrPart = (IManufacturerPart)

m_session.createObject(ManufacturerPartConstants.CLASS_MANUFACTURE
R_PART, params);
 // Add a Specification to the Specifications table
 ITable tblSpec =
mfrPart.getTable(ManufacturerPartConstants.TABLE_SPECIFICATIONS);
 ISpecification spec =
(ISpecification)m_session.getObject(ISpecification.OBJECT_TYPE,
 "Lead Spec"); // Homogeneous Material Level
 IRow rowSpec = tblSpec.createRow(spec);
 // Get the Compositions table
 ITable tblComp =
mfrPart.getTable(ManufacturerPartConstants.TABLE_COMPOSITIONS);

 // Add a row to the Compositions table that references the
specification
 params.clear();

 第 16 章

Agile Product Lifecycle Management 267 ページ

params.put(ManufacturerPartConstants.ATT_COMPOSITIONS_SPECIFICATIO
N, spec.getName());

params.put(ManufacturerPartConstants.ATT_COMPOSITIONS_COMPOSITION_
TYPE,
 "Homogeneous Material Composition");
 IRow rowComp = tblComp.createRow(params);
 // Get the Substances table
 ITable tblSubs =
mfrPart.getTable(ManufacturerPartConstants.TABLE_SUBSTANCES);

 // Add a subpart
 ISubstance subpart = (ISubstance)m_session.

getObject(SubstanceConstants.CLASS_SUBPART, "Steel Casing");
 params.clear();
 params.put(ManufacturerPartConstants.ATT_PARENT_ROW, rowComp);

params.put(ManufacturerPartConstants.ATT_SUBSTANCES_SUBSTANCE_NAME,
subpart);
 IRow rowSubpart = tblSubs.createRow(params);
 // Add a material
 ISubstance material =
(ISubstance)m_session.getObject(SubstanceConstants.CLASS_MATERIAL,
 "Steel");
 params.clear();
 params.put(ManufacturerPartConstants.ATT_PARENT_ROW,
rowSubpart);

params.put(ManufacturerPartConstants.ATT_SUBSTANCES_SUBSTANCE_NAME,
material);
 IRow rowMaterial = tblSubs.createRow(params);
 // Add a substance group
 ISubstance sg =
(ISubstance)m_session.getObject(SubstanceConstants.CLASS_SUBSTANCE
_GROUP,
 "Lead Componds");
 params.clear();
 params.put(ManufacturerPartConstants.ATT_PARENT_ROW,
rowMaterial);

params.put(ManufacturerPartConstants.ATT_SUBSTANCES_SUBSTANCE_NAME,
sg);
 IRow rowSubGroup = tblSubs.createRow(params);
 // Add a substance
 ISubstance sub =

SDK 開発者ガイド

268 ページ Agile Product Lifecycle Management

(ISubstance)m_session.getObject(SubstanceConstants.CLASS_SUBSTANCE
,
 "Lead");
 params.clear();
 params.put(ManufacturerPartConstants.ATT_PARENT_ROW,
rowSubGroup);

params.put(ManufacturerPartConstants.ATT_SUBSTANCES_SUBSTANCE_NAME,
sub);
 IRow rowSubs = tblSubs.createRow(params);
 } catch (APIException ex) {
 System.out.println(ex);
 }
}

適合性データのロールアップ
アイテム、製造元部品および部品グループの適合性データを収集した後、適合性管理者は完成したデクラレー

ションをレビューして、データをプロダクト レコードに公表する準備ができているかどうかを判断します。デ

クラレーションが公表され、データが BOM の部品および部品グループに書き込まれた後、適合性管理者は
BOM を検査してテストし、アセンブリと製品が準拠していることを確認します。このプロセスは適合性検証

と呼ばれ、適合性ロールアップを通して実行されます。ロールアップはシステムに組み込まれています。ロー

ルアップは簡単に使用でき、ロールアップ結果は UI で使用できます。適合性データのロールアップとこのプ

ロセスの背景にあるビジネス ロジックの詳細は、『Product Governance & Compliance ユーザー・ガイド』を参

照してください。

SDK では、サーバ側での PG&C ロールアップ機能の呼び出しがサポートされています。この機能は、UI が
呼び出すロールアップ機能と同じです。IItem の IPGCRollup インターフェースでこの機能がサポートされ

ています。

IPGCRollup インターフェースの理解
IPGCRollup インターフェースには、適合性データのロールアップをサポートするために次のメソッドが用意

されています。

 rollup()

 rollup(Date)

これらのメソッドの一方にはパラメータがなく、他方にはパラメータとして Date が使用されます。ロールアッ

プ API の Date パラメータは、ロールアップの実行時にタイム スタンプを設定するためにシステムで使用さ

れます。

例: IPGCRollup メソッド
public interface IPGCRollup {
 public void rollup()
 throws APIException;
 public void rollup(Date rollupDate)
 throws APIException;
}

注意 rollup(Date) の起動後に、IDataObject.refresh() を呼び出してロールアップ機能が有効で

あることを確認する必要があります。確認しないと、最新のロールアップのタイム スタンプが Date
パラメータと同じ場合に、以前のロールアップで取得した結果が表示されます。

 第 16 章

Agile Product Lifecycle Management 269 ページ

Date パラメータを渡す場合

日付を渡さない場合は、システムが提供する現在の日付が使用されます。一連のアイテムに対してロールアッ

プが実行されるとき、あるアイテムの最新のロールアップのタイム スタンプが、渡された Date パラメータと

同じ場合は、そのアイテムに対してロールアップ プロセスは繰り返されません。かわりに、以前のロールアッ

プで取得した結果が表示されます。ロールアップする多数のアイテムがあり、SDK を使用してそれらすべてを

呼び出す必要がある場合は、この日付機能を使用できます。この場合は、最初に現在の日付を取得し、その日

付を後続の SDK Rollup(Date) 呼び出しに対して渡します。たとえば、SDK を使用して Assembly 1 と
Assembly 2 のデータをロールアップするとします。この場合は、SDK が 2 回呼び出されます。最初のインス

タンスは Assembly 1 のデータをロールアップし、2 番目のインスタンスは Assembly 2 のデータをロールアッ

プします。Assembly 2 のロールアップの実行時は、ロールアップ内にすでにある date パラメータを使用して、

Item1 で取得した以前のロールアップ データを再利用します。
Assembly 1

Item1

Iitem2

Assembly 2

Item1

Item3

IPGCRollup インターフェースの使用
次の例では、アイテムと製造元部品に関する集合データをロールアップしています。

 アイテム (最新のリリース済み ECO または MCO)

 MPN (最新のリリース済み ECO または MCO)

アイテムに関する集合データのロールアップ

次の例では、SDK を使用して既存の API を呼び出し、特定アイテム (最新のリリース済み ECO または MCO)
のトップ レベルの親を識別しています。次に、直前の API によって返されたトップ レベルの親でロールアッ

プ API を呼び出し、アセンブリと製品が準拠していることを確認します。

例: アイテムのトップ レベルの親の識別
public void itemRollup(String itemStr) throws Exception{
 try {

IItem item =
(IItem)m_session.getObject(IItem.OBJECT_TYPE,
itemStr);
IQuery query =
(IQuery)m_session.createObject(IQuery.OBJECT_TYPE,
ItemConstants.CLASS_ITEM_BASE_CLASS);

// IQuery query = (IQuery)
m_session.createObject(IQuery.OBJECT_TYPE,
ItemConstants.CLASS_PART);

query.setSearchType(QueryConstants.WHERE_USED_TOP_LEVEL);
 query.setCriteria("[1001] Equal To '"+item.getName()+"'");
//

SDK 開発者ガイド

270 ページ Agile Product Lifecycle Management

query.setCriteria("["+SDKWrapper.getString("TITLE_BLOCK")+"."+SDKW
rapper.getString("IQuery_Number")+"] Equal To
'"+item.getName()+"'");
 ITable results=query.execute();
 if (results.size() > 0) {
 Iterator it = results.getReferentIterator();
 if (it.hasNext()) {
 IItem obj = (IItem)it.next();
 IItem tlaItem = (IItem)m_session.getObject(IItem.OBJECT_TYPE,
obj.getName());
 tlaItem.rollup();
 }
 }
 else {
 item.rollup();
 }

 } catch (APIException e) {
 throw e;
 }
 return;
 }

MPN に関する集合データのロールアップ

次の例では、SDK を使用して既存の API を呼び出し、特定 MPN (最新のリリース済み ECO または MCO) の
トップ レベルの親を識別しています。次に、直前の API によって返されたトップ レベルの親でロールアップ
API を呼び出し、アセンブリと製品が準拠していることを確認します。

例: MPN のトップ レベルの親の識別
public void testMfrPartRollup() throws Exception{
IManufacturerPartmfrp = (IManufacturerPart)
m_session.getObject(IManufacturerPart.OBJECT_TYPE,
"HARRIS::IS82C55A96");//
ITable
whereused=mfrp.getTable(ManufacturerPartConstants.TABLE_WHEREUSED)
;
Iterator it=whereused.iterator();
while(it.hasNext())
 {
 IRow r = (IRow)it.next();
 // read item number
String itemStr =
r.getValue(ManufacturerPartConstants.ATT_WHERE_USED_ITEM_NUMBER).t
oString();
 try {
 itemRollup(itemStr);
 } catch (APIException e) {
 int error = ((Integer)e.getErrorCode()).intValue();
 }
}
 return;
}

 第 16 章

Agile Product Lifecycle Management 271 ページ

[適合性判定値] フィールドの値の設定

次の API を使用して、Item および ManufacturerPart オブジェクトに対する [含有基準] テーブルの [適
合性判定値] フィールドに値を設定します。

Public void setCalculatedComplianceForPartSpec(Object specName,
Object complianceEntryValue) throws APIException

この API で、specName パラメータは Specification オブジェクトの名前であり、

complianceEntryValue パラメータは Calculated Compliance フィールドの実際の値で、Calculated
Compliance リストのエントリになります。両方のパラメータとも文字列タイプです。

この値が SDK クライアントによって設定されると、ロールアップ時に上書きされません。この API を使用す

ると、ユーザーは、システムのデフォルトのロジックを使用するかわりに、独自に定義したロジックに基づい

て適合性判定値を設定できます。

例: [適合性判定値] フィールドの値の設定
// COMPLIANT, the actual value of the Calculated Compliance field shows
the Specification
 is compliant or not based on customized calculated compliance
result
String COMPLIANT = "Compliant";
// spec_num is the Specification Name in Item object’s Specification
Table
String spec_num =
row.getValue(ItemConstants.ATT_SPECIFICATIONS_SPECIFICATION).toStr
ing();
item.setCalculatedComplianceForPartSpec(spec_num, COMPLIANT);

SDK 開発者ガイド

272 ページ Agile Product Lifecycle Management

Agile Product Lifecycle Management 273 ページ

第 17 章

管理タスクの実行

扱うトピックは次のとおりです。

 Agile PLM 管理について ... 273
 Agile PLM の管理に必要な権限 ... 274
 管理インターフェース ... 274
 IAdmin インスタンスの取得 ... 275
 ノードの使用 ... 275
 Agile PLM クラスの管理 ... 280
 属性の使用 ... 284
 管理ノードのプロパティの使用.. 288
 ユーザーの管理 ... 289
 ユーザー グループの管理 ... 294

Agile PLM 管理について
Agile Java クライアントには、Agile アプリケーション サーバを管理できる管理機能が用意されています。こ

の機能を使用すると、事業の形態にあわせて Agile PLM システムを簡単に調整できます。Agile PLM システム

は次の方法でカスタマイズできます。

 Agile PLM データベースのプロパティの変更

 オブジェクト クラスとサブクラスの定義

 プリファレンスの設定

 ユーザー アカウントの作成および設定

 ユーザー グループの定義

 役割と権限の定義

 スマートルールの定義による変更管理プロセスの管理方法の設定

Agile API では、Agile PLM の管理機能のすべてのノードに対する読み取り/書き込みアクセスが提供されます。

これは、ユーザーによる Agile PLM サブクラスの読み取りや変更を可能にする Agile API プログラムを作成し

たり、Agile PLM ユーザーを追加、変更または削除できることを意味します。Agile API を使用して管理ツリー

階層に新しいノードを作成することはできません。したがって、ワークフロー、条件および役割は作成できま

せん。ただし、ユーザーとユーザー グループは作成できます。これは、これらのオブジェクトが、両方とも
IDataObject を拡張する IUser および IUserGroup というデータオブジェクトとして実装されているた

めです。

SDK 開発者ガイド

274 ページ Agile Product Lifecycle Management

Agile PLM の管理に必要な権限
Agile アプリケーション サーバを管理するには、適切な権限が必要です。管理機能にアクセスするためには、

管理者権限が必要です。[管理者] 役割では、サーバで使用できるすべての管理機能に対する管理者権限が付与

されます。[ユーザー管理者] 役割では、ユーザーとユーザー グループに関連する機能に対する管理者権限が

付与されます。

管理者権限がないと、管理ノード、ユーザーおよびユーザー グループを変更できません。Agile PLM システム

に対する管理者権限が付与されていない場合は、Agile PLM 管理者にお問い合わせください。

ユーザーとユーザー グループを作成するには、これらのオブジェクトの作成権限が必要です。Agile PLM シス

テムに付属する、[管理者]、[ユーザー管理者]、[変更分析者] などの役割には、ユーザーとユーザー グループ

の作成権限が組み込まれています。

管理インターフェース
次の表に、Agile PLM 管理機能に関連するインターフェースを示します。

インターフェース 説明

IAdmin Agile PLM のクラス、ノード、ユーザーまたはユーザー グループを取得できるインター

フェース。

IAgileClass オブジェクトが属するカテゴリの識別に使用するクラス定義。

IAgileList シングルリストおよびマルチリストのすべての属性とプロパティに関する汎用リスト イ
ンターフェース。

IAttribute オブジェクト内の特定のデータ メンバーに関する詳細情報の提供。

IAutoNumber 自動採番ソース。事前定義済みの連続番号で、Agile PLM オブジェクトを自動的に採番す

る場合に使用します。

ICriteria 主に検索とワークフローに使用する再利用の検索条件セット。

INode 管理階層のノード。各ノードは、Agile Java クライアントのいずれかの管理ノードに相当

します。

IProperty Agile PLM 管理ノードのプロパティ。

IRoutableDesc IRoutable インターフェースを実装するオブジェクトを説明するメタデータ。

IRoutableDesc を使用すると、クラスのオブジェクトをインスタンス化せずに、そのク

ラスのワークフローを取得できます。

ITableDesc Agile PLM テーブルを説明するメタデータ。ITableDesc を使用すると、テーブルをロー

ドせずにテーブルの属性を取得できます。

ITreeNode 階層ツリー構造内の一般的なノード。INode や IFolder などの管理インターフェース

は ITreeNode のサブインスタンスであるため、ITreeNode の機能を継承します。

注意: ITreeNode と同様の機能を提供する ITree インターフェースもありますが、お

薦めできません。かわりに、ITreeNode を使用してください。

IUser Agile PLM ユーザー。

 第 17 章

Agile Product Lifecycle Management 275 ページ

インターフェース 説明

IUserGroup ユーザー グループ。ユーザー グループを使用すると、プロジェクト チーム、拠点関連の

グループ、部署およびグローバル グループを定義できます。

IWorkflow ワークフロー ノード。

IAdmin インスタンスの取得
IAdmin インターフェースは、Agile アプリケーション サーバのほとんどの管理機能に対するアクセスを提供

します。IAdmin インターフェースを使用するには、最初に、現行セッションから IAdmin のインスタンス

を取得します。次の例は、Agile アプリケーション サーバにログインして IAdmin インスタンスを取得する

方法を示しています。

例: IAdmin インスタンスの取得
public IAgileSession m_session;
public IAdmin m_admin;
public AgileSessionFactory m_factory;

try {
 HashMap params = new HashMap();
 params.put(AgileSessionFactory.USERNAME, "jdassin");
 params.put(AgileSessionFactory.PASSWORD, "agile");
 m_factory =
AgileSessionFactory.getInstance("http://agileserver/virtualPath");
 m_session = m_factory.createSession(params);
 m_admin = m_session.getAdminInstance();
} catch (APIException ex) {
 System.out.println(ex);
}

IAdmin インスタンスを取得すると、次のアクションを実行できます。

 サーバ ノードの移動

 フォルダ階層の移動

 Agile PLM クラスとサブクラスの取得

 ユーザーの取得

 ユーザー グループの取得

ノードの使用
INode オブジェクトは、Agile PLM の管理ツリー内の単一ノードまたは単一オブジェクトを表します。Windows
エクスプローラ インターフェースと同様に、各 INode を展開して子ノードを表示できます。この階層を使用

して、Agile アプリケーション サーバ上の管理ツリー構造をナビゲートできます。ノードの例には、ルート
ノード (データベース ノードとも呼ばれます)、クラス、プリファレンス、役割、権限およびスマートルール

があります。

次の表に、Agile Java クライアントのノードと Agile API 管理機能とのマッピングを示します。

http://agileserver/virtualPath

SDK 開発者ガイド

276 ページ Agile Product Lifecycle Management

Agile Java クライアントのノード 対応する Agile API

データ設定

 クラス NodeConstants.NODE_AGILE_CLASSES

 文字セット NodeConstants.NODE_CHARACTER_SETS

 リスト サポートされていません

 プロセスの拡張 サポートされていません

 自動採番 NodeConstants.NODE_AUTONUMBERS

 条件 NodeConstants.NODE_CRITERIA_LIBRARY

ワークフロー設定

 ワークフロー NodeConstants.NODE_AGILE_WORKFLOWS

ユーザー設定

 アカウント規約 サポートされていません

 ユーザー ユーザーの検索条件の作成

 ユーザー グループ ユーザー グループの検索条件の作成

 サプライヤ グループ サポートされていません

 役割 NodeConstants.NODE_ROLES

 権限 NodeConstants.NODE_PRIVILEGES

 ユーザー モニタ サポートされていません

 削除されたユーザー サポートされていません

 削除されたユーザー グループ サポートされていません

システム設定

 スマートルール NodeConstants.NODE_SMARTRULES

 Viewer とファイル NodeConstants.NODE_VIEWER_AND_FILES

 通知 NodeConstants.NODE_NOTIFICATION_TEMPLATES

 全文検索 サポートされていません

 UOM サポートされていません

 組織のプロファイル サポートされていません

 通貨換算レート IAdmin.getConversionRates()

 部品分類 サポートされていません

 Product Cost Management

 出荷先の場所 サポートされていません

 Program Execution

 プログラムの状態 サポートされていません

 第 17 章

Agile Product Lifecycle Management 277 ページ

Agile Java クライアントのノード 対応する Agile API

 コスト ステータス サポートされていません

 品質ステータス サポートされていません

 リソース ステータス サポートされていません

 ダッシュボード管理 サポートされていません

 デフォルトの役割 サポートされていません

 Agile Content Service

 確認通知受信者 NodeConstants.NODE_SUBSCRIBERS

 送信先 NodeConstants.NODE_DESTINATIONS

 イベント NodeConstants.NODE_EVENTS

 フィルタ NodeConstants.NODE_FILTERS

 パッケージ サービス サポートされていません

 回答サービス サポートされていません

 Product Governance & Compliance

 サインオフ メッセージ サポートされていません

サーバ設定

 サーバの場所 NodeConstants.NODE_SERVER_LOCATION

 データベース NodeConstants.ROOT

 プリファレンス NodeConstants.NODE_PREFERENCES

 ライセンス NodeConstants.NODE_SERVER_LICENSES
NodeConstants.NODE_USER_LICENSES

 タスク モニタ サポートされていません

 タスクの設定 サポートされていません

例

 役割の例 サポートされていません

 権限の例 サポートされていません

 条件の例 サポートされていません

Agile Web クライアントでは、メニューから [管理]、[設定] の順に選択してシステムとユーザーの設定を表示

し、編集できます。次の表に、Agile Web クライアントの管理機能と Agile API とのマッピングを示します。

Agile Web クライアントのノード 対応する Agile API

[ツール] > [個人設定]

 ユーザー プロファイル [ユーザー.一般情報] ページ

SDK 開発者ガイド

278 ページ Agile Product Lifecycle Management

Agile Web クライアントのノード 対応する Agile API

 パスワードの変更 IUser.changeLoginPassword() および
IUser.changeApprovalPassword()

 権限委譲 サポートされていません

 ブックマークの整理 [私の受信トレイ] フォルダ

 検索の整理 [検索] フォルダ

 レポートの整理 サポートされていません

 パーソナル グループ [私の受信トレイ] フォルダ

 削除されたパーソナル グループ サポートされていません

 パーソナル条件 サポートされていません

 パーソナル サプライヤ グループ サポートされていません

[ツール] > [管理] > [Web クライアント設定]

 テーマ サポートされていません

[ツール] > [管理者] > [ユーザー設定]

 ユーザー ユーザーの検索条件の作成

 ユーザー グループ ユーザー グループの検索条件の作成

 サプライヤ グループ サポートされていません

 削除されたユーザー サポートされていません

 削除されたユーザー グループ サポートされていません

 ダッシュボードの設定 サポートされていません

Agile PLM クライアントの管理ノードの名前は、それぞれの NodeConstants と完全には一致しません。た

とえば、Agile Java クライアントの [通知] ノードは、NodeConstants.NODE_NOTIFICATION_TEMPLATES
に相当します。同様に、Agile PLM データベースに表示されるノードの階層は、Agile Java クライアントのノー

ド階層とは正確に一致しません。

Agile API プログラムで Agile PLM 管理ノードのツリー表示が提供される場合は、その表示を使用して INode
オブジェクトを対話形式で取得することができます。各 INode オブジェクトから子ノードを取得できます。

管理ノード階層を移動し続けると、すべてのノード レベルに到達できます。

次の例は、ルート ノードとその子ノードを取得して、Agile アプリケーション サーバのトップレベル ノード

を表示する方法を示しています。

例: トップレベル ノードの取得
private void getTopLevelNodes() throws APIException {
 INode root = m_admin.getNode(NodeConstants.ROOT);
 if (null != root) {
 System.out.println(root.getName() + ", " + root.getId());
 Collection childNodes = root.getChildNodes();

 第 17 章

Agile Product Lifecycle Management 279 ページ

 for (Iterator it = childNodes.iterator();it.hasNext();) {
 INode node = (INode)it.next();
 System.out.println(node.getName() + ", " + node.getId());
 }
 }
}

注意 ルート ノードで getChildNodes() を呼び出すと、ドキュメントに記載されていない複数の
Agile PLM ノードが結果に含まれます。ドキュメントに記載されていないノードは Agile API でサ

ポートされていません。

より迅速にアクセスするために、ノード ID 定数を指定してノードを取得することもできます。

NodeConstants クラスは、直接アクセスできるすべての管理ノードをリストします。次の例は、SmartRules
ノードとそのプロパティを取得する方法を示しています。

例: SmartRules 値の取得
private void getSmartRules() throws APIException {
 //Get the SmartRules node in Agile Administrator
 INode node = m_admin.getNode(NodeConstants.NODE_SMARTRULES);
 System.out.println("SmartRules Properties");

 //Get SmartRules properties
 IProperty[] props = (IProperty[])node.getProperties();
 for (int i = 0; i < props.length; i++) {
 System.out.println("Name : " + props[i].getName());
 Object value = props[i].getValue();
 System.out.println("Value : " + value);
 }
}

ノードを取得する別の方法は、親ノードを特定した後、ITreeNode.getChildNode() メソッドを使用して

その子ノードのいずれかを取得することです。getChildNode() メソッドを使用すると、ノードを名前また

は ID で指定できます。各ノード レベルをスラッシュ (/) で区切って、サブノードへのパスを指定することも

できます。次の例は、getChildNode() メソッドを使用してノードを取得する方法を示しています。

例: ITreeNode.getChildNode() を使用したノードの取得
private INode getChildNode(INode node, String childName) throws
APIException {
 Node child = (INode)(node.getChildNode(childName));
 return child;

}

[クラス] ノードの使用
[クラス] ノードとそのサブノートは、IAdmin.getAgileClasses() メソッドで返される IAgileClass オ
ブジェクトと類似しています。相違点は、getAgileClasses() では、アイテムや変更など、ノードとして

表示されない仮想クラスが返されることです。特定ノードの属性のプロパティを変更する場合は、

IAdmin.getAgileClasses() または IAdmin.getAgileClass() メソッドの使用をお薦めします。[クラ

ス] ノードとそのサブノードを移動することでサブクラスを変更することも可能ですが、IAgileClass オブ

ジェクトを使用するほうが簡単です。詳細は、280 ページの「Agile PLM クラスの管理」を参照してください。

SDK 開発者ガイド

280 ページ Agile Product Lifecycle Management

Agile PLM クラスの管理
Agile の [クラス] ノードは、部品、変更、パッケージなどの Agile PLM オブジェクトを分類するためのフレー

ムワークを提供します。Agile Java クライアントを使用すると、組織の新しいサブクラスを定義できます。Agile
API を使用して新しいサブクラスを作成することはできませんが、既存のサブクラスの読み取りや変更はでき

ます。たとえば、各テーブルや各ページに表示される属性を定義することでサブクラスをカスタマイズできま

す。

Agile PLM クラスのフレームワークは、Agile PLM で作成されるオブジェクトのタイプに基づいています。

Agile PLM システムで使用可能なオブジェクトは、自社が購入した Agile PLM サーバ ライセンスによって異

なります。

各 Agile PLM クラスには少なくとも 1 つのサブクラスがあります。次の表に、Agile PLM の基本クラス、ク

ラス、および Agile に付属しているサブクラスを示します。Agile PLM システムには、他のユーザー定義サブ

クラスを組み込むことができます。

基本クラス クラス 事前定義済みのサブクラス

変更 設計変更 ECO

 設計変更依頼 ECR

 期限付き設計変更 期限付き設計変更

 製造元変更 MCO

 価格変更 PCO

 拠点毎変更 SCO

 出荷停止 出荷停止

顧客 顧客 顧客

デクラレーション 均質材のデクラレーション 均質材のデクラレーション

 IPC 1752-1 デクラレーション IPC 1752-1 デクラレーション

 IPC 1752-2 デクラレーション IPC 1752-2 デクラレーション

 JGPSSI デクラレーション JGPSSI デクラレーション

 部品のデクラレーション 部品のデクラレーション

 サブスタンスのデクラレーション サブスタンスのデクラレーション

 適合のサプライヤ デクラレーション 適合のサプライヤ デクラレーション

ディスカッション ディスカッション ディスカッション

ファイル フォルダ ファイル フォルダ ファイル フォルダ

 履歴レポート ファイル フォルダ スケジュールにより生成

 ユーザーにより保存

アイテム ドキュメント ドキュメント

 部品 部品

 第 17 章

Agile Product Lifecycle Management 281 ページ

基本クラス クラス 事前定義済みのサブクラス

製造元部品 製造元部品 製造元部品

製造元 製造元 製造元

パッケージ パッケージ パッケージ

価格 公表価格 契約

 公表価格

 見積履歴 見積履歴

製品サービス依頼 不具合レポート NCR

 問題レポート 問題レポート

プログラム アクティビティ フェーズ

 プログラム

 タスク

 ゲート ゲート

品質変更依頼 検証 検証

 是正予防処置 CAPA

レポート 1 カスタム レポート カスタム レポート

 外部レポート 外部レポート

 標準レポート 管理者レポート

 標準レポート

見積依頼 見積依頼 RFQ

見積依頼回答 見積依頼回答 見積依頼回答

拠点 拠点 拠点

ソーシング プロジェクト ソーシング プロジェクト ソーシング プロジェクト

含有基準 含有基準 含有基準

サブスタンス マテリアル マテリアル

 サブパート サブパート

 サブスタンス グループ サブスタンス グループ

 サブスタンス サブスタンス

サプライヤ サプライヤ ブローカー

 部品メーカー

 受託製造業者

 ディストリビュータ

SDK 開発者ガイド

282 ページ Agile Product Lifecycle Management

基本クラス クラス 事前定義済みのサブクラス

 メーカー代表者

転送依頼 自動転送 ATO

 コンテンツ転送 CTO

ユーザー グループ ユーザー グループ ユーザー グループ

ユーザー ユーザー ユーザー

注意 レポート オブジェクトは Agile API でサポートされていません。

具象クラスと抽象クラス
Agile PLM スーパークラス (アイテムや変更など) は、他の抽象クラス (部品クラス、ドキュメント クラス、

設計変更クラスなど) の親クラスとして機能する抽象クラスです。抽象スーパークラスと抽象クラスはインス

タンス化できません。

具象クラスは、Agile API でインスタンス化できるユーザー定義サブクラスです。具象クラスの例には、部品、

ドキュメント、ECO、ECR などがあります。

IAgileSession.getObject() メソッドを使用してオブジェクトをロードする場合は、Agile PLM の具象ク

ラスまたは抽象クラスを指定できます。たとえば、次のメソッドはすべて、指定された同じ部品をロードしま

す。

例: 抽象クラスまたは具象クラスを使用したオブジェクトのロード
try {
 IItem item;
 // Load a part using the Item base class
 item =
(IItem)m_session.getObject(ItemConstants.CLASS_ITEM_BASE_CLASS,
"1000-02");
 // Load a part using the Parts class
 item = (IItem)m_session.getObject(ItemConstants.CLASS_PARTS_CLASS,
"1000-02");
 // Load a part using the Part subclass
 item = (IItem)m_session.getObject(ItemConstants.CLASS_PART,
"1000-02");
} catch (APIException ex) {
 System.out.println(ex);
}

