

Version 10.0.2

Installation and Configuration Guide

Oracle ATG
One Main Street
Cambridge, MA 02142
USA

ATG Installation and Configuration Guide

Document Version
Doc10.0.2 INSTALLATGv1 4/15/2011

Copyright
Copyright © 1997, 2011, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are
protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy,
reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please
report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the
following notice is applicable:

U.S. GOVERNMENT RIGHTS
Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are “commercial
computer software” or “commercial technical data” pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the
additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle America, Inc., 500 Oracle
Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended
for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or
hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures
to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in
dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are
trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or
registered trademarks of Advanced Micro Devices. UNIX is a registered trademark licensed through X/Open Company, Ltd.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties.
Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party
content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to
your access to or use of third-party content, products, or services.

For information about Oracle’s commitment to accessibility, visit the Oracle Accessibility Program website at
http://www.oracle.com/us/corporate/accessibility/index.html.

Oracle customers have access to electronic support through My Oracle Support. For information, visit
http://www.oracle.com/support/contact.html or visit http://www.oracle.com/accessibility/support.html if you are hearing impaired

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

i i i

C o n t e n t s

μ

Contents

1 Installing the ATG Platform 1
Document Conventions 1
Default Ports 1
Important Terms 2
Product Requirements 2

JBoss-Specific Requirements 2
WebLogic-Specific Requirements 4
WebSphere-Specific Requirements 5
Sun T1000 and T2000 Requirements 6

Running the ATG Setup Program 7
JBoss Installation Results 8
WebLogic Installation Results 8
WebSphere Installation Results 8
Performing a Maintenance Installation 9

Installing the ATG Control Center on a Client Machine 9
Downloading the ACC Installer 9
Installing the ACC on a Windows Client 10
Installing the ACC on a UNIX Client 10

Installing ATG Development Tools for Eclipse 10
Using the Configuration and Installation Manager (CIM) 11
Removing the ATG Platform from Your System 12

2 Running Nucleus-Based Applications 13
Starting the SOLID SQL Database 13
Running the Demos and Reference Applications 14
Starting the SQL-JMS Admin Interface 15
Starting ATG Web Services 16
Connecting to the Dynamo Administration UI 16
Connecting to the ATG Business Control Center 17
Starting the ATG Control Center 17

Starting the ACC on a Server 18
Starting the ACC on a Client 20

Stopping an ATG Application 20
Stopping ATG Applications on JBoss 21
Stopping ATG Applications on WebLogic 21
Stopping ATG Applications on WebSphere 21

Using the startDynamoOnJBOSS Script 21

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

i v

C o n t e n t s

μ
3 Configuring Nucleus Components 25

Working with Configuration Layers 26
Understanding Properties Files 26
Understanding Configuration Layers 26
Accessing Configuration Layers in the ACC 27
Global Configuration Changes 28
Locking Configuration Layers 28

Finding Components in the ACC 28
Changing Component Properties with the ACC 29
Changing Component Properties Manually 31

Using Forward Slashes (/) and Backslashes (\) 32
Modifying Lists of Values 32
Specifying Directory Paths 33
Adding Comments to Properties Files 33

Using the Dynamo Component Browser 33
Component Browser Structure 33
Changing the Running Configuration 34
Starting Nucleus Components 34
Customizing the Interface 34

Common Configuration Changes 35
Modifying Environment Settings 35
Modifying Custom Module Resource Settings 36
Enabling checkFileNameCase on Windows 36
LogListeners 37

Creating Additional ATG Server Instances 38
Using the MakeDynamoServer Script 38
Using the Configuration Manager 39
Configuring a New Server Instance 39

Setting Up a Configuration Group 39
Configuration Group Properties 42
Storing Group Configuration Files 44
Downloading Group Configuration 45
Validating Group Configuration Properties 47

Session Management in ATG Applications 48
Sharing Session Information Among ATG Applications 48
Session Interaction Outline 49
Managing User Sessions 51

4 Configuring Databases and Database Access 53
Creating Database Tables Using SQL Scripts 54

Creating Database Tables for ATG Adaptive Scenario Engine 54
Creating Database Tables for ATG Portal 56

Destroying Database Tables 57
Destroying Database Tables for ATG Adaptive Scenario Engine 57
Destroying Database Tables for ATG Portal 59

Adding a JDBC Driver 60

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

v

C o n t e n t s

μ
Removing the SOLID JDBC Driver from the CLASSPATH 60

Configuring ATG Data Sources for Data Import 60
Configuring Data Sources and Transaction Management 63

Configuring Data Sources for JBoss 63
Configuring Data Sources for WebLogic and WebSphere 65
Configuring Data Sources for an Oracle RAC Cluster 65
Setting the Transaction Timeout on JBoss 66
Setting the Transaction Timeout on WebLogic 66
Setting the Transaction Timeout on WebSphere 66
Setting the Isolation Level for Transactions in WebSphere 66
Datasource Debugging 67

Using the JDBC Browser 68
Configuring the JDBC Browser 68
Create Table Operation 69
Drop Table Operation 69
Execute Query Operation 69
Metadata Operations 69

Using ATG Products with an IBM DB2 Database 70
Using ATG Products with a Microsoft SQL Server Database 71
Moving Data from SOLID to the Production Database 72

Transferring the Demo Data 73
Copying and Switching Databases 74

Database Copy Operations 74
Creating a DBCopier Component 75
Configuring the DBConnectionInfo 75
Configuring the DBCopier 76
Setting the Native SQL Environment 77
Switching Databases 77
Configuring a SwitchingDataSource 78
Database Switching and Query Caching 79

5 Configuring for Production 81
Enabling liveconfig Settings 81

Customizing liveconfig Settings 82
Disabling Checking for Changed Properties Files 82
Disabling the Performance Monitor 83
Adjusting the pageCheckSeconds Property 83

Changing the Default Cookie Hash Key 83
Fine-Tuning JDK Performance with HotSpot 83
Configuring Repositories 84

Setting Cache Modes 84
Prepopulating Caches on Startup 84
Enabling the Repository Cache Lock Managers 84
Configuring Repository Database Verification for Quicker Restarts 85
Configuring a Content Distributor System 85

Configuring Targeted E-Mail 85
Nucleus Components 86

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

v i

C o n t e n t s

μ
Configuring Web Applications 86

Setting Access Levels for Properties Files 87
Setting Logging Levels 88
Limiting Initial Services for Quicker Restarts 88
Disabling Document and Component Indexing 89
Enabling the ProtocolChange Servlet Bean 89
Setting up Clustering on JBoss 89

Configuring the HttpPort Property 90
Creating ATG Servers 90
Assembling for a JBoss Cluster 90
Creating and Configuring JBoss Servers 90
Deploying Your Application 91

Setting Up Clustering on WebLogic 91
Assembling for a WebLogic Cluster 91
Clustering Example 92

Setting up Clustering on WebSphere 93
Installing and Configuring WebSphere 93
Creating a Cluster 94
Creating Data Sources 94
Installing and Configuring Your Web Server 94
Installing ATG for a WebSphere Cluster 94
Assembling for a WebSphere Cluster 94
Session Management in a WebSphere Cluster 95
Configuring Your WebSphere Servers 95
Deploying Your Application 96

General Clustering Information 97
Specifying the drpPort Setting 97
Setting up localconfig and Server Configuration Files 97
Unique Components 97
Enabling Component Backup 98
Synchronizing Server Clocks 99

6 Performance Diagnostics 101
Performance Troubleshooting Checklist 101
Performance Testing Strategies 102

Graduated Testing of Throughput 102
Realistic Testing Strategies 102

Locating Performance Bottlenecks 103
Monitoring System Utilization 103
Bottlenecks at Low CPU Utilization 103
Checking for Database Bottlenecks 104
Checking for Disk I/O Bottlenecks 104
Checking for Network-Limited Problems 104
Bottlenecks at High CPU Utilization 104
Thread Context Switching Problems 105
System Resource Bottlenecks 105
TCP Wait Problem on Solaris 106

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

v i i

C o n t e n t s

μ
Server Hangs 106
Paging and Memory Allocation 107

Garbage Collection 107
Memory Leaks 108
Swap Space 108

Detecting File Descriptor Leaks 109
Using URLHammer 109

Command Line Arguments 110
URLHammer Examples 112
The -script Argument 113
Recording a Script 114
Editing a Script 114
URLHammer Source Files 115

7 Monitoring Site Performance 117
Performance Monitor 117

Adding PerformanceMonitor Methods to your Code 117
Performance Monitor Modes 119
Viewing Performance Monitor Data 120
Instrumented ATG Classes 121
Performance Monitor API 122

Using the Configuration Reporter 126
Configuration Reports 126
Excluding Components from the Configuration Report 126
Running the Configuration Reporter as a Standalone Utility 127

Using the VMSystem Component 130
Using a Sampler 130

Starting the Sampler 130
Sampler Information 131
Sampler Output 131

Using the Recording Servlet 131
Inserting the Recording Servlet 132
Generating Script Files 132
Keeping Statistics 132
Tracing Memory 132

8 Repository and Database Performance 133
Database Performance Practices 133
Repositories and Transactions 134
Repository Item Property Loading 134
Database Sorting versus Locale-Sensitive Sorting 134
Batching Database Transactions 134
Avoiding Table Scans 135
Database Caches 136
Diagnosing Database Performance Problems 137

Avoid Using Simulated Text Search Queries in Repositories 137

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

v i i i

C o n t e n t s

μ
9 Tuning Site Performance on JBoss 139

JBoss File Modifications 139
JSP Servlet Configuration 139
Tomcat Connector Thread Configuration 140
Tomcat Cluster Configuration 141
JBoss Logging Configuration 141
Datasource Configuration 141
Configuring run.bat/sh and run.conf 142

JBoss Application Framework Trimming 142

Appendix A: Migration Issues 145
Migrating from ATG 6 on WebLogic or WebSphere 145
Using the JBoss Migration Tool 145
Migrating from Dynamo Application Server 148

JSP-based Applications 149
Migrating JHTML-based Applications 150

Reassembling Your Applications 151

Appendix B: Setting Up WebSphere Studio Application Developer 153
Creating an ATG Java Project 153

Creating a Workspace 154
Creating a New ATG Module and WSAD Java Project 154
Creating a WSAD Java Project from an Existing ATG Module 157

Generating and Importing a J2EE Application 158
Modifying the Manifest File 158
Assembling Your J2EE Application 158
Importing the EAR file into WSAD 159

Setting Build References 160
Defining a Utility JAR 160
Troubleshooting Task Console Errors 161
Testing Your Development Environment 161
Adding Dependent JARs 162
Configuring Additional ATG Servers 162
Reassembling Your Application for Deployment 162

Reassembling Your Application Using WSAD 163
Reassembling Your Application Using Ant 163

Appendix C: Data Storage and Access 165
Database Schema Best Practices 165

Production Schema 165
Management Schema 173
Agent Schema 179

Data Sources 185
Repositories 186

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

i x

C o n t e n t s

μ
Appendix D: Adjusting the FileCache Size 191

Index 192

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

x

C o n t e n t s

μ

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1

1 - I n s t a l l i n g t h e A T G P l a t f o r m

μ
1 Installing the ATG Platform

This document describes how to install and configure ATG on the JBoss, WebSphere, or WebLogic
application servers. This chapter covers the following topics:

Document Conventions

Default Ports

Important Terms

Product Requirements

Running the ATG Setup Program

Installing the ATG Control Center on a Client Machine

Installing ATG Development Tools for Eclipse

Removing the ATG Platform from Your System

Document Conventions
This guide uses the following conventions:

 <ATG10dir> represents the ATG installation directory (C:\ATG\ATG10.0.1, for
example)

 <JBdir> represents the Red Hat JBoss home directory (C:\jboss\
jboss-eap-5.1\jboss-as, for example)

 <WLdir> represents the Oracle WebLogic home directory

 <WASdir> represents the IBM WebSphere home directory

Default Ports
This guide uses the hostname:port convention in URLs. The default HTTP ports for the application
servers are:

 JBoss: 8080

 WebLogic: admin server 7001

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

2

1 - I n s t a l l i n g t h e A T G P l a t f o r m

μ
 WebSphere: 9080

Important Terms
This section defines terms used throughout this guide.

ATG products. Umbrella name for the software suite, particularly the platform.

ATG installation. Collective name for the tools, files, classes, etc. used for developing
and assembling J2EE applications.

ATG application. A piece of software installed independent of the platform, which can
be included as a module or set of modules in a Nucleus-based application.

ATG server. A configuration layer that is available to be added to other configuration
layers by the application assembler when assembling an EAR.

Dynamo Administration UI. Web pages used to configure and monitor the ATG
installation.

Component. A Java object instance of a specific configuration for a JavaBean that is
registered with Nucleus.

Nucleus-based application. An assembled EAR file created out of components
managed by ATG’s Nucleus component manager, running on the application server.

Product Requirements
You must install your application server before you install the ATG platform. See your application server
documentation for installation information.

Before you run the ATG setup program, make sure you have a supported JRE in place on your system, and
that the JVM is in your system PATH. (Note: The stand-alone ATG Control Center includes its own JRE.)

You should enable GZIP compression for static files. See your application server documentation for
information.

For a detailed list of system requirements for the ATG platform, see the Supported Environments page
(http://www.atg.com/en/products/requirements/).

JBoss-Specific Requirements

After installing JBoss, modify the JVM arguments. Go to <JBdir>/bin/run.conf|bat and edit the
JAVA_OPTS line. ATG suggests the following settings:

JAVA_OPTS="-server -Xms2048m -Xmx3072m -XX:MaxPermSize=768m

-XX:MaxNewSize=768m -Dsun.rmi.dgc.server.gcInterval=3600000 –

Dsun.rmi.client.gcInterval=3600000"

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

3

1 - I n s t a l l i n g t h e A T G P l a t f o r m

μ
If you are setting up a JBoss instance that will be dedicated to lock management, you can run that
instance with a smaller heap size, since the lock manager does not serve pages. To do this, ATG
recommends creating a new run.bat|sh file referring to a new run.conf file.

Duplicate the run.bat|sh and run.conf files and rename the duplicates (for example, runLockMan.sh
and runLockMan.conf). In the runLockMan.bat|sh file, change the following section to point to the
new configuration file:

Read an optional running configuration file

if ["x$RUN_CONF" = "x"]; then

 RUN_CONF="$DIRNAME/LMrun.conf"

fi

if [-r "$RUN_CONF"]; then

 . "$RUN_CONF"

fi

The runLockMan.conf file should include the following settings:

JAVA_OPTS="-server –Xms512m –Xmx512m -XX:MaxPermSize=128m

-XX:MaxNewSize=128m

-Dsun.rmi.dgc.server.gcInterval=3600000"

Using ACC Scenarios in JBoss

In order to create scenarios in the ATG Control Center (ACC), you must add the following three JAR files to
your classpath:

<JBdir>/common/lib/jboss-javaee.jar

<JBdir>/common/lib/jsp-api.jar

<JBdir>/common/lib/servlet-api.jar

To do this, copy the files into the /lib directory of your standalone ACC installation, then modify the
bin/startClient.bat file to include the three JARs in the class path.

Disabling Session ID Checking in JBoss

If you are using JBoss on UNIX and expect to run multiple ATG servers within a single JBoss instance (as
may be the case during development or demonstrations), edit the JBoss run.conf script by adding the
following line to the end of the file:

JAVA_OPTS="${JAVA_OPTS} -Dorg.apache.catalina.connector.Request

.SESSION_ID_CHECK=false"

This allows your browser to use a single jsessionid cookie for both instances, avoiding unnecessary
errors.

If you are running ATG on Windows, session ID checking is disabled by default, using the –
disableSessionIdCheck flag in the startDynamoOnJBOSS.bat script (see the Using the
startDynamoOnJBOSS Script section for additional flags).

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

4

1 - I n s t a l l i n g t h e A T G P l a t f o r m

μ
WebLogic-Specific Requirements

If you are using WebLogic and want to run the ACC in a dedicated VM (see Starting the ACC in a
Dedicated VM in this guide), you must add the following tag to the config.xml file inside the
<security-configuration> tag:

<enforce-valid-basic-auth-credentials>

 false

</enforce-valid-basic-auth-credentials>

See your WebLogic documentation for information on the config.xml file.

To use XA data sources with WebLogic, add the following line to your
<ATG10dir>/home/servers/servername/localconfig/GLOBAL.properties file:

localTransactionModeInitialization=false

In order to create scenarios in the ACC, you must add the <WLdir>/server/lib/wlclient.jar file to
your class path. To do this, copy wlclient.jar into the /lib directory of your standalone ACC
installation, then modify the bin/startClient.bat file to include wlclient.jar in the class path.

If you are planning to run SQLJMSAdmin on your WebLogic installation, you must change the session-
timeout value in the SQLJMSAdmin webModule\WEB-INF\web.xml file from zero to a positive number.
ATG recommends setting the timeout value to 30.

Controlling Page Recompilation on WebLogic

When you run ATG applications on WebLogic, WebLogic’s JSP container manages JSP compilation. If you
are running WebLogic in development mode, modified pages are automatically recompiled when they
are requested, ensuring that the .java files associated with the pages are up to date. To prevent
performance degradation due to unnecessary page recompilation, when you run WebLogic 10 in
production mode, page recompilation is automatically disabled (.jsp files should not change on a
production environment, so in theory recompilation will never happen; but disabling recompilation
ensures that it will not be triggered by a timestamp change).

Although recent WebLogic versions automatically disable page recompilation in production mode, you
may want to manually disable recompilation if you are in a testing phase, but not yet running in
production mode. Unnecessary recompilation may distort performance tests and slow down your quality
assurance process.

To disable page recompilation, create a weblogic.xml file (or modify an existing one) in the WEB-INF
directory of each web application you want to include in your EAR file. In the weblogic.xml file, set these
two parameters to -1:

 pageCheckSeconds specifies the interval in seconds between stale checks for an
individual JSP. When a request for a JSP is received, if the last stale check on this page
was longer ago than the number of seconds that pageCheckSeconds is set to, a new
stale check is performed, and if the page is determined to be stale, it is recompiled.
The default in development mode is 1 second. Setting this parameter to -1 disables
stale checking.

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

5

1 - I n s t a l l i n g t h e A T G P l a t f o r m

μ
 servet-reload-check-secs specifies the interval in seconds between checks of a

web application’s WEB-INF/classes directory to see if any servlets have been
recompiled (and therefore need to be reloaded). The default in development mode is
1 second. Setting this parameter to -1 disables checking.

The following example illustrates disabling both of these checks in the weblogic.xml file:

<weblogic-web-app>

 <container-descriptor>

 <servlet-reload-check-secs>-1</servlet-reload-check-secs>

 </container-descriptor>

 <jsp-descriptor>

 <page-check-seconds>-1</page-check-seconds>

 </jsp-descriptor>

</weblogic-web-app>

WebSphere-Specific Requirements

The information in the following sections applies only to those using the WebSphere Application Server.

If you have installed the WebSphere Network Deployment version, when you run the ATG installer you
must select the IBM Websphere - cluster setup option (even if you are not actually using clustering).

Running WebSphere on AIX

If using WebSphere on AIX, to avoid errors when importing application data using ATG import scripts, you
must set the following in the <ATG10dir>/home/localconfig/postEnvironment.sh file:

JAVA_ARGS="${JAVA_ARGS} -Djava.net.preferIPv4Stack=true"

You must also set it in the WebSphere environment:

1. In WebSphere Admin, go to Servers > Application servers > server >Java and Process
Management > Process Definition > Java Virtual Machine.

2. Under Generic JVM arguments set the following:

-Djava.net.preferIPv4Stack=true

If you do encounter this problem, you will see errors such as the following:

Error: Jan 30, 2008 12:45:01 PM javax.jmdns.JmDNScloseMulticastSocket

WARNING: closeMulticastSocket() Close socketexception

java.net.SocketException: The socket name is not available on this system.

XA Data Sources on WebSphere

To use XA data sources with WebSphere, add the following line to your
<ATG10dir>/home/servers/servername/localconfig/GLOBAL.properties file:

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

6

1 - I n s t a l l i n g t h e A T G P l a t f o r m

μ
localTransactionModeInitialization=false

Creating ACC Scenarios on WebSphere

In order to create scenarios in the ACC, you must add the <WSdir>/AppServer/j2ee.jar file to your
class path. To do this, copy j2ee.jar into the /lib directory of your standalone ACC installation, then
modify the bin/startClient.bat file to include j2ee.jar in the class path.

Using ATG Multisite on WebSphere

If you are using ATG’s multisite feature on WebSphere, in order to use virtual context roots, do the
following:

1. In WebSphere Admin, go to Servers > Server Types > WebSphere application servers >
server_name > Web Container settings > Web Container > Custom Properties.

2. Set the com.ibm.ws.webcontainer.invokefilterscompatibility property to true.

In order for session recovery to function across a multisite installation, make sure to set the following
properties as indicated on each application server:

 Enable URL rewriting – Enabled

 Enable protocol switch rewriting – Enabled

 HttpSessionReuse – True

Sun T1000 and T2000 Requirements

By default the Sun T1000 and T2000 systems run a server that uses port 9010. ATG’s lock management
components also use this port. If you are using lock management, you must either disable the server or
change your lock manager to use a different port.

To disable the server:

1. Log in as root.

2. Enter the following command:

mv /etc/rc2.d/S95IIim /etc/rc2.d/K95IIim

3. Stop the service:

/etc/rc2.d/S95IIim stop

To change ATG lock manager port assignments, when you configure your lock management components,
use the following settings:

1. For the ClientLockManager port assignment in
<ATG10dir>/home/localconfig/atg/dynamo/service

/ClientLockManager.properties:

useLockServer=true

lockServerPort=39010

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

7

1 - I n s t a l l i n g t h e A T G P l a t f o r m

μ
2. For the ServerLockManager port assignment in

<ATG10dir>/home/servers/servername/localconfig/atg/dynamo/service

/ServerLockManager.properties:

port=39010

See the Locked Caching section of the ATG Repository Guide for information on configuring lock managers.

Running the ATG Setup Program
The ATG platform installer is available as a self-extracting Windows executable (ATG10.0.1.exe) or UNIX
binary file (ATG10.0.1.bin). This distribution file includes the following products:

 ATG Adaptive Scenario Engine

 ATG Business Commerce

 ATG Consumer Commerce

 ATG Portal

 ATG Content Administration

Follow these steps to install the platform:

1. Run the ATG10.0.1.exe or ATG10.0.1.bin file to start the setup program.

Note: If you are installing on a Linux variety that includes GCJ, in order to avoid
installation errors you must specify a JVM that includes the javax.swing classes,
which are not included in GCJ. Use the following command:

$sh ./install.bin LAX_VM path_to_java_executable

For example:

$sh ./ATG10.0.1_678.bin LAX_VM /usr/local/j2sdk1_4_2_03/bin/java

2. After you accept the terms of the license agreement, select the installation folder for
the ATG software (C:\ATG\ATG10.0.1 or /home/ATG/ATG10.0.1, for example).

3. Select the ATG products you want to install.

4. Select your application server.

5. If installing for JBoss, enter the following configuration information :

 the RMI port your Nucleus-based applications will use (defaults to 8860)

 the listen port that JBoss uses to listen for incoming connections (defaults to
8080)

 the JBoss home directory (C:\jboss-eap-5.1\jboss-as, for example)

 the JDK home directory (C:\j2sdk1.6.0_22, for example)

If installing for WebLogic, enter the following:

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

8

1 - I n s t a l l i n g t h e A T G P l a t f o r m

μ
 the RMI port your ATG applications will use (defaults to 8860)

 the listen port that WebLogic uses to listen for incoming connections (defaults
to 7001)

 the WebLogic home directory

 the path to your WebLogic domain directory
(C:\oracle\user_projects\domains\mydomain, for example)

 the JDK home directory (C:\j2sdk1.6.0_22, for example)

If installing for WebSphere, enter the following:

 the RMI port your ATG applications will use (defaults to 8860)

 the port that WebSphere uses to listen for incoming connections (defaults to
9080)

 the WebSphere home directory (C:\WebSphere\AppServer, for example)

 the name of the WebSphere server (server1, for example)

 the node on which the WebSphere server is installed (Typically, the node name
is the same as the host machine name.)

JBoss Installation Results

The ATG installer creates a JBoss server named \atg in your <JBdir>\servers directory. This server is
based on the \default JBoss server without modifications. See your JBoss documentation for
information on JBoss servers.

Note: Do not deploy multiple ATG application EAR files to a single JBoss server.

WebLogic Installation Results

The ATG setup program adds a protocol.jar file to the WebLogic domain directory you specified
during the installation process. Before you start WebLogic, open the
<WLdir>\user_projects\domains\your_domain\startWebLogic.{cmd|sh} file and add the
protocol.jar path to the beginning of the CLASSPATH variable. For example:

set CLASSPATH=C:\WebLogic\user_projects\domains\mydomain\protocol.jar;

%WEBLOGIC_CLASSPATH%;%POINTBASE_CLASSPATH%;%JAVA_HOME%\jre\lib\rt.jar;

%WL_HOME%\server\lib\webservices.jar;%CLASSPATH%

Note that you should not move this file into the lib directory for your domain, nor should you include it
in the lib for your Nucleus-based application. It should be in the CLASSPATH for the application server.

WebSphere Installation Results

If you are not using CIM to configure your installation, you must manually register the ATG URL providers,
following this procedure:

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

9

1 - I n s t a l l i n g t h e A T G P l a t f o r m

μ
1. Copy protocol.jar from the <ATG10dir>\DAS\lib directory to the \lib directory

of your WebSphere installation.

2. Register the following URL providers in the WebSphere Admin Console (see your
WebSphere documentation), using the specified settings:

name = dynamosystemresource

streamHandlerClassName =

atg.net.www.protocol.dynamosystemresource.Handler

protocol = dynamosystemresource

name = appmoduleresource

streamHandlerClassName = atg.net.www.protocol.appmoduleresource.Handler

protocol = appmoduleresource

Performing a Maintenance Installation

If you have any of the ATG platform products installed and would like to install additional platform
products, rerun the ATG setup program. The maintenance installer lists the products that have not been
installed yet, allowing you to select the ones you want. If you need to reinstall any of the ATG platform
products that are currently installed on your system, you must uninstall the ATG platform completely (see
Removing the ATG Platform from Your System) and run the setup program again.

Note: If you have installed any ATG patches, you must uninstall them before running the maintenance
installer. Once the maintenance install is complete, reinstall the patches. See the PatchReadme files under
<ATG10dir>/patch for instructions.

Installing the ATG Control Center on a Client Machine
This section explains how to install a standalone version of the ACC (ACC) on a client machine, when you
do not need a full ATG installation. It covers the following topics:

 Downloading the ACC Installer

 Installing the ACC on a Windows Client

 Installing the ACC on a UNIX Client

Note: To use the standalone version of the ACC, the client machine must have the J2SDK installed.

Downloading the ACC Installer

Contact your ATG sales representative to obtain one of the following ACC distribution files:

 ACC10.0.1.exe (Windows)

 ACC10.0.1.jar (UNIX)

Note: You cannot use any other version of the ACC with ATG 10.

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 0

1 - I n s t a l l i n g t h e A T G P l a t f o r m

μ
Installing the ACC on a Windows Client

To install the ACC on a Windows client:

1. Run the ACC10.0.1.exe file to start the setup program.

2. After you accept the terms of the license agreement, select the destination folder for
the ACC. The default is C:\ATG\ACC10.0.1. Click Browse to specify a different
directory.

3. Enter a name for the ACC program folder on the Windows Start menu.

4. The installer displays the settings you selected. Review the setup information and click
Next to start the installation, or Back to change any of the settings.

Installing the ACC on a UNIX Client

To install the ACC on a UNIX client:

1. Change the permissions on the downloaded installer so you can execute it.

2. Run the binary:

./ACC10.0.1.bin

3. Accept the license agreement.

4. Provide an install directory.

When finished, exit the installer.

Installing ATG Development Tools for Eclipse
ATG offers a set of development tools for the open source Eclipse Platform (http://www.eclipse.org). For
the latest information about the ATG Eclipse plug-ins, point your Eclipse Update Manager to
http://www.atg.com/eclipse.

Use the Eclipse Update Manager to install the ATG Eclipse plug-in:

1. Open the Eclipse Workbench and select Help > Software Updates > Find and Install.

2. In the Feature Updates dialog, select Search for New Features to Install and click
Next.

3. Check the Web Tools Platform (WTP) Updates option and click Finish.

4. Select a mirror site if prompted and click OK. The Update Manager searches for
features.

5. In the Search Results window, expand the list and select the Web Standard Tools
(WST) and J2EE Standard Tools (JST) projects. Install these projects in your Eclipse
installation.

6. In the Eclipse Workbench, select Help > Software Updates > Find and Install again.

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 1

1 - I n s t a l l i n g t h e A T G P l a t f o r m

μ
7. In the Feature Updates dialog, select Search for New Features to Install and click

Next.

8. In the Install dialog box, click New Remote Site.

9. In the New Site Bookmark dialog box, enter ATG in the Name field and
http://www.atg.com/eclipse in the URL field. Click OK. The Update Manager adds
an ATG bookmark to the Feature Updates view.

10. Check the ATG bookmark and click Finish. The update manager searches for ATG tools
you do not have installed.

11. In the Search Results window, expand the ATG bookmark and select the plug-ins you
want to install, then click Next.

12. Accept the license agreement, then click Next.

13. Click Finish to install the plugins. You will have to restart Eclipse before using your
newly installed plugins.

To learn more about using the ATG Eclipse plugins, see the ATG documentation under Help > Help
Contents in Eclipse after you have installed them.

Using the Configuration and Installation Manager (CIM)
ATG’s Configuration and Installation Manger (CIM) cuts down on the complexity of configuring multiple
ATG applications. A series of text-based wizards guide you through configuration procedures, ensuring
that necessary steps are completed, and that steps are performed in the correct order.

CIM is a text-based, menu-driven interface that walks you through several configuration tasks that are
commonly susceptible to error. Menus are dynamically generated based on your selections to provide
choices appropriate for your installation.

The installation guides for individual products contain specific information on what CIM accomplishes for
those products, but in general, CIM handles the following configuration areas:

 Datasource configuration

 Database table creation and data import

 ATG server instance creation and configuration (see Creating Additional ATG Server
Instances)

 Application assembly and deployment

The result is a functional installation that can be used as a starting point for further configuration. CIM
does not replace configuration steps that require a running ATG application, or for which a suitable user
interface exists.

Note: CIM does not configure a scenario or process editor server. See the ATG Multiple Application
Integration Guide for information on scenario editor servers.

To use CIM, do the following:

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 2

1 - I n s t a l l i n g t h e A T G P l a t f o r m

μ
1. Install your application server and database software.

WebSphere Note: In order to use CIM to configure an ATG installation for WebSphere,
your WebSphere installation needs to use cell deployment. There is a separate
WebSphere installer for this type of installation, denoted by ND. Also, note that if you
run WebSphere as a root user, CIM must also be run as a root user.

WebLogic Note: If you are using offline deployment in WebLogic, you can deploy only
a single ATG EAR file per domain. CIM deploys the EAR file to WebLogic’s autodeploy
directory, and that EAR is loaded by any running server instance.

2. Download and install your ATG products.

Note: In order to use CIM, you must install ATG Content Administration.

3. Navigate to:

<ATG10Dir>\home\bin

4. Enter the command:

cim.bat|sh

5. Follow the prompts to configure your installation. To access the online help, enter H at
any point.

Removing the ATG Platform from Your System
Use the following methods to remove the ATG platform from your system.

On Windows: Use the Add/Remove Programs function in the Windows Control Panel.

On UNIX: Go to the <ATG10dir>/uninstall/.ASE10.0.1_uninstall directory and run
Uninstall_ATG_10.0.1.

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 3

2 - R u n n i n g N u c l e u s - B a s e d A p p l i c a t i o n s

μ
2 Running Nucleus-Based Applications

Nucleus-based applications are assembled into EAR files that include both the application and ATG
platform resources, and which are then deployed to your application server. The ATG platform installation
includes the modules required to create QuincyFunds.ear, a sample J2EE application that includes the
Quincy Funds demo and the Dynamo Administration UI. The Quincy Funds demo requires the SOLID SQL
database, which is included in the ATG distribution for evaluation purposes.

Once the ATG installation is complete, you can assemble, deploy, and run the QuincyFunds.ear
application. You can then access the Quincy Funds demo and the Dynamo Administration UI through
your web browser, and connect to the application with the ACC.

This chapter covers the following topics:

Starting the SOLID SQL Database

Running the Demos and Reference Applications

Starting the SQL-JMS Admin Interface

Starting ATG Web Services

Connecting to the Dynamo Administration UI

Starting the ATG Control Center

Stopping an ATG Application

Using the startDynamoOnJBOSS Script

Starting the SOLID SQL Database
Before you start up a Nucleus-based application, make sure the SQL database you intend to use is
running. For evaluation purposes, QuincyFunds.ear is preconfigured to work with the SOLID SQL
database included in the ATG software distribution. This database comes fully configured with data for all
of the ATG demo applications, including the Quincy Funds demo.

JBoss Note: JBoss by default assumes XA drivers, which some ATG applications use; however, there are
no XA drivers for SOLID. To enable multiple non-XA resources in JBoss, add the property in bold text to
the jbossjta-properties.xml file, under the <property depends="arjuna" name="jta"> tag:

<property depends="arjuna" name="jta">

 <property name="com.arjuna.ats.jta.allowMultipleLastResources"

 value="true"/>

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 4

2 - R u n n i n g N u c l e u s - B a s e d A p p l i c a t i o n s

μ
You may still see warnings in your log file, but ATG applications will run correctly. To suppress these
warnings, add the following to your jboss-log4j.xml file:

<category name="com.arjuna.atg.jta.logging">

 <priority value="ERROR"/>

</category>

Note: The SOLID database is not supported on AIX. (See the Configuring Databases and Database Access
chapter for information about configuring ATG products to work with other databases.)

To start SOLID:

On Windows:
On the Start go to ATG 10.0.1 > Tools > Start SOLID Server.

On UNIX:
Run the <ATG10dir>/home/bin/startSolid script.

Note: On UNIX, SOLID looks for the libpam.so and libpam.so.1 files. If you are running Solaris, you
may need to create symbolic links to the following files before running the startSolid script. To create
symbolic links, do the following:

1. Make sure you are logged in as the root user.

2. Type the following commands:

ln -s /usr/lib/libpam.so /usr/lib/libauth.so

ln -s /usr/lib/libpam.so.1 /usr/lib/libauth.so.1

3. Log out and log in again under your own user name.

Note: By default, SOLID starts in the background. On UNIX, you can run the SOLID server in the
foreground, to see any SOLID error messages that occur. To start SOLID in the foreground, switch to the
<ATG10dir>/home/ directory and type bin/startSolid -f.

Running the Demos and Reference Applications
You can use the runAssembler utility (see the ATG Programming Guide) to create EAR files that contain
the ATG reference applications. Include the following modules for each application:

Demo Required Modules

Quincy Funds DSSJ2EEDemo

Motorprise MotorpriseJSP

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 5

2 - R u n n i n g N u c l e u s - B a s e d A p p l i c a t i o n s

μ
Once the SOLID server is running, you can start up your application server. If you chose to install it, the
QuincyFunds.ear application has already been deployed by the ATG installer. (For information about
starting up, see your application server documentation).

Note: Because of the way the demo databases are configured for evaluation purposes, you cannot
include more than one demo module when assembling your application.

Note: If you are running JBoss on Windows, you can access the demo from your Windows Start button. If
you selected the default shortcut location, go to Programs > ATG 10.0.1 > ATG Adaptive Scenario Engine
> Quincy Funds Financial Services.

On WebSphere, before using a demo, set the following properties in the
/atg/dynamo/servlet/pipeline/DynamoHandler.properties file:

fixRequestURI=true

fixServletPath=true

The following table lists the default URLs for accessing the demos on the supported application servers.

Demo URL and Documentation Link

Quincy Funds
(Personalization)

http://hostname:port/QuincyFunds

ATG Quincy Funds Demo Documentation

Motorprise
(B2B Commerce)

http://hostname:port/Motorprise

ATG Business Commerce Reference Application Guide

Starting the SQL-JMS Admin Interface
The ATG platform includes a browser-based administration interface for its SQL JMS message system. This
interface makes it easy to view, add, and delete SQL JMS clients, queues, and topics. To use the SQL-JMS
Admin interface, include the SQLJMSAdmin module in your application.

To access the interface, point your browser to the following URL:

http://hostname:port/sqlJmsAdmin

To learn more about the SQL JMS system, see the ATG Programming Guide.

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 6

2 - R u n n i n g N u c l e u s - B a s e d A p p l i c a t i o n s

μ
Starting ATG Web Services

The ATG platform includes a number of preconfigured web services that provide remote access to ATG
repositories and various personalization and commerce features. (For detailed information about these
services, see the ATG Repository Guide, ATG Personalization Programming Guide, and ATG Commerce
Programming Guide.) These services are packaged in three separate applications:

<ATG10dir>/DAS/WebServices/repositoryWebServices.ear

<ATG10dir>/DPS/WebServices/userprofilingWebServices.ear

<ATG10dir>/DCS/WebServices/commerceWebServices.ear

You can include any of these web services in an assembled EAR file by including the module that contains
the desired services. For example, to include the Commerce services, specify the DCS.WebServices
module when you invoke the runAssembler command (see the Assembling Applications section of the
ATG Programming Guide for information on using runAssembler).

Connecting to the Dynamo Administration UI
The Dynamo Administration UI gives you quick access to the following features:

Configuration Manager
Modify configuration for ATG server instances.

Component Browser
Browse the Nucleus component hierarchy.

Admin ACC
Start up the ACC.

Change Password
Change administrator passwords.

JDBC Browser
Browse a database through a JDBC connection, examine database metadata, create
and drop tables, and execute database queries.

Performance Monitor
View performance statistics on ATG applications.

Web Service Administration
Create and manage web services.

Batch Compiler
Precompile JHTML pages to prevent any delay the first time they load.

Configuration Reporter
Display reports about ATG component properties and environment.

Personalization Administration
Find, edit, and create user profiles. If you have access to the Business Control Center,
that should be used instead.

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 7

2 - R u n n i n g N u c l e u s - B a s e d A p p l i c a t i o n s

μ
You can access the Dynamo Administration UI at http://hostname:port/dyn/admin. (On Windows,
you can also select the ATG Dynamo Server Admin icon in the Tools folder of the ATG 10.0.1 program
group.) The initial user name and password are:

User Name: admin
Password: admin

For information about including the Dynamo Administration UI when you assemble an EAR file, see the
Including the Dynamo Administration UI section of the Developing and Assembling Nucleus-Based
Applications chapter of the ATG Programming Guide.

Connecting to the ATG Business Control Center
If your application includes the BIZUI module, you can use the ATG Business Control Center to create,
preview, approve, deploy, and revise site content, as well as to access other ATG applications. To access
the ATG Business Control Center, point your browser to the following URL:

http://hostname:port/atg/bcc

To learn more about the ATG Business Control Center, see the ATG Content Administration Guide for
Business Users.

Starting the ATG Control Center
You can start the ACC in several ways, depending on whether you’re starting it locally in relation to your
Nucleus-based application, or on a separate client.

Note: If you are using a UNIX variant, the shell from which you start the ACC must support X11
forwarding. Depending on your client, you may need to install X11 packages, or use Xming or equivalent
tools.

Note: Due to a Java bug, if you are running Java 6, you cannot run the ACC in the same virtual machine as
the application server. You can run the ACC in a dedicated VM, or install the following IBM iFix:

http://www-01.ibm.com/support/docview.wss?uid=swg24027328

To connect to a Nucleus-based application from a client machine, you must use the client version of the
ACC (see Installing the ATG Control Center on a Client Machine in the Installing the ATG Platform chapter
for more information). Note that for a Nucleus-based application to accept connections from the ACC, all
of the following must be true:

 The application includes the DAS-UI module.

 The rmiEnabled property of the /atg/dynamo/Configuration component is set to
true.

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 8

2 - R u n n i n g N u c l e u s - B a s e d A p p l i c a t i o n s

μ
 The adminPort property of the /atg/dynamo/Configuration component is set to

the listen port of your application server (for example, the JBoss default is 8080).

These settings are all part of the default configuration created by the ATG installer, so you generally do
not need to configure them.

In addition, to enable the client version of the ACC to connect to an application, the application must
include the DafEar.Admin module. This module is not included by default, so you must explicitly specify
it when you assemble the application. See Including the Dynamo Administration UI in the ATG
Programming Guide for more information.

JBoss Note: In order to connect to your running ATG application from any remote location (that is, not
using localhost), you must start your JBoss server using the –b option. For example, on Windows use the
following command:

run.bat -b 0.0.0.0

See your JBoss documentation for information on this and other settings.

Starting the ACC on a Server

If you’re starting the ACC on the machine that’s running your application server, you can run the ACC
either in a dedicated VM or in the same VM as the application server.

Note: Starting the ACC in a dedicated VM requires more memory than starting the ACC in the same VM as
the application server. Running the ACC and the application server simultaneously on a production server
is not recommended, as it could affect performance.

Starting the ACC in a Dedicated VM

To start the ACC in a dedicated VM:

On Windows:
On the Start menu, click the Start ATG Control Center icon in the Tools folder of the
ATG 10.0.1 program group.

On UNIX:
Go to <ATG10dir>/home/bin and type the command startACC.

You can also start the ACC in a dedicated VM through the Dynamo Administration UI:

1. Open the Dynamo Administration UI (http://hostname:port/dyn/admin, by
default), and click the Admin ACC link.

The Start ACC page appears, indicating the server VM on which the ACC will be started
and the machine on which the ACC will be displayed.

2. Click the Start ACC in Separate VM button.

When the ACC starts up, it displays the Connect to Server screen. Enter a valid user name, password, and
the RMI port number, and select the locale from the drop-down menu. By default, the initial settings are:

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 9

2 - R u n n i n g N u c l e u s - B a s e d A p p l i c a t i o n s

μ
User Name: admin
Password: admin
Locale: English (United States)
Port: 8860

Note that the host name appears as localhost. This value is not editable. To start up the ACC on a
remote client machine, see Starting the ACC on a Client.

Starting the ACC in the Same VM as the Application Server

To start the ACC in the same VM as your application server, use the Dynamo Administration UI:

1. Open the Dynamo Administration UI (http://hostname:port/dyn/admin, by
default) and click the Admin ACC link.

The Start ACC page appears, indicating the server VM on which the ACC will be started
and the machine on which the ACC will be displayed.

2. Click the Start ACC in Server VM button.

When the ACC starts up, it displays the Connect to Server screen. Enter a valid user name and password.
By default, the initial settings are:

User Name: admin
Password: admin

Note that you cannot specify the host name, locale, or RMI port. The ACC automatically uses the values set
in the Nucleus-based application.

Exporting RMI Objects

If the ACC displays an error message while trying to connect to the server, you may need to modify the
arguments passed to the Java Virtual Machine by configuring Java Remote Method Invocation (RMI) to
export RMI objects on a particular IP address. This can happen under either of the following conditions:

 The server or the client is running on a machine with multiple host addresses; or

 ATG is running on a machine that has a primary IP address other than localhost, but
the IP address is not functional because the machine is offline.

If ATG is running on a multihomed server, you can enable RMI to export objects to a particular address by
including the following switch in the JAVA_ARGS environment variable:

-Djava.rmi.server.hostname=IP_Address

For the IP address, specify the IP address or name of the host that the client uses to connect to the server.
Alternatively, you can specify the name of the server instead:

-Djava.rmi.server.hostname=hostname

If ATG is running on a machine whose IP address is not functional because the machine is offline, use the
following switch:

-Djava.rmi.server.hostname=localhost

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

2 0

2 - R u n n i n g N u c l e u s - B a s e d A p p l i c a t i o n s

μ
Troubleshooting

If you encounter any errors while using the ACC, check the <ATG10dir>/home/data/acc.log file for
information.

