Programmer's Guide
Release 3.1.3
E20666-04
January 2012
Oracle Student Learning Programmer's Guide, Release 3.1.3
E20666-04
Copyright © 2009, 2012, Oracle and/or its affiliates. All rights reserved.
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.
This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.
Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.
This software and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
This preface includes the following topics:
The Oracle Student Learning Programmer's Guide is intended for application developers who are interested in developing applications that interface with Oracle Student Learning (OSL).
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
.
Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.
For more information, see the following documents in the Oracle Student Learning documentation set:
The following text conventions are used in this document:
Convention	Meaning
boldface | Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary. |
italic | Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values. |
monospace | Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter. |
This chapter describes an overview of the data loading service.
The Data Loading Services are a collection of web services that provide operations to manage certain entities within OSL. These entities represent data that are typically loaded from external systems and can be broadly classified under the following categories:
The Data Loading Services do not provide a service to create the Department. The Department is created during installation of OSL. The Data Loading Services provide a service to update the Department attributes.
The Data Loading Services are secured services that are protected by the WebLogic Security mechanism. The default security policy configuration is defined by oracle/wss_username_token_service_policy
. Any client access to these services is authenticated and authorized. The default security configuration can be overridden post deployment of the application.
The oracle/wss_username_token_service_policy
requires the client to pass in the credentials in the SOAP Header.
Below is an example of a SOAP message containing the credentials in the SOAP Header.
All the services that are part of Data Loading are accessible to users that belong to the "DataLoadingGroup". The Data Loading Services expect a user with uid "dataloading" to be part of the "DataLoadingGroup". The authenticated user's uid should be "dataloading" and the user should be part of the "DataLoadingGroup".
At any point, a record in OSL can be uniquely identified either through the OSL Id or the combination of External Id and External System Id.
The oslId is the identifier generated by OSL for internal representation of data loaded through the Data Loading Services. The oslId is contained in the response to any successful create operation.
OSL external systems require a mechanism to cross-reference individual records. The recommendation is to use an externalId and an externalSystemId to uniquely identify individual records. Any external system loading data into OSL can optionally provide these identifiers. When provided, OSL keeps track of them and external systems can cross-reference these records based on the externalId and externalSystemId.
To explain this concept, the PersonInfo data structure is used.
In the PersonInfo structure, phoneContactActions and relationshipActions are Action Lists. In the same structure, addresses, emailContacts, languages, phoneContacts and relationships are Lists.
Lists are returned by the service in response to certain operation and Lists are never sent in any request message. In other words, Lists are always constructed by the service and clients typically read the Lists.
The data structure of the Action Lists is similar to that of Lists except that an action flag on individual element indicates the action that is being performed on them. A client always sends an Action List to the service during create, createOrUpdate and update operation. The action flag can have the following permissible values:
During a create operation, the service assumes an implicit value of "Create" for the action flag. During an update and createOrUpdate operation, any of the permissible values can be specified and the service processes accordingly.
For instance, if a new address is to be added to a PersonInfo object, an action flag of "Create" should be passed in for that element during the updatePersons operation.
Similarly, if an existing address is to be deleted from a PersonInfo object, an action flag of "Delete" should be passed in for the element during the updatePersons operation, in addition to passing the identifiers that can uniquely identify the element.
If an action flag of "CreateOrUpdate" is provided for the address element during the updatePersons operation, if the address exists, it shall be updated. If it does not exist, it will be created and appended to the existing list of addresses.
The Data Loading web services provide CRUD (Create, Read, Update, and Delete) operations on most of the entities. Delete operations are not supported on Person and Institution entities. This is to preserve data consistency as deleting a Person or an Institution could have adverse effect. The semantics of the various operations supported by Data Loading Services are summarized in the following sections.
This operation supports the creation of an array of homogeneous entities as an atomic unit of work. The entire transaction is rolled back if any failure occurs during the creation process.
On successful creation, the response includes the oslId of each entity that has been created.
This operation supports creating or updating an array of homogeneous entities as an atomic unit of work. The entire transaction is rolled back if any failure occurs during the create or update process.
If an oslId is specified, the service tries to locate the entity to update based on the oslId. If found, the entity is updated.
If no entity is retrieved for the specified oslId, the services check if the combination of externalId and externalSystemId is specified. If specified, the service tries to locate the entity based on the externalId & externalSystemId. If the entity is found, it is updated.
If the identification mechanism does not fetch an entity, a new record is created and the oslId pertaining to the record is returned to the caller in the response.
This operation supports updating an array of homogeneous entities as an atomic unit of work. The entire transaction is rolled back if any failure occurs during the update process.
If an oslId is specified, the service tries to locate the entity to update based on the oslId. If found, the entity is updated.
If no entity is retrieved for the specified oslId, the service checks if the combination of externalId and externalSystemId is specified. If specified, the service tries to locate the entity based on the externalId & externalSystemId. If the entity is found, it is updated.
If the identification mechanism does not fetch an entity, an error is raised.
In an update operation, it is not required to send the entire object structure. In addition to the identification of the entity, it is sufficient to specify only the elements to be modified. The service updates the entity with only the modified elements. For instance, if the preferredName of a person with oslId 100 is modified to "John", it is sufficient to send the following information to the service.
This operation supports deleting an array of homogeneous entities as an atomic unit of work. The entire transaction is rolled back if any failure occurs during the deletion process.
If an oslId is specified, the service tries to locate the entity to delete based on the oslId. If found, the entity is deleted.
If no entity is retrieved for the specified oslId, the service checks if the combination of externalId and externalSystemId is specified. If specified, the service tries to locate the entity based on the externalId & externalSystemId. If the entity is found, it is deleted.
Only the object identification mechanism must be specified for the remove operation. If other elements are specified, those are ignored by the service.
This operation supports querying entities based on the identifiers.
If an oslId is specified, the service tries to locate the entity based on the oslId. If found, the entity is returned.
If no entity is retrieved for the specified oslId, the service checks if the combination of externalId and externalSystemId is specified. If specified, the service tries to locate the entity based on the externalId & externalSystemId. If the entity is found, it is returned.
Only the object identification mechanism must be specified for the get operation, if other elements are specified, those are ignored by the service.
During Data Loading Service operations, Web Service Exceptions might be encountered. These exceptions indicate possible errors or business rule violations in the input parameters. To help locate the root cause, error codes and error messages are contained within the exceptions. A summary of the Web Service Exceptions are provided below.
A CreationException is thrown when the system cannot create the specified entity when attempting to save the data into the database.
A DataConstraintException is thrown when the modified data is in violation of the business rules. Common situations include updating the start date of a framework such that the start date is later than the end date or creating a framework with a non-unique name.
An InvalidParameter exception is thrown when the input parameters are invalid or required fields are missing.
A RemoveException is thrown when an entity cannot be removed. This occurs when an attempt is made to remove an entity that is in use. For example, an attempt is made to remove a context adoption when the adopted context is referenced in a learning item demonstration.
This chapter describes the available web services and their descriptions.
The DataLoadingPartyService is used to load party information. This includes institutions, institution groups, people and their relationships.
This method creates new institutions. Note that the new institutions are created according to the order in which they are provided. For example, the first institution in the list is created followed by the second institution in the list.
All new institutions must have a parent institution. This parent institution must be an existing institution or created before it. In addition, under the same parent institution, the names of child institutions must be unique.
An institution should have only one primary address, email contact, and phone contact.
Parameter:
Table 2-1 createInstitutions Parameter Summary
Type | Description |
---|---|
InstitutionInfo[] | List of institutions to create |
Return:
Table 2-2 createInstitutions Return Summary
Type | Description |
---|---|
InstitutionInfo[] | List of created institutions |
Exception:
CreationException, DataConstraintException, InvalidParameters, ServiceException
This method creates new institution groups. The institution group name must be unique.
Parameter:
Table 2-3 createInstitutionGroups Parameter Summary
Type | Description |
---|---|
InstitutionGroupInfo[] | List of institution groups to create |
Return:
Table 2-4 createInstitutionGroups Return Summary
Type | Description |
---|---|
InstitutionGroupInfo[] | List of created institution groups |
Exception:
CreationException, DataConstraintException, InvalidParameters, ServiceException
This method searches for the institutions using the IdInfo in the input InstitutionInfo and if the institution is found, it is updated; Otherwise, it is created. Note that the parent institution attribute cannot be updated.
Parameter:
Table 2-5 createOrUpdateInstitutions Parameter Summary
Type | Description |
---|---|
InstitutionInfo[] | List of institutions to create or update |
Return:
Table 2-6 createOrUpdateInstitutions Return Summary
Type | Description |
---|---|
InstitutionInfo[] | List of institutions created or updated |
Exception:
CreationException, DataConstraintException, InvalidParameters, ServiceException, UpdateException
This method searches for the institution groups using the IdInfo in the input InstitutionGroupInfo and if the institution group is found, it is updated; Otherwise, it is created.
