

Oracle® Fusion Middleware
User Interface Customization Guide for Oracle WebCenter
Interaction

10g Release 4 (10.3.3.0.0)

E14110-03

February 2012

Describes how to customize the Oracle WebCenter
Interaction user interface.

Oracle Fusion Middleware User Interface Customization Guide for Oracle WebCenter Interaction, 10g
Release 4 (10.3.3.0.0)

E14110-03

Copyright © 2011, 2012, Oracle and/or its affiliates. All rights reserved.

Primary Author: Jennifer Horrigan

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the
restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable
by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA
94065.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

v

Contents

Preface ... xiii

Audience... xiii
Documentation Accessibility ... xiii
Related Documents ... xiii
Conventions ... xiii

1 Introduction to UI Customization

1.1 Customizing Portal Look and Feel ... 1-1
1.1.1 Adding Logo and Branding ... 1-1
1.1.2 Modifying Portal Style Sheets.. 1-1
1.1.3 Customizing Page Layout and Design ... 1-1
1.1.4 Changing Portal Text .. 1-2
1.1.5 Creating Customized Experiences for Specific Groups ... 1-2
1.2 Customizing Portal Functionality .. 1-2
1.2.1 Customizing Portal Login .. 1-2
1.2.2 Modifying Portal Navigation... 1-2
1.2.3 Adding New Functionality to Portal Pages ... 1-2
1.2.4 Customizing and Extending Search.. 1-3
1.3 Advanced UI Customization... 1-3
1.3.1 Adding Functionality Using PEIs.. 1-3
1.3.2 Customizing Pages Using View Replacement .. 1-3
1.3.3 Adding New Pages Using Custom Activity Spaces ... 1-3
1.3.4 Using Advanced UI Customization Tools and Components.. 1-3
1.4 Internationalizing UI Customizations ... 1-3
1.5 Reference Material .. 1-4

Part I Customizing Portal Look and Feel

2 Portal Page Layout

2.1 Top Bar ... 2-1
2.2 Header and Footer .. 2-1
2.3 Navigation.. 2-1
2.4 Banner... 2-2
2.5 Body .. 2-2

vi

3 Using Adaptive Page Layouts

3.1 Available Adaptive Page Layouts .. 3-1
3.2 Creating a Base Page Adaptive Page Layout.. 3-2
3.3 Creating a Login Page Adaptive Page Layout ... 3-3
3.4 Creating a Portlet Adaptive Page Layout.. 3-4
3.5 Creating a Knowledge Directory Adaptive Page Layout ... 3-8
3.6 Creating a Search Results Adaptive Page Layout... 3-12
3.7 Creating a Portlet Selection Adaptive Page Layout.. 3-16
3.8 Creating a Community Selection Adaptive Page Layout .. 3-29
3.9 Creating a My Account Adaptive Page Layout .. 3-30
3.10 Creating an Error Page Adaptive Page Layout ... 3-30
3.11 Creating an iPhone Adaptive Page Layout.. 3-31

4 Using Adaptive Styles (CSS Customization)

4.1 Adaptive Styles Base Page Elements.. 4-1
4.2 Adaptive Styles Navigation Elements ... 4-3
4.3 Adaptive Styles Search Elements ... 4-6
4.4 Adaptive Styles Editing Elements .. 4-7
4.5 Adaptive Styles Directory Elements ... 4-12
4.6 Adaptive Styles Portlet Elements .. 4-15
4.7 Adaptive Styles User Elements.. 4-17
4.8 Using Adaptive Styles to Customize Portlet Style and Layout .. 4-19
4.8.1 Syntax ... 4-19
4.8.2 Style Customizations.. 4-20
4.8.3 Constraints... 4-20
4.9 Using Adaptive Styles to Customize Page Layout ... 4-20
4.9.1 Syntax ... 4-20
4.9.2 Style and Branding Customizations .. 4-21
4.9.3 Page Element Customizations .. 4-21
4.10 Implementing Localized Stylesheets for Adaptive Page Layouts 4-21

5 Customizing Portal Layout Using CSS - Legacy User Interface

5.1 Customizing Portal Page Layout and Design... 5-1
5.1.1 Syntax Guidelines .. 5-1
5.1.2 Customizing Layout.. 5-2
5.1.3 Customizing Style.. 5-2
5.1.4 Setting Constraints... 5-3
5.1.5 Changing the Portal Color Scheme .. 5-3
5.2 Customizing Portlet Layout and Style... 5-6
5.2.1 Syntax Guidelines .. 5-6
5.2.2 Customizing Portlet Style... 5-6
5.2.3 Setting Constraints... 5-7
5.3 Adding New Language Style Sheets.. 5-7
5.4 Deploying Portal Style Sheet Customizations (CSS Mill) ... 5-9
5.4.1 CSS Mill Structure.. 5-9
5.4.2 Using the CSS Mill ... 5-9

vii

6 Using String Replacement

6.1 Customizing Existing Strings in Language Files.. 6-1
6.2 Adding Strings to Language Files .. 6-2
6.3 Example 1: Hello World Corporation .. 6-2
6.4 Example 2: Custom Login Instructions.. 6-3

7 Customizing Experience Definitions

7.1 Creating Experience Rules... 7-1
7.2 Creating a Custom Condition Type ... 7-2
7.2.1 Step 1: Create a Class (A*ConditionType) ... 7-3
7.2.2 Step 2: Create a Condition Type ID... 7-3
7.2.3 Step 3: Implement the Compare Method ... 7-3
7.2.4 Step 4: Retrieve Values.. 7-5
7.2.5 Step 5: Register the Condition Type Class ... 7-6
7.2.6 Step 6: Deploy Your Custom Code ... 7-7
7.2.7 Step 7: Restart the Portal ... 7-7
7.2.8 Debugging .. 7-7

Part II Customizing Portal Functionality

8 Customizing Portal Login

8.1 Customizing the Look and Feel of the Login Page .. 8-1
8.2 Modifying Login Functionality... 8-1

9 Customizing Portal Navigation

9.1 Built-In Navigation Options.. 9-1
9.1.1 Navigation Pane Locations... 9-2
9.1.2 Built-in Display Options ... 9-2
9.1.3 Customizing Built-In Display Options (portalconfig.xml).. 9-3
9.1.3.1 Edit Portlet Preferences Icon ... 9-4
9.1.3.2 Table Spacing .. 9-4
9.1.3.3 Navigation Pane Width... 9-4
9.1.3.4 Horizontal Dropdown Navigation Settings.. 9-4
9.2 Creating a Custom Navigation Scheme... 9-5
9.2.1 Example: Hello World Navigation Scheme ... 9-5
9.2.1.1 HelloWorldNavType (INavTypes) .. 9-5
9.2.1.2 HelloWorldNavView (IView)... 9-8
9.2.2 Generating Navigation Links.. 9-10
9.2.2.1 URL Mediators... 9-10
9.2.2.2 Creating Gatewayed URLs... 9-12
9.2.3 Using Advanced JavaScript Navigation Elements (JSPortalmenus)......................... 9-12
9.3 Deploying a Custom Navigation Scheme .. 9-14
9.3.1 Example: Hello World Navigation Scheme .. 9-14
9.3.2 Viewing Your Customizations in the Portal ... 9-15
9.4 Debugging and Troubleshooting... 9-15

viii

9.4.1 Technical Tips.. 9-15
9.4.2 Debugging ... 9-16

10 Customizing Portal Search

10.1 Customizing Banner Search and Advanced Search.. 10-1
10.1.1 Customizing the Banner Search Box.. 10-1
10.1.1.1 Search Results Manager.. 10-2
10.1.1.2 SearchActions Programmable Event Interfaces (PEIs) .. 10-2
10.1.1.3 Adaptive Page Layouts... 10-2
10.1.1.4 View Replacement... 10-2
10.1.2 Customizing the Advanced Search Page .. 10-2
10.1.2.1 SearchActions Programmable Event Interfaces (PEIs) .. 10-2
10.1.2.2 View Replacement... 10-3
10.1.3 Adding Search Boxes.. 10-3
10.1.3.1 Adding Pathways Search ... 10-3
10.2 Customizing the Search Results Page... 10-5
10.2.1 Using Search Results Portlets.. 10-5
10.2.2 Using Adaptive Page Layouts .. 10-6
10.2.3 Using View Replacement... 10-6
10.2.4 Adding Properties to the Sort By Menu .. 10-7
10.2.5 Adding Search Categorization Properties... 10-8
10.2.5.1 Defining Properties ... 10-8
10.2.5.2 Assigning Property Values .. 10-9
10.2.6 Improving Relevance Ranking ... 10-9
10.2.6.1 Best Bets (Banner Search) ... 10-9
10.2.6.2 Search Field Weightings (Banner Search) .. 10-9
10.2.6.3 Search Thesaurus... 10-9
10.3 Using Federated Search... 10-10

Part III Advanced UI Customization

11 Portal UI Architecture

11.1 Portal UI Layers.. 11-1
11.1.1 Portal UI Infrastructure.. 11-1
11.1.2 Portal Pages ... 11-2
11.2 MVC Architecture.. 11-2
11.2.1 Example: Login MVC Pattern ... 11-3
11.3 Activity Spaces ... 11-3
11.3.1 Example: Login Activity Space... 11-4
11.4 Session Management ... 11-5
11.5 Request Control Flow.. 11-6
11.5.1 Interpreter Control Flow.. 11-6
11.5.2 Activity Space Control Flow ... 11-7
11.5.3 Experience Definition Control Flow .. 11-10
11.5.3.1 Login (Guest User) Evaluation .. 11-10
11.5.3.2 Page Request Evaluation .. 11-11

ix

11.5.4 Adaptive Tag Control Flow .. 11-11
11.5.4.1 Tag Transformation Engine ... 11-12

12 Using PEIs

12.1 Step 1: Choosing a PEI... 12-1
12.2 Implementing a PEI in a Custom Class .. 12-3
12.2.1 Example 1: Hello World Login PEI .. 12-4
12.2.2 Example 2: Login Usage Agreement.. 12-5
12.2.2.1 LoginAgreementActions .. 12-5
12.2.2.2 GuestLoginAgreementControl .. 12-6
12.2.2.3 MarkAsGuestControl.. 12-8
12.2.2.4 LoginAgreementRepostControl .. 12-9
12.2.3 Example 3: Banner Search Customization .. 12-10
12.2.3.1 Adding Strings to Search Queries ... 12-10
12.2.3.2 Adding Properties to Search Fields .. 12-10
12.2.3.3 Adding Constraints to Properties ... 12-11
12.2.3.4 Restricting Banner Search... 12-12
12.3 Step 3: Deploying a Custom PEI.. 12-13
12.3.1 Example: Deploying the Hello World Login PEI... 12-13
12.3.2 Viewing Your Customization in the Portal... 12-14
12.4 Step 4: Debugging and Troubleshooting.. 12-14
12.4.1 Technical Tips.. 12-14
12.4.2 Debugging ... 12-14
12.5 Lifecycle of a PEI .. 12-15
12.5.1 Step 1: Loading the PEI .. 12-15
12.5.1.1 Memory Debug Page .. 12-16
12.5.2 Step 2: Executing the PEI ... 12-17

13 Using View Replacement

13.1 Identifying the Activity Space.. 13-2
13.1.1 Example: Hello World Login Page... 13-2
13.2 Creating a Custom View... 13-3
13.2.1 Example: Hello World Login Page... 13-4
13.3 Deploying a Custom View ... 13-6
13.3.1 Example: Hello World Login Page... 13-6
13.3.2 Viewing Your Customization in the Portal... 13-7
13.4 Debugging and Troubleshooting... 13-7
13.4.1 Technical Tips.. 13-7
13.4.2 Debugging ... 13-7

14 Creating Custom Activity Spaces

14.1 Activity Space Components ... 14-1
14.1.1 Activity Space.. 14-2
14.1.2 Display Page .. 14-2
14.1.3 Model.. 14-2
14.1.4 View.. 14-2

x

14.1.5 Control.. 14-2
14.2 Step 1: Creating an Activity Space... 14-2
14.2.1 Example: Sample Activity Space .. 14-3
14.3 Step 2: Deploying a Custom Project .. 14-12
14.3.1 Example: Sample Activity Space .. 14-12
14.3.2 Viewing Your Customization in the Portal... 14-12
14.4 Step 3: Debugging and Troubleshooting.. 14-13
14.4.1 Technical Tips.. 14-13
14.4.2 Debugging ... 14-13

15 Accessing Portal Objects

15.1 Using the Common Object Opener ... 15-1
15.1.1 Custom Activity Spaces and Non-Portal Pages ... 15-2
15.2 Using ASURL and Redirect .. 15-3
15.2.1 ASURL.. 15-3
15.2.1.1 SetLinkGetSpaceIfCached .. 15-3
15.2.1.2 SetLinkCreateNewSpace .. 15-4
15.2.1.3 SetControl ... 15-4
15.2.1.4 AddInnerHTMLString.. 15-4
15.2.1.5 AddInnerHTMLElement .. 15-4
15.2.1.6 GetURLAsString .. 15-4
15.2.2 Redirect .. 15-4
15.2.2.1 SetLinkCreateNewSpace .. 15-5
15.2.2.2 SetControl ... 15-5
15.2.2.3 AddControlArgument .. 15-5
15.2.2.4 SetRedirect .. 15-5
15.2.2.5 SetIsHTTPRedirect .. 15-5
15.2.2.6 SetLinkToExternalURL... 15-5

16 Adding Custom Images

16.1 Image Service Structure .. 16-1
16.2 Adding a Custom Image... 16-3

17 Using VarPacks (Variable Packages)

17.1 Example VarPack Uses.. 17-1
17.2 Implementing a VarPack .. 17-2
17.2.1 Example: Hello World VarPack.. 17-2
17.3 Deploying a Custom VarPack.. 17-3
17.3.1 Viewing Your Customization in the Portal... 17-4
17.4 Debugging and Troubleshooting... 17-5
17.4.1 Technical Tips.. 17-5
17.4.2 Debugging ... 17-5

18 Deploying Custom Code Using Dynamic Discovery

18.1 Dynamic Discovery Configuration Files .. 18-1
18.2 Using Dynamic Discovery.. 18-2

xi

18.2.1 Interface-Based Dynamic Discovery.. 18-2
18.2.2 Jar or DLL-Based Dynamic Discovery... 18-2

Part IV Appendices and Additional References

A Portal Configuration Files

A.1 Common Settings... A-1
A.2 Plug-Ins.. A-1
A.3 Programmable Event Interfaces... A-2
A.4 Utilities .. A-3
A.5 Object Descriptions.. A-3
A.6 Miscellaneous ... A-3

B Portal API Documentation

B.1 Adaptive Tags .. B-1
B.2 Portal UI Packages ... B-1
B.3 IDK API ... B-2
B.4 Scripting Framework API ... B-2

xii

xiii

Preface

This guide describes how to customize the Oracle WebCenter Interaction user
interface.

Audience
This document is intended for administrators and developers responsible for
customizing the Oracle WebCenter Interaction user interface.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Related Documents
For more information, see the following documents in the Oracle WebCenter
Interaction 10g Release 4 (10.3.3.0.0) documentation set or the Oracle WebCenter
Interaction Development Kit (IDK)10g Release 4 (10.3.3.0.0) documentation set:

■ Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Interaction

■ Oracle Fusion Middleware Web Service Developer's Guide for Oracle WebCenter
Interaction

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

xiv

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Convention Meaning

1

Introduction to UI Customization 1-1

1 Introduction to UI Customization

Oracle WebCenter Interaction provides built-in customization tools that allow you to
create a portal that fits the needs of all your company's users. Using the frameworks
and tools provided ensures that your customizations can be retained during future
upgrades. Most customizations require no custom Java or C# code. This chapter
provides an overview of customization options.

For an introduction to the portal UI, see Chapter 2, "Portal Page Layout".

1.1 Customizing Portal Look and Feel
The portal UI is designed for customization. The portal includes a range of built-in
solutions for customizing look and feel. These customizations are covered in Part I,
"Customizing Portal Look and Feel".

1.1.1 Adding Logo and Branding
The header and footer portlets displayed on most portal pages usually contain the
company logo and contact information. For details on building custom portlets, see the
Oracle WebCenter Interaction Web Service Development Guide. Adaptive page layouts
allow you to change the look and feel of the portal user interface using adaptive tags
in standard XHTML For details, see Chapter 3, "Using Adaptive Page Layouts".

1.1.2 Modifying Portal Style Sheets
Oracle WebCenter Interaction style sheets are fully customizable. The portal comes
with a selection of different options to change the style of portal pages, including a
range of color schemes, fonts, and other options. The default style sheets used for each
experience definition can be modified using portal administration. For details on using
CSS customization with Adaptive Layouts, see Chapter 4, "Using Adaptive Styles
(CSS Customization)". You can also use CSS customization with the legacy layouts; for
details, see Chapter 5, "Customizing Portal Layout Using CSS - Legacy User Interface".

1.1.3 Customizing Page Layout and Design
 Adaptive Page Layouts allow you to customize the entire portal page layout and
design using tags . For details, see Chapter 3, "Using Adaptive Page Layouts". The
portal CSS template file also allows you to customize the layout of the portal page,
including columns, navigation tabs, banners and footers. You can modify the look and
feel of individual table controls and form elements, including text box sizing, button
colors and fonts. You can also use style sheets to customize portlet content and style.
For details, see Chapter 4, "Using Adaptive Styles (CSS Customization)".

Customizing Portal Functionality

1-2 User Interface Customization Guide for Oracle WebCenter Interaction

1.1.4 Changing Portal Text
 All messages displayed in the portal can be customized easily by modifying the portal
string files. This is a simple customization that is often overlooked in favor of more
complicated methods. All text in the portal is stored in internationalized string files,
including login instructions and error messages, with the exception of object names
and text generated by portlets. For details and instructions, see Chapter 6, "Using
String Replacement".

1.1.5 Creating Customized Experiences for Specific Groups
Experience definitions allow the portal to use different branding for different groups
of users, including departments, product teams, or specific customers. By creating
multiple experience definitions and communities, you can create focused pages and
experiences for distinct groups of portal users. For an introduction to experience
definitions, see the Administrator Guide for Oracle WebCenter Interaction. For more
information on customizing experience definitions, see Chapter 7, "Customizing
Experience Definitions".

1.2 Customizing Portal Functionality
Oracle WebCenter Interaction supports customizing and extending all aspects of
portal functionality. The most common options are detailed below. These
customizations are covered in Part II, "Customizing Portal Functionality".

1.2.1 Customizing Portal Login
The portal login page can be customized for different groups of users. A common
customization is to provide different branding on the login page based on the URL
used to access the portal. This allows you to provide each group of users with a
seamlessly branded portal, including pages viewed as the guest user. This can be
implemented easily using Experience Definitions. You can also create a custom login
page using Adaptive Layouts. For information, see Chapter 8, "Customizing Portal
Login".

1.2.2 Modifying Portal Navigation
Navigation is a key element of the portal page. Experience definitions allow you to
add custom links to the navigation pane that point to community pages, documents,
and web pages without writing any code. Adaptive Layouts allow you to define the
navigation section of the page using tags. For details, see Chapter 9, "Customizing
Portal Navigation". You can also use adaptive tags to quickly and easily create a
custom navigation scheme in a header for footer portlet. For details, see the Oracle
WebCenter Interaction Web Service Development Guide.

1.2.3 Adding New Functionality to Portal Pages
The most common way to add functionality to a page is to implement custom portlets.
Basic portlets allow you to display custom HTML and content from other applications.
You can also use portlets to access portal components, and build portlets that are
updated dynamically based on user action and other events. For more information on
portlet development, see theOracle WebCenter Interaction Web Service Development
Guide.

You can also add functionality to portal components using advanced customizations.
For details, see Part III, "Advanced UI Customization".

Internationalizing UI Customizations

Introduction to UI Customization 1-3

1.2.4 Customizing and Extending Search
Oracle WebCenter Interaction search indexes and searches all the documents,
information, applications, communities, discussions, web sites and other content
accessible through the portal. You can customize how search is implemented in the
portal, and extend search to include enterprise content. For details, see Chapter 10,
"Customizing Portal Search".

1.3 Advanced UI Customization
The basic customizations listed above require little or no custom code. If these options
do not provide a solution, you can replace portal components with custom versions.
The advanced customizations below require Java or C# coding. These customizations
are covered in Part III, "Advanced UI Customization".

For an introduction to the inner workings of the portal UI, see Chapter 11, "Portal UI
Architecture".

1.3.1 Adding Functionality Using PEIs
Portal Event Interfaces (PEIs) are used to execute custom actions in many places
throughout the portal. For example, you can modify search queries before they are
processed, or perform validation when users attempt to create new portal objects. A
common PEI implementation is to require users to accept a usage agreement before
being allowed to access the portal. For more information, see Chapter 12, "Using
PEIs".

1.3.2 Customizing Pages Using View Replacement
You can completely customize the display of portal components by creating a custom
version of the associated View class(es). For details, see Chapter 13, "Using View
Replacement".

1.3.3 Adding New Pages Using Custom Activity Spaces
Activity Spaces group task-specific actions into logical sets to provide portal
developers with base functionality, and combine related pages to create cohesive
Model-View-Control (MVC) objects. Everything in the portal is an Activity Space: a
MyPage, an administrative editor, even the Directory tree. A custom Activity Space
allows you to add new pages to your portal. For details, see Chapter 14, "Creating
Custom Activity Spaces". (To change existing code or add new components to existing
pages, use View Replacement.)

1.3.4 Using Advanced UI Customization Tools and Components
Oracle WebCenter Interaction includes a collection of useful tools and components to
support UI customization. For details, see Chapter 15, "Accessing Portal Objects",
Chapter 16, "Adding Custom Images", and Chapter 17, "Using VarPacks (Variable
Packages)".

1.4 Internationalizing UI Customizations
Oracle WebCenter Interaction is available in a wide variety of languages. The sections
that follow offer step-by-step instructions for internationalizing your web services and
portal customizations to make them available to all audiences.

Reference Material

1-4 User Interface Customization Guide for Oracle WebCenter Interaction

■ Using String Replacement: All text in the portal is stored in internationalized
string files, including login instructions and error messages, with the exception of
object names and text generated by portlets. For details, see Chapter 6, "Using
String Replacement".

■ Adding Language Style Sheets: If you add support for an additional language to
the portal, you must add the corresponding style sheets for that language. For
details, see Chapter 4.10, "Implementing Localized Stylesheets for Adaptive Page
Layouts". If you are not using Adaptive Page Layouts, see Chapter 5.3, "Adding
New Language Style Sheets".

1.5 Reference Material
For additional resources related to UI customization, see Part IV, "Appendices and
Additional References".

Part I
Part I Customizing Portal Look and Feel

The portal UI is designed for customization. The portal includes a range of built-in
solutions for customizing look and feel. For an introduction to the layout of the portal
page, see Chapter 2, "Portal Page Layout".

If you just want to add your logo and branding to the portal, you can use header and
Footer portlets are displayed on most portal pages, and usually contain the company
logo and contact information. For details on building custom portlets, see the Oracle
WebCenter Interaction Web Service Development Guide.

This section contains the following chapters:

■ Chapter 3, "Using Adaptive Page Layouts": Adaptive Page Layouts allow you to
customize the entire portal page layout and design using tags .

■ Chapter 4, "Using Adaptive Styles (CSS Customization)": Oracle WebCenter
Interaction style sheets are fully customizable. The portal comes with a selection of
different options to change the style of portal pages, including a range of color
schemes, fonts, and other options. The portal CSS template file also allows you to
customize the layout of the portal page, including columns, navigation tabs,
banners and footers. You can modify the look and feel of individual table controls
and form elements, including text box sizing, button colors and fonts. You can also
use style sheets to customize portlet content and style. Note: If you are not using
Adaptive Layouts, you can still use CSS to customizing the portal page; for details,
see Chapter 5, "Customizing Portal Layout Using CSS - Legacy User Interface"

■ Chapter 6, "Using String Replacement": All messages displayed in the portal can
be customized easily by modifying the portal string files. This is a simple
customization that is often overlooked in favor of more complicated methods. All
text in the portal is stored in internationalized string files, including login
instructions and error messages, with the exception of object names and text
generated by portlets.

■ Chapter 7, "Customizing Experience Definitions": Experience definitions allow the
portal to use different branding for different groups of users, including
departments, product teams, or specific customers. By creating multiple
experience definitions and communities, you can create focused pages and
experiences for distinct groups of portal users.

2

Portal Page Layout 2-1

2 Portal Page Layout

The portal page is made up of sections. This chapter provides an overview of the
portal page and information about customizing each section of the page.

2.1 Top Bar
The Top Bar includes the Search box, Log In/Log Off link and help link.

Some elements of the Top Bar can be customized by changing style sheets and
modifying the associated strings in the portal language files. You can design a
completely new Top Bar using Adaptive Tags and a custom portlet. For details on
using Adaptive Layouts and Adaptive Styles, see Chapter 3, "Using Adaptive Page
Layouts" and Chapter 4, "Using Adaptive Styles (CSS Customization)". For details on
creating portlets, see the Oracle WebCenter Interaction Web Service Development Guide.

2.2 Header and Footer
The header includes branding information for the portal and can also be used to
display content.

The footer provides additional content and can be customized to include additional
functionality.

These sections of the portal page can be customized using portlets and Adaptive
Layouts. For details on using Adaptive Layouts, see Chapter 3, "Using Adaptive Page
Layouts". For details on creating portlets, see the Oracle WebCenter Interaction Web
Service Development Guide.

2.3 Navigation
The navigation section of the page provides access to the different sections of the
portal and the current community. The portal comes with a selection of built-in
navigation schemes. For details, see the Administrator Guide for Oracle WebCenter
Interaction. Custom navigations can be built easily using Adaptive Tags and Adaptive
Layouts. For details, see Chapter 3, "Using Adaptive Page Layouts" and Chapter 4,
"Using Adaptive Styles (CSS Customization)". Advanced navigation customizations
can be implemented using the portal navigation framework. For details, see Chapter 9,
"Customizing Portal Navigation".

Banner

2-2 User Interface Customization Guide for Oracle WebCenter Interaction

2.4 Banner
The banner includes the top bar, header, and navigation sections of the page.

The entire banner can be easily customized by disabling the navigation and top bar
sections and using a header portlet with Adaptive Tags to display all banner content.
For details, see the Oracle WebCenter Interaction Web Service Development Guide.

2.5 Body
The body is the main section of the portal page, and displays the portlets selected for
the page.

Portlets are the building blocks for the body of the portal page. Each portal page is
made up of multiple portlets with a range of functionality, each providing specific
content and services. The Oracle WebCenter Interaction Development Kit (IDK)
provides a wide range of tools for creating dynamic portlets that plug in to the portal.
For details, see theOracle WebCenter Interaction Web Service Development Guide.

The body section can be split into multiple panes in a variety of layouts, configured in
the My Page or Community Editor. For instructions, see the portal online help. You
can also create custom page layouts using Adaptive Layouts. For details, see
Chapter 3, "Using Adaptive Page Layouts".

For very advanced customizations to the layout of the portal page, you can use View
replacement (not recommended for most customizations). For details, see Chapter 13,
"Using View Replacement".

3

Using Adaptive Page Layouts 3-1

3 Using Adaptive Page Layouts

Adaptive page layouts allow you to change the look and feel of the portal user
interface using adaptive tags in standard XHTML. Adaptive page layouts can be used
in most areas of the portal. Each page layout type has an associated tag library. The
tags in each library only work in the related page layout. The base page library and the
standard adaptive tag libraries (pt:common, pt:core, pt:logic, pt:ptdata, pt:ptui,
pt:standard and pt:transformer) work on any page with a portal banner and are used
in all page layouts.

This chapter provides detailed information on customizing each of the page layout
types. For additional information, see the following resources:

■ For detailed information on using adaptive tags, see theOracle WebCenter
Interaction Web Service Development Guide

■ For a complete list of tags, see the tagdocs. (For links to all API documentation, see
Appendix B, "Portal API Documentation".)

■ For details on configuring adaptive page layouts in the portal, see the
Administrator Guide for Oracle WebCenter Interaction

■ For complete examples of each page layout type, see the default page layouts on
the Oracle WebCenter Interaction image service in the
\imageserver\plumtree\portal\private\pagelayouts folder.

3.1 Available Adaptive Page Layouts
The following adaptive page layouts are available in Oracle WebCenter Interaction.
For more information on customizing these layouts, see the sections that follow.

Page Layout Type Description Library

Base Page Controls the layout for components that are
common to each page (header, footer, navigation).

pt:basepage

Profile Page Controls the layout for components that are
common to each user profile page.

pt:basepage

Login Page Controls the layout of the login page. pt:ptui

Portlet Page Controls the layout for the portlet area of the
portal page.

pt:portletpage

Knowledge Directory Controls the layout for the content area of the
Directory.

pt:kdpage

Search Results Controls the layout for the content area of search
results.

pt:searchpage

Creating a Base Page Adaptive Page Layout

3-2 User Interface Customization Guide for Oracle WebCenter Interaction

3.2 Creating a Base Page Adaptive Page Layout
The Base Page layout defines components that are common to each page (header,
footer, navigation, content area). The Profile Page layout is almost identical, but uses a
user profile search box instead of the standard search box.

The pt:basepage library includes tags to display all common sections of the portal
page.

■ The <title> tag displays the title of the page.

■ The <pt:basepage.pagebody> tag displays the html body tag and initializes
the JavaScript required by the page.

■ The <pt:basepage.navarea> tag is used to display legacy portal navigation
components in the top bar. The pt:area parameter defines which part of the
navigation is being defined by each section (ABOVEHEADER, BELOWHEADER,
ABOVEBODY, LEFTOFBODY, RIGHTOFBODY, BELOWBODY, ABOVEFOOTER,
BELOWFOOTER, and TOPBAR). You can also create a customized display of links
to portal components using tags from the pt:ptdata library. For details on these
tags, see the Oracle WebCenter Interaction Web Service Development Guide

■ The <pt:basepage.content> tag defines the section where the main content of
the page is displayed.

■ The <pt:basepage.header> and <pt:basepage.footer> tags define the
sections of the page where the header and footer are displayed. The header and
footer are implemented in separate HTML files. For examples, see the header.html
and footer.html files in the \imageserver\plumtree\portal\private\pagelayouts
folder on your portal image service.

The example below uses tags from the pt:basepage library to define common page
components, and standard adaptive tags to implement portal links and handle logic.
For detailed information on standard adaptive tags, including logic tags and data tags
for implementing portal links , see the Oracle WebCenter Interaction Web Service
Development Guide.

Note: This example has been oversimplified for illustration purposes; for a complete
implementation of the base page layout, see the basepagelayout.html file in the
\imageserver\plumtree\portal\private\pagelayouts folder on your portal image
service.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:pt="http://www.plumtree.com/xmlschemas/ptui/">

Portlet Selection Controls the layout of the pop-up or fly-out editor
used to select portlets on a portlet page. Note: In
most implementations, there is no reason to
modify this page layout.

pt:portletpageeditor

Join Communities Controls the layout of the pop-up or fly-out editor
used to join communities on a portal page.

pt:joincommunitypagee
ditor

My Account Page Controls the layout of the My Account page in the
portal.

pt:ptui

Error Page Controls tha layout of the portal error page. These
tags can also be used on any portal page to display
standard errors.

pt:ptui

iPhone Controls the layout of portal pages delivered for
the iPhone interface.

(standard libraries)

Page Layout Type Description Library

Creating a Login Page Adaptive Page Layout

Using Adaptive Page Layouts 3-3

<head>
<title><pt:basepage.title/></title>
<pt:standard.stylesheets/>
<link href="pt://images/plumtree/portal/private/css/mainstyle.css"
rel="stylesheet" type="text/css" />

<!-- Dojo Initialization, create a custom namespace -->
<script type="text/javascript">
 var djConfig = {
 isDebug: false,
 scopeMap : [["dojo", "alidojo"]]
 };
</script>

<!-- Dojo is used by drag and drop and flyout editor -->
<script type="text/javascript"
src="pt://images/plumtree/portal/private/js/dojo.js"></script>

<!-- This tag displays the html body tag and initializes page JavaScript. -->
<pt:basepage.pagebody marginwidth="0" marginheight="0" topmargin="0">
<div id="ali-header-nav">

<!-- This area is used to build links to portal components displayed in the top
bar -->
<pt:basepage.navarea pt:area="TOPBAR"/>

... banner actions

<pt:basepage.navarea pt:area="ABOVEHEADER"/>
<pt:basepage.header/>

<!-- This area is used to build links to portal navigation elements -->
<pt:basepage.navarea pt:area="BELOWHEADER"/>

... navigation links ...

 <pt:basepage.navarea pt:area="LEFTOFBODY"/>
</div>
<div style="float:right; width:200px;" >
 <pt:basepage.navarea pt:area="RIGHTOFBODY"/>
</div>
<pt:basepage.navarea pt:area="ABOVEBODY"/>
<pt:common.error/>
<pt:basepage.content/>
<pt:basepage.navarea pt:area="BELOWBODY"/>
<pt:basepage.navarea pt:area="ABOVEFOOTER"/>
<pt:basepage.footer/>
<pt:basepage.navarea pt:area="BELOWFOOTER"/>
</pt:basepage.pagebody>
</html>

3.3 Creating a Login Page Adaptive Page Layout
Login Page layouts allow you to customize the layout of the portal login page. The
outer area (header, footer, navigation areas) is based on the Base Page adaptive layout.
Use this layout to customize the entire login page (with no portlets); use the Portal
Login portlet if you want users to have access to the portal as a guest.

The pt:ptui library includes tags to define all necessary login elements.

Creating a Portlet Adaptive Page Layout

3-4 User Interface Customization Guide for Oracle WebCenter Interaction

All login tags must be contained within a <pt:ptui.loginform> tag. The
following tags are used to implement specific elements within the login form:

3.4 Creating a Portlet Adaptive Page Layout
Portlet Page layouts allow you to customize the layout of the portlet header as well as
how individual portlets are displayed. The outer area (header, footer, navigation
areas) is based on the Base Page adaptive layout.

The pt:portletpage library includes tags to define all areas of the portlet section of the
portal page.

■ All portlets on the page must be within a
<pt:portletpage.portletregiondisplay> tag. This tag defines a container
for portlets that specifies where and how portlets inside the region are displayed.

■ The <pt:portletpage.portletdisplay> tag displays an entire portlet
(header and content), while the
<pt:portletpage.portletdisplaycontent> tag displays the content of the
portlet without the header.

■ Portlet data is accessed via the <pt:portletpage.portletregiondata> tag.
The pt:region parameter can be set to any value, as long as it corresponds with

Tag Description

ptui:loginuserna
me

Displays the user name text box for the login form.

ptui:loginpasswo
rd

Displays the password text box for the login form.

ptui:loginauthso
urce

Displays the Authentication Source dropdown list. (If
AllowDefaultLoginPageAuthsource in portalconfig.xml is set
to 3, this tag displays nothing.)

ptui:loginrememb
erme

 Displayts the 'Remember My Password' checkbox. This tag
works in two ways:

■ If used without the key attribute, it displays the
'Remember My Password' checkbox.

■ If the 'key' optional attribute is given a value, the tag
outputs the name of the inputcontrol as the key
parameter's value and displays the body of the html inside
it.

 This tag displays the above outputs only when
'AllowAutoConnect' in portalconfig.xml is enabled.

ptui:createaccou
nt

Displays a "Create Account" link. If this tag is used as a
singleton tag, the text "Create Account" will be used. If opening
and closing tags are used, the HTML inside the tag will be
displayed as the link. (If the Allow Creation of Self Registered
Users option in the Portal Settings section of portal
Administration is not enabled, this tag will display nothing.)

ptui:loginoption
senabled

Optional. Conditionally processes inner content based on the
option parameter and relevant portal settings. The following
values are allowed in the option attribute: authsource,
remembermypassword, and createaccount. For example, if the
option attribute is set to remembermypassword and the portal
setting for remembermypassword is true, then the HTML
inside the tag will be displayed.

ptui:loginbutton Displays the login button.

Creating a Portlet Adaptive Page Layout

Using Adaptive Page Layouts 3-5

a portletregiondisplay section in the page. The following properties are available
for each portlet from the portletregiondata tag:

■ The <pt:portletpage.pagenamebreadcrumbsdata> tag can be used on
MyPages and community pages. This tag contains an ordered list representing the
path leading up to the current page. The list contains the name and URL that
makes up each breadcrumb.

– On a MyPage, the breadcrumb will display a "Home" link as the parent that
leads back to the user's main page, followed by the name of the MyPage that
the user is on.

– In communities, the breadcrumb will display all the communities leading up
to the page. The breadcrumbs will all be hyperlinks except for the last
breadcrumb which represents the current page that the user is on.

Additional tags in the pt:portletpage library can be used to display buttons with access
to portlet-specific functionality, including refresh, remove, and collapse/expand. The
example below uses tags from the pt:portletpage library to define portlet page
components, and standard adaptive tags to implement portal links and navigation and
handle logic. For detailed information on standard adaptive tags, including logic tags
and data tags for implementing portal links , see the Oracle WebCenter Interaction Web
Service Development Guide.

This example uses the <pt:portletpageeditor.addportletsflyoutdata>
tag to add the portlet flyout editor to the portlet page. For details, see Section 3.7,
"Creating a Portlet Selection Adaptive Page Layout".

Note: This example has been oversimplified for illustration purposes; for a complete
implementation of the portlet page layout, see the portletdefaultlayout.html file in the
\imageserver\plumtree\portal\private\pagelayouts folder on your portal image
service.

<!-- Portlet Content Area Begin -->

Property Description

name The name of the portlet

objid The ID of the portlet object in the portal.

index The index of the portlet in the portlet array.

portletidstring The string identifier of the portlet.

adminprefurl A link to the associated administrative preference page for the
portlet if one exists.

commprefurl A link to the associated community preference page for the
portlet if one exists.

userprefurl A link to the associated user preference page for the portlet if
one exists.

helpurl A link to the associated help page for the portlet if one exists.

collapseexpandurl A link for collapsing or expanding the portlet depending on
the collapse state of the portlet

iscollapsed True if the portlet is collapsed, false if it is expanded.

removeurl A link to remove the portlet from the current page.

hastitlebar True if portlet title bar is not suppressed, false otherwise.

Creating a Portlet Adaptive Page Layout

3-6 User Interface Customization Guide for Oracle WebCenter Interaction

<pt:portletpage.portletregiondata pt:key="region1" pt:region="1" />
<pt:portletpage.portletregiondata pt:key="region2" pt:region="2" />
<pt:portletpage.portletregiondata pt:key="region3" pt:region="3" />

... breadcrumb display ...

<!-- Start Page Action Buttons -->
<pt:core.comment><!-- get the Portlet Selection Flyout URL --></pt:core.comment>
<pt:portletpageeditor.sortpropertiesdata pt:id="sortprops" pt:scope="session"
pt:defaultsort="1"/>

<pt:portletpageeditor.addportletsflyoutdata pt:id="flyoutLink"
pt:sortprops="sortprops" pt:propscope="session" />
<pt:logic.existexpr pt:data="flyoutLink" pt:key="hasFlyout"/>
<pt:logic.if pt:expr="$hasFlyout">
 <pt:logic.iftrue>
 <pt:portletpageeditor.flyoutjs pt:flyoutID="portletSelection"
pt:onclick="openFlyout" pt:headerId="ali-header-nav" pt:url="$flyoutLink.url"
pt:anchorId="ali-pageEdit-anchor" pt:flyoutAnchorText="$#130.ptmsgs_
portalinfrastructure" pt:flyinAnchorText="$#301.ptmsgs_portalcommonmsgs"/>
 </pt:logic.iftrue>
</pt:logic.if>

<pt:core.comment><!-- add javascript for collapsing and expanding portlets
--></pt:core.comment>
<pt:portletpageeditor.collapseexpandjs pt:onclick="sendCollapseExpandRequest"
pt:flyoutID="portletSelection1" />

... page action implementation

<table width="100%" height="100%" style="clear:left;">
 <tr>
 <td class="columnOne" valign="top">
 <!-- Vertical Region One -->
 <pt:portletpage.portletregiondisplay class="portletRegion" pt:region="1"
pt:direction="v">
 <pt:logic.foreach pt:data="region1" pt:var="curr">
 <pt:logic.variable pt:key="titleBarData" pt:value="$curr.hastitlebar"/>
 <pt:logic.stringexpr pt:expr="($titleBarData) == false"
pt:key="suppressTitleBar" />

 <pt:logic.variable pt:key="portletDivStyle" pt:value="ali-portlet-regionone
"/>
 <pt:logic.if pt:expr="$curr.ismandatory">
 <pt:logic.iffalse>
 <pt:logic.concat pt:key="portletDivStyle" pt:value1="$portletDivStyle"
pt:value2="dndPortlet"/>
 </pt:logic.iffalse>
 </pt:logic.if>

 <pt:core.html pt:tag="div" class="$portletDivStyle"
id="$curr.portletidstring">

 <pt:logic.if pt:expr="$curr.iscollapsed"><pt:logic.iffalse>
 <pt:logic.variable pt:key="containerclass"
pt:value="ali-portlet-container"/>
 </pt:logic.iffalse><pt:logic.iftrue>
 <pt:logic.variable pt:key="containerclass"

Creating a Portlet Adaptive Page Layout

Using Adaptive Page Layouts 3-7

pt:value="ali-portlet-container-collapsed"/>
 </pt:logic.iftrue></pt:logic.if>
 <pt:core.html pt:tag="div" class="$containerclass">
 <pt:logic.if pt:expr="$suppressTitleBar">
 <pt:logic.iftrue>
 <!-- Suppress portlet toolbar -->
 <div class="ali-portlet-toolbar">
 <div class="ali-portlet-cornerleft"></div>
 <div class="ali-portlet-cornerright"></div>
 </div>
 </pt:logic.iftrue>
 <pt:logic.iffalse>
 <!-- Display Portlet Header -->
 <div class="ali-portlet-toolbar">
 <div class="ali-portlet-cornerleft"></div>
 <div class="ali-portlet-cornerright"></div>
 <div
class="ali-portlet-controlone"><pt:portletpage.portletremovebuttondisplay
pt:datavar="curr" pt:scope="tag"/></div>
 <div
class="ali-portlet-controlone"><pt:portletpage.portletcollapseexpandbuttondisplay
pt:datavar="curr" pt:onclick="sendCollapseExpandRequest" pt:scope="tag"/></div>
 <div
class="ali-portlet-controlone"><pt:portletpage.portletpreferencebuttondisplay
pt:datavar="curr" pt:scope="tag"/></div>
 <div
class="ali-portlet-controlone"><pt:portletpage.portlethelpbuttondisplay
pt:datavar="curr" pt:scope="tag"/></div>
 <div
class="ali-portlet-controlone"><pt:portletpage.portletrefreshbuttondisplay
pt:datavar="curr" pt:scope="tag"/></div>
 <div class="ali-portlet-title"><pt:logic.value
pt:value="$curr.name"/></div>
 </div>
 </pt:logic.iffalse>
 </pt:logic.if>
 <!-- Display Portlet Content Body -->
 <div class="ali-portlet-content">
 <pt:portletpage.portletcontentdisplay pt:datavar="curr" pt:colindex="0"
pt:scope="tag"/>
 </div>
 <div class="ali-portlet-footer">
 <div class="ali-portlet-botleft"></div>
 <div class="ali-portlet-botright"></div>
 </div>
 </pt:core.html>
 </pt:core.html>
 </pt:logic.foreach>
 </pt:portletpage.portletregiondisplay>
 </td>
 <td class="columnTwo" valign="top">

... portlet regions 2 and 3
 </td>
 </tr>
</table>

Creating a Knowledge Directory Adaptive Page Layout

3-8 User Interface Customization Guide for Oracle WebCenter Interaction

3.5 Creating a Knowledge Directory Adaptive Page Layout
The Knowledge Directory adaptive page layout defines the content area of the
Directory. The outer area (header, footer, navigation areas) is based on the Base Page
adaptive layout.

All content in the Directory can be displayed using tags in the pt:kdpage library. The
tags in this library can only be used in the Knowledge Directory page layout.

■ Data about the folders in the Directory can be accessed using the
<pt:kdpage.currentfolderdata> and <pt:kdpage.subfoldersdata>
tags.

■ Data about each folder's contents can be accessed using the
<pt:kdpage.documentsdata> and <pt:kdpage.relatedresourcesdata>
tags.

■ This data can be arranged in a useful way using the
<pt:kdpage.documentcolumnheadersdata>,
<pt:kdpage.paginationdata>, <pt:kdpage.documentfilterdata>, and
<pt:kdpage.documentsperpagedata> tags.

The example below uses tags from the pt:kdpage library to define Directory page
components, and logic tags to handle iteration and display. For detailed information
on standard adaptive tags, including logic tags, see the Oracle WebCenter Interaction
Web Service Development Guide.

Note: This example has been oversimplified for illustration purposes; for a complete
implementation of the Directory page layout, see the knowledgedirectorylayout.html
file in the \imageserver\plumtree\portal\private\pagelayouts folder on your portal
image service.

The first section of the page retrieves the folder data.

<script type="text/javascript">
<!--
 function toggle_visibility(id) {
 var e = document.getElementById(id);
 if(e.style.display == 'block')
 e.style.display = 'none';
 else
 e.style.display = 'block';
 }
//-->
</script>

<div id="content" xmlns:pt='http://www.plumtree.com/xmlschemas/ptui/'>
 <pt:kdpage.currentfolderdata pt:id="currentfolder"/>
 <pt:kdpage.paginationdata pt:id="pagination" pt:pageslist="pageslist"
pt:pagestodisplay="2"/>
 <pt:logic.variable pt:key="currentfolderlevel"
pt:value="$currentfolder.level"/>
 <pt:logic.stringexpr pt:expr="($currentfolderlevel) == 1"
pt:key="isrootfolder"/>

After the breadcrumbs section (not shown here), the next section implements the
column display. This section defines an index and divid for each column (3 in this
example) The code iterates over the subfolders to display each folder in the correct
column, using logic tags to divide the subfolder index by the number of columns to
determine which column to display each folder. To change the number of columns,
you would add or remove folders from the <pt:logic.collection

Creating a Knowledge Directory Adaptive Page Layout

Using Adaptive Page Layouts 3-9

pt:key="foldercolumns"> section and change the divisor in the
<pt:logic.intops pt:expr="($subfolderindex) % 3" pt:key="col"/>
expression to reflect the correct number of columns.

... breadcrumbs section ...

 <!-- Start Root Folder Display -->
 <pt:logic.if pt:expr="$isrootfolder">
 <pt:logic.iftrue>
 <pt:logic.variable pt:key="displayrelatedresource"
pt:value="false"/>
 <div id="ali-kd-main-bar">
 </div>

 <pt:core.comment>This collection contains the meta-data about the
3 subfolder columns.</pt:core.comment>

 <pt:logic.collection pt:key="foldercolumns">
 <pt:logic.data index="0" divid="ali-kd-main-col1"/>
 <pt:logic.data index="1" divid="ali-kd-main-col2"/>
 <pt:logic.data index="2" divid="ali-kd-main-col3"/>
 </pt:logic.collection>

 <!-- Displaying Columns Start -->
 <pt:logic.foreach pt:data="foldercolumns" pt:var="foldercolumn">

 <pt:kdpage.subfoldersdata pt:id="subfolders"/>
 <pt:logic.collectionlength pt:data="subfolders"
pt:key="flength"/>
 <pt:logic.intexpr pt:expr="($flength) > 0"
pt:key="hasfolders"/>

 <pt:logic.if pt:expr="$hasfolders">
 <pt:logic.iftrue>

 <pt:core.html pt:tag="div"
id="$foldercolumn.divid">
 <!-- Display Each Folder Start -->
 <pt:logic.foreach
pt:data="subfolders" pt:var="subfolder">
 <pt:logic.intops
pt:expr="($subfolderindex) % 3" pt:key="col"/>
 <pt:logic.intexpr
pt:expr="($col) == ($foldercolumn.index)" pt:key="incol"/>
 <pt:logic.if
pt:expr="$incol">
 <pt:logic.iftrue>
 <div
class="ali-kd-main-header">

<pt:logic.variable pt:key="htmlEncodedName" pt:value="$subfolder.name"
pt:encode="1" />

<pt:core.html pt:tag="a" href="$subfolder.url" title="$htmlEncodedName">

<pt:logic.value pt:value="$subfolder.name"/>

</pt:core.html>
 </div>
 <!--

Creating a Knowledge Directory Adaptive Page Layout

3-10 User Interface Customization Guide for Oracle WebCenter Interaction

Display Subfolders Folder Start -->

<pt:logic.variable pt:key="subsubfolderskey"
pt:value="$subfolder.subsubfolderskey"/>

<pt:logic.collectionlength pt:data="$subsubfolderskey" pt:key="flength"/>

<pt:logic.intexpr pt:expr="($flength) > 0" pt:key="hassubsubfolders"/>

<pt:logic.if pt:expr="$hassubsubfolders">

<pt:logic.iftrue>

<div class="ali-kd-main-lists">

<pt:logic.foreach pt:data="$subsubfolderskey" pt:var="subsubfolder">

<pt:core.comment><!-- Only display max 5 subfolder --></pt:core.comment>

<pt:logic.intexpr pt:expr="($subsubfolderindex) < 5" pt:key="undermax"/>

<pt:logic.if pt:expr="$undermax">

<pt:logic.iftrue>

<pt:logic.variable pt:key="htmlEncodedName" pt:value="$subsubfolder.name"
pt:encode="1" />

<pt:core.html pt:tag="a" href="$subsubfolder.url" title="$htmlEncodedName">

<pt:logic.value pt:value="$subsubfolder.name"/>

</pt:core.html>

</pt:logic.iftrue>

</pt:logic.if>

</pt:logic.foreach>

</div>

</pt:logic.iftrue>

</pt:logic.if>
 </pt:logic.iftrue>
 </pt:logic.if>
 </pt:logic.foreach>
 <!-- Display Each Folder End -->
 </pt:core.html>

 </pt:logic.iftrue>

Creating a Knowledge Directory Adaptive Page Layout

Using Adaptive Page Layouts 3-11

 </pt:logic.if>
 </pt:logic.foreach>
 <!-- End Display Columns -->
 </pt:logic.iftrue>
 <!-- End Root Folder Display -->

After the sorting and filtering section (not shown here), the next section displays the
document list and content.