Starting the ACC on a Client

 To start the ACC on a client machine and connect to an ATG application running on a remote application
server:

On Windows:
Click the Start ATG Control Center icon in the ATG Control Center 10.0.1 program
group on the Start menu.

On UNIX:
Go to the ACC 10.0.1 installation directory and run bin/startClient.

When the ACC starts up, it displays the Connect to Server screen. Enter a valid user name and password,
and the RMI port number, and select the locale from the drop-down menu. By default, the initial settings
are:

User Name: admin
Password: admin
Locale: English (United States)
Port: 8860

In addition, you must specify the name of the host machine on which the Nucleus-based application is
running. This is the name used to identify the machine on a network.

Logging in to a Different Nucleus-Based Application

When the client ACC connects to a Nucleus-based application, it compiles information about the modules
in that application (see the Working with Application Modules chapter in the ATG Programming Guide for
information). To disconnect the ACC from one application and connect to an application that includes a
different combination of modules, close down the ACC and restart it to ensure that the ACC compiles all
the necessary information.

Troubleshooting

If you encounter any errors while using the client ACC, check the /data/acc.log file in the ACC
installation for information.

Stopping an ATG Application
How you stop an ATG application depends on your application server.

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

2 1

2 - R u n n i n g N u c l e u s - B a s e d A p p l i c a t i o n s

μ
Stopping ATG Applications on JBoss

To stop an application, you can remove it from the deploy directory or shut down the application server.
To shut down the server, go to <JBdir> and enter the following command:

Windows:
bin\shutdown -s hostname

UNIX:
bin/shutdown.sh -s hostname

On Windows, you can also use CTRL+C to shut down the JBoss server.

Stopping ATG Applications on WebLogic

You can stop an ATG application through the WebLogic Server Console. You do not need to shut down
the application server to stop the application.

Stopping ATG Applications on WebSphere

You can stop an ATG application through the WebSphere administrative console. You do not need to shut
down the application server to stop the application.

Using the startDynamoOnJBOSS Script
The startDynamoOnJBOSS script makes it easy to run ATG applications on the JBoss application server. It
combines the manual steps of assembling the EAR file, copying over the SOLID data source definitions
required by the demo applications, and starting the JBoss server, into one step. See the Assembling
Applications section of the ATG Programming Guide for information on these manual steps and on
runAssembler options.

Note: If you are using CIM to configure and deploy your EAR files, do not use startDynamoOnJBoss to
start your servers. If you want to use the Windows shortcuts installed with ATG, edit the scripts to remove
that step.

This script is intended to be used by developers who need to rapidly and iteratively build, deploy, and run
applications to see their changes. You should not use this script on a production site, or under any
circumstances where it is important to closely watch the deployment process, such as when deploying to
multiple servers. Instead, deploy your application manually.

If you already have JBOSS_HOME set in your dasEnv file (this is set by the installer if you installed ATG for
use with JBoss), then go to <ATG10>\home\bin and type:

startDynamoOnJBOSS –m module-list

Note: If you are including the Dynamo Administration UI in this EAR file, the DafEar.Admin module must
precede any custom modules in the module list.

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

2 2

2 - R u n n i n g N u c l e u s - B a s e d A p p l i c a t i o n s

μ
The script performs the following actions:

1. Calls runAssembler with a destination EAR file called ATG.ear in the
<JBdir>/server/atg/deploy directory. This directory is created by the ATG
installer.

2. Includes the modules you specify and their dependent modules in the EAR file. If none
are specified, the script includes DSS, DAS-UI and all of their dependent modules.

3. Assembles the EAR in exploded format in development mode (rather than packed
format or standalone mode).

4. Copies data source XML files into the <JBdir>/server/atg/deploy directory to
ensure that there are valid data sources for standard logins such as admin, motorprise,
publishing, svcss, and svcshared (see the Configuring Data Sources for JBoss section of
this guide).

5. Calls the JBoss run.sh/bat script.

ATG starts up on JBoss with the specified modules.

The following table describes the syntax to use if you do not want the default settings to apply:

Intended Result Syntax

You don’t have a
JBOSS_HOME environment
variable set

You can specify a JBOSS_HOME when running
the startDynamoOnJBOSS script:

bin\startDynamoOnJBOSS -j c:\jboss

You want to use a specific
ATG server

bin\startDynamoOnJBOSS [servername]

You want to use more
modules than just DSS
(the default)

bin\startDynamoOnJBOSS -m module-list

You want to use a JBoss
server other than the \atg
server created by the ATG
installer

You can pass in a different server name using the -c flag:

bin\startDynamoOnJBOSS -c someOtherServer

You want to use a
different name for the EAR
file

Pass in the new EAR file name using the -ear flag:

bin\startDynamoOnJBOSS -ear ServiceKnowledge.ear

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

2 3

2 - R u n n i n g N u c l e u s - B a s e d A p p l i c a t i o n s

μ
Intended Result Syntax

You want to pass
additional flags to
runAssembler.

Pass in additional flags using the –f flag:

startDynamoOnJBOSS -f -run-in-place

Note that for flags that pass in additional information, those additional
arguments have to go before the flag itself. For example, if you want to
pass in the runAssembler –prependJars flag, use the following
syntax:

-f C:\\myclasses.jar -f -prependJars

To see all syntax options for the startDynamoOnJBOSS script, run the
script with the -help flag. Also see the ATG Programming Guide.

Note that if you are using runAssembler alone, the –layer switch
must precede the –m switch, however, this it may come after –m when
using startDynamoOnJBOSS.

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

2 4

2 - R u n n i n g N u c l e u s - B a s e d A p p l i c a t i o n s

μ

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

2 5

3 - C o n f i g u r i n g N u c l e u s C o m p o n e n t s

μ
3 Configuring Nucleus Components

This chapter explains how to configure Nucleus components in your ATG installation. Components
represent a particular configuration for a class. Many different components can be based on a single class,
each representing a different set of properties for that class. When the class is instantiated from the
component, it uses the component properties to configure it.

You can configure components in the following ways:

 Using the ACC

 Manually editing properties files

 Using the Dynamo Configuration Manager in the Dynamo Administration UI (changes
are limited)

 Using the Component Browser in the Dynamo Administration UI (live components
only, changes do not persist beyond restart)

This chapter covers the following topics:

Working with Configuration Layers

Finding Components in the ACC

Changing Component Properties with the ACC

Changing Component Properties Manually

Using the Dynamo Component Browser

Common Configuration Changes

Creating Additional ATG Server Instances

Setting Up a configuration Group

Session Management in ATG Applications

Most of the information in this chapter applies only for applications running in development mode (see
the Developing and Assembling Nucleus-Based Applications chapter of the ATG Programming Guide for the
differences between development and standalone modes).

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

2 6

3 - C o n f i g u r i n g N u c l e u s C o m p o n e n t s

μ
Working with Configuration Layers

Before changing the configuration of Nucleus-based applications, you should be familiar with the
concept of configuration layers. This section covers the following topics:

 Understanding Properties Files

 Understanding Configuration Layers

 Accessing Configuration Layers in the ACC

 Global Configuration Changes

 Locking Configuration Layers

Understanding Properties Files

ATG application modules use properties files to configure Nucleus components. The base properties files
are normally stored in the config subdirectory of the module, either as individual plain text files or as
part of a JAR file (see Modifying Custom Module Resource Settings to configure alternative configuration
paths). For example, much of the default configuration is determined by properties files stored in
<ATG10dir>/DAS/config/config.jar.

Note: Do not modify the properties files in these JAR files to change configuration settings, or your
changes will be overwritten when you install a new ATG platform distribution.

To see the properties files in your ATG installation, do the following:

1. Start the ACC.

2. Select Pages and Components > Components by Path from the navigation menu.

3. Open the /atg/dynamo/Configuration component. When the ACC Component
Editor opens, click the Configuration tab.

Note that there are several Configuration.properties files. You can view the contents of these
properties files by double-clicking the file names.

Understanding Configuration Layers

ATG platform configuration layers allow you to make configuration changes and preserve them locally,
without modifying the base configuration. Layers contain properties files, and can be stacked in a variety
of ways to create different configurations for different purposes. The configuration stack is determined
from the MANIFEST.MF files for the ATG application modules included in the application.

Nucleus locates configuration properties by examining the properties files in the directories and JAR files
specified by the configuration path or paths (a module can have any number of configuration paths). The
paths for all modules used in your application are aggregated and ordered based on the module
dependencies. The result is a combination of the property values found in each of the files or directories
in the configuration paths. If the same property value is defined in more than one properties file, values
found later in the configuration path (as determined by the module dependencies) override the values
found earlier. The localconfig directory usually appears last in the configuration path, so that any
properties defined there override default system settings.

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

2 7

3 - C o n f i g u r i n g N u c l e u s C o m p o n e n t s

μ
For example, suppose you change the port number for ATG’s internal RMI server, by setting the rmiPort
property of the /atg/dynamo/Configuration component, and save the new value in the localconfig
directory. The next time you start the application, Nucleus will take the value of the rmiPort property
from localconfig, because it is the last directory in your configuration path.

Any changes you make to localconfig are preserved when you install a new ATG version.

For more information on modules, configuration layers, and properties files, see the Nucleus: Organizing
JavaBean Components and the Working with Application Modules chapters of the ATG Programming Guide.

Accessing Configuration Layers in the ACC

When you modify a component’s properties in the ACC, the updated properties file is stored in one of the
following locations:

 The ACC’s default configuration directory, initially set to
<ATG10dir>/home/localconfig

 A server-specific directory if the component already has a configuration in that layer.
For example, if you run an application that does not use the default ATG server, and
you modify a component using the ACC, the updated properties file is stored in the
localconfig directory for the ATG server used by that application.

Note: The ACC shows only the configuration layers used by the application to which you are currently
connected.

Resetting the Default Configuration Layer

Unless you specify otherwise, the ACC editor saves all updates to a component’s configuration in the
default configuration layer. Components that you create, duplicate, or paste are also placed there.

The installation initially sets the default configuration layer to <ATG10dir>/home/localconfig. You
might want to change the default configuration directory if you have multiple servers running different
applications. For example, you might have one server running a customer service application and another
running an online store.

You can set any unlocked configuration layer as the default.

You can change the default configuration layer on the server, so it affects all server clients and persists
across all editing sessions; or only on the local client. If you change the default layer locally, the setting
remains in effect until you shut down the host.

1. Navigate to the configuration layer that is currently set as the default, and open its
CONFIG.properties file, or create one if it does not yet exist.

For example, the ATG installation initially sets the default configuration layer to
<ATG10dir>/home/localconfig/. Therefore, open this file:

<ATG10dir>/home/localconfig/CONFIG.properties

2. Set defaultForUpdates to false.

3. Navigate to the desired configuration directory and open its CONFIG.properties file.

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

2 8

3 - C o n f i g u r i n g N u c l e u s C o m p o n e n t s

μ
For example, to set <ATG10dir>/home/servers/myNewServer as the default
configuration directory, open this file:

<ATG10dir>/home/servers/moogus/CONFIG.properties

4. Set defaultForUpdates to true.

To temporarily reset the default configuration layer within the ACC:

1. In the ACC, select Set Update Layer from the Tools menu.

2. When the Set a Default Configuration Layer dialog opens, select the configuration
layer that you want to open by default.

Changing a Component in a Non-Default Configuration Layer

To change a component in a non-default configuration layer:

1. Select the component to edit,

2. Choose File > Open Component in Layer.

The dialog box Select a Configuration Layer opens, listing the name and path of each
configuration layer. Check marks identify the layers currently in use.

3. Select the layer to open and click OK. The component opens in a separate Component
Editor window.

Global Configuration Changes

Global configuration settings are configured in the GLOBAL.properties (located in
config/config.jar) file. The settings in this file control logging and log listeners and apply to all
components in the config tree except those that set these properties explicitly themselves. To change
these values, you must edit this file manually (see Changing Component Properties Manually later in this
chapter), or override them by adding your own GLOBAL.properties file in another configuration layer.

Locking Configuration Layers

Locked configuration layers such as Dynamo Base are marked with a padlock icon. Properties in a locked
layer cannot be edited. To lock a configuration layer, modify the CONFIG.properties file for that layer as
follows:

1. Open the CONFIG.properties file for the layer to lock.

2. Add the following line to CONFIG.properties:

readOnly=true

Finding Components in the ACC
When changing ATG component configuration, you can use the ACC to search for components by name,
class or interface.

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

2 9

3 - C o n f i g u r i n g N u c l e u s C o m p o n e n t s

μ
To search for a component:

1. Choose File > Find Component in the main ACC window. The Find Component dialog
box opens, as shown below.

2. Click the radio button that indicates the way you want to search: Search by
component name or Search by class or interface name.

3. Type the component name in the Search for field. You can search for partial names by
using the asterisk (*) or question mark (?) wildcard symbols. If you want your search to
be case-sensitive, check the Match case box.

4. Type the location you want to search in the Look in field or click the Browse button to
select a directory from the component hierarchy. To search all folders within this
directory, make sure the Include subfolders box is checked.

5. Click the Find button. The search results appear at the bottom of the Find Component
dialog box.

Changing Component Properties with the ACC
The ACC provides a simple way to change many configuration settings. This section uses an example in
which you change the port number of ATG’s internal RMI server.

To change the port number:

1. Start the ACC.

2. Select Pages and Components > Components by Path from the navigation menu.

3. Open the /atg/dynamo/Configuration component.

4. When the ACC Component Editor opens, click the Properties tab. Scroll down to the
rmiPort property:

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

3 0

3 - C o n f i g u r i n g N u c l e u s C o m p o n e n t s

μ

Note: Certain expert-level properties are visible only if you select the Show expert-level information
check box in the Preferences > Tools > Edit Preferences dialog box.

If the component has been started (indicated by a red dot), the Properties tab displays two columns
of property values: the Configured Value and the Live Value, described in the table below. You can edit the
value of any non-shaded property by clicking in its value cell and entering a new value.

Configured Value Live Value

The value specified by the component’s properties
file

The current value, which may be different from
the configured value

Changes to the value appear in the ACC
immediately, but the changed values are not used
to configure the component until you restart the
ATG platform

Changes to the value take place immediately,
but are not retained if you stop the component

Note: If you are configuring a live component and change properties that are referred to by another
component, the references are not updated until you restart the application; they are not updated when
you stop or restart the component. For example, Component A has a status property, the value of which is
linked to the status property of Component B, changes to the value of the Component B status property

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

3 1

3 - C o n f i g u r i n g N u c l e u s C o m p o n e n t s

μ
are not reflected in Component A. Stopping or restarting a referenced component leaves the application
in an unstable state, and is not recommended.

Editing options depend on the type of property:

 String values provide a text field for editing. You can type values directly into this field
or click the ... button to open a pop-up editing window.

 The int, long, float, and double values provide a number field for editing.

 Boolean values provide a pull-down list with true/false options.

 Enumerated values provide a pull-down list of options.

 Array, hash table, and component values have a ... button that opens a corresponding
pop-up editing window.

 All property types have a @ button that lets you set the property value by linking to
another component or component property.

In the case of our example, the port number for the RMI server is set by the rmiPort property (of type
int). To change the port number, click in the value cell and type the new port number.

After you make changes, choose File > Save in the Component Editor window. If the component is live, a
dialog box appears, asking if you want to copy your configuration changes to the live state. If you copy
the changes, restart the ATG application to ensure that the changes take effect.

Changing Component Properties Manually
As an alternative to using the ACC or Configuration Manager, you can always edit properties files
manually. A few configuration properties can only be configured manually, and are not accessible
through the ACC or Configuration Manager.

Note, however, that when configuring properties manually, no errors are generated if you specify a
property name incorrectly. The component may generate an error if it cannot find the value; in this case,
check your properties file for typos.

To manually edit a properties file, do the following:

1. Create a new properties file in <ATG10dir>/home/localconfig with the same name
and path structure as the original file. For example, the defaultFrom property in the
/atg/dynamo/service/SMTPEmail component specifies the e-mail address from
which messages will be sent via SMTP. To modify defaultFrom, create a new file
called SMTPEmail.properties in the path
<ATG10dir>/home/localconfig/atg/dynamo/service.

Note: Step 1 is not necessary for the Configuration.properties file because a file
of this name is created in the <ATG10dir>/home/localconfig/atg/dynamo
directory during the installation process.

2. Add the desired property to the new file. For example, to change the setting for
defaultFrom, such as to test@example.com, add the following line to the

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

3 2

3 - C o n f i g u r i n g N u c l e u s C o m p o n e n t s

μ
SMTPEmail.properties file in
<ATG10dir>/home/localconfig/atg/dynamo/service:

defaultFrom=test@example.com

For example, to change the port number of ATG’s RMI server to 8862 manually, open your
<ATG10dir>/home/localconfig/atg/dynamo/Configuration.properties file and add (or modify)
the following line:

rmiPort=8862

When specifying values for a property, you can add a manual line break using the backslash (\) line
continuation character:

myList=valueOne,\

 valueTwo,\

 valueThree

This can help with readability when configuring lists of values.

Save the Configuration.properties file and restart the application. Because you made the change in
the localconfig directory, the new port number will override the original value (still stored in the
config/atg/dynamo/Configuration.properties file) and will be preserved when you install a new
ATG platform distribution.

For additional information about defining and managing properties files, see the Nucleus: Organizing
JavaBean Components chapter of the ATG Programming Guide.

Using Forward Slashes (/) and Backslashes (\)

When specifying values for file properties, Nucleus translates the forward slash (/) to the file separator for
your platform (for example, Windows uses a backslash (\) as a file separator).

The backslash (\) is the escape character for properties files, so if you edit a properties file by hand, you
must use two consecutive backslashes (\\) to specify a value that contains a backslash. For example:

documentRoot=\\WebServer6.1\\docs

The ACC Component Editor handles the escape character automatically; if you change properties using
the ACC, use single backslashes.

Modifying Lists of Values

When adding a list of values to a property in a properties file, use the += appending operator. This
operator is commonly used in localconfig/atg/dynamo/Initial.properties to specify the
components to create at startup time. For example:

initialServices+=/StartComps/services/comp1

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

3 3

3 - C o n f i g u r i n g N u c l e u s C o m p o n e n t s

μ
The += operator specifies that you want to append /StartComps/services/comp1 to the value of initial
services set elsewhere in the configuration path, rather than replace the value.

Similarly, you can use the -= operator to remove an item from a value list. This allows you to avoid
redeclaring a list when you only want to remove one member. Note that in order for values to be
removed, they must match exactly; if you specify 2.0 for removal, 2.00 is not removed. If the item to be
removed is not found, no errors are generated.

Specifying Directory Paths

When you specify a directory path as a value in a component, you can do so either relative to the
<ATG10dir>/home directory, or relative to your ATG server’s directory.

Adding Comments to Properties Files

To add comments to a properties file that you’ve edited manually, you must add the comment in the
$description field. If you preface the comment with a pound sign (#), the comment will be deleted if
you subsequently modify the properties file using the ACC.

Using the Dynamo Component Browser
The Dynamo Component Browser, an element of the Dynamo Administration UI, is a window into ATG’s
Nucleus framework. From the Component Browser, you can view and modify components in a running
Nucleus-based application.

To open the Component Browser, connect to the Administration UI using this URL:

http://hostname:port/dyn/admin

Enter your username and password; the defaults are admin and admin. When the Administration UI
opens, click the Component Browser link.

The following topics are covered in this section:

 Component Browser Structure

 Changing the Running Configuration

 Starting Nucleus Components

 Customizing the Interface

Component Browser Structure

The Dynamo Component Browser is set up so that you can view and edit component properties. The
Component Browser main page shows a list of components (called services in the Admin UI) currently
running in Nucleus, such as Initial. When you click Initial, you see a page that shows the hierarchical
location and class reference of that service:

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

3 4

3 - C o n f i g u r i n g N u c l e u s C o m p o n e n t s

μ
Service /Initial/

Class atg.nucleus.InitialService

The forward slash character (/) separates the elements of the name into a hierarchy you can click through.

Note: Clicking the first forward slash (/) character brings you back to the main Nucleus service page.

Below the beginning information, you see tables with Properties, Event Sets, and Methods. The current
service’s property names and values are listed. Continuing on the Initial service page, if you click
loggingDebug in the Properties table, you see a page that shows the properties of loggingDebug; you
can edit these properties on this page. For example, to enable debugging errors to be logged, go to New
Value and select true. Then click the Change Value button. To see the changes listed back on the
Initial service page, click your browser’s Reload button to refresh the view of the Properties table.

Note: Avoid changing system property values unless you know what they do. Changes set here will
remain in effect while this ATG instance is running.

Changing the Running Configuration

You can change the configuration of a running Nucleus-based application from the Dynamo Component
Browser. For example, on the Initial service page, click loggingDebug in the Properties table to see
the properties of loggingDebug. To enable logging for debugging errors, go to New Value and select
true, then click the Change Value button. To see the changes listed back on the Initial service page,
click your browser’s Reload button to refresh the view of the Properties table.

Note: Avoid changing system property values unless you know what they do. Values changed in the
Dynamo Component Browser are not written to the properties files; when you stop and restart the
application, configuration properties revert to those in the configuration properties file. To make
permanent changes to configuration, make the change in development mode using the ACC, then
redeploy the application.

Starting Nucleus Components

In addition to browsing for running components to change their configuration, you can use the
Component Browser to start a Nucleus component that is not currently running. To start a stopped
component, enter the full Nucleus path of the component in your browser. For example, you can start the
OrderRepositoryPipelineDriver by going to this URL:

http://hostname:portnumber/dyn/admin/nucleus/atg/reporting/datawarehouse/

loaders/OrderRepositoryPipelineDriver

Customizing the Interface

By default, the Dynamo Component Browser displays a component by listing its contained children and
the values of the component’s properties. You might want to customize a component’s administrative
interface, for example to show more information about a service. To do this, override the methods in the
default administrative servlet, atg.nucleus.ServiceAdminServlet. The Scheduler service, for

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

3 5

3 - C o n f i g u r i n g N u c l e u s C o m p o n e n t s

μ
example, extends the standard administration servlet to show information about all the tasks the
scheduler is running. To see a list of these tasks, go to the following URL:

http://hostname:port/dyn/admin/nucleus/atg/dynamo/service/Scheduler

To customize an administrative interface, create a subclass of atg.nucleus.ServiceAdminServlet. For
more information, see the Nucleus: Organizing JavaBean Components chapter of the ATG Programming
Guide.

Common Configuration Changes
This section outlines several common configuration changes.

Modifying Environment Settings

ATG’s startup behavior is affected by its CLASSPATH, the Java arguments passed to the Java Virtual
Machine, and any custom environment variables you define. You can modify the startup behavior of
these parameters as follows:

 CLASSPATH: ATG’s CLASSPATH includes a <ATG10dir>/home/locallib directory,
which you can use for any Java class files you create (classes should be in exploded
form). Any classes stored in this directory are picked up by ATG automatically. For
more information, see the Nucleus: Organizing JavaBean Components chapter of the
ATG Programming Guide.

 Java Arguments: You can set or add to the arguments passed to the Java Virtual
Machine by setting the environment variable JAVA_ARGS.

To customize the CLASSPATH and JAVA_ARGS settings, as well as define custom environment variables,
see your application server documentation.

The following table lists some common values for JAVA_ARGS:

Java Argument Description

-Djava.rmi.server.hostname=

IP_Address

Configures Java Remote Method Invocation (RMI) to export RMI
objects on a particular IP address; for more information, see
Starting the ATG Control Center in the Running Nucleus-Based
Applications chapter

-Djava.compiler=NONE Turns off the just-in-time compiler so that stack traces include
full line number information

-Xmssize Minimum size of memory heap for Java Virtual Machine on
startup

-Xmxsize Maximum size of memory heap for Java Virtual Machine

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

3 6

3 - C o n f i g u r i n g N u c l e u s C o m p o n e n t s

μ
-Xnoclassgc Prevents garbage collection of classes

-verbose[:class|gc|jni] Enables verbose output about each class loaded, garbage
collection, or Java Native Interface (JNI) messages

For more information about arguments you can use with the java command, enter the command
java -help.

Note: When setting CLASSPATH be careful to append or prepend your values onto the original value of
the environment variable rather than replace it, or you will omit directories that ATG needs to start
properly.

Modifying Custom Module Resource Settings

If you create a custom module (see the ATG Programming Guide), you can use the module’s MANIFEST.MF
file to specify paths to the module’s resources, as follows:

 ATG-Class-Path: Specify a space-delimited set of paths to module resources that
contain classes required by the module. For example:

ATG-Class-Path: lib/resources lib/classes.jar

ATG adds the ATG-Class-Path value to the CLASSPATH as each module is processed.

 ATG-Config-Path: Specify a space-delimited set of paths to module resources that
provide Nucleus configuration files needed by the module’s server application
components. For example:

ATG-Config-Path: config/config.jar config/oca-ldap.jar

ATG adds the ATG-Config-Path value to the configuration path.

Note: The path names in a module’s ATG-Class-Path and ATG-Config-Path
settings are relative to the module’s root, not to the <ATG10dir> install directory.

In the MANIFEST.MF file, the ATG-Required attribute specifies which modules the custom module
requires to start up. ATG-Required ensures that a given module’s manifest is processed after it processes
all the modules that the module depends on. For example, if you want to place the config directory for
your custom module after the DPS config directories in the configuration path, configure the attributes
as follows:

ATG-Config-Path: config/

ATG-Required: DPS

Enabling checkFileNameCase on Windows

In order to prevent Nucleus from creating new components unnecessarily during development, you can
configure ATG to check the case of file names by setting the checkFileNameCase property of the
Nucleus component to true. This prevents Nucleus from creating new components if, for example, you
create a component named Person and then mistakenly refer to it as person.

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

3 7

3 - C o n f i g u r i n g N u c l e u s C o m p o n e n t s

μ
The checkFileNameCase property has no effect on UNIX platforms. It imposes a small performance cost
on Windows. Therefore, once your application is no longer in active development and you are not
creating new components often, you should set the checkFileNameCase property back to false (the
default).

The recommended deployment configuration (false) is set in the liveconfig configuration layer. To
learn more about liveconfig settings, see Enabling liveconfig Settings in the Configuring for Production
chapter.

LogListeners

ATG’s global configuration settings are configured in the GLOBAL.properties file (located in
config/config.jar). The settings in this file control logging and log listeners and apply to all ATG
components in the config tree except those that set these properties explicitly themselves. If you want
to edit this file, you must edit it manually.

The components listed in the logListeners property receive messages from components that send log
events. By default, two log listeners are set: ScreenLog and LogQueue. ScreenLog writes messages to
the console, while LogQueue puts messages into the log files.

logListeners=\

 atg/dynamo/service/logging/LogQueue,\

 atg/dynamo/service/logging/ScreenLog

On JBoss, the ScreenLog component is an instance of the CommonsLoggingLogListener class, which
logs via the Apache commons logging APIs.

Normally, commons logging uses the class name of the class doing the logging. ATG has changed this
slightly to provide the component’s Nucleus path, prefixed with nucleusNamespace and separated by
periods. The prefix prevents collisions with actual class names, and makes it clear that the logging
component is a Nucleus component.

For example, the /atg/dynamo/Configuration component would have a commons logging classname
of nucleusNamespace.atg.dynamo.Configuration. By default, you will see the short name of the
component in the JBoss log (Configuration, in this example). To see the entire Nucleus path, set the
useFullPaths property to true. The logging system will then print out atg/dynamo/Configuration
as the short class name.

To disable global logging to the console, set the loggingEnabled property of the ScreenLog
component to false.

See the Logging and Data Collection chapter of the ATG Programming Guide for more information.

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

3 8

3 - C o n f i g u r i n g N u c l e u s C o m p o n e n t s

μ
Creating Additional ATG Server Instances

ATG server is the term for a specific collection of configuration information, which can then be included
with your Nucleus-based application when you assemble the EAR file. It can include information such as
machine names and ports, system paths, and connection pools.

The ATG platform installation comes configured with a default server instance in the
<ATG10dir>/home/servers/original directory. You can create additional, individually configurable
ATG servers by running the <ATG10dir>/home/bin/makeDynamoServer script, or through the
Configuration Manager in the Dynamo Administration UI when the default server is running. If you are
using CIM to configure your installation, CIM creates ATG servers for you (see Using the Configuration and
Installation Manager (CIM) in this guide).

For information about assembling an EAR file that uses a non-default server, see Using a Non-Default ATG
Server in the Developing and Assembling Nucleus-Based Applications chapter of the ATG Programming
Guide.

Using the MakeDynamoServer Script

Run the makeDynamoServer script with the following syntax:

makeDynamoServer.bat new_server_name rmi_port_number drp_port_number

This script creates a new <ATG10dir>/home/servers/new_server_name directory with the following
subdirectories and properties files:

|--- data

|--- j2ee

 |--- runtime

|--- localconfig (includes CONFIG.properties)
 |--- atg

 |--- dynamo (includes Configuration.properties)
|--- logs

 |--- archives

|--- pagebuild

|--- sessionswap

It sets the name property in the localconfig/CONFIG.properties file. For example:

name=Server myServer

It also sets the rmiPort, rmiEnabled, and drpPort properties in the
localconfig/atg/dynamo/Configuration.properties file. For example:

rmiEnabled=true

rmiPort=9001

drpPort=9002

The DRP port value uniquely identifies the instance; the port itself is not used for communication.

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

3 9

3 - C o n f i g u r i n g N u c l e u s C o m p o n e n t s

μ
Using the Configuration Manager

To open the Configuration Manager, connect to the Dynamo Administration UI using this URL:

http://hostname:port/dyn/admin

Enter your username and password; the defaults are admin and admin. When the Dynamo Administration
UI opens, click the Configuration Manager link to see your configuration options.

To add a new server, click Add, Delete, or Reset Servers. Unless you explicitly set its properties, the new
server inherits the properties of the original default server.

Configuring a New Server Instance

The Configuration Manager’s server list shows the ATG servers registered with the Configuration
Manager. Any changes you make to the default configuration affect all ATG servers that are using the
default configuration for that setting.

To configure an individual server, click the server’s name in the list. To configure a cluster, see the
Configuring for Production chapter.

The Changing Component Properties with the ACC section includes an example of how to change the
port number of ATG’s internal RMI server. To make that same change using the Configuration Manager,
do the following:

1. Click the name of the server you want to configure (for example, Default
Configuration).

The Server page opens, listing the configuration properties that you can modify in
various categories.

2. In the Configure Internal Servers section, click the RMI Server link.

3. When the Configure RMI Service page opens, type the new port number in the RMI
service port field.

4. Click Apply Changes.

The change is written to a properties file in your ATG installation, but does not affect the currently
running Nucleus-based application. For a development-mode application, restart the application for the
change to take effect. For a standalone application, reassemble and redeploy the EAR.

Setting Up a Configuration Group
A configuration group provides a mechanism for ensuring consistent configuration among ATG server
instances. At startup, instances that are members of a configuration group download group configuration
properties from the group’s master server. At runtime, group members can periodically download
updates that pertain to their group.

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

4 0

3 - C o n f i g u r i n g N u c l e u s C o m p o n e n t s

μ
Note: Like other configuration changes, group configuration changes generally take effect only on
instance startup; they have no effect on a running Nucleus component.

In order to join a group, an ATG instance must define itself as a group client or server by setting a
ConfigurationClient or a ConfigurationServer component:

 A ConfigurationClient component obtains its group configuration settings from
an ATG server instance that is designated as the group master. Each
/atg/dynamo/service/groupconfig/ConfigurationClient component is an
instance of this class:

atg.service.configuration.group.ConfigurationClient

 A ConfigurationServer component maintains group configuration settings and
ensures that those settings are uniform among all group members. Each
/atg/dynamo/service/groupconfig/ConfigurationServer component is an
instance of this class:

atg.service.configuration.group.ConfigurationServer

One ConfigurationServer is designated as the default group master. Changes to group settings must
be set on the master ConfigurationServer; it then distributes those changes to other
ConfigurationServers and ConfigurationClients in the group.

A group can have one or more ConfigurationServers. If the primary master fails, another
ConfigurationServer assumes the role of group master until the primary master resumes operation.
The order of succession is established by the primary master and distributed to other
ConfigurationServers.

Note: An ATG instance that serves as a configuration server can also act as a configuration client, and
typically does so.

Requirements

To use group configuration, the following requirements apply to each ATG server instance in the group:

 The instance must be assembled with the DafEar.Admin module.
Its/atg/dynamo/Configuration.adminPort property must be set to the port
where the HTTP server is listening and can service the Dynamo Administration UI
(http://host:port/dyn/admin/).

 For each ATG server instance, set its configuration group properties in the
Configuration.properties file, as described later in this section.

Group Identifiers and Node Types

A configuration group is identified by its group name, where each ConfigurationClient and
ConfigurationServer in the group is configured with the same Configuration.groupName property.
Settings that are specific to a group are known only to the member ATG instances. An ATG instance can
belong to only one group at a time.

Note: A configuration group can overlap multiple ATG server clusters — for example, publishing and
production clusters.

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

4 1

3 - C o n f i g u r i n g N u c l e u s C o m p o n e n t s

μ
Within a group, ATG server types are differentiated through their node types. For example, a
configuration group might contain these servers:

 Commerce production

 Commerce staging

 Search Merchandising

 Search servers

 Asset management

In order to differentiate settings among server types, each server’s configuration client sets its
Configuration.nodeType property to a value that corresponds to its server type. Given the previous
server types, you might set their respective Configuration.nodeType properties as follows:

 commerce-production

 commerce-staging

 search-merch

 search

 publishing

The following diagram shows how a configuration group might be composed:

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

4 2

3 - C o n f i g u r i n g N u c l e u s C o m p o n e n t s

μ

Configuration Group Properties

In order to configure an ATG server instance to participate in a configuration group, the following
properties must be set before startup in Configuration.properties, in one of the following locations:

<ATG10dir>/home/localconfig/atg/dynamo/service/groupconfig/

<ATG10dir>/home/servers/serverName/localconfig/atg/dynamo/

service/groupconfig/

Property Type Description

groupName String A unique string that defines the group. All group members
must set this property to the same value.

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

4 3

3 - C o n f i g u r i n g N u c l e u s C o m p o n e n t s

μ
Property Type Description

defaultMasterServer boolean Set to true for one ATG instance in the group, designates
this configuration server to serve as the primary master. If
set to true, the property serverEnabled must also be set
to true. All other configuration servers in the group should
set this property to false.

serverEnabled boolean Set to true for all primary and backup configuration server
instances in the group.

clientEnabled boolean Set to true on every configuration client, enables an ATG
instance to participate in a configuration group.

clientNodeType String Required for all enabled configuration client instances,
associates a configuration client with settings that are
specific to that node type. All configuration clients of the
same node type must set this property to the same value.

For example, you might configure a master configuration server as follows:

groupName=myUniqueGroupName

defaultMasterServer=true

serverEnabled=true

clientEnabled=true

clientNodeType=generic

Optional Properties

You can also set the following properties in Configuration.properties:

Property Type Description

autoDiscoveryEnabled boolean Specifies whether auto-discovery is enabled.

httpPort int The HTTP port for this ATG instance.

httpsPort int The HTTPS port for this ATG instance.

startingServerUrls URL[] The array of starting servers. This property is required if
your configuration group spans network subnets, or auto-
discovery is disabled.

Configuration Server and Configuration Client Properties

You can set all required group configuration properties in Configuration.properties, as described
earlier. If desired, you can fine-tune the behavior of configuration servers and configuration clients by

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

4 4

3 - C o n f i g u r i n g N u c l e u s C o m p o n e n t s

μ
setting their properties directly. For example, after detecting the failure of the master configuration
server, by default a backup configuration server immediately assumes the master role or looks for another
backup configuration server to assume that role. If desired, you can specify a latency period for a given
configuration server by setting its WaitBeforeBecomingServerTimeout property.

Viewing Group Properties

At runtime, you can use the Dynamo Administration Component Browser to view the properties of all
configuration client and configuration server components, in this Nucleus directory:

/atg/dynamo/service/groupconfig/

After the master configuration server collects all configuration properties from configuration clients in its
group, you can review configuration errors by pointing the Component Browser at the master
configuration server component. You can also review the settings that are currently in effect for the
group.

Storing Group Configuration Files

Configuration files for a configuration group are stored in one of these directories:

 <ATG10dir>/home/groupconfig

 <ATG10dir>/home/server/serverName/groupconfig (for named ATG servers)

The groupconfig directory contains server and client subdirectories, which are used by the local
ConfigurationServer and ConfigurationClient, respectively. The client directory obtains its
content from the master ConfigurationServer and should not be edited. You should only update the
server directory content on the master ConfigurationServer.

Node-Type Configuration

Configuration for a given node type is stored in the subdirectory of the same name. For example, if a
configuration group defines two node types, production and staging, the master
ConfigurationServer stores settings for them in two subdirectories as follows:

../groupconfig/server/nodetype/production

../groupconfig/server/nodetype/staging

For example, a production setting for /atg/dynamo/service/jdbc/FakeXADataSource is stored on
the master ConfigurationServer in this directory:

$ATG_HOME/groupconfig/server/nodetype/production/atg/dynamo/service/jdbc/

FakeXADataSource.properties

This file is propagated to production clients as follows:

$ATG_HOME/groupconfig/client/nodetype/production/atg/dynamo/service/jdbc/

FakeXADataSource.properties

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

4 5

3 - C o n f i g u r i n g N u c l e u s C o m p o n e n t s

μ
At startup, a client’s nodetype directory is added to its configuration path and is read before its
instance and localconfig directories.

Instance Configuration

Configuration settings that are specific to an ATG server instance can be stored on this path:

../groupconfig/client/instance/host-name+sever-name

The master configuration server stores configuration settings for each ATG server instance in this
subdirectory:

../groupconfig/server/instance/host-name+sever-name

For example, a master configuration server maintains instance settings for server production1 on host
saturn in this directory:

../groupconfig/server/instance/saturn+production1

At startup, a server’s instance directory is added to its configuration path and is read immediately before
any localconfig property settings.

Note: In order to avoid ambiguity among instances on a given host, each instance subdirectory has its
own instance.id.properties file. The properties in that file uniquely identify the given instance, so
the master configuration server can differentiate among multiple ATG instances on the same host, if
necessary.

Downloading Group Configuration

At startup, each configuration client and backup configuration server downloads the full groupconfig
directory structure from the master configuration server. Local replication of all subdirectories enables a
configuration client to start up in the absence of a configuration server, and to start as any of the defined
node types.

For example, the layout of a groupconfig directory might look like this:

groupconfig

 server

 instance

 saturn+production1

 saturn+lockmgr

 jupiter+publishing1

 jupiter+publishing2

 ...

 nodetype

 production

 publishing

 ...

 client

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

4 6

3 - C o n f i g u r i n g N u c l e u s C o m p o n e n t s

μ
 instance

 saturn+production1

 saturn+lockmgr

 jupiter+publishing1

 jupiter+publishing2

 ...

 nodetype

 production

 publishing

 ...

The master configuration server can be configured to create a group configuration JAR file as needed
after startup, which other group members can download. To do so, set the master’s
autoCreateConfigJars property to true. You can also create a JAR file on the configuration server
manually, by invoking one of these methods from the Dynamo Component Browser:

 createGroupConfigJar()

 createGroupConfigJarIfNeeded()

Each configuration client periodically checks the master configuration server for updates to the group
configuration, according to the value set on its ConfigurationClient.schedule property. by default,
every 60 seconds. You can also manually download updates to a client at any time by invoking its method
downloadConfigUpdate().

Finding a Group Configuration

Each configuration client caches information about known configuration servers. When required, it
checks for configuration updates as follows:

1. Reads through its cached list of known configuration servers, starting with the last-
known master configuration server.

2. If no previously known configuration server can be found from the cached list, uses
Zeroconf—via the component
/atg/dynamo/service/jmdns/ClusterBroadcaster —to find a member of its
configuration group. It uses that member’s published information to find the current
master configuration server and downloads its configuration.

3. If starting up and all attempts to auto-discover a configuration server fail, starts up
with the previously downloaded group configuration.

4. If starting up for the first time and no previous group configuration is available, logs an
error message and starts up without it.

Auto-Discovery

As installed, the group configuration system uses Zeroconf to advertise the existence of ATG server
instances in the configuration group. Configuration clients and configuration servers notify Zeroconf of
their existence, which also compiles and maintains a list of the group’s configuration servers and the
order of master succession. Zeroconf maintains the following information about each group member:

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

4 7

3 - C o n f i g u r i n g N u c l e u s C o m p o n e n t s

μ
Published Data Description

hostName Host name, included in broadcast messages

port HTTP admin port, included as the port in broadcast messages

httpsPort HTTPS admin port, if any

serverDirectory ATG server directory of this instance, truncated to 255 characters
(as required by the DNS Service Discovery specification)

atgVersion ATG version string of this instance. For example: “2007.2”.

groupName Name of the configuration group

clientNodeType Node type of this configuration client

isGroupServer boolean, specifies whether this instance is a configuration server

isGroupClient boolean, specifies whether this instance is a configuration client

isMaster boolean, specifies whether this instance is defined as the master
configuration server

commandLineModules The list of modules specified on the command line, truncated to
255 characters (as required by the DNS Service Discovery
specification)

Validating Group Configuration Properties

A configuration group can be used to validate Nucleus properties across various configuration clients,
through one or more configuration validators that run on the master configuration server. The master
configuration server collects live property values from running configuration clients for validation.
Validation errors and warnings are written out via Nucleus logging; these are also accessible on the
master configuration server via the Dynamo Component Browser.

Installed Validators

All validators are registered with the component
atg/dynamo/service/groupconfig/validation/ValidatorRegistry. The ATG distribution
provides three validator components, in this Nucleus directory:

/atg/dynamo/service/groupconfig/validation/

Validator Description

UniquePortNameValidator Verifies that a configured port name is unique to a given host machine.
This validator is useful for checking settings such as the drpPort, and
can be used by ATG services to compose a unique ID for an ATG
instance.

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

4 8

3 - C o n f i g u r i n g N u c l e u s C o m p o n e n t s

μ
Validator Description

LiveConfigValidator Verifies whether all configuration clients of a given node type have the
same liveconfig setting.

RepositoryValidator Checks all known repositories to determine whether the following
settings are consistent:

- Client lock manager settings for repositories that use locked or
distributedHybrid caching

- Subscriber repository and event sender settings for repositories that
use distributed caching

All registered validators are scheduled to run according to the value set on the property
ConfigurationServer.schedule — by default, every 30 seconds. You can also manually execute all
registered validators by invoking the runValidators() method on the master configuration server.
Errors are logged every five minutes on the master configuration server.

Session Management in ATG Applications
This section discusses topics relating to session management in ATG applications running on third-party
application servers.

The J2EE specification defines that each web application has its own session object and any attributes
added to the session are only accessible from within that web application. The application server is
entirely responsible for managing session life cycles; it generates a unique session ID, creates the session,
invalidates it, fails it over, etc. An “ATG session” refers to session-scoped components. See the ATG
Programming Guide for information on Nucleus component scopes. Also, keep in mind that Nucleus
components have a tree structure, and can include multiple scopes, with each scope being rooted at a
particular component. The root for session-scoped components is
/atg/dynamo/servlet/sessiontracking/GenericSessionManager/sessionid/ where
sessionid is generated by the application server.

Sharing Session Information Among ATG Applications

You can run multiple ATG applications in the form of WAR files within a single EAR. In this case, you
should share session-scoped Nucleus components so that your application will always have access to the
same instance of session scoped components. By default, J2EE servers hand out different session objects
in each web application visited, even if all requests came from the same browser. Sharing sessions across
ATG applications ensures that you can build a J2EE application consisting of multiple WAR files in a single
EAR, and each WAR has access to the same session-scoped components. Note that you should never run
more than a single ATG EAR per application server instance.

