
Oracle® Identity Manager
Connector Guide for Generic Scripting

11.1.1
E69380-04
August 2020

Oracle Identity Manager Connector Guide for Generic Scripting, 11.1.1

E69380-04

Copyright © 2016, 2020, Oracle and/or its affiliates.

Primary Author: Alankrita Prakash

Contributors: Gowri.G.R

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government
end users are "commercial computer software" or "commercial computer software documentation" pursuant
to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works,
and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not
be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience ix

Documentation Accessibility ix

Related Documents ix

Conventions ix

 What's New in the Oracle Identity Manager Connector for Generic
Scripting?

Software Updates xi

Documentation-Specific Updates xi

1 About the Generic Scripting Connector

1.1 Introduction to the Generic Scripting Connector 1-1

1.2 Usage Recommendation 1-2

1.3 Certified Components for the Generic Scripting Connector 1-2

1.4 Certified Languages for the Generic Scripting Connector 1-3

1.5 Connector Architecture of the Generic Scripting Connector 1-3

1.6 Common Use Cases Supported by the Connector 1-5

1.7 Features of the Connector 1-6

1.7.1 Support for Both Trusted Source and Target Resource Reconciliation 1-6

1.7.2 Full and Incremental Reconciliation 1-7

1.7.3 Limited (Filtered) Reconciliation 1-7

1.7.4 Support for Reconciliation of Deleted Records 1-7

1.8 Roadmap for Generating and Using the Connector 1-7

2 Generating the Generic Scripting Connector

2.1 Defining the Schema 2-1

2.1.1 Understanding the Schema File Format 2-1

2.1.1.1 Account Qualifiers 2-2

2.1.1.2 Field Qualifiers 2-2

iii

2.1.2 Creating a Schema File 2-4

2.2 Preparing the Resource Properties File 2-4

2.3 Configuring the ScriptConfiguration.groovy File 2-5

2.3.1 About the ScriptConfiguration.groovy File 2-5

2.3.2 Understanding Entries in the Predefined Sections of the Groovy File 2-6

2.3.3 Configuring the Groovy File 2-17

2.4 Generating the Connector 2-17

2.4.1 Understanding the Generated Connector Package 2-18

3 Installing and Configuring the Generic Scripting Connector

3.1 Preinstallation 3-1

3.2 Installing the Connector 3-2

3.2.1 Understanding Installation 3-2

3.2.1.1 Summary of Steps to Install the Connector 3-2

3.2.1.2 About Installing the Connector Locally and Remote 3-2

3.2.2 Running the Connector Installer 3-3

3.2.3 Configuring the IT Resource for the Target System 3-4

3.3 Postinstallation 3-5

3.3.1 Configuring Oracle Identity Manager 3-6

3.3.1.1 Creating and Activating a Sandbox 3-6

3.3.1.2 Creating a New UI Form 3-6

3.3.1.3 Associating the Form with the Application Instance 3-6

3.3.1.4 Publishing a Sandbox 3-7

3.3.1.5 Harvesting Entitlements and Sync Catalog 3-7

3.3.2 Replacing the groovy-all.jar File 3-7

3.3.3 Localizing Field Labels in UI Forms 3-8

3.3.4 Clearing Content Related to Connector Resource Bundles from the
Server Cache 3-9

3.3.5 Managing Logging for the Generic Scripting Connector 3-10

3.3.5.1 Understanding Log Levels 3-10

3.3.5.2 Enabling Logging 3-11

3.4 Upgrading the Connector 3-12

4 Using the Generic Scripting Connector

4.1 Lookup Definitions Used During Connector Operations 4-1

4.1.1 Predefined Lookup Definitions 4-1

4.1.1.1 Lookup.RESOURCE.Configuration 4-2

4.1.1.2 Lookup.RESOURCE.UM.Configuration 4-3

4.1.1.3 Lookup.RESOURCE.UM.ReconAttrMap 4-3

4.1.1.4 Lookup.RESOURCE.UM.ProvAttrMap 4-4

iv

4.1.1.5 Lookup.RESOURCE.UM.ReconAttrMap.Defaults 4-5

4.1.2 Lookup Definitions Synchronized with the Target System 4-6

4.2 Configuring Reconciliation 4-7

4.2.1 Reconciliation Rules 4-7

4.2.2 Full Reconciliation and Incremental Reconciliation 4-8

4.2.3 Limited Reconciliation 4-8

4.2.4 Lookup Field Synchronization 4-9

4.3 Scheduled Jobs 4-9

4.3.1 Scheduled Job for Lookup Field Synchronization 4-10

4.3.2 Scheduled Jobs for Reconciliation of User Records 4-11

4.3.3 Scheduled Jobs for Reconciliation of Deleted Users Records 4-12

4.3.4 Scheduled Jobs for Incremental Reconciliation 4-13

4.3.5 Configuring Scheduled Jobs 4-14

4.4 Performing Provisioning Operations 4-15

4.5 Uninstalling the Connector 4-15

5 Extending the Functionality of the Generic Scripting Connector

5.1 Adding Custom OIM User Fields for Trusted Source Reconciliation 5-1

5.2 Adding Custom Fields for Target Resource Reconciliation 5-3

5.3 Adding Custom Fields for Provisioning 5-5

5.4 Configuring Transformation of Data During User Reconciliation 5-7

5.5 Configuring Validation of Data During Reconciliation and Provisioning 5-9

A Understanding Script Arguments

B Sample Schema, Scripts, and Connector Generation and
Installation Procedure

B.1 Summary of Steps to Generate and Use the Connector B-1

B.2 Sample Schema File for Database Creation B-2

B.3 Sample Schema Description B-3

B.3.1 GENERIC.GENERIC_PARENT Table Description B-3

B.3.2 GENERIC.GENERIC_GROUP Table Description B-4

B.3.3 GENERIC.GENERIC_ROLE Table Description B-4

B.3.4 GENERIC.ORGANIZATIONS Table Description B-4

B.4 Sample Schema File for the Target System B-5

B.5 Sample ScriptConfiguration.groovy File B-6

B.6 Sample Resource Properties File B-10

B.7 Sample Scripts for Connector Operations B-10

v

B.7.1 Check Alive Script B-11

B.7.2 Connection Script B-11

B.7.3 Dispose Script B-12

B.7.4 Create Script B-13

B.7.5 Update Script B-15

B.7.6 Delete Script B-18

B.7.7 Add Child Data Script B-19

B.7.8 Remove Child Data Script B-21

B.7.9 Lookup Field Synchronization Script B-23

B.7.10 Full and Filtered Reconciliation Script B-24

B.7.11 Incremental Reconciliation Script B-28

C Files and Directories of the Generic Scripting Connector

Index

vi

List of Figures

1-1 Connector Architecture 1-4

vii

List of Tables

1-1 Certified Components 1-2

2-1 Properties of the config Entry 2-9

3-1 IT Resource Parameters 3-5

3-2 Log Levels and ODL Message Type:Level Combinations 3-11

4-1 Entries in the Lookup.RESOURCE.Configuration Lookup Definition 4-2

4-2 Entries in the Lookup.RESOURCE.UM.Configuration Lookup Definition for a Target

Resource Configuration 4-3

4-3 Entries in the Lookup.RESOURCE.UM.Configuration Lookup Definition for a Trusted

Source Configuration 4-3

4-4 Entries in the Lookup.RESOURCE.UM.ReconAttrMap.Defaults Lookup Definition 4-6

4-5 Attributes of the Scheduled Job for Lookup Field Synchronization 4-10

4-6 Attributes of the User Reconciliation Scheduled Jobs 4-11

4-7 Attributes of the Delete User Reconciliation Scheduled Jobs 4-12

4-8 Attributes of the Scheduled Jobs for Incremental Reconciliation 4-13

B-1 GENERIC.GENERIC_PARENT Table Description B-3

B-2 GENERIC.GENERIC_GROUP Table Description B-4

B-3 GENERIC.GENERIC_ROLE Table Description B-4

B-4 GENERIC.ORGANIZATIONS Table Description B-4

C-1 Files and Directories on the Installation Media C-1

C-2 Files and Directories in the Generated Connector Package C-2

viii

Preface

This guide describes the Generic Scripting connector, an ICF-based generic connector
framework, that enables you to generate a custom connector based on your target
system schema and lets you perform connector operations by using your own scripts.

Audience
This guide is intended for resource administrators and system integration teams that
want to integrate and manage diverse applications with Oracle Identity Manager.
The guide is also intended for users who want to develop, test, and deploy custom
connectors. It is imperative that you be familiar with the scripting languages certified
for this connector and be able to write your own custom scripts to perform connector
operations.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/
topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=trs if you are hearing impaired.

Related Documents
For information about installing and using Oracle Identity Manager, visit the following
Oracle Help Center page:

http://docs.oracle.com/cd/E52734_01/index.html

For information about Oracle Identity Manager Connectors documentation, visit the
following Oracle Help Center page:

http://docs.oracle.com/cd/E22999_01/index.htm

Conventions
The following text conventions are used in this document:

ix

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://docs.oracle.com/cd/E52734_01/index.html
http://docs.oracle.com/cd/E22999_01/index.htm

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

x

What's New in the Oracle Identity Manager
Connector for Generic Scripting?

This chapter provides an overview of the updates made to the software and
documentation for release 11.1.1.5.0 of the Generic Scripting connector.

The updates discussed in this chapter are divided into the following categories:

• Software Updates

This section describes updates made to the connector software. This section also
points out the sections of this guide that have been changed in response to each
software update.

• Documentation-Specific Updates

These include major changes made to this guide. For example, the relocation of
a section from the second chapter to the third chapter is a documentation-specific
update. These changes are not related to software updates.

Software Updates
The following section provides the software updates:

Software Updates in Release 11.1.1.5.0
This is the first release of the Oracle Identity Manager connector for Generic Scripting.
Therefore, there are no software updates in this release.

Documentation-Specific Updates
The following section provides the documentation-specific updates:

Documentation-Specific Updates in Release 11.1.1.5.0
The following are documentation-specific updates in Revision "04" of release
11.1.1.5.0:

• The "Oracle Identity Governance or Oracle Identity Manager" row of Table 1-1 has
been updated to include support for Oracle Identity Governance 12c (12.2.1.4.0).

• Sample Schema File for Database Creation has been added.

• Sample groovy scripts and stored procedures present in Create Script, Update
Script, Delete Script, Add Child Data Script, Remove Child Data Script,
Lookup Field Synchronization Script, Full and Filtered Reconciliation Script and
Incremental Reconciliation Script have been updated.

xi

The following is a documentation-specific update in Revision "03" of release
11.1.1.5.0:

Oracle Identity Governance 19c (19.1.0.0.0) has been removed from the "Oracle
Identity Governance or Oracle Identity Manager" row of Table 1-1.

The following are the documentation-specific updates in Revision "02" of release
11.1.1.5.0:

• Chapter 5, "Known Issues and Workaround" has been removed from this guide as
there are no known issues associated with this release of the connector.

• The following updates have been made in Table 1-1:

– "Oracle Identity Manager" row has been renamed to "Oracle Identity
Governance or Oracle Identity Manager".

– Oracle Identity Governance 19c (19.1.0.0.0) certification has been added.

– Oracle Identity Governance 12c (12.2.1.3.0) certification has been added.

The following is a documentation-specific update in revision "01" of release 11.1.1.5.0:

This is the first release of the Oracle Identity Manager connector for Generic Scripting
on ICF architecture. Therefore, there are no documentation-specific updates in this
release.

What's New in the Oracle Identity Manager Connector for Generic Scripting?

xii

1
About the Generic Scripting Connector

This chapter introduces the Generic Scripting connector.
Oracle Identity Manager automates access rights management, security, and
provisioning of IT resources. Oracle Identity Manager connects users to resources,
and revokes and restricts unauthorized access to protect sensitive corporate
information. Oracle Identity Manager connectors are used to integrate Oracle Identity
Manager with external and identity-aware applications such as PeopleSoft and
MySQL.

This chapter discusses the following topics that introduce the Generic Scripting
connector:

• Introduction to the Generic Scripting Connector

• Usage Recommendation

• Certified Components for the Generic Scripting Connector

• Certified Languages for the Generic Scripting Connector

• Connector Architecture of the Generic Scripting Connector

• Common Use Cases Supported by the Connector

• Features of the Connector

• Roadmap for Generating and Using the Connector

1.1 Introduction to the Generic Scripting Connector
The Generic Scripting connector is a solution to integrate OIM with target systems that
do not have predefined connectors.

This connector enables you to perform connector operations between OIM and your
target system by providing your own scripts. The connector generates a custom
connector and the required metadata (such as process forms, lookup definitions,
scheduled tasks, and so on) based on the target system schema you initially define.
Subsequently, the generated connector will invoke your custom scripts to perform the
actual connector operations.

You can develop your custom scripts using scripting languages BeanShell, Groovy, or
JavaScript. The connector guide includes a few sample scripts that you can modify to
suit your requirements and perform connector operations.

The Generic Scripting connector has the ability to connect with multiple target systems
using the same connector bundle. The following are some of the advantages of using
a Generic Scripting connector:

• Eliminates the need to deploy and test a predefined connector for each target
system.

• Reduces time and effort required to develop, deploy, and test custom connectors
for multiple target systems in your environment.

1-1

• Enables you to easily integrate numerous target systems with OIM that do not
have predefined connectors.

• Provides flexibility to define custom rules and business logic that can be
dynamically modified at run time for complex applications.

• Provides platform independence for the target system. This connector can be
used with target systems that belong to enterprise, mobile, cloud, or social
environments.

1.2 Usage Recommendation
Depending on the Oracle Identity Manager version that you are using, you must
deploy and use one of the following connectors:

• If you are using an Oracle Identity Manager release that is later than release
9.1.0.2 and earlier than Oracle Identity Manager 11g Release 1 (11.1.1.5.3), then
you must use the 9.1.x version of this connector.

• If you are using Oracle Identity Manager 11g Release 1 (11.1.1.5.3) and any later
BP in this release track, Oracle Identity Manager 11g Release 2 (11.1.2.0.4) and
any later BP in this release track, or Oracle Identity Manager 11g Release 2 PS3
(11.1.2.3.0) and any later BP in this release track, then you must use the latest
11.1.1.x version of this connector.

• If you are using Microsoft SQL Server 2000 as the target system, then you must
use the 9.1.x version of this connector, irrespective of the Oracle Identity Manager
release you are using.

1.3 Certified Components for the Generic Scripting
Connector

Table 1-1 lists the certified components for this connector.

Table 1-1 Certified Components

Item Requirement

Oracle Identity Manager
or Oracle Identity
Governance

You can use one of the following releases of Oracle Identity Governance or Oracle
Identity Manager:

• Oracle Identity Governance 12c (12.2.1.4.0)
• Oracle Identity Governance 12c (12.2.1.3.0)
• Oracle Identity Manager 11g Release 2 PS3 (11.1.2.3.0)
• Oracle Identity Manager 11g Release 2 PS2 (11.1.2.2.0)

Target System Any target system that can be connected through BeanShell, Groovy, or JavaScript.

The following are examples of the target system:

• Any JDBC compliant database
• Any resource over SOAP, HTTP, or REST that supports XML or JSON

Connector Server 11.1.2.1.0

Connector Server JDK JDK 1.6 or later

Scripting Language BeanShell, Groovy, JavaScript

Chapter 1
Usage Recommendation

1-2

1.4 Certified Languages for the Generic Scripting Connector
The connector will support the languages that are supported by Oracle Identity
Manager.

Resource bundles are not part of the connector installation media as the resource
bundle entries vary depending on the target system being used.

1.5 Connector Architecture of the Generic Scripting
Connector

The Generic Scripting connector is implemented by using the Identity Connector
Framework (ICF).

Figure 1-1 shows the architecture of the connector.

Chapter 1
Certified Languages for the Generic Scripting Connector

1-3

Figure 1-1 Connector Architecture

The ICF is a component that provides basic reconciliation and provisioning operations
that are common to all Oracle Identity Manager connectors. In addition, ICF provides
common features that developers would otherwise need to implement on their own,
such as connection pooling, buffering, time outs, and filtering. The ICF is shipped
along with Oracle Identity Manager.

The Generic Scripting connector is not shipped with any metadata as it is a connector
for target system that is not known in advance. Depending on the schema of your
target system, the connector artifacts are generated during connector deployment.

The following is a high-level description of the stages into which the connector
deployment and usage procedure is divided into:

• Generating the connector

Understanding the schema of your target system is one of the important aspects in
generating the connector. You must create a schema file describing the attributes

Chapter 1
Connector Architecture of the Generic Scripting Connector

1-4

of your target system to help the connector know your target system. The Generic
Scripting connector includes a groovy file in which you can specify information
about your target system. This information is used by the metadata generator, one
of the deployment utilities shipped with the connector, to generate the connector
based on the target system schema.

In other words, when you run the metadata generator on the groovy file,
the connector package is generated. This package contains an XML file that
contains definitions for connector components such as adapters, process tasks,
scheduled tasks, lookup definitions, and IT resource. Connector operations
such as provisioning and reconciliation are performed using these connector
components.

• Installing and configuring the connector

In this stage, you install the generated connector by running the connector installer
and then perform configuration tasks such as configuring the IT resource, enabling
logging and so on.

• Using the connector

In this stage, you start using the connector to perform connector operations such
as reconciliation and provisioning.

1.6 Common Use Cases Supported by the Connector
The Generic Scripting connector can be used with any target system (including
custom, home-grown applications) that can be connected with OIM using BeanShell,
Groovy, or JavaScript scripting languages.

This section discusses some of the scenarios in which the Generic Scripting connector
can be used:

• Integrating SOAP-based target systems

An organization using a SOAP-based target system wants to integrate with OIM to
manage identities. The organization wants to quickly manage its user identities
by creating user identities in the target system using OIM and synchronizing
user identity changes performed directly in the target system with OIM. In
such a scenario, a quick and an easy way is to install the Generic Scripting
connector, define the schema file, generate OIM metadata, and then write its own
SOAP-based scripts for performing reconciliation and provisioning operations. The
connector is ready for use after it is configured with the target system (by providing
connection information in the IT resource).

To create a new user identity in the target system, you must submit the
required details in the OIM process form, which triggers a provisioning operation.
The connector will execute the corresponding create script against the target
system and the user identity will be created on successful execution. Similarly,
provisioning operations such as delete and update can be performed.

To search or retrieve the user identities, you must run a scheduled task from OIM.
The connector will run the corresponding search or sync script against the user
identities in the target system and fetch all the changes to OIM.

• Integrating heterogenous target systems

Suppose a web-based product of your organization uses a REST service for
customer database updates from clients and a SOAP-based API for backend
accounting updates between Mainframe servers. Now suppose you need to

Chapter 1
Common Use Cases Supported by the Connector

1-5

integrate the REST-based and SOAP-based target systems (for customer
database updates and accounting updates, respectively), with OIM. One approach
would be to deploy and use the predefined Webservices connector for the SOAP-
based target system, and develop a custom connector for the REST-based target
system. The drawbacks of this approach are as follows:

– Increased time and effort to develop, deploy and test the custom connector for
the REST-based target system.

– Deploying and testing the Webservices connector.

– Administering and maintaining two connectors for both systems.

An alternative to this approach is to use a single Generic Scripting connector to
interface both the REST and SOAP-based systems to the database instead of
deploying a REST connector and also developing and testing a custom connector
for SOAP. This enables you to manage both target systems using a single
connector.

• Integrating JDBC-based target systems

Suppose you have multiple databases from different vendors in your organization.
For example, you use Oracle Database to store customer and order information
and use MS SQL Server to store employee information. Now suppose you
must synchronize the information in both the databases with Oracle Identity
Manager. One approach would be to deploy and use the Database Application
Tables connector for Oracle Database and MS SQL Server. The drawback of this
approach is to install one connector each for every database. An alternative to
this approach is to use a single Generic Scripting connector to integrate both the
databases.

• Integrating cloud-based applications

A single Generic Scripting connector can be used to integrate one or more cloud-
based applications with Oracle Identity Manager. As an alternative to developing,
testing, and deploying your custom connector for cloud-based application, you can
use the Generic Scripting connector if your cloud-based applications expose their
APIs that can be called using any of the certified scripting languages.

1.7 Features of the Connector
The following are the features of the connector:

• Support for Both Trusted Source and Target Resource Reconciliation

• Full and Incremental Reconciliation

• Limited (Filtered) Reconciliation

• Support for Reconciliation of Deleted Records

1.7.1 Support for Both Trusted Source and Target Resource
Reconciliation

The Generic Scripting connector includes a groovy file that enables you to configure
the connector to run either in the trusted source mode or target resource mode.

See Configuring the ScriptConfiguration.groovy File for more information about
configuring the connector for the trusted source and target resource modes.

Chapter 1
Features of the Connector

1-6

1.7.2 Full and Incremental Reconciliation
After you create the connector, you can perform full reconciliation to bring all existing
user data from the target system to Oracle Identity Manager.

After the first full reconciliation run, you can configure your connector for incremental
reconciliation. In incremental reconciliation, only records that are added or modified
after the last reconciliation run are fetched into Oracle Identity Manager.

You can perform a full reconciliation run at any time. See Full Reconciliation and
Incremental Reconciliation for more information about performing full and incremental
reconciliation.

1.7.3 Limited (Filtered) Reconciliation
You can set a reconciliation filter as the value of the Filter attribute of the scheduled
jobs.

This filter specifies the subset of newly added and modified target system records that
must be reconciled. This connector does not support complex filters.

See Limited (Filtered) Reconciliation for more information about performing limited
reconciliation.

1.7.4 Support for Reconciliation of Deleted Records
Apart from the scheduled jobs for user records reconciliation, there are independent
scheduled jobs for reconciliation of deleted user records.

In target resource mode, if a record is deleted on the target system, then the
corresponding target system resource is revoked from the OIM User. In trusted source
mode, if a record is deleted on the target system, then the corresponding OIM User is
deleted.

See Scheduled Jobs for Reconciliation of Deleted Users Records for more information
about the scheduled jobs used for reconciling deleted user records.

1.8 Roadmap for Generating and Using the Connector
The following is the organization of information in the rest of this guide:

• Generating the Generic Scripting Connector describes the procedure that you
must perform to configure the groovy file and to run the metadata generator to
generate the connector.

• Installing and Configuring the Generic Scripting Connector describes that
procedures that you must perform during each stage of connector installation.

• Using the Generic Scripting Connector describes guidelines on using the
connector and the procedure to configure reconciliation runs and perform
provisioning operations.

• Extending the Functionality of the Generic Scripting Connector describes
procedures that you can perform if you want to extend the functionality of the
connector.

Chapter 1
Roadmap for Generating and Using the Connector

1-7

• Understanding Script Arguments describes the arguments that your custom scripts
can use.

• Sample Schema, Scripts, and Connector Generation and Installation Procedure
summarizes the connector generation and installation procedure and lists sample
schemas and scripts for performing connector operations.

• Files and Directories of the Generic Scripting Connector lists the files and
directories that comprise the connector installation media.

Chapter 1
Roadmap for Generating and Using the Connector

1-8

2
Generating the Generic Scripting
Connector

The procedure to generate the Generic Scripting connector is divided into the following
stages:

• Defining the Schema

• Preparing the Resource Properties File

• Configuring the ScriptConfiguration.groovy File

• Generating the Connector

2.1 Defining the Schema
You must define the schema of your target system to let the connector understand the
underlying schema of the target system database.

This section discusses the following topics:

• Understanding the Schema File Format

• Creating a Schema File

2.1.1 Understanding the Schema File Format
The schema file is a properties file that is used to represent the structure of your
target system. It contains details such as datatypes, mandatory attributes, and the uid
attribute that are specific to your target system.

The schema file is used as an input to the metadata generation utility. It is necessary
to create a schema.properties file to help the connector understand the target system
schema. Before running the metadata generation utility, you must populate the schema
file in the specified format.

The schema file is a properties file and consists of name-value pairs. By default, the
metadata generation utility generates metadata for an __ACCOUNT__ object class
that is used to manage Users, groups, and organizations. If you want to generate
metadata for an object class other than __ACCOUNT__, then include the following
entry in the schema file:

ObjectClass=OBJ_CLASS_NAME

Here, OBJ_CLASS_NAME is the name of the object class for which you want to
generate metadata. The following is a sample value for this entry:

ObjectClass=__Test__

The following sections discuss the format in which you must specify the value of each
property:

• Account Qualifiers

2-1

• Field Qualifiers

2.1.1.1 Account Qualifiers
Account qualifiers describe certain attributes of an account in your target system.
These qualifiers are common for the target system. You can define the schema of your
target system by using the following qualifiers:

• FieldNames

This is a mandatory qualifier. It is a comma-separated list of attributes that the
connector must fetch from the target system. All child form names, single-valued
and multivalued attributes, including the attribute used for performing incremental
reconciliation must be specified here.

The following is a sample value for the FieldNames qualifier:
FieldNames=UserId,UserName,FirstName,LastName,email,Description,Salary
, JoiningDate,status,Groups,Roles

• UidAttribute

This is a mandatory qualifier. It refers to the name of the attribute that corresponds
to the unique id of the account.

For example: UidAttribute=UserId

• NameAttribute

This is a mandatory qualifier. This refers to the name of the attribute that
corresponds to a descriptive name of the account.

For example: NameAttribute=UserName

• PasswordAttribute

This is an optional qualifier. It refers to the name of the password attribute of the
account.

For example: PasswordAttribute=accountPwd

• StatusAttribute

This is an optional qualifier. It refers to the attribute which denotes the status of the
account.

For example: StatusAttribute=status

Oracle Identity Manager requires the status value to be either True or False.
However, if the attribute in the target system contains a value other than true or
false, then you must ensure that your script manages the mapping between status
values in your target system and Oracle Identity Manager.

2.1.1.2 Field Qualifiers
These qualifiers are specific to each field and are usually specified in one of the
following formats:

• The following is the format for parent form fields:

<FIELDNAME>.<FIELDQUALIFIER>=<VALUE>

Example: UserId.Required=true

• The following is the format for complex child form fields:

Chapter 2
Defining the Schema

2-2

<FIELDNAME>.<SUBFIELDNAME>.<FIELDQUALIFIER>=<VALUE>.