クラスの配列を取得するには、IAgileClass.getAgileClasses() メソッドを使用します。返すクラスの

範囲を指定できます。たとえば、range パラメータに IAdmin.CONCRETE を指定すると具象クラスのみが返

され、IAdmin.ALL を指定するとすべてのクラスが返されます。

例: クラスの取得
private void getConcreteClasses() throws APIException {
 IAgileClass[] classes = m_admin.getAgileClasses(IAdmin.CONCRETE);
 for (int i = 0; i < classes.length; i++) {
 System.out.println("Class Name : " + classes[i].getName());
 System.out.println("ID : " + classes[i].getId());
 }
}

 第 17 章

Agile Product Lifecycle Management 283 ページ

void getAllClasses() throws APIException {
 IAgileClass[] classes = m_admin.getAgileClasses(IAdmin.ALL);
 for (int i = 0; i < classes.length; i++) {
 System.out.println("Class Name : " + classes[i].getName());
 System.out.println("ID : " + classes[i].getId());
 }
}

IAgileSession.createObject() メソッドを使用して新しいオブジェクトを作成する場合は、Agile PLM
の具象クラス、つまり、ユーザー定義サブクラスのいずれかを指定する必要があります。抽象クラスはインス

タンス化できないことに注意してください。次の例は、部品サブクラスのオブジェクトを作成する方法を示し

ています。

例: 部品の作成
try {
 Map params = new HashMap();
 params.put(ItemConstants.ATT_TITLE_BLOCK_NUMBER, "1000-02");
 IItem item =
(IItem)m_session.createObject(ItemConstants.CLASS_PART, params);
} catch (APIException ex) {
 System.out.println(ex);
}

クラスの参照
Agile PLM のクラスは次の方法で参照できます。

 オブジェクト (IAgileClass) で参照。

 クラス ID 定数 (ItemConstants.CLASS_PART や ChangeConstants.CLASS_ECO など) で参照。

Agile API のすべての定数は、接尾辞名が「Constants」のクラスに含まれています。たとえば、

ItemConstants には、IItem オブジェクトに関連するすべての定数が含まれています。

 クラス名 (「部品」や「ECO」など) で参照。

通常、次の理由により、クラスは名前で参照しないでください。

 クラス名は変更される場合があります。

 クラス名は必ずしも一意ではありません。重複するクラス名が存在する可能性があります。したがって、

クラスを名前で参照すると、意図しないクラスを誤って参照する可能性があります。

 クラス名はローカライズされます。つまり、名前は言語によって異なります。

SDK 開発者ガイド

284 ページ Agile Product Lifecycle Management

クラスのターゲット タイプの識別
各クラスには特定のターゲット タイプがあります。ターゲット タイプは、クラスが作成できる Agile PLM オ
ブジェクトのタイプです。たとえば、部品サブクラスのターゲット タイプは IItem.OBJECT_TYPE です。

ターゲット タイプを使用して、Agile PLM システムに定義されているユーザー定義サブクラスを分類できます。

たとえば、アイテム クラスを表示するユーザー インターフェースを作成する場合は、ターゲット タイプ
IItem.OBJECT_TYPE を使用してクラスを選択することで、実行時にクラスをリストできます。

例: クラスのターゲット タイプの取得
private void getConcreteItemClasses() throws APIException {
 IAgileClass[] classes = m_admin.getAgileClasses(IAdmin.CONCRETE);
 for (int i = 0; i < classes.length; i++) {
 if (classes[i].getTargetType() == IItem.OBJECT_TYPE) {
 System.out.println("Class Name : " + classes[i].getName());
 System.out.println("ID : " + classes[i].getId());
 }
 }
}

アイテム クラスには、事前定義済みの 2 つの具象クラス (ドキュメントと部品) があります。自社で Agile
PLM システムにアイテム サブクラスを追加していない場合、前述のコード例では、次の結果が印刷されます。

Class Name : Document
ID : 9141
Class Name : Part
ID : 10141

属性の使用
Agile API プログラムで取得できる各オブジェクトには、一連の属性があります。属性は、特定のビジネス オ
ブジェクトのメタデータを表します。属性には、オブジェクトのプロパティと値が定義されます。たとえば、[タ
イトル ブロック.番号]、[タイトル ブロック.説明] および [タイトル ブロック.部品カテゴリ] は、部品に関す

る 3 つのタイトル ブロック属性です。

オブジェクトのインスタンスをプログラムで作成する場合、オブジェクト クラスの各 IAttribute 属性は

フィールド (ICell オブジェクト) に相当します。IAttribute オブジェクトは、プログラムで作成または

開いているオブジェクトに対する ICell オブジェクトに直接対応しています。ICell オブジェクトの詳細は、

89 ページの「データ セルの使用」を参照してください。

属性の参照
Agile PLM の属性は次の方法で参照できます。

 オブジェクト (IAttribute) で参照。

 属性 ID 定数で参照。属性 ID 定数を含む Agile API のすべての定数は、接尾辞名が「Constants」のクラ

スに含まれています。たとえば、ItemConstants には、IItem オブジェクトに関連するすべての定数

が含まれています。

 完全修飾名 ([タイトル ブロック.番号] や [カバー ページ.変更カテゴリ] など) で参照。

 略式名称 ([番号] など) で参照。ただし、属性の略式名称は Agile PLM 内で一意ではありません。複数の

属性を参照する場合は、2 つの異なる属性に同じ略式名称が指定されていると競合が発生します。

 第 17 章

Agile Product Lifecycle Management 285 ページ

注意 属性名は変更される場合があるため、属性は ID 番号または定数で参照することをお薦めします。

ただし、このマニュアルの多くの例では、読み易さの観点から、属性を名前で参照しています。

次の例は、属性 ID 定数を参照する方法を示しています。

例: 属性 ID 定数の参照
Integer attrID = ItemConstants.ATT_TITLE_BLOCK_DESCRIPTION;
try {
 v = item.getValue(attrID);
} catch (APIException ex) {
 System.out.println(ex);
}

完全修飾名は、次の形式の文字列です。

テーブル名.属性名

テーブル名は、属性が表示されるテーブルの名前です。属性名は、属性の [名前] プロパティの現在の値です。

すべての属性にはデフォルトの名前がありますが、名前は変更可能です。特に、Agile PLM システムに表示さ

れる [ユーザー定義 1] 属性と [ユーザー定義 2] 属性は、“Text01”、“List01”、“Date01” ではなく、わかりや

すい名前が指定される可能性があります。

[カバー ページ.変更の理由] と [タイトル ブロック.番号] の 2 つは、完全修飾属性名の例です。

次の例は、完全修飾属性名を参照する方法を示しています。

例 17-10: 属性名の参照
Object v;
String attrName = "Title Block.Description";
try {
 v = item.getValue(attrName);
} catch (APIException ex) {
 System.out.println(ex);
}

注意 属性名では、大文字と小文字が区別されます。

SDK 開発者ガイド

286 ページ Agile Product Lifecycle Management

属性の取得
IAttribute オブジェクトは特定のサブクラスに関連付けられています。たとえば、部品の属性は、ECO の
属性とは異なります。したがって、オブジェクトのサブクラスを認識している場合は、そのオブジェクトの属

性のリストを取得できます。次の表に、属性を取得するために使用できるメソッドを示します。

メソッド 説明

IAgileClass.getAttribute() クラスの特定の IAttribute オブジェクトを取得します。

IAgileClass.getAttributes() クラスのすべてのテーブルに対する IAttribute オブジェクトの配列を

取得します。

IAgileClass.getTableAttributes
()

クラスの特定のテーブルに対する IAttribute オブジェクトの配列を取

得します。

ITable.getAttributes() テーブルに対する IAttribute オブジェクトの配列を取得します。

ICell.getAttribute() セルの IAttribute オブジェクトを取得します。

次の例は、[BOM] テーブルの属性を取得する方法を示しています。

例: 部品サブクラスの [BOM] テーブルの属性の取得
try {
 // Get the Part subclass
 IAgileClass partClass =
 (IAgileClass)m_admin.getAgileClass(ItemConstants.CLASS_PART);
 // Get the collection of BOM table attributes for the Part subclass
 IAttribute[] attrs =
 partClass.getTableAttributes(ItemConstants.TABLE_BOM);
} catch (APIException ex) {
 System.out.println(ex);
}

特定のテーブルの属性を取得するための別の方法は、最初にテーブルを取得し、次に、

ITable.getAttributes() メソッドを使用してそのテーブルの属性を取得することです。

例: テーブルからの [BOM] テーブルの属性コレクションの取得
try {
 // Get Part P200
 IItem item = (IItem)m_session.getObject(IItem.OBJECT_TYPE, "P200");

 // Get the BOM table
 ITable bomTable = item.getTable(ItemConstants.TABLE_BOM);

 // Get BOM table attributes
 IAttribute[] attrs = bomTable.getAttributes();

} catch (APIException ex) {
 System.out.println(ex);
}

 第 17 章

Agile Product Lifecycle Management 287 ページ

個々の属性の取得
取得する属性を認識している場合は、IAgileClass.getAttribute() メソッドを使用してその属性を取得

できます。次の例は、ECO の [カバー ページ.理由コード] 属性を取得する方法を示しています。

例: [カバー ページ.理由コード] 属性の取得
try {
 // Get the ECO subclass
 IAgileClass classECO = m_admin.getAgileClass("ECO");
 // Get the "Cover Page.Reason Code" attribute
 IAttribute attr =
classECO.getAttribute(ChangeConstants.ATT_COVER_PAGE_REASON_CODE);

 // Get available values for Reason Code
 IAgileList availValues = attr.getAvailableValues();

} catch (APIException ex) {
 System.out.println(ex);
}

属性のプロパティの編集
Agile PLM クラスには属性があり、属性にはプロパティがあります。特定サブクラスの属性のプロパティを変

更するには、次の手順に従います。

1. IAdmin.getAgileClass() メソッドを使用して Agile PLM クラスを取得します。

2. IAgileClass.getAttribute() メソッドを使用して、そのクラスの属性を取得します。

3. IAttribute.getProperty() メソッドを使用して、その属性のプロパティを取得します。

4. IProperty.getValue() メソッドを使用して、そのプロパティの現在の値を取得します。

5. IProperty.setValue() メソッドを使用して、そのプロパティに新しい値を設定します。

ユーザー定義属性の使用
Agile PLM の各サブクラスについて、[ユーザー定義 1] および [ユーザー定義 2] テーブルに追加の属性を定

義できます。これらのユーザー定義属性は、顧客設定フィールドとも呼ばれ、Agile PLM に事前に定義されて

いる属性と同様に動作します。ユーザー定義属性を取得して、そのプロパティを編集できます。

ユーザー定義属性は、Agile PLM システムのカスタム拡張機能です。したがって、その ID は
CommonConstants クラスには含まれません。ただし、Agile Java クライアントでは、ユーザー定義属性を含

むすべての属性のベース ID を表示できます。ユーザー定義属性のベース ID を実行時にプログラムで取得す

る手順を記述することもできます。

SDK 開発者ガイド

288 ページ Agile Product Lifecycle Management

管理ノードのプロパティの使用
Agile API を使用して INode オブジェクトを取得する場合は、INode のプロパティ値も表示できます。

IProperty オブジェクトは、管理ノードの単一のプロパティを表します。ノードのすべてのプロパティの配

列を返すには、INode.getProperties() メソッドを使用します。

次の例は、[週末の催促/エスカレーションの設定] プリファレンスのプロパティ値を取得する方法を示していま

す。この例の最後の部分では、このシングルリストのプロパティに使用可能なリスト値が、カンマ区切りの文

字列に変換されています。

例: プロパティ値の取得
private void getReminderEscalationWeekendProp() throws APIException
{
 //Get the General Preferences node
 INode node = m_admin.getNode(NodeConstants.NODE_PREFERENCES);

 //Get the Reminder/Escalation Weekend Setting property
 IProperty prop = node.getProperty(

PropertyConstants.PROP_REMINDER_ESCALATION_WEEKEND_SETTING
);

 //Get the Reminder/Escalation Weekend Setting property value
 Object value = prop.getValue();
 System.out.println("Reminder/Escalation Weekend Setting : " +
value);
 IAgileList avail = prop.getAvailableValues();
 if (avail != null) {
 String strAvail = listToString(avail);
 System.out.println("Available Values : " + strAvail);
 }
}
private String listToString(IAgileList list) throws APIException {
 String strList = "";
 Collection children = list.getChildNodes();
 for (Iterator it = children.iterator();it.hasNext();) {
 IAgileList childList = (IAgileList)it.next();
 strList = strList + childList.getValue();
 if (it.hasNext()) {
 strList = strList + ", ";
 }
 }
 return strList;
}

シングルリストとマルチリストのプロパティは、他のタイプのプロパティとは異なります。

IProperty.getValue() および IProperty.setValue() メソッドを使用して、値リストに含まれるプロ

パティを直接変更することはできません。かわりに、IAgileList.setSelection() メソッドを使用してリ

スト ノードを選択し、次に、IProperty.setValue() メソッドを使用して値を設定します。シングルリス

トとマルチリストのプロパティを変更する方法の詳細は、5-6 ページの「リスト値の取得および設定」を参照

してください。

 第 17 章

Agile Product Lifecycle Management 289 ページ

ユーザーの管理
ユーザーは、アイテムや変更と同様に作成できるデータオブジェクトです。したがって、管理者ノード階層を

移動することなく直接ユーザーを管理できます。適切な Agile PLM 権限がある場合は、ユーザーを作成、変更

および削除できます。たとえば、組織ディレクトリの使用可能なデータと Agile PLM ユーザーを定期的に同期

化するプログラムを作成できます。

すべてのユーザーの取得
すべての Agile PLM ユーザーを取得するには、ユーザー オブジェクトに対して検索を実行します。次の例で

は、すべてのユーザーを取得して、各ユーザーのユーザー名、姓および名を印刷しています。

例: すべてのユーザーの取得
private void getAllUsers() throws APIException {
 IQuery q = (IQuery)m_session.createObject(IQuery.OBJECT_TYPE,
"select * from [Users]");
 ArrayList users = new ArrayList();
 Iterator itr = q.execute().getReferentIterator();
 while (itr.hasNext()) {
 users.add(itr.next());
 }
 for (int i = 0; i < users.size(); i++) {
 IUser user = (IUser)users.get(i);
 System.out.println(
 user.getValue(UserConstants.ATT_GENERAL_INFO_USER_ID) + ", " +
 user.getValue(UserConstants.ATT_GENERAL_INFO_FIRST_NAME) + ", "
+

user.getValue(UserConstants.ATT_GENERAL_INFO_LAST_NAME)
);
 }
}

ユーザーの作成
ユーザーは、他のデータオブジェクトと同様に、Agile API を使用して作成できます。ユーザーを作成するには、

そのユーザーのパラメータを定義して IAgileSession.createObject() メソッドに渡します。指定する

必要がある必須パラメータは、ユーザー名とログイン パスワードです。UserConstants クラスにリストさ

れているその他のユーザー属性も指定できます。

注意 Agile PLM システムに対するユーザーの認証に LDAP ディレクトリ サーバが使用されている場合

は、Agile PLM システムに制限付きでアクセスできるサプライヤ ユーザーのみを作成できます。他

のユーザーは、ディレクトリ サーバで作成して管理する必要があります。

新規ユーザーに指定するパスワードはデフォルト値です。承認用パスワードを指定する場合は、ログイン パス

ワードとは異なるパスワードを指定する必要があります。ただし、

UserConstants.ATT_GENERAL_INFO_USE_LOGIN_PASSWORD_FOR_APPROVAL セルが「Yes」に設定され

ている場合を除きます。ユーザーは後でパスワードを変更できます。

SDK 開発者ガイド

290 ページ Agile Product Lifecycle Management

例: ユーザーの作成

public IAgileSession m_session;

public IAdmin m_admin;
public AgileSessionFactory m_factory;

private void userTest() {
 try {
 //Add code here to log in to the Agile Application Server
 //After logging in, create a new user
 IUser user = createUser("akurosawa");
 } catch (APIException ex) {
 System.out.println(ex);
 }
}
private IUser createUser(String newUser) throws APIException {
 //Create the new user
 Map params = new HashMap();
 params.put(UserConstants.ATT_GENERAL_INFO_USER_ID, newUser);
 params.put(UserConstants.ATT_LOGIN_PASSWORD, "agile");
 IUser user = (IUser)session.createObject(UserConstants.CLASS_USER,
params);

 return user;
}

デフォルトでは、新規ユーザーを作成すると、[同時接続] ユーザー カテゴリと [個人のユーザー プロファイ

ル] 役割の組み合わせが割り当てられます。これによって、ユーザーはオブジェクトを表示できますが、オブ

ジェクトを作成、承認および編集することはできません。オブジェクトを作成および変更するには、適切な作

成または変更権限のある役割をユーザーに割り当てる必要があります。ユーザーの役割の設定を変更する方法

の例は、292 ページの「ユーザー設定の構成」を参照してください。

サプライヤ ユーザーの作成
サプライヤ ユーザーは、デフォルトで Agile PLM システムへのアクセスを制限する [制限付き] ユーザー カ
テゴリに割り当てられます。[制限付き] ユーザー カテゴリによって、サプライヤ ユーザーは見積依頼に回答

したり、Agile Product Cost Management (PCM) の他の機能を使用することができます。

サプライヤ ユーザーを作成するには、そのユーザーのパラメータを定義して
IAgileSession.createObject() メソッドに渡します。ユーザー名、ログイン パスワードおよびサプラ

イヤ名を指定する必要があります。UserConstants クラスにリストされているその他のユーザー属性も指定

できます。

例: サプライヤ ユーザーの作成
private IUser createSupplierUser(String userName, String supplier)
throws APIException {
 HashMap userParams = new HashMap();
 userParams.put(UserConstants.ATT_GENERAL_INFO_USER_ID, userName);
 userParams.put(UserConstants.ATT_LOGIN_PASSWORD, "agile");
 userParams.put(UserConstants.ATT_SUPPLIER, supplier);
 return (IUser)m_session.createObject(UserConstants.CLASS_USER,
userParams);
}

 第 17 章

Agile Product Lifecycle Management 291 ページ

ユーザーを新規ユーザーとして保存
IDataObject.saveAs() メソッドを使用すると、既存のユーザーを新規ユーザーとして保存できます。

saveAs() メソッドを使用すると、既存のユーザーと同じライセンス、役割、権限および拠点を新規ユーザー

に割り当てることができるため便利です saveAs() メソッドを使用してユーザーを保存する場合は、新規ユー

ザーのユーザー名とログイン パスワードに対するパラメータを指定する必要があります。

例: オブジェクトを新規オブジェクトとして保存
private void saveAsUser(IUser user, String newUserName) {
 try {
 //Set parameters for the new user
 Map params = new HashMap();
 params.put(UserConstants.ATT_GENERAL_INFO_USER_ID,
newUserName);
 params.put(UserConstants.ATT_LOGIN_PASSWORD, "agile");

 // Save the new user
 user.saveAs(UserConstants.CLASS_USER, params);
 } catch (APIException ex) {
 System.out.println(ex);
 }
}

有効期限が切れたパスワードの確認
Agile PLM のパスワードは、特定の時期に有効期限が切れるように設定できます。ユーザーのログイン パス

ワードの有効期限が切れると、そのユーザーは Agile アプリケーション サーバにログインできなくなります。

ユーザーの承認用パスワードの有効期限が切れると、そのユーザーは変更を承認できなくなります。Agile PLM
のパスワードのいずれかまたは両方の有効期限が切れた場合、Agile API プログラムでは、ユーザーが新しいパ

スワードを指定できるようにする必要があります。

次の例は、有効期限が切れたパスワードに関連する Agile API エラーを確認する方法を示しています。

例: 有効期限が切れたパスワードの確認
private void login(String username, String password) {
 try {
 HashMap params = new HashMap();
 params.put(AgileSessionFactory.USERNAME, username);
 params.put(AgileSessionFactory.PASSWORD, password);
 AgileSessionFactory instance =

AgileSessionFactory.getInstance("http://agileserver/virtualPat
h");
 m_session = instance.createSession(params);
 } catch(APIException ex) {
 if
(ex.getErrorCode().equals(ExceptionConstants.API_MUST_CHANGE_BOTH_
PWDS))
 System.out.println("Login Failed. You must change both your login
and approval passwords.");

http://agileserver/virtualPath
http://agileserver/virtualPath

SDK 開発者ガイド

292 ページ Agile Product Lifecycle Management

 else if
(ex.getErrorCode().equals(ExceptionConstants.API_MUST_CHANGE_LOGIN
_PWD))
 System.out.println("Login Failed. You must change your login
password.");
 else
 System.out.println(ex.getMessage());
 }
 }
}

ユーザー設定の構成
IUser オブジェクトはデータオブジェクトであり、管理ノードとは異なります。したがって、IUser オブジェ

クトにはプロパティではなくデータ セルがあり、ICell インターフェースを使用してユーザーの設定を構成

できます。次の例は、ユーザーの [一般情報] および [ユーザー定義 1] テーブルに表示されるセルを取得する

方法を示しています。他のユーザーのテーブルにあるセルにアクセスするには、IDataObject.getTable()
メソッドを使用してテーブルをロードします。

例: [一般情報] および [ユーザー定義 1] のユーザー セルの取得
private void getUserCells(IUser user) throws APIException {
 ICell[] cells = user.getCells();
 for (int i = 0; i < cells.length; i++) {
 System.out.println(cells[i].getName() + " : " +
cells[i].getValue());
 }
}

ユーザーに対する 2 つの重要な設定は、[ユーザー カテゴリ] と [役割] です。[ユーザー カテゴリ] 設定では、

ユーザーが Agile PLM システムで実行できる広範囲のアクションを定義します。次のユーザー カテゴリ値の

いずれかを選択します。

 パワー - いつでもサーバにログインでき、制限なしで Agile PLM システムを使用できます。パワー ユー

ザーは、同時接続ユーザー数の限定による制約を受けません。

 同時接続 - 同時接続ユーザー ライセンスがある場合のみ、サーバにログインできます。

 制限付き - Agile PLM システムに制限付きでアクセスできるユーザー。サプライヤ ユーザーは、デフォル

トで [制限付き] カテゴリに割り当てられます。これによって、サプライヤ ユーザーは見積依頼に回答し

たり、Agile Product Cost Management (PCM) の他の機能を使用することができます。制限付きユーザーは、

同時接続ユーザー数の限定による制約を受けません。

[役割] 設定では、役割と権限を割り当てることで、ユーザーの機能をさらに定義します。ユーザーは、適切な

役割と権限なしでオブジェクトを作成することはできません。Agile PLM のユーザー ライセンス、役割および

権限の詳細は、『Agile PLM 管理者ガイド』を参照してください。

次の例は、ユーザーの [ユーザー カテゴリ] と [役割] 設定を設定する方法を示しています。

例 17-21: ユーザーの [ユーザー カテゴリ] と [役割] 設定の設定
private void setCategory(IUser user) throws APIException {
 //Get the User Category cell
 ICell cell =
user.getCell(UserConstants.ATT_GENERAL_INFO_USER_CATEGORY);

 //Get the available values for the cell
 IAgileList license = cell.getAvailableValues();

 第 17 章

Agile Product Lifecycle Management 293 ページ

 //Set the selected value to "Concurrent"
 license.setSelection(new Object[] { "Concurrent" });

 //Change the cell value
 cell.setValue(license);
 }
private void setRoles(IUser user) throws APIException {
 //Get the Role cell
 ICell cell = user.getCell(UserConstants.ATT_GENERAL_INFO_ROLES);

 //Get the available values for the cell
 IAgileList roles = cell.getAvailableValues();

 //Set the selected roles to Change Analyst and Administrator
 roles.setSelection(new Object[] {"Change
Analyst","Administrator","My User Profile"});
 //Change the cell value
 cell.setValue(roles);
 }

ユーザー パスワードのリセット
ユーザー管理者権限のある管理者は、他のユーザーのパスワードを新しい値にリセットできます。この権限の

ないユーザーはユーザー パスワードをリセットできません。UI を使用して一度に 1 つのパスワードを手動で

リセットするのではなく、この機能を使用して、多数のパスワードをバッチ モードでリセットすることをお薦

めします。

この機能をサポートする changeLoginPassword() メソッドでは、現在のパスワード値のかわりにヌル値

を渡すことができます。次の例は、このメソッドで、現在のパスワードのかわりにヌルを使用してユーザーの

パスワードをリセットする方法を示しています。

例: パスワードの新しい値へのリセット
public void changeLoginPassword(null, String newPassword)
 throws APIException;

ユーザーの削除
ユーザーを削除するには、IDataObject.delete() メソッドを使用します。他のデータオブジェクトと同様

に、オブジェクトを初めて削除すると、ソフト削除されます。つまり、オブジェクトは無効になりますが、デー

タベースからは削除されません。Agile アプリケーション サーバでは、ユーザーを完全に削除することはでき

ません。

例: ユーザーの削除
private void removeUser(IUser user) throws APIException {
 user.delete();
 user = null;
}

注意 Agile Java クライアントでは、[管理] > [ユーザー設定] > [削除されたユーザー] の順に選択すると、

削除されたユーザーのリストを表示できます。

SDK 開発者ガイド

294 ページ Agile Product Lifecycle Management

ユーザー グループの管理
ユーザー グループは、Agile PLM ユーザーのリストを格納する単純なオブジェクトです。ユーザー グループ

を使用すると、プロジェクト チーム、部署、およびグローバール グループと、そのグループに割り当てられ

たユーザーを定義できます。ユーザー グループは、アイテムや変更と同様に、拠点に関連しませんが、それぞ

れの場所に基づいてユーザーのグループを作成できます。ユーザー グループにユーザーを追加すると、その変

更内容が必ずユーザーの [グループ] 設定に反映されます。この設定の属性 ID は
UserConstants.ATT_GENERAL_INFO_GROUPS です。

注意 Agile Web クライアントなどの Agile クライアントでは、変更などのオブジェクトをユーザー グ
ループに送信できます。Agile API では、ユーザー グループへのオブジェクトの送信はサポートさ

れていません。ただし、ユーザー グループ オブジェクトの [ユーザー] テーブルからユーザーを取

得して、そのユーザーにオブジェクトを送信することはできます。

すべてのユーザー グループの取得
すべての Agile PLM ユーザー グループを取得するには、ユーザー グループ オブジェクトに対して検索を実

行します。ユーザー グループで処理を繰り返して、特定のグループを検索できます。次の例では、すべてのユー

ザーを取得して、各ユーザー グループの名前、説明、ユーザーの最大数および有効なステータスを印刷してい

ます。

例: すべてのユーザー グループの取得
private void getAllUserGroups() throws APIException {
 IQuery q = (IQuery)m_session.createObject(IQuery.OBJECT_TYPE,
"select * from [User Groups]");
 ArrayList groups = new ArrayList();
 Iterator itr = q.execute().getReferentIterator();
 while (itr.hasNext()) {
 groups.add(itr.next());
 }
 for (int i = 0; i < groups.size(); i++) {
 IUserGroup ug = (IUserGroup)groups.get(i);
 System.out.println(
 ug.getValue(UserGroupConstants.ATT_GENERAL_INFO_NAME) + ", " +

ug.getValue(UserGroupConstants.ATT_GENERAL_INFO_DESCRIPTION) + ", "
+

ug.getValue(UserGroupConstants.ATT_GENERAL_INFO_MAX_NUM_OF_NAMED_U
SERS) + ", " +

ug.getValue(UserGroupConstants.ATT_GENERAL_INFO_STATUS)
);
 }
}

ユーザー グループの作成
ユーザーと同様に、ユーザー グループはデータオブジェクトであり、Agile アプリケーション サーバの管理

ノードではありません。ユーザー グループを作成するには、そのユーザー グループのパラメータ (グループ

の名前など) を定義して IAgileSession.createObject() メソッドに渡します。指定する必要がある必

須パラメータは、属性 ID UserGroupConstants.ATT_GENERAL_INFO_NAME の名前のみです。

 第 17 章

Agile Product Lifecycle Management 295 ページ

UserGroupConstants クラスにリストされているその他のユーザー属性も指定できます。ユーザー グルー

プを有効化するには、[有効] セルを [はい] に設定します。

ユーザー グループを作成する際は、複数のユーザーを [ユーザー] テーブルに追加して、グループを意味のあ

るものにします。[ユーザー] テーブルに新しい行を作成するには、

ITable.createRow(java.lang.Object) メソッドを使用します。

例: ユーザー グループの作成
public IAgileSession m_session;
public IAdmin m_admin;
public AgileSessionFactory m_factory;
private void userGroupTest() throws APIException {
 //Add code here to log in to the Agile Application Server
 //After logging in, create a new user group
 IUserGroup group = createGroup("Swallowtail Project");

 //Add users to the Western project group
 IUser[] selUsers = new IUser[] {
 m_session.getObject(IUser.OBJECT_TYPE, "jford"),
 m_session.getObject(IUser.OBJECT_TYPE, "hhawkes"),
 m_session.getObject(IUser.OBJECT_TYPE, "speckinpah")
 };
 addUsers(group, selUsers);
}
private IUserGroup createGroup(String groupName) throws APIException
{
 //Create the user group
 IUserGroup group =

(IUserGroup)m_session.createObject(UserGroupConstants.CLASS_USER_G
ROUP, groupName);
 //Enable the user group
 ICell cell =
group.getCell(UserGroupConstants.ATT_GENERAL_INFO_STATUS);
 IAgileList list = cell.getAvailableValues();
 list.setSelection(new Object[] { "Active" });
 cell.setValue(list);

 return group;
}
private void addUsers(IUserGroup group, IUser[] users) throws
APIException {
 ITable usersTable =
group.getTable(UserGroupConstants.TABLE_USERS);
 for (int i = 0; i < users.length; i++) {
 IRow row = usersTable.createRow(users[i]);
 }
}