When multiple web applications exist in the ATG EAR file, one of them must be designated as the parent
application. Being the parent means that that application’s session ID is used as the basis for creating the
ATG session scope root.

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

4 9

3 - C o n f i g u r i n g N u c l e u s C o m p o n e n t s

μ
By default, ATG makes the <ATG10dir>\DafEar\base\j2ee-components\atg_bootstrap.war file
the parent web application. The parent context path is /dyn. No additional configuration is required to
use this, but your web applications should define the atg.session.parentContextName and
atg.dafear.bootstrapContextName parameters in their web.xml to point to the parent web-
application as shown:

<context-param>

 <param-name>atg.session.parentContextName</param-name>

 <param-value>/dyn</param-value>

</context-param>

<context-param>

 <param-name>atg.dafear.bootstrapContextName</param-name>

 <param-value>/dyn</param-value>

 <description>The name of the DAF bootstrap WAR context.</description>

</context-param>

The context path the context-param points to must be for a WAR file with the
SessionNameContextServlet defined in its web.xml:

<servlet>

 <servlet-name>SessionNameContextServlet</servlet-name>

 <servlet-class>atg.nucleus.servlet.SessionNameContextServlet

 </servlet-class>

</servlet>

Note that there can be only one parent web application specified per EAR file. Therefore, if you change
the parent application, be sure to set the context-param to the same values in all web.xml files within
your EAR file:

<context-param>

 <param-name>atg.session.parentContextName</param-name>

 <param-value>/portal</param-value>

</context-param>

Note: This information applies only to session-scoped Nucleus components, and does not affect HTTP
sessions obtained using atg.servlet.ServletUtil.getDynamoRequest(request).getSession(),
which retain a context particular to the current web application.

Session Interaction Outline

This section describes the request process and how a Nucleus session name context is associated with
that request.

1. When a request comes in without a session ID in the cookie or in the URL, the
application server creates a new session for the requested web application.

2. The ATG PageFilter determines if the session has been failed over and needs to be
restored, or is a new session.

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

5 0

3 - C o n f i g u r i n g N u c l e u s C o m p o n e n t s

μ
3. If the request is for the parent web application, a session name context is created with

the current session ID and added to the Nucleus component
/atg/dynamo/servlet/sessiontracking/GenericSessionManager.

View that component in the HTML Nucleus Component browser to see a list of current
ATG session name contexts and the web applications that share those name contexts.

If the request is for a child web application, the parent application’s session ID is
resolved in one of two ways, depending on the application server.

Some application servers maintain a single session ID between web applications for
the same client (browser), in which case the session name context ID is the current
web application’s session ID. This behavior is controlled by the /atg/dynamo/
servlet/sessiontracking/GenericSessionManager.singleSessionIdPerUse

r property, which is set to one of the following default values in the DafEar
submodule configuration layer:

 WebLogic – false

 JBoss – true

 WebSphere - true

Note: Do not change these values from their defaults.

When the singleSessionIdPerUser value is true, the application server uses the
same session ID for all web applications, so lookup is not required. Note that the
application server hands out the same session id, but not the same HttpSession
object.

When singleSessionIdPerUser is false, a lookup determines the session name
context ID. This is done by the
atg.nucleus.servlet.SessionNameContextServlet servlet (included in
atg_bootstrap.war), using a RequestDispatcher.include() call. The
SessionNameContextServlet does two things:

 Sets the parent session ID as a request attribute that can then be used by the
child web application to bind to the correct session context.

 For application servers that don’t allow request attributes to be shared between
web applications, it also sets a cookie named ATG_SESSION_ID with the
session ID. This behavior is controlled by the
/atg/dynamo/servlet/sessiontracking/GenericSessionManager.use

SessionTrackingCookie property, which is pre-configured with the correct
value for each application server.

4. The atg.parent.session.id session attribute is set to the parent session ID to
avoid repeating the lookup.

5. A new session-scoped context of type atg.servlet.SessionNameContext now
exists under the GenericSessionManager. Because the ATG Nucleus components
live outside the application server’s session, an
atg.servlet.SessionBindingReporter object is added to each web application
session as an attribute. According to the J2EE spec, this object must be notified by the
application server when the session is started (its valueBound method invoked) or
invalidated (its valueUnbound method invoked).

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

5 1

3 - C o n f i g u r i n g N u c l e u s C o m p o n e n t s

μ
6. The SessionBindingReporter increments a counter in the SessionNameContext it

belongs to. This counter keeps track of the number of child web application session
references to the Nucleus session scope. As each child is requested during the course
of the browser session, this number increases.

7. When the application server expires a session, either because of a user request
(session.invalidate() invoked) or due to a session timeout, it unbinds all the
session attributes and invokes the
atg.servlet.SessionBindingReporter.valueUnbound() method.

8. The valueUnbound decrements the SessionNameContext counter.

9. When the counter reaches 0, all the child and parent web application sessions have
been expired and it is safe for the ATG Nucleus session scope to be removed.

Note: Because the only link to the underlying session is through the SessionBindingReporter
attribute, session management is a common cause for memory leaks. One such leak occurs on IBM
WebSphere in a clustered environment, where the session invalidation can occur in a different JVM
instance than where the session originated. See the Session Management in a WebSphere Cluster section.

Managing User Sessions

You can manage user sessions from the Dynamo Component Browser for debugging or administrative
purposes. To access the Session Manager, click through the hierarchy:

/atg/dynamo/servlet/sessiontracking/

Click GenericSessionManager to view sessions. Choose the selection criteria, then click the View button.
Click an individual session to see its properties.

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

5 2

3 - C o n f i g u r i n g N u c l e u s C o m p o n e n t s

μ

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

5 3

4 - C o n f i g u r i n g D a t a b a s e s a n d D a t a b a s e A c c e s s

μ
4 Configuring Databases and Database

Access

Your ATG platform installation includes a preconfigured SOLID SQL database that contains the data
necessary for running the ATG demo applications. The SOLID database is intended for evaluation and
development purposes only. Before deploying your application in a production environment, you should
configure both your application server and ATG products to use a production-quality database
management system such as Oracle or Microsoft SQL Server. Your applications can then access
application server resources and ATG components simultaneously. For a list of supported databases, see
the Supported Environments page (http://www.atg.com/en/products/requirements/).

The ATG platform includes a number of tools for creating a database, adding and removing tables,
configuring data sources and connection pools, and importing and exporting data. This chapter covers
the following topics:

Creating Database Tables Using SQL Scripts

Destroying Database Tables

Adding a JDBC Driver

Configuring ATG Datasources for Data Import

Configuring Data Sources and Transaction Management

Using ATG Products with an IBM DB2 Database

Using ATG Products with a Microsoft SQL Server Database

Moving Data from SOLID to the Production Database

Copying and Switching Databases

Note: Changing ATG’s out-of-the-box database schemas is not recommended, although you can extend
the schemas as necessary. If you do make any schema changes, you must migrate the changes manually
when you upgrade to a new version of ATG.

Note: JBoss comes with its own demo database, Hypersonic (note the datasource hsqldb-ds.xml in the
/deploy directory). Some JBoss components require that database, so do not remove it unless you also
plan to remove those components.

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

5 4

4 - C o n f i g u r i n g D a t a b a s e s a n d D a t a b a s e A c c e s s

μ
Creating Database Tables Using SQL Scripts

The following sections explain how to create database tables for the ATG Adaptive Scenario Engine and
ATG Portal.

 Creating Database Tables for ATG Adaptive Scenario Engine

 Creating Database Tables for ATG Portal

See the installation documentation for your other ATG products for information on creating database
tables required for those applications.

Note: If you are using a utf8 Oracle database, before creating any tables, in order to avoid errors you must
set the system nls_length_semantics to char:

alter system set nls_length_semantics=char;

Creating Database Tables for ATG Adaptive Scenario Engine

To create the database tables for the ATG Adaptive Scenario Engine, run the SQL scripts provided for the
DAS, DPS, and DSS modules, as described in the following sections.

 Creating the DAS Tables

 Creating the DPS Tables

 Creating the DSS Tables

ATG Portal Note: The table creation scripts for ATG Portal also create the tables for the ATG Adaptive
Scenario Engine; you do not need to create the DAS, DPS, and DSS tables separately. See Creating
Database Tables for ATG Portal for details.

Creating the DAS Tables

To create the database tables in the DAS module, run the das_ddl.sql script from the following
directory:

<ATG10dir>/DAS/sql/install/database-vendor

The das_ddl.sql script is derived from the subscripts listed in the table below. If necessary, you can run
these subscripts individually from the following directory:

<ATG10dir>/DAS/sql/db_components/database-vendor

Script name Purpose

create_gsa_subscribers_ddl.sql Creates tables for event-listener registrations for distributed
caching mode in the GSA

create_sds.sql Creates a table for the switching data source service

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

5 5

4 - C o n f i g u r i n g D a t a b a s e s a n d D a t a b a s e A c c e s s

μ
create_sql_jms_ddl.sql Creates tables for the Dynamo Message System

create_staff_ddl.sql Creates the Dynamo Staff Repository for the GSA

dms_limbo_ddl.sql Creates tables to store delayed JMS messages

id_generator.sql Creates a table for managing ID spaces

integration_data_ddl.sql Creates a table for storing caching information from the
integration repository

nucleus_security_ddl.sql Creates tables for Nucleus security data

Creating the DPS Tables

To create the database tables for DPS, run the dps_ddl.sql script from the following directory:

<ATG10dir>/DPS/sql/install/database-vendor

The dps_ddl.sql script is derived from the subscripts listed in the table below. If necessary, you can run
these subscripts individually from the following directory:

<ATG10dir>/DPS/sql/db_components/database-vendor

Script name Purpose

logging_ddl.sql Creates tables for the logging and reporting subsystem

logging_init.sql Initializes the logging and reporting tables

user_ddl.sql Creates tables for the DPS schema

Creating the DSS Tables

To create the database tables for DSS, run the dss_ddl.sql script from the following directory:

<ATG10dir>/DSS/sql/install/database-vendor

The dss_ddl.sql script is derived from the subscripts listed in the table below. If necessary, you can run
these subscripts individually from the following directory:

<ATG10dir>/DSS/sql/db_components/database-vendor

Script name Purpose

das_mappers.sql Creates tables used by sample mappers to record ATG startup and shutdown
events

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

5 6

4 - C o n f i g u r i n g D a t a b a s e s a n d D a t a b a s e A c c e s s

μ
dps_mappers.sql Creates tables used by sample mappers to record DPS events

dss_mappers.sql Creates tables used by sample mappers to record DSS audit trail events

scenario_ddl.sql Creates tables for the DSS Scenario Engine

Creating Database Tables for ATG Portal

The install file in the <ATG10dir>/Portal/install/database-vendor directory runs a set of scripts
that create the required tables for the Portal Application Framework (PAF) and baseline gears.

Note: These scripts also create the tables for the ATG Adaptive Scenario Engine; you do not need to run
the DAS, DPS, and DSS scripts separately. Note also that the install file uses the
<ATG10dir>/Portal/install/minimal-data.xml file to create the minimum set of data structures
necessary to run ATG Portal.

Use the following syntax to run the install file appropriate for your DBMS:

 install-db2 userid password database

 install-mssql userid password host database

 install-oracle userid password database

The table creation scripts for ATG Portal are located in the following directories:

<ATG10dir>/Portal/paf/sql/install/database-vendor

<ATG10dir>/Portal/gear_dir/sql/install/database-vendor

Note: These scripts use an ATG-specific JTDatasource and TransactionManager, and cannot be used
with your application server’s data source or transaction manager.

Script name Purpose

alert_ddl.sql Creates tables for the Alerts Gear

bookmarks_ddl.sql Creates tables for the Bookmarks Gear

calendar_ddl.sql Creates tables for the Calendar Gear

communities_ddl.sql Creates tables for the Communities Gear

discussion_ddl.sql Creates tables for the Discussion Gear

docexch_ddl.sql Creates tables for the Document Exchange Gear

membership_ddl.sql Creates tables for storing membership requests

paf_mappers_ddl.sql Creates tables used by sample mappers to record
portal events

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

5 7

4 - C o n f i g u r i n g D a t a b a s e s a n d D a t a b a s e A c c e s s

μ
Portal_ddl.sql Creates tables for the Portal Application Framework

poll_ddl.sql Creates tables for the Poll Gear

profile_ddl.sql Creates tables for storing profile data for personalized
communities and pages

soapclient_ddl.sql Creates tables for the Web Services Client Gear

Destroying Database Tables
The ATG platform includes SQL drop scripts for destroying database tables. (If you are using ATG Content
Administration, see the ATG Content Administration Programming Guide for information on destroying the
database tables for your content administration server.) Run the drop scripts in the reverse of the order
used for table creation.

This section covers the following topics:

 Destroying Database Tables for ATG Adaptive Scenario Engine

 Destroying Database Tables for ATG Portal

Destroying Database Tables for ATG Adaptive Scenario Engine

This section covers the following topics:

 Destroying the DAS Tables

 Destroying the DPS Tables

 Destroying the DSS Tables

Destroying the DAS Tables

To destroy all DAS tables, run the drop_das_ddl.sql script from the following directory:

<ATG10dir>/DAS/sql/install/database-vendor

The drop_das_ddl.sql script is derived from the subscripts listed in the table below. If necessary, you
can run these subscripts individually from the following directory:

<ATG10dir>/DAS/sql/uninstall/database-vendor

Script name Purpose

drop_dms_limbo_ddl.sql Destroys the tables used to store delayed JMS messages

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

5 8

4 - C o n f i g u r i n g D a t a b a s e s a n d D a t a b a s e A c c e s s

μ
drop_gsa_subscribers_ddl.sql Destroys the tables for event-listener registrations for

distributed caching mode in the GSA

drop_id_generator.sql Destroys the table for managing ID spaces

drop_integration_data_ddl.sql Destroys the table that stores caching information from the
integration repository

drop_nucleus_security_ddl.sql Destroys the tables for Nucleus security data

drop_sds.sql Destroys the table for the switching data source service

drop_sql_jms_ddl.sql Destroys the tables for the Dynamo Message System

drop_staff_ddl.sql Destroys the Dynamo Staff Repository for the GSA

Destroying the DPS Tables

To destroy all DPS tables, run the drop_dps_ddl.sql script from the following directory:

<ATG10dir>/DPS/sql/install/database-vendor

The drop_dps_ddl.sql script is derived from the subscripts listed in the table below. If necessary, you
can run these subscripts individually from the following directory:

<ATG10dir>/DPS/sql/uninstall/database-vendor

Script name Purpose

drop_logging_ddl.sql Destroys the tables for the logging and reporting subsystem

drop_user_ddl.sql Destroys the tables for the DPS schema

Destroying the DSS Tables

To destroy all DSS tables, run the drop_dss_ddl.sql script from the following directory:

<ATG10dir>/DSS/sql/install/database-vendor

The drop_dss_ddl.sql script is derived from the subscripts listed in the table below. If necessary, you
can run these subscripts individually from the following directory:

<ATG10dir>/DSS/sql/uninstall/database-vendor

Script name Purpose

drop_das_mappers.sql Destroys the DAS sample mapper tables

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

5 9

4 - C o n f i g u r i n g D a t a b a s e s a n d D a t a b a s e A c c e s s

μ
drop_dps_mappers.sql Destroys the DPS sample mapper tables

drop_dss_mappers.sql Destroys the DSS sample mapper tables

drop_scenario_ddl.sql Destroys the DSS Scenario Engine tables

Destroying Database Tables for ATG Portal

The reset file in the <ATG10dir>/Portal/install/database-vendor directory runs a set of scripts
that drop the database tables for ATG Portal. Use the following syntax to run the reset file appropriate for
your DBMS:

 reset-db2 userid password database

 reset-mssql userid password host database

 reset-oracle userid password database

Note: Once you run the reset file, you must run the install file again to use your database with the Portal
Application Framework. See Creating Database Tables for ATG Portal for details.

The drop scripts for ATG Portal are located in the following directories:

<ATG10dir>/Portal/paf/sql/uninstall/database-vendor

<ATG10dir>/Portal/gear_dir/sql/uninstall/database-vendor

Note that the lines in these files that drop the DSS, DPS, and DAS tables are commented out by default as
a safety measure. To drop those tables, uncomment the lines before running the script.

Script name Purpose

drop_alert_ddl.sql Destroys tables for the Alerts Gear

drop_bookmarks_ddl.sql Destroys tables for the Bookmarks Gear

drop_calendar_ddl.sql Destroys tables for the Calendar Gear

drop_communities_ddl.sql Destroys tables for the Communities Gear

drop_discussion_ddl.sql Destroys tables for the Discussion Gear

drop_docexch_ddl.sql Destroys tables for the Document Exchange Gear

drop_membership_ddl.sql Destroys tables for storing membership requests

drop_paf_mappers_ddl.sql Destroys tables used by sample mappers to record
portal events

drop_portal_ddl.sql Destroys tables for the Portal Application
Framework

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

6 0

4 - C o n f i g u r i n g D a t a b a s e s a n d D a t a b a s e A c c e s s

μ
drop_poll_ddl.sql Destroys tables for the Poll Gear

drop_profile_ddl.sql Destroys tables for storing portal profile data

drop_soapclient_ddl.sql Destroys the tables for the Web Services Client Gear

Adding a JDBC Driver
To configure the ATG platform to use the JDBC driver for your DBMS, first install the driver software on
your system as instructed by the manufacturer. See your application server documentation for
information on where the driver should be installed.

Oracle users: Use the Oracle JDBC driver version that matches your Oracle server version. See the
Supported Environments page (http://www.atg.com/en/products/requirements/) for supported database
versions.

If you are using an Oracle OCI client to connect your application server to the Oracle database, the bit
version of Oracle OCI client must match the bit version of your JDK. For example if your JDK is 32-bit, your
OCI client should be 32-bit, regardless of your operating system bit size.

Oracle WebLogic users: WebLogic ships with an ojdbc14.jar located at
<WLdir>/wlserver_10.0.1/server/lib/. More recent Oracle drivers may be available, in which case
you should make certain that your CLASSPATH refers to the latest version, not the shipped version.
Conflicts between Oracle’s JDBC driver and Oracle’s OCI native libraries result in crashes in the Oracle OCI
driver.

Removing the SOLID JDBC Driver from the CLASSPATH

To remove the SOLID JDBC driver from the CLASSPATH, remove solid/SolidDriver2.1.jar from the
following line in the <ATG10dir>/DAS/META-INF/MANIFEST.MF file:

ATG-Class-Path: lib/resources.jar lib/classes.jar solid/SolidDriver2.1.jar

Configuring ATG Data Sources for Data Import
ATG uses its own data sources when running data import scripts. These scripts are used for initial
application configuration. The data source is based on /atg/dynamo/service/jdbc/JTDataSource, a
Nucleus service that creates new connections to a particular database.

Your running ATG application will use your application server’s native data sources (see Configuring Data
Sources and Transaction Management in this guide).

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

6 1

4 - C o n f i g u r i n g D a t a b a s e s a n d D a t a b a s e A c c e s s

μ
J2EE JDBC supports the Java Transaction API (JTA) via the javax.sql.XADataSource interface. JTA
allows multiple resources from different providers to participate in the same transaction. Using two-phase
commits, data integrity across different services is ensured. ATG supplies a DataSource that sits on top of
an XADataSource and returns wrapped Connections that are registered appropriately with the
associated Transaction Manager. ATG’s DataSource must get all its Connections from an XADataSource.
Only a true XADataSource produces connections that behave properly in a two-phase commit controlled
by JTA. XADataSources should be included in JDBC 2.0 drivers for the various database vendors.

The default DataSource connection pool, JTDataSource, uses the FakeXADataSource component,
which is configured by default for the SOLID database. If you want to use a database other than SOLID,
you must configure the desired connection pool properties, but note that this datasource should be used
only to run ATG data import scripts.

You can set up and configure a connection pool manually by creating two files in your
localconfig/atg/dynamo/service/jdbc/ directory:

 connectionPoolName.properties

 connectionPoolNameFakeXA.properties

where connectionPoolName is the name of the connection pool you want to create.

The connectionPoolName.properties file contains properties and values similar to the following:

$class=atg.service.jdbc.MonitoredDataSource

min=10

max=10

blocking=true

maxFree=-1

loggingSQLWarning=false

loggingSQLDebug=false

loggingSQLInfo=false

dataSource=/atg/dynamo/service/jdbc/<connectionPoolName>FakeXA

loggingSQLError=false

The min property determines the number of connections that the pool starts out with. The max property
determines how many connections are to be kept around in the pool. When the pool starts, it
immediately creates the minimum number of connections. Whenever a service requires a connection, it
takes one from the pool. If there are no connections free, then the connection pool creates a new
connection, until the maximum is reached. Due to various initialization calls, ATG requires at least three
JDBC connections on install or when started with a new database. Setting the JDBC connection pool’s max
property to anything less causes ATG to hang when starting up.

If the maximum has been reached and a service requires another connection, then the service blocks until
some other service frees up a connection. If the blocking property is set to false, then instead of
blocking, the connection pool fails and results in a SQL exception.

The connectionPoolNameFakeXA.properties file contains properties and values similar to the
following:

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

6 2

4 - C o n f i g u r i n g D a t a b a s e s a n d D a t a b a s e A c c e s s

μ
$class=atg.service.jdbc.FakeXADataSource

server=localhost:1313

user=admin

needsSeparateUserInfo=false

URL=jdbc:solid://localhost:1313

readOnly=false

password=admin

database=

driver=solid.jdbc.SolidDriver

These properties tell the connection pool how to make a connection. The driver parameter specifies the
name of the driver that should be used. The URL property specifies the name of the database server
machine, the port of the database server (optional), and the name of the database on the server
(optional). The format of the URL looks like this:

jdbc:driver name[:additional server information]

By default, the connection pool’s driver and URL are configured for the SOLID database, as follows:

driver=solid.jdbc.SolidDriver

URL=jdbc:solid://localhost:1313

The user and password properties provide the connection with login access to the database, and must
be recognized by the target database.

The readOnly property determines whether the resulting connection will only be used to perform read-
only operations. Some drivers may be able to improve performance if this is true. Most applications
require read and write access, so this property is usually false.

ATG wraps the Connection object to separate out SQL warning and info messages. This lets you see the
SQL statements generated by ATG. It also catches SQLExceptions that occur on the connection and
causes the connection to be closed when it is checked by into the resource pool. In addition to the
standard ApplicationLogging log levels (loggingError, loggingWarning, loggingInfo and
loggingDebug), a monitored connection lets you split off the SQL log messages with these properties:

Property Description

loggingSQLError logs SQL exceptions as errors

loggingSQLWarning logs SQL warnings received by the pool

LoggingSQLInfo logs SQL statements sent by the pool

LoggingSQLDebug logs JDBC method calls made by the pool

By default, ATG turns SQL warnings off since they tend to be informational messages, not warnings. If you
want to log these messages, set loggingSQLWarning to true.

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

6 3

4 - C o n f i g u r i n g D a t a b a s e s a n d D a t a b a s e A c c e s s

μ
Configuring Data Sources and Transaction Management

When you first install the ATG platform, it is configured to use its own data sources (JDBC connection
pools) and transaction manager. The data sources point to the SOLID demonstration database that is
installed with ATG. This database contains the tables necessary for running ATG and the demo
applications.

When you deploy your sites, you should reconfigure your installation to use the data sources and
transaction manager that your application server uses. While the SOLID database is suitable for evaluation
and development; it is not designed for a high-volume site, and most application servers do not have
drivers to support it.

Note that data sources for all application servers should always use the READ_COMMITTED isolation level
(on DB2, use the equivalent CURSOR STABILITY).

Configuring Data Sources for JBoss

ATG applications running on JBoss use a JTDataSource component, which should be configured to
point to a JNDI reference to a DataSource component running in JBoss.

The ATG platform installation includes an XML file that contains the default configurations for all the data
sources for each application, along with a JNDI name for each data source. The ATG installer copies this
XML file into the JBoss deploy directory so that these data sources are started when JBoss starts.

Where to Configure JBoss Data Sources

You should configure your data source in the localconfig, jbossconfig, or equivalent named
configuration layer. See “Managing Properties Files” in the ATG Programming Guide for information on
application-server-specific and named configuration layers.

In order to use the jbossconfig directory:

 Modify the MANIFEST.MF file for the given ATG module to include the following
property:

ATG-JbossConfig-Path: jbossconfig

 Create a jbossconfig directory and put the properties files there.

Note: If JBoss configuration files are stored in the ATG-3rdPartyConfig-Path layer, you might see
errors if you start up applications on other application servers, because the datasources are configured to
point to JNDI names that are not set up on that application server. Datasource configuration files that are
specific to JBoss should be in the ATG-JBossConfig-Path rather than the ATG-3rdPartyConfig-Path
of those data source configurations.

Configuring New JBoss Datasources

To configure a new data source, go to the <JBdir>\server\server_name\deploy\atg-solid-
ds.xml file. Rename the XML file to something appropriate (for example atg-oracle-ds.xml), bearing
in mind that the filename must end in –ds.xml. Edit the following configuration settings:

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

6 4

4 - C o n f i g u r i n g D a t a b a s e s a n d D a t a b a s e A c c e s s

μ
JNDI name

URL

driver class

username

password

transaction isolation level

connection pool numbers

See your application server documentation for information on the available parameters. For example:

<?xml version="1.0" encoding="UTF-8"?>

<datasources>

 <xa-datasource>

 <jndi-name>atgcore_ds</jndi-name>

 <track-connection-by-tx>false</track-connection-by-tx>

 <isSameRM-override-value>false</isSameRM-override-value>

 <min-pool-size>5</min-pool-size>

 <max-pool-size>100</max-pool-size>

 <blocking-timeout-millis>5000</blocking-timeout-millis>

 <idle-timeout-minutes>15</idle-timeout-minutes>

 <transaction-isolation>TRANSACTION_READ_COMMITTED</transaction-

isolation>

 <xa-datasource-class>oracle.jdbc.xa.client.OracleXADataSource</xa-

datasource-class>

 <xa-datasource-property

 name="URL">jdbc:oracle:thin:@otto.na.ad.atg.com:1521:ora10r2</xa-datasource-

property>

 <xa-datasource-property name="User">username</xa-datasource-property>

 <xa-datasource-property name="Password">password</xa-datasource-property>

 <!-- Uncomment the following if you are using Oracle 9i

 <xa-datasource-property name="oracle.jdbc.V8Compatible">true</xa-

datasource-property>

 -->

 <exception-sorter-class-name>

 org.jboss.resource.adapter.jdbc.vendor.OracleExceptionSorter

 </exception-sorter-class-name>

 </xa-datasource>

</datasources>

If you have changed the JNDI name, you must also change the name configured in the
<ATG10dir>/home/localconfig/atg/dynamo/service/jdbc/JTDataSource.properties file:

$class=atg.nucleus.JNDIReference

JNDIName=JNDIDataSourceName

For example, java:/ATGOracleDS.

Note that if you are using a WatcherDataSource, this would be configured instead in a
DirectJTDataSource.properties file.

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

6 5

4 - C o n f i g u r i n g D a t a b a s e s a n d D a t a b a s e A c c e s s

μ
Adding Database Class Files

If your database driver is located anywhere other than the server’s lib directory (for example,
C:\jboss\jboss-eap-5.1\jboss-as\server\atg_server\lib), you must edit
<JBdir>/bin/run.sh|bat and add your database class files, such as Oracle’s ojdbc14.jar, to the
JBoss classpath. To do this, search for $JBOSS_CLASSPATH and just above it, create a line:

JBOSS_CLASSPATH=path_to_ojdbc14.jar

Rebuild and redeploy your EAR file.

Configuring Data Sources for WebLogic and WebSphere

To configure ATG to use data sources for WebSphere or WebLogic, override the default configuration of
each ATG data source, replacing it with a pointer to a WebSphere or WebLogic data source.

For example, several ATG repositories use as their default data source the component
/atg/dynamo/service/jdbc/JTDataSource, which is of class
atg.service.jdbc.MonitoredDataSource. Rather than reconfiguring the repositories individually,
replace the JTDataSource with a component of class atg.nucleus.JNDIReference, so that the “data
source” that the repositories now point to is just a JNDI reference to a WebSphere or WebLogic data
source. To do this, you create a JTDataSource.properties file that contains these lines:

$class=atg.nucleus.JNDIReference

JNDIName=java:comp/env/jdbc/ATGDatasource

where ATGDatasource is the JNDI name of the WebSphere or WebLogic data source. Put this file in
<ATG10dir>/home/localconfig/atg/dynamo/service/jdbc/.

Configuring Data Sources for an Oracle RAC Cluster

If you use ATG Content Administration, you must configure data sources for the destination repositories
that are used during deployment to staging and production servers. These data sources require special
configuration if the following conditions are true:

 The target site database is set up as an Oracle RAC cluster with multiple nodes.

 The target site runs on WebLogic or WebSphere.

In this case, you must configure an Oracle RAC cluster so that all operations within a given transaction are
directed to a single cluster instance:

1. Set up a database service that runs on a single instance in the production RAC cluster.

2. This RAC cluster instance and its database service must be referenced by the data
sources of the destination repositories that Content Administration uses for
deployment. To do this, configure the data sources so their JDBC URL is set as follows:

jdbc:oracle:thin:@RAC-instance:port:dbservice

For detailed information about destination repositories and how they are used for deployment, see the
ATG Content Administration Programming Guide.

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

6 6

4 - C o n f i g u r i n g D a t a b a s e s a n d D a t a b a s e A c c e s s

μ
Setting the Transaction Timeout on JBoss

The default JBoss transaction timeout is 300 seconds. This may be too short for your purposes, particularly
if you have a large ATG Commerce catalog.

To increase the transaction timeout:

1. Go to the <JBdir>/server/atg/conf/jboss-service.xml file.

2. Change the <attribute name="TransactionTimeout">300</attribute> to a
higher number.

Setting the Transaction Timeout on WebLogic

WebLogic will automatically roll back transactions that don’t complete in a certain number of seconds.
The default setting is 30 seconds, which may be too short for compiling certain complex pages, especially
pages that embed many page fragments.

When you are developing an application, a page must be recompiled each time you change it. If your
application includes complex pages (particularly if you are developing a portal with ATG Portal), you can
avoid transaction timeouts by raising the timeout setting to 600 seconds. Before deploying the
application on a production site, you should precompile all of the pages. You can then lower the timeout
setting.

To change the setting, open the WebLogic Server Console, go to the JTA page for the domain ATG is
installed in, and change the value in the Timeout Seconds field. ATG recommends setting the timeout to
120 seconds.

Setting the Transaction Timeout on WebSphere

WebSphere will automatically roll back transactions that don’t complete in a certain number of seconds.
The default setting is 120 seconds, which may be too short for compiling certain complex pages,
especially pages that embed many page fragments.

When you are developing an application, a page must be recompiled each time you change it. If your
application includes complex pages (particularly if you are developing a portal with ATG Portal), you can
avoid transaction timeouts by raising the timeout setting to 600 seconds. Before deploying the
application on a production site, you should precompile all of the pages. You can then lower the timeout
setting.

To change the setting, go to Servers > Application Servers > server > Transaction Service in the console.

Setting the Isolation Level for Transactions in WebSphere

ATG applications require a READ_COMMITTED isolation level for transactions. The default isolation level in
WebSphere using MS SQL and DB2 is REPEATABLE_READ. To prevent deadlocks, use the WebSphere
Administration Console to set the isolation level in the atg-bootstrap.war of your Nucleus-enabled
application to READ_COMMITTED. See your WebSphere documentation for instructions.

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

6 7

4 - C o n f i g u r i n g D a t a b a s e s a n d D a t a b a s e A c c e s s

μ
Datasource Debugging

This section describes the use of the WatcherDataSource class to debug data source problems. This
feature is automatically available for all application servers.

Using Datasource Debugging

The default JTDataSource allows you to monitor and log data source information for debugging
purposes. It does this using the WatcherDataSource class. A WatcherDataSource “wraps” another data
source, allowing debugging of the wrapped data source. For example:

/atg/dynamo/service/jdbc/JTDataSource.properties

$class=atg.service.jdbc.WatcherDataSource

The actual underlying DataSource.

dataSource=/atg/dynamo/service/jdbc/DirectJTDataSource

Note: Due to the potential performance impact, the features described here should be used only for
debugging in a development environment. Do not use datasource logging in a production environment
unless absolutely necessary.

To view all logged data from the WatcherDataSource, go to
/atg/dynamo/service/jdbc/JTDataSource in the Dynamo Component Browser.

WatcherDataSource Configuration

The default WatcherDataSource configuration is:

showOpenConnectionsInAdmin=false

logDebugStacktrace=false

loggingDebug=false

monitored=false

loggingSQLError=true

loggingSQLWarning=false

loggingSQLInfo=false

loggingSQLDebug=false

This default configuration logs the following information:

 currentNumConnectionsOpen

 maxConnectionsOpen

 numGetCalls

 averageGetTime

 maxGetTime

 numCloseCalls

 averageCloseTime

 maxCloseTime

 averageOpenTime

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

6 8

4 - C o n f i g u r i n g D a t a b a s e s a n d D a t a b a s e A c c e s s

μ
 maxOpenTime

For additional debugging information, you can set the following properties to true:

 showOpenConnectionsInAdmin—Lists currently open connections, along with the
amount of time they have been held open and the thread that is holding them open.
This information is useful for identifying Connection leaks. If logDebugStacktrace is
also true, then stack traces are displayed as well.

Note: This momentarily prevents connections from being obtained or returned from
the DataSource, and severely affects performance.

 loggingDebug—Logs debug messages on every getConnection() and close()
call. These messages include interesting information such as sub-call time, number of
open connections, and the calling thread. If logDebugStacktrace is also true then a
stack trace is logged as well.

 logDebugStacktrace—Creates stack traces on each getConnection() call. This
allows the calling code to be easily identified, which can be useful when trying to find
Connection leaks, code that is holding Connections open for too long, or code that is
grabbing too many Connections at a time.

Note: This is done by generating an exception, which affects performance.

 monitored—Gathers additional connection statistics and SQL logging.

Using the JDBC Browser
The Dynamo Administration UI includes a JDBC Browser
(http://hostname:port/dyn/admin/atg/dynamo/admin/en/jdbcbrowser/) that enables you to
examine the metadata of a database, including a listing of the tables, columns, and supported data types.
The JDBC Browser also allows you to create tables, drop tables, execute queries, and examine the results
of those queries.

All these operations are performed on a generic JDBC driver connection, meaning that the JDBC Browser
should work with all databases for which a JDBC driver exists.

Configuring the JDBC Browser

The JDBC Browser obtains its JDBC connections from a JDBC connection pool service. By default, the
service is set to the standard connection pool at /atg/dynamo/service/jdbc/JTDataSouce. This
connection pool determines which JDBC driver and database to use.

If you want the JDBC Browser to use a different connection pool, modify the connectionPool property
of /atg/dynamo/admin/jdbcbrowser/ConnectionPoolPointer so that it points to the desired
connection pool service, using the following form:

/atg/dynamo/service/jdbc/your-pool-name

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

6 9

4 - C o n f i g u r i n g D a t a b a s e s a n d D a t a b a s e A c c e s s

μ
Create Table Operation

The Create table page provides a simple way for you to define a table and create it in the database. You
can fill in the names and types of up to 10 columns in the table (any columns you leave blank will not be
put into the table). The column types are expressed in JDBC types, which may or may not correspond
directly to your database’s data types.

The Nullable, Unique, and Primary Key flags indicate properties of the column. You’ll have to be
careful to avoid illegal combinations; for example, most databases do not allow a primary key to be
nullable.

The Additional Constraints are passed straight through to the CREATE TABLE statement. This
allows you to enter additional constraints, such as foreign keys or indices.

Drop Table Operation

The Drop table page drops the table you name.

Execute Query Operation

The Execute query page allows you to enter an arbitrary SQL statement that is passed through the driver
to the database. The results of the statement are displayed in response. If the statement generates
multiple result sets and update counts, all of those result sets and update counts will be displayed.

The flag marked Show resulting column headings in long form indicates whether extra result set
metadata should be shown with each column. This tends to be rather extensive and is probably not
necessary for most operations.

When you submit the query, you can submit with a commit or submit with a rollback. These options are
only meaningful if autoCommit is false. If autoCommit is true, then the query will always be followed
by a commit. The autoCommit property is set in the connection pool service.

Metadata Operations

All JDBC drivers provide metadata about the database that can be accessed through the JDBC interface.
This metadata includes runtime information such as a listing of the tables and columns in the database.
The metadata can also include information about the specific dialect of SQL that is understood by the
database.

The JDBC Browser allows you to access all the metadata provided by the JDBC driver. Each of the
metadata operations will first ask you to provide parameters for the requested metadata. For example,
the List tables operation will ask for a Catalog Name, Schema Name, and Table Name. You can leave
these fields blank, in which case all the appropriate metadata will be returned.

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

7 0

4 - C o n f i g u r i n g D a t a b a s e s a n d D a t a b a s e A c c e s s

μ
Using ATG Products with an IBM DB2 Database

To use a DB2 database, you must set the parameterizedSelect and useSetBinaryStream properties
of the /atg/dynamo/messaging/SqlJmsProvider component to false.

In order for some import scripts to work, you must also set the following in your
<ATG10dir>/home/localconfig/GLOBAL.properties file:

handleRangesInMemory=true

localTransactionModeInitialization=false

Create at least three tablespaces and bufferpools: one tablespace/bufferpool with a page size of 4KB, one
with a page size of 16KB, and one with a page size of 32KB. See your DB2 documentation for more
information. ATG recommends that you create more than one tablespace in each size; the number will
vary depending on your data.

The db2_jms_procedures_ddl.sql file contains procedures that set the msgPollBatchSize property
of SqlJmsProvider. The dms_topic_flag and dms_queue_flag procedures set a fixed batch size of
5000 (unlike Oracle or MSSQL, DB2 does not compute the batch size, but uses a fixed number).

If you find that the 5000-item configuration is not effective, you can change the setting and recompile the
procedures using the following statements:

db2 connect to db2_alias user schema_owner_name using password

db2 -td@ -v -ffilename

For example,

db2 -td@ -v -fdb2_jms_procedures_ddl.sql > db2_jms_procedures_ddl.log

For web-based applications such as ATG, the recommended isolation level READ_COMMITTED. On Oracle
and MSSQL, non-modifying transactions are allowed to read data while another transaction commits.
DB2’s treatment of this isolation level is different in two ways: first, it calls the isolation level CURSOR
STABILITY, and second, it locks exclusively on a table that is being modified, preventing other transactions
from reading data from those tables.

To modify DB2 so that it behaves the same way with CURSOR STABILITY that Oracle and MSSQL behave
with READ COMMITTED, create the following registry entries for your database:

DB2_EVALUNCOMMITTED
Do not wait for uncommitted updates.

DB2_SKIPINSERTED
Do not wait for uncommitted inserts.

DB2_SKIPDELETED
Do not wait for uncommitted deletes.

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

7 1

4 - C o n f i g u r i n g D a t a b a s e s a n d D a t a b a s e A c c e s s

μ
Using ATG Products with a Microsoft SQL Server Database

ATG products do not support Unicode for MS SQL Server databases. To use Microsoft SQL Server with ATG
products, be sure the useSetUnicodeStream property of all SQL repository components is set to false
(default). To ensure that no ATG components are configured to use useSetUnicodeStream, you can set
this property in your localconfig/GLOBAL.properties file:

useSetUnicodeStream=false

If you are creating localized content, set the useSetAsciiStream property to false in your
localconfig/GLOBAL.properties file:

useSetAsciiStream=false

If you are using the Microsoft SQL Server 2005 JDBC driver, you must set
sendStringParametersAsUnicode to false in your URL connection string. For example:

URL=jdbc:sqlserver://<SERVER>:<PORT>;databaseName=<DATABASE>;

sendStringParametersAsUnicode=false

The sendStringParametersAsUnicode=false setting avoids Unicode character conversion and
enables MS SQL Server to use indexes in queries.

In addition, to prevent deadlocks and timeout problems, you must turn on READ_COMMITTED_SNAPSHOT.
For example:

ALTER DATABASE <database_name> SET READ_COMMITTED_SNAPSHOT ON;

Using iNet (Merlia) Drivers

If you are using iNet drivers on JBoss, bear in mind that this driver does not allow for passing information
by URL; therefore, some additional information must be set in the property fields, as shown in this
example:

<xa-datasource>

 <jndi-name>ATGProductionDS</jndi-name>

 <track-connection-by-tx/>

 <isSameRM-override-value>false</isSameRM-override-value>

 <min-pool-size>5</min-pool-size>

 <max-pool-size>100</max-pool-size>

 <blocking-timeout-millis>5000</blocking-timeout-millis>

 <idle-timeout-minutes>15</idle-timeout-minutes>

 <transaction-isolation>TRANSACTION_READ_COMMITTED</transaction-isolation>

 <xa-datasource-class>com.inet.tds.DTCDataSource</xa-datasource-class>

 <xa-datasource-property name="ServerName">server_name</xa-datasource-property>

 <xa-datasource-property name="DatabaseName">database_name</xa-datasource-

property>

 <xa-datasource-property name="User">database_username</xa-datasource-property>

 <xa-datasource-property name="Password">database_password</xa-datasource-

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

7 2

4 - C o n f i g u r i n g D a t a b a s e s a n d D a t a b a s e A c c e s s

μ
property>

 <xa-datasource-property name="Mode">71</xa-datasource-property>

 <!-- sql to call when connection is created -->

 <new-connection-sql>select 1</new-connection-sql>

 <!-- sql to call on an existing pooled connection when it is obtained from

pool -->

 <check-valid-connection-sql>select 1</check-valid-connection-sql>

 <!-- corresponding type-mapping in the standardjbosscmp-jdbc.xml -->

 <metadata>

 <type-mapping>MS SQLSERVER2000</type-mapping>

 </metadata>

 </xa-datasource>

If you are using iNet drivers with WebLogic, when you create your data source, use the following settings:

 The type should be DataDirect’s MSSQL type 4 XA.

 Set the following properties:

 url—The full connection string for your data source.

 driver—The driver name is com.inet.tds.DTCDataSource.

 user—User name for the database account.

 port—Connection port used for the database.

 mode—This should normally be set to 71, as Unicode is not supported for MS
SQL.

 serverName—The machine name of the database host.

 secureLevel—Set this to 0 if you are not using SSL. If you are using SSL, see your
database documentation for information.

Moving Data from SOLID to the Production Database
If you want to move data from your SOLID database to the database used by your application server, you
can do this using the startSQLRepository script. This script is described in detail in the ATG Repository
Guide. To use this script, follow these steps:

1. Set the DYNAMO_HOME environment variable to <ATG10dir>/home.

2. In the Dynamo Administration UI, create a new ATG server that uses data sources that
point to the SOLID database. This is the default configuration for a new server.

3. Use the startSQLRepository script to export data from the SOLID database. Include
in the startSQLRepository command the –s servername switch. For example, if
the server you created in the previous step is called server1, you can export the data
from all of the ATG repositories using this command:

bin/startSQLRepository -s server1 -exportRepositories all all.xml

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

7 3

4 - C o n f i g u r i n g D a t a b a s e s a n d D a t a b a s e A c c e s s

μ
4. Use the startSQLRepository script to import data from the XML file (created in the

previous step) into the database used by your application server. Use the –s switch to
specify a ATG server that is configured to use a ATG data source that points to that
database. For example:

bin/startSQLRepository –s server_name -import all.xml

Note that the ATG data source must use an ATG-supported database driver. See the
http://www.atg.com/en/products/requirements/ for a list of supported database
drivers.