Example: Roles.fromdate.DataType=Long

The following are the field qualifiers for which values can be specified:

• Required

This field qualifier specifies if the mentioned attribute is mandatory. If the value of
this qualifier is set to true, the parser will skip processing the records that do not
contain this field name.

For example: UserId.Required=true

• Multivalued

This field qualifier specifies if the mentioned attribute is a multivalued field.

For example: Roles.Multivalued=true

• DataType

This field qualifier is used to specify the datatype of the field name. If you do not
specify the data type for any field, then it is considered as a String data type by
default.

The following are the possible values for this qualifier:

– String

– Long

– Character

– Double

– Float

– Integer

– Boolean

– Byte

– BigDecimal

– BigInteger

– Date

For example: startDate.DataType=Date

• Subfields

This field qualifier specifies the subfields in a multivalued attribute if they are
present.

For example: Roles.Subfields=roleid,fromdate,todate

• EmbeddedObjectClass

This field qualifier specifies the object class name of child forms that have more
than one subfield. The value of this qualifier is used internally by ICF and is
mandatory for all complex child forms.

For example: Roles.EmbeddedObjectClass=Roles

Chapter 2
Defining the Schema

2-3

See Also:

Sample Schema File for the Target System for a sample schema file

2.1.2 Creating a Schema File
You must create a schema file describing the structure of your target system as
follows:

Note:

You must create the schema.properties file on the computer on which you
intend to run the metadata generation utility.

1. Create a .properties file.

2. Add entries in the schema file according to requirements of your environment.

The following are the mandatory qualifiers that should be defined in the schema
file:

• FieldNames

• UidAttribute

• NameAttribute

3. Provide values for each of the entries that you added. See Understanding the
Schema File Format for more information about the format in which you must
specify these values.

4. Save the .properties file.

2.2 Preparing the Resource Properties File
By default, the connector provides the following parameters in the IT resource to store
connection-related information about your target system:

Note:

You must create and place the resource.properties file on the computer that
is hosting Oracle Identity Manager.

• host

• port

• user

• password

Chapter 2
Preparing the Resource Properties File

2-4

The connector uses this information to establish a connection from OIM to your
target system to perform connector operations. If there are any additional parameters
that the connector requires in the scripts being used for connector operations, then
you must create a .properties file with these additional parameters. Ensure that
the .properties file contains only parameters that are not already available in the
default set of IT resource parameters. Including any default IT resource parameters
in the .properties file results in creation of duplicate entries and the custom script that
you have written for connecting to your target system might fail. For example, host is a
parameter that is already available in the IT resource. If you include a host parameter
in the .properties file, then your custom connection script fails.

The following is a sample of the resource properties file:

applicationName = IDM App
domain = sample.com
proxyHost = www-proxy.example.com
proxyPassword =
proxyPort = 80
scopes = https://www.sample.com/auth/user

2.3 Configuring the ScriptConfiguration.groovy File
The Generic Scripting connector is shipped with a groovy file named
ScriptConfiguration.groovy.

This section discusses the following topics related to configuring the groovy file:

• About the ScriptConfiguration.groovy File

• Understanding Entries in the Predefined Sections of the Groovy File

• Configuring the Groovy File

2.3.1 About the ScriptConfiguration.groovy File
This ScriptConfiguration.groovy file is located in the genericscript-
RELEASE_NUMBER/metadata-generator/resources directory of the connector
installation ZIP.

You use the ScriptConfiguration.groovy file to specify values for properties that can
store basic information about your target system schema. This file is used by the
Scripting Generator to perform the following tasks:

• Understand the schema

• Configure the mode (trusted source or target resource) in which you want to run
the connector

• Generate the connector package specific to your target system

The procedure for running the Scripting Generator and directory structure of the
generated connector package is discussed later in this chapter.

The ScriptConfiguration.groovy file contains sample configuration (one each for
trusted source and target resource) with prepopulated values for most of the entries.
Depending upon your requirements, specify or modify values for entries in this file or
create new sections for your configuration. The following are the predefined sections in
the ScriptConfiguration.groovy file:

• trusted

Chapter 2
Configuring the ScriptConfiguration.groovy File

2-5

You specify values for the entries in this section if you want to configure the
connector for the trusted source mode.

• target

You specify values for the entries in this section if you want to configure the
connector for the target resource mode.

2.3.2 Understanding Entries in the Predefined Sections of the Groovy
File

This section describes the entries in the predefined sections, trusted and target, of the
ScriptConfiguration.groovy file.

Note:

• Unless specified, all entries described here are common to both
sections.

• If you do not want to specify a value for any of the optional entries or
attributes in the ScriptConfiguration.groovy file, then comment out that
entry or attribute by prefixing it with the double-slash symbol (//).

• itResourceDefName

This is a mandatory entry. Enter the name of the IT resource type for the target
system. Note that the value that you specify for this entry determines the name
of the connector package, connector configuration file, and connector installer
file. For example, if you specify GenScriptTrusted as the value of this entry,
then the name of the connector package directory is GenScriptTrusted.zip. See
Understanding the Generated Connector Package for the directory structure of the
connector package.

• itResourceName

This is an optional entry. Enter the name of the IT resource for the target system. If
this entry is commented, then the IT resource name will be the same as the value
of the ITResourceDefName entry.

Default value: "$itResourceDefName"

Chapter 2
Configuring the ScriptConfiguration.groovy File

2-6

Note:

The value of this entry must be unique for each connector that you
create for your target system, if you plan to install or use the connectors
in the same OIM environment. In addition, this value will be a part
of the names for all connector components (defined in the connector
configuration XML file, which is created after you run the metadata
generator) such as lookup definitions, resource objects, process forms,
and scheduled tasks.

For example, if you specify GenScriptTrusted as the value of
itResourceName entry, then after you deploy the connector, the
configuration lookup definition is created and its name will be
Lookup.GenScriptTrusted.Configuration.

• applicationInstanceName

This is an optional entry and present only in the section for target resource
configuration. Enter the name of the application instance for your target system
that the connector must generate. If this entry is commented, then the application
instance name will be the same as the value of the ITResourceDefName entry.

Default value: "$itResourceDefName"

• connectorDir

This is an optional entry. This entry is the complete path to the directory
that must contain the connector package that is generated when you run the
metadata generator. By default, the name of the directory containing the generated
connector package is the same as the value of the itResourceDefName entry.

Sample value: "/scratch/jdoe/OIMPS3/mw4318/idm7854/server/
ConnectorDefaultDirectory/GenScriptTrusted"

• xmlFile

This is an optional entry. Enter the name and relative path of the XML file that
must contain definitions of the connector objects. If you do not specify a value for
this entry, then the file name is generated in the following format:

IT_RES_DEF_NAME-ConnectorConfig.xml

In this format, IT_RES_DEF_NAME is the value of the itResourceDefName entry.

For example, if you have not specified a value for this entry and
GenScriptTrusted is the value of the itResourceDefName entry, then the name
of the XML file that is generated is GenScriptTrusted-ConnectorConfig.xml.

Note:

To easily identify files of a specific target system installation, it is
recommended that the names of this generated XML file be prefixed
with the name of the IT resource for the target system.

Sample value: GenScriptTrusted-ConnectorConfig.xml

• configFileName

Chapter 2
Configuring the ScriptConfiguration.groovy File

2-7

This is an optional entry. Enter the name and relative path of the XML file that
contains the configuration information of the connector objects. If you do not
specify a value for this entry, then the file name is generated in the following
format:

IT_RES_DEF_NAME-CI.xml

In this format, IT_RES_DEF_NAME is the value of the itResourceDefName entry.

For example, if you have not specified a value for this entry and
GenScriptTrusted is the value of the itResourceDefName entry, then the name
of the XML file that is generated is GenScriptTrusted-CI.xml.

• propertiesFile

This is an optional entry. Enter the name and relative path of the .properties file
which contains the resource bundle translations. If you do not specify a value for
this entry, then the file name is generated in the following format:

IT_RES_DEF_NAME-generator.properties

In this format, IT_RES_DEF_NAME is the value of the itResourceDefName entry.

For example, if you have not specified a value for this entry and
GenScriptTrusted is the value of the itResourceDefName entry, then the name of
the properties file that is generated is GenScriptTrusted-generator.properties.

• version

This is an optional entry. Enter the release number of the connector.

Sample value: 11.1.1.5.0

• trusted

This is a mandatory entry and present only in the section for trusted source
configuration. Set the value of the entry to true, if you are configuring the
connector to run in the trusted source mode.

• bundleJar

This is a mandatory entry. Enter the name and relative path of the JAR file
containing the ICF bundle that the metadata generator will use.

Default value: ../lib/org.identityconnectors.genericscript-1.0.11150.jar

Do not change the value of this entry.

• config

This is a mandatory entry in which you specify information about the connector
configuration. This connector configuration contains information about the manner
in which the connector must behave and connect to the target system.

Table 2-1 lists and describes the properties of the Config entry.

Chapter 2
Configuring the ScriptConfiguration.groovy File

2-8

Table 2-1 Properties of the config Entry

Property Mandatory? Description

schemaFile Yes Enter the file URL of the schema file that you want to use.

You must enter the file URL in the following format:

file:///URL

Sample value: file:///home/jdoe/schema.properties

See Defining the Schema for information about the schema file that you
created.

resourceProperties No Enter the file URL of the properties file containing connection-specific
information related to your target system.

You must enter the file URL in the following format:

file:///URL

Sample value: file:///home/jdoe/resource.properties

See Preparing the Resource Properties File for more information about
creating this file.

host Yes Host name or IP address of the computer hosting the target system.

port Yes Port number at which the target system is listening.

user Yes User ID or user name of the account in the target system that Oracle
Identity Manager must use to connect to and access the target system
during reconciliation and provisioning operations. This target system user
account must have the necessary permissions to perform all connector
operations.

changeLogColumn No Optional name of the target system attribute where the last update-related
number, non-decreasing, date or timestamp-based values are stored. Can
also be a column name storing values that are not date or time stamp
based (for example, numeric or strings).

The data type of this target system attribute can be any of the data types
supported by the target system.

The values in this attribute are used during incremental reconciliation to
determine the newest or most youngest record reconciled from the target
system.

Note: You must specify a value for this property if you want to perform
incremental reconciliation.

createScript No This property is present only in the section for target resource
configuration.

Specify a value for this property if you want the connector to perform
Create provisioning operations.

Enter the file URL of the script containing the implementation to create
objects in your target system. For example, enter the script containing the
implementation to perform a create user account provisioning operation.
When this script is called, the parent form data is added.

You must enter the file URL in the following format:

file:///URL

Sample value: file:///home/jdoe/scripts/create_user.groovy

Chapter 2
Configuring the ScriptConfiguration.groovy File

2-9

Table 2-1 (Cont.) Properties of the config Entry

Property Mandatory? Description

updateScript No This property is present only in the section for target resource
configuration.

Specify a value for this property if you want the connector to perform
Update provisioning operations.

Enter the file URL of the script containing the implementation to update
objects in your target system. For example, enter the script containing the
implementation to perform an update user account provisioning operation.
This script is called when you update the parent form, or enable or disable
the user account.

You must enter the file URL in the following format:

file:///URL

Sample value: file:///home/jdoe/scripts/update_user.groovy

deleteScript No This property is present only in the section for target resource
configuration.

Specify a value for this property if you want the connector to perform
Delete provisioning operations.

Enter the file URL of the script containing the implementation to delete
objects in your target system. For example, enter the script containing the
implementation to perform a delete user account provisioning operation.
This script is called when you remove or delete an account.

You must enter the file URL in the following format:

file:///URL

Sample value: file:///home/jdoe/scripts/delete_user.groovy

executeQueryScript No Specify a value for this property if you want to configure the connector to
perform reconciliation.

Enter the file URL of the script containing the implementation to fetch
objects from your target system. This script is called while performing an
account search (operations such as full and filtered reconciliation).

You must enter the file URL in the following format:

file:///URL

Sample value: file:///home/jdoe/scripts/recon_user.groovy

lookupScript No This property is present only in the section for target resource
configuration.

Specify a value for this property if you want the connector to perform
lookup field synchronization.

Enter the file URL of the script containing the implementation to fetch
values of lookup attributes from your target system.

You must enter the file URL in the following format:

file:///URL

Sample value: file:///home/jdoe/scripts/
lookup_field_sync.groovy

Chapter 2
Configuring the ScriptConfiguration.groovy File

2-10

Table 2-1 (Cont.) Properties of the config Entry

Property Mandatory? Description

syncScript No Specify a value for this property if you want the connector to perform
incremental reconciliation.

Enter the file URL of the script containing the implementation to fetch
incremental changes for objects from your target system.

You must enter the file URL in the following format:

file:///URL

Sample value: file:///home/jdoe/scripts/
increm_recon_user.groovy

addMultiValuedAttribute
Script

No This property is present only in the section for target resource
configuration.

Specify a value for this property if you want the connector to perform
provisioning operations on child data.

Enter the file URL of the script containing the implementation to add
multivalued child data for objects in your target system. This script is
called when you add multivalued child attributes.

You must enter the file URL in the following format:

file:///URL

Sample value:

file:///home/jdoe/scripts/add_mulval_attr.groovy

removeMultiValuedAttrib
uteScript

No This property is present only in the section for target resource
configuration.

Specify a value for this property if you want the connector to perform
provisioning operations on child data.

Enter the file URL of the script containing the implementation to remove
multivalued child data for objects in your target system. This script is
called while removing multivalued child attributes.

You must enter the file URL in the following format:

file:///URL

Sample value: file:///home/jdoe/scripts/
remove_mulval_attr.groovy

connectionScript No Enter the file URL of the script containing the implementation to connect
to the target system.

You must enter the file URL in the following format:

file:///URL

Sample value: file:///home/jdoe/scripts/connection.groovy

checkAliveScript No Enter the file URL of the script containing the implementation to check
whether the connector's physical connection to the target system is alive.
This script must do only the minimum that is necessary to check that the
connection is still alive

You must enter the file URL in the following format:

file:///URL

Sample value: file:///home/jdoe/scripts/checkalive.groovy

disposeScript No Enter the file URL of the script containing the implementation to dispose
any configuration objects.

You must enter the file URL in the following format:

file:///URL

Sample value: file:///home/jdoe/scripts/dispose.groovy

Chapter 2
Configuring the ScriptConfiguration.groovy File

2-11

Table 2-1 (Cont.) Properties of the config Entry

Property Mandatory? Description

scriptType Yes Enter the language in which the scripts have been written. The possible
values are as follows:

– GROOVY
– BEANSHELL
– JAVASCRIPT

See Also:

Understanding Script Arguments for information about the arguments
that you can include in the custom scripts that you write to perform
connector operations

• lookupAttributeList

This is an optional entry and is present only in the section for target resource
configuration. Enter the list of attributes in your target system that must be handled
as lookup fields.

The connector creates a lookup field for each of the attributes specified in this
entry and associates it with the corresponding lookup fields on the OIM User
process form.

If you want to create a lookup field for a single-valued or multivalued field, then
enter the value in the following format:

['FIELD_NAME']

In this format, replace FIELD_NAME with the name of the single or multivalued
field.

If you want create a lookup field for a multivalued field that is embedded, then
enter the value in the following format:

['OBJ_CLASS.SUB_FIELD_NAME']

In this format, replace:

– OBJ_CLASS with the EmbeddedObjectClass name for the child form as
specified in the schema file.

– SUB_FIELD_NAME with the subfield name for the child form as specified in
the schema file.

The default value of this entry is:

['ROLES.ROLENAME','FirstName']

In this value, ROLES.ROLENAME is a multivalued field that is embedded. In other
words, ROLES is the EmbeddedObjectClass name for roles child form as specified
in the schema file (that is, roles.EmbeddedObjectClass=Roles) and ROLENAME is
one of the subfields for the roles child form as specified in the schema file (that is
roles.Subfileds=ROLENAME). FirstName is a single-valued field.

You can modify the default value to meet the requirements in your environment.

For each of the attributes listed in the lookupAttributeList entry, the connector
creates a lookup definition and scheduled job in the following format:

Chapter 2
Configuring the ScriptConfiguration.groovy File

2-12

– Lookup definition format:

Lookup.${IT_RES_NAME}.${FIELD_NAME}

This lookup definition holds the lookup values reconciled from the target
system.

– Scheduled job format:

IT_RES_NAME Target FIELD_NAME Lookup Reconciliation

This scheduled job is used to load or reconcile lookup values from your
target system. See Scheduled Job for Lookup Field Synchronization for more
information about the attributes of the scheduled job for lookup reconciliation.

In both the formats, the connector replaces:

– IT_RES_NAME with the value of the itResourceDefName entry.

– FIELD_NAME with the name of the field for which the lookup field is created.

• entitlementAttributeList

This is also an optional entry and is present only in the section for target resource
configuration. Enter the list of fully qualified attributes in the target system that
must be tagged as entitlements.

The connector creates a lookup field for each of the attributes specified in this
entry, assigns the lookup fields to a process form, and adds all the required
properties of entitlements.

If you want to tag entitlements for multivalued fields, then enter the value in the
following format:

["MULTIVALUED_FIELD_NAME"]

If you want to tag entitlements for a multivalued field that is embedded, then enter
the value in the following format:

["OBJ_CLASS.SUB_FIELD_NAME"]

In this format, replace:

– OBJ_CLASS with the EmbeddedObjectClass name for the child form as
specified in the schema file.

– SUB_FIELD_NAME with the subfield name for the child form as specified in
the schema file.

Default value: ["Roles.roleid","__GROUPS__"]

You can modify the default value based on your schema.

In this value, Roles.RoleId is an embedded multivalued field and __GROUPS__ is a
multivalued field.

• objectClassAlias

This is an optional entry. Enter an alias for object class if it is other than
ObjectClass.ACCOUNT_NAME or ObjectClass.GROUP_NAME.

Default value: ['Person']

• dateAttributeList

This is an optional entry. Enter the list of attributes that must be handled as date
on the process form. Ensure that the data type of the attributes listed here is set to
Long in the schema file.

Chapter 2
Configuring the ScriptConfiguration.groovy File

2-13

The connector creates a date editor for each of the attributes specified in this
entry.

If you want to handle single-valued or multivalued fields as date, then enter the
value in the following format:

["FIELD_NAME"]

In this format, replace FIELD_NAME with the name of the single or multivalued
field.

If you want to handle an embedded multivalued field as date, then enter the value
in the following format:

["OBJ_CLASS.SUB_FIELD_NAME"]

In this format, replace:

– OBJ_CLASS with the EmbeddedObjectClass name for the child form as
specified in the schema file.

– SUB_FIELD_NAME with the subfield name for the child form as specified in
the schema file.

Default value: ["JoiningDate","Roles.fromdate","Roles.todate"]

You can modify the default value to meet the requirements in your environment.

The following is a sample value for handling embedded multivalued fields as date:

["MyRole.StartDate", "MyRole.EndDate"]

• alias

This is a mandatory entry. The metadata generator uses aliases to create
relationships between the attributes in the target system and resource object
field names in Oracle Identity Manager. In addition, the metadata generator uses
aliases to shorten long database names to meet the character-length restrictions
on form names and form field names in Oracle Identity Manager. Aliasing can be
used on column name, form name, and form field name levels. Note that the target
system attributes are represented as connector attributes.

Depending on the type of configuration, specify values for one of the following
sections:

– For trusted source configuration

In the trusted source configuration section, you use the alias entry to map
connector attributes or target system attributes to the OIM User form field
names. The mappings that you specify here are used to populate entries in the
Recon Attribute map lookup definition for trusted source reconciliation.

Note that some of the OIM User form field names do not have the same
display name internally. For such fields, you must ensure that you map the
connector attribute or target system attribute to the internal name rather than
the display name. The following table lists the names of the OIM User form
display names and their corresponding internal names:

Display Name Internal Name

Organization Organization Name

Manager Manager Login

E-mail Email

Chapter 2
Configuring the ScriptConfiguration.groovy File

2-14

The following is the default value of the alias entry:

['__NAME__':'User Login', 'LastName':'Last
Name','Organization':'Organization Name', 'Employee
Type':'Xellerate Type', 'Role':'Role']

In the default value, note that the "Organization" connector attribute has been
mapped to "Organization Name", which is the internal name.

You cannot delete existing mappings in the default value. However, you can
modify these mappings.

If you want to add mappings for fields other than the ones already present in
the alias entry, then you can add them either to the existing values in the alias
entry, or add them to the alias + entry.

The following is the default value of the alias + entry:

['__ENABLE__':'Status', 'FirstName':'First Name', 'email':'Email',
'JoiningDate':'Start Date']

The following is the format in which you must specify values for the alias and
alias + entry:

['CONN_ATTR1': 'OIM_FIELD1', 'CONN_ATTR2': 'OIM_FIELD2', . . .
'CONN_ATTRn': 'OIM_FIELDn']

In this format:

* CONN_ATTR is the connector attribute name.

* OIM_FIELD is the name of the field on the OIM User form.

– For target resource configuration

In the target resource configuration section, you use the alias entry for one or
all of the following purposes:

* To map connector attributes or target system attributes to fields of the
process form. The mappings that you specify here are used to populate
entries in the Recon Attribute map and Prov Attribute map lookup
definitions for target resource reconciliation.

* To set an alias (a unique and shortened name) for the IT resource name
specified in the itResourceName entry.

* To specify a short name for a lengthy process form field name.

When the number of characters in a process form is more than 11, the
metadata generator automatically truncates the process form name to 10
characters and then suffixes it with the digit 0. Subsequently, for every
process form that results in the same name after truncating, the suffix
is incremented by 1. The metadata generator prevents any two process
forms from having the same name by using autonumbering. To gain
control over the autogenerated form name and to have meaningful form
names, you can use an alias to specify a shortened process form name.

This is illustrated by the following example:

Assume that the resource name is GENDB and contains child data that is
represented as USER_ROLES in the schema.

When you run the metadata generator, the process form is created
and the form name is UD_GENDB_USER_ROLES. As the number of
characters in this process form name is more than 11, the metadata

Chapter 2
Configuring the ScriptConfiguration.groovy File

2-15

generator automatically truncates it to UD_GENDB_U0. The truncated
form name, UD_GENDB_U0, is not meaningful.

To avoid encountering such issues or forms with autogenerated names,
you can use the alias entry to specify short and meaningful process form
names.

The following is the default value of the alias entry in the target resource
configuration section:

['__UID__':'UserId', '__NAME__':'UserId']

You cannot delete existing mappings in the default value as they are
mandatory. However, you must modify the default value to match the values
of the UidAttribute and NameAttribute qualifiers in the schema file. For
example, in the schema file, if you have set the values of the UidAttribute
and NameAttribute qualifiers to UID and UserId respectively, then you must
set the value of the alias entry to the following:

['__UID__':'UID', '__NAME__':'UserId']

If you want to add mappings for fields other than the ones already present in
the alias entry (in other words, optional aliases), then you can add them either
to the existing values in the alias entry, or add them to the alias + entry.

The following is the default value of the alias + entry in the target resource
configuration section:

['USERROLERELATIONSHIP':'USRROL', 'comments':'Description', 'Family
Name':'Last Name', 'Visibility':'Status']

The following is the format in which you must specify values for the alias and
alias + entries:

['CONN_ATTR1': 'ALIAS_FIELD1', 'CONN_ATTR2': 'ALIAS_FIELD2', . . .
'CONN_ATTRn': 'ALIAS_FIELDn']

In this format:

* CONN_ATTR is the connector attribute name.

* ALIAS_FIELD is the alias corresponding to the connector attribute or
target system attribute.

• prepopulate

This is an optional entry that is present only in the section for target resource
configuration. Specify a value for this entry if you want Oracle Identity Manager
to prepopulate connector's process form fields from OIM User fields while
provisioning a enterprise target system resource.

The default value of this entry is as follows:

['__NAME__':'User Login', 'FIRST_NAME':'First Name', 'LAST_NAME':'Last
Name', '__PASSWORD__':'Password']

This means that the groovy file is configured to prepopulate the following fields by
default:

– User Login

– First Name

– Last Name

– Password

Chapter 2
Configuring the ScriptConfiguration.groovy File

2-16

You can add fields to or remove fields from the preceding list. The following is the
format in which you must specify values for the prepopulate entry:

['CONN_ATTR1 or TARGET_ATTR1': 'OIM_FIELD1', 'CONN_ATTR2 or TARGET_ATTR2':
'OIM_FIELD2', . . . 'CONN_ATTRn or TARGET_ATTRn': 'OIM_FIELDn']

In this format:

– CONN_ATTR is the connector attribute name.

– TARGET_ATTR is the target system attribute name.

– OIM_FIELD is the name of the field on the OIM User form.

See Working with Prepopulate Adapters in Oracle Fusion Middleware Developing
and Customizing Applications for Oracle Identity Manager for more information
about attaching and removing prepopulate adapters.

2.3.3 Configuring the Groovy File
To configure the ScriptConfiguration.groovy file:

1. Download the connector installation ZIP file from Oracle Technology Network.

2. Extract the contents of the connector installation ZIP to any directory on the
computer on which you intend to run the metadata generation utility. This creates a
directory named genericscript-RELEASE_NUMBER. See Files and Directories of
the Generic Scripting Connector for information about all the files and directories in
the connector installation ZIP.

3. In a text editor, open the ScriptConfiguration.groovy file located in the
genericscript-RELEASE_NUMBER/metadata-generator/resources directory.

4. Specify values for entries in one of the following predefined sections:

• trusted - for configuring the connector for trusted source mode.

• target - for configuring the connector for target resource mode.

See Also:

Understanding Entries in the Predefined Sections of the Groovy File for
information about entries in the predefined sections

5. Save and close the ScriptConfiguration.groovy file.

2.4 Generating the Connector
After configuring the ScriptConfiguration.groovy file, you must run the metadata
generator to generate the connector package based on your target system schema.