<!-- Start Document List and content -->
 <div id="ali-kd-content-container">
 <div id="ali-kd-documents">
 <div id="ali-kd-docs-showing">
 <pt:logic.value pt:value="$#1932.ptmsgs_
portalbrowsingmsgs"/>
 <pt:logic.value pt:value="$pagination.start"/>
 -
 <pt:logic.value pt:value="$pagination.end"/>
 <pt:logic.value pt:value="$#811.ptmsgs_
portalbrowsingmsgs"/>
 <pt:logic.value pt:value="$pagination.total"/>
 <pt:logic.value pt:value="$#1043.ptmsgs_
portalbrowsingmsgs"/>
 </div>

... edit document code ...

 <!-- Start display documents -->
 <pt:logic.foreach pt:data="docs"
pt:var="doc">
 <pt:logic.variable pt:key="htmlEncodedName"
pt:value="$doc.name" pt:encode="1" />
 <tr>
 <!-- Document Image Icon -->
 <td><pt:core.html pt:tag="img" src="$doc.imagesrc"
alt="$htmlEncodedName"/></td>
 <td>
 <!-- Document Title -->
 <p class="ali-kd-docs-title">
 <pt:logic.variable
pt:key="htmlEncodedName" pt:value="$doc.name" pt:encode="1" />
 <pt:core.html pt:tag="a"
href="$doc.url" title="$htmlEncodedName"><pt:logic.value
pt:value="$doc.name"/></pt:core.html>
 </p>
 <!-- Document Description -->
 <p>
 <pt:logic.variable
pt:key="description" pt:value="$doc.description"/>
 <pt:logic.stringexpr
pt:expr="($description) == EMPTY_STRING" pt:key="nodescription"/>
 <pt:logic.if pt:expr="$nodescription">
 <pt:logic.iftrue>
 <i><pt:logic.value
pt:value="$#832.ptmsgs_portalbrowsingmsgs"/></i>
 </pt:logic.iftrue>
 <pt:logic.iffalse>
 <pt:logic.value
pt:value="$doc.description"/>
 </pt:logic.iffalse>
 </pt:logic.if>

Creating a Search Results Adaptive Page Layout

3-12 User Interface Customization Guide for Oracle WebCenter Interaction

 </p>
 <p class="ali-kd-docs-modified">

... pagination code ...

 <div id="ali-kd-side">
 <ul id="ali-kd-subfolder">
 <pt:kdpage.subfoldersdata pt:id="subfolders"/>
 <pt:logic.collectionlength pt:data="subfolders"
pt:key="flength"/>
 <pt:logic.intexpr pt:expr="($flength) > 0"
pt:key="hasfolders"/>
 <pt:logic.if pt:expr="$hasfolders">
 <pt:logic.iftrue>
 <pt:logic.value pt:value="$#1931.ptmsgs_
portalbrowsingmsgs"/>
 <pt:logic.foreach pt:data="subfolders"
pt:var="subfolder">

 <pt:logic.variable
pt:key="htmlEncodedName" pt:value="$subfolder.name" pt:encode="1" />
 <pt:core.html pt:tag="a"
href="$subfolder.url" title="$htmlEncodedName"><pt:logic.value
pt:value="$subfolder.name"/></pt:core.html>

 </pt:logic.foreach>
 </pt:logic.iftrue>
 </pt:logic.if>

...related resource display code ...

 </pt:logic.iffalse>
 </pt:logic.if>
</div>
<!-- End documents view -->

3.6 Creating a Search Results Adaptive Page Layout
The Search Results page layout defines the search results content area. The outer area
(header, footer, navigation areas) is based on the Base Page adaptive layout.

The pt:searchpage library includes a set of tags to customize search results display.
The <pt:searchpage.searchresultsdata> tag provides all the data needed to
display search results. Each result is a DataObject that includes the following
variables:

Variable Description

name The name of the result.

description The description of the result.

rank The rank of the result.

resulthref A gatewayed link to the result.

resultonclick An onclick handler for result link if a handler exists.

resulttarget The target window name for result link if a target exists.

Creating a Search Results Adaptive Page Layout

Using Adaptive Page Layouts 3-13

The <pt:searchpage.paginationdata> tag provides variables to handle
pagination. The <pt:searchpage.followupformdata> tag generates the data
required to create the follow-up search form shown on the results page. Additional
tags define specific form elements.

The example below uses tags from the pt:searchpage library to define Search Results
components, and logic tags to iterate over results. For detailed information on
standard adaptive tags, including logic tags, see the Oracle WebCenter Interaction Web
Service Development Guide.

Note: This example has been oversimplified for illustration purposes; for a complete
implementation of the search results page layout, see the searchresultslayout.html file
in the \imageserver\plumtree\portal\private\pagelayouts folder on your portal
image service.

<div id="content" xmlns:pt='http://www.plumtree.com/xmlschemas/ptui/'>
 <pt:core.comment>
 <!-- Layout for the search results page. This layout file renders
the portal search results page.
 It shows a followup search form and results.
 -->
 </pt:core.comment>
 <pt:searchpage.searchresultsdata pt:id="groupedresults"/>
 <pt:searchpage.searchsummarydata pt:id="summary"

pt:groups="groups"

pt:spellcorrections="spellcorrections"

pt:breadcrumbs="breadcrumbs"

pt:properties="properties"

icon The URL to the icon for the result.

iconalttext Alternate text for the icon associated with the result.

iconwidth The width of the icon associated with the result, in pixels.

lastmodified A string in the current locale representing the last modified date.

propertieshref A link to the properties for the result if a properties link exists.

propertiesonclick An onclick handler for result link if a properties link exists.

isbestbet True if the result is a best bet, false otherwise.

isinmultiplefolders True if the result occurs in more than one Directory folder.

folderpathhref A link to the Directory folder for the result if one exists.

folderpath The path to the Directory folder for the result if one exists.

projectname The name of the Collaboration project containing the result if the
result is a Collaboration item.

projectonclick An onclick handler for the link to the Collaboration project containing
the result if the result is a Collaboration item.

lastpublishedby The name of the last publishing user if the result is a Publisher item.

associatedobjectsoncl
ick

An onclick handler for the link to the associated objects for the result
if the result is a Publisher item.

Variable Description

Creating a Search Results Adaptive Page Layout

3-14 User Interface Customization Guide for Oracle WebCenter Interaction

pt:collabprojects="collabprojects"

pt:portlets="portlets"

pt:folders="folders"

pt:communities="communities"

pt:objecttypes="objecttypes"/>

... search modification and sorting implementation ...

 <div id="ali-search-results">
 <pt:logic.collectionlength pt:data="groupedresults"
pt:key="resultslength"/>
 <pt:logic.intexpr pt:expr="($resultslength) > 0" pt:key="hasResults"/>
 <pt:logic.if pt:expr="$hasResults">
 <pt:logic.iftrue>
 <table id="ali-search-results-table">
 <pt:logic.foreach pt:data="groupedresults" pt:var="resultsgroup">
 <pt:logic.variable pt:key="results"
pt:value="$resultsgroup.groupresultskey"/>
 <pt:logic.collectionlength pt:data="$results"
pt:key="resultslength"/>
 <pt:logic.intexpr pt:expr="($resultslength) > 0"
pt:key="hasResults"/>
 <pt:logic.if pt:expr="$hasResults">
 <pt:logic.iftrue>
 <pt:logic.foreach pt:data="$results" pt:var="result">
 <pt:logic.variable pt:key="htmlEncodedName"
pt:value="$result.name" pt:encode="1" />
 <tr>
 <td><pt:core.html pt:tag="img" src="$result.icon"
alt="$htmlEncodedName"/></td>
 <td>
 <p class="ali-kd-docs-title">
 <pt:logic.existexpr
pt:data="result.resultonclick" pt:key="hasResultOnclick"/>
 <pt:logic.if
pt:expr="$hasResultOnclick">
 <pt:logic.iftrue>
 <pt:core.html pt:tag="a"
href="$result.resulthref" onclick="$result.resultonclick"
title="$htmlEncodedName"><pt:logic.value pt:value="$result.name"/></pt:core.html>
 </pt:logic.iftrue>
 <pt:logic.iffalse>
 <pt:logic.existexpr
pt:data="result.resulttarget" pt:key="hasResultTarget"/>
 <pt:logic.if
pt:expr="$hasResultTarget">
 <pt:logic.iftrue>
 <pt:core.html
pt:tag="a" href="$result.resulthref" target="$result.resulttarget"
title="$htmlEncodedName"><pt:logic.value pt:value="$result.name"/></pt:core.html>
 </pt:logic.iftrue>
 <pt:logic.iffalse>
 <pt:core.html
pt:tag="a" href="$result.resulthref" title="$htmlEncodedName"><pt:logic.value
pt:value="$result.name"/></pt:core.html>
 </pt:logic.iffalse>

Creating a Search Results Adaptive Page Layout

Using Adaptive Page Layouts 3-15

 </pt:logic.if>
 </pt:logic.iffalse>
 </pt:logic.if>
 </p>
 <p>
 <pt:logic.existexpr
pt:data="result.description" pt:key="hasDesc"/>
 <pt:logic.if pt:expr="$hasDesc">
 <pt:logic.iftrue>
 <pt:core.comment><!-- The
description contains HTML from search, and is safe, so we shouldn't HTML encode
it. --></pt:core.comment>
 <pt:logic.value
pt:value="$result.description" pt:encode="0"/>
 </pt:logic.iftrue>
 <pt:logic.iffalse>
 <i><pt:logic.value
pt:value="$#832.ptmsgs_portalbrowsingmsgs"/></i>
 </pt:logic.iffalse>
 </pt:logic.if>
 </p>
 <p class="ali-search-results-modified">
 <pt:core.localize pt:id="1918"
pt:file="ptmsgs_portalbrowsingmsgs" pt:replace0="$result.lastmodified" />
 <pt:logic.existexpr
pt:data="result.propertieshref" pt:key="hasPropsLink"/>
 <pt:logic.if
pt:expr="$hasPropsLink">
 <pt:logic.iftrue>
 <pt:core.html
pt:tag="a" href="$result.propertieshref" onclick="$result.propertiesonclick"
title="$#1657.ptmsgs_portalbrowsingmsgs"><pt:logic.value pt:value="$#31.ptmsgs_
portalbrowsingmsgs"/></pt:core.html>
 </pt:logic.iftrue>
 </pt:logic.if>
 </p>
 </td>
 </tr>
 </pt:logic.foreach>
 </pt:logic.iftrue>
 </pt:logic.if>
 </pt:logic.foreach>
 </table>

... page navigation implementation ...

 <pt:logic.iffalse>
 <table id="ali-search-results-table">
 <tr><td>
 <p><pt:logic.value pt:value="$#848.ptmsgs_
portalbrowsingmsgs"/></p>
 </td></tr>
 </table>

 </pt:logic.iffalse>
 </pt:logic.if>
 </div>
</div>
</div>

Creating a Portlet Selection Adaptive Page Layout

3-16 User Interface Customization Guide for Oracle WebCenter Interaction

3.7 Creating a Portlet Selection Adaptive Page Layout
Portlet Selection page layouts allow you to customize the portlet flyout editor used to
add and remove portlets from a page.

The pt:portletpageeditor library contains tags to implement a custom portlet flyout
editor (DHTML). Many of the tags in this library are intended for use in adaptive
portlet layout pages that include the portlet flyout editor.

■ The <pt:portletpageeditor.sortpropertiesdata> tag sets a collection of
properties used to specify portlet sort order. This tag must be displayed before
other pt:portletpageeditor tags so the page can be initialized properly.

■ The <pt:portletpageeditor.addportletsflyoutdata> tag provides a
URL to the flyout editor.

■ The <pt:portletpageeditor.flyoutjs> tag adds the JavaScript required to
create a flyout effect.

■ The <pt:portletpageeditor.collapseexpandjs> tag dds the JavaScript
required to collapse and expand portlets through AJAX.

The rest of the tags in the library are used to create the flyout editor in the Portlet
Selection adaptive page layout.

■ The <pt:portletpageeditor.portletjs> tag generates the JavaScript
functions required for portlet preview and invitation.

■ The <pt:portletpageeditor.portletdata> tag generates the data required
to show the list of portlets in the editor, and stores it in memory using the variable
name specified by the id attribute. Each item in the list is a DataObject with the
following variables:

■ The <pt:portletpageeditor.objectrenamehelper> tag provides a
rename div for use with the portlet name. This tag sets the pt:isEditable
variable to true or false depending on whether the user has edit access to the
current page.

■ The <pt:portletpageeditor.portletsearchform> tag generates the form
and hidden inputs necessary to search for portlets. It does not generate the text

Variable Description

name The name of the portlet

description The description of the portlet.

id The ID of the portlet object in the portal.

isonpage True if portlet is on the current page, false otherwise.

type The portlet type (narrow, wide, or bundle). This variable is used as the
div style class suffix and passed in to the preview JavaScript function.

previewenabled True if preview is enabled for the portlet, false otherwise.

invitationid The ID to be used in the invitation JavaScript function. If the value is
-1, the invitation is disabled.

lastmodified -
mandatory - the last
modified date of the
portlet

The last modified date of the portlet.

mandatory True if the portlet is mandatory for the current page, false otherwise.

Creating a Portlet Selection Adaptive Page Layout

Using Adaptive Page Layouts 3-17

input or search button. The text input must to be defined in the in_tx_query
parameter. The <pt:portletpageeditor.paginationdata> tag generates
the data for pagination links for the search results.

■ The <pt:portletpageeditor.portletbrowsemode> tag displays the
JavaScript necessary to switch to browse mode. The
<pt:portletpageeditor.browsesubfoldersdata> tag stores a list of
subfolders of the current folder in memory (only populated if the page is in
browse mode). The <pt:portletpageeditor.browsebreadcrumbsdata>
tag stores a list of subfolders of the current folder in memory.

■ The <pt:portletpageeditor.currsortpropid> sets a data value with the
current portlet selection sort by property. The
<pt:portletpageeditor.sortpropertyentry> tag can be used to specify a
sort property entry if the <pt:portletpageeditor.sortpropertiesdata>
tag has been implemented.

The example below uses tags from the pt:portletpageeditor library to define portlet
flyout editor components, and logic tags to iterate through the portlets displayed in
the editor. For detailed information on standard adaptive tags, including logic tags,
see the Oracle WebCenter Interaction Web Service Development Guide.

<div xmlns:pt='http://www.plumtree.com/xmlschemas/ptui/'>
<pt:core.comment><!-- this input is required so that IE doesn't strip out the
javacript tags when we add it to a div's innerHTML --></pt:core.comment>
<input type='hidden'/>
<pt:portletpageeditor.portletjs pt:add="addPortlet" pt:remove="removePortlet"
pt:preview="previewPortlet" pt:invitation="invite" pt:addbundle="addBundle"
pt:openbundle="openBundle" pt:orderbyprop="updateOrderByProperty"
pt:flyoutID="portletSelection"/>
<pt:core.comment><!-- NOTE: many tags must be initialized at the top so they can
be used in the rest of the page. --></pt:core.comment>
<pt:portletpageeditor.portletdata pt:id="portlets"/>
<pt:logic.collectionlength pt:data="portlets" pt:key="plength"/>
<pt:logic.intexpr pt:expr="($plength) > 0" pt:key="hasportlets"/>

<pt:portletpageeditor.portletbrowsemode pt:flyoutID="portletSelection"
pt:id="browseMode"/>
<div id="ali-edit-container">
<div id="ali-edit-toolbar">
<div id="ali-edit-cornerleft"></div>
<div id="ali-edit-title"><pt:logic.value pt:value="$#301.ptmsgs_
portalcommonmsgs"/></div>
<div id="ali-edit-cornerright"></div>
<div class="ali-portlet-controlone"><a onclick="try
{bea.PortalPageDnD.dndToggle(); PTFlyoutportletSelection.openFlyout(); return
false;} catch (e) {return true;}" href=""><img
src="pt://images/plumtree/portal/private/img/action_portlet_remove.gif"
/></div>
</div>
<div id="ali-edit-tabs-container">
 <div id="ali-edit-rename">
 <pt:ptdata.currpagedata pt:id="currpage" />
 <pt:logic.foreach pt:data="currpage" pt:var="page" >
 <pt:logic.intexpr pt:expr="($page.classid) == 518" pt:key="isMyPage" />
 <pt:logic.if pt:expr="$isMyPage">
 <pt:logic.iftrue>
 <pt:core.comment><!-- Page data object is a MyPage --></pt:core.comment>
 <pt:portletpageeditor.objectrenamehelper pt:objectname="$page.title"
pt:objectid="$page.objectid" pt:classid="$page.classid" pt:in_prefix="page_

Creating a Portlet Selection Adaptive Page Layout

3-18 User Interface Customization Guide for Oracle WebCenter Interaction

rename"/>
 </pt:logic.iftrue>
 <pt:logic.iffalse>
 <pt:core.comment><!-- Page data object is a Community Page. ObjectID is
for the community, not the page, sooverride it here. --></pt:core.comment>
 <pt:portletpageeditor.objectrenamehelper pt:objectname="$page.title"
pt:objectid="$page.childid" pt:classid="514" pt:in_prefix="page_rename"/>
 </pt:logic.iffalse>
 </pt:logic.if>
 <pt:core.comment><!-- pt:portletpageeditor.objectrenamehelper tag sets the
isEditable variable to true or false depending on whether the user has edit access
to tha page. --></pt:core.comment>
 <pt:logic.if pt:expr="$isEditable"><pt:logic.iftrue>
 <pt:logic.value pt:value="$#1907.ptmsgs_portalbrowsingmsgs"/>
 <pt:logic.variable pt:key="htmlEncodedTitle" pt:value="$page.title"
pt:encode="1" />
 <pt:core.html pt:tag="input" type="text" class="ali-edit-rename-textbox"
id="$input_id" value="$htmlEncodedTitle" size="20" maxlength="255"/>
 </pt:logic.iftrue></pt:logic.if>
 </pt:logic.foreach>
 </div>

 <!-- Start "Go To Advanced Editor" Link -->
 <pt:core.comment>Check whether current page is a My Page or Community Page and
get the link for the Page Editor.</pt:core.comment>
 <pt:ptdata.currcommunitypagesdata pt:id="currCommPagesData" />
 <pt:logic.existexpr pt:data="currCommPagesData"
pt:key="hasCurrCommPagesData"/>
 <pt:ptdata.communityactionsdata pt:id="commActionLinks" />
 <pt:ptdata.mypageactionsdata pt:id="myPageActionLinks" />
 <pt:logic.existexpr pt:data="commActionLinks" pt:key="hasCommActionLinks"/>
 <pt:logic.existexpr pt:data="myPageActionLinks"
pt:key="hasMyPageActionLinks"/>
 <pt:logic.variable pt:key="commActionEdit" pt:value="$#308.ptmsgs_
portalcommonmsgs"/>
 <pt:logic.variable pt:key="myPageActionEdit" pt:value="$#301.ptmsgs_
portalcommonmsgs"/>

 <pt:logic.if pt:expr="$hasCurrCommPagesData">
 <pt:logic.iftrue>
 <pt:core.comment>Loop through list of Community action URLs and find the
Edit Link.</pt:core.comment>
 <pt:logic.foreach pt:data="commActionLinks" pt:var="link">
 <pt:logic.stringexpr pt:expr="($link.title) == ($commActionEdit)"
pt:key="addCommEditLink" />
 <pt:logic.if pt:expr="$addCommEditLink">
 <pt:logic.iftrue>
 <div class="ali-edit-tabs-right">
 <pt:core.html pt:tag="a" href="$link.url" ><pt:logic.value
pt:value="$#1934.ptmsgs_portalbrowsingmsgs"/></pt:core.html>
 </div>
 </pt:logic.iftrue>
 </pt:logic.if>
 </pt:logic.foreach>
 </pt:logic.iftrue>
 <pt:logic.iffalse>
 <pt:core.comment>Loop through list of My Page action URLs and find the
Edit Link.</pt:core.comment>
 <pt:logic.foreach pt:data="myPageActionLinks" pt:var="link">
 <pt:logic.stringexpr pt:expr="($link.title) == ($myPageActionEdit)"

Creating a Portlet Selection Adaptive Page Layout

Using Adaptive Page Layouts 3-19

pt:key="addMyPageEditLink" />
 <pt:logic.if pt:expr="$addMyPageEditLink">
 <pt:logic.iftrue>
 <div class="ali-edit-tabs-right">
 <pt:core.html pt:tag="a" href="$link.url" ><pt:logic.value
pt:value="$#1934.ptmsgs_portalbrowsingmsgs"/></pt:core.html>
 </div>
 </pt:logic.iftrue>
 </pt:logic.if>
 </pt:logic.foreach>
 </pt:logic.iffalse>
 </pt:logic.if>
 <!-- End "Go To Advanced Editor" Link -->
</div>
<pt:core.comment><!-- pt:portletpageeditor.objectrenamehelper tag sets the
isEditable variable to true or false depending on whether the user has edit access
to tha page. --></pt:core.comment>
<pt:logic.if pt:expr="$isEditable"><pt:logic.iftrue>
 <div id="ali-edit-portlets">
 <div id="ali-edit-search-container">
 <div id="ali-edit-portlets-text"><pt:logic.value
pt:value="$#1908.ptmsgs_portalbrowsingmsgs"/></div>
 </div>
 <div id="ali-edit-sorting-bar">
 <pt:logic.if pt:expr="$browseMode"><pt:logic.iffalse>
 <div id="ali-edit-sort">
 <form name="sort">
 <pt:logic.value pt:value="$#1936.ptmsgs_
portalbrowsingmsgs"/>
 <select
onchange="updateOrderByProperty(options[selectedIndex].value); return false;">
 <pt:portletpageeditor.currsortpropid pt:id="currsortpropid"/>
 <pt:logic.foreach pt:data="sortprops" pt:var="curr">
 <pt:logic.stringexpr pt:expr="($curr.id) ==
($currsortpropid)" pt:key="iscurrpropid"/>
 <pt:logic.if pt:expr="$iscurrpropid">
 <pt:logic.iftrue>
 <pt:core.html pt:tag="option" selected="true"
value="$curr.id"><pt:logic.value pt:value="$curr.title"/></pt:core.html>
 </pt:logic.iftrue>
 <pt:logic.iffalse>
 <pt:core.html pt:tag="option"
value="$curr.id"><pt:logic.value pt:value="$curr.title"/></pt:core.html>
 </pt:logic.iffalse>
 </pt:logic.if>
 </pt:logic.foreach>

 </select>
 </form>
 </div>
 </pt:logic.iffalse></pt:logic.if>
 <div
id="ali-edit-portlets-search"><pt:portletpageeditor.portletsearchform
pt:name="portletSearch" pt:id="portletSearch" pt:submit="submitPortletSearch"
pt:flyoutID="portletSelection" pt:defaulttext="$#1914.ptmsgs_portalbrowsingmsgs">
 <pt:logic.concat pt:key="portletsearchonfocus" pt:value1="if
(this.value == '" pt:value2="$#1914.ptmsgs_portalbrowsingmsgs"/><pt:logic.concat
pt:key="portletsearchonfocus" pt:value1="$portletsearchonfocus" pt:value2="')
this.value='';"/>
 <pt:logic.value pt:value="$#715.ptmsgs_portalbrowsingmsgs"/>

Creating a Portlet Selection Adaptive Page Layout

3-20 User Interface Customization Guide for Oracle WebCenter Interaction

<pt:core.html pt:tag="input" type="text" class="edit-portlets-search-box"
name="in_tx_query" value="$#1914.ptmsgs_portalbrowsingmsgs" size="20"
onkeydown="return handleSearchEvent(event);"
onfocus="$portletsearchonfocus"/><pt:core.html pt:tag="input" name="Search"
type="button" onClick="return submitPortletSearch();" value="$#1913.ptmsgs_
portalbrowsingmsgs" class="edit-portlets-search-button"/>
 </pt:portletpageeditor.portletsearchform></div>
 <pt:logic.if pt:expr="$browseMode"><pt:logic.iffalse>
 <div id="ali-edit-browse-portlets"><a href="#"
onclick="openFolder(1);return false;"><pt:logic.value pt:value="$#1917.ptmsgs_
portalbrowsingmsgs"/></div>
 </pt:logic.iffalse></pt:logic.if>
 </div>

 <div id="ali-edit-breadcrumb-container">
 <pt:core.comment><!-- Browse All Folders (Switching to browse mode
opens root folder [ID 1]) --></pt:core.comment>
 <pt:logic.variable pt:value="false" pt:key="isrootfolder"/>
 <pt:logic.if pt:expr="$browseMode"><pt:logic.iftrue>
 <!-- Start breadcrumbs path -->
 <pt:portletpageeditor.browsebreadcrumbsdata pt:id="breadcrumbs"/>
 <div id="ali-edit-breadcrumb">
 <pt:logic.foreach pt:data="breadcrumbs" pt:var="breadcrumb">
 <pt:logic.variable pt:key="breadcrumburl"
pt:value="$breadcrumb.url"/>
 <pt:logic.stringexpr pt:expr="($breadcrumburl) ==
EMPTY_STRING" pt:key="iscurrentfolder"/>
 <pt:logic.if
pt:expr="$iscurrentfolder"><pt:logic.iftrue>
 <pt:logic.value
pt:value="$breadcrumb.name"/>
 <pt:logic.intexpr pt:expr="($breadcrumb.id) == 1"
pt:key="isrootfolder"/>
 </pt:logic.iftrue><pt:logic.iffalse>
 <pt:logic.concat pt:key="openFolder"
pt:value1="openFolder(" pt:value2="$breadcrumb.id"/>
 <pt:logic.concat pt:key="openFolder"
pt:value1="$openFolder" pt:value2="); return false;"/>
 <pt:logic.variable pt:key="htmlEncodedName"
pt:value="$breadcrumb.name" pt:encode="1" />
 <pt:core.html pt:tag="a" href="#"
onclick="$openFolder" title="$htmlEncodedName"><pt:logic.value
pt:value="$breadcrumb.name"/></pt:core.html>
 </pt:logic.iffalse></pt:logic.if>
 <pt:logic.separator>></pt:logic.separator>
 </pt:logic.foreach>
 </div>
 </pt:logic.iftrue></pt:logic.if>
 </div>
 <!-- End breadcrumbs path -->

 <pt:logic.if pt:expr="$browseMode"><pt:logic.iftrue>
 <pt:core.comment><!-- Figure out if page is in browse mode and
has subfolders --></pt:core.comment>
 <pt:portletpageeditor.browsesubfoldersdata
pt:id="subfolders"/>
 <pt:logic.collectionlength pt:data="subfolders"
pt:key="flength"/>
 <pt:logic.intexpr pt:expr="($flength) > 0"
pt:key="hasfolders"/>

Creating a Portlet Selection Adaptive Page Layout

Using Adaptive Page Layouts 3-21

 </pt:logic.iftrue></pt:logic.if>

 <!-- Start Root Folder Display -->
 <pt:logic.if pt:expr="$browseMode"><pt:logic.iftrue>
 <pt:logic.if pt:expr="$isrootfolder"><pt:logic.iftrue>
 <pt:core.comment><!-- folder info has been determined above.
--></pt:core.comment>
 <pt:logic.if pt:expr="$hasfolders"><pt:logic.iftrue>
 <div id="ali-edit-table-container">
 <table id="ali-edit-browse-table">
 <pt:logic.foreach pt:data="subfolders" pt:var="subfolder">
 <pt:logic.intops pt:expr="($subfolderindex) % 3"
pt:key="col"/>
 <pt:logic.intexpr pt:expr="($col) == 0"
pt:key="addTR"/>
 <pt:logic.if pt:expr="$addTR"><pt:logic.iftrue>
 <tr>
 </pt:logic.iftrue></pt:logic.if>
 <td class="ali-edit-browse-folder"><img
src="pt://images/plumtree/portal/private/img/icon_folder_24px.gif"
alt="folder"></td>
 <td class="ali-edit-browse-description"><p
class="ali-edit-portlets-title">
 <pt:logic.concat
pt:key="openFolder"pt:value1="openFolder(" pt:value2="$subfolder.id"/>
 <pt:logic.concat pt:key="openFolder"
pt:value1="$openFolder" pt:value2="); return false;"/>
 <pt:logic.variable pt:key="htmlEncodedName"
pt:value="$subfolder.name" pt:encode="1" />
 <pt:core.html pt:tag="a" href="#"
onclick="$openFolder" title="$htmlEncodedName">
 <pt:logic.value pt:value="$subfolder.name"/>
 </pt:core.html>
 </p></td>
 <pt:logic.intexpr pt:expr="($col) == 2" pt:key="endTR"/>
 <pt:logic.if pt:expr="$endTR"><pt:logic.iftrue>
 </tr>
 </pt:logic.iftrue></pt:logic.if>
 </pt:logic.foreach>
 <tr>
 <td colspan="6">
 <div id="ali-edit-close">
 <pt:core.html name="Close" pt:tag="input"
type="button" class="edit-portlets-close-button" id="ali-closeButton"
value="$#1945.ptmsgs_portalbrowsingmsgs" onclick="try
{bea.PortalPageDnD.dndToggle(); PTFlyoutportletSelection.openFlyout(); return
false;} catch (e) {return true;}"/>
 </div>
 </td>
 </tr>
 </table>
 </div>
 </pt:logic.iftrue></pt:logic.if>
 </pt:logic.iftrue></pt:logic.if>
 </pt:logic.iftrue></pt:logic.if>
 <!-- End Root Folder Display -->

 <!-- End Browse Mode Display -->

 <pt:logic.variable pt:value="true" pt:key="show3columns"/>

Creating a Portlet Selection Adaptive Page Layout

3-22 User Interface Customization Guide for Oracle WebCenter Interaction

 <pt:logic.if pt:expr="$browseMode"><pt:logic.iftrue>
 <pt:logic.if pt:expr="$isrootfolder"><pt:logic.iffalse>
 <pt:logic.if pt:expr="$hasfolders"><pt:logic.iftrue>
 <pt:logic.variable pt:value="false"
pt:key="show3columns"/>
 </pt:logic.iftrue></pt:logic.if>
 </pt:logic.iffalse></pt:logic.if>
 </pt:logic.iftrue></pt:logic.if>

 <pt:core.comment>This collection and variable contain the metadata about the
portlet columns.</pt:core.comment>
 <pt:logic.collection pt:key="columns">
 <pt:logic.data index="0" divid="ali-edit-portlets-column1"/>
 <pt:logic.data index="1" divid="ali-edit-portlets-column2"/>
 <pt:logic.if pt:expr="$show3columns"><pt:logic.iftrue>
 <pt:logic.data index="2" divid="ali-edit-portlets-column3"/>
 </pt:logic.iftrue></pt:logic.if>
 </pt:logic.collection>
 <pt:logic.collectionlength pt:data="columns" pt:key="portletmod"/>

 <div id="ali-edit-table-container">
 <!-- Start browse mode folder display (except for root landing page) -->
 <pt:logic.if pt:expr="$browseMode"><pt:logic.iftrue>
 <pt:logic.if pt:expr="$isrootfolder"><pt:logic.iffalse>
 <pt:core.comment><!-- folder info has been determined above.
--></pt:core.comment>
 <pt:logic.if pt:expr="$hasfolders"><pt:logic.iftrue>
 <table id="ali-edit-browse-table">
 <pt:logic.foreach pt:data="subfolders" pt:var="subfolder">
 <pt:logic.intops pt:expr="($subfolderindex) % 3"
pt:key="col"/>
 <pt:logic.intexpr pt:expr="($col) == 0"
pt:key="addTR"/>
 <pt:logic.if pt:expr="$addTR"><pt:logic.iftrue>
 <tr>
 </pt:logic.iftrue></pt:logic.if>
 <td class="ali-edit-browse-folder"><img
src="pt://images/plumtree/portal/private/img/icon_folder_24px.gif"
alt="folder"></td>
 <td class="ali-edit-browse-description"><p
class="ali-edit-portlets-title">
 <pt:logic.concat
pt:key="openFolder"pt:value1="openFolder(" pt:value2="$subfolder.id"/>
 <pt:logic.concat pt:key="openFolder"
pt:value1="$openFolder" pt:value2="); return false;"/>
 <pt:logic.variable pt:key="htmlEncodedName"
pt:value="$subfolder.name" pt:encode="1" />
 <pt:core.html pt:tag="a" href="#"
onclick="$openFolder" title="$htmlEncodedName">
 <pt:logic.value pt:value="$subfolder.name"/>
 </pt:core.html>
 </p></td>
 <pt:logic.intexpr pt:expr="($col) == 2"
pt:key="endTR"/>
 <pt:logic.if pt:expr="$endTR"><pt:logic.iftrue>
 </tr>
 </pt:logic.iftrue></pt:logic.if>
 </pt:logic.foreach>
 </table>
 </pt:logic.iftrue></pt:logic.if>

Creating a Portlet Selection Adaptive Page Layout

Using Adaptive Page Layouts 3-23

 </pt:logic.iffalse></pt:logic.if>
 </pt:logic.iftrue></pt:logic.if>
 <!-- End browse mode folder display (except for root landing page) -->
 <pt:core.comment><!-- No portlets to display. --></pt:core.comment>
 <pt:logic.if pt:expr="$hasportlets"><pt:logic.iffalse>
 <pt:logic.if pt:expr="$isrootfolder"><pt:logic.iffalse>
 <table id="ali-edit-table">
 <tr>
 <td class="ali-edit-table-description"><pt:logic.value
pt:value="$#1939.ptmsgs_portalbrowsingmsgs"/></td>
 </tr>
 <tr>
 <td colspan="6">
 <div id="Div1">
 <pt:core.html name="Close" pt:tag="input"
type="button" class="edit-portlets-close-button" id="ali-closeButton"
value="$#1945.ptmsgs_portalbrowsingmsgs" onclick="try
{bea.PortalPageDnD.dndToggle(); PTFlyoutportletSelection.openFlyout(); return
false;} catch (e) {return true;}"/>
 </div>
 </td>
 </tr>
 </table>
 </pt:logic.iffalse></pt:logic.if>
 </pt:logic.iffalse>
 <pt:logic.iftrue>

 <table id="ali-edit-table">
 <pt:logic.foreach pt:data="columns" pt:var="column">
 <tr>
 <pt:core.comment>In each column, loop over all the portlets to
find the ones for this column.</pt:core.comment>
 <pt:logic.foreach pt:data="portlets" pt:var="portlet">
 <pt:logic.intops pt:expr="($portletindex) % ($portletmod)"
pt:key="col"/>
 <pt:logic.intexpr pt:expr="($col) == ($column.index)"
pt:key="incol"/>
 <pt:logic.if pt:expr="$incol">
 <pt:logic.iftrue>
 <pt:logic.stringexpr pt:expr="($portlet.type) ==
bundle" pt:key="isbundle"/>
 <pt:logic.if
pt:expr="$isbundle"><pt:logic.iftrue><pt:core.comment><!-- This is a portlet
bundle --></pt:core.comment>
 <pt:logic.concat pt:key="onclickadd"
pt:value1="addBundle(" pt:value2="$portlet.id"/>
 <pt:logic.concat pt:key="onclickadd"
pt:value1="$onclickadd" pt:value2=");"/>
 <pt:logic.variable pt:key="onclickremove"
pt:value="$onclickadd"/>
 </pt:logic.iftrue>
 <pt:logic.iffalse><pt:core.comment><!-- This is a
portlet --></pt:core.comment>
 <pt:logic.concat pt:key="onclickremove"
pt:value1="removePortlet(" pt:value2="$portlet.id"/>
 <pt:logic.concat pt:key="onclickremove"
pt:value1="$onclickremove" pt:value2=");"/>

 <pt:logic.concat pt:key="onclickadd"
pt:value1="addPortlet(" pt:value2="$portlet.id"/>

Creating a Portlet Selection Adaptive Page Layout

3-24 User Interface Customization Guide for Oracle WebCenter Interaction

 <pt:logic.concat pt:key="onclickadd"
pt:value1="$onclickadd" pt:value2=");"/>
 </pt:logic.iffalse></pt:logic.if>
 <pt:logic.concat pt:key="src1"
pt:value1="pt://images/plumtree/portal/private/img/icon_portlet_"
pt:value2="$portlet.type"/>
 <pt:logic.concat pt:key="src" pt:value1="$src1"
pt:value2=".gif"/>
 <pt:logic.variable pt:key="swapsrc"
pt:value="pt://images/plumtree/portal/private/img/icon_portlet_chosen.gif"/>
 <pt:logic.stringexpr pt:expr="($portlet.isonpage) ==
true" pt:key="isonpage"/>
 <pt:logic.if pt:expr="$isonpage"><pt:logic.iftrue>
 <pt:logic.variable pt:key="swapsrc"
pt:value="$src"/>
 <pt:logic.variable pt:key="src"
pt:value="pt://images/plumtree/portal/private/img/icon_portlet_chosen.gif"/>
 <pt:logic.variable pt:key="onclickstring"
pt:value="$onclickremove"/>
 </pt:logic.iftrue>
 <pt:logic.iffalse>
 <pt:logic.variable pt:key="onclickstring"
pt:value="$onclickadd"/>
 </pt:logic.iffalse></pt:logic.if>
 <pt:logic.concat pt:key="onclickimg"
pt:value1="$onclickstring" pt:value2=" return false;"/>
 <pt:logic.concat pt:key="divid" pt:value1="portlet"
pt:value2="$portlet.id"/>
 <pt:logic.stringexpr pt:expr="($portlet.mandatory) ==
true" pt:key="ismandatory"/>
 <pt:logic.if pt:expr="$ismandatory"><pt:logic.iftrue>
 <td><pt:core.html pt:tag="img" id="$divid"
src="$src" border="0"/></td>
 </pt:logic.iftrue><pt:logic.iffalse>
 <td><pt:core.html pt:tag="a" href="#"
onclick="$onclickimg" onclickstring="$onclickstring"><pt:core.html pt:tag="img"
id="$divid" src="$src" swapsrc="$swapsrc" border="0"/></pt:core.html></td>
 </pt:logic.iffalse></pt:logic.if>
 <td class="ali-edit-table-description"><p
class="ali-edit-portlets-title"><pt:logic.value pt:value="$portlet.name"/></p>
 <pt:core.comment><!-- The description contains
HTML from search, and is safe, so there is no need to HTML encode it.
--></pt:core.comment>
 <p><pt:logic.value pt:value="$portlet.description"
pt:encode="0"/></p>
 <p>
 <pt:logic.stringexpr pt:expr="($portlet.type)
== bundle" pt:key="isbundle"/>
 <pt:logic.if
pt:expr="$isbundle"><pt:logic.iftrue><pt:core.comment><!-- This is a portlet
bundle - include add/open links --></pt:core.comment>
 <pt:logic.concat pt:key="addurl"
pt:value1="addBundle(" pt:value2="$portlet.id"/>
 <pt:logic.concat pt:key="addurl"
pt:value1="$addurl" pt:value2="); return false;"/>
 <pt:core.html pt:tag="a" href="#"
onclick="$addurl"><pt:logic.value pt:value="$#1273.ptmsgs_
portalbrowsingmsgs"/></pt:core.html>

 <pt:logic.concat pt:key="openurl"

Creating a Portlet Selection Adaptive Page Layout

Using Adaptive Page Layouts 3-25

pt:value1="openBundle(" pt:value2="$portlet.id"/>
 <pt:logic.concat pt:key="openurl"
pt:value1="$openurl" pt:value2="); return false;"/>
 - <pt:core.html pt:tag="a" href="#"
onclick="$openurl"><pt:logic.value pt:value="$#1915.ptmsgs_
portalbrowsingmsgs"/></pt:core.html>
 <p
class="ali-edit-portlets-modified"><pt:core.localize pt:id="1918" pt:file="ptmsgs_
portalbrowsingmsgs" pt:replace0="$portlet.lastmodified" /></p>
 </pt:logic.iftrue>
 <pt:logic.iffalse><pt:core.comment><!-- This
is a portlet - include add/remove/preview/invite links --></pt:core.comment>
 <pt:logic.if
pt:expr="$ismandatory"><pt:logic.iffalse>
 <pt:logic.if
pt:expr="$isonpage"><pt:logic.iftrue>
 <pt:logic.variable
pt:key="addstyle" pt:value="display:none;"/>

 <pt:logic.variable
pt:key="removestyle" pt:value="display:visible;"/>
 </pt:logic.iftrue>
 <pt:logic.iffalse>
 <pt:logic.variable
pt:key="addstyle" pt:value="display:visible;"/>
 <pt:logic.variable
pt:key="removestyle" pt:value="display:none;"/>
 </pt:logic.iffalse></pt:logic.if>
 <pt:logic.concat pt:key="addid"
pt:value1="add-portlet" pt:value2="$portlet.id"/>
 <pt:logic.concat pt:key="removeid"
pt:value1="remove-portlet" pt:value2="$portlet.id"/>

 <pt:logic.concat pt:key="removeurl"
pt:value1="removePortlet(" pt:value2="$portlet.id"/>
 <pt:logic.concat pt:key="removeurl"
pt:value1="$removeurl" pt:value2="); return false;"/>
 <pt:core.html pt:tag="a" href="#"
onclick="$removeurl" id="$removeid" style="$removestyle"><pt:logic.value
pt:value="$#1910.ptmsgs_portalbrowsingmsgs"/></pt:core.html>

 <pt:logic.concat pt:key="addurl"
pt:value1="addPortlet(" pt:value2="$portlet.id"/>
 <pt:logic.concat pt:key="addurl"
pt:value1="$addurl" pt:value2="); return false;"/>
 <pt:core.html pt:tag="a" href="#"
onclick="$addurl" id="$addid" style="$addstyle"><pt:logic.value
pt:value="$#1909.ptmsgs_portalbrowsingmsgs"/></pt:core.html> -
 </pt:logic.iffalse></pt:logic.if>

 <pt:logic.stringexpr
pt:expr="($portlet.previewenabled) == true" pt:key="previewEnabled"/>
 <pt:logic.if
pt:expr="$previewEnabled"><pt:logic.iftrue>
 <pt:logic.concat pt:key="previewid"
pt:value1="preview-portlet" pt:value2="$portlet.id"/>
 <pt:logic.concat pt:key="previewurl"
pt:value1="previewPortlet(" pt:value2="$portlet.id"/>
 <pt:logic.concat pt:key="previewurl"
pt:value1="$previewurl" pt:value2=", '"/>

Creating a Portlet Selection Adaptive Page Layout

3-26 User Interface Customization Guide for Oracle WebCenter Interaction

 <pt:logic.concat pt:key="previewurl"
pt:value1="$previewurl" pt:value2="$portlet.type"/>
 <pt:core.comment><!-- We can't just do
this.getAttribute('onpage'), because that doesn't work in IE.
--></pt:core.comment>
 <pt:logic.concat pt:key="previewurl"
pt:value1="$previewurl" pt:value2="', this.attributes.isonpage.nodeValue); return
false;"/>
 <pt:core.html pt:tag="a" href="#"
onclick="$previewurl" id="$previewid" isonpage="$portlet.isonpage"><pt:logic.value
pt:value="$#1911.ptmsgs_portalbrowsingmsgs"/></pt:core.html>
 </pt:logic.iftrue></pt:logic.if>

 <pt:logic.intexpr
pt:expr="($portlet.invitationid) != -1" pt:key="invitationEnabled"/>
 <pt:logic.if
pt:expr="$invitationEnabled"><pt:logic.iftrue>
 <pt:logic.concat pt:key="inviteurl"
pt:value1="invite(" pt:value2="$portlet.invitationid"/>
 <pt:logic.concat pt:key="inviteurl"
pt:value1="$inviteurl" pt:value2="); return false;"/>
 - <pt:core.html pt:tag="a" href="#"
onclick="$inviteurl"><pt:logic.value pt:value="$#1912.ptmsgs_
portalbrowsingmsgs"/></pt:core.html>
 </pt:logic.iftrue></pt:logic.if>
 <p
class="ali-edit-portlets-modified"><pt:core.localize pt:id="1918" pt:file="ptmsgs_
portalbrowsingmsgs" pt:replace0="$portlet.lastmodified" /></p>
 </pt:logic.iffalse></pt:logic.if>
 </p>
 </td>
 </pt:logic.iftrue>
 </pt:logic.if>
 </pt:logic.foreach>
 </tr>
 </pt:logic.foreach>
 <tr>
 <td colspan="6">
 <div id="ali-edit-close">
 <pt:core.html name="Close" pt:tag="input" type="button"
class="edit-portlets-close-button" id="ali-closeButton" value="$#1945.ptmsgs_
portalbrowsingmsgs" onclick="try {bea.PortalPageDnD.dndToggle();
PTFlyoutportletSelection.openFlyout(); return false;} catch (e) {return true;}"/>
 </div>
 <pt:core.comment><!-- In an AJAX flyout, so wrap the
pagination URLs in an AJAX method. --></pt:core.comment>
 <pt:portletpageeditor.paginationdata pt:id="pagination"
pt:pageslist="pageslist" pt:pagestodisplay="2" pt:flyoutID="portletSelection"/>
 <div id="ali-edit-portlets-pagenav">

 <pt:logic.existexpr pt:data="pagination.previousurl"
pt:key="linkToPrevious"/>
 <pt:logic.if pt:expr="$linkToPrevious"><pt:logic.iftrue>
 <pt:logic.concat pt:key="paginatefunc"
pt:value1="paginate('" pt:value2="$pagination.previousurl"/>
 <pt:logic.concat pt:key="paginatefunc"
pt:value1="$paginatefunc" pt:value2="'); return false;"/>
 <pt:core.html pt:tag="a" href="#"
onclick="$paginatefunc" title="$#34.ptmsgs_portalbrowsingmsgs"><pt:logic.value
pt:value="$#207.ptmsgs_portalinfrastructure"/></pt:core.html>

Creating a Portlet Selection Adaptive Page Layout

Using Adaptive Page Layouts 3-27

 </pt:logic.iftrue><pt:logic.iffalse>
 <pt:logic.value pt:value="$#207.ptmsgs_
portalinfrastructure"/>
 </pt:logic.iffalse></pt:logic.if>

 <pt:logic.existexpr pt:data="pagination.firstpageurl"
pt:key="displayFirstPageLink"/>
 <pt:logic.if
pt:expr="$displayFirstPageLink"><pt:logic.iftrue>
 <pt:logic.concat pt:key="paginatefunc"
pt:value1="paginate('" pt:value2="$pagination.firstpageurl"/>
 <pt:logic.concat pt:key="paginatefunc"
pt:value1="$paginatefunc" pt:value2="'); return false;"/>
 <li class="ali-edit-number"><pt:core.html pt:tag="a"
href="#" onclick="$paginatefunc">1</pt:core.html>
 </pt:logic.iftrue></pt:logic.if>

 <pt:logic.collectionlength pt:data="pageslist"
pt:key="pageslength"/>
 <pt:logic.intops pt:expr="($pageslength) - 1"
pt:key="lastIndex"/>
 <pt:logic.foreach pt:data="pageslist" pt:var="page">
 <pt:logic.intexpr pt:expr="($pageindex) == 0"
pt:key="firstDisplayedPage"/>
 <pt:logic.if
pt:expr="$firstDisplayedPage"><pt:logic.iftrue>
 <pt:logic.intexpr pt:expr="($page.number) > 2"
pt:key="displayElipses"/>
 <pt:logic.if
pt:expr="$displayElipses"><pt:logic.iftrue>
 <pt:logic.value pt:value="$#137.ptmsgs_
infrastructure"/>
 </pt:logic.iftrue></pt:logic.if>
 </pt:logic.iftrue></pt:logic.if>
 <pt:logic.existexpr pt:data="page.url"
pt:key="linkToPage"/>
 <pt:logic.if pt:expr="$linkToPage"><pt:logic.iftrue>
 <pt:logic.concat pt:key="paginatefunc"
pt:value1="paginate('" pt:value2="$page.url"/>
 <pt:logic.concat pt:key="paginatefunc"
pt:value1="$paginatefunc" pt:value2="'); return false;"/>
 <li class="ali-edit-number"><pt:core.html
pt:tag="a" href="#" onclick="$paginatefunc"><pt:logic.value
pt:value="$page.number"/></pt:core.html>
 </pt:logic.iftrue><pt:logic.iffalse>
 <li class="ali-edit-number-off"><pt:logic.value
pt:value="$page.number"/>
 </pt:logic.iffalse></pt:logic.if>
 <pt:logic.intexpr pt:expr="($pageindex) ==
($lastIndex)" pt:key="lastDisplayedPage"/>
 <pt:logic.if
pt:expr="$lastDisplayedPage"><pt:logic.iftrue>
 <pt:logic.intops pt:expr="($pagination.lastpage)
- 1" pt:key="secondToLastPage"/>
 <pt:logic.intexpr pt:expr="($page.number) <
($secondToLastPage)" pt:key="displayElipses"/>
 <pt:logic.if
pt:expr="$displayElipses"><pt:logic.iftrue>
 <pt:logic.value pt:value="$#137.ptmsgs_
infrastructure"/>

Creating a Portlet Selection Adaptive Page Layout

3-28 User Interface Customization Guide for Oracle WebCenter Interaction

 </pt:logic.iftrue></pt:logic.if>
 </pt:logic.iftrue></pt:logic.if>
 </pt:logic.foreach>

 <pt:logic.existexpr pt:data="pagination.lastpageurl"
pt:key="displayLastPageLink"/>
 <pt:logic.if
pt:expr="$displayLastPageLink"><pt:logic.iftrue>
 <pt:logic.concat pt:key="paginatefunc"
pt:value1="paginate('" pt:value2="$pagination.lastpageurl"/>
 <pt:logic.concat pt:key="paginatefunc"
pt:value1="$paginatefunc" pt:value2="'); return false;"/>
 <li class="ali-edit-number">
 <pt:core.html pt:tag="a" href="#"
onclick="$paginatefunc"><pt:logic.value
pt:value="$pagination.lastpage"/></pt:core.html>

 </pt:logic.iftrue></pt:logic.if>

 <pt:logic.existexpr pt:data="pagination.nexturl"
pt:key="linkToNext"/>
 <pt:logic.if pt:expr="$linkToNext"><pt:logic.iftrue>
 <pt:logic.concat pt:key="paginatefunc"
pt:value1="paginate('" pt:value2="$pagination.nexturl"/>
 <pt:logic.concat pt:key="paginatefunc"
pt:value1="$paginatefunc" pt:value2="'); return false;"/>
 <pt:core.html pt:tag="a" href="#"
onclick="$paginatefunc" title="$#35.ptmsgs_portalbrowsingmsgs"><pt:logic.value
pt:value="$#208.ptmsgs_portalinfrastructure"/></pt:core.html>
 </pt:logic.iftrue><pt:logic.iffalse>
 <pt:logic.value pt:value="$#208.ptmsgs_
portalinfrastructure"/>
 </pt:logic.iffalse></pt:logic.if>

 </div>
 </td>
 </tr>
 </table>
 </pt:logic.iftrue></pt:logic.if>
 </div>
 <div id="ali-edit-footer">
 <div id="ali-edit-botleft"></div>
 <div id="ali-edit-botright"></div>
 </div>
 </div>
</pt:logic.iftrue><pt:logic.iffalse>
 <div id="ali-edit-portlets">
 <div id="ali-edit-search-container">
 <div id="ali-edit-portlets-text"><pt:logic.value
pt:value="$#1946.ptmsgs_portalbrowsingmsgs"/></div>
 </div>
 <div id="ali-edit-footer">
 <div id="ali-edit-botleft"></div>
 <div id="ali-edit-botright"></div>
 </div>
 </div>
</pt:logic.iffalse></pt:logic.if>
</div>
</div>

Creating a Community Selection Adaptive Page Layout

Using Adaptive Page Layouts 3-29

3.8 Creating a Community Selection Adaptive Page Layout
Community Selection layouts allow you to customize the Join Communities flyout
editor used to join communities from a portal page.