Oracle users: Before importing the demo data, set the useSetCharacterStream property of all SQL
repository components to true so that non-8859 characters are displayed correctly. You can set this
property in your localconfig/GLOBAL.properties file:

useSetCharacterStream=true

Microsoft SQL users: In order to run the ATG demos with a Microsoft SQL database, you must configure
the database to be case-sensitive. See your MSSQL documentation for instructions. Note that the Quincy
Funds demo is not supported for MSSQL.

Transferring the Demo Data

Use the commands in the following tables to transfer the Quincy Funds data from SOLID to the your
production database.

Note: The Quincy Funds demo is supported only on SOLID and Oracle.

Exporting the Demo Data from SOLID

Use the command below (on one line, with no line breaks) to export the demo data from the SOLID
database to an XML file called all.xml.

Demo Application Command

Quincy Funds bin/startSQLRepository –s server_name -m DSSJ2EEDemo

-exportRepositories all all.xml

Importing the Demo Data to the Production Database

Use the command below (on one line, with no line breaks) to import the data contained in all.xml to
the database used by your application server.

Demo Application Command

Quincy Funds bin/startSQLRepository –s server_name -m DSSJ2EEDemo

-import all.xml –repository

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

7 4

4 - C o n f i g u r i n g D a t a b a s e s a n d D a t a b a s e A c c e s s

μ

Copying and Switching Databases
In most situations, you’ll want to make database changes on an offline copy of the database, rather than
on the database that runs your live site. Making changes on the live site can cause errors or
inconsistencies or might adversely affect the performance of your live site. The ATG platform includes
copying and switching functionality that lets you copy databases, using the database vendor’s native bulk
copy tools, and switch your live site between two different databases.

This section includes the following topics:

 Database Copy Operations

 Creating a DBCopier Component

 Configuring the DBConnectionInfo

 Configuring the DBCopier

 Setting the Native SQL Environment

 Switching Databases

 Configuring a SwitchingDataSource

 Database Switching and Query Caching

For information about using the database Copy and Switch features for ATG Commerce, see the ATG
Commerce Programming Guide.

Database Copy Operations

The procedure for copying a database includes three basic steps:

 exporting data out of the source database to an OS file

 deleting any data in the destination database

 importing data into the destination database from the OS file

The base class for the ATG database copying facility is atg.adapter.gsa.DBCopier. It is important to
note that DBCopiers use vendor-specific bulk copy and SQL utilities for speed, rather than using JDBC.
This is accomplished by executing these commands in separate processes.

If the native bulk copy program operates on one table at a time, the DBCopier imports table data in the
order in which the tables are specified and deletes table data in the reverse order. Thus, if there are
foreign key constraints among the tables, the copy operation can still work if the tables are specified in
dependency order. The various subclasses of DBCopier implement copying for different database
vendors, using different vendor tools.

To use a DBCopier, follow these steps:

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

7 5

4 - C o n f i g u r i n g D a t a b a s e s a n d D a t a b a s e A c c e s s

μ
1. Create a DBCopier component. See Creating a DBCopier Component.

2. Configure DBConnectionInfo components for your source and destination
databases. See Configuring the DBConnectionInfo.

3. Configure the DBCopier component as described in Configuring the DBCopier.

4. Set the SQL environment variables as described in Setting the Native SQL
Environment.

5. Run the DBCopier by invoking its copy() method. For an example, see the ATG
Commerce Programming Guide.

Creating a DBCopier Component

The class from which you instantiate the DBCopier depends on the database you are using. The following
are subclasses of atg.adapter.gsa.DBCopier and are in package atg.adapter.gsa:

DBCopier Subclass Vendor Vendor Program

BcpDBCopier Microsoft Bcp

DB2DBCopier IBM export/import

OracleDBCopier Oracle exp/imp

SolidDBCopier Solid solexp/solload

For more information about the DBCopier subclasses, see the ATG API Reference.

Configuring the DBConnectionInfo

The connection information about the source database (the database you are copying from) and the
destination database (the database you are copying to) is maintained in a component of type
atg.adapter.gsa.DBConnectionInfo. Create a DBConnectionInfo for each database and configure
it with the following information:

Property Description

Server The name of the database server

User A valid username to connect to the database

Password A valid password for the username specified by the user property

Note: The DBConnectionInfo settings are not expressed in JDBC terms. The settings are the values of
the connection parameters used by OS tools (such as bcp) when connecting to the specified database.

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

7 6

4 - C o n f i g u r i n g D a t a b a s e s a n d D a t a b a s e A c c e s s

μ
Configuring the DBCopier

Set the following properties of the DBCopier:

Property Description

Source The DBConnectionInfo that service holds connection information for the
database to copy from.

Destination The DBConnectionInfo that service holds connection information for the
database to copy into.

Tables A comma-separated list of the names of the tables in the source database to
be copied. If the native bulk copy program operates on one table at a time, the
DBCopier imports table data in the order in which the tables are specified and
deletes table data in the reverse order.

Directory The name of a scratch directory for SQL and data files used during the copy
operation. This directory must exist before the copy is launched. It is strongly
recommended that no other processes or facilities use this scratch directory,
especially other DBCopier instances.

CleanupDirectory Set this to true to delete the files in the scratch directory after the copy is
performed. Defaults to false.

In addition to the above properties, which are common to all DBCopier classes, each of the DBCopier
subclasses has the following properties you may need to configure.

BcpDBCopier

This DBCopier for MSSQL databases uses the bcp utility for copy data. Generally, you can use this copier
with the default property settings, with one exception. You should set the BcpDBCopier’s
maxTextOrImageSize property to a value no smaller than the largest text or image column in the tables
being copied. See your Microsoft documentation for details.

DB2DBCopier

This DBCopier for DB2 databases uses the DB2 export and import utilities. If you are running the
DB2DBCopier on UNIX or any other operating system that uses “/” as a directory separator, set the
useUnixStyleDir property of the DB2DBCopier component to true. If “\” is the directory separator, set
the useUnixStyleDir to false. The DB2 export utility wants to store binary objects in their own files, so
make sure that the directory property points to a location in which these files can be stored temporarily.
See your DB2 documentation for details.

OracleDBCopier

This class is a DBCopier for Oracle databases. This copier uses the Oracle exp and imp utilities. You can
configure OracleDBCopier to use direct path for exporting. To enable direct path for exporting, set the
useDirectPathForExport property of the OracleDBCopier to true. This property is false by default.

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

7 7

4 - C o n f i g u r i n g D a t a b a s e s a n d D a t a b a s e A c c e s s

μ
See your Oracle documentation for more information on using direct path with the exp utility.

SolidDBCopier

This class is a DBCopier for SOLID databases. You should not need to change any configuration settings
on the SolidDBCopier, other than the SQL environment, connection information, and the database and
table names.

Setting the Native SQL Environment

DBCopier components use vendor-specific bulk copy and SQL utilities for speed, rather than using JDBC.
Therefore, to use a DBCopier, the native SQL environment for the database in question must be set up
before starting your ATG application. This is required by the vendor tools in the database software. To use
a DBCopier component, you must set up the environment in which the JVM runs as specified in the
database vendor documentation. You can add this environment information to your
<ATG10dir>/home/localconfig/environment.sh or environment.bat file. For information about
the settings for your database, see the documentation from your database vendor.

For example, for Oracle you should set your environment up to look something like this:

ORACLE_HOME=/oracle-directory

PATH=$PATH:$ORACLE_HOME/bin

ORACLE_SID=ora8

Switching Databases

In many database-dependent applications, you may want to make changes in an offline database and
then switch over your live application so that the inactive database becomes the live database. ATG’s
switching facility is based on a class named atg.service.jdbc.SwitchingDataSource. You can use a
SwitchingDataSource in place of a regular data source (such as
atg.service.jdbc.MonitoredDataSource). The SwitchingDataSource can be switched between
two or more underlying DataSources. All DataSource method calls are passed through to the
DataSource specified by the currentDataSource property of the SwitchingDataSource. Note that
each DataSource that the SwitchingDataSource points to must be of class
atg.nucleus.JNDIReference, with a JNDIName property that points to an application server data
source. See Configuring Data Sources and Transaction Management for more information.

The switching database is meant to complement the DBCopier components. For example, if you are
using ATG Commerce, you would update an inactive database, switch your live site to that database, then
copy the currently-active database to the inactive database using the database vendor’s native bulk copy
tools.

Note: Unlike DBCopier, ATG’s switching facility is a JDBC mechanism.

To set up and use a database switching service:

1. Configure DataSources that connect to your live and inactive databases.

2. Configure a SwitchingDataSource component, as described in Configuring a
SwitchingDataSource.

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

7 8

4 - C o n f i g u r i n g D a t a b a s e s a n d D a t a b a s e A c c e s s

μ
3. Configure the Repository components that use the DataSources to point to the

SwitchingDataSource. Also set the Repository components’
selectiveCacheInvalication property (see Configure Selective Cache Invalidation
in the ATG Content Administration Programming Guide).

Important: If you have multiple independent ATG clusters that share a single SDSRepository, make sure
each cluster uses a unique set of SwitchingDataSource names. Otherwise, the clusters will interfere
with each other during the switching process.

Configuring a SwitchingDataSource

Set the following properties of the SwitchingDataSource component:

Name Description

initialDataSourceName The short name for the DataSource that should be used for the
currentDataSource on the very first run. On subsequent runs, the
initial currentDataSource is obtained from the state recorded in the
SDSRepository.

dataSources Set to a ServiceMap of DataSources. This property maps short names
of DataSources to their Nucleus component path. The following
example shows how you might set the dataSources property:

dataSources=FirstDataSource=\

/atg/dynamo/service/jdbc/FirstDataSource,\

 SecondDataSource=\

/atg/dynamo/service/jdbc/SecondDataSource

repository Set with a reference to
/atg/dynamo/service/jdbc/SDSRepository.

This refers to the switching data source repository, which keeps track of
which database the switching data source points to at any time.

This sample shows the default format of the switching datasource used by the product catalog in ATG
Commerce:

$class=atg.service.jdbc.SwitchingDataSource

A map from data source names to data sources

dataSources=\

 DataSourceA=/atg/commerce/jdbc/ProductCatalogDataSourceA,\

 DataSourceB=/atg/commerce/jdbc/ProductCatalogDataSourceB

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

7 9

4 - C o n f i g u r i n g D a t a b a s e s a n d D a t a b a s e A c c e s s

μ
The name of the data source that should be used on startup

initialDataSourceName=DataSourceA

repository=/atg/dynamo/service/jdbc/SDSRepository

Database Switching and Query Caching

If you are using a GSA repository and set the cacheSwitchLoadQueries property of the
GSAItemDescriptor to true, the query cache is loaded for a cache switch. If false, the query cache
starts out empty after a cache switch.

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

8 0

4 - C o n f i g u r i n g D a t a b a s e s a n d D a t a b a s e A c c e s s

μ

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

8 1

5 - C o n f i g u r i n g f o r P r o d u c t i o n

μ
5 Configuring for Production

The default configuration settings in your ATG installation are designed for evaluation and development.
When your ATG application moves from development to live deployment, you should change some of
these configuration settings as described in this chapter for better performance.

This chapter covers the following topics:

Enabling liveconfig Settings

Changing the Default Cookie Hash Key

Fine-Tuning JDK Performance with HotSpot

Configuring Repositories

Configuring Targeted E-Mail

Setting Access Levels for Properties Files

Setting Logging Levels

Limiting Initial Services for Quicker Restarts

Disabling Document and Component Indexing

Enabling the ProtocolChange Servlet Bean

Setting up Clustering on JBoss

Setting up Clustering on WebLogic

Setting up Clustering on WebSphere

General Clustering Information

Enabling liveconfig Settings
The settings in the ATG base configuration layer are optimized for application development, but are not
appropriate for a production environment. When you’re ready to deploy your Nucleus-based application
in a production environment, enable the settings in the liveconfig configuration layer. This layer
overrides many of the default configuration settings with values that are more appropriate for a deployed
site. For example, the liveconfig configuration layer improves performance by reducing error checking
and detection of modified properties files.

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

8 2

5 - C o n f i g u r i n g f o r P r o d u c t i o n

μ
To enable liveconfig, you can use the –liveconfig argument for runAssembler (see the Assembling
Applications section of the ATG Programming Guide), or add the following line to the WEB-INF/ATG-
INF/dynamo.env file in the atg_bootstrap.war module of your EAR file:

atg.dynamo.liveconfig=on

JBoss Note: If you are using ATG Portals with JBoss, and you use the –liveconfig flag when you create
your EAR file, you must also have a lock manager configured and running in order to create or edit
communities. See the Locked Caching section of the ATG Repository Guide for information on lock
management.

To disable liveconfig in an application in which it is currently enabled, either reassemble the
application without the –liveconfig flag, or remove or set the liveconfig value to off in WEB-
INF/ATG-INF/dynamo.env file in the atg_bootstrap.war module.

Customizing liveconfig Settings

You can add your own configuration files or directories to the liveconfig configuration layer in your
ATG installation. It is best to put any such custom settings in a separate directory from the
<ATG10dir>/ATG_module/liveconfig directories, in order to keep track of which liveconfig settings
are ATG settings and which are your own custom settings. For instance, if you have a custom application
module named MyModule, you could create a MyModule/liveconfig directory in your module, and
include in that directory any configuration settings that you want to take effect when the liveconfig
configuration layer is enabled.

To add an entry to the liveconfig configuration layer, include it in your module’s manifest in an entry
like this:

ATG-LiveConfig-Path: liveconfig

For more information, see the Working with Application Modules chapter of the ATG Programming Guide.

Disabling Checking for Changed Properties Files

Some disk access and memory allocation overhead can be eliminated by setting the
configurationCheckMilliseconds property of the Nucleus component (with a Nucleus component
path of /) to -1. This property controls whether or how often ATG rereads .properties files or .java
files the next time that an instance of a given component is created (components with global scope are
only created once per JVM, so this does not affect them; see the ATG Programming Guide for information
on component scope). The default is 1000. This feature is useful during development, but we recommend
disabling it once a site goes live for better performance. The value -1 disables the reloading of properties
and .java files altogether.

Note: If you subsequently make changes to .properties files or .java files on your live site (which you
generally should not do), you will need to restart your application server before changes are picked up. If
you change property settings using the ACC, you may need to restart to fully register changes that may
affect interdependent components.

The recommended configuration is enabled in the liveconfig configuration layer.

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

8 3

5 - C o n f i g u r i n g f o r P r o d u c t i o n

μ
Disabling the Performance Monitor

The Performance Monitor (/atg/dynamo/service/PerformanceMonitor) can be used to gather
statistics about the performance of specific operations in ATG components. However, this information
gathering can itself have a negative effect on performance. Therefore, for deployment, disable the
Performance Monitor by setting its mode property to 0:

mode=0

The Performance Monitor is disabled in the liveconfig configuration layer.

For more information about the Performance Monitor, see the Monitoring Site Performance chapter.

Adjusting the pageCheckSeconds Property

ATG’s Page Processor compiles JHTML pages into .java files (JSP compilation is handled by your
application server). The page processor, located at
/atg/dynamo/servlet/pagecompile/PageProcessor, checks for new Java Server Pages that need to
be compiled. You can improve performance by increasing the Page Processor’s pageCheckSeconds
property. The page compile servlet uses this property value to determine whether to check for new Java
Server Pages that need to be recompiled. If a request occurs within this time interval (measured in
seconds) for the same page, ATG will not check the date on the file. This improves performance in serving
pages.

A value of 0 causes ATG to check for new pages on each request. The default value is 1. The liveconfig
value is 60.

Changing the Default Cookie Hash Key
To make user cookies more secure and prevent users from using another user’s profile by changing their
cookie, the ATG platform includes a profile ID check cookie that it uses to validate the user’s cookie. When
you use secure profile cookies, ATG sends two cookies, named DYN_USER_ID and DYN_USER_CONFIRM.
The DYN_USER_CONFIRM cookie is a hash of the user ID cookie. If the hashed DYN_USER_CONFIRM
cookie does not match the user ID cookie, then the cookies are ignored and a new profile is used.

You may want to change the key that ATG uses to hash the cookie from the default value, so that your
sites’ cookies will be hashed with a different key from that used by other sites that run ATG. To change the
secret key that ATG uses to hash the user ID cookie, edit the cookieHashKey property of
atg/userprofiling/CookieManager.

Fine-Tuning JDK Performance with HotSpot
Oracle’s Java HotSpot technology is available in a Client Virtual Machine (VM) and a Server VM. The default
Client implementation can be considerably slower than the Server implementation, so ATG recommends
using the Server JVM.

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

8 4

5 - C o n f i g u r i n g f o r P r o d u c t i o n

μ
Configuring Repositories

On a production site, it is critical that your ATG repositories be configured properly to ensure that data
storage and retrieval are performed accurately and efficiently. Poorly configured repositories can result in
performance bottlenecks and errors. In particular, repository caches must be tuned properly to ensure
that data is retrieved quickly and is up to date. This section discusses repository settings to configure on
your sites.

Setting Cache Modes

The ATG SQL repository offers a choice of cache modes. When you have only a single ATG instance
installed, you can use the simple cache mode with no problems, since there is no chance of two servers
using inconsistent copies of a repository item due to caching. However, when you deploy multiple ATG
instances, you need to choose an appropriate cache mode for each item descriptor used by your
application. See the ATG Repository Guide for more information.

In particular, if your sites are running more than one ATG server, it is highly recommended that you use
locked mode caching for the individualScenario item descriptor. See the ATG Personalization
Programming Guide for more information.

Remember that if you use locked mode caching, you must also enable lock manager components. See
Enabling the Repository Cache Lock Managers in this chapter.

Prepopulating Caches on Startup

ATG performance typically improves after an application has been running a while, because more
requests can be satisfied from caches. Under some circumstances, it may make sense to prepopulate your
caches, so that you get the benefit of the caches immediately. Note, however, that this benefit may come
at the cost of slower startup times.

You can prepopulate caches in a SQL Repository by using <query-items> tags in a repository definition
file. For more information, see the ATG Repository Guide.

Enabling the Repository Cache Lock Managers

If you are using a SQL Repository with locked mode caching, you must enable the ClientLockManager
(/atg/dynamo/service/ClientLockManager) on each ATG server and enable the
ServerLockManager (/atg/dynamo/service/ServerLockManager) on one or more ATG servers. You
may want to dedicate an ATG server only to lock management. Note that elements of the ATG Adaptive
Scenario Engine are configured in the liveconfig layer to use locked mode caching by default.

Add the ServerLockManager component to the initialServices property of the
/atg/dynamo/Initial component, and make sure that the ClientLockManager points to the correct
host. The ClientLockManager should be configured like this:

lockServerAddress The hostname of the machine running the ServerLockManager

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

8 5

5 - C o n f i g u r i n g f o r P r o d u c t i o n

μ
lockServerPort The port configured in the ServerLockManager component (9010 by default)

useLockServer True

The ClientLockManager is enabled by the liveconfig configuration layer. For more information about
cache lock managers, see the ATG Repository Guide.

Configuring Repository Database Verification for Quicker Restarts

By default, each SQL Repository component verifies each of the tables in its database on startup with a
simple SQL query. These verification queries can slow the ATG startup routine. There are several
approaches you can take to modify the SQL Repository startup procedures that can result in dramatically
faster start times. In particular, you may wish to set the updateSchemaInfoCache property to true in
your atg.adapter.gsa.GSARepository components, such as
/atg/dynamo/service/jdbc/ProfileAdapterRepository. For details, see the SQL Types and
Repository Data Types section in the SQL Repository Item Properties chapter of the ATG Repository Guide.

Configuring a Content Distributor System

ATG includes a content distributor system that allows you to cache content from repositories to an HTTP
server. Using this system can significantly speed up request handling on a site. By default, only ATG
Commerce uses this system, but it can be used by any ATG application.

The content distributor system is described in the ATG Programming Guide. If you are using an HTTP server
such as Apache, no additional configuration of the content distributor system is required. If you are using
your application server as your HTTP server, however, you need to configure the system to prepend the
context path of the atg_bootstrap.war application (by default, /dyn) to the URL of any file it sends to
the server.

The class atg.distributor.DistributorSender has a property named documentRootContextPath
that you can set to specify the string to prepend. For example, for the distributor system used by ATG
Commerce, set this property in the component /atg/commerce/catalog/ContentDistributor,
either through the ACC or by adding the following line to the properties file of that component:

documentRootContextPath^=/atg/dynamo/Configuration.defaultDynamoPrefix

Configuring Targeted E-Mail
When running on your application server, ATG’s targeted e-mail system makes loopback requests back to
the server to render the e-mail template for each e-mail recipient. ATG makes one loopback request to
create an HTTP session, and uses that session’s ID when making subsequent loopback requests to render
the template.

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

8 6

5 - C o n f i g u r i n g f o r P r o d u c t i o n

μ
Nucleus Components

The components /atg/userprofiling/email/TemplateEmailSender and
/atg/scenario/IndividualEmailSender (both of class
atg.userprofiling.TemplateEmailSender) have several properties used for configuring loopback
requests. The following table lists these properties and their defaults when running ATG on your
application server:

Property and Default Purpose

siteHttpServerName^=/atg/dynamo/

Configuration.siteHttpServerName

Server name for loopback requests.

siteHttpServerPort^=/atg/dynamo/

Configuration.siteHttpServerPort

Port number for loopback requests.

applicationPrefix^=/atg/dynamo/

Configuration.dynamoEarContextRoot

The context path of the application.

initSessionURL=/init-session The URL pattern used by InitSessionServlet
(see below).

sessionManager=/atg/dynamo/servlet/

sessiontracking/GenericSessionManager

Used to find the session from the session ID.

loopbackRequestsEnabled=true Determines whether loopback requests are
performed. Can be set to false if you are using
this TemplateEmailSender only with DSP
templates (see below).

contextPathPrefix^=/atg/dynamo/

Configuration.defaultDynamoPrefix

String to prepend to template URLs. Default is
/dyn/dyn/.

If you are using JHTML templates exclusively, you can disable loopback requests by setting the
loopbackRequestsEnable property to false. In addition, you should set the contextPathPrefix
property to null, and set the setupLoopbackTemplateEmailRequests property of the
/atg/dynamo/servlet/pipeline/DynamoServlet component to false.

Configuring Web Applications

To enable targeted e-mail in an application, the application must run an instance of
atg.nucleus.servlet.InitSessionServlet. For example, the web.xml file for the
atg_bootstrap.war application includes the following lines:

<servlet>

 <servlet-name>InitSessionServlet</servlet-name>

 <servlet-class>atg.nucleus.servlet.InitSessionServlet</servlet-class>

</servlet>

<servlet-mapping>

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

8 7

5 - C o n f i g u r i n g f o r P r o d u c t i o n

μ
 <servlet-name>InitSessionServlet</servlet-name>

 <url-pattern>/init-session</url-pattern>

</servlet-mapping>

This servlet handles the requests to /dyn/init-session, and, as its name implies, initializes a session.

Setting Access Levels for Properties Files
ATG components are configured with plain text properties files. You should set access levels on your
properties files so they can’t be altered or viewed by unauthorized users. Only site administrators should
have read and write permission. ATG must be invoked from an account with these permissions as well.
The properties files that contain sensitive information typically reside in each server’s localconfig
directory. The most important properties files to protect include:

Component Description

/atg/dynamo/Configuration.properties Basic configuration for ATG

/atg/dynamo/security/BasicSSLConfiguration.properties Default configuration for any
service that uses SSL

/atg/dynamo/service/jdbc/FakeXADataSource.properties Distributed transaction
DataSource

/atg/dynamo/service/jdbc/JTDataSource.properties

Note: Multiple versions of this component may exist in your
installation; all of them may contain information that should be
protected.

JTA participating and pooling
DataSource

/atg/dynamo/service/POP3Service.properties Checks the POP server for
bounced e-mail

The most important ATG Commerce properties files to protect include:

Component Description

atg/commerce/jdbc/ProductCatalogFakeXADataSourceA.properties A distributed
transaction DataSource

atg/commerce/jdbc/ProductCatalogFakeXADataSourceB.properties A distributed
transaction DataSource

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

8 8

5 - C o n f i g u r i n g f o r P r o d u c t i o n

μ
These ATG Commerce properties files are located in a .jar file at
<ATG10dir>/DCS/config/config.jar. For more information on
ProductCatalogFakeXADataSourceA.properties and
ProductCatalogFAkeXADataSourceB.properties, refer to the ATG Commerce Programming Guide.

Setting Logging Levels
By default, ATG sends all log events to two log listener components:
/atg/dynamo/service/logging/LogQueue (which directs output to log files) and
/atg/dynamo/service/logging/ScreenLog (which directs output to the console screen). Logging to
the screen can cause performance problems on a production site. You can disable logging to the screen
by setting the loggingEnabled property of the ScreenLog component to false.

If you want to disable logging entirely, or specify different logging levels, you can do that in the
GLOBAL.properties file. For example:

loggingError=true

loggingWarning=true

loggingInfo=true

loggingDebug=false

The loggingDebug log generates large numbers of messages, which can impair performance, so
loggingDebug should be set to false on a live site. You still have the option of overriding the global
settings for a specific component. For example, if loggingDebug is set to false in the
GLOBAL.properties file, you can still enable it for an individual component by setting that component’s
loggingDebug property to true.

See the Logging and Data Collection chapter of the ATG Programming Guide for more information.

Limiting Initial Services for Quicker Restarts
When you restart an ATG application, it starts up the services specified by the initialServices
property of the /atg/dynamo/Initial component. You may add services to this list while you are
developing your application. These services may in turn start up other components. Starting up a service
at the same time as ATG ensures that the service is created and ready when it is first called upon.
However, if too many services are configured to start up at the same time, then the ATG startup routine
can become time-consuming and server restarts may be slow, which might make it more difficult to
recover and restart if a server runs into problems. If server startups seem to be taking too long, consider
whether some services can be started up on some other schedule than immediately on ATG startup. See
ATG Programming Guide for more information about the Scheduler service.

If you set the loggingInfo property of the Nucleus component (with a Nucleus path of /) to true, and
then start up ATG, the resulting info messages display an indented list of when each service starts up.
From this list, you can determine which component causes which other components to be started.

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

8 9

5 - C o n f i g u r i n g f o r P r o d u c t i o n

μ
Disabling Document and Component Indexing

The ACC creates and maintains indexes of documents and components. For sites with large numbers of
documents or components, indexing can take time and CPU resources. Once your sites are deployed and
relatively stable, you may want to limit or eliminate the indexing of documents or components.

The document and component indexes are maintained incrementally once built, and are rebuilt
completely once a day at 1 a.m. by default. An index is rebuilt at startup only if it does not exist at all.

You can selectively exclude portions of the document tree from indexing by adding absolute pathname
prefixes to the excludeDirectories property of the /atg/devtools/DocumentIndex component.
The same is true for component indexing, but the component is /atg/devtools/ComponentIndex
instead. To improve performance on a live site, you can turn off all document and component indexing by
setting the enabled property of the DocumentIndex and ComponentIndex components to false.

Enabling the ProtocolChange Servlet Bean
ATG includes a servlet bean named /atg/dynamo/droplet/ProtocolChange. The ProtocolChange
servlet bean lets pages switch between secure and nonsecure HTTP servers. The ProtocolChange servlet
bean takes a URL as input and renders a URL that uses either the HTTP protocol or the HTTPS protocol,
depending on the output parameter specified. The default configuration is:

secureHost^=/atg/dynamo/Configuration.siteHttpServerName

nonSecureHost^=/atg/dynamo/Configuration.siteHttpServerName

securePort=443

nonSecurePort^=/atg/dynamo/Configuration.siteHttpServerPort

secureProtocol=https

nonSecureProtocol=http

enable=false

When the enable property is false, the servlet bean renders the URL without changing the protocol. To
enable this servlet bean to change the protocol, set the enable property to true. Also, ensure that the
secureHost and securePort properties are set to values appropriate for your sites.

Setting up Clustering on JBoss
A cluster is a set of JBoss servers working together, serving pages at the same port. From the user’s point
of view, all of the servers function as a single server; it doesn’t matter which server handles a given
request. JBoss documentation refers to a cluster as a partition.

Virtually all production sites use clustering. Clustering provides much better performance and reliability
than running on a single server. For example, if one server in a cluster goes down, the user will not be
aware of it, because the other servers in the cluster can take over the sessions it was handling.

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

9 0

5 - C o n f i g u r i n g f o r P r o d u c t i o n

μ
Setting up clustering of JBoss servers running ATG applications involves the steps described in the
following sections.

Configuring the HttpPort Property

When running ATG server instances in a JBoss cluster, you must configure the httpPort property in the
/atg/dynamo/Configuration.properties component to match the port set in the siteHttpPort
property. If this is not done, the ATG email sender will fail. For example:

siteHttpPort=8080

httpPort=8080

Creating ATG Servers

The first step is to create your ATG servers, using the Configuration Manager or the makeDynamoServer
script (see Creating Additional ATG Server Instances in the Configuring Nucleus Components chapter).

A typical production environment includes: a server lock manager, process editor server, workflow
process manager, etc., for services that require a dedicated server, plus several servers that handle page
requests. The servers you need to create depend on which ATG applications you are using, and on your
unique site requirements.

Assembling for a JBoss Cluster

When you assemble your application, the application assembler includes all of the ATG servers you have
configured (see “Assembling Applications” in the ATG Programming Guide for information on application
assembly). This means that you can build your application once for each JBoss partition, deploy it on each
partition, and enable the appropriate ATG server on each instance simply by changing the value of the
atg.dynamo.server.name system property when you start up JBoss:

bin\run or bin/run.sh -c server_name -Datg.dynamo.server.name=

ATG_server

To assemble and configure your ATG application to run on a JBoss partition, when you invoke the
application assembler, use the -liveconfig, -standalone, -distributable, and -pack flags in
runAssembler as in the example:

bin/runAssembler –liveconfig –standalone –distributable –pack

output_file_name.ear –m module-list DafEar.Admin

The –pack flag is optional. The –distributable flag is required to enable JBoss session failover. Do not
use the –server flag to specify an ATG server configuration. If you are using a named configuration layer,
specify that as well (see “Managing Properties Files” in the ATG Programming Guide for information on
named configuration layers).

Creating and Configuring JBoss Servers

Create and configure your JBoss servers; see the JBoss documentation for configuration information.

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

9 1

5 - C o n f i g u r i n g f o r P r o d u c t i o n

μ
1. Use the <JBdir>/server/all server as a template for creating JBoss instances, since

it is set up for clustering.

2. Make configuration changes, such as removing unneeded JBoss services (see JBoss
Application Framework Trimming in this guide).

3. Copy the /all server for each corresponding ATG server.

Deploying Your Application

See the JBoss documentation for information about deploying to JBoss clusters.

Setting Up Clustering on WebLogic
A cluster is a set of WebLogic servers working together, serving pages at the same port. From the user’s
point of view, all of the servers function as a single server; it doesn’t matter which server handles a given
request.

Virtually all production sites use clustering. Clustering provides much better performance and reliability
than running on a single server. For example, if one server in a cluster goes down, the user will not be
aware of it, because the other servers in the cluster can take over the sessions it was handling.

Setting up clustering of WebLogic servers running ATG applications involves the following steps:

1. Create a group of WebLogic servers for serving pages, and assign them to a cluster.

2. Create additional WebLogic servers for the ATG lock manager, process editor server,
workflow process manager and any other services that require a dedicated server.
Assign these servers to a different cluster from the page servers.

3. For each WebLogic server, create a corresponding ATG server configuration.

4. Assemble your ATG application, and deploy it on each WebLogic server in both
clusters. Configure the application on each WebLogic server to use the ATG server
configuration that corresponds to that server.

See the Oracle WebLogic documentation for information about creating WebLogic servers and clusters.
For information about creating ATG server configurations, see Creating Additional ATG Server Instances in
the Configuring Nucleus Components chapter.

Assembling for a WebLogic Cluster

When you assemble your application, the application assembler includes all of the ATG servers you have
configured. This means that you can build your application once, deploy it on each WebLogic server, and
enable the appropriate ATG server on each instance simply by changing the value of the
atg.dynamo.server.name system property when you start up WebLogic.

Follow these steps to assemble and configure your ATG application to run on a WebLogic cluster:

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

9 2

5 - C o n f i g u r i n g f o r P r o d u c t i o n

μ
1. When you invoke the application assembler, use the –standalone flag to assemble

the application in standalone mode, so it is not dependent on your ATG installation.

Note: You cannot use –pack and –standalone in combination on WebLogic.

In addition, use the –liveconfig flag to enable the liveconfig configuration layer.
Do not use the –server flag to specify an ATG server configuration.

If you are using a named configuration layer, specify that as well (see “Managing
Properties Files” in the ATG Programming Guide for information on named
configuration layers).

2. Deploy the application on each WebLogic server.

3. On each WebLogic server, enable the corresponding ATG server configuration by
creating the atg.dynamo.server.name property for the JVM the server is running on
and setting the property to the name of the ATG server. For example:

startManagedWebLogic.bat myWebLogicServer -

Datg.dynamo.server.name=myserver

Clustering Example

Suppose you want to set up a site consisting of an Administration Server, three servers that serve pages,
one server that runs the ATG lock manager, and one server that runs the process editor server. Here’s an
example of how you might do this:

1. Start up WebLogic Server using the startWebLogic script. This starts up the
WebLogic Administration Server (default name myserver, default port 7001).

2. In the WebLogic Console, create a server named pageServer. Assign it port number
7700. Assign an IP address used by no other server in the domain.

3. Create a cluster named pageCluster. Put pageServer1, pageServer2, and
pageServer3 into this cluster.

4. Create servers named procedit and lockmgr. Assign each server the port number
7800. Assign each server a unique IP address.

5. Create a cluster named serviceCluster. Put procedit and lockmgr into this
cluster.

6. Assign the two clusters different multicast addresses.

7. Using either the Dynamo Administration UI or the makeDynamoServer script, create
ATG servers named pageServer1, pageServer2, pageServer3, procedit, and
lockmgr. (You do not need to give the ATG servers the same names as the WebLogic
servers, but it is a good idea do so.)

8. Configure the ATG lockmgr server to run the ATG ServerLockManager. (See
Enabling the Repository Cache Lock Managers for more information.)

9. Configure the ATG Scenario Manager to run the process editor server on the ATG
procedit server. (See the ATG Personalization Programming Guide for more
information.)

10. Set up ATG session backup, as discussed in Enabling Component Backup.

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

9 3

5 - C o n f i g u r i n g f o r P r o d u c t i o n

μ
11. Assemble your application, deploy it on each server in both clusters, and configure

each instance to use the ATG server corresponding to the WebLogic server the
instance is running on. (This process is discussed in Assembling for a WebLogic
Cluster.)

12. Undeploy any applications that are deployed on the Administration Server.

13. Configure your HTTP server to serve pages from each server in pageCluster (but not
any of the other servers).

14. Shut down the Administration Server and then restart it. This will ensure that all of the
changes you made will take effect.

15. Start up the managed servers you created, using the startManagedWebLogic script.
The syntax of this script is:

startManagedWebLogic WebLogicServer adminURL-

Datg.dynamo.server.name=myserver

where WebLogicServer is the name of the WebLogic server, and adminURL is the URL
of the WebLogic Administration Server. Let’s assume that the hostname for the
Administration Server is myMachine. To start up the WebLogic pageServer1, the
command would be:

startManagedWebLogic pageServer1 http://myMachine/7001

Setting up Clustering on WebSphere
A cluster is a set of WebSphere servers working together, serving pages at the same port. From the user’s
point of view, all of the servers function as a single server; it doesn’t matter which server handles a given
request.

Virtually all production sites use clustering. Clustering provides much better performance and reliability
than running on a single server. For example, if one server in a cluster goes down, the user will not be
aware of it, because the other servers in the cluster can take over the sessions it was handling.

Installing and Configuring WebSphere

The first step in setting up a clustered deployment is to install and configure the WebSphere cluster. See
the IBM WebSphere documentation for information.

1. Install WebSphere Network Deployment.

2. Run the Profile Creation Wizard to create a Deployment Manager profile. While you are
installing, take note of the following information for use during your ATG installation:

 Deployment manager profile name

 Deployment manager cell name

 Administration console port

 SOAP port

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

9 4

5 - C o n f i g u r i n g f o r P r o d u c t i o n

μ
Creating a Cluster

Use the WebSphere Administration Console to create your clusters. The recommended topology for
running ATG products on a WebSphere cluster has the following characteristics:

 Includes one Deployment Manager profile and at least one custom profile

 Separates page serving instances and non-page-serving instances into different
clusters

 Includes the web servers in the Deployment Manager cell for management

Creating Data Sources

Create your data sources in the WebSphere Administration console; see the documentation for
WebSphere and your database solution for information.

Note: The JNDI lookup for your data source must be consistent with the JNDI name configured in your
Nucleus-based application. Make sure you set the data source’s scope correctly.

Installing and Configuring Your Web Server

Install your web server and configure it for use with WebSphere; see your web server documentation for
information.

Take note of the path used for installing web server configuration files. It is extremely important to copy
and run the web server configuration files to your WebSphere servers, so that your application can be
targeted to the appropriate web servers and clusters (refer to your WebSphere documentation for more
information).

Installing ATG for a WebSphere Cluster

Follow these steps to install the ATG platform to run in a clustered environment:

1. Run the ATG10.0.1.exe (Windows) or ATG10.0.1.bin (UNIX) file to start the setup
program.

2. After you accept the terms of the license agreement, select the installation folder for
the ATG software (C:\ATG\ATG10.0.1 or /home/ATG/ATG10.0.1, for example).

3. Select the ATG products you want to install.

4. Select IBM WebSphere – Cluster as your application server.

5. Enter the WebSphere home directory (C:\WebSphere\AppServer, for example).

6. Select the Deployment Manager profile and cell.

7. Deploy and install your application (see the WebSphere documentation for
information).

Assembling for a WebSphere Cluster

When you invoke the application assembler, use the following flags:

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

9 5

5 - C o n f i g u r i n g f o r P r o d u c t i o n

μ
–standalone, to assemble the application in standalone mode, so it is not dependent
on your ATG installation

–liveconfig, to enable the liveconfig configuration layer

-pack, because the WebSphere application installation wizard does not recognize an
exploded EAR file (see Note)

If you are using a named configuration layer, specify that as well (see “Managing Properties Files” in the
ATG Programming Guide for information on named configuration layers).

Note: It is possible to deploy an exploded EAR through the WAS admin. To do so, in the WAS Deployment
Wizard, click the radio button for Server path instead of Local path, then type in the full path of the EAR
directory and submit the form. Note that in order for the WAS deployment wizard to recognize the Server
path you provide, the directory must exist on a file system accessible to the server that is serving the WAS
admin pages.

Do not use the –server flag to specify an ATG server configuration.

See the Assembling Applications section of the Developing and Assembling Nucleus-Based Applications
chapter in the ATG Programming Guide for more information on assembly.

Session Management in a WebSphere Cluster

When a session is persisted in a database, WebSphere does not correctly invoke the valueUnbound()
method when that session expires, resulting in memory leaks when running ATG applications. The
/atg/dynamo/servlet/sessiontracking/SessionInvalidationService component handles this
problem by checking the current set of child sessions known to ATG and comparing the last accessed
time to the session’s configured timeout, as specified by the application server. If the child session has
timed out, it is removed from the list of sessions. When all children of a parent session have been
removed, all session-scoped components for that session are cleaned up. The
SessionInvalidationService runs on a configurable schedule, with a default of every 5 minutes.

Note that this component does not invalidate the session or interfere in any way with the application
server’s own cleanup work; it touches only ATG-created items. For even more safety, you can set the
additionalTimeoutMinutes property, in which case the service waits the specified additional number
of minutes above the application server’s configured session timeout before performing the cleanup.

If debugging is turned on, the SessionInvalidationService component indicates when it performs a
check, and the last accessed time for each child session. The component is defined in the
DafEar.WebSphere module, which is run automatically on WebSphere.

Configuring Your WebSphere Servers

When you assemble your application, the application assembler includes all of the ATG servers you have
configured. This means that you can build your application once, deploy it on each WebSphere
application server, and enable the appropriate ATG server on each WebSphere instance simply by
changing the value of the atg.dynamo.server.name system property when you start up WebSphere.

Do the following for each server.

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

9 6

5 - C o n f i g u r i n g f o r P r o d u c t i o n

μ
1. In the WebSphere Administration console, go to Server > Application Servers.

2. Click the link for the server you want to configure.

3. On the right hand side, go to Server Infrastructure > Java and process
management > Process Definition > Additional Properties > Java Virtual
Machine.

4. Enter an initial and maximum heap size; the recommended value is at least 512/512.

5. Return to the Java Virtual Machine page.

6. Go to Custom Properties > New.

7. Create a new system property named atg.dynamo.server.name. The value should
be the ATG server instance you want to associate with this WebSphere server.

8. If applicable, return to the Java Virtual Machine page to enable server mode. In the
Generic JVM Arguments field, enter –server.

9. Save all changes to the master repository; make sure sync node is enabled.

Deploying Your Application

Use the WebSphere Administration console to deploy your EAR file to a cluster. Each Nucleus-based
application needs to be installed as follows:

 If you are deploying your web application to a page-serving cluster, that application
should also be deployed to a web server instance.

 If you are deploying the application to a cluster that does not serve pages, but that will
run the application, do not deploy the application to a web server instance.

 The web server should only route application requests to instances on the web serving
instances node, but non-web serving instances will also run the application.

To deploy an application:

1. Using the Administrative Console for the Deployment Manager, install the application.

If your web application includes a resource reference for your data source, in the
WebSphere application installation wizard make sure the reference binding and JNDI
name match and are consistent with the name configured in the JTDatasource
component (excluding the java:/comp/env prefix).

2. Regenerate the web server plug-in. In the WebSphere Administration Console, go to
Servers > Web servers. Select the entry corresponding to your web server.

On IHS with remote web server management enabled, click Propagate Plug-In. The
plug-in is propagated automatically.

For all other web servers, click Update Plug-In, locate the plug-in on the deployment
manager’s file system and transfer it to the web server host; overwrite the existing
plug-in.

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

9 7

5 - C o n f i g u r i n g f o r P r o d u c t i o n

μ
General Clustering Information

The information in this section applies to all application servers.

Specifying the drpPort Setting

For each ATG server you create, you must edit the Configuration.properties file in the
<ATG10dir>/home/servers/servername/localconfig/atg/dynamo directory. Set the adminPort
property to the listen port of the corresponding application server, and give the drpPort property a
unique value. For example, for the ATG procedit server, you might use these settings:

adminPort=7800

drpPort=8851

Note that DRP ports are not enabled when you run ATG applications, but the port numbers are still
needed to identify scenario server instances. Therefore, you must specify a unique value for the drpPort
property for the server.

Setting up localconfig and Server Configuration Files

Set up your localconfig and server configuration files under <ATG10dir>/home/servers and
<ATG10dir>/home/localconfig to configure the default and server specific behaviors of your Nucleus-
based application. These files are included in your EAR when it is generated.

1. Using either the Dynamo Administration UI or the makeDynamoServer script, create
one ATG server configuration for each application server.

2. Configure the ATG lock manager server to run the ATG ServerLockManager. (See
Enabling the Repository Cache Lock Managers earlier in this chapter for more
information.)

3. Configure the ATG Scenario Manager to run the workflow and process editor servers.
There should be exactly one instance of your ATG application running each of these
components, and all other instances should be aware of them. (See the ATG
Personalization Programming Guide for more information.)

Note: The JNDI lookup for your data source must be prefixed with java:comp/env/. For example, if your
data source has a JNDI name ATGDB, the JNDIName property of the JTDataSource should be
java:/comp/env/ATGDB. Set your transaction manager to use your application server’s implementation.
See the Creating Data Sources section for additional JNDI naming constraints.