The metadata generator is the GenericScriptGenerator.cmd or
GenericScriptGenerator.sh file that is located in the genericscript-
RELEASE_NUMBER/metadata-generator/bin directory.

To run the metadata generator, in a command window, change to the
genericscript-RELEASE_NUMBER/metadata-generator/bin directory (for example,

Chapter 2
Generating the Connector

2-17

genericscript-11.1.1.5.0/bin) and run one of the following commands depending on
the operating system that you are using:

• For Microsoft Windows

GenericScriptGenerator.cmd CONFIG_FILE CONFIG_NAME

• For UNIX

GenericScriptGenerator.sh CONFIG_FILE CONFIG_NAME

In this command, replace:

• CONFIG_FILE with the absolute or relative path name of the
ScriptConfiguration.groovy file.

• CONFIG_NAME with the name of the configuration within the
ScriptConfiguration.groovy file, being used for the target system. The predefined
configurations within this file are trusted and target. You can create additional
custom configurations with different names depending on your requirements.

The following is a sample command:

GenericScriptGenerator.cmd ..\resources\ScriptConfiguration.groovy target

In this command, "target" denotes the name of the section in the
ScriptConfiguration.groovy file for which values have been specified. In other words,
the connector is being configured for the target resource mode.

If you encounter any errors while running the metadata generator, then you must fix it
and then resume running the metadata generator.

2.4.1 Understanding the Generated Connector Package
The connector package is a ZIP file that is generated in the GenericScript-
RELEASE_NUMBER/metadata-generator/ directory.

For example, if you have specified GenScript as the value of the itResourceDefName
entry in the ScriptConfiguration.groovy file, then the connector package ZIP
(GenScript.zip) file is generated in the GenericScript-11.1.1.5.0/metadata-generator/
directory. The directory structure of the connector package is as follows:

CONNECTOR_PACKAGE/
 configuration/
 IT_RES_DEF-CI.xml
 resources/
 genericscript-generator.properties
 xml/
 IT_RES_DEF-ConnectorConfig.xml

In this directory structure:

• CONNECTOR_PACKAGE is replaced with the name of the IT resource
definition specified as the value of the itResourceDefName entry in the
ScriptConfiguration.groovy file.

• IT_RES_DEF is replaced with the name of the IT resource definition specified as
the value of the itResourceDefName entry in the ScriptConfiguration.groovy file.

The following behavior is observed after generation of the connector configuration
XML file:

Chapter 2
Generating the Connector

2-18

The length of a field (column) from the target system is not fetched into the process
form. Therefore, except for the Unique ID and Password fields, the length of all
other data fields (of the String data type) on the process form is always set to 255
characters. The length of the Unique ID and Password fields is set to 40 characters.

Chapter 2
Generating the Connector

2-19

3
Installing and Configuring the Generic
Scripting Connector

This chapter describes how to install and configure the Generic Scripting connector. It
also describes the prerequisites you must meet before you can successfully install and
configure the connector and the steps you must follow after installing the connector.
The procedure to install and configure the Generic Scripting connector can be divided
into the following stages:

• Preinstallation

• Installing the Connector

• Postinstallation

• Upgrading the Connector

3.1 Preinstallation
Preinstallation involves downloading and copying third-party JAR file on your target
system.

Before you install the connector, you must download the third-party JAR files and copy
them to a local repository on the computer hosting Oracle Identity Manager. You must
place the third-party JAR files in the local repository to let the connector consume
it during installation and then communicate with external systems during connector
operations.

If you are using BeanShell scripts for performing connector operations, then you must
download and copy the BeanShell JAR file. If you are using JavaScript or Groovy
scripts, then there is no need to copy any third-party JAR files as they are a part of
code files for JDK and OIM, respectively. In addition, you must download and copy any
third-party JAR files corresponding to the target system that you are using, if required.
For example, if you plan to use BeanShell scripts to perform connector operations
and are using Google Apps as your target system, then you must download and
copy the BeanShell JAR file and Google Apps third-party JAR files such as google-api-
client-1.18.0-rc.jar, google-oauth-client-1.18.0-rc.jar, and so on to the local repository.

You must download and copy the external code files as follows:

1. On the computer hosting Oracle Identity Manager, create a directory named
GenericScript-RELEASE_NUMBER under the following directory:

OIM_HOME/server/ConnectorDefaultDirectory/targetsystems-lib/

For example, if you are using release 11.1.1.5.0 of this connector, then
create a directory named GenericScript-11.1.1.5.0 in the OIM_HOME/server/
ConnectorDefaultDirectory/targetsystems-lib/ directory.

2. If you plan to use BeanShell scripts for performing connector operations, then
download the BeanShell JAR file (Bsh-2.1.8.jar) from the following URL:

https://code.google.com/p/beanshell2/wiki/Downloads

3-1

https://code.google.com/p/beanshell2/wiki/Downloads

3. Copy the Bsh-2.1.8.jar file to the OIM_HOME/server/ConnectorDefaultDirectory/
targetsystems-lib/GenericScript-RELEASE_NUMBER directory.

For example, copy the JAR file to the OIM_HOME/server/
ConnectorDefaultDirectory/targetsystems-lib/GenericScript-11.1.1.5.0 directory.

4. If your target system requires any third-party JAR files to enable exchange of
information from OIM, then download the necessary JAR files and copy them to
the following location:

OIM_HOME/server/ConnectorDefaultDirectory/targetsystems-lib/GenericScript-
RELEASE_NUMBER

3.2 Installing the Connector
Installation information is divided across the following sections:

• Understanding Installation

• Running the Connector Installer

• Configuring the IT Resource for the Target System

3.2.1 Understanding Installation
The following sections help you understand the installation procedure:

• Summary of Steps to Install the Connector

• About Installing the Connector Locally and Remote

3.2.1.1 Summary of Steps to Install the Connector
Installing this connector requires you to first install the connector bundle that is
included in the installation media and then install the connector package (specific to
your target system) that you generated while performing the procedure described in
Generating the Connector.

The following is a summary of steps to install the Generic Scripting connector

1. Run the connector installer to install the connector bundle included in the
installation media. This procedure is described later in this chapter.

2. Run the connector installer to install the connector package (specific to your
target system) that you generated while performing the procedure described in
Generating the Connector. The procedure to install the connector package is
described later in this guide.

3. Configure the IT resource. See Configuring the IT Resource for the Target System
for more information.

3.2.1.2 About Installing the Connector Locally and Remote
Depending on where you want to run the connector code (bundle), the connector
provides the following installation options:

• Run the connector code locally in Oracle Identity Manager.

In this scenario, you deploy the connector in Oracle Identity Manager. Deploying
the connector in Oracle Identity Manager involves performing the procedures

Chapter 3
Installing the Connector

3-2

described in Running the Connector Installer and Configuring the IT Resource
for the Target System.

• Run the connector code remotely in a Connector Server.

In this scenario, you deploy the connector in Oracle Identity Manager, and then,
deploy the connector bundle in a Connector Server. See Using an Identity
Connector Server in Oracle Fusion Middleware Developing and Customizing
Applications for Oracle Identity Manager for information about installing,
configuring, and running the Connector Server, and then installing the connector in
a Connector Server.

3.2.2 Running the Connector Installer
As discussed in one of the earlier sections, you must first install the connector bundle
that is included in the installation media and then install the connector bundle that is a
part of the connector package that you generated.

The procedure to install both connector bundles is the same except for the following
differences:

• Before running the connector installer to install the connector bundle from the
installation media, you must copy the contents of the connector installation media
to the OIM_HOME/server/ConnectorDefaultDirectory directory.

• Before running the connector installer to install the generated connector, you must
copy the unzipped connector package (generated in Generating the Connector) to
the OIM_HOME/server/ConnectorDefaultDirectory directory.

In this scenario, you install the connector in Oracle Identity Manager using the
Connector Installer.

Note:

In this guide, the term Connector Installer has been used to refer to the
Connector Installer feature of the Oracle Identity Manager Administrative and
User Console.

To run the Connector Installer:

1. If you are installing the connector included in the installation media, then copy the
contents of the connector installation media to the following directory:

OIM_HOME/server/ConnectorDefaultDirectory

2. If you are installing the connector from the generated connector package, then
copy the unzipped connector package (generated in Generating the Connector) to
the following directory:

OIM_HOME/server/ConnectorDefaultDirectory

3. Log in to Oracle Identity System Administration.

4. In the left pane, under Provisioning Configuration, click Manage Connector.

5. In the Manage Connector page, click Install.

6. From the Connector List, select one of the following connectors:

Chapter 3
Installing the Connector

3-3

• If you are installing the connector included in the connector installation media,
then select GenericScript Connector-RELEASE_NUMBER.

• If you are installing the generated connector, then select the name of the
connector package (generated by running the metadata generator).

This list displays the names and release numbers of connectors whose installation
files you copy into the default connector installation directory in Step 1.

If you have copied the installation files into a different directory, then:

a. In the Alternative Directory field, enter the full path and name of that
directory.

b. To repopulate the list of connectors in the Connector List list, click Refresh.

c. From the Connector List list, select the relevant connector name depending on
whether you are installing the connector included in the connector installation
media or the generated connector.

7. Click Load.

8. To start the installation process, click Continue.

The following tasks are performed in sequence:

a. Configuration of connector libraries

b. Import of the connector XML files (Using Deployment Manager).

c. Compilation of Adapter Definitions

On successful completion of a task, a check mark is displayed for the task. If
a task fails, then an X mark and a message stating the reason for failure are
displayed. Depending on the reason for the failure, make the required correction
and then perform one of the following steps:

• Retry the installation by clicking Retry.

• Cancel the installation and begin again from Step 1.

If all three tasks of the connector installation process are successful, then a
message indicating successful installation is displayed.

9. Click Exit to close the installation page.

When you run the Connector Installer, it processes the script in the GenericScript-
CI.xml file located in the configuration directory. This file is listed in Table C-1.

3.2.3 Configuring the IT Resource for the Target System
The IT resource for the target system contains connection information about the
target system. Oracle Identity Manager uses this information during provisioning and
reconciliation.

When you run the metadata generator, the IT resource corresponding to this connector
is automatically created in Oracle Identity Manager. You must specify values for the
parameters of this IT resource as follows:

1. Log in to Oracle Identity System Administration.

2. In the left pane, under Configuration, click IT Resource.

Chapter 3
Installing the Connector

3-4

3. In the IT Resource Name field on the Manage IT Resource page, enter the name
of the IT resource, and then click Search. The name of the IT resource is the
value of the itResourceName property in the ScriptConfiguration.groovy file.

4. Click the edit icon for the IT resource.

5. From the list at the top of the page, select Details and Parameters.

6. Specify values for the parameters of the IT resource. Table 3-1 describes each
parameter.

Note:

The IT resource parameters (except for Password) described in
Table 3-1 are prepopulated with values you have specified for the
corresponding properties while performing the procedure described in
Configuring the ScriptConfiguration.groovy File. You must specify a value
for the Password IT resource parameter. For the rest of the IT resource
parameters, you can verify the existing values and make changes if
required.

Table 3-1 IT Resource Parameters

Parameter Description

Configuration Lookup Name of the lookup definition that holds connector configuration entries that are
used during connector operations.

Connector Server Name of the connector server IT resource.

changeLogColumn Name of the column where the last update-related, non-decreasing, value is
stored. Can be a number or a timestamp.

The values in this column are used during incremental reconciliation to determine
the newest or most youngest record reconciled from the target system.

Note: You must specify a value for this property if you want to perform
incremental reconciliation.

host Host name or IP address of the computer hosting the target system.

Sample value: myhost

password Password of the target system user account that Oracle Identity Manager uses to
connect to the target system.

port Port number at which the target system is listening.

scriptType Name of the language in which the scripts for performing connector operations
have been written.

Sample value: BEANSHELL

user User ID of the target system user account that Oracle Identity Manager uses to
connect to the target system.

7. To save the values, click Update.

3.3 Postinstallation
This section discusses the following postinstallation procedures:

Chapter 3
Postinstallation

3-5

• Configuring Oracle Identity Manager

• Replacing the groovy-all.jar File

• Localizing Field Labels in UI Forms

• Clearing Content Related to Connector Resource Bundles from the Server Cache

• Managing Logging for the Generic Scripting Connector

3.3.1 Configuring Oracle Identity Manager
You must create a UI form and an application instance for the resource against which
you want to perform reconciliation and provisioning operations. In addition, you must
run entitlement and catalog synchronization jobs. These procedures are described in
the following sections:

Note:

Perform the procedures described in this section only if you are using the
connector in the target resource configuration mode.

• Creating and Activating a Sandbox

• Creating a New UI Form

• Associating the Form with the Application Instance

• Publishing a Sandbox

• Harvesting Entitlements and Sync Catalog

3.3.1.1 Creating and Activating a Sandbox
See Managing Sandboxes in Oracle Fusion Middleware Developing and Customizing
Applications for Oracle Identity Manager for instructions on creating and activating a
sandbox.

3.3.1.2 Creating a New UI Form
See Managing Forms in Oracle Fusion Middleware Administering Oracle Identity
Manager guide for instructions on creating a new UI form. While creating the UI form,
ensure that you select the resource object corresponding to the Generic Scripting
connector that you want to associate the form with. In addition, select the Generate
Entitlement Forms check box.

3.3.1.3 Associating the Form with the Application Instance
By default, an application instance is automatically created after you install the
connector. The name of this application instance is the one that is specified as the
value of the applicationInstanceName entry in the ScriptConfiguration.groovy file. If
you did not specify a value for the applicationInstanceName entry, then the application
instance name will be the same as the value of the ITResourceDefName entry. You
must associate this application instance with the form created in Creating a New UI
Form.

Chapter 3
Postinstallation

3-6

See Managing Application Instances in Oracle Fusion Middleware Administering
Oracle Identity Manager for instructions on modifying an application instance to
associate it with a form.

After updating the application instance, you must publish it to an organization to make
the application instance available for requesting and subsequent provisioning to users.
See Managing Organizations Associated With Application Instances in Oracle Fusion
Middleware Administering Oracle Identity Manager for instructions on publishing an
application instance to an organization.

3.3.1.4 Publishing a Sandbox
Before you publish a sandbox, perform the following procedure as a best practice to
validate all sandbox changes made till this stage as it is hard to revert changes once a
sandbox is published:

1. In the System Administration console, deactivate the sandbox.

2. Log out of the System Administration console.

3. Log in to the Self Service console using the xelsysadm user credentials and then
activate the sandbox that you deactivated in Step 1.

4. In the Catalog, ensure that the Generic Scripting application instance form
appears with correct fields.

5. Publish the sandbox. See Publishing a Sandbox in Oracle Fusion Middleware
Developing and Customizing Applications for Oracle Identity Manager for
instructions on publishing a sandbox.

3.3.1.5 Harvesting Entitlements and Sync Catalog
To harvest entitlements and sync catalog:

1. Run the scheduled jobs for lookup field synchronization discussed in Scheduled
Job for Lookup Field Synchronization.

2. Run the Entitlement List scheduled job to populate Entitlement Assignment
schema from child process form table. See Predefined Scheduled Tasks in Oracle
Fusion Middleware Administering Oracle Identity Manager for more information
about this scheduled job.

3. Run the Catalog Synchronization Job scheduled job. See Predefined Scheduled
Tasks in Oracle Fusion Middleware Administering Oracle Identity Manager for
more information about this scheduled job.

3.3.2 Replacing the groovy-all.jar File
You must replace the groovy-all.jar file located on the computer hosting the connector
server with the latest version that is available on the computer hosting Oracle Identity
Manager.

Password provisioning operations carried out with this connector do not succeed if you
fail to replace the groovy-all.jar file.

To replace the groovy-all.jar file:

1. On the computer hosting Oracle Identity Manager, navigate to the OIM_HOME/
server/apps/oim.ear/APP-INF/lib directory and copy the groovy-all.jar file.

Chapter 3
Postinstallation

3-7

2. On the computer hosting the connector server, replace the groovy-all.jar located
in the CONNECTOR_SERVER/lib/framework directory with the groovy-all.jar file
copied from Oracle Identity Manager.

3.3.3 Localizing Field Labels in UI Forms
To localize field label that is added to the UI forms:

1. Create a properties file (for example, GS_ja.properties) containing localized
versions for the column names in your target system (to be displayed as text
strings for GUI elements and messages in the Administrative and User Console).

2. Log in to Oracle Enterprise Manager.

3. In the left pane, expand Application Deployments and then select
oracle.iam.console.identity.sysadmin.ear.

4. In the right pane, from the Application Deployment list, select MDS Configuration.

5. On the MDS Configuration page, click Export and save the archive to the local
computer.

6. Extract the contents of the archive, and open one of the following files in a text
editor:

• For Oracle Identity Manager 11g Release 2PS2 (11.1.2.2.0) and later:
SAVED_LOCATION\xliffBundles\oracle\iam\ui\runtime\BizEditorBundle_en.xlf

• For releases prior to Oracle Identity Manager 11g Release 2 PS2 (11.1.2.2.0):
SAVED_LOCATION\xliffBundles\oracle\iam\ui\runtime\BizEditorBundle.xlf

7. Edit the BizEditorBundle.xlf file in the following manner:

a. Search for the following text:

<file source-language="en"
original="/xliffBundles/oracle/iam/ui/runtime/BizEditorBundle.xlf"
datatype="x-oracle-adf">

b. Replace with the following text:

<file source-language="en" target-language="LANG_CODE"
original="/xliffBundles/oracle/iam/ui/runtime/BizEditorBundle.xlf"
datatype="x-oracle-adf">

In this text, replace LANG_CODE with the code of the language that you want
to localize the form field labels. The following is a sample value for localizing
the form field labels in Japanese:

<file source-language="en" target-language="ja"
original="/xliffBundles/oracle/iam/ui/runtime/BizEditorBundle.xlf"
datatype="x-oracle-adf">

c. Search for the application instance code. This procedure shows a sample edit
for Generic Scripting application instance. The original code is:

<trans-unit id="$
{adfBundle['oracle.adf.businesseditor.model.util.BaseRuntimeResourceBundl
e']
['persdef.sessiondef.oracle.iam.ui.runtime.form.model.user.entity.userEO.
UD_GENSCR_USERNAME__c_description']}">
<source>USERNAME</source>
<target/>
</trans-unit>

Chapter 3
Postinstallation

3-8

<trans-unit
id="sessiondef.oracle.iam.ui.runtime.form.model.ACMEFORM.entity.ACMEFORME
O.UD_GENSCR_USERNAME__c_LABEL">
<source>USERNAME</source>
<target/>
</trans-unit>

d. Open the properties file created in Step 1 and get the value of the attribute, for
example, global.udf.UD_GENSCR_USERNAME=\u4567d.

e. Replace the original code shown in Step 7.c with the following:

<trans-unit id="$
{adfBundle['oracle.adf.businesseditor.model.util.BaseRuntimeResourceBundl
e']
['persdef.sessiondef.oracle.iam.ui.runtime.form.model.user.entity.userEO.
UD_GENSCR_USERNAME__c_description']}">
<source>USERNAME</source>
<target>\u4567d</target>
</trans-unit>
<trans-unit
id="sessiondef.oracle.iam.ui.runtime.form.model.ACMEFORM.entity.ACMEFORME
O.UD_GENSCR_USERNAME__c_LABEL">
<source>USERNAME</source>
<target>\u4567d</target>
</trans-unit>

f. Repeat Steps 7.a through 7.d for all attributes of the process form.

g. Save the file as BizEditorBundle_LANG_CODE.xlf. In this file name, replace
LANG_CODE with the code of the language to which you are localizing.

Sample file name: BizEditorBundle_ja.xlf.

8. Repackage the ZIP file and import it into MDS.

See Also:

Deploying and Undeploying Customizations in Oracle Fusion Middleware
Developing and Customizing Applications for Oracle Identity Manager for
more information about exporting and importing metadata files

9. Log out of and log in to Oracle Identity Manager.

3.3.4 Clearing Content Related to Connector Resource Bundles from
the Server Cache

When you deploy the connector, the resource bundles are copied from the resources
directory on the installation media into the Oracle Identity Manager database.

Whenever you add a new resource bundle to the connectorResources directory or
make a change in an existing resource bundle, you must clear content related to
connector resource bundles from the server cache.

To clear content related to connector resource bundles from the server cache you can
either restart Oracle Identity Manager or run the PurgeCache utility. The following is
the procedure to clear the server cache by running the PurgeCache utility:

Chapter 3
Postinstallation

3-9

1. In a command window, switch to the OIM_HOME/server/bin directory.

2. Enter one of the following commands:

• On Microsoft Windows: PurgeCache.bat All

• On UNIX: PurgeCache.sh All

When prompted, enter the user name and password of an account belonging to
the SYSTEM ADMINISTRATORS group. In addition, you are prompted to enter
the service URL in the following format:

t3://OIM_HOST_NAME:OIM_PORT_NUMBER

In this format:

• Replace OIM_HOST_NAME with the host name or IP address of the Oracle
Identity Manager host computer.

• Replace OIM_PORT_NUMBER with the port on which Oracle Identity Manager is
listening.

You can use the PurgeCache utility to purge the cache for any content category.

3.3.5 Managing Logging for the Generic Scripting Connector
Oracle Identity Manager uses the Oracle Diagnostic Logging (ODL) logging service for
recording all types of events pertaining to the connector.

The following topics provide detailed information about logging:

• Understanding Log Levels

• Enabling Logging

3.3.5.1 Understanding Log Levels
ODL is the principal logging service used by Oracle Identity Manager and is based on
java.util.Logger. To specify the type of event for which you want logging to take place,
you can set the log level to one of the following:

• SEVERE.intValue()+100

This level enables logging of information about fatal errors.

• SEVERE

This level enables logging of information about errors that might allow Oracle
Identity Manager to continue running.

• WARNING

This level enables logging of information about potentially harmful situations.

• INFO

This level enables logging of messages that highlight the progress of the
application.

• CONFIG

This level enables logging of information about fine-grained events that are useful
for debugging.

• FINE, FINER, FINEST

Chapter 3
Postinstallation

3-10

These levels enable logging of information about fine-grained events, where
FINEST logs information about all events.

These log levels are mapped to ODL message type and level combinations as shown
in Table 3-2.

Table 3-2 Log Levels and ODL Message Type:Level Combinations

Log Level ODL Message Type:Level

SEVERE.intValue()+100 INCIDENT_ERROR:1

SEVERE ERROR:1

WARNING WARNING:1

INFO NOTIFICATION:1

CONFIG NOTIFICATION:16

FINE TRACE:1

FINER TRACE:16

FINEST TRACE:32

The configuration file for ODL is logging.xml, which is located at the following path:

DOMAIN_HOME/config/fmwconfig/servers/OIM_SERVER/logging.xml

Here, DOMAIN_HOME and OIM_SERVER are the domain name and server name
specified during the installation of Oracle Identity Manager.

3.3.5.2 Enabling Logging
To enable logging in Oracle WebLogic Server:

1. Edit the logging.xml file as follows:

a. Add the following blocks in the file:

<log_handler name='genericscript-handler' level='[LOG_LEVEL]'
class='oracle.core.ojdl.logging.ODLHandlerFactory'>
<property name='logreader:' value='off'/>
 <property name='path' value='[FILE_NAME]'/>
 <property name='format' value='ODL-Text'/>
 <property name='useThreadName' value='true'/>
 <property name='locale' value='en'/>
 <property name='maxFileSize' value='5242880'/>
 <property name='maxLogSize' value='52428800'/>
 <property name='encoding' value='UTF-8'/>
 </log_handler>

<logger name="ORG.IDENTITYCONNECTORS.GENERICSCRIPT" level="[LOG_LEVEL]"
useParentHandlers="false">
 <handler name="genericscript-handler"/>
 <handler name="console-handler"/>
 </logger>

b. Replace both occurrences of [LOG_LEVEL] with the ODL message type and
level combination that you require. Table 3-2 lists the supported message type
and level combinations.

Chapter 3
Postinstallation

3-11

Similarly, replace [FILE_NAME] with the full path and name of the log file in
which you want log messages to be recorded.

The following blocks show sample values for [LOG_LEVEL] and [FILE_NAME]:

<log_handler name='genericscript-handler' level='NOTIFICATION:1'
class='oracle.core.ojdl.logging.ODLHandlerFactory'>
<property name='logreader:' value='off'/>
 <property name='path' value='/<%OIM_DOMAIN%>/servers/oim_server1/
logs/genericScriptLogs.log'/>
 <property name='format' value='ODL-Text'/>
 <property name='useThreadName' value='true'/>
 <property name='locale' value='en'/>
 <property name='maxFileSize' value='5242880'/>
 <property name='maxLogSize' value='52428800'/>
 <property name='encoding' value='UTF-8'/>
 </log_handler>

<logger name="ORG.IDENTITYCONNECTORS.GENERICSCRIPT"
level="NOTIFICATION:1" useParentHandlers="false">
 <handler name="genericscript-handler"/>
 <handler name="console-handler"/>
 </logger>

With these sample values, when you use Oracle Identity Manager, all messages
generated for this connector that are of a log level equal to or higher than the
NOTIFICATION:1 level are recorded in the specified file.

2. Save and close the file.

3. Set the following environment variable to redirect the server logs to a file:

• For Microsoft Windows:

set WLS_REDIRECT_LOG=FILENAME

• For UNIX:

export WLS_REDIRECT_LOG=FILENAME

Replace FILENAME with the location and name of the file to which you want to
redirect the output.

4. Restart the application server.

3.4 Upgrading the Connector
Upgrading the connector is not applicable as this is the first release for this connector.

Chapter 3
Upgrading the Connector

3-12

4
Using the Generic Scripting Connector

This chapter discusses the following topics:

• Lookup Definitions Used During Connector Operations

• Configuring Reconciliation

• Scheduled Jobs

• Performing Provisioning Operations

• Uninstalling the Connector

4.1 Lookup Definitions Used During Connector Operations
Lookup definitions used during connector operations can be categorized as follows:

• Predefined Lookup Definitions

• Lookup Definitions Synchronized with the Target System

4.1.1 Predefined Lookup Definitions
This section discusses the lookup definitions that are created in Oracle Identity
Manager after you generate and deploy the connector.