The pt:joincommunitypageditor library contains the
<pt:joincommunitypageeditor.addcommunitiesflyoutdata> tag to add a
custom community selection flyout editor (DHTML) to a portal page.

The rest of the tags in the library are used to create the flyout editor in the Community
Selection adaptive page layout.

■ The <pt:joincommunitypageeditor.communityjs> tag generates the
JavaScript functions required for community preview and invitation.

■ The pt:joincommunitypageeditor.communitydata tag generates the data
required to show a list of communities for the page editor and stores it in memory
using the variable name specified by the id attribute. Each result is a DataObject
with the following variables:

■ The <pt:joincommunitypageeditor.joincommunitysearchform> tag
generates the form and hidden inputs necessary to search for communities. It does
not generate the text input or search button. The text input must to be defined in
the in_tx_query parameter. The
<pt:joincommunitypageeditor.paginationdata> tag generates the data
for pagination links for the search results.

■ The <pt:joincommunitypageeditor.communitybrowsemode> tag
displays the JavaScript necessary to switch to browse mode. The
<pt:joincommunitypageeditorbrowsesubfoldersdata> tag stores a list
of subfolders of the current folder in memory (only populated if the page is in
browse mode). The
<pt:joincommunitypageeditor.browsebreadcrumbsdata> tag stores a
list of subfolders of the current folder in memory.

These tags are used in the same order as the Portlet Selection adaptive page layout; for
an example implementation, see the previous section. For an example of a
Community Selection page layout, see the templates included with the portal
installation.

Variable Description

name The name of the community.

description The description of the community.

id The ID of the community object in the portal.

isalreadyjoined True the user has already joined the community.

invitationid The ID to be used in the invitation JavaScript function. If the value is
-1, the invitation is disabled.

lastmodified -
mandatory - the last
modified date of the
portlet

The last modified date of the community.

mandatory True if the community is mandatory for the current user.

Creating a My Account Adaptive Page Layout

3-30 User Interface Customization Guide for Oracle WebCenter Interaction

3.9 Creating a My Account Adaptive Page Layout
The My Account tags in the pt:ptui library allow you to create a customized My
Account page or use My Account data within other adaptive page layouts.

■ The pt:ptui.myaccount tag displays the My Account link to the account
settings page if the user is logged in as a non-guest user. If this tag is used as a
singleton tag, the text "My Account" will be used. If opening and closing tags are
included, the HTML inside the tag will be used.

■ The pt:ptui.myaccountdatatag stores the list of My Account setting items.
Each SettingItem object contains three variables: name, description and url.

The example below uses tags from the pt:ptui brary to define My Account
components, and logic tags to iterate through the setting items. For detailed
information on standard adaptive tags, including logic tags, see the Oracle WebCenter
Interaction Web Service Development Guide.

<table align="left" border="0" cellpadding="5" cellspacing="0" width="100%">
<tr class="dirHeaderBg">
<td colspan="1" align="left" valign="top">

<pt:logic.value pt:value="$#1604.ptmsgs_portalbrowsingmsgs"/>

</td>
</tr>
<pt:ptui.myaccountdata pt:id="mylinks" />
<pt:logic.foreach pt:data="mylinks" pt:var="mylink">
<tr>
<td colspan="1" class="menuText">
<pt:core.html pt:tag="a" href="$mylink.url" title="$mylink.name"><pt:logic.value
pt:value="$mylink.name"/></pt:core.html>

<pt:logic.value pt:value="$mylink.description"/>
</td>
</tr>
<tr>
<td>

</td>
</tr>
</pt:logic.foreach>
</table>

3.10 Creating an Error Page Adaptive Page Layout
The Error tags in the pt:ptui library allow you to create a customized Error page or use
error data within other adaptive page layouts. These tags display the error text, which
can be formatted as desired. If these tags are displayed on a page, errors will no longer
be displayed in the normal error location.

■ The pt:ptui.error tag displays errors on the page. If the errortext tag is
included inside this tag, the contents of this tag will only be processed if there is
an error. If the child tag is not present, error messages will be formatted and
displayed from this tag in the same style as used by the portal.

■ The pt:ptui.errortext tag displays the current error text on the page. Only
the first error message will be displayed. Other errors, as well as exception stack

Creating an iPhone Adaptive Page Layout

Using Adaptive Page Layouts 3-31

traces and extended error messages will be ignored. Note: This tag does not
display the contents of the tag and should only be used as a singleton tag, rather
than as a tag with both an open and close tag.

■ The pt:ptui.errorextendedmessage tag displays the extended error text on
the page. Only the first error message will be displayed. Other errors, as well as
exception stack traces will be ignored. Note: This tag does not display the contents
of the tag and should only be used as a singleton tag, rather than as a tag with
both an open and close tag.

The example below uses tags from the pt:ptui brary to define error display, and
additional adaptive tags to access images and portal message strings. For detailed
information on standard adaptive tags, see the Oracle WebCenter Interaction Web Service
Development Guide.

<pt:ptui.error>
<table border="0" cellpadding="5" cellspacing="0" width="100%">
<tbody>
<tr class="alertBg">
<td colspan="1" class="alertErrorTitle" align="center" width="80">
<pt:core.html pt:tag="img" src="pt://images/plumtree/portal/public/img/icon_
error.gif" alt="$#624.ptmsgs_portalbrowsingmsgs" border="0" height="20"
width="20"/>
</td>
<td colspan="1" class="alertErrorTitle" align="left" width="100%">

<pt:logic.value pt:value="$#624.ptmsgs_portalbrowsingmsgs"/>
<pt:logic.value pt:value=" - "/>
<pt:ptui.errortext/>
<pt:logic.value pt:encode="0" pt:value="<!--"/>
<pt:logic.value pt:value="$#1949.ptmsgs_portalbrowsingmsgs" />
<pt:ptui.errorextendedmessage/>
<pt:logic.value pt:encode="0" pt:value="-->" />

</td>
<td colspan="1" align="right" width="0">
<!-- Comment -->
</td>
</tr>
</tbody>
</table>
</pt:ptui.error>

3.11 Creating an iPhone Adaptive Page Layout
iPhone adaptive page layouts use the same tags as the adaptive page layouts
described in the previous sections, but reference a different style sheet and JavaScript
file. For examples of iPhone layouts, see the iphone* templates provided with the
portal installation.

Creating an iPhone Adaptive Page Layout

3-32 User Interface Customization Guide for Oracle WebCenter Interaction

4

Using Adaptive Styles (CSS Customization) 4-1

4 Using Adaptive Styles (CSS Customization)

Oracle WebCenter Interaction includes a UI customization framework based on
Adaptive Page Layouts. If you are using Adaptive Page Layouts in your portal
implementation, additional UI customization options are available through the portal
CSS file. This chapter provides details on the types of CSS elements available,
examples of customizing page and portlet style and layout, and information on
creating localized stylesheets.

All customizations are made in the mainstyle.css file located in the %PT_
HOME%\ptimages\imageserver\plumtree\common\private\css\ folder on the
portal image service. The portal CSS template file follows standard CSS syntax rules.
For details on CSS, see http://www.w3.org/Style/CSS/.

For details on Adaptive Page Layouts, see Chapter 3, "Using Adaptive Page Layouts"
and the Administrator Guide for Oracle WebCenter Interaction.

4.1 Adaptive Styles Base Page Elements
Base page elements control style and layout the basic part of the portal page,
including the action bar and banner. This is not a complete list; for all available
elements, see the mainstyle.css file.

Note: If you are not using Adaptive Page Layouts, you can still
customize the portal page layout using CSS; see Chapter 5,
"Customizing Portal Layout Using CSS - Legacy User Interface".

Element Page Component Example

body The main body of the page (any
text-based content not inside
another element).

body {
 font-family: Verdana,
Arial, Helvetica, sans-serif;
 font-size:100%;
 color: #FFFFFF;
 margin: 0px;
}

a:hover Links in the main body of the page
on mouse-over.

a:hover {

text-decoration:underline;
}

Adaptive Styles Base Page Elements

4-2 User Interface Customization Guide for Oracle WebCenter Interaction

#ali-actionbar The action bar at the top of the
page.

#ali-actionbar {
 width:100%;
 height:22px;
 background-color:
#0A2F66;
 background-image:
url(../img/banner_action_
bkg.jpg);
 background-repeat:
repeat-x;
 font-family:Verdana,
Arial, Helvetica, sans-serif;
 min-width:980px;
}

#ali-banner The main content in the portal
banner. This area usually contains
company branding, which can
include an image referenced in the
background-image: url parameter.

#ali-banner {
 width:100%;
 height:80px;
 background-color: #1D54A6;
 background-image:
url(../img/banner_bkg.jpg);
 background-repeat:
repeat-x;
 font-family:Verdana,
Arial, Helvetica, sans-serif;
 min-width:980px;
}

#ali-bannerWelcome The welcome text displayed in the
portal banner.

#ali-bannerWelcome {
 float:left;
 background:none;
 color:#B2D8FF;
 font-size:.8em;
 letter-spacing:1px;
 padding:6px 4px 0px 12px;
}

#ali-bannerNav The navigation section of the
portal banner.

#ali-bannerNav {
 float:right;
 background:none;
 color:#A6CFF6;
 font-size:.8em;
 letter-spacing:1px;
 padding:6px 12px 4px
4px;
 text-align:right;
}

#ali-bannerLogo The logo in the portal banner. #ali-bannerLogo {
 clear:left;
 float:left;
 padding:10px 10px 0px
14px;
}

Element Page Component Example

Adaptive Styles Navigation Elements

Using Adaptive Styles (CSS Customization) 4-3

4.2 Adaptive Styles Navigation Elements
Navigation elements control style and layout for the navigation section of the portal
page, including the menus and breadcrumbs. This is not a complete list; for all
available elements, see the mainstyle.css file.

Note: Parameters marked "!important" are related to drop-down lists within
navigation elements. These paramaters can be customized, but must not be removed;
eliminating them will cause the drop-downs either to not work or to distort.

#ali-footer The portal page footer. #ali-footer {
 clear:both;
 width:100%;
 height:22px;

background-image:url(../img/fo
oter_bkg.gif);

background-repeat:repeat-x;
 color:#FFFFFF;
 font-family:Arial,
Helvetica, sans-serif;
 font-size:.7em;
 letter-spacing:1px;
 text-align:center;
 margin-top:48px;
 padding:4px 0 0 0;
 min-width:980px;
}

Element Navigation Component Example

#ali-mainNav The main navigation section of the
portal page.

#ali-mainNav {
 clear:left;
 float:left;
 width:100%;
 height:30px;

background-color:#3068CF;

background-image:url(../img/ma
in_nav_tab.gif);

background-repeat:repeat-x;
 border-bottom:solid
1px #5083CB;
 letter-spacing: 1px;
 min-width:980px;
}

Element Page Component Example

Adaptive Styles Navigation Elements

4-4 User Interface Customization Guide for Oracle WebCenter Interaction

#ali-nav All lists within navigation sections
in the portal page.

#ali-nav, #ali-nav ul {
 padding: 0;
 margin: 0;
 list-style: none;
 line-height: 1;
}

a.ali-navmenu The portal navigation menu. a.ali-navmenu {
 color:#385ABD
!important;
 width:170px
!important;

background-color:#F1F5F9
!important;
 border-bottom:solid
1px #146BC5;
 font-size:1.15em;
}

a.ali-nav-actions A separate style for items in the
portal navigation menu that are
actions, as opposed to links to
pages/sections on the portal. Sets a
different background color for
these items in the menu to offer a
clear distinction between menu
navigation links and action links.

a.ali-nav-actions {
 color:#2B49AC
!important;
 width:170px
!important;

background-color:#C9D4E9
!important;
 border-bottom:solid
1px #146BC5;
 font-size:1.15em;
}

#ali-secondNavBar The second-level navigation bar is
used on the User Profile page and
community pages. A second bar
appears below the main navigation
bar in a different color and is
mainly used to list pages within a
community.

#ali-secondNavBar {
 clear:both;
 float:left;
 width:100%;
 padding:0;
 margin:0 0 -21px 0;

background-image:url(../img/na
v_2nd_pages.gif);

background-repeat:repeat-x;
 letter-spacing:0;
 font:bold .725em
Helvetica;
 min-width:980px;
}

Element Navigation Component Example

Adaptive Styles Navigation Elements

Using Adaptive Styles (CSS Customization) 4-5

#ali-secondPages The list of secondary pages in a
community or other sections of the
portal that use a second level of
navigation.

#ali-secondPages {
 float:left;
 color:#51617a;
 background-color:none;
 width:80%;
}

#ali-secondSub The drop-down menu for pages
within a community
(sub-communities).

#ali-secondSub {
 float:right;
 padding:0;
 margin:0;

background-image:url(../img/na
v_2nd_sub.gif);

background-repeat:repeat-x;
 border-bottom:solid 1px
#82A8F3;
 border-left:solid 1px
#82A8F3;
}

#ali-secondNav The list of links in the
sub-community drop-down menu.

#ali-secondNav, #ali-secondNav
ul {
 padding: 0;
 margin: 0;
 list-style: none;
}

a.ali-secondMenu The link color and background
color for the sub-community
drop-down menu.

a.ali-secondMenu {
 color:#4467CB;
 font:bold 8pt Arial,
Helvetica, sans-serif;
 width:161px;

background-color:#F1F6FF;
 border-bottom:solid
1px #83A1D8;
}

#ali-community-nam
e

The look and placement of the
community (or home page) name
for the second navigation bar.

#ali-community-name {
 position:relative;
 left:-40px;

background-image:url(../img/na
v_2nd_home.gif);

background-repeat:repeat-x;
 border-right:solid 1px
#82A8F3;
 letter-spacing:1px;
 color:#5374A1;
 padding:8px 12px 6px 12px;
 margin-right:-3px;
}

Element Navigation Component Example

Adaptive Styles Search Elements

4-6 User Interface Customization Guide for Oracle WebCenter Interaction

4.3 Adaptive Styles Search Elements
Search elements control style and layout for the search components on the portal page,
including search forms and the search browse page. This is not a complete list; for all
available elements, see the mainstyle.css file.

#ali-breadcrumb The breadcrumb list displayed at
the top of the portal page content
section.

#ali-breadcrumb {
 float:left;
 margin:4px 0 0 12px;
 padding:0;
 color:#888888;
 padding:0;
 font-family:Helvetica,
Arial, sans-serif;
 font-size:.7em;
 letter-spacing:1px;
}

Element Search Component Example

#ali-bannerSearch The basic (banner) search form in
the portal banner.

#ali-bannerSearch {
 clear:right;
 float:right;
 position:relative;
 width:400px;
 padding: 18px 24px 0px
24px;
}

#ali-searchAdvanced The div below the banner search
box that contains the advanced
search text link.

#ali-searchAdvanced {
 clear:right;
 float:right;
 width:320px;
 margin:0 0 0 0;
 padding:0 90px 0 0;
}

input.ali-searchBox The search input box in the search
form. Applies to the input box itself
only when it appears in the banner.

input.ali-searchBox {
 color:#999999;
 border:outset 1px;
 padding: 1px;
}

Element Navigation Component Example

Adaptive Styles Editing Elements

Using Adaptive Styles (CSS Customization) 4-7

4.4 Adaptive Styles Editing Elements
Editing elements control style and layout for editing components on the portal page,
including the page editing elements near the navigation breadcrumb and the flyout
page and portlet editor elements. This is not a complete list; for all available elements,
see the mainstyle.css file.

input.ali-searchButto
n

The search button in the search
form. Applies to the search button
in the banner only.

input.ali-searchButton {

background-image:url(../img/bu
tton_search_gradient.gif);

background-repeat:repeat-x;
 border:outset 0px;
 padding:2px 6px;
 margin-left:4px;
 color:#1A48A4;
 font-size:.8em;
}

input[type="button"]:
hover

The search button on mouse-over.
Applies to the search button in the
banner.

input[type="button"]:hover {
 color:#FF6000;
}

#ali-search-modifier-c
ontainer

The search form on the search
results/browse page.

#ali-search-modifier-container
{
 clear:both;
 float:left;
 width:99%;
 margin:6px 0 0 0;
 padding:0;
 min-width:980px;
}

#ali-search-results The search results section on the
search browse page.

#ali-search-results {
 clear:both;
 float:left;
 width:78%;
 min-width:625px;
 margin:12px 0 0 32px;
 padding:0;
}

Element Search Component Example

Adaptive Styles Editing Elements

4-8 User Interface Customization Guide for Oracle WebCenter Interaction

Element Editing Component Example

#ali-pageEdit The portal actions such as Edit
Page, Create Page, etc. Appears
opposite the breadcrumb at the top
or the portal page.

#ali-pageEdit {
 float:right;
 padding: 0px 0px 12px
0px;
 font-family:Helvetica,
Arial, sans-serif;
 color:#96b7ED;
 text-align:right;
}

#ali-edit-container The div that contains the flyout
page editor.

#ali-edit-container {
 clear:left;
 float:left;
 width:97%;
 margin:0px 12px 12px
12px;
 min-width:950px;
}

#ali-edit-toolbar The bar at the top of the flyout page
editor and contains the "Edit Page"
text and the "X" (close editor)
button for the editor.

#ali-edit-toolbar {
 float:left;
 width:100%;
 height:21px;
 margin-top:6px;

background-color:#6B91C0;

background-image:url(../img/ed
it_title_topbar.gif);

background-repeat:repeat-x;
 color:#FFFFFF;
 font-family:Verdana,
Arial, Helvetica, sans-serif;
 font-size:11px;
 font-weight:bold;
 letter-spacing:1px;
}

Adaptive Styles Editing Elements

Using Adaptive Styles (CSS Customization) 4-9

#ali-edit-cornerleft
and
#ali-edit-cornerright

The top right and top left rounded
corners for the flyout page editor.

#ali-edit-cornerleft {
 clear:left;
 float:left;
 width:8px;
 height:21px;

background-image:url(../img/ed
it_corner_topleft.gif);

background-repeat:no-repeat;
}

#ali-edit-cornerright {
 float:right;
 position:relative;
 right:-2px;
 width:8px;
 height:21px;

background-image:url(../img/ed
it_corner_topright.gif);

background-repeat:no-repeat;
 margin:0;
 padding:0;
}

#ali-edit-content The div containing the main section
of the flyout editor below the
toolbar and above the rounded
corners at the bottom.

#ali-edit-content {
 width:100%;
 border-left:solid 1px
#6B91C0;
 border-right:solid 1px
#6B91C0;

background-color:#ECEFF4;
 color:#6B91C0;
}

Element Editing Component Example

Adaptive Styles Editing Elements

4-10 User Interface Customization Guide for Oracle WebCenter Interaction

#ali-edit-tabs-contain
er

Can be used to set tabbed
navigation within the flyout page
editor. (Not used in the default
implementation of the flyout page
editor.)

#ali-edit-tabs-container {
 clear:left;
 float:left;
 width:100%;
 margin:0;
 padding:0;
 height:30px;

background-image:url(../img/ed
it_tab_gradient.gif);

background-repeat:repeat-x;

background-color:#C8DCFF;
 border-bottom:solid
1px #7497C4;
 border-right:solid 1px
#7497C4;
 border-left:solid 1px
#7497C4;
}

.ali-edit-tabs Can be used to set the style of
tabbed navigation within the flyout
page editor. (Not used in the
default implementation of the
flyout page editor.)

.ali-edit-tabs {
 float:left;
 margin:6px 0 0 0;
 padding:0;

background-color:#CFd3E7;
 border-left:solid 1px
#7497C4;
 border-top:solid 1px
#7497C4;
 border-right:solid 1px
#7497C4;
}

#ali-edit-footer Contains the elements for the
bottom of the flyout page editor,
including the bottom outline and
the left and right rounded corners.

#ali-edit-footer {
 width:100%;
 clear:left;
 float:left;

background-image:url(../img/ed
it_bot.gif);

background-repeat:repeat-x;
 height:8px;
}

Element Editing Component Example

Adaptive Styles Editing Elements

Using Adaptive Styles (CSS Customization) 4-11

#ali-edit-botleft and
#ali-edit-botright

The divs that contain the rounded
corners for the bottom right and
bottom left corners of the flyout
page editor. The images for these
corners are specified in the style as
the background image.

#ali-edit-botleft {
 clear:left;
 float:left;
 width:8px;
 height:8px;
 position:relative;
 left:-1px;

background-image:url(../img/ed
it_corner_botleft.gif);

background-repeat:no-repeat;
}

#ali-edit-table Flyout portlet editor table. #ali-edit-table {
 font-size:1em;
 color:#000000;
 margin:0px;
}

#ali-edit-portlets Flyout portlet editor tab. #ali-edit-portlets {
 float:left;
 width:100%;
 border-left:solid 1px
#6B91C0;
 border-right:solid 1px
#6B91C0;

background-color:#ECEFF4;
 color:#000000;
 font-size:11px;
}

#ali-edit-portlets-sear
ch

Flyout portlet editor search form. #ali-edit-portlets-search {
 float:left;
 padding:0 18px 0 14px;
 border-right:solid 1px
#D5D6DA;
 line-height:31px;
}

#ali-edit-breadcrumb Flyout portlet editor breadcrumbs. #ali-edit-breadcrumb {
 float:left;
 color:#2B4A7B;
 padding: 2px 24px 12px
2px;
 font-family:Helvetica,
Arial, sans-serif;
 font-size:11px;
 letter-spacing:1px;
}

Element Editing Component Example

Adaptive Styles Directory Elements

4-12 User Interface Customization Guide for Oracle WebCenter Interaction

4.5 Adaptive Styles Directory Elements
Directory elements control style and layout for components in the Directory. This is
not a complete list; for all available elements, see the mainstyle.css file.

#ali-edit-main-col1 Flyout portlet editor folder display. #ali-edit-main-col1 {
 float:left;
 width:212px;
 margin:0;
 padding:0;
}

Element Directory Component Example

#ali-kd-title The title displayed on the Directory
page.

#ali-kd-title {
 float:left;
 height:22px;
 padding:4px 12px 0
12px;
 border-right:solid 1px
#9BBEEE;
 color:#7197c6;
 font-size:.8em;
 font-weight:bold;
 letter-spacing:2px;
}

Element Editing Component Example

Adaptive Styles Directory Elements

Using Adaptive Styles (CSS Customization) 4-13

#ali-kd-main* These elements control the main
page of the Directory

#ali-kd-main-bar {
 clear:both;
 float:left;
 width:100%;
 min-width:980px;
 margin:0;
 padding:0;
 border-top:solid 1px
#DBD9D9;
 border-bottom:solid 1px
#C9CED9;

background-color:#CFDFFF;

background-repeat:repeat-x;
 height:7px;
}

#ali-kd-main-col1 {
 float:left;
 width:212px;
 margin:0 60px 48px
36px;
}

.ali-kd-main-header {
 width:100%;
 margin-top:24px;
 padding:2px 4px;

background-color:#E5E9F6;
 border-bottom:solid 1px
#C6CAD4;
}

#ali-kd-breadcrumb The breadcrumb displayed on the
Directory page.

#ali-kd-breadcrumb {
 float:left;
 height:22px;
 padding:5px 0 0 0;
 margin-left:-28px;
 font-size:.75em;
 font-weight:bold;
 color:#2B4A7B;
}

Element Directory Component Example

Adaptive Styles Directory Elements

4-14 User Interface Customization Guide for Oracle WebCenter Interaction

#ali-kd-sorting-bar The div in the Directory and search
results pages that contains the
pull-down menu for sorting results
or listings by "items per page",
"item type", etc.

#ali-kd-sorting-bar {
 clear:both;
 float:left;
 width:100%;
 min-width:1000px;
 margin:0;
 padding:0;
 height:31px;
 border-top:solid 1px
#D5D4D4;
 border-bottom:solid 1px
#A8B8D9;

background-image:url(../img/kd_
sort_bkg.gif);

background-repeat:repeat-x;
 font-family:Verdana,
Arial, Helvetica, sans-serif;
 font-size:.8em;
 color:#000000;
 font-weight:normal;
}

#ali-kd-documents The div for listings of items in
Directory folders.

#ali-kd-documents {
 clear:both;
 float:left;
 width:64%;
 min-width:625px;
 min-height:500px;
 margin:0 0 0 32px;
 padding:6px 64px 48px
0;

background-image:url(../img/kd_
subfolders_bkg.gif);

background-repeat:repeat-y;

background-position:right;
}

.ali-kd-doc-office.ali-
kd-doc-web.ali-kd-do
c-text

The icon and text for specific
document types.

.ali-kd-doc-office {
 clear:both;
 color:#000000;
 font-size:.8em;
 padding:0 24px 24px
34px;

background-image:url(../img/ico
n_officedoc_24px.gif);

background-repeat:no-repeat;
}

Element Directory Component Example

Adaptive Styles Portlet Elements

Using Adaptive Styles (CSS Customization) 4-15

4.6 Adaptive Styles Portlet Elements
These elements control style and layout for portlet elements. This is not a complete list;
for all available elements, see the mainstyle.css file. For portlet flyout editor elements,
see Section 4.4, "Adaptive Styles Editing Elements".

#ali-kd-pagenav Directory navigation section. #ali-kd-pagenav {
 clear:both;
 float:right;
 line-height:2em;
 color:#A1B2C4;
 font-size:.7em;
 padding-right:24px;
 margin-bottom:12px;
}

#ali-kd-side Directory subfolders and related
links sections.

#ali-kd-side {
 float:left;
 right:18px;
 width:25%;
 margin:0 0 0 -12px;
 padding:20px 0 48px 0;
 min-width:250px;
 letter-spacing:1px;
 font-family:Helvetica,
sans-serif;
 font-size:.8em;
 font-weight:bold;
 color:#7197C6;
}

#ali-kd-subfolder li Directory subfolder links. #ali-kd-subfolder li {
 padding:2px 0 2px 24px;
 list-style:none;

background-image:url(../img/ico
n_folder_16px.gif);

background-repeat:no-repeat;
 background-position:0
50%;
}

.ali-kd-related a Directory related links. .ali-kd-related a {
 font-size:90%;
 font-family:Arial,
Helvetica, sans-serif;
 font-weight:normal;
 color:#3761B7;
 text-decoration:none;
}

Element Directory Component Example

Adaptive Styles Portlet Elements

4-16 User Interface Customization Guide for Oracle WebCenter Interaction

Element Portlet Component Example

.ali-portlet-container Contains the nested elements of the
portlet toolbar, controls rounded
corners and content.

.ali-portlet-container {
 min-width:250px;
 margin:4px 0px 6px 0px;
}

.ali-portlet-cornerleft
and
.ali-portlet-cornerrigh
t

Divs that contain the rounded
corners for the top right and top left
corners of the portlet. The images
for these corners are specified in the
style as the background image.

.ali-portlet-cornerright {
 float:right;
 width:8px;
 height:21px;
 position:relative;
 right:-2px;

background-image:url(../img/por
tlet_corner_topright.gif);

background-repeat:no-repeat;
 margin:0;
 padding:0;
}

.ali-portlet-toolbar The top section of the portlet,
where the title of the portlet sits
along with action buttons such as
minimize, edit and refresh.

.ali-portlet-toolbar {
 width:100%;
 height:21px;

background-color:#5C91D8;

background-image:url(../img/por
tlet_title_bar.gif);

background-repeat:repeat-x;
 color:#FFFFFF;
 font-family:Verdana,
Arial, Helvetica, sans-serif;
 font-size:1.1em;
 font-weight:bold;
 letter-spacing:1px;
}

.ali-portlet-controlon
e and
.ali-portlet-controltw
o

Used to position the action buttons
in the portlet toolbar for actions
such as minimize, edit and refresh.

.ali-portlet-controltwo {
 float:right;
 width:13px;
 margin-bottom:-13px;
 padding:0px 0px 0px
6px;
 border: solid 1px
#FF0000;
}

Adaptive Styles User Elements

Using Adaptive Styles (CSS Customization) 4-17

4.7 Adaptive Styles User Elements
User elements control style and layout for user-related components, including user
profile, user activity stream, user friends and user information components. This is not
a complete list; for all available elements, see the mainstyle.css file.

.ali-portlet-content The div that contains the main
content of the portlet. Sets the left
and right outlines of the portlet.

.ali-portlet-content {
 clear:left;
 width:100%;
 border-left:solid 1px
#6B91C0;
 border-right:solid 1px
#6B91C0;
 color:#6B91C0;
}

.ali-portlet-footer Contains the elements for the
bottom of the portlet, including the
bottom outline and the left and
right rounded corners.

.ali-portlet-footer {
 width:100%;

background-image:url(../img/por
tlet_bot.gif);

background-repeat:repeat-x;
 height:8px;
}

.ali-portlet-botleft
and.ali-portlet-botrig
ht

Divs that contain the rounded
corners for the bottom right and
bottom left corners of the portlet.
The images for these corners are
specified in the style as the
background image.

.ali-portlet-botright {
 float:right;
 width:8px;
 height:8px;
 position:relative;
 right:-2px;

background-image:url(../img/por
tlet_corner_botright.gif);

background-repeat:no-repeat;
}

Element Portlet Component Example

Adaptive Styles User Elements

4-18 User Interface Customization Guide for Oracle WebCenter Interaction

Element User Component Example

#ali-user-navbar The user profile navigation menu in
portal navigation.

#ali-user-navbar {
 clear:both;
 width:100%;
 padding:0 0 2px 0;
 margin:0;
 height:27px;

background-image:url(../img/nav_
2nd_pages.gif);
 background-repeat:repeat-x;
 letter-spacing:1px;
 font:bold .725em Helvetica;
 line-height:24px;
 min-width:980px;
}

.ali-user-activity* These elements control the display of
user activity stream components. The
User Activities portlet usually
appears on the user profile page.

.ali-user-activity-pulldown {
 clear:both;
 float:right;
 width:99%;
 padding:3px 16px 0 0;
 color:#000000;
 text-align:right;
 font-size:.75em;
}

.ali-user-activity-stream {
 margin: 8px 0 0 0;
 padding:0 0 0 4px;

background-color:#EFF2FA;
 border-bottom:solid 1px
#DBDEE4;
 font-size:.75em;
 font-weight:bold;
 letter-spacing:1px;
}

.ali-user-friends* These elements control the display of
the user friends components. The
User's Friends list portlet usually
appears on the User Profile page. .

.ali-user-pulldown {
 clear:both;
 float:right;
 width:99%;
 padding:3px 16px 0 0;
 color:#000000;
 font-size:.75em;
 text-align:right;
}

.ali-friends-info-title {
 padding-right:6px;
 text-align:right;
 color:#6E7686;
 font-size:.75em;
 font-weight:bold;
 letter-spacing:1px;
}

Using Adaptive Styles to Customize Portlet Style and Layout

Using Adaptive Styles (CSS Customization) 4-19

4.8 Using Adaptive Styles to Customize Portlet Style and Layout
Adaptive styles allow you to customize specific portlets using the unique ID assigned
to each portlet, or use CSS classes to modify the design of a group of portlets. You can
also set constraints for portlets, including limiting a specific portlet to a three-column
layout or preventing users from collapsing portlets. For an introduction to portlet style
elements, see . Section 4.6, "Adaptive Styles Portlet Elements"

4.8.1 Syntax
To apply a CSS tag to a specific portlet, use the portlet ID. the example below increases
the space around the portlet title for the portlet with ID 43. (You can also define basic
styles for a specific portlet within the portlet code.)

#pt-portlet-43 .ali-portlet-title
{
 padding:8px 0 0 0;
}

#ali-user-geninfo* These elements control the display of
the user general information
components, the main information
on the User Profile page.

#ali-user-geninfo-edit {
 float:right;
 width:100px;
 margin:-4px;
 padding:6px 12px 6px
12px;

background-color:#EFF3FF;
 border-left:solid 1px
#C4C8DB;
 text-align:center;
}

.ali-user-geninfo-title {
 padding-right:6px;
 text-align:right;
 color:#6E7686;
 font-size:.65em;
 font-weight:bold;
 letter-spacing:0;
}

#ali-user-search The search section in the user general
info component.

#ali-user-search {
 float:right;
 padding:3px 24px;
 margin:0;
 height:22px;
 width:310px;

background-image:url(../img/nav_
2nd_sub.gif);
 background-repeat:repeat-x;
 border-left:solid 1px
#6f90cf;
}

Element User Component Example

Using Adaptive Styles to Customize Page Layout

4-20 User Interface Customization Guide for Oracle WebCenter Interaction

You can also apply styles to groups of portlets, including those on a specific page or in
a specific community. To apply styles to a portlet on a specific page or community, use
the page or community ID. The example below makes the same modification as above
for all the portlet on the page will ID 100.

#pt-page-100 .ali-portlet-title
{
 padding:8px 0 0 0;
}

4.8.2 Style Customizations
The mainstyle.css file allows you to make a wide range of style changes to portlets. For
example, you can change the color scheme of portlets as shown in the example below.

#pt-portlet-43 .ali-portlet-content
{
 clear:left;
 width:100%;
 border-left:solid 1px #6B91C0;
 border-right:solid 1px #6B91C0;
 color:#6B91C0;
}

4.8.3 Constraints
The mainstyle.css file allows you to set constraints for portlets. For example, you can
set the width of a portlet for a specific page or set of pages. You can define portlet
settings by page, layout/column, or community. The example below limits the portlet
with ID 43 to a width of 250 pixels on the page with ID 100.

#pt-page-100 #pt-portlet-43
{
 width: 250px;
}

4.9 Using Adaptive Styles to Customize Page Layout
Adaptive styles allow you to modify page layout and design using the portal CSS
template file. You can also use CSS to hide specific functionality exposed in the portal
page. This page provides basic syntax rules and customization examples.

4.9.1 Syntax
To apply styles to a specific page, use the page ID. The example below sets the
background color for the page with ID 100.

#pt-page-100
{
 background-color: red;
}

You can change style settings for a specific user or type of user (administrator or
guest). The example below displays a special header image on all browse-mode pages

Implementing Localized Stylesheets for Adaptive Page Layouts

Using Adaptive Styles (CSS Customization) 4-21

for guests. To modify a style for a specific user, replace "guest" with the name of the
appropriate portal User object (e.g., .ptPageUser-mycompany domain ad\Joe Smith).

.ptPageUser-guest #pt-header
{
 background-image: url(/imageserver/plumtree/portal/private/img/example_
guest.gif);
}

4.9.2 Style and Branding Customizations
The mainstyle.css file allows you to make a wide range of style changes to the portal
page, including adding custom branding and color schemes. For example, you can add
a custom image to the portal banner as shown in the example below.

#ali-banner {
 width:100%;
 height:80px;
 background-color: #1D54A6;
 background-image: url(../img/MyCompany_bkg.jpg);
 background-repeat: repeat-x;
 font-family:Verdana, Arial, Helvetica, sans-serif;
 min-width:980px;
}

You can also modify the background color for a single page or a specific community.
The example below sets the background color for the community with ID 200.

.ptCommunity-200
{
 background-color: #AAA;
}

4.9.3 Page Element Customizations
The mainstyle.css file allows you to modify the style of form elements in the portal
page, including text boxes and buttons. For example, the code below expands the size
of the banner search box.

#ali-bannerSearch {
 clear:right;
 float:right;
 position:relative;
 width:600px;
 padding: 18px 24px 0px 24px;
}

4.10 Implementing Localized Stylesheets for Adaptive Page Layouts
To provide language-specific stylesheets for internationalized portal implementations,
create a localized version of the portal stylesheet and map the language to the each
style sheet in the CustomStyles.xml file.

The CustomStyles.xml file is located in the %PT_HOME%\settings\portal\ folder on
the portal server. This file also contains default mappings to legacy stylesheets to
support any products that do not use Adaptive Page Layouts.

Implementing Localized Stylesheets for Adaptive Page Layouts

4-22 User Interface Customization Guide for Oracle WebCenter Interaction

Note: The language-specific stylesheet mappings in CustomStyles.xml only apply to
pages that use Adaptive Page Layouts. For details on localizing stylesheet for legacy
layouts, see Chapter 5.3, "Adding New Language Style Sheets".

1. Create a localized version of the mainstyle.css file for each language. For example,
mystyle-ar.css for Arabic.

2. Modify CustomStyles.xml to specify stylesheets for each supported language. For
example, to use mystyle-ar.css for Arabic, add the following mapping to
CustomStyles.xml:

<StyleSettings>
 <cssMapping>
 <language>ar</language>
 <styles>mystyle-ar.css</styles>
 </cssMapping>
</StyleSettings>

3. Include the <pt://styles> adaptive tag in the head element of any page that
should use a localized stylesheet. The head element must also include the
<pt.standard.stylesheets> tag to reference the legacy stylesheet, which
contains the legacy portlet styles required by any preexisting portlets and by the
admin UI. For details on these tags, see the Oracle WebCenter Interaction Web Service
Development Guide..

<head>
<pt.standard.stylesheets/>
<link href="pt://styles" type="text/css" rel="styleSheet"></link>
... </head>

Note: The <pt://styles> tag can only be used to implement localized
stylesheets in pages that use Adaptive Page Layouts.

5

Customizing Portal Layout Using CSS - Legacy User Interface 5-1

5Customizing Portal Layout Using CSS -
Legacy User Interface

Oracle WebCenter Interaction provides a CSS template file that contains a wide range
of CSS classes and IDs to facilitate customization for legacy user interfaces. The CSS
template file is located in the PT_HOME\ptimages\tools\cssmill\templates directory
in the portal Image Service.

The structure of the portal page is designed to support customizations on global, per
user, per community, per product, per page, and per portlet levels. The portal
supports 18 different color schemes and 8 languages out of the box. The CSS Style
Sheet Mill allows you to implement custom color schemes and add new language style
sheets easily without modifying portal source code.

5.1 Customizing Portal Page Layout and Design
All major and minor page elements are assigned either a CSS ID or class, or both.
Uniquely identifiable objects (such as a specific page) are given unique ids. Identifiable
classes of objects (such as pages in a specific community) are given classes. Each major
region of the page is treated as a named box. For an introduction to the portal page,
see Chapter 2, "Portal Page Layout".

These changes to the portal UI make it possible to modify page layout and design
using the portal CSS template file. You can also use CSS to hide specific functionality
exposed in the portal page. This section provides basic syntax rules and customization
examples.

5.1.1 Syntax Guidelines
The portal CSS template file follows standard CSS syntax rules. For details on CSS, see
http://www.w3.org/Style/CSS/. Below are some basic rules to keep in mind when
modifying page styles.

To apply styles to a specific page, use the page ID. The example below sets the
background color for the page with ID 1.

#pt-page-1
{

Note: This approach is provided to support the legacy user interface;
the recommended way to customize the portal page is using Adaptive
Layouts and Adaptive Styles. For details, see Chapter 3, "Using
Adaptive Page Layouts" and Chapter 4, "Using Adaptive Styles (CSS
Customization)."

http://www.w3.org/Style/CSS/

Customizing Portal Page Layout and Design

5-2 User Interface Customization Guide for Oracle WebCenter Interaction

background-color: red;
}
You can change style settings for a specific user or type of user (administrator or
guest). The example below displays a special header image on all browse-mode pages
for guests. To modify a style for a specific user, replace "guest" with the name of the
appropriate portal user object (for example, .ptPageUser-mycompany domain
ad\Joe Smith).

.ptPageUser-guest #pt-header
{
background-image: url(/imageserver/plumtree/portal/private/img/example_guest.gif);
}
You can also change styles for specific communities. The example below sets the
background color for the community with ID 200.

.ptCommunity-200
{
background-color: #AAA;
}

5.1.2 Customizing Layout
The portal CSS template file allows you to make a wide range of changes to the layout
of the portal page. Below are some examples of layout customizations.

■ Modify page width: Specify whether a page spans the whole window or a portion
of the window. This provides support for specific audiences such as those on
smaller monitors. The example below limits the page to 800 x 200 pixels.

.portalContent
{
width: 800px;
height: 200px;
overflow: auto;
}

■ Change navigation tab location: Modify the location of the portal navigation tabs.
You can apply changes to the entire portal, or to specific pages or groups of pages.
The example below sets the tabs to appear in the center of the page header.

#pt-user-nav
{
display: inline;
margin-left: 15px;
margin-right: 15px;
}

5.1.3 Customizing Style
The portal CSS template file allows you to make a wide range of style changes to the
portal page. Below are some examples of style customizations.

■ Customize portal banners and footers: Change the look and feel for portal
banners and footers. You can apply changes to the entire portal, or to specific
pages or groups of pages. For example, the code below changes the footer height.

#pt-footer { height: 36px; }
The code below hides the footer on the page with ID 1.

#pt-page-1 #pt-footer { display: none; }

Customizing Portal Page Layout and Design

Customizing Portal Layout Using CSS - Legacy User Interface 5-3

■ Change the background color for a specific page or community: Modify the
background color for a single page or a specific community. The example below
sets the background color for the community with ID 200. To change the color
scheme for the entire portal, modify the style sheet as explained in the next
section, Section 5.4, "Deploying Portal Style Sheet Customizations (CSS Mill)".

.ptCommunity-200
{
background-color: #AAA;
}

■ Change the background for a specific user: Modify the background of the portal
for a specific user or type of user (administrator or guest). The example below
displays a background image on all browse-mode pages for administrators.

.ptPageUser-administrator
{
background-image: url(/imageserver/plumtree/portal/private/img/example_
administrator.gif);
}

■ Customize portal navigation tabs: Define the dimension of portal tabs.

#pt-user-nav
{
 width: 25px;
 }

■ Customize form elements: As with any CSS implementation, you can use the
portal CSS template file to control text box sizing, button colors and fonts, and
more.

■ Reference images: Reference images through CSS, including banner and branding
images, and background images applied to page components. The example below
displays a special header image on all browse-mode pages for guests.

.ptPageUser-guest #pt-header
{
background-image: url(/imageserver/plumtree/portal/private/img/example_
guest.gif);
}

5.1.4 Setting Constraints
The portal CSS template file allows you to remove specific functionality from the page
for a group of users or for a specific page or community.

Note: Using CSS to hide functionality is not a secure means of preventing user-server
interaction. All examples are for demonstration purposes only and are not meant to
imply a complete solution to any overall security scheme.

■ Disable specific functionality: Turn off controls for a specific group of users or
for a specific page or community. You can disable navigation, search, and a
variety of links, including My Home, My Account, Login/Logout and Help. The
example below disables search controls for all guests.

.ptPageUser-guest #pt-search-controls
{
display: none;
}

5.1.5 Changing the Portal Color Scheme
The portal comes with 18 standard color schemes:

Customizing Portal Page Layout and Design

5-4 User Interface Customization Guide for Oracle WebCenter Interaction

To create a custom color scheme, start with an existing properties file.

1. In the portal Image Service, navigate to PT_
HOME\ptimages\tools\cssmill\prop-color.

2. Make a copy of the color.18.properties file and rename it to "color.19.properties"
(it is a best practice to create a new file so you can preserve all original copies of
the properties files).

3. Open the new file in a text editor and modify the properties to create your custom
color scheme. Enter the same simplified name for the new color scheme for each of
the language style sheets. The example below creates a new color scheme based on
the United States Postal Service web site.

<!-- color.19.properties -->

colorscheme.name.de=usps
colorscheme.name.en=usps
colorscheme.name.es=usps
colorscheme.name.fr=usps
colorscheme.name.it=usps
colorscheme.name.ja=usps
colorscheme.name.ko=usps
colorscheme.name.pt=usps
colorscheme.name.zh=usps

color.bg.darkest=#CC0000
color.bg.darker=#0066CC
color.bg.medium=#B5C4E1
color.bg.lighter=#99CCFF
color.fg.medium=#003399
color.fg.light=#FFFFFF
color.fg.alert.warning=RED
color.fg.alert.confirm=GREEN
color.link.hover=#E7EFA1
Save the new properties file and close it.

4. Navigate to PT_HOME\ptimages\tools\cssmill. Open the file
css-mill-ant-1-6.xml.

5. Search for the make_community_css target.

6. Copy the last sequence entry and paste it at the end of the list. Make sure to copy
the entire entry: <make_comm_color_css COLOR="18"
CSSPATH="@{CSSPATH}"/>. Modify the COLOR value by changing it to the

1: Purple/Violet 10: Blue Gray

2: Golden Brown 11: Dark Teal

3: Blue Purple 12: Dark Gray

4: Blue Green 13: Olive

5: Medium Brown (Cinnamon) 14: Standard (Royal Blue)

6: Strawberry 15: Pine Green

7: Purple (Grape) 16: Cranberry

8: Gold 17: Orange/ Rust

9: Dark Brown 18: Teal

Customizing Portal Page Layout and Design

Customizing Portal Layout Using CSS - Legacy User Interface 5-5

number for your custom color scheme. The example below uses "19" for the new
color property file created in the prevous section.

<!-- make_community_css -->
<target name="make_community_css" depends="make_css_dir">
<make_community_css CSSPATH="css/">
</make_community_css>
</target>
<macrodef name="make_community_css">
<attribute name="CSSPATH" default="css/"/>
<sequential>
<make_comm_color_css COLOR="1" CSSPATH="@{CSSPATH}"/>
<make_comm_color_css COLOR="2" CSSPATH="@{CSSPATH}"/>
...
<make_comm_color_css COLOR="18" CSSPATH="@{CSSPATH}"/>
<make_comm_color_css COLOR="19" CSSPATH="@{CSSPATH}"/>

<make_index FILENAME="community-themes.txt" CSSPATH="css/"
INDEX="css/community-themes.txt"/>
</sequential>
</macrodef>

7. Search for the make_index target.

8. Copy the last sequence entry and paste it at the end of the list. Make sure to copy
the entire entry: <append_index_for_color COLOR="18"
INDEX="@{INDEX}"/>. Modify the COLOR value by changing it to the number
for your custom color scheme. The example below uses "19" for the new color
property file created in the prevous section.

target name="make_index" depends="make_css_dir">
<make_index>
</make_index>
</target>

<macrodef name="make_index">
<attribute name="FILENAME" default="community-themes.txt"/>
<attribute name="CSSPATH" default="css/"/>
<attribute name="INDEX" default="css/community-themes.txt"/>
<sequential>
<echo> Making @{INDEX}</echo>
<tstamp prefix="backup"/>
<touch file="@{INDEX}"/>
<copy filtering="false"
overwrite="yes"
file="@{INDEX}"
tofile="backup/@{FILENAME}${timestamp_appendix}"/>

<delete file="@{INDEX}"/>
<touch file="@{INDEX}"/>

<append_index_for_color COLOR="1" INDEX="@{INDEX}"/>
<append_index_for_color COLOR="2" INDEX="@{INDEX}"/>
...
<append_index_for_color COLOR="18" INDEX="@{INDEX}"/>
<append_index_for_color COLOR="19" INDEX="@{INDEX}"/>
</sequential>
</macrodef>

9. Save the css-mill-ant-1-6.xml file and close it.

To deploy your customizations, run the CSS Mill as described in Section 5.4,
"Deploying Portal Style Sheet Customizations (CSS Mill)".

Customizing Portlet Layout and Style

5-6 User Interface Customization Guide for Oracle WebCenter Interaction

5.2 Customizing Portlet Layout and Style
The CSS template also allows you to customize portlet content and design in a variety
of ways. You can customize specific portlets using the unique ID assigned to each
portlet, or use CSS classes to modify the design of a group of portlets (for example,
those in the first column of a two-column page). You can also set constraints for
portlets, including limiting a specific portlet to a three-column layout or preventing
users from collapsing portlets.

This section provides basic syntax rules and customization examples.

5.2.1 Syntax Guidelines
The portal CSS template file follows standard CSS syntax rules. For details on CSS, see
http://www.w3.org/Style/CSS/. Below are some basic rules to keep in mind when
modifying portlet styles.

To apply a CSS tag to a specific portlet, use the portlet ID. the example below increases
the size of the portlet title for the portlet with ID 6. (You can also define basic styles for
a specific portlet within the portlet code.)

#pt-portlet-6 .portletTitle
{
height: 26px;
}
You can also apply styles to groups of portlets, including those on a specific page or in
a specific community. To apply styles to a portlet on a specific page or community, use
the page or community ID. The example below removes the portlet preferences link
for portlets on the page with ID 100.

.portletPrefsButton #pt-page-100
{
display: none;
}

5.2.2 Customizing Portlet Style
The portal CSS template file allows you to make a wide range of style changes to
portlets. Following are examples of portlet style customizations using the portal CSS
template file.

■ Change portlet color schemes: Change the color scheme of portlets for specific
columns.

#pt-portlet-100 { background-color: white; }
#pt-portlet-100 .platPortletHeaderBg { background-color: tan; }
You can also define basic styles for portlets within the portlet code (instead of in
the CSS template file). Use the pt:token adaptive tag to reference the portlet ID
and ensure that the style is only applied to the current portlet. This code sets the
portlet background to tan. (For details on adaptive tags, see the Oracle WebCenter
Interaction Web Service Development Guide.

<pt:namespace pt:token="$$TOKEN$$"
xmlns:pt='http://www.plumtree.com/xmlschemas/ptui/'/>
<style>
#pt-portlet-$$TOKEN$$ { background-color: tan; }
</style>

■ Add custom portlet padding: Control the padding around individual portlets,
groups of portlets in a column, and selective portlets. The sample code below adds
padding below the portlet with ID 43.

http://www.w3.org/Style/CSS/

Adding New Language Style Sheets

Customizing Portal Layout Using CSS - Legacy User Interface 5-7

#pt-portlet-43 .portletBody
{
padding-bottom: 5px;
}

5.2.3 Setting Constraints
The portal CSS template file allows you to set constraints for portlets. Below are some
examples.

■ Set the portlet width for specific pages or layouts: Set the width of a portlet for a
specific page or set of pages. You can define portlet settings by page,
layout/column, or community. The example below limits the portlet with ID 15 to
a width of 250 pixels on the page with ID 1.