Note: Only Create and Delete actions are allowed in the IdInfoActionInfo. |
Parameter:
Table 2-7 createOrUpdateInstitutionGroups Parameter Summary
Type | Description |
---|---|
InstitutionGroupInfo[] | List of institution groups to create or update |
Return:
Table 2-8 createOrUpdateInstitutionGroups Return Summary
Type | Description |
---|---|
InstitutionGroupInfo[] | List of institution groups created or updated |
Exception:
CreationException, DataConstraintException, InvalidParameters, ServiceException, UpdateException
This method searches for the persons using the IdInfo in the input PersonInfo and if the person is found, it is updated; Otherwise, it is created.
Parameter:
Table 2-9 createOrUpdatePersons Parameter Summary
Type | Description |
---|---|
PersonInfo[] | List of persons to create or update |
Return:
Table 2-10 createOrUpdatePersons Return Summary
Type | Description |
---|---|
PersonInfo[] | List of persons created or updated |
Exception:
CreationException, DataConstraintException, InvalidParameters, ServiceException, UpdateException
This method creates new persons. A person should have only one primary address, email contact, and phone contact.
Parameter:
Return:
Exception:
CreationException, DataConstraintException, InvalidParameters, ServiceException
This method returns the department.
Parameter:
None.
Return:
Exception:
ServiceException
This method finds all the institutions using the IdInfo in the input InstitutionInfo and returns the complete InstitutionInfo including the ContactInfos and AddressInfos.
If the specified institution is not found in the system, no record is returned.
Parameter:
Table 2-14 getInstitutions Parameter Summary
Type | Description |
---|---|
InstitutionInfo[] | List of institutions to retrieve |
Return:
Table 2-15 getInstitutions Return Summary
Type | Description |
---|---|
InstitutionInfo[] | List of institutions retrieved |
Exception:
InvalidParameters, ServiceException
This method finds all the institution groups using the IdInfo in the input InstitutionGroupInfo and returns the complete InstitutionGroupInfo.
If the specified institution group is not found in the system, no record is returned.
Parameter:
Table 2-16 getInstitutionGroups Parameter Summary
Type | Description |
---|---|
InstitutionGroupInfo[] | List of institution groups to retrieve |
Return:
Table 2-17 getInstitutionGroups Return Summary
Type | Description |
---|---|
InstitutionGroupInfo[] | List of institution groups retrieved |
Exception:
InvalidParameters, ServiceException
This method finds all the persons using the IdInfo in the input PersonInfo and returns the complete PersonInfo including the LanguageInfos, ContactInfos, and AddressInfos.
If the specified person is not found in the system, no record is returned.
Parameter:
Return:
Exception:
InvalidParameters, ServiceException
This method searches for the institutions using the IdInfo in the input InstitutionInfo and updates the institutions with the specified attributes. Note that the parent institution cannot be updated.
Parameter:
Table 2-20 updateInstitutions Parameter Summary
Type | Description |
---|---|
InstitutionInfo[] | List of institutions to update |
Return:
Table 2-21 updateInstitutions Return Summary
Type | Description |
---|---|
InstitutionInfo[] | List of updated institutions |
Exception:
DataConstraintException, InvalidParameters, ServiceException, UpdateException
This method searches for the institution groups using the IdInfo in the input InstitutionGroupInfo and updates the institution groups with the specified attributes.
Note: Only Create and Delete actions are allowed in the IdInfoActionInfo. |
Parameter:
Table 2-22 updateInstitutionGroups Parameter Summary
Type | Description |
---|---|
InstitutionGroupInfo[] | List of institution groups to update |
Return:
Table 2-23 updateInstitutionGroups Return Summary
Type | Description |
---|---|
InstitutionGroupInfo[] | List of updated institution groups |
Exception:
DataConstraintException, InvalidParameters, ServiceException, UpdateException
The DataLoadingCourseService is used to load course, course tags, offerings, and class information.
This method creates new classes unique within the context of the associated offering. In addition, note the following:
Parameter:
Return:
Exception:
CreationException, DataConstraintException, InvalidParameters, ServiceException
This method creates new courses. Within a school, the course name and code must be unique. The tags attached to the course must also come from the same school.
Parameter:
Return:
Exception:
CreationException, DataConstraintException, InvalidParameters, ServiceException
This method creates new offerings. Within a school, the offering name and code must be unique within the calendar. In addition, note the following:
Parameter:
Table 2-30 createOfferings Parameter Summary
Type | Description |
---|---|
OfferingInfo[] | List of offerings to create |
Return:
Exception:
CreationException, DataConstraintException, InvalidParameters, ServiceException
This method searches for the classes using the IdInfo in the input ClassInfo and if class is found, it is updated; Otherwise, it is created. The restrictions in createClasses and updateClasses are also applicable here.
Parameter:
Table 2-32 createOrUpdateClasses Parameter Summary
Type | Description |
---|---|
ClassInfo[] | List of classes to create or update |
Return:
Table 2-33 createOrUpdateClasses Return Summary
Type | Description |
---|---|
ClassInfo[] | List of classes created or updated |
Exception:
CreationException, DataConstraintException, InvalidParameters, ServiceException, UpdateException
This method searches for the courses using the IdInfo in the input CourseInfo and if the course is found, it is updated; Otherwise, it is created. Note that the institution of the course cannot be updated.
Parameter:
Table 2-34 createOrUpdateCourses Parameter Summary
Type | Description |
---|---|
CourseInfo[] | List of courses to create or update |
Return:
Table 2-35 createOrUpdateCourses Return Summary
Type | Description |
---|---|
CourseInfo[] | List of courses created or updated |
Exception:
CreationException, DataConstraintException, InvalidParameters, ServiceException, UpdateException
This method searches for the offerings using the IdInfo in the input OfferingInfo and if the offering is found, it is updated; Otherwise, it is created. The restrictions for createOfferings and updateOfferings are also applicable here.
Parameter:
Table 2-36 createOrUpdateOfferings Parameter Summary
Type | Description |
---|---|
OfferingInfo[] | List of offerings to create or update |
Return:
Table 2-37 createOrUpdateOfferings Return Summary
Type | Description |
---|---|
OfferingInfo[] | List of offerings created or updated |
Exception:
CreationException, DataConstraintException, InvalidParameters, ServiceException, UpdateException
This method searches for the tags using the IdInfo in the input TagInfo and if the tag is found, it is updated; Otherwise, it is created.
Parameter:
Table 2-38 createOrUpdateTags Parameter Summary
Type | Description |
---|---|
TagInfo[] | List of tags to create or update |
Return:
Table 2-39 createOrUpdateTags Return Summary
Type | Description |
---|---|
TagInfo[] | List of tags created or updated |
Exception:
CreationException, DataConstraintException, InvalidParameters, ServiceException, UpdateException
This method creates new tags. Within a school, the tag name must be unique.
Parameter:
Return:
Exception:
CreationException, DataConstraintException, InvalidParameters, ServiceException
This method finds all the classes using the IdInfo in the input ClassInfo and returns the complete ClassInfo.
If the specified class is not found in the system, no record is returned.
Parameter:
Return:
Exception:
InvalidParameters, ServiceException
This method finds all the courses using the IdInfo in the input CourseInfo and returns the complete CourseInfo.
If the specified course is not found in the system, no record is returned.
Parameter:
Return:
Exception:
InvalidParameters, ServiceException
This method finds all the offerings using the IdInfo in the input OfferingInfo and returns the complete OfferingInfo.
If the specified offering is not found in the system, no record is returned.
Parameter:
Table 2-46 getOfferings Parameter Summary
Type | Description |
---|---|
OfferingInfo[] | List of offerings to retrieve |
Return:
Exception:
InvalidParameters, ServiceException
This method finds all the tags using the IdInfo in the input TagInfo and returns the complete TagInfo.
If the specified tag is not found in the system, no record is returned.
Parameter:
Return:
Exception:
InvalidParameters, ServiceException
This method searches for the classes using the IdInfo in the input ClassInfo and updates the classes with the specified attributes. The offering and school of the class cannot be updated. In addition, enrollments cannot be changed if the class is end-dated. Removing teacher enrollments and student enrollments are also prohibited if there is one or more learning items created in the class lesson plan.
Parameter:
Return:
Exception:
DataConstraintException, InvalidParameters, ServiceException, UpdateException
This method searches for the courses using the IdInfo in the input CourseInfo and updates the course with the specified attributes. Note that the institution of the course cannot be updated.
Parameter:
Return:
Exception:
DataConstraintException, InvalidParameters, ServiceException, UpdateException
This method searches for the offerings using the IdInfo in the input OfferingInfo and updates the offering with the specified attributes. Note that the calendar, course, framework, and school cannot be updated.
Parameter:
Table 2-54 updateOfferings Parameter Summary
Type | Description |
---|---|
OfferingInfo[] | List of offerings to update |
Return:
Exception:
DataConstraintException, InvalidParameters, ServiceException, UpdateException
This method searches for the tags using the IdInfo in the input TagInfo and updates the tag with the specified attributes.
Parameter:
Return:
Exception:
DataConstraintException, InvalidParameters, ServiceException, UpdateException
This method finds all the classes using the IdInfo in the input ClassInfo and removes it. A class cannot be removed if there are enrollments in the class.