SDK 開発者ガイド

296 ページ Agile Product Lifecycle Management

ユーザー グループは、グローバルまたはパーソナルにできます。グローバル ユーザー グループには、すべて

の Agile PLM ユーザーがアクセスできます。パーソナル ユーザー グループにアクセスできるのは、そのグ

ループを作成したユーザーのみです。次の例は、ユーザー グループをグローバルにする方法を示しています。

例: ユーザー グループのグローバル化
private void setGlobal(IUserGroup group) throws APIException {
 //Get the Global/Personal cell
 ICell cell =
group.getCell(UserGroupConstants.ATT_GENERAL_INFO_GLOBAL_PERSONAL)
;

 //Get the available values for the cell
 IAgileList values = cell.getAvailableValues();

 //Set the selected value to "Global"
 values.setSelection(new Object[] { "Global" });

 //Change the cell value

group.setValue(UserGroupConstants.ATT_GENERAL_INFO_GLOBAL_PERSONAL,
values);
}

ユーザー グループ内のユーザーのリスト
ユーザー グループ内のユーザーは、[ユーザー] テーブルにリストされます。したがって、ユーザー グループ

内のユーザーのリストを取得するには、IDataObject.getTable() メソッドを使用し、次に、取得したテー

ブル行で処理を繰り返して、各ユーザーのデータにアクセスします。次の例は、ユーザー グループ内のユーザー

をリストする方法を示しています。

例: ユーザー グループ内のユーザーのリスト
private void listUsers(IUserGroup group) throws APIException {
 ITable usersTable =
group.getTable(UserGroupConstants.TABLE_USERS);
 Iterator it = usersTable.iterator();
 while (it.hasNext()) {
 IRow row = (IRow)it.next();

System.out.println(row.getValue(UserGroupConstants.ATT_USERS_USER_
NAME));
 }
}

Agile Product Lifecycle Management 297 ページ

第 18 章

例外の処理

扱うトピックは次のとおりです。

 例外について ... 297
 例外定数 ... 298
 エラー コードの取得 ... 298
 エラー メッセージの取得 ... 298
 警告メッセージの無効化および有効化.. 299

例外について
Java プログラムにおける問題発生の原因となるエラーを例外と呼びます。検出できない例外が Java で発生し

た場合は、プログラムが終了したり、画面にエラーが表示される場合があります。例外を適切に処理するため

に、プログラムでは次の事項に注意する必要があります。

 例外発生の原因と思われるメソッドを含んだコードを try ブロックに配置して保護します。

 catch ブロック内で発生した例外をテストおよび処理します。

Agile API には、APIException という Exception のサブクラスが用意されています。このサブクラスは、

Agile API 全体にわたる Agile PLM ランタイム エラーの処理に使用する汎用例外クラスです。Agile API
HTML リファレンスには、各メソッドで発生する例外のタイプが示されます。通常、Agile アプリケーション
サーバとの相互作用が必要な Agile API メソッドでは、APIException が発生します。次の表に、例外を処

理するための APIException クラス メソッドを示します。

メソッド 説明

getErrorCode() APIException に関連付けられているエラー コードの番号を返します。

getMessage() APIException に関連付けられているエラー メッセージを返します。

getRootCause() APIException の根本原因を返します (ある場合)。

getType() 例外のタイプを返します。

SDK 開発者ガイド

298 ページ Agile Product Lifecycle Management

例外定数
ExceptionConstants クラスには、すべての Agile アプリケーション サーバ用のリテラルおよび Agile API
のランタイム エラーと警告コードが含まれています。各定数の説明は、Agile API HTML リファレンスを参照

してください。

いくつかの ExceptionConstants は、Agile PLM 警告メッセージをアクションの完了前に表示するために

使用される例外用です。警告メッセージ用の定数はすべて接尾辞 WARNING で終わります。プログラムで使用

しない Agile PLM 警告メッセージは、無効にすることができます。詳細は、299 ページの「警告メッセージの

無効化および有効化」を参照してください。

エラー コードの取得
警告エラーを正しく捕捉するには、例外のエラー コードを取得して適切に処理する必要があります。通常は、

アクションを完了するかどうかをユーザーが選択できるように、確認ダイアログ ボックスを表示します。次の

例は、catch ブロックで例外のエラー コードを確認する方法を示しています。

例: Agile PLM エラー コードの取得
private void removeApprover(IChange change, IUser[] approvers, IUser[]
observers, String comment) {
 try {
 // Remove the selected approver
 change.removeApprovers(change.getStatus(), approvers, observers,
comment);
 } catch (APIException ex) {
 if
(ex.getErrorCode().equals(ExceptionConstants.APDM_RESPONDEDUSERS_W
ARNING))
 JOptionPane.showMessageDialog(null, ex.getMessage(), "Warning",
JOptionPane.YES_NO_OPTION);
 }
}

エラー メッセージの取得
プログラムで Agile PLM ランタイム エラーを示す APIException が発生した場合は、エラー メッセージ

を表示できます。getMessage() メソッドを使用すると、次の例に示すように、エラー メッセージ文字列を

返して、その内容をメッセージ ダイアログ ボックスに表示できます。

 第 18 章

Agile Product Lifecycle Management 299 ページ

例: エラー メッセージの取得
// Display an error message dialog
void errorMessage(APIException ex) {
 try {
 JOptionPane.showMessageDialog(null, ex.getMessage(), "Error",
JOptionPane.ERROR_MESSAGE);
 } catch (Exception e) {}
}

Agile PLM エラー メッセージのリストについては、Agile API HTML リファレンスの ExceptionConstants
を参照してください。

警告メッセージの無効化および有効化
Agile PLM エラー メッセージの一部は警告であり、これによって、操作の停止または続行を選択できます。デ

フォルトでは、警告メッセージも含めて、ほとんどのエラー メッセージは有効になっています。警告のトリガー

となるアクションを実行すると、例外が発生します。例外の発生を回避するために、アクションの実行前に警

告メッセージを無効にすることができます。

次の例は、変更のリリースによって例外が発生するかどうかを確認する方法を示しています。例外のエラー
コードが ExceptionConstants.APDM_UNRESPONDEDCHANGE_WARNING の場合は、警告が表示されます。

ユーザーが警告ダイアログ ボックスで [はい] をクリックすると、変更がリリースされます。

例: エラー コードの無効化および有効化
private void releaseChange(IAgileSession m_session, IChange chgObj)
{
 IStatus nextStatus = null;
 try {
 // Get the default next status
 nextStatus = chgObj.getDefaultNextStatus();

 // Release the Change
 chgObj.changeStatus(nextStatus, false, "", false, false, null, null,
null, false);
 } catch (APIException ex) {
 // If the exception is error code
 // ExceptionConstants.APDM_UNRESPONDEDCHANGE_WARNING,
 // display a warning message
 if (ex.getErrorCode() ==
ExceptionConstants.APDM_UNRESPONDEDCHANGE_WARNING) {
 int i = JOptionPane.showConfirmDialog(null, ex.getMessage(),
 "Warning", JOptionPane.YES_NO_OPTION);
 if (i == 0) {
 // If the user clicks Yes on the warning, disable the error code
and release the change
 try {
 // Disable the warning

SDK 開発者ガイド

300 ページ Agile Product Lifecycle Management

m_session.disableWarning(ExceptionConstants.APDM_UNRESPONDEDCHANGE
_WARNING);
 // Release the Change
 chgObj.changeStatus(nextStatus, false, "", true, true, null,
null, null, false);
 // Enable all warnings

m_session.enableWarning(ExceptionConstants.APDM_UNRESPONDEDCHANGE_
WARNING);
 } catch (APIException exc) {}
 }
 }
 }
}

APIException がエラーではなく警告であることの確認
前述したように、警告のトリガーとなる操作を実行すると、例外が発生します。警告メッセージは、Agile Web
クライアントのような対話型の GUI クライアントで役立ちますが、Agile API プログラムでは使用しないほう

が適切な場合があります (特にバッチ処理を実行する場合)。

APIException.isWarning() を使用すると、Agile PLM 例外が警告かどうかを確認できます。警告の場合

は、その警告を無効にして操作を続行できます。

例: APIException が警告かどうかの確認
private void checkIfWarning(IAgileSession m_session) {
 boolean gotWarning = true;
 while (gotWarning) {
 try {
 // Add some API code here that throws an exception
 m_session.doNothing();

 gotWarning = false;
 } catch (APIException e) {
 try {
 if (e.isWarning())

m_session.disableWarning((Integer)e.getErrorCode());
 } catch (Exception ex) {}
 continue;
 }
 break;
 }
}

 第 18 章

Agile Product Lifecycle Management 301 ページ

Agile API で自動的に無効にした警告の削除
Agile Web クライアントでは、オブジェクトを削除しようとすると警告メッセージが表示されます。Agile API
プログラムでは、バッチ処理に対する警告メッセージは適切ではありません。このため、Agile API では次の警

告を暗黙で無効にし、ユーザーがコード内で警告を無効にする手間を省きます。

 ExceptionConstants.APDM_HARDDELETE_WARNING

 ExceptionConstants.APDM_SOFTDELETE_WARNING

オブジェクトの削除の詳細は、34 ページの「オブジェクトの削除および削除取消」を参照してください。

有効または無効にした警告の状態の保存および復元
特定操作の開始前に警告メッセージが有効か無効かを追跡するかわりに、

IAgileSession.pushWarningState() を使用して、有効または無効にした警告の現在の状態を保存でき

ます。操作が完了した後に、IAgileSession.popWarningState() を使用して、有効または無効にした警

告を前の状態に復元できます。

例: pushWarningState() および popWarningState() の使用
private void pushPopWarningState(IAgileSession m_session, IItem item)
throws APIException {
 // Save the current state of enabled/disabled warnings
 m_session.pushWarningState();

 // Disable two AML warnings

m_session.disableWarning(ExceptionConstants.APDM_WARN_MFRNAMECHANG
E_WARNING);

m_session.disableWarning(ExceptionConstants.APDM_ONEPARTONEMFRPART
_WARNING);
 // Get the Manufacturers table
 ITable aml = item.getTable(ItemConstants.TABLE_MANUFACTURERS);

 // Create a new row and set a value for the row
 HashMap amlEntry = new HashMap();
 amlEntry.put(ItemConstants.ATT_MANUFACTURERS_MFR_NAME,
"MFR_TEST3");

amlEntry.put(ItemConstants.ATT_MANUFACTURERS_MFR_PART_NUMBER,
"MFR_PART3");
 IRow rowAML1 = aml.createRow(amlEntry);

rowAML1.setValue(ItemConstants.ATT_MANUFACTURERS_REFERENCE_NOTES,
"new note");
 // Restore the previous state of enabled/disabled warnings
 m_session.popWarningState();
}

SDK 開発者ガイド

302 ページ Agile Product Lifecycle Management

Agile Product Lifecycle Management 303 ページ

第 19 章

プロセス拡張の開発

扱うトピックは次のとおりです。

 プロセス拡張について ... 303
 カスタム自動採番ソースの開発.. 304
 カスタム アクションの開発 ... 307
 URL ベースのプロセス拡張の定義.. 312
 SDK ネットワーク クラスローダと Weblogic Server の操作の設定 ... 318
 外部レポートの作成 ... 319
 クラスタ環境でのプロセス拡張の配置.. 320
 プロセス拡張に関するよくある質問.. 320

プロセス拡張について
プロセス拡張 (PX) は、Agile PLM システムの機能を拡張するためのフレームワークです。機能の拡張には、

サーバ側の拡張 (カスタム ワークフロー アクション、カスタム自動採番など) とクライアント側の拡張 (外部

レポート、[アクション] メニューや [ツール] メニューに追加された新規コマンドなど) があります。すべて

のカスタム アクションは、プロセス拡張によって提供される機能のタイプにかかわらず、ローカル クライア

ントではなく Agile アプリケーション サーバで起動されます。

プロセス拡張によって、Agile PLM サーバと Agile PLM ユーザーは外部システムに接続できます。また、プロ

セス拡張を使用すると、標準の Agile PLM クライアントでは提供されない機能を追加できます。さらに、プロ

セス拡張によって、簡単かつ強力な方法で Agile PLM システムをオープンにし、ビジネス要件に応じてシステ

ムを調整できます。

プロセス拡張は、Agile アプリケーション サーバに配置されている Java クラス、または URL へのリンクの

いずれかです。URL は、単なる Web サイトでも、Web ベースのアプリケーションの場所でも構いません。

プロセス拡張を使用すると、次の内容を作成できます。

 カスタム レポート

 ユーザー主導型/ワークフロー起動型カスタム アクション

 Agile PLM クライアントからアクセスできるカスタム ツール

 カスタム自動採番

プロセス拡張フレームワーク内では、どのようなタイプのカスタム アクションやツールを作成できるのでしょ

うか。技術的には、カスタム アクションを定義する際、カスタム アクションで実行できる操作に制限はほと

んどありません。つまり、オープンエンドのソリューションです。Agile ソリューション担当および Agile パー

トナーの協力のもとに、必要なプロセス拡張を開発できます。

複数のプロセス拡張を 1 つのチェーンにまとめて、個別のビジネス機能を実行する各プロセス拡張にリンクで

きます。また、プロセス拡張を使用すると、Web サービス (Agile の Web サービス拡張フレームワークを使

用して構築したサービスなど) への依頼を作成することもできます。

SDK 開発者ガイド

304 ページ Agile Product Lifecycle Management

Agile PLM クライアントで利用可能なプロセス拡張には、5 つの統合ポイントがあります。プロセス拡張は、

以下の領域から起動することができます。

 外部レポート

 [アクション] メニュー

 [ツール] メニュー

 ワークフロー ステータス

 自動採番ソース

カスタム自動採番ソースの開発
このセクションでは、カスタム自動採番ソースの開発方法について説明します。

ほとんどの Agile PLM オブジェクト クラスには少なくとも 1 つのデフォルト自動採番ソースがあり、新規オ

ブジェクトを作成して次の番号を自動的に割り当てることができます。自動採番には、英数字の接頭辞または

接尾辞 (あるいはその両方) を指定できます。自動採番 (文字列) の長さ、および使用する数字を指定すること

もできます。

自動採番は柔軟性を備えていますが、一部の企業には、Agile PLM の標準の自動採番機能では対応できない特

定の要件があります。このような企業では、プロセス拡張フレームワークを使用して、カスタム自動採番ソー

スを定義し、Agile PLM システムに追加できます。

管理者権限があるユーザーは、Agile Java クライアントで自動採番ソースを定義できます。自動採番ソースで

クライアントの標準の自動採番機能を使用するか、自動採番ソースをカスタム自動採番ソースに関連付けるこ

とができます。Agile PLM クライアントでカスタム自動採番ソースを使用して新規オブジェクトを作成すると、

Agile アプリケーション サーバでは、番号を生成するためのカスタム Java コードが起動します。

カスタム自動採番ソースの定義
カスタム自動採番ソースを定義するには、com.agile.px パッケージのサーバ側 API である
ICustomAutoNumber インターフェースを実装する Java クラスを作成します。コードでは、自動採番のロ

ジック (接頭辞、接尾辞、桁数、文字セットなど) および永続性メカニズムを定義する必要があります。カス

タム自動採番ソースで番号を保存する場所は、永続性に関係なくプログラムによって決まります。たとえば、

番号は Oracle のような SQL データベースやファイルに保存できます。

Agile PLM サーバは、getAutoNumber() メソッドを呼び出してカスタム自動採番ソースから次の番号を取得

します。このメソッドはクラスで指定する必要があります。次の例は、カスタム自動採番ソースに対して Java
クラスを実装する方法を示しています。

例: カスタム自動採番ソースに対するクラスの定義
package autonumbers;
import com.agile.px.*;
import com.agile.api.*;

public class ResistorNumber implements ICustomAutoNumber
{

 第 19 章

Agile Product Lifecycle Management 305 ページ

 public ActionResult getAutoNumber(IAgileSession session, INode
actionNode)
 {
 String num;
 // Write code here to define the custom autonumber source for
Resistors
 return new ActionResult(ActionResult.STRING, num);
 }
}

カスタム自動採番ソースのパッケージ化および配置
カスタム自動採番ソースのクラスを開発した後は、次の手順に従ってカスタム自動採番ソースを正しくパッ

ケージ化して配置します。

カスタム自動採番ソースをパッケージ化して配置する手順は、次のとおりです。

1. Java 開発環境または Java アーカイブ ツール (または JAR ツール) を使用して、カスタム自動採番ソー

ス用の JAR ファイルを 1 つ以上作成します。JAR ファイルに、com.agile.px.ICustomAutoNumber という

名前のファイルが格納された META-INF/services ディレクトリが含まれていることを確認します。この

ファイルは、カスタム自動採番ソース用の Java の完全修飾クラス名を 1 行に 1 クラスずつリストした

テキスト ファイルです。

1 つのパッケージに複数のカスタム自動採番ソースを含めることができます。たとえば、

com.agile.px.ICustomAutoNumber ファイルには、次のように指定できます。

autonumbers.ResistorNumber

autonumbers.CapacitorNumber

autonumbers.DiodeNumber

注意 JAR ファイル内のパスでは、大文字と小文字が区別されます。したがって、JAR ファ

イル内の META-INF フォルダの名前は、すべて大文字か、すべて小文字である必要が

あります。そうでない場合、カスタム自動採番ソースは配置されません。

2. Agile アプリケーション サーバがインストールされているコンピュータの
agile_home/integration/sdk/extensions フォルダに JAR ファイルを格納します。

注意 クラスタ環境に複数のアプリケーション サーバがある場合は、クラスタ内の各サーバに

プロセス拡張ファイルを配置する必要があります。

Agile Java クライアントでのカスタム自動採番ソースの設定
Agile Java クライアントでは、管理モジュールに自動採番ソースを定義できます。Agile PLM システム設定を

構成するには、管理者アカウントが必要です。

カスタム自動採番ソースを追加する手順は、次のとおりです。

1. 管理者として Agile Java クライアントへログインします。

2. [管理] タブをクリックします。

3. [設定] > [データ設定] > [自動採番] の順に進みます。

4. [自動採番] ノードをクリックします。

SDK 開発者ガイド

306 ページ Agile Product Lifecycle Management

5. [自動採番] ウィンドウで をクリックします。[自動採番の定義] ダイアログ ボックスが表示されま

す。
図 12: [自動採番の定義] ダイアログ ボックス

6. 次の情報を入力します。

 名前 - 自動採番ソースの名前を入力します。

 説明 - 自動採番ソースの簡単な説明を入力します。

 有効 - [はい] または [いいえ] を選択します。

 自動採番のタイプ - [カスタム] を選択します。[カスタム自動採番] フィールドがアクティブになり

ます。

 使用箇所 - 自動採番ソースを使用できるサブクラスを選択します。

 カスタム自動採番 - リストからカスタム自動採番ソースを選択します。

7. [OK] をクリックして自動採番定義を保存します。

サブクラスへの自動採番ソースの割り当て

自動採番ソースを定義するときは、その自動採番ソースを使用するサブクラスを [使用箇所] フィールドに指

定できます。自動採番ソースは、[クラス] ノードで、サブクラスに割り当てることもできます。

自動採番ソースをサブクラスに割り当てる手順は、次のとおりです。

1. 管理者として Agile Java クライアントへログインします。

2. [管理] タブをクリックします。

3. [データ設定] フォルダを開きます。

 第 19 章

Agile Product Lifecycle Management 307 ページ

4. [クラス] ノードを開きます。

5. [クラス] ウィンドウで、サブクラスをダブルクリックします。サブクラス ウィンドウが表示されます。

6. [自動採番ソース] フィールドで をクリックします。ポップアップ ウィンドウが表示されます。

7. [選択肢] リストで自動採番ソースを選択し、 をクリックして [選択済み] リストに移動します。完了

したら、[OK] をクリックします。

8. [保存] をクリックして設定を保存します。

カスタム アクションの開発
このセクションでは、Java クラスでカスタム アクションを開発する方法について説明します。Agile PLM ク
ライアントでは、これらのクラスに対してメソッドを直接呼び出してアクションを実行できます。

カスタム アクションは、Agile PLM クライアントの次の領域から起動できます。

 [アクション] メニュー

 [ツール] メニュー

 外部レポート

 ワークフロー ステータス

カスタム アクションの定義
カスタム アクションを定義するには、com.agile.px パッケージのサーバ側 API である ICustomAction
インターフェースを実装する Java クラスを作成します。実行するアクションは、コードで定義する必要があ

ります。Agile PLM サーバは、doAction() メソッドを呼び出してアクションを起動します。このメソッドは

クラスで指定する必要があります。

次の例は、HelloWorld クラスのコードを示しています。doAction() メソッドが呼び出されると、このメソッ

ドは “Hello World” を返します。[アクション] メニューから HelloWorld カスタム アクションを起動すると、

文字列 “Hello World” がオブジェクトの [履歴] テーブルに記録されます。ワークフローから HelloWorld カス

タム アクションを起動すると、そのワークフローが適切なワークフロー ステータスに入ったときに、文字列
“HelloWorld” が設計変更の [履歴] テーブルに記録されます。

例: カスタム アクションに対する HelloWorld クラスの定義
package actions;
import com.agile.px.*;
import com.agile.api.*;

public class HelloWorld implements ICustomAction
{
 public ActionResult doAction(IAgileSession session, INode
actionNode,
 IDataObject affectedObject)
 {
 return new ActionResult(ActionResult.STRING, "Hello World");
 }
}

SDK 開発者ガイド

308 ページ Agile Product Lifecycle Management

前述の HelloWorld クラスは特定のアクションを実行しません。この例は、単にカスタム アクションにクラス

を実装する方法を示しています。

カスタム アクションとユーザー セッション
Agile PLM クライアントがプロセス拡張を起動するときは、現在のユーザーのセッション内で起動します。し

たがって、プロセス拡張コード内、またはプロセス拡張から直接起動するコード内では、Agile API を使用して

追加の IAgileSession オブジェクトを作成できません。つまり、プロセス拡張で新規の Agile PLM セッ

ションが直接作成されることはありません。

Web サービス拡張 (WSX) を作成し、そのコードをプロセス拡張内から使用する場合は、Web サービス イン

フラストラクチャを使用せずに、WSX クラスに含まれる Java メソッドを直接起動できます (ただし、このメ

ソッドで新規の IAgileSession オブジェクトを作成しない場合)。

プロセス拡張 (PX) の起動と Web サービス拡張 (WSX) の起動を混同しないでください。特に、PX と WSX
が同じアプリケーション コンテナに混在している場合は、PX コードで WSX コードを直接起動しないでくだ

さい。プロセス拡張で Web サービスを使用する場合、該当する WSX では新規の Agile PLM セッションが

作成される可能性がありますが、このセッションは、プロセス拡張で使用するセッションとは異なります。

WSX を作成し、そのコードをプロセス拡張内から使用する場合は、Web サービス インフラストラクチャを使

用せずに、WSX クラスに含まれる Java メソッドを直接起動できます (ただし、このメソッドで新規の
IAgileSession オブジェクトを作成しない場合)。

URL ベースのプロセス拡張では、Agile PLM サーバと通信して現在選択されているビジネス オブジェクトに

対してアクションを実行する外部アプリケーションを呼び出すことができます。このようなアクションを実行

するために、外部アプリケーションでは、Agile API を使用して別の Agile PLM セッションを作成できます。

詳細は、315 ページの「ターゲット システムからの Agile PLM セッションの作成」を参照してください。

カスタム アクションのパッケージ化および配置
カスタム アクションのクラスを開発した後は、次の手順に従ってカスタム アクションを正しくパッケージ化

して配置します。

カスタム アクションをパッケージ化して配置する手順は、次のとおりです。

1. Java 開発環境または Java アーカイブ ツール (または JAR ツール) を使用して、カスタム アクション

用の JAR ファイルを 1 つ以上作成します。JAR ファイルに、com.agile.px.ICustomAction という名前の

ファイルが格納された META-INF/services ディレクトリが含まれていることを確認します。このファイル

は、カスタム アクション用の Java の完全修飾クラス名を 1 行に 1 クラスずつリストしたテキスト
ファイルです。

1 つのパッケージに複数のカスタム アクションを含めることができます。たとえば、

com.agile.px.ICustomAction ファイルは次のような形式になります。

actions.HelloWorld

actions.RFQConsolidation

actions.RefreshCustomerFromCRM

actions.StartMfg

actions.ObsoletePartReplacer

actions.WorkflowConflictResolver

 第 19 章

Agile Product Lifecycle Management 309 ページ

注意 JAR ファイル内のパスでは、大文字と小文字が区別されます。したがって、JAR ファ

イル内の META-INF フォルダの名前は、すべて大文字か、すべて小文字である必要が

あります。そうでない場合、カスタム アクションは配置されません。

2. Agile アプリケーション サーバがインストールされているコンピュータの
agile_home/integration/sdk/extensions フォルダに JAR ファイルを格納します。

注意 クラスタ環境に複数のアプリケーション サーバがある場合は、クラスタ内の各サーバに

プロセス拡張ファイルを配置する必要があります。

カスタム アクションの役割と権限
カスタム アクションを Agile Java クライアントに設定した後は、そのカスタム アクションで使用する役割を

指定できます。デフォルトでは、カスタム アクションでは現在のユーザーの役割と権限を使用します。ただし、

カスタム アクションには拡張した権限を設定することもできます。これは、プロセス拡張の重要な機能の 1 つ
です。通常のユーザーより多くの権限を付与することによって、カスタム アクションのビジネス ロジックを

実施できます。カスタム アクションが Agile PLM クライアントで起動されると、そのカスタム アクションの

役割と権限は、現在のユーザーの役割と権限より優先されます。そのカスタム アクションが完了した時点で、

クライアントはユーザーの役割と権限に戻ります。

プロセス拡張を設定するためのユーザー権限

プロセス拡張を設定するには、ユーザーの言語設定を取得するためのユーザー権限が必要です。プロセス拡張

が失敗した場合は、エラー メッセージをユーザーの現在の言語で表示する必要があります。ユーザーの役割が、

現在のユーザーのオブジェクト情報をロードする権限を含めて設定されていない場合、サーバでは、すべての

メッセージがデフォルトのシステム言語で表示されます。

Agile Java クライアントでのカスタム アクションの設定
Agile Java クライアントでは、管理モジュールにカスタム アクションを定義できます。Agile PLM システム設

定を構成するには、管理者権限があるユーザーとしてログインする必要があります。

プロセスの拡張ライブラリの使用

Agile PLM クライアントで使用するカスタム アクションを定義する場所はプロセスの拡張ライブラリです。カ

スタム アクションをプロセスの拡張ライブラリに追加するときには、そのアクションをクライアントから起動

する方法を指定します。

カスタム アクションをプロセスの拡張ライブラリに追加する手順は、次のとおりです。

1. 管理者として Agile Java クライアントへログインします。

2. [管理] タブをクリックします。

3. [データ設定] フォルダを開きます。

SDK 開発者ガイド

310 ページ Agile Product Lifecycle Management

4. [プロセス拡張] ノードを開きます。
図 13: 拡張ライブラリ

5. [拡張ライブラリ] ウィンドウで、[プロセス拡張の追加] ボタン をクリックして [プロセス拡張の追

加] ダイアログ ボックスを開きます。
図 14: [プロセス拡張の追加] ダイアログ

6. 次の情報を入力します。

 名前 - プロセス拡張の名前を入力します。

 説明 - プロセス拡張の簡単な説明を入力します。

 タイプ - [内部カスタム アクション] を選択します。[内部カスタム アクション] フィールドがアク

ティブになります。

 第 19 章

Agile Product Lifecycle Management 311 ページ

 内部カスタム アクション - リストからカスタム アクションを選択します。

 起動先 - プロセス拡張を起動する場所を 1 つ以上選択します。次のオプションから選択してくださ

い。
 [アクション] メニュー - 正しく設定されたクラスの [アクション] メニューからカスタム ア

クションを選択できます。
 外部レポート - 外部リソースまたは URL にアクセスしてレポートを生成できます。プロセス

拡張が内部カスタム アクションの場合、[外部レポート] オプションは利用できません。
 [ツール] メニュー - [ツール] メニューからカスタム アクションを選択できます。
 ワークフロー ステータス - 正しく設定されたワークフローが特定のステータスに入ったとき