#pt-page-1 #pt-portlet-15
{
width: 250px;
}

■ Prevent certain users from collapsing portlets: Disable the collapse option for a
group of users or for portlets on a specific page. You can also prevent users from
collapsing a specific portlet by using the portlet ID.

.ptPageUser-guest .portletCollapseButton
{
display: none;
}
Note: Using CSS to hide functionality is not a secure means of preventing
user-server interaction. All examples are for demonstration purposes only and are
not meant to imply a complete solution to any overall security scheme.

To deploy your customizations, run the CSS Mill as described in Section 5.4,
"Deploying Portal Style Sheet Customizations (CSS Mill)".

5.3 Adding New Language Style Sheets
If you add support for an additional language to the portal, you must add the
corresponding style sheets for that language. The portal was designed to make adding
languages and generating the language style sheets relatively easy.

Each language file in the \ptimages\tools\cssmill\prop-text folder has
language-specific values for font style, font size, text style, etc. This design makes it
easy to change the default font for each language. For example, if you want the default
font for the Japanese user interface to be Tahoma, add Tahoma to the "ja" language file
in the prop-text folder.

After adding a language file, you must also edit the build.xml file to generate the new
language style sheets.

For example, the steps below explain how to add "Dutch" as a portal user interface
language.

1. Navigate to the \ptimages\tools\cssmill\prop-text folder in the Image Service.
Copy one of the existing files to the same folder and rename it using the language
conventions in ISO-639-1 and ISO-3166. For example, for Dutch, rename the file to
"nl".

2. Open the new file in a text editor and make any necessary modifications for the
new language. For example, to add a new default font, you could change the
following line: font.largest=20px

Adding New Language Style Sheets

5-8 User Interface Customization Guide for Oracle WebCenter Interaction

verdana,arial,helvetica,"sans-serif"to:font.largest=21px
Tahoma,"MS PGothic",Verdana,"sans-serif"Be sure to add the new font
for each font attribute in the language file.

3. Navigate to the \ptimages\tools\cssmill\prop-color folder in the Image Service.
Add the new language's translation for the name of the color in every color
properties file. For example, open the color.1.properties file and copy the last
colorscheme.name entry. Change the name according to the new language ID
used in step 1. In this example, you could copy the following line:
colorscheme.name.zh=\\u6DE1\\u7D2Band change it
to:colorscheme.name.nl=Lavendelblauw

4. Modify the Ant build script (build.xml) to include the new language to the style
sheet collection by following the steps below. (This is the only way the script
knows to create versions of the new style sheet for each language supported by the
portal.)

a. Navigate to the \cssmill directory and open the build.xml file in a text editor.

b. Add an entry for the new language within the make_main_css target: Copy
the last <antcall target="make_main_language_css"> entry and
paste it at the end of the list. Modify the <param name="LANGUAGE"
value="pt"/> tag by changing the value ("pt") to the language ID used in
step 1 ("nl").

c. Add an entry for the new language within the make_comm_color_css
target: Copy the last <antcall target="make_comm_lang_color_
css"> entry and paste it at the end of the list. Modify the <param
name="LANGUAGE" value="pt"/> tag by changing the value ("pt") to the
language ID used in step 1 ("nl").

d. Add an entry for the new language within the append_index_for_color
target: Copy the last <concat destfile="${INDEX}"
append="true">mainstyle${COLOR}-pt.css=${colorscheme.name.
pt}</concat> entry and paste it at the end of the list. Change the language
id in the new line to the new language id by changing the value ("pt") to the
language ID used in step 1 ("nl"). In this example, the new line would look like
this:<concat destfile="${INDEX}"
append="true">mainstyle${COLOR}-nl.css=${colorscheme.name.
nl}</concat>

e. Save the build.xml file and close it.

5. Create the new style sheets by running the make_all batch file as explained in the
next section, Section 5.4, "Deploying Portal Style Sheet Customizations (CSS Mill)".

6. Verify that the new language style sheets were created based on the new language
property file. Navigate to the cssmill\css directory and confirm that there are 20
new style files with the new language ID used in step 1 ("mainstyle-nl.css"). For
further verification, open the community-themes.txt file (in the \css directory)
and confirm that there is a new entry corresponding to the language ID used in
the new language property file.

7. After confirming that your changes are correct, move the new style sheet files from
the \cssmill\css folder to the \imageserver\common\public\css folder used by
the portal.

8. Restart the Java Application Server.

Deploying Portal Style Sheet Customizations (CSS Mill)

Customizing Portal Layout Using CSS - Legacy User Interface 5-9

5.4 Deploying Portal Style Sheet Customizations (CSS Mill)
After changing the portal style sheet template, you must run the CSS Style Sheet Mill
to deploy your customizations. The CSS Mill facilitates the management and
maintenance of style sheets and allows you to create new style sheets quickly and
easily using property files to define key attributes used in the portal's style classes. The
portal comes with a set of standard property files, and you can create new files for use
in custom style sheets. Although it is possible to edit existing property files, it is
recommended practice to make a new property file so you do not lose any
information.

The CSS Mill creates all the portal style sheets dynamically using the portal style sheet
template file, making them disposable. The entire set is created by running a batch file.
This configuration also allows you to update portal style attributes (for example, the
background color across all pages) by editing a single root property file; when the
batch file is run, the changes are propagated through all instances of the attribute in
every style sheet.

5.4.1 CSS Mill Structure
The files used by the CSS Mill are located in the PT_HOME\ptimages\tools\cssmill
directory in the portal Image Service. This directory includes the following folders:

■ \prop-text contains text property files; a different file is provided for each
language supported by the portal.

■ \prop-color contains color property files; a different file is provided for each of the
18 standard color combinations available in the portal.

■ \templates contains the files that define the styles used by the portal. Other
products can have their own templates.

Each property name in a property file represents a marker used in a template. The CSS
Mill uses the values set in the property files to replace the corresponding markers in
the associated style sheet template and create new style sheets for use by the portal. To
view where a property name is used within a style sheet, look for the corresponding
marker in one of the templates. Markers use the syntax @MarkerName@.

The root \cssmill folder contains the batch files and the build.xml file that provides
the necessary Ant scripts to create the style sheets. There are three commonly-used
batch files:

■ make_all creates all portal style sheets by replacing the markers in the templates
with the corresponding values from the property files. This script creates a version
of each style sheet for each language supported by the portal and places the files in
the \css folder, and saves a backup of the previous version in the \backup
directory.

■ make_portal_css creates only the default portal style sheets. The default portal
style sheet is the single color style sheet that appears in the default portal.

■ make_community_css creates only the community style sheets. Community style
sheets are the 18x8 style sheets used in header portlets.

5.4.2 Using the CSS Mill
To deploy changes made to the portal style sheet template, you must run the CSS Mill
to create new style sheets for the portal. You can use one of the standard color schemes
or implement a custom color scheme from a custom properties file. These instructions
utilize both the portal server and the portal Image Service.

Deploying Portal Style Sheet Customizations (CSS Mill)

5-10 User Interface Customization Guide for Oracle WebCenter Interaction

These instructions use Ant 1.6.x.

1. Open a command prompt on the portal Image Service and change the directory to
the CSS Mill root directory (PT_HOME\ptimages\tools\cssmill).

2. Run the following command: ant make_all. This command creates new style
sheets for each of the properties files.

Note: If you are implementing a new color scheme, you can use the new style
sheets created by the ant make_all command or overwrite the default style
sheets using ant make_all -DCOLOR=19 (set the -DCOLOR parameter to the
number of the properties file that should be used).

3. Open Windows Explorer and navigate to PT_
HOME\ptimages\tools\cssmill\css. Sort by Date Modified and find the files
generated in the previous step.

4. Navigate to PT_HOME\ptimages\tools\cssmill\css and copy the stylesheets
for the color scheme you want to implement (to continue the example in the
previous section, you would copy the mainstyle19 style sheets). If you did not
implement a new color scheme or chose to overwrite the default style sheets, copy
the mainstyle files instead.

5. Paste the copied files to PT_
HOME\ptimages\imageserver\plumtree\common\public\css. Select "Yes to
all" if asked whether you would like to overwrite the existing files of the same
name.

6. On your portal server, open Windows Explorer and navigate to PT_
HOME\settings\portal and open the portalconfig.xml file in a text editor.

7. Find the <StyleSheetName> tag (under the <MyPages> tag) and change the
value attribute to "mainstyle#" where "#" is the number of the color scheme
you want to apply. In the example below, the color scheme is changed to the
custom color scheme, #19.

<!-- The name for the portal's default stylesheet. -->
<StyleSheetName value="mainstyle19"></StyleSheetName>
Note: If you did not implement a new color scheme or chose to overwrite the
default style sheets, the value attribute should be "mainstyle".

8. Still on your portal server, reload your portal. (It is not necessary to restart the
application server after running the CSS Mill.)

6

Using String Replacement 6-1

6Using String Replacement

All strings used in the portal UI are stored in language files in the PT_
HOME\ptportal\version\i18n folder. Using these language files, you can customize
existing strings or add new strings to the portal UI.

Each individual language folder within the i18n directory contains a set of xml files
specific to a single language. Folders are named according to the standard ISO 639
language code (i.e., de=German, en=English, es=Spanish, fr=French, it=Italian,
ja=Japanese, ko=Korean, nl=Dutch, pt=Portugese, zh=Chinese).

The files in each language folder contain sets of strings for specific sections of the
portal UI. The most commonly customized files are listed below:

■ ptmsgs_portaladminmsgs.xml: Strings used in the Administration section of the
portal.

■ ptmsgs_portalbrowsingmsgs.xml: Strings used for most of the messages seen by
portal users.

■ ptmsgs_portalcommonmsgs.xml: Strings used for common messages repeated
throughout the portal.

■ ptmsgs_portalinfrastructure.xml: Strings used in the portal's underlying
infrastructure components (i.e., the "Finish" and "Cancel" seen on editor pages).

6.1 Customizing Existing Strings in Language Files
The basic procedure for replacing a string in the portal UI is summarized below. See
the string replacement examples in the sections that follow for a detailed explanation.

1. Search for the string in the language folder of your choice. To use Windows
Explorer's "Containing text" feature, right-click on the language folder and choose
Search....

2. Open any files that contain the string in a text editor. (The language files have a
UTF-8 byte order mark (BOM) at the beginning of each file to help editors identify
the file as UTF-8 character encoding. The BOM for UTF-8 is 0xEF 0xBB 0xBF. Use
an editor that is capable of reading and writing UTF-8 files.

3. Replace the string with the message of your choice. Change the text between the
<S> </S> tags. Some strings are used in more than one place. As noted above,
NEVER change the numbers in the <S> tags or modify the order of the strings in a
language file. Also note that XML tags are case sensitive; be careful not to
inadvertently change the case of any tag.

4. After editing an XML language file, view the file in your browser to verify that the
XML is well formed.

Adding Strings to Language Files

6-2 User Interface Customization Guide for Oracle WebCenter Interaction

5. If your portal is load balanced, you must copy the updated language files to all
portal servers.

6. Restart your application server and restart the portal. If the portal fails to start up,
you might have corrupted the language files. It is a good practice to use Logging
Spy to watch the portal load the files to verify that the XML files have been edited
correctly.

Note: Making changes to one language folder does not change the same string in any
other language folder. To internationalize your string replacements, you must add a
translated version of the string to the appropriate file in each language folder.

6.2 Adding Strings to Language Files
Some customizations require additional UI strings. If your portal supports more than
one language, adding strings to the portal XML language files allows your new strings
to be localized using the portal’s multi-language framework.

Note: To add new strings, use a new XML language file or the SampleMsgs.xml file
instead of adding strings to any existing ptmsgs*.xml file. Adding strings to
ptmsgs*.xml files can result in string number conflicts.

The sample HTML below can be used in a portlet to retrieve the first string from a new
XML language file called my_ messsage_file.xml. The portal knows the locale of the
current user and retrieves the string from the correct language folder automatically.
(The ".xml" extension is not required when specifying the message file name.) For
detailed information on adaptive tags, see theOracle WebCenter Interaction Web Service
Development Guide.

<pt:logic.value pt:value="$#1.my_message_file"/>

The GetString method of the ActivitySpace object can also be used to retrieve
strings. The ActivitySpace knows the language of the current user; the GetString
method automatically retrieves the message from the correct language folder.

The sample code below retrieves the first string from a new XML language file called
my_ messsage_file.xml:

import com.plumtree.uiinfrastructure.activityspace.*;
...
public String MyNewCode() {
myActivitySpace.GetString(1, "my_message_file");
...
}
Note: To add a new XML language file, you must add the file to every language
folder, even if you do not provide translated strings for each language. The portal will
fail to load if the XML language files are not synchronized for every language.

6.3 Example 1: Hello World Corporation
This example shows how to replace the text displayed at the bottom of all portal
pages. As noted earlier, changes to one language folder (in this example, the \en
folder) do not change the string for other languages.

1. In your browser window, copy the string you want to search for.

2. Navigate to the \en language folder in the \i18n directory.

3. Right-click on the language folder and choose Search....

Example 2: Custom Login Instructions

Using String Replacement 6-3

4. Paste the string into the Containing text field and click Search Now.

5. Open the ptmsgs_portalcommonmsgs.xml file in a text editor.

6. Search for the string within the ptmsgs_portalcommonmsgs.xml file.

7. Replace the string with the string you want displayed on each page (for example,
"Hello World Corporation").

8. Save and close the ptmsgs_portalcommonmsgs.xml file.

9. Restart your application server.

10. Reload your portal; the new string should appear in the footer at the bottom of the
page.

6.4 Example 2: Custom Login Instructions
This example shows how to replace the login instructions on the main login page.

1. In your browser window, copy the string you want to change, for example "Log in
to your personalized portal account".

2. Navigate to the \en language folder in the \i18n directory.

3. Right-click on the language folder and select Search....

4. Paste the string into the Containing text field and click Search Now.

5. Open the ptmsgs_portalcommonmsgs.xml file in a text editor.

6. Search for the "Log in to your personalized Portal account" string within the
ptmsgs_portalcommonmsgs.xml file.

7. Replace the string with the string you want to appear on the login page, for
example "Log in to the Hello World portal account".

8. Save and close the ptmsgs_portalcommonmsgs.xml file.

9. Restart your application server.

10. Reload your portal; the new string should appear on the login page.

Example 2: Custom Login Instructions

6-4 User Interface Customization Guide for Oracle WebCenter Interaction

7

Customizing Experience Definitions 7-1

7Customizing Experience Definitions

Experience definitions allow you to tailor portal experiences for different groups of
users. In a single portal implementation, you can create a distinct user experience for
each audience. Using, experience definitions, you can specify which navigation and
branding schemes, mandatory links, and default home pages (such as a My Page, a
particular community page, or the Directory) to display to each set of users.

Experience definitions work well for organizations that have a variety of audiences or
subsidiaries. In a large company, each major department within the organization
might need a different view of the portal.

Experience definitions are configured and maintained through portal administration.
After creating an experience definition, you must create experience rules to assign the
experience definition to an audience. For details, see the sections that follow.

For instructions on creating experience definitions and configuring login page options,
see the Administrator Guide for Oracle WebCenter Interaction and the portal online help.

7.1 Creating Experience Rules
An experience rule contains a list of conditions, all of which must be met for the rule to
evaluate to true. When a rule evaluates to true, users are directed to the experience
definition specified in the rule. Experience rules are ranked in order of priority; the
first rule to evaluate to true is applied. For more detailed information on how
experience rules are processed, see Chapter 11.5.3, "Experience Definition Control
Flow".

For example, you could create an experience rule based on community memberships.
The rule would include a condition of type "community" set to a specific community
or communities, for example "Human Resources" and "Personnel." The following
condition types are available by default:

■ URL: The URL used to access the portal. You can use an exact URL or use regular
expressions with wildcards. For example, if you enter *support* the condition will
match any URL containing "support" including http://support.acme.com and
https://www.myhome.com/support. The protocols http:// and https:// are
ignored in URL matching.

■ IP Address: The user's IP address. You can use an exact IP address or use regular
expressions with wildcards.

■ Group: The user's group membership.

■ Administrative Folder: The administrative folder that contains the user object.

■ Community: The current community (the community being viewed by the user).

Creating a Custom Condition Type

7-2 User Interface Customization Guide for Oracle WebCenter Interaction

You can also create your own condition types, explained in the next section.

An experience rule can have more than one type of condition, and each condition type
can have more than one value. A rule will evaluate to true if all conditions are met. A
condition will be considered met if any of the associated values are true. In other
words, values within the same condition type are evaluated with an implicit Boolean
OR between them, while values of different condition types are evaluated with an
implicit Boolean AND between them.

For example, an experience rule with a community condition with values "Human
Resources" and "Research" and an URL condition with the value
"http://www.plumtree.com" would result in the following expression: (Community =
Human Resources OR Personnel) AND (URL = http://www.plumtree.com). Members
of either the Human Resources or Personnel community who access the portal using
http://www.plumtree.com will be redirected to the experience definition specified in
the experience rule. Members of either community that use a different URL will not be
redirected. Users who access the portal via http://www.plumtree.com who are not
members of either community will not be redirected.

You can create multiple simple rules and combine them to form a complex expression.
The portal evaluates rules in the order listed in the Experience Rules Manager and
applies the first rule that evaluates to true.

Note: The ranking of experience rules is important. For example, you could create a
rule that directs users in the Marketing group to the Marketing experience definition
and another rule that directs users in the Research group to the Research experience
definition. If some users are in both groups, you must determine which rule should be
evaluated first. If you want users who belong to both groups to be directed to the
Research experience definition, make sure the Research experience rule is above the
Marketing experience rule.

■ The Guest Associations page in the Experience Rules Manager lists experience
rules and the resulting guest user if the rule evaluates to true. The rules listed on
this page may be a subset of all rules because the list only includes guest rules that
can be evaluated before a user logs in, for example, a URL or IP address rule.

■ The Folder Associations page shows which administrative folders are associated
with which experience definitions. If an experience definition has an associated
administrative folder, users created in that folder see the associated experience
definition only if no experience definition rule applies to those users. If no
experience rule applies to a user, and that user is not in an administrative folder
associated with an experience definition, the user sees the default experience
definition.

For more information on the Experience Rules Manager, see the portal online help.

7.2 Creating a Custom Condition Type
If one of the standard condition types listed in the previous section does not meet your
needs, you can create your own condition type. The portal dynamically discovers and
loads all condition types, including custom condition types.

There are two kinds of condition types:

■ Guest Condition Types can be applied before a user is logged in, using
information sent by the browser (or other device).

■ Regular Condition Types are applied using profile information that is only
available after the user has logged in.

Creating a Custom Condition Type

Customizing Experience Definitions 7-3

The sample code below illustrates how to create a condition type based on the user's
browser (Firefox or Internet Explorer). You could use this new condition type to allow
only users with Firefox to see the Directory.

The classes referenced below are in the
com.plumtree.portaluiinfrastructure.condition and com.plumtree.server.condition
packages. For a full list of interfaces and methods, see the portal API documentation.

7.2.1 Step 1: Create a Class (A*ConditionType)
Extend either the ARegularConditionType or AGuestConditionType class
(com.plumtree.portaluiinfrastructure.condition), depending on whether you are
creating a regular condition type or a guest condition type.

7.2.2 Step 2: Create a Condition Type ID
Use the GetTypeID (com.plumtree.server.condition) method to retrieve a unique ID
for the condition type. All condition types must be uniquely identified, since the ID is
used as a key for storing and retrieving information.

Java:

public int getTypeID()
{
return ConditionTypeConstants.CONDITIONTYPE_ID_BASE + 1;
}
C#:

public virtual public override int GetTypeID()
{
return ConditionTypeConstants.CONDITIONTYPE_ID_BASE + 1;
}

7.2.3 Step 3: Implement the Compare Method
The Compare (com.plumtree.server.condition) method evaluates experience rules by
comparing the values of condition types with the values for the current user. When the
portal encounters a condition, it retrieves the appropriate condition type and calls this
method to compare the value of the condition with the current value in the user's
environment. The result of the comparison determines whether the condition has been
met.

You can add debug messages to be displayed on the MyPage when troubleshooting
(see Section 7.2.8, "Debugging" below). Any exceptions caught from this method will
be considered as a return value of "false" and will be discarded.

For this example, the Compare method compares the browser of the user to the value
specified in the condition.

Java:

public boolean Compare(XPHashtable htUserEnvironment, IValue conditionValue,
XPStringBuilder sbDebugText) <p class=Numbered style="font-family: Courier;
font-size: 10.0pt; font-weight: normal;">
{
 // Cast the value into a string type.
 String strUserAgent = (String) conditionValue.GetValue();
 BrowserType currentBrowser = (BrowserType) htUserEnvironment.GetElement(new
 Integer(GetTypeID()));
 if (strUserAgent.equals(currentBrowser.GetBrowserName()))
 {

Creating a Custom Condition Type

7-4 User Interface Customization Guide for Oracle WebCenter Interaction

 if (null != sbDebugText)
 {
 sbDebugText.Append("Condition on User Agent returns true because the User
Agent: ")
 .Append(strUserAgent).Append("matches the one found in the user's
environment: ")
 .Append(currentBrowser.GetBrowserName()).Append("
");
 }
 return true;
 } else {
 if(null != sbDebugText)
 {
 sbDebugText.Append("Condition on User Agent returning false because
the User Agent: ")
 .Append(strUserAgent).Append(" does not match the one found in the
user's environment: ")
 .Append(currentBrowser.GetBrowserName()).Append("
");
 }
 return false;
 }
 }
C#:

public override bool Compare(XPHashtable htUserEnvironment, IValue conditionValue,
XPStringBuilder sbDebugText)
 {
 if (conditionValue.GetType() != ValueTypeEnum.STRING ||
!htUserEnvironment.ContainsKey(GetTypeID()))
 {
 if (null != sbDebugText)
 {
 sbDebugText.Append("Condition on User Agent returning false because
either the condition value is of the wrong type,").Append(" or the User Agent was
not found in the user's environment
");
 }
 return false;
 }
 // Cast the value to type: String
 String strUserAgent = (String) conditionValue.GetValue();
 BrowserType currentBrowser = (BrowserType)
htUserEnvironment.GetElement(GetTypeID());
 if (strUserAgent.Equals(currentBrowser.GetBrowserName()))
 {
 if (null != sbDebugText)
 {
 sbDebugText.Append("Condition on User Agent returning true because the
User Agent: ")
.Append(strUserAgent).Append(" matches the one found in the user's environment: ")
.Append(currentBrowser.GetBrowserName())
.Append("
");
 }
 return true;
 } else
 {
 if (null != sbDebugText)
 {
 sbDebugText.Append("Condition on User Agent returning false because the
User Agent: ")
.Append(strUserAgent).Append(" does not match the one found in the user's
environment: ")
.Append(currentBrowser.GetBrowserName())

Creating a Custom Condition Type

Customizing Experience Definitions 7-5

.Append("
");
 }
 return false;
 }
 }

7.2.4 Step 4: Retrieve Values
The GetCurrentValue
(com.plumtree.portaluiinfrastructure.condition.A*ConditionType) method retrieves
the current value used in the Compare method and puts it in a hash table that keeps
track of the user's environment.

The GetConditionValue method retrieves the data and converts it to the expected
value type. You can use this method to validate your code, since any value that is not
acceptable for the condition will cause an exception to be thrown.

In this example, the method retrieves the user's browser as a string, such as "Firefox"
or "MSIE".

Java:

public void GetCurrentValue(XPLimitedRequest xpRequest, IPTSession
guestReadOnlySession, XPHashtable htUserEnvironment)
{
htUserEnvironment.PutElement(new Integer(GetTypeID()), new
BrowserType(xpRequest.GetHeader("User-Agent")));
}
public Object GetConditionValue(int nRow, IPTGrowableSortedArrayWrapperRO saData)
{
 Object result = saData.GetItem(nRow, GrowableListModel.EXPLIST_SORTEDARRAY_
PROPID_INPUTTEXT);
 String browser = (String) result;
 if (!browser.equals("MSIE") || !browser.equals("Netscape") ||
!browser.equals("Firefox") || !browser.equals("Mozilla") ||
!browser.equals("Safari"))
 {
 throw new ValidationFailedException();
 }
 return result;
}
C#:

public override void GetCurrentValue(XPLimitedRequest xpRequest, IPTSession
guestReadOnlySession, XPHashtable htUserEnvironment)
{
htUserEnvironment.PutElement(GetTypeID(), new
BrowserType(xpRequest.GetHeader("User-Agent")));
}
public override Object GetConditionValue(int nRow,
IPTGrowableSortedArrayWrapperRO saData)
 {
 Object result = saData.GetItem(nRow, GrowableListModel.EXPLIST_SORTEDARRAY_
PROPID_INPUTTEXT);
 String browser = (String) result;
 if (!browser.Equals("MSIE") || !browser.Equals("Netscape") ||
!browser.Equals("Firefox") || !browser.Equals("Mozilla") ||
!browser.Equals("Safari"))
 {
 throw new ValidationFailedException();
 }

Creating a Custom Condition Type

7-6 User Interface Customization Guide for Oracle WebCenter Interaction

 return result;
 }
The AddItemToMyConditionsList
(com.plumtree.portaluiinfrastructure.condition.A*ConditionType) method adds
values of conditions into a list. These stored values are later used by the Compare
method.

By default, condition types use a GrowableList
(com.plumtree.uiinfrastructure.expandablelist.GrowableList), but any list structure
that extends ExpandableList (com.plumtree.portaluiinfrastructure.expandablelist)
can be used.

This example uses the default GrowableList.

Java:

//This condition uses a GrowableList. It is called right before the Rules Editor
is opened.
public void AddItemToMyConditionsList(Object objItem, ExpListModel myListModel,
IPTSession ptSession)
 {
 GrowableListModel myGrowableListModel = (GrowableListModel) myListModel;
 myGrowableListModel.AddRowsToList(new String[] {XPConvert.ToString(objItem)});
 }
C#:

public override void AddItemToMyConditionsList(Object objItem, ExpListModel
myListModel, IPTSession ptSession)
{
 GrowableListModel myGrowableListModel = (GrowableListModel) myListModel;
 myGrowableListModel.AddRowsToList(new
String[]{XPConvert.ToString(objItem)});
}

7.2.5 Step 5: Register the Condition Type Class
Add your new condition type to ConditionTypes.xml (PT_
HOME\settings\portal\dynamicloads\Plugins). The portal uses this file to
dynamically discover all condition types.

The first four items listed are the standard condition types installed with the portal.
Add your custom condition type to the end of the list. In the example below, the
custom condition type created in the previous steps is added as
ConditionTypeBrowser.

<interface name="com.plumtree.portaluiinfrastructure.condition.AConditionType" />
<interfaceassembly name="portaluiinfrastructure" />
<class
name="com.plumtree.portalpages.condition.conditiontypes.ConditionTypeURLDomain"/>
<class
name="com.plumtree.portalpages.condition.conditiontypes.ConditionTypeClientIPAddre
ss"/>
<class
name="com.plumtree.portalpages.condition.conditiontypes.ConditionTypeCommunityID"/
>
<class
name="com.plumtree.portalpages.condition.conditiontypes.ConditionTypeGroupID"/>
<class
name="com.plumtree.portalpages.condition.conditiontypes.ConditionTypeBrowser"/>

Creating a Custom Condition Type

Customizing Experience Definitions 7-7

7.2.6 Step 6: Deploy Your Custom Code
Once you have coded the custom condition type, you must deploy your custom class
for use by the portal. The process is different for Java and .NET.

Java:

1. Place a copy of the new jar file in PT_HOME\ptportal\6.0\lib\java.

2. Add the jar to your portal.war file in PT_HOME\portal\6.0\webapp. Always
create a backup of your portal.war file before making any changes.

a. Unzip the portal.war file.

b. You will see the following directories: \conf, \META-INF and \WEB-INF.
Place a copy of your jar file in \WEB-INF\lib.

c. Rebuild the portal.war file by zipping up the \conf, \META-INF and
\WEB-INF directories.

.NET:

Place the new dll file in the following locations:

■ PT_HOME\ptportal\6.0\webapp\portal\web\bin

■ PT_HOME\ptportal\6.0\bin\assemblies.

7.2.7 Step 7: Restart the Portal
After you restart the portal, you should see the new condition type in the Experience
Rules Manager.

7.2.8 Debugging
You can configure the portal to display debugging messages to troubleshoot problems
with your condition types and experience rules. Go to portal administration and click
Select Utility | Portal Settings to open the User Settings Manager. Under Debug
Mode, select Enable Experience Definition Rules Debug Mode to display experience
rules debug messages on My Pages. Enabling this mode adds the option to display
debug messages to users' My Account | Display Options | Advanced Settings page.

Creating a Custom Condition Type

7-8 User Interface Customization Guide for Oracle WebCenter Interaction

Part II
Part II Customizing Portal Functionality

Oracle WebCenter Interaction supports customizing and extending all aspects of
portal functionality. The most common options are detailed in this section.

This section contains the following chapters:

■ Chapter 8, "Customizing Portal Login": The portal login page can be customized
for different groups of users. A common customization is to provide different
branding on the login page based on the URL used to access the portal. This
allows you to provide each group of users with a seamlessly branded portal,
including pages viewed as the guest user. This can be implemented easily using
Experience Definitions. You can also create a custom login page using Adaptive
Layouts; for details, see Chapter 3, "Using Adaptive Page Layouts".

■ Chapter 9, "Customizing Portal Navigation": Navigation is a key element of the
portal page, providing links to available portal pages and resources, including My
Pages, communities, the Directory and Administration. Experience definitions
allow you to add custom links to the navigation pane that point to community
pages, documents, and web pages without writing any code. Adaptive Layouts
allow you to define the navigation section of the page using tags.

■ Chapter 10, "Customizing Portal Search": Oracle WebCenter Interaction search
indexes and searches all the documents, information, applications, communities,
discussions, web sites and other content accessible through the portal. You can
customize how search is implemented in the portal, and extend search to include
enterprise content.

■ The most common way to add functionality to a page is to implement custom
portlets. Basic portlets allow you to display custom HTML and content from other
applications. You can also use portlets to access portal components, and build
portlets that are updated dynamically based on user action and other events. For
details on creating portlets, see the Oracle WebCenter Interaction Web Service
Development Guide.

8

Customizing Portal Login 8-1

8 Customizing Portal Login

The login process is a key part of every user's portal experience. The login page is a
standard portal page, so there are many tools that allow you to customize the look and
feel or functionality of the login experience.

8.1 Customizing the Look and Feel of the Login Page
There are many ways to customize the look and feel of the login page.

■ Change the header, footer, top bar and navigation by modifying the default
experience definition. For details, see Chapter 7, "Customizing Experience
Definitions".

■ Create a custom login page using Adaptive Layouts. For details, see Chapter 3,
"Using Adaptive Page Layouts".

■ Change the text displayed on the page by modifying the corresponding string in
the language file(s). For instructions, see Chapter 6, "Using String Replacement".

8.2 Modifying Login Functionality
There are also several options for customizing and extending the functionality of the
login page.

■ Add custom authentication options to the login page using remote Identity
Services. Authentication Sources and Profile Sources allow you to use remote
services to import user credentials and information. For details, see the Oracle
WebCenter Interaction Web Service Development Guide.

■ Provide specific users and groups with a customized login experience using
experience definitions. For details, see Chapter 7, "Customizing Experience
Definitions".

■ Adaptive page layouts allow you to customize the portal user interface using
adaptive tags in standard XHTML. For details, see Chapter 3, "Using Adaptive
Page Layouts".

■ Modify portal login functionality using the ILoginActions Programmable Event
Interface (PEI). This interface includes methods for before/after login, failed login,
and logout. The HelloWorld Login and Login Usage Agreement examples in this
section provide sample code and detailed instructions. For details, see Chapter 12,
"Using PEIs".

Modifying Login Functionality

8-2 User Interface Customization Guide for Oracle WebCenter Interaction

■ If none of the above options provides the customization your require, you can
change basic login form components through the portalconfig.xml file (PT_
HOME\settings\portal). The following settings appear in the Authentication
section of portalconfig.xml. For more information on portalconfig.xml, see the
Administrator Guide for Oracle WebCenter Interaction.

– The AllowDefaultLoginPageAuthSource option specifies how the
authentication source dropdown appears.

Note: For modes 1-3, you must set DefaultAuthSourcePrefix to the
prefix of the default authentication source.

– The AuthSourcePrefix[i] tags allow you to order the authentication
source dropdown in any way you want. Entries in the list should follow the
following syntax: <AuthSourcePrefix[i] value="Auth Source
Prefix"></AuthSourcePrefix[i]> where [i] is replaced with the
position in which the item should appear (starting with 1).

To include the auth source in the list, make a new entry with the value you
want to appear in the list. This authentication source is used for users created
in the user database in the portal. For example, to include this authentication
source as the 3rd item in the list, use the following syntax:
<AuthSourcePrefix3 value="My custom auth
source"></AuthSourcePrefix3>

This list will be read in ascending order starting with 1 until there is no next
sequential number. The authentication sources with associated prefixes are
displayed first, followed by any authentication sources not included in the
ordered list.

– AllowAutoConnect allows you to turn the Remember My Password option
on (1) or off (0).

– RememberPassword allows you to set how long the portal remembers users'
passwords. The value must be formatted in minutes. The default is one week.

Mode Display

0 (default) Dsplays the authentication source dropdown in no special order

1 Hides the dropdown and automatically uses the default prefix for
users. Displays a link for users to display the authentication source
dropdown to select a non-standard authentication source.

2 Displays the dropdown, but pre-selects the default authentication
source.

3 Same as Mode 1 but does not provide a link to display the dropdown.

9

Customizing Portal Navigation 9-1

9 Customizing Portal Navigation

Customizing portal navigation allows you to change the look and feel of the entire
portal browsing experience. Portal navigation includes links to available portal pages
and resources, including My Pages, Communities, the Knowledge Directory and
Administration. Navigation schemes can also include links to external resources.

A navigation scheme defines:

■ The location of the navigation pane on the portal page

■ The look and feel of the navigation pane, including layout, color scheme and the
type of navigation links (i.e., pure HTML links, combobox menus or dropdown
menus).

Portal administrators select the navigation scheme for each experience definition in the
Experience Rules Manager. The scheme selected is implemented throughout the entire
experience definition. For details on experience definitions, see Chapter 7,
"Customizing Experience Definitions".

In Oracle WebCenter Interaction, there are three ways to customize portal navigation:

■ Built-in navigation options provide a wide range of possibilities. Many
customizations can be implemented without writing any code. For information on
the portal’s built in navigation options, see Section 9.1, "Built-In Navigation
Options" .

■ Adaptive Tags allow you to build and customize navigation in portlets using only
HTML and provided HTML tags representing navigation elements and data. You
can even build your own HTML tags to create very advanced and highly
customized navigations. For details on using adaptive tags, see Chapter 3, "Using
Adaptive Page Layouts" and the Oracle WebCenter Interaction Web Service
Development Guide.

■ Custom navigation schemes are an advanced customization that requires custom
code. Custom navigation schemes are explained in Section 9.2, "Creating a Custom
Navigation Scheme".

9.1 Built-In Navigation Options
Oracle WebCenter Interaction provides a wide range of possibilities for customizing
navigation without writing code.

■ Navigation Pane Locations

■ Built-in Display Options

Built-In Navigation Options

9-2 User Interface Customization Guide for Oracle WebCenter Interaction

9.1.1 Navigation Pane Locations
There are seven possible locations for the navigation pane. For an introduction to the
portal page, see Chapter 2, "Portal Page Layout".

■ Top Bar

■ Above Header

■ Below Header

■ Above Body

■ Below Body

■ Above Footer

■ Below Footer

■ Right

■ Left

The portal provides eight built-in Navigation Schemes:

■ Horizontal Dropdown Navigation (default) is implemented in the Above Header
navigation pane using JavaScript-driven dynamic menus.

■ Horizontal Combobox Dropdown Navigation is implemented in the Above
Header navigation pane using combobox menus.

■ Tabbed Section Left Vertical Navigation combines links in the Left navigation
pane and tabs in the Above Header navigation pane.

■ Left Vertical Navigation displays HTML links in the Left navigation pane.

■ Low Bandwidth and Accessibility Navigation is similar to left vertical navigation
but conforms to 508 accessibility standards.

■ Mandatory Links Only shows mandatory links if present (including
Administration), but no Communities, MyPages, or directory links. This scheme is
not intended for use in a deployed portal.

■ Portlet-Ready Navigationdisables all navigation panes and leaves the header and
footer enabled. (The header should contain all navigation since there is no other
way to navigate.) This option is intended for use with Adaptive Tags.

■ No Navigation shows no links at all except for Administration (users can log in
and out). This scheme is not intended for use in a deployed portal.

The location of the navigation pane can be combined with a different look and feel to
provide a completely unique portal experience.

Even if one of the standard navigation options does not meet your needs, always use
one of the built-in schemes as a starting place for navigation design.

9.1.2 Built-in Display Options
Some portal page components can disabled or modified without creating a custom
navigation scheme:

■ Header and Footer: The header and footer are configured in the experience
definition editor. You can also choose to disable the header and footer.

■ Color Scheme: The color scheme for navigation schemes is configured in the
experience definition editor. For details, see the portal online help. For details on
creating custom color schemes, see Chapter 4, "Using Adaptive Styles (CSS

Built-In Navigation Options

Customizing Portal Navigation 9-3

Customization)". If you are not using Adaptive Page Layouts, see Chapter 5,
"Customizing Portal Layout Using CSS - Legacy User Interface".

■ My Pages, Communities and Knowledge Directory: The links to portal areas
displayed in a navigation scheme can be disabled for the associated experience
definition, on the main page of the Experience Rules Manager. For details, see the
portal online help.

■ Portlet Preference links: The icons displayed in each portlet that link to the
associated User Preferences page can be removed using a setting in the
portalconfig.xml file. For details, see Section 9.1.3, "Customizing Built-In Display
Options (portalconfig.xml)"below.

■ Navigation Pane layout: You can customize the spacing and width of the
navigation panes by modifying the settings in the portalconfig.xml file. For details,
see Section 9.1.3, "Customizing Built-In Display Options (portalconfig.xml)"below.

You can also choose to disable the standard navigation panes and provide customized
navigation in another component using portlets with adaptive tags. For details, see the
Oracle WebCenter Interaction Web Service Development Guide.

9.1.3 Customizing Built-In Display Options (portalconfig.xml)
You can customize basic display options for any navigation scheme by modifying the
settings in the portalconfig.xml file (PT_HOME\settings\portal) in the Navigation
section. The settings in this file include toggling the Edit button in portlet banners and
changing the spacing or width of the navigation panes. You can also add settings to
this file for your custom navigation schemes.

Note: You must restart the portal after making changes to the portalconfig.xml file.

Some settings can be different for each navigation scheme. Navigation schemes are
referenced by the NavID defined within the associated INavType class (for details on
the INavType class, see the next section). Standard navigation schemes use negative
numbers to avoid collisions with custom schemes. The NavIDs for the standard
schemes are listed in the table below.

The Horizontal Dropdown JavaScript option (-7) is provided to support legacy 5.0
navigation and requires additional settings. For information, see Horizontal
Dropdown Navigation Settings later in this section.

Navigation Scheme NavID

Horizontal Dropdown (legacy) -1

Horizontal Combobox Dropdown -2

Tabbed Section Left Vertical -3

Left Vertical -4

Mandatory Links Only -5

No Navigation -6

Horizontal Dropdown JavaScript -7

508 Navigation -8

Portlet-Ready Navigation -9

Built-In Navigation Options

9-4 User Interface Customization Guide for Oracle WebCenter Interaction

9.1.3.1 Edit Portlet Preferences Icon
By default, each portlet with an associated User Preferences page includes an icon that
links to the preferences page for that portlet. To remove the Edit Portlets Preferences
icon from all portlets on a portal page, use the
intMyPortletPrefButtonInPortletHeader setting. If this value is set to 1, the icon is
displayed; if it is 0, the icon is not shown.

9.1.3.2 Table Spacing
Table spacing refers to the space between the different navigation panes (not between
portlets). The default table spacing provides a 10-pixel gap between panes. This setting
can be different for each navigation scheme. To set the table spacing, use the
intPlumtreeDPTableSpacing setting. You must append the NavID of the navigation
scheme you are modifying. For example, the code below sets the cell spacing for the
Tabbed Section Left Vertical scheme (-3) to 15 pixels.

<intPlumtreeDPTableSpacing-3 value="15" /> <!-- table spacing -->

9.1.3.3 Navigation Pane Width
The Left and Right navigation panes have a fixed width. If only one pane is specified,
the width is 200 pixels. If both panes are specified, the width of each is 100 pixels. This
layout works well for most applications. To override the default width settings, there
are four separate settings that allow you to set different widths depending on whether
or not both panes are specified: intPlumtreeDPLeftWidth and
intPlumtreeDPRightWidth are used if both panes are specified;
intPlumtreeDPLeftWidthAlone and intPlumtreeDPRightWidthAlone are used if
only one pane is specified.

To change these values, uncomment the settings you want to change and enter the
appropriate pixel values. As with table spacing, these settings are set separately for
each navigation scheme. You must append the NavID of the navigation scheme you
are modifying. The example below sets the column width for the Left Vertical scheme
(-4).

<intPlumtreeDPLeftWidth-4 value="100" />
<!-- left view width when a right view is present -->
 <intPlumtreeDPRightWidth-4 value="100" />
<!\-- right view width when a left view is present -->
 <intPlumtreeDPLeftWidthAlone-4 value="200" />
<!-- left view width when there is no right view -->
 <intPlumtreeDPRightWidthAlone-4 value="200" />
<!-- right view width when there is no left view -->

9.1.3.4 Horizontal Dropdown Navigation Settings
The rest of the navigation settings in the portalconfig.xml file are specific to the
Horizontal Dropdown Navigation Scheme. Standard navigation works dynamically
and does not use these settings.

Note: These settings only apply to the Horizontal Dropdown Navigation Scheme
(NavID -7).

The intISCDropDownMenuTruncationWidth setting limits the number of characters
shown in a dropdown menu.

The intISCDropDownMenuWidth setting limits the pixel width of a dropdown
menu.

The intHorizontalNavTabTruncationWidth setting limits the number of characters in
the tabs used to access navigation menus.

Creating a Custom Navigation Scheme

Customizing Portal Navigation 9-5

The intHorizontalNavTabWidth setting limits the pixel width for the tabs used to
access navigation menus.

9.2 Creating a Custom Navigation Scheme
If the built-in navigation schemes and display options listed in the previous section do
not meet your needs, you can create a custom navigation scheme. The easiest way to
customize navigation is to use Adaptive Layouts; for details, see Chapter 3, "Using
Adaptive Page Layouts". For more advanced customizations, the Adaptive Navigation
Framework allows you to create a new look and feel, disable portal components, and
add functionality.

■ Top Bar, Header and Footer: The top bar (including the login and search
functionality), the header, and/or the footer can be disabled using the
IsFeatureEnabled method in the INavTypes interface.

■ JavaScript: You can use custom JavaScript in your Navigation Schemes through
the JavaScriptIncludes method of theINavTypes interface.

■ Look and Feel: You can change the display of navigation components through the
IView interface.

The Adaptive Navigation Framework is designed for interface-based development. To
create a custom navigation scheme, you must implement two interfaces:
HelloWorldNavType (INavTypes) and HelloWorldNavView (IView)
(com.plumtree.portaluiinfrastructure.navtypes). The methods in these classes are
detailed in the example that follows. (For more information, see the Pluggable
Navigation API documentation. For links to all portal API documentation, see
Appendix B, "Portal API Documentation".) This section also provides instructions on
Generating Navigation Links.

Note: Never change existing source code. The best way to modify an existing
navigation scheme is to extend it and override the methods that you want to change.
This way you can reuse the original code for the parts of the scheme that will stay the
same. To facilitate upgrades, write a new class that corresponds to the navigation
scheme you want to modify, and make it available through Dynamic Discovery
(explained in the next section). Dynamic Discovery handles multiple versions of the
same navigation scheme by giving precedence to the last version loaded.

When you upgrade to a new release of the portal, it is very important to check all
customized files to see if the original versions have been modified in the upgrade. This
way you can migrate any new features and bug fixes into your modified version.

9.2.1 Example: Hello World Navigation Scheme
The example customization below removes the My Pages and Communities tabs in the
left navigation pane and replaces them with a "Hello World" string.

If you were creating a new navigation scheme, you would create your own custom
project and custom navigation class with a unique ID (for example, a CustomNav
project and a CustomNav class in com.yourcompany.navigation), and compile the
new class into a new JAR/DLL file with an intuitive name (for example, CustomNav).

9.2.1.1 HelloWorldNavType (INavTypes)
The HelloWorldNavType class implements INavTypes and defines a new
navigation scheme to be used by the portal by giving it a name, assigning an ID, and
defining the View modules for the sections of the UI that display navigation. (All

Creating a Custom Navigation Scheme

9-6 User Interface Customization Guide for Oracle WebCenter Interaction

customizable classes follow the naming convention of ending with the name of the
interface that they implement.)

1. The GetID() method provides a unique ID for the navigation scheme. This ID is
used to order the list of navigation schemes available for experience definitions.
The standard navigation schemes in the portal use negative numbers for NavIDs
(-1 through -7) to avoid collisions with custom schemes. Be sure to pick a unique
ID so that you do not cause conflicts with existing custom navigation schemes. The
Hello World example uses 200. You can also use the base ID available from the
NavTypeConstants class. Set the ID for your custom schemes equal to
NavTypeConstants.NAV_TYPE_ID_BASE + N, where N is an integer greater than
or equal to zero, as shown in the code below.

Java:

public int GetID()
{
 return NavTypeConstants.NAV_TYPE_ID_BASE + 1;
}
C#:

public virtual int GetID()
{
 return NavTypeConstants.NAV_TYPE_ID_BASE + 1;
}

2. The GetName() method returns the name for the navigation scheme. This name is
displayed in the Experience Rules Manager on the Choose Navigation Scheme
page. The _strLangID argument contains the two letter language code of the
current language (i.e., en for English, jp for Japanese).

Java:

public String GetName(String _strLangID)
{
 return "Hello World" ;
}
C#:

public virtual String GetName(String _strLangID)
{
 return "Hello World";
}

3. The GetScope() method returns the description for the navigation scheme. This
description can be any kind of text, but it must be stored in a String variable. The _
strLangID argument contains the two letter language code of the current
language (i.e. en for English, jp for Japanese).

Java:

public String GetScope(String _strLangID)
{
 return "Hello World Navigation" ;
}
C#:

public virtual String GetScope(String _strLangID)
{
 return "Hello World Navigation";
}

4. The GetNavAreaView() method defines the View for each section of the page,
and returns the name of the View class that builds the navigation scheme (i.e., the
name returned by View.GetName). In this example, the HelloWorldNavView

Creating a Custom Navigation Scheme

Customizing Portal Navigation 9-7

(IView) is displayed to the left of the body, and nothing is displayed in the other
sections.

Java:

public String GetNavAreaView(NavAreaEnum area)
{
 if (area.equals(NavAreaEnum.LEFTOFBODY))
 {
 return HelloWorldNavView.STR_MVC_CLASS_NAME;
 }

 return null;
}
C#:

public virtual String GetNavAreaView(NavAreaEnum area)
{
 if (area.Equals(NavAreaEnum.LEFTOFBODY))
 {
 return HelloWorldNavView.STR_MVC_CLASS_NAME;
 }
 return null;
}
You can also reuse Views from other navigation schemes in your custom scheme.
For example, the code below reuses the Community Section navigation (below the
header) from the Horizontal Dropdown navigation scheme.

...
else if (area.equals(NavAreaEnum.BELOWBANNER))
{
return NavigationCommSectionDropDownView.STR_MVC_CLASS_NAME;
}
...

5. The IsFeatureEnabled() method returns a boolean to tell the portal whether
or not a specific navigation feature is enabled. Using this method you can disable
the Top Bar (search field and login buttons), header, or footer. In this example, all
three features are enabled. This method is the only way to disable these
components. If you try to turn off a header or footer in a navigation scheme by not
assigning a portlet, the portal will show the default header or footer. Using the
IsFeatureEnabled method, you can ensure that no header or footer is shown,
even if one is assigned.

This method is called repeatedly for each component: TOPBAR, HEADER, and
FOOTER. You must return True or False for each item.

Java:

public boolean IsFeatureEnabled(NavFeatureEnum feature)
{
 return true;
}
C#:

public virtual bool IsFeatureEnabled(NavFeatureEnum feature)
{
 return true;
}

6. The JavaScriptIncludes() method allows you to include any custom
JavaScript needed for menus or dropdowns. The method returns a collection of
HTMLScript elements that either contain JavaScript or include .js files. To use
JavaScript in menus or dropdowns, simply wrap the JavaScript in an HTMLScript

Creating a Custom Navigation Scheme

9-8 User Interface Customization Guide for Oracle WebCenter Interaction

element and return an HTMLScriptCollection that contains all the required
HTMLScript elements for the navigation scheme. This example returns null
because it does not use custom JavaScript.

Note: JavaScript that is specific to only one View can be included in the
DisplayJavascript method of your View instead of in
JavaScriptIncludes. Do not call DisplayJavascript methods within
JavaScriptIncludes; these methods are called within PlumtreeDP.

Java:

public HTMLScriptCollection JavaScriptIncludes(AActivitySpace owner)
{
 return null;
}
C#:

public virtual HTMLScriptCollection JavaScriptIncludes(AActivitySpace owner)
{
 return null;
}

9.2.1.2 HelloWorldNavView (IView)
To create a working navigation scheme, you must build a valid View module class
that displays all the necessary portal sections (MyPages, Communities, Directories,
and Mandatory Communities) and components (drop-downs or submenus). Because a
navigation scheme View is used throughout an entire Experience Definition, it extends
from the top level View class within the UI Architecture, the IView interface. The
GetNavAreaView method in INavTypes tells the portal which View class to use for
each section of the portal page. For more information on Views, see Chapter 13,
"Using View Replacement".

As noted above, the HelloWorldNavView class example implements the IView
interface and displays the HTML output for the navigation scheme.

1. Open the HelloWorldNavView file (.java or .cs) in the sampleplugnav project in
the src/com/plumtree/sampleui/navigation directory. As with all MVC
modules, this example creates a public variable at the top of the View class that
sets the name of the class.

public static final String STR_MVC_CLASS_NAME = "HelloWorldNavView";
2. The Create() method is used to get a new instance of the View when it is

needed. It is very important to update this method if you are copying a file;
otherwise your custom class will return an instance of the original class, and your
custom View will not appear in the portal.