Parameter:
Return:
Exception:
DataConstraintException, InvalidParameters, RemoveException, ServiceException
This method finds all the courses using the IdInfo in the input CourseInfo and removes them. If a course is referenced by an offering, then it cannot be removed.
Parameter:
Return:
Exception:
DataConstraintException, InvalidParameters, RemoveException, ServiceException
This method finds all the offerings using the IdInfo in the input OfferingInfo and removes them. An offering cannot be removed if there are any classes referencing it.
Parameter:
Table 2-62 removeOfferings Parameter Summary
Type | Description |
---|---|
OfferingInfo[] | List of offerings to remove |
Return:
Exception:
DataConstraintException, InvalidParameters, RemoveException, ServiceException
The DataLoadingCalendarService is used to load calendar information and also to adopt department calendars.
This method adopts a department calendar for use at a school. Only department calendars can be adopted. A calendar can only be adopted by a school once. Note that the parent calendar has to be adopted before the sub-calendars can be adopted.
Parameter:
Table 2-66 adoptCalendars Parameter Summary
Type | Description |
---|---|
AdoptCalendarInfo[] | List of department calendars to adopt |
Return:
Exception:
CreationException, DataConstraintException, InvalidParameters, ServiceException
This method creates new calendars. The calendar name must be unique within an institution. For a sub-calendar, the sub-calendar name must be unique under the parent calendar. Note that the start and end date of a sub-calendar must not exceed the start and end date of the parent calendar.
Parameter:
Table 2-68 createCalendars Parameter Summary
Type | Description |
---|---|
CalendarInfo[] | List of calendars to create |
Return:
Exception:
CreationException, DataConstraintException, InvalidParameters, ServiceException
This method searches for the calendars using the IdInfo in the input CalendarInfo and if a calendar is found, it is updated; Otherwise, it is created. The restrictions in createCalendars and updateCalendars are also applicable here.
Parameter:
Table 2-70 createOrUpdateCalendars Parameter Summary
Type | Description |
---|---|
CalendarInfo[] | List of calendars to create or update |
Return:
Table 2-71 createOrUpdateCalendars Return Summary
Type | Description |
---|---|
CalendarInfo[] | List of calendars created or updated |
Exception:
CreationException, DataConstraintException, InvalidParameters, ServiceException, UpdateException
This method finds all the calendars using the IdInfo in the input CalendarInfo and returns the complete CalendarInfo.
If the specified calendar is not found in the system, no record is returned.
Parameter:
Table 2-72 getCalendars Parameter Summary
Type | Description |
---|---|
CalendarInfo[] | List of calendars to retrieve |
Return:
Exception:
InvalidParameters, ServiceException
This method searches for the calendars using the IdInfo in the input CalendarInfo and updates the calendars with the specified attributes.
Note that the parent calendar association cannot be updated.
Parameter:
Table 2-74 updateCalendars Parameter Summary
Type | Description |
---|---|
CalendarInfo[] | List of calendars to update |
Return:
Exception:
DataConstraintException, InvalidParameters, ServiceException, UpdateException
This method finds all the calendars using the IdInfo in the input CalendarInfo and removes them. When a calendar is removed, all the sub-calendars under it are also removed. However, a school calendar cannot be removed if it is referenced in a framework adoption or an offering.
Parameter:
Table 2-76 removeCalendars Parameter Summary
Type | Description |
---|---|
CalendarInfo[] | List of calendars to remove |
Return:
Exception:
DataConstraintException, InvalidParameters, RemoveException, ServiceException
The DataLoadingCurriculumService is used to load framework and framework-related information such as framework items, blueprint nodes, and proficiency sets.
This method creates a new blueprint node hierarchy. A blueprint node with no parent blueprint node is created as the root blueprint node. There can only be one root blueprint node for a framework. Framework node names must be unique within a framework. Framework node start and end dates must be between the start and end dates of both the parent framework node and the framework.
Note: All blueprint nodes directly or indirectly under the root blueprint node are created in the same framework as specified in the framework of the root blueprint node. |
Parameter:
Table 2-78 createBlueprintHieararchies Parameter Summary
Type | Description |
---|---|
BlueprintNodeInfo[] | List of blueprint nodes to create |
Return:
Table 2-79 createBlueprintHieararchies Return Summary
Type | Description |
---|---|
BlueprintNodeInfo[] | List of created blueprint nodes |
Exception:
CreationException, DataConstraintException, InvalidParameters, ServiceException
This method creates new contexts. Contexts with no parent context specified are created as department contexts. Contexts with parent context specified are created as school contexts. School contexts cannot have child contexts.
Parameter:
Table 2-80 createContexts Parameter Summary
Type | Description |
---|---|
ContextInfo[] | List of contexts to create |
Return:
Exception:
CreationException, DataConstraintException, InvalidParameters, ServiceException
This method searches for the blueprint nodes using the IdInfo in the input BlueprintNodeInfo and if the blueprint node is found, it is updated; Otherwise, it is created. The restrictions in createBlueprintHierarchies and updateBlueprintHierarchies are also applicable here.
Parameter:
Table 2-82 createOrUpdateBlueprintHieararchies Parameter Summary
Type | Description |
---|---|
BlueprintNodeInfo[] | List of blueprint nodes to create or update |
Return:
Table 2-83 createOrUpdateBlueprintHieararchies Return Summary
Type | Description |
---|---|
BlueprintNodeInfo[] | List of blueprint nodes created or updated |
Exception:
CreationException, DataConstraintException, InvalidParameters, ServiceException, UpdateException
This method searches for the contexts using the IdInfo in the input ContextInfo and if a context is found, it is updated; Otherwise, it is created.
The restrictions in createContexts and updateContexts are applicable here.
Parameter:
Table 2-84 createOrUpdateContexts Parameter Summary
Type | Description |
---|---|
ContextInfo[] | List of contexts to create or update |
Return:
Table 2-85 createOrUpdateContexts Return Summary
Type | Description |
---|---|
ContextInfo[] | List of contexts created or updated |
Exception:
CreationException, DataConstraintException, InvalidParameters, ServiceException, UpdateException
This method searches for the outcome statement descriptor types using the IdInfo in the input OutcomeStatementDescTypeInfo and if an outcome statement descriptor type is found, it is updated; Otherwise, it is created.
The restrictions in createOutcomeStatementDescTypes and updateOutcomeStatementDescTypes are applicable here.
Parameter:
Table 2-86 createorUpdateOutcomeStatementDescriptorType Parameter Summary
Type | Description |
---|---|
OutcomeStatementDescTypeInfo[] | List of outcome statement descriptor types to create or update |
Return:
Table 2-87 createorUpdateOutcomeStatementDescriptorType Return Summary
Type | Description |
---|---|
OutcomeStatementDescTypeInfo[] | List of outcome statement descriptor types created or updated |
Exception:
CreationException, DataConstraintException, InvalidParameters, ServiceException, UpdateException
This method searches for the outcome statements using the IdInfo in the input OutcomeStatementInfo and if the outcome statement is found, it is updated; Otherwise, it is created.
The restrictions in createOutcomeStatements and updateOutcomeStatements are also applicable here.
Parameter:
Table 2-88 createOrUpdateOutcomeStatements Parameter Summary
Type | Description |
---|---|
OutcomeStatementInfo[] | List of outcome statements to create or update |
Return:
Table 2-89 createOrUpdateOutcomeStatements Return Summary
Type | Description |
---|---|
OutcomeStatementInfo[] | List of outcome statements created or updated |
Exception:
CreationException, DataConstraintException, InvalidParameters, ServiceException, UpdateException
This method creates new outcome statements. The proficiency level specified must be from the outcome proficiency set associated with the specified framework item. Also, this proficiency level must not be a proficiency sub-level (For example, a proficiency level with a parent proficiency level).
Outcome statement names must be unique within a framework item. Demonstrable outcome statements must have an associated proficiency level. Indicative outcome statements must not have an associated proficiency level. The start and end dates of the outcome statement must be between those of the framework item.
Parameter:
Table 2-90 createOutcomeStatements Parameter Summary
Type | Description |
---|---|
OutcomeStatementInfo[] | List of outcome statements to create |
Return:
Table 2-91 createOutcomeStatements Return Summary
Type | Description |
---|---|
OutcomeStatementInfo[] | List of created outcome statements |
Exception:
CreationException, DataConstraintException, InvalidParameters, ServiceException
This method creates new outcome statement descriptor types. Within a framework, the outcome statement descriptor type name must be unique.
Parameter:
Table 2-92 createOutcomeStatementDescriptorType Parameter Summary
Type | Description |
---|---|
OutcomeStatementDescTypeInfo[] | List of outcome statement descriptor types to create |
Return:
Table 2-93 createOutcomeStatementDescriptorType Return Summary
Type | Description |
---|---|
OutcomeStatementDescTypeInfo[] | List of created outcome statement descriptor types |
Exception:
CreationException, DataConstraintException, InvalidParameters, ServiceException
This method creates new Frameworks. The name of each framework must be unique in the system.