に、常にカスタム アクションが起動します。

プロセス拡張を [アクション] メニューまたはワークフロー ステータスから起動するように指定し

た場合は、そのプロセス拡張を使用するサブクラスまたはワークフローを設定できます。プロセス拡

張を使用して外部レポートを作成するように指定した場合は、Agile Web クライアントを使用してレ

ポートを作成できます。プロセス拡張を [ツール] メニューから起動するように指定した場合、その

プロセス拡張は Agile PLM クライアントで常に使用できます。

 役割 - カスタム アクションに使用する役割を 1 つ以上選択します。現在のユーザーの役割および

権限を使用する場合、このフィールドは空白にしておきます。現在のユーザーの役割および権限を一

時的に無視する場合には、1 つ以上の役割を選択します。カスタム アクションが完了した時点で、

クライアントは現在のユーザーの役割および権限に戻ります。

 有効 - [はい] または [いいえ] を選択します。

7. [OK] をクリックして新規のプロセス拡張を保存します。

クラスへのプロセス拡張の割り当て

カスタム アクションを Agile PLM のオブジェクト (部品、ECO など) の [アクション] メニューに追加する

には、そのオブジェクトのクラスを設定します。各基本クラス、クラスおよびサブクラスには [プロセスの拡

張] タブがあります。クラスに割り当てるカスタム アクションは、プロセスの拡張ライブラリで事前に定義し

ておく必要があります。

プロセス拡張は、クラスおよび基本クラスから継承されます。したがって、プロセス拡張が基本クラスに割り

当てられた場合、その基本クラスの下位にあるクラスおよびサブクラスにも割り当てられることになります。

注意 プロセス拡張は、クラス階層のひとつのレベルにのみ割り当てることができます。たとえば、プロ

セス拡張が [部品] サブクラスに割り当てられている場合、その拡張を [アイテム基本クラス] に割

り当てることはできません。

プロセス拡張をクラスに割り当てる手順は、次のとおりです。

1. 管理者として Agile Java クライアントへログインします。

2. [管理] タブをクリックします。

3. [データ設定] フォルダを開きます。

4. [クラス] ノードを開きます。

5. [クラス] ウィンドウで、基本クラス、クラスまたはサブクラスをダブルクリックします。

6. [プロセスの拡張] タブをクリックします。

SDK 開発者ガイド

312 ページ Agile Product Lifecycle Management

7. ツールバーの をクリックします。[プロセス拡張の割り当て] ダイアログ ボックスが表示されます。

8. [選択肢] リストでカスタム アクションを選択し、 をクリックして [選択済み] リストに移動し

ます。完了したら、[OK] をクリックします。

9. [OK] をクリックして設定を保存します。

ワークフロー ステータスへのプロセス拡張の割り当て

「保留中」ステータス以外の各ワークフロー ステータスには、ワークフローがそのステータスに入ったときに

起動するカスタム アクションを 1 つ以上割り当てることができます。ワークフロー ステータスに割り当てる

カスタム アクションは、プロセスの拡張ライブラリで事前に定義しておく必要があります。

注意 自動転送依頼 (ATO) は、ワークフロー起動のプロセス拡張に対応していません。

プロセス拡張をワークフロー ステータスに割り当てる手順は、次のとおりです。

1. 管理者として Agile Java クライアントへログインします。

2. [管理] タブをクリックします。

3. [ワークフロー設定] フォルダを開きます。

4. [ワークフロー] ノードを開きます。

5. [ワークフロー] ウィンドウで、ワークフローをダブルクリックします。

6. [ステータス] タブをクリックします。

7. 「保留中」以外のステータスを選択します。ステータス テーブルの下に表示される [ワークフロー条件]
プロパティ テーブルが、選択したステータスによって更新されます。

8. [ワークフロー条件] プロパティ テーブルで、選択したステータスをダブルクリックします。

9. [プロセスの拡張] リストで をクリックします。ポップアップ ウィンドウが表示されます。

10. [選択肢] リストでカスタム アクションを選択し、 をクリックして [選択済み] リストに移動します。

完了したら、[OK] をクリックします。

11. [保存] をクリックして設定を保存します。

URL ベースのプロセス拡張の定義
Agile Web クライアントで URL ベースのプロセス拡張を使用すると、Web クライアントから外部アプリケー

ションにアクセスできます。URL を参照するプロセス拡張を Agile PLM Web クライアントが起動すると、Web
ページが新しいブラウザ ウィンドウに表示されます。

 第 19 章

Agile Product Lifecycle Management 313 ページ

URL ベースのプロセス拡張には、どのようなタイプの Web ベースのアプリケーションが使用できるのでしょ

うか。前述したように、制限はほとんどありません。Agile PLM オブジェクトに対してビジネス ルール検証を

実行し、その結果に従ってオブジェクトを更新する Web ベースのアプリケーションはその一例です。次の図

は、このようなプロセス拡張のプログラム フローを示しています。
図 1: URL ベースのプロセス拡張のプロセス フロー例

URL ベースのプロセス拡張は、Web ベースのレポート エンジンの参照にも使用できます。URL ベースのプ

ロセス拡張を使用する外部レポートを作成するには、Agile Web クライアントで [作成] > [レポート] > [外部]
の順に選択します。詳細は、319 ページの「外部レポートの作成」を参照してください。

URL ベースのプロセス拡張は、ワークフロー ステータスの変更によって起動することはできません。これは、

ステータスの変更が発生したときに Agile PLM クライアントがアクティブにならないためです。

注意 URL ベースのプロセス拡張は、ソーシング プロジェクト (IProject) ではサポートされていません。

URL ベースのプロセス拡張を定義する手順は、次のとおりです。

1. 管理者として Agile Java クライアントへログインします。

2. [管理] タブをクリックします。

3. [データ設定] フォルダを開きます。

4. [プロセス拡張] ノードを開きます。

5. プロセスの [拡張ライブラリ] ウィンドウで をクリックします。[プロセス拡張の追加] ダイアログ
ボックスが表示されます。

6. 次の情報を入力します。

 名前 - プロセス拡張の名前を入力します。

 説明 - プロセス拡張の簡単な説明を入力します。

 タイプ - [URL] を選択します。

 アドレス - Web ページのアドレスを指定します。プロトコルも含めて完全な URL を指定する必要

があります。たとえば、Agileの Web サイトを指定するには、www.agile.com ではなく、

http://www.agile.com と入力します。

 起動先 - Web ページを起動する場所を 1 つ以上選択します。次のオプションから選択してください。

http://www.agile.com/
http://www.agile.com/

SDK 開発者ガイド

314 ページ Agile Product Lifecycle Management

 [アクション] メニュー - 正しく設定されたクラスの [アクション] メニューから Web ページ

を選択できます。
 ダッシュボード - 第 20 章「ダッシュボード管理拡張の開発」を参照してください。
 外部レポート - Web ページにアクセスしてレポートを生成できます。
 [ツール] メニュー - [ツール] メニューから Web ページを選択できます。

プロセス拡張を [アクション] メニューから起動するように指定した場合は、そのプロセス拡張を使

用するサブクラスを設定できます。プロセス拡張を使用して外部レポートを作成するように指定した

場合は、Agile Web クライアントを使用してレポートを作成できます。プロセス拡張を [ツール] メ
ニューから起動するように指定した場合、そのプロセス拡張は Agile PLM クライアントで常に使用

できます。

 有効 - [はい] または [いいえ] を選択します。

7. [OK] をクリックして新規のプロセス拡張を保存します。

エンコードされた Agile PLM 情報を他のアプリケーションに渡す場合
Agile SDK 9.2.2 では、パスワードで保護された外部アプリケーション サーバを介するシングル サインオンは

サポートされていません。

重要 Agile Web クライアントは、エンコードされたユーザーのアカウント情報を継承できます。このユー

ザーのアカウント情報は、PX アプリケーションで Agile SDK を使用するときに SDK で再利用で

きます。外部アプリケーション サーバに対してパスワードで保護されたアクセスを実行する場合は、

外部サーブレットにアクセスするためのユーザー名とパスワードをコード内にハードコードする必

要があります。

URL ベースのプロセス拡張をオブジェクトの [アクション] メニューから起動する場合、そのオブジェクトの

結合キーとクラス ID、および現在のユーザー名は、GET メソッドを使用して URL にエンコードされます。

クライアントは、データを ID= 値のペアとしてエンコードし、このペアを URL の最後に追加します。次の

例に示すように、各 ID には接頭辞「agile」が付きます。
http://www.acoolwebsite.com/?agile.username=wangsh&agile.classId=1
0141&agile.1001=

1000-02&agile.1014=A&agile.siteName=Taipei

注意 [アクション] メニューとは異なり、[ツール] メニューのコマンドに関連付けられた Agile PLM オブ

ジェクトはありません。したがって、URL ベースのプロセス拡張を [ツール] メニューから起動し

た場合、エンコードされたオブジェクト データは URL に追加されません。

URL ベースのプロセス拡張の URL にエンコードされた情報に加えて、暗号化されたユーザー名と関連するパ

スワードがそれぞれ j_username と j_password クッキーから使用できます。これらのクッキーは、次の条件を

満たす場合に、ターゲット システムに自動的に渡されます。

 ユーザーが URL ベースのプロセス拡張を Agile Web クライアントから起動する場合

注意 Web アプリケーションは agile.properties の cookie.domain プロパティで指定したドメインに存在

している必要があります。そうでない場合、セキュリティ クッキーは継承されません。

 ターゲット システムでクッキーを受け取ることが許可されている場合

 ターゲット システムが Agile PLM システムと同じドメイン内にある場合

注意 ターゲット システムが企業のファイヤウォールの外側にある場合、そのシステムは、SSL を使用す

るセキュアな Web サーバである必要があります。

http://www.acoolwebsite.com/?agile.username=wangsh&agile.classId=10141&agile.1001
http://www.acoolwebsite.com/?agile.username=wangsh&agile.classId=10141&agile.1001

 第 19 章

Agile Product Lifecycle Management 315 ページ

ターゲット システムからの Agile PLM セッションの作成
Agile Web クライアントで起動した URL ベースのプロセス拡張から受信した HTTP リクエストの認証情報

を使用することによって、ターゲット アプリケーションは Agile API を使用して IAgileSession を作成で

きます。さらに、Agile API クライアントは、HTTP リクエストで参照される Agile PLM オブジェクトを取得

して設定できます。

ユーザーが Agile Web クライアントにログインすると、認証プロセスによって、そのユーザーの暗号化された

ユーザー名とパスワードが保存されているサーバ コンピュータ上にクッキーのペア (j_username と
j_password) が作成されます。Agile Web クライアントから URL ベースのプロセス拡張を起動すると、ター

ゲット システムは、クッキーを使用して Agile PLM セッションを作成できます。実際には、ターゲット シス

テム上の Agile Web クライアントと Agile API クライアントは、シングル サインオンを共有できます。

注意 Agile Java クライアントでは、Web クライアントと異なり、クライアント側のクッキーが作成され

ません。したがって、プロセス拡張のシングル サインオン機能はサポートされません。

クッキーは、同じドメイン内のコンピュータ間で共有するように設計されています。たとえば、Agile PLM の
インストール中にドメインを「.agile.agilesoft.com」に設定すると、「.agile.agilesoft.com」で終わるすべてのコ

ンピュータが j_username と j_password クッキーを使用できます。

クッキーの詳細は、次の Web サイトを参照してください。
http://wp.netscape.com/newsref/std/cookie_spec.html

次の例は、Agile API を使用して、HTTP サーブレット リクエストからクッキー情報を抽出し、その情報を使

用して IAgileSession を生成する方法を示しています。AgileSessionFactory.PX_REQUEST フィール

ドの値はセッション作成時に使用されるキーで、サーブレット リクエストと同じになるように設定されます。

例: PX_REQUEST フィールドの使用による、サーブレット リクエストからの IAgileSession の
作成

private IAgileSession connect(HttpServletRequest request) throws
ServletException {
 factory =
AgileSessionFactory.getInstance("http://agileserver/Agile");
 HashMap params = new HashMap();
 params.put(AgileSessionFactory.PX_REQUEST, request);
 session = factory.createSession(params);
 return session;
}

ターゲット アプリケーションがサーブレットベースでない場合は、別の方法でクッキー情報を使用してセッ

ションを作成します。AgileSessionFactory.PX_REQUEST を使用せずに、

AgileSessionFactory.PX_USERNAME と AgileSessionFactory.PX_PASSWORD フィールドを
HashMap のキーとして使用できます。これらのフィールドの値は、それぞれ j_username と j_password クッ

キーの値である必要があります。

例: PX_USERNAME および PX_PASSWORD フィールドの使用による IAgileSession の作成
private IAgileSession connect(Cookie[] cookies) throws Exception {
 factory =
AgileSessionFactory.getInstance("http://agileserver/Agile");
 HashMap params = new HashMap();
 String username = null;
 String pwd = null;

http://wp.netscape.com/newsref/std/cookie_spec.html
http://agileserver/Agile
http://agileserver/Agile

SDK 開発者ガイド

316 ページ Agile Product Lifecycle Management

 for (int i = 0; i < cookies.length; i++) {
 if (cookies[i].getName().equals("j_username"))
 username = cookies[i].getValue();
 else if (cookies[i].getName().equals("j_password"))
 pwd = cookies[i].getValue();
 }
 params.put(AgileSessionFactory.PX_USERNAME, username);
 params.put(AgileSessionFactory.PX_PASSWORD, pwd);
 session = factory.createSession(params);

 return session;
}

HTTP リクエストからの Agile PLM オブジェクトの取得
オブジェクトの [アクション] メニューから URL ベースのプロセス拡張を起動する場合は、ターゲット アプ

リケーションで Agile PLM オブジェクトを取得して変更できます。オブジェクトの結合キーとクラス ID は、

GET メソッドを使用して URL にエンコードされます。ターゲット アプリケーションで参照先の
IAgileObject を簡単に取得するために、Agile API では、次の例に示すように、オーバーロードされた
IAgileSession.getObject() メソッドを使用できます。SDK では、リクエストからオブジェクト ID 情
報を抽出し、その情報を使用して指定のオブジェクトを取得します。

例: HTTP リクエストからの Agile PLM オブジェクトの取得
private IAgileObject getAgileObject(HttpServletRequest request)
throws ServletException {
 IAgileObject obj = session.getObject(null, request);
 return obj;
}

ターゲット アプリケーションがサーブレットベースでない場合は、通常の IAgileSession.getObject()
メソッドを使用して参照先のオブジェクトを取得できます。getObject() の params パラメータには、オ

ブジェクトのクラスの必須属性がすべて含まれた HashMap を指定します。必要な属性/値のペアは、エンコー

ドされた URL に含まれます。各 Agile PLM クラスの識別属性のリストは、次のセクションを参照してくださ

い。

Agile PLM クラスの識別属性
各 Agile PLM クラスには、異なる一連の識別属性があり、エンコードされた URL にパラメータとして渡すこ

とができます。たとえば、変更オブジェクトは、クラス ID と [カバー ページ.番号] 属性を渡します。次の表

に、各 Agile PLM クラスの識別属性を示します。

クラス パラメータ 説明

変更 agile.classID 選択したオブジェクトのクラス ID

 agile.1047 カバー ページ.番号

顧客 agile.classID 選択したオブジェクトのクラス ID

 agile.5110 一般情報.顧客番号

部品分類 agile.classID 選択したオブジェクトのクラス ID

 agile.agile.2000
004284

タイトル ブロック.名前

 第 19 章

Agile Product Lifecycle Management 317 ページ

クラス パラメータ 説明

デクラレーション agile.classID 選択したオブジェクトのクラス ID

 agile.agile.2000
002615

タイトル ブロック.名前

ディスカッション agile.classID 選択したオブジェクトのクラス ID

 agile.18417 カバー ページ.番号

ファイル フォルダ agile.classID 選択したオブジェクトのクラス ID

 agile.6173 タイトル ブロック.番号

 agile.7951 タイトル ブロック.バージョン

アイテム agile.classID 選択したオブジェクトのクラス ID

 agile.1001 タイトル ブロック.番号

 agile.1014 タイトル ブロック.リビジョン

 agile.siteName 拠点名 - [すべて] が選択されている場合、このパラメータは省略

されます。

製造元部品 agile.classID 選択したオブジェクトのクラス ID

 agile.1647 一般情報.製造元名

 agile.1648 一般情報.製造元部品番号

製造元 agile.classID 選択したオブジェクトのクラス ID

 agile.1754 一般情報.製造元名

パッケージ agile.classID 選択したオブジェクトのクラス ID

 agile.3110 カバー ページ.パッケージ番号

価格 agile.classID 選択したオブジェクトのクラス ID

 agile.10355 一般情報.番号

 agile.10357 一般情報.リビジョン

プログラム agile.classID 選択したオブジェクトのクラス ID

 agile.18041 一般情報.番号

プロジェクト agile.classID 選択したオブジェクトのクラス ID

 agile.14824 一般情報.番号

PSR agile.classID 選択したオブジェクトのクラス ID

 agile.4856 カバー ページ.番号

QCR agile.classID 選択したオブジェクトのクラス ID

 agile.4029 カバー ページ.QCR 番号

SDK 開発者ガイド

318 ページ Agile Product Lifecycle Management

クラス パラメータ 説明

レポート 1 agile.classID 選択したオブジェクトのクラス ID

 agile.8071 一般情報.名前

RFQ agile.classID 選択したオブジェクトのクラス ID

 agile.13925 カバー ページ.RFQ 番号

見積依頼回答 agile.classID 選択したオブジェクトのクラス ID

 agile.14472 カバー ページ.RFQ 番号

 agile.14452 カバー ページ.サプライヤ名

拠点 agile.classID 選択したオブジェクトのクラス ID

 agile.11882 一般情報.名前

含有基準 agile.classID 選択したオブジェクトのクラス ID

 agile.2000001969 タイトル ブロック.名前

サブスタンス agile.classID 選択したオブジェクトのクラス ID

 agile.2000001124 タイトル ブロック.名前

サプライヤ agile.classID 選択したオブジェクトのクラス ID

 agile.17761 一般情報.番号

転送 agile.classID 選択したオブジェクトのクラス ID

 agile.12673 カバー ページ.転送番号

ユーザー agile.classID 選択したオブジェクトのクラス ID

 agile.11617 一般情報.ユーザー名

ユーザー グループ agile.classID 選択したオブジェクトのクラス ID

 agile.12077 一般情報.名前

注意 プロセス拡張フレームワークでは URL にレポート情報をエンコードできますが、Agile API では、

レポート オブジェクトはサポートされていません。したがって、Agile API を使用して、URL で参

照されるレポート オブジェクトを取得することはできません。

SDK ネットワーク クラスローダと Weblogic Server
の操作の設定
SDK ベースのサーブレットを Weblogic Server に配置した場合は、SDK クラスローダを目的に従って設定し

ないかぎり、URL のプロセス拡張は操作に失敗します。

Weblogic Server に対して SDK ネットワーク クラスローダを設定する手順は、次のとおりです。

1. Application.ear ファイルから次のファイルを抽出します。

 AgileAPI.jar

 agileclasses.jar

 第 19 章

Agile Product Lifecycle Management 319 ページ

 fsclient.jar

 sdk.jar

注意 これらのファイルは、
<AgileHOME>¥agileDomain¥SERVERNAME-AgileServer¥.wlnotdelete¥Application_SERVE
RNAME-AgileServer¥APP-INF¥lib フォルダにあります。

 wlsuth.jar

注意 このファイルは、カスタム アプリケーションが Agile サーバにリモートでアクセスす

る場合のみ必要です。このファイルは <AgileHOME>¥agileDomain¥lib にあります。

2. 最初の 4 つのファイルをアプリケーション ライブラリ ディレクトリ (.war ファイル) にパッケージ化

します。

3. Weblogic Application Server を停止します。

4. システムの一時ディレクトリ内で AgileSDK.cache フォルダを検索し、検出した場合は削除します。

5. サーバを再起動します。

注意 Web アプリケーションでアプリケーションをリモート サーバに対して実行している場

合は、Weblogic JVM の classpath に wlsauth.jar を追加する必要があります。

外部レポートの作成
Agile Web クライアントで、外部リソースまたは URL に接続して外部レポートを生成できます。外部レポー

トを作成する前に、レポートに関連付けられた URL をプロセスの拡張ライブラリに追加する必要があります。

詳細は、前述の「URL ベースのプロセス拡張の定義」を参照してください。

Agile Web クライアントでレポートを作成するには、レポートの作成権限が必要です。

外部レポートを作成する手順は、次のとおりです。

1. Agile Web クライアントにログインします。

注意 Agile Java クライアントでは外部レポートを作成できません。

2. [作成] > [レポート] > [外部] の順に選択します。[レポート作成ウィザード] が表示されます。

3. レポートの名前を入力します。[次へ] をクリックします。

4. 次の一般情報を入力します。

 説明 - レポートの簡単な説明を入力します。

 プロセスの拡張 - プロセス拡張を選択します。選択したプロセス拡張は、URL (Web ベース レポー

ト エンジンの場所など) に関連付けられます。

 フォルダ – レポートの親フォルダを選択します。

5. [完了] をクリックします。

SDK 開発者ガイド

320 ページ Agile Product Lifecycle Management

クラスタ環境でのプロセス拡張の配置
Agile PLM インストーラがアプリケーション サーバ クラスタ内のサーバで実行されていない場合は、その

サーバに、/agile_home/integration/sdk/extensions フォルダは存在しません。存在しない場合は、フォ

ルダを手動で作成し、プロセス拡張の JAR ファイルをそのフォルダにコピーする必要があります。

プロセス拡張の配置フォルダを手動で作成する手順は、次のとおりです。

1. 次のフォルダをクラスタ内のすべてのアプリケーション サーバ上に作成します (存在しない場合)。
/agile_home/integration/sdk/extensions

2. プロセス拡張の全 JAR ファイルを、クラスタ内の各サーバの
/agile_home/integration/sdk/extensions フォルダに配置します。

プロセス拡張に関するよくある質問
このセクションでは、プロセス拡張に関する一般的な質問について回答します。

プロセス拡張とは、どのようなものですか。

カスタム アクション、外部レポート、カスタム自動採番およびツールを介して Agile PLM クライアントの機

能を拡張し、顧客の業務にあわせてシステムを調整できます。プロセス拡張を使用すると、Agile PLM サーバ

と Agile PLM ユーザーは外部システムに接続できます。

プロセス拡張を使用すると、どのようなタイプのアクションを定義できますか。

プロセス拡張では、2 つのタイプのプロセス拡張アクションがサポートされています。それは、カスタム自動

採番ソースとカスタム アクションです。カスタム自動採番ソースは、オブジェクトのクラスで使用する連続番

号を定義します。カスタム アクションは、Agile PLM クライアントから実行できるプログラムです。

プロセス拡張は、URL への参照である場合もあります。URL は、単なる Web サイトでも、Web ベースのア

プリケーションの場所でも構いません。

プロセス拡張は、非同期処理をサポートできますか。

Agile のプロセス拡張でサポートしているのは、同期処理のみです。プロセス拡張で非同期処理が必要な場合

は、PX コードを変更して、選択した非同期ソリューションを実装する必要があります。たとえば、スレッド

を起動することができます。

Agile の Java API をプロセス拡張プログラム内で使用できますか。

はい。Agile の Java API および他の外部 Java API を使用できます。唯一の要件は、拡張のタイプに応じて、

ICustomAutoNumber または ICustomAction インターフェースのいずれかを実装することです。

プロセス拡張は Agile PLM クライアントでどのように起動するのですか。

カスタム アクションは、次の方法で起動できます。

 ワークフロー ステータスの変更

 [ツール] メニューからのカスタム アクションの選択

 第 19 章

Agile Product Lifecycle Management 321 ページ

 オブジェクトの [アクション] メニューからのカスタム アクションの選択

 カスタム アクションを使用する外部レポートの選択

 カスタム自動採番ソースを使用するクラスのオブジェクトの作成

プロセス拡張には、特別なセキュリティ要件がありますか。

いいえ。プロセス拡張のスタックは Agile アプリケーション サーバ上にあるため、カスタム アクションとカ

スタム自動採番ソースは、認証済のユーザーに権限がある環境内で実行されます。

カスタム アクションには、どのように役割と権限を定義するのですか。

デフォルトでは、カスタム アクションでは現在のユーザーの役割と権限を使用します。ただし、拡張した権限

を持つようにカスタム アクションを設定する場合は、カスタム アクションに必要な役割を Agile Java クライ

アントのプロセスの拡張ライブラリに指定できます。Agile PLM クライアントでカスタム アクションを使用す

るときは、そのカスタム アクションに対して指定した役割と権限が、現在のユーザーの役割と権限より優先さ

れます。そのカスタム アクションが完了した時点で、クライアントはユーザーの元の役割と権限に戻ります。

プロセス拡張は、どのように設定して配置するのですか。

アプリケーション サーバの agile_home/integration/sdk/extensions フォルダに、プロセス拡張の JAR ファイル

を格納します。この JAR ファイルには、META-INF/services ディレクトリ内に
com.agile.px.ICustomAutoNumber または com.agile.px.ICustomAction という名前のファイルが含まれている必

要があります。ファイルの内容は、カスタム自動採番ソースまたはカスタム アクション用の Java の完全修飾

クラス名で、1 行に 1 クラスずつリストされています。

プロセス拡張プログラムをアプリケーション サーバに配置した後は、どのようにプロセス拡張を有効にするの

ですか。

配置した後のプロセス拡張は、Agile PLM クライアント内で使用するように設定できます。Agile Java クライ

アントでは、カスタム アクションをプロセスの拡張ライブラリに追加し、カスタム自動採番を [自動採番]
テーブルに追加できます。

カスタム アクションまたはカスタム自動採番ソースの JAR ファイルを配置した後に、アプリケーション
サーバのクラスパスを更新する必要がありますか。

いいえ。クラスパスは専用のクラスローダによって自動的に更新されます。クラスローダは、

agile_home/integration/sdk/extensions (または agile.properties ファイルの sdk.extensions プロパ

ティで指定した場所) にあるクラスを使用して、アプリケーション サーバのクラスパスを拡張します。

カスタム自動採番ソースは、どのように作成するのですか。

com.agile.px パッケージのサーバ側 API である ICustomAutoNumber インターフェースを実装する
Java クラスを作成します。コードでは、自動採番のロジック (接頭辞、接尾辞、桁数など) および永続性メカ

ニズムを定義します。Agile PLM システムでは、getAutoNumber() メソッドを呼び出してカスタム自動採番

ソースから次の番号を取得します。

Agile Java クライアントでは、カスタム自動採番ソースをどのように割り当てるのですか。

[クラス] ノードで、自動採番ソースを特定のサブクラスに割り当てます。[自動採番] ノードでは、サブクラス

を自動採番ソースに割り当てることもできます。

SDK 開発者ガイド

322 ページ Agile Product Lifecycle Management

カスタム アクションは、どのように作成するのですか。

com.agile.px パッケージのサーバ側 API である ICustomAction インターフェースを実装する Java ク
ラスを作成します。コードでは、カスタム アクションを定義し、現在のオブジェクトを変更するか、外部レポー

トを作成するか、Agile PLM クライアントを外部システムと統合するか、またはその他のビジネス ロジックを

実行するかを定義します。Agile PLM クライアントでカスタム アクションを起動するとき、Agile PLM システ

ムは doAction() メソッドを呼び出します。

カスタム アクションを [ツール] メニュー、[アクション] メニュー、ワークフロー ステータスおよび外部レ

ポートにどのように関連付けるのですか。

Agile Java クライアントで [プロセス拡張] ノードを開き、カスタム アクションを追加して設定します。カス

タム アクションは、ワークフロー ステータス、[ツール] メニュー、クラスの [アクション] メニュー、およ

び外部レポートに関連付けることができます。ワークフロー ステータスに関連付けられたカスタム アクショ

ンは、ワークフローがそのステータスに入ると自動的に起動します。[起動先] プロパティが [[ツール] メ
ニュー] に設定されている場合、カスタム アクションは [ツール] メニューに表示されます。カスタム アク

ションをサブクラスの [プロセスの拡張] タブに追加すると、そのカスタム アクションはオブジェクトの [ア
クション] メニューに表示されます。外部レポートに関連付けられたカスタム アクションは、そのレポートが

実行されると自動的に起動します。

プロセス拡張は、Agile PLM クライアントの [ツール] メニューまたは [アクション] メニューにどのような順

序で表示されますか。

プロセス拡張を [ツール] メニューまたはオブジェクトの [アクション] メニューに追加すると、標準のメ

ニュー コマンドの後に作成順に表示されます。[ツール] メニューまたは [アクション] メニューのコマンドに

対して、並べ替えなどの管理操作は実行できません。

クラスに割り当てられたカスタム アクションの継承モデルとは、どのようなものですか。

カスタム アクションは、基本クラス レベル、クラス レベルまたはサブクラス レベルで定義できます。基本

クラス レベルで定義されたカスタム アクションは、基本クラスの下位にあるすべてのクラスおよびサブクラ

スで使用できます。サブクラス レベルで定義されたカスタム アクションは、そのサブクラスでのみ使用でき

ます。

PX および WSX 設定プロパティ ファイルはどこに配置するのですか。

Agile PLM リリース 9.2.2.2 での配置変更によって、agileDomain¥config ディレクトリはクラスパスに含まれま

せん。PX および WSX プロパティ ファイルは、次のディレクトリに配置できます。
¥oas¥j2ee¥home¥applications¥Agile¥APP-INF¥classes¥

Agile Product Lifecycle Management 323 ページ

第 20 章

Web サービス拡張の開発

扱うトピックは次のとおりです。

 Web サービス拡張について .. 323
 Web サービスについて.. 325
 Web サービスの開発および配置 .. 328
 Web サービスの使用.. 329
 ユーザーの認証 ... 330
 クライアント/サーバ アクセスでのシングル サインオン クッキーの使用 ... 331
 MyFirstWebService サンプルの環境の準備 ... 332
 MyFirstWebService サンプルの作成 ... 334
 Web サービス クライアントについて .. 335
 MyFirstClient の作成... 336
 インポート データのサーバ ルール準拠の検証 .. 339
 Microsoft .NET の相互運用性 .. 340
 Web サービス拡張に関するよくある質問 .. 341

Web サービス拡張について
Web サービス拡張 (WSX) は、内部および外部の異種システムと Agile PLM の間の通信を可能にする Web
サービス エンジンです。これらの異種システムには、Enterprise Resource Planning (ERP) システム、Customer
Resource Management (CRM) システム、Business-to-Business Integration (B2Bi) システム、他の Agile PLM シス