Java:

public Object Create()
{
 return new HelloWorldNavView();
}
C#:

public virtual Object Create()
{
 return new HelloWorldNavView();
}

3. The GetName() method returns the name of the View, which is used to store and
retrieve it in the portal and in the ActivitySpace. When overriding an existing
View, this method must return the same value as the View to be overridden.

Creating a Custom Navigation Scheme

Customizing Portal Navigation 9-9

Java:

public String GetName()
{
 return STR_MVC_CLASS_NAME;
}
C#:

public virtual String GetName()
{
 return STR_MVC_CLASS_NAME;
}

4. The Init() method provides the View with access to the model and parent
Activity Space.

Java:

public void Init(IModelRO model, AActivitySpace parent)
{
 m_model = (NavigationModel) model;
 m_asOwner = parent;
}
C#:

public virtual void Init(IModelRO model, AActivitySpace parent)
{
 m_model = (NavigationModel) model;
 m_asOwner = parent;
}

5. The DisplayJavascript() method is used to add JavaScript to the page. Since
this example does not use JavaScript, the code below returns null.

Note: The DisplayJavaScript method is called for each View in your
navigation scheme by PlumtreeDP and its JavaScript is displayed in the Head of
page. If you use JavaScript that is common to more than one View in a navigation
scheme, it should be included in the JavaScriptIncludes method of your
NavType class instead of in DisplayJavaScript. You could get JavaScript
errors if the same code is included more than once. (This example does not use
JavaScript.) For details on JavaScript navigation, see .Section 9.2.3, "Using
Advanced JavaScript Navigation Elements (JSPortalmenus)"

Java:

public HTMLScript DisplayJavascript()
{
 return null;
}
C#:

public virtual HTMLScript DisplayJavascript()
{
 return null;
}

6. The Display() method is the primary method in the View class and creates the
HTML for display to the user. This example outputs a table containing the string
HELLO WORLD by creating an HTMLElementCollection, adding a table to it,
adding a row to it, adding a cell to the row, and printing the string in the cell.)

Java:

public HTMLElement Display()
{
 HTMLElementCollection result = new HTMLElementCollection();

Creating a Custom Navigation Scheme

9-10 User Interface Customization Guide for Oracle WebCenter Interaction

 HTMLTable myTable = new HTMLTable();
 result.AddInnerHTMLElement(myTable);
 HTMLTableRow myRow = new HTMLTableRow();
 myTable.AddInnerHTMLElement(myRow);
 HTMLTableCell myCell = new HTMLTableCell();
 myRow.AddInnerHTMLElement(myCell);
 myCell.AddInnerHTMLString("HELLO WORLD");
 return result;
}
C#:

public virtual HTMLElement Display()
{
 HTMLElementCollection result = new HTMLElementCollection();

 HTMLTable myTable = new HTMLTable();
 result.AddInnerHTMLElement(myTable);
 HTMLTableRow myRow = new HTMLTableRow();
 myTable.AddInnerHTMLElement(myRow);
 HTMLTableCell myCell = new HTMLTableCell();
 myRow.AddInnerHTMLElement(myCell);
 myCell.AddInnerHTMLString("HELLO WORLD");
 return result;
}

7. In working navigation schemes, the Display method only defines the overall
layout and structure of the navigation scheme. Internal methods are used to build
each section and process the data required to create each menu item. These
Write*Section methods control how each menu and submenu item is built for
the corresponding section of the navigation pane. This includes the text, ASURL,
and icon required for each item. All Write*Section functions defined within
the scope of a View class should use IPluggableNavModelRO to gather the
correct enumerators for a given menu item, then use ICPLIstEntryIterator
and CListURLMediator to process each individual item and create an
HTMLElement to be displayed within the portal. For details, see the next section.

9.2.2 Generating Navigation Links
Navigation schemes or Views within the same scheme can display links in different
ways. One View might use HTML anchors, while another could use a JavaScript array
to populate DHTML menus. The Navigation Framework uses a set of classes called
mediators to store and format navigation links. Mediator classes ensure consistency in
both appearance and functionality. You can also include links to resources on remote
servers; for details, see Creating Gatewayed URLs at the end of this section. (If you are
adding navigation links to a portlet, use adaptive tags; for details, see the Oracle
WebCenter Interaction Web Service Development Guide.)

9.2.2.1 URL Mediators
The NavigationModel is the source of data for all navigation Views. The
ASCompoundList class is a linked list that provides links to the appropriate Views.
Individual links are stored as ListEntry objects, a container with member variables
for all possible elements of a link, including page ID, community ID, ActivitySpace,
page name and other control parameters. The ASCompoundList is returned as an
ICPListEntryIterator, an interface that allows you to iterate over list entries.
Mediator classes are wrappers for ICPListEntryIterators that convert each link
into the appropriate form. In addition, mediators allow you to set a maximum display
string width before truncation, and control link images.

Creating a Custom Navigation Scheme

Customizing Portal Navigation 9-11

There are two types of mediators:

■ TemplateMediators use a template to represent a link. A template is a
comma-separated String with the type of URL and its parameters. For example,
"C,200,-201" where C stands for a Community link template, 200 for the
community ID., and 201 for the page ID. The purpose of using a template is to
reduce the size of the data sent to the client. The common use for this mediator is
for ListView menus, in which the onclick event calls a function that constructs
the full URL and then redirects the browser. Note: These classes require that the
user's browser support JavaScript.

■ FullMediators generate a full href URL link instead of just a URL template. The
resulting link is 508 and low-bandwidth compatible.

There are five URLMediator classes included in the Navigation Framework library:

■ CListURLFullMediator creates ASURLs with target URLs in href, display
string and image (if assigned).

■ CListURLFullLinkMediator is an extension of CListURLFullMediator
that generates HTMLAnchors using target URLs as the onclick action.

■ CListURLTemplateMediator takes values from ASCompoundList and
returns URL templates. This mediator is used by Horizontal Dropdown
Navigation.

■ CListURLTemplateLinkMediator is an extension of
CListURLTemplateMediator that generates HTMLAnchors using URL
templates as the onclick action.

■ CListURLMediator is not truly a mediator class, but delegates link generation
requests to the appropriate link medator. If the user is accessing the 508 or
low-bandwidth portal, the class delegates to CListURLFullMediator.
Otherwise, it delegates to CListURLTemplateLinkMediator.

As noted above, all mediators implement the ICPListEntryIterator interface. To
get the data from a mediator, simply iterate over the items in the list. The code snippet
below retrieves the links available on a MyPage and uses CListURLMediator to
create HTMLElements.

// ICPListEntryIterator contains a listing of all actions and links
// for the referenced navigation section for the current user.
// IPluggableNavModelRO Model provides access to all information about
// users navigation. (The m_model variable is defined higher in the
// inheritance structure to avoid allocating another object.)
// GetCategoryLinks retrieves the list of available actions and links
// The boolean parameter determines which links are returned
ICPListEntryIterator iterActions = m_
model.GetCategoryLinks(NavCategoryType.MYPAGE,true);
if (SectionVisible(NavVisibility.VISIBILITY_MYPAGESACTIONS_SECTION))
// Before HTMLElements can be created, the ICPListEntryIterator must
// be transformed into a CListURLMediator
{
 //create a mediator based on the ICPListEntryIterator of URLs
 CListURLMediator mediator = new CListURLMediator(m_asOwner, iterActions);
 mediator.SetImageSize(25, 25);
 mediator.SetLabelMaxLength(30);
 int i = 0;
 // Take each entry from the Mediator, cast it to an
 // HTMLAnchor, and pass it to AddActionListRow
 while (mediator.Next())
 {

Creating a Custom Navigation Scheme

9-12 User Interface Customization Guide for Oracle WebCenter Interaction

 AddActionListRow(table,(HTMLAnchor)mediator.GetEntry(),((i == 0) ?
 GetActionCollapseURL(NavVisibility.VISIBILITY_MYPAGESACTIONS_SECTION): null));
 i++;
 }
}
You can add links to the set provided by IPluggableNavModelRO by casting the
ICPListEntryIterator to an ASCompoundList, which provides methods to add
links to the list. Refer to the API documentation for ASCompoundList for more
detailed instructions. You can also add links to content hosted on a remote server to
your navigation panes, as detailed in the next section.

9.2.2.2 Creating Gatewayed URLs
In some cases, you might want to include content hosted on a remote server in your
navigation scheme. To include links to remote content, the content must be part of a
remote portlet. For example, a bug-tracking portlet might include a link to a page that
shows the total number of open bugs, and you want to include the same link in a
custom navigation scheme. You cannot point to the page directly, since the remote
server might not be available to the outside users; you must gateway the link to make
it available to all users.

To generate the correct gateway URL, call the following method (and pass PT_
CLASSIDS.PT_GADGET_ID as the iClassID argument).

portaluiinfrastructure.statichelpers.GatewayHelpers.ConstructPrefPageLink(AActivit
ySpace asOwner, int iPortletID, int iCommunityID, int iPageID, int iPrefType, int
iClassID)
The iPrefType argument determines whether the page is displayed in a popup
window or in the main browser window. To display the page in a popup, pass
GatewayHelpers.POPUPFLAG. To display the page in the main browser window,
pass GatewayHelpers.NOFLAGS. You must create a window for the popup. The
result of this call is a string that you can use as a prefix to generate the gateway URL.
For example, to generate a link to the "http://myserver/portlet134/page.asp" that is
part of a portlet with ID 134, the call would look something like the following:

String strGWURL = GatewayHelpers.ConstructPrefPageLink(m_asOwner, 134,
iCurrentCommunityID, iCurrentPageID, GatewayHelpers.NOFLAGS, PT_CLASSIDS.PT_
GADGET_ID) +
GatewayHelpers.CreateGatewayFriendlyURL(http://myserver/gadget134/page.asp);
In addition to the settings in the methods above, you can configure gateway pages to
be hosted or non-hosted.

■ Non-hosted pages just show the content that the remote server sent back.

■ Hosted pages include the portal banner, footer and navigation links, so that the
remote page looks like it came from the portal.

This configuration is defined by the portlet code that contains the link.

Once you have written the code for your navigation scheme, you must deploy it for
use by the portal, as described in the next section

9.2.3 Using Advanced JavaScript Navigation Elements (JSPortalmenus)
To implement advanced JavaScript functionality in your navigation elements, you can
use the JSPortalmenus framework. This framework provides native JavaScript
objects to create menu tabs and dropdown menus. The framework uses common
jscomponent functionality in jsutil, reducing the size of JavaScript files downloaded by
the browser. The total download size of the JSPortalmenus JavaScript and CSS files is
approximately 85 KB.

Creating a Custom Navigation Scheme

Customizing Portal Navigation 9-13

The major feature of the JSPortalmenus framework is that form elements do not
burn through the dropdown menus in Internet Explorer browsers, a typical problem
with most other dropdown menu frameworks. This behavior is not an issue in
Netscape 7.x and Firefox browsers. The JSPortalmenus framework also supports older
Netscape browsers, (4.x and 6.x) but burn-through of form elements does happen in
these browsers.

The portal usesJSPortalmenusin main portal navigation and in portlet title bars.

To create a single tab with a dropdown menu, follow the steps below:

1. Include JavaScript files on the page. JSPortalmenus files must be included
through the jsincluder component.

■ On the server side, as in a navigation scheme, use
ConfigHelper.GetJSIncluderJSComponentInclude with
ConfigHelper.JSCOMPONENT_JSPORTALMENU as the component name.

■ In a portlet, use the jsincluder adaptive tag: <pt:ui.include
pt:name="jsportalmenus"/>

Both methods will generate JavaScript to include the JSPortalmenus. Manually
adding the generated JavaScript is not supported since it might change in future
releases.

1. Define an HTML Container element with an ID where the menu should be
displayed. For example: <table><tr><td
ID="menuCell1"></td></tr></table>

2. Create a menu object, add entries to the menu, add the menu to a menu tab object,
and associate the HTML block ID with the menu tab object.

a. Create a menu object: var menu = new PTPMMenuContainer();

b. Add entries to the menu (container menuItems is an array):

for (var j = 0; j < somearray.length; j++)
{
var strTitle = ...;
var strImgSrc = ...;
var strImgWidth = ...;
var strURL = ...;
menu.menuItems[j] = new PTPMSimpleMenuItem();
menu.menuItems[j].text = strTitle;
menu.menuItems[j].image = new PTPMImage();
menu.menuItems[j].image.imgSrc = strImgSrc;
menu.menuItems[j].image.imgWidth = strImgWidth;
menu.menuItems[j].action = new PTPMJavaScriptAction();
menu.menuItems[j].action.js = 'window.location = "'+strURL+'"';
}

c. Set tab content (HTML is allowed): var buttonText = "My Menu";

d. Add the menu to a menu tab object (static call). Assign tab content and
provide the ID of the HTML element where the tab HTML should be inserted.

PTPMSelectMenu.init(menu, strDivID, buttonText);

Note: This function should only be called after the HTML container has been
rendered on the page.

Deploying a Custom Navigation Scheme

9-14 User Interface Customization Guide for Oracle WebCenter Interaction

9.3 Deploying a Custom Navigation Scheme
After you create a custom project, you must deploy it to the portal using Dynamic
Discovery. For detailed information and instructions, see Chapter 18, "Deploying
Custom Code Using Dynamic Discovery". For navigation schemes, only the Jar or
DLL-Based Dynamic Discovery section is necessary. Always confirm that your code
was deployed correctly, explained in Viewing Your Customizations in the Portal at the
end of this section.

9.3.1 Example: Hello World Navigation Scheme
The example below deploys the Hello World sample code from the previous section.
These instructions use Visual Studio in .NET and Ant scripts in Java to deploy your
custom code.

First, add the library containing the new class to the CustomActivitySpaces.xml file so
it can be deployed by Dynamic Discovery.

1. Navigate to PT_HOME\settings\portal and open CustomActivitySpaces.xml in
a text editor (you might have to make the file writable).

Note: Do not modify the ActivitySpaces.xml file. The CustomActivitySpaces.xml
file is functionally identical to the ActivitySpaces.xml file and allows you to
enumerate custom components without modifying the code used by standard
portal components. For more detailed information, see Chapter 18, "Deploying
Custom Code Using Dynamic Discovery".

2. Find the <AppLibFiles> tag and add an entry for your project. In the example
below, the project is called "sampleplugnav".

<AppLibFiles>
 <libfile name="sampleplugnav"/>
</AppLibFiles>

You must also run a clean build in order to deploy the custom code. The process is
different based on your portal platform; see the appropriate set of instructions below.

Java:

1. Open a command prompt and change the directory to the \ptwebui directory
where you installed the portal source code.

2. Run a clean build using the following Ant script: ant build

3. Generate a new WAR file for the application server using the following Ant script:
ant install

Note: This target deletes and rebuilds all jar files associated with all the UI source
projects (as well as the custom projects in the ptwebui folder).

C#:

1. Build the project in Visual Studio.

2. Visual Studio should copy the sampleplugnav.dll file from SOURCE_
HOME\sampleplugnav\dotnet\prod\bin to PORTAL_
HOME\webapp\portal\bin for you. If there are problems with Dynamic
Discovery on startup, you might need to do this step manually. This is necessary
to allow Dynamic Discovery to find the new library.

Debugging and Troubleshooting

Customizing Portal Navigation 9-15

9.3.2 Viewing Your Customizations in the Portal
Once you have deployed your code, view the changes in the portal to confirm that
they were loaded correctly. Use Logging Spy to catch any obvious errors.

1. Open Logging Spy. For details, see the Administrator Guide for Oracle WebCenter
Interaction.

2. Start the portal. In Logging Spy, you should see your sample navigation load up
with ID 200.

3. This example navigation scheme cannot be applied to the administrator's portal
view because administrators will not be able to successfully navigate the portal.
Instead, you must create an experience definition that uses the new navigation
scheme. Log in as the administrator and navigate to portal Administration.

4. Create a new Administrative folder (Create Object | Administrative Folder) and
name it Navigation.

5. Open the Experience Rules Manager (Select Utility | Experience Rules Manager).

6. Create a new Experience Definition (Create Object | Experience Definition).

7. On the first page of the Experience Definition Editor, click Add Folder.

8. Select the Navigation folder created in step 4 and click OK.

9. In the left menu of the Experience Definition Editor, click Edit Navigation
Options.

10. Select the Hello World navigation scheme and click Finish. When prompted for a
name for the new Experience Definition, enter Hello World Pluggable Nav.

11. Return to portal Administration and open the Navigation folder created in step 4.

12. Create a new user (Create Object | User) in the Navigation folder and name the
new user Navigator. Click Finish to save the user.

13. Log out of the portal and log in as the new Navigator user. You should see the
new Hello World navigation scheme.

The next step is to debug your code, covered in the next section.

9.4 Debugging and Troubleshooting
This section provides technical tips for common problems and instructions on how to
debug your new navigation scheme.

9.4.1 Technical Tips
If your custom navigation scheme does not function correctly, first check the
following:

■ The GetID() method in INavTypes must return a unique ID for the navigation
scheme. If you use the same ID as another navigation scheme, only one of the
schemes will be available. The standard portal navigation schemes use negative
numbers for NavIDs (-1 through -7) to avoid collisions with custom schemes.

■ The JavaScriptIncludes () method in INavTypes must return the
JavaScript for all Views included in the navigation scheme. If it does not, the
Views will not work correctly and might produce JavaScript errors.

■ The Create() method in a View must return a new instance of the custom class.
If this is not done, when the portal attempts to instantiate a new instance of the

Debugging and Troubleshooting

9-16 User Interface Customization Guide for Oracle WebCenter Interaction

custom View using the Create() method it will not work. A common problem is
cutting and pasting code from an existing View and then forgetting to update this
method. Your customization will be loaded by the portal, but the original View
will still be displayed.

If this does not solve the problem, debug your code using the instructions below.

9.4.2 Debugging
These instructions use the Hello World navigation scheme created on the previous
pages as an example.

Java

1. In Eclipse, stop the Tomcat debugging session and open
HelloWorldNavView.java.

2. Add a breakpoint as shown below:

3. In the Eclipse menu, click Run | Debug… and select the Tomcat application.

4. Choose the Classpath tab, select Add Projects, and add the sampleplugnav
project.

5. Hit Debug (and Save to retain your changes).

In Logging Spy you should see the system load up.

6. Open a browser and navigate to your Java portal. Log in and you should hit the
breakpoint.

C#

1. Stop the Visual Studio debugger (and close your browser if it is still open) and
open HelloWorldNavView.cs in Visual Studio.

2. Add a breakpoint as shown below:

Debugging and Troubleshooting

Customizing Portal Navigation 9-17

3. Start the Visual Studio debugger (F5 or Start | Debug).

4. Navigate back to your portal and log in; you should hit the breakpoint.

Debugging and Troubleshooting

9-18 User Interface Customization Guide for Oracle WebCenter Interaction

10

Customizing Portal Search 10-1

10 Customizing Portal Search

You can customize Oracle WebCenter Interaction Search in a number of ways. This
chapter summarizes recommended approaches to common customizations, describes
their capabilities and limitations, and points to more complete documentation and
sample code.

10.1 Customizing Banner Search and Advanced Search
The banner search box is the text search field that appears at the top of each portal
page. By default, banner search will query for the text in the name, description, and
full-text content of documents, document folders, communities, portlets, and users.
When a user is viewing a community or document folder, banner search also offers an
option to restrict the search to the area being viewed.

The advanced search page is used to add search constraints on portal properties.
Administrators (not standard users) can search a much wider set of object types from
advanced search, including administrative objects.

You can customize the behavior of portal banner search and advanced search in a
number of ways. Before modifying portal search, see if one of the following solutions
provides the functionality you need.

■ Snapshot Queries display search results in a portlet and cache results to avoid
burdening portal search. For details on Snapshot Queries, see the portal online
help.

■ Search Portlets can provide a customized search form, add constraints to search,
and more. The Oracle WebCenter Interaction Development Kit (IDK) remote
Search API allows you to run search queries against the Oracle WebCenter
Interaction system. For details, see the Oracle WebCenter Interaction Web Service
Development Guide.

■ Federated Search uses remote web services to search external repositories from
the portal. For details, see the Oracle WebCenter Interaction Web Service Development
Guide.

If none of these options fulfill your requirements, you can modify the behavior of
portal banner search and advanced search. The sections that follow explain the most
common customizations:

10.1.1 Customizing the Banner Search Box
You can customize the functionality and appearance of the banner search box in many
ways.

Customizing Banner Search and Advanced Search

10-2 User Interface Customization Guide for Oracle WebCenter Interaction

10.1.1.1 Search Results Manager
The Search Results Manager allows you to limit banner search to return only
documents, and configure banner searches to search properties in addition to the
Name, Description, and text content. For details, see the Administrator Guide for Oracle
WebCenter Interaction.

10.1.1.2 SearchActions Programmable Event Interfaces (PEIs)
SearchActions PEIs can be used to require that all results have a set value for a specific
property and configure the portal to record every banner search.

To modify every banner search that users run or perform some action whenever users
run a banner search, use the IBannerSearchActions PEI. For example, you can add
constraints to certain searches, or log some information about each search. For details
on implementing PEIs, see Chapter 12, "Using PEIs".

10.1.1.3 Adaptive Page Layouts
Adaptive page layouts allow you to change the look and feel of the portal user
interface, including the search box and search results page using adaptive tags in
standard XHTML For details, see Chapter 3, "Using Adaptive Page Layouts".

10.1.1.4 View Replacement
To change the look and feel of the banner search box or point banner search at another
search results page or at the Federated Search results page, you can modify the
associated View, PlumtreeTopBarView. PlumtreeTopBarView generates an HTML
search form used for banner search, and other parts of the portal banner. For details on
Views, see Chapter 13, "Using View Replacement".

■ To create a new search box in the portal UI, you can create a portlet or add a
search box to the appropriate View. You can use the Oracle WebCenter Interaction
Development Kit (IDK) remote Search API or the native PTSearch API to execute
the query.

■ To use Federated Search in place of banner search, change the form's in_hi_
space input to point to the NetworkSearch space instead of the SearchResult
space, and the in_hi_control input to "NetworkSearch" instead of
"bannerstart". You'll also need to add an in_cb_source input to simulate
checking one of the "Search Locations" on the Federated Search page.

■ To use an external search page, change the form's target to point to the external
page. You will need to rename some other form inputs (such as the query string)
to provide the correct names for your target page.

10.1.2 Customizing the Advanced Search Page
You can also customize the advanced search page. The Search for Text field on the
advanced search page behaves similarly to banner search, with a few minor
differences; advanced search queries are never spell-checked and the thesaurus is not
used, because this page is meant to be a more precise interface for expert users.

10.1.2.1 SearchActions Programmable Event Interfaces (PEIs)
To modify every advanced search that users run or perform some action whenever
users run an advanced search, use the IAdvancedSearchActions PEI. For example,
you can turn on spelling correction for advanced search queries, add constraints to
certain searches, or log some information about each search. For details on
implementing PEIs, see Chapter 12, "Using PEIs".

Customizing Banner Search and Advanced Search

Customizing Portal Search 10-3

10.1.2.2 View Replacement
To customize the layout of the advanced search page, use one of the approaches
below:

■ To modify the built-in advanced search page, subclass the Views in the
com.plumtree.portalpages.browsing.search.advanced package. These Views
inherit from the com.plumtree.portalpages.common.search package, so you might
need to copy code from that package as a starting point. Be very careful if you
modify the code in common.search; these classes are used elsewhere in the portal.
For details on Views, see Chapter 13, "Using View Replacement".

■ To replace the built-in advanced search page entirely, create a custom Activity
Space with the name "AdvancedSearch" and use the SearchFormFactory class to
automate generation of the HTML form. For details on custom Activity Spaces, see
Chapter 14, "Creating Custom Activity Spaces".

Removing an object type or folder from the advanced search page does not guarantee
that it is unsearchable. A user can still concoct a URL that runs the search, even if the
page never submits it. To prevent this, make sure your users do not have rights to see
the objects, or use the IAdvancedSearchActions PEI to prevent unallowed queries.

10.1.3 Adding Search Boxes
You can also add search boxes to the portal UI.

■ Portlets can be used to provide search boxes that query the portal or external
repositories. For details on portlets and the Oracle WebCenter Interaction
Development Kit (IDK) remote search API, see the Oracle WebCenter Interaction
Web Service Development Guide.

■ Custom Views can include additional search boxes. Use the SearchFormFactory
class to automate generation of the HTML form. For more information on Views,
see Chapter 13, "Using View Replacement".

10.1.3.1 Adding Pathways Search
Oracle Pathways is delivered with a set of Adaptive Tags to add Oracle Pathways UI
elements to the portal UI, allowing users to access Oracle Pathways search from a
portal page.

The following tags provide access to Oracle Pathways UI elements. For details on
basic tag syntax and usage, see the Oracle WebCenter Interaction Web Service
Development Guide.

The pt:text parameter defines the text to be displayed in the UI element. If you do
not include the pt:text parameter, no text will be displayed.

Tag Function

pt:pathways.pathway
ssearchform

Adds an OraclePathways search box.

pt:pathways.pathway
ssearchbutton

Adds an Oracle Pathways search button.

pt:pathways.pathway
shome
pt:id="menutabs"

Returns the URL to the Oracle Pathways home page. This tag is a
data tag and must be used in conjunction with a display tag. For
details on data tags, see the Oracle WebCenter Interaction Web
Service Development Guide.

Customizing Banner Search and Advanced Search

10-4 User Interface Customization Guide for Oracle WebCenter Interaction

The example below adds an Oracle Pathways search box and button to the top bar in
the portal banner, a tab to the main portal menu, and a link to the portal Directory tab.
This example also includes tags from the UI Elements (pt:ui) and Navigation
(pt:plugnav) Adaptive Tag libraries.

Note: This code is taken from the header example included with the Oracle Pathways
installation (<PT_HOME>\ptimages\pathways\private\navtags\header.html). To
install these samples in your portal environment, import the pathways_navigation_
samples.pte file.

<!-- Topbar -->
<table cellpadding="0" cellspacing="0" width="100%" border="0" class="banTopbarBg"
id="pt-topbar">
<tr>
 <td align="left" valign="middle" nowrap="nowrap">
 <pt:ptui.myhome pt:usespan="true"/>

 <pt:ptui.welcome pt:usespan="true" />
 <span class="spacer"
style="padding-left:8px;">
 <pt:ptui.myaccount pt:usespan="true" />
 <span class="spacer"
style="padding-left:8px;">
 <pt:ptui.login pt:usespan="true"/>

 </td>

 <td align="right" valign="middle" nowrap="nowrap">
 <pt:ptui.rulesdebug/>
 <pt:ptui.help/>

 <pt:ptui.searchform pt:usespan="true">
 <pt:ptui.basicsearchbutton/>
 <pt:ptui.advancedsearchbutton/>
 <pt:ptui.federatedsearchbutton/>
 </pt:ptui.searchform>

 <!-- Add the Pathways Banner Search Elements -->

 <pt:pathways.pathwayssearchform pt:usespan="true" pt:text="Pathways:">
 <pt:pathways.pathwayssearchbutton/>
 </pt:pathways.pathwayssearchform>

 </td>
</tr>
</table>

<!-- Topbar section end -->

<!-- Dropdown menus section begin -->
<pt:ptdata.communityactionsdata pt:id="commmenu" />
<pt:ptdata.mycommunitiesdata pt:id="commmenu" />
<pt:ptdata.mandatorylinksdata pt:id="mandlinks" />
<pt:ptdata.mandtabcommsdata pt:id="menutabs" />
<pt:ptdata.administrationdata pt:id="menutabs" />

<!-- Add Pathways Home link as a menu tab. -->

Customizing the Search Results Page

Customizing Portal Search 10-5

<pt:pathways.pathwayshome pt:id="menutabs" pt:text="Pathways Home"/>

<pt:ptdata.mypageactionsdata pt:id="mypagemenu" />
<pt:ptdata.mypagesdata pt:id="mypagemenu" />
<pt:ptdata.currcommunitypagesdata pt:id="commpages" />
<pt:ptdata.currsubcommunitiesdata pt:id="subcomms" />
<pt:ptdata.currrelatedcommunitiesdata pt:id="relcomms" />
<pt:ptdata.directorybrowsedata pt:id="directorymenu" />
<pt:ptdata.directoryeditdata pt:id="directorymenu" />

<!-- Add Pathways Home link to the directory menu. -->
<pt:pathways.pathwayshome pt:id="directorymenu" pt:text="Pathways Home"/>

<pt:ptdata.mandatorylinknamedata pt:key="mandlinksname" />

<pt:plugnav.ddmenurowcontainer pt:menuvar="midrowmenu" pt:hideemptymenus="true" >
 <pt:plugnav.ddmenutab pt:containervar="midrowmenu"
pt:datavar="mypagemenu" pt:text="$#1840.ptmsgs_portalbrowsingmsgs" />
 <pt:plugnav.ddmenutab pt:containervar="midrowmenu"
pt:datavar="commmenu" pt:text="$#1841.ptmsgs_portalbrowsingmsgs"
/>
 <pt:plugnav.ddmenutab pt:containervar="midrowmenu"
pt:datavar="directorymenu" pt:text="$#1842.ptmsgs_portalbrowsingmsgs"
/>
 <pt:plugnav.ddmenutab pt:containervar="midrowmenu"
pt:datavar="mandlinks" pt:text="$mandlinksname" />
 <pt:plugnav.ddmenusimpletabs pt:containervar="midrowmenu"
pt:datavar="menutabs" />
</pt:plugnav.ddmenurowcontainer>

<!-- Dropdown menus section end -->

...

10.2 Customizing the Search Results Page
The search results page is the portal page that users see after submitting any banner or
advanced search. (This page is not used for Federated Search.)

You can customize the appearance of the search results page. There are some
limitations because the portal uses this page in a number of ways; the Add Portlets
and Join Communities pages are both customized versions of the search results page.
The sections that follow summarize the most common customizations.

10.2.1 Using Search Results Portlets
To display the results of a common query for a specific audience, you can use a
Snapshot Query and Content Snapshot Portlet without writing any code. For details,
see the portal online help. To create a custom results page that is hosted remotely,
write a remote portlet that calls the Oracle WebCenter Interaction Development Kit
(IDK) remote search API. Your "results page" is simply a community page with this
portlet on it. For details, see the Oracle WebCenter Interaction Web Service Development
Guide.

Customizing the Search Results Page

10-6 User Interface Customization Guide for Oracle WebCenter Interaction

10.2.2 Using Adaptive Page Layouts
Adaptive page layouts allow you to change the look and feel of the search results page
using adaptive tags in standard XHTML For details, see Chapter 3, "Using Adaptive
Page Layouts".

10.2.3 Using View Replacement
If the Search Results Adaptive Layout does not provide the customization you need,
you can customize the corresponding View classes. You can make minor modifications
to the standard Views, or use them as a base to write your own Activity Space that
replaces the main portal search results page.

The HTML for the portal's search results page is generated by View classes in the
following packages:

■ com.plumtree.portaluiinfrastructure.search (in portaluiinfrastructure.jar)

■ com.plumtree.portalpages.browsing.results.search (in portalpages.jar)

The View classes use SearchResultModel, in
com.plumtree.portaluiinfrastructure.search, as their corresponding model.
SearchResultModel wraps PTSearch. Do not modify SearchResultModel, because the
portal reuses it in many ways.

The search results View classes call read-only methods on SearchResultModel to get
information about the search results. The most important View classes are
GroupedResultsView and GroupedResultsViewHelper. For more information on
Views, see Chapter 13, "Using View Replacement".

■ GroupedResultsView loops over the search results and calls methods in
GroupedResultsViewHelper.

■ GroupedResultsViewHelper generates the HTML for each result. This View can
be replaced at runtime by any other class that implements the same interface, to
support results tables with a different look and feel.

Four other Views also appear on the search results page.

■ SearchSummaryView inspects the original request and summarizes it (for
example , "Showing 10 results of 52, and dogg was corrected to dog").

■ FollowupSearchView lets the user run another search from the results page,
either within the same results with the same settings, or a new search of the whole
portal.

■ OrganizationView and its helper ReorganizationViewHelper let the user re-sort
by last-modified date, folder, object type, or other properties, and show drill down
links into these categories.

■ PaginationView provides links to more search results.

There are corresponding Control classes for each of the links in these Views (the UI
framework invokes the Control's execute method when a user clicks a link). These
Controls include PaginationControl, ReorganizationControl,
SearchWithinResultsControl, and BreadcrumbControl. Most of these Controls have a
static makeURL() method that you call from the View code to make a new link. In
most cases, you only need to copy and customize Views and DisplayPages. The
Models and Controls for this page are designed to be reusable (they are used several
places in the portal).

Customizing the Search Results Page

Customizing Portal Search 10-7

To replace the built-in results page entirely, call your new ActivitySpace SearchResult.
You can also use your customized page as the target for a custom search form; set the
in_hi_space input to the name of the new Activity Space.

Note: Test your changes thoroughly. Test both banner and advanced search. Make
sure banner search works from every type of portal page (My Page, community, and
Directory). Confirm that it works with every search result type

10.2.4 Adding Properties to the Sort By Menu
By default, the Sort By drop-down list on the search results page lets users organize
results in four ways:

■ Relevance (Rank): Results are presented in decreasing order of relevance. To
improve relevance ranking on the search results page, see Section 10.2.6,
"Improving Relevance Ranking".

■ Last Modified Date: Results are re-ranked according to the date and time each
object was last modified, with the most recently modified items ranked first.

■ Folder: Results are grouped according to the Knowledge Directory or
Administration folders in which the results are stored. Clicking one of the folder
links restricts the results to those that are stored in that folder.

■ Object Type: Results are grouped according to object type. Clicking one of the
object type links restricts the results to those that are of a particular object type.

Adding new properties to the "Sort by" menu allows users to group results according
to the property value. To display columns for additional properties on the search
results page, you must modify the associated View as explained above.

Note: If the properties are not included in the portal search query, you must add the
properties to the search request by writing a Portal Event Interface (PEI). See the next
section for more information.

To add search properties to the "Sort by" menu, edit portalconfig.xml as explained
below.

1. Determine the object ID of the property you want to add. Find the object in the
directory and open it; the object ID is displayed in the associated editor. You can
also determine the ID from the object link. The "in_hi_ObjectId" URL argument
contains the integer that represents the object ID.

2. Open the portalconfig.xml file in a text editor (PT_HOME\settings\portal). Note:
Always make a backup copy before editing; formatting errors in this file can
disable the portal completely.

3. Find the <component name="portal:Search"> section within
portalconfig.xml. You will add two tags within this tag:

■ <setting name="CategoryName_1"> : This tag determines the name of
the option as it will be displayed in the Sort by menu. It is not required to be
the same as the name of the property. This string will be the same in all locales
(the related code is not currently internationalized).

■ <setting name="CategoryField_1">: The integer object ID as
determined in step 1 above, preceded by "PT" (all caps, no spaces). For the
example above, object ID 200, the value would be PT200.

For example:

<component name="portal:Search"
type="http://www.plumtree.com/config/component/types/portal/search">

Customizing the Search Results Page

10-8 User Interface Customization Guide for Oracle WebCenter Interaction

 <!-- The default number of search results to show per search results page.
-->
 <setting name="NumSearchResultsPerPage">
 <value xsi:type="xsd:string"/>
 </setting>
 <setting name="CategoryName_1">
 <value xsi:type="DocumentTitle"/>
 </setting>
 <setting name="CategoryField_1">
 <value xsi:type="PT105"/>
 </setting>
...
</component>

4. You can add multiple categorization options by adding successive tags
(CategoryName_2, CategoryField_2, CategoryName_3, CategoryField_3, etc.), as
long as the sequence numbers are consecutive. If you ever delete an option, you
must edit the tags to keep the numbers consecutive. Do not forget the trailing "/"
before the closing ">".

5. Save and close portalconfig.xml, stop and restart the portal. Run a search to see
your new "Sort by" option.

10.2.5 Adding Search Categorization Properties
To query for additional properties using portal search, add new properties to the
portal and associate them with the appropriate objects and documents. Once the
properties are defined, you must make sure they are returned by the search query.

When choosing new properties to use for search categorization, there are two issues to
consider:

1. Will the property be defined for a large percentage of search results? If 90% of
results do not have the property defined, then most results will fall into the
"uncategorized" group, and the new categorization will not be useful. Make sure
that at least half of all documents and objects have values for the property before
adding it as a categorization option.

2. Will the property values make good category titles? For categorization to work
well, each value should be a single word or a short noun phrase, for example,
"New England", "Midwest", "Product Management", "Food and Drug
Administration". The values should not be full sentences or long lists of keywords,
for example, "This content service crawls the New York Times finance section." It
will look odd if a full sentence is returned as a category title.

Once you have chosen properties to use for categorization, the next steps are to ensure
that the properties are defined in the portal and values for those properties are being
assigned to documents and objects.

10.2.5.1 Defining Properties
To create a new property, navigate to Administration and select Create Object |
Property. Make sure the following options are checked:

■ This property is supported for use with documents

■ This property is visible in the UI

■ Searchable

Customizing the Search Results Page

Customizing Portal Search 10-9

Consider making the property mandatory, since categorization will be of maximum
value if every item has a value for the property. Name the property object
appropriately and click Finish.

10.2.5.2 Assigning Property Values
After you create a new property, you must make sure that values are defined for the
property. This procedure differs for documents (cards) and administrative objects. The
process is summarized below; for more information, see the portal online help.

For documents, the most efficient way to assign property values is through the content
crawler that imports the documents. First, create a Content Type object, add the
associated property, and set the "mapped attribute" appropriately. For example, for
HTML documents the <META> tag might contain the value. If the value should be the
same for all documents the content crawler imports, set the "default" when adding the
property to the Content Type. When you create content crawlers, associate your new
Content Type with the documents to be crawled. You can also manually import
documents and edit their properties.

Property values for administrative objects are generally set manually. First, go to
Administration and select Utilities | Global Object Properties Map, and associate the
property with each object type for which it should be defined. After the property is
associated with an object, you can edit the property value in each object's editor. If the
property is mandatory, a value will be required when creating or editing an object.

Customizing query behavior for banner search and advanced search is covered in the
previous section.

10.2.6 Improving Relevance Ranking
You can improve the relevance ranking of search results in a variety of ways.

10.2.6.1 Best Bets (Banner Search)
To hard-wire the top few results for specific search queries, use the Best Bets feature
(banner search only). Results may be documents, document folders, communities,
portlets, and users. For more information and instructions, see the portal online help.

10.2.6.2 Search Field Weightings (Banner Search)
To change the weight of different search fields, use the Search Results Manager utility
(Banner Fields Alias page). You can also list additional properties to be searched (for
example, a "keywords" or "author" field).

Perform these adjustments with care and test them carefully on all common searches.
These settings affect all portal banner searches, and most adjustments will make some
rankings better and others worse.

10.2.6.3 Search Thesaurus
To replace search terms or define synonyms, load a thesaurus list into portal search
and enable it. Thesaurus expansion replaces a term or phrase in a user's search with a
set of custom, related terms before the search is performed. This feature allows you to
improve search quality by handling unique, obscure, or industry-specific terminology.
Fore more information, see the Administrator Guide for Oracle WebCenter Interaction.

Using Federated Search

10-10 User Interface Customization Guide for Oracle WebCenter Interaction

10.3 Using Federated Search
Federated Search provides access to external repositories without adding documents
to the portal Knowledge Directory. Federated Search is especially useful for content
that is updated frequently or is only accessed by a small number of portal users. For
details, see the Oracle WebCenter Interaction Web Service Development Guide.

Part III
Part III Advanced UI Customization

The basic customizations in the previous sections require little or no custom code. If
these options do not provide a solution, you can replace portal components with
custom versions. The advanced customizations below require Java or C# coding. For
an introduction to the inner workings of the portal UI, see Chapter 11, "Portal UI
Architecture"

This section contains the following chapters:

■ Chapter 12, "Using PEIs": Portal Event Interfaces (PEIs) are used to execute custom
actions in many places throughout the portal. For example, you can modify search
queries before they are processed, or perform validation when users attempt to
create new portal objects.

■ Chapter 13, "Using View Replacement": You can completely customize the display
of portal components by creating a custom version of the associated View class(es).

■ Chapter 14, "Creating Custom Activity Spaces": Activity Spaces group
task-specific actions into logical sets to provide portal developers with base
functionality, and combine related pages to create cohesive Model-View-Control
(MVC) objects. Everything in the portal is an Activity Space: a MyPage, an
administrative editor, even the Directory tree. A custom Activity Space allows you
to add new pages to your portal.

■ Oracle WebCenter Interaction includes a collection of useful tools and components
to support UI customization. For details, see Chapter 15, "Accessing Portal
Objects", Chapter 16, "Adding Custom Images", and Chapter 17, "Using VarPacks
(Variable Packages)"

11

Portal UI Architecture 11-1

11 Portal UI Architecture

If you are implementing advanced UI customizations, this chapter provides detailed
portal architecture information for portal UI layers, MVC architecture, activity spaces,
session management, and request control flow.

11.1 Portal UI Layers
The figure below shows the major portal UI projects and how they depend on each
other. (For an introduction to the portal page design, see Chapter 2, "Portal Page
Layout".)

11.1.1 Portal UI Infrastructure
Portal UI Infrastructure is another level of infrastructure and frameworks that mirrors
UI Infrastructure and contains the implementation that depends on the portal server
API. For example, the implementation of the tree in the UI Infrastructure project is a
generic tree of items, whereas the version of the tree in Portal UI Infrastructure is a
tree of PTObjects (i.e., Users, Groups, Content Crawlers, etc.).

MVC Architecture

11-2 User Interface Customization Guide for Oracle WebCenter Interaction

11.1.2 Portal Pages
Portal Pages contains the source code for most of the portal's end-user pages. This
project is divided into three main categories: admin pages (pages under
Administration), browsing pages (end-user pages that do not appear under
Administration) and common pages (pages common to both Administration and
end-user browsing). Within these three categories, packages are separated into feature
groups, e.g., browsing.login, admin.editors.group , common.search.

There are many reasons the portal UI is built using a layered approach:

■ Unified Code Base: The entire portal UI is written in Java and automatically
converted to C# using a proprietary tool built specifically for the portal. Both
versions of the UI undergo equal testing. Their level of quality is equivalent and
they offer the exact same set of features.

■ MVC Architecture: All UI source code is implemented following the
Model-View-Control (MVC) design pattern. Separating presentation from logic
makes front-end customization simpler, and facilitates upgrades when a new
version of the portal becomes available. For more details on the MVC design
pattern, see the next section.

■ Object-Oriented Code: All UI source code is written in object-oriented and
compiled code (Java or C#). As a consequence, there is no JSP or ASP.
Object-oriented code has a number of advantages; the most important for the
portal are upgrading, refactoring and maintenance.

■ Strong Infrastructure and Frameworks: Several UI projects are specifically
dedicated to infrastructure, frameworks and reusable components. Examples
include the Activity Space framework (Chapter 14, "Creating Custom Activity
Spaces"), Programmable Event Interfaces (Chapter 12, "Using PEIs"), and Dynamic
Discovery (cChapter 18, "Deploying Custom Code Using Dynamic
Discovery").These projects are extensively tested and should be leveraged as much
as possible when customizing the UI.

11.2 MVC Architecture
The architecture of the portal UI is based on the Model-View-Control (MVC) design
pattern. The MVC paradigm allows you to separate the code that handles business
logic from the code that controls presentation and event handling. Each page in the
portal is made up of a combination of at least one Model and View, and one or more
Controls.

■ Model classes store the data for a page or page section. A single page might use
one or more Model classes, depending on how much of the page data can be
shared by other types of pages. A Model defines how data is accessed and set for a
given page, including any functions necessary for security or data validation and
modification. Models encapsulate calls to the portal server API and also store
UI-specific data. Data that is globally accessed by the UI is available from the
Activity Space object (discussed in the next section). All other data should be
stored in a Model.

■ View classes contain HTMLElements and HTMLConstructs that describe how the
data from the Model should be displayed to the user. In the portal UI design,
DisplayPage objects are used to aggregate View objects to encapsulate all the
information needed to render a particular page. Some Views are common
throughout the portal and some are specific to certain pages. For example, the
banner that makes up the majority of the portal is a common View that defines the
color scheme and where the search section will be displayed. In contrast, the View

Activity Spaces

Portal UI Architecture 11-3

used to create and modify data within a User Profile is specific to the User Profile
function and is seen only on that page.

■ Control are actions or sets of actions that are executed when a specific event is
triggered. Multiple Controls can be defined within a page, each with its own
functional specification. For example, one Control might produce a popup
window that allows the user to browse for a specific object and places the selection
within the View, and another could save the new data to the Model.

11.2.1 Example: Login MVC Pattern
The diagram below shows a simplified version of how the classes used for the Login
page interact with each other using the Model-View-Control (MVC) pattern.

1. The Control either redirects to another page or returns to the same page with new
data since the Model has been updated. In this case, the Control redirects to the
MyPage.

2. The Interpreter gets the HTML for the page requested by the Control from the
appropriate View, in this case the MyPage View.

3. The View returns the HTML for the page.

4. The Interpreter sends the HTML for the page back to the browser.

Note that the redirect from the Login page to the MyPage occurred without returning
to the client. These Server Redirects are handled by the Interpreter. The portal favors
server redirects over regular redirects (i.e., Response.redirect) because they avoid
unnecessary roundtrips to the client. Regular redirects are used in a few cases; for
example, some Security Modes require a redirect to switch between HTTP and HTTPS
pages.

11.3 Activity Spaces
An Activity Space groups multiple task-specific actions into a logical set and provides
the programmer with base functionality. An Activity Space takes several related pages
and turns them into one group of Model-View-Control objects. Most of the classes in
the UI projects are part of an Activity Space, for example:

■ Login page (plumtree.portalpages.browsing.login.LoginAS)

■ My Pages (plumtree.portalpages.browsing.myportal.mypages.MyPageAS)

■ Select Portlet page
(plumtree.portalpages.browsing.objectselection.portlets.PortletSelectionEditorAS)

■ Knowledge Directory (plumtree.portalpages.browsing.directory.DirAS)

Activity Spaces

11-4 User Interface Customization Guide for Oracle WebCenter Interaction

■ Search (plumtree.portalpages.browsing.search.basic.BasicSearchAS or
plumtree.portalpages.browsing.search.advanced.AdvancedSearchAS)

■ Group editor (plumtree.portalpages.admin.editors.group.GroupEditorAS)

■ Tree Control (plumtree.portaluiinfrastructure.tree.TreeAS)

The Activity Space is the base unit; the Interpreter dispatches incoming requests to the
correct Activity Space. Redirects can be done from one Activity Space to another. For
example, when the client requests the Login page, the Interpreter redirects the request
to LoginAS. As shown in the example in the previous section, LoginAS redirects to
MyPageAS.

Each Activity Space contains at least one Model, View and Control. Most Activity
Spaces contain at least one Display Page. Display Pages correspond to actual portal
pages; there is a one-to-one mapping between portal pages and DP classes. Each portal
page is broken into areas and one View is implemented for each area. The Display
Page puts the Views together to render the page.

To browse to a specific Activity Space, you must add the name of the Activity Space to
the URL. The name of the Activity Space corresponds to the value of the STR_MVC_
CLASS_NAME constant in the AS class. For details, see the example that follows.

11.3.1 Example: Login Activity Space
The diagram below shows a simplified version of the members of the Login Activity
Space. This Activity Space contains one Control, one Model, and one Display Page that
contains three Views.

All classes in the UI projects follow the naming conventions shown in the diagram.

Object Type Name Suffix

Activity Space AS

Display Page DP

View View

Control Control

Model Model

Session Management

Portal UI Architecture 11-5

The classes for the Login Activity Space (LoginAS) are located in the UI projects
(com.plumtree.portalpages.browsing.login).

Note: NavigationView and TopBarView are located under \common because they are
used in all portal pages.

As noted above, you can browse to an Activity Space by adding the name of the
Activity Space to the URL. The name of the Activity Space corresponds to the value of
the STR_MVC_CLASS_NAME constant in the AS class. For example, the value of
STR_MVC_CLASS_NAME in LoginAS is "Login" so the URL to access the login page
would be: http://localhost/portal/server.pt?space=Login.

For more information and detailed instructions on Activity Space customization, see
Chapter 14, "Creating Custom Activity Spaces".

11.4 Session Management
Access to the HTTP session in Java and the HTTP session state object in .NET is
controlled through the HTTPMemoryManagement module. This wraps the
underlying session object into a Session Manager, which allows you to manage the
session hierarchically.

The session contains several infrastructure-level data structures, such as the Activity
Space cache. It also provides a Sandbox Session Manager, where UI developers can
store data on the session. In an MVC architecture, most data storage should be done
on the Model, but there are situations where it is necessary to store data directly in the
Sandbox Session Manager to share data between ActivitySpaces. Using the Model for
data storage is preferable because the Model is cleaned up when the ActivitySpace is
removed from the cache; the Sandbox is only cleaned up when the user logs out. The
Sandbox contains booleans that describe the user's browser (i.e., IE, Netscape,
Macintosh, etc.).

The diagram below shows what is stored on the session and how it is organized.

Request Control Flow

11-6 User Interface Customization Guide for Oracle WebCenter Interaction

11.5 Request Control Flow
As explained in the previous sections, the portal UI is accessed through the
MVC-based Activity Space Framework. Instead of navigating to UI pages via file links,
each user request is handled by an Interpreter that determines the page (i.e., Activity
Space) to be displayed.

This section summarizes what happens when a request is made by filling in the gaps
between the user request and page display. These pages take a look inside the
Interpreter to see some of the common checks that are processed for each request,
explore the relationship between the Interpreter and Activity Spaces, and gain a better
understanding of how control flows from one to another.

11.5.1 Interpreter Control Flow
When a request is made to the portal, the Interpreter controls the UI page to be
displayed to the user. The Interpreter is simply a class in the UIInfrastructure library
that serves as an entry point for HTTP requests; it "interprets" the query string to
determine the contents of the request and decide where to send the user. Since the
Interpreter is involved with every request, you should have an understanding of some
of the logic it performs.

When an HTTP request is made to the portal entry point (e.g., server.pt), the
HandleRequest method in the Interpreter is called. This method receives the
necessary information required for processing: request, response, application, and
session. Several checks and functions are performed, summarized below in the order
they occur:

1. Check for successful startup: If the portal fails to start up, the Interpreter cannot
perform a redirect, because it has no Activity Space. Instead, it writes the
following error message directly on the response: "The server has experienced an
error on startup. This problem must be fixed before using the system." When
starting your portal, open Logging Spy and check for a successful startup message
for the UI Infrastructure component. If there is a problem, you should see a startup
failure message in Logging Spy.