Parameter:
Table 2-94 createFrameworks Parameter Summary
Type | Description |
---|---|
FrameworkInfo[] | List of frameworks to create |
Return:
Table 2-95 createFrameworks Return Summary
Type | Description |
---|---|
FrameworkInfo[] | List of created frameworks |
Exception:
CreationException, DataConstraintException, InvalidParameters, ServiceException
This method creates new Framework Item Hierarchies. A framework item with no parent framework item is created as the top level framework item. The blueprint node of top level framework item is set to the root blueprint node.
Note the following:
Parameter:
Table 2-96 createFrameworkItemHieararchies Parameter Summary
Type | Description |
---|---|
FrameworkItemInfo[] | List of framework items to create |
Return:
Table 2-97 createFrameworkItemHieararchies Return Summary
Type | Description |
---|---|
FrameworkItemInfo[] | List of created framework items |
Exception:
CreationException, DataConstraintException, InvalidParameters, ServiceException
This method searches for the Framework item nodes using the IdInfo in the input FrameworkItemInfo and if a framework item is found, it is updated; Otherwise, it is created. The restrictions in createFrameworkItemHierarchies and updateFrameworkItemHierarchies are also applicable here.
Parameter:
Table 2-98 createOrUpdateFrameworkItemHieararchies Parameter Summary
Type | Description |
---|---|
FrameworkItemInfo[] | List of framework items to create or update |
Return:
Table 2-99 createOrUpdateFrameworkItemHieararchies Return Summary
Type | Description |
---|---|
FrameworkItemInfo[] | List of framework items created or updated |
Exception:
CreationException, DataConstraintException, InvalidParameters, ServiceException, UpdateException
This method searches for the frameworks using the IdInfo in the input FrameworkInfo and if a framework is found, it is updated; Otherwise, it is created.
Parameter:
Table 2-100 createOrUpdateFrameworks Parameter Summary
Type | Description |
---|---|
FrameworkInfo[] | List of frameworks to create or update |
Return:
Table 2-101 createOrUpdateFrameworks Return Summary
Type | Description |
---|---|
FrameworkInfo[] | List of frameworks created or updated |
Exception:
CreationException, DataConstraintException, InvalidParameters, ServiceException, UpdateException
This method searches for the proficiency sets using the IdInfo in the input ProficiencySetInfo and if a proficiency set is found, it is updated; Otherwise, it is created. The restrictions in createProficiencySets and updateProficiencySets are also applicable here.
Parameter:
Table 2-102 createOrUpdateProficiencySets Parameter Summary
Type | Description |
---|---|
ProficiencySetInfo[] | List of proficiency sets to create or update |
Return:
Table 2-103 createOrUpdateProficiencySets Return Summary
Type | Description |
---|---|
ProficiencySetInfo[] | List of proficiency sets created or updated |
Exception:
CreationException, DataConstraintException, InvalidParameters, ServiceException, UpdateException
This method creates new outcome proficiency sets. Note that the outcome proficiency levels can have at most only one level of parent/child relationship. For example, an outcome proficiency level can have one or more proficiency sub-levels as its child, but the proficiency sub-levels cannot have subordinate proficiency levels.
In addition, within an outcome proficiency set, all proficiency level names must be unique. Every proficiency set with a framework must have a unique name. The start and end dates of a proficiency set must be between those of the framework.
Parameter:
Table 2-104 createProficiencySets Parameter Summary
Type | Description |
---|---|
ProficiencySetInfo[] | List of outcome proficiency sets to create |
Return:
Table 2-105 createProficiencySets Return Summary
Type | Description |
---|---|
ProficiencySetInfo[] | List of created outcome proficiency sets |
Exception:
CreationException, DataConstraintException, InvalidParameters, ServiceException
This method finds all the blueprint nodes using the IdInfo in the input BlueprintNodeInfo and returns the complete BlueprintNodeInfo including the child blueprint nodes.If the specified blueprint node is not found in the system, no record is returned.
Parameter:
Table 2-106 getBlueprintHieararchies Parameter Summary
Type | Description |
---|---|
BlueprintNodeInfo[] | List of blueprint nodes to retrieve |
Return:
Table 2-107 getBlueprintHieararchies Return Summary
Type | Description |
---|---|
BlueprintNodeInfo[] | List of blueprint nodes retrieved |
Exception:
InvalidParameters, ServiceException
This method finds all the contexts using the IdInfo in the input ContextInfo and returns the complete ContextInfo.
If the specified context is not found in the system, no record is returned.
Parameter:
Table 2-108 getContexts Parameter Summary
Type | Description |
---|---|
ContextInfo[] | List of contexts to retrieve |
Return:
Exception:
InvalidParameters, ServiceException
This method finds all the frameworks using the IdInfo in the input FrameworkInfo and returns the complete FrameworkInfo.
If the specified framework is not found in the system, no record is returned.
Parameter:
Table 2-110 getFrameworks Parameter Summary
Type | Description |
---|---|
FrameworkInfo[] | List of frameworks to retrieve |
Return:
Table 2-111 getFrameworks Return Summary
Type | Description |
---|---|
FrameworkInfo[] | List of frameworks retrieved |
Exception:
InvalidParameters, ServiceException
This method finds all the framework item nodes using the IdInfo in the input FrameworkItemInfo and returns the complete FrameworkItemInfo including child framework items.If the specified framework item is not found in the system, no record is returned.
Parameter:
Table 2-112 getFrameworkItemHieararchies Parameter Summary
Type | Description |
---|---|
FrameworkItemInfo[] | List of framework items to retrieve |
Return:
Table 2-113 getFrameworkItemHieararchies Return Summary
Type | Description |
---|---|
FrameworkItemInfo[] | List of framework items retrieved |
Exception:
InvalidParameters, ServiceException
This method finds all the outcome statements using the IdInfo in the input OutcomeStatementInfo and returns the complete OutcomeStatementInfo.
If the specified outcome statement is not found in the system, no record is returned.
Parameter:
Table 2-114 getOutcomeStatements Parameter Summary
Type | Description |
---|---|
OutcomeStatementInfo[] | List of outcome statements to retrieve |
Return:
Table 2-115 getOutcomeStatements Return Summary
Type | Description |
---|---|
OutcomeStatementInfo[] | List of outcome statements retrieved |
Exception:
InvalidParameters, ServiceException
This method finds all the outcome statement descriptor types using the IdInfo in the input OutcomeStatementDescTypeInfo and returns the OutcomeStatementDescTypeInfo.
If the specified outcome statement descriptor type is not found in the system, no record is returned.
Parameter:
Table 2-116 getOutcomeStatementDescriptorType Parameter Summary
Type | Description |
---|---|
OutcomeStatementDescTypeInfo[] | List of outcome statement descriptor types to retrieve |
Return:
Table 2-117 getOutcomeStatementDescriptorType Return Summary
Type | Description |
---|---|
OutcomeStatementDescTypeInfo[] | List of outcome statement descriptor types retrieved |
Exception:
InvalidParameters, ServiceException
This method finds all the outcome proficiency sets using the IdInfo in the input ProficiencySetInfo and returns the complete ProficiencySetInfo.
If the specified outcome proficiency set is not found in the system, no record is returned.
Parameter:
Table 2-118 getProficiencySets Parameter Summary
Type | Description |
---|---|
ProficiencySetInfo[] | List of proficiency sets to retrieve |
Return:
Table 2-119 getProficiencySets Return Summary
Type | Description |
---|---|
ProficiencySetInfo[] | List of proficiency sets retrieved |
Exception:
InvalidParameters, ServiceException
This method loads the entire framework data. This includes:
The restrictions in createFrameworks, createBlueprintHierarchies, createProficiencySets, createOutcomeStatementDescTypes, createFrameworkItemHierarchies, createOutcomeStatements, createContexts, and publishFrameworks are still applicable.
Parameter:
Return:
Exception:
CreationException, DataConstraintException, InvalidParameters, ServiceException
This method finds all the blueprint nodes using the IdInfo in the input BlueprintNodeInfo and removes them. Any subordinate nodes are also deleted. If the blueprint node is associated with a framework item, then it is not allowed to be deleted.
Parameter:
Table 2-122 removeBlueprintHieararchies Parameter Summary
Type | Description |
---|---|
BlueprintNodeInfo[] | List of blueprint nodes to remove |
Return:
Table 2-123 removeBlueprintHieararchies Return Summary
Type | Description |
---|---|
BlueprintNodeInfo[] | List of removed blueprint nodes |
Exception:
DataConstraintException, InvalidParameters, RemoveException, ServiceException
This method finds all the contexts using the IdInfo in the input ContextInfo and removes them. Any subordinate context are also deleted. However, a context cannot be deleted if the context has been adopted by any school.
Parameter:
Table 2-124 removeContexts Parameter Summary
Type | Description |
---|---|
ContextInfo[] | List of contexts to remove |
Return:
Exception:
DataConstraintException, InvalidParameters, RemoveException, ServiceException
This method finds all the frameworks using the IdInfo in the input FrameworkInfo and removes them and all framework-related entities such as outcome proficiency sets, blueprint nodes, framework items, outcome statements and contexts. A framework cannot be removed if it has been adopted by a school.