Unique Components

The ATG product suite contains several components that must be unique within an ATG server cluster. If
you enable and start up more than one instance of these components, errors can result. These unique
components are:

 Fulfillment module used by ATG Commerce

 Process editor server used by the Scenario Manager

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

9 8

5 - C o n f i g u r i n g f o r P r o d u c t i o n

μ
 Workflow process manager

Fulfillment Module

Only one instance of the ATG Commerce Fulfillment module should run on the system. Only one ATG
server instance should be started with the command startDynamoOnJBOSS -m Fulfillment. To learn
more about the Fulfillment module, see the ATG Commerce Programming Guide.

Process Editor Server

A cluster of ATG servers should only contain one process editor server. Make sure you have one process
editor server configured and that all other ATG instances are aware of it. See the ATG Personalization
Programming Guide information about setting up scenario servers.

Because running the global scenario server places an additional burden on your ATG server, this instance
should not serve any pages.

Workflow Process Manager

A cluster of ATG servers should always contain exactly one workflow process manager. Make sure only
one workflow process manager is configured and that all other ATG instances are aware of it. See the ATG
Personalization Programming Guide information about setting up a workflow process manager.

Enabling Component Backup

The ATG platform implements a session backup facility that allows you to specify a set of session-scoped
or window-scoped Nucleus components and properties that should be backed up after every request.
This session backup mechanism saves these components and properties, and restores them when the
application server migrates a session to another server.

ATG’s component backup works with your application server’s persistence facility. To use backup, you
must be running your application server in a cluster, and you must enable its in-memory replication form
of session persistence for each ATG application (see your application server documentation for
information). Note that when you enable in-memory replication for an application, that application must
not be deployed on any application server that is not part of a cluster.

To enable ATG’s backup, set the backingUpSessions property to true in the
/atg/dynamo/Configuration.properties file in the localconfig layer.

backingUpSessions=true

By default, the user’s profile and shopping cart (if one exists) are backed up. To back up additional
session-scoped components, set the sessionBackupServerPropertyList property in the
/atg/dynamo/Configuration.properties file to a comma-separated list of Nucleus component
properties.

Keep in mind when backing up additional information that the more you back up, the more data the app
server must save, which could affect performance.

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

9 9

5 - C o n f i g u r i n g f o r P r o d u c t i o n

μ
Each component or property specified in sessionBackupServerPropertyList must implement
java.io.Serializable (or Externalizable). If a component is listed without any properties, the
entire component is backed up.

Synchronizing Server Clocks

Make sure that all server clocks in a cluster are synchronized. Unsynchronized clocks within the cluster can
lead to unexpected results.

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 0 0

5 - C o n f i g u r i n g f o r P r o d u c t i o n

μ

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 0 1

6 - P e r f o r m a n c e D i a g n o s t i c s

μ
6 Performance Diagnostics

This chapter includes a checklist that can help you identify performance problems in a systematic way. It
also describes tools you can use to look for problem areas and discusses how to analyze the results you
get from these tools. This chapter includes the following sections:

Performance Troubleshooting Checklist

Performance Testing Strategies

Locating Performance Bottlenecks

Server Hangs

Paging and Memory Allocation

Detecting File Descriptor Leaks

Using URLHammer

Performance Troubleshooting Checklist
As your application nears its launch date, you should test the sites as extensively as possible, using tests
that simulate the expected site load as realistically as possible.

If you run into performance problems, you can best identify and correct the source of the problem by
taking a systematic approach. The following checklist can help you identify the most common sources of
performance problems:

 Have you properly configured memory for your Java Virtual Machines? Have you set
your -Xms and -Xmx arguments the same? Do all ATG heap sizes fall within the limits
of physical memory?

 Has one or more servers stopped responding? There could be a number of causes,
including a Java deadlock. See Server Hangs.

 Are you seeing many IOExceptions with the message “Too many open files”? You may
have a file descriptor leak. See Detecting File Descriptor Leaks.

 At maximum throughput, look at the CPU utilization, database CPU utilization, I/O
activity, and paging activity. See Monitoring System Utilization.

 If CPU utilization is low, then you may have an I/O or database bottleneck. See
Checking for Disk I/O Bottlenecks, Checking for Network-Limited Problems, and
Repository and Database Performance.

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 0 2

6 - P e r f o r m a n c e D i a g n o s t i c s

μ
 If CPU utilization is high, then the bottleneck is most likely in the application code. Use

a performance profiling tool to try to locate bottlenecks in the code. Review your code
to make sure it uses good Java programming practices.

 If paging is occurring, adjust the memory allocated to your Java Virtual Machines. See
the Swap Space topic in the Paging and Memory Allocation section.

 Look at the I/O and CPU utilization of the database. If utilization is high, database
activity is probably slowing down the application. See the Repository and Database
Performance chapter.

 Are you receiving page compilation errors? You may not have enough swap space for
page compilation.

If your sites develop performance problems, you need to test several paths through your sites to
determine the source or sources of the problems. To generate meaningful test results, you need to test
sites with loads that achieve maximum throughput.

Performance Testing Strategies
Since your server may be handling requests for different URLs at the same time, there is no way to get
throughput statistics on a page-by-page basis. Instead, you may want to run tests with different
sequences of URLs to determine how much throughput varies based on what the user is doing on your
sites. Some bottlenecks may occur only in certain page sequences. Your ATG installation includes a test
utility named URLHammer that you can use to create and run test scripts. See Using URLHammer.

Graduated Testing of Throughput

When you test the performance of your sites, you will get the clearest results if you start with very simple
tests. Once you know that individual pages or sequences are performing adequately, you can work
toward tests that exercise the full range of functionality on your sites. For example, you might structure
your throughput tests as follows:

 a minimal, “hello world” page (tests pipeline/request logging)

 home page (tests a single real page)

 login process

 the 10 most frequently requested pages

 every page

Realistic Testing Strategies

When you load test your sites, be sure to use realistic tests.

 Don’t rely on throughput data from a test script in which 100 separate clients make an
identical request at the same moment.

 You will want to test cases where request threads do and do not accept cookies.
However, be aware that if you run a performance test in which every request does not

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 0 3

6 - P e r f o r m a n c e D i a g n o s t i c s

μ
accept cookies, your results will reflect a high performance cost from the need to
create a session object for each request. You can easily exhaust memory by creating
too many sessions.

Locating Performance Bottlenecks
Once you have brought your ATG system up to maximum throughput, you can look at the components of
the system to determine which components are limiting factors in performance.

Monitoring System Utilization

Use a program like top (on Solaris), the Windows Performance Monitor, or a more sophisticated tool to
keep track of information like:

 CPU utilization

 paging activity

 disk I/O utilization

 network I/O utilization

A well-performing site will have high CPU utilization when the site is achieving its maximum throughput
and will not be doing any paging. A site with high I/O activity and low CPU utilization has some I/O
bottleneck.

Bottlenecks at Low CPU Utilization

If your sites have low CPU utilization when achieving maximum throughput, the bottleneck is likely either:

 database limited (if database output is maxed out); see Checking for Database
Bottlenecks

 disk I/O limited (if I/O output is maxed out); see Checking for Disk I/O Bottlenecks

 network I/O limited (if I/O output is maxed out); see Checking for Network-Limited
Problems

 database or I/O activity in a synchronized method (if database or I/O output is not
maxed out); see System Resource Bottlenecks

If your site is in this situation, CPU profiling tools are not that useful. Thread dumps taken while the
system is under load can give you better information. If you take a few of these, you can get a quick idea
of which parts of your application are the slowest. That may help you direct your efforts to the right part
of your application. You should be able to tell, for example, whether threads are waiting for a response
from the database, a write to the client, or a read from a local file system. If many threads are waiting for
the same resource, this is an indication of a potential bottleneck on that resource. Here is some
information on what to do about resource bottlenecks for various resources:

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 0 4

6 - P e r f o r m a n c e D i a g n o s t i c s

μ
Checking for Database Bottlenecks

If your site has low CPU utilization at maximum throughput, check whether the database is limiting
performance.

 Get a JVM thread dump and examine it to see if there are many threads waiting for a
response from the database.

 Check the CPU utilization and disk I/O utilization of your database server.

 Check the network bandwidth between the ATG server and the database server.

For more information about improving database performance with ATG, see the Repository and Database
Performance chapter.

Checking for Disk I/O Bottlenecks

Make sure that your JVM really is waiting for file I/O, not paging activity. Check for paging with your
operating system’s monitoring tools.

If the source of slow performance is file I/O, it will show up in JVM thread dumps. The cause could be
either some application-specific code that you have, or else the file I/O that ATG does itself.

Checking for Network-Limited Problems

One way to identify network-limited performance problems is by getting your JVM to dump out stack
traces while your system is under load. You can tell if your system is network limited because your thread
dump will show lots of threads waiting in socket reads or writes.

Some ways to address network-limited problems include:

 Reduce the size of your HTML files by limiting comments and white space or
redesigning the content of especially large pages.

 Increase the number of request handling threads. This won’t improve the latency
experienced by a user who requests a large file, but it will improve total throughput.

 Get a faster network connection.

 Locate and correct network bottlenecks.

Bottlenecks at High CPU Utilization

If your site CPU utilization is close to 100%, you can use a Java profiler tool like JProfiler or JProbe Profiler
to help determine slow points of your code.

In some instances, profilers cannot handle large sites running under load. If so, another way to identify
deadlocks and bottlenecks is to get your JVM to dump out stack traces while your system is under load. If
you examine 5 or 10 of these stack traces, you can start to see a pattern and find places in your site that
are consuming CPU resources or causing deadlocks.

An alternative to stack dumps is the HPROF utility provided with the JDK. See Oracle’s Java
documentation for information on this utility.

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 0 5

6 - P e r f o r m a n c e D i a g n o s t i c s

μ
Thread Context Switching Problems

Check how many simultaneous requests are typically being handled when you have a large number of
clients trying to access your application. Thread dumps can be useful to see where these threads are
waiting. If there are too many threads waiting, your site’s performance may be impaired by thread context
switching. You might see throughput decrease as load increases if your server were spending too much
time context-switching between requests. Check the percentage of System CPU time consumed by your
JVM. If this is more than 10% to 20%, this is potentially a problem. Thread context switching also depends
in part on how your JVM schedules threads with different priorities.

You can also reduce overhead from thread context switching by making sure you have at least one CPU
for each process involved in handling the majority of requests: one CPU for your HTTP server, one for ATG,
one for the database server.

You might see throughput go down as load increases in cases where all of your request handler threads
were busy waiting for some resource at the same time. For example, you might have one page on your
site that makes a very long-running database query. If you increase the number of clients well beyond 40,
you might see all 40 threads waiting for the response to this query. At this point, your throughput will go
down because your CPU is idle. You should either speed up the slow requests (perhaps by adding caching
of these queries) or increase the number of request threads to increase the parallelism. Of course, at some
point, the database may become the bottleneck of your site (which is likely before you have 40
simultaneous queries running).

Context switching can also occur when you have a network protocol which synchronizes too often (such
as sending a request and waiting for a response).

Typically, these context switches can be overcome by increasing the parallelism in your site. If there are
just too many of these synchronization points, though, this won’t work. For example, if you have 40
synchronous RPC calls for each HTTP request, you’d need to context switch processes 80 times for each
request if you handled one request at a time. If you handled 2 requests at a time, you’d cut the number of
context switches in half. This is in addition to the number of handlers that you’d need to hide any I/O or
database activity so the number can add up fast.

System Resource Bottlenecks

If your site has not maxed out either CPU utilization, database server utilization, or I/O subsystem, the
problem may result from synchronized access to one of your system’s resources (such as disk, network,
database, etc.). This situation occurs when you access this resource from within a synchronized method in
Java. All other requests wait for this monitor lock while you do the I/O, thus wasting both CPU and I/O
resources. The only ways around this problem are to recode the Java (the right solution) or add more ATG
instances (the wrong solution).

The easiest way to find these problems is to test your site when it is serving pages under load and get a
JVM thread dump. By examining the thread dump, you may see one thread waiting for a response from
the OS (database or I/O) and a set of other threads waiting on a monitor lock that this other thread has.

Lower Thread Priorities

If you have a rarely used feature that uses a lot of CPU resources, you can lower the priority of the thread
that handles requests for that feature. Use the setPriority() method of java.lang.Thread to

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 0 6

6 - P e r f o r m a n c e D i a g n o s t i c s

μ
temporarily lower the thread priority. This will result in higher latency for users of that expensive feature,
but prevents that feature from hurting performance of other users.

TCP Wait Problem on Solaris

In some testing situations involving a very large number of requests from a single client on the Solaris
platform, you may see a dramatic and periodic decline in throughput. You may be able to correct this by
modifying the tcp_close_wait_interval setting in the /dev/tcp module. You can do this in two
different ways:

 Start ndd, access the /dev/tcp module, and change the value of
tcp_close_wait_interval to 60000 (60 seconds).

 Edit the /etc/init.d/inetinit file and include the following line:

ndd -set /dev/tcp tcp_close_wait_interval 60000

Server Hangs
If one or more servers on your site stops responding unaccountably after running under load for a certain
period of time, there are a few possible causes:

 HTTP servers not sending requests to your application.

 A Java deadlock.

 Some resource that your application depends on is itself hung (such as the database
or some service with which the application communicates via sockets). For example, if
a single client opens up hundreds of connections to request pages and then stops
reading the response data, this could lock up a server without any real failure of any
ATG components.

 You may also have consumed all of the memory in your JVM. If this happens, you’ll
usually see OutOfMemory errors in your console right before the server hangs. This
may appear as a hang because the server will do a garbage collection to reclaim a few
bytes, run a few lines of code, then walk through the heap again trying to find another
few bytes to reclaim.

 An infinite loop in some code.

Here are some steps you can take to attempt to identify the cause of the server hang.

 Check the CPU utilization of the machine and particularly the Java process running
your ATG application. If CPU utilization is 100%, it is either an OutOfMemory problem
or a CPU burning thread.

 Check the server logs to see if any errors right before the hang indicate why the server
has failed. You might see a “server not responding” message or an OutOfMemory error.

 Get a thread dump from your Java VM. A thread dump can help you recognize all of
these problems.

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 0 7

6 - P e r f o r m a n c e D i a g n o s t i c s

μ
If all threads are waiting in system calls such as socket read/write, then they are
waiting for a resource to respond (for instance, the database or the network). You
should look to this resource for answers. If the resource is a database, try using a third
party database tool to make a query. It is possible that the tables used by your ATG
application are locked by some other operation so they will wait until that operation
has completed.

Paging and Memory Allocation
If you see any paging activity, increase system memory or decrease the size of the JVMs. Be aware that
decreasing heap sizes may increase the overhead of garbage collection. Each time a full garbage
collection is performed, all of the memory needs to be scanned for garbage. Garbage collections occur
more frequently with smaller heaps, which could waste CPU time.

You can check the size of your JVM heaps or cause garbage collection with the ATG VMSystem
component at:

http://hostname:port/dyn/admin/nucleus/VMSystem/

Garbage Collection

Set your JVM to monitor how much time is spent doing garbage collection. You can do this by adding the
-verbose:gc parameter to the JAVA_ARGS passed to the JVM when ATG starts up. The -verbose:gc
option causes the JVM to output a message each time garbage collection is performed, including:

 how much memory was reclaimed

 the amount of free memory

 the total heap size

 how much time the garbage collection operation took

If you see your garbage collections happening too often or occupying a significant percentage of your
CPU, you should either increase the Java heap size arguments or look for places in your application that
are allocating memory unnecessarily.

If the garbage collection takes a very long time to complete, you may have configured your heap size to
be too large for the amount of memory your system has. If your system is spending more than 20% of its
CPU time on garbage collection, you have a significant performance problem that must be corrected. Use
your OS monitoring tools to see if you are paging and check the process size of all of the processes
running on your system. Compare this with the physical memory of your machine.

If your heap is very large, your garbage collections may occur very infrequently but may take a long time
(30 seconds or more) to complete. This is a structural limitation of Java that is difficult to work around.
When a full garbage collection occurs, it typically acquires the heap lock, which prevents all requests from
being served during this time interval. You can potentially reduce the time of these garbage collections
by forcing them to occur more frequently.

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 0 8

6 - P e r f o r m a n c e D i a g n o s t i c s

μ
If your garbage collections take a significant percentage of your overall CPU time, you may have places in
your code that allocate memory inefficiently. It is a good idea to reuse objects where possible, rather than
creating them over and over again. You can use a memory profiler to determine where and how much
memory is allocated by which places of the code. Only the allocation side of the garbage shows up in the
stack traces and profiling. You have to factor in the time spent reclaiming garbage as well. You can also
use the Performance Monitor to trace the memory allocation of various operations in your system. See
Performance Monitor in the Monitoring Site Performance chapter.

Memory Leaks

When the Java VM runs low on memory, you should see two behaviors:

 very slow performance, as garbage collections occur more frequently and absorb a
greater share of CPU time

 occasional OutOfMemory errors.

To confirm the presence of a memory leak, add -verbose:gc to your JAVA_ARGS and monitor the
number of sessions on your site (see the Garbage Collection section for details). If you see free memory
decrease over time as your site has a constant number of sessions, you may have a memory leak. Before
deciding that you have a memory leak, make sure you have given the system enough time to fill all caches
and reach a stable state after startup.

Memory leaks in Java are caused by data structures that hold onto objects that are no longer needed. This
is often due to a Collection (such as a Vector or Hashtable) that is not coded correctly. For example, if you
store objects in a Hashtable using a session ID as a key, but you do not remove these objects when the
session expires, this Hashtable will grow without bounds.

You can use memory profilers to help find these errors. Another way to detect when a Hashtable or Vector
is growing without bounds is to use a modified version of the standard Hashtable and Vector that is
instrumented to print a message each time the 10000th, 20000th, etc. element is added. Of course, if you
use a different Collection class, this will not find that problem.

One frequent cause of Java memory leaks is the use of an addXXXListener() method without a
corresponding removeXXXListener() method. Review your code to make sure you haven’t made this
mistake.

Swap Space

In order for ATG to fork a javac compiler to compile a JHTML page, it requires two times the current
process size in swap space for a short period of time until it executes the new process. If you receive an
error message like this:

/atg/dynamo/servlet/pagecompile/PageCompileServlet

atg.servlet.pagecompile.PageCompileResources->

pageCompileServletErrorCompiling :

Error compiling page: <path of page> :

Unable to execute the command '<page compile command>'

Make sure that you have the 'bin' directory for your JDK in your PATH

variable before starting ATG and that you have enough swap space.

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 0 9

6 - P e r f o r m a n c e D i a g n o s t i c s

μ
then you probably do not have enough swap space for page compilation. Increase your swap space.

Detecting File Descriptor Leaks
It is important to ensure that files that are opened always get closed. Failing to close files can result in file
descriptor leaks. You can detect a file descriptor leak in two different ways:

 You may notice a lot of IOExceptions with the message “Too many open files.”

 During load testing, you periodically run a profiling script, such as lsof (on UNIX), and
you notice that the list of file descriptors grows continually.

File descriptor leaks can also lead to a variety of failures on attempts to open properties files, sockets, etc.
If your error log contains a lot of chaotic-looking error messages, the presence of a file descriptor leak is
one thing to check.

Using URLHammer
The URLHammer program is a Java utility. URLHammer makes repeated page requests, allowing you to
simulate the effects of load on your ATG application. The utility detects and reports HTTP errors, but
performs no validation of the HTTP response itself. URLHammer supports HTTP cookies. You can use it to
submit forms by playing back scripts (see Using the Recording Servlet). URLHammer is run from the DOS
or UNIX command line. It runs in a separate JVM from ATG. For the best results, we recommend running
URLHammer on a separate machine from the server you are testing.

To run the URLHammer program:

1. Set your CLASSPATH to include the directory <ATG10dir>/DAS/lib/classes.jar.

2. Run the following command:

java atg.core.net.URLHammer [arguments]

For example:

java atg.core.net.URLHammer http://examplehost:8840/ 5 10 -cookies

This creates five different threads, each of which represents a separate session that requests the specified
URL 10 times (50 requests total).

You can configure URLHammer using several command line arguments that are described below; you can
also use the -usage argument to get the current list of arguments. The -cookies argument makes
URLHammer parse the Set-cookie headers and return cookies that it receives in all subsequent
requests. If you don’t use the -cookies argument, then ATG creates new sessions for each request. Each
thread has its own set of cookies. Thus, the above example creates 5 sessions and executes 10 requests in
each.

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 1 0

6 - P e r f o r m a n c e D i a g n o s t i c s

μ
Command Line Arguments

URLHammer takes a number of command line arguments so that you can implement your tests in the
manner that best fits your site. Use the following syntax:

java atg.core.net.URLHammer URL | script_pathname threads iterations

[optional arguments]

The following URLHammer arguments are required:

Required Arguments Description

URL or script_pathname The URL to use in each request. The URL must begin with http://.
(Note: https is not supported.) If you use the -script argument,
then instead of a URL, specify the pathname of the script to execute.
See The -script Argument.

threads Number of independent thread connections to create to the HTTP
server. Use a value from 1 to 20. All threads run concurrently.

iterations Number of requests to issue on each thread. If the -script argument
is used, this represents instead the number of times each thread
executes the entire script.

The following URLHammer arguments are optional:

Optional Arguments Description

-addCookie name=value Enables you to set a cookie. For example:

-addCookie FOO=Zippy

-addHeader name=value Enables you to define a header. You can define multiple headers; for
example:

-addHeader LOGIN=Zappa -addHeader PASS=nan00k

-cookies Returns Set-cookie headers sent by the server. Note: path= and
expires= are not processed by URLHammer.

-htmlStats HTML file Output statistics to the specified HTML file. This argument gives
detailed statistics about the amount of time consumed by each
individual URL you requested. It also gives summary statistics about
the number of errors encountered. By default, URLHammer outputs
these statistics to the console.

-maxRequests Limits the number of redirects that can be generated.

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 1 1

6 - P e r f o r m a n c e D i a g n o s t i c s

μ
-nopause Use only with the -script argument. Ignores pause information in

script files by default. When using the Recording Servlet, the time
between the server’s receipt of one page request and the server’s
receipt of the next request is recorded in the script file (in
milliseconds). Each URLHammer thread sleeps for this number of
milliseconds before requesting the URL. If you use the -nopause
argument, URLHammer instead requests each subsequent URL as
soon as the previous output is received.

-password Use only with the -user argument. Supplies a user password if
needed to log in to any pages.

-pause Use only with the -script argument. Pause for the specified time
between each request (number of milliseconds). For example, the
following argument causes URLHammer to pause 1 second between
each request:

-pause 1000

If you use a negative value, then URLHammer pauses for a random
amount of time, not to exceed the absolute value of the value you
use. For example, the following argument causes URLHammer to
pause a random amount between 0 and 550 milliseconds between
each request:

-pause –550

-randomStop Simulates the browser’s stop button by randomly closing the
connection to the server for 20% of the requests.

-recordAll Outputs statistics for each request. Use this argument with the
-htmlStats argument and the HTML file will contain the statistics
broken down for each request, as well as in summary form. It also
keeps track of which requests had errors and prints (error) next to
the time for that request.

-runningStats Prints information periodically for each thread. This allows you to get
an idea of how long runs are proceeding.

-script Instead of making a request to a single URL, each thread instead
executes a script of user browser actions. See The -script Argument.

-server name:port-number Name of the server and the port number to use if you are using the -
script argument. If you do not specify a server, localhost:80 is
used as the default.

-stop <n> Simulates the browser’s stop button by closing the connection to the
server for <n>% of the requests. This argument is useful to make sure
that your site is robust with respect to aborted requests.

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 1 2

6 - P e r f o r m a n c e D i a g n o s t i c s

μ
-substitute Use only with the -script argument. Performs keyword

substitution in your script file. This facility allows you to generate
more flexible form processing scripts. You can place keywords
__RANDOM__, __COUNTER__, and __TIME__ into your script file’s
URLs and POST data sections. (Note that these keywords are
preceded and followed by two underscore characters.)

Before each request, URLHammer substitutes these keywords with a
random string, a continually incremented counter, or the current
time in milliseconds. You can use this argument, for example, to
generate unique login IDs when load testing login forms.

-user Use only with the -password argument. Supplies a username if
needed to log in to any pages.

-verbose Dumps the complete output of the request (including request
headers). This argument is very valuable when testing a new script or
the first time you execute a command, so that you can inspect the
output generated.

URLHammer Examples

The following examples use UNIX syntax. Adjust the syntax accordingly for Windows. We also presume
that your CLASSPATH includes $DYNAMO_HOME/lib/classes.jar.

Checking Availability of ATG

Suppose you want to see whether your ATG application is responding. A single request on a single thread,
using a very simple page, would be sufficient for this test:

java atg.core.net.URLHammer http://hostname:8080/index.jsp 1 1

If your application is responding, you should see output like the following (the times will vary):

Time = 521 ms (1.91 requests/s; average latency = 521 ms)

0 errors out of 1 request

The time output reports the total elapsed time in milliseconds, the number of requests per second, and
the average time per request, in milliseconds.

Generating a Typical Load

Using multiple concurrent threads, each making repeated requests, will generate a sustained load on the
ATG server:

java atg.core.net.URLHammer http://hostname:8080/test.jsp 10 25

In this example, 10 threads are used, each making 25 requests, for a total of 250 requests, each of which
uses its own session.

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 1 3

6 - P e r f o r m a n c e D i a g n o s t i c s

μ
Playing Back a Script

The previous examples generate a number of simultaneous requests for the same page. For a more
realistic usage scenario, you can use URLHammer to run a script of more complex user behavior. A script
file can be as simple as a list of relative URIs (one per line). See Recording a Script for a simple way to
construct a script, and Editing a Script for details on the syntax and semantics. The following command
plays back the script myscript.txt one time, using one thread, making requests from the default ATG
server port:

java atg.core.net.URLHammer myscript.txt 1 1 -script -server

examplehost:8080

The -script Argument

The -script argument treats the URL argument as the name of a script file on the local system. This
script file can contain any of the following:

 URLs

 URLs with POST data

 URLs with POST data and session ID arguments

You can write your own script files, or you can use ATG’s Recording Servlet, which records script files that
replay a previously recorded set of user actions. See Using the Recording Servlet in the Monitoring Site
Performance chapter.

Script files are line-oriented ASCII text files. Each line can be in one of the following formats:

#include another_script_file

URL

URL time_in_milliseconds

URL time_in_milliseconds #_lines_of_post_data

post_data

post_data

post_data

...

URL time_in_millis #_lines_of_post_data session_id

post_data

post_data

post_data

...

If a line specifies a number of lines of POST data, URLHammer reads that number of lines and passes them
as URL-encoded POST data to the specified URL. Typically, lines of this form are generated by the
Recording Servlet.

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 1 4

6 - P e r f o r m a n c e D i a g n o s t i c s

μ
Note that the URLs in a script file need not contain the http://hostname:port prefix, since the full URL
can be constructed using the host and port number specified by the -server command line argument.
This allows you to reuse the same script to test different servers.

Recording a Script

You can use the ATG Recording Servlet facility as an aid in constructing a test script. This is particularly
helpful in tests of form submission (such as requests with the POST method) because the script must
supply the data for the form. Follow these steps to record a test script:

1. Open the /atg/dynamo/servlet/pipeline/RecordingServlet component in the
ACC.

2. If the RecordingServlet component is not running, start it by clicking the Start
button.

3. Change the live value of the recording property to true.

4. Perform the actions you wish to record (for example, page requests and submitting
forms).

5. Change the live value of the recording property to false.

6. Copy the <ATG10dir>/home/logs/record.log file to another filename to save its
contents.

You can also use the Recording Servlet with the Dynamo Administration UI:

1. Browse the Recording Servlet in the Dynamo Administration UI:

http://hostname:port/dyn/admin/nucleus/atg/dynamo/servlet/pipeline/

RecordingServlet

2. Click the name of the recording property.

3. Set the value to true and click the Change Value button.

4. Perform the actions you wish to record (for example, page requests and submitting
forms).

5. Return to the Recording Servlet page in the Dynamo Administration UI.

6. Click the name of the recording property.

7. Set the recording value to false and click the Change Value button.

8. Copy the <ATG10dir>/home/logs/record.log file to another filename to save its
contents.

See also Using the Recording Servlet in the Monitoring Site Performance chapter.

Editing a Script

A request in a script file is specified using this syntax:

Relative_URI [Delay_ms [POST_lines [Session_ID]]]

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 1 5

6 - P e r f o r m a n c e D i a g n o s t i c s

μ
where:

 Relative_URI is the relative URI of the file to request, with optional parameters

 Delay_ms is the number of milliseconds to pause

 POST_lines specifies the number of following lines to use as POST data

 Session_ID designates an ATG session ID

The URIs in a recorded script must be relative to the document root. Note also that when the -cookies
option is used, all of the session IDs in a script are replaced by the current session ID for the given thread;
each thread will have a new unique session created for it.

Comments in Scripts

A line that begins with the # character is considered a comment and will be ignored (with the exception
of lines that begin with #include; see next section). You can add comments to your scripts to document
the purpose, author, usage, etc.

Including Scripts within Scripts

A line that begins with the #include keyword includes a specified script within the current script. For
example:

#include subfile.txt

adds the contents of the script subfile.txt to the current script at that position. This is especially useful
for simplifying a long script into a hierarchy of easy-to-understand parts.

URLHammer Source Files

ATG includes the source for URLHammer, together with source for implementation classes, in:

<ATG10dir>/DAS/src/Java/atg/core/net/

You may want to modify or extend URLHammer for your own testing purposes. However, ATG does not
guarantee backward compatibility in future releases of URLHammer. If you make modifications to the
code, you should change the class and package names to avoid potential conflicts with future versions we
may release.

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 1 6

6 - P e r f o r m a n c e D i a g n o s t i c s

μ

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 1 7

7 - M o n i t o r i n g S i t e P e r f o r m a n c e

μ
7 Monitoring Site Performance

ATG includes a variety of diagnostic and administrative tools to help you keep your site up and running
smoothly. This chapter covers the following topics:

Performance Monitor

Using the Configuration Reporter

Using the VMSystem Component

Using a Sampler

Using the Recording Servlet

Performance Monitor
ATG’s Performance Monitor component provides a tool you can use to monitor the performance of
regions of your code. To use the Performance Monitor:

 Instrument your Java code with static methods that enable the Performance Monitor
to gather information about performance (see Adding PerformanceMonitor Methods
to your Code).

 View the Performance Monitor page in the Dynamo Administration UI to inspect
information gathered (see Viewing Performance Monitor Data).

The Performance Monitor can run in different modes. In normal (default) mode it causes negligible
overhead, but allows you to globally turn on one or more monitoring options which give more diagnostic
information. These monitoring options would typically be used during load testing but are not suitable
for running on a live site under heavy load. See Performance Monitor Modes.

Adding PerformanceMonitor Methods to your Code

To enable the Performance Monitor to monitor a section of your Java code:

1. Import the atg.service.perfmonitor.* package.

2. Declare an opName parameter to label the section of the code. This parameter is
displayed in the Performance Monitor page under the Operation heading.

3. (Optional) Declare a parameter name if you want to gather data on individual
executions of an operation.

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 1 8

7 - M o n i t o r i n g S i t e P e r f o r m a n c e

μ
4. Call the startOperation method at the beginning of the operation whose

performance you want to be able to measure.

5. Call the endOperation method at the end of the operation whose performance you
want to be able to measure.

6. Optionally, call the cancelOperation method if an exception occurs. This causes the
results of the current execution to be ignored.

For details about the Performance Monitor’s startOperation, endOperation, and cancelOperation
methods, see Methods for Storing Performance Data.

For example:

String opName = "render jsp";

String parameter = "foo.jsp";

boolean exception = false;

PerformanceMonitor.startOperation(opName, parameter);

try {

 ... code to actually render foo.jsp

} catch (Exception e) {

 PerformanceMonitor.cancelOperation(opName, parameter);

 exception = true;

} finally {

 if (! exception)

 PerformanceMonitor.endOperation(opName, parameter);

}

These methods can be nested with different or the same opNames. For example:

private final String RENDER_JSP = "Render JSP page";

private final String EXECUTE_SQL = "Execute SQL Query";

private String mPageName = "page.jsp";

private String mSQLQuery = "select * from table";

PerformanceMonitor.startOperation(RENDER_JSP, mPageName);

... source code to start render

 PerformanceMonitor.startOperation(EXECUTE_SQL, mSQLQuery);

 ... source code to read from table 1 in database

 PerformanceMonitor.startOperation(EXECUTE_SQL);

 ... source code to read from database

 PerformanceMonitor.endOperation(EXECUTE_SQL);

 ... more source code to read from table 1 in database

 PerformanceMonitor.endOperation(EXECUTE_SQL, mSQLQuery);

... more source code to finish render

PerformanceMonitor.endOperation(RENDER_JSP, mPageName);

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 1 9

7 - M o n i t o r i n g S i t e P e r f o r m a n c e

μ
Note that the calls to startOperation are nested within other calls to startOperation. You must place
the endOperation and cancelOperation calls in the code in opposite order that the startOperation
calls were placed. If this requirement is not followed, then the endOperation or cancelOperation call
throws a PerfStackMismatchException. This exception tells you that the calls to endOperation are
not being matched up. Either they were not called in the correct order or the arguments were not exactly
the same as those that were passed into the methods.

To ensure that endOperation is always called, wrap the Performance Monitor methods in a
try ... finally block, as in this example:

boolean exception = false;

try {

 PerformanceMonitor.startOperation(OP_NAME);

 performOperation (pParameter);

} catch (Exception e) {

 PerformanceMonitor.cancelOperation(OP_NAME);

 exception = true;

} finally {

 try {

 if (!exception)

 PerformanceMonitor.endOperation(OP_NAME);

 } catch (PerfStackMismatchException e) {

 System.out.println(e);

 }

}

Performance Monitor Modes

The Performance Monitor code can run in one of four modes:

 DISABLED. When the Performance Monitor is disabled, its diagnostic methods
immediately return without doing any additional work.

 NORMAL. In this mode, the Performance Monitor keeps track only of the current stack
of operations. This mode is useful in identifying the location in the code of hung or
active threads.

 TIME. In this mode, in addition to the current operation stack, the Performance
Monitor maintains dictionaries for each operation. These dictionaries store the
number of times each operation has been performed, and the minimum, maximum
and average time to process that operation.

 TIME mode is not meant to be used on a live system for an extended period of time.
This mode is for gathering data on the amount of time spent in various parts of the
code.

 MEMORY. In this mode, the Performance Monitor maintains the information specified
for NORMAL and TIME mode. In addition, the Performance Monitor maintains
dictionaries that store the number of times each operation has been performed, and
the minimum, maximum and average amount of memory required to process that

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 2 0

7 - M o n i t o r i n g S i t e P e r f o r m a n c e

μ
operation. These statistics are estimates and do not take into account asynchronous
processing activity that may be occurring. Do not rely on data from only one or two
samples, since the Performance Monitor may generate anomalous data that can be
ignored.

MEMORY mode causes all requests to the server to be serialized and could possibly
cause deadlock. This mode is provided for diagnostics during development only and is
not suitable for use on a live system.

Setting the Mode

Set the Performance Monitor’s operating mode at the Performance Monitor Configuration page of the
Dynamo Administration UI:

http://hostname:port/dyn/admin/atg/dynamo/admin/en/

performance-monitor-config.jhtml

Click the radio button for the mode you want, and then click the Change Mode button.

You can also set the Performance Monitor’s operating mode by setting the mode property of the
component at /atg/dynamo/service/PerformanceMonitor. The value of the mode property is an int
corresponding to the mode:

mode int value

disabled 0 (default)

normal 1

time 2

memory 3

Viewing Performance Monitor Data

You can view the information collected by the Performance Monitor on the Performance Monitor’s page
of the Dynamo Administration UI at:

http://hostname:port/dyn/admin/atg/dynamo/admin/en/

performance-monitor.jhtml

This page displays any information recorded by the Performance Monitor. Under the Threads heading,
the Performance Monitor page displays the operation stack of the current thread.

If you have configured the Performance Monitor to run in TIME mode, then the Performance Monitor
page displays under the Performance Data heading a Time Performance Data table with a list of
operations that have been recorded (such as Invoke Servlet, Compile Page, Service Request, etc.)
along with the number of times the operation was executed and the minimum, maximum, average, and
total time for each.

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 2 1

7 - M o n i t o r i n g S i t e P e r f o r m a n c e

μ
For example, the Time Performance Data table might look like this:

Operation Number of
Executions

Average
Execution
Time (msec)

Minimum
Execution
Time (msec)

Maximum
Execution
Time (msec)

Total
Execution
Time (msec)

Handle HTTP Request 1 223 223 223 223

Invoke Servlet 4 8 0 19 35

Invoke Form Handler 1 108 108 108 108

Compile Page 1 3 3 3 3

Service Request 1 123 123 123 123

The name of each operation is a link to another administration page that provides the detailed
parameterized information, if any (for example, for each URL, the number of times requested, the
minimum, maximum, and average times).

If you have configured the Performance Monitor to run in MEMORY mode, then the Performance Monitor
page displays under the Performance Data heading Time and Memory Performance Data tables that
includes all the TIME mode information described above, and in addition displays the minimum,
maximum, average, and total memory used by each operation.

Instrumented ATG Classes

Several common ATG operations have already been instrumented with Performance Monitor
startOperation and endOperation methods. By default, this includes all scheduled jobs handled by
the Dynamo Scheduler. These operations appear grouped together under the line Scheduled Jobs in the
Performance Monitor page. Clicking on this link lets you drill down and see the statistics for each job
separately. If you don’t want performance monitoring of scheduled jobs, you can set the Scheduler’s
performanceMonitorEnabled property to false to disable this behavior. See the ATG Programming
Guide for more information about the Scheduler service.

In addition, ATG’s instrumented methods include:

Class Name Method Operation Name

atg.targeting.TargetingArray getTargetArray() Perform Targeting

atg.servlet.pipeline.

HeadPipelineServlet

service() Service Request

atg.servlet.pagecompile.SubServlet serviceByName() Invoke Servlet

atg.servlet.pagecompile.

PageSubServlet

serviceServlet() Invoke Servlet

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 2 2

7 - M o n i t o r i n g S i t e P e r f o r m a n c e

μ
atg.servlet.pagecompile.

PageCompileServlet

service() Render Page

atg.service.resourcepool.

MonitoredStatement

executeQuery()

executeUpdate()

Execute Query
Execute Update

atg.service.resourcepool.

MonitoredPreparedStatement

executeQuery()

executeUpdate()

Execute Query
Execute Update

atg.server.http.HttpConnection handleRequest() Handle HTTP Request

atg.nucleus.NucleusNameResolver createFromName() Create Component

atg.droplet.DropletEventServlet sendEvents() Invoke Form Handler

atg.service.pipeline.PipelineManager runProcess() Run Pipeline Chain

atg.service.pipeline.PipelineLink runProcess() Run Pipeline Processor

atg.adapter.gsa.GSARepository createNewItem() GSA createItem

atg.adapter.gsa.GSAItemDescriptor getPersistentItem() GSA Uncached getItem

Performance Monitor API

The main class for the Performance Monitor is atg.service.perfmonitor.PerformanceMonitor. This
class contains all the static methods for interacting with the Performance Monitor. In addition, it stores
the data structures that contain the performance data. The Performance Monitor’s methods have the
following functions:

 Methods for Controlling the Performance Monitor

 Methods for Storing Performance Data

 Methods for Accessing Stack Data

 Methods for Accessing Performance Data

 Exception Summary

The PerformanceMonitor component contains two primary data structures. One stores the runtime
stack data for all registered threads. The other stores the performance data for operations and
parameterized operations on those registered threads.

Runtime Stack Data Structure
This structure is a Hashtable where the key is a registered thread and the element is a
java.util.Stack of atg.service.perfmonitor.PerformanceStackData
objects. This data is what is recorded and tracked in NORMAL mode. When a stack
becomes empty, then all the performance operations have completed in that thread.
This data structure is used in all modes except for DISABLED.

Performance Data Structure
This data structure stores all the time and memory performance related data for
operations and parameterized operations. It is only used when the mode for the

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 2 3

7 - M o n i t o r i n g S i t e P e r f o r m a n c e

μ
Performance Monitor is set to TIME or MEMORY. The structure is a Hashtable where
the key is an operation name and the element is a PerformanceHashtable. The
PerformanceHashtable is a subclass of Hashtable. In addition to providing the
services of a Hashtable, it also stores the totals for all the parameterized operations
contained in the Hashtable in an atg.service.perfmonitor.PerformanceData
object. The Hashtable in the superclass of this object contains the parameterized
operation name in the key and a PerformanceData object as the element.

There are also two data structures for holding pools of PerformanceStackData and PerformanceData
objects. These exist to avoid allocation and improve performance. When startOperation is called, a
new PerformanceStackData object is retrieved from the pool, populated and pushed on the stack.
When endOperation is called, the top element in the stack is compared for mismatch and then popped
off the stack, assuming there was no mismatch. At this time, the corresponding PerformanceData object
for the operation in the PerformanceStackData object which is stored in the performance data
structure is updated with number of times executed and total execution time (min and max will also be
updated if the most current execution requires it). In addition, the global PerformanceData object for
the operation is updated. If endOperation was called with no parameterized data, then only the global
PerformanceData object for the operation is updated. If the PerformanceData object for the operation
or parameterized data does not exist, then a new PerformanceHashtable will be created and
PerformanceData object will be retrieved from the pool and inserted.

Methods for Controlling the Performance Monitor

You can control the Performance Monitor programmatically using the methods listed in this section. Most
often, however, you will configure the Performance Monitor using the Performance Monitor
Configuration page in the Dynamo Administration UI
(http://hostname:port/dyn/admin/atg/dynamo/admin/en/performance-monitor-
config.jhtml) or through the ACC.

public int getMode();
Returns the mode that the Performance Monitor is running in. The return value is an
int that refers to one of DISABLED, NORMAL, TIME, or MEMORY.

public void setMode(int pMode);
Allows a user to dynamically set the mode of the Performance Monitor. The mode is
normally set in the Performance Monitor’s properties file, but can be changed during
runtime using the ACC.

public void resetPerformanceData();
Resets all the performance data back to 0. This means that the TIME mode and MEMORY
mode minimum, maximum, and total statistics will be reset to 0 for all operations and
parameterized operations.

Methods for Storing Performance Data

The startOperation and endOperation methods designate the start and end of an operation. These
methods need to bracket the code that performs the designated function.

public static final void PerformanceMonitor.startOperation(String pOpName);

public static final void PerformanceMonitor.startOperation(String pOpName, String

pParameter);

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 2 4

7 - M o n i t o r i n g S i t e P e r f o r m a n c e

μ
The startOperation method tells Performance Monitor that a new operation is
starting. The pOpName parameter is the name of the operation. This parameter should
be short and as descriptive as possible. The next parameter, pParameter, is optional
data that gives the Performance Monitor more detailed information on exactly what
object it is performing the given operation on. The parameterized version of this
method records data for the operation on the given parameter and the global
operation. The non-parameterized version of this method records performance data to
the operational level only.

public static final void PerformanceMonitor.endOperation(String pOpName)

 throws PerfStackMismatchException;

public static final void PerformanceMonitor.endOperation(String pOpName, String pP

arameter)

 throws PerfStackMismatchException;

public static final void PerformanceMonitor.endOperation();

The endOperation method tells Performance Monitor that a previously started
operation has come to completion. The pOpName parameter must be exactly the same
as the pOpName parameter that was passed into the corresponding startOperation
method. The pParameter is optional data which gives the Performance Monitor more
detailed information on the object it completed the operation on. The call to
endOperation must have exactly the same parameters that the call to
startOperation did. Otherwise, a PerfStackMismatchException (an extension of
RuntimeException) is thrown.