These lookup definitions are either prepopulated with values or values must be
manually entered in them after the connector is deployed. In addition, you can
customize entries in the lookup definitions to suit your requirements. This section
discusses the following lookup definitions:

• Lookup.RESOURCE.Configuration

• Lookup.RESOURCE.UM.Configuration

• Lookup.RESOURCE.UM.ReconAttrMap

• Lookup.RESOURCE.UM.ProvAttrMap

• Lookup.RESOURCE.UM.ReconAttrMap.Defaults

Note:

RESOURCE has been used as a place holder text for IT resource
name. Therefore, replace all instances of RESOURCE in this guide
with the value that you specified for the itResourceName entry in the
ScriptConfiguration.groovy file. See Understanding Entries in the Predefined
Sections of the Groovy File for more information about entries in the
ScriptConfiguration.groovy file.

4-1

4.1.1.1 Lookup.RESOURCE.Configuration
The Lookup.RESOURCE.Configuration lookup definition holds connector configuration
entries that are used during reconciliation (both trusted source and target resource)
and provisioning operations.

Table 4-1 lists the entries in this lookup definition.

Table 4-1 Entries in the Lookup.RESOURCE.Configuration Lookup Definition

Code Key Decode Description

Bundle Name org.identityconnectors.gen
ericscript

This entry holds the name of the connector bundle class.
Do not modify this entry.

Bundle Version 1.0.11150 This entry holds the version of the connector bundle class.
Do not modify this entry.

Connector Name org.identityconnectors.gen
ericscript.GenericScriptCo
nnector

This entry holds the name of the connector class. Do not
modify this entry.

schema file file:///URL This entry holds the file URL of the schema file that you
want to use.

resource property file file:///URL This entry holds file URL of the properties file containing
connection-specific information related to your target
system.

User Configuration
Lookup

Lookup.RESOURCE.UM.C
onfiguration

This entry holds the name of the lookup definition that
contains configuration information specific to the user
object type. See Lookup.RESOURCE.UM.Configuration
for more information about this lookup definition.

connectionScript[LOADF
ROMURL]

file:///URL This entry holds the file URL of the script containing the
implementation to connect to the target system.

checkAliveScript[LOADFR
OMURL]

file:///URL This entry holds the file URL of the script containing the
implementation to check whether the connector's physical
connection to the target system is alive. This script must
do only the minimum that is necessary to check that the
connection is still alive.

disposeScript[LOADFRO
MURL]

file:///URL This entry holds the file URL of the script containing the
implementation to dispose any configuration objects.

createScript[LOADFROM
URL]

file:///URL This entry holds the file URL of the script containing the
implementation to create objects in your target system.

updateScript[LOADFROM
URL]

file:///URL This entry holds the file URL of the script containing the
implementation to update objects in your target system.

deleteScript[LOADFROM
URL]

file:///URL This entry holds the file URL of the script containing the
implementation to delete objects in your target system.

executeQueryScript[LOA
DFROMURL]

file:///URL This entry holds the file URL of the script containing the
implementation to fetch objects from your target system.

syncScript[LOADFROMU
RL]

file:///URL This entry holds the file URL of the script containing the
implementation to fetch incremental changes for objects
from your target system.

lookupScript[LOADFROM
URL]

file:///URL This entry holds the file URL of the script containing the
implementation to fetch values of lookup attributes from
your target system.

Chapter 4
Lookup Definitions Used During Connector Operations

4-2

Table 4-1 (Cont.) Entries in the Lookup.RESOURCE.Configuration Lookup Definition

Code Key Decode Description

addMultiValuedAttributeSc
ript[LOADFROMURL]

file:///URL This entry holds the file URL of the script containing the
implementation to add multivalued child data for objects in
your target system.

removeMultiValuedAttribut
eScript[LOADFROMURL]

file:///URL This entry holds the file URL of the script containing
the implementation to remove multivalued child data for
objects in your target system.

4.1.1.2 Lookup.RESOURCE.UM.Configuration
The Lookup.RESOURCE.UM.Configuration lookup definition contains entries specific
to the user object type. This lookup definition is preconfigured.

Table 4-2 lists the default entries in this lookup definition when you have configured
your target system as a target resource.

Table 4-2 Entries in the Lookup.RESOURCE.UM.Configuration Lookup
Definition for a Target Resource Configuration

Code Key Decode

Provisioning Attribute Map Lookup.RESOURCE.UM.ProvAttrMap

Recon Attribute Map Lookup.RESOURCE.UM.ReconAttrMap

Table 4-3 lists the default entries in this lookup definition when you have configured
your target system as a trusted source.

Table 4-3 Entries in the Lookup.RESOURCE.UM.Configuration Lookup
Definition for a Trusted Source Configuration

Code Key Decode

Recon Attribute Map Lookup.RESOURCE.UM.ReconAttrMap

Recon Attribute Defaults Lookup.RESOURCE.UM.ReconAttrMap.Defaults

4.1.1.3 Lookup.RESOURCE.UM.ReconAttrMap
The Lookup.RESOURCE.UM.ReconAttrMap lookup definition holds mappings
between resource object fields and target system attributes. Depending on whether
you have configured your connector for the target resource mode or trusted source
mode, this lookup definition is used during target resource or trusted source user
reconciliation runs, respectively.

If you have configured the connector for target resource mode:

The following is the format of the Code Key and Decode values in this lookup
definition:

• For single-valued attributes

Chapter 4
Lookup Definitions Used During Connector Operations

4-3

– Code Key: Reconciliation attribute of the resource object against which target
resource user reconciliation runs must be performed

– Decode: Corresponding target system attribute name

• For multivalued attributes

– Code Key: RO_ATTR_NAME~ATTR_NAME[LOOKUP]

In this format:

* RO_ATTR_NAME specifies the reconciliation field for the child table.

* ATTR_NAME is the name of the multivalued attribute.

* [LOOKUP] is a keyword that is appended to the code key value if the child
data is picked from a lookup or declared as an entitlement.

– Decode: Combination of the following elements separated by the tilde (~)
character:

EMBED_OBJ_NAME~RELATION_TABLE_NAME~ATTR_NAME

In this format:

* EMBED_OBJ_NAME is the name of the object (for example, an account's
address) on the target system that is embedded in another object.

* RELATION_TABLE_NAME is the name of child table in the target system.

* ATTR_NAME is the name of the column in the child table corresponding to
the multivalued attribute in the Code Key column.

If you have configured your connector for trusted source mode:

The following is the format of the Code Key and Decode values in this lookup
definition:

• Code Key: Reconciliation attribute of the resource object against which trusted
source user reconciliation runs must be performed

• Decode: Corresponding target system attribute name

The entries in this lookup definition depend on the data available in the target system.
The entries of this lookup definition are populated based on the values specified for
the alias entry in the ScriptConfiguration.groovy file. See Understanding Entries in the
Predefined Sections of the Groovy File for more information about the alias entry.

4.1.1.4 Lookup.RESOURCE.UM.ProvAttrMap
The Lookup.RESOURCE.UM.ProvAttrMap lookup definition holds mappings between
process form fields and target system attribute names. This lookup definition is used
for performing provisioning operations.

The following is the format of the Code Key and Decode values in this lookup
definition:

• Code Key: Name of the label on the process form

• Decode: Corresponding target system attribute name

For entries corresponding to child form fields, the following is the format of the Code
Key and Decode values:

• Code Key: CHILD_FORM_NAME~FIELD_NAME

Chapter 4
Lookup Definitions Used During Connector Operations

4-4

In this format:

– CHILD_FORM_ NAME specifies the name of the child form.

– FIELD_NAME specifies the name of the label on the child form.

• Decode: Combination of the following elements separated by the tilde (~)
character:

EMBED_OBJ_NAME~RELATION_TABLE_NAME~COL_NAME

In this format:

– EMBED_OBJ_NAME is the name of the object (for example, an account's
address) on the target system that is embedded in another object.

– COL_NAME is the name of the column in the child table corresponding to the
child form specified in the Code Key column.

– RELATION_TABLE_NAME is the name of child table in the target system.

The entries in this lookup definition depend on the data available in the target system.
The values in the lookup definition are populated based on the value specified for
the alias entry in the ScriptConfiguration.groovy file. See Understanding Entries in the
Predefined Sections of the Groovy File for more information about the alias entry.

4.1.1.5 Lookup.RESOURCE.UM.ReconAttrMap.Defaults
The Lookup.RESOURCE.UM.ReconAttrMap.Defaults lookup definition holds default
values of the mandatory fields on the OIM User form that are not mapped with the
target system attributes. This lookup definition is created only if you have configured
the connector for the trusted source mode.

This lookup definition is used when there is a mandatory field on the OIM User form,
but no corresponding attribute in the target system from which values can be fetched
during trusted source reconciliation runs. In addition, this lookup definition is used if
the mandatory field on the OIM User form has a corresponding column that is empty or
contains null values.

The following is the format of the Code Key and Decode values in this lookup
definition:

• Code Key: Name of the user field on the Administrative and User Console.

• Decode: Corresponding default value to be displayed.

For example, the Role field is a mandatory field on the OIM User form. Suppose the
target system contains no attribute that stores information about the role for a user
account. During reconciliation, no value for the Role field is fetched from the target
system. However, as the Role field cannot be left empty, you must specify a value
for this field. Therefore, the Decode value of the Role Code Key has been set to
Full-Time. This implies that the value of the Role field on the OIM User form displays
Full-Time for all user accounts reconciled from the target system.

Table 4-4 lists the default entries in this lookup definition.

Chapter 4
Lookup Definitions Used During Connector Operations

4-5

Table 4-4 Entries in the Lookup.RESOURCE.UM.ReconAttrMap.Defaults
Lookup Definition

Code Key Decode

Role Full-Time

Organization Name Xellerate Users

Xellerate Type End-User

4.1.2 Lookup Definitions Synchronized with the Target System
During a provisioning operation, you use a lookup field on the process form to specify
a single value from a set of values.

For example, you may want to select a role from a lookup field (displaying a set of
roles) to specify the role being assigned to the user.

While configuring the ScriptConfiguration.groovy file, if you specified a value for the
lookupAttributeList entry, then the connector creates a lookup definition for every target
system attribute specified in this entry and then associates it with the corresponding
lookup field on the OIM User process form. The connector creates a lookup definition
named in the following format:

Lookup.${IT_RES_NAME}.${FIELD_NAME}

In this format, the connector replaces:

• IT_RES_NAME with the value of the itResourceDefName entry in the
ScriptConfiguration.groovy file.

• FIELD_NAME with the name of the field for which the lookup field is created.

Lookup field synchronization involves copying additions or changes made to the
target system attributes (listed in the lookupAttributeList entry) into corresponding
lookup definitions (used as an input source for lookup fields) in Oracle Identity
Manager. This is achieved by running scheduled jobs for lookup field synchronization.

The following example illustrates the list of lookup definitions created for a given
lookupAttributeList value:

Suppose the value of the itResourceDefName entry is ACME. If the value of the
lookupAttributeList entry is ['Roles', 'Groups'], then the connector creates the
following lookup definitions:

• Lookup.ACME.Roles

• Lookup.ACME.Groups

After you perform lookup field synchronization, data in the lookup definition is stored in
the following format:

• Code Key value: IT_RESOURCE_KEY~LOOKUP_FIELD_ID

In this format:

– IT_RESOURCE_KEY is the numeric code assigned to each IT resource in
Oracle Identity Manager.

Chapter 4
Lookup Definitions Used During Connector Operations

4-6

– LOOKUP_FIELD_ID is the target system code assigned to each lookup field
entry. This value is populated based on the target system attribute name
specified in the Code Key attribute of the scheduled job for lookup field
synchronization.

Sample value: 1~SA

• Decode value: IT_RESOURCE_NAME~LOOKUP_FIELD_ID

In this format:

– IT_RESOURCE_NAME is the name of the IT resource in Oracle Identity
Manager.

– LOOKUP_FIELD_ID is the target system code assigned to each lookup
field entry. This value is populated based on the target system attribute
name specified in the Decode attribute of the scheduled job for lookup field
synchronization.

Sample value: GenScript~SYS_ADMIN

See Also:

Scheduled Job for Lookup Field Synchronization for information about the
attributes of the scheduled job for lookup field synchronization

4.2 Configuring Reconciliation
Reconciliation involves duplicating in Oracle Identity Manager the creation of and
modifications to user accounts on the target system.

This section discusses the following topics related to configuring reconciliation:

• Reconciliation Rules

• Full Reconciliation and Incremental Reconciliation

• Limited Reconciliation

• Lookup Field Synchronization

4.2.1 Reconciliation Rules
Reconciliation rules are automatically created when you generate the Generic
Scripting connector. The following is the format of the rule element:

User Login Equals NameAttribute

In this rule element:

• User Login is the User ID field on the OIM User form.

• NameAttribute is the value of the account qualifier in the schema.properties file
that you created in Defining the Schema.

For example, if the value of the NameAttribute account qualifier is __NAME__, then
the rule element is as follows:

User Login Equals__NAME__

Chapter 4
Configuring Reconciliation

4-7

4.2.2 Full Reconciliation and Incremental Reconciliation
Full reconciliation involves reconciling all existing user records from the target
system into Oracle Identity Manager.

In incremental reconciliation, only records created or modified after the latest date or
timestamp the last reconciliation was run are considered for reconciliation.

After you deploy the connector, you must first perform full reconciliation.

You can perform a full reconciliation run in one of the following manners:

• Remove or delete any value currently assigned to the Filter attribute and run the
scheduled job for user data reconciliation. See Scheduled Jobs for Reconciliation
of User Records for more information about the user reconciliation scheduled job
and Filter attribute.

• Remove or delete any value currently assigned to the Sync Token attribute
and run the scheduled job for incremental reconciliation. See Scheduled Jobs
for Incremental Reconciliation for more information about the scheduled job for
incremental reconciliation and Sync Token attribute.

To perform incremental reconciliation, configure and run the scheduled job for
incremental reconciliation. The scheduled job for incremental reconciliation is
generated only if you specify a value for the changeLogColumn property in the IT
resource or ScriptConfiguration.groovy file. The first time you run the scheduled job for
incremental reconciliation, a full reconciliation is performed. Subsequently, incremental
reconciliation is performed.

At any given point in time, you can switch from incremental reconciliation to full
reconciliation. All you need to do is perform a full reconciliation run.

4.2.3 Limited Reconciliation
By default, all target system records that are added or modified after the last
reconciliation run are reconciled during the current reconciliation run.

Note:

This connector does not support complex filters.

You can customize this process by specifying the subset of added or modified
target system records that must be reconciled. You do this by creating filters for the
reconciliation module.

You can perform limited reconciliation by creating filters for the reconciliation module.
This connector provides a Filter attribute (a scheduled task attribute) that allows you to
use any of the attributes of the target system to filter target system records.

When you specify a value for the Filter attribute, only the target system records that
match the filter criterion are reconciled into Oracle Identity Manager. If you do not
specify a value for the Filter attribute, then all the records in the target system are
reconciled into Oracle Identity Manager.

Chapter 4
Configuring Reconciliation

4-8

You specify a value for the Filter attribute while configuring the user reconciliation
scheduled job.

For detailed information about Filters, see ICF Filter Syntax in Oracle Fusion
Middleware Developing and Customizing Applications for Oracle Identity Manager.

4.2.4 Lookup Field Synchronization
As discussed earlier, lookup field synchronization involves obtaining the most current
values from specific attributes in the target system to the lookup definitions (used as
an input source for lookup fields) in Oracle Identity Manager.

You can perform lookup field synchronization by configuring and running the
scheduled jobs for lookup field synchronization.

Scheduled jobs for lookup field synchronization are created only if you have specified
a value for the lookupAttributeList entry in the ScriptConfiguration.groovy file. The
names of these scheduled jobs are in the following format:

IT_RES_NAME Target FIELD_NAME Lookup Reconciliation

For every attribute specified in the lookupAttributeList entry, a corresponding
scheduled job for reconciling lookup values from the target system is created. This
is illustrated by the following example:

Suppose the value of the itResourceDefName entry is ACME. If the value of the
lookupAttributeList entry is ['Roles', 'Groups'], then the connector creates the following
scheduled jobs:

• ACME Target Roles Lookup Reconciliation

• ACME Target Groups Lookup Reconciliation

See Also:

Scheduled Job for Lookup Field Synchronization for information about the
attributes of the scheduled job for lookup field synchronization

4.3 Scheduled Jobs
When you run the Connector Installer, scheduled jobs are automatically created in
Oracle Identity Manager.

This section discusses the following topics related to scheduled jobs:

• Scheduled Job for Lookup Field Synchronization

• Scheduled Jobs for Reconciliation of User Records

• Scheduled Jobs for Reconciliation of Deleted Users Records

• Scheduled Jobs for Incremental Reconciliation

• Configuring Scheduled Jobs

Chapter 4
Scheduled Jobs

4-9

4.3.1 Scheduled Job for Lookup Field Synchronization
After you generate the connector, scheduled jobs for lookup field synchronization are
created only if you have specified a value for the lookupAttributeList entry in the
ScriptConfiguration.groovy file.

For every attribute specified in the lookupAttributeList entry, a corresponding
scheduled job for reconciling lookup values from the target system is created.

Table 4-5 describes the attributes of the scheduled job for lookup field synchronization.
Configuring Scheduled Jobs describes the procedure to configure scheduled jobs.

Note:

• Attribute values are predefined in the connector XML file that you import.
Specify values only for those attributes that you want to change.

• Values (either default or user-defined) must be assigned to all the
attributes. If even a single attribute value were left empty, then
reconciliation would not be performed.

Table 4-5 Attributes of the Scheduled Job for Lookup Field Synchronization

Attribute Description

Code Key Attribute Enter the name of the attribute that is used to populate the Code Key column of the lookup
definition (specified as the value of the Lookup Name attribute).

Decode Attribute Enter the name of the attribute that is used to populate the Decode column of the lookup
definition (specified as the value of the Lookup Name attribute).

IT Resource Name Name of the IT resource for the target system installation from which you want to reconcile
records.

The default value of this attribute is the same as the value of the ITResourceDefName
entry in the ScriptConfiguration.groovy file.

Lookup Name Name of the lookup definition in Oracle Identity Manager that must be populated with
values fetched from the target system.

The value for this attribute is populated automatically if you have specified a value for the
lookupAttributeList entry while configuring the ScriptConfiguration.groovy file. The value of
this attribute is in the following format:

Lookup.${IT_RES_NAME}.${FIELD_NAME}

For example, if you have specified Roles as the value of the lookupAttributeList entry, then
the value of this attribute is Lookup.GenScriptTrusted.Roles.

Object Type Enter the type of object you want to reconcile.

Default value: OTHER

Note: For lookup field synchronization, the object type must be any object other than
"User."

Chapter 4
Scheduled Jobs

4-10

4.3.2 Scheduled Jobs for Reconciliation of User Records
After you generate the connector, the scheduled task for user data reconciliation is
automatically created in Oracle Identity Manager.

A scheduled job, which is an instance of this scheduled task is used to reconcile user
data from the target system. The following scheduled jobs are used for user data
reconciliation:

• RESOURCE Target Resource User Reconciliation

This scheduled job is used to reconcile user data in the target resource (account
management) mode of the connector.

• RESOURCE Trusted Resource User Reconciliation

This scheduled job is used to reconcile user data in the trusted source (identity
management) mode of the connector.

Table 4-6 describes the attributes of both scheduled jobs.

Table 4-6 Attributes of the User Reconciliation Scheduled Jobs

Attribute Description

Filter Enter the search filter for fetching records from the target system during a
reconciliation run.

See Limited Reconciliation for more information.

Incremental Recon
Attribute

Enter the name of the target system attribute that holds the time stamp at which
the record was last modified. The value in this attribute is used during incremental
reconciliation to determine the newest or latest record reconciled from the target
system.

Sample value: ModifiedDate

ITResource Name Name of the IT resource for the target system installation from which you want to
reconcile user records.

Sample value: GenScriptTrusted

Latest Token This attribute holds the value of the attribute that is specified as the value of the
Incremental Recon Attribute attribute. The Latest Token attribute is used for internal
purposes. By default, this value is empty.

Note: Do not enter a value for this attribute. The reconciliation engine automatically
enters a value in this attribute.

Sample value: 1354753427000

Object Type Type of object you want to reconcile.

Default value: User

Note: User is the only object that is supported. Therefore, do not change the value of
this attribute.

Resource Object Name Name of the resource object that is used for reconciliation.

Sample value: GenScriptTrusted User

Chapter 4
Scheduled Jobs

4-11

Table 4-6 (Cont.) Attributes of the User Reconciliation Scheduled Jobs

Attribute Description

Scheduled Task Name Name of the scheduled task that is used for reconciliation.

The default value of this attribute in the RESOURCE Target Resource
User Reconciliation scheduled job is RESOURCE Target Resource User
Reconciliation.

The default value of this attribute in the RESOURCE Trusted User Reconciliation
scheduled job is RESOURCETrusted Resource User Reconciliation.

4.3.3 Scheduled Jobs for Reconciliation of Deleted Users Records
After you generate the connector, the scheduled task for reconciling data about
deleted users records is automatically created in Oracle Identity Manager.

A scheduled job, which is an instance of this scheduled task is used to reconcile data
about deleted users in the target system. The following scheduled jobs are used for
reconciliation of deleted user records data:

• RESOURCE Target Resource User Delete Reconciliation

This scheduled job is used to reconcile data about deleted user records in
the target resource (account management) mode of the connector. During a
reconciliation run, for each deleted user record on the target system, the target
system resource is revoked for the corresponding OIM User.

• RESOURCE Trusted User Delete Reconciliation

This scheduled job is used to reconcile data about deleted user records in
the trusted source (identity management) mode of the connector. During a
reconciliation run, for each deleted target system user record, the corresponding
OIM User is deleted.

Table 4-7 describes the attributes of both scheduled jobs.

Table 4-7 Attributes of the Delete User Reconciliation Scheduled Jobs

Attribute Description

IT Resource Name Name of the IT resource for the target system installation from which you want to
reconcile information about deleted user records.

Sample value: GenScript

Object Type Type of object you want to reconcile.

Default value: User

Note: User is the only object that is supported. Therefore, do not change the value of
this attribute.

Resource Object Name Name of the resource object that is used for reconciliation.

Sample value: GenScript User

Chapter 4
Scheduled Jobs

4-12

4.3.4 Scheduled Jobs for Incremental Reconciliation
After you generate the connector, the scheduled task for performing incremental
reconciliation is automatically created in Oracle Identity Manager.

The following scheduled jobs are used for incremental reconciliation:

• RESOURCE Target Incremental Resource User Reconciliation

This scheduled job is used to perform incremental reconciliation in the target
resource (account management) mode of the connector.

• RESOURCE Trusted Incremental Resource User Reconciliation

This scheduled job is used to perform incremental reconciliation in the trusted
source (identity management) mode of the connector.

Table 4-6 describes the attributes of both scheduled jobs.

Table 4-8 Attributes of the Scheduled Jobs for Incremental Reconciliation

Attribute Description

ITResource Name Name of the IT resource for the target system installation from which you want to
reconcile user records.

Sample value: GenScript

Object Type Type of object you want to reconcile.

Default value: User

Note: User is the only object that is supported. Therefore, do not change the value of
the attribute.

Resource Object Name Name of the resource object that is used for reconciliation.

Sample value: GenScript User

Scheduled Task Name Name of the scheduled task that is used for reconciliation.

The default value of this attribute in the RESOURCE Target Incremental Resource
User Reconciliation scheduled job is RESOURCE Target Incremental Resource
User Reconciliation.

The default value of this attribute in the RESOURCE Trusted Incremental Resource
User Reconciliation scheduled job is RESOURCE Trusted Incremental Resource
User Reconciliation.

Sync Token This attribute must be left blank when you run incremental reconciliation for the first
time. This ensures that data about all records from the target system are fetched into
Oracle Identity Manager.

After the first reconciliation run, the connector automatically enters a value for this
attribute in an XML serialized format. From the next reconciliation run onward, only
data about records that are modified since the last reconciliation run ended are
fetched into Oracle Identity Manager."

Sample value: <Long>1452231735775</Long>

Note:
- Do not enter a value for this attribute. The reconciliation engine automatically enters
a value in this attribute.

- This attribute stores values in an XML serialized format.

Chapter 4
Scheduled Jobs

4-13

4.3.5 Configuring Scheduled Jobs
This section describes the procedure to configure scheduled jobs. You can apply
this procedure to configure the scheduled jobs for lookup field synchronization and
reconciliation.

To configure a scheduled job:

1. Log in to Oracle Identity System Administration.

2. In the left pane, under System Management, click Scheduler.

3. Search for and open the scheduled task as follows:

a. On the left pane, in the Search field, enter the name of the scheduled job as
the search criterion. Alternatively, you can click Advanced Search and specify
the search criterion.

b. In the search results table on the left pane, click the scheduled job in the Job
Name column.

4. On the Job Details tab, you can modify the following parameters:

• Retries: Enter an integer value in this field. This number represents the
number of times the scheduler tries to start the job before assigning the
Stopped status to the job.

• Schedule Type: Depending on the frequency at which you want the job to run,
select the appropriate schedule type.

Note:

See Creating Jobs in Oracle Fusion Middleware Administering Oracle
Identity Manager for detailed information about schedule types.

In addition to modifying the job details, you can enable or disable a job.

5. On the Job Details tab, in the Parameters region, specify values for the attributes
of the scheduled task.

Note:

• Attribute values are predefined in the connector XML file that you
import. Specify values only for those attributes that you want to
change.

• Values (either default or user-defined) must be assigned to all
the attributes. If even a single attribute value is left empty, then
reconciliation is not performed.

• Attributes of the scheduled task are discussed in Scheduled Jobs.

6. Click Apply to save the changes.

Chapter 4
Scheduled Jobs

4-14

Note:

The Stop Execution option is available in the Administrative and User
Console. You can use the Scheduler Status page to either start, stop, or
reinitialize the scheduler.