All restrictions in removeFrameworkItemHierarchies, removeBlueprintHierarchies, removeOutcomeStatementDescTypes, removeProficiencySets, removeOutcomeStatements, and removeContexts are still applicable.
Parameter:
Table 2-126 removeFrameworks Parameter Summary
Type | Description |
---|---|
FrameworkInfo[] | List of frameworks to remove |
Return:
Table 2-127 removeFrameworks Return Summary
Type | Description |
---|---|
FrameworkInfo[] | List of removed frameworks |
Exception:
DataConstraintException, InvalidParameters, RemoveException, ServiceException
This method finds all the Framework item nodes using the IdInfo in the input FrameworkItemInfo and removes them. All subordinate framework items are also deleted. A framework item cannot be deleted if it is associated with any learning item, demonstration or confirmation.
Parameter:
Table 2-128 removeFrameworkItemHieararchies Parameter Summary
Type | Description |
---|---|
FrameworkItemInfo[] | List of framework items to remove |
Return:
Table 2-129 removeFrameworkItemHieararchies Return Summary
Type | Description |
---|---|
FrameworkItemInfo[] | List of removed framework items |
Exception:
DataConstraintException, InvalidParameters, RemoveException, ServiceException
This method finds all the outcome statements using the IdInfo in the input OutcomeStatementInfo and removes them. Any associated outcome statement descriptors are also deleted. If the outcome statement is associated with any learning item or assessments (confirmations or demonstrations), it cannot be deleted.
Parameter:
Table 2-130 removeOutcomeStatements Parameter Summary
Type | Description |
---|---|
OutcomeStatementInfo[] | List of outcome statements to remove |
Return:
Table 2-131 removeOutcomeStatements Return Summary
Type | Description |
---|---|
OutcomeStatementInfo[] | List of removed outcome statements |
Exception:
DataConstraintException, InvalidParameters, RemoveException, ServiceException
This method finds all the outcome statements descriptor types using the IdInfo in the input OutcomeStatementDescTypeInfo and removes them. An outcome statement descriptor type cannot be deleted if it is being used in an outcome statement descriptor.
Parameter:
Table 2-132 removeOutcomeStatementDescriptorType Parameter Summary
Type | Description |
---|---|
OutcomeStatementDescTypeInfo[] | List of outcome statement descriptor types to remove |
Return:
Table 2-133 removeOutcomeStatementDescriptorType Return Summary
Type | Description |
---|---|
OutcomeStatementDescTypeInfo[] | List of removed outcome statement descriptor types |
Exception:
DataConstraintException, InvalidParameters, RemoveException, ServiceException
This method finds all the proficiency sets using the IdInfo in the input ProficiencySetInfo and removes them. Any associated proficiency levels are also deleted. If the proficiency set is associated with a framework item, then it is not allowed to be deleted.
Parameter:
Table 2-134 removeProficiencySets Parameter Summary
Type | Description |
---|---|
ProficiencySetInfo[] | List of outcome proficiency sets to remove |
Return:
Table 2-135 removeProficiencySets Return Summary
Type | Description |
---|---|
ProficiencySetInfo[] | List of removed outcome proficiency sets |
Exception:
DataConstraintException, InvalidParameters, RemoveException, ServiceException
This method searches for the blueprint nodes using the IdInfo in the input BlueprintNodeInfo and updates the blueprint nodes with the specified attributes. Note that the parent/child relationship of a blueprint node cannot be updated. In addition, the framework of a blueprint node cannot be updated.
Parameter:
Table 2-136 updateBlueprintHieararchies Parameter Summary
Type | Description |
---|---|
BlueprintNodeInfo[] | List of blueprint nodes to update |
Return:
Table 2-137 updateBlueprintHieararchies Return Summary
Type | Description |
---|---|
BlueprintNodeInfo[] | List of updated blueprint nodes |
Exception:
DataConstraintException, InvalidParameters, ServiceException, UpdateException
This method searches for the contexts using the IdInfo in the input ContextInfo and updates the contexts with the specified attributes. Note that the framework item cannot be updated.
Parameter:
Table 2-138 updateContexts Parameter Summary
Type | Description |
---|---|
ContextInfo[] | List of contexts to update |
Return:
Exception:
DataConstraintException, InvalidParameters, ServiceException, UpdateException
This method searches for the frameworks using the IdInfo in the input FrameworkInfo and updates the frameworks with the specified attributes.
Parameter:
Table 2-140 updateFrameworks Parameter Summary
Type | Description |
---|---|
FrameworkInfo[] | List of frameworks to update |
Return:
Table 2-141 updateFrameworks Return Summary
Type | Description |
---|---|
FrameworkInfo[] | List of updated frameworks |
Exception:
DataConstraintException, InvalidParameters, ServiceException, UpdateException
This method searches for the nodes using the IdInfo in the input FrameworkItemInfo and updates the objects with the specified attributes. The framework, parent framework item, and blueprint node cannot be updated. When deleting a framework item, all subordinate framework items are also deleted. However, a framework item cannot be deleted if it is associated with any learning item.
Parameter:
Table 2-142 updateFrameworkItemHieararchies Parameter Summary
Type | Description |
---|---|
FrameworkItemInfo[] | List of framework items to update |
Return:
Table 2-143 updateFrameworkItemHieararchies Return Summary
Type | Description |
---|---|
FrameworkItemInfo[] | List of updated framework items |
Exception:
DataConstraintException, InvalidParameters, ServiceException, UpdateException
This method searches for the outcome proficiency sets using the IdInfo in the input ProficiencySetInfo and updates the outcome proficiency sets with the specified attributes.
Parameter:
Table 2-144 updateProficiencySets Parameter Summary
Type | Description |
---|---|
ProficiencySetInfo[] | List of outcome proficiency sets to update |
Return:
Table 2-145 updateProficiencySets Return Summary
Type | Description |
---|---|
ProficiencySetInfo[] | List of updated outcome proficiency sets |
Exception:
DataConstraintException, InvalidParameters, ServiceException, UpdateException
This method searches for the statements using the IdInfo in the input OutcomeStatementInfo and updates the outcome statements with the specified attributes. The framework item cannot be updated.
Parameter:
Table 2-146 updateOutcomeStatements Parameter Summary
Type | Description |
---|---|
OutcomeStatementInfo[] | List of outcome statements to update |
Return:
Table 2-147 updateOutcomeStatements Return Summary
Type | Description |
---|---|
OutcomeStatementInfo[] | List of updated outcome statements |
Exception:
DataConstraintException, InvalidParameters, ServiceException, UpdateException
This method searches for the outcome statement descriptor types using the IdInfo in the input OutcomeStatementDescTypeInfo and updates the outcome statement descriptor types. The framework cannot be updated.
Parameter:
Table 2-148 updateOutcomeStatementDescriptorType Parameter Summary
Type | Description |
---|---|
OutcomeStatementDescTypeInfo[] | List of outcome statement descriptor types to update |
Return:
Table 2-149 updateOutcomeStatementDescriptorType Return Summary
Type | Description |
---|---|
OutcomeStatementDescTypeInfo[] | List of updated outcome statement descriptor types |
Exception:
DataConstraintException, InvalidParameters, ServiceException, UpdateException
The DataLoadingCurriculumAdoptionService is used to adopt frameworks and contexts by schools.
This method adopts contexts as part of the larger curriculum framework adoptions. The framework with which the context is associated must be adopted by the school.
Parameter:
Table 2-150 adoptContexts Parameter Summary
Type | Description |
---|---|
ContextAdoptionInfo[] | List of contexts to adopt |
Return:
Table 2-151 adoptContexts Return Summary
Type | Description |
---|---|
ContextAdoptionInfo[] | List of adopted contexts |
Exception:
CreationException, DataConstraintException, InvalidParameters, ServiceException
This method adopts frameworks by schools for a school calendar. Before the framework can be adopted, it must be published. A school can only adopt a framework once and can only do so if the framework is made available to the school for adoption. Note that the specified calendar must belong to the school adopting the framework.
Parameter:
Table 2-152 adoptFrameworks Parameter Summary
Type | Description |
---|---|
FrameworkAdoptionInfo[] | List of frameworks to adopt |
Return:
Table 2-153 adoptFrameworks Return Summary
Type | Description |
---|---|
FrameworkAdoptionInfo[] | List of adopted frameworks |
Exception:
CreationException, DataConstraintException, InvalidParameters, ServiceException
This method finds all the context adoptions using the IdInfo in the input ContextAdoptionInfo and returns the complete ContextAdoptionInfo.
If the specified context adoption is not found in the system, no record is returned.
Parameter:
Table 2-154 getContextAdoptions Parameter Summary
Type | Description |
---|---|
ContextAdoptionInfo[] | List of context adoptions to retrieve |
Return:
Table 2-155 getContextAdoptions Return Summary
Type | Description |
---|---|
ContextAdoptionInfo[] | List of context adoptions retrieved |
Exception:
InvalidParameters, ServiceException
This method finds all the framework adoptions using the IdInfo in the input FrameworkAdoptionInfo and returns the complete FrameworkAdoptionInfo.