You can also call endOperation without any arguments to mark the end of the most
recent operation for which monitoring has started, but not yet ended. In this case,
there is no need to supply it with the same arguments that were passed at the start of
the operation. Accordingly, it will never throw an exception.

The cancelOperation method cancels an operation and discards any performance statistics.

public static final void PerformanceMonitor.cancelOperation(String pOpName)

 throws PerfStackMismatchException;

public static final void PerformanceMonitor.cancelOperation(String pOpName, String

 pParameter)

 throws PerfStackMismatchException;

The cancelOperation method tells Performance Monitor that a previously started
operation should be cancelled. Canceling an operation means that statistics from this
operation execution are discarded. The pOpName parameter must be exactly the same
as the pOpName parameter that was passed into the corresponding startOperation
method. The pParameter is optional data which gives the Performance Monitor more
detailed information on the object on which it completed the operation. The call to
cancelOperation must have exactly the same parameters that the call to
startOperation did. Otherwise, a PerfStackMismatchException is thrown.

The isEnabled method indicates whether the Performance Monitor is enabled or not.

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 2 5

7 - M o n i t o r i n g S i t e P e r f o r m a n c e

μ
public static final boolean PerformanceMonitor.isEnabled();

Returns a boolean that specifies whether the Performance Monitor is enabled or not.

Methods for Accessing Stack Data

The stack data contains the runtime location of all the threads currently registered in the Performance
Monitor. This data is stored in objects of type PerformanceStackData. The PerformanceStackData
object is contained in a java.util.Stack object. The PerformanceStackData object alone is not
useful; it becomes useful when it is placed inside the context of a java.util.Stack. The
PerformanceStackData has the following methods you can use:

public String getOperation();
Returns the operation name within the PerformanceStackData object.

public String getParameter();
Returns the parameter operation name within the PerformanceStackData object.

public long getStartTime();
Returns the start time of the operation as the number of milliseconds since Jan 1, 1970.
This method is used internally by the Performance Monitor and is not very useful
outside of it, but it is provided.

Methods for Accessing Performance Data

The performance data is stored in read-only properties in objects of type PerformanceData. This object
is a JavaBean that contains the following data:

Property Description

minimumExecutionTime Minimum execution time

maximumExecutionTime Maximum execution time

totalNumberOfExecutions Number of times operation has been executed

averageExecutionTime Total execution time

minimumMemoryRequired Minimum memory required

maximumMemoryRequired Maximum memory required

totalMemoryRequired Total memory required

The PerformanceData object has get methods that correspond to each of these properties. The average
execution time and memory required can be derived from number of times and total execution time or
memory required.

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 2 6

7 - M o n i t o r i n g S i t e P e r f o r m a n c e

μ
Exception Summary

PerfStackMismatchException

Thrown when endOperation is called with out of order arguments or different arguments than what was
expected.

Using the Configuration Reporter
The ATG product suite has vast possibilities for configuration and customization. These possibilities are
multiplied when you consider the different platforms, HTTP servers, and database software you might use
in your site. These myriad possible combinations can make it difficult to describe your Nucleus-based web
application’s overall configuration in a concise way. The Configuration Reporter compiles a description of
your ATG configuration, so that useful troubleshooting information is gathered in a single place.

The Configuration Reporter can generate reports in several different forms that you can use to help
identify configuration problems. These reports also make it possible to e-mail configuration information
to ATG support.

You can access the Configuration Reporter from the link on the Dynamo Administration UI home page, or
navigate to it directly at:

http://hostname:port/dyn/admin/atg/dynamo/admin/en/conf-reporter.jhtml

The heart of the Dynamo Configuration Reporter is the service located at
/atg/dynamo/service/ConfigurationReporter. The Configuration Reporter service works by
browsing the hierarchy of components, starting at the root, gathering information, and outputting it in
various formats.

Configuration Reports

The Configuration Reporter can generate the following four reports:

 HTML Component Browser Report - A report on the components in the component
hierarchy in the form of HTML files. This report is more or less like printing out the
entire Dynamo Administration Component Browser.

 Bean Representation Report - A list of each ATG component, with each of its properties
and property values, in the form of a serialized file.

 Property Representation Report - Like the Bean Representation Report, but it includes
only those components and properties whose values have been set through
properties files (including properties set in the ACC).

 CONFIGPATH Report - A text file that lists the configuration path of the ATG server.

Excluding Components from the Configuration Report

By selecting a custom report, rather than a basic report, you can configure the Configuration Reporter to
exclude selected components:

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 2 7

7 - M o n i t o r i n g S i t e P e r f o r m a n c e

μ
1. Set the restrictedComponents property of the

/atg/dynamo/service/ConfigurationReporter service. This property is a
comma-separated list of Nucleus component paths of components and directories
that should be excluded from configuration reports.

If a Nucleus component path included in the restrictedComponents property is a
folder, neither it nor any of its children will be included in custom configuration
reports.

2. Make a file that lists the components to include. Go to the Output Dynamo
Component Hierarchy to File page at:

http://hostname:port/dyn/admin/atg/dynamo/admin/en/

config-reporter-output-hierarchy-titled.jhtml

3. In the Output File field, enter the pathname of a file to receive the list of components
to include.

4. Click the Create Dynamo Component File button. The Configuration Reporter will
generate the component list and output it to the file you specified in step 3.

5. Select Custom Report from the report page for the type of report you want to
generate.

6. In the Component file field, enter the pathname of the file you created in step 4.

7. In the Serialization output file field, enter the pathname of a file to receive the
serialized report file.

8. Click the Create Serialization Output File button.

The Bean Representation Report and Property Representation Report generate information in the form of
serialized files. After you create a serialized report, you can output a more readable version of the
information, using the XML Representation Report options:

1. Check the Output all property values box if you want to view the property names
and values, and not just the list of components.

2. In the Serialization output file field, enter the name of the serialized report file you
created.

3. In the XML output file field, enter the pathname of the file for the XML output.

4. Click the Create XML File button.

Running the Configuration Reporter as a Standalone Utility

You can run the Configuration Reporter as a standalone utility. This allows you to generate configuration
reports even if ATG is not running. Before you run the Configuration Reporter as a standalone utility, you
need to create two files:

 A file that contains a list of the components to include in the report. See Creating the
Component File.

 A file that contains the configuration path. See Creating the Configuration Path File.

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 2 8

7 - M o n i t o r i n g S i t e P e r f o r m a n c e

μ
In addition, you should also set certain properties in /atg/dynamo/service/ConfigurationReporter.
See Configuring the Configuration Reporter.

Creating the Component File

You can create the component file by running the report on the Output Dynamo Component Hierarchy to
File page at:

http://hostname:port/dyn/admin/atg/dynamo/admin/en/

config-reporter-output-hierarchy-titled.jhtml

Add the name of the file thus created to the componentFileName property of
/atg/dynamo/service/ConfigurationReporter.

As an alternative, you can create a component file by hand. The component file format is as follows:

<component>/Initial</component>

<component></atg/dynamo/service/Scheduler</component>

A component file is not expected to be well-formed XML. Anything other than what is between the
component start and end tags is ignored. Anything between the tags is treated as a component name.
Folders can be included between component tags; the Configuration Reporter includes all components in
such a folder. Add the name of the component file to the componentFileName property of
/atg/dynamo/service/ConfigurationReporter.

Creating the Configuration Path File

You can create the configuration path file by running the CONFIGPATH report on the Output
Configuration Path to File page at:

http://hostname:port/dyn/admin/atg/dynamo/admin/en/

config-reporter-conf-path-titled.jhtml

Add the name of the file thus created to the dynamoConfigurationPathFileName property of
/atg/dynamo/service/ConfigurationReporter.

As an alternative, you can create a configuration path file by hand. The configuration path file format is as
follows:

<configuration_path_item>c:\ATG\ATG10.0.1\DAS\config

 </configuration_path_item>

<configuration_path_item>c:\ATG\ATG10.0.1\home\localconfig

 </configuration_path_item>

<configuration_path_item>c:\ATG\ATG10.0.1\MyModule\config

 </configuration_path_item>

A configuration path file is not expected to be well-formed XML. Anything other than what is between the
<configuration_path_item> start and end tags is ignored. Anything between the tags is treated as an
element of the Dynamo CONFIGPATH. Elements of the CONFIGPATH should be listed in the configuration
path file in the order that they appear in the Dynamo CONFIGPATH. Add the name of the configuration

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 2 9

7 - M o n i t o r i n g S i t e P e r f o r m a n c e

μ
path file to the dynamoConfigurationPathFileName property of
/atg/dynamo/service/ConfigurationReporter.

Configuring the Configuration Reporter

As described in the previous sections, you need to set the componentFileName and
dynamoConfigurationPathFileName properties of
/atg/dynamo/service/ConfigurationReporter. In addition, set the
serializedPropertiesFileName property to the pathname of the file you want to output.

You can set these properties using the ACC, or by adding a properties file like this at
<ATG10dir>/home/localconfig/atg/service/ConfigurationReporter.properties:

$class=atg.service.configurationreporter.ConfigurationReader

componentFileName=

dynamoConfigurationPathFileName=

serializedPropertiesFileName=

Running the Configuration Reader

To run the Configuration Reporter as a standalone utility, use the following command:

java atg.service.configurationreporter.ConfigurationReader

-saveProperties config_directory

The config_directory argument is the directory that holds your
ConfigurationReporter.properties file. A typical value would be localconfig.

This command generates a serialized output file. When you run this utility, the Configuration Reader reads
the following input properties from properties file
/atg/dynamo/service/ConfigurationReporter.properties.

dynamoConfigurationPathFileName The name of a file that contains the Dynamo CONFIGPATH.

componentFileName The name of the component file to read the list of Dynamo
components from.

serializedPropertiesFileName The name of the serialized file to output.

After you run the Configuration Reader utility with the -saveProperties argument, you can run it in this
form to output an XML representation of the properties report:

-outputRepresentationToXML SourceFile OutputFileName

 OutPutPropertyValues=true|false

The SourceFile argument is the name of the output file (serializedPropertiesFileName) and the
OutputFileName argument is the name of the file where the Configuration Reader should output the

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 3 0

7 - M o n i t o r i n g S i t e P e r f o r m a n c e

μ
XML representation of the serialized output file. Use the OutPutPropertyValues=true flag to output
the property values as well as the component names; use the OutPutPropertyValues=false flag to
omit the property values.

Using the VMSystem Component
The ATG component located at /VMSystem provides a way for you to access the Java memory manager.
You can monitor the status of the Virtual Machine and call methods on it. An interface to the VMSystem
component is included in the Dynamo Administration UI at:

http://hostname:port/dyn/admin/nucleus/VMSystem/

From this page, you can conduct the following VM Operations:

 Perform garbage collection

 Run finalizations

 Show memory information

 List system properties

 List thread groups

 List threads

 Stop the VM

Using a Sampler
When testing your site, it is useful to automatically sample performance to understand throughput as a
function of load. ATG includes a Sampler component at /atg/dynamo/service/Sampler. The Sampler
is also discussed in the ATG Programming Guide.

Starting the Sampler

You can start the Sampler component by opening it in the ACC and clicking the Start button.

You can also start the Sampler component from the Dynamo Administration UI by requesting this URL:

http://hostname:port/dyn/admin/nucleus/atg/dynamo/service/Sampler

The first time you request this page, ATG instantiates the Sampler component, which begins recording
statistics.

You can configure ATG to start the Sampler whenever ATG starts by adding the Sampler to the
initialServices property of the /atg/dynamo/service/Initial component:

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 3 1

7 - M o n i t o r i n g S i t e P e r f o r m a n c e

μ
initialServices+=Sampler

Sampler Information

The Sampler outputs information to the file <ATG10dir>/home/logs/samples.log. For each system
variable that it samples, it records the following information in the log file:

 the current value

 the difference between the current value and the value recorded the last minute

 the rate of change of the value

You can adjust values recorded by the Sampler, but the default set is comprehensive in monitoring ATG
request handling performance. The Sampler’s output includes the following:

Value Description

handledRequestCount Total number of requests handled by this ATG server

averageRequestHandlingTime Average time spent handling requests since the sampler was
started

Sampler Output

If you collect enough real data of your site under varying loads, your Sampler output gives you the
answers to the following important questions:

 What is the peak throughput of your site in pages per minute for each ATG server?

 Does the peak throughput of your site go down as load increases beyond a certain
threshold?

 How many sessions can each server handle while maintaining a comfortable latency
(such as, latency < 1 second)?

Using the Recording Servlet
The Recording Servlet is a servlet that you place in your request handling pipeline that records the
amount of time spent handling each URL on your site. It performs two distinct functions:

 Records script files used in conjunction with URLHammer. You can record scripts of
actual user activity on your site, then use URLHammer to execute a script repeatedly,
simulating actual system load. For information on URLHammer, see Using
URLHammer in the Performance Diagnostics chapter.

 Records performance information for a single user, including the minimum, maximum,
and average time spent handling each URL on your site during the recording interval.

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 3 2

7 - M o n i t o r i n g S i t e P e r f o r m a n c e

μ
Inserting the Recording Servlet

The Recording Servlet must be enabled before you can use it. You can enable it in one of three ways:

 Open the Recording Servlet in the ACC Component Editor at
/atg/dynamo/servlet/pipeline/RecordingServlet and set the recording
property to true.

 Request the following URL in your administration interface:

http://hostname:port/dyn/admin/nucleus/atg/dynamo/servlet/pipeline/Record

ingServlet

Set the recording property to true.

 Add the Recording Servlet to the initialServices property of the
/atg/dynamo/servlet/Initial component, so that the Recording Servlet is added
to the servlet pipeline automatically each time your server is started:

initialServices+=pipeline/RecordingServlet

Generating Script Files

To generate a script file from the Recording Servlet, use the Component Browser to modify the value of
the recording property. Set this to true to start recording or false to stop recording.

Then, use your web browser to make a series of requests from your site, in the pattern of user behavior
that you want to record. Each of your requests becomes part of the script.

The script is saved to the file specified by the Recording Servlet’s recordFile property. By default, the
script is saved to <ATG10dir>/home/logs/record.log. Each time you start recording, the old script file
is overwritten. So be sure to copy the script before you enable recording for a second time.

Keeping Statistics

The Recording Servlet is also used to maintain per-URL performance statistics. To turn on this feature, set
the keepingStatistics property to true. While this property is on, the minimum, maximum, and
average times used to serve each requested page will be maintained and displayed in the component
browser’s page for the Recording Servlet component.

Tracing Memory

You can use the Recording Servlet to get an approximate reading on the amount of memory each request
consumes. Set the Recording Servlet’s tracingMemory property to true to turn on this feature. The
Recording Servlet records memory information only for those URLs that run through the server one at a
time; it is not appropriate for use on a live site.

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 3 3

8 - R e p o s i t o r y a n d D a t a b a s e P e r f o r m a n c e

μ
8 Repository and Database

Performance

Most ATG applications require database access, which represents another area where performance
bottlenecks can occur. To effectively tune a large production database, your team should include an
experienced database administrator.

This chapter includes the following sections:

Database Performance Practices

Repositories and Transactions

Repository Item Property Loading

Database Sorting versus Locale-Sensitive Sorting

Batching Database Transactions

Avoiding Table Scans

Database Caches

Diagnosing Database Performance Problems

Database Performance Practices
Follow these practices in designing and developing your site to avoid database performance problems:

 Use Repository caching features to optimize database access. See SQL Repository
Caching in the ATG Repository Guide.

 Use queues to batch database transactions, rather than performing each transaction
individually. See Batching Database Transactions.

 Avoid using database queries that might result in table scans of large tables. See
Avoiding Table Scans.

 Run your database server on a separate machine from your application servers, or at
least allocate a separate CPU.

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 3 4

8 - R e p o s i t o r y a n d D a t a b a s e P e r f o r m a n c e

μ
Repositories and Transactions

By default, if you do not have a JTA transaction in place, each SQL Repository operation that affects the
state of a repository item creates and commits a transaction around the operation. This is generally not
the most efficient way to handle repository item updates. It is generally most efficient to ensure that all of
the method calls in creating or updating a repository item are performed in a single transaction. ATG
offers several different techniques for transaction demarcation that you can use to group repository
method calls into a single transaction. You can use transaction demarcation in a Java Server Page using
the Transaction servlet bean. You can demarcate a transaction programmatically. These are described
in detail in the Transaction Management chapter of the ATG Programming Guide. You can also use ATG’s
Repository Form Handler and TransactionalFormHandler classes to improve the transactional
behavior and performance of repository operations. See the ATG Programming Guide and ATG Repository
Guide for more information.

Repository Item Property Loading
By default, whenever the SQL Repository calls getItem, it loads from the database (or the cache) not just
the repository ID of the item, but all repository item properties that are stored in the primary database
table for that item’s item descriptor. For some applications, this may result in too much database activity.
For other applications, you may want to load repository item properties that appear on other tables. You
can adjust how the SQL Repository loads repository item properties by grouping properties, using the
group attribute in property tags in the repository definition file. All properties with the same group
attribute are loaded whenever one property of the group is loaded. For more information, see the ATG
Repository Guide.

Database Sorting versus Locale-Sensitive Sorting
SQL Repository components include a localeSensitiveSorting property that controls how query
results are sorted. If this property is set to true, query results are sorted using locale-sensitive String
comparison (via java.text.Collator). Since most databases cannot handle sorting with multiple
locales, setting this option to true also means that the repository will perform all sorting in memory. If
localeSensitiveSorting is set to false (the default), database sorting (via ORDER BY) is used where
applicable and Strings are compared using String.compareTo(). If database sorting is adequate for
your purposes, leaving this property set to false will result in better performance. For more information,
see the ATG Repository Guide.

Batching Database Transactions
If you have large volumes of data to insert or update, you should wherever possible perform those
operations in batched transactions. It is more expensive to start a new transaction for every change than it
is to attempt to make many changes in a single database transaction. For example, a request handler
might log every single hit to a log table. Suppose that it takes 50 milliseconds to write a row in a log table.

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 3 5

8 - R e p o s i t o r y a n d D a t a b a s e P e r f o r m a n c e

μ
If that is the case, then the request handler cannot serve requests any faster than 20 per second, even if
the rest of the request handling mechanism is blazingly fast. But writing an entry in a log table is not a
critical part of the request handling operation, and thus should not be such a limiting factor.

The solution to this problem is to introduce a queue between the request handler and the database
facility. When the request handler wants to make a database entry, it places the log entry on the queue,
then continues handling the rest of the request. A separate component reads sets of log entries and
writes the whole set in a single database transaction. This arrangement decouples the request handlers
from the loggers, thereby eliminating the bottleneck introduced by the database.

For more information about using queues, see the Dynamo Foundation Classes chapter of the ATG
Programming Guide.

Avoiding Table Scans
A table scan is the reading of every row in a table and is caused by queries that don’t properly use
indexes. Table scans on large tables take an excessive amount of time and cause performance problems.

Make sure that, for any queries against large tables, at least one WHERE clause condition:

 refers to an indexed column and

 is reasonably selective

You should be concerned primarily with queries against large tables. If you have a table with a few
hundred rows, table scans are not a problem and are sometimes faster than indexed access.

During initialization, systems like ATG may front-load caches to avoid unnecessary database operations
later. You may see queries with large results during this time, but that is okay. Within reason, lengthy
database operations at startup are acceptable. However, if you see frequent, large, or slow queries issuing
from ATG during the course of normal operation, then you have a design problem that must be
addressed to achieve acceptable performance.

For example, suppose your database has a large table that holds products such as this:

CREATE table product

 (sku char(6) not null,

 type char(1) not null,

 name varchar(50) not null,

 description varchar(200) null)

and has these indexes:

CREATE unique index i1 on product(sku)

CREATE index i2 on product(name)

CREATE index i3 on product(type)

The following query is fine:

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 3 6

8 - R e p o s i t o r y a n d D a t a b a s e P e r f o r m a n c e

μ
SELECT *

 FROM product

 WHERE sku = 'a12345'

That query will not cause performance problems because the WHERE clause refers to a very specific
condition on a column with an index.

Here is an example of a query that is likely to cause problems:

SELECT *

 FROM product

 WHERE description LIKE '%shoes%'

This query causes a table scan, since the indexes can’t help the database to optimize the query. Queries
like this on a large table will result in an unacceptable performance drag and therefore should not be
allowed in a production system.

Here are some more queries that are likely to cause performance problems. The following query is
inadvisable because, although it refers to the indexed sku column, it is not very selective and could return
millions of rows:

SELECT *

 FROM product

 WHERE sku > 'abc'

The following query is bad because, although it is relatively selective, it will cause a table scan on most
DBMSs. A LIKE query with a leading wildcard typically cannot be optimized:

SELECT *

 FROM product

 WHERE name LIKE '%stereo'

Database Caches
If you are using the SQL Repository, see how multiple requests of the same behavior affect cache usage.
The first time your application references database information, the request causes a SQL database
operation, but subsequent requests will use the cache. Try to optimize cache usage. Consider the best
caching mode to use for each of the item descriptors in your SQL repositories. See the ATG Repository
Guide for more information.

When you are testing the system, make sure you think about real-world usage of your data. If your system
could potentially have tens of thousands or millions of rows of data, make sure you test that scenario. If
you test only against small sets of data, some performance bottlenecks will be masked, because the
database can cache the entire dataset into memory.

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 3 7

8 - R e p o s i t o r y a n d D a t a b a s e P e r f o r m a n c e

μ
Diagnosing Database Performance Problems

Make use of performance analysis tools offered by your database and application server vendor. These
tools typically enable you to measure transactions per second and memory, cache, and disk utilization.
Check the CPU utilization and I/O utilization of your database server. If they are near maximum levels, this
is a strong indication that the database is limiting the performance of your site.

To understand database performance, you must know your data and the operations you are performing
on it. The first step is to get a copy of the DDL for all the tables in your database and get a good estimate
of how many rows are in each table. Most major database systems have tools that can tell you this quickly.
In a pinch, you can issue the following query for each table:

SELECT count(*) FROM <table-name>

This query might take some time for large tables, so it is best to use the vendor-supplied tools or
commands. In addition to this information, you’ll need a list of the indexes on each table.

Avoid Using Simulated Text Search Queries in Repositories

As a convenience feature, a SQL Repository can simulate full text searches using the SQL LIKE operator. If
full text searching is not available for your database, you can substitute pattern matching queries for text
search queries by setting the following property in the GSARepository component:

simulateTextSearchQueries=true

The SQL Repository will then convert text search queries into CONTAINS pattern match queries, which are
implemented using the SQL LIKE operator.

Simulated text search queries are useful for demos and standalone development when you want to put in
place the createTextSearchQuery() API calls without having to set up a text search engine. However,
simulated text queries are extremely inefficient and are not supported for production systems. A
simulated text search query using LIKE will typically cause a table scan, so you should not use simulated
queries in production.

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 3 8

8 - R e p o s i t o r y a n d D a t a b a s e P e r f o r m a n c e

μ

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 3 9

9 - T u n i n g S i t e P e r f o r m a n c e o n J B o s s

μ
9 Tuning Site Performance on JBoss

This chapter describes configuration steps you can perform which might improve performance of your
ATG software running on JBoss. Note that these are suggestions only; JBoss configuration is a complex
topic, and no recommendations can be applied globally. Work with your JBoss representative to fine-tune
your application’s performance.

Tuning suggestions are divided into two sections:

JBoss File Modifications

JBoss Application Framework Trimming

JBoss File Modifications
This section describes changes you can make to JBoss configuration files to improve application
performance.

JSP Servlet Configuration

This section concerns changes you can make to your
<JBdir>/server/configdir/deploy/jbossweb.deployer/conf/web.xml file.

Add the following to the web.xml file under the JSP servlet (search for <servlet-name>jsp</servlet-
name>) and make changes in that context.

<init-param>

 <param-name>trimSpaces</param-name>

 <param-value>false</param-value>

</init-param>

<init-param>

 <param-name>genStrAsCharArray</param-name>

 <param-value>true</param-value>

</init-param>

<init-param>

 <param-name>classDebugInfo</param-name>

 <param-value>false</param-value>

</init-param>

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 4 0

9 - T u n i n g S i t e P e r f o r m a n c e o n J B o s s

μ
Tomcat Connector Thread Configuration

Thread pools used by Tomcat are configured on a per connector basis. The changes in this section are
applied to the <JBdir>/server/configdir/deploy/jbossweb.deployer/server.xml file.

The default configuration is shown in this sample:

<!-- A HTTP/1.1 Connector on port 8080 -->

 <Connector port="8080" address="${jboss.bind.address}"

 maxThreads="250" strategy="ms" maxHttpHeaderSize="8192"

 emptySessionPath="true"

 enableLookups="false" redirectPort="8443" acceptCount="100"

 connectionTimeout="20000" disableUploadTimeout="true"/>

 <!-- Add this option to the connector to avoid problems with

 .NET clients that don't implement HTTP/1.1 correctly

 restrictedUserAgents="^.*MS Web Services Client Protocol 1.1.4322.*$"

 -->

 <!-- A AJP 1.3 Connector on port 8009 -->

 <Connector port="8009" address="${jboss.bind.address}"

 emptySessionPath="true" enableLookups="false" redirectPort="8443"

 protocol="AJP/1.3"/>

Thread pools can be monitored using the Tomcat monitor at http://hostname:http_port. The
Tomcat status link is under the JBoss Management heading, for example:

Tomcat status (full) (XML)

Reducing the HTTP Connector Thread Pool

This connector is only used when you connect to Tomcat directly from your web browser. In this example,
the thread pool for the HTTP connector was reduced from 250 to 20.

<!-- A HTTP/1.1 Connector on port 8080 -->

 <Connector port="8080" address="${jboss.bind.address}"

 maxThreads="20" strategy="lf" maxHttpHeaderSize="8192"

The maxThreads setting should reflect the expected maximum number of users that can simultaneously
use the system. This number should also drive the maximum number of database connections in the
datasource *-ds.xml file.

Full documentation for the HTTP Connector configuration can be found at
http://tomcat.apache.org.

Increasing the AJP Connector Thread Pool

This is the primary means of contacting the server for a user (via Apache and mod_jk). In this example, the
thread pool for the AJP connector is increased:

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 4 1

9 - T u n i n g S i t e P e r f o r m a n c e o n J B o s s

μ
<!-- A AJP 1.3 Connector on port 8009 -->

 <Connector port="8009" address="${jboss.bind.address}"

 maxThreads="250" strategy="lf" minSpareThreads="50"

 emptySessionPath="true" enableLookups="false" redirectPort="8443"

 bufferSize="10240" maxHttpHeaderSize="8192" tcpNoDelay="true"

 protocol="AJP/1.3"/>

Full documentation for the AJP Connector and a complete dictionary of the AJP connector configuration
can be found at http://tomcat.apache.org.

Tomcat Cluster Configuration

The <JBdir>/server/configdir/deploy/jboss-web-cluster.sar/META-INF/jboss-
service.xml file contains the session replication settings. Consider the following options to improve
performance:

 Use the replication strategy REPL_ASYNC.

 Under the UDP protocol stack ensure that the mcast_addr is the same on all cluster
members.

 Under the UDP protocol stack ensure that the mcast_port is the same on all cluster
members.

 When running under Windows 2003, ensure that the loopback attribute of the UDP
protocol stack is set to true. For Linux this should be set to false. See the comment
about this in the file.

JBoss Logging Configuration

JBoss uses Log4j wrapped in an MBean as a logging service. This means that an independent logging
library does not need to be bundled with the application.

All logging configuration is done in the <JBdir>/server/configdir/conf/jboss-log4j.xml file. For
more information on Log4j, see http://logging.apache.org/log4j/docs/manual.html.

You can adjust class specific logging in the category elements toward the end of the log4j configuration
file. Each category can have a priority assigned to it. For example:

<category name="org.jboss">

 <priority value="DEBUG" />

 <appender-ref ref="FILE"/>

</category>

Datasource Configuration

In any –ds.xml files used by ATG, edit the <min-pool-size> and <max-pool-size> settings to reflect
the expected maximum number of simultaneous connections.

Note: Your file may have a different name or location, depending on your configuration.

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 4 2

9 - T u n i n g S i t e P e r f o r m a n c e o n J B o s s

μ
<min-pool-size>50</min-pool-size>

<max-pool-size>75</max-pool-size>

Datasource connections can be monitored using the JMX-Console at:

http://hostname:port/jmx-console

Look for ATG and ManagedConnectionFactory. The MBean monitor page shows how many connections
exist and how many are being used.

Configuring run.bat/sh and run.conf

You may want to add the following JVM tuning parameters to the JAVA_OPTS in the bin/run.conf
(UNIX) or run.bat (Windows) file:

 -Dtomcat.util.buf.StringCache.byte.enabled=true

Enables the byte array to String conversion caching.

 -Dtomcat.util.buf.StringCache.char.enabled=true

Enables the char array to String conversion caching.

 -Dtomcat.util.buf.StringCache.trainThreshold=5

The cache is built after a training period, during which statistics about converted
Strings are kept. The value of this property specifies the number of String conversions
to perform before building the cache.

 -Dtomcat.util.buf.StringCache.cacheSize=2000

The maximum number of String objects that will be cached, according to their usage
statistics.

The effectiveness of the StringCache can be checked using the JMX-Console. Look for StringCache under
Catalina in the JMX-Console page.

For the JVM command-line, the following settings can be used:

 Memory set at just over 1G for each server

 MaxPermSize adjusted to 256m

JBoss Application Framework Trimming
Removing non-required services can reduce the memory footprint as well as simplifying configuration for
your application. To remove JBoss services, consider deleting the services listed below from the deploy
(or deploy-hasingleton) directory.

Warning: The jboss-service.xml found in the configdir/conf directory should never be deleted or
moved.

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 4 3

9 - T u n i n g S i t e P e r f o r m a n c e o n J B o s s

μ
Consider whether you might be able to remove the following services:

 JBoss Mail (mail-ra.rar, mail-service.xml)

 HA-JMS (in the deploy-hasingleton directory of the all configuration)

 HA-JNDI (in all/deploy/cluster-service.xml, search for HAJNDI)

 UUID Key Generator (used only for CMP, uuid-keygenerator.sar)

 Monitoring (monitor JMX changes, in monitoring-service.xml)

 Scheduling (schedule tasks to execute, in schedule-manager-service.xml and
scheduler-service.xml)

 EJB3 related services; see <JBdir>/server/configdir/conf/jboss-service.xml

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 4 4

9 - T u n i n g S i t e P e r f o r m a n c e o n J B o s s

μ

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 4 5

A p p e n d i x A : M i g r a t i o n I s s u e s

μ
Appendix A: Migration Issues

This chapter discusses the following topics:

Migrating from ATG 6 on WebLogic or WebSphere

Using the JBoss Migration Tool

Migrating from Dynamo Application Server

Reassembling Your Applications

Migrating from ATG 6 on WebLogic or WebSphere
If you are currently running ATG 6 on WebLogic or WebSphere and want to migrate to ATG 10.0.1, you
should be aware of some significant differences between the way ATG 6 and ATG 10.0.1 applications run:

 ATG 6 uses special startup scripts and environment variables to modify the WebLogic
or WebSphere system CLASSPATH so that an instance of Nucleus runs on WebLogic or
WebSphere. The EAR and WAR files you build contain only standard J2EE components
and configuration, while Nucleus classes and configuration remain in the ATG
installation.

 ATG 9 does not modify the WebLogic or WebSphere system CLASSPATH. The
applications you build are assembled into EAR files that each run their own instance of
Nucleus. These EAR files include all of the class files and (optionally) configuration for
the application’s Nucleus components.

When you migrate to ATG 10.0.1, you must reassemble your applications to take advantage of the new
format, which is more modular, easier to maintain, and less likely to result in system resource conflicts. For
information about how to reassemble your applications, see Reassembling Your Applications.

Using the JBoss Migration Tool
The JBoss Migration Tool is a Java application that is invoked through a shell script. The application
automatically performs many of the steps required to transform an application that was designed to run
on DAS into an application that will run on JBoss. This includes fixing JSP pages, ensuring that
applications use JBoss datasources, ensuring that the correct entries are present in web.xml files, and
ensuring that all EAR and WAR files are correctly listed in MANIFEST.MF files. The sections that follow
outline the work the migration tool performs.

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 4 6

A p p e n d i x A : M i g r a t i o n I s s u e s

μ
See the Migrating from Dynamo Application Server section of this appendix for additional changes you
may want to make in your applications.

Migrating JSPs

The migration tool copies all files in the root directory you specify to the destination directory, and
performs the following processing on all files ending in .jsp or .jspf, including those within .jar or
.zip files:

 Substitutes all occurrences of (DynamoHttpServletRequest) [someExpression]
with ServletUtil.getDynamoRequest([someExpression]), and any occurrences
of (DynamoHttpServletResponse) [someExpression] with
(ServletUtil.getDynamoResponse) [someExpression].

 Looks for instances of double quotes nested within double quotes, or single quotes
within single quotes, and replaces the outer quotes with single quotes or double
quotes.

Migrating MANIFEST.MF

All ATG modules have a MANIFEST.MF file that describes properties of the module. The ATG-EAR-Module
and ATG-War-Module manifest attributes specify any EAR or WAR files that should be started up in JBoss.
The migration tool ensures that the MANIFEST.MF for all ATG modules includes references to all EAR and
WAR files specified in the J2EEContainer.properties file within the configuration path for a given
module.

Migrating web.xml Files

The migration tool searches the specified root directory, including .jar and .zip files, for all web.xml
files. For each web.xml file it finds, it makes sure there is an entry for the PageFilter and for the
NucleusServlet. If either is missing, the tool adds the entry to the web.xml and saves the modified file
to the destination directory. Any web.xml files contained in .jar or .zip files are modified and inserted
back into the copy of the jar in the destination directory.

Migrating Datasource Components

The migration tool examines all .properties files, .jar files, and .zip files within the ATG application’s
root directory, looking for configuration files that configure a FakeXADataSource or
MonitoredDataSource component. It tracks entries found in localconfig directories separately from
entries found in other locations. If a FakeXADataSource has any null values, then that component is
ignored by the migration tool. If two datasource components have the same name and configuration
path, the last one located takes priority.

After all FakeXADataSources and MonitoredDataSources have been accounted for, the migration tool
creates an atg-das-datasources-ds.xml file in the specified JBoss server directory. If no JBoss server
directory is specified, the atg-das-datasources-ds.xml file is created at the root level of the
destination directory.

For each FakeXADataSource found in localconfig, the migration tool creates a corresponding entry in
the atg-das-datasources-ds.xml file, giving each entry a unique JNDI name. The tool then goes
through the non-localconfig FakeXADataSource components; it adds an entry for each of these to
the XML file only if there is no entry in the localconfig map with the same component path.

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 4 7

A p p e n d i x A : M i g r a t i o n I s s u e s

μ
Note: The migration tool is not XA-datasource aware. When it migrates existing ATG datasources to JBoss,
the JBoss datasources are of type <local-tx-datasource>. You should edit your datasources manually
to be XA datasources.

The tool then creates new configuration files for each MonitoredDataSource. The configuration files are
placed in home/localconfig, using the original component path of the MonitoredDataSource. The
new properties files differ from the original MonitoredDataSource properties files in the following ways:

 The $class property is set to atg.nucleus.JNDIReference.

 There is only one other property, JNDIName, which is set to the JNDI name of the
datasource entry in the atg-das-datasources-ds.xml file, with a component path
that matches the MonitoredDataSource component’s original dataSource property
value.

For example, consider the following FakeXADataSource component:

$class=atg.service.jdbc.FakeXADataSource

driver=solid.jdbc.SolidDriver

URL=jdbc:solid://localhost:1313

user=admin

password=admin

Along with that component is the following MonitoredDataSource component:

$class=atg.service.jdbc.MonitoredDataSource

dataSource=/atg/dynamo/service/jdbc/FakeXADataSource

Having found those two components, the tool would create the following entry in the atg-das-
datasources-ds.xml file:

 <local-tx-datasource>

 <jndi-name>generalDS/atg/reporting/datawarehouse/FakeXADataSource

</jndi-name>

 <connection-url>jdbc:solid://localhost:1313</connection-url>

 <driver-class>solid.jdbc.SolidDriver</driver-class>

 <user-name>admin</user-name>

 <password>admin</password>

 <min-pool-size>10</min-pool-size>

 <max-pool-size>10</max-pool-size>

 </local-tx-datasource>

It also creates the following MonitoredDataSource.properties file in home/localconfig:

$class=atg.nucleus.JNDIReference

JNDIName=java\:/generalDS/atg/dynamo/service/jdbc/FakeXADataSource

Note: For best results, before running the migration tool, make sure that the most current and relevant
datasource configs are placed in a localconfig directory. This will give them priority over any other
datasource configs that might be found. Also, double-check the generated JBoss datasource XML file to
make sure that all the datasource components are correct, and make any corrections if necessary.

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 4 8

A p p e n d i x A : M i g r a t i o n I s s u e s

μ
Running the JBoss Migration Tool

The JBoss Migration Tool script is located in your <ATG10dir>\DAF\JBossMigration folder and, has the
following usage syntax:

migrateToJBoss dynamoRootDir [-d destinationDir]

 [-j jbossServerDir] [-v]

It takes the following parameters:

 dynamoRootDir—Required. The root of the ATG application to be migrated.

 destinationDir—Optional. This directory will contain a copy of the source directory
except for those files which have been modified for the migration. If this parameter is
not specified, then a default destination directory will be created to hold the migrated
files and copies of the unaltered files. The default directory will be the name of the root
directory followed by the string “_migration”. If a directory/file by that name already
exists, then an integer will be tacked on the end of the name and incremented until a
unique name is found.

 jbossServerDir—Optional. The location of the JBoss server deploy directory. This is
needed to correctly save the generated JBoss datasource file. If you do not supply this
parameter, the JBoss datasource file is saved to the root level of the destinationDir,
and must be manually copied to the correct JBoss server directory.

Logging in JBoss Migration

As the JBoss Migration tool works, all migration actions are logged to a file in the top level of the
migration destination directory. The log file contains entries for any actions that modify the original
application, such as rewriting JSPs to not treat the request object as a DynamoHttpServletRequest, or
modifying a web.xml to add the PageFilter or NucleusServlet entries.

Migrating from Dynamo Application Server
If you are currently running applications on DAS and want to move these applications to another
application server, the migration process is straightforward. For JHTML-based applications, you should
not need to make many changes to the application itself, though you will need to repackage your
application.

This section discusses issues to be aware of when you migrate ATG applications from DAS to another
application server.

Note: If you are migrating from DAS to JBoss, some of these steps can be performed automatically. See
Using the JBoss Migration Tool.

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 4 9

A p p e n d i x A : M i g r a t i o n I s s u e s

μ
JSP-based Applications

Because JSP-based applications rely on the application server’s JSP compiler, any differences between
DAS’s JSP compiler and the JSP compiler on the application server you are migrating to must be taken
into account. This section describes some practices to follow in your JSPs to ensure they are portable.

Using Java Expressions in Pages

 On WebLogic, the request object in a JSP is a standard HttpServletRequest, not a
DynamoHttpServletRequest. To access the DynamoHttpServletRequest object,
use ServletUtil.getDynamoRequest(ServletRequest).

 On DAS, the atg.servlet package is imported by default in JSP pages. On other
application servers, you must explicitly import the atg.servlet package in any page
that uses classes from that package.

Using the DSP Tag Library

To learn about the DSP tag library, see the ATG Page Developer’s Guide.

 Each JSP that uses the DSP tag library must enclose its contents in beginning and
ending dsp:page tags, like this:

<dsp:page>

... body of page ...

</dsp:page>

 In pages that use the DSP tag library, you should avoid using standard JSP tags and
instead use DSP tags wherever possible. The JSP tags do not work reliably with the
DSP tag library, and the DSP tags provide additional features, such as support for the
passing of object parameters between pages. In particular, use dsp:include rather
than jsp:include or jsp:forward, and use dsp:param rather than jsp:param.

 Do not use value="param:paramName" to get the value of a parameter. Instead use
dsp:getvalueof to expose a scripting variable.

JSP Syntax

 Nested pairs of quotation marks must alternate between single and double quotes.
For example, the following works on DAS, but not on some application servers:

<dsp:param name="<%="abc"%>" value="17">

Instead, use:

<dsp:param name='<%="abc"%>' value="17">

 Use proper syntax for concatenating text strings. For example, the following works on
DAS, but not on some application servers:

<dsp:param name="xxx"<%= "yyy" %> value="12">

Instead, use:

<dsp:param name='<%= "xxx" + "yyy" %>' value="12">

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 5 0

A p p e n d i x A : M i g r a t i o n I s s u e s

μ
Servlet Pipeline

When an ATG application processes a request for a JSP that includes the DSP tag library, it invokes a
servlet pipeline whose Nucleus component path is /atg/dynamo/servlet/dafpipeline. The DAF
pipeline has fewer servlets than the DAS servlet pipeline, because it is not doing any request dispatching,
mime typing, or file finding in normal operation. These operations are handled by the application server
rather than by the ATG platform.

If your application adds any servlets to the DAS servlet pipeline, you will need to add these servlets to the
DAF pipeline to run your application on another application server. You create a new instance of your
servlet (since each pipeline servlet can be in only a single pipeline), and then insert it in the DAF servlet
pipeline at the appropriate place.

There are some differences between how the DAF servlet pipeline and the DAS servlet pipeline work. For
information about these differences, see Request Handling with Servlet Pipelines in the ATG Programming
Guide.

Other Issues

 Use javax.servlet.http.HttpSession, not
atg.servlet.sessiontracking.SessionData, as the class for your session.

 On DAS, you can use ATG’s EncodingTyper component to specify the encoding of
your JSPs. On other application servers, you must specify the encoding using the
contentType attribute of the JSP page directive, which is the standard mechanism for
defining encodings in a JSP. Note, however, that may still need to configure the
EncodingTyper to specify the encoding of posted data in forms. See the ATG
Programming Guide for more information.

 Do not use request.getParameter("name") to return parameters set using the
dsp:param tag. Instead, use the
getDynamoRequest(request).getParameter("name") method of the
atg.servlet.ServletUtil class to retrieve these parameters. You can of course
assume that these parameters are visible to any tags in the DSP tag library that take
parameter names. Your application server’s HttpServletRequest implementation
will return only those parameters set through standard mechanisms, such as query
arguments, post parameters, and parameters set using the jsp:param tag.

 Do not use HttpServletRequest.getSession() to get a session object. Instead,
use the getDynamoRequest(request).getSession() method of the
atg.servlet.ServletUtil class.

Migrating JHTML-based Applications

JHTML-based applications run the DAS servlet pipeline (not the DAF servlet pipeline) as a servlet in your
application server. Your web application in this case must contain at least one instance of the servlet
atg.nucleus.servlet.NucleusProxyServlet. This servlet takes an initialization parameter which is
the Nucleus component path of the first servlet in the servlet pipeline. The default if no value is supplied is
the string /atg/dynamo/servlet/pipeline/DynamoHandler, which is the Nucleus component path of
the first servlet in the DAS servlet pipeline. When the NucleusProxyServlet receives a request, it passes
it to the first servlet in the pipeline.

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 5 1

A p p e n d i x A : M i g r a t i o n I s s u e s

μ
When you use the runAssembler command to assemble an EAR file, it includes NucleusProxyServlet
in the atg_bootstrap.war web application, and includes these entries in its web.xml file:

<servlet>

 <servlet-name>DynamoProxyServlet</servlet-name>

 <servlet-class>atg.nucleus.servlet.NucleusProxyServlet</servlet-class>

 <load-on-startup>2</load-on-startup>

</servlet>

 ...