In most cases, you will also see an error page in your browser, though some portal
errors are drastic enough such that you will not reach the portal's error page. For
example, if the path you supplied for the portal in your config file is incorrect,
your libraries (including UIInfrastructure) will not load; the code will not reach
the Interpreter and you will likely see an error message from your web server.

2. Check for gatewayed request: Gatewayed requests are handled by the
HandleGatewayRequest method in the GatewayHandlers class. Any minor
differences in processing are noted in the explanations that follow.

3. Check security mode: The Interpreter confirms that the request matches the
current security mode of the portal:

■ In mode 0, the portal is either secure or insecure, depending on how the user
accesses the portal.

■ In mode 1, only Activity Spaces specified in the config file
SecureActivitySpaces are secure.

■ In mode 2, the entire portal is secure and all requests must be made via
HTTPS.

4. To perform this check, HandleRequest calls the helper method
CheckHTTPSecurityAndRedirect. This method checks whether the incoming

Request Control Flow

Portal UI Architecture 11-7

request matches the security mode, and redirects as necessary. If the portal is
expecting an SSL request (modes 1 or 2) but a non-SSL request comes in, the
Interpreter creates a 302 redirect to the same page using a secure URL. This
redirect is constructed using the secure URL mapping entered in the x_config.xml
file:

<!-- URLMapping - Entry 0 -->
<URLFromRequest0 value="*"></URLFromRequest0>
<ApplicationURL0 value="http://myserver/portal/server.pt"></ApplicationURL0>
<SecureApplicationURL0
value="https://myserver/portal/server.pt"></SecureApplicationURL0>

5. Load query string settings: At this point, the Interpreter accepts the request and
attempts to interpret (parse) its content by calling the helper method
LoadQSSettings. This method begins by extracting any expected query string
arguments such as "space", "in_hi_space", "control", "in_hi_control", etc. These
arguments are stored so they can be passed back for processing. Before returning
to HandleRequest, the method performs two more functions. First, the
arguments are checked for unsafe characters. If the arguments have suspicious
characters (indicative of cross-site hack attempts), an error will be thrown and
shown in Logging Spy.

6. Finally, the method checks the Accepts and User-Agent headers to determine if
the request is coming from a known device, such as a PDA (the list of known
devices is specified in the config file devices.xml). If a match is found, the
appropriate markup format will be used; otherwise, standard HTML will be used.

7. Increment performance counters: The portal keeps track of several performance
benchmarks, including total number of hits. The Interpreter is used to track this
statistic because it is involved with every request. For each request made, this
counter is incremented. (Gatewayed requests are recorded in a separate counter.)

8. Session locking and request management: After all the information is retrieved
from the request, the Interpreter gets to work. To ensure that it works on one
request at a time per session, a queue is used to store requests. If the queue has
reached its limit, new requests are denied and the portal reports an error message.

9. Determine browser settings: After establishing a good request, the Interpreter
retrieves and stores the user's browser settings, including the type of browser (IE
or Netscape), and the version if available. These settings can then be used to make
minor modifications so the UI displays correctly for the user.

10. Log in: Once the request is prepared, the Interpreter processes it through the
portal. The first step is to make sure the user has the correct access. The Interpreter
checks if the "Remember my Password" cookie has been set and is valid. If the
cookie does not exist or is invalid, and the current session is empty or has timed
out, the Interpreter redirects the user to the login page. Until a valid user logs in,
the portal defaults the current user to Guest, and access is limited. The login
process also involves experience rules evaluation; for details, see Section 11.5.3,
"Experience Definition Control Flow". If the login check succeeds, the Interpreter
continues, passing the control flow to the desired Activity Space, covered in the
next section.

11.5.2 Activity Space Control Flow
After completing the basic checks listed in the previous section, the Interpreter turns
the control flow over to the requested Activity Space. The major steps in this process
are summarized below. The entire Activity Space control flow is illustrated in the
diagram at the bottom of this section. Page requests also involve experience rules
evaluation; for details, see Section 11.5.3, "Experience Definition Control Flow".

Request Control Flow

11-8 User Interface Customization Guide for Oracle WebCenter Interaction

1. Locate Activity Space: Before an Activity Space can be run, it must first be loaded
and initialized. Since multiple users are constantly accessing different portal
pages, the Interpreter first looks in the cache to see if the Activity Space already
exists. This action is shown in Logging Spy.

2. Invoke OnPageStart PEI: Before the Activity Space is processed, the OnPageStart
PEI is invoked. This PEI allows you to customize the behavior of the portal before
any page is loaded. To learn more about PEIs and supported events, see
Chapter 12, "Using PEIs".

3. Determine Control: The first step in processing the Activity Space is to determine
which Control should be used. If no Control is specified, then the Activity Space's
default Control is used. If there is no default, the Control is left empty. The
arguments for the Control are then retrieved. (For security purposes and SSO, the
login page Control requires further processing.)

4. Pass Control to Activity Space: If the Control is valid, the
CheckActionSecurityAndExecute method is called. This method is implemented
for each Control, usually by the developer of the Activity Space, or by a
development framework (e.g., the Editor framework for Activity Spaces). When
the method is called, control flow essentially passes to the Activity Space. Any
code implemented for the Activity Space is run according to the logic in the
Control. When the method finishes, it returns a Redirect object, and control is
passed back to the Interpreter. An example of this method, from PortalPages, is
shown below. In this implementation, the Control calls the Model to perform some
action, and then returns a NULL for the Redirect object.

publicclass OpenSubFolderControl implements IControl

public RedirectCheckActionSecurityAndExecute(XPHashtablearguments)
{
 String[] sValues = (String[])arguments.GetElement(m_SubFolderID);

 if (sValues ==null)
 {
 log.Error("could not find folder ID in query string.");
 return null;
 }

 m_asModel.OpenSubFolder(XPConvert.ToInteger(sValues[0]));

 returnnull;
}

5. Redirect Control: When control returns to the Interpreter, it checks the Redirect
object returned by the Activity Space:

■ If the Redirect object is NULL, the Interpreter processes the Display Page set
by the Activity Space (or by the Control itself).

■ If the Redirect is not NULL, the Interpreter processes the Redirect in a loop
until all internal Redirects are handled, at which point the final Display Page
is processed. Note: The Gateway does not support internal Redirects.
Gatewayed requests are executed through a true HTTP 302 redirect. The only
time a redirect occurs from a gatewayed request is if the user does not have
sufficient privileges, at which point the user is returned to the login page.

■ If the Redirect is an HTTP Redirect, the final Display Page response is set and
the Interpreter starts from the beginning.

With this mechanism, an Activity Space can use multiple controls, perform
multiple actions, and repost as needed. The excerpt from PortalPages shown

Request Control Flow

Portal UI Architecture 11-9

below demonstrates this logic. After the page is deleted, a redirect is created that
sets a Control to direct the browser to the user's home page.

publicclass DeletePageControlimplements IControl

public RedirectCheckActionSecurityAndExecute(XPHashtablearguments)
{\
 String[] sValues = (String[])arguments.GetElement(STR_PAGE_ID);

 if(sValues == null)
 {
 log.Error("could not find page ID in query string.");
 return null;
 }

 int nDeletePageID = XPConvert.ToInteger(sValues[0]);

 m_asModel.DeletePage(nDeletePageID);

 IPTSession objSession = (IPTSession)m_asOwner.GetUserSession();
 int nUserID = objSession.GetSessionInfo().GetCurrentUserID();
 int nHomePageID = -1 * nUserID;

 Redirect redirect = new Redirect();
 redirect.SetLinkCreateNewSpace(m_asOwner.GetName(), m_asOwner);
 redirect.SetControl(SetPageControl.STR_MVC_CLASS_NAME);
 redirect.AddControlArgument(SetPageControl.STR_PAGE_ID, nHomePageID);

 return redirect;
}
In the Logging Spy trace, the user begins on the MyPage Activity Space. When the
user tries to delete a MyPage, control is delegated to DeletePageControl. The
RedirectCheckActionSecurityAndExecute method is invoked, and as
shown in the code above, a call is made to the Model to delete the page. This
action is shown in Logging Spy ("... removed 1 pages ...").

DeletePageControl then creates a new Redirect by sending control to
SetPageControl with the argument to go to the user's home page. Logging Spy
shows that the Interpreter handles this redirect. Since SetPageControl does
not return any further redirects, processing is complete, and the Display Page is
shown.

6. Render Display Page: The control flow ends with the rendering of the Display
Page. At this point the UI has completed loading, and the Interpreter waits for the
user to make another request, restarting the cycle.

The diagram below illustrates the Activity Space control flow:

Request Control Flow

11-10 User Interface Customization Guide for Oracle WebCenter Interaction

As noted in the previous section, gatewayed requests are treated differently by the
Interpreter.

If the page contains portlets with tags, the request will also be handled by the
Transformer; for details see Section 11.5.4, "Adaptive Tag Control Flow".

11.5.3 Experience Definition Control Flow
Experience definitions let you tailor portal experiences for different groups of users.
In a single portal implementation, you can create a distinct user experience for each
audience. Experience definitions let you specify which navigation and branding
schemes, mandatory links, and default home pages to display to each set of users.

In every request cycle, experience rules are evaluated a maximum of two times. These
two phases may or may not resolve to the same experience definition.

11.5.3.1 Login (Guest User) Evaluation
The first experience rules evaluation phase takes place when a user accesses the portal
and has not yet been authenticated. This evaluation determines which Guest User
object to log in. Since the current user has not been authenticated, the session needs a
Guest User object to browse the portal.

Request Control Flow

Portal UI Architecture 11-11

The login experience rules evaluation returns the experience definition for the first
rule that evaluates to true, and uses the associated Guest User object. (Each experience
definition has an associated Guest User object and default login page, either the
standard login page or the Guest User's My Page. For details on the Experience
Definition Login Settings page, see the portal online help.)

Note: At this time, only experience rules relevant to unauthenticated users can be
evaluated. Since no user is logged into the portal, and the destination page has not
been determined, rules with conditions based on user properties or destination page
are meaningless. Only rules with globally determined conditions like the time of day,
browser type, request URL, etc., can be evaluated. If the evaluation of all relevant rules
return false, the user is logged in as the Default Guest User object.

11.5.3.2 Page Request Evaluation
After a user is logged in, experience rules are evaluated to determine which experience
definition object to use in displaying the requested page. This evaluation occurs after
all the Control actions have executed, and all redirects have been followed. For more
information on redirects, see Section 11.2, "MVC Architecture".

At this point in the request cycle, the destination page has been determined and the
user is logged into the portal. The experience definition is determined as follows:

1. All experience rules are evaluated and the first rule that has all conditions met
returns an experience definition.

2. If none of the experience rules evaluate to true, the experience definition is
determined by folder association. (Each experience definition can be associated
with a folder that contains User objects.)

3. If no experience definition is associated with the user's folder, the default
experience definition is used.

The requested page is displayed using the stylesheet, header navigation, etc., for the
returned experience definition.

Note: Users are no longer tied to a single experience definition; therefore a user could
view a page with one experience definition, click on a link and view the next page
with a different experience definition.

11.5.4 Adaptive Tag Control Flow
Adaptive Tags allow web designers to utilize portal data directly in their HTML. The
portal ships with a set of Adaptive Tag libraries, and you can create custom tags if
additional functionality is needed.

The figure below shows the control flow of a typical portal request that makes use of
Adaptive Tags.

Request Control Flow

11-12 User Interface Customization Guide for Oracle WebCenter Interaction

1. First, the portal page requests portlet data from the Transformer.

2. The Transformer retrieves the requested portlets from the remote portlet servers.
Native UI tags, such as JSP Tags or .NET web controls, are processed on the
remote server before the HTML is returned to the Transformer.

3. The Transformer converts the HTML into markup data including both HTML and
Adaptive Tags. This markup data is passed to the Tag Transformation Engine,
which processes the tags and converts them into standard HTML.

4. Finally, the HTML is returned to the portal page where it is displayed to the end
user.

It is important to note that native UI tags are processed first on the remote portlet
server, and Adaptive Tags are processed later in the Tag Transformation Engine,
described below.

11.5.4.1 Tag Transformation Engine
The Tag Transformation Engine converts markup data from the Transformer into a
tree of HTML and Adaptive Tags. The Engine moves through the tree and outputs
HTML and processes the tags. When a tag is processed, it can cause all of its child
nodes to be processed, or it can skip that entire section of the tree.

This figure below shows an example of a tree.

Request Control Flow

Portal UI Architecture 11-13

In this example, when the Choose tag is executed, it determines whether or not the
current user matches the conditions in the choose clause. If it does, the When tag will
display the HTML inside the tag. If not, the Otherwise tag will display its HTML. For
details on these tags, see the Oracle WebCenter Interaction Web Service Development
Guide.

Request Control Flow

11-14 User Interface Customization Guide for Oracle WebCenter Interaction

12

Using PEIs 12-1

12 Using PEIs

The Programmable Event Interface (PEI) framework defines a set of user actions that fire
programmatic events that can be used to execute custom code without editing the
portal source code. This approach allows you to upgrade the portal as service packs
become available without losing your customizations.

A PEI is a Java or C# interface that defines event methods. For example, the
ILoginActions PEI defines methods that are called when a user logs into the portal
(e.g., On BeforeLogin, OnAfterLogin). The PEI framework provides interfaces only. To
customize the portal using a PEI, you must create a class that implements the PEI and
make the class available to the portal using Dynamic Discovery. This chapter provides
a full ist of available PEIs and detailed instructions on implementation and
deployment.

12.1 Step 1: Choosing a PEI
There is a wide range of PEIs available, each with a specific purpose. The table below
summarizes the available PEIs and associated methods. For detailed information on
available methods for each PEI, see the API documentation. (For links to all portal API
documentation, see Appendix B, "Portal API Documentation".)

Note: The events available via PEIs are fired only in response to a
user's direct action on the portal. If an action occurs as a result of some
automated process or a direct call to the portal server, PEI methods
are not called. For a thorough explanation of how PEIs are executed
by the portal, see Section 12.5, "Lifecycle of a PEI" at the end of this
chapter.

PEI Name and Description Available Methods

ILoginActions and ILoginActions2 (.uiinfrastructure.pei)
allow you to create functionality within the scope of the
login process. The login process is the most commonly
customized functionality in the portal. ILoginActions2
extends ILoginActions and supports returning redirects for
failed logins using SSO. For details, see the API
documentation.

■ OnBeforeLogin

■ OnAfterLogin

■ OnFailedLogin

■ OnBeforeLogout

IOpenerActions (.uiinfrastructure.pei) allows you to
implement custom functionality when the Common
Opener is used to open an object or redirect to an Activity
Space.

■ OnBeforeOpen

Step 1: Choosing a PEI

12-2 User Interface Customization Guide for Oracle WebCenter Interaction

IPageActions (.uiinfrastructure.pei) allows you to add code
to every page processed by the portal. This PEI should be
used sparingly.

■ OnPageStart

■ OnPageFinish

IDisplayJavaScript (.uiinfrastructure.pei) allows you to
add Javascript to every banner and editor page. This PEI
should be used sparingly.

■ DisplayJavaScript

INewEditObjectActions (.portaluiinfrastructure.pei)
allows you to implement custom functionality to be
processed during the most common of all administrative
actions: creating or editing a new object within the portal
(the items that can be created from the Create Object menu
in portal administration). For additional functionality, use
IObjectActions (described below)

■ OnCreateObject

■ OnEditObject

■ OnBeforeStoreObject

■ OnAfterStoreObject

IDirectoryActions (.portalpages.pei) allows you to
implement functionality in response to directory actions.
For example, executing extra code when a user opens a
folder or document within the portal Knowledge Directory.

■ OnOpenFolder

■ OnBeforeCreateDirectoryFold
er

■ OnAfterCreateDirectoryFolde
r

■ OnBeforeDeleteDirectoryFold
er

■ OAfterDeleteDirectoryFolder

■ OnBeforeDeleteDocument

■ OnBeforeCreateABOJob

■ OnAfterCreateABOJob

■ OnClickThroughToDoc

IUserProfileActions (.portalpages.pei) allows you to
execute functionality when a user attempts to modify User
Profile information.

■ OnBeforeChangeUserProfile

■ OnBeforeStoreUserProfile

IPasswordActions (.portalpages.pei) allows you to enforce
restrictions on the password or verify the text entered by
the user.

■ OnBeforeChangePassword

ICreateAccountActions (.portalpages.pei) allows you to
execute functionality when a new user attempts to create
an account, either through the Create Account button on
the login page or in response to an invitation.

■ OnBeforeCreateAccount

■ OnAcceptInvite

IMyPortalPageActions (.portalpages.pei) allows you to
perform validation before allowing users to add or remove
portal pages.

■ OnBeforeAddMyPortalPage

■ OnAfterAddMyPortalPage

■ OnBeforeRemoveMyPortalPa
ge

■ OnAfterRemoveMyPortalPage

■ OnBeforeEditMyPortalPage

■ OnAfterEditMyPortalPage

ICommunityActions (.portalpages.pei) allows you to add
functionality dynamically when a user directly joins a
Community or unsubscribes from a Community.

■ OnAfterUserJoinsCommunity

■ OnAfterUserQuitsCommunity

IAdvancedSearchActions and IBannerSearchActions
(.portalpages.pei) allow you to make modifications to the
query being processed.

■ CustomizeQueryOnBeforeSea
rch

■ GetCustomActionsOnBeforeS
earch

PEI Name and Description Available Methods

Implementing a PEI in a Custom Class

Using PEIs 12-3

12.2 Implementing a PEI in a Custom Class
To customize portal functionality using a PEI, you must create a class that implements
the PEI.

Below are some important objects used by multiple PEIs:

■ The IPTSession object is always available to PEIs. If the object is not passed to
the PEI in the argument, it can be retrieved from the ActivitySpace object
((IPTSession)myActivitySpace.GetUserSession()). The IPTSession
object is the portal session for the current user. This object lets you perform any
action that the current user has the rights to execute on the portal server. For
example, if the current user has the necessary rights, you can create new portal
objects, query existing objects, browse the Directory or query MyPages and
communities.

■ The ActivitySpace object is passed to many PEI functions. This object provides
access to the user session and any user specific information, as well as other
Activity Space-specific information including page name, Control name and
server name. The ActivitySpace object is the container for all the Model, View,
and Control classes that comprise a particular piece of functionality. Any objects
required by a piece of functionality can usually be retrieved from the parent
ActivitySpace object.

■ The ApplicationData object is is passed to PEIs that are not sent the
ActivitySpace object. The object provides access to application-specific data from
the Activity Space, including the web application and the web session. The
ApplicationData object also lets you perform some actions on the Request
object. For example, you can get and set cookies, get the requested URL or set
values on the HTTP header.

For more detailed information on objects and methods, see the API documentation.

To create a custom PEI, follow the steps below.

INetworkSearchActions (.portalpages.pei) allows you to
make changes to network searches after they have been
submitted by the user.

■ OnBeforeNetworkSearchProce
ss

ISearchSettingActions (.portalpages.pei) allows you to
track creation and deletion of saved searches (Snapshot
Queries), and control naming and encoding for new saved
searches.

■ OnBeforeSaveSearch

■ OnAfterSaveSearch

■ OnBeforeRemoveSavedSearch

■ OnAfterModifyOrRemoveSav
edSearch

IObjectActions (.portalpages.pei) allows you to add
functionality to almost any event that occurs during portal
administration, including Delete, Move, Copy, and Object
Migration. Each method on this PEI is executed when the
corresponding event is processed within portal
Administration and determines if the process should
continue or if modifications are required.

Note: Use the *ObjectActions PEI sparingly; these functions
are loaded and processed each time the corresponding
event is called.

■ OnBeforeDeleteObject

■ OnBeforeMoveObject

■ OnBeforeMigrateObject

■ OnBeforeCopyObject

■ OnBeforeCreateABOJob

■ OnAfterCreateABOJob

■ OnBeforeCreateAdminFolder

■ OnBeforeCopyAdminFolder

■ OnBeforeDeleteAdminFolder

PEI Name and Description Available Methods

Implementing a PEI in a Custom Class

12-4 User Interface Customization Guide for Oracle WebCenter Interaction

1. Create your own custom project and custom PEI class (for example, a
CustomLoginPEI project and a CustomLoginPEI class in
com.yourcompany.pei.login).

2. Edit the new class in your custom project.

3. Compile the new class into a new JAR/DLL file with an intuitive name. Note: You
must re-compile PEIs against each new release of the .NET portal even if you have
not made any modifications.

This section provides three examples of implementing PEIs: Example 1: Hello World
Login PEI, Example 2: Login Usage Agreement, and Example 3: Banner Search
Customization.

12.2.1 Example 1: Hello World Login PEI
The sample customization below adds a message ("HELLO WORLD ") to be displayed
in Logging Spy after a user logs in, by implementing the ILoginActions PEI.

The name of the file is important. All classes that implement PEIs should use a file
name the references the name of the interface that they implement. The
ILoginActions interface defines a few simple methods: OnBeforeLogin,
OnAfterLogin, OnFailedLogin, and OnBeforeLogout. Use your IDE to navigate
to the interface definition or view the API documentation for PEI classes.

1. The OnAfterLogin() method allows for some functionality to occur once the
user has successfully logged in and then possibly do a redirect to someplace other
than the MyPage. As noted above, this code tells Logging Spy to to print out a
HELLO WORLD string after a user logs in. This code uses the Error tracing type;
you must confirm that Logging Spy Error tracing is enabled when you deploy the
code to view the message.

Java:

public Redirect OnAfterLogin(Object _oUserSession, ApplicationData _appData)
{
 // Print out "HELLO WORLD" to PTSpy
log.Error("HELLO WORLD");
 return null;
}
C#:

public virtual Redirect OnAfterLogin(Object _oUserSession, ApplicationData _
appData)
{
// Print out "HELLO WORLD" to PTSpy
log.Error("HELLO WORLD");
return null;
}

2. The remaining methods in ILoginActions are unused in this example, so they
simply return null. They could be used to perform similar actions before logging
in or out, or when a login fails. For a more advanced login customization, see the
next example.

.NET only: After the code is complete, you must associate the main portal project with
the custom project.

1. In Visual Studio, navigate to the SOURCE_HOME\portal.NET\prod and open
portal*.sln.

2. Expand the project, right-click on References, and select Add Reference.

Implementing a PEI in a Custom Class

Using PEIs 12-5

3. On the Projects tab, highlight the sampleloginpei project.

4. Click Select and OK. Click OK to close the References window.

5. Build the portal* solution to ensure that all projects build successfully.

6. Close Visual Studio.

Once you have written the code for your new PEI, you must deploy it for use by the
portal, described in the next section, Section 12.3, "Step 3: Deploying a Custom PEI".

12.2.2 Example 2: Login Usage Agreement
This customization redirects guest users to a usage agreement page when they log in.
Based on whether they accept or reject the agreement, they are redirected to the
appropriate My Page or back to the Login page. The customization includes the
following classes:

■ The LoginAgreementActions class implements the ILoginActions PEI and
executes custom code when users log in.

■ The GuestLoginAgreementControl class implements both the ILoginControl and
IHTTPControl interfaces and logs users in as a custom guest user.

■ The MarkAsGuestControl class sets a variable on the HTTP Session to show that
this custom guest user should still be treated as a guest user, basically invalidating
their session.

■ The LoginAgreementRepostControl class handles the users choice to accept the
agreement or to reject it.

The sections below summarize the functionality of each class. To view all the code for
this customization, see the sampleagreementlogin project.

12.2.2.1 LoginAgreementActions
The LoginAgreementActions class implements ILoginActions and executes custom
code when users log in to the portal.

The OnAfterLogin() method gets the PTSession and checks if the login is for an
actual user, then checks if the user has already accepted the agreement. If the user has
accepted the agreement, the login proceeds to the portal normally; if the user has not
accepted the agreement, the login page redirects to GuestLoginAgreementControl.

public Redirect OnAfterLogin(Object _oUserSession, ApplicationData _appData) {
 IPTSession ptSession = (IPTSession) _oUserSession;
if (ptSession.GetSessionInfo().GetCurrentUserID() != PT_INTRINSICS.PT_USER_GUEST)
{
IPTSessionInfo sessionInfo = ptSession.GetSessionInfo();
Object[][] result = sessionInfo.LookupPreference(AGREED, 0);
if (result[1][0] == null || !(((String) result[1][0]).equals(TRUE)))
{
 Redirect guestRedirect = new Redirect();
 guestRedirect.SetLinkCreateNewSpace(LoginAgreementAS.STR_MVC_CLASS_NAME, null);
 guestRedirect.SetControl(GuestLoginAgreementControl.STR_MVC_CLASS_NAME);
 return guestRedirect;
}
else
{
 return null;
}
}
Return null;

Implementing a PEI in a Custom Class

12-6 User Interface Customization Guide for Oracle WebCenter Interaction

}

12.2.2.2 GuestLoginAgreementControl
The GuestLoginAgreementControl class is responsible for logging users in and out.
When users are first redirected to GuestLoginAgreementControl they are logged out
and logged back in as a guest. After they have seen the agreements page, it redirects
them back to GuestLoginAgreementControl, which logs users in through their account
or redirects them back to the login page.

The GuestLoginAgreementControl class implements both the ILoginControl and
IHTTPControl interfaces. The SetHttpItems() method accesses the HTTP request
and PageData objects, used later in the AttemptLogin method. It is very important to
clear these member variables (set them equal to null) after they have been used to
make sure they are not leaked.

public void SetHTTPItems(IXPRequest _request, IWebData _pageData)
{
// In a given request, this method is called first.
m_xpRequest = _request;
m_WebData = _pageData;
}
The CheckActionSecurityAndExecute() method is used to return a Redirect
object. This Redirect is followed after the login from the Control is processed. The
Redirect object returned depends on the user's current status.

■ When users are directed to this control the first time, they are redirected to
MarkAsGuestControl, which marks them as a guest and invalidates the session.
This is to prevent users from viewing parts of the portal to which they do not have
access. The users PTSession is cached for later use.

■ After users have viewed the agreements page and are redirected back to this
control (the user session retrieved from the persistent sub-session is not null), the
CheckActionSecurityAndExecute method checks whether they accepted the
agreement or not. If they accepted the agreement, a redirect to their My Pages is
returned. If they did not accept the agreement, they are redirected back to
MarkAsGuestControl, which invalidates the session and redirects to the Login
page.

public Redirect CheckActionSecurityAndExecute(XPHashtable _arguments)
{
Redirect rReturn = new Redirect();
rReturn.SetLinkCreateNewSpace(LoginAgreementAS.STR_MVC_CLASS_NAME, m_asOwner);
rReturn.SetControl(MarkAsGuestControl.STR_MVC_CLASS_NAME);
ISessionManager perSession = m_asOwner.GetPersistentSubSession();
IPTSession userSession = (IPTSession) perSession.GetAttribute(SESSION);
if (userSession != null)
{
IPTSessionInfo sessionInfo = userSession.GetSessionInfo();
Object[][] result = sessionInfo.LookupPreference(AGREED, 0);
String strResult = (String) result[1][0];
if (strResult != null && strResult.equals(TRUE))
{
 m_userSession = userSession;
 m_bAcceptance = true;
 Redirect myRedirect = new Redirect();
 myRedirect.SetLinkCreateNewSpace(MyPageAS.STR_MVC_CLASS_NAME, m_asOwner);
 myRedirect.SetControl(MyPageAS.STR_MVC_CLASS_NAME);
 return myRedirect;
}
else

Implementing a PEI in a Custom Class

Using PEIs 12-7

{
 Redirect markGuest = new Redirect();
 markGuest.SetLinkCreateNewSpace(LoginAgreementAS.STR_MVC_CLASS_NAME, null);
 markGuest.SetControl(MarkAsGuestControl.STR_MVC_CLASS_NAME);
 perSession.RemoveAttribute(SESSION);
 return markGuest;
}
}
IPTSession ptsession = (IPTSession) m_asOwner.GetUserSession();
perSession.SetAttribute(SESSION, ptsession);
return (Redirect) rReturn;
}
The DoGetSession() method tells the Interpreter whether or not to log in a new
user during this request. This method creates a default guest user PTSession to be used
in GetSession() if the user has not accepted the usage agreement. If a user has
already accepted the usage agreement, this method does nothing.

public boolean DoGetSession()
{
try
{
String strCustomGuestName = "guest";
String strCustomGuestPassword = "";
if (!m_bAcceptance)
{
 // Connect as the guest user
 m_userSession = PortalObjectsFactory.CreateSession();
 m_userSession.Connect(strCustomGuestName, strCustomGuestPassword, null);
}
}
catch (Exception e)
{
log.Error(e, "Unable to connect as guest.");
m_userSession = null;
// Unable to connect to custom guest user, do not log in
return false;
}
return true;
}
The GetSession() method returns a PTSession for the current user. The
LoginHelper AttemptLogin method attempts to log users out of their account and
log in to the default guest user account (using the PTSession created by
DoGetSession() above) and calls all the appropriate login PEIs. This code nulls out
the IHTTPControl member variables to make sure they are not leaked and returns the
PTSession created earlier. It also removes the user's PTSession cached in the persistent
sub-session if it is no longer needed.

Only after users have accepted the agreement are they allowed to log in through their
account. In this case, the PTSession is the user session they originally logged in
through, that was stored when they were first directed to this control in
CheckActionSecurityAndExecute. If the agreement was not accepted, the PTSession
returned is a new session for the guest user.

public Object GetSession()
{
if (null != m_userSession)
{
LoginResult rReturn = null;
try
{

Implementing a PEI in a Custom Class

12-8 User Interface Customization Guide for Oracle WebCenter Interaction

 // Login the custom guest user. This calls the login PEIs.
 rReturn = LoginHelper.INSTANCE.AttemptLogin(m_userSession, m_asOwner, m_
xpRequest, m_WebData);
}
catch (Exception e)
{
 log.Error(e, "AttemptLogin() failed.");
}

 if (!rReturn.m_bSuccess)
{
 log.Error("GuestLoginControl AttemptLogin() as guest failed: " + rReturn.m_
strError);
}

 if (null != rReturn.m_Redirect)
{
 log.Error("GuestLoginControl AttemptLogin() return redirect ignored.");
}
}
IPTSession userSession = m_userSession;
// Null out the IHTTPControl data so we don't retain the memory after the
// request is done (i.e. leak the memory)
m_xpRequest = null;
m_WebData = null;
m_userSession = null;

 // clean up
if (m_bAcceptance)
{
ISessionManager perSession = m_asOwner.GetPersistentSubSession();
perSession.RemoveAttribute(SESSION);
m_bAcceptance = false;
}
return userSession;
}

12.2.2.3 MarkAsGuestControl
The MarkAsGuestControl class is another essential component in this customization.
In order to prevent users from potentially viewing parts of the portal to which they
should not have access, it is necessary to invalidate their session when logged in. This
control essentially marks users as a guest, making sure they are unable to access any
portion of the portal. This control is used when users are first logged out and logged
back in as a guest, and also if users reject the agreement and are logged in as a guest
and redirected to the login page.

The CheckActionSecurityAndExecute() method in this control sets a variable
on the HTTP Session to show that users should still be treated as a guest user. The
method sets an attribute (variable) on the user sub-session (HTTP Session). Setting the
USERSESSIONVALID attribute to False tells the TopBar to treat users as a guest or
non-authenticated user. The method then checks whether the user rejected the
agreement or has not yet been prompted with the agreement by checking for a cached
PTSession in the persistent sub-session. If the user has not yet been prompted with the
agreement (i.e., there is a PTSession in the sub-session), the login cookie is removed to
prevent a session timeout and they are redirected to LoginAgreementRepostControl.
If the user has rejected the agreement, they are redirected to the login page.

public Redirect CheckActionSecurityAndExecute(XPHashtable _arguments)
{

Implementing a PEI in a Custom Class

Using PEIs 12-9

m_asOwner.GetSubSession().SetAttribute(Interpreter.USERSESSIONVALID,
Boolean.FALSE);
ISessionManager perSession = m_asOwner.GetPersistentSubSession();
IPTSession userSession = (IPTSession) perSession.GetAttribute(SESSION);
if (userSession != null)
{
LoginHandlers.ClearLoginOccurredCookiePresent(m_asOwner.GetCurrentHTTPResponse());
Redirect rReturn = new Redirect();
rReturn.SetIsHTTPRedirect(true);
rReturn.SetLinkGetSpaceIfCached(LoginAgreementAS.STR_MVC_CLASS_NAME, m_asOwner);
rReturn.SetControl(LoginAgreementRepostControl.STR_MVC_CLASS_NAME);
return rReturn;
}
else
{
Redirect toLogin = new Redirect(); toLogin.SetLinkGetSpaceIfCached(LoginAS.STR_
MVC_CLASS_NAME, m_asOwner); toLogin.SetControl(DefaultLoginControl.STR_MVC_CLASS_
NAME);
toLogin.SetControl(LoginControl.STR_MVC_CLASS_NAME);
return toLogin;
}
}

12.2.2.4 LoginAgreementRepostControl
The LoginAgreementRepostControl class implements the second half of this
customization. GuestLoginAgreementControl handles the necessary details of logging
a user in and out of the portal, while LoginAgreementRepostControl handles the
corresponding user actions on the agreements page.

The CheckActionSecurityAndExecute() method in this control first checks if the
user has already accepted the agreement. If users accept the agreement by clicking OK,
a value is stored in the users preferences so they do not see the agreements page on
future logins. Whether they accept the agreement or not, all users are redirected back
to GuestLoginAgreementControl, which redirects to the proper Activity Space (the
login page or the user's My Pages). The cached PTSession in the persistent sub-session
is removed by GuestLoginAgreementControl either in GetSession() or
CheckActionSecurityAndExecute() depending on whether the user has
accepted the agreement or not.

public Redirect CheckActionSecurityAndExecute(XPHashtable arguments)
{
String[] sPostToSelf = (String[]) arguments.GetElement(RepostControl.HTMLINPUT_
POSTTOSELF);
if(sPostToSelf == null)
{
 return null;
}
else
{
 if(XPConvert.ToInteger(sPostToSelf[0])== POSTTOSELF_ACTION_OK)
 {
 ISessionManager perSession = m_asOwner.GetPersistentSubSession();
 IPTSession newSession = (IPTSession) perSession.GetAttribute(SESSION);
 IPTSessionInfo mySessionInfo = newSession.GetSessionInfo();
 mySessionInfo.AddPreference(AGREED, TRUE, 0);
 Redirect guestRedirect = new Redirect();
 guestRedirect.SetLinkCreateNewSpace(LoginAgreementAS.STR_MVC_CLASS_NAME,
null);
 return guestRedirect;

Implementing a PEI in a Custom Class

12-10 User Interface Customization Guide for Oracle WebCenter Interaction

 }
 else if(XPConvert.ToInteger(sPostToSelf[0]) == POSTTOSELF_ACTION_CANCEL)
 {
 Redirect guestRedirect = new Redirect();
 guestRedirect.SetLinkCreateNewSpace(LoginAgreementAS.STR_MVC_CLASS_NAME,
null);
 guestRedirect.SetControl(GuestLoginAgreementControl.STR_MVC_CLASS_NAME);
 return guestRedirect;
 }
 else
 {
 log.Debug("invalid POSTTOSELF option.");
 return null;
 }
}
}

12.2.3 Example 3: Banner Search Customization
The examples in this section customize portal banner search functionality through the
IBeforeBannerSearchActions PEI.

■ Adding Strings to Search Queries

■ Adding Properties to Search Fields

■ Adding Constraints to Properties

■ Restricting Banner Search

12.2.3.1 Adding Strings to Search Queries
This code adds the string "oracle" to every banner search query.

package com.samplecompany.portalpages.pei;
import com.plumtree.server.*;
import com.plumtree.uiinfrastructure.activityspace.*;
import com.plumtree.portaluiinfrastructure.search.*;
import com.plumtree.portalpages.pei.*;
public class SampleBannerSearchPEI1 implements IBannerSearchActions
{
public void CustomizeQueryOnBeforeSearch(AActivitySpace _asCurrentSpace,
IPTSession _ptUserSession, QueryArguments _qaQueryInfo)
{
// Require items to contain the string "oracle" in
// addition to the user's query

_qaQueryInfo.userQuery = "(" + _qaQueryInfo.userQuery + ") and oracle";
}
public SearchSettingCollection GetCustomSettingsOnBeforeSearch(AActivitySpace _
asCurrentSpace, IPTSession _ptUserSession)
{
return null;
}
}

12.2.3.2 Adding Properties to Search Fields
This example adds an author property to the set of fields to be searched.

package com.samplecompany.portalpages.pei;
import com.plumtree.server.*;

Implementing a PEI in a Custom Class

Using PEIs 12-11

import com.plumtree.uiinfrastructure.activityspace.*;
import com.plumtree.portaluiinfrastructure.search.*;
import com.plumtree.portalpages.pei.*;
public class SampleBannerSearchPEI2 implements IBannerSearchActions
{
public void CustomizeQueryOnBeforeSearch(AActivitySpace _asCurrentSpace,
IPTSession _ptUserSession, QueryArguments _qaQueryInfo)
{
// Add the "author" property (property 103) to the set
// of fields to be searched
_qaQueryInfo.basicFields = "PT1[0.5],PT2[0.2],PT50[0.2],PT103[0.1]";
}
public SearchSettingCollection GetCustomSettingsOnBeforeSearch(AActivitySpace _
asCurrentSpace, IPTSession _ptUserSession)
{
return null;
}
}

12.2.3.3 Adding Constraints to Properties
This example adds a constraint that the author property must contain "oracle" (in
addition to the user’s query, which can match on Name, Description, or Content).

package com.samplecompany.portalpages.pei;

import com.plumtree.server.*;
import com.plumtree.uiinfrastructure.activityspace.*;
import com.plumtree.portaluiinfrastructure.search.*;
import com.plumtree.portalpages.pei.*;

public class SampleBannerSearchPEI3 implements IBannerSearchActions

{

public void CustomizeQueryOnBeforeSearch(AActivitySpace _asCurrentSpace,
IPTSession _ptUserSession, QueryArguments _qaQueryInfo)

{

// Add a constraint that the "author" property contain
// "oracle"in addition to the user's query (on the name,
// description, and content fields)

// Create an advanced-search filter to replace the simple query
IPTFilter filter = PortalObjectsFactory.CreateSearchFilter();

// Set the user's query as the search string
filter.SetSearchString(_qaQueryInfo.userQuery);

// Want to AND the user's query with the property constraint
filter.SetOperator(PT_BOOLOPS.PT_BOOLOP_AND);

// Create the property part of the filter
IPTPropertyFilterClauses clause =
(IPTPropertyFilterClauses)
filter.GetNewFilterItem(PT_FILTER_ITEM_TYPES.PT_FILTER_ITEM_CLAUSES);
clause.SetOperator(PT_BOOLOPS.PT_BOOLOP_AND);

// Attach it to the filter
filter.SetPropertyFilter(clause);

Implementing a PEI in a Custom Class

12-12 User Interface Customization Guide for Oracle WebCenter Interaction

// Create the single "author contains oracle" statement
IPTPropertyFilterStatement statement =
(IPTPropertyFilterStatement) filter.GetNewFilterItem(
PT_FILTER_ITEM_TYPES.PT_FILTER_ITEM_STATEMENT);
statement.SetOperand(103); // property 103 == author
statement.SetOperator(PT_FILTEROPS.PT_FILTEROP_CONTAINS);
statement.SetValue("oracle");

// Attach statement to clause
clause.AddItem(statement, 0);

// Use the filter in place of the original user query
_qaQueryInfo.advancedFilter = filter;
_qaQueryInfo.userQuery = null;

}

public SearchSettingCollection GetCustomSettingsOnBeforeSearch(AActivitySpace _
asCurrentSpace, IPTSession _ptUserSession)
{
return null;
}
}

12.2.3.4 Restricting Banner Search
This example restricts banner search to match only documents and folders by turning
off banner search of users, portlets, communities, Collaboration, and Publisher. This
code also turns off spell correction.

package com.samplecompany.portalpages.pei;
import com.plumtree.server.*;
import com.plumtree.uiinfrastructure.activityspace.*;
import com.plumtree.portaluiinfrastructure.search.*;
import com.plumtree.portalpages.pei.*;

public class SampleBannerSearchPEI4 implements IBannerSearchActions
{
public void CustomizeQueryOnBeforeSearch(AActivitySpace _asCurrentSpace,
IPTSession _ptUserSession, QueryArguments _qaQueryInfo)
{
// Nothing here
}
public SearchSettingCollection GetCustomSettingsOnBeforeSearch(AActivitySpace _
asCurrentSpace, IPTSession _ptUserSession)
{
SearchSettingCollection c = new SearchSettingCollection();
// Restrict to cards and folders only, no other objects
c.add(PT_SEARCH_SETTING.PT_SEARCHSETTING_OBJTYPES,
new int[] { PT_CLASSIDS.PT_CATALOGCARD_ID, PT_CLASSIDS.PT_CATALOGFOLDER_ID });

// Restrict to portal items only, no Collab or Content
c.add(PT_SEARCH_SETTING.PT_SEARCHSETTING_APPS, PT_SEARCH_APPS.PT_SEARCH_APPS_
PORTAL);
// Turn off spell correction
c.add(PT_SEARCH_SETTING.PT_SEARCHSETTING_SPELLCHECK, false);
return c;
}
}

Step 3: Deploying a Custom PEI

Using PEIs 12-13

Once you have written the code for your new PEI, you must deploy it for use by the
portal, described in the next section.

12.3 Step 3: Deploying a Custom PEI
After you create a custom project as described in the previous section, you must
deploy it to the portal using Dynamic Discovery. For detailed information and
instructions, see Chapter 18, "Deploying Custom Code Using Dynamic Discovery". To
deploy a PEI, use Interface-Based Dynamic Discovery.

The example below deploys the Hello World Login PEI sample code from the previous
section. Always confirm that your code was deployed correctly, explained in
Section 12.3.2, "Viewing Your Customization in the Portal" at the bottom of this
section.

12.3.1 Example: Deploying the Hello World Login PEI
These instructions use Visual Studio in .NET and Ant scripts in Java to deploy your
custom code.

First, add the library containing the new HelloWorldLoginAction class to the
LoginActions.xml file so it can be deployed by Dynamic Discovery.

1. Navigate to PT_HOME\settings\portal\dynamicloads\PEIs and open
LoginActions.xml in a text editor.

2. Add the name of the new PEI to the existing XML as shown below. Make sure that
the HelloWorldLoginAction is listed after the PTLoginActions class and the
spelling and capitalization is exactly the same as the full class name.

<root>
<interface name="com.plumtree.uiinfrastructure.pei.ILoginActions"/>
<interfaceassembly name="uiinfrastructure"/>
<class name="com.plumtree.portalpages.pei.PTLoginActions"/>
<class name="com.plumtree.sampleui.pei.HelloWorldLoginActions"/>
</root>

You must also run a clean build in order to deploy the custom code.

Java:

1. Open a command prompt and change the directory to the \ptwebui directory
where you installed the portal source code

2. Run a clean build using the following Ant script: ant build.

3. Generate a new WAR file for the application server using the following Ant script:
ant install.

Note: This target deletes and rebuilds all jar files associated with all the UI source
projects (as well as the custom projects in the ptwebui folder).

C#:

1. Build the project in Visual Studio.

2. Visual Studio should copy the sampleview.dll file from SOURCE_
HOME\sampleview\dotnet\prod\bin to PORTAL_HOME\webapp\portal\bin
for you. If there are problems with Dynamic Discovery on startup, you might need
to do this step manually. This is necessary to allow Dynamic Discovery to find the
new library.

Step 4: Debugging and Troubleshooting

12-14 User Interface Customization Guide for Oracle WebCenter Interaction

12.3.2 Viewing Your Customization in the Portal
Once you have deployed your code, view the changes in the portal to confirm that
they were loaded correctly.

1. Open Logging Spy. For details, see the Administrator Guide for Oracle WebCenter
Interaction.

2. Click the Set Filters button to open the Filter Settings dialog. Make sure the Error
checkbox is selected. (You will not be able to see the customization run if this
logging level is not enabled.)

3. Start the portal and view Logging Spy. During startup, you should see a message
about the loading of LoginActions classes; two ILoginAction classes should be
loaded. If no ILoginActions classes were loaded, you might have misspelled or
mis-capitalized one of the names.

4. Open a new browser window and navigate to the portal. Do not log in. You
should see the "HELLO WORLD" string in Logging Spy. This is because when you
first hit the portal, you are logged in as the guest user automatically to display the
login page.

5. Login as the administrator. You should see the "HELLO WORLD" string again in
Logging Spy because you have explicitly logged in as a user.

The next step is to debug your code.

12.4 Step 4: Debugging and Troubleshooting
This section provides technical tips for common problems and instructions on how to
debug your new PEI.

12.4.1 Technical Tips
If your custom PEI does not function, first make sure the full class name of the
HelloWorldLoginAction PEI is listed in LoginActions.xml exactly as it is spelled in the
code. It will not load if spelled or capitalized incorrectly. This may not produce any
errors during startup. One way to check that the ILoginActions loaded correctly is to
make sure that Logging Spy says the correct number was loaded (2). This is explained
in Section 12.3.2, "Viewing Your Customization in the Portal".

If this does not solve the problem, debug your code using the instructions below.

12.4.2 Debugging
These instructions use the Hello World Login PEI class created in the previous sections
as an example.

Java

1. In Eclipse, stop the Tomcat debugging session and open
HelloWorldLoginActions.java.

2. Add a breakpoint at the log.Error line .

3. In the Eclipse menu, click Run | Debug… and select the Tomcat application.

4. Choose the Classpath tab, select Add Projects, and add the sampleloginpei
project.

5. Hit Debug (and Save to retain your changes).

Lifecycle of a PEI

Using PEIs 12-15

6. Navigate to your portal and view the login page. You should hit this breakpoint,
since you are automatically logged in as the guest user when you first view the
portal in a new browser.

C#

1. Stop the Visual Studio debugger (and close your browser if it is still open) and
open HelloWorldLoginActions.cs in Visual Studio.

2. Add a breakpoint at the log.Error line.

3. Start the Visual Studio debugger (F5 or Start | Debug).

4. Navigate to your portal and view the login page. You should hit this breakpoint,
since you are automatically logged in as the guest user when you first view the
portal in a new browser.

12.5 Lifecycle of a PEI
This section traces the lifecycle of a PEI and provide a comprehensive view of what
happens to it, from the mechanism that loads the PEI to the actual code invoked when
a PEI event occurs.

12.5.1 Step 1: Loading the PEI
All PEIs are loaded at runtime when the portal first starts up. Because PEIs are loaded
using Dynamic Discovery, they can be plugged into the portal without modifying
existing UI code. This section examines some of the code that makes up the PEI
infrastructure. This code is from the UIInfrastructure project, and the source for this
project is not distributed with the portal; it is included here solely for the purpose of
understanding PEIs.

When the portal first starts up, it is initialized using an Init method in the AppWarmUp
class from the com.plumtree.uiinfrastructure package:

public class AppWarmUp
public static final void Init(String strVarPackXMLFile, String strApplicationName,
String _strPlatform)
The Init method initializes most aspects of the portal, including the loading of PEIs.
The following code from the Init method shows exactly how it happens. First, it
establishes the path from which the portal will get the PEI loading information, which
is in the \dynamicloads\PEIs folder inside the portal configuration folder (PT_
HOME\settings\portal\dynamicloads\PEIs). This directory contains the files that
allow you to add a new PEI into the system. The code then makes a call to the
LoadSettings helper method with this path.

String strPortalDynamicLoadFolder = strPortalConfFolder + strFileSeparator +
"dynamicloads" + strFileSeparator;
// CODE TRUNCATED HERE FOR BREVITY
try
{
 // Load Dynamic Loads
 if(PTDebug.IsInfoTracingEnabled(Component.UI_Infrastructure))
 {
 PTDebug.Trace(Component.UI_Infrastructure, TraceType.Info, "Loading the
dynamic loads.");
 }
 LoadSettings(application, strPortalDynamicLoadFolder, strLibHomePath);
}

Lifecycle of a PEI

12-16 User Interface Customization Guide for Oracle WebCenter Interaction

The LoadSettings helper method takes the path to the \dynamicloads\PEIs folder,
and attempts to discover the corresponding PEI for each XML file in the folder (the
looping of files is omitted in the code below). As the information from each XML file is
loaded and the PEI instances are created, they are stored in the portal application; the
strCacheString reference in the code below is then used to retrieve the instances
(explained in the next section).

The GetCachingManager.SetEntry (and analogous
GetCachingManager.GetEntry) methods are frequently used to put custom
objects on the portal application. These objects can then be retrieved in other custom
code. These methods are also used in other dynamically discovered objects, such as
custom navigation schemes.

private static final void LoadSettings(IApplication app, String strSettingsFolder,
String strLibHomePath)
strCacheString = strFileName.substring(0, nEndIndex);
// CODE TRUNCATED HERE FOR BREVITY
try
{
 settings = XPDynamicDiscovery.GetInstancesFromXML(strSettingsFolder +
strFileName, strLibHomePath);
 if (null != settings)
 {
 if (PTDebug.IsInfoTracingEnabled(Component.UI_Infrastructure))
 {
 PTDebug.Trace(Component.UI_Infrastructure, TraceType.Info,
 " Found: " + settings.length + " instances of interface" +
 " described in " + strCacheString);
 }
 }
}
// CODE TRUNCATED HERE FOR BREVITY
app.GetCachingManager().SetEntry(strCacheString, settings);
Each XML file in the \dynamicloads\PEIs directory is processed at startup. If Logging
Spy is running, you can view a report of how many interfaces were discovered for
each file. This is a good way to validate that your PEI was added correctly. For
example, if you want to add a LoginActions PEI, first start the portal without changing
the LoginActions.xml file. Write down the number of instances for LoginActions that
Logging Spy reports. Add your PEI to LoginActions.xml, restart the portal, and
compare the number of instances to the number you wrote down. It should have
incremented by the number of interfaces you added.

12.5.1.1 Memory Debug Page
The Memory Debug page is another useful tool for gathering information about the
portal. This page provides a summary of your memory internals and lists the objects
residing in the HTTPSession, the Activity Space Cache, the Portal Application, etc. As
explained above, the PEI instances created from each XML file are stored in the Portal
Application cache. The Memory Debug page displays an object representation of an
array for each of the XML files (UserProfileActions is highlighted in the image below).

To access the Memory Debug page, log in to the portal as a user with Administrative
rights, and navigate to the page by appending the following string to the portal URL:
?space=MemoryDebug.