4.4 Performing Provisioning Operations
To perform provisioning operations in Oracle Identity Manager:

1. Log in to Oracle Identity Administrative and User console.

2. Create a user. See Creating a User in Oracle Fusion Middleware Performing Self
Service Tasks with Oracle Identity Manager for more information about creating a
user.

3. On the Account tab, click Request Accounts.

4. In the Catalog page, search for and add to cart the application instance created for
the IT resource (in Associating the Form with the Application Instance), and then
click Checkout.

5. Specify values for fields in the application form. In addition to specifying values for
the parent form, if you want to add child values, then you can specify values for
fields on the child form.

Note:

Ensure to select proper values for lookup type fields as there are a few
dependent fields. Selecting a wrong value for such fields may result in
provisioning failure.

6. Click Ready to Submit.

7. Click Submit.

8. If you want to provision entitlements, then:

a. On the Entitlements tab, click Request Entitlements.

b. In the Catalog page, search for and add to cart the entitlement, and then click
Checkout.

c. Click Submit.

4.5 Uninstalling the Connector
You can uninstall the connector if you wish.

If you want to uninstall the connector for any reason, see Uninstalling Connectors in
Oracle Fusion Middleware Administering Oracle Identity Manager.

Chapter 4
Performing Provisioning Operations

4-15

5
Extending the Functionality of the Generic
Scripting Connector

After you generate and install the connector, you can configure it to meet your
requirements. This chapter discusses the following optional configuration procedures:

Note:

From Oracle Identity Manager Release 11.1.2 onward, lookup queries
are not supported. See Managing Lookups in Oracle Fusion Middleware
Administering Oracle Identity Manager for information about managing
lookups by using the Form Designer in the Oracle Identity Manager System
Administration console.

• Adding Custom OIM User Fields for Trusted Source Reconciliation

• Adding Custom Fields for Target Resource Reconciliation

• Adding Custom Fields for Provisioning

• Configuring Transformation of Data During User Reconciliation

• Configuring Validation of Data During Reconciliation and Provisioning

5.1 Adding Custom OIM User Fields for Trusted Source
Reconciliation

You can add custom OIM User fields for trusted source reconciliation.

While generating the connector by performing the procedures described in Generating
the Generic Scripting Connector , you create mappings between OIM User fields and
the corresponding target system fields by specifying a value for the alias entry. After
generating the connector, if there are additional target system fields that you want
to use during trusted source reconciliation, then you can extend the set of fields by
creating custom or user-defined fields (UDFs).

To add new fields for trusted source reconciliation:

1. Add the new field on the OIM User process form. See Creating Custom
Attributes in Oracle Fusion Middleware Administering Oracle Identity Manager for
information on creating UDFs.

5-1

Note:

If the new field that you want to add is already present on the OIM User
field, then skip this step and proceed to the next step.

2. Log in to the Design Console.

3. In the resource object definition, add the reconciliation field corresponding to the
attribute as follows:

a. Expand the Resource Management folder, and then double-click Resource
Objects.

b. Search for and open the resource object corresponding to your target system.

c. On the Object Reconciliation tab, click Add Field to open the Add
Reconciliation Field dialog box.

d. Specify a value for the field name. For example, Building.

e. From the Field Type list, select a data type for the field. In addition, if you want
to designate the attribute as a mandatory attribute, then select the check box.

f. Click the Save icon, and then close the dialog box.

g. Click the Save icon.

4. Create a reconciliation field mapping in the process definition as follows:

a. Expand the Process Management folder, and then double-click Process
Definition.

b. Search for and open the process definition for your target system.

c. On the Reconciliation Field Mapping tab, click Add Field Map.

d. From the Field Name list in the Add Reconciliation Field Mapping dialog box,
select the name that you have assigned to the attribute created in the resource
object.

e. Select a value from the User Attribute menu and click OK.

f. If the field mapping is a key field for matching the process data, check the key
Field for Reconciliation matching check box.

g. Click the Save icon.

5. Create a reconciliation profile as follows:

a. Expand the Resource Management folder, and then double-click Resource
Objects.

b. Search for and open the resource object corresponding to your target system.

c. On the Object Reconciliation tab, click Create Reconciliation Profile. This
copies changes made to the resource object into the MDS.

d. Click the Save icon.

6. Add an entry for the attribute in the lookup definition for reconciliation attribute
mapping as follows:

a. Expand the Administration folder, and then double-click Lookup Definition.

Chapter 5
Adding Custom OIM User Fields for Trusted Source Reconciliation

5-2

b. Search for and open the Lookup.RESOURCE.UM.ReconAttrMap lookup
definition.

c. To add a row, click Add.

d. In the Code Key column, enter the name that you have set for the attribute in
the resource object. For example, Building.

e. In the Decode column, enter the corresponding name of the target system
column. For example, BUILDING.

f. Click the Save icon.

5.2 Adding Custom Fields for Target Resource
Reconciliation

You can add custom fields for target resource reconciliation.

While generating the connector by performing the procedures described in Generating
the Generic Scripting Connector , you create mappings between OIM User fields and
the corresponding target system fields by specifying a value for the alias entry. After
generating the connector, if there are additional target system fields that you want
to use during target resource reconciliation, then you can extend the set of fields
by creating custom or user-defined fields (UDFs). See Creating Custom Attributes in
Oracle Fusion Middleware Administering Oracle Identity Manager for information about
creating custom fields.

To add a custom field for reconciliation:

1. Log in to the Design Console.

2. In the resource object definition, add the reconciliation field corresponding to the
attribute as follows:

a. Expand the Resource Management folder, and then double-click Resource
Objects.

b. Search for and open the resource object corresponding to your target system.

c. On the Object Reconciliation tab, click Add Field to open the Add
Reconciliation Field dialog box.

d. Specify a value for the field name. For example, Building.

e. From the Field Type list, select a data type for the field. In addition, if you want
to designate the attribute as a mandatory attribute, then select the check box.

f. Click the Save icon, and then close the dialog box.

g. Click the Save icon.

3. Add an entry for the attribute in the lookup definition for reconciliation attribute
mapping as follows:

a. Expand the Administration folder, and then double-click Lookup Definition.

b. Search for and open the Lookup.RESOURCE.UM.ReconAttrMap lookup
definition.

c. To add a row, click Add.

d. In the Code Key column, enter the name that you have set for the attribute in
the resource object. For example, Building.

Chapter 5
Adding Custom Fields for Target Resource Reconciliation

5-3

e. In the Decode column, enter the corresponding name of the target system
column. For example, BUILDING.

f. Click the Save icon.

4. Add the attribute as a field on the process form as follows:

a. Expand the Development Tools folder, and then double-click Form Designer.

b. Search for and open the process form for your target system.

c. Click Create New Version to create a version of the process form. Then, enter
a version name and click the Save icon.

d. Click Add.

e. In the newly added row, enter values for the Name, Variant Type, Field Label,
and Field Type columns. If required, enter values for the rest of the columns.

Note:

• If the attribute on the target system is of the Time, or Timestamp
format, then set the value of the Variant Type column to String.

• If you want to handle date attributes of the target system as a
date editor, then set the value of the Variant Type column to
Date. Otherwise, set it to String.

f. Click the Save icon.

g. Click Make Version Active to activate the new version of the process form.

5. Create a reconciliation field mapping in the process definition as follows:

a. Expand the Process Management folder, and then double-click Process
Definition.

b. Search for and open the process definition for your target system.

c. On the Reconciliation Field Mapping tab, click Add Field Map.

d. From the Field Name list in the Add Reconciliation Field Mapping dialog box,
select the name that you have assigned to the attribute created in the resource
object.

e. Double-click the Process Data Field, a new pop-up will appear. The entries in
the pop-up correspond to the process form fields.

f. Select the corresponding newly added field from the pop-up.

g. If the field mapping is a key field for matching the process data, check the key
Field for Reconciliation matching check box.

h. Click the Save icon.

6. Create a reconciliation profile as follows:

a. Expand the Resource Management folder, and then double-click Resource
Objects.

b. Search for and open the resource object corresponding to your target system.

c. On the Object Reconciliation tab, click Create Reconciliation Profile. This
copies changes made to the resource object into the MDS.

Chapter 5
Adding Custom Fields for Target Resource Reconciliation

5-4

d. Click the Save icon.

7. Perform all changes made to the Form Designer of the Design Console (in Step 4)
in a new UI form as follows:

a. Log in to Oracle Identity System Administration.

b. Create and active a sandbox. See Creating and Activating a Sandbox for more
information.

c. Create a new UI form to view the newly added field along with the rest of the
fields. See Creating a New UI Form for more information about creating a UI
form.

d. Associate the newly created UI form with the application instance of your
target system. To do so, open the existing application instance for your
resource, from the Form field, select the form (created in Step 7.c), and then
save the application instance.

e. Publish the sandbox. See Publishing a Sandbox for more information.

8. Add the attribute for provisioning. Adding Custom Fields for Provisioning for
detailed information about the procedure.

5.3 Adding Custom Fields for Provisioning
You can add custom fields for provisioning.

While generating the connector, by performing the procedure described in Generating
the Generic Scripting Connector , you create mappings between the OIM User fields
and the corresponding target system fields (columns) by specifying a value for the
alias entry. If there are additional target system fields that you want to use during
provisioning, then you can extend the existing set of fields by creating custom or user-
defined fields (UDFs). See Configuring Custom Attributes in Oracle Fusion Middleware
Administering Oracle Identity Manager for information about creating custom fields.

To add a new user-defined field for provisioning:

1. Add the attribute as a field on the process form as follows:

Note:

Directly proceed to the next step if you have already added the field to
the process form while performing the procedure described in Adding
Custom Fields for Target Resource Reconciliation.

a. Expand Development Tools, and then double-click Form Designer.

b. Search for and open the process form for your target system.

c. Click Create New Version to create a version of the form. Then, enter a
version name and click the Save icon.

d. Click Add.

e. In the newly added row, enter values for the Name, Variant Type, Field Label,
and Field Type columns. If required, enter values for the rest of the columns.

Chapter 5
Adding Custom Fields for Provisioning

5-5

Note:

• If the attribute on the target system is of the Time, or Timestamp
format, then set the value of the Variant Type column to String.

• If you want to handle date attributes of the target system as a
date editor, then set the value of the Variant Type column to
Date. Otherwise, set it to String.

f. Click the Save icon.

g. Click Make Version Active to activate the new version of the process form.

2. Perform all changes made to the Form Designer of the Design Console (in Step 1)
in a new UI form as follows:

a. Log in to Oracle Identity System Administration.

b. Create and active a sandbox. See Creating and Activating a Sandbox for more
information.

c. Create a new UI form to view the newly added field along with the rest of the
fields. See Creating a New UI Form for more information about creating a UI
form.

d. Associate the newly created UI form with the application instance of your
target system. To do so, open the existing application instance for your
resource, from the Form field, select the form (created in Step 2.c), and then
save the application instance.

e. Publish the sandbox. See Publishing a Sandbox for more information.

3. Add an entry in the lookup definition for provisioning attribute mappings as follows:

a. Expand Administration, and then double-click Lookup Definition.

b. Search for and open the Lookup.RESOURCE.UM.ProvAttrMap lookup
definition.

c. To add a row, click Add.

d. In the Code Key column, enter the field label for the attribute on the process
form. See Step 1 for information about this field name.

e. In the Decode column, enter the corresponding name of the target system
column. For example, BUILDING.

f. Click the Save icon.

4. To enable updates of the attribute, add an update process task in the process
definition as follows:

a. Expand Process Management, and then double-click Process Definition.

b. Search for and open the process definition for your target system.

c. On the Tasks tab, click Add.

d. On the General tab of the dialog box that is displayed, enter a name
and description for the task, and then select Conditional, Required for
Completion, Allow Cancellation while Pending, and Allow Multiple
Instances from the Task Properties section:

Chapter 5
Adding Custom Fields for Provisioning

5-6

Note:

The name must be in the PROCESS_FORM_FIELD_NAME Updated format.

e. Click the Save icon.

f. On the Integration tab, attach the adapter responsible for performing the
update account provisioning operations and map the adapter variables as
listed in the following table:

Variable Name Data Type Map To Qualifier Literal Value

processKeyInstance Long Process Data Process Instance NA

Adapter return value Object Response Code NA NA

objectType String Literal String User

attrFieldName String Literal String Building

itResourceFieldName String Literal String IT Resource Form Field
Name

g. Click the Save icon.

h. On the Response tab, add appropriate responses.

i. Click the Save icon.

j. Click the Save icon and then close the dialog box.

5. Adding the attribute for reconciliation.

When you add an attribute on the process form, you must also enable
reconciliation of values for that attribute from the target system. See Adding
Custom Fields for Target Resource Reconciliation for more information.

5.4 Configuring Transformation of Data During User
Reconciliation

You can configure transformation of reconciled single-valued data according to your
requirements. For example, you can use First Name and Last Name values to create a
value for the Full Name field in Oracle Identity Manager.

Note:

This section describes an optional procedure. Perform this procedure only if
you want to configure transformation of data during reconciliation.

To configure transformation of data:

1. Write code that implements the required transformation logic in a Java class.

The following sample transformation class creates a value for the Full Name
attribute by using values fetched from the FIRST_NAME and LAST_NAME
columns of the target system:

Chapter 5
Configuring Transformation of Data During User Reconciliation

5-7

package oracle.iam.connectors.common.transform;

import java.util.HashMap;

public class TransformAttribute {

 /*
 Description:Abstract method for transforming the attributes

 param hmUserDetails<String,Object>

 HashMap containing parent data details

 param hmEntitlementDetails <String,Object>

 HashMap containing child data details

 */
 public Object transform(HashMap hmUserDetails, HashMap
hmEntitlementDetails,String sField) {
 /*
 * You must write code to transform the attributes.
 Parent data attribute values can be fetched by
 using hmUserDetails.get("Field Name").
 *To fetch child data values, loop through the
 * ArrayList/Vector fetched by
hmEntitlementDetails.get("Child Table")
 * Return the transformed attribute.
 */
 String sFirstName= (String)hmUserDetails.get("First Name");
 String sLastName= (String)hmUserDetails.get("Last Name");
 String sFullName=sFirstName+"."+sLastName;
 return sFullName;
 }
}

2. Create a JAR file to hold the Java class.

3. Run the Oracle Identity Manager Upload JARs utility to post the JAR file to the
Oracle Identity Manager database. This utility is copied into the following location
when you install Oracle Identity Manager:

Note:

Before you use this utility, verify that the WL_HOME environment variable is
set to the directory in which Oracle WebLogic Server is installed.

• For Microsoft Windows:

OIM_HOME/server/bin/UploadJars.bat

• For UNIX:

OIM_HOME/server/bin/UploadJars.sh

When you run the utility, you are prompted to enter the login credentials of the
Oracle Identity Manager administrator, URL of the Oracle Identity Manager host
computer, context factory value, type of JAR file being uploaded, and the location
from which the JAR file is to be uploaded. Specify 1 as the value of the JAR type.

Chapter 5
Configuring Transformation of Data During User Reconciliation

5-8

4. Create a lookup definition for transformation and add an entry to it as follows:

a. Log in to the Design Console.

b. Expand Administration, and then double-click Lookup Definition.

c. In the Code field, enter Lookup.RESOURCE.UM.ReconTransformation as the
name of the lookup definition.

d. Select the Lookup Type option.

e. On the Lookup Code Information tab, click Add.

A new row is added.

f. In the Code Key column, enter the name of the resource object field into
which you want to store the transformed value. For example: FirstName.

g. In the Decode column, enter the name of the class
that implements the transformation logic. For example,
oracle.iam.connectors.common.transform.TransformAttribute.

h. Save the changes to the lookup definition.

5. Add an entry in the Lookup.RESOURCE.UM.Configuration lookup definition to
enable transformation as follows:

a. Expand Administration, and then double-click Lookup Definition.

b. Search for and open the Lookup.RESOURCE.UM.Configuration lookup
definition.

c. Create an entry that holds the name of the lookup definition used for
transformation as follows:

Code Key: Recon Transformation Lookup

Decode: Lookup.RESOURCE.UM.ReconTransformation

d. Save the changes to the lookup definition.

5.5 Configuring Validation of Data During Reconciliation and
Provisioning

You can configure validation of reconciled and provisioned single-valued data
according to your requirements.

For example, you can validate data fetched from the FIRST_NAME column to ensure
that it does not contain the number sign (#). In addition, you can validate data entered
in the First Name field on the process form so that the number sign (#) is not sent to
the target system during provisioning operations.

For data that fails the validation check, the following message is displayed or recorded
in the log file:

oracle.iam.connectors.icfcommon.recon.SearchReconTask : handle : Recon event
skipped, validation failed [Validation failed for attribute: [FIELD_NAME]]

Chapter 5
Configuring Validation of Data During Reconciliation and Provisioning

5-9

Note:

This feature cannot be applied to the Locked/Unlocked status attribute of the
target system.

To configure validation of data:

1. Write code that implements the required validation logic in a Java class.

The following sample validation class checks if the value in the First Name
attribute contains the number sign (#):

package com.validate;
import java.util.*;
public class MyValidation {
public boolean validate(HashMap hmUserDetails,
 HashMap hmEntitlementDetails, String field) {
 /*
 * You must write code to validate attributes. Parent
 * data values can be fetched by using hmUserDetails.get(field)
 * For child data values, loop through the
 * ArrayList/Vector fetched by hmEntitlementDetails.get("Child
Table")
 * Depending on the outcome of the validation operation,
 * the code must return true or false.
 */
 /*
 * In this sample code, the value "false" is returned if the field
 * contains the number sign (#). Otherwise, the value "true" is
 * returned.
 */
 boolean valid=true;
 String sFirstName=(String) hmUserDetails.get(field);
 for(int i=0;i<sFirstName.length();i++){
 if (sFirstName.charAt(i) == '#'){
 valid=false;
 break;
 }
 }
 return valid;
 }
}

2. Create a JAR file to hold the Java class.

3. Run the Oracle Identity Manager Upload JARs utility to post the JAR file to the
Oracle Identity Manager database. This utility is copied into the following location
when you install Oracle Identity Manager:

Note:

Before you use this utility, verify that the WL_HOME environment variable is
set to the directory in which Oracle WebLogic Server is installed.

• For Microsoft Windows:

Chapter 5
Configuring Validation of Data During Reconciliation and Provisioning

5-10

OIM_HOME/server/bin/UploadJars.bat

• For UNIX:

OIM_HOME/server/bin/UploadJars.sh

When you run the utility, you are prompted to enter the login credentials of the
Oracle Identity Manager administrator, URL of the Oracle Identity Manager host
computer, context factory value, type of JAR file being uploaded, and the location
from which the JAR file is to be uploaded. Specify 1 as the value of the JAR type.

4. If you created the Java class for validating a process form field for reconciliation,
then:

a. Log in to the Design Console.

b. Expand Administration, and then double-click Lookup Definition.

c. In the Code field, enter Lookup.RESOURCE.UM.ReconValidation as the name
of the lookup definition.

d. Select the Lookup Type option.

e. On the Lookup Code Information tab, click Add.

A new row is added.

f. In the Code Key column, enter the resource object field name. For example,
First Name.

g. In the Decode column, enter the class name. For example,
com.validate.MyValidation.

h. Save the changes to the lookup definition.

i. Search for and open the Lookup.RESOURCE.UM.Configuration lookup
definition.

j. Create an entry with the following values:

Code Key: Recon Validation Lookup

Decode: Lookup.RESOURCE.UM.ReconValidation

k. Save the changes to the lookup definition.

5. If you created the Java class for validating a process form field for provisioning,
then:

a. Log in to the Design Console.

b. Expand Administration, and then double-click Lookup Definition.

c. In the Code field, enter Lookup.RESOURCE.UM.ProvValidation as the name of
the lookup definition.

d. Select the Lookup Type option.

e. On the Lookup Code Information tab, click Add.

A new row is added.

f. In the Code Key column, enter the process form field name. In the Decode
column, enter the class name.

g. Save the changes to the lookup definition.

h. Search for and open the Lookup.RESOURCE.UM.Configuration lookup
definition.

Chapter 5
Configuring Validation of Data During Reconciliation and Provisioning

5-11

i. Create an entry with the following values:

Code Key: Provisioning Validation Lookup

Decode: Lookup.RESOURCE.UM.ProvValidation

j. Save the changes to the lookup definition.

Chapter 5
Configuring Validation of Data During Reconciliation and Provisioning

5-12

A
Understanding Script Arguments

This appendix discusses the arguments that you can include in your custom scripts
used for performing connector operations.
The connector executes your custom scripts to perform reconciliation and provisioning
operations such as Lookup, Sync, Create, Update, and Delete. For each operation, the
connector provides a list of values to your script as an argument. The following is a
list of connector operation scripts and their corresponding script arguments that can be
directly used in your custom scripts:

• connectionScript

All default IT resource parameters and any additional parameters configured in
the resource.properties file are available as script arguments for the connection
operation. The following is the list of arguments available for the connection
operation:

– configuration - The list of configuration values. For example,
configuration.getHost() is used to read the value of the host configured in the
IT resource.

– timing - When the script must be called. The value of the timing attribute for a
connection operation is connect.

– trace - Logger as a script trace bridge to the application.

• createScript

The following is the list of arguments available for a script performing the Create
operation:

– timing - When the script must be called. The value of the timing attribute for a
Create operation is create.

– trace - Logger as a script trace bridge to the application.

– attributes - All attributes.

– conn - Connection object. For example, JDBC connection.

– objectclass - Name of the object class.

• updateScript

The following is the list of arguments available for a script performing the Update
operation:

– timing - When the script must be called. The value of the timing attribute for an
Update operation is create.

– trace - Logger as a script trace bridge to the application.

– attributes - List of updated attributes.

– conn - Connection object. For example, JDBC connection.

– objectclass - Name of the object class.

• deleteScript

A-1

The following is the list of arguments available for a script performing the Delete
operation:

– timing - When the script must be called. The value of the timing attribute for a
Delete operation is delete.

– trace - Logger as a script trace bridge to the application.

– attributes - This argument contains the uid attribute.

– conn - Connection object. For example, JDBC connection.

– objectclass - Name of the object class.

• addMultiValuedAttributeScript

The following is the list of arguments available for a script adding multivalued child
data for objects in your target system:

– timing - When the script must be called. The value of the timing attribute for
this operation is addMultiValuedAttribute.

– trace - Logger as a script trace bridge to the application.

– attributes - This argument contains the embedded attribute.

– conn - Connection object. For example, JDBC connection.

– objectclass - Name of the object class.

• removeMultiValuedAttributeScript

The following is the list of arguments available for a script removing multivalued
child data for objects in your target system:

– timing - When the script must be called. The value of the timing attribute for
this operation is removeMultiValuedAttribute.

– trace - Logger as a script trace bridge to the application.

– attributes - This argument contains the embedded attribute.

– conn - Connection object. For example, JDBC connection.

– objectclass - Name of the object class.

• lookupScript

This script operation is common for all lookup field synchronization jobs. The
following is the list of arguments available for this script.

– timing - When the script must be called. The value of the timing attribute for
this operation is in the following format:

executeQuery:OBJECT_CLASS

In this format, OBJECT_CLASS is replaced with the value of the Object Type
attribute of the lookup field synchronization scheduled job. For example, if
the Object Type attribute of the lookup field synchronization scheduled job
contains the value "Role", then the value of the timing argument will be
executeQuery:Role.

– trace - Logger as a script trace bridge to the application.

– conn - Connection object. For example, JDBC connection.

– handler - resultSetHandler for the connector objects produced by the execute
query or null return.

Appendix A

A-2

– ATTRS_TO_GET - Array of attributes to be fetched from the target system.

– objectclass - Name of the object class.

– util -Utility to create connector objects.

• executeQueryScript

This script is used during full and limited reconciliation runs. The following is the
list of arguments available for this script:

– timing - When the script must be called. The value of the timing attribute for
this operation is executeQuery.

– trace - Logger as a script trace bridge to the application.

– conn - Connection object. For example, JDBC connection.

– handler - resultSetHandler for the connector objects produced by the execute
query or null return.

– ATTRS_TO_GET - Array of attributes to be fetched from the target system.

– objectclass - Name of the object class.

– util -Utility to create connector objects.

– filterattribute - Name of the attribute on which the filter criteria is applied. The
value of this argument is null in case there is no filter.

– filtervalue - Value of the filter attribute. The value of this argument is null in
case there is no filter.

– filteroperator - The filter operation. The value of this argument is null in case
there is no filter. The following is the list of supported filter operators:

EQUALS, NOT_EQUALS,

EQUALS_IGNORE_CASE, NOT_EQUALS_IGNORE_CASE,

GREATER_THAN, LESS_THAN,

GREATER_THAN_OR_EQUALS, LESS_THAN_OR_EQUALS,

STARTS_WITH, NOT_STARTS_WITH,

STARTS_WITH_IGNORE_CASE, NOT_STARTS_WITH_IGNORE_CASE,

ENDS_WITH, NOT_ENDS_WITH,

ENDS_WITH_IGNORE_CASE,NOT_ENDS_WITH_IGNORE_CASE,

CONTAINS, NOT_CONTAINS,

CONTAINS_IGNORE_CASE, NOT_CONTAINS_IGNORE_CASE,

CONTAINS_ALL_VALUES, NOT_CONTAINS_ALL_VALUES

• syncScript

This script is used during incremental reconciliation runs. The following is the list of
arguments available for this script:

– timing - When the script must be called. The value of the timing attribute for
this operation is sync.

– trace - Logger as a script trace bridge to the application.

– conn - Connection object. For example, JDBC connection.

Appendix A

A-3

– handler - resultSetHandler for the connector objects produced by the sync
query or null return.

– ATTRS_TO_GET - Array of attributes to be fetched from the target system.

– objectclass - Name of the object class.

– util -Utility to create connector objects.

– syncattribute- Name of the attribute configured for incremental reconciliation
schedule job.

– synctoken - Value of the sync attribute. This argument contains null value
during the first execution of the incremental scheduled job.