<servlet-mapping>

 <servlet-name>DynamoProxyServlet</servlet-name>

 <url-pattern>/dyn/*</url-pattern>

</servlet-mapping>

If this web application is installed in your application server with a context path of /dyn (the default), then
the URLs for all JHTML pages in the application begin with:

http://hostname:port/dyn/dyn/

Note that this means that the request.getContextPath() and the request.getServletPath()
methods do not return null, as they do on DAS. When configured with the servlet mapping shown above,
the request.getContextPath() returns /dyn (the first one in the URL) and the
request.getServletPath() returns /dyn as well (the second one).

A few servlets in the DAS servlet pipeline are disabled, because those facilities are provided by the
application server (for example, the SessionServlet is disabled, because session tracking is handled by
the application server). The first servlet in the pipeline creates the DynamoHttpServletRequest and
Response wrappers around the HttpServletRequest and Response just as it does in DAS. All pipeline
servlets you install into the servlet pipeline will work as they did in DAS.

When the request reaches the FileFinderServlet in the pipeline, this servlet translates the path to find
a file relative to ATG’s document root. On DAS using an ATG connection module, the connection module
generally handles the translation of the paths. When you run ATG on another application server, the web
server and application server cannot do the path translation, so you must configure the
FileFinderServlet with all of the virtual directories used by your application. This is equivalent to how
FileFinderServlet behaves on DAS when the FileFinderServlet.alwaysTranslate property is
set to true.

Reassembling Your Applications
There are three main steps involved in reassembling an existing application:

1. Update the manifest files for any ATG application modules that you have created. For
example, suppose your application is stored in an application module named MyApp at
the top level of <ATG10dir>. You’ll need to modify the <ATG10dir>/MyApp/META-
INF/MANIFEST.MF file to include the manifest attributes used by the runAssembler

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 5 2

A p p e n d i x A : M i g r a t i o n I s s u e s

μ
command. (Note that you do not need to modify the manifest files for any of the
application modules that are part of the ATG installation, such as DPS and DSS. The
manifest files for those modules already have all of the necessary attributes.) For more
information about application modules and manifest attributes, see the Working with
Application Modules chapter of the ATG Programming Guide.

2. Build an EAR file using the runAssembler command. For more information, see the
Developing and Assembling Nucleus-based Applications chapter of the ATG
Programming Guide.

3. Deploy the EAR file. Note that if you have a version of the application running, you
should undeploy that version before deploying the new EAR file. See your application
server documentation for information about deploying and undeploying applications.

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 5 3

A p p e n d i x B : S e t t i n g U p W e b S p h e r e S t u d i o A p p l i c a t i o n D e v e l o p e r

μ
Appendix B: Setting Up WebSphere
Studio Application Developer

This appendix describes how to create ATG modules and J2EE applications in WebSphere Studio
Application Developer (WSAD), and how to run those applications on WSAD’s internal test server.

This appendix contains the following sections:

Creating an ATG Java Project

Generating and Importing a J2EE Application

Setting Build References

Defining a Utility Jar

Troubleshooting Task Console Errors

Testing your Development Environment

Adding Dependent JARs

Configuring Additional ATG Servers

Reassembling Your Application for Deployment

The procedures in this appendix assume that you have the following:

 WebSphere Studio Application Developer version installed

 ATG platform configured to run on WebSphere

 ATG Eclipse plug-in version 2.1 or above installed (see the Installing ATG Development
Tools for Eclipse section in this guide)

If you are not familiar with ATG application assembly, see the Developing and Assembling Nucleus-Based
Applications chapter in the ATG Programming Guide.

Creating an ATG Java Project
The first step in using WSAD with the ATG platform is to create an ATG module as a Java project within
WSAD. The following sections explain procedures for creating a new module and importing an existing
module.

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 5 4

A p p e n d i x B : S e t t i n g U p W e b S p h e r e S t u d i o A p p l i c a t i o n D e v e l o p e r

μ
You will do all of your Java development and ATG configuration in the WSAD project.

Note: Although you do not use the EAR/WAR structure of the ATG module for development purposes, it is
used during assembly, so leave it intact (see Reassembling Your Application for Deployment later in this
appendix).

Creating a Workspace

When you start the WSAD, specify a workspace for the J2EE projects on which you are working.

Creating a New ATG Module and WSAD Java Project

To create a new module:

1. In the WSAD, select File > New > Project.

2. In the folder list, select Java > ATG Wizards > New ATG Module.

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 5 5

A p p e n d i x B : S e t t i n g U p W e b S p h e r e S t u d i o A p p l i c a t i o n D e v e l o p e r

μ

3. Click Next.

4. Enter a name for the module.

5. In the ATG Installation: Root Directory field, enter your <ATG10dir> directory. If you
check Save as Default, this directory is used as the default root for all other ATG
applications created in this workspace.

6. Click Next.

7. If your application requires additional ATG applications (Portal, Commerce, etc), click
the Add… button and add them from the dialog box. For typical J2EE applications
only the ATG Adaptive Scenario Engine is needed.

8. Click Next.

9. To add additional modules to your own module, click the Add… button and select
modules from the dialog box. For typical J2EE applications, only DAS, DPS, and DSS are
needed.

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 5 6

A p p e n d i x B : S e t t i n g U p W e b S p h e r e S t u d i o A p p l i c a t i o n D e v e l o p e r

μ

10. Leave the default Configuration Directory as config.

11. Click Next.

12. On the Source tab, select the displayed folder and click the Remove button.

13. Click Add Folder….

14. On the popup, make sure that Folder as source folder is selected, and specify a name
(such as src) for your Java source folder.

15. Click OK. (You may see an error, which is resolved in the next step.)

16. Add \classes to your module name in the Default Output folder field.

17. Click Next.

18. Enter a name for your J2EE application. It is good practice but not necessary to include
the .ear extension.

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 5 7

A p p e n d i x B : S e t t i n g U p W e b S p h e r e S t u d i o A p p l i c a t i o n D e v e l o p e r

μ

19. Enter a name for your web application. Do not include the .war extension.

20. Specify a context root. This will be added to your application.xml and web.xml.

21. Click the Add… button to specify the application servers you will run on.

22. Click Finish.

Creating a WSAD Java Project from an Existing ATG Module

To create your project from an existing module:

1. In the WSAD, select File -> New -> Other.

2. In the folder list, go to Java > ATG Wizards > Existing ATG Module.

3. Click Next.

4. Enter a name for the module.

5. In the ATG Installation: Root Directory field, enter your <ATG10dir> directory. If you
check Save as Default, this directory is used as the default root for all other ATG
applications created in this workspace.

6. Click Next.

7. On the Source tab, select the displayed folder and click the Remove button.

8. Click Add Folder…. Make sure that Folder as source folder is checked.

9. Specify a name (such as \src) for your Java source folder.

10. Click OK.

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 5 8

A p p e n d i x B : S e t t i n g U p W e b S p h e r e S t u d i o A p p l i c a t i o n D e v e l o p e r

μ
11. Add \classes to your module name in the Default Output folder field.

12. Click Finish.

Generating and Importing a J2EE Application
The next step is to create an archived EAR file to import into WSAD; this creates the projects required (ear,
war, ejb. etc) to take advantage of WSAD’s J2EE development features.

Modifying the Manifest File

Modify the ATG-Class-Path attribute of the META-INF\MANIFEST.MF file to include a reference to
classes.jar. Entries are separated by a single space. Your manifest should look similar to the following:

Manifest-Version: 1.0

ATG-Config-Path: config/

ATG-Required: DAS DPS DSS

ATG-J2EE: j2ee-apps/helloworld.ear

ATG-EAR-Module: j2ee-apps/helloworld.ear

ATG-Class-Path: classes lib/classes.jar <optional – dependant jars>

The classes.jar file is generated later in the process.

Note: It is good practice to jar up your classes when you deploy them to production rather than reference
them in the classes folder.

You can add a reference to any other JAR file that your Nucleus components need access to; however, the
ATG Assembler will replace forward slashes in the names with underscores, causing errors in the WSAD
task list. Therefore, it is recommended that you add dependent JARs after assembling and importing your
EAR (see Adding Dependent JARs).

Assembling Your J2EE Application

Use the ATG Application Assembler to generate a Development mode J2EE application file for use in
WSAD (see the plug-in documentation for information on how to use the assembler).

The ATG plug-in provides a way to call the assembler:

1. In the WSAD, select File > Export > ATG J2EE Application.

2. From the ATG Project dropdown, select your ATG module.

3. Specify a path and name for your generated Output Ear file.

Note: If you use the Browse option to browse the directory structure, be sure to
specify the EAR name after you choose the appropriate folder.

1. Enter a display name (optional).

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 5 9

A p p e n d i x B : S e t t i n g U p W e b S p h e r e S t u d i o A p p l i c a t i o n D e v e l o p e r

μ
2. Select the Pack Ear and Admin Console options. Do not specify a Server.

3. Click Finish.

Importing the EAR file into WSAD

Import the assembled ear file into WSAD to create the needed WSAD J2EE projects.

1. In the WSAD, select File > Import > EAR file.

2. Browse to your previously assembled EAR file.

3. Specify a Project Name, which will be the name of your Enterprise Application project
(such as MyApp_EAR).

4. Leave the Project location as your default location for this workspace, and click Next.

5. On the next page, leave the defaults, and click Next.

6. Specify names for your web project as well as the ATG generated web and EJB
projects. It is good practice to use the same format you used for naming the EAR, such
as MyApp_WAR or MyApp_EJB. Click Next.

7. For each web project, update the Java Build settings and add the ATG classes as
dependant JARs; since there are references to ATG classes in the web.xml of each web
project, the projects must know where to find the ATG classes.

 Select each web project in the list box.

 Click the checkbox next to the atg_bootstrap_ejb.jar.

Note: You can skip this step and add a reference to these JAR files later.

8. Remove the references to any folders in the EJB classpath; you will see errors in WSAD
if an EJB has a reference to anything except a JAR file. If you need access to classes in
the home/locallib folder, jar them up and add them to your EAR’s lib directory. You
will get a reference to the custom module’s classes later.

 Select the atg_bootstrap_ejb.jar.

 Uncheck the folder references, typically lib/_home_slocallib and
lib/_HelloWorld_sclasses.

9. Click Finish.

You now have five (if you didn’t choose the Admin UI option when assembling) or six WSAD projects,
similar to the following list:

 atg_bootstrap_WAR

 atg_bootstrap_EJB

 atg_admin_WAR

 HelloWorld

 helloworld_EAR

 helloworld_WAR

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 6 0

A p p e n d i x B : S e t t i n g U p W e b S p h e r e S t u d i o A p p l i c a t i o n D e v e l o p e r

μ
The projects starting with atg contain the ATG framework. Helloworld_EAR is a WSAD Enterprise
Application project. HelloWorld is a Java project, representing your ATG module, and is where your Java
development and Nucleus component creation/configuration take place. Helloworld_WAR is a web
project, and is where your JSP development takes place.

You can create Java classes in your web project if they do not need a Nucleus component (for example, a
generic servlet), but creating them in your Java project simplifies things.

Setting Build References
If your web application refers to any custom classes (in a JSP or web.xml, for example), your web project
needs a build reference to the classes in your Java project. To create this, modify your web project’s Java
Build Path settings by adding a project dependency to your Java project.

1. Right-click your web project and select Properties.

2. Select Java Build Path > Projects tab.

3. Check the checkbox next to your Java project.

Note: If you did not modify the manifest file to include lib/classes.jar (see Modifying the Manifest
File), you can accomplish the same goal by adding a Project Reference to the
atg_bootstrap_EJB project here.

Verify that the other web projects have a project reference to the atg_bootstrap_EJB project as well.

Defining a Utility JAR
The last step is to define a utility JAR for your Enterprise Application. A WSAD Utility project takes the
output build directory of the chosen project, and jars it up into the file name specified when you run your
application.

To create your Utility project for the lib/classes.jar file:

1. Open the EAR Deployment Descriptor of you EAR project by expanding your EAR
project.

2. Click the Module tab.

3. Under Project Utility JARs, select Add….

4. In the dialog box, select your Java project, and type in the name of the JAR file to be
created. In this example it is lib/_HelloWorld_slib_sclasses.jar.

Note: You must type the URI exactly as specified in the EJB’s Manifest classpath. Notice
that the forward slashes have been become underscores. You can find the EJB
manifest under the EJB Project/ejbmodule/META-INF/MANIFEST.MF to verify the
name of this JAR.

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 6 1

A p p e n d i x B : S e t t i n g U p W e b S p h e r e S t u d i o A p p l i c a t i o n D e v e l o p e r

μ
5. Click Finish.

Any error in your Tasks console regarding an unresolved reference to
lib/_HelloWorld_slib_sclasses.jar should disappear.

Troubleshooting Task Console Errors
When you import a new EAR file, if you did not uncheck references to folders in the
atg_bootstrap_ejb.jar’s dependent JAR section, you may see an error in the Tasks console referring
to an entry to folders that are not resolvable (for example, lib/_home_slocallib,
lib/HelloWorld_sclasses). WSAD generates this error because it only recognizes JAR files, not folders,
as an EJB classpath entry. This error will not affect development.

To remove the error:

1. Open the EJB’s Manifest file (EJB Project/ejbmodule/META-INF/MANIFEST.MF).

2. Under the Dependencies section, find the reference to these directories.

3. Uncheck this reference and save the file.

Testing Your Development Environment
Before doing any development, test your environment. The skeleton application created in the previous
steps in this appendix comes with a JSP which tests Nucleus functionality.

To run your application:

1. Create a WebSphere server.

2. Start the SOLID database for the core ATG tables.

3. Generate Deployment Code for the EJB project.

4. Click Run on Server….

5. Select your server.

6. Click Finish.

The WSAD server starts, and the console displays the output of both WebSphere and your ATG
components. Once the server is started, you can open a browser and test your application by pointing to:
http://hostname:port/your_context_root or access the Dynamo Administration UI at
http://hostname:port/dyn/admin/.

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 6 2

A p p e n d i x B : S e t t i n g U p W e b S p h e r e S t u d i o A p p l i c a t i o n D e v e l o p e r

μ
Adding Dependent JARs

Many applications rely on third-party utility JARs for functionality. You may want to add more dependant
JARs during your development process, and after you have assembled your development mode ear. In
order for third-party JARs to be available to Nucleus components, they must be EAR-scoped, and should
reside in the lib directory of your Enterprise Application. Your EJB project must also be aware of them.

Note: If you add dependent JARs to the ATG-Class-Path manifest attribute of your ATG module before
generating the development EAR file, and the assembler distorts the names, causing errors in the WSAD
task list.

To add dependant JARs to your ATG application:

1. Copy or move the necessary JAR files into your EAR project’s lib folder. EAR project
files are stored in a folder under the WSAD workspace location (for example,
C:\j2ee-workspace).

2. In WSAD, right click your EAR project and select Refresh.

3. Navigate to the \lib directory of your EAR project. Your JARs should be visible.

4. Open the EJB’s manifest file (EJB Project/ejbmodule/META-INF/MANIFEST.MF)

5. Under the Dependencies section, check the JAR files you want to use.

6. Save the file.

Configuring Additional ATG Servers
Create an ATG server using the makeDynamoServer script or Configuration Manager to use with WSAD
(see Creating Additional ATG Server Instances in the Configuring Nucleus Components chapter. For
example:

makeDynamoServer HelloWorld 9010 9011

This script creates a new <ATG10>/home/servers/HelloWorld directory with the initial subdirectories
and properties files needed. Use the /localconfig directory to store your configuration files. This folder
is added to the end of your server’s configuration path, forming the final configuration layer for the
components.

Configure your application to use the new server. See the Using a Nondefault ATG Server section in the ATG
Programming Guide.

Reassembling Your Application for Deployment
The ATG assembler can only assemble a J2EE application from an ATG module, where the J2EE application
is in a typical hierarchical structure within the module. When you import a development mode EAR file

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 6 3

A p p e n d i x B : S e t t i n g U p W e b S p h e r e S t u d i o A p p l i c a t i o n D e v e l o p e r

μ
into WSAD, a new web development structure is created in your WSAD workspace, no longer using the
module’s J2EE application.

For that reason, you must extract the web development that you have been performing within your
WSAD workspace back into your ATG module structure when assembling. This process can be done via
the WSAD UI, or by using a custom ANT script.

Before you can export the web project and reassemble your application, you may need to update the
ATG-Class-Path manifest attribute of your module if you did not do so earlier.

Reassembling Your Application Using WSAD

The first step in preparing your ATG module for assembly to a standalone EAR file is to export your web
application. Before exporting an archived WAR file back into the ATG module J2EE structure, first remove
the existing WAR file:

1. Navigate to your WAR file. For example: <ATG10dir>/HelloWorld/j2ee-
apps/helloworld/helloworld.war.

2. Delete or rename the existing WAR file.

3. Select File > Export > WAR file.

4. Select your web project.

5. For Destination, specify the path to your ATG module’s J2EE application and name
your WAR file exactly as it was initially named when you first created your module (if
the name of the file to be exported does not match the <web-uri> value in the j2ee-
apps/helloworld/META-INF/application.xml, assembly fails). For example:

C:\ATG\ATG10.0.1\HelloWorld\j2ee-apps\helloworld\helloworld.war

6. Select the Overwrite option to overwrite any existing work. Delete any old WAR files
before exporting new ones.

7. Click Finish. You have an archived WAR file under your j2ee-apps/ear directory, and
can assemble your application.

8. Select File > Export > ATG J2EE Application.

9. Select your ATG module.

10. Specify a path and name for your exported standalone EAR file. It is a good practice to
have separate directories for your standalone and development EAR files.

11. Select the Pack Ear, Standalone, and Admin Console options. Do not specify a
server. You must configure your application to use a non-default server instance by
setting a system property, similar to setting a system property in the WSAD internal
server.

12. Click Finish.

Reassembling Your Application Using Ant

The ATG assembler also includes two Ant tasks to simplify invoking the assembler within ant.

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 6 4

A p p e n d i x B : S e t t i n g U p W e b S p h e r e S t u d i o A p p l i c a t i o n D e v e l o p e r

μ
 CreateUnpackedEarTask build an unpacked/exploded EAR file

 PackEarFileTask archives an unpacked/exploded EAR file

See Invoking the Application Assembler Through an Ant Task in the ATG Programming Guide for information.

A generic Ant build and configuration file handles:

 Archiving your project’s classes (classes.jar).

Note: It does not compile your classes.

 Archiving your web project from its WSAD workspace location and placing it within
your module’s J2EE structure.

 Invoking the CreateUnpackedEarTask with the standalone and adminConsole
options.

 Invoking the PackEarFileTask.

To copy, configure and run the ant build files:

1. Place the build.xml and build.conf in your module root
(<ATG10dir>/HelloWorld).

2. Open the build.conf file.

3. Modify the properties to match your project, module, ear, and war settings. You
should not need to modify build.xml unless you want to add functionality.

4. Open a command prompt and navigate to your module root.

5. Type ant assemble.ear or simply ant (assemble.ear is the default task).

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 6 5

A p p e n d i x C : D a t a S t o r a g e a n d A c c e s s

μ
Appendix C: Data Storage and Access

This appendix describes the recommended configuration for storing and accessing ATG data. It covers the
following:

Database Schema Best Practices

Data Sources

Repositories

Database Schema Best Practices
Your DBA has ultimate control over the arrangement of ATG database schemas. However, ATG
recommends as a best practice that your installation include the databases described in the following list.
ATG documentation for data sources and other components uses this division as the frame of reference.

 Production Schema—Data to be accessed or affected by external users, such as
product catalogs and customer profiles, and the loader tables for the data warehouse.
See the Production Schema section that follows.

 Management Schema—Data required for ATG administrative applications to run,
including versioned repositories and internal users. See the Management Schema
section that follows.

 Agent Schema—Data to be accessed by internal users of the customer service
applications, such as ATG Knowledge solutions and profile data for internal users. See
the Agent Schema section that follows.

 Warehouse Schema—All of the data warehouse data. This schema should be created
in a database optimized for data warehousing, and on a high-performance machine.
see the ATG Customer Intelligence Data Warehouse Guide.

ATG documentation may also refer to a “local” schema. This schema contains the platform tables created
by the das_ddl.sql script (see Creating the DAS Tables in this guide).

See the ATG Multiple Application Integration Guide for additional information on system architecture.