Once the PEIs are loaded, the portal must execute them in response to the appropriate
actions, as explained next.

Lifecycle of a PEI

Using PEIs 12-17

12.5.2 Step 2: Executing the PEI
To understand what happens when a PEI event is invoked, you must look at the
supporting PEI framework code in the portal. The code that supports each PEI differs
slightly, but the concept is the same.

This example looks at the code that supports the OnAfterLogin PEI, located in the
LoginHelper class in the com.plumtree.uiinfrastructure.login package. The
DoTasksAfterLogin method is called by the portal after a successful login attempt:

public final class LoginHelper

private Redirect DoTasksAfterLogin(Object userSession, IXPRequest request,
IWebData webData, IApplication application, ISessionManager sessionManager)
One of the first actions of DoTasksAfterLogin is to retrieve the PEIs loaded in the
portal application cache. As explained in the previous section, PEI instances are
created from the XML files in the \dynamicloads\PEIs folder and stored on the portal
application cache using strCacheString.

The strCacheString key is the filename of the XML file without the extension. This
example deals with a Login PEI, so the DoTasksAfterLogin method uses the key
"LoginActions" to refer to the PEI instances loaded from processing the
LoginActions.XML file.

oa = (Object[]) application.GetCachingManager().GetEntry("LoginActions");
After the appropriate PEI instances are retrieved from the application, the following
loop iterates through them by calling the OnAfterLogin method on each of the
LoginAction PEI instances. As you can see from the logic and the comment in the
code, each PEI placed in LoginActions.XML is called in order until one of them returns
a valid Redirect.

For example:

■ If none of the PEIs return a valid Redirect, all of the PEIs will be called.

■ If the first PEI returns a valid Redirect, then it will be the only PEI called. All
others will be ignored.

■ If the method called on the PEI returns void, another PEI will be called.

Note: This is the general process for PEI framework code, but there are exceptions in
which the loop is different. For example, the DoTaskOnFailedLogin method that
handles OnFailedLogin for a Login PEI returns a String instead of a Redirect. In this
case, the method calls all instances of the PEIs regardless of the String returned,
concatenates them together and returns the final result.

for(int x = 0; x < oa.length; x ++)
{
 o = oa[x];
 // CODE TRUNCATED HERE FOR BREVITY
 if (o != null)
 {
 iActions = (ILoginActions) o;
 // OnAfterLogin returns a Redirect.
 // If it returns a valid object then this Redirect is stored,
 // and possibly returned. If there are multiple implementations
 // of this method, and multiple valid redirects are returned,
 // then the last one will stick, and the others will be forgotten.
 rTemp = iActions.OnAfterLogin(userSession, myData);
 if (rTemp != null)
 {
 rReturn = rTemp;

Lifecycle of a PEI

12-18 User Interface Customization Guide for Oracle WebCenter Interaction

 return rReturn;
 }
 }
}

13

Using View Replacement 13-1

13 Using View Replacement

The architecture of the portal UI is based on the Model, View and Control (MVC) design
pattern. Well known among UI developers, MVC enables you to separate the code that
handles business logic from the code that controls presentation and event handling.
Each page in the portal is made up of a combination of at least one Model and View,
and can include one or more Controls.

■ A Model class stores the data for a page or page section. A single page might use
one or more Model classes, depending on how much of the page data can be
shared by other types of pages. A Model defines how data is accessed and set for a
given page. Models encapsulate calls to the portal server API and also store
UI-specific data.

■ A View class contains HTMLElements and HTMLConstructs that describe how
the data from the Model should be displayed to the user. In the Oracle WebCenter
Interaction UI design, a DisplayPage object aggregates one or more View objects to
encapsulate all the programmatic information needed to render a particular page.
Some Views are common throughout the portal and some are specific to certain
pages. For example, the banner that makes up the majority of the portal is a
common View that defines the color scheme and the location of the search section.
In contrast, the View used to create and modify data within a User Profile is
specific to the User Profile function and is seen only on that page.

■ A Control is an action or set of actions that are executed when a specific event is
triggered. Multiple Controls can be defined within a page, each with its own
functional specification. For example, one Control might produce a popup
window that allows the user to browse for a specific object and places the selection
within the View, and another could save the new data to the Model.

You can customize the display of portal components by creating a custom version of
the associated View class(es). The Oracle WebCenter Interaction UI Framework
allows you to implement your customizations without modifying the portal code. This
approach is safer, more efficient, and facilitates future upgrades.

Note: In most cases, you should modify only the View class of an Activity Space.
Modifying Model and Control modules is supported, but consistency problems could
occur if you do not test all related modules carefully.

This chapter provides instructions on how to create and deploy a custom View, and
includes sample code that shows how to create a new view for the portal login page.
The Hello World Login Page example illustrates how you can replace sections of
portal code with your own customized code. As long as you maintain the contract
dictated by Oracle WebCenter Interaction interfaces, your code will plug in
seamlessly.

Identifying the Activity Space

13-2 User Interface Customization Guide for Oracle WebCenter Interaction

13.1 Identifying the Activity Space
In order to change the HTML displayed in the portal, you must locate where the
HTML is generated in the portal code. Portal code is grouped into Activity Spaces,
which contain multiple Views that generate the actual HTML. Therefore, you must
first identify the Activity Space responsible for the page you want to modify; then you
can find the View that creates the HTML you are interested in, and replace that View
with your custom View.

There are several ways to find the code for the component you want to customize. It is
usually easiest to find the name of an Activity Space by looking at the associated page
URL or Logging Spy, and then browsing the source code to find that Activity Space.

There are two ways to find the name of an Activity Space:

■ Open a page in the portal that includes the component. The URL to the page
should contain a query string argument that specifies the name of the Activity
Space. Look in the query string for space= or in_hi_space=. The value after the
equals sign should be the STR_MVC_CLASS_NAME of the Activity Space. (Note:
This approach will not work if you navigated to the page via a form post, as the
URL will not show the query string arguments.)

■ Turn on Logging Spy with Info and Action tracing enabled. Open a page in the
portal that includes the component. You will see several messages in Logging Spy
regarding the current Activity Space and Display Page (e.g., "current space is
Login", "current control is DefaultLoginControl", and "Displaying page Login").
These messages can help you determine which Activity Space and/or Display
Page is generating the HTML you want to customize. The first message ("current
space") contains the name of the current Activity Space. The Display Page, noted
in the "Displaying page" message, groups together different Views into a single
HTML page.

Once you have found the name of the Activity Space, search for it in the portal UI
packages (com.plumtree.uiinfrastructure, com.plumtree.portaluiinfrastructure, and
com.plumtree.portalpages) and determine which View(s) you want to modify.

■ com.plumtree.portalpages: Most Views will be located in this package, which
contains the UI code for the majority of the portal.

■ com.plumtree.uiinfrastructure: This package contains generic framework
components that are used to build the UI.

■ com.plumtree.portaluiinfrastructure: This package contains portal-specific
framework components.

The portalpages and portaluiinfrastructure packages are divided into admin,
browsing, and common sections. The admin section is for the Administrative Site
(Editors, etc...) and the browsing section contains end-user facing pages (MyPages,
Directory, etc...). The common section contains code that is used for both admin and
browsing.

13.1.1 Example: Hello World Login Page
For example, you might locate the View that creates the HTML for the portal login
page by following the steps below.

1. Open the portal in your browser and click the "Login" link.

2. Look at the URL in your browser. Right after the question mark, it should say
"space=Login" (the ordering of query string arguments is not guaranteed). This
tells you that the Login HTML is generated by the Login Activity Space. In

Creating a Custom View

Using View Replacement 13-3

Internet Explorer, if the window you are viewing does not have the Address bar,
you can often hit Ctrl-N and open the page in a new browser window that will
have the Address bar.

3. Open up your IDE and view the portal source code.

4. The Login page is a page in the portal, so it should be in the portalpages package.
The Login page is viewed by end-users, not just administrators, so it is most likely
in the browsing package, although parts of it might be in the common package.

5. Browse to com.plumtree.portalpages.browsing.login and look for a file named
LoginAS. "AS" stands for Activity Space. There is also a file named LoginView;
that is the file you will modify.

You can also search the UI source code using your IDE or Windows Explorer to find
the correct files. You can search for either the Activity Space name or a unique string
in the HTML source. To find a unique string in the HTML source, open a page in the
portal that includes the component. View the HTML source for the page and find a
unique (non-generated) tag in the section of the HTML that includes the UI
component you want to customize. Search for the tag in the portal UI packages.

13.2 Creating a Custom View
When you modify a piece of the UI, never change existing source code. It is a best
practice to start with the original source, making modifications as necessary. The UI
source code is shipped with the product. (For links to all portal API documentation,
see Appendix B, "Portal API Documentation".)

The best way to modify an existing View is to extend it and override the methods that
you want to change. This way you can avoid class cast exceptions if any code
references the original class name.

To create a custom View, follow the steps below. For a simplified example, see the
Example: Hello World Login Page sample code that follows.

1. Create your own custom project and custom View class (e.g., a CustomLogin
project and a CustomLoginView class in com.yourcompany.login).

2. Edit the new class in your custom project. Make sure to follow the Requirements
and Best Practices below:

■ When replacing a pre-existing View with a custom View (as opposed to
creating a brand new View), the STR_MVC_CLASS_NAME returned by the
GetName() method must not be modified; this ensures that the portal will
replace the original View with your custom View. To find the STR_MVC_
CLASS_NAME, look in the View class' GetName() method (the constant also
appears at the top of the file).

■ If you are modifying only one component of the Activity Space, make sure to
import the original Activity Space package to guarantee that the other
modules will be available.

■ The Create() method must return a new instance of the custom class.
Otherwise, when the portal attempts to instantiate a new instance of the
custom View using the Create() method, it will not work. A common problem
is cutting and pasting code from an existing View and then forgetting to
update this method. Your customization will be loaded by the portal, but the
original View will still be displayed.

3. Compile the new class into a new JAR/DLL file with an intuitive name.

Creating a Custom View

13-4 User Interface Customization Guide for Oracle WebCenter Interaction

IMPORTANT: In most cases, you should modify only the View class of an Activity
Space. Modifying Model and Control components is supported, but consistency
problems could occur if you do not test all related modules carefully. When you
upgrade to a new release of the portal, it is very important to check all customized files
to see if the original versions have been modified in the upgrade. This way you can
migrate any new features and bug fixes into your modified version. (For information
on modifying the functionality of the login page, see Chapter 12, "Using PEIs".)

13.2.1 Example: Hello World Login Page
For example, the sample customization below starts with existing code and adds a line
("Hello World") to be displayed on the login page.

The name of the file is important; it ends with "View." All presentation layer classes
that implement the IView interface follow this naming convention. The IView interface
defines a few simple methods: Init, Display, and DisplayJavaScript. Use your IDE to
navigate to the interface definition or view the API documentation for the IView class.

1. Make a copy of the LoginView file at com.plumtree.portalpages.browsing.login
and make the modifications detailed below.

2. The Create() method gets a new instance of the View when it is needed. It is
very important to update this method when copying a file; otherwise your custom
class will return an instance of the original class, and your customization will not
appear in the portal.

Java:

public Object Create()
{
 return new HelloWorldView();
}
C#:

public virtual Object Create()
{
 return new HelloWorldView();
}

3. The GetName() method returns the name of the View, which is used to store and
retrieve the View class in the portal and in the ActivitySpace. When overriding an
existing View, this method must return the same value as the View that will be
overridden.

Java:

public String GetName()
{
 return STR_MVC_CLASS_NAME;
}
C#:

public virtual String GetName()
{
 return STR_MVC_CLASS_NAME;
}

4. The Init() method provides the View with access to the model and parent
Activity Space. Copy this code directly from the LoginView class.

Java:

public void Init(IModelRO model, AActivitySpace parent)

Creating a Custom View

Using View Replacement 13-5

{
 m_asmLoginModelRO = (ILoginModelRO) model;
 m_asOwner = parent;
}
C#:

public virtual void Init(IModelRO model, AActivitySpace parent)
{
 m_asmLoginModelRO = (ILoginModelRO) model;
 m_asOwner = parent;
}

5. The DisplayJavascript() method is used to add javascript to the page. This
example does not use javascript for this example, so it returns null.

Java:

public HTMLScript DisplayJavascript()
{
 return null;
}
C#:

public virtual HTMLScript DisplayJavascript()
{
 return null;
}

6. The Display() method creates the HTML for display to the user. Copy the code
for this method from the LoginView class
(com.plumtree.portalpages.browsing.login). This code outputs a table containing
the HTML for the login form.

This example adds a row to the table that prints the string "HELLO WORLD." (It
adds a cell to the row and prints the string in the cell.) As shown in the code
snippet below, the code is added after calling the MakeLoginForm() helper
method. This helper method creates the HTML form that contains the username
and password text boxes. (This code is in a separate class so it can be reused in the
Login Portlet.)

Java:

LoginHTML.MakeLoginForm(myForm, sFormName, m_asOwner.GetName(),
 m_asOwner.GetSpaceID(), LoginControl.STR_MVC_CLASS_NAME,
 m_asOwner, b508, "" , myCreateLink, bShowAuthsourceDropdown,
bAllowAuthSourceDropdownDisplay);
/*
* Add this custom code to print HELLO WORLD after the Login Form directions.
*/
HTMLTableRow myRow = new HTMLTableRow();
myTable.AddInnerHTMLElement(myRow);
HTMLTableCell myCell = new HTMLTableCell();
myRow.AddInnerHTMLElement(myCell);
myCell.AddInnerHTMLEncodedString("HELLO WORLD");
/*
* End of HELLO WORLD code
*/
C#:

LoginHTML.MakeLoginForm(myForm, sFormName, m_asOwner.GetName(), m_
asOwner.GetSpaceID(),
 LoginControl.STR_MVC_CLASS_NAME, m_asOwner, b508, "", myCreateLink,
bShowAuthsourceDropdown, bAllowAuthSourceDropdownDisplay);
/*

Deploying a Custom View

13-6 User Interface Customization Guide for Oracle WebCenter Interaction

* Add this custom code to print HELLO WORLD after the Login Form directions.
*/
HTMLTableRow myRow = new HTMLTableRow();
myTable.AddInnerHTMLElement(myRow);
HTMLTableCell myCell = new HTMLTableCell();
myRow.AddInnerHTMLElement(myCell);
myCell.AddInnerHTMLEncodedString("HELLO WORLD");
/*
* End of HELLO WORLD code
*/

Once you have written the code for your new View, you must deploy it for use by the
portal, described in the next section

13.3 Deploying a Custom View
After you create a custom View as explained in the previous section, you must deploy
it to the portal using Dynamic Discovery. For detailed information and instructions,
see Chapter 18, "Deploying Custom Code Using Dynamic Discovery". To deploy a
View replacement, use Jar or DLL-Based Dynamic Discovery.

The example below deploys the Hello World Login Page sample code from the
previous section. Once you have deployed you code, confirm that your code was
deployed correctly as explained in Section 13.3.2, "Viewing Your Customization in the
Portal" at the bottom of this section.

13.3.1 Example: Hello World Login Page
These instructions use Visual Studio in .NET and Ant scripts in Java to deploy your
custom code.

First, add the library containing the new HelloWorldView class to the
CustomActivitySpaces.xml file so it can be deployed by Dynamic Discovery.

1. Navigate to PT_HOME\settings\portal and open CustomActivitySpaces.xml in
a text editor (you might have to make the file writable). Note: Do not modify the
ActivitySpaces.xml file. The CustomActivitySpaces.xml file is functionally
identical to the ActivitySpaces.xml file and allows you to enumerate custom
components without modifying the code used by standard portal components.

2. Find the <AppLibFiles> tag and add an entry for your project:

<AppLibFiles> <libfile name="sampleview"/> </AppLibFiles>

You must also run a clean build in order to deploy the custom code.

Java:

1. Open a command prompt and change the directory to the \ptwebui directory
where you installed the portal source code

2. Run a clean build using the following Ant script: ant build

3. Generate a new WAR file for the application server using the following Ant script:
ant install

Note: This target deletes and rebuilds all jar files associated with all the UI source
projects (as well as the custom projects in the ptwebui folder).

C#:

1. Build the project in Visual Studio.

Debugging and Troubleshooting

Using View Replacement 13-7

2. Visual Studio should copy the sampleview.dll file from SOURCE_
HOME\sampleview\dotnet\prod\bin to PORTAL_HOME\webapp\portal\bin
for you. If there are problems with Dynamic Discovery on startup, you might need
to do this step manually. This is necessary to allow Dynamic Discovery to find the
new library.

13.3.2 Viewing Your Customization in the Portal
Once you have deployed your code, view the changes in the portal to confirm that
they were loaded correctly. Use Logging Spy to catch any obvious errors.

1. Open Logging Spy. For details, see the Administrator Guide for Oracle WebCenter
Interaction.

2. Start the portal.

3. Open a new browser window and navigate to the portal. You should see your
customization on the login page (the "HELLO WORLD" string appears after the
login instructions).

The next step is to debug your code, covered in the next section.

13.4 Debugging and Troubleshooting
This section provides technical tips for common problems and instructions on how to
debug your new class.

13.4.1 Technical Tips
If your custom View is not displayed correctly, first check the following items:

■ The GetName() method in your custom class must return the same STR_MVC_
CLASS_NAME used by the class that will be overridden; this ensures that the
portal will replace the original View with your custom View. To find the STR_
MVC_CLASS_NAME, look in the View class' GetName() method (the constant
also appears at the top of the file).

■ The Create() method must return a new instance of the custom class. Otherwise,
your customization will be loaded by the portal, but the original View will still be
displayed.

■ If you modified only one component of the Activity Space, make sure you
imported the original Activity Space package to provide access to the other
modules.

If none of these tips solve the problem, debug your code using the instructions below.

13.4.2 Debugging
These instructions use the Hello World Login Page class created in the previous
section as an example.

Java

1. In Eclipse, stop the Tomcat debugging session and open SampleView.java.

2. Add a breakpoint as shown below:

Debugging and Troubleshooting

13-8 User Interface Customization Guide for Oracle WebCenter Interaction

3. In the Eclipse menu, click Run | Debug… and select the Tomcat application.

4. Choose the Classpath tab, select Add Projects, and add the sampleview project.

5. Hit Debug (and Save to retain your changes).

6. Open a browser and navigate to your portal. You should hit the breakpoint, since
you are debugging the login page.

C#

1. Stop the Visual Studio debugger (and close your browser if it is still open) and
open HelloWorldView.cs in Visual Studio.

2. Add a breakpoint as shown below:

3. Start the Visual Studio debugger (F5 or Start | Debug).

4. Navigate to your portal and log in again. You should hit this breakpoint, since you
are debugging the login page.

14

Creating Custom Activity Spaces 14-1

14Creating Custom Activity Spaces

Activity Spaces group task-specific actions into logical sets to provide portal
developers with base functionality, and combine related pages to create cohesive
Model-View-Control (MVC) objects. Everything in the portal is an Activity Space: a
MyPage, an administrative editor, even the Directory tree.

For example, consider the Content Crawler editor used to create a new Content
Crawler object in the portal. The entire editor is represented by one Activity Space
object that uses several Models, Views/DisplayPages, and Controls. The Content
Crawler Editor Activity Space also uses functionality inherited from base classes,
including banner display and page-to-page editor navigation.

Every Activity Space within the portal is derived from one of the base Activity Space
classes, which include the following:

■ The Editor Activity Space defines how form-based editors work within the MVC
paradigm. This framework is used for activities that require one or more pages of
data entry, including creating portal objects and modifying settings that affect the
entire portal. As noted above, the Content Crawler Editor inherits functionality
from this base class.

■ The AForm Activity Space defines a basic form submission page that does not
require advanced editor functionality. This Activity Space is used in the MyPage,
Knowledge Directory, and other portal pages.

Recently used Activity Spaces are cached on the user's HTTP Session. (A caching
algorithm helps ensure a scalable HTTP Session size limit.)

A custom Activity Space allows you to add new pages to your portal. As long as you
maintain the contract dictated by the portal interfaces, your code will plug in
seamlessly. This chapter provides details on Activity Space components as well as
step-by-step instructions on creating a custom Activity Space.

Note: To customize existing pages, the recommended approach is to use Adaptive
Layouts; for details, see Chapter 3, "Using Adaptive Page Layouts". To change existing
UI code or add new components not available via Adaptive Layouts, use View
Replacement; for details, see Chapter 13, "Using View Replacement".

14.1 Activity Space Components
Each Activity Space includes the following classes:

■ Activity Space

■ Display Page

■ Model

Step 1: Creating an Activity Space

14-2 User Interface Customization Guide for Oracle WebCenter Interaction

■ View

■ Control (optional)

Activity Spaces can include multiple implementations of DisplayPage, Model, View
and Control.

14.1.1 Activity Space
The Activity Space class contains the Model-View-Control (MVC) framework and is
responsible for initializing the Model, View and Control objects. It also stores data that
is globally accessed by the UI.

14.1.2 Display Page
A DisplayPage class returns the View(s) used for the page. This simple class puts
together the HTML and makes it viewable to the user. Each DisplayPage corresponds
to an actual portal page; there is a one-to-one mapping between DisplayPages and
portal pages.

14.1.3 Model
A Model class defines how data is accessed and set for a given page, including any
functions necessary for security or data validation and modification. This class also
encapsulates calls to the Portal Server API and stores UI-specific data. Control classes
use a Model class to perform changes requested by the user. View classes use a Model
class to retrieve data for display.

Note: Model classes must implement a "Read-Only" Model interface in order to
discourage data manipulation in View classes. In most cases, you should add all
public accessor methods to this read-only interface.

14.1.4 View
A View class contains the HTML for the component it represents and describes how
the data from the associated Model should be displayed to the user.

14.1.5 Control
A Control class contains an action or set of actions that will be executed when a
specific event is triggered. For example, a mouse click could trigger a popup window
that displays a View.

14.2 Step 1: Creating an Activity Space
When you modify a piece of the portal UI, you should never change existing source
code. You can create new, separate pages by using custom Activity Spaces, or
overwrite existing code in a class through View Replacement. The UI source code is
shipped with the portal, and you can view or download the API documentation for
the portal UI packages.

To create a custom Activity Space, follow the steps below. For a simplified example,
see the Example: Sample Activity Space sample code that follows.

1. Create your own custom project, including the custom classes listed in the
previous section.

Step 1: Creating an Activity Space

Creating Custom Activity Spaces 14-3

2. Edit each class in your custom project, following the Requirements and Best
Practices below:

■ The Create() method must return a new instance of the custom class (i.e.,
CustomActivitySpace()). Otherwise, when the portal attempts to
instantiate a new instance of the custom classes using the Create method, it
will not work. A common problem is cutting and pasting code from an
existing Model, View or Control class and then forgetting to update this
method.

■ The GetRepostControlName() method inside the
SampleActivitySpaceAS class must return the name for the Control you
want to use.

■ The name returned by the GetName() method must be unique for each type.
For example, you can only have one View named "test" and only one Model
named "test".

3. Compile each class into a new jar/dll file with an intuitive name (for example,
CustomActivitySpaceAS).

14.2.1 Example: Sample Activity Space
This sample customization demonstrates how to create a sample Activity Space with a
simple change text feature to illustrate the use of a Control for repost actions. It
contains two modes to display two different looks for the page: display and edit. An
Activity Space can have more than one View, but in this example, the code for the two
possible Views overlaps, so it is easier to use a variable to switch between the two
modes. When the user first accesses the sample Activity Space, the page is displayed
in Display Text mode as shown below.

When the user clicks the Change Text button, the page is reloaded and displayed in
Edit Text mode as shown below. The user can then type a different message in the text
box. When the user clicks Save, the page is reloaded again, and displays the new
message in Display Text mode.

Step 1: Creating an Activity Space

14-4 User Interface Customization Guide for Oracle WebCenter Interaction

This sampleactivityspace project uses the form framework and repost actions. The
code does not allow guest users to access the custom Activity Space. This Activity
Space has one custom View class, and utilizes a mode mechanism to display two
different looks. The DisplayPage class extends PlumtreeDP, so the page also utilizes
common Views (i.e., navigation, header and footer).

The name of the files is important; each one must follow the naming convention for
the class it inherits or interface(s) it implements. For example, the name of the custom
Activity Space class must end in "AS" (i.e., SampleActivitySpaceAS).

1. The CheckBasicAccess() method guarantees that the guest user will not be
able to access this Activity Space.

Java:

public boolean CheckBasicAccess(String_strPage,String_strControl,
 boolean bSameSpace)
 {
 super.CheckBasicAccess(_strPage,_strControl,bSameSpace);
 //guest users cannot have access
 return !PlumtreeHelpers.IsGuestSession(this);
 }
C#:

public override bool CheckBasicAccess(String _strPage, String _strControl,
bool bSameSpace)
 {
base.CheckBasicAccess(_strPage, _strControl, bSameSpace);
//guest users cannot have access
return !PlumtreeHelpers.IsGuestSession(this);
 }
The GetRepostControlName() method is required if the Activity Space has a
Control. This method will return the name of the repost control class. If this
method is not included, the repost control will not work. (If your Activity Space
does not have a Control, this method is not needed.)

Java:

public String GetRepostControlName()
 {
return SampleActivitySpaceRepostControl.STR_MVC_CLASS_NAME;
 }
C#:

public override String GetRepostControlName()
 {
return SampleActivitySpaceRepostControl.STR_MVC_CLASS_NAME;
 }

Step 1: Creating an Activity Space

Creating Custom Activity Spaces 14-5

The Init() method registers the Model, DisplayPage, View, and Control.

Java:

public void Init(){

super.Init();

// Model
RegisterModel(SampleActivitySpaceModel.STR_MVC_CLASS_NAME);
IModel myModel=GetModel(SampleActivitySpaceModel.STR_MVC_CLASS_NAME);

// Display Page
SampleActivitySpaceDPmyPage= new SampleActivitySpaceDP();
// use the form framework
myPage.SetAddMainForm(true);
RegisterPage(myPage);

// View
RegisterView(SampleActivitySpaceView.STR_MVC_CLASS_NAME,myModel);

//Control
RegisterControl(SampleActivitySpaceRepostControl.STR_MVC_CLASS_NAME, myModel);
}
C#:

public override void Init()
{
base.Init();

// Model
RegisterModel(SampleActivitySpaceModel.STR_MVC_CLASS_NAME);
IModel myModel = GetModel(SampleActivitySpaceModel.STR_MVC_CLASS_NAME);

// Display Page
SampleActivitySpaceDP myPage = new SampleActivitySpaceDP();
// use the form framework
myPage.SetAddMainForm(true);
RegisterPage(myPage);

// View
RegisterView(SampleActivitySpaceView.STR_MVC_CLASS_NAME, myModel);

//Control
RegisterControl(SampleActivitySpaceRepostControl.STR_MVC_CLASS_NAME, myModel);
}

2. Open the SampleActivitySpaceDP file (.java or .cs) in the sampleactivityspace
project.

The GetTitleForBanner() method returns the title to be displayed on the
header.

Java:

public String GetTitleForBanner()
{
return "Sample Activity Space";
}
C#:

public override String GetTitleForBanner()
{
return "Sample Activity Space";

Step 1: Creating an Activity Space

14-6 User Interface Customization Guide for Oracle WebCenter Interaction

}
The GetSubtitleForBanner() method returns the subtitle to be displayed on
the header.

Java:

public String GetSubtitleForBanner()
{
return "Page 1";
}
C#:

public override String GetSubtitleForBanner()
{
return "Page 1";
}
The PageDisplay() method gets all the HTML from the View(s) and puts it
together to build the page's display.

Java:

public HTMLElement PageDisplay()
{
return m_asOwner.GetView(SampleActivitySpaceView.STR_MVC_CLASS_NAME).Display();
}
C#:

public override HTMLElement PageDisplay()
{
return m_asOwner.GetView(SampleActivitySpaceView.STR_MVC_CLASS_NAME).Display();
}

3. Open the SampleActivitySpaceModel file (.java or .cs) in the sampleactivityspace
project. The class contains a field m_nMode to store the page's current mode. The
text that is displayed is stored by the m_strDisplayText variable.

The SavePage() method saves the text entered in the text box while the page is
in edit mode.

Java:

public int SavePage(String_sPageName, XPHashtable_htFormData)
{
String[]data;
data=(String[])_htFormData.GetElement(SampleActivitySpaceView.EDIT_TEXT_BOX);
if((data!=null)&&!(0==data.length))
{
 m_strDisplayText=data[0];
}
return RepostControl.PAGE_STATUS_VALID;
}
C#:

public virtual int SavePage(String _sPageName, XPHashtable _htFormData)
{
String[] data;
data = (String[]) _htFormData.GetElement(SampleActivitySpaceView.EDIT_TEXT_
BOX);
if ((data != null) && !(0 == data.Length))
{
 m_strDisplayText = data[0];
}
return RepostControl.PAGE_STATUS_VALID;
}

Step 1: Creating an Activity Space

Creating Custom Activity Spaces 14-7

The ChangeToEditMode() method sets the mode variable to EDIT_TEXT_
MODE.

Java:

public void ChangeToEditMode()
{
 m_nMode = EDIT_TEXT_MODE;
}
C#:

public virtual void ChangeToEditMode()
{
 m_nMode = EDIT_TEXT_MODE;
}
The ChangeToDisplayMode() method sets the mode variable to DISPLAY_
TEXT_MODE.

Java:

public void ChangeToDisplayMode()
{
m_nMode = DISPLAY_TEXT_MODE;
}
C#:

public virtual void ChangeToDisplayMode()
{
 m_nMode = DISPLAY_TEXT_MODE;
}

4. Open the SampleActivitySpaceRepostControl file (.java or .cs) in the
sampleactivityspace project.

The PerformAction() method calls the method in the Model associated to the
action performed on the View. For example, a repost action takes the input and
saves it under a hidden variable to be passed as an argument to the Control's
PerformAction method. In this example, the POSTTOSELF_ACTION_CHANGE_
TEXT action includes another method call to the model, which alters the mode
variable.

Java:

protected void PerformAction(int _nAction){
super.PerformAction(_nAction);
switch(_nAction){
 case POSTTOSELF_ACTION_CHANGE_TEXT:
 ((SampleActivitySpaceModel)m_model).ChangeToEditMode();
 break;
 case POSTTOSELF_ACTION_DISPLAY_TEXT:
 ((SampleActivitySpaceModel)m_model).ChangeToDisplayMode();
 break;
 }
 }
C#:

protected override void PerformAction(int _nAction)
{
 base.PerformAction(_nAction);
 switch (_nAction){
 case POSTTOSELF_ACTION_CHANGE_TEXT:
 ((SampleActivitySpaceModel) m_model).ChangeToEditMode();
 break;
 case POSTTOSELF_ACTION_DISPLAY_TEXT:

Step 1: Creating an Activity Space

14-8 User Interface Customization Guide for Oracle WebCenter Interaction

 ((SampleActivitySpaceModel) m_model).ChangeToDisplayMode();
 break;
 }
}

5. Open the SampleActivitySpaceView file (.java or .cs) in the sampleactivityspace
project.

The Display() method calls the GetHTMLForDisplayText() and
GetHTMLForEditText() helper methods to display the HTML Elements.

Java:

public HTMLElementDisplay(){
int nMode;
HTMLElement myResult = new HTMLElementCollection();
try
{
 // extract the mode from the model
 nMode=((SampleActivitySpaceModel)m_model).GetMode();
 switch(nMode){
 case DISPLAY_TEXT_MODE:
 myResult.AddInnerHTMLElement(GetHTMLForDisplayText());
 break;
 case EDIT_TEXT_MODE:
 myResult.AddInnerHTMLElement(GetHTMLForEditText());
 break;
 }
}
catch(Exception e){
 log.Error(Component.Portal_Admin,
 "Unexpected exception when displaying the sample activity space.");
 }
 }
return myResult;
}
C#:

public virtual HTMLElement Display()
{
int nMode;
HTMLElement myResult = new HTMLElementCollection();
try
{
 // extract the mode from the model
 nMode = ((SampleActivitySpaceModel) m_model).GetMode();
 switch (nMode){
 case DISPLAY_TEXT_MODE:
 myResult.AddInnerHTMLElement(GetHTMLForDisplayText());
 break;
 case EDIT_TEXT_MODE:
 myResult.AddInnerHTMLElement(GetHTMLForEditText());
 break;
 }
}
catch (Exception e)
{
 log.Error(Component.Portal_Admin, "Unexpected exception when displaying the
sample activity space.");
}
return myResult;
}

Step 1: Creating an Activity Space

Creating Custom Activity Spaces 14-9

The following portion of the helper method GetHTMLForDisplayText()
displays the page in Display Text mode and simply shows the text and a change
button.

Java:

private HTMLElement GetHTMLForDisplayText(){
HTMLElement myResult= new HTMLElementCollection();
 HTMLTable myTable;
 HTMLTableRow myRow;
 HTMLTableCell myCell;
 HTMLB myBold;
 HTMLInput myInput;

 myTable = new HTMLTable();
 myResult.AddInnerHTMLElement(myTable);
 myTable.SetBorder("0");
 myTable.SetCellPadding("5");
 myTable.SetCellSpacing("0");
 myRow = new HTMLTableRow();
 myTable.AddInnerHTMLElement(myRow);

 // text that can be altered
 myCell = new HTMLTableCell();
 myCell.SetStyleClass(PTStyleClass.OBJECT_TEXT);
 myRow.AddInnerHTMLElement(myCell);
 myBold = new HTMLB();
 myCell.AddInnerHTMLElement(myBold);
myBold.AddInnerHTMLString(((SampleActivitySpaceModel)m_
model).GetDisplayText());

 // Change button
 myInput= new HTMLInput(HTMLInputTypes.BUTTON,HTMLBUTTON_CHANGE,"");
 myInput.SetValue("Change Text");
 myInput.SetStyleClass(PTStyleClass.FORM_EDITOR_BTN_TEXT);
 myInput.SetOnClick(
 "postToSelf("
 +SampleActivitySpaceRepostControl.POSTTOSELF_ACTION_CHANGE_TEXT
 +");");

 // add some spacing between input box and button
 myCell.AddInnerHTMLString(CommonHTMLStrings.SPACE);
 myCell.AddInnerHTMLString(CommonHTMLStrings.SPACE);
 myCell.AddInnerHTMLString(CommonHTMLStrings.SPACE);

 // add button
 myCell.AddInnerHTMLElement(myInput);
 return myResult;
}
C#:

private HTMLElement GetHTMLForDisplayText()
{
 HTMLElement myResult = new HTMLElementCollection();
 HTMLTable myTable;
 HTMLTableRow myRow;
 HTMLTableCell myCell;
 HTMLB myBold;
 HTMLInput myInput;

 myTable = new HTMLTable();

Step 1: Creating an Activity Space

14-10 User Interface Customization Guide for Oracle WebCenter Interaction

 myResult.AddInnerHTMLElement(myTable);
 myTable.SetBorder("0");
 myTable.SetCellPadding("5");
 myTable.SetCellSpacing("0");
 myRow = new HTMLTableRow();
 myTable.AddInnerHTMLElement(myRow);

 // text that can be altered
 myCell = new HTMLTableCell();
 myCell.SetStyleClass(PTStyleClass.OBJECT_TEXT);
 myRow.AddInnerHTMLElement(myCell);
 myBold = new HTMLB();
 myCell.AddInnerHTMLElement(myBold);
 myBold.AddInnerHTMLString(((SampleActivitySpaceModel) m_
model).GetDisplayText());

 // Change button
 myInput = new HTMLInput(HTMLInputTypes.BUTTON, HTMLBUTTON_CHANGE, "");
 myInput.SetValue("Change Text");
 myInput.SetStyleClass(PTStyleClass.FORM_EDITOR_BTN_TEXT);
 myInput.SetOnClick("postToSelf(" +
SampleActivitySpaceRepostControl.POSTTOSELF_ACTION_CHANGE_TEXT + ");");

 // add some spacing between input box and button
 myCell.AddInnerHTMLString(CommonHTMLStrings.SPACE);
 myCell.AddInnerHTMLString(CommonHTMLStrings.SPACE);
 myCell.AddInnerHTMLString(CommonHTMLStrings.SPACE);

 // add button
 myCell.AddInnerHTMLElement(myInput);
 return myResult;
}
The following portion of the helper method GetHTMLForEditText() displays
the page in Edit Text mode, showing a text box holding the previously entered text
and a Save button.

Java:

private HTMLElement GetHTMLForEditText(){
 HTMLElement myResult = new HTMLElementCollection();

 HTMLTable myTable;
 HTMLTableRow myRow;
 HTMLTableCell myCell;
 HTMLB myBold;
 HTMLInput myInput;

 myTable = new HTMLTable();
 myResult.AddInnerHTMLElement(myTable);
 myTable.SetBorder("0");
 myTable.SetCellPadding("5");
 myTable.SetCellSpacing("0");
 myRow = new HTMLTableRow();
 myTable.AddInnerHTMLElement(myRow);

 // text box for inputting new text
 myCell = new HTMLTableCell();
 myRow.AddInnerHTMLElement(myCell);
 myInput = new HTMLInput(HTMLInputTypes.TEXT,EDIT_TEXT_BOX,"");
 myInput.SetStyleClass(PTStyleClass.FORM_EDITOR_BTN_TEXT);
 myInput.SetValue(((SampleActivitySpaceModel)m_

Step 1: Creating an Activity Space

Creating Custom Activity Spaces 14-11

model).GetDisplayText());
 myCell.AddInnerHTMLElement(myInput);

 // Save button
 myInput= new HTMLInput(HTMLInputTypes.BUTTON,HTMLBUTTON_SAVE_TEXT,"");
 myInput.SetValue("Save");
 myInput.SetStyleClass(PTStyleClass.FORM_EDITOR_BTN_TEXT);
 myInput.SetOnClick(
 "postToSelf("
 +SampleActivitySpaceRepostControl.POSTTOSELF_ACTION_DISPLAY_TEXT
 +");");

 // add some spacing
 myCell.AddInnerHTMLString(CommonHTMLStrings.SPACE);
 myCell.AddInnerHTMLString(CommonHTMLStrings.SPACE);
 myCell.AddInnerHTMLString(CommonHTMLStrings.SPACE);

 //add button
 myCell.AddInnerHTMLElement(myInput);
 return myResult;

}
C#:

private HTMLElement GetHTMLForEditText() {

 HTMLElement myResult = new HTMLElementCollection();
 HTMLTable myTable;
 HTMLTableRow myRow;
 HTMLTableCell myCell;
 HTMLB myBold;
 HTMLInput myInput;

 myTable = new HTMLTable();
 myResult.AddInnerHTMLElement(myTable);
 myTable.SetBorder("0");
 myTable.SetCellPadding("5");
 myTable.SetCellSpacing("0");
 myRow = new HTMLTableRow();
 myTable.AddInnerHTMLElement(myRow);

 // text box for inputting new text
 myCell = new HTMLTableCell();
 myRow.AddInnerHTMLElement(myCell);
 myInput = new HTMLInput(HTMLInputTypes.TEXT, EDIT_TEXT_BOX, "");
 myInput.SetStyleClass(PTStyleClass.FORM_EDITOR_BTN_TEXT);
 myInput.SetValue(((SampleActivitySpaceModel)m_model).GetDisplayText());
 myCell.AddInnerHTMLElement(myInput);

 // Save button
 myInput = new HTMLInput(HTMLInputTypes.BUTTON,HTMLBUTTON_SAVE_TEXT, "");
 myInput.SetValue("Save");
 myInput.SetStyleClass(PTStyleClass.FORM_EDITOR_BTN_TEXT);
 myInput.SetOnClick("postToSelf(" +
SampleActivitySpaceRepostControl.POSTTOSELF_ACTION_DISPLAY_TEXT + ");");

 // add some spacing
 myCell.AddInnerHTMLString(CommonHTMLStrings.SPACE);
 myCell.AddInnerHTMLString(CommonHTMLStrings.SPACE);
 myCell.AddInnerHTMLString(CommonHTMLStrings.SPACE);

Step 2: Deploying a Custom Project

14-12 User Interface Customization Guide for Oracle WebCenter Interaction

 //add button
 myCell.AddInnerHTMLElement(myInput);

 return myResult;
}

Once you have written the code for your new Activity Space, you must deploy it for
use by the portal, described next.

14.3 Step 2: Deploying a Custom Project
After you create a custom project as described in the previous section, you must
deploy it to the portal using Dynamic Discovery. For detailed information and
instructions, see Chapter 18, "Deploying Custom Code Using Dynamic Discovery". (To
deploy a custom Activity Space, use jar or dll-based Dynamic Discovery.)

The example below deploys the sample Activity Space code detailed in the previous
section. Once you have deployed your code, confirm that it was deployed correctly as
explained in Section 14.3.2, "Viewing Your Customization in the Portal".

14.3.1 Example: Sample Activity Space
These instructions use Visual Studio in .NET and Ant scripts in Java to deploy code.

Java

1. Open a command prompt and change the directory to SOURCE_
HOME\ptshared\5.1.x (the location of the buildui.xml script).

2. Run a clean build using the following Ant calls: ant build ant install

The build target compiles the project, and the install target deploys the .war file.

C#

1. Build the project in Visual Studio.

2. Visual Studio should copy the sampleactivityspace.dll file from SOURCE_
HOME\sampleactivityspace\dotnet\prod\bin to PORTAL_
HOME\webapp\portal\bin for you. If there are problems with Dynamic
Discovery on startup, you might need to do this step manually. This is necessary
to allow Dynamic Discovery to find the new library.

14.3.2 Viewing Your Customization in the Portal
Once you have deployed your code, view the changes in the portal to confirm that
they were loaded correctly. Use Logging Spy to catch any obvious errors.

1. Open Logging Spy. For details, see Administrator Guide for Oracle WebCenter
Interaction.

2. Start the portal.

3. Open a new browser window and navigate to the portal. Try to access the sample
Activity Space by appending ?space=SampleActivitySpace to the current URL
(i.for example,
http://localhost:8080/portal/server.pt?space=SampleActivitySpace). It should
fail because the the guest user should not be able to access the page.

4. Login as administrator and try to access the Activity Space again. You should be
directed to the page in Display Text mode as shown in the first image in Step 1:
Creating an Activity Space.

Step 3: Debugging and Troubleshooting

Creating Custom Activity Spaces 14-13

5. Click the Change Text button to see the page in Edit Text mode.

6. Type "Hello World" in the text box and click Save. The page should reload and the
new message should appear in Display Text mode.

7. Change the text several times to make sure it works.

The next step is to debug your code, covered next.

14.4 Step 3: Debugging and Troubleshooting
This section lists technical tips for common problems and provides instructions on
how to debug your new classes.

14.4.1 Technical Tips
If the page is not displayed in Edit Text mode when the Change Text button is clicked,
make sure the GetRepostControlName() method in the SampleActivitySpaceAS
class returns the name for the Control that you want to use. If this doesn't solve the
problem, debug your code using the instructions below.

14.4.2 Debugging
These instructions use the sample Activity Space classes created in the previous
sections as an example.

Java

1. In Eclipse, stop the Tomcat debugging session and open
SampleActivitySpaceModel.java.

2. Add a breakpoint as shown below:

3. In the Eclipse menu, click Run | Debug… and select the Tomcat application.

4. Choose the Classpath tab, select Add Projects, and add the sampleactivityspace
project.

5. Hit Debug (and Save to retain your changes).

6. Open a browser and navigate to your Java portal. You should hit the breakpoint,
since you are debugging the login page.

C#

1. Stop the Visual Studio debugger (and close your browser if it is still open) and
open SampleActivitySpaceModel.cs in Visual Studio.

2. Add a breakpoint as shown below:

Step 3: Debugging and Troubleshooting

14-14 User Interface Customization Guide for Oracle WebCenter Interaction

3. Start the Visual Studio debugger (F5 or Debug | Start).

4. Navigate to your portal and log in again. You should hit this breakpoint, since you
are debugging the login page.

15

Accessing Portal Objects 15-1

15 Accessing Portal Objects

Many web services, applications and UI customizations require access to portal objects
and pages. This chapter describes the options available through the portal
API—adaptive tags, Common Object Opener, ASURL, and Redirect.

■ Adaptive tags allow you to reference portal objects in portlets and UI components.
The openerlink tag allows you to open any portal object from any gatewayed
HTML, such as a portlet. For details on adaptive tags, see Oracle WebCenter
Interaction Web Service Development Guide.

■ The Common Object Opener allows you to open any portal object from anywhere
within the portal. The CommonOpener_OpenObject function is included in every
page generated by the portal application, and can be called from any piece of UI or
from within a portlet. For details on using the Common Object Opener in UI code,
see Section 15.1, "Using the Common Object Opener". Portlets can also call the
function remotely through the Oracle WebCenter Interaction Development Kit
(IDK). For details, see the Oracle WebCenter Interaction Web Service Development
Guide.

■ The ASURL object allows you to create portal-specific URLs to Activity Spaces as
Strings or HTMLAnchor objects. For details on using the ASURL object, see
Section 15.2, "Using ASURL and Redirect".

■ The Redirect object can return any URL, and handles the page change to the new
URL. The portal uses the Redirect object to redirect control flow from one Activity
Space or Control to another. For details on using the Redirect object, see
Section 15.2, "Using ASURL and Redirect".

15.1 Using the Common Object Opener
The Common Object Opener allows you to open any portal object from anywhere
within the portal UI. (To retrieve an URL as a String or HTMLAnchor object, use
ASURL) Portlets can also call functions remotely through the Oracle WebCenter
Interaction Development Kit (IDK). For details, see the Oracle WebCenter Interaction
Web Service Development Guide.

The PTCommonOpener class is included in every page generated by the portal
application, and can be called from any piece of UI or from within a portlet. The most
commonly used function in this class is getOpenerURLOpenObjID.

function getOpenerURLOpenObjID (_nClassID, _nObjectID, _
strOptQSArgs, _nOpenerMode)

This javascript creates a URL that calls the Opener Activity Space and its
corresponding OpenObject Control (the only MVC module in the Opener
ActivitySpace). The URL includes all necessary parameters for the Control. As noted

Using the Common Object Opener

15-2 User Interface Customization Guide for Oracle WebCenter Interaction

above, the Common Opener function is available from any portal page. The
getOpenerURLOpenObjID function has four required parameters:

■ nClassID refers to the numeric ID for the type of object being opened (e.g., User
= 1, Portlet = 43, Content Source = 35). A full list of object types can be found in
the PTCLASSDESCRIPTION table in the
com.plumtree.portaluiinfrastructure.classtypedescriptors package.

■ nObjectID is the identifier for the specific object being opened. Every object has a
unique identifier (ObjectID) stored within the database (for example, for the Users
object type: Administrator = 1, Guest = 2, Default Profile = 3). The ObjectID can be
retrieved through the com.plumtree.server package and usually through a
QueryResult.

■ strOptQSArgs allows you to add arguments to the query string that are not
included by default. This argument may be empty.

■ nOpenerMode defines the mode in which the object will be opened, which
controls the actions that can be performed on the object (Create = 0, Edit = 1, View
= 2, View Meta Data = 3).

As noted above, the getOpenerURLOpenObjID function returns a URL. To open the
URL you must pass it to another function. PTCommonOpener includes two handy
functions for opening URLs: openInSameWindow and openInNewWindow.

Call either of these functions in a standard OnClick event. The example below opens
the User Editor ActivitySpace as the Administrator user in View mode.

<INPUT value="Opener Click" type="Button" name="btnSubmit"
onClick="PTCommonOpener.openInSameWindow(PTCommonOpener.getOpene
rURLOpenObjID(1,1,'null',2));"/>

You can execute custom functionality whenever the Common Opener is used to open
an object or direct to an Activity Space through the IOpenerActions PEI. For more
details on PTCommonOpener and its functions, see the Common Opener API
documentation.

15.1.1 Custom Activity Spaces and Non-Portal Pages
As noted earlier, PTCommonOpener functions can be called from within any portal
page. You can also use these functions in a custom editor or browsing page by making
a call to the Opener ActivitySpace. The Common Opener functionality can be
implemented in a variety of ways; the method explained here is the easiest and most
commonly used.

Note: To use the following method, first import the package that contains the Opener
ActivitySpace
(com.plumtree.portaluiinfrastructure.classtypedescriptors.classframework).

Within the DisplayJavaScript method in the View class of your custom Activity
Space, make a call to GetOpenerJavascript as shown in the code snippet below.
This function requires one parameter: the Activity Space that contains the javascript
function (inherited from the top level AActivitySpace object (m_asOwner)). The
HTMLScript element returned contains Common Opener javascript functions.

public HTMLScript DisplayJavascript()
{
HTMLScript myScript;
myScript = new HTMLScript("text/javaScript");
myScript = PTOpenerLinks.GetOpenerJavascript(m_asOwner);
return myScript;

Using ASURL and Redirect

Accessing Portal Objects 15-3

}
This code creates a new HTMLScript element, initializes it, and makes a call to
GetOpenerJavascript.

Other methods for generating javascript code on the server are described in the API
documentation for PTOpenerLinks in the portaluiinfrastructure package.

15.2 Using ASURL and Redirect
The ASURL and Redirect objects are used throughout the portal application to access
different Activity Spaces and their Controls. Although they provide similar
functionality, each serves a specific purpose.

The ASURL class supports automated creation of portal-specific URLs as Strings or
HTMLAnchor objects. The Redirect object can return any URL, and handles the page
change to the new URL.

15.2.1 ASURL
The URLs created using the ASURL class are always based on the BaseURL obtained
from the config.xml file. ASURL methods allow you to append the necessary
arguments to the base URL and create a complete ASURL object.

Once the ASURL object has been created, it can return the URL in a variety of ways.
You can generate an HTMLAnchor element that contains the full URL, which can be
used within an Activity Space. You can also provide the URL as a String to be used in
an OnClick event, or as a "document.location" URL for use in client-side javascript.

For example, within the LoginView class that makes up the Login screen of the portal,
the CreateAccount button automatically redirects to the CreateAccount Activity Space.
The code that creates the ASURL is shown here:

myHRef = new ASURL();
myHRef.SetLinkGetSpaceIfCached(CreateAccountAS.STR_MVC_CLASS_NAME,
this.m_asOwner);
myHRef.SetControl(CreateAccountControl.STR_MVC_CLASS_NAME);
myHRef.AddInnerHTMLString(m_asOwner.GetString(637, "ptmsgs_portalbrowsingmsgs"));
myCell.addInnerHTMLElement(myHRef.GetURLAsHTMLElement());
The code above begins by creating a new instance of the ASURL object. The object
initializes itself by grabbing the BaseURL and using it to start the URL. Method calls
on the ASURL object append the query string parameters required by the application
to determine the target Activity Space.