Appendix A

A-4

B
Sample Schema, Scripts, and Connector
Generation and Installation Procedure

This appendix provides a complete example of a use case for the Generic Scripting
connector, including sample scripts and the connector generation and installation
procedures.

This example uses Oracle Database as the target system and the sample scripts for
connector operations are written in Groovy.

This appendix discusses the following topics:

• Summary of Steps to Generate and Use the Connector

• Sample Schema File for Database Creation

• Sample Schema Description

• Sample Schema File for the Target System

• Sample ScriptConfiguration.groovy File

• Sample Resource Properties File

• Sample Scripts for Connector Operations

B.1 Summary of Steps to Generate and Use the Connector
The following is a summary of steps to generate and use the Generic Scripting
connector for a sample environment:

1. Create a properties for your target system schema. See Defining the Schema for
detailed information about creating a schema file for your target system.

2. Create a resource properties file if the sample target system requires additional
parameters to successfully connect with the target system. See Preparing the
Resource Properties File for detailed information about creating a resource
properties file.

3. Determine and create scripts for the operations that you want the connector
to perform. This involves determining the mode in which you want to run the
connector, target resource or trusted source.

4. Configure the ScriptConfiguration.groovy file. See Configuring the
ScriptConfiguration.groovy File for detailed information about the entries in the
ScriptConfiguration.groovy file.

5. Generate the Generic Scripting Connector based on your target system schema
specified in the schema.properties file. See Generating the Connector for detailed
information about running the metadata generator to generate the connector.

6. Install the connector included in the connector installation media. See Installing the
Connector for detailed information about connector installation.

B-1

7. Install the connector that you generated in Step 5. See Installing the Connector for
detailed information about connector installation.

8. Configure the IT resource for your target system. See Configuring the IT Resource
for the Target System for more information.

9. Create a form for your target system and associate it with an application instance.
See the following sections for detailed information:

• Creating a New UI Form

• Associating the Form with the Application Instance

10. Replace the groovy-all.jar file with the latest version available on the computer
hosting Oracle Identity Manager. See Replacing the groovy-all.jar File for detailed
information about replacing the groovy-all.jar file.

B.2 Sample Schema File for Database Creation
The following is a sample schema file for Database creation:

CREATE TABLE "GENERIC_PARENT"
 (
 "USERID" VARCHAR2(20 BYTE) NOT NULL ENABLE,
 "PASSWORD" VARCHAR2(20 BYTE),
 "STATUS" VARCHAR2(20 BYTE),
 "LAST_UPDATE" TIMESTAMP (6) DEFAULT CURRENT_TIMESTAMP,
 "FIRSTNAME" VARCHAR2(20 BYTE),
 "LASTNAME" VARCHAR2(20 BYTE),
 "ORG" VARCHAR2(20 BYTE),
 "CITY" VARCHAR2(20 BYTE),
 "EMPLOYEE_NUMBER" NUMBER,
 "STARTDATE" DATE,
 "USERNAME" VARCHAR2(20 BYTE),
 "EMAIL" VARCHAR2(20 BYTE),
 "ENDDATE" DATE,
 "LONGVALUE" LONG,
 "FLOATVALUE" FLOAT(126),
 "CHARVALUE" CHAR(1 BYTE),
 CONSTRAINT "GENERIC_PARENT_PK" PRIMARY KEY ("USERID")
)

 CREATE TABLE "GENERIC_GROUP"
 (
 "USERID" VARCHAR2(20 BYTE),
 "GROUPNAME" VARCHAR2(20 BYTE),
 "STARTDATE" DATE,
 "GROUPID" NUMBER,
 CONSTRAINT "GENERIC_GROUP_GENERIC_PAR_FK1"
FOREIGN KEY ("USERID") REFERENCES "GENERIC_PARENT" ("USERID") ENABLE
)

 CREATE TABLE "GENERIC_ROLE"
 (
 "USERID" VARCHAR2(20 BYTE),
 "ROLENAME" VARCHAR2(20 BYTE),
 "ROLEID" NUMBER,
 "STARTDATE" DATE,
 CONSTRAINT "ROLE_FK" FOREIGN KEY ("USERID") REFERENCES "GENERIC_PARENT"
("USERID") ENABLE
)

Appendix B
Sample Schema File for Database Creation

B-2

Trigger for Last_Update

CREATE OR REPLACE TRIGGER UPDATE_LASTUPDATED
BEFORE INSERT OR UPDATE ON GENERIC_PARENT
REFERENCING OLD AS OLDREC NEW AS NEWREC
FOR EACH ROW
BEGIN
 :NEWREC.LAST_UPDATE := sysdate;
END;

Create Procedure

create or replace package types
as type cursorType is ref cursor;
end;

B.3 Sample Schema Description
The example target system (an Oracle Database) contains a schema named
GENERIC, which in turn contains the GENERIC_PARENT, GENERIC_GROUP,
GENERIC_ROLE, and GENERIC_ORGANIZATIONS tables.

The following sections describe the columns of each table in the GENERIC schema:

• GENERIC.GENERIC_PARENT Table Description

• GENERIC.GENERIC_GROUP Table Description

• GENERIC.GENERIC_ROLE Table Description

• GENERIC.ORGANIZATIONS Table Description

B.3.1 GENERIC.GENERIC_PARENT Table Description
Table B-1 lists the columns of the GENERIC.GENERIC_PARENT table.

Table B-1 GENERIC.GENERIC_PARENT Table Description

Column Name Type Description

USERID VARCHAR2(20) NOT NULL, PRIMARY

PASSWORD VARCHAR2(20)

STATUS VARCHAR2(20)

LAST_UPDATE TIMESTAMP (6) This column is used during
incremental reconciliation.

FIRSTNAME VARCHAR2(20)

LASTNAME VARCHAR2(20)

ORG VARCHAR2(20)

CITY VARCHAR2(20)

EMPLOYEE_NUMBER NUMBER

STARTDATE DATE

USERNAME VARCHAR2(20)

EMAIL VARCHAR2(20)

Appendix B
Sample Schema Description

B-3

Table B-1 (Cont.) GENERIC.GENERIC_PARENT Table Description

Column Name Type Description

ENDDATE DATE

LONGVALUE LONG

FLOATVALUE FLOAT(126)

CHARVALUE CHAR(1)

B.3.2 GENERIC.GENERIC_GROUP Table Description
Table B-2 lists the columns of the GENERIC.GENERIC_GROUP table.

Table B-2 GENERIC.GENERIC_GROUP Table Description

Column Name Type Description

USERID VARCHAR2(20) FOREIGN KEY

GROUPNAME VARCHAR2(20)

STARTDATE DATE

GROUPID NUMBER

B.3.3 GENERIC.GENERIC_ROLE Table Description
Table B-3 lists the columns of the GENERIC.GENERIC_ROLE table.

Table B-3 GENERIC.GENERIC_ROLE Table Description

Column Name Type Description

USERID VARCHAR2(20) FOREIGN KEY

ROLENAME VARCHAR2(20)

STARTDATE DATE

ROLEID NUMBER

B.3.4 GENERIC.ORGANIZATIONS Table Description
Table B-4 lists the columns of the GENERIC.ORGANIZATIONS table.

Table B-4 GENERIC.ORGANIZATIONS Table Description

Column Name Type

ORGNAME VARCHAR2(20)

ORGID VARCHAR2(20)

Appendix B
Sample Schema Description

B-4

B.4 Sample Schema File for the Target System
Create a schema file representing the structure of your target system. The following
is a sample schema file which also includes the LAST_UPDATE attribute that will be
used during incremental reconciliation:

#Sample Schema file

#List of fields
FieldNames=USERID,PASSWORD,USERNAME,STATUS,EMAIL,FIRSTNAME,LASTNAME,ORGANIZATION,
CITY,EMPLOYEE_NUMBER,STARTDATE,ENDDATE,LONGVALUE,FLOATVALUE,CHARVALUE,GENERIC_GRO
UP,GENERIC_ROLE

#Unique ID Attribute
UidAttribute=USERID

#Account Name attribute
NameAttribute=USERNAME

#Multivalued attributes
GENERIC_GROUP.Multivalued=true
GENERIC_ROLE.Multivalued=true

#Subfields for complex child form
GENERIC_GROUP.Subfields=GROUPNAME,STARTDATE,GROUPID
GENERIC_ROLE.Subfields=ROLENAME,ROLEID,STARTDATE

#Complex child form objectClass
GENERIC_ROLE.EmbeddedObjectClass=MyROLES
GENERIC_GROUP.EmbeddedObjectClass=MyGROUPS

#Datatypes (Default:String)
GENERIC_ROLE.STARTDATE.DataType=Long
GENERIC_GROUP.STARTDATE.DataType=Long
GENERIC_GROUP.GROUPID=Integer
GENERIC_ROLE.ROLEID=Integer

STARTDATE.DataType=Long
ENDDATE.DataType=Long
EMPLOYEE_NUMBER.DataType=Integer
LONGVALUE.DataType=Long
FLOATVALUE.DataType=Double

#Incremental reconciliation attribute with datatype set to Long
LAST_UPDATE.DataType=Long

#Parent and child form mandatory fields
GENERIC_ROLE.ROLENAME.Required=true
GENERIC_GROUP.GROUPNAME.Required=true

#Date format
SystemDateFormat=ddmmyy

#Password Attribute
PasswordAttribute=PASSWORD

#Account Status Attribute and Mapping
StatusAttribute=STATUS

Appendix B
Sample Schema File for the Target System

B-5

STATUS.True=Enabled
STATUS.False=Disabled

B.5 Sample ScriptConfiguration.groovy File
The following is a sample ScriptConfiguration.groovy file which shows sample entries
for both the trusted and target sections:

/*
 * Run like:
 * In Windows:
GenericScriptGenerator.cmd ..\resources\ScriptConfiguration.groovy trusted
 * In Linux/Unix: sh GenericScriptGenerator.sh ../resources/
ScriptConfiguration.groovy trusted
 */
trusted {
 /*
 * ITResource name
 */
 itResourceDefName='GenScr' // This will be used as a base name for all
metadata across the connector
 // itResourceName="$itResourceDefName" //the same as itResourceDefName by
default

 /*
 * Output files
 */
 connectorDir="../$itResourceDefName" // output dir of
the connector, is the same as it resource name by default
 xmlFile='GenScr-ConnectorConfig.xml' // name of the dm xml of
the connector
 configFileName='GenScr-CI.xml' // name of the config xml
 propertiesFile='GenScr.properties' // name of the resources/properties
file
 version='11.1.1.5.0' // connector version

 /*
 * Trusted/Target mode
 * For trusted, we will not create forms, dataobjects and event handlers
 * For target, we will create all above metadata
 */
 trusted=true // Flag to
denote if the mode is trusted or not

 /*
 * Location of the generic script bundle jar
 */
 bundleJar='../lib/org.identityconnectors.genericscript-1.0.11150.jar'

 /*
 * The Configuration used to run the generic script bundle mentioned above,
and get the schema by calling its SchemaOp, which is required for generating
metadata
 */
 config = [
 'schemaFile' : 'file:///scratch/jdoe/OIMR2PS3/mw3722/idm6004/server/
ConnectorDefaultDirectory/genericscript-11.1.1.5.0/metadata-generator/resources/
trusted/schema_sampletarget.txt', //This property is used during metadata
generator, provide file:///url of the file

Appendix B
Sample ScriptConfiguration.groovy File

B-6

'resourceProperties' : 'file:///scratch/jdoe/OIMR2PS3/mw3722/idm6004/server/
ConnectorDefaultDirectory/genericscript-11.1.1.5.0/metadata-generator/resources/
trusted/resource.properties', // Location of properties file which defines
target specific resource parameters, provide file:///url of the file
 'host' : 'example.org',
 'port' : '1521',
 'user' : 'generic',
 'changeLogColumn':'LAST_UPDATE',

'executeQueryScript': 'file:///scratch/jdoe/OIMR2PS3/mw3722/idm6004/server/
ConnectorDefaultDirectory/genericscript-11.1.1.5.0/metadata-generator/resources/
trusted/executequeryutil.groovy', // provide the file:///url of the script
 'syncScript': 'file:///scratch/jdoe/OIMR2PS3/mw3722/idm6004/server/
ConnectorDefaultDirectory/genericscript-11.1.1.5.0/metadata-generator/resources/
trusted/sync.groovy', // provide the file:///url of the script
 'connectionScript': 'file:///scratch/jdoe/OIMR2PS3/mw3722/idm6004/server/
ConnectorDefaultDirectory/genericscript-11.1.1.5.0/metadata-generator/resources/
trusted/connection.groovy', // provide the file:///url of the script
 'checkAliveScript': 'file:///scratch/jdoe/OIMR2PS3/mw3722/idm6004/server/
ConnectorDefaultDirectory/genericscript-11.1.1.5.0/metadata-generator/resources/
trusted/checkAlive.groovy', // provide the file:///url of the script
 'disposeScript': '', // provide the file:///url of the script
 'scriptType': 'GROOVY' // proved script type, valid entries are
GROOVY,BEANSHELL,JAVASCRIPT
]

 /**
 * Provide the attribute list that need to be handled as Date on
process form
 * Make sure these fields datatype in schema should be long
 * dateAttributeList is not a mandatory field
 **/

 dateAttributeList = ["STARTDATE","ENDDATE"]

 /**
 * Define alias for object class if it is other than
ObjectClass.ACCOUNT_NAME and ObjectClass.GROUP_NAME
 */

 //objectClassAlias = ['Person']

 /**
 * Alias are used to map the OIM User Form attributes with the Connector
Attributes.
 * The Format is of 'Connector Attribute':'OIM User Form Attribute'
 * Mandatory alias shouldn't be removed. Customer can update these
mandatory attributes but should not be removed
 * Customer can add other aliases to the OIM User form fields
 **/
 // Mapping is mandatory for attributes User Login, Last Name,Organization,
Xellerate Type and Role. One can modify the required mappings but shouldn't
delete them.
 //UID field is not required in trusted but if customer wanted to add
UID field then one can map it to a valid OIM User Form Label
 alias = ['__NAME__':'User Login', 'LASTNAME':'Last
Name','Organization':'Organization Name', 'Employee Type':'Xellerate Type',
'Role':'Role']
 //Extend the aliases to include more connector attributes for trusted
by mapping
 alias += ['__ENABLE__':'Status', 'FIRSTNAME':'First Name', 'EMAIL':'Email',

Appendix B
Sample ScriptConfiguration.groovy File

B-7

'STARTDATE':'Start Date','ENDDATE':'End Date','EMPLOYEE_NUMBER':'Employee
Number']}

/*
 *
 * Run like:
 * In Windows:
GenericScriptGenerator.cmd ..\resources\ScriptConfiguration.groovy target
 * In Linux/Unix: sh GenericScriptGenerator.sh ../resources/
ScriptConfiguration.groovy target */

target {
 /*
 * ITResource name
 */
 itResourceDefName='GenericScriptTarget' // This will be used as a base
name for all metadata across the connector
 // itResourceName="$itResourceDefName" //the same as itResourceDefName by
default

 /**
 * Give the name of the Application Instance that need to be generated.
By default Application Instance name is taken as itResourceDefName
 * Application Instance is not a mandatory field
 **/
 //applicationInstanceName="$itResourceDefName"

 /*
 * Output files
 */
 // connectorDir="../$itResourceDefName" // output dir
of the connector, is the same as it resource name by default
 // xmlFile='GenericScriptTarget-ConnectorConfig.xml' // name of
the dm xml of the connector
 // configFileName='GenericScriptTarget-CI.xml' // name
of the config xml
 // propertiesFile='GenericScriptTarget-generator.properties' // name of
the resources/properties file
 // version='11.1.1.5.0' // connector version

 /*
 * Location of the generic script bundle jar
 */
 bundleJar='../lib/org.identityconnectors.genericscript-1.0.11150.jar'

 /*
 * The Configuration used to run the generic script bundle mentioned
above, and get the schema by calling its SchemaOp, which is required for
generating metadata
 */
 config = [
 'schemaFile' : 'file:///scratch/jdoe/OIMR2PS3/mw3722/idm6004/server/
ConnectorDefaultDirectory/genericscript-11.1.1.5.0/metadata-generator/resources/
target/schema_sampletarget.txt', //This property is used during metadata
generator, provide file:///url of the file

'resourceProperties' : 'file:///scratch/jdoe/OIMR2PS3/mw3722/idm6004/server/
ConnectorDefaultDirectory/genericscript-11.1.1.5.0/metadata-generator/resources/
target/resource.properties', // Location of properties file which defines target
specific resource parameters, provide file:///url of the file
 'host' : 'example.com',

Appendix B
Sample ScriptConfiguration.groovy File

B-8

 'port' : '1521',
 'user' : 'generic',
 'changeLogColumn':'LAST_UPDATE',
 'createScript': 'file:///scratch/jdoe/OIMR2PS3/mw3722/idm6004/server/
ConnectorDefaultDirectory/genericscript-11.1.1.5.0/metadata-generator/resources/
target/create.groovy', // provide the file:///url of the script
 'updateScript': 'file:///scratch/jode/OIMR2PS3/mw3722/idm6004/server/
ConnectorDefaultDirectory/genericscript-11.1.1.5.0/metadata-generator/resources/
target/update.groovy', // provide the file:///url of the script
 'deleteScript': 'file:///scratch/jdoe/OIMR2PS3/mw3722/idm6004/server/
ConnectorDefaultDirectory/genericscript-11.1.1.5.0/metadata-generator/resources/
target/update.groovy', // provide the file:///url of the script

'executeQueryScript': 'file:///scratch/jdoe/OIMR2PS3/mw3722/idm6004/server/
ConnectorDefaultDirectory/genericscript-11.1.1.5.0/metadata-generator/resources/
target/executequeryutil.groovy', // provide the file:///url of the script
 'lookupScript': 'file:///scratch/jdoe/OIMR2PS3/mw3722/idm6004/server/
ConnectorDefaultDirectory/genericscript-11.1.1.5.0/metadata-generator/resources/
target/lookup.groovy', // provide the file:///url of the script
 'syncScript': 'file:///scratch/jdoe/OIMR2PS3/mw3722/idm6004/server/
ConnectorDefaultDirectory/genericscript-11.1.1.5.0/metadata-generator/resources/
target/syncutil.groovy', // provide the file:///url of the script

'addMultiValuedAttributeScript': 'file:///scratch/jdoe/OIMR2PS3/mw3722/idm6004/
server/ConnectorDefaultDirectory/genericscript-11.1.1.5.0/metadata-generator/
resources/target/addchilddata.groovy', // provide the file:///url of the script

'removeMultiValuedAttributeScript': 'file:///scratch/jdoe/OIMR2PS3/mw3722/
idm6004/server/ConnectorDefaultDirectory/genericscript-11.1.1.5.0/metadata-
generator/resources/target/removechilddata.groovy', // provide the file:///url
of the script
 'connectionScript': 'file:///scratch/jdoe/OIMR2PS3/mw3722/idm6004/server/
ConnectorDefaultDirectory/genericscript-11.1.1.5.0/metadata-generator/resources/
target/connection.groovy', // provide the file:///url of the script
 //'checkAliveScript': 'file:///scratch/jdoe/OIMR2PS3/mw3722/idm6004/
server/ConnectorDefaultDirectory/genericscript-11.1.1.5.0/metadata-generator/
resources/target/checkAlive.groovy', // provide the file:///url of the script
 //'disposeScript': '', // provide the file:///url of the script
 'scriptType': 'GROOVY' // proved script type, valid entries
are GROOVY,BEANSHELL,JAVASCRIPT
]

 /**
 * Lookup List is the list of attributes for which
we need to create lookups and map those fields as lookup in form.
 * For Main Process Form Fields and a Multivalued field the format is
 * lookupAttributeList=["FieldName"]
 * For Embedded Multi Valued field the format is
 * lookupAttributeList=["ObjectClassName.SubFieldName"]
 * lookups will be generated with the FieldNames
in format Lookup.${ITResource}.${FieldName}
 *
 * lookupList is not a mandatory field
 */

 lookupAttributeList=['MyROLES.ROLENAME','MyGROUPS.GROUPNAME','ORGANIZATION']

 /* entitlementAttributeList is the list of fully Qualified
field names to which entitlements need to be tagged.
 * If you require entitlements for a multi valued
attribute which is embedded then the format should be as

Appendix B
Sample ScriptConfiguration.groovy File

B-9

 * entitlementAttributeList=["${ObjectClass}.SubFieldName"]
 * If the attribute is just a MultiValued then the format is
 * entitlementAttributeList=["MultiValuedFieldName"]
 *
 * entitlementAttributeList is not a mandatory attribute
 */

 entitlementAttributeList=["MyROLES.ROLENAME","MyGROUPS.GROUPNAME"]

 /**
 * Define alias for object class if it is other
than ObjectClass.ACCOUNT_NAME and ObjectClass.GROUP_NAME
 */

 //objectClassAlias = ['Person']

 /**
 * Provide the attribute list that need to be handled
as Date on process form
 * Make sure these fields datatype in schema should be long
 * dateAttributeList is not a mandatory field
 **/
 dateAttributeList =
["STARTDATE","ENDDATE","MyROLES.STARTDATE","MyGROUPS.STARTDATE"]
 /*
 * Target attribute to user fields alias
 */
 //Mandatory alias
 alias = ['__UID__':'USERID', '__NAME__':'USERNAME']
 //Optional aliases if any (Can also be used to give
short names for lengthy attribute names)
 alias += ['GENERIC_ROLE':'GR','GENERIC_GROUP':'GG','ENDDATE':'ed',
'EMPLOYEE_NUMBER':'Emp']

 /*
 * Generate prepopulate adapters
 */
 prepopulate = ['__NAME__':'User Login', 'FIRSTNAME':'First Name',
'LASTNAME':'Last Name', '__PASSWORD__':'Password','EMAIL':'Email']

}

B.6 Sample Resource Properties File
The following is a sample resource.properties file that contains additional parameters
that the connector uses to establish a connection between Oracle Identity Manager
and the target system:

portNumber=1521
databaseName=orcl

B.7 Sample Scripts for Connector Operations
This section lists the scripts used to perform connector operations on the sample
target system using the Generic Scripting connector.

All scripts in this section have been written in Groovy scripting language.