テムおよびサプライ チェーン パートナーが含まれます。WSX によって、新製品投入 (NPI)、製品変更および

製造リソースの急速な増加に対応するプロセスを簡素化することができます。また、未加工の製品コンテンツ

を集計し、重要な製品コンテンツを他のコア システムに対してリアルタイムで提供するプロセスを簡素化する

こともできます。WSX には、Agile PLM の新しい Web サービスを開発するためのツールとフレームワーク

が含まれています。

WSX を使用すると、次の内容を実行できます。

 Enterprise Application Integration (EAI) システムに対して製品コンテンツを提供します。これによって、多

岐にわたる内部アプリケーションにデータを供給できるようになります。

 製品コンテンツを、製品設計、製造計画、製造現場、Enterprise Resource Planning (ERP) および Customer
Relationship Management (CRM) の各アプリケーションと共有します。

 製品コンテンツを Business-to-Business (B2B) システムに提供します。これによって、Agile アプリケーショ

ン サーバのデータを、広範囲にわたる外部アプリケーションに企業の境界を超えて転送できます。

 交換、レポートおよびカスタム アプリケーションに対してコンテンツを提供し、ERP および他のサプラ

イ チェーン アプリケーションから製品コンテンツ データをインポートします。

SDK 開発者ガイド

324 ページ Agile Product Lifecycle Management

注意 Agile Integration Services (AIS) は、単独のライセンス製品です。AIS は、WSX 技術を使用して構築

された一連の Web サービスで、プログラムによるインポートとエクスポートの機能を Agile PLM
システムに提供します。AIS の詳細は、『Agile Integration Services Developer Guide』を参照してくだ

さい。

主な機能
WSX の主な機能は、次のとおりです。

 プログラムによるデータ アクセス - Agile PLM システムおよび他のデータ リソースに格納されている

データへのプログラムによるアクセスを提供します。これによって、開発者は、コンテンツの転送を自動

化するためのカスタム アプリケーションを作成できます。

 アクセスの容易性 - 標準的な HTTP(S) 技術を使用して、企業のファイヤウォール外部にある Agile PLM
製品コンテンツに関するアクセスの容易性を提供します。

 複数のプログラミング言語のサポート - Simple Object Access Protocol (SOAP) または Web Services
Description Language (WSDL)、あるいはその両方を作成および理解できるあらゆる言語をサポートしていま

す。

 複数の出力形式のサポート - aXML および PDX 1.0 をサポートしています。XSL を使用して、XML デー

タを任意の形式に変換したり、データを任意の形式で返す Web サービスを開発することもできます。

 セキュリティ - インターネット標準の通信プロトコルとセキュリティ プロトコル (HTTP と SSL) を使

用して、XML に準拠したアプリケーションと通信します。したがって、インターフェースはファイヤ

ウォール フレンドリで安全です。

 第 20 章

Agile Product Lifecycle Management 325 ページ

WSX アーキテクチャ
Agile PLM および WSX フレームワークに接続するには、Web サービスの標準的な起動方法を使用します。
図 15: WSX アーキテクチャ

Web サービスについて
Web サービスは、分散アプリケーションを構築するための技術です。インターネットを介して使用できるこれ

らのサービスでは、標準化された XML メッセージング システムが使用されるため、1 つのオペレーティン

グ システムまたはプログラミング言語に制限されることはありません。Web サービスによって、企業では、

既存のビジネス プロセスをカプセル化してサービスとして公表し、他のサービスを検索してサブスクライブし、

企業全体または企業の境界を超えて情報を交換できます。Web サービスは、構造化されたデータ交換、メッセー

ジング、サービスのディスカバリ、インターフェース記述およびビジネス プロセス設計の仕様に関する一般的

な合意に基づいています。

Web サービスでは、インターネットを介してリモート プロシージャによる呼び出しが実行されます。また、

HTTP(S) または他のプロトコルを使用してリクエストとレスポンスを転送し、Simple Object Access Protocol
(SOAP) を使用してリクエストとレスポンスの情報を通信します。

SDK 開発者ガイド

326 ページ Agile Product Lifecycle Management

Web サービスの主なメリットは、次のとおりです。

 サービス指向のアーキテクチャ - Web サービスは、パッケージ製品とは異なり、あらゆるプラットフォー

ムからアクセスできる一連のサービスとして配信できます。複数のコンポーネントはそれぞれが単独で存

在します。公開が必要なのは、ビジネスレベルのサービスのみです。

 相互運用性 - システム間の完全な相互運用性を保証します。

 統合 - 特に、異なるプラットフォーム上のアプリケーションまたは異なる言語で記述されているアプリ

ケーションを接続する場合は、柔軟な統合ソリューションを提供します。

 モジュール方式 - プログラミングにモジュール的アプローチを提供します。アプリケーションの各ビジネ

ス機能を個別の Web サービスとして公開できます。モジュールを小型化することでエラーが削減され、

より多くのコンポーネントが再利用可能になります。

 アクセスの容易性 - ビジネス サービスを完全に分散化できます。これらのビジネス サービスはインター

ネット経由で配信されるため、多様な通信機器でアクセスできます。

 効率性 - 内部での使用が目的のアプリケーションから構築した Web サービスを、コード変更なしで、外

部向けに使用できます。Web サービスは人間が解読可能な形式で宣言および実装されるため、Web サー

ビスを使用した増分開発は比較的簡単です。

あらゆる技術と同様に、Web サービスにも若干の制限があります。Web サービスを開発する際は、次の点を

考慮する必要があります。

 SOAP は、転送媒体を介してデータとリクエストを処理するための簡単なメカニズムです。分散ガーベッ

ジ コレクト、オブジェクトのアクティブ化、参照による呼び出しなど、高度な操作を処理するようには設

計されていません。

 Web サービスはネットワークを基盤としているため、ネットワーク トラフィックの影響を受けます。Web
サービスを起動する際の待ち時間は、多くの場合、数百ミリ秒になります。したがって、このサービスで

提供される機能の価値は、長い起動待ち時間を正当化できるほど十分に有意であることが必要です。

 Web サービスは、会話型プログラミングには適していません。したがって、公開するサービスを設計する

ときは、可能なかぎりその独立性を確保するように努める必要があります。

Web サービス アーキテクチャ
Web サービス アーキテクチャは、役割とプロトコル スタックの観点で考えることができます。

 Web サービスの役割:

 サービス プロバイダ - サービスを実装しインターネット上で使用可能にすることでサービスを提供

します。

 サービス リクエスタ - サービスのユーザーです。ネットワーク接続を開いて XML リクエストを送

信することでサービスにアクセスします。

 サービス レジストリ - サービスの集中ディレクトリです。開発者は、検出した既存のサービスに関

する新しいサービスをこのディレクトリで公表できます。

 Web サービスのプロトコル スタック:

 サービス転送レイヤー - HTTP を使用して、アプリケーション間でメッセージを転送します。その他

の転送は、AIS の将来のリリースでサポートされます。

 XML メッセージ レイヤー - SOAP を使用して、メッセージを XML 形式にエンコードします。SOAP
は、プラットフォームに依存しない XML プロトコルであり、コンピュータ間での情報交換に使用さ

れます。転送するカプセル化されたデータのエンベロープ仕様、データ エンコード ルールおよび
RPC 規則を定義します。

 第 20 章

Agile Product Lifecycle Management 327 ページ

 サービス記述レイヤー - Web Service Description Language (WSDL) プロトコルを使用して、特定の
Web サービスへのパブリック インターフェースを記述します。WSDL は、ネットワーク サービスを、

メッセージを交換できる通信エンドポイントの集合として記述するための XML 構文を定義します。

これらのメッセージには、ドキュメント指向またはプロシージャ指向の情報が記述されています。操

作とメッセージは抽象的に記述されてから、ネットワーク プロトコルとメッセージ形式にそれぞれバ

インドされます。WSDL を使用すると、通信に使用するメッセージ形式やネットワーク プロトコル

に関係なく、エンドポイントとそのメッセージを記述できます。WSDL ドキュメントは、サービスを

ネットワーク エンドポイント (ポートと呼ばれる) の集合として定義します。ポートは、ネットワー

ク アドレスを再利用可能なバインディングに関連付けることで定義され、複数ポートの集合で 1 つ
のサービスを定義します。

 サービス ディスカバリ レイヤー - Universal Description, Discovery, and Integration (UDDI) プロトコル

を使用して、複数のサービスを共通レジストリに集中化します。

注意 WSX は、現在、UDDI または他のサービス ディスカバリ レイヤーをサポートしてい

ません。

セキュリティ
WSX は、インターネット標準の通信プロトコルとセキュリティ プロトコル (HTTP と SSL) を使用して、

XML に準拠したアプリケーションと通信します。WSX とそのクライアント間の (Web サーバを介した) 通信

は、セキュア ソケット レイヤー (SSL) とサーバ側の証明書を介して暗号化できるため、認証、プライバシお

よびメッセージ整合性が提供されます。標準的な Java 暗号化ライブラリを使用して、ファイルの暗号化と復

号化、セキュリティ キーの作成、ファイルへのデジタル署名の作成およびデジタル署名の検証を実行できます。

Web サービス拡張フレームワークによって、ファイヤウォール外部から受信した起動リクエストの安全性が確

保されます。つまり、WSX への外部リクエストはすべて、HTTPS または同等のプロトコルを使用して保護さ

れます。WSX への内部リクエストは、セキュリティなしで (つまり、HTTP を使用して) 実行できます。

Web サービスを起動する際は、ユーザー名とパスワードによるセキュリティを実施する複数の方法があります。

Agile API を使用して Web サービスを開発する場合は、他の API プログラムの場合と同様に、

createSession() のパラメータにユーザー名とパスワードを指定できます。

Java のセキュリティと暗号化のサポートに関する詳細は、

http://java.sun.com/j2se/1.3/docs/guide/security/index.html を参照してください。

ツール
Web サービスへのアクセスに必要なツール セットは複数あります。選択するツールは、クライアントの開発

に使用する環境によって大きく異なります。基本的には、XML および HTTP リクエスト/レスポンス メッセー

ジを生成して処理できるツールが必要になります。

WSX フレームワークは、SOAP プロセッサである Apache eXtensible Interaction System (AXIS) に基づいていま

す。ただし、ソース言語に関係なく SOAP ツールの他の実装を使用して Web サービス クライアントを構築

できます。

注意 Agile SDK には、AXIS の使用方法を示す WSX Java サンプルが付属しています。AXIS とその機

能および使用方法の詳細は、AXIS の Web サイトを参照してください。http://xml.apache.org/axis

http://java.sun.com/j2se/1.3/docs/guide/security/index.html
http://xml.apache.org/axis

SDK 開発者ガイド

328 ページ Agile Product Lifecycle Management

Web サービスに関する追加情報の検索
次に、検討する Web サイトの一部を示します。

 WebServices.Org - http://www.webservices.org/

 Web Services Architect - http://www.webservicesarchitect.com/

 Web Services Journal - http://www.sys-con.com/webservices/

 webservices.xml.com - http://webservices.xml.com/

 O'Reilly Web Services - http://webservices.oreilly.com/

 Apache Axis - http://ws.apache.org/axis/

 Java Web Services Developer Pack 1.1 - http://java.sun.com/webservices/webservicespack/html

 Sun ONE Web Services Platform Developer Edition -
http://sunonedev.sun.com/building/development/developer_platform_overview.html

 Microsoft .Net Framework - http://msdn.microsoft.com/netframework/

 SOAP::Lite for Perl - http://www.soaplite.com

 Soap Tutorial - http://www.w3schools.com/soap/default.asp

Web サービスの開発および配置
独自の Web サービスを記述する作業は、数段階の手順で構成される簡単なタスクです。

1. Web サービスのエントリ ポイントを定義します。Web サービスのエントリ ポイント (または操作) は、

Java クラスのパブリック メソッドに対応しています。

2. Web サービス操作のロジックをコーディングします。Web サービス操作のロジックをコーディングする

際に従う必要がある特別なルールはありません。Agile が提供するライブラリ (Agile API を含む) に加え、

サード パーティのコード ライブラリを活用することもできます。

3. Java コードを通常と同様にコンパイルします。

4. コンパイルした JAR ファイルを Agile アプリケーション サーバ コンピュータの
AGILE_HOME¥integration¥sdk¥extensions にコピーします。Web サービスのデプロイメント ディスクリプ

タは、META-INF/services/com.agile.wsx.Deployment.wsdd という名前のファイルにある JAR ファイルにも

必要です。

注意 クラスタ環境に複数のアプリケーション サーバがある場合は、クラスタ内の各サーバに、

Web サービス ファイルを配置する必要があります。

Agile アプリケーション サーバによって、デプロイメント ディスクリプタにリストされているすべての Web
サービスが自動的に配置され、最新の変更内容が確実に適用されます。

デプロイメント ディスクリプタについて
Web サービスのデプロイメント ディスクリプタ ファイル (Deployment.wsdd) は、Axis の Web Service
Deployment Descriptor (WSDD) 形式に従ってフォーマットされた XML ファイルです。このデプロイメント
ディスクリプタは、WSX を介して公開される一連の Web サービスと Web サービス操作を宣言および記述し

ます。WSDD ファイルには、着信 SOAP リクエスト (認証など) またはレスポンス (送信データの再フォー

マットなど) を処理する際に使用する必要がある追加の動作も定義されています。

http://www.webservices.org/
http://www.webservicesarchitect.com/
http://www.sys-con.com/webservices/
http://webservices.xml.com/
http://webservices.oreilly.com/
http://ws.apache.org/axis/
http://java.sun.com/webservices/webservicespack/html
http://sunonedev.sun.com/building/development/developer_platform_overview.html
http://msdn.microsoft.com/netframework/
http://www.soaplite.com/
http://www.w3schools.com/soap/default.asp

 第 20 章

Agile Product Lifecycle Management 329 ページ

Axis のマニュアルには、WSDD 形式の概要と使用方法が記載されています。ただし、Axis のマニュアルを参

照する前に、WSX 内の次の制約事項に注意してください。

 Web サービスのデプロイメント ディスクリプタには、グローバル WSX 設定情報を挿入しないでくださ

い。Deployment.wsdd 内で宣言する設定情報は、サービス固有の宣言に制限する必要があります。

 WSX は、Axis の .jws ベースの Web サービスをサポートしていません。これらのサービスは準備段階

では有用ですが、開発環境では、Web サービスを再配置する当社のメカニズムが、さらに堅牢で使用しや

すいことが判明しています。

 セキュリティ上の理由から、Axis AdminServlet は WSX に含まれていません。

Axis デプロイメント ディスクリプタの詳細は、次の Axis のマニュアルを参照してください。

 『Axis User’s Guide』 - http://cvs.apache.org/viewcvs.cgi/~checkout~/xml-axis/java/docs/user-guide.html

「Custom Deployment - Introducing WSDD」および「Service Styles - RPC, Document, Wrapped, and Message」
の各セクションを参照してください。

 『Axis Reference Guide』 - http://cvs.apache.org/viewcvs.cgi/~checkout~/xml-axis/java/docs/reference.html

「Deployment (WSDD) Reference」のセクションを参照してください。

予約されている Web サービス名
次の Web サービス名は、Agile Integration Services (AIS) によって使用されるため、予約されています。これら

の名前は、作成した Web サービスに対して使用しないでください。

 Export

 Importer

 予約されているサービス名:

 FSHelper、DmsService (ファイル マネージャおよび Viewer)

 Export、Importer (AIS)

 ResponseService、PackageService、AcsStatusService (ACS)

Web サービスの使用
カスタム Web サービスを開発して配置した後は、そのサービスを使用します。Web サービスには、

http://<hostname>:<port>/<virtualPath>/integration/ws/<WebServiceName> 形式の URL を使

用してアクセスできます。

注意 Agile で変更した axis.jar ファイルを使用する必要があります。このファイルは Agile API に付

属しています。このファイルは、Agile の API コンポーネントをインストールすると、次の場所に

インストールされます。agile_home¥integration¥sdk¥lib¥axis.jar

http://cvs.apache.org/viewcvs.cgi/~checkout~/xml-axis/java/docs/user-guide.html
http://cvs.apache.org/viewcvs.cgi/~checkout~/xml-axis/java/docs/reference.html

SDK 開発者ガイド

330 ページ Agile Product Lifecycle Management

Web サービスのエントリ ポイントの定義
Web サービスのエントリ ポイント (または操作) は、Java クラスのパブリック メソッドに対応しています。

クラスのすべてのパブリック メソッドを操作として公開する必要はありませんが、すべての操作はパブリック
メソッドに対応しています。したがって、2 つのパブリック メソッド (methodOne と methodTwo など) を
公開する Java クラス (MyClass など) がある場合は、一方または両方を Web サービス操作として公開でき

ます。

通常、パラメータと戻りタイプに使用するデータ タイプが簡単であるほど、Web サービス操作の相互運用性

は高くなります。データ タイプが複雑になると、Web サービス フレームワークからカスタム シリアライザ/
デシリアライザまたは追加のサポートが必要になります。Axis が提供する追加のシリアライザ/デシリアライ

ザの詳細は、
http://cvs.apache.org/viewcvs.cgi/~checkout~/xml-axis/java/docs/user-guid
e.html#DataMapping を参照してください。

注意 原則的には、Web サービスから Agile API オブジェクト (IAgileSession や IItem など) を返

さないでください。Web サービスが返すのは、データ構造のみにしてください。

ユーザーの認証
デフォルトの Web サービスのバージョンとユーザーがカスタマイズしたバージョンはすべて、アプリケー

ション サーバによって保護されます。保護されている Web サービスにアクセスするには、次の行を Web
サービス クライアントのスタブ コードに追加します。

// Configure the stub with the necessary authentication information

stub.setUsername(cl.getOptionValue(USER_SHRT));

stub.setPassword(cl.getOptionValue(PASSWORD_SHRT));

stub.setMaintainSession(true);

特定の Web サービスに対する Web コンテナの保護を解除するには、以下の行を次のアプリケーションに追

加します。

 application.ear#application.war/WEB-INF/web.xml

および

application.ear#integration.war/WEB-INF/web.xml files:
<security-constraint>
 <web-resource-collection>
 <web-resource-name>Unprotect web
services</web-resource-name>
 <url-pattern>/ws/<web service name></url-pattern>
 <url-pattern>/services/<web service name></url-pattern>
 </web-resource-collection>
</security-constraint>

http://cvs.apache.org/viewcvs.cgi/~checkout~/xml-axis/java/docs/user-guide.html#DataMapping
http://cvs.apache.org/viewcvs.cgi/~checkout~/xml-axis/java/docs/user-guide.html#DataMapping

 第 20 章

Agile Product Lifecycle Management 331 ページ

クライアント/サーバ アクセスでのシングル サインオン
クッキーの使用
WSX クライアントのユーザーが、サード パーティのシングル サインオン製品 (SiteMinder や SAP ポータル

など) で保護されている Agile 9.X サーバで認証されると、ブラウザにはシングル サインオン クッキーが割

り当てられます。このクッキーは、カスタム j2ee Web アプリケーションが Agile 9.X サーバと同じ DNS ド
メインにある場合、そのアプリケーションに送信されます。SiteMinder を実行している場合は、2 つのアプリ

ケーションが同じ DNS ドメインにない場合でも、この製品は SSO をサポートしているため、SiteMinder 管
理者に確認してくださいこれで、Agile 9.X サーバに配置されている Web サービスを起動する場合は、ユー

ザー名とパスワードのかわりにシングル サインオン クッキーを有効なアカウント情報として渡すことができ

ます。

注意 ユーザー名/パスワードとシングル サインオン クッキーの両方を使用している場合は、シングル サ
インオン クッキーがユーザー名/パスワードより優先されます。

配置アーキテクチャ
次の図は、Agile サーバと WSX クライアント間の相互作用とリクエストの流れを要約しています。
図 16: 配置アーキテクチャ

シングル サインオン クッキーを使用した Web サービス クライアント

の起動
最初に HTTP リクエストからシングル サインオン クッキーを取得し、次に SOAP バインディング スタブ
コードを変更します。

SDK 開発者ガイド

332 ページ Agile Product Lifecycle Management

シングル サインオン クッキーの取得

Web サービス クライアント スタブを起動するには、その前に、HTTP リクエストのシングル サインオン
クッキーを取得する必要があります。デフォルトでは、SiteMinder が提供するシングル サインオン クッキー

は、SMSESSION と呼ばれます。このクッキーを http://www.ietf.org/rfc/rfc2965.txt の RFC2965 で指定されて

いる形式に変更します。最も簡単な形式は、「名前 = 値」です。この名前と値には、

javax.servlet.http.Cookie object メソッドを呼び出すことでアクセスします。

SOAP バインディング スタブ コードの変更

Web サービスの SOAP バインディング スタブ クラスを検索します。これは Axis の wsdl2java ユーティリ

ティによって生成されたクラスです。通常は、<service-name>SoapBindingStub.java という名前が付

きます。値を設定するには、次に示すように、cookies という名前の変数とメソッドを追加します。

SOAP バインディング スタブ コードを変更する手順は、次のとおりです。

1. 次のコードを追加します。

private String cookies = "";

public void setCookies(String cookies) {

 this.cookies = cookies;

}

2. 太字の行を createCall() メソッドに追加します。

if (super.cachedPortName != null) {

 _call.setPortname(super.cachedPortName);

}

_call.setProperty(org.apache.axis.transport.http.HTTPConstants.HEADER_COOKIE,
this.cookies);

java.util.Enumeration keys = super.cachedProperties.keys();

3. このクラスを再コンパイルし、次のサンプルに従って Web サービス スタブを起動します。

((<soaping binding stub class name>)stub).setCookies(<sso cookies you got in step
2.1>);

stub.setMaintainSession(true);

4. 次のサンプルと比較してください。このサンプルには、有効なアカウント情報としてユーザー名とパス

ワードが必要です。

stub.setUsername(<username>);

stub.setPassword(<password>);

stub.setMaintainSession(true);

5. Web サービス クライアントを j2ee Web アプリケーションの一部としてテストします。

MyFirstWebService サンプルの環境の準備
Web サービスの開発の容易性を示すために、開発プロセスに焦点を絞ったサンプルが用意されています。この

サンプル (MyFirstWebService) は、Web サービスの作成方法を示す比較的簡単な例です。この Web サービス

は、Agile SDK を使用して、特定のアイテムに関する情報を取得し、Web サービス操作の結果として返します。

http://www.ietf.org/rfc/rfc2965.txt

 第 20 章

Agile Product Lifecycle Management 333 ページ

必要な操作をサポートするために、次のエントリ ポイントが定義されています。
public String getItemField(String[] args) throws RemoteException

引数は、Jakarta Commons CLI というサード パーティ ライブラリを使用して、一連のコマンドライン引数であ

るかのように解析されます。それらの引数に基づいて、結果が String として返されます。実装の詳細情報は、

AGILE_HOME¥integration¥sdk¥samples¥wsx¥src¥first のサンプルを参照してください。このセクショ

ンでは、実装の詳細ではなく配置プロセスについて説明します。

サンプル作成用ツールのダウンロード
MyFirstWebService サンプルを作成して配置するには、その前に、次のツールをダウンロードする必要が

あります。

ツール ダウンロード拠点

Java 2 SDK SE バージョン 1.4.2 http://java.sun.com/j2se/1.4.2/download.html

Apache Project の Ant ビルド ツール、

バージョン 1.6.5
http://ant.apache.org/

Java SDK のインストール
このセクションでは、Windows および Solaris プラットフォームで Java SDK をインストールする手順につい

て説明します。適切なバージョンの Java がすでにインストールされている場合は、このセクションをスキッ

プできます。

Windows で Java SDK をインストールする手順は、次のとおりです。

1. ディストリビューションをダブルクリックし、インストール手順に従います。

2. システム変数 JAVA_HOME に Java SDK インストールのホーム ディレクトリ (たとえば、D:¥j2sdk142)
を設定します。

Solaris で Java SDK をインストールする手順は、次のとおりです。

1. ディストリビューション (たとえば、$./ j2sdk-1_4_2-solaris-sparc.sh) を実行し、インストール手順に従い

ます。

2. 環境変数 JAVA_HOME に Java SDK インストールのホーム ディレクトリ (たとえば、

/home/<user>/j2sdk142) を設定します。

3. 使用しているシェルに従って .profile または .cshrc ファイルを実行し、環境設定を再初期化します。

Ant のインストール
このセクションでは、Windows および Solaris で Ant をインストールする手順について説明します。

http://java.sun.com/j2se/1.4.2/download.html
http://ant.apache.org/

SDK 開発者ガイド

334 ページ Agile Product Lifecycle Management

Windows で Ant をインストールする手順は、次のとおりです。

1. Zip アーカイブの内容をローカル ディレクトリに抽出し、インストール手順に従います。

Windows 用の Ant ディストリビューションは zip ファイル (apache-ant-1.6.5-bin.zip など) です。

2. コマンド プロンプト ウィンドウを開き、次のコマンドを入力して Ant を起動できることを確認します。

%ANT_HOME%¥bin¥ant -version

次の出力が表示されます。

Apache Ant version 1.6.5 compiled on date

Solaris で Ant をインストールする手順は、次のとおりです。

1. tar アーカイブの内容をローカル ディレクトリ (/home/user/ant など) に抽出し、インストール手順に従い

ます。

UNIX 用の ANT ディストリビューションは tar ファイル (apache-ant-1.6.5-bin.tar.gz など) です。

2. 使用しているシェルに従って .profile または .cshrc ファイルを実行し、環境設定を再初期化します。

3. コマンド プロンプトから、次のコマンドを入力して Ant を起動できることを確認します。

$ANT_HOME/bin/ant -version

次の出力が表示されます。

Apache Ant version 1.6.5 compiled on date

MyFirstWebService サンプルの作成
Agile には、MyFirstWebService というサンプル Web サービスも含めて、SDK に関する複数のサンプル プロ

グラムが用意されています。サンプル プログラムは、http://docs.agile.com からダウンロードできます。

MyFirstWebService サンプルは、SDK サンプルの wsx フォルダにあります。

Ant ツールは、build.xml スクリプトを読み取り、WSX サンプルを実行しているサーバ上で、次の順序ですべ

てのターゲットを作成します。

1. Web サービスの Java コードを MyFirstWebService.jar にコンパイルします。

2. 結果の MyFirstWebService.jar ファイル (これには Deployment.wsdd が含まれています) と
commons-cli.jar ファイルを .../sdk/extensions フォルダにコピーします。

3. クライアントの実行に使用するスクリプト (runner.bat または runner.sh) を生成します。(これによって、

クライアントの実行に必要な CLASSPATH が設定されます。)

4. クライアント側のスタブ ファイルを生成し、次のフォルダに格納します。

AGILE_HOME¥integration¥sdk¥samples¥wsx¥built¥src¥client

5. クライアント クラスをコンパイルし、次のフォルダに格納します。

AGILE_HOME¥integration¥sdk¥samples¥wsx¥built¥classes¥client

サーバ マシンで WSX サンプルを作成する手順は、次のとおりです。

1. Agile ドキュメントの Web サイト (http://docs.agile.com) から、SDK サンプル フォルダをコピーします。

2. samples/WSX フォルダに移動します。

http://docs.agile.com/
http://docs.agile.com/

 第 20 章

Agile Product Lifecycle Management 335 ページ

注意 このフォルダに AgileAPI.jar がない場合は、WSX サンプルをコンパイルできません。

次のようにします。

3. サーバの $AGILE_HOME/sdk/samples/wsx に移動します。

4. http://archive.apache.org/dist/ws/axis/1_2/ (axis-bin-1_2.zip#/lib) から wsdl4j-1.5.1.jar をダウンロードし、lib
フォルダにコピーして、ファイル名を wsdl4j.jar に変更します。

5. サンプルの build.xml ファイルを使用して、MyFirstWebService サンプルを作成します。

 Windows の場合 - %ANT_HOME%/bin/ant

 Solaris/Linux の場合 - $ANT_HOME/bin/ant

重要 Web サービス サンプルを $AGILE_HOME/sdk/samples/wsx に作成しない場合は、

wsx/built/MyFirstWebService.jar を $AGILE_HOME/integration/sdk/extensions にアップロー

ドします。このディレクトリは、サーバの agile.properties で設定できます。

http://hostname:port/virtualPath/ws/MyFirstWebService?wsdl を起動すると、SDK では WSDL
ファイルまたは WSX が生成されないため、必要な WSDL ファイルが返されません。こ

れらのファイルを生成するには、次の手順のとおりに実行してください。

6. 前述のパッケージ wsdl4j.jar ファイルを Agile の application.ear#APP-INF/lib フォルダにコピーし、ear
ファイルを再配置します。

7. WSX フォルダで、次の適切なコマンドを起動し、WSX スタブを生成します。

 Windows の場合 - %ANT_HOME%/bin/ant –Dwsx.url=http://webserver/virtualPath/ws
–Dusername=<username> -Dpassword=<password>

 Solaris/Linux の場合 - $ANT_HOME/bin/ant –Dwsx.url=http://webserver/virtualPath/ws
–Dusername=<username> -Dpassword=<password>

Web サービス クライアントについて
このセクションでは、クライアント アプリケーションの開発に使用できるツールと、XML ファイルおよび
HTTP リクエスト/レスポンス メッセージを生成して処理できる言語について説明します。

クライアント プログラミング言語
AIS クライアントの開発に使用する Java は、Agile でテストおよび認定されますが、SOAP メッセージはプ

ラットフォームや言語には依存しません。これは、事実上、XML を生成および処理し、HTTP リクエスト/レ
スポンス メッセージを処理できるすべてのクライアント プログラミング言語が使用できることを意味します。