15.2.1.1 SetLinkGetSpaceIfCached
The most important parameters that must be added to the URL are the Activity Space
name and cache ID. Activity Spaces are cached on the HTTP Session and retrieved for
re-use through a cache ID. The name and ID parameters in the ASURL can be
populated by passing the Activity Space into the SetLinkGetSpaceifCached
method. This creates a URL to that particular Activity Space.

If you do not have access to the Activity Space, pass in the Activity Space name. This
creates a URL that will search the cache for the named Activity Space, or create a new
Activity Space if the referenced one cannot be found. This is very useful for Activity
Spaces such as the MyPage Activity Space, which is usually cached on the HTTP
Session; you can retrieve a cache ID even if you do not have access to the Activity
Space itself.

Using ASURL and Redirect

15-4 User Interface Customization Guide for Oracle WebCenter Interaction

15.2.1.2 SetLinkCreateNewSpace
If the Activity Space is not cached, you can add it using the
SetLinkCreateNewSpace method.

15.2.1.3 SetControl
Set the Control name for the URL using the SetControl method call.

15.2.1.4 AddInnerHTMLString
Once the two primary parameters are set, the URL can be generated, and you can add
HTMLElements or Strings to the anchor as needed. In this example, the message
corresponding to ID 637 in the portalbrowsingmsgs language file ("Create an account")
is added using the AddInnerHTMLString method. For details on language files, see
Chapter 6, "Using String Replacement".

15.2.1.5 AddInnerHTMLElement
Once the entire URL is complete, place it into an HTMLAnchor element using the
AddInnerHTMLElement method, as shown in the code snippet. In this example, the
returned HTMLAnchor is used in the View class of the Create Account Editor .

15.2.1.6 GetURLAsString
You can also choose to return the URL as a String using the GetURLAsString
method.

For a full list of ASURL methods, see the Common Opener API documentation.

15.2.2 Redirect
The Redirect object is very similar to ASURL, but can return any URL, and handles the
page change to the new URL. (ASURL can only be used for portal URLs and only
returns the URL as a String or HTMLAnchor.)

The portal uses the Redirect object to redirect control flow from one Activity Space or
Control to another. In many cases, the redirect happens internally, and no HTTP
redirect (status code 302) is sent to the browser. One redirect can chain to another. In
conditions when you need the browser to change pages, you can force an HTTP
redirect using the SetIsHTTPRedirect method (covered below).

As with ASURL, a variety of different methods allow you to set query string
parameters for portal-specific URLs, as shown in the sample code below:

Redirect repostURL = new Redirect();
repostURL.SetLinkCreateNewSpace(FolderEditorAS.STR_MVC_CLASS_NAME, m_asOwner);
repostURL.SetControl(EditorStartControl.STR_MVC_CLASS_NAME);
repostURL.AddControlArgument(EditorStartControl.QS_EDITOR_TYPE,
String.valueOf(EditorStartControl.EDITOR_START_FLAG_EDIT));
repostURL.AddControlArgument(ObjEditorModel.EDITOR_QS_INT_CLASS_ID,
String.valueOf(PT_CLASSIDS.PT_CATALOGFOLDER_ID));
repostURL.AddControlArgument(ObjEditorModel.EDITOR_QS_INT_QS_OBJECT_ID,
String.valueOf(((IDirModelRO) m_dirModel).GetCurrentFolderID()));
SetRedirect(repostURL);
The code above begins by creating a new instance of the Redirect object. The method
calls made to the object append the query string parameters required by the
application to determine the target.

Using ASURL and Redirect

Accessing Portal Objects 15-5

15.2.2.1 SetLinkCreateNewSpace
Set the ActivitySpace name through the SetLinkCreateNewSpace method.

15.2.2.2 SetControl
Set the Control name for the URL through the SetControl method.

15.2.2.3 AddControlArgument
If the control requires query string parameters, add them through calls to the
AddControlArgument method.

15.2.2.4 SetRedirect
Once the entire URL has been built, the redirect call is returned through the
SetRedirect method, inherited from the RepostControl class.

If you need to show an external page in the browser or set a cookie (which requires a
full HTTP 302 redirect), you can still use the Redirect object by using
SetIsHTTPRedirect and SetLinkToExternalURL.

15.2.2.5 SetIsHTTPRedirect
Call SetIsHTTPRedirect to set the redirect type:

■ True will force a full HTTP 302 redirect.

■ False will cause a server-side redirect.

After forcing a 302 redirect, you must handle the redirect back to the portal.

15.2.2.6 SetLinkToExternalURL
To redirect to a page outside the portal, call the SetLinkToExternalURL method
and pass in the target URL as a String.

Note: To redirect outside the portal, SetIsHTTPRedirect must be set to True and
the URL must be encoded (you can use one of the standard encoding methods in the
HTMLElements package).

Using ASURL and Redirect

15-6 User Interface Customization Guide for Oracle WebCenter Interaction

16

Adding Custom Images 16-1

16Adding Custom Images

The Oracle WebCenter Interaction Image Service hosts all static web-based
components, including style sheets, images, and JavaScript files. Removing these
components from the main portal server reduces the amount of processing required to
make pages available to the user. This chapter describes the Image Service and how to
work with it.

To add custom images to the portal UI, always copy the image file to the specially
designated location in the portal Image Service. This ensures that your custom images
do not conflict with the many portal images.

16.1 Image Service Structure
The image below shows the standard directory structure of the Image Service.

Image Service Structure

16-2 User Interface Customization Guide for Oracle WebCenter Interaction

 More directories appear as products and services are added to the portal. Some areas
can be customized and might be slightly different in an established implementation.
There are two directories directly below the main \ptimages directory:

■ The \tools directory contains tools that help make the Image Service and its
components more dynamic.

■ The \imageserver directory contains all the web-enabled components of the
Image Service used by the portal, including images, style sheets, and JavaScript
files. (The \legacy, \RemoteGadgets and \webservices folders are included for
backward compatibility.)

All Oracle WebCenter Interaction components are found under the
\imageserver\plumtree folder; this configuration defines the namespace controlled
by Oracle WebCenter Interaction. If you make any additions to the \imageserver
directory, first create a subfolder with the associated company or product name.

The two main folders within the \plumtree directory are \common and \portal.

■ The \common directory contains all objects that are used in the portal application
and also by associated server applications.

■ The \portal directory contains any objects that are part of the Image Service that
are shipped with the portal. This includes images, style sheets, JavaScript objects,
and help files.

Adding a Custom Image

Adding Custom Images 16-3

Within each of the \common and \portal directories, there is a \public and \private
folder. This distinction allows developers to determine whether or not a component is
static and backward-compatible.

■ Anything within a \public directory can be considered available for use. A public
component may change slightly throughout the release cycle of the related
product, but it will always be there.

■ A \private directory contains implementation-specific components that should
not be accessed by developers; the content within a \private directory can be
changed or removed in a future release.

■ Any new content added for UI customization should be stored in a \custom folder
at the same level as the \public and \private directories in the appropriate area to
ensure that the files will not be modified by the installer in a future release.
Adding custom images is explained next.

16.2 Adding a Custom Image
As explained above, custom images should be stored in the following location in a
standard portal installation: \ptimages\imageserver\plumtree\portal\custom\img.

If the image appears in a portlet or other gatewayed page, you can use the //images
URI constant in the transformer Adaptive Tag library to access the URL to the Image
Service. This is the recommended method. For details on using adaptive tags, see the
Oracle WebCenter Interaction Web Service Development Guide.

If the image appears in a section of custom UI, you can also access the Image Service
custom image folder using the code below.

// Get the base Image Service URL for a custom static content item
String strMyImageServerBaseURL = ImgSvrURLHelper.GetInstance().GetCustomURL(m_
asOwner.GetIsSecuredSpace(), "portal");

// Add “img/” to that URL
strMyImageServerBaseURL = XPStringUtility.ForceEndsWith(strMyImageServerBaseURL,
"/") + ImgSvrURLHelper.STR_L4_FILE_TYPE_IMG + "/";

// Create the completed URL to the image
String strImageURL = strMyImageServerBaseURL + "myImageName.gif";

// Assign the properties needed by this image to variables
String strImageAltTag = "Click here to see XYZ!";
String strImageHeight = "25";
String strImageWidth = "25";

// Create a new object of type HTMLImg
HTMLImg myImage = new HTMLImg(strImageURL, strImageAltTag, strImageHeight,
strImageWidth);
To make sure that you have generated a good image, you can print the HTML to be
generated to Logging Spy using the following code:

// Print to PTSpy
String strTest = myImage.GetDisplayString();
PTDebug.Trace(Component.Portal_UI_Infrastructure, TraceType.Error, "***" + strTest
+ "***");
After redeploying your code and looking at Logging Spy, you should be able to
confirm that the link is valid. It should look something like the following:

<img src="http://localhost/imageserver/plumtree/portal/custom/img/myImageName.gif"
alt="Click here to see XYZ!" height="25" width="25">

Adding a Custom Image

16-4 User Interface Customization Guide for Oracle WebCenter Interaction

17

Using VarPacks (Variable Packages) 17-1

17 Using VarPacks (Variable Packages)

A Variable Package (VarPack) is essentially a set of name-value pairs stored on the
application. VarPacks are mainly used to store the values from an xml file (e.g., PT_
HOME\settings\portal\j_config.xml, n_config.xml, or device.xml) in memory so the
data can be used easily without directly accessing the xml file.

Oracle WebCenter Interaction ships with a variety of VarPacks that are used
throughout the portal. These are loaded into the portal through the PT_
HOME\settings\portal\VarPacks.xml file. For an example, see PTConfigVarPack
(com.plumtree.portaluiinfrastructure.application.varpacks).

As with Models, Views, and Controls, VarPacks can be deployed using Dynamic
Discovery, which allows the framework to be completely extensible. All you need to
do is extend the XMLBaseVarPack or BaseVarPack class, as shown in this chapter.
Custom VarPacks can be used in PEIs or custom Views, among other things, to
simplify the details of accessing an xml data file.

This chapter provides examples and instructions on how to use a custom VarPack, and
include step-by-step instructions and sample code for creating and implementing a
new Hello World VarPack.

17.1 Example VarPack Uses
Two common places to use the VarPack would be a custom View (or Control) or a PEI.
For example, a custom VarPack could provide table cell width sizes. The code snippet
below shows how to retrieve a value from the VarPack.

Java:

HelloWorldVarPack varPack;
varPack = (HelloWorldVarPack)
 m_asOwner.GetVarPack(HelloWorldVarPack.VARPACK_ID);
String strWidth=varPack.GetValueAsString("HelloWorldData","HelloWorldCellWidth");
myCell.SetWidth(strWidth);
C#:

HelloWorldVarPack varPack;
varPack = (HelloWorldVarPack)
 m_asOwner.GetVarPack(HelloWorldVarPack.VARPACK_ID);
StringstrWidth = varPack.GetValueAsString("HelloWorldData","HelloWorldCellWidth");
myCell.SetWidth(strWidth);
A custom VarPack could also be used in an ILoginActions PEI to do custom
processing based on the current administrative folder. For example, you could do
something like the code shown below.

Java:

Implementing a VarPack

17-2 User Interface Customization Guide for Oracle WebCenter Interaction

IPTSessionptSession = (IPTSession) _oUserSession;
IApplicationapp = appData.GetApplication();
XMLBaseVarPack varPack;
varPack = app.GetVarPackManager().GetVariablePackage(HelloWorldVarPack.VARPACK_
ID);
intnFolderID = varPack.GetValueAsInt("HelloWorldData","HelloWorldFolderID");
if (ptSession.GetSessionInfo().GetCurrentUserAdminFolderID() == nFolderID)
{
 // Custom login code.
}
C#:

IPTSession ptSession = (IPTSession) _oUserSession;
IApplication app = appData.GetApplication();
XMLBaseVarPack varPack;
varPack = app.GetVarPackManager().GetVariablePackage(HelloWorldVarPack.VARPACK_
ID);
int nFolderID = varPack.GetValueAsInt("HelloWorldData", "HelloWorldFolderID");
if (ptSession.GetSessionInfo().GetCurrentUserAdminFolderID() == nFolderID)
{
 // Custom login code.
}

17.2 Implementing a VarPack
To create a custom VarPack, create a class that extends XMLBaseVarPack or
BaseVarPack. XMLBaseVarPack handles the reading of xml files for you. For more
detailed information, see the portal API Documentation.

1. Create a custom project and custom VarPack class (for example, a CustomVarPack
project and a CustomVarPack class in com.yourcompany.application.varpacks
that extends XMLBaseVarPack).

2. Edit the new class in your custom project as needed.

3. Compile the new class into a new JAR/DLL file with an intuitive name. All
VarPack file names should follow the standard naming convention and end with
"VarPack" (e.g., CustomLoginVarPack).

Note: XMLBaseVarPackonly reads in xml files that are two levels deep with the data
in the value attribute of the lowest tag (<root><section><sub-section
value="data">). It can be customized to read other formats, as explained below.

17.2.1 Example: Hello World VarPack
In this example, the HelloWorldVarPack class extends XMLBaseVarPackand reads in
the contents of the helloworld.xml file and stores them on the application. As noted
above, the name of the file is important; it ends with "VarPack".

1. The GetVarPackID() method provides the name that will be used to store this
VarPack on the application. The method returns a public static variable containing
the name of the VarPack. The VARPACK_ID variable is is used to get the name of
the VarPack so it can be retrieved from the application.

Java:

/** The string ID of this variable package. */
public static final String VARPACK_ID = "HelloWorldVarPack";
public String GetVarPackID()
{
 return VARPACK_ID;

Deploying a Custom VarPack

Using VarPacks (Variable Packages) 17-3

}
C#:

/// <summary>
/// The string ID of this variable package.
/// </summary>
public const String VARPACK_ID = "HelloWorldVarPack";
public override String GetVarPackID()
{
 return VARPACK_ID;
}

2. The GetVarPackXMLFileName() method provides the name of the xml file to
be read and stored in this VarPack.

Java:

public String GetVarPackXMLFileName()
{
 // The name of the file to read into the VarPack.
 return "helloworld.xml";
}
C#:

public override String GetVarPackXMLFileName()
{
 // The name of the file to read into the VarPack.
 return "helloworld.xml";
}

3. As noted above, XMLBaseVarPack only supports the specific xml format
<root><section><sub-section value="data">. To use xml files
formatted in other ways, override the LoadSettingsIntoXPHashtable()
method.

Once you have written the code for your new VarPack, you must deploy it for use by
the portal, described next.

17.3 Deploying a Custom VarPack
After you create a custom project as explained in the previous section, you must
deploy it to the portal using Dynamic Discovery. For detailed information and
instructions, see Chapter 18, "Deploying Custom Code Using Dynamic Discovery". To
deploy a VarPack, use Jar or DLL-Based Dynamic Discovery.

The example below deploys the Hello World VarPack sample code from the previous
section. Once you have deployed your code, confirm that it was deployed correctly as
explained in Section 17.3.1, "Viewing Your Customization in the Portal".

These instructions use Visual Studio in .NET and Ant scripts in Java to deploy your
custom code.

First, add the library containing the new HelloWorld VarPack class to the
CustomVarPacks.xml file so it can be deployed by Dynamic Discovery as explained
below.

1. Navigate to PT_HOME\settings\portal and open CustomVarPacks.xml in a text
editor.

Deploying a Custom VarPack

17-4 User Interface Customization Guide for Oracle WebCenter Interaction

2. Add the name of your new VarPack (e.g., HelloWorldVarPack) to the existing
XML as shown below. Make sure that the spelling and capitalization is exactly the
same as the full class name.

<root>
 <interface name="IVarPack"/>
 <interfaceassembly name="httpmemorymanagement"/>
 <class name="com.plumtree.sampleui.application.varpacks.HelloWorldVarPack"/>
</root>

3. Create the new XML file that will be read by HelloWorldVarPack: open a text
editor and create a new file named helloworld.xml and save it in PT_
HOME\settings\portal.

4. Add the xml describing the data as shown below and save the file.

<?xml version="1.0"?>
<HelloWorldConfig>
 <HelloWorldData>
 <Hello value="World"/>
 <HelloWorld value="Hello World!"/>
 <HelloWorldCellWidth value="50"/>
 <HelloWorldFolderID value="1"/>
 </HelloWorldData>
</HelloWorldConfig>

Once you have created the required files, you must run a clean build to deploy the
custom code, as explained below.

Java:

1. Open a command prompt and change the directory to the \ptwebui directory
where you installed the portal source code.

2. Run a clean build using the following Ant script: ant build.

3. Generate a new WAR file for the application server using the following Ant script:
ant install.

Note: This target deletes and rebuilds all jar files associated with all the UI source
projects (as well as the custom projects in the ptwebui folder).

C#:

1. Build the project in Visual Studio.

2. Visual Studio should copy the samplevarpack.dll file from SOURCE_
HOME\samplevarpack\dotnet\prod\bin to PORTAL_
HOME\webapp\portal\bin for you. If there are problems with Dynamic
Discovery on startup, you might need to do this step manually. This is necessary
to allow Dynamic Discovery to find the new library.

17.3.1 Viewing Your Customization in the Portal
Once you have deployed your code, view the changes in the portal to confirm that
they were loaded correctly. Use Logging Spy to catch any obvious errors.

1. Open Logging Spy. For details , see the Administrator Guide for Oracle WebCenter
Interaction.

2. Click the Set Filters button to open the Filter Settings dialog. Make sure the
Debug checkbox is selected. (You will not be able to see the customization run if
this logging level is not enabled.)

Debugging and Troubleshooting

Using VarPacks (Variable Packages) 17-5

3. Start the portal and view Logging Spy. During startup, Logging Spy should
display a message regarding loading Custom VarPacks. Earlier in the startup
process, standard VarPacks are loaded from VarPacks.xml. Be careful not to get
these two confused. If no Custom VarPacks were loaded, check the spelling and
capitalization of HelloWorldVarPack in the CustomVarPacks.xml file.

4. Open a new browser window and navigate to the portal. Log in as Administrator.

5. Append the following argument to the end of the portal URL:
?space=MemoryDebug and browse to your portal.

6. Scroll down to the Variable Packages section; you should see the
HelloWorldVarPack listed.

7. Click the View button next to HelloWorldVarPack to view the data stored in the
VarPack.

If you were unable to view the HelloWorldVarPack, see the next section for debugging
instructions.

17.4 Debugging and Troubleshooting
This page provides technical tips for common problems and instructions on how to
debug your new VarPack.

17.4.1 Technical Tips
If your custom VarPack is not loaded correctly, first check the following items:

■ Be careful to list the full class name of the HelloWorldVarPack class in
CustomVarPacks.xml exactly as it is spelled in the code. It will not load if spelled
or capitalized incorrectly. This might not produce errors during startup. One way
to check that the VarPack is loaded correctly is to make sure that Logging Spy says
the correct number was loaded (i.e., 1).

■ Make sure that the name of the xml data file (HelloWorld.xml) is the same as the
file name returned by the GetVarPackXMLFileName() method, and that the
xml data file is located in the PT_HOME\settings\portal directory.

■ Check the syntax of the xml data in HelloWorld.xml. If there are syntax errors or
the file is formatted incorrectly, it will not load. The XMLBaseVarPack class can
only read in xml files that have a single root node with multiple section nodes
underneath it. The section nodes contain multiple name/value pair nodes where
the name of the node is the name and the value attribute is the value (i.e.
<NodeName value="NodeValue"/>). If you need to use a different format, you
must override the LoadSettingsIntoXPHashtable() method.

If none of these tips solve the problem, debug your code using the instructions below.

17.4.2 Debugging
These instructions use the HelloWorldVarPack class created on the previous pages as
an example.

Java:

1. In Eclipse, stop the Tomcat debugging session and open HelloWorldVarPack.java.

2. Add a breakpoint at the return "helloworld.xml"line.

3. In the Eclipse menu, click Run | Debug… and select the Tomcat application.

Debugging and Troubleshooting

17-6 User Interface Customization Guide for Oracle WebCenter Interaction

4. Choose the Classpath tab, select Add Projects, and add the samplevarpack project.

5. Hit Debug (and Save to retain your changes).

6. Start the portal.

7. You should hit this breakpoint once during startup, when the XMLBaseVarPack
class asks the HelloWorldVarPack which xml file to load.

C#:

1. Stop the Visual Studio debugger (and close your browser if it is still open) and
open HelloWorldVarPack.cs in Visual Studio.

2. Add a breakpoint as shown below.

3. Start the Visual Studio debugger (F5 or Start | Debug) and wait for the portal to
start up.

4. You should hit this breakpoint once during startup, when the XMLBaseVarPack
class asks the HelloWorldVarPack which xml file to load.

18

Deploying Custom Code Using Dynamic Discovery 18-1

18 Deploying Custom Code Using Dynamic
Discovery

Dynamic Discovery allows you to plug your changes into the UI architecture without
modifying any existing UI code. Dynamic Discovery is a framework for detecting
extensible UI features. When the portal is loaded on startup, this tool automatically
creates instances of objects according to an XML file. Dynamic Discovery can be
configured in a few different ways. For example, it can load all instances of one
specific interface from one or more libraries, or load instances of specific classes.

The main benefit of Dynamic Discovery is the ability to customize the portal without
changing existing code. Using Dynamic Discovery, you can overwrite core portal
classes, change the behavior of some features, customize pages, and add features to
the portal simply by editing XML files and adding new libraries. Dynamic Discovery
was created to make the UI as extensible as possible and to facilitate upgrading the UI
after customizations have been made. If you allow your modifications to be
dynamically discovered, your code will remain separate from the portal code, making
upgrades easier.

18.1 Dynamic Discovery Configuration Files
Dynamic Discovery relies on three configuration files in the <PT_
HOME>\settings\portal directory:

■ The ActivitySpaces.xml file enumerates all the JAR (or DLL) files that Oracle
WebCenter Interaction uses to discover classes that implement IModel, IView, and
IControl. Additionally, the portal searches these lib files for navigation schemes
(INavTypes). Do not modify this file.

■ The CustomActivitySpaces.xml file is empty at the time a new portal ships.
Functionally, this file is identical to ActivitySpaces.xml. It is a mechanism to help
you keep custom code separate from platform code. (The distinction is not
enforced. It is intended to help you keep custom code separate and easily
identifiable.)

■ The *.xml files in the \dynamicloads subdirectory are also used by Dynamic
Discovery. For example, all PEIs are dynamically discovered using a separate
*Actions.xml file in the \PEIs subfolder. At startup, the portal loops through all of
these files and calls GetInstancesFromXML on each. The returned array of objects
is cached on the portal application with the key being the name or the XML file.
When an event occurs, all the classes that have implemented the corresponding
interface are loaded into the portal application, and each implemented function is
processed in the order shown within the XML file.

Using Dynamic Discovery

18-2 User Interface Customization Guide for Oracle WebCenter Interaction

18.2 Using Dynamic Discovery
The portal application uses an XML file to identify customized UI components during
startup and place them in the proper location. There are two mechanisms available:

■ Interface-Based Dynamic Discovery supports the most commonly customized
events, represented by Portal Event Interfaces (PEIs). For detailed information on
PEIs, see Chapter 12, "Using PEIs".

■ JAR- or DLL-Based Dynamic Discovery allows you to make other extensions or
changes to the UI (for example, View replacement or a new Navigation Scheme)
without changing any existing source code.

A summary of each mechanism is provided below.

18.2.1 Interface-Based Dynamic Discovery
All PEIs are dynamically recognized through interface-based Dynamic Discovery. An
XML file is provided for each PEI that contains a listing of each implementation of the
specific PEI. Multiple implementations can be placed within the XML file; each
implementation is processed in the order that it appears.

1. Find the XML file for the PEI (files for all PEIs can be found in the PT_
HOME\settings\portal\dynamicloads\PEIs directory).

2. Open the file in a text editor and add your class name to the list. (For .NET, you
must first stop the WWW Service on the portal server.) The example below is from
the LoginActions.xml file.

<root>
<interface name="com.plumtree.uiinfrastructure.pei.ILoginActions"/>
<interfaceassembly name="uiinfrastructure"/>
<class name="com.plumtree.portalpages.pei.PTLoginActions"/>
<class name="com.plumtree.sampleui.pei.HelloWorldLoginActions"/>
</root>
Note: The package referenced in the XML file must include the class that
implements the corresponding PEI (as described in Using PEIs). The Dynamic
Discovery process looks for a class file that matches the name listed and the PEI
defined within the XML file. The name is case sensitive.

3. Restart your application server (Java) / the WWW Service on the portal server
(.NET).

4. To verify that your UI modifications were loaded correctly, turn on Logging Spy
and watch for Dynamic Discovery lines. There will be a separate line
corresponding to each file loaded from each XML file.

For detailed instructions on PEI deployment, see Chapter 12, "Using PEIs",
Section 12.3, "Step 3: Deploying a Custom PEI".

18.2.2 Jar or DLL-Based Dynamic Discovery
JAR- or DLL-based Dynamic Discovery allows you to make extensions or changes to
the UI without changing any existing source code. By using new code instead of
modifying existing code, no customizations are overwritten when the portal
application is upgraded to a new release. Your code can take precedence over existing
UI code, or you can create a completely new section for the UI. These UI modifications
are picked up by the Dynamic Discovery package when the portal application is
started.

Using Dynamic Discovery

Deploying Custom Code Using Dynamic Discovery 18-3

To make an addition to the UI, create a new section using the ActivitySpace/MVC
paradigm. Navigation schemes are a simplified example; for detailed instructions on
deploying a new navigation scheme, see Chapter 9, "Customizing Portal Navigation",
Section 9.3, "Deploying a Custom Navigation Scheme".

To modify a piece of the UI, write a new class that corresponds to the component of
the UI that you want to modify. Dynamic Discovery will use the version loaded from
CustomActivitySpaces.xml in place of the original version loaded from
ActivitySpaces.xml. If there are multiple versions of the same component loaded in
CustomActivitySpaces.xml, Dynamic Discovery gives precedence to the last version
loaded. For detailed instructions on deploying a View replacement, see Chapter 13,
"Using View Replacement", Section 13.3, "Deploying a Custom View".

Once the entire Activity Space has been created and compiled into a JAR/DLL file,
follow the steps below to deploy the file using Dynamic Discovery.

1. (.NET only) Stop the WWW Service on the portal server.

2. Deploy the customized JAR/DLL file to the portal.

■ Java: Rebuild the WAR file with the customized JAR in it, and copy the
customized JAR file to PORTAL_HOME\ptportal\6.0\lib\java.

■ NET: Copy the customized DLL to PORTAL_
HOME\ptportal\6.0\webapp\portal\web\bin (this is in the virtual directory
for the portal application).

3. Open the PT_HOME\settings\portal\CustomActivitySpaces.xml file in a text
editor and add your customized JAR/DLL file to the list. Dynamic Discovery will
use the version loaded from CustomActivitySpaces.xml in place of the original
version loaded from ActivitySpaces.xml. If there are multiple versions of the same
component loaded in CustomActivitySpaces.xml, Dynamic Discovery gives
precedence to the last version loaded. The example below adds a View class called
"sampleview".

<AppLibFiles>
<libfile name="sampleview"/>
</AppLibFiles>

4. Restart your application server (Java) / the WWW Service on the portal server
(.NET).

5. When the portal application starts up, each line is processed and each JAR/DLL
file that corresponds to a <libfile name=""/> attribute is loaded.

Using Dynamic Discovery

18-4 User Interface Customization Guide for Oracle WebCenter Interaction

Part IV
Part IV Appendices and Additional References

The following appendices and additional references provide useful information
related to UI customization.

■ Appendix A, "Portal Configuration Files"

■ Appendix B, "Portal API Documentation"

A

Portal Configuration Files A-1

A Portal Configuration Files

The portal configuration files are used to manage settings for the portal and its
components. In addition, configuration files are used by the portal to discover and
load custom code. Some configuration files are used in customization, but many
should not be modified.

Configuration files are installed in <PT_HOME>\settings\ (i.e., C:\Program
Files\plumtree\settings in Windows and /opt/plumtree/settings in Linux).

A.1 Common Settings
The serverconfig.xml configuration file in the <PT_HOME>\settings\common folder
governs the settings that are common to all portal components.

A.2 Plug-Ins
The configuration files in <PT_HOME>\settings\portal\dynamicloads\Plugins load
custom classes used to implement portal customization.

All configuration files under \dynamicloads are dynamically discovered. The
Dynamic Discovery framework automatically detects extensible UI features based on
the objects referenced in XML configuration files. For details on using Dynamic
Discovery, see Chapter 18, "Deploying Custom Code Using Dynamic Discovery".

Configuration File Description

serverconfig.xml Sets the connection and path information for portal
components.

■ Portal host computer from which logs are collected

■ Connection information for portal databases

■ HTTP proxy settings and caching

■ Crawler and gateway transactions

■ Automation service

For details about specific settings, see theAdministrator
Guide for Oracle WebCenter Interaction.

Configuration File Description

ConditionTypes.xml Loads all conditions types, including custom
condition types. The condition types appear in the
Experience Rules Manager. For more information
on condition types, see Chapter 7, "Customizing
Experience Definitions".

Programmable Event Interfaces

A-2 User Interface Customization Guide for Oracle WebCenter Interaction

A.3 Programmable Event Interfaces
The configuration files in the <PT_HOME>\settings\portal\dynamicloads\PEI
folder load custom classes related to the Programmable Event Interface (PEI)
framework. PEIs define a set of actions that can be used to execute custom code
without editing the portal source code. Each PEI has an associated XML file that lists
all implementations of the PEI, used by Dynamic Discovery to add the code to the
portal at startup. For details on using PEIs, see Chapter 12, "Using PEIs".

InterpreterFilters.xml Loads filters. Filters intercept or modify an
incoming requests before and after the incoming
request is processed by the interpreter.

OpenerPlugins.xml Loads opener plug-ins. Openers are modules that
perform certain actions based on your URL
criteria. OpenerPlugins.xml loads URL mapping to
an activity space.

For more information on the common opener, see
Chapter 15, "Accessing Portal Objects". (Deploying
opener plug-ins is similar to deploying PEIs; for
details, see Chapter 18, "Deploying Custom Code
Using Dynamic Discovery".)

Configuration File Description

AdvancedSearchActions.xml Loads custom classes that make modifications to advanced
search queries.

BannerSearchActions.xml Loads custom classes that make modifications to banner
search queries.

CommunityActions.xml Loads custom classes that add functionality when a user
joins or unsubscribes from a community.

CreateAccountActions.xml Loads custom classes that execute functionality when a
new user attempts to create an account, either through the
Create Account button on the login page or in response to
an invitation.

DirectoryActions.xml Loads custom classes that implement functionality in
response to Directory actions.

DisplayJavascriptActions.xml Loads custom classes that add JavaScript to every banner
and editor page.

LoginActions.xml Loads custom classes that create functionality within the
scope of the login process.

MyPortalPageActions.xml Loads custom classes that perform validation before
allowing users to add or remove portal pages.

NetworkSearchActions.xml Loads custom classes that make changes to network
searches after they have been submitted by the user.

NewEditObjectActions.xml Loads custom classes that implement custom functionality
to be processed when a user creates or edits a portal object.

ObjectActions.xml Loads custom classes that add functionality to most
administrative tasks, including delete, move, copy, and
object migration.

OpenerActions.xml (new 6.0) Loads custom classes that perform functionality before the
Common Opener opens an object or directs the user to an
activity space.

Configuration File Description

Miscellaneous

Portal Configuration Files A-3

A.4 Utilities
The configuration files in <PT_HOME>\settings\portal\dynamicloads\Utilities are
related to administrative utilities.

For detailed information on portal utilities, see the portal online help.

A.5 Object Descriptions
The read-only configuration files in <PT_
HOME>\settings\portal\dynamicloads\ObjectDescriptions describe portal objects
and external providers.

A.6 Miscellaneous
The configuration files in <PT_HOME>\settings\portal load custom classes and
settings related to the portal. Unlike the configuration files in the \dynamicloads
folder, which lists fully-qualified class names, the configuration files directly under the

PageActions.xml Loads custom classes that add code to every page
processed by the portal.

PasswordActions.xml Loads custom classes that enforce restrictions on the
password or verify the text entered by the user.

SearchSettingActions.xml Loads custom classes that track creation and deletion of
saved searches and control naming and encoding for new
saved searches.

UserProfileActions.xml Loads custom classes that execute functionality when a
user attempts to modify User Profile information.

Configuration File Description

DisplayDiagnosticPages.xml Loads all diagnostic monitoring tools in the System
Health Monitor utility of the portal administration. Do
not edit this file unless you created your own custom
diagnostic monitor.

DisplayPlumtreeUtilities.xml Along with DisplayServerSettings.xml (described below),
this file loads the utilities in the Select Utility drop-down
list in portal administration.

DisplayPortalSettings.xml Loads the settings in My Account.

DisplayServerSettings.xml Along with DisplayPlumtreeUtilities.xml (described
above), this file loads the utilities in the Select Utility
drop-down list in portal administration.

Configuration File Description

ClassTypeDesc.xml Do not edit. Describes Oracle WebCenter Interaction objects.
Loads classes that contain information about objects, such as
associated icons, related class IDs, localized names, and
Activity Space redirection.

ProvInfo.xml Do not edit.. Describes processes that Oracle WebCenter
Interaction implements for web service providers. Loads
classes that contain information about web service providers.

Configuration File Description

Miscellaneous

A-4 User Interface Customization Guide for Oracle WebCenter Interaction

\portal folder list JAR or DLL files. The file names of these XML files are hard-coded
and are loaded by the portal upon startup.

Configuration File Description

ActivitySpaces.xml Do not edit. Any custom Activity Spaces should be added to
CustomActivitySpaces.xml (described below).

The ActivitySpaces.xml file enumerates the JAR or DLL files
that Oracle WebCenter Interaction uses to discover base
classes for the portal UI.

CustomActivitySpaces.xml This file is empty when the portal ships. Functionally, the file
is identical to ActivitySpaces.xml, but includes only custom
Activity Spaces. This approach helps keep custom code
separate from platform code. For details on creating custom
Activity Spaces, see Chapter 14, "Creating Custom Activity
Spaces".

Tags.xml (6.0) Do not edit. Any custom tags should be added to
CustomTags.xml (described below).

The Tags.xml file loads the standard adaptive tags referenced
by the included JAR or DLL files. For details on adaptive tags,
see Oracle WebCenter Interaction Web Service Development Guide.

CustomTags.xml (6.0) This file is empty when the portal ships. Functionally, this file
is identical to Tags.xml, but includes only custom Adaptive
Tags as referenced by the included JAR or DLL files. For
details on creating custom Adaptive Tags, see Oracle
WebCenter Interaction Web Service Development Guide.

VarPacks.xml Do not edit. Any custom VarPacks should be added to
CustomVarPacks.xml.

The VarPacks.xml file loads the standard variable packages
included with Oracle WebCenter Interaction.

CustomVarPacks.xml This file is empty when a new portal ships. Functionally, this
file is identical to VarPacks.xml, but includes only custom
VarPacks. Variable packages store values from an XML file
(such as portalconfig.xml) in memory so the data can be used
easily without directly accessing the XML file. For details on
custom VarPacks, see Chapter 17, "Using VarPacks (Variable
Packages)".

Miscellaneous

Portal Configuration Files A-5

portalconfig.xml Sets various settings for the portal.

■ Home directory for the portal JAR or DLL files, as well as
the base URL of the Image Service and administrative
portal

■ Proxy server for the portal, the HTML document type
specification, and virtual directory path for the portal and
SSO

■ Portal base URL

■ Accessibility and bandwidth settings

■ Personal settings that should be cached on the HTTP
session of each user, such as greeting messages, display
options, preferred language, refresh rate, and time zone

■ Security, SSL encryption, authentication, and guest access
to the portal

■ Language of objects and portal style sheets

■ Crawler radius (number of page links to crawl)

■ Administration status of a computer (browsing or
administrative)

For details about the settings in this configuration file, see the
Administrator Guide for Oracle WebCenter Interaction.

portal.xml This file contains sample settings for Apache Tomcat. Copy
this file and replace the portal.xml file in your Tomcat
directory.

version.xml Do not edit. The version.xml file is created by the installer to
make sure that it does not override the most recent version of
the common components.

Configuration File Description

Miscellaneous

A-6 User Interface Customization Guide for Oracle WebCenter Interaction

B

Portal API Documentation B-1

B Portal API Documentation

This chapter provides an overview of the available API documentation on adaptive
tags, portal UI packages, IDK, and scripting framework API. All documentation is
available on the Oracle Technology Network in the Oracle WebCenter Interaction 10g
Release 4 (10.3.3.0.0) documentation set:
http://download.oracle.com/docs/cd/E23010_01/index.htm.

B.1 Adaptive Tags
The tagdocs provide details on tags used for Adaptive Page Layouts. For details, see
Chapter 3, "Using Adaptive Page Layouts". The tagdocs can be viewed in the
following location: tagdocs.

You can also create custom adaptive tags. The API documentation for the Adaptive
Tag Framework can be viewed in the following locations:

■ Custom Tags - Java

■ Custom Tags - .NET

B.2 Portal UI Packages
The following packages provide selected libraries from the portal UI API package for
customizing specific functionality.

■ PEIs (portalpages.pei, portaluiinfrastructure.pei, portaluiinfrastructure.tags.pei
and uiinfrastructure.pei): These libraries are focused on the portal's Programmable
Event Interfaces API. For details on implementing custom code using PEIs, see
Chapter 12, "Using PEIs". The PEI API documentation can be found in the
following locations:

– PEI - Java

– PEI - .NET

■ Pluggable Navigation (nullnavigation.*, portalnavigation.*,
portalpages.common.mediator, portalpages.common.plugnav,
portalpages.common.uiparts, portaluiinfrastructure.application.varpacks,
portaluiinfrastructure.compoundlist, and portaluiinfrastructure.navtype): These
libraries are focused on the Pluggable Navigation API. Note: Most navigation
customizations can be implemented without writing custom code against the
portal UI. For details, see Chapter 9, "Customizing Portal Navigation". The
Pluggable Navigation API documentation can be found in the following locations:

IDK API

B-2 User Interface Customization Guide for Oracle WebCenter Interaction

– Pluggable Navigation - Java

– Pluggable Navigation - .NET

■ UI Infrastructure: The uiinfrastructure library represents the layer of the portal UI
that defines the core architectural classes for the portal UI. This layer has no
dependencies on the plumtree.server layer. It addresses generic problems like how
to store state across pages in a consistent, reusable fashion. The UI Infrastructure
API documentation can be found in the following location:

– UI Infrastructure - Java

– UI Infrastructure - .NET

■ Open Foundation: This section contains the cross-platform (Java) development
library underneath all portal UI layers. The Open Foundation API documentation
can be found in the following location:

– Open Foundation - Java

B.3 IDK API
The Oracle WebCenter Interaction Development Kit (IDK) enables Java and .NET
developers to rapidly build and deliver user-centric composite applications through
Oracle WebCenter Interaction. The IDK provides interfaces for pagelets, portlets and
integration web services - authentication and profile services, crawlers, and search
services.

The IDK API documentation can be found in the following locations:

■ IDK API - Java

■ IDK API - .NET

For details on using the IDK API, see the Oracle WebCenter Interaction Web Service
Development Guide.

B.4 Scripting Framework API
The scripting framework API documentation can be found in the following locations:

■ CommonOpener

■ JSPortlet

■ JSXML

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Introduction to UI Customization
	1.1 Customizing Portal Look and Feel
	1.1.1 Adding Logo and Branding
	1.1.2 Modifying Portal Style Sheets
	1.1.3 Customizing Page Layout and Design
	1.1.4 Changing Portal Text
	1.1.5 Creating Customized Experiences for Specific Groups

	1.2 Customizing Portal Functionality
	1.2.1 Customizing Portal Login
	1.2.2 Modifying Portal Navigation
	1.2.3 Adding New Functionality to Portal Pages
	1.2.4 Customizing and Extending Search

	1.3 Advanced UI Customization
	1.3.1 Adding Functionality Using PEIs
	1.3.2 Customizing Pages Using View Replacement
	1.3.3 Adding New Pages Using Custom Activity Spaces
	1.3.4 Using Advanced UI Customization Tools and Components

	1.4 Internationalizing UI Customizations
	1.5 Reference Material

	Part I Customizing Portal Look and Feel
	2 Portal Page Layout
	2.1 Top Bar
	2.2 Header and Footer
	2.3 Navigation
	2.4 Banner
	2.5 Body

	3 Using Adaptive Page Layouts
	3.1 Available Adaptive Page Layouts
	3.2 Creating a Base Page Adaptive Page Layout
	3.3 Creating a Login Page Adaptive Page Layout
	3.4 Creating a Portlet Adaptive Page Layout
	3.5 Creating a Knowledge Directory Adaptive Page Layout
	3.6 Creating a Search Results Adaptive Page Layout
	3.7 Creating a Portlet Selection Adaptive Page Layout
	3.8 Creating a Community Selection Adaptive Page Layout
	3.9 Creating a My Account Adaptive Page Layout
	3.10 Creating an Error Page Adaptive Page Layout
	3.11 Creating an iPhone Adaptive Page Layout

	4 Using Adaptive Styles (CSS Customization)
	4.1 Adaptive Styles Base Page Elements
	4.2 Adaptive Styles Navigation Elements
	4.3 Adaptive Styles Search Elements
	4.4 Adaptive Styles Editing Elements
	4.5 Adaptive Styles Directory Elements
	4.6 Adaptive Styles Portlet Elements
	4.7 Adaptive Styles User Elements
	4.8 Using Adaptive Styles to Customize Portlet Style and Layout
	4.8.1 Syntax
	4.8.2 Style Customizations
	4.8.3 Constraints

	4.9 Using Adaptive Styles to Customize Page Layout
	4.9.1 Syntax
	4.9.2 Style and Branding Customizations
	4.9.3 Page Element Customizations

	4.10 Implementing Localized Stylesheets for Adaptive Page Layouts

	5 Customizing Portal Layout Using CSS - Legacy User Interface
	5.1 Customizing Portal Page Layout and Design
	5.1.1 Syntax Guidelines
	5.1.2 Customizing Layout
	5.1.3 Customizing Style
	5.1.4 Setting Constraints
	5.1.5 Changing the Portal Color Scheme

	5.2 Customizing Portlet Layout and Style
	5.2.1 Syntax Guidelines
	5.2.2 Customizing Portlet Style
	5.2.3 Setting Constraints

	5.3 Adding New Language Style Sheets
	5.4 Deploying Portal Style Sheet Customizations (CSS Mill)
	5.4.1 CSS Mill Structure
	5.4.2 Using the CSS Mill

	6 Using String Replacement
	6.1 Customizing Existing Strings in Language Files
	6.2 Adding Strings to Language Files
	6.3 Example 1: Hello World Corporation
	6.4 Example 2: Custom Login Instructions

	7 Customizing Experience Definitions
	7.1 Creating Experience Rules
	7.2 Creating a Custom Condition Type
	7.2.1 Step 1: Create a Class (A*ConditionType)
	7.2.2 Step 2: Create a Condition Type ID
	7.2.3 Step 3: Implement the Compare Method
	7.2.4 Step 4: Retrieve Values
	7.2.5 Step 5: Register the Condition Type Class
	7.2.6 Step 6: Deploy Your Custom Code
	7.2.7 Step 7: Restart the Portal
	7.2.8 Debugging

	Part II Customizing Portal Functionality
	8 Customizing Portal Login
	8.1 Customizing the Look and Feel of the Login Page
	8.2 Modifying Login Functionality

	9 Customizing Portal Navigation
	9.1 Built-In Navigation Options
	9.1.1 Navigation Pane Locations
	9.1.2 Built-in Display Options
	9.1.3 Customizing Built-In Display Options (portalconfig.xml)
	9.1.3.1 Edit Portlet Preferences Icon
	9.1.3.2 Table Spacing
	9.1.3.3 Navigation Pane Width
	9.1.3.4 Horizontal Dropdown Navigation Settings

	9.2 Creating a Custom Navigation Scheme
	9.2.1 Example: Hello World Navigation Scheme
	9.2.1.1 HelloWorldNavType (INavTypes)
	9.2.1.2 HelloWorldNavView (IView)

	9.2.2 Generating Navigation Links
	9.2.2.1 URL Mediators
	9.2.2.2 Creating Gatewayed URLs

	9.2.3 Using Advanced JavaScript Navigation Elements (JSPortalmenus)

	9.3 Deploying a Custom Navigation Scheme
	9.3.1 Example: Hello World Navigation Scheme
	9.3.2 Viewing Your Customizations in the Portal

	9.4 Debugging and Troubleshooting
	9.4.1 Technical Tips
	9.4.2 Debugging

	10 Customizing Portal Search
	10.1 Customizing Banner Search and Advanced Search
	10.1.1 Customizing the Banner Search Box
	10.1.1.1 Search Results Manager
	10.1.1.2 SearchActions Programmable Event Interfaces (PEIs)
	10.1.1.3 Adaptive Page Layouts
	10.1.1.4 View Replacement

	10.1.2 Customizing the Advanced Search Page
	10.1.2.1 SearchActions Programmable Event Interfaces (PEIs)
	10.1.2.2 View Replacement

	10.1.3 Adding Search Boxes
	10.1.3.1 Adding Pathways Search

	10.2 Customizing the Search Results Page
	10.2.1 Using Search Results Portlets
	10.2.2 Using Adaptive Page Layouts
	10.2.3 Using View Replacement
	10.2.4 Adding Properties to the Sort By Menu
	10.2.5 Adding Search Categorization Properties
	10.2.5.1 Defining Properties
	10.2.5.2 Assigning Property Values

	10.2.6 Improving Relevance Ranking
	10.2.6.1 Best Bets (Banner Search)
	10.2.6.2 Search Field Weightings (Banner Search)
	10.2.6.3 Search Thesaurus

	10.3 Using Federated Search

	Part III Advanced UI Customization
	11 Portal UI Architecture
	11.1 Portal UI Layers
	11.1.1 Portal UI Infrastructure
	11.1.2 Portal Pages

	11.2 MVC Architecture
	11.2.1 Example: Login MVC Pattern

	11.3 Activity Spaces
	11.3.1 Example: Login Activity Space

	11.4 Session Management
	11.5 Request Control Flow
	11.5.1 Interpreter Control Flow
	11.5.2 Activity Space Control Flow
	11.5.3 Experience Definition Control Flow
	11.5.3.1 Login (Guest User) Evaluation
	11.5.3.2 Page Request Evaluation

	11.5.4 Adaptive Tag Control Flow
	11.5.4.1 Tag Transformation Engine

	12 Using PEIs
	12.1 Step 1: Choosing a PEI
	12.2 Implementing a PEI in a Custom Class
	12.2.1 Example 1: Hello World Login PEI
	12.2.2 Example 2: Login Usage Agreement
	12.2.2.1 LoginAgreementActions
	12.2.2.2 GuestLoginAgreementControl
	12.2.2.3 MarkAsGuestControl
	12.2.2.4 LoginAgreementRepostControl

	12.2.3 Example 3: Banner Search Customization
	12.2.3.1 Adding Strings to Search Queries
	12.2.3.2 Adding Properties to Search Fields
	12.2.3.3 Adding Constraints to Properties
	12.2.3.4 Restricting Banner Search

	12.3 Step 3: Deploying a Custom PEI
	12.3.1 Example: Deploying the Hello World Login PEI
	12.3.2 Viewing Your Customization in the Portal

	12.4 Step 4: Debugging and Troubleshooting
	12.4.1 Technical Tips
	12.4.2 Debugging

	12.5 Lifecycle of a PEI
	12.5.1 Step 1: Loading the PEI
	12.5.1.1 Memory Debug Page

	12.5.2 Step 2: Executing the PEI

	13 Using View Replacement
	13.1 Identifying the Activity Space
	13.1.1 Example: Hello World Login Page

	13.2 Creating a Custom View
	13.2.1 Example: Hello World Login Page

	13.3 Deploying a Custom View
	13.3.1 Example: Hello World Login Page
	13.3.2 Viewing Your Customization in the Portal

	13.4 Debugging and Troubleshooting
	13.4.1 Technical Tips
	13.4.2 Debugging

	14 Creating Custom Activity Spaces
	14.1 Activity Space Components
	14.1.1 Activity Space
	14.1.2 Display Page
	14.1.3 Model
	14.1.4 View
	14.1.5 Control

	14.2 Step 1: Creating an Activity Space
	14.2.1 Example: Sample Activity Space

	14.3 Step 2: Deploying a Custom Project
	14.3.1 Example: Sample Activity Space
	14.3.2 Viewing Your Customization in the Portal

	14.4 Step 3: Debugging and Troubleshooting
	14.4.1 Technical Tips
	14.4.2 Debugging

	15 Accessing Portal Objects
	15.1 Using the Common Object Opener
	15.1.1 Custom Activity Spaces and Non-Portal Pages

	15.2 Using ASURL and Redirect
	15.2.1 ASURL
	15.2.1.1 SetLinkGetSpaceIfCached
	15.2.1.2 SetLinkCreateNewSpace
	15.2.1.3 SetControl
	15.2.1.4 AddInnerHTMLString
	15.2.1.5 AddInnerHTMLElement
	15.2.1.6 GetURLAsString

	15.2.2 Redirect
	15.2.2.1 SetLinkCreateNewSpace
	15.2.2.2 SetControl
	15.2.2.3 AddControlArgument
	15.2.2.4 SetRedirect
	15.2.2.5 SetIsHTTPRedirect
	15.2.2.6 SetLinkToExternalURL

	16 Adding Custom Images
	16.1 Image Service Structure
	16.2 Adding a Custom Image

	17 Using VarPacks (Variable Packages)
	17.1 Example VarPack Uses
	17.2 Implementing a VarPack
	17.2.1 Example: Hello World VarPack

	17.3 Deploying a Custom VarPack
	17.3.1 Viewing Your Customization in the Portal

	17.4 Debugging and Troubleshooting
	17.4.1 Technical Tips
	17.4.2 Debugging

	18 Deploying Custom Code Using Dynamic Discovery
	18.1 Dynamic Discovery Configuration Files
	18.2 Using Dynamic Discovery
	18.2.1 Interface-Based Dynamic Discovery
	18.2.2 Jar or DLL-Based Dynamic Discovery

	Part IV Appendices and Additional References
	A Portal Configuration Files
	A.1 Common Settings
	A.2 Plug-Ins
	A.3 Programmable Event Interfaces
	A.4 Utilities
	A.5 Object Descriptions
	A.6 Miscellaneous

	B Portal API Documentation
	B.1 Adaptive Tags
	B.2 Portal UI Packages
	B.3 IDK API
	B.4 Scripting Framework API