• Check Alive Script

Appendix B
Sample Resource Properties File

B-10

• Connection Script

• Dispose Script

• Create Script

• Update Script

• Delete Script

• Add Child Data Script

• Remove Child Data Script

• Lookup Field Synchronization Script

• Full and Filtered Reconciliation Script

• Incremental Reconciliation Script

B.7.1 Check Alive Script
The check alive script periodically verifies whether the physical connection between
the connector and target system is alive. The following is a sample check alive script:

package groovy;

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;
import oracle.jdbc.driver.OracleDriver;
import
org.identityconnectors.framework.common.exceptions.ConnectionFailedException;
import org.identityconnectors.framework.common.exceptions.ConnectorException;
import groovy.sql.Sql;

ResultSet result = null;
PreparedStatement stmt = null;
trace.info("Checking database connection is valid or not");
try {
 if (conn == null
 || conn.isClosed()) {
 trace.info("Connection is closed")
 throw new ConnectionFailedException("Connection Failed ");
 }
 trace.info("test connection using SELECT 1 FROM DUAL");
 //execute sample query to check database connection is valid or not
 stmt = conn.prepareStatement("SELECT 1 FROM DUAL");
 result = stmt.executeQuery();
 trace.info("connection is valid");
} catch (SQLException ex) {
 //Throw an error if any error while executing the query
 throw new ConnectionFailedException("Connection Failed ");
}

B.7.2 Connection Script
The connection script creates the connection between the connector and target
system. The following is a sample connection script:

Appendix B
Sample Scripts for Connector Operations

B-11

package groovy;
import java.sql.Connection;
import java.sql.DriverManager;
import oracle.jdbc.driver.OracleDriver;
import org.identityconnectors.framework.common.exceptions.ConnectorException;
import groovy.sql.Sql;
import oracle.jdbc.pool.OracleDataSource;
import org.identityconnectors.common.security.GuardedString;

Connection ret = null;
try {
 OracleDataSource ds = new OracleDataSource()
 ds.user = configuration.getUser() // Read user from IT resource
 //Password field is encrypted, use GuardedString.Accessor for reading
password
 GuardedString guard= configuration.getPassword()
 guard.access(new GuardedString.Accessor()
 {
 public void access(char[] clearChars)
 {
 ds.password=new String(clearChars);
 }
 }
);

 ds.driverType = 'thin'
 ds.serverName = configuration.getHost()
 ds.portNumber = Integer.parseInt(configuration.getPortNumber()) //get Port
number defined in resources.properties file (portNumber = 19999)
 ds.databaseName = configuration.getDatabaseName() //get database name
defined in resources.properties file (portNumber = 19999)
 // load the driver class..
 test = Sql.newInstance(ds)
 ret =test.createConnection()
 ret.setAutoCommit(true);
}//end try
catch (Exception e)
{
 trace.error(e, "Exception while connecting to database");
 throw ConnectorException.wrap(e);
}
//Must return connection object, so that same connection will be available to
all subsequent scripts
return ret;

B.7.3 Dispose Script
The following is a sample script to dispose any configuration object:

package groovy;
import
org.identityconnectors.framework.common.exceptions.ConnectionFailedException;

trace.info("[Dispose-Groovy] Closing the connection");

try {
 //Close the connection. conn is the script argument
 conn.close();
}
catch(Exception e) {

Appendix B
Sample Scripts for Connector Operations

B-12

 throw new ConnectionFailedException("Could not close connection, Connection
already closed");
}

B.7.4 Create Script
The following is a sample groovy script for performing a create provisioning operation:

"package groovy
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.text.*;
import java.util.Date.*;
import org.identityconnectors.common.security.GuardedString;
import org.identityconnectors.framework.common.objects.*;

import java.text.*;

// START HERE
System.out.println("[Create-Groovy] Attributes::"+attributes);
//
USERID,PASSWORD,USERNAME,STATUS,EMAIL,FIRSTNAME,LASTNAME,ORGANIZATION,CITY,EMPLOY
EE_NUMBER,STARTDATE,ENDDATE,LONGVALUE,FLOATVALUE,CHARVALUE
//Get all the attributes from script argument

// This shows how to read arrtibures

String uid = attributes.get("__NAME__")!=null?
attributes.get("__NAME__").getValue().get(0):null;
GuardedString pass = attributes.get("__PASSWORD__")!=null?
attributes.get("__PASSWORD__").getValue().get(0):null;
String uname = attributes.get("__NAME__")!=null?
attributes.get("__NAME__").getValue().get(0):null;
enableValue = attributes.get("__ENABLE__")!=null?
attributes.get("__ENABLE__").getValue().get(0):true;
String email=attributes.get("EMAIL")!=null?
attributes.get("EMAIL").getValue().get(0):null;
String first=attributes.get("FIRSTNAME")!=null?
attributes.get("FIRSTNAME").getValue().get(0):null;
String last=attributes.get("LASTNAME")!=null?
attributes.get("LASTNAME").getValue().get(0):null;
String org=attributes.get("ORGANIZATION")!=null?
attributes.get("ORGANIZATION").getValue().get(0):null;
String city=attributes.get("CITY")!=null?
attributes.get("CITY").getValue().get(0):null;
emp=attributes.get("EMPLOYEE_NUMBER")!=null?
attributes.get("EMPLOYEE_NUMBER").getValue().get(0):null;
startdate = attributes.get("STARTDATE")!=null?
attributes.get("STARTDATE").getValue().get(0):null;
enddate = attributes.get("ENDDATE")!=null?
attributes.get("ENDDATE").getValue().get(0):null;
String longval=attributes.get("LONGVALUE")!=null?
attributes.get("LONGVALUE").getValue().get(0):null;
floatval=attributes.get("FLOATVALUE")!=null?
attributes.get("FLOATVALUE").getValue().get(0):null;
charval=attributes.get("CHARVALUE")!=null?
attributes.get("CHARVALUE").getValue().get(0):null;

PreparedStatement createStmt = null;

Appendix B
Sample Scripts for Connector Operations

B-13

String ret =null;
try {

 //Call Target API to create a user

 //createStmt = conn.prepareStatement(....); or createStmt =
conn.createStatement(....);
 //createStmt = conn.prepareStatement("INSERT INTO
generic_view(USERID,PASSWORD,USERNAME,STATUS,EMAIL,FIRSTNAME,LASTNAME,ORGANIZATIO
N,CITY,EMPLOYEE_NUMBER,STARTDATE,ENDDATE,LONGVALUE,FLOATVALUE,CHARVALUE)
VALUES(?,?,?,?,?,?,?,?,?,?,?,?,?,?,?)");
 //Set the input parameters
 createStmt = conn.prepareStatement("INSERT INTO
GENERIC_PARENT(USERID,PASSWORD,USERNAME,STATUS,EMAIL,FIRSTNAME,LASTNAME,ORG,CITY,
EMPLOYEE_NUMBER,STARTDATE,ENDDATE,LONGVALUE,FLOATVALUE,CHARVALUE)
VALUES(?,?,?,?,?,?,?,?,?,?,?,?,?,?,?)");
 createStmt.setString(1, uid);
 if(pass!=null)
 {
 pass.access(new GuardedString.Accessor(){
 public void access(char[] clearChars) { createStmt.setString(2, new
String(clearChars));}
 });
 }
 else
 createStmt.setString(2,null);

 createStmt.setString(3, uname);

 if(enableValue)
 createStmt.setString(4,"Enabled");
 else
 createStmt.setString(4,"Disabled");
 createStmt.setString(5, email);
 createStmt.setString(6, first);
 createStmt.setString(7, last);
 createStmt.setString(8, org);
 createStmt.setString(9, city);

 if (emp!=null)
 createStmt.setInt(10, emp);
 else
 {
 createStmt.setNull(10, java.sql.Types.INTEGER);
 }

 DateFormat formatter = new SimpleDateFormat("dd-MMM-yy");

 if (startdate!=null)
 {
 if (startdate == 0){

 createStmt.setString(11,null);

}
 else
 {
 Date da=new Date(startdate);
 st=formatter.format(da);
 createStmt.setString(11,st);

Appendix B
Sample Scripts for Connector Operations

B-14

 //createStmt.setString(11,null);
 }
 }

 if(enddate!=null)
 {
 if (enddate == 0)
 createStmt.setString(12,null);
 else
 {

 Date eda= new Date(enddate);
 et= formatter.format(eda);
 createStmt.setString(12,et);
 //createStmt.setString(12,null);
 }
 }
 //else createStmt.setObject(12, null);

 createStmt.setString(13, longval);
 if(floatval!=null)
 {
 createStmt.setDouble(14, floatval);}
 else createStmt.setNull(14, java.sql.Types.FLOAT);
 if(charval!=null)
 createStmt.setString(15, charval);
 else createStmt.setObject(15, null);

 createStmt.executeUpdate();

} finally{
 //close the sql statements
 if (createStmt != null)
 createStmt.close();
}
System.out.println("[Create] Created User::"+uid);
//Return Uid from the script
return new Uid(uid);
"

B.7.5 Update Script
The following is a sample groovy script for performing an update provisioning
operation:

"package groovy
import java.sql.PreparedStatement;
import oracle.jdbc.driver.OraclePreparedStatement;
import java.sql.ResultSet;
import java.text.*;
import java.util.Date.*;
import org.identityconnectors.framework.common.exceptions.*;
import org.identityconnectors.framework.common.objects.*;
import org.identityconnectors.common.security.GuardedString;
import java.text.*;

Appendix B
Sample Scripts for Connector Operations

B-15

System.out.println("[Update-Groovy] Atrributes::"+ attributes);

//During an Update operation,OIM sends the UID attribute along with updated
attributes.

//Get all the values of attributes

String uid = attributes.get("__UID__")!=null?
attributes.get("__UID__").getValue().get(0):null;
GuardedString pass = attributes.get("__PASSWORD__")!=null?
attributes.get("__PASSWORD__").getValue().get(0):null;
String uname = attributes.get("__NAME__")!=null?
attributes.get("__NAME__").getValue().get(0):null;
enableValue = attributes.get("__ENABLE__")!=null?
attributes.get("__ENABLE__").getValue().get(0):true;
String email=attributes.get("EMAIL")!=null?
attributes.get("EMAIL").getValue().get(0):null;
String first=attributes.get("FIRSTNAME")!=null?
attributes.get("FIRSTNAME").getValue().get(0):null;
String last=attributes.get("LASTNAME")!=null?
attributes.get("LASTNAME").getValue().get(0):null;
String org=attributes.get("ORG")!=null?
attributes.get("ORG").getValue().get(0):null;
String city=attributes.get("CITY")!=null?
attributes.get("CITY").getValue().get(0):null;
emp = attributes.get("EMPLOYEE_NUMBER")!=null?
attributes.get("EMPLOYEE_NUMBER").getValue().get(0):null;
startdate = attributes.get("STARTDATE")!=null?
attributes.get("STARTDATE").getValue().get(0):null;
enddate = attributes.get("ENDDATE")!=null?
attributes.get("ENDDATE").getValue().get(0):null;
longval = attributes.get("LONGVALUE")!=null?
attributes.get("LONGVALUE").getValue().get(0):null;
floatval = attributes.get("FLOATVALUE")!=null?
attributes.get("FLOATVALUE").getValue().get(0):null;
charval=attributes.get("CHARVALUE")!=null?
attributes.get("CHARVALUE").getValue().get(0):null;

//Throw exception if uid is null
if(uid==null) throw new ConnectorException("UID Cannot be Null");

PreparedStatement upstmt = null;
//upstmt=null;
try {

 //Call Target APIS to update the record

 //stmt = conn.prepareStatement(....); or stmt =
conn.createStatement(....);
 //upstmt = conn.prepareStatement("UPDATE GENERIC_PARENT SET
PASSWORD=COALESCE(?,PASSWORD),USERNAME=COALESCE(?,USERNAME),STATUS=COALESCE(?,
STATUS), EMAIL= COALESCE(?, EMAIL),FIRSTNAME=COALESCE(?,
FIRSTNAME),LASTNAME =COALESCE(?, LASTNAME), ORGANIZATION=
COALESCE(?, ORGANIZATION), CITY= COALESCE(?, CITY),
EMPLOYEE_NUMBER= COALESCE(?, EMPLOYEE_NUMBER), STARTDATE=COALESCE(to_date(?,'dd-
Mon-yy'), STARTDATE),ENDDATE=COALESCE(to_date(?,'dd-Mon-yy'),
ENDDATE),LONGVALUE=COALESCE(?, LONGVALUE),FLOATVALUE=COALESCE(?,
FLOATVALUE),CHARVALUE=COALESCE(?, CHARVALUE) WHERE USERID =?");
 upstmt = conn.prepareStatement("UPDATE GENERIC_PARENT SET

Appendix B
Sample Scripts for Connector Operations

B-16

PASSWORD=COALESCE(?,PASSWORD),USERNAME=COALESCE(?,USERNAME),STATUS=COALESCE(?,
STATUS), EMAIL= COALESCE(?, EMAIL),FIRSTNAME=COALESCE(?, FIRSTNAME),LASTNAME
=COALESCE(?, LASTNAME), ORG= COALESCE(?, ORG), CITY= COALESCE(?, CITY),
EMPLOYEE_NUMBER= COALESCE(?, EMPLOYEE_NUMBER),STARTDATE=COALESCE(to_date(?,'dd-
Mon-yy'), STARTDATE),ENDDATE=COALESCE(to_date(?,'dd-Mon-yy'),
ENDDATE),FLOATVALUE=COALESCE(?, FLOATVALUE),CHARVALUE=COALESCE(?, CHARVALUE)
WHERE USERID =?");

 //Set the input parameters
 if(pass!=null)
 {
 pass.access(new GuardedString.Accessor(){
 public void access(char[] clearChars) { upstmt.setString(1, new
String(clearChars));
 System.out.println("password is "+ new String(clearChars)); }
 });
 }
 else
 upstmt.setString(1,null);

 upstmt.setString(2, uname);
 if(enableValue)
 upstmt.setString(3,"Enabled");
 else
 upstmt.setString(3,"Disabled");
 upstmt.setString(4, email);
 upstmt.setString(5, first);
 upstmt.setString(6, last);
 upstmt.setString(7, org);
 upstmt.setString(8, city);
 println("before employee");
 if (emp!=null)
upstmt.setInt(9, emp);
else
{
upstmt.setNull(9, java.sql.Types.INTEGER);
}

 println("before startdate");
DateFormat formatter = new SimpleDateFormat("dd-MMM-yy");
 if (startdate!=null)
 {
 Date da=new Date(startdate);
 st=formatter.format(da);
 upstmt.setString(10,st);
 }
 else
 upstmt.setString(10,null);

 if(enddate!=null)
 {
 Date eda= new Date(enddate);
 et= formatter.format(eda);
 upstmt.setString(11,et);
 }
 else
 upstmt.setString(11,null);

println("before long");

Appendix B
Sample Scripts for Connector Operations

B-17

 //if(longval!=null){upstmt.setLong(12, longval);}
 //else upstmt.setNull(12, java.sql.Types.BIGINT);
println("before float");
 if(floatval!=null){upstmt.setDouble(12, floatval);}
 else upstmt.setNull(12, java.sql.Types.FLOAT);
 if(charval!=null)
 upstmt.setString(13, charval);
 else upstmt.setObject(13, null);
 upstmt.setString(14, uid);

 upstmt.executeUpdate();

} finally {
 if (upstmt!= null)
 upstmt.close();
};
System.out.println("[Update] Updated user::"+ uid);
return new Uid(uid);"

B.7.6 Delete Script
The following is a sample groovy script for performing a delete provisioning operation:

"package groovy;
import java.sql.PreparedStatement;
import org.identityconnectors.framework.common.objects.*;

//Get the UID from the input map 'attributes'
String uid = attributes.get("__UID__").getValue().get(0);

System.out.println("[Delete-Groovy] Deleting user:: "+ uid);

try {
 ///Delete data from child tables and then, main table

 //Delete user roles
 st = conn.prepareStatement("DELETE FROM GENERIC_ROLE WHERE USERID=?");
 st.setString(1, uid);
 st.executeUpdate();
// st.close();

 //Delete user groups
 st = conn.prepareStatement("DELETE FROM GENERIC_GROUP WHERE USERID=?");
 st.setString(1, uid);
 st.executeUpdate();
 //st.close();

 //Delete user account
 st = conn.prepareStatement("DELETE FROM GENERIC_PARENT WHERE USERID=?");
 st.setString(1, uid);
 st.executeUpdate();
} finally {
 if (st != null)
 st.close();
};
System.out.println("Deleted user:: "+ uid);
"

Appendix B
Sample Scripts for Connector Operations

B-18

B.7.7 Add Child Data Script
The following is a sample groovy script for adding multivalued child data:

"package groovy
import org.identityconnectors.framework.common.objects.*;
import java.text.*;

System.out.println("[addMultiValuedAttributeScript-Groovy] Adding Child data::"+
attributes);
childst =null;
try {
 //Adding Group data

 childDataEOSet = null;

 //The child attributes are returned as a set of embedded objects. Each
Embedded object
 // will provide a row of data in the child table.

 // Logic for handling simple multi valued attributes

 if(attributes.get("GENERIC_GROUP")!=null) // Here "Groups" is object class
of simple multi-valued attribute
 {

 childDataEOSet=attributes.get("GENERIC_GROUP").getValue();
 childst=conn.prepareStatement("INSERT INTO GENERIC_GROUP VALUES
(?,?,?,?)");
 String id = attributes.get("__UID__").getValue().get(0);

 if(childDataEOSet !=null){
 //Iterate through child data and insert into table
 System.out.println("[addMultiValuedAttributeScript] Adding Group
data.");
 for(iterator = childDataEOSet.iterator(); iterator.hasNext();)
 {
 eo = iterator.next();
 attrsSet=eo.getAttributes();
 grpattr=AttributeUtil.find("GROUPID",attrsSet);
 //grpattr= eo;
 if(grpattr!=null){
 // You are iterating simple multi valued attributes here,
Call target APIs here
 //conn object is available here
 groupid=grpattr.getValue().get(0);

groupname=AttributeUtil.find("GROUPNAME",attrsSet).getValue().get(0);

groupstart=AttributeUtil.find("STARTDATE",attrsSet).getValue().get(0);

 childst.setString(1, id);
 childst.setString(2, groupname);
 Date da=new Date(groupstart);

 SimpleDateFormat formatter = new SimpleDateFormat("dd-MMM-
yy");
 String st=formatter.format(da);

Appendix B
Sample Scripts for Connector Operations

B-19

 childst.setString(3, st);
 childst.setString(4, groupid);

 childst.executeUpdate();
 childst.clearParameters();
 }
 };
 }
 }
} finally {
 if (childst != null)
 childst.close();

};

try {
 childDataEOSet = null;
// Logic for handling Complex multi valued attributes
 if(attributes.get("GENERIC_ROLE")!=null)// Here "Roles" is object class of
simple multi-valued attribute
 {

 childDataEOSet=attributes.get("GENERIC_ROLE").getValue();
 childst=conn.prepareStatement("INSERT INTO GENERIC_ROLE VALUES
(?,?,?,?)");

 String id = attributes.get("__UID__").getValue().get(0);

 if(childDataEOSet !=null)
 {
 System.out.println("[addMultiValuedAttributeScript] Adding Role
data.");
 for(iterator = childDataEOSet.iterator(); iterator.hasNext();)
 {
 eo = iterator.next();
 attrsSet = eo.getAttributes(); // Get all the attributes of
child object
 roleattr=AttributeUtil.find("ROLEID",attrsSet);

 // You are iterating complex multi valued attributes here, Call
target APIs here
 //conn object is available here
 if(roleattr!=null){
 // You are iterating simple multi valued attributes here,
Call target APIs here
 //conn object is available here
 roleid=roleattr.getValue().get(0);

rolename=AttributeUtil.find("ROLENAME",attrsSet).getValue().get(0);

rolestart=AttributeUtil.find("STARTDATE",attrsSet).getValue().get(0);

 childst.setString(1, id);
 childst.setString(2, rolename);
 childst.setString(3, roleid);
 Date da=new Date(rolestart);

 SimpleDateFormat formatter = new SimpleDateFormat("dd-MMM-
yy");

Appendix B
Sample Scripts for Connector Operations

B-20

 String st=formatter.format(da);

 childst.setString(4, st);

 childst.executeUpdate();
 childst.clearParameters();
 }

 };
 }
 }
} finally {
if (childst != null)
 childst.close();

};

B.7.8 Remove Child Data Script
The section lists a sample groovy script for for removing multivalued child data. The
script calls the DELETE_USERGROUP and DELETE_USERROLE stored procedures
that have been created on the target system.

The procedure for DELETE_USERGROUP is as follows:

"create or replace PROCEDURE DELETE_USERGROUP
(user_id GENERIC_GROUP.USERID%TYPE , group_id GENERIC_GROUP.GROUPID%TYPE)
 AS
BEGIN
DELETE from GENERIC_GROUP where groupid=group_id and userid=user_id;
END DELETE_USERGROUP;"

The procedure for DELETE_USERROLE is as follows:

"create or replace PROCEDURE DELETE_USERROLE
(user_id GENERIC_ROLE.USERID%TYPE , role_id GENERIC_ROLE.ROLEID%TYPE)
 AS
BEGIN
DELETE FROM GENERIC_ROLE where userid=user_id and roleid=role_id ;
END DELETE_USERROLE;"

The following is a sample groovy script for removing multivalued child data:

"import org.identityconnectors.framework.common.objects.*;
System.out.println("[removeMultiValuedAttributeScript] Removing Child data::"+
attributes);

try {
 childDataEOSet = null;
 delSt = null;
 //Get UID
 String id = attributes.get("__UID__").getValue().get(0);
 if(attributes.get("GENERIC_GROUP")!=null)
 {
 childDataEOSet=attributes.get("GENERIC_GROUP").getValue();
 //Delete child data using stored procedure
 delSt= conn.prepareCall("{call DELETE_USERGROUP(?,?)}");
 if(childDataEOSet !=null){
 System.out.println("[removeMultiValuedAttributeScript] Removing

Appendix B
Sample Scripts for Connector Operations

B-21

Group data.");
 //Iterate through child data and delete
 for(iterator = childDataEOSet.iterator(); iterator.hasNext();)
 {
 eo = iterator.next();
 attrsSet = eo.getAttributes();
 grpattr=AttributeUtil.find("GROUPID",attrsSet);
 if(grpattr!=null){
 groupid=grpattr.getValue().get(0);
 delSt.setString(1, id);
 delSt.setString(2, groupid);
 delSt.executeUpdate();
 System.out.println("[removeMultiValuedAttributeScript]
Deleted Group::"+ grpattr);
 }
 };
 }

 }
} finally {
 if (delSt != null)
 delSt.close();
};

try {
 childDataEOSet = null;
 delSt = null;
 String id = attributes.get("__UID__").getValue().get(0);
 if(attributes.get("GENERIC_ROLE")!=null)
 {
 childDataEOSet=attributes.get("GENERIC_ROLE").getValue();
 delSt= conn.prepareCall("{call DELETE_USERROLE(?,?)}");
 if(childDataEOSet !=null){
 System.out.println("[removeMultiValuedAttributeScript] Removing Role
data.");
 for(iterator = childDataEOSet.iterator(); iterator.hasNext();)
 {

 eo = iterator.next();
 attrsSet = eo.getAttributes();
 roleattr=AttributeUtil.find("ROLEID",attrsSet);
 if(roleattr!=null){
 rolename=roleattr.getValue().get(0);
 delSt.setString(1, id);
 delSt.setString(2, rolename);
 delSt.executeUpdate();
 System.out.println("[removeMultiValuedAttributeScript]
Deleted Role::"+ rolename);
 }
 };
 }
 }
} finally {
 if (delSt != null)
 delSt.close();
};

Appendix B
Sample Scripts for Connector Operations

B-22

B.7.9 Lookup Field Synchronization Script
The section lists a sample groovy script for performing lookup field synchronization
on the Role Name, Group Name, and Organization lookup fields. This script calls the
GET_ROLES, GET_GROUPS, and GET_ORGANIZATIONS stored procedures that
have been created on the target system.

The procedure for GET_ROLES is as follows:

"create or replace PROCEDURE GET_ROLES
(user_cursor OUT TYPES.cursorType
) AS
BEGIN
OPEN user_cursor FOR
SELECT ROLENAME,ROLEID from GENERIC_ROLES;
END GET_ROLES;"

The procedure for GET_GROUPS is as follows:

"create or replace PROCEDURE GET_GROUPS
(user_cursor OUT TYPES.cursorType
) AS
BEGIN
OPEN user_cursor FOR
SELECT GROUPNAME,GROUPID from GENERIC_GROUPS;
END GET_GROUPS;"

The procedure for GET_ORGANIZATIONS is as follows:

create or replace PROCEDURE GET_ORGANIZATIONS
(user_cursor OUT TYPES.cursorType
) AS
BEGIN
OPEN user_cursor FOR
SELECT ORGNAME,ORGID from GENERIC.ORGANIZATIONS;
END GET_ORGANIZATIONS;

The following is a sample groovy script for performing lookup field synchronization:

"package groovy;
import org.identityconnectors.framework.common.objects.*;
rs = null;
st = null;
try {
 System.out.println("[Lookup] Lookup Recon timing::"+ timing);
 System.out.println("[Lookup] Attributes to Get::"+ ATTRS_TO_GET);

 // This script is common for all lookups. Read the timing (input) and
return the data accordingly
 // The format of timing is : executeQuery:<objectclass>, objectclass is the
value of object type in schedule job

 // ATTRS_TO_GET and timing are the script arguments

 String codekey = ATTRS_TO_GET[0];
 String decodekey = ATTRS_TO_GET[1];
 System.out.println("0"+ ATTRS_TO_GET[0]);
 System.out.println("1"+ ATTRS_TO_GET[1]);

 if(timing.equals("executeQuery:ROLENAME"))

Appendix B
Sample Scripts for Connector Operations

B-23

 {
 System.out.println("[Lookup] Getting Roles.");
 st = conn.prepareCall("{call GET_ROLES(?)}");
 }
 else if (timing.equals("executeQuery:GROUPNAME"))
 {
 System.out.println("[Lookup] Getting Groups.");
 st = conn.prepareCall("{call GET_GROUPS(?)}");

 }
 else if (timing.equals("executeQuery:ORGANIZATION"))
 {
 System.out.println("[Lookup] Getting Organizations.");
 st = conn.prepareCall("{call GET_ORGANIZATIONS(?)}");

 }
 st.registerOutParameter(1, oracle.jdbc.driver.OracleTypes.CURSOR);
 st.execute();
 rs = st.getObject(1);
 while (rs.next()) {
 cob = new ConnectorObjectBuilder();

 util.addAttribute(codekey,rs.getString(codekey));
 util.addAttribute(decodekey,rs.getString(decodekey));

 if (!util.build()) return;
 }

} finally {
 if(null != rs)
 rs.close();
 if(null != st)
 st.close();

}
"

B.7.10 Full and Filtered Reconciliation Script
This section lists a sample groovy script for performing full or filtered
reconciliation. This script calls the GET_GENERICGROUP, GET_GENERICROLE,
and GENERIC_EXECUTE_QUERY stored procedures for full and filtered
reconciliation.