たとえば、クライアントは Java、Visual Basic.Net、C++、C または Perl で開発できます。

Java、.Net、Perl、Python、C++、C およびその他の環境に対応した便利なライブラリもあります。次に、詳細

を確認できるいくつかの Web サイトを示します。

 Apache Axis - Java 用オープン ソース SOAP 実装。次の Web サイトを参照してください。
http://ws.apache.org/axis/

 Java Web Services Developer Pack (JWSDP) - Sun 社の SOAP プロトコルの Java 実装。次の Web サイトを

参照してください。
http://java.sun.com/webservices/webservicespack.html

http://archive.apache.org/dist/ws/axis/1_2/
http://hostname:port/virtualPath/ws/MyFirstWebService?wsdl
http://ws.apache.org/axis/
http://java.sun.com/webservices/webservicespack.html

SDK 開発者ガイド

336 ページ Agile Product Lifecycle Management

 Microsoft .Net - Web サービス クライアントの作成に使用できる Microsoft Windows 用 XML Web サービ

ス プラットフォーム。次の Web サイトを参照してください。
http://msdn.microsoft.com/net

 SOAP::Lite for Perl - SOAP プロトコルの Perl 実装。次の Web サイトを参照してください。
http://www.soaplite.com/

注意 他の SOAP 実装の包括的なリストは、次の Web サイトを参照してください。
http://www.soapware.org/

Web サービスへのアクセス
通常、Web サービスにアクセスするには、次の操作を実行する必要があります。

1. SOAP リクエストを生成する - 多くの場合、Web サービスを意識したコード ライブラリでは、適切な形

式の SOAP リクエストを生成するクライアント側スタブを生成できます。

2. WSX へのリクエストを HTTP または HTTPS で発行する - 一連の適切なクライアント側スタブを生成

した後は、クライアント アプリケーションがこれらのスタブを使用してリクエストを発行できます。

3. SOAP レスポンスを処理する - 通常は、クライアント側のスタブが SOAP レスポンスを処理し、レスポ

ンスを一連の適切な戻りオブジェクトに変換する役割を担います。

WSX サンプルには、この処理を SOAP および Web サービスの関連ライブラリによって簡素化する方法が例

示されています。次のセクションでは、MyFirstWebService サンプルを使用して、前述の手順を詳細に説明しま

す。

MyFirstClient の作成
MyFirstWebService を作成して配置するときは、クライアント側のスタブとクライアント クラスも自動的に生

成します。このセクションでは、Web サービス クライアントの作成方法に関する一般的な側面を説明するた

めに、MyFirstClient を例として使用します。

SOAP リクエストの生成
ほとんどの場合、適切な SOAP リクエストの生成は、クライアント側のスタブを利用する場合と同じように簡

単です。Web サービスを意識した多くのコード ライブラリでは、クライアント側のスタブを生成できます。

この生成には、目的の Web サービスの WSDL に加え、コード生成ユーティリティの使用が伴います。

Axis には、クライアント側のスタブを生成する際に使用できる WSDL2Java ユーティリティが用意されていま

す。Web サービスを意識した他のライブラリには、クライアント側のスタブを生成する独自の機能があります。

Microsoft .Net には、wsdl.exe ユーティリティがあります。WSX サンプルの場合、クライアント側スタブは、

そのサンプルの作成処理の中で生成されます。

build.xml ファイルには、次の Ant ターゲットがあります。
 <target name="generate-stubs" depends="init"
unless="stubs.present">
 <fail unless="wsx.url">wsx.url must be defined</fail>
 <axis-wsdl2java output="${built.dir}/src"
 url="${wsx.url}/MyFirstWebService?wsdl">
 <mapping namespace="http://www.agile.com/ws/SampleWsx"
package="client"/>
 </axis-wsdl2java>
 </target>

http://msdn.microsoft.com/net
http://www.soaplite.com/
http://www.soapware.org/
http://www.agile.com/ws/SampleWsx

 第 20 章

Agile Product Lifecycle Management 337 ページ

前述の Ant ターゲットは、MyFirstWebService のクライアント側スタブを生成する役割を担います。この起動

によって、${ws.url}/MyFirstWebService?wsdl から MyFirstWebService WSDL が取得され、クライアント Java
パッケージで Java コードが生成され、${built.dir}/src ディレクトリにソース コードが配置されます。

WSDL2Java ユーティリティの詳細は、次の Web サイトで Axis のマニュアルを参照してください。
http://xml.apache.org/axis

クライアント側のスタブが生成された後、ユーザーは、生成されたオブジェクト定義を使用することで、適切

な SOAP リクエストをより簡単に生成できます。ユーザーは、有効な SOAP リクエストの作成方法を理解す

る必要がなく、これらのスタブを使用して、ターゲット Web サービス操作の機能に集中できま

す。..¥samples¥wsx¥src¥client に格納されている MyFirstClient.java を参照すると、SOAP リクエストの生成に

使用されるすべてのコードが主要なメソッドに含まれていることがわかります。

SOAP リクエストの発行
Web サービス操作を使用する次の手順は、生成された SOAP リクエストを Web サービス エンジンに適切に

発行することです。生成されたクライアント側スタブを処理する場合、通常、この手順は、スタブを目的のサー

バに示して、そのスタブのメソッドを起動するなどの簡単なものです。接続を開いたり、ワイヤーにデータを

手動で配列する必要はありません。このような詳細な処理は、生成されたスタブがかわりに処理します。

..¥samples¥wsx¥src¥client にある MyFirstClient.java サンプルでは、次の 2 箇所で SOAP リクエストを発行す

る方法が示されています。

 getStub() メソッドは、必要な Web サービス エンジンにクライアント側のスタブを示します。

 主要なメソッドに含まれている stub.getItemField() メソッドを起動することで、Web サービス エン

ジンにリクエストを発行します。リクエストの発行は、スタブ自体で管理されます。接続、発行または個々

の配列について心配する必要はありません。

必要な Web サービス エンジンにスタブを示す方法およびリクエストを発行する方法の詳細は、コード ライ

ブラリごとに異なります。詳細は、Web サービスを意識したコード ライブラリのマニュアルを参照してくだ

さい。

SOAP レスポンスの処理
SOAP レスポンスは、通常、生成されたクライアント側のスタブを介して処理されます。これらのスタブが生

成されていない場合、XML ベースの SOAP レスポンスの解析、およびフォーマットや非整列化などで発生す

る多くの問題には、開発者による対処が必要となります。ただし、生成されたスタブで処理する場合は、これ

らの詳細すべてが考慮されるため、開発者は、適切に処理された Java オブジェクトを入手できます。XML ド
キュメントの解析や戻りデータの識別は、開発者ではなく、スタブによって自動的に実行されます。

SOAP レスポンスが処理される仕組みの詳細は、コード ライブラリごとに異なります。一部の SOAP サーバ

では、クライアントが、なんらかの別の手段 (多くの場合 WSDL) でデータ タイプを認識することが求められ

ます。詳細は、Web サービスを意識したコード ライブラリのマニュアルを参照してください。

http://xml.apache.org/axis

SDK 開発者ガイド

338 ページ Agile Product Lifecycle Management

MyFirstClient の実行
MyFirstWebService サンプルを作成して配置するには、そのサンプルを Web サービス クライアントで実行す

るために必要な CLASSPATH の初期設定が含まれているファイルを
AGILE_HOME¥integration¥sdk¥samples¥wsx ディレクトリに配置します。

 Windows の場合、このファイルは runner.bat です。

 Solaris の場合、このファイルは runner.sh です。

MyFirstClient の使用説明を出力するには、次のコマンドを入力します。
> runner client.MyFirstClient

次の使用説明では、部品 1000-02 の [タイトル ブロック.説明] フィールドが返されます。
> runner client.MyFirstClient -T 15000 -a "<attribute name>"
-e <virtual path> -h <host> -l <port> -n <item number> -p <password>
-u <username>
> runner client.MyFirstClient -T 15000 -a "Title Block.Description"
 -e Agile -h localhost -l 80 -n 1000-02 -p agile -u jeffp

WSX 内部における Agile セッションの作成
デフォルトでは、WSX は Web コンテナによって保護されます。したがって、WSX 内部に Agile セッション

を作成する場合は、ユーザーのアカウント情報を指定する必要があります。次の例では、保護されている WSX
内に Agile セッションを作成しています。

例: WSX 内部におけるセッションの設定
AgileSessionFactory factory = AgileSessionFactory.getInstance(null);
IAgileSession session = factory.createSession(null);

注意 暗黙的なセッションは上書きしないでください。

異なるユーザーを指定するには、リモート クライアントから接続する場合のように、明示的な SDK セッショ

ンを作成する必要があります。つまり、AgileSessionFactory.getInstance() メソッドに引数を指定します。

例 19-2: 暗黙的なセッションに依存しない明示的なセッションの作成
AgileSessionFactory factory = AgileSessionFactory.getInstance
("http://...");
HashMap params = new HashMap();

params.put(AgileSessionFactory.USERNAME, ...);
params.put(AgileSessionFactory.PASSWORD, ...);
IAgileSession session = factory.createSession(params);

 第 20 章

Agile Product Lifecycle Management 339 ページ

インポート データのサーバ ルール準拠の検証
インポート検証の目的は、インポート データが適切なサーバ ルール (最大長、許容値、その他の制約など) に
準拠していることを確認することです。この検証プロセスによって、インポートする前に、正常にインポート

されないデータがわかります。SDK には、AIS のための 2 つのメソッドがあります。これらのメソッドは、

Agile PLM システムにインポートする前のソース データをプログラムによって検証し、検証済みのデータをイ

ンポートします。AIS の概要と、PLM データベースにインポートする前にデータを検証する方法は、『Agile
Integration Services Developer Guide』および『Agile インポートおよびエクスポート・ガイド』を参照してくださ

い。

データの検証 (インポート前)
SDK には、サーバのビジネス ルールへの準拠に関して、データをプログラムによって検証する
IImportManager.validateData(byte[], String, byte[], byte[], String[], List) メソッド

があります。このアクションは、無効なデータを識別するために、データをインポートする前に実行されます。

データのインポート (検証後)
SDK には、データをプログラムによってインポートする IImportManager.importData(byte[], String,
byte[], byte[], String[], List) メソッドがあります。このアクションは、サーバのビジネス ルール

に適合するデータを選択してから PLM システムにインポートするように、

IImportManager.validateData() の実行後に実行されます。

例: データ検証メソッドの起動
String _url="http://localhost/Agile";
 String _user="admin";
 String _pwd="agile";
 String srcFilePath="itemp1p2p3.csv";

 //Supported file
types:aXML,IPC2571,ExcelFile,DelimitedTextFile. Note these are the
same constants as in AIS command.
 String srcFileType="DelimitedTextFile";
 //Null = load the default mapping file. The default mapping file
mappingPath is loaded if one is not provided for aXML/PDX source. The
default mapping does not include p3 fields.
 String mappingPath="NewMapFile.xml";
 //Null = no transform. The transformation tempalte file can be
downloaded from import wizard.
 String transformPath=null;
 //all supported operations in 9221
release :"items.bom","items.aml","items.attachments","items.relati
onships", "manufacturers",

//"manufacturers.relationships","manufacturers.attachments",
"manufacturerParts", "manufacturerParts.relationships",
 //"manufacturerParts.attachments" "partgroups",
"partgroups.relationships","partgroups.attachments". Note this is
same constants of AIS command.
 String [] operations=new String[]{"items"};
 List options=new ArrayList();

http://localhost/Agile

SDK 開発者ガイド

340 ページ Agile Product Lifecycle Management

 //The string element in options array is same as preference option
of AIS command.

options.add("BusinessRuleOptions|ChangeMode=Authoring");
 AgileSessionFactory factory =
AgileSessionFactory.getInstance(_url);
 HashMap params = new HashMap();
 params.put(AgileSessionFactory.USERNAME, _user);
 params.put(AgileSessionFactory.PASSWORD, _pwd);
 IAgileSession session = factory.createSession(params);
 IImportManager imgr = (IImportManager)
session.getManager(IImportManager.class);

 //need one help method to convert the file stream into byte array.
 //byte[] logData=imgr.importData(convert2Byte(srcFilePath),
srcFileType, convert2Byte(mappingPath),null,operations, options);
 byte[] logData=imgr.validateData(convert2Byte(srcFilePath),
srcFileType, convert2Byte(mappingPath), null,operations, options);

Microsoft .NET の相互運用性
Microsoft 社の .NET フレームワーク技術は、アプリケーション プログラミング インターフェース (API) を
標準的な Windows オペレーティング システムのサービスおよび API に提供する開発フレームワークで、

1990 年代後期に Microsoft 社から登場した多様な技術 (ASP、COM+、XML、SOAP など) の集大成です。

.NET も、Visual Basic、J++、C++ など、Microsoft 社が提供する Visual Studio 環境で提供されるすべての言語

の集大成です。また、C# (C シャープと読みます) や .NET ファミリには比較的新しい言語である J# (J シャー

プと読みます) など、新しい言語も開発されています。J# は、実質的には .NET フレームワークへの Java の
統合を提供する Microsoft 風の Java です。J# は、現時点では Java VM では動作しません。J# は、本質的に

は、Microsoft 社独自の仮想マシンである .NET Common Language Runtime (CLR) で実行される Java 対応コー

ドを含むラッパーとして機能します。

CLR は、.NET フレームワークにとって最も重要なコンポーネントです。この CLR によって、オブジェクト

のアクティブ化、セキュリティ チェック、メモリ管理、オブジェクトの実行、およびオブジェクトが使用され

なくなった場合のメモリ クリーンアップ (ガーベッジ コレクト) が提供されます。

.NET には、前述したいずれかの言語を使用して Windows ベースのアプリケーションまたは (ASP.NET を介

した) Web ベースのアプリケーションを記述するのみでなく、これらの言語を 1 つの共通 API に統合できる

という要素もあります。これは、開発者が言語に依存しないコードを記述し、クラスから継承し、例外を捕捉

し、.NET フレームワーク全体で様々な言語による多様性のメリットを最大限に活用できることを意味します。

重要 WSX フレームワーク (AXIS SOAP プロセッサ) は、AXIS Web サービス クライアントでは問題な

く機能しますが、.NET との互換性は完全ではありません。Microsoft 社も Apache グループも、AXIS
と .Net に対する相互運用性テストは実施していません。簡単なデータ タイプの場合、AXIS ベー

スの Web サービスは .Net ベースの Web サービス クライアントで問題なく機能します。一部の

複雑なデータ タイプ (バイナリ添付ファイルなど) の場合は、相互運用上の問題が発生する可能性

があります。Agile アプリケーション サーバの外部に配置された非 AXIS Web サービスの実装に関

する相互運用性については、各 Web サービス ベンダーにお問い合わせください。

 第 20 章

Agile Product Lifecycle Management 341 ページ

Web サービス拡張に関するよくある質問
このセクションでは、Web サービス拡張に関する一般的な質問について回答します。

Web サービス拡張 (WSX) とは、どのようなものですか。

WSX は、Agile 顧客が Web サービスを使用して Agile PLM サーバの機能を拡張するためのフレームワーク

です。

Web サービスとは、どのようなものですか。

Web サービスは、SOAP メッセージ プロトコルを使用して、インターネットを介してソフトウェア サービス

を提供します。これによって、複数のソフトウェア コンポーネントが世界中で相互に情報を受け渡しできます。

Web サービスは、いずれのオペレーティング システムまたはプログラミング言語にも制限されません。サー

ビスのパブリック インターフェースの記述には WSDL が使用され、Web サービスは原則的に自己記述とな

るため、比較的簡単に使用できます。

Agile の Java API のみでは不可能で、WSX では可能な操作とは、どのようなものですか。

WSX は、標準的な HTTP(S) プロトコルを使用して、ファイヤウォール フレンドリな XML ベースの統合を
Agile PLM データに提供します。WSX は、SOAP に準拠するあらゆるプログラミング言語をサポートしてい

ます。たとえば、Web サービスの Perl または .Net クライアントを作成できます。WSX を使用すると、異な

る企業の複数のシステムで簡単かつ安全に情報を相互に受け渡しできます。WSX 内部に配置されたサービス

は、アプリケーション サーバが提供するすべての拡張性、フェイルオーバーおよびクラスタリング機能を活用

できます。アプリケーション サーバ上で動作するサービスにとっても、大きなパフォーマンス上のメリットが

あります。

WSX は、保護されている接続と保護されていない接続の両方をサポートしていますか。

はい。ファイヤウォール外部から Web サービスに発行されるリクエストには、ファイヤウォール内部で発行

されるリクエストとは異なるセキュリティ要件が適用されます。外部 (ファイヤウォール外部) または内部の

各 WSX に対して 2 つの個別のエントリ ポイントが提供されます。外部のリクエストはプロキシ サーバに

対して実行された後、アプリケーション サーバに転送されます。プロキシ サーバは DMZ に設置されていま

す。内部リクエストは、次の図に示すように、保護されている同じプロキシ サーバ、DMZ に設置されていな

い別のプロキシ サーバ、または直接アプリケーション サーバに対して実行できます。

SDK 開発者ガイド

342 ページ Agile Product Lifecycle Management

図 17: Web サービス クライアントが Agile PLM サーバに接続する方法

WSX には、どのようなユーザー認証サービスがありますか。

デフォルトでは、WSX はアプリケーション サーバによって保護されます。WSX クライアントが保護されて

いるサービスを起動するたびに、ユーザー名とパスワードによるセキュリティが実施されます。詳細は、330
ページの「ユーザーの認証」を参照してください。

WSX では、どのような SOAP エンジンが使用されますか。

WSX は、Apache Axis (SOAP のオープン ソース実装) に基づいています。Axis の詳細は、

http://ws.apache.org/axis/ の Axis Web サイトを参照してください。

http://ws.apache.org/axis/

 第 20 章

Agile Product Lifecycle Management 343 ページ

WSX は SOAP 添付ファイルを処理しますか。

はい。実際、Agile Integration Services には、バイナリ添付ファイルのエクスポートとインポートを実行できる
exportData と importData サービスが用意されています。

WSX は、ステートフル セッションをサポートしていますか。

はい。WSX の中心である Axis Web サービス エンジンが、各接続間のセッションの状態を維持します。セッ

ションは、HTTP クッキーまたは SOAP ヘッダをベースにすることができます。これは、簡単な 1 回かぎり

の処理ではなく、より持続的なアプリケーションをサポートするサーバ側のコードを生成する際に有効です。

Web サービス セッションの詳細は、Axis のマニュアルを参照してください。参照は、

http://ws.apache.org/axis/faq.html の「Axis FAQ」から開始できます。

WSX は、HTTP 以外のプロトコルをサポートしていますか。

いいえ。WSX がサポートしているのは、HTTP 関連のプロトコルのみです。安全性をさらに高めるためには、

HTTPS および SSL を使用して Web サービスに接続できます。将来は、必要に応じて他のプロトコルをサ

ポートする可能性もあります。

WSX は、Perl、Python、PHP または他の Web スクリプト言語をサポートしていますか。

WSX は、SOAP メッセージを送信できるすべてのクライアント プログラミング言語をサポートしています。

Agile SDK は、WSX クライアントの例を Perl、Python または PHP で提供していませんが、SOAP メッセー

ジは、これらのスクリプト言語で確実に送信できます。

WSX は UDDI をサポートしていますか。

いいえ。UDDI は、ソフトウェアで他のサービスを自動的に検出して統合できるように設計された Web サー

ビスの一般的なビジネス レジストリの仕様です。現在は、インターネット上の Agile PLM Web サービスの登

録に UDDI を使用する必要はありません。通常、Agile PLM Web サービスは、内部のソフトウェア システム

との統合、またはデータをパートナーまたはサプライヤと交換するために作成されます。ただし、UDDI に対

するサポートは、技術の進展に伴って考慮される可能性があります。

Web サービスは、どのように配置するのですか。

アプリケーション サーバ コンピュータの agile_home/integration/sdk/extensions フォルダに、サービスの JAR
ファイルを格納します。Web サービスの JAR ファイルには、META-INF/services/com.agile.wsx.Deployment.wsdd
という名前のデプロイメント デスクリプタ ファイルが含まれている必要があります。

このデプロイメント ディスクリプタ ファイルは、Axis の Web Service Deployment Descriptor (WSDD) 形式に

従ってフォーマットされた XML ファイルです。このデプロイメント ディスクリプタは、WSX を介して公開

される一連の Web サービスと Web サービス操作を宣言および記述します。WSDD ファイルには、着信
SOAP リクエスト (ユーザー認証など) またはレスポンス (送信データの再フォーマット) を処理する際に使

用する必要がある追加の動作も定義されています。WSDD 形式の詳細は、『Axis Reference Guide』を参照して

ください。このマニュアルは、http://ws.apache.org/axis/ から入手できます。

Web サービスとその JAR ファイルを配置するときは、アプリケーション サーバのクラスパスを更新する必

要がありますか。

いいえ。クラスパスは専用のクラスローダによって自動的に更新されます。クラスローダは、

agile_home/integration/sdk/extensions (または agile.properties ファイルの sdk.extensions プロパ

ティで指定した場所) にあるクラスを使用して、アプリケーション サーバのクラスパスを拡張します。

http://ws.apache.org/axis/faq.html
http://ws.apache.org/axis/

SDK 開発者ガイド

344 ページ Agile Product Lifecycle Management

Web サービスを変更して再配置した場合は、アプリケーション サーバを再起動する必要がありますか。

いいえ。専用のハンドラが、配置された最新のファイルを使用して Web サービス スタックを更新します。

Web サービス リクエストが発行されるたびに、このハンドラによって、agile_home/integration/sdk/services 内
の JAR ファイルが更新、追加または削除されたかどうかが確認されます。変更があった場合は、Web サービ

ス スタック全体が再設定されます。この機能によって、コードを再コンパイルし、アプリケーション サーバ

を再起動せずに Web サービスを再配置できるため、貴重な開発時間を節約できます。

WSX フレームワークを使用している Agile 製品はありますか。

はい。Agile Content Service (ACS) と Agile Integration Services (AIS) は両方とも、WSX フレームワークに依存

して Agile PLM サーバとデータを交換します。

Agile Integration Services とは、どのようなものですか。

Agile Integration Services (AIS) は、インポート、エクスポートおよび部品リスト機能を提供する Web サービス

です。これらの Web サービスには、サンプル Java クライアントが付属していますが、別の SOAP 準拠の AIS
クライアントを他のプログラミング言語で作成できます。

基本認証とは、どのようなものですか。

基本認証は簡易的な認証方法です。基本認証を使用すると、クライアント プログラムでは、リクエストを発行

する際に、暗号化されていないユーザー名とパスワードの形式のアカウント情報を提供できます。Web サービ

ス リスナーの配置に基本認証を使用する新しい Web モジュールがあります。基本認証で Web サービスにア

クセスするには、次の URL を使用します。
http://<host>:<port>/Agile/integration/ws/xxxx

たとえば、MyFirstWebService のサンプルにアクセスするには、次の URL を使用します。

http://<hostname>/Agile/integration/ws/MyFirstWebService?wsdl

Agile Product Lifecycle Management 345 ページ

第 21 章

ダッシュボード管理拡張の開発

扱うトピックは次のとおりです。

 ダッシュボード管理拡張について.. 345
 カスタム チャート ダッシュボード管理拡張の開発 .. 346
 カスタム テーブル ダッシュボード管理拡張の開発 .. 350
 カスタム (URL) 拡張の定義... 355

ダッシュボード管理拡張について
プロセス拡張と同様に、ダッシュボード管理拡張 (DX) は、Agile PLM システムの機能を拡張します。この製

品を使用するには、Agile ダッシュボード ライセンスが必要です。この機能拡張では、PLM データにアクセ

スして Agile PLM ダッシュボードに表示する際に、次の形式を使用できます。

 ChartDataModel (チャートの場合)

 Collections (テーブルの場合)

これらの形式を使用して定義されたデータは、Agile サーバによって解釈と処理が実行され、管理者権限を持

つ Agile Java クライアント ユーザーがダッシュボードの各タブを定義して、次のいずれかの表示またはレイ

アウトでデータを表示できます。

 チャート

 テーブル

 カスタム (URL)

SDK には、Agile PLM サーバが、必要なコンテンツを取得して、DX が必要とする形式に整えて Agile PLM
ダッシュボードにデータを表示できるように、内部の Agile データベースに接続する API が用意されていま

す。同様に、JDBC などの他の Java API を使用して、外部のデータベースに接続してコンテンツを取得するこ

ともできます。

要約すると、DX がデータを提供し、Agile Java クライアントがダッシュボードのタブおよびデータ (テーブル、

チャートおよび URL) を表示するための形式を設定します。最終的に、適切な権限を持つ Agile PLM ユーザー

が [ダッシュボート] タブを表示することで、Agile Web クライアントに表示されます。

この章では、背景情報およびこれらのメソッドを開発する手順について説明します。

SDK 開発者ガイド

346 ページ Agile Product Lifecycle Management

ダッシュボード管理拡張の役割と権限
管理者は、[管理] > [ユーザー設定] > [権限] の順に選択して、[ダッシュボード] タブ表示権限を設定する必要

があります。その結果、PLM ユーザーは、タブおよび関連データを Web クライアントに表示できるようにな

ります。さらに、[ダッシュボード] タブは権限によって管理されるため、Agile PLM ユーザーには、タブにデー

タを表示するための適切な役割と権限が必要です。表示を設定し、権限を割り当てる手順の詳細は、『Agile PLM
管理者ガイド』の第 10 章および第 11 章を参照してください。

カスタム チャート ダッシュボード管理拡張の開発
ICustomChart インターフェースを使用して、必要なデータをチャート形式で表示する DX を作成できます。

このインターフェースは、public ChartDataModel getChart(IAgileSession session, Map params)
のインスタンスを返すメソッドを公開します。

注意 このインターフェースの実装には、引数のないコンストラクタが必要で、再入可能であることが必

要です。

ChartDataModel および ChartDataSet の理解
ChartDataModel クラスは、入力データをチャート形式に編成します。このクラスは、DX に公開される具象ク

ラスで、チャートの構成に必要な 1 つ以上の ChartDataSet が含まれます。

ChartDataSet は、DX に公開されるもう 1 つの具象クラスです。このクラスには、チャートの描画に必要なデー

タが格納されます。たとえば、X 軸と Y 軸の値とラベルが含まれます。ChartDataModel は、すべてのデータ
セットのプレースホルダです。

注意 ChartDataModel および ChartDataSet クラスは、com.agile.px パッケージで公開されています。

カスタム チャート DX のデータ ソースの定義
前述のように、チャート DX では、データがチャート形式で表示されます。次の例のコードでは、ICustomChart
および公開クラス (ChartDataModel と ChartDataSet) を使用して、チャート形式で事前定義されている入力

データから、各曜日の朝夕の温度差を表示しています。

例 20-1: チャート形式でデータを表示するための DX の定義
package dashboard.chart;
import java.util.Map;
import com.agile.api.IAgileSession;
import com.agile.px.ICustomChart;
import com.agile.px.ChartDataModel;
import com.agile.px.ChartDataSet;

/**
 * A Sample Dashboard DX for Charts with predefined data. This Example
is

 第 21 章

Agile Product Lifecycle Management 347 ページ

 * to display a comparison chart between Morning and Evening Temperatures
 * for each day in the week with some predefined data.
 */

public class TemperatureComparisionChart implements ICustomChart(

 /**
 * Returns custom ChartDataModel. ChartDataModel is a placeholder
to hold all the
 * ChartDataSet(s) and any other relevant information related to
the charts.
 * @param session current user session.
 * @param params
 * @return com.agile.px.ChartDataModel
 */
public ChartDataModel getChart(IAgileSession session,Map params)
throws Exception{
// Create a ChartDataModel
ChartDataModel chartDataModel = new ChartDataModel("Temperatures");

// Create a ChartDataSet's for Morning and Evening Temperatures
ChartDataSet chartdataSet[] = new ChartDataSet[2];
// Create a ChartDataSet for Morning Temperatures
chartdataSet[0] = new ChartDataSet("Morning Temperatures",7);

// fill in the Morning Temperatures
double[] morTempValues = {10, 8, 12, 19, 10, 14, 13};
chartdataSet[0].setValues(morTempValues); // or setYValues can be used
instead

// Set the Labels
String[] labels = {"Monday", "Tuesday", "Wednesday", "Thursday",
"Friday", "Saturday", "Sunday"};
chartdataSet[0].setLabels(labels);

// Create a ChartDataSet for Evening Temperatures
chartdataSet[1] = new ChartDataSet("Evening Temperatures",7);

// Fill in the Evening Temperatures
double[] eveTempValues = {16, 12, 20, 15, 18, 24, 26};
chartdataSet[1].setValues(eveTempValues);
chartdataSet[1].setLabels(labels);

// Set the ChartDataSets in the Chart Model
chartDataModel.setDataSets(chartdataSet);

return chartDataModel;
}
}

SDK 開発者ガイド

348 ページ Agile Product Lifecycle Management

カスタム チャート DX ソースのパッケージ化および配置
新しいチャートに必要なクラスを開発した後は、次の手順を使用してクラスをパッケージ化し、配置します。

チャート DX ソースをパッケージ化して配置する手順は、次のとおりです。

1. Java 開発環境または Java アーカイブ ツール (または JAR ツール) を使用して、カスタム アクション

用の JAR ファイルを 1 つ以上作成します。JAR ファイルに、com.agile.px.ICustomChart という名前の

ファイルが格納された META-INF/services ディレクトリが含まれていることを確認します。このファイル

は、カスタム アクション用の Java の完全修飾クラス名を 1 行に 1 クラスずつリストしたテキスト
ファイルです。

1 つのパッケージに複数のチャートを含めることができます。たとえば、com.agile.px.ICustomChart
は次のような形式になります。

dashboard.chart.TemperatureComparisionChart

dashboard.chart.AgileObjectsCountChart

dashboard.chart.ActualVsBudgetedLaborCostChart

注意 JAR ファイル内のパスでは、大文字と小文字が区別されます。したがって、JAR ファ

イル内の META-INF フォルダの名前は、すべて大文字か、すべて小文字である必要が

あります。そうでない場合、カスタム アクションの配置が失敗となります。

2. Agile アプリケーション サーバがインストールされているコンピュータの
agile_home/integration/sdk/extensions フォルダに JAR ファイルを格納します。

注意 クラスタ環境に複数のアプリケーション サーバがある場合は、クラスタ内の各サーバに

ダッシュボード拡張ファイルを配置する必要があります。

Java クライアントでのチャート DX の設定
Agile Java クライアントでは、管理モジュールにチャート データ ソースを定義できます。Agile PLM システ