Production Schema

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 6 6

A p p e n d i x C : D a t a S t o r a g e a n d A c c e s s

μ
agent_profile_cmt

s

arf_id_generator ARF_LOADER_PROG ARF_LOADER_QUEUE

ARF_LQ_ENTRIES ARF_QUEUE_ENTRY arf_secure_id_gen b2c_bike_owned

b2c_bike_sku b2c_clothing_sku b2c_compat_frame b2c_dimensions

b2c_frame_product b2c_item_bought b2c_manufacturer b2c_mnfr_keywrd

b2c_part_sku b2c_product b2c_sku b2c_style

b2c_user b2c_user_keyword bc_campaign_track bc_email_act_mon

bc_email_list_inf

o

bc_email_optin bc_email_optout bc_imp_def_map

bc_imp_err bc_imp_match bc_imp_overwrite bc_imp_prop_map

bc_imp_req bc_import_info bc_import_rules bc_mailing

bc_unposted_statu

s

bc_user_imp_aux bc_user_imp_info bcr_email_click

bcr_email_open bcr_opt_out bfr_bike_sku bfr_clothing_sku

bfr_compat_frame bfr_dimensions bfr_frame_product bfr_manufacturer

bfr_mnfr_keywrd bfr_part_sku bfr_product bfr_sku

bfr_style bjp_bike_sku bjp_clothing_sku bjp_compat_frame

bjp_dimensions bjp_frame_produc

t

bjp_manufacturer bjp_mnfr_keywrd

bjp_part_sku bjp_product bjp_sku bjp_style

caf_reg_asset caf_reg_folder caf_reg_pathasset caf_reg_repasset

caf_reg_rootfolde

r

caf_registry cc_campaign_track cc_folder

cc_media cc_media_bin cc_media_ext cc_media_txt

cc_usr_marker ccr_audit_trail ccr_campaign_entered ccr_email_click

ccr_email_open ccr_inbound_emai

l

ccr_opt_out ccr_outbound_email

csr_cc_exch_metho

d

csr_exch csr_exch_cmts csr_exch_item

csr_exch_item_dis

p

csr_exch_items csr_exch_method csr_exch_methods

csr_exch_reasons csr_exch_repl_it

em

csr_exch_repl_itms csr_order_cmts

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 6 7

A p p e n d i x C : D a t a S t o r a g e a n d A c c e s s

μ
csr_return_fee csr_sc_exch_meth

od

csrt_ci_event csrt_claim_item

csrt_grant_appeas

e

csrt_oma_event csrt_order_comment csrt_order_event

csrt_orders csrt_pg_event csrt_price_overrde csrt_recv_rtrn_itm

csrt_return_order csrt_schd_event csrt_sg_event csrt_split_cc

csrt_split_sg csrt_update_org das_account das_acct_prevpwd

das_cluster_name das_dd_markers das_dep_fail_info das_depl_depldat

das_depl_item_ref das_depl_options das_depl_progress das_depl_repmaps

das_deploy_data das_deploy_mark das_deployment das_file_mark

das_group_assoc das_gsa_subscrib

er

das_id_generator das_ns_acls

das_nucl_sec das_rep_mark das_sds das_secure_id_gen

das_thread_batch dbcpp_sched_clon

e

dbcpp_sched_order dcs_cart_event

dcs_cat_ancestors dcs_cat_aux_medi

a

dcs_cat_chldcat dcs_cat_chldprd

dcs_cat_groups dcs_cat_keywrds dcs_cat_media dcs_cat_refcfg

dcs_cat_rltdcat dcs_catalog_refc

fg

dcs_category dcs_category_acl

dcs_catinfo_refcf

g

dcs_child_fol_pl dcs_close_qualif dcs_complex_price

dcs_conf_options dcs_config_opt dcs_config_prop dcs_discount_promo

dcs_folder dcs_foreign_cat dcs_gen_fol_pl dcs_giftinst

dcs_giftitem dcs_giftlist dcs_giftlist_item dcs_inventory

dcs_media dcs_media_bin dcs_media_ext dcs_media_txt

dcs_ord_merge_evt dcs_order_marker

s

dcs_plfol_chld dcs_prd_ancestors

dcs_prd_aux_media dcs_prd_chldsku dcs_prd_groups dcs_prd_keywrds

dcs_prd_media dcs_prd_rltdprd dcs_prd_skuattr dcs_prd_upslprd

dcs_price dcs_price_level dcs_price_levels dcs_price_list

dcs_prm_cls_qlf dcs_product dcs_product_acl dcs_prom_used_evt

dcs_promo_grntd dcs_promo_media dcs_promo_rvkd dcs_promo_upsell

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 6 8

A p p e n d i x C : D a t a S t o r a g e a n d A c c e s s

μ
dcs_promotion dcs_refcfg_custo

m

dcs_refcfg_genels dcs_refine_config

dcs_sku dcs_sku_attr dcs_sku_aux_media dcs_sku_bndllnk

dcs_sku_conf dcs_sku_link dcs_sku_media dcs_sku_replace

dcs_storecred_clm dcs_submt_ord_ev

t

dcs_upsell_action dcs_upsell_prods

dcs_user dcs_user_abandon

ed

dcs_user_giftlist dcs_user_otherlist

dcs_user_wishlist dcs_usr_actvprom

o

dcs_usr_promostat dcs_usr_usedpromo

dcspp_amount_info dcspp_amtinfo_ad

j

dcspp_auth_status dcspp_bill_addr

dcspp_cc_status dcspp_claimable dcspp_commerce_item_

markers

dcspp_config_item

dcspp_coupon dcspp_cred_statu

s

dcspp_credit_card dcspp_debit_status

dcspp_det_price dcspp_det_range dcspp_ele_ship_grp dcspp_gc_status

dcspp_gift_cert dcspp_gift_inst dcspp_giftcert dcspp_hand_inst

dcspp_hrd_ship_gr

p

dcspp_item dcspp_item_ci dcspp_item_price

dcspp_itmprice_de

t

dcspp_manual_adj dcspp_ntaxshipitem dcspp_ord_abandon

dcspp_order dcspp_order_adj dcspp_order_inst dcspp_order_item

dcspp_order_pg dcspp_order_pric

e

dcspp_order_rel dcspp_order_sg

dcspp_pay_group dcspp_pay_inst dcspp_pay_status dcspp_payitem_rel

dcspp_payorder_re

l

dcspp_payship_re

l

dcspp_price_adjust dcspp_rel_orders

dcspp_rel_range dcspp_relationsh

ip

dcspp_sc_status dcspp_schd_errmsg

dcspp_sched_error dcspp_scherr_aux dcspp_sg_hand_inst dcspp_ship_addr

dcspp_ship_group dcspp_ship_inst dcspp_ship_price dcspp_shipitem_rel

dcspp_shipitem_su

b

dcspp_shipitem_t

ax

dcspp_store_cred dcspp_subsku_item

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 6 9

A p p e n d i x C : D a t a S t o r a g e a n d A c c e s s

μ
dcspp_tax_price dcspp_taxshipite

m

dfr_cat_ancestors dfr_cat_aux_media

dfr_cat_chldcat dfr_cat_chldprd dfr_cat_groups dfr_cat_keywrds

dfr_cat_media dfr_cat_rltdcat dfr_category dfr_folder

dfr_media dfr_media_bin dfr_media_ext dfr_media_txt

dfr_prd_ancestors dfr_prd_aux_medi

a

dfr_prd_chldsku dfr_prd_groups

dfr_prd_keywrds dfr_prd_media dfr_prd_rltdprd dfr_prd_skuattr

dfr_product dfr_sku dfr_sku_attr dfr_sku_aux_media

dfr_sku_bndllnk dfr_sku_link dfr_sku_media dfr_sku_replace

djp_cat_ancestors djp_cat_aux_medi

a

djp_cat_chldcat djp_cat_chldprd

djp_cat_groups djp_cat_keywrds djp_cat_media djp_cat_rltdcat

djp_category djp_folder djp_media djp_media_bin

djp_media_ext djp_media_txt djp_prd_ancestors djp_prd_aux_media

djp_prd_chldsku djp_prd_groups djp_prd_keywrds djp_prd_media

djp_prd_rltdprd djp_prd_skuattr djp_product djp_sku

djp_sku_attr djp_sku_aux_medi

a

djp_sku_bndllnk djp_sku_link

djp_sku_media djp_sku_replace dlo_logical_org dms_client

dms_limbo dms_limbo_body dms_limbo_delay dms_limbo_msg

dms_limbo_props dms_limbo_ptypes dms_limbo_replyto dms_msg

dms_msg_propertie

s

dms_queue dms_queue_entry dms_queue_recv

dms_topic dms_topic_entry dms_topic_sub dps_child_folder

dps_con_req dps_con_req_sum dps_contact_info dps_credit_card

dps_email_address dps_event_type dps_folder dps_log_id

dps_mail_batch dps_mail_server dps_mail_trackdata dps_mailing

dps_markers dps_org_ancestor

s

dps_org_chldorg dps_org_role

dps_organization dps_other_addr dps_pgrp_con_sum dps_pgrp_req_sum

dps_relativerole dps_reqname_sum dps_request dps_role

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 7 0

A p p e n d i x C : D a t a S t o r a g e a n d A c c e s s

μ
dps_role_rel_org dps_rolefold_chl

d

dps_scenario_value dps_seg_list

dps_seg_list_fold

er

dps_seg_list_nam

e

dps_session_sum dps_user

dps_user_address dps_user_event dps_user_event_sum dps_user_mailing

dps_user_org dps_user_org_anc dps_user_prevpwd dps_user_roles

dps_user_scenario dps_user_slot dps_usr_creditcard dps_usr_markers

drpt_conv_order drpt_session_ord drpt_stage_reached dss_audit_trail

dss_coll_scenario dss_coll_trans dss_das_event dss_das_form

dss_del_seg_name dss_deletion dss_dps_admin_prop dss_dps_admin_reg

dss_dps_admin_up dss_dps_click dss_dps_event dss_dps_inbound

dss_dps_page_visi

t

dss_dps_property dss_dps_referrer dss_dps_update

dss_dps_view_item dss_ind_scenario dss_ind_trans dss_mig_info_seg

dss_mig_seg_name dss_migration dss_profile_slot dss_scen_mig_info

dss_scenario_bool

s

dss_scenario_dat

es

dss_scenario_dbls dss_scenario_info

dss_scenario_long

s

dss_scenario_str

s

dss_server_id dss_slot_items

dss_slot_priority dss_template_inf

o

dss_user_bpmarkers dss_xref

if_integ_data media_base media_bin media_ext

media_folder media_txt rout_dep_hist rout_engine

rout_env rout_host rout_host_inf rout_idx_log_parts

rout_index rout_log_part rout_lp_cmd_count rout_lp_smry_cmds

rout_lp_summary rout_part rout_phys_part_m rout_swpchk

src_global_macro src_roottopics_s

eq

src_topic src_topic_label

src_topic_macro src_topic_pat_se

q

src_topic_pattern src_topic_set

src_topicchild_se

q

src_topicmacro_s

eq

srch_cfg_aprop srch_cfg_base

srch_cfg_cfg srch_cfg_dimnode srch_cfg_drule srch_cfg_dsyn

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 7 1

A p p e n d i x C : D a t a S t o r a g e a n d A c c e s s

μ
srch_cfg_dtinfo srch_cfg_erule srch_cfg_fol srch_cfg_fol_chldc

fgs

srch_cfg_fol_chld

fol

srch_cfg_prule srch_cfg_rank srch_cfg_rprop

srch_cfg_rpset srch_cfg_rrule srch_cfg_rule srch_cfg_synlnk

srch_cfg_synset srch_cfg_term srch_cfg_vrpset srch_config

srch_config_repo srch_refcfg_elem

s

srch_refel_exclude srch_refel_order

srch_refel_range srch_refel_selec

t

srch_refine_config srch_refine_elems

srch_refine_sort srch_refine_sube

ls

srch_sort_options srch_update_queue

srch_update_vqueu

e

ssvc_logging ssvc_prof_props ssvc_rate_ans

ssvc_rate_event ssvc_session_end ssvc_ticket ssvc_update_prof

ssvc_view_ans svc_cell_cfg svc_cell_def svc_config_objct

svc_content_cfg svc_content_def svc_default_val svc_fav_query

svc_fav_query_org svc_fld_defn svc_flddefn_bool svc_flddefn_extaud

svc_flddefn_intau

d

svc_flddefn_intm

od

svc_flddefn_lval svc_flddefn_seg

svc_fldtype_data svc_fldval_extau

d

svc_fldval_intaud svc_fldval_intmod

svc_framewrk_cfg svc_framewrk_def svc_frmwk_skin svc_frmwk_tab

svc_frmwrk_objct svc_fw_tab_cfg svc_fwobj_cnt svc_fwobj_opt

svc_fwobj_tmp svc_global_macro svc_ksession svc_list_value

svc_lval_intaud svc_media_base svc_media_bin svc_media_ext

svc_media_folder svc_media_txt svc_mktg_items svc_mktg_segments

svc_offer svc_offer_data svc_offer_media svc_opt_seg

svc_org_value svc_orgval_intau

d

svc_panel_cfg svc_panel_def

svc_ppnl_cmb svc_pred_text svc_ps_panels svc_ps_pnl_cfg

svc_pstack_cfg svc_pstack_def svc_qoaa svc_query

svc_query_pred svc_rec_answer svc_recent_tkts svc_recommend_read

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 7 2

A p p e n d i x C : D a t a S t o r a g e a n d A c c e s s

μ
svc_renderer svc_scls_fld_def

n

svc_scls_fld_defns svc_scls_intaud

svc_search_text svc_seg_intaud svc_segd_opt svc_segdopt_info

svc_segdopt_val svc_segment svc_sess_view_ans svc_session_link

svc_session_query svc_session_reje

ct

svc_site svc_site_opt

svc_siteopt_info svc_siteopt_val svc_skin_cfg svc_skin_def

svc_slot svc_slt_rndrr svc_soln svc_soln_class

svc_soln_fld svc_soln_int_aud svc_soln_int_mod svc_soln_redirect

svc_soln_segment svc_soln_sstatus svc_soln_status svc_soln_topic

svc_solnfld_lnk svc_solnfld_val svc_solnfldval_lnk svc_solnorg_seg

svc_solnrelevance svc_spell_dics svc_spell_words svc_sstatus_tdefn

svc_tab_cells svc_tab_cfg svc_tab_def svc_tab_pnl_cfg

svc_tab_pnl_def svc_tab_psinit svc_tab_psorder svc_tab_pstacks

svc_template_cfg svc_template_def svc_tf_fldval svc_tf_param

svc_tf_param_val svc_tfldval_lnk svc_tfparam_lval svc_tfplval_lnk

svc_topic svc_topic_label svc_topic_macro svc_topic_pat_seq

svc_topic_pattern svc_topicchild_s

eq

svc_topiclabel svc_topicmacro_seq

svc_topicusecount svc_user_favorit

es

svc_user_opt svc_useropt_info

svc_useropt_val svc_usr_loginbra

nd

svc_usr_mktg_sgmts svc_usr_srch

svc_viewed_answer svc_window_attrb svct_callnote_act svct_prob_cat

svct_research_act tkt_act_escal tkt_act_map tkt_act_message

tkt_act_ownagnt tkt_act_owngrp tkt_act_pcreate tkt_act_pswchange

tkt_act_statc tkt_act_worknote tkt_activity tkt_ads_act_data

tkt_ads_in_msgs tkt_ads_messages tkt_ads_mms_msgs tkt_ads_msg_addrs

tkt_ads_msg_atts tkt_ads_msg_hdrs tkt_ads_msg_props tkt_ads_msgaddlist

tkt_ads_msgattlis

t

tkt_ads_out_msgs tkt_ads_pop3_msgs tkt_ads_raw_msgs

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 7 3

A p p e n d i x C : D a t a S t o r a g e a n d A c c e s s

μ
tkt_ads_sms_msgs tkt_ads_smtp_msg

s

tkt_attachment tkt_attch_list

tkt_cust_details tkt_dist_srv_sta

t

tkt_esc_own_group tkt_esc_tkt_q

tkt_ext_ref tkt_extref_list tkt_owning_group tkt_q_stat_set

tkt_q_stats tkt_queue tkt_rea_context tkt_rea_ctx_list

tkt_reason tkt_related tkt_sub_status tkt_ticket

tkt_upd_props tkt_update_prof

Management Schema

alt_chan_usr_rel alt_channel alt_gear alt_gear_def

alt_gear_def_rel alt_gear_rel alt_group alt_user

alt_user_alert_rel alt_user_pref alt_userpref_rel avm_asset_lock

avm_devline avm_workspace bc_action bc_action_attr

bc_action_param bc_array bc_array_const bc_attribute

bc_campaign_data bc_campaign_note bc_cond_attr bc_cond_clause

bc_cond_clause_flt bc_condition bc_constant bc_email_optin

bc_email_optout bc_event bc_event_attr bc_event_filter

bc_event_prop bc_event_prop_na

me

bc_expression bc_filter

bc_flt_cond_clause bc_flt_operand bc_folder bc_imp_def_map

bc_imp_err bc_imp_match bc_imp_overwrite bc_imp_prop_map

bc_imp_req bc_import_info bc_import_rules bc_item

bc_jndi_prop bc_jndi_prop_nam

e

bc_mailing bc_nucl_prop_name

bc_nucleus_prop bc_parameter bc_participant_flt bc_profile_grp_flt

bc_servlet bc_st_cond_claus

e

bc_subj_prop_name bc_subject_prop

bc_user_imp_aux bc_user_imp_info bc_var_prop_name bc_variable

bc_variable_prop bcr_control bcr_email_click bcr_email_open

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 7 4

A p p e n d i x C : D a t a S t o r a g e a n d A c c e s s

μ
bcr_opt_out bcr_time_dim bcr_time_dim_meta caf_reg_asset

caf_reg_folder caf_reg_pathasse

t

caf_reg_repasset caf_reg_rootfolder

caf_registry cc_action cc_action_part_flt cc_campaign_data

cc_email_comm cc_email_comm_ev

t

cc_email_comm_lp cc_event

cc_event_wait cc_exit_campaign cc_fill_slot cc_fill_slot_cont

cc_fill_slot_event cc_folder cc_gen_act_event cc_gen_action

cc_land_page_event cc_landing_page cc_list_import cc_media

cc_media_bin cc_media_ext cc_media_txt cc_stage

cc_stage_action cc_stage_preempt cc_time_wait cc_usr_marker

ccr_audit_fact ccr_audit_trail ccr_campaign_entered ccr_email_click

ccr_email_fact ccr_email_open ccr_inbound_email ccr_lndpg_fact

ccr_opt_out ccr_optout_fact ccr_outbound_email comm_gear_add

comm_gear_rem das_account das_acct_prevpwd das_cluster_name

das_dd_markers das_dep_fail_inf

o

das_depl_depldat das_depl_item_ref

das_depl_options das_depl_progres

s

das_depl_repmaps das_deploy_data

das_deploy_mark das_deployment das_file_mark das_group_assoc

das_gsa_subscriber das_id_generator das_ns_acls das_nucl_sec

das_rep_mark das_sds das_secure_id_gen das_thread_batch

dbcpp_sched_clone dbcpp_sched_orde

r

dcs_cart_event dcs_cat_ancestors

dcs_cat_aux_media dcs_cat_chldcat dcs_cat_chldprd dcs_cat_groups

dcs_cat_keywrds dcs_cat_media dcs_cat_rltdcat dcs_category

dcs_category_acl dcs_child_fol_pl dcs_close_qualif dcs_complex_price

dcs_conf_options dcs_config_opt dcs_config_prop dcs_discount_promo

dcs_folder dcs_foreign_cat dcs_gen_fol_pl dcs_giftinst

dcs_giftitem dcs_giftlist dcs_giftlist_item dcs_inventory

dcs_media dcs_media_bin dcs_media_ext dcs_media_txt

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 7 5

A p p e n d i x C : D a t a S t o r a g e a n d A c c e s s

μ
dcs_ord_merge_evt dcs_order_marker

s

dcs_plfol_chld dcs_prd_ancestors

dcs_prd_aux_media dcs_prd_chldsku dcs_prd_groups dcs_prd_keywrds

dcs_prd_media dcs_prd_rltdprd dcs_prd_skuattr dcs_prd_upslprd

dcs_price dcs_price_level dcs_price_levels dcs_price_list

dcs_prm_cls_qlf dcs_product dcs_product_acl dcs_prom_used_evt

dcs_promo_grntd dcs_promo_media dcs_promo_rvkd dcs_promo_upsell

dcs_promotion dcs_sku dcs_sku_attr dcs_sku_aux_media

dcs_sku_bndllnk dcs_sku_conf dcs_sku_link dcs_sku_media

dcs_sku_replace dcs_storecred_cl

m

dcs_submt_ord_evt dcs_upsell_action

dcs_upsell_prods dcs_user dcs_user_abandoned dcs_user_giftlist

dcs_user_otherlist dcs_user_wishlis

t

dcs_usr_actvpromo dcs_usr_promostat

dcs_usr_usedpromo dcspp_amount_inf

o

dcspp_amtinfo_adj dcspp_auth_status

dcspp_bill_addr dcspp_cc_status dcspp_claimable dcspp_commerce_ite

m_markers

dcspp_config_item dcspp_coupon dcspp_cred_status dcspp_credit_card

dcspp_debit_status dcspp_det_price dcspp_det_range dcspp_ele_ship_grp

dcspp_gc_status dcspp_gift_cert dcspp_gift_inst dcspp_giftcert

dcspp_hand_inst dcspp_hrd_ship_g

rp

dcspp_item dcspp_item_ci

dcspp_item_price dcspp_itmprice_d

et

dcspp_manual_adj dcspp_ntaxshipitem

dcspp_ord_abandon dcspp_order dcspp_order_adj dcspp_order_inst

dcspp_order_item dcspp_order_pg dcspp_order_price dcspp_order_rel

dcspp_order_sg dcspp_pay_group dcspp_pay_inst dcspp_pay_status

dcspp_payitem_rel dcspp_payorder_r

el

dcspp_payship_rel dcspp_price_adjust

dcspp_rel_orders dcspp_rel_range dcspp_relationship dcspp_sc_status

dcspp_schd_errmsg dcspp_sched_erro

r

dcspp_scherr_aux dcspp_sg_hand_inst

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 7 6

A p p e n d i x C : D a t a S t o r a g e a n d A c c e s s

μ
dcspp_ship_addr dcspp_ship_group dcspp_ship_inst dcspp_ship_price

dcspp_shipitem_rel dcspp_shipitem_s

ub

dcspp_shipitem_tax dcspp_store_cred

dcspp_subsku_item dcspp_tax_price dcspp_taxshipitem dms_client

dms_limbo dms_limbo_body dms_limbo_delay dms_limbo_msg

dms_limbo_props dms_limbo_ptypes dms_limbo_replyto dms_msg

dms_msg_properties dms_queue dms_queue_entry dms_queue_recv

dms_topic dms_topic_entry dms_topic_sub dpi_access_right

dpi_child_folder dpi_contact_info dpi_email_address dpi_folder

dpi_mail_batch dpi_mail_server dpi_mail_trackdata dpi_mailing

dpi_org_ancestors dpi_org_chldorg dpi_org_role dpi_organization

dpi_other_addr dpi_relativerole dpi_role dpi_role_rel_org

dpi_role_right dpi_rolefold_chl

d

dpi_scenario_value dpi_template_role

dpi_user dpi_user_address dpi_user_mailing dpi_user_org

dpi_user_org_anc dpi_user_prevpwd dpi_user_roles dpi_user_scenario

dpi_user_sec_orgs dpi_user_slot dps_child_folder dps_con_req

dps_con_req_sum dps_contact_info dps_credit_card dps_email_address

dps_event_type dps_folder dps_log_id dps_mail_batch

dps_mail_server dps_mail_trackda

ta

dps_mailing dps_markers

dps_org_ancestors dps_org_chldorg dps_org_role dps_organization

dps_other_addr dps_pgrp_con_sum dps_pgrp_req_sum dps_relativerole

dps_reqname_sum dps_request dps_role dps_role_rel_org

dps_rolefold_chld dps_scenario_val

ue

dps_seg_list dps_seg_list_folde

r

dps_seg_list_name dps_session_sum dps_user dps_user_address

dps_user_event dps_user_event_s

um

dps_user_mailing dps_user_org

dps_user_org_anc dps_user_prevpwd dps_user_roles dps_user_scenario

dps_user_slot dps_usr_creditca

rd

dps_usr_markers drpt_conv_order

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 7 7

A p p e n d i x C : D a t a S t o r a g e a n d A c c e s s

μ
drpt_session_ord drpt_stage_reach

ed

dsi_coll_scenario dsi_coll_trans

dsi_del_seg_name dsi_deletion dsi_ind_scenario dsi_ind_trans

dsi_mig_info_seg dsi_mig_seg_name dsi_migration dsi_profile_slot

dsi_scen_mig_info dsi_scenario_boo

ls

dsi_scenario_dates dsi_scenario_dbls

dsi_scenario_info dsi_scenario_lon

gs

dsi_scenario_strs dsi_server_id

dsi_slot_items dsi_slot_priorit

y

dsi_template_info dsi_xref

dss_audit_trail dss_coll_scenari

o

dss_coll_trans dss_das_event

dss_das_form dss_del_seg_name dss_deletion dss_dps_admin_prop

dss_dps_admin_reg dss_dps_admin_up dss_dps_click dss_dps_event

dss_dps_inbound dss_dps_page_vis

it

dss_dps_property dss_dps_referrer

dss_dps_update dss_dps_view_ite

m

dss_ind_scenario dss_ind_trans

dss_mig_info_seg dss_mig_seg_name dss_migration dss_profile_slot

dss_scen_mig_info dss_scenario_boo

ls

dss_scenario_dates dss_scenario_dbls

dss_scenario_info dss_scenario_lon

gs

dss_scenario_strs dss_server_id

dss_slot_items dss_slot_priorit

y

dss_template_info dss_user_bpmarkers

dss_xref epub_agent epub_agent_trnprt epub_binary_file

epub_coll_workflow epub_dep_err_par

m

epub_dep_log epub_deploy_proj

epub_deployment epub_dest_map epub_exclud_asset epub_file_asset

epub_file_folder epub_his_act_par

m

epub_history epub_includ_asset

epub_ind_workflow epub_int_prj_his

t

epub_int_user epub_pr_history

epub_pr_tg_ap_ts epub_pr_tg_dp_id epub_pr_tg_dp_ts epub_pr_tg_status

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 7 8

A p p e n d i x C : D a t a S t o r a g e a n d A c c e s s

μ
epub_princ_asset epub_prj_targt_w

s

epub_prj_tg_snsht epub_proc_history

epub_proc_prv_prj epub_proc_taskin

fo

epub_process epub_process_data

epub_project epub_target epub_taskinfo epub_text_file

epub_tl_targets epub_topology epub_tr_agents epub_tr_dest

epub_wf_coll_trans epub_wf_del_segs epub_wf_deletion epub_wf_ind_trans

epub_wf_mg_inf_seg epub_wf_mig_info epub_wf_mig_segs epub_wf_migration

epub_wf_server_id epub_wf_templ_in

fo

epub_workflow_bls epub_workflow_dats

epub_workflow_dbls epub_workflow_in

fo

epub_workflow_lngs epub_workflow_ris

epub_workflow_strs epub_workflow_vf

s

if_integ_data media_base

media_bin media_ext media_folder media_txt

mem_membership_req paf_base_comm_ro

le

paf_base_gear_role paf_cf_child_item

paf_cf_gfldrs paf_child_folder paf_col_palette paf_comm_gears

paf_comm_gfldrs paf_comm_ldescs paf_comm_lnames paf_comm_roles

paf_comm_template paf_community paf_community_acl paf_cpal_ln_descs

paf_cpal_ln_names paf_ct_alt_gear paf_ct_alt_gr_rel paf_ct_child_fldr

paf_ct_folder paf_ct_gear paf_ct_gears paf_ct_gr_acl

paf_ct_gr_fldrs paf_ct_gr_iparam

s

paf_ct_gr_ln_descs paf_ct_gr_ln_names

paf_ct_gr_roles paf_ct_page paf_ct_pagefolder paf_ct_pg_regions

paf_ct_region paf_ct_region_gr

s

paf_ct_roles paf_device_output

paf_device_outputs paf_display_mode

s

paf_fldr_ln_descs paf_fldr_ln_names

paf_folder paf_folder_acl paf_gd_cprops paf_gd_iparams

paf_gd_l10n_descs paf_gd_l10n_name

s

paf_gd_uparams paf_gdf_child_item

paf_gear paf_gear_acl paf_gear_def paf_gear_iparams

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 7 9

A p p e n d i x C : D a t a S t o r a g e a n d A c c e s s

μ
paf_gear_ln_descs paf_gear_ln_name

s

paf_gear_modes paf_gear_param

paf_gear_prmvals paf_gear_roles paf_layout paf_layout_regdefs

paf_page paf_page_acl paf_page_ln_descs paf_page_ln_names

paf_page_regions paf_page_templat

e

paf_page_visit paf_pf_child_item

paf_ptpl_ln_descs paf_ptpl_ln_name

s

paf_region paf_region_def

paf_region_gears paf_styl_ln_desc

s

paf_styl_ln_names paf_style

paf_template paf_title_templa

te

page_gear_add page_gear_rem

vmap_attrval vmap_attrval_rel vmap_cattrval_rel vmap_fh

vmap_im vmap_im2ivm_rel vmap_iv vmap_iv2ivad_rel

vmap_ivattrdef vmap_ivm vmap_ivm2pvm_rel vmap_mode

vmap_pv vmap_pv2pvad_rel vmap_pvattrdef vmap_pvm

Agent Schema

agent_audit agent_call agent_org_props agent_prof_props

agent_session_end agent_update_org agent_update_prof alt_chan_usr_rel

alt_channel alt_gear alt_gear_def alt_gear_def_rel

alt_gear_rel alt_group alt_user alt_user_alert_rel

alt_user_pref alt_userpref_rel avm_asset_lock avm_devline

avm_workspace caf_reg_asset caf_reg_folder caf_reg_pathasset

caf_reg_repasset caf_reg_rootfold

er

caf_registry comm_gear_add

comm_gear_rem csr_ci_event csr_claim_item csr_grant_appease

csr_oma_event csr_order_commen

t

csr_order_event csr_pg_event

csr_price_override csr_recv_rtrn_it

em

csr_return_order csr_schd_event

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 8 0

A p p e n d i x C : D a t a S t o r a g e a n d A c c e s s

μ
csr_sg_event csr_split_cc csr_split_sg csr_upd_props

csr_view_card das_account das_acct_prevpwd das_cluster_name

das_dd_markers das_dep_fail_inf

o

das_depl_depldat das_depl_item_ref

das_depl_options das_depl_progres

s

das_depl_repmaps das_deploy_data

das_deploy_mark das_deployment das_file_mark das_group_assoc

das_gsa_subscriber das_id_generator das_ns_acls das_nucl_sec

das_rep_mark das_sds das_secure_id_gen das_thread_batch

dms_client dms_limbo dms_limbo_body dms_limbo_delay

dms_limbo_msg dms_limbo_props dms_limbo_ptypes dms_limbo_replyto

dms_msg dms_msg_properti

es

dms_queue dms_queue_entry

dms_queue_recv dms_topic dms_topic_entry dms_topic_sub

dpi_access_right dpi_child_folder dpi_contact_info dpi_email_address

dpi_folder dpi_mail_batch dpi_mail_server dpi_mail_trackdata

dpi_mailing dpi_org_ancestor

s

dpi_org_chldorg dpi_org_role

dpi_organization dpi_other_addr dpi_relativerole dpi_role

dpi_role_rel_org dpi_role_right dpi_rolefold_chld dpi_scenario_value

dpi_template_role dpi_user dpi_user_address dpi_user_mailing

dpi_user_org dpi_user_org_anc dpi_user_prevpwd dpi_user_roles

dpi_user_scenario dpi_user_sec_org

s

dpi_user_slot dps_child_folder

dps_con_req dps_con_req_sum dps_contact_info dps_email_address

dps_event_type dps_folder dps_log_id dps_mail_batch

dps_mail_server dps_mail_trackda

ta

dps_mailing dps_markers

dps_org_ancestors dps_org_chldorg dps_org_role dps_organization

dps_other_addr dps_pgrp_con_sum dps_pgrp_req_sum dps_relativerole

dps_reqname_sum dps_request dps_role dps_role_rel_org

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 8 1

A p p e n d i x C : D a t a S t o r a g e a n d A c c e s s

μ
dps_rolefold_chld dps_scenario_val

ue

dps_seg_list dps_seg_list_folde

r

dps_seg_list_name dps_session_sum dps_user dps_user_address

dps_user_event dps_user_event_s

um

dps_user_mailing dps_user_org

dps_user_org_anc dps_user_prevpwd dps_user_roles dps_user_scenario

dps_user_slot dps_usr_markers drpt_stage_reached dsi_coll_scenario

dsi_coll_trans dsi_del_seg_name dsi_deletion dsi_ind_scenario

dsi_ind_trans dsi_mig_info_seg dsi_mig_seg_name dsi_migration

dsi_profile_slot dsi_scen_mig_inf

o

dsi_scenario_bools dsi_scenario_dates

dsi_scenario_dbls dsi_scenario_inf

o

dsi_scenario_longs dsi_scenario_strs

dsi_server_id dsi_slot_items dsi_slot_priority dsi_template_info

dsi_xref dss_audit_trail dss_coll_scenario dss_coll_trans

dss_das_event dss_das_form dss_del_seg_name dss_deletion

dss_dps_admin_prop dss_dps_admin_re

g

dss_dps_admin_up dss_dps_click

dss_dps_event dss_dps_inbound dss_dps_page_visit dss_dps_property

dss_dps_referrer dss_dps_update dss_dps_view_item dss_ind_scenario

dss_ind_trans dss_mig_info_seg dss_mig_seg_name dss_migration

dss_profile_slot dss_scen_mig_inf

o

dss_scenario_bools dss_scenario_dates

dss_scenario_dbls dss_scenario_inf

o

dss_scenario_longs dss_scenario_strs

dss_server_id dss_slot_items dss_slot_priority dss_template_info

dss_user_bpmarkers dss_xref epub_agent epub_agent_trnprt

epub_binary_file epub_coll_workfl

ow

epub_dep_err_parm epub_dep_log

epub_deploy_proj epub_deployment epub_dest_map epub_exclud_asset

epub_file_asset epub_file_folder epub_his_act_parm epub_history

epub_includ_asset epub_ind_workflo

w

epub_int_prj_hist epub_int_user

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 8 2

A p p e n d i x C : D a t a S t o r a g e a n d A c c e s s

μ
epub_pr_history epub_pr_tg_ap_ts epub_pr_tg_dp_id epub_pr_tg_dp_ts

epub_pr_tg_status epub_princ_asset epub_prj_targt_ws epub_prj_tg_snsht

epub_proc_history epub_proc_prv_pr

j

epub_proc_taskinfo epub_process

epub_process_data epub_project epub_target epub_taskinfo

epub_text_file epub_tl_targets epub_topology epub_tr_agents

epub_tr_dest epub_wf_coll_tra

ns

epub_wf_del_segs epub_wf_deletion

epub_wf_ind_trans epub_wf_mg_inf_s

eg

epub_wf_mig_info epub_wf_mig_segs

epub_wf_migration epub_wf_server_i

d

epub_wf_templ_info epub_workflow_bls

epub_workflow_dats epub_workflow_db

ls

epub_workflow_info epub_workflow_lngs

epub_workflow_ris epub_workflow_st

rs

epub_workflow_vfs if_integ_data

media_base media_bin media_ext media_folder

media_txt mem_membership_r

eq

paf_base_comm_role paf_base_gear_role

paf_cf_child_item paf_cf_gfldrs paf_child_folder paf_col_palette

paf_comm_gears paf_comm_gfldrs paf_comm_ldescs paf_comm_lnames

paf_comm_roles paf_comm_templat

e

paf_community paf_community_acl

paf_cpal_ln_descs paf_cpal_ln_name

s

paf_ct_alt_gear paf_ct_alt_gr_rel

paf_ct_child_fldr paf_ct_folder paf_ct_gear paf_ct_gears

paf_ct_gr_acl paf_ct_gr_fldrs paf_ct_gr_iparams paf_ct_gr_ln_descs

paf_ct_gr_ln_names paf_ct_gr_roles paf_ct_page paf_ct_pagefolder

paf_ct_pg_regions paf_ct_region paf_ct_region_grs paf_ct_roles

paf_device_output paf_device_outpu

ts

paf_display_modes paf_fldr_ln_descs

paf_fldr_ln_names paf_folder paf_folder_acl paf_gd_cprops

paf_gd_iparams paf_gd_l10n_desc

s

paf_gd_l10n_names paf_gd_uparams

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 8 3

A p p e n d i x C : D a t a S t o r a g e a n d A c c e s s

μ
paf_gdf_child_item paf_gear paf_gear_acl paf_gear_def

paf_gear_iparams paf_gear_ln_desc

s

paf_gear_ln_names paf_gear_modes

paf_gear_param paf_gear_prmvals paf_gear_roles paf_layout

paf_layout_regdefs paf_page paf_page_acl paf_page_ln_descs

paf_page_ln_names paf_page_regions paf_page_template paf_page_visit

paf_pf_child_item paf_ptpl_ln_desc

s

paf_ptpl_ln_names paf_region

paf_region_def paf_region_gears paf_styl_ln_descs paf_styl_ln_names

paf_style paf_template paf_title_template page_gear_add

page_gear_rem srch_cfg_aprop srch_cfg_base srch_cfg_cfg

srch_cfg_dimnode srch_cfg_drule srch_cfg_dsyn srch_cfg_dtinfo

srch_cfg_erule srch_cfg_fol srch_cfg_fol_chldcfg

s

srch_cfg_fol_chldf

ol

srch_cfg_prule srch_cfg_rank srch_cfg_rprop srch_cfg_rpset

srch_cfg_rrule srch_cfg_rule srch_cfg_synlnk srch_cfg_synset

srch_cfg_term srch_cfg_vrpset srch_config srch_config_repo

srch_refcfg_elems srch_refel_exclu

de

srch_refel_order srch_refel_range

srch_refel_select srch_refine_conf

ig

srch_refine_elems srch_refine_sort

srch_refine_subels srch_sort_option

s

srch_update_queue srch_update_vqueue

svc_cell_cfg svc_cell_def svc_config_objct svc_content_cfg

svc_content_def svc_default_val svc_fld_defn svc_flddefn_bool

svc_flddefn_extaud svc_flddefn_inta

ud

svc_flddefn_intmod svc_flddefn_lval

svc_flddefn_seg svc_fldtype_data svc_fldval_extaud svc_fldval_intaud

svc_fldval_intmod svc_framewrk_cfg svc_framewrk_def svc_frmwk_skin

svc_frmwk_tab svc_frmwrk_objct svc_fw_tab_cfg svc_fwobj_cnt

svc_fwobj_opt svc_fwobj_tmp svc_list_value svc_lval_intaud

svc_media_base svc_media_bin svc_media_ext svc_media_folder

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 8 4

A p p e n d i x C : D a t a S t o r a g e a n d A c c e s s

μ
svc_media_txt svc_mktg_items svc_mktg_segments svc_offer

svc_offer_data svc_offer_media svc_opt_seg svc_org_value

svc_orgval_intaud svc_panel_cfg svc_panel_def svc_ppnl_cmb

svc_process_data svc_ps_panels svc_ps_pnl_cfg svc_pstack_cfg

svc_pstack_def svc_qoaa svc_renderer svc_scls_fld_defn

svc_scls_fld_defns svc_scls_intaud svc_seg_intaud svc_segd_opt

svc_segdopt_info svc_segdopt_val svc_segment svc_site

svc_site_opt svc_siteopt_info svc_siteopt_val svc_skin_cfg

svc_skin_def svc_slot svc_slt_rndrr svc_soln

svc_soln_class svc_soln_fld svc_soln_int_aud svc_soln_int_mod

svc_soln_segment svc_soln_status svc_soln_taskinfo svc_soln_topic

svc_solnfld_lnk svc_solnfld_val svc_solnfldval_lnk svc_status_right

svc_tab_cells svc_tab_cfg svc_tab_def svc_tab_pnl_cfg

svc_tab_pnl_def svc_tab_psinit svc_tab_psorder svc_tab_pstacks

svc_template_cfg svc_template_def svc_tf_fldval svc_tf_param

svc_tf_param_val svc_tfldval_lnk svc_tfparam_lval svc_tfplval_lnk

svc_user_opt svc_useropt_info svc_useropt_val svcm_attachments

svcm_batch_step svcm_classprops svcm_fav_solutions svcm_group

svcm_named_acl svcm_og_val_map svcm_property svcm_soln_class

svcm_step svcm_stmt_securi

ty

svcm_user svcm_user_favs

svcm_userfavs_m svcr_search_env svcr_sol_event svcr_ticket_event

tkt_org_tktqs tkt_push_agent vmap_attrval vmap_attrval_rel

vmap_cattrval_rel vmap_fh vmap_im vmap_im2ivm_rel

vmap_iv vmap_iv2ivad_rel vmap_ivattrdef vmap_ivm

vmap_ivm2pvm_rel vmap_mode vmap_pv vmap_pv2pvad_rel

vmap_pvattrdef vmap_pvm

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 8 5

A p p e n d i x C : D a t a S t o r a g e a n d A c c e s s

μ
Data Sources

The following table lists the datasource components available for use by ATG applications. The
datasources you configure will depend on which applications you are using.

Data Source Component Name Module Defined In Configured In

/atg/dynamo/service/jdbc/JTDataSource

This datasource is always configured to point to
the core schema for the server instance on which
it is running. For instance, on a Content
Administration server, it points to the
management schema; on a production server, it
points to the production schema.

DAS config

/atg/dynamo/service/jdbc/

JTDataSource_production

This datasource points to a production schema,
but runs on a non-production server instance,
such as asset management or agent.

DAS config

/atg/dynamo/service/jdbc/

JTDataSource_staging

This datasource points to a staging schema, but
runs on a non-staging server instance, such as
asset management, production, or agent.

DafEar.base configlayers/

stagingandprod

/atg/reporting/datawarehouse/loaders/

JTDataSource

ARF.base config

/atg/reporting/datawarehouse/

JTDataSource

ARF.DW.base config

/atg/commerce/jdbc/ProductCatalog

SwitchingDataSource

Used for switching. See Configuring a
SwitchingDataSource in this guide.

DCS config

/atg/commerce/jdbc/ProductCatalog

DataSourceA

Used for switching. See Configuring a
SwitchingDataSource in this guide.

DCS config

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 8 6

A p p e n d i x C : D a t a S t o r a g e a n d A c c e s s

μ
/atg/commerce/jdbc/ProductCatalog

DataSourceB

Used for switching. See Configuring a
SwitchingDataSource in this guide.

DCS config

/atg/search/service/SearchJTDataSource DAF.Search.Base config

/atg/dynamo/service/jdbc/

JTDataSource_agent

DAS config

/atg/dynamo/service/jdbc/

JTDataSource_management

DAS config

/atg/dynamo/service/jdbc/

eServerJTDataSource

Service.migration config

/atg/dynamo/service/jdbc/

SelfServiceReportingJTDataSource

Service.SelfService

DataWarehouse

config

/atg/campaign/communication/reporting/

JTDataSource

ACO.communication.DW config

Repositories
 /atg/search/routing/repository/SearchConfigurationRepository (Routing in the

diagram)

 /atg/search/repository/IncrementalItemQueueRepository.properties (Indexing in the
diagram)

The following table lists the repositories used by ATG applications, which datasource they use by default,
and server-dependent conditions for use:

Repository Component Name Datasource Component
Configuration Varies Depending on Server

/atg/commerce/catalog/ProductCatalog /atg/dynamo/service/JTDataSource_produc

tion

/atg/commerce/atg/ClaimableRepositor

y

/atg/dynamo/service/JTDataSource_produc

tion

/atg/commerce/gifts/GiftLists /atg/dynamo/service/JTDataSource_produc

tion

/atg/commerce/inventory/InventoryRep

ository

/atg/dynamo/service/JTDataSource_produc

tion

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 8 7

A p p e n d i x C : D a t a S t o r a g e a n d A c c e s s

μ
/atg/commerce/jdbc/ProductCatalogDat

aSourceA

/atg/dynamo/service/JTDataSource_produc

tion

/atg/commerce/order/OrderRepository /atg/dynamo/service/JTDataSource_produc

tion

/atg/commerce/pricing/priceLists/Pri

ceLists

/atg/dynamo/service/JTDataSource_produc

tion

/atg/scenario/ScenarioClusterManager /atg/dynamo/service/JTDataSource_produc

tion

/atg/userprofiling/ProfileAdapterRep

ository

/atg/dynamo/service/JTDataSource_produc

tion

/atg/userprofiling/PersonalizationRe

pository

/atg/dynamo/service/JTDataSource_produc

tion

/atg/search/service/SearchJTDataSour

ce

Generic Reference to
/atg/dynamo/service/JTDataSource_production

/atg/search/repository/RefinementRep

ository

/atg/dynamo/service/JTDataSource_produc

tion

/atg/search/SearchTestingRepository /atg/dynamo/service/JTDataSource_manage

ment

/atg/search/routing/repository/

SearchConfigurationRepository

/atg/search/service/SearchJTDataSource

/atg/search/repository/

IncrementalItemQueueRepository

/atg/dynamo/service/JTDataSource_produc

tion

/atg/searchadmin/TopicRepository /atg/search/service/SearchJTDataSource

/atg/content/media/MediaRepository /atg/dynamo/service/JTDataSource

/atg/dynamo/messaging/SqlJmsProvider /atg/dynamo/service/JTDataSource

/atg/dynamo/service/ClusterName /atg/dynamo/service/JTDataSource

/atg/dynamo/service/IdGenerator /atg/dynamo/service/JTDataSource

/atg/dynamo/service/ObfuscatedIdGene

rator

/atg/dynamo/service/JTDataSource

/atg/dynamo/service/jdbc/SDSReposito

ry

/atg/dynamo/service/JTDataSource_produc

tion

/atg/dynamo/service/jdbc/SQLReposito

ry

/atg/dynamo/service/JTDataSource

/atg/integrations/repository/

IntegrationsRepository

/atg/dynamo/service/JTDataSource

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 8 8

A p p e n d i x C : D a t a S t o r a g e a n d A c c e s s

μ
/atg/webservice/security/

NucleusSecurityRepository

/atg/dynamo/service/JTDataSource

/atg/compaign/communication/

OutreachRepository

/atg/dynamo/service/JTDataSource_produc

tion

/atg/epub/PublishingRepository /atg/dynamo/service/JTDataSource_manage

ment

/atg/epub/process/ProcessDataReposit

ory

/atg/dynamo/service/JTDataSource_manage

ment

/atg/epub/process/VersionManagerRepo

sitory

/atg/dynamo/service/JTDataSource_manage

ment

/atg/epub/process/PortalRepository /atg/dynamo/service/JTDataSource_produc

tion

/atg/userprofiling/InternalProfileRe

pository

/atg/dynamo/service/JTDataSource_manage

ment

/atg/dynamo/service/jdbc/BCRJTDataSo

urce

/atg/dynamo/service/JTDataSource_manage

ment

/atg/reporting/datawarehouse/

LogicalOrganizationReportRepository

/atg/reporting/datawarehouse/JTDataSour

ce

/atg/reporting/datawarehouse/

RmClsRoutingReportRepository

/atg/reporting/datawarehouse/JTDataSour

ce

/atg/reporting/datawarehouse/

RMReportRepository

/atg/reporting/datawarehouse/JTDataSour

ce

/atg/userprofiling/InternalProfileRe

pository

/atg/dynamo/service/JTDataSource_agent

/atg/commerce/custsvc/CsrRepository /atg/dynamo/service/JTDataSource_produc

tion

/atg/svc/ServiceRepository /atg/dynamo/service/JTDataSource_produc

tion

/atg/svc/ui/framework/

ServiceFrameworkRepository

/atg/dynamo/service/JTDataSource_produc

tion

/atg/svc/option/UserOptionRepository /atg/dynamo/service/JTDataSource_produc

tion

/atg/svc/option/OptionRepository /atg/dynamo/service/JTDataSource_produc

tion

/atg/svc/userprofiling/

ServiceSegmentRepository

/atg/dynamo/service/JTDataSource_produc

tion

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 8 9

A p p e n d i x C : D a t a S t o r a g e a n d A c c e s s

μ
/atg/svc/shared/ServiceSharedReposit

ory

/atg/dynamo/service/JTDataSource_produc

tion

/atg/svc/service/ServiceJTDataSource /atg/dynamo/service/JTDataSource_produc

tion

/atg/svc/logging/SelfServiceLoggingR

epository

/atg/dynamo/service/JTDataSource_produc

tion

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 9 0

A p p e n d i x C : D a t a S t o r a g e a n d A c c e s s

μ

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 9 1

A p p e n d i x D : A d j u s t i n g t h e F i l e C a c h e S i z e

μ
Appendix D: Adjusting the FileCache
Size

ATG’s servlet pipeline includes servlets that are used for JHTML pages, and which use a FileCache
component to store files that ATG has read from disk, so that subsequent accesses for those files can be
delivered directly from memory instead of being read from disk. Using the FileCache component
improves performance by reducing disk accesses. For maximum performance, you want the FileCache
to be large enough to hold all the files that ATG serves frequently. Set the totalSize property of this
component at:

/atg/dynamo/servlet/pipeline/FileCache

to an appropriate value, measured in bytes, such as the following:

size in bytes (2 million bytes)

totalSize=2000000

One approach in sizing the FileCache is to batch compile the entire document root and set the file
cache to the resulting size. Make sure, however, that you account for the size of your FileCache when
you set the size of your JVM. You can preload the FileCache by creating a script that accesses every page
on your site and running the script on startup.

You can view statistics on how the file cache is used, as well as the contents of the FileCache in the
Dynamo Administration page at
hostname:port/dyn/admin/nucleus/atg/dynamo/servlet/pipeline/FileCache.

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 9 2

I n d e x

μ
Index

A
ACC. See ATG Control Center
access levels

properties files, 87
ATG application

definition, 2
ATG applications

definition, 2
stopping, 20

ATG Business Control Center, 17
ATG Control Center (ACC)

changing property values, 29
connecting to a server, 18, 19, 20
downloading, 9
exporting RMI objects, 19
installing, 9
log files, 20
searching for components, 28
starting

on a client machine, 20
on a server, 18

ATG Eclipse plug-in
installing, 10

ATG installation
definition, 2

ATG platform
installing, 7
uninstalling, 12

ATG products definition, 2
ATG servers

creating, 38
definition, 2
unresponsive, 106

atg.adapter.gsa.DBCopier, 74
atg.core.net.URLHammer. See URLHammer
atg.service.jdbc.SwitchingDataSource, 77
atg.service.perfmonitor package, 117
atg.service.perfmonitor.PerformanceMonitor, 122

B
BcpDBCopier, 75, 76
bottlenecks

file I/O, 104
network, 104

C
caches

file cache, 191
loading, 84
prepopulating, 84

caches (SQL repository)
cache modes, 84

cacheSwitchLoadQueries, 79
checkFileNameCase property, 36
CLASSPATH

setting, 35
clusters

general information, 97
setting up on JBoss, 89
setting up on WebLogic, 91
setting up on WebSphere, 93
synchronizing server clocks, 99

comments in properties files, 33
component

definition, 2
Component Browser, 33

customizing, 34
component indexing, 89
components

editing in a non-default layer, 28
unique instances, 97

compression, 2
configuration

common changes, 35
manual, 31
using ATG Control Center, 29

Configuration and Installation Manager (CIM), 11
Configuration component, 42
configuration groups, 39

downloading, 45
identifiers, 40
node types, 40
storing files, 44
validating, 47

configuration layers
default, 27
liveconfig, 81
locking, 28
overview, 26
resetting the default, 27

Configuration Manager
using, 39

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 9 3

I n d e x

μ
Configuration Reporter, 126

excluding components, 126
reports, 126
standalone utility, 127, 129

configurationCheckMilliseconds property, 82
ConfigurationClient component, 39
ConfigurationServer component, 39
content distributor system, 85
conventions for file locations, 1
cookies

performance testing, 102
Profile cookie, 83

CURSOR STABILITY, 70
custom module resources, 36

D
DAS, 148

migration process, 148
DAS servlet pipeline, 150
data

transferring from SOLID, 72
data sources

configuring, 63
debugging, 67

database drivers
XA, 13

database tables
creating, 54
destroying, 57

databases
copying, 74
creating tables, 54
dropping tables, 57
IBM DB2, 70
Microsoft SQL Server, 71
SOLID, 13, 53
switching, 74, 77

DataSource, 60
DataSource connection pool

configuring, 61
DB2 databases

configuring, 70
DB2DBCopier, 75, 76
DBConnectionInfo, configuring, 75
DBCopier

configuring properties, 75
creating component, 75
overview, 74
setting native SQL environment, 77
subclasses, 75

default configuration layer, 27
default ports, 1
demos, 14

exporting data, 73
importing data, 73

directory paths
specifying, 33

document indexing, 89
drpPort property, 97
DSP tag library, 149
Dynamo Administration UI, 16

definition, 2
Dynamo Component Browser. See Component Browser

E
Eclipse IDE

integrating with, 10
e-mail

targeting, 85
escape character

backslash, 32

F
file cache, 191
file descriptor leaks, 109
file locations

conventions, 1
Fulfillment module, 98

G
garbage collection, 107
global configuration settings, 28, 37
GLOBAL.properties, 28, 37

H
hash keys

Profile cookies, 83
heap, 2
HotSpot

configuring Server JVM, 83
HTTP server, 85
HTTPS protocol

ProtocolChange servlet bean, 89
Hypersonic, 53

I
I/O bottlenecks, 104
IndividualEmailSender component, 86
iNet, 71
initial services, 88
installing

additional ATG components, 9
ATG Control Center, 9
ATG platform, 7
Eclipse development tools, 10

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 9 4

I n d e x

μ
isolation level, setting in WebSphere, 66
isolation levels, 70

J
Java arguments, 35

common settings, 35
-Djava.rmi.server.hostname, 19
garbage collection, 107

Java expressions
using in pages, 149

Java Runtime Environment requirements, 2
Java Virtual Machines (JVM)

garbage collection, 107
heap sizes, 107

JAVA_OPTS, 2
javax.sql.XADataSource, 60
JBoss

configuring data sources, 63
configuring for iNet drivers, 71
default port, 1
performance tuning, 139
requirements, 2
setting transaction timeout, 66
setting up clusters, 89

JDBC Browser, 68
configuring, 68
create table, 69
drop table, 69
execute query, 69
metadata operations, 69

JDBC drivers
adding, 60

JHTML-based applications, 150
JRE. See Java Runtime Environment requirements
JSP syntax, 149
JSP-based applications, 149
JTDataSource, 60

L
liveconfig configuration layer, 81

customizing, 82
disabling, 82

lock manager, 3
lock managers, 84
lock mananger

conflict on Sun systems, 6
logging

samples.log, 131

logging levels, 88
logListener components, 37
LogQueue component, 88

M
maintenance installations, performing, 9
makeDynamoServer script, 38
memory allocation, 107
memory leaks, 108
memory requirements

swap space, 108
Merlia, 71
Microsoft SQL Server database

configuring, 71
Motorprise, 14

N
node types, 40

O
Oracle RAC clusters

configuring data sources for, 65
OracleDBCopier, 75, 76

P
pageCheckSeconds property, 83
passwords

ACC, 18, 19, 20
properties files, 87

Performance Monitor, 117
configuring, 83
instrumented classes, 121
modes, 119
PerformanceData properties, 125
scheduled jobs, 121

performance testing, 102
bottlenecks, 103

performance troubleshooting, 101
ports

default, 1
process editor server, 98
Profile cookies

setting hash key, 83
properties

appending lists of values, 32
backslash in properties files, 32
changing values, 25
comments, 33
manual editing, 31

properties files
overview, 26
setting access levels, 87

property fetching
SQL repositories, 134

protocol.jar
adding to the CLASSPATH for WebLogic, 8

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 9 5

I n d e x

μ
adding to the CLASSPATH for WebSphere, 8

ProtocolChange servlet bean
enabling, 89

protocols
HTTPS, 89

Q
queries

simulated text search, 137
Quincy Funds, 14

R
Recording Servlet, 114, 131

editing scripts, 114
generating scripts, 132

reference applications, 14
Remote Method Invocation (RMI)

exporting RMI objects, 19
repositories

quicker startup, 85
run.conf, 2
run.sh, 2

S
Sampler component, 130

output, 131
samples.log, 131
ScreenLog component

disabling, 88
secure server protocols

ProtocolChange servlet bean, 89
selectiveCacheInvalidation, 77
server hangs, 106
server instances

configuring, 39
configuring as groups, 39
creating, 38

servlet pipeline, 150
session backup

enabling, 98
session management, 48

in a WebSpherecluster, 95
Session Manager component

accessing in Component Browser, 51
simulated text search queries, 137
SOLID Embedded Engine

running, 13
SOLID JDBC driver

removing from CLASSPATH, 60
SolidDBCopier, 75, 77
SQL repositories

locale-sensitive sorting, 134
property fetching, 134
transactions, 134

SQL-JMS Admin interface, 15
startDynamoOnJBoss script, 21
starting

ATG Business Control Center, 17

ATG Control Center, 17
SOLID, 13

swap space, 108
SwitchingDataSource, configuring, 78
symbolic links

creating on UNIX, 14

T
table scans, 135
targeted e-mail, 85
TemplateEmailSender component, 86
testing

performance, 102
thread priorities, 105
transaction manager

configuring, 63
Transaction servlet bean, 134
transaction timeout

setting on JBoss, 66
setting on WebLogic, 66
setting on WebSphere, 66

transactions
SQL repositories, 134

U
uninstalling

ATG platform, 12
unique instance components, 97
update layer. See configuration layers
URLHammer, 109

command line arguments, 110
editing scripts, 114
recording scripts, 114
running scripts, 113
source files, 115

V
VMSystem component, 130

W
WatcherDataSource component, 67
web applications

configuring, 86
web services

starting, 16
WebLogic

configuring data sources, 65
configuring for iNet drivers, 71
default port, 1
requirements, 4
setting transaction timeout, 66
setting up clusters, 91

WebSphere
configuring data sources, 65
default port, 1
requirements, 5

A T G I n s t a l l a t i o n a n d C o n f i g u r a t i o n G u i d e

1 9 6

I n d e x

μ
setting isolation level, 66
setting transaction timeout, 66
setting up clusters, 93

workflow process manager, 98

X
XA drivers, 13

	Contents
	1 Installing the ATG Platform
	Document Conventions
	Default Ports
	Important Terms
	Product Requirements
	JBoss-Specific Requirements
	WebLogic-Specific Requirements
	WebSphere-Specific Requirements
	Sun T1000 and T2000 Requirements

	Running the ATG Setup Program
	JBoss Installation Results
	WebLogic Installation Results
	WebSphere Installation Results
	Performing a Maintenance Installation

	Installing the ATG Control Center on a Client Machine
	Downloading the ACC Installer
	Installing the ACC on a Windows Client
	Installing the ACC on a UNIX Client

	Installing ATG Development Tools for Eclipse
	Using the Configuration and Installation Manager (CIM)
	Removing the ATG Platform from Your System

	2 Running Nucleus-Based Applications
	Starting the SOLID SQL Database
	Running the Demos and Reference Applications
	Starting the SQL-JMS Admin Interface
	Starting ATG Web Services
	Connecting to the Dynamo Administration UI
	Connecting to the ATG Business Control Center
	Starting the ATG Control Center
	Starting the ACC on a Server
	Starting the ACC on a Client

	Stopping an ATG Application
	Stopping ATG Applications on JBoss
	Stopping ATG Applications on WebLogic
	Stopping ATG Applications on WebSphere

	Using the startDynamoOnJBOSS Script

	3 Configuring Nucleus Components
	Working with Configuration Layers
	Understanding Properties Files
	Understanding Configuration Layers
	Accessing Configuration Layers in the ACC
	Global Configuration Changes
	Locking Configuration Layers

	Finding Components in the ACC
	Changing Component Properties with the ACC
	Changing Component Properties Manually
	Using Forward Slashes (/) and Backslashes (\)
	Modifying Lists of Values
	Specifying Directory Paths
	Adding Comments to Properties Files

	Using the Dynamo Component Browser
	Component Browser Structure
	Changing the Running Configuration
	Starting Nucleus Components
	Customizing the Interface

	Common Configuration Changes
	Modifying Environment Settings
	Modifying Custom Module Resource Settings
	Enabling checkFileNameCase on Windows
	LogListeners

	Creating Additional ATG Server Instances
	Using the MakeDynamoServer Script
	Using the Configuration Manager
	Configuring a New Server Instance

	Setting Up a Configuration Group
	Configuration Group Properties
	Storing Group Configuration Files
	Downloading Group Configuration
	Validating Group Configuration Properties

	Session Management in ATG Applications
	Sharing Session Information Among ATG Applications
	Session Interaction Outline
	Managing User Sessions

	4 Configuring Databases and Database Access
	Creating Database Tables Using SQL Scripts
	Creating Database Tables for ATG Adaptive Scenario Engine
	Creating Database Tables for ATG Portal

	Destroying Database Tables
	Destroying Database Tables for ATG Adaptive Scenario Engine
	Destroying Database Tables for ATG Portal

	Adding a JDBC Driver
	Removing the SOLID JDBC Driver from the CLASSPATH

	Configuring ATG Data Sources for Data Import
	Configuring Data Sources and Transaction Management
	Configuring Data Sources for JBoss
	Configuring Data Sources for WebLogic and WebSphere
	Configuring Data Sources for an Oracle RAC Cluster
	Setting the Transaction Timeout on JBoss
	Setting the Transaction Timeout on WebLogic
	Setting the Transaction Timeout on WebSphere
	Setting the Isolation Level for Transactions in WebSphere
	Datasource Debugging

	Using the JDBC Browser
	Configuring the JDBC Browser
	Create Table Operation
	Drop Table Operation
	Execute Query Operation
	Metadata Operations

	Using ATG Products with an IBM DB2 Database
	Using ATG Products with a Microsoft SQL Server Database
	Moving Data from SOLID to the Production Database
	Transferring the Demo Data

	Copying and Switching Databases
	Database Copy Operations
	Creating a DBCopier Component
	Configuring the DBConnectionInfo
	Configuring the DBCopier
	Setting the Native SQL Environment
	Switching Databases
	Configuring a SwitchingDataSource
	Database Switching and Query Caching

	5 Configuring for Production
	Enabling liveconfig Settings
	Customizing liveconfig Settings
	Disabling Checking for Changed Properties Files
	Disabling the Performance Monitor
	Adjusting the pageCheckSeconds Property

	Changing the Default Cookie Hash Key
	Fine-Tuning JDK Performance with HotSpot
	Configuring Repositories
	Setting Cache Modes
	Prepopulating Caches on Startup
	Enabling the Repository Cache Lock Managers
	Configuring Repository Database Verification for Quicker Restarts
	Configuring a Content Distributor System

	Configuring Targeted E-Mail
	Nucleus Components
	Configuring Web Applications

	Setting Access Levels for Properties Files
	Setting Logging Levels
	Limiting Initial Services for Quicker Restarts
	Disabling Document and Component Indexing
	Enabling the ProtocolChange Servlet Bean
	Setting up Clustering on JBoss
	Configuring the HttpPort Property
	Creating ATG Servers
	Assembling for a JBoss Cluster
	Creating and Configuring JBoss Servers
	Deploying Your Application

	Setting Up Clustering on WebLogic
	Assembling for a WebLogic Cluster
	Clustering Example

	Setting up Clustering on WebSphere
	Installing and Configuring WebSphere
	Creating a Cluster
	Creating Data Sources
	Installing and Configuring Your Web Server
	Installing ATG for a WebSphere Cluster
	Assembling for a WebSphere Cluster
	Session Management in a WebSphere Cluster
	Configuring Your WebSphere Servers
	Deploying Your Application

	General Clustering Information
	Specifying the drpPort Setting
	Setting up localconfig and Server Configuration Files
	Unique Components
	Enabling Component Backup
	Synchronizing Server Clocks

	6 Performance Diagnostics
	Performance Troubleshooting Checklist
	Performance Testing Strategies
	Graduated Testing of Throughput
	Realistic Testing Strategies

	Locating Performance Bottlenecks
	Monitoring System Utilization
	Bottlenecks at Low CPU Utilization
	Checking for Database Bottlenecks
	Checking for Disk I/O Bottlenecks
	Checking for Network-Limited Problems
	Bottlenecks at High CPU Utilization
	Thread Context Switching Problems
	System Resource Bottlenecks
	TCP Wait Problem on Solaris

	Server Hangs
	Paging and Memory Allocation
	Garbage Collection
	Memory Leaks
	Swap Space

	Detecting File Descriptor Leaks
	Using URLHammer
	Command Line Arguments
	URLHammer Examples
	The -script Argument
	Recording a Script
	Editing a Script
	URLHammer Source Files

	7 Monitoring Site Performance
	Performance Monitor
	Adding PerformanceMonitor Methods to your Code
	Performance Monitor Modes
	Viewing Performance Monitor Data
	Instrumented ATG Classes
	Performance Monitor API

	Using the Configuration Reporter
	Configuration Reports
	Excluding Components from the Configuration Report
	Running the Configuration Reporter as a Standalone Utility

	Using the VMSystem Component
	Using a Sampler
	Starting the Sampler
	Sampler Information
	Sampler Output

	Using the Recording Servlet
	Inserting the Recording Servlet
	Generating Script Files
	Keeping Statistics
	Tracing Memory

	8 Repository and Database Performance
	Database Performance Practices
	Repositories and Transactions
	Repository Item Property Loading
	Database Sorting versus Locale-Sensitive Sorting
	Batching Database Transactions
	Avoiding Table Scans
	Database Caches
	Diagnosing Database Performance Problems
	Avoid Using Simulated Text Search Queries in Repositories

	9 Tuning Site Performance on JBoss
	JBoss File Modifications
	JSP Servlet Configuration
	Tomcat Connector Thread Configuration
	Tomcat Cluster Configuration
	JBoss Logging Configuration
	Datasource Configuration
	Configuring run.bat/sh and run.conf

	JBoss Application Framework Trimming

	Appendix A: Migration Issues
	Migrating from ATG 6 on WebLogic or WebSphere
	Using the JBoss Migration Tool
	Migrating from Dynamo Application Server
	JSP-based Applications
	Migrating JHTML-based Applications

	Reassembling Your Applications

	Appendix B: Setting Up WebSphere Studio Application Developer
	Creating an ATG Java Project
	Creating a Workspace
	Creating a New ATG Module and WSAD Java Project
	Creating a WSAD Java Project from an Existing ATG Module

	Generating and Importing a J2EE Application
	Modifying the Manifest File
	Assembling Your J2EE Application
	Importing the EAR file into WSAD

	Setting Build References
	Defining a Utility JAR
	Troubleshooting Task Console Errors
	Testing Your Development Environment
	Adding Dependent JARs
	Configuring Additional ATG Servers
	Reassembling Your Application for Deployment
	Reassembling Your Application Using WSAD
	Reassembling Your Application Using Ant

	Appendix C: Data Storage and Access
	Database Schema Best Practices
	Production Schema
	Management Schema
	Agent Schema

	Data Sources
	Repositories

	Appendix D: Adjusting the FileCache Size
	Index