The following stored procedures have been created on the target system for full or
filtered reconciliation:

"create or replace PROCEDURE GET_GENERICGROUP
(user_cursor OUT TYPES.cursorType, userin IN VARCHAR2
) AS
BEGIN
OPEN user_cursor FOR
SELECT GROUPID,GROUPNAME,STARTDATE from GENERIC_GROUP where USERID=userin;
END GET_GENERICGROUP;"

"create or replace PROCEDURE GET_GENERICROLE
(user_cursor OUT TYPES.cursorType, userin IN VARCHAR2
) AS
BEGIN

Appendix B
Sample Scripts for Connector Operations

B-24

OPEN user_cursor FOR
SELECT ROLEID,ROLENAME,STARTDATE from GENERIC_ROLE where USERID=userin;
END GET_GENERICROLE;"

"create or replace
PROCEDURE GENERIC_EXECUTE_QUERY
(user_cursor OUT TYPES.cursorType
) AS
BEGIN
OPEN user_cursor FOR
SELECT GENERIC_PARENT.USERID,GENERIC_PARENT.PASSWORD, GENERIC_PARENT.FIRSTNAME ,
GENERIC_PARENT.LASTNAME,
GENERIC_PARENT.EMAIL ,GENERIC_PARENT.ORG,GENERIC_PARENT.CITY,GENERIC_PARENT.START
DATE ,GENERIC_PARENT.EMPLOYEE_NUMBER,GENERIC_PARENT.STATUS,GENERIC_PARENT.USERNAM
E FROM GENERIC_PARENT;
END GENERIC_EXECUTE_QUERY;

To execute procedure from sqldeveloper
var rc refcursor
EXECUTE GENERIC_EXECUTE_QUERY(:rc)
print rc"

The script for full and filtered reconciliation is as follows:

"package groovy
import org.identityconnectors.framework.common.objects.*;
import java.lang.reflect.*;
import java.lang.String;
import org.identityconnectors.common.security.GuardedString;
import java.text.*;
import java.util.Set;
import java.util.Date.*;
import java.sql.Date.*;
rs = null;
st = null;
try {
 if(!filterMap.isEmpty())
 {
 System.out.println("[Execute Query] Performing Recon with Filter. Filter
is::"+ filterMap+" And Filer Params are::"+filterMap);
 //String[] filter = filterParams.get(0).split(":");
 // st = conn.prepareCall("{call EXECUTE_QUERY_WITH_FILTER(?,?,?)}");
 //st.setString(2, filter[0]);
 //st.setString(3, filter[1]);
 filterAttr = filterMap.get("filterattribute");
 filterOp = filterMap.get("filteroperator");
 // if("EQUALto".equalsIgnoreCase(filterOp))
 // {
 // dbOp="=";
 // }
 filterVal = filterMap.get("filtervalue");

 st = conn.prepareCall("{call EXECUTE_QUERY_WITH_FILTER(?,?,?)}");
 st.setString(2, filterAttr);
 st.setString(3, filterVal);
 //st.setString(4, filterOp);

 }
 else // Full recon
 {

Appendix B
Sample Scripts for Connector Operations

B-25

 // // Call target apis to get all records
 System.out.println("[Execute Query] Performing Full Recon.");
 //SELECT GENERIC_PARENT.USERID,GENERIC_PARENT.PASSWORD,
GENERIC_PARENT.FIRSTNAME, GENERIC_PARENT.LASTNAME,
GENERIC_PARENT.EMAIL ,GENERIC_PARENT.ORG,GENERIC_PARENT.CITY,GENERIC_PARENT.START
DATE ,GENERIC_PARENT.EMPLOYEE_NUMBER,GENERIC_PARENT.STATUS,GENERIC_PARENT.USERNAM
E,GENERIC_PARENT.ENDDATE,GENERIC_PARENT.LONGVALUE,GENERIC_PARENT.FLOATVALUE,GENER
IC_PARENT.CHARVALUE FROM GENERIC_PARENT;
 st = conn.prepareCall("{call GENERIC_EXECUTE_QUERY(?)}");
 }
 st.registerOutParameter(1, oracle.jdbc.driver.OracleTypes.CURSOR);
 st.execute();
 rs = st.getObject(1);

 while (rs.next()) {
 cob = new ConnectorObjectBuilder();
 cob.setObjectClass(ObjectClass.ACCOUNT);
 Attribute uid= AttributeBuilder.build(new
String("__UID__"),rs.getString(1));
 Attribute fname= AttributeBuilder.build(new
String("FIRSTNAME"),rs.getString(3));
 Attribute lname= AttributeBuilder.build(new
String("LASTNAME"),rs.getString(4));
 Attribute email= AttributeBuilder.build(new
String("EMAIL"),rs.getString(5));
 Attribute org= AttributeBuilder.build(new String("ORG"),rs.getString(6));
 Attribute city= AttributeBuilder.build(new
String("CITY"),rs.getString(7));
 //dbDate = rs.getDate(8);
 //Attribute startdate = AttributeBuilder.build(new
String("STARTDATE"),rs.getString(8));

 Attribute emp= AttributeBuilder.build(new
String("EMPLOYEE_NUMBER"),rs.getString(9));
 Attribute status= AttributeBuilder.build(new
String("STATUS"),rs.getString(10));
 Attribute name= AttributeBuilder.build(new
String("__NAME__"),rs.getString(11));

 //dbDate = rs.getDate(12);

 //Attribute enddate = AttributeBuilder.build(new
String("ENDDATE"),dbDate.getTime());
 //Attribute longval= AttributeBuilder.build(new
String("LONGVALUE"),rs.getString(13));
 //Attribute floatval= AttributeBuilder.build(new
String("FLOATVALUE"),rs.getString(14));
 //Attribute charval= AttributeBuilder.build(new
String("CHARVALUE"),rs.getString(15));

 cob.addAttribute(fname);
 cob.addAttribute(lname);
 cob.addAttribute(uid);
 cob.addAttribute(name);
 cob.addAttribute(email);
 //cob.addAttribute(startdate);
 //cob.addAttribute(enddate);
 cob.addAttribute(status);

Appendix B
Sample Scripts for Connector Operations

B-26

 cob.addAttribute(org);
 cob.addAttribute(city);
 //cob.addAttribute(longval);
 //cob.addAttribute(floatval);
 //cob.addAttribute(charval);
 cob.addAttribute(emp);

 // util.addAttribute(Uid.NAME,rs.getString(1));
 // util.addAttribute(Name.NAME,rs.getString(11)); // Name must be provided
 // util.addAttribute('FIRSTNAME',rs.getString(3));
 // util.addAttribute('LASTNAME',rs.getString(4));
 // util.addAttribute('EMAIL',rs.getString(5));
 // util.addAttribute('ORGANIZATION',rs.getString(6));
 // util.addAttribute('CITY',rs.getString(7));
 // util.addAttribute('STARTDATE',rs.getDate(8));
 // util.addAttribute('EMPLOYEE_NUMBER',new Integer(rs.getString(9)));
 //
 // util.addAttribute('STATUS',rs.getString(10));
 // util.addAttribute('ENDDATE',rs.getDate(12));
 // util.addAttribute('LONGVALUE',new Long(rs.getString(13)));
 // util.addAttribute('FLOATVALUE',new Double(rs.getString(14)));
 // util.addAttribute('CHARVALUE',rs.getString(15));

 roleStmt = conn.prepareCall("{call GET_GENERICROLE(?,?)}");

 roleStmt.registerOutParameter(1, oracle.jdbc.driver.OracleTypes.CURSOR);
 roleStmt.setString(2, rs.getString(1));
 roleStmt.execute();
 roleResultSet = roleStmt.getObject(1);
 java.util.List<EmbeddedObject> eoList = new ArrayList<EmbeddedObject>();
 while (roleResultSet.next()) {
 Attribute roleId= AttributeBuilder.build(new
String("ROLEID"),roleResultSet.getString(1));
 Attribute roleName= AttributeBuilder.build(new
String("ROLENAME"),roleResultSet.getString(2));
 // dbDate = roleResultSet.getDate(3);
 //Attribute startdater = AttributeBuilder.build(new
String("STARTDATE"),dbDate.getTime());

 EmbeddedObjectBuilder roleEA = new EmbeddedObjectBuilder();
 roleEA.addAttribute(roleId);
 roleEA.addAttribute(roleName);
 //roleEA.addAttribute(startdater);
 roleEA.setObjectClass(new ObjectClass("GENERIC_ROLE"));
 eoList.add(roleEA.build());
 }
 roleResultSet.close();
 EmbeddedObject[] roleEm = eoList.toArray(new
EmbeddedObject[eoList.size()]);
 cob.addAttribute(AttributeBuilder.build("GENERIC_ROLE", (Object[])
roleEm));

 groupStmt = conn.prepareCall("{call GET_GENERICGROUP(?,?)}");
 groupStmt.registerOutParameter(1, oracle.jdbc.driver.OracleTypes.CURSOR);
 groupStmt.setString(2, rs.getString(1));
 groupStmt.execute();
 groupResultSet = groupStmt.getObject(1);
 java.util.List<EmbeddedObject> geoList = new ArrayList<EmbeddedObject>();
 //System.out.println("groupresutset display"+groupResultSet);

 while (groupResultSet.next()) {

Appendix B
Sample Scripts for Connector Operations

B-27

 Attribute groupId= AttributeBuilder.build(new
String("GROUPID"),groupResultSet.getString(1));

 Attribute groupName= AttributeBuilder.build(new
String("GROUPNAME"),groupResultSet.getString(2));
 // dbDate = groupResultSet.getDate(3);
 //Attribute startdateg = AttributeBuilder.build(new
String("STARTDATE"),dbDate.getTime());
 EmbeddedObjectBuilder groupEA = new EmbeddedObjectBuilder();
 groupEA.addAttribute(groupId);
 groupEA.addAttribute(groupName);
 //groupEA.addAttribute(startdateg);
 groupEA.setObjectClass(new ObjectClass("GENERIC_GROUP"));
 geoList.add(groupEA.build());

 }
 groupStmt.close();

 EmbeddedObject[] groupEm = geoList.toArray(new
EmbeddedObject[geoList.size()]);

 cob.addAttribute(AttributeBuilder.build("GENERIC_GROUP", (Object[])
groupEm));
 if(!handler.handle(cob.build())) return;
 }
} finally {
if(null != rs)
 rs.close();
 if(null != st)
 st.close();

}
"

B.7.11 Incremental Reconciliation Script
This section lists a sample groovy script for performing incremental reconciliation. This
script calls a stored procedure that has been created on the target system as follows:

"create or replace PROCEDURE EXECUTE_QUERY_INCREMENTAL
(user_cursor OUT TYPES.cursorType, columnName IN VARCHAR2, columnValue IN
VARCHAR2
) AS
BEGIN
if columnValue is NULL then
open user_cursor for 'SELECT
GENERIC_PARENT.USERID,GENERIC_PARENT.PASSWORD,GENERIC_PARENT.FIRSTNAME,GENERIC_PA
RENT.LASTNAME,GENERIC_PARENT.EMAIL,GENERIC_PARENT.ORG,GENERIC_PARENT.CITY,GENERIC
_PARENT.STARTDATE,GENERIC_PARENT.EMPLOYEE_NUMBER,GENERIC_PARENT.STATUS,GENERIC_PA
RENT.USERNAME,GENERIC_PARENT.ENDDATE,GENERIC_PARENT.LAST_UPDATE,to_char(GENERIC_P
ARENT.LAST_UPDATE) FROM GENERIC_PARENT';
else
open user_cursor for 'SELECT
GENERIC_PARENT.USERID,GENERIC_PARENT.PASSWORD,GENERIC_PARENT.FIRSTNAME,GENERIC_PA
RENT.LASTNAME,GENERIC_PARENT.EMAIL,GENERIC_PARENT.ORG,GENERIC_PARENT.CITY,GENERIC
_PARENT.STARTDATE,GENERIC_PARENT.EMPLOYEE_NUMBER,GENERIC_PARENT.STATUS,GENERIC_PA

Appendix B
Sample Scripts for Connector Operations

B-28

RENT.USERNAME,GENERIC_PARENT.ENDDATE,GENERIC_PARENT.LAST_UPDATE,
to_char(GENERIC_PARENT.LAST_UPDATE) FROM GENERIC_PARENT where '|| columnName ||'
> to_timestamp ('''||columnValue||''')';
end if;
END EXECUTE_QUERY_INCREMENTAL;"

The following is a sample groovy script for performing incremental reconciliation:

"package groovy;
import org.identityconnectors.framework.common.objects.*;

import java.lang.reflect.*;

import org.identityconnectors.common.security.GuardedString;

import java.text.*;
import java.util.Date.*;
import java.sql.Date.*;

rs = null;
st = null;
try {

System.out.println("[Sync] Performing Incremental Recon.");
System.out.println("[Sync] Sync Attribute::"+syncattribute);
System.out.println("[Sync] Sync token:: "+synctoken);

// You have syncattribute and synctoken as script arguments for sync operation
// Call target APIs to get information

st = conn.prepareCall("{call EXECUTE_QUERY_INCREMENTAL(?,?,?)}");
//GENERIC_PARENT.USERID,GENERIC_PARENT.PASSWORD, GENERIC_PARENT.FIRSTNAME,
GENERIC_PARENT.LASTNAME,
GENERIC_PARENT.EMAIL ,GENERIC_PARENT.ORGANIZATION,GENERIC_PARENT.CITY,GENERIC_PAR
ENT.STARTDATE
//,GENERIC_PARENT.EMPLOYEE_NUMBER,GENERIC_PARENT.STATUS,GENERIC_PARENT.USERNAME,G
ENERIC_PARENT.ENDDATE,GENERIC_PARENT.LONGVALUE,GENERIC_PARENT.FLOATVALUE,GENERIC_
PARENT.CHARVALUE
st.setString(2, syncattribute);
st.setString(3, synctoken!=null? synctoken.getValue():null);

st.registerOutParameter(1, oracle.jdbc.driver.OracleTypes.CURSOR);
st.execute();
rs = st.getObject(1);
//SimpleDateFormat targetFormat = new SimpleDateFormat("yyyy/MM/dd HH:mm:ss z");
//DateFormat df = new SimpleDateFormat("yyyy-MM-dd");

while (rs.next()) {
 cob = new ConnectorObjectBuilder();
 cob.setObjectClass(ObjectClass.ACCOUNT);

 Attribute uid= AttributeBuilder.build(new
String("__UID__"),rs.getString(1));
 Attribute fname= AttributeBuilder.build(new
String("FIRSTNAME"),rs.getString(3));
 Attribute lname= AttributeBuilder.build(new
String("LASTNAME"),rs.getString(4));
 Attribute email= AttributeBuilder.build(new
String("EMAIL"),rs.getString(5));
 Attribute org= AttributeBuilder.build(new String("ORG"),rs.getString(6));
 Attribute city= AttributeBuilder.build(new

Appendix B
Sample Scripts for Connector Operations

B-29

String("CITY"),rs.getString(7));

 //dbDate = rs.getDate(8);
 //Attribute startdate = AttributeBuilder.build(new
String("STARTDATE"),dbDate.getTime());

 Attribute emp= AttributeBuilder.build(new
String("EMPLOYEE_NUMBER"),rs.getString(9));

 Attribute status= AttributeBuilder.build(new
String("STATUS"),rs.getString(10));
 Attribute name= AttributeBuilder.build(new
String("__NAME__"),rs.getString(11));

 //dbDate = rs.getDate(12);
 //Attribute enddate = AttributeBuilder.build(new
String("ENDDATE"),dbDate.getTime());
 //Attribute longval= AttributeBuilder.build(new
String("LONGVALUE"),rs.getString(13));
 //Attribute floatval= AttributeBuilder.build(new
String("FLOATVALUE"),rs.getString(14));
 //Attribute charval= AttributeBuilder.build(new
String("CHARVALUE"),rs.getString(15));

 cob.addAttribute(fname);
 cob.addAttribute(lname);
 cob.addAttribute(uid);
 cob.addAttribute(name);
 cob.addAttribute(email);
 //cob.addAttribute(startdate);
 //cob.addAttribute(enddate);
 cob.addAttribute(status);
 cob.addAttribute(org);
 cob.addAttribute(city);
 //cob.addAttribute(longval);
 //cob.addAttribute(floatval);
 //cob.addAttribute(charval);
 //cob.addAttribute(emp);

 roleStmt = conn.prepareCall("{call GET_GENERICROLE(?,?)}");
 roleStmt.registerOutParameter(1, oracle.jdbc.driver.OracleTypes.CURSOR);
 roleStmt.setString(2, rs.getString(1));
 roleStmt.execute();
 roleResultSet = roleStmt.getObject(1);
 java.util.List<EmbeddedObject> eoList = new ArrayList<EmbeddedObject>();
 while (roleResultSet.next()) {

 Attribute roleId= AttributeBuilder.build(new
String("ROLEID"),roleResultSet.getString(1));
 Attribute roleName= AttributeBuilder.build(new
String("ROLENAME"),roleResultSet.getString(2));

 // dbDate = roleResultSet.getDate(3);
 //Attribute startdater = AttributeBuilder.build(new
String("STARTDATE"),dbDate.getTime());

 EmbeddedObjectBuilder roleEA = new EmbeddedObjectBuilder();
 roleEA.addAttribute(roleId);

Appendix B
Sample Scripts for Connector Operations

B-30

 roleEA.addAttribute(roleName);
 //roleEA.addAttribute(startdater);
 roleEA.setObjectClass(new ObjectClass("GENERIC_ROLE"));
 eoList.add(roleEA.build());

 }
 roleResultSet.close();
 EmbeddedObject[] roleEm = eoList.toArray(new
EmbeddedObject[eoList.size()]);
 cob.addAttribute(AttributeBuilder.build("GENERIC_ROLE", (Object[])
roleEm));

 groupStmt = conn.prepareCall("{call GET_GENERICGROUP(?,?)}");
 groupStmt.registerOutParameter(1, oracle.jdbc.driver.OracleTypes.CURSOR);
 groupStmt.setString(2, rs.getString(1));
 groupStmt.execute();
 groupResultSet = groupStmt.getObject(1);
 java.util.List<EmbeddedObject> geoList = new ArrayList<EmbeddedObject>();
 while (groupResultSet.next()) {
 Attribute groupName= AttributeBuilder.build(new
String("GROUPNAME"),groupResultSet.getString(2));

 //dbDate = groupResultSet.getDate(3);
 //Attribute startdateg = AttributeBuilder.build(new
String("STARTDATE"),dbDate.getTime());
 Attribute groupId= AttributeBuilder.build(new
String("GROUPID"),groupResultSet.getString(1));

 EmbeddedObjectBuilder groupEA = new EmbeddedObjectBuilder();
 groupEA.addAttribute(groupName);
 //groupEA.addAttribute(startdateg);
 groupEA.addAttribute(groupId);

 groupEA.setObjectClass(new ObjectClass("GENERIC_GROUP"));

 geoList.add(groupEA.build());
 }
 groupStmt.close();
 EmbeddedObject[] groupEm = geoList.toArray(new
EmbeddedObject[geoList.size()]);
 cob.addAttribute(AttributeBuilder.build("GENERIC_GROUP", (Object[])
groupEm));

 Attribute timestamp= AttributeBuilder.build(new
java.lang.String("LAST_UPDATE"),rs.getString(13));

 System.out.println(timestamp)
 token = AttributeUtil.getSingleValue(timestamp);
 System.out.println("token is"+token)
 SyncToken syncToken = new SyncToken(token);

 SyncDeltaBuilder bld = new SyncDeltaBuilder();

 bld.setObject(cob.build());
 bld.setToken(syncToken);
 bld.setDeltaType(SyncDeltaType.CREATE_OR_UPDATE);
 println bld.build()
 handler.handle(bld.build());
 }
}

Appendix B
Sample Scripts for Connector Operations

B-31

finally {
 if(null != rs)
 rs.close();
 if(null != st)
 st.close();
}
"

Appendix B
Sample Scripts for Connector Operations

B-32

C
Files and Directories of the Generic
Scripting Connector

This appendix lists the tables that describe the files and directories corresponding to
the Generic Scripting connector.
Table C-1 describes the files and directories on the installation media.

Table C-1 Files and Directories on the Installation Media

File in the Installation Media Directory Description

bundle/
org.identityconnectors.genericscript-1.0.
11150.jar

This JAR file is the ICF connector bundle.

configuration/GenericScript-CI.xml This XML file contains configuration information. The Connector Installer
uses this XML file to create connector components.

Files in the resources directory Each of these resource bundles contains language-specific information
that is used by the connector. During connector deployment, this file is
copied to the Oracle Identity Manager database location.

Note: A resource bundle is a file containing localized versions of the text
strings that include GUI element labels and messages.

metadata-generator/bin/
GenericScriptGenerator.cmd

metadata-generator/bin/
GenericScriptGenerator.sh

This file contains commands to run the metadata generator.

Note that the .cmd file is the Microsoft Windows version of the metadata
generator. Similarly, the .sh file is the UNIX version of the metadata
generator.

metadata-generator/bin/classpath.cmd

metadata-generator/bin/classpath-
append.cmd

These files contain the commands that add the JAR files (located in the
lib directory) to the classpath on Microsoft Windows.

metadata-generator/bin/
logging.properties

This file contains the default logging configurations of the metadata
generation utility.

metadata-generator/lib/connector-
framework-internal.jar

This JAR files contains class files that implement ICF.

metadata-generator/lib/connector-
framework.jar

This JAR file contains class files that define the ICF Application
Programming Interface (API). This API is used communicate between
Oracle Identity Manager and this connector.

metadata-generator/lib/genericscript-
oim-integration.jar

This JAR file contains the class files of the metadata generation utility.

metadata-generator/lib/groovy-all.jar This JAR file contains the groovy libraries required for running the
metadata generator.

metadata-generator/lib/
org.identityconnectors.genericscript-1.0.
11150.jar

This JAR file is the ICF connector bundle. This file is used during
metadata generation.

C-1

Table C-1 (Cont.) Files and Directories on the Installation Media

File in the Installation Media Directory Description

metadata-generator/resources/
ScriptConfiguration.groovy

This file contains properties that store basic information about the
target system schema, which is used to configure the mode (trusted
source or target resource) in which you want to run the connector.
In addition, it stores information about the manner in which the
connector must connect to the target system. See Configuring the
ScriptConfiguration.groovy File for more information about entries in the
ScriptConfiguration.groovy file.

Table C-2 describes the files and directories in the generated connector package.

Table C-2 Files and Directories in the Generated Connector Package

File in the Connector Package Description

configuration/IT_RES_DEF-CI.xml This XML file contains configuration information that is used
by the Connector Installer during the connector installation
process.

resources/genericscript-generator.properties This property file contains locale-specific properties. You can
use this file as a template to add or update locale-related
properties.

xml/IT_RES_DEF-ConnectorConfig.xml file This XML file contains definitions for connector components
such as IT resource, lookup definitions, scheduled tasks,
process forms, and resource objects.

This file is also referred to as the connector configuration file.

See Also:

Understanding the Generated Connector Package for information about the
structure of the generated connector package

Appendix C

C-2

Index

Index-1

	Contents
	List of Figures
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	What's New in the Oracle Identity Manager Connector for Generic Scripting?
	Software Updates
	Software Updates in Release 11.1.1.5.0

	Documentation-Specific Updates
	Documentation-Specific Updates in Release 11.1.1.5.0

	1 About the Generic Scripting Connector
	1.1 Introduction to the Generic Scripting Connector
	1.2 Usage Recommendation
	1.3 Certified Components for the Generic Scripting Connector
	1.4 Certified Languages for the Generic Scripting Connector
	1.5 Connector Architecture of the Generic Scripting Connector
	1.6 Common Use Cases Supported by the Connector
	1.7 Features of the Connector
	1.7.1 Support for Both Trusted Source and Target Resource Reconciliation
	1.7.2 Full and Incremental Reconciliation
	1.7.3 Limited (Filtered) Reconciliation
	1.7.4 Support for Reconciliation of Deleted Records

	1.8 Roadmap for Generating and Using the Connector

	2 Generating the Generic Scripting Connector
	2.1 Defining the Schema
	2.1.1 Understanding the Schema File Format
	2.1.1.1 Account Qualifiers
	2.1.1.2 Field Qualifiers

	2.1.2 Creating a Schema File

	2.2 Preparing the Resource Properties File
	2.3 Configuring the ScriptConfiguration.groovy File
	2.3.1 About the ScriptConfiguration.groovy File
	2.3.2 Understanding Entries in the Predefined Sections of the Groovy File
	2.3.3 Configuring the Groovy File

	2.4 Generating the Connector
	2.4.1 Understanding the Generated Connector Package

	3 Installing and Configuring the Generic Scripting Connector
	3.1 Preinstallation
	3.2 Installing the Connector
	3.2.1 Understanding Installation
	3.2.1.1 Summary of Steps to Install the Connector
	3.2.1.2 About Installing the Connector Locally and Remote

	3.2.2 Running the Connector Installer
	3.2.3 Configuring the IT Resource for the Target System

	3.3 Postinstallation
	3.3.1 Configuring Oracle Identity Manager
	3.3.1.1 Creating and Activating a Sandbox
	3.3.1.2 Creating a New UI Form
	3.3.1.3 Associating the Form with the Application Instance
	3.3.1.4 Publishing a Sandbox
	3.3.1.5 Harvesting Entitlements and Sync Catalog

	3.3.2 Replacing the groovy-all.jar File
	3.3.3 Localizing Field Labels in UI Forms
	3.3.4 Clearing Content Related to Connector Resource Bundles from the Server Cache
	3.3.5 Managing Logging for the Generic Scripting Connector
	3.3.5.1 Understanding Log Levels
	3.3.5.2 Enabling Logging

	3.4 Upgrading the Connector

	4 Using the Generic Scripting Connector
	4.1 Lookup Definitions Used During Connector Operations
	4.1.1 Predefined Lookup Definitions
	4.1.1.1 Lookup.RESOURCE.Configuration
	4.1.1.2 Lookup.RESOURCE.UM.Configuration
	4.1.1.3 Lookup.RESOURCE.UM.ReconAttrMap
	4.1.1.4 Lookup.RESOURCE.UM.ProvAttrMap
	4.1.1.5 Lookup.RESOURCE.UM.ReconAttrMap.Defaults

	4.1.2 Lookup Definitions Synchronized with the Target System

	4.2 Configuring Reconciliation
	4.2.1 Reconciliation Rules
	4.2.2 Full Reconciliation and Incremental Reconciliation
	4.2.3 Limited Reconciliation
	4.2.4 Lookup Field Synchronization

	4.3 Scheduled Jobs
	4.3.1 Scheduled Job for Lookup Field Synchronization
	4.3.2 Scheduled Jobs for Reconciliation of User Records
	4.3.3 Scheduled Jobs for Reconciliation of Deleted Users Records
	4.3.4 Scheduled Jobs for Incremental Reconciliation
	4.3.5 Configuring Scheduled Jobs

	4.4 Performing Provisioning Operations
	4.5 Uninstalling the Connector

	5 Extending the Functionality of the Generic Scripting Connector
	5.1 Adding Custom OIM User Fields for Trusted Source Reconciliation
	5.2 Adding Custom Fields for Target Resource Reconciliation
	5.3 Adding Custom Fields for Provisioning
	5.4 Configuring Transformation of Data During User Reconciliation
	5.5 Configuring Validation of Data During Reconciliation and Provisioning

	A Understanding Script Arguments
	B Sample Schema, Scripts, and Connector Generation and Installation Procedure
	B.1 Summary of Steps to Generate and Use the Connector
	B.2 Sample Schema File for Database Creation
	B.3 Sample Schema Description
	B.3.1 GENERIC.GENERIC_PARENT Table Description
	B.3.2 GENERIC.GENERIC_GROUP Table Description
	B.3.3 GENERIC.GENERIC_ROLE Table Description
	B.3.4 GENERIC.ORGANIZATIONS Table Description

	B.4 Sample Schema File for the Target System
	B.5 Sample ScriptConfiguration.groovy File
	B.6 Sample Resource Properties File
	B.7 Sample Scripts for Connector Operations
	B.7.1 Check Alive Script
	B.7.2 Connection Script
	B.7.3 Dispose Script
	B.7.4 Create Script
	B.7.5 Update Script
	B.7.6 Delete Script
	B.7.7 Add Child Data Script
	B.7.8 Remove Child Data Script
	B.7.9 Lookup Field Synchronization Script
	B.7.10 Full and Filtered Reconciliation Script
	B.7.11 Incremental Reconciliation Script

	C Files and Directories of the Generic Scripting Connector
	Index