ム設定を構成するには、管理者アカウントが必要です。これについては、後ほど簡単に説明します。詳細は、

『Agile PLM 管理者ガイド』を参照してください。

DX に対して用意したデータは、レイアウトに関係なく、[ダッシュボード管理] タブに表示されます。[エグゼ

クティブ]、[ファイナンシャル] などのデフォルトのタブには新しいテーブルを定義できないため、新規のタブ

を定義し、そのタブにテーブルを設定して DX を設定する必要があります。

オプションの [ダッシュボード管理] タブを追加する手順は、次のとおりです。

1. Java クライアントで、[管理] > [システム設定] > [ダッシュボード管理] の順に選択し、[ダッシュボード管

理] の [新規ダッシュボード タブ] アイコンをクリックします。

2. [ダッシュボード タブの作成] ダイアログで、[名前] フィールドと [説明] フィールドに値 (たとえば、

「ダッシュボード拡張機能」など) を入力して、[表示] フィールドを [はい] に設定し、[OK] をクリック

します。[ダッシュボード管理] のエントリとして、[ダッシュボード拡張機能] が表示されます。

3. ダッシュボードのタブを並べ替える アイコンをクリックし、表示するタブを必要に応じて並べ

替えます。

 第 21 章

Agile Product Lifecycle Management 349 ページ

Agile Web クライアントでのオプション タブの表示
管理者は、Agile Web クライアントに新規のオプション タブを表示できます。役割および権限の要件を満たす

ユーザーには、タブおよび対応するデータが表示されます。必要な手順は、『Agile PLM 管理者ガイド』を参

照してください。

オプション タブにチャート タイプのテーブルを設定する手順は、次のとおりです。

1. 新しいタブ (たとえば、前述の [ダッシュボード拡張機能] など) を定義します。

2. 新しいタブ ([ダッシュボード拡張機能]) で、 をクリックします。[ダッシュボード管理 - ダッ

シュボード拡張機能] ページが表示されます。

3. このページで、[新規ダッシュボード テーブル] アイコンをクリックして [ダッシュボード テー

ブルの作成] ダイアログを開き、新しいテーブルを定義します。

4. [リスト タイプの表示] ドロップダウン リストから、[チャート] を選択します。

ダッシュボード テーブル 説明 可能な設定

名前 テーブルの名前を入力します。 文字列

説明 テーブルの説明を入力します。 文字列 (オプション)

リスト タイプの表示 テーブルのタイプがリストされます。

[チャート] を選択します ([チャート]
を選択すると、オプションがさらに表

示されます)。

[チャート]、[テーブル]、[カスタム]、

[詳細検索]

ダッシュボード拡張機能 チャート タイプのリスト用に作成さ

れたすべてのプロセス拡張がリストさ

れます。目的のチャート用のプロセス

拡張を選択します。

表示 Web クライアントで使用できるよう

にするかどうかを選択します。

[はい] または [いいえ]

チャート タイプ 表示するチャートのタイプを選択します。 [面]、[棒]、[線]、[円]、[極]、[散布]、

[積み上げ面]、[積み上げ棒]、[テーブル]

X 軸 X 軸ラベルを入力します。 (オプション)

Y 軸 Y 軸ラベルを入力します。 (オプション)

表題の表示 チャートの表題を画面に表示するかど

うかを選択します。
[はい] または [いいえ]

表題の位置 表題を表示する位置を選択します。 [一番下]、[デフォルト]、[左]、[右]、

[一番上]

3D スタイル グラフを 3D で表示するかどうかを

選択します。

[はい] または [いいえ]

ヘッダ 必要に応じてヘッダ メモを入力します。 (オプション)

フッタ 必要に応じてフッタ メモを入力します。 (オプション)

SDK 開発者ガイド

350 ページ Agile Product Lifecycle Management

5. フィールドを完成し、[OK] をクリックします。[ダッシュボード管理 - ダッシュボード拡張機能] ビュー

に新しいチャート名が表示されます。

カスタム テーブル ダッシュボード管理拡張の開発
ICustomTable インターフェースを定義して、必要なデータをテーブル形式で表示する DX を作成します。

このインターフェースは、Collection クラスのインスタンスを返す getTable(IAgileSession session,
Map params) メソッドを公開します。

public Collection getTable(IAgileSession session, Map params);

注意 このインターフェースの実装には、引数のないコンストラクタが必要で、再入可能であることが必

要です。

Collection および CustomTableConstants の理解
DX のテーブル データは Java HashMap のコレクションです。各マップ キーはテーブル表示の属性を表し、

マップはテーブルの行を表します。

表示の [属性] プロパティ列には、データ モデルとテーブル表示とのマッピングを定義します。このプロパ

ティの値は、HashMap エントリのキーに相当します。

 HashMap キー - HashMap エントリでは、属性はテーブル表示で定義されます。たとえば、キー値に「name」
を使用する HashMap エントリでは、この属性のプロパティ [属性] の値が「name」となります。get(‘name’)
メソッドは、この属性に対する表示データを提供します。

 リンク、画像、通貨、テキスト、日付および数値データ - これらのデータ タイプは、テーブル DX 形式

でサポートされ、次のプロパティが設定されているオブジェクトが返されます。

 テキスト - 日付および数値データ タイプには、その他のプロパティは必要ありません。

 リンク - 有効な URL (文字列など) が、表示のターゲットおよびラベルとして使用されます。リンク
データ タイプに想定されるプロパティは、内部および外部リンクとも同じです。DX ユーザーが、内

部リンクの URL を解決して、URL プロパティに追加します。DX ユーザーは、内部リンクに
RightPane のターゲット プロパティを指定できます。デフォルトでは、リンクのターゲットは新しい

ウィンドウに設定されます。

 画像 - 画像では、画像 URL (文字列など) および画像のツール チップとして表示するラベルを返す

ことが想定されます。

 通貨 - 通貨データ タイプには、通貨コード (文字列) と値 (数値) を指定する必要があります。

注意 リンク、通貨および画像データのプロパティをサポートするキーは、CustomTableConstants クラスに

定数として用意されています。このクラスには、定数 SERVER_URL があります。この定数を使用

して、パラメータから DX のサーバ URL を取得できます。

 第 21 章

Agile Product Lifecycle Management 351 ページ

カスタム テーブル DX のデータ ソースの定義
次の例のサンプル ダッシュボード DX では、ダッシュボードに表示するための事前定義データが格納された

行のコレクションを作成しています。各行は、テーブルの各列に相当するキーと値のペアが指定されている
Java Map オブジェクトです。テーブルの列の各セルには、値が表示されます。キーは、表示におけるマッピン

グ属性名です。表示に新しい属性 (列) を作成する場合は、このキーを [属性] フィールドに指定する必要があ

ります。この DX の属性名および対応するデータ タイプは、次のとおりです。

属性 対応するデータ タイプ

myString テキスト

myExternalLink リンク

myDate 日付

myMoney 通貨

myNumber 数値

myImage 画像

例: テーブル形式でデータを表示するためのダッシュボード拡張機能の定義
package dashboard.table;
import java.util.*;
import com.agile.api.IAgileSession;
import com.agile.px.ICustomTable;
import com.agile.px.CustomTableConstants;

/** This Sample Dashboard DX creates a collection of rows with predefined
data
* in the format to be displayed in the Dashboard.
* Each row is a Java Map object which has key-value pairs corresponding
to
* each column in the Table. The value is displayed in each Cell of the
* column in the table. The key is the mapping Attribute name in the
View.
* While creating new Attributes (Columns) in the View, you must supply
this key
* in the Attribute field.
* The corresponding Attribute Names and Data type for this DX are listed
below.
* <table border="1">
* <tr><td>Attribute </td><td>Data Tye</td></tr>
* <tr><td>myString </td><td>Text </td></tr>
* <tr><td>myExternalLink </td><td>Link </td></tr>
* <tr><td>myDate </td><td>Date </td></tr>
* <tr><td>myMoney </td><td>Money </td></tr>
* <tr><td>myNumber </td><td>Numeric </td></tr>
* <tr><td>myImage </td><td>Image </td></tr>
* </table>
*
*/

SDK 開発者ガイド

352 ページ Agile Product Lifecycle Management

public class DashboardSampleTable implements ICustomTable {
 /**
 * Returns custom table data in form of collection of rows. Row
is assumed
 * to be a java Map object.
 * @param session the user session
 * @param params
 * @return : java.util.Collection
 */
 public Collection getTable (IAgileSession session,Map params) throws
Exception{
String serverUrl =
(String)params.get(CustomTableConstants.SERVER_URL);
String baseUrl = serverUrl.substring(0,serverUrl.lastIndexOf('/'));
ArrayList result = new ArrayList();
// 1st Row Entry
HashMap row1 = new HashMap();

// For Text type
row1.put("myString","Manoj Yeturu");

// For Numeric type
row1.put("myNumber",new Double(10000));

// For Date Type
row1.put("myDate",new Date());

// For Image Type. The url for image and label (for tooltip) properties
sre set
HashMap hm1Image = new HashMap();
hm1Image.put(CustomTableConstants.URL,baseUrl+"/images/action_nosh
ad.gif");

// Tool Tip
hm1Image.put(CustomTableConstants.LABEL,"Action_Noshad");
row1.put("myImage",hm1Image);

// For Money Type. The Currency and value properties are set
HashMap hm1Money = new HashMap();
hm1Money.put(CustomTableConstants.MONEY_CURRENCY_CODE,"USD");
hm1Money.put(CustomTableConstants.MONEY_VALUE,new Integer(3000));
row1.put("myMoney",hm1Money);

// For External Link, url, label (display string) and target
(Rightpane,_new etc) are set
HashMap externalLink1 = new HashMap();
externalLink1.put(CustomTableConstants.URL,"http://www.agile.com")
;
externalLink1.put(CustomTableConstants.LABEL,"Agile");
externalLink1.put(CustomTableConstants.TARGET,"_new");
row1.put("myExternalLink",externalLink1);
result.add(row1);

http://www.agile.com/

 第 21 章

Agile Product Lifecycle Management 353 ページ

// 2nd Row Entry
HashMap row2 = new HashMap();

// For Text type
row2.put("myString","Venkat Tipparam");

// For Numeric type
row2.put("myNumber",new Double(50000));

// For Date Type
row2.put("myDate",(new Date()));

// For Image Type
HashMap hm2Image = new HashMap();
hm2Image.put(CustomTableConstants.URL,baseUrl +
"/images/addressdown.gif");

// Tool Tip
hm2Image.put(CustomTableConstants.LABEL,"Addressdown");
row2.put("myImage",hm2Image);

// For Money Type
HashMap hm2Money = new HashMap();
hm2Money.put(CustomTableConstants.MONEY_CURRENCY_CODE,"INR");
hm2Money.put(CustomTableConstants.MONEY_VALUE,new Integer(4000));
row2.put("myMoney",hm2Money);

// For External Link
HashMap externalLink2 = new HashMap();
externalLink2.put(CustomTableConstants.URL,"http://www.agile.com/s
ervices/support.asp");
externalLink2.put(CustomTableConstants.LABEL,"Supprt");
externalLink2.put(CustomTableConstants.TARGET,"_new");
row2.put("myExternalLink",externalLink2);
result.add(row2);

return result;
}
}

カスタム テーブル DX ソースのパッケージ化および配置
新しいテーブルに必要なクラスを開発した後は、次に示すようにクラスをパッケージ化して、配置します。

テーブル DX ソースをパッケージ化して配置する手順は、次のとおりです。

1. Java 開発環境または Java アーカイブ ツール (または JAR ツール) を使用して、カスタム アクション

用の JAR ファイルを 1 つ以上作成します。JAR ファイルに、com.agile.px.ICustomTable という名前の

ファイルが格納された META-INF/services ディレクトリが含まれていることを確認します。このファイル

は、カスタム アクション用の Java の完全修飾クラス名を 1 行に 1 クラスずつリストしたテキスト
ファイルです。

1 つのパッケージに複数のチャートを含めることができます。たとえば、com.agile.px.ICustomtable
ファイルは次のような形式になります。

http://www.agile.com/services/support.asp
http://www.agile.com/services/support.asp

SDK 開発者ガイド

354 ページ Agile Product Lifecycle Management

dashboard.chart.ActualVsBudgetedLaborCostTable

dashboard.chart.DashboardSampleTable

dashboard.chart.QueryDashboardPrograms

注意 JAR ファイル内のパスでは、大文字と小文字が区別されます。したがって、JAR ファイ

ル内の META-INF フォルダの名前は、すべて大文字か、すべて小文字である必要があ

ります。そうでない場合、カスタム アクションは配置されません。

2. Agile アプリケーション サーバがインストールされているコンピュータの
agile_home/integration/sdk/extensions フォルダに JAR ファイルを格納します。

注意 クラスタ環境に複数のアプリケーション サーバがある場合は、クラスタ内の各サーバに

ダッシュボード拡張ファイルを配置する必要があります。

Java クライアントでのテーブル DX の設定
チャート タイプの DX と同様に、既存の [ダッシュボード管理] タブを使用することも、独自のオプション タ
ブを作成してテーブル DX を追加することもできます。

タブにテーブルを追加する手順は、次のとおりです。

1. 新しいタブ (たとえば、前述の [ダッシュボード拡張機能] など) を定義します。

2. 新しいタブ ([ダッシュボード拡張機能]) で、 をクリックします。[ダッシュボード管理 - ダッ

シュボード拡張機能] ページが表示されます。

3. このページで、[新規ダッシュボード テーブル] アイコンをクリックして [ダッシュボード テーブ

ルの作成] ダイアログを開き、新しいテーブルを定義します。

4. [リスト タイプの表示] ドロップダウン リストから、[テーブル] を選択します。[ダッシュボード テーブ

ルの作成] ダイアログに、次のフィールドが表示されます。

5. これらのフィールドを完成し、[OK] をクリックします。新しいテーブルが作成されます。

ダッシュボード テーブル 説明 可能な設定

名前 テーブルの名前を入力します。 文字列

説明 テーブルの説明を入力します。

文字列

リスト タイプの表示 テーブルのタイプがリストされま

す。[テーブル] を選択します。
[チャート]、[テーブル]、

[カスタム]、[詳細検索]

ダッシュボード拡張機能 テーブル タイプの表示用に作成さ

れたすべてのプロセス拡張がリス

トされます。

これらは、「カスタム テーブル
DX ソースのパッケージ化およ

び配置」で定義した属性です。

変数 Web クライアントで使用できるよ

うにするかどうかを選択します。
[はい] または [いいえ]

 第 21 章

Agile Product Lifecycle Management 355 ページ

テーブルにデータを追加する手順は、次のとおりです。

1. 「タブにテーブルを追加する手順」 (354 ページの「タブにテーブルを追加する手順」) で作成した新し

いテーブルをダブルクリックします。

2. [属性] をクリックし、次に [属性の追加] アイコンをクリックして、新しい属性を作成します。

注意 現在、Agile では、テキスト、数値、画像、日付、通貨およびリンク タイプのデータが

テーブル属性としてサポートされています。これらは、353 ページの「カスタム テーブ

ル DX ソースのパッケージ化および配置」にリストおよび定義されています。

3. [一般情報] タブで、DX の属性名に [属性] フィールドをマップします。

注意 ここでは、[ダッシュボード] タブのテーブルに表示されることになる属性 (列) を定義

しています。[属性] プロパティには、データ モデルと表示とのマッピングを定義しま

す。たとえば、DX の属性名が myString で、選択されている属性タイプが [テキスト] の
場合は、属性名が myString の [属性] フィールドをマップします。

4. 詳細は、『Agile PLM 管理者ガイド』の第 11 章を参照してください。

カスタム (URL) 拡張の定義
URL タイプのダッシュボード PX は、[ダッシュボード管理] から起動するように設定されます。カスタム拡

張を定義する場合は、テーブル タイプとして [カスタム] を選択します。20-10 ページの「タブに URL を追

加する手順」を参照してください。URL タイプのダッシュボード PX には、その他のマッピングは必要あり

ません。

注意 URL プロセス拡張は、[ダッシュボード管理] から起動されるように、プロセスの拡張ライブラリに

定義されます。

SDK 開発者ガイド

356 ページ Agile Product Lifecycle Management

タブに URL を追加する手順は、次のとおりです。

1. 新しいタブ (たとえば、前述の [ダッシュボード拡張機能] など) を定義します。

2. 新しいタブ ([ダッシュボード拡張機能]) で、 をクリックします。[ダッシュボード管理 - ダッ

シュボード拡張機能] ページが表示されます。

3. このページで、[新規ダッシュボード テーブル] アイコンをクリックして [ダッシュボード テー

ブルの作成] ダイアログを開き、新しいテーブルを定義します。

4. [リスト タイプの表示] ドロップダウン リストから、[カスタム] を選択します。[ダッシュボード テーブ

ルの作成] ダイアログに、次のフィールドが表示されます。

5. [ダッシュボード テーブルの作成] ダイアログの各フィールドを完成し、[OK] をクリックします。

ダッシュボード テーブル 説明 可能な設定

名前 URL の名前を入力します。 文字列

説明 説明を入力します。 文字列

リスト タイプの表示 テーブルのタイプがリストされま

す。[カスタム] を選択します。
[チャート]、[テーブル]、[カスタ

ム]、[詳細検索]

ダッシュボード拡張機

能
カスタム タイプのリスト用に作

成されたすべてのプロセス拡張が

リストされます。

従業員ポータル、Yahoo、Google、
プロセス拡張 URL

表示 Web クライアントで使用できる

ようにするかどうかを選択しま

す。

[はい] または [いいえ]

Agile Product Lifecycle Management 357 ページ

第 22 章

Agile PLM クライアント機能と Agile API
とのマッピング

扱うトピックは次のとおりです。

 ログイン機能 ... 357
 一般機能 ... 358
 検索機能 ... 358
 添付ファイル機能 ... 359
 ワークフロー機能 ... 359
 製造拠点機能 ... 360
 フォルダ機能 ... 360
 プログラム機能 ... 361
 管理機能 ... 361

ログイン機能
次の表に、Agile アプリケーション サーバにログインするための一般的な機能を示します。

機能 対応するメソッド

Agile アプリケーション サーバ セッションのインスタンス

を取得する
AgileSessionFactory.getInstance()

セッションを作成して、Agile アプリケーション サーバに

ログインする
AgileSessionFactory.createSession(
)

セッションを閉じて、Agile アプリケーション サーバとの

接続を切断する
IAgileSession.close()

SDK 開発者ガイド

358 ページ Agile Product Lifecycle Management

一般機能
次の表に、すべての Agile PLM ビジネス オプジェクトに適用される一般的な機能を示します。

機能 対応するメソッド

新規オブジェクトを作成する IAgileSession.createObject()

既存のオブジェクトをロードする IAgileSession.getObject()

オブジェクトを別のオブジェクトとして保存する IDataObject.saveAs()

オブジェクトを削除する IDataObject.delete()
IFolder.delete()
IQuery.delete()

オブジェクトの削除を取り消す IDataObject.undelete()

オブジェクトのセル値を取得する IDataObject.getValue()

オブジェクトにセル値を設定する IDataObject.setValue()

オブジェクトのテーブルを取得する IDataObject.getTable()

テーブルに行を追加する ITable.createRow()

テーブルから行を削除する ITable.removeRow()

オブジェクトに対する確認通知を取得する ISubscribable.getSubscriptions()

確認通知イベントを有効にする ISubscription.enable()

オブジェクトに対する確認通知を変更する ISubscribable.modifySubscriptions()

検索機能
次の表に、サポートされている検索機能を示します。

機能 対応するメソッド

検索の名前を設定する IQuery.setName()

検索をパブリックまたはプライベートにする IQuery.setQueryType()

検索に検索タイプ (オブジェクト検索または使用箇所検

索) を設定する

IQuery.setSearchType()

検索条件を設定および取得する IQuery.setCriteria()
IQuery.getCriteria()

検索を実行する IQuery.execute()

検索で大文字と小文字を区別する IQuery.setCaseSensitive()

検索を削除する IQuery.delete()

検索を別の検索として保存する IQuery.saveAs()

 第 22 章

Agile Product Lifecycle Management 359 ページ

添付ファイル機能
次の表に、添付ファイルおよびファイル フォルダを使用するための機能を示します。

機能 対応するメソッド

ファイル フォルダ内のすべてのファイルをダウンロード

する
IFileFolder.getFile()

[添付ファイル] タブにリストされている単一のファイル

をダウンロードする
IAttachmentFile.getFile()

ファイル フォルダをチェックアウトする IFileFolder.checkOut()

ファイル フォルダをチェックインする IFileFolder.checkIn()

チェックアウトをキャンセルする IFileFolder.cancelCheckOut()

アイテムを確定または未確定にし、そのアイテムの添付

ファイルをロックまたはロック解除する
IAttachmentContainer.setIncorporated()

ワークフロー機能
次の表に、Agile PLM の送信可能なオブジェクトに対するワークフロー機能を示します。

機能 対応するメソッド

送信可能なオブジェクトを検証する IRoutable.audit()

送信可能なオブジェクトのステータスを変更する IRoutable.changeStatus()

オブジェクトを他の Agile PLM ユーザーに送信する IDataObject.send()

送信可能なオブジェクトを承認する IRoutable.approve()

送信可能なオブジェクトを却下する IRoutable.reject()

送信可能なオブジェクトにコメントする IRoutable.comment()

送信可能なオブジェクトの承認者およびオブザーバを追加

または削除する
IRoutable.addApprovers()
IRoutable.removeApprovers()

SDK 開発者ガイド

360 ページ Agile Product Lifecycle Management

製造拠点機能
次の表に、製造拠点を使用するための機能を示します。

機能 対応するメソッド

アイテムに対して選択されている現在の製造

拠点を取得する
IManufacturingSiteSelectable.getManufacturingSite()

アイテムに対するすべての製造拠点を取得

する
IManufacturingSiteSelectable.getManufacturingSites()

すべての製造拠点を使用するようにアイテム

を設定する
IManufacturingSiteSelectable.setManufacturingSite(
ManufacturingSiteConstants.ALL_SITES)

アイテムは拠点別ではなく、すべての拠点に

対して共通であることを指定する
IManufacturingSiteSelectable.setManufacturingSite(
ManufacturingSiteConstants.COMMON_SITE)

特定の製造拠点を使用するようにアイテムを

設定する
IManufacturingSiteSelectable.setManufacturingSite(sit
e)

フォルダ機能
次の表に、フォルダを使用するためのフォルダ機能を示します。

機能 対応するメソッド

フォルダにアイテム (検索条件など) を追加する IFolder.addChild()

フォルダのタイプ (パブリックまたはプライベート) を
設定する

IFolder.setFolderType()

フォルダ名を設定する IFolder.setName()

現在のユーザーのフォルダを取得する IUser.getFolder()

フォルダからアイテムを削除する IFolder.removeChild()

フォルダからすべてのオブジェクトをクリアする IFolder.clear()

フォルダを削除する IFolder.delete()

 第 22 章

Agile Product Lifecycle Management 361 ページ

プログラム機能
次の表に、プログラムを使用するための機能を示します。

機能 対応するメソッド

プログラムを別のプログラムまたはテンプレートとして

保存する
IProgram.saveAs()

プログラムを再スケジュールする IProgram.reschedule()

リソース プールからユーザーを割り当てる IProgram.assignUsersFromPool()

プログラムの所有権を別のユーザーに委譲する IProgram.delegateOwnership()

プログラム リソースを入れ替える IProgram.substituteResource()

基準を作成する IProgram.createBaseline()

プログラムの基準表示を選択する IProgram.selectBaseline()

プログラムをロックまたはロック解除する IProgram.setLock()

ディスカッションに返信する IMessage.reply()

管理機能
次の表に、Agile Java クライアントの管理ノードとプロパティを使用するための機能を示します。

機能 対応するメソッド

管理ノードを取得する IAdmin.getNode()

管理ノードのすべてのサブノード (子ノード) を取得

する

ITreeNode.getChildNodes()

管理ノードのすべてのプロパティを取得する INode.getProperties()

管理ノードのプロパティに対する値を取得する IProperty.getValue()

リスト フィールドに対する可能な値を取得する IProperty.getAvailableValues()

すべての Agile PLM クラスを取得する IAdmin.getAgileClasses(ALL)

トップレベルのすべての Agile PLM クラスを取得する IAdmin.getAgileClasses(TOP)

インスタンス化可能なすべての Agile PLM クラスを

取得する
IAdmin.getAgileClasses(CONCRETE)

特定のクラスに対するサブクラスのリストを取得する IAgileClass.getSubclasses()

サブクラスの自動採番ソースを取得する IAgileClass.getAutoNumberSources()

テーブルに対する属性の配列を取得する IAgileClass.getTableAttributes()

テーブルのメタデータを取得する IAgileClass.getTableDescriptor()

SDK 開発者ガイド

362 ページ Agile Product Lifecycle Management

機能 対応するメソッド

Agile PLM リスト ライブラリを取得する IAdmin.getListLibrary()

新しい Agile PLM リストを作成する IListLibrary.createAdminList()

Agile PLM リストを取得する IListLibrary.getAdminList()

すべての Agile PLM ユーザーを取得する ユーザーの検索条件の作成

すべての Agile PLM ユーザー グループを取得する ユーザー グループの検索条件の作成

ユーザーまたはユーザー グループを作成する IAgileSession.createObject()

ユーザーまたはユーザー グループのプロパティを

設定する
IProperty.setValue()

ユーザー パスワードを変更する IUser.changeApprovalPassword()
IUser.changeLoginPassword()

	著作権および商標について
	導入
	Agile SDK とは
	 SDK のコンポーネント
	クライアント側のコンポーネント
	サーバ側のコンポーネント

	アーキテクチャ
	 Agile XML (別名 aXML)

	このリリースでの新機能と拡張機能
	 システム要件
	Java の要件
	Agile SDK インストール フォルダ
	 Agile PLM システムの確認
	Agile PLM ビジネス オブジェクト
	Licensing

	Agile API の開始
	Agile API の概要
	Agile API のクラスとインターフェースのタイプ
	ネットワーク クラスのロード
	シングルスレッド アプリケーションとマルチスレッド アプリケーションの対比
	Agile API プログラムのパッケージ化
	Agile API Files You Are Allowed to Distribute
	Agile API Files You Are Not Allowed to Distribute

	サンプル プログラム

	Agile API プログラムの開始
	Agile API ライブラリのクラス パスの設定
	Agile API クラスのインポート
	セッションの作成およびログイン
	例: セッションの作成およびログイン

	パスワードで保護された URL へのアクセスによるセッションの作成
	例: パスワードで保護されたサーバ URL を使用したセッションの作成

	 Agile Web サービスからのセッションの作成

	Agile PLM オブジェクトのロードおよび作成
	オブジェクトのロード
	オブジェクト タイプの指定
	オブジェクト パラメータの指定
	例: Map を使用した部品のロード
	例: String を使用した部品のロード

	異なるタイプのオブジェクトのロード

	 オブジェクトの作成
	例: Map を使用した部品の作成
	例: String を使用した部品の作成

	Agile PLM クラスの使用
	例: クラスの取得

	ユーザー定義サブクラスのオブジェクトの作成
	 例: ユーザー定義サブクラスのオブジェクトの作成
	例: サブクラス名の参照によるオブジェクトの作成

	自動採番の使用
	例: 次に使用可能な自動採番の取得

	必須フィールドの設定
	 例: クラスの必須属性の取得

	異なるタイプのオブジェクトの作成
	例: 異なるタイプのオブジェクトの作成

	Agile PLM オブジェクトの状態の確認
	例: オブジェクトの様々な状態を定義する配列の取得
	例: オブジェクトの現在の状態の取得

	関連オブジェクトへの値の継承
	 オブジェクトを新規オブジェクトとして保存
	例: オブジェクトを新規オブジェクトとして保存

	オブジェクトの共有
	 例: オブジェクトの共有

	オブジェクトの削除および削除取消
	例: アイテムの削除
	例: オブジェクトの削除取消

	セッションを閉じる
	例: セッションを閉じる

	検索条件の作成およびロード
	検索条件について
	検索条件の作成
	例: 検索条件の作成
	例: 検索クラスの指定
	フォルダへの検索条件の保存
	例: 検索条件に名前を付けてフォルダに追加
	例: IQuery.saveAs() を使用して検索条件をフォルダに保存

	パラメータ検索の作成
	例: IQuery.execute(Object[]) を使用するパラメータ検索
	 例: IQuery.setParams() を使用するパラメータ検索
	例: パラメータ検索での引用符の正しい使用方法