If the specified framework adoption is not found in the system, no record is returned.
Parameter:
Table 2-156 getFrameworkAdoptions Parameter Summary
Type | Description |
---|---|
FrameworkAdoptionInfo[] | List of framework adoptions to retrieve |
Return:
Table 2-157 getFrameworkAdoptions Return Summary
Type | Description |
---|---|
FrameworkAdoptionInfo[] | List of framework adoptions retrieved |
Exception:
InvalidParameters, ServiceException
This method finds all the context adoption using the IdInfo in the input ContextAdoptionInfo and removes them. If a context adoption is removed, all subordinate context adoptions are also removed. Note that a context adoption cannot be removed if the adopted context is used in any learning items, confirmations or demonstrations.
Parameter:
Table 2-158 removeContextAdoptions Parameter Summary
Type | Description |
---|---|
ContextAdoptionInfo[] | List of context adoptions to remove |
Return:
Table 2-159 removeContextAdoptions Return Summary
Type | Description |
---|---|
ContextAdoptionInfo[] | List of removed context adoptions |
Exception:
DataConstraintException, InvalidParameters, RemoveException, ServiceException
This method finds all the framework adoptions using the IdInfo in the input FrameworkAdoptionInfo and removes them. A framework adoption can only be removed if there are no offerings created for the adopted framework.
Parameter:
Table 2-160 removeFrameworkAdoptions Parameter Summary
Type | Description |
---|---|
FrameworkAdoptionInfo[] | List of framework adoptions to remove |
Return:
Table 2-161 removeFrameworkAdoptions Return Summary
Type | Description |
---|---|
FrameworkAdoptionInfo[] | List of removed framework adoptions |
Exception:
DataConstraintException, InvalidParameters, RemoveException, ServiceException
The DataLoadingGradeService is used to load graded proficiency set information. Adoption of department graded proficiency sets is also done through this service.
This method adopts a department graded proficiency set for use in a school. A school can only adopt a department graded proficiency set once.
Parameter:
Table 2-162 adoptProficiencySets Parameter Summary
Type | Description |
---|---|
AdoptProficiencySetInfo[] | List of graded proficiency sets to adopt |
Return:
Table 2-163 adoptProficiencySets Return Summary
Type | Description |
---|---|
AdoptProficiencySetInfo[] | List of adopted graded proficiency sets |
Exception:
CreationException, DataConstraintException, InvalidParameters, ServiceException
This method creates new graded proficiency sets. A graded proficiency set must have a unique name within the school and have at least one proficiency level. Within a graded proficiency set, the proficiency levels must have unique names and codes and cannot have proficiency sub-levels. Collectively, the proficiency levels must cover the entire numeric range 0-100 and there must be no overlapping numeric ranges between the proficiency levels.
Parameter:
Table 2-164 createGradedProficiencySets Parameter Summary
Type | Description |
---|---|
ProficiencySetInfo[] | List of graded proficiency sets to retrieve |
Return:
Table 2-165 createGradedProficiencySets Return Summary
Type | Description |
---|---|
ProficiencySetInfo[] | List of graded proficiency sets retrieved |
Exception:
CreationException, DataConstraintException, InvalidParameters, ServiceException
This method searches for the graded proficiency sets using the IdInfo in the input ProficiencySetInfo and if a graded proficiency set is found, it updates it; Otherwise, it creates it.
The restrictions in createGradedProficiencySets and updateGradedProficiencySets are applicable here.
Parameter:
Table 2-166 createOrUpdateGradedProficiencySets Parameter Summary
Type | Description |
---|---|
ProficiencySetInfo[] | List of graded proficiency sets to create or update |
Return:
Table 2-167 createOrUpdateGradedProficiencySets Return Summary
Type | Description |
---|---|
ProficiencySetInfo[] | List of graded proficiency sets created or updated |
Exception:
CreationException, DataConstraintException, InvalidParameters, ServiceException, UpdateException
This method finds all the proficiency sets using the IdInfo in the input ProficiencySetInfo and returns the complete ProficiencySetInfo including the proficiency levels.
If the specified graded proficiency set is not found in the system, no record is returned
Parameter:
Table 2-168 getGradedProficiencySets Parameter Summary
Type | Description |
---|---|
ProficiencySetInfo[] | List of graded proficiency sets to retrieve |
Return:
Table 2-169 getGradedProficiencySets Return Summary
Type | Description |
---|---|
ProficiencySetInfo[] | List of graded proficiency sets retrieved |
Exception:
InvalidParameters, ServiceException
This method searches for the proficiency sets using the IdInfo in the input ProficiencySetInfo and updates the objects with the specified attributes. Note that the proficiency levels referenced in learning item assessments cannot be deleted.
Parameter:
Table 2-170 updateGradedProficiencySets Parameter Summary
Type | Description |
---|---|
ProficiencySetInfo[] | List of graded proficiency sets to update |
Return:
Table 2-171 updateGradedProficiencySets Return Summary
Type | Description |
---|---|
ProficiencySetInfo[] | List of updated graded proficiency sets |
Exception:
DataConstraintException, InvalidParameters, ServiceException, UpdateException
This method finds all the graded proficiency sets using the IdInfo in the input ProficiencySetInfo and removes them. The proficiency levels within the graded proficiency sets are also deleted. A department graded proficiency set cannot be deleted if a school has adopted it. Furthermore, a graded proficiency set cannot be deleted if it is referenced in a learning item.
Parameter:
Table 2-172 removeGradedProficiencySets Parameter Summary
Type | Description |
---|---|
ContextAdoptionInfo[] | List of context adoptions to remove |
Return:
Table 2-173 removeGradedProficiencySets Return Summary
Type | Description |
---|---|
ContextAdoptionInfo[] | List of removed context adoptions |
Exception:
DataConstraintException, InvalidParameters, RemoveException, ServiceException
The DataLoadingLookupValueService is used to update list of values information.
This method finds all the value types using the IdInfo in the input LookupTypeInfo and returns the complete LookupTypeInfo.
If the specified list of values is not found in the system, no record is returned.
Parameter:
Table 2-174 getValueTypes Parameter Summary
Type | Description |
---|---|
LookupTypeInfo[] | List of value types to retrieve |
Return:
Table 2-175 getValueTypes Return Summary
Type | Description |
---|---|
LookupTypeInfo[] | List of value types retrieved |
Exception:
InvalidParameters, ServiceException
This method searches for the value types using the IdInfo in the input LookupTypeInfo and updates the objects with the specified attributes. Within the list of values, the value names must be unique.
Note that for values provisioned by OSL, only the external id, external system id, meaning, and description can be updated. Some of these OSL-provisioned values cannot be removed or end-dated.
Parameter:
Table 2-176 updateValueTypes Parameter Summary
Type | Description |
---|---|
LookupTypeInfo[] | List of value types to update |
Return:
Table 2-177 updateValueTypes Return Summary
Type | Description |
---|---|
LookupTypeInfo[] | List of updated value types |
Exception:
DataConstraintException, InvalidParameters, ServiceException, UpdateException
The DataLoadingProfileService is used to load preference information.
This method creates new profileOptionValues. A profileOptionValue must have a PersonId and profileCode in the input ProfileOptionInfo.
Parameter:
Table 2-178 createProfileOption Parameter Summary
Type | Description |
---|---|
ProfileOptionInfo[] | List of profile options to create |
Return:
Table 2-179 createProfileOption Return Summary
Type | Description |
---|---|
ProfileOptionInfo[] | List of created profile options |
Exception:
CreationException, DataConstraintException, InvalidParameters, ServiceException
This method finds the profileOptionValue using the PersonId and profileCode in the input ProfileOptionInfo. If the PersonId is not specified or no profileOptionValue can be located for the specified PersonId and profileCode, the site-wide profileOptionValue for the specified profileCode is returned.
Parameter:
Table 2-180 getProfileOptions Parameter Summary
Type | Description |
---|---|
ProfileOptionInfo[] | List of profile options to retrieve |
Return:
Table 2-181 getProfileOptions Return Summary
Type | Description |
---|---|
ProfileOptionInfo[] | List of profile options retrieved |
Exception:
InvalidParameters, ServiceException
This method searches for profileOptionValues using the PersonId and profileCode in the input ProfileOptionInfo and updates the profileOptionValue with the specified attribute. If the PersonId is not specified, the site-wide profileOptionValue for the specified profileCode is updated.
Parameter:
Table 2-182 updateProfileOptions Parameter Summary
Type | Description |
---|---|
ProfileOptionInfo[] | List of profile options to update |
Return:
Table 2-183 updateProfileOptions Return Summary
Type | Description |
---|---|
ProfileOptionInfo[] | List of updated profile options |
Exception:
UpdateException, DataConstraintException, InvalidParameters, ServiceException
This method finds profileOptionValue using the PersonId and profileCode in the input ProfileOptionInfo and removes them.
Parameter:
Table 2-184 removeProfileOptions Parameter Summary
Type | Description |
---|---|
ProfileOptionInfo[] | List of profile options to remove |
Return:
Table 2-185 removeProfileOptions Return Summary
Type | Description |
---|---|
ProfileOptionInfo[] | List of removed profile options |
Exception:
DataConstraintException, InvalidParameters, RemoveException, ServiceException
This part contains chapters about content integration interfaces, services and descriptions.
This chapter provides an overview of the OSL content integration interfaces.
OSL uses an External Content Management System (ECMS) for the rich data functionality used in instructions, overviews, journal details, and so on. This functionality allows an OSL user to insert hyperlinks and images, attach files and audios to a rich data. In addition, exported learning items are stored in the ECMS.
The following block diagram briefly explains the architecture of OSL interactions with ECMS.
Figure 3-1 shows two interfaces of OSL Content Integration, one on the client-side (UI level integration) and the other on the back end (server-side integration).
These two interfaces are:
Table 3-1 list the terms used in OSL Content Integration.
Table 3-1 Definition of Terms
Term | Definition |
---|---|
Content Integration Backend | Implementation of CIWSI. OSL ships with a default implementation for Oracle Universal Content Manager (UCM), which uses RIDC to communicate with UCM back end. |
ECMS UI | User interface rendered by the ECMS. There are two user interfaces that ECMS should render:
OSL spawns these user interfaces as part of OSL functionality. |
ECMS Update Metadata UI | User interface that is rendered by the ECMS for updating the metadata after publishing an exported learning item to ECMS. |
ECMS Search Results UI | User interface that is rendered by the ECMS to list General Content. |
Exported Learning Item | A package created after exporting learning item data. This package is in a ZIP format. |
External Content Management System (ECMS) | Any Content Management System which supports versioning. |
General Content | Content stored within ECMS and referenced within OSL and other applications such as portal or collaborative services. These are displayed in OSL as inserted hyperlinks and images in the rich data. |
OSL Backend and ECMS Backend | The respective servers. |
OSL Content | File attachment and audio that a user directly attaches to an OSL object. Such content is typically stored in the ECMS but partitioned separately from general content. |
OSL Content User | Default back end implementation uses this UCM user to access OSL Content. This user should have RWD access to the Temporary and to the Permanent Accounts and OSL Storage Security Group. |
OSL Context | Context in relation to the use of general content within OSL. For example, the class id, class name, and so on. |
OSL Metadata User | The default back end implementation uses this UCM user to update the medata of General Content when associating context. This user should have RW access to all the General Content. |
OSL Storage Security Group | The default back end implementation uses this UCM Security Group to store all the content that is checked in from OSL. |
OSL UI | Teacher/Parent/Student Learning Tool user interface. |
Permanent Space | Permanent space in the ECMS partitioned separately from General Content to store saved OSL Content. |
Permanent Storage Account | The default back end implementation uses this UCM account to store permanently all OSL Content. |
Rich Data | An OSL component that abstracts HTML content with inserted content references and images, file attachments, and audio recordings. This component is used for instructions, teacher overview, student overview, journal, submission, discussion, and observation details. |
Search Filter | General Content listing filter. This filter could be used to filter out only the images, learning items, or any content type. |
The Content Integration Client Interface abstracts UI (browser) level interaction between the OSL UI and the ECMS UI. This service provides an interface for:
The following URL abstracts the interface:
http://<HOST:PORT>/<APP-ROOT>/common/default/richdata/script.jspx?cid=<CON-ID>&cvid=<CON-VER-ID>&curl=<CON-URL>
It is expected that the ECMS UI should invoke this URL. Please refer to the Oracle Student Learning Installation and Deployment Guide for further details.
Table 3-2 List of Attributes
Name | Mandatory | Description |
---|---|---|
HOST | Yes | Host of OSL Web (LTWeb) deployment. |
PORT | Yes | Port of OSL Web (LTWeb) deployment. For LT that is SSO enabled, the port number should be the SSO port number. |
APP-ROOT | Yes | Application root of OSL Web (LTWeb) deployment. |
CON-ID | Yes | Content Identifier of content to be inserted to rich data or lesson plan. |
CON-VER-ID | No | Content Version Identifier of content to be inserted to rich data or lesson plan. |
CON-URL | Yes | Content URL. |
The Content Integration Web Services Interface (CIWSI) abstracts all ECMS interactions with OSL at the back end.
It comprises of three service interfaces:
For more related information about these service interfaces, see Chapter 4, "Web Services".
CIWSI should be secured services and should use the following Security Policy:
oracle/wss_username_token_service_policy
This security policy requires username and password tokens in the SOAP Header. It is expected that OSL communicates with CIWSI using a single dedicated user. For related information about user configuration, see the Oracle Student Learning Installation and Deployment Guide.
This chapter describes the available web services.
The General Content Service abstracts OSL interactions with the ECMS in relation to General Content. This service provides interfaces for:
OSL calls the associateContent method whenever a General Content item is associated with an OSL object's rich data. This can occur when a user creates or edits rich data, or shares or copies a learning item.
A ContentsAssociationInfo document (containing the OSL Context, OSL user information and a list of Content Ids) is passed as input to this method.
This method can be used to associate any or all aspects of the supplied context with the specified content items.
If this service throws any exception, OSL will not roll back its transaction but logs the error and continues with the business workflow.
Parameter:
Table 4-1 associateContent Parameter Summary
Type | Description |
---|---|
ContentsAssociationInfo | Information regarding OSL Context, Content Ids of General Content references, and OSL user's information |
Exception:
ContentException shall be thrown if any problems or errors occur when communicating with ECMS.
InvalidParameters shall be thrown if any input parameter is invalid.
ServiceException shall be thrown if any general errors occur.
Behavior of the default implementation:
The default back end implementation maintains a map of OSL Context to Oracle UCM Metadata in the osl_configuration.properties
file and updates the Metadata with the values from OSL Context using a delimiter. If a specific OSL Context is not mapped, then it is ignored. The update itself is done using the OSL Metadata User. For related information, see the Oracle Student Learning Installation and Deployment Guide.
OSL calls the disassociateContent method whenever a General Content item is disassociated from an OSL object's rich data. This can occur when a user creates or edits rich data, or deletes a learning item.
A ContentsAssociationInfo document (containing the OSL Context, OSL user information and a list of Content Ids) is passed as input to this method.
This method can be used to disassociate any or all aspects of the supplied context from the specified content items.
If this service throws any exception, OSL will not roll back its transaction but logs the error and continues with the business workflow.
Parameter:
Table 4-2 disassociateContent Parameter Summary
Type | Description |
---|---|
ContentsAssociationInfo | Information regarding OSL Context, Content Ids of General Content references, and OSL user's information |
Exception:
ContentException shall be thrown if any problems or errors occur when communicating with ECMS.
InvalidParameters shall be thrown if any input parameter is invalid.
ServiceException shall be thrown if any general errors occur.
Behaviour of the default implementation:
The default back end implementation does not implement this service.
OSL calls the getSearchURL method to retrieve the URL that spawns the ECMS Search Results UI based on the supplied OSL Context and search filters.
A ContentSearchCriteriaInfo document (containing the OSL Context and Search Filters) is passed as input to this method.
OSL expects this method to return the HTTP URL.
If this service throws any exception, OSL reports the error to the OSL user.
Parameter:
Table 4-3 getSearchURL Parameter Summary
Type | Description |
---|---|
ContentSearchCriteriaInfo | Information regarding OSL Context and Search Filter |
Return:
Table 4-4 getSearchURL Return Summary
Type | Description |
---|---|
String | HTTP URL of a resource, which lists all General Content associated with the input OSL Context and filtered based on the Search Filter |
Exception:
ContentException shall be thrown if any problems or errors occur when communicating with ECMS.
InvalidParameters shall be thrown if any input parameter is invalid.
ServiceException shall be thrown if any general errors occur.
Behaviour of the default implementation:
The default back end implementation maintains a map of OSL Context to Oracle UCM Metadata based on the Search substring in osl_configuration.properties
file and returns a UCM GET_SEARCH_RESULTS
service URL using the Search substring as filter. If a specific OSL Context is not mapped, then it is ignored. For more related information, see the Oracle Student Learning Installation and Deployment Guide.
The OSL Content Service abstracts interaction with the ECMS for managing the OSL Content. This service provides interfaces for:
OSL calls the deleteContent method to delete OSL Content items from the Permanent Space. This occurs when the user deletes an attachment or audio that was added during the edit session.
A ContentIdsInfo document (containing OSL user information and a list of Content Ids of OSL Content attachments to be deleted) is passed as input to this method.
If this service throws any exception, OSL will not roll back its transaction but logs the errors occur and continues with the business workflow.
Parameter:
Table 4-5 duplicateContent Parameter Summary
Type | Description |
---|---|
ContentIdsInfo | OSL user's information and a list of Content Ids of the OSL Content attachment to be removed |
Exception:
ContentException shall be thrown if any problems or errors occur when communicating with ECMS.
InvalidParameters shall be thrown if any input parameter is invalid.
ServiceException shall be thrown if any general errors occur.
Behaviour of the default implementation:
The default back end implementation deletes the content using the OSL Content User.