	検索条件作成時の検索属性の指定
	 例: 検索条件作成時の検索属性の指定
	ワークフロー検索の指定
	例: 検索条件作成時のワークフロー属性の指定

	 検索条件の指定
	検索条件
	クエリ言語のキーワード
	検索属性の指定
	検索可能属性の取得
	 関係演算子の使用
	Unicode エスケープ シーケンスの使用
	Between、Not Between、In および Not In 演算子の使用
	ネストされた条件を使用したオブジェクト リスト tohere の値の検索
	例: ネストされた検索条件における適切なパラメータ検索と不適切なパラメータ検索

	添付ファイル内の単語または語句の検索

	検索条件の日付の書式設定
	例: 検索条件の日付フォーマットの設定
	例: Date オブジェクトを setCriteria() のパラメータとして渡す場合

	 論理演算子の使用
	Like 演算子でのワイルドカード文字の使用
	 検索条件での括弧の使用

	検索条件での SQL 構文の使用
	例: Agile API の標準的な検索構文を使用した検索条件
	例: SQL 構文を使用した検索条件
	 例: SQL 構文を使用した検索属性の指定
	SQL ワイルドカードの使用
	SQL 構文の使用による検索結果の並べ替え
	例: SQL 構文を使用した検索結果の並べ替え

	検索条件の結果属性の設定
	結果属性の指定
	例: 検索結果属性の設定
	例: ID 定数の指定による検索結果属性の設定
	例: 有効な結果属性の配列の取得

	コンテンツ転送作成者名の取得
	拠点関連オブジェクトと AML の重複する結果

	検索結果の使用
	検索結果の並べ替え
	 検索結果のデータ タイプ
	大量の検索結果の管理
	検索のパフォーマンス

	使用箇所検索条件の作成
	例: 使用箇所検索条件

	検索条件のロード
	 例: IAgileSession.getObject() を使用した検索条件のロード
	例: IFolder.getChild() を使用した検索条件のロード

	検索条件の削除
	例: 検索条件の削除

	簡単な検索条件の例
	例: 簡単な検索条件のコード

	テーブルの使用
	テーブルについて
	テーブルの取得
	新規およびマージされた [関係] テーブルへのアクセス
	[関係] テーブルへのアクセス
	マージされたテーブルへのアクセス
	マージされた [関係.影響元] テーブルへのアクセス
	マージされた [関係.影響先] テーブルへのアクセス
	マージされた [関係.参照] テーブルへのアクセス
	例: [BOM] テーブルの取得

	読み取り専用テーブルの使用

	テーブルのメタデータの取得
	例: テーブルのメタデータの取得

	テーブル行の追加
	[BOM] テーブルへのアイテムの追加
	例: 行の追加および値の設定

	[添付ファイル] テーブルへの添付ファイルの追加
	例: [添付ファイル] テーブルへの行の追加

	[製造元] テーブルへの製造元部品の追加
	例: [製造元] テーブルへの行の追加

	[対象アイテム] テーブルへのアイテムの追加
	例: [対象アイテム] テーブルへの行の追加

	[スケジュール] テーブルへのタスクの追加
	例: [スケジュール] テーブルへの行の追加

	複数のテーブル行の追加および更新
	[BOM] テーブルへの複数アイテムの追加
	例: 複数行の追加および値の設定

	複数の BOM 行の更新
	例: 複数の BOM 行の更新

	テーブル行の繰り返し処理
	例: テーブル行の繰り返し処理
	複数ページのテーブルを含む検索結果内のオブジェクトの更新

	テーブルの並べ替え
	例: テーブル Iterator の並べ替え

	テーブル行の削除
	例: テーブル行の削除
	例: テーブルのクリア

	行に対する参照オブジェクトの取得
	例: 参照変更オブジェクトの取得
	例: 参照オブジェクトでの繰り返し処理

	行のステータス フラグの確認
	例: オブジェクトのステータス フラグの確認

	[ページ 1]、[ユーザー定義 1] および [ユーザー定義 2] の使用
	例: [ユーザー定義 1] のセルの編集

	レッドライン
	例: アイテムの [製造元] テーブルのレッドライン

	レッドラインの変更の削除
	例: [BOM] テーブルからのレッドラインの変更の削除

	レッドライン付きの行およびレッドライン付きのセルの識別
	例: レッドライン付きの行およびセルの識別
	ICell.getOldValue の使用

	データ セルの使用
	データ セルについて
	データ タイプ
	ディスカバリ権限の確認
	例: ディスカバリ権限の確認

	セルが読み取り専用かどうかの確認
	例: フィールドが読み取り専用かどうかの確認

	値の取得
	例: ID によるセルの指定
	例: 完全修飾名によるフィールドの指定
	例: ICell.getValue() を使用した値の取得
	例: IDataObject.getValue(Object cellID) を使用した値の取得
	SDK の日付フォーマットおよびユーザー プリファレンスの理解

	値の設定
	例: ICell.setValue() を使用した値の設定
	例: IDataObject.setValue() を使用した値の設定
	例: IRow.setValues() を使用した行内の複数値の設定
	ロックされたオブジェクトの例外の捕捉

	リスト値の取得および設定
	シングルリスト セルの値の取得および設定
	例: シングルリスト セルの値の取得および設定

	マルチリスト セルの値の取得および設定
	例: マルチリスト セルの値の取得および設定

	カスケード リストの値の取得および設定
	例: カスケード リストの値の取得および設定
	例: カスケード リストの値の設定 (長い形式)

	 参照指示セルの使用

	フォルダの使用
	フォルダについて
	フォルダおよびオブジェクト名でのレベル区切り文字の使用

	フォルダのロード
	例: IAgileSession.getObject() を使用したフォルダのロード
	例: IFolder.getChild() を使用したフォルダのロード

	フォルダの作成
	 例:新規フォルダの作成

	フォルダ タイプの設定
	例:フォルダ タイプの設定

	 フォルダ要素の追加および削除
	フォルダ要素の追加
	例: フォルダへのオブジェクトの追加

	フォルダ要素の削除
	例: フォルダからのオブジェクトの削除

	 フォルダ要素の取得
	例: フォルダ要素の取得
	例: フォルダの子の取得
	例: フォルダ要素での繰り返し処理

	 フォルダの削除
	例: フォルダの削除

	アイテム、BOM および AML の使用
	アイテムについて
	アイテムのリビジョンの取得および設定
	例: [タイトル ブロック.リビジョン] フィールドへのアクセスでリビジョンの取得に失敗する場合
	例: アイテムのリビジョンの取得および設定
	例: [BOM.アイテム リビジョン] を使用したリビジョンの設定

	リビジョンの確定済みステータスの変更
	例: アイテムの確定済みステータスの変更

	BOM の使用
	BOM へのアイテムの追加
	例: BOM へのアイテムの追加

	BOM の展開
	例: 複数レベルの BOM の印刷

	別の BOM への BOM のコピー
	例: Collection.addAll() を使用した BOM のコピー
	例: 繰り返し処理による BOM のコピー

	BOM のレッドライン
	リリース済みのアセンブリ アイテムの取得
	例: リリース済みのアセンブリの取得

	設計変更の作成
	例: ECO の作成

	設計変更の [対象アイテム] タブへのアイテムの追加
	例: 設計変更の [対象アイテム] テーブルへのアイテムの追加

	[BOM のレッドライン] テーブルの変更
	例: [BOM のレッドライン] テーブルの変更

	AML の使用
	[製造元] テーブルへの承認済み製造元の追加
	例: AML への承認済み製造元の追加

	AML のレッドライン

	リストの使用
	リストについて
	リスト ライブラリ
	シングルリストのリスト
	マルチリストのリスト
	カスケード リスト
	IAgileList を使用するメソッド

	リスト値の選択
	例: 属性の [表示] プロパティの変更
	例: [表示] プロパティの現在のリスト値の取得
	例: 異なる属性のリスト値の再利用
	動的リストの使用
	例: 動的リストの値が列挙可能かどうかの確認

	ライフサイクル フェーズ セルの使用
	例: ライフサイクル フェーズ セルの使用

	リスト ライブラリからのリストの選択
	例: 属性の設定による Agile リストの使用
	例:「Colors」という名前のリストの選択

	カスタム リストの作成
	簡易リストの作成
	例: 簡易リストの作成
	例: リストへの大文字と小文字を区別した値の追加

	既存リストの変更による新規リストの自動作成
	例: 既存リストの変更による新規リストの自動作成

	カスケード リストの作成
	例: カスケード リストの作成
	例: カスケード リストへの親ノードとサブノードの追加

	リストのデータ タイプの確認
	例: リストのデータ タイプの確認

	リストの変更
	リストへの値の追加
	例: リストへの値の追加

	リスト値の破棄
	例: リスト値の破棄

	リスト名と説明の設定
	例: リスト名と説明の設定

	カスケード リストのレベル名の設定
	リストの有効化または無効化
	例: リストの有効化または無効化

	リストの削除
	例: リストの削除

	 リスト値の変更および削除
	例: 管理リスト エントリの名前変更および削除

	IAgileList オブジェクトのコンテンツの印刷
	例: IAgileList オブジェクトのリスト ノードの印刷

	製造拠点の管理
	製造拠点について
	拠点へのアクセスの管理
	製造拠点の作成
	例: 製造拠点の作成および有効化

	製造拠点のロード
	例: 製造拠点のロード

	アイテムの [拠点] テーブルの取得
	例: [拠点] テーブルの取得

	[拠点] テーブルへの製造拠点の追加
	例: [拠点] テーブルへの行の追加

	アイテムの現在の製造拠点の選択
	例: アイテムに対して現在選択されている製造拠点の取得
	例: アイテムに関連付けられたすべての製造拠点の取得
	例: アイテムに対する現在の製造拠点の設定

	拠点の無効化
	例: 製造拠点の無効化

	添付ファイルとファイル フォルダの使用
	添付ファイルについて
	ファイル フォルダの使用
	例: ファイル フォルダの作成
	例: [添付ファイル] テーブルへの行の追加によるファイル フォルダの作成
	 ファイル フォルダのテーブル
	ファイル フォルダの [ファイル] テーブルの使用
	例: ファイル フォルダの [ファイル] テーブルへのファイルおよび URL の追加

	IAttachmentFile インターフェースの使用
	 例: isSecure() および getFile() の使用

	[添付ファイル] テーブルの使用
	例: アイテムの添付ファイルの取得
	ICheckoutable インターフェースの使用
	例: ICheckoutable メソッドを使用した添付ファイルのチェックアウトおよびチェックイン

	 アイテムのリビジョンの指定
	リビジョンが確定済みかどうかの確認

	ファイル フォルダのチェックアウト
	例: ファイル フォルダのチェックアウト

	ファイル フォルダのチェックアウトのキャンセル
	 例: ファイル フォルダのチェックアウトのキャンセル

	[添付ファイル] テーブルへのファイルおよび URL の追加
	例: [添付ファイル] テーブルへのファイルの追加
	オブジェクト間での添付ファイルおよびファイルのディープ クローンの作成
	例: [添付ファイル] テーブル行のディープ クローンの作成
	例: ファイル フォルダの [ファイル] テーブル行のディープ クローンの作成

	添付ファイル追加時のファイル フォルダ サブクラスの指定
	例: 添付ファイル追加時のファイル フォルダ サブクラスの指定

	ファイル フォルダのファイルのバージョンの設定
	例: [添付ファイル] テーブルへの行追加時のバージョンの設定

	ファイル フォルダのチェックイン
	例: ファイル フォルダのチェックイン

	ファイルの置換
	例: ファイルの置換
	例: ファイル コンテンツとファイル名の同時更新
	例: ファイル コンテンツのみの更新
	例: [添付ファイル] テーブルの行に対するファイルの置換

	添付ファイルの取得
	例: 添付ファイルの取得
	例: ZIP されたファイル ストリームからのファイルの抽出

	ファイル フォルダと添付ファイルの削除

	ワークフローの管理
	ワークフローについて
	変更管理プロセス
	動的なワークフロー機能
	変更のステータスがワークフロー機能に与える影響
	例: 変更オブジェクトのステータスの取得

	 ユーザー権限がワークフロー機能に与える影響
	例: 変更のステータス変更前のユーザーの権限の確認

	ワークフローの選択
	例: ワークフローの選択
	例: 変更の未割り当て

	承認者の追加および削除
	例: 承認者とオブザーバの追加および削除
	 例: オブザーバを変更せずに承認者を追加する場合
	[サインオフ ユーザー二重識別タイプ] プリファレンスの設定
	送信可能なオブジェクトの承認
	例: 送信可能なオブジェクトの承認

	送信可能なオブジェクトの却下
	例: 送信可能なオブジェクトの却下

	送信可能なオブジェクトを承認する承認者およびユーザーのユーザー グループの追加
	例: 現在のユーザーがユーザー グループのメンバーとして含まれる、承認者のユーザー グループの追加

	転送元ユーザーを代行するユーザーによる送信可能なオブジェクトの承認
	例: ユーザー間の権限委譲の設定

	送信可能なオブジェクトを承認する現在のユーザーの有効なエスカレーションの追加
	例: ユーザーへのエスカレーションの設定

	送信可能なオブジェクトを承認する 2 番目の署名の指定
	例: 送信可能なオブジェクトを承認する 2 番目の署名の指定

	送信可能なオブジェクトを承認する 2 番目の署名としてユーザー ID を追加
	例: 2 番目の署名としてユーザー ID を指定

	 変更の承認または却下
	例: 変更の承認
	例: 変更の却下

	変更のコメント
	例: 変更のコメント

	変更の検証
	例: 変更の検証

	オブジェクトのワークフロー ステータスの変更
	例: 複合例外の発生
	例: 変更のステータスの確認
	 例: 変更のステータスの変更
	例: ステータスの変更およびデフォルトの承認者とオブザーバへの送信

	 選択したユーザーへの Agile オブジェクトの送信
	例: 選択したユーザーへの Agile オブジェクトの送信

	ユーザー グループへの Agile オブジェクトの送信
	 例: 選択したユーザー グループへの Agile オブジェクトの送信

	品質の管理および追跡
	品質管理について
	品質関連の API オブジェクト
	 品質関連の役割と権限

	顧客の使用
	顧客について
	顧客の作成
	例: 顧客の作成

	顧客のロード
	例: 顧客のロード

	顧客を別の顧客として保存
	例: 顧客を別の顧客として保存

	製品サービス依頼の使用
	問題レポートについて
	不具合レポートについて
	製品サービス依頼の作成
	例: 問題レポートまたは NCR の作成

	品質分析者への製品サービス依頼の割り当て
	例: 問題レポートまたは不具合レポートの割り当て

	製品サービス依頼への対象アイテムの追加
	例: 製品サービス依頼への対象アイテムの追加

	製品サービス依頼への関連 PSR の追加
	例: 製品サービス依頼への関連 PSR の追加

	品質変更依頼の使用
	品質変更依頼の作成
	例: QCR の作成

	品質管理者への品質変更依頼の割り当て
	例: QCR の割り当て

	品質変更依頼を変更として保存
	例: QCR を ECO として保存

	PSR および QCR でのワークフロー機能の使用
	ワークフローの選択
	例: ワークフローの選択

	プログラムの作成および管理
	プログラムについて
	 プログラム オブジェクトの動作の相違点
	プログラムの作成
	例: プログラムの作成

	プログラムのロード
	例: プログラムのロード

	プログラム テンプレートの使用
	テンプレートを使用した新規プログラムの作成
	例: テンプレートからの新規プログラムの作成

	プログラムの作成および所有権の変更
	例: テンプレートからのプログラムの作成、所有者の変更および変更の継承

	 プログラムをテンプレートとして保存
	例: プログラムをテンプレートとして保存

	プログラムのスケジュール
	例: [スケジュール] テーブルの変更
	例: プログラムの再スケジュール

	プログラムの基準の使用
	例: 基準の作成および取得

	別のユーザーへのプログラム所有権の委譲
	 例: プログラム オブジェクトの所有権の委譲

	プログラムのチームへのリソースの追加
	 例: プログラムのチームへのリソースの追加
	例: リソース プールからのユーザーの割り当て

	 プログラム リソースの入れ替え
	例: プログラム リソースの入れ替え

	 プログラムのロックまたはロック解除
	例: プログラムのロック

	ディスカッションの使用
	ディスカッションの作成
	例: ディスカッションの作成

	ディスカッションへの返信
	例: ディスカッションへの返信
	 例: [返信] テーブルの展開方法

	ディスカッションへの参加
	例: ディスカッションへの参加

	アクション アイテムの作成
	例: アクション アイテムの作成

	Product Cost Management の使用
	Product Sourcing について
	価格の管理
	価格オブジェクトの作成
	デフォルト
	アイテム リビジョンの指定
	例: 変更番号を渡してアイテム リビジョンを指定する場合

	公表価格の作成
	例: 公表価格の作成

	価格オブジェクトのロード
	例: 価格オブジェクトのロード

	価格ラインの追加
	例: 価格ラインの追加

	価格変更の作成

	サプライヤの使用
	サプライヤのロード
	サプライヤ データの変更
	例: サプライヤ データの変更

	ソーシング プロジェクトの使用
	サポートされている API メソッド
	既存のプロジェクトのロード
	例: プロジェクトのロード

	数量割引の指定によるプロジェクトの作成
	例: プロジェクトの作成
	例: 数量割引の指定によるプロジェクトの作成

	数量割引および価格期間の指定によるプロジェクトの作成
	例: 数量割引および価格期間の指定によるプロジェクトの作成

	オブジェクト、テーブルおよび属性へのアクセスと変更
	プロジェクトの [カバー ページ] の値の設定
	 例: プロジェクトの [カバー ページ] の値の設定

	PCM のネスト テーブルの理解
	プロジェクトの親テーブルとネスト子テーブルの定数
	プロジェクトまたは見積依頼のネスト テーブルへのアクセスおよび変更
	例: ネスト テーブルへのアクセス
	ネスト テーブル変更後の更新の表示
	例: ネスト テーブルでの繰り返し処理

	プロジェクト ステータスへのアクセスおよび変更
	例: プロジェクトの [カバー ページ] の値の設定

	ソーシング プロジェクトでの追加データの設定
	ソーシング プロジェクトのアイテムの数量の設定
	例: アイテムの数量の設定
	 例: ネスト テーブルの再ロードによる、更新された値の取得

	ソーシング プロジェクトでの数量ロールアップの実行
	例: 数量ロールアップ

	ソーシング プロジェクトでのパートナーの設定
	例: パートナーの設定およびパートナー間での割合の分割
	例: アイテムまたは AML の使用によるパートナー データの取得

	ソーシング プロジェクトでのアイテムの目標価格の変更
	例: ソーシング プロジェクトでの目標価格の設定

	ソーシング プロジェクトでのアイテムの最良回答の設定
	例: IPN に対する最良回答の設定
	例: MPN に対する最良回答の設定
	例: IPN と MPN に対する最良回答の取得

	 見積依頼の使用
	サポートされている API メソッド
	ソーシング プロジェクトに対する見積依頼の作成
	例: オブジェクトの作成
	例: プロジェクトに対する見積依頼の作成

	既存の見積依頼のロード
	 例: 見積依頼のロード

	プロジェクトの [見積依頼] テーブルからの見積依頼のロード
	例: プロジェクトの [見積依頼] テーブルからの見積依頼のロード
	サポートされている見積依頼テーブル

	見積依頼のオブジェクト、テーブル、ネスト テーブルおよび属性へのアクセスと変更
	 見積依頼の親テーブルとネスト子テーブルの定数
	例: ネストされた見積依頼テーブルの更新例

	見積依頼回答の処理

	Agile PLM オブジェクトの確認通知
	ユーザー確認通知について
	確認通知イベント
	確認通知権限
	確認通知
	確認通知の対象とするオブジェクトの削除

	オブジェクトに対する確認通知の取得
	例: オブジェクトに対する確認通知の取得

	オブジェクトに対する確認通知の変更
	例: オブジェクトに対する確認通知の有効化および無効化

	確認通知での属性の使用可能化
	 例: 確認通知での [ユーザー定義 1] 属性の使用可能化
	親属性と子属性

	 [確認通知] テーブルの使用
	例: 確認通知の削除
	例: [確認通知] テーブルのクリア
	 例: [確認通知] テーブルで参照されるオブジェクトの取得

	製品の規制および適合性の管理
	Agile Product Governance & Compliance について
	Agile PG&C のインターフェースとクラス
	Agile PG&C の役割
	 デクラレーション、含有基準およびサブスタンスの作成
	デクラレーションの作成
	例: JGPSSI デクラレーションの作成

	含有基準の作成
	 例: 含有基準の作成

	サブスタンスの作成
	サブパートの作成
	例: サブパートの作成

	サブスタンス グループの作成
	例: サブスタンス グループの作成

	マテリアルの作成
	例: マテリアル オブジェクトの作成

	サブスタンスの作成
	例: サブスタンスの作成

	デクラレーションへのアイテム、製造元部品および部品グループの追加
	例: デクラレーションへのアイテム、製造元部品および部品グループの追加

	デクラレーションへのサブスタンスの追加
	BOS (サブスタンス構成表) の構造
	サブスタンスの追加に関するルール
	存在しないサブパートとマテリアルの追加
	例: [製造元部品の組成] テーブルへのダミーのサブパートまたはマテリアルの追加

	サブスタンスを追加する例
	均質材のデクラレーションの [製造元部品の組成] テーブルへのサブスタンスの追加
	例: [製造元部品の組成] テーブルへの均質材レベルのサブスタンスの追加

	サブスタンス デクラレーションの [製造元部品の組成] テーブルへのサブスタンスの追加
	例: [製造元部品の組成] テーブルへの部品レベルのサブスタンスの追加

	含有基準へのサブスタンスの追加
	例: 含有基準へのサブスタンスの追加

	デクラレーションへの含有基準の追加
	含有基準の追加に関するルール
	例: [含有基準] テーブルへの含有基準の追加

	デクラレーションの送信
	例: Compliance Manager、Workflow および Due Date フィールドの値の設定
	例: サプライヤへのデクラレーションの開示

	デクラレーションの入力
	適合性管理者へのデクラレーションの提出
	例: デクラレーションのサインオフおよび適合性管理者への提出

	 デクラレーションの公表
	重量値の取得および設定
	例: アイテムの質量 (重量) 値の取得および設定
	例: アイテムを質量で検索

	製造元部品のサブスタンス組成の追加
	例: 製造元部品への含有基準、組成およびサブスタンスの追加

	適合性データのロールアップ
	IPGCRollup インターフェースの理解
	例: IPGCRollup メソッド
	Date パラメータを渡す場合

	IPGCRollup インターフェースの使用
	アイテムに関する集合データのロールアップ
	例: アイテムのトップ レベルの親の識別

	MPN に関する集合データのロールアップ
	例: MPN のトップ レベルの親の識別

	[適合性判定値] フィールドの値の設定
	例: [適合性判定値] フィールドの値の設定

	管理タスクの実行
	Agile PLM 管理について
	 Agile PLM の管理に必要な権限
	管理インターフェース
	IAdmin インスタンスの取得
	例: IAdmin インスタンスの取得

	ノードの使用
	例: トップレベル ノードの取得
	例: SmartRules 値の取得
	例: ITreeNode.getChildNode() を使用したノードの取得
	[クラス] ノードの使用

	Agile PLM クラスの管理
	具象クラスと抽象クラス
	例: 抽象クラスまたは具象クラスを使用したオブジェクトのロード
	例: クラスの取得
	例: 部品の作成

	クラスの参照
	 クラスのターゲット タイプの識別
	例: クラスのターゲット タイプの取得

	属性の使用
	属性の参照
	例: 属性 ID 定数の参照

	 属性の取得
	例: 部品サブクラスの [BOM] テーブルの属性の取得
	例: テーブルからの [BOM] テーブルの属性コレクションの取得

	個々の属性の取得
	例: [カバー ページ.理由コード] 属性の取得

	属性のプロパティの編集
	ユーザー定義属性の使用

	 管理ノードのプロパティの使用
	例: プロパティ値の取得

	ユーザーの管理
	すべてのユーザーの取得
	例: すべてのユーザーの取得

	ユーザーの作成
	例: ユーザーの作成

	サプライヤ ユーザーの作成
	例: サプライヤ ユーザーの作成

	ユーザーを新規ユーザーとして保存
	例: オブジェクトを新規オブジェクトとして保存

	有効期限が切れたパスワードの確認
	例: 有効期限が切れたパスワードの確認

	ユーザー設定の構成
	例: [一般情報] および [ユーザー定義 1] のユーザー セルの取得

	ユーザー パスワードのリセット
	例: パスワードの新しい値へのリセット

	ユーザーの削除
	例: ユーザーの削除

	ユーザー グループの管理
	すべてのユーザー グループの取得
	例: すべてのユーザー グループの取得

	ユーザー グループの作成
	例: ユーザー グループの作成
	例: ユーザー グループのグローバル化

	ユーザー グループ内のユーザーのリスト
	例: ユーザー グループ内のユーザーのリスト

	例外の処理
	例外について
	 例外定数
	エラー コードの取得
	例: Agile PLM エラー コードの取得

	エラー メッセージの取得
	 例: エラー メッセージの取得

	警告メッセージの無効化および有効化
	例: エラー コードの無効化および有効化
	APIException がエラーではなく警告であることの確認
	例: APIException が警告かどうかの確認

	 Agile API で自動的に無効にした警告の削除
	有効または無効にした警告の状態の保存および復元
	例: pushWarningState() および popWarningState() の使用

	プロセス拡張の開発
	プロセス拡張について
	カスタム自動採番ソースの開発
	カスタム自動採番ソースの定義
	例: カスタム自動採番ソースに対するクラスの定義

	カスタム自動採番ソースのパッケージ化および配置
	Agile Java クライアントでのカスタム自動採番ソースの設定
	サブクラスへの自動採番ソースの割り当て

	カスタム アクションの開発
	カスタム アクションの定義
	例: カスタム アクションに対する HelloWorld クラスの定義

	カスタム アクションとユーザー セッション
	カスタム アクションのパッケージ化および配置
	カスタム アクションの役割と権限
	プロセス拡張を設定するためのユーザー権限

	Agile Java クライアントでのカスタム アクションの設定
	プロセスの拡張ライブラリの使用
	クラスへのプロセス拡張の割り当て
	ワークフロー ステータスへのプロセス拡張の割り当て

	URL ベースのプロセス拡張の定義
	エンコードされた Agile PLM 情報を他のアプリケーションに渡す場合
	ターゲット システムからの Agile PLM セッションの作成
	例: PX_REQUEST フィールドの使用による、サーブレット リクエストからの IAgileSession の作成
	例: PX_USERNAME および PX_PASSWORD フィールドの使用による IAgileSession の作成

	HTTP リクエストからの Agile PLM オブジェクトの取得
	例: HTTP リクエストからの Agile PLM オブジェクトの取得

	Agile PLM クラスの識別属性

	SDK ネットワーク クラスローダと Weblogic Server の操作の設定
	外部レポートの作成
	 クラスタ環境でのプロセス拡張の配置
	プロセス拡張に関するよくある質問

	Web サービス拡張の開発
	Web サービス拡張について
	主な機能
	WSX アーキテクチャ

	Web サービスについて
	Web サービス アーキテクチャ
	セキュリティ
	ツール
	Web サービスに関する追加情報の検索

	Web サービスの開発および配置
	デプロイメント ディスクリプタについて
	予約されている Web サービス名

	Web サービスの使用
	Web サービスのエントリ ポイントの定義

	ユーザーの認証
	クライアント/サーバ アクセスでのシングル サインオン クッキーの使用
	配置アーキテクチャ
	シングル サインオン クッキーを使用した Web サービス クライアントの起動
	シングル サインオン クッキーの取得
	SOAP バインディング スタブ コードの変更

	MyFirstWebService サンプルの環境の準備
	サンプル作成用ツールのダウンロード
	Java SDK のインストール
	Ant のインストール

	MyFirstWebService サンプルの作成
	Web サービス クライアントについて
	クライアント プログラミング言語
	Web サービスへのアクセス

	MyFirstClient の作成
	SOAP リクエストの生成
	SOAP リクエストの発行
	SOAP レスポンスの処理
	 MyFirstClient の実行
	WSX 内部における Agile セッションの作成
	例: WSX 内部におけるセッションの設定

	 インポート データのサーバ ルール準拠の検証
	データの検証 (インポート前)
	データのインポート (検証後)
	例: データ検証メソッドの起動

	Microsoft .NET の相互運用性
	Web サービス拡張に関するよくある質問

	ダッシュボード管理拡張の開発
	ダッシュボード管理拡張について
	 ダッシュボード管理拡張の役割と権限

	カスタム チャート ダッシュボード管理拡張の開発
	ChartDataModel および ChartDataSet の理解
	カスタム チャート DX のデータ ソースの定義
	カスタム チャート DX ソースのパッケージ化および配置
	Java クライアントでのチャート DX の設定
	Agile Web クライアントでのオプション タブの表示

	カスタム テーブル ダッシュボード管理拡張の開発
	Collection および CustomTableConstants の理解
	 カスタム テーブル DX のデータ ソースの定義
	属性
	対応するデータ タイプ
	例: テーブル形式でデータを表示するためのダッシュボード拡張機能の定義

	カスタム テーブル DX ソースのパッケージ化および配置
	テーブル DX ソースをパッケージ化して配置する手順は、次のとおりです。

	Java クライアントでのテーブル DX の設定
	タブにテーブルを追加する手順は、次のとおりです。
	テーブルにデータを追加する手順は、次のとおりです。

	カスタム (URL) 拡張の定義

	Agile PLM クライアント機能と Agile API とのマッピング
	ログイン機能
	 一般機能
	検索機能
	添付ファイル機能
	ワークフロー機能
	 製造拠点機能
	フォルダ機能
	 プログラム機能
	管理機能

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