OSL calls the getOSLContent method to retrieve OSL content items. This occurs when the user attempts to open a file attachment or play recorded audio.
A ContentIdsInfo document (containing OSL user information and a list of Content Ids of OSL Content attachments) is passed as input to this method.
OSL expects this service to retrieve OSL Content data and return it.
If this service throws any exception, OSL reports the error to the OSL user.
Parameter:
Table 4-6 getOSLContent Parameter Summary
Type | Description |
---|---|
ContentIdsInfo | OSL user's information and a list of Content Ids of OSLContent attachments |
Return:
OSL calls the saveContent method to save attached files and audio to the ECMS.
A ContentsUploadInfo document (containing the OSL user information and a list of Upload Information for OSL Content attachments) is passed as input to this method.
OSL expects this method to upload the OSL Content item into the Permanent Space in the ECMS and return the details of the uploaded OSL Content.
If this service throws any exception, OSL reports the error to the OSL user.
Parameter:
Table 4-8 saveContent Parameter Summary
Type | Description |
---|---|
ContentsUploadInfo | ContentsUploadInfo OSL user's information and a list of UploadInformation for OSL Content attachments |
Return:
Table 4-9 saveContent Return Summary
Type | Description |
---|---|
Array of ContentInfo | An Array of ContentInformation regarding the Uploaded OSL Content attachment. |
Exception:
ContentException shall be thrown if any problems or errors occur when communicating with ECMS.
InvalidParameters shall be thrown if any input parameter is invalid.
ServiceException shall be thrown if any general errors occur.
Behaviour of the default implementation:
The default back end implementation uploads the content to the OSL Storage Security Group in UCM, using the Storage Account. This operation is done as the OSL Content User.
The services listed below which are operations that involve temporary storage and duplication of content has been deprecated.
The Publish Learning Item Service abstracts interaction with the ECMS for importing and exporting learning items.
This service provides interfaces for:
OSL calls the getMetadataUpdatePage method to retrieve the URL that spawns the ECMS Update Metadata UI for the recently exported learning item.
A ContentIdInfo document (containing Content identity information of the recently exported learning item) is passed as input to this method.
OSL expects this service method to return the HTTP URL of the exported learning item, which allows editing of the Metadata of the published Learning Item.
If this service throws any exception, OSL reports the error to the OSL user.
Parameter:
Table 4-10 getMetadataUpdate Parameter Summary
Type | Description |
---|---|
ContentIdInfo | Content identity information of the recently exported Learning Item |
Return:
Table 4-11 getMetadataUpdate Return Summary
Type | Description |
---|---|
String | HTTP URL of a resource, which allows editing of the Metadata of the exported Learning Item |
Exception:
ContentException shall be thrown if any problems or errors occur when communicating with ECMS.
InvalidParameters shall be thrown if any input parameter is invalid.
ServiceException shall be thrown if any general errors occur.
Behaviour of the default implementation:
The default back end implementation will show the Update Content Item UI for the exported learning Item. All the metadata that can be updated are displayed.
OSL calls the getPublishedLIContent method to retrieve the exported learning item from the ECMS to insert into a lesson plan.
A ContentIdsInfo document (containing the OSL user information and a list of the Content Ids of the exported learning items) is passed as input to this method.
OSL expects this method to retrieve exported learning item data and return it.
If this service throws any exception, OSL reports the error to the OSL user.
Parameter:
Table 4-12 getPublishedLIContent Parameter Summary
Type | Description |
---|---|
ContentIdInfo | Content identity information of the recently exported Learning Item |
Return:
Table 4-13 getPublishedLIContent Return Summary
Type | Description |
---|---|
String | HTTP URL of a resource, which allows editing of the Metadata of the exported Learning Item |
Exception:
ContentException shall be thrown if any problems or errors occur when communicating with ECMS.
InvalidParameters shall be thrown if any input parameter is invalid.
ServiceException shall be thrown if any general errors occur.
Behaviour of the default implementation:
The default back end implementation retrieves the exported Learning Item content as the OSL user. For more related information, see the Oracle Student Learning Installation and Deployment Guide.
OSL calls the publishLearningItem method when exporting learning items to the ECMS as General Content.
A LearningItemPublishInfo document (containing the OSL Context, OSL user's information, and a list of Upload Information for the exported Learning Items) is passed as input to this method.
OSL expects this method to upload the exported learning item to the ECMS, associate any or all of the supplied OSL Context with the uploaded content, and return back the Content Ids.
If this service throws any exception, OSL reports the error to the OSL user.
Parameter:
Table 4-14 publishLearningItem Parameter Summary
Type | Description |
---|---|
LearningItemPublishInfo | OSL Context, OSL user's information, and a list of Upload Information for the exported Learning Items |
Return:
Table 4-15 publishLearningItem Return Summary
Type | Description |
---|---|
ContentIdsInfo | Content Identity information regarding the uploaded exported Learning Items |
Exception:
ContentException shall be thrown if any problems or errors occur when communicating with ECMS.
InvalidParameters shall be thrown if any input parameter is invalid.
ServiceException shall be thrown if any general errors occur.
Behaviour of the default implementation:
The default back end implementation uploads the exported Learning Item content to the Public Security Group and Account in UCM, as the OSL user. Profile can also be set for the exported learning item. Account, Security Group and Profile are configurable.
This chapter describes the process of how to plugin an alternate implementation of the OSL Content interfaces.
If required, an alternative implementation can be plugged in to OSL. This involves the following steps:
After configuration, OSL must be redeployed.
After implementing and deploying the alternate back end implementation, set the following properties in the OSL configuration file:
It is expected that the ECMS UI is customized according to the customer's specific needs. To help integrate the customized ECMS UI with OSL, a sample Reference Implementation for Oracle Universal Content Management (Oracle UCM) is provided with OSL. For further details, see the Oracle Student Learning Installation and Deployment Guide. You can also refer to the Readme.txt provided in the Reference Implementation package.
This appendix contains Data Loading service object references.
AddressActionInfo captures the action to perform on an address and the address details relevant to the action.
Table A-1 list the attributes of addressActionInfo object.
Table A-1 AddressActionInfo Attributes
Name | Type | Description |
---|---|---|
action | action | Indicates the action to perform on the address. Example: A Create Action indicates that a new address would be created. |
address | addressInfo | Address details. |
Table A-2 lists the action type.
AddressActionInfoArray contains a list of AddressActionInfo objects.
Table A-3 list the attributes of addressActionInfoArray object.
The address details are captured in the AddressInfo. An address should at a minimum, contain the usage type, street name, state, post code, and country code.
Table A-4 list the attributes of addressInfo object.
Table A-4 AddressInfo Attributes
Name | Type | Description |
---|---|---|
addressLine | string | The full address. |
apartmentNumber | string | The apartment number. |
apartmentNumberPrefix | string | Apartment prefix. Example: Level, Floor, and so on. |
apartmentNumberSuffix | string | Apartment number suffix. Example: A |
apartmentType | string | Type of apartment. Example: Suite |
city | string | City. |
countryCode | string | Country code. This attribute is mandatory for createInstitutions operation. |
endDate | dateTime | Effective end date of the address. |
id | idInfo | Identifier object that uniquely identifies the address. |
postCode | string | Postal code of the address. This attribute is mandatory for createInstitutions operation. |
startDate | dateTime | Effective start date of the address. |
state | string | State. This attribute is mandatory for createInstitutions operation. |
streetName | string | Name of Street. This attribute is mandatory for createInstitutions operation. |
streetNumber | string | Street Number. |
streetPrefix | string | Street Prefix. Example: Lot, Unit, POBox, and so on. |
streetSuffix | string | Street suffix. Example: SE |
streetType | string | Type of Street. Example: Lane, Road, and so on. |
suburb | string | Suburb. |
usageType | string | Indicates the functional use of the location. Example: Primary address, home, business. This attribute is mandatory for createInstitutions operation. |
AdoptCalendarInfo captures the adoption of the department academic calendar by the school.
Table A-6 list the attributes of adoptCalendarInfo object.
Table A-6 AdoptCalendarInfo Attributes
Name | Type | Description |
---|---|---|
adoptedCalendarId | idInfo | Identifier object that uniquely identifies the adopted calendar. |
adoptingSchoolId | idInfo | Identifier object that uniquely identifies the school adopting the department academic calendar. This a mandatory attribute for adoptDepartmentCalendars operation. |
originalCalendarId | idInfo | Identifier object that uniquely identifies the department academic calendar to be adopted. This attribute is mandatory for adoptDepartmentCalendars operation. |
BlueprintNodeActionInfo captures the action to perform on a blueprint node and the blueprint node details relevant to the action.
Table A-7 list the attributes of blueprintNodeActionInfo object.
Table A-7 BlueprintNodeActionInfo Attributes
Name | Type | Description |
---|---|---|
action | action | Indicates the action to perform on a blueprint node. Example: A Create Action indicates that a blueprint node would be created. This attribute is mandatory. |
blueprintNode | blueprintNodeInfo | Blueprint node details. This attribute is mandatory. |
Table A-8 lists the action type.
BlueprintNodeActionInfoArray contains a list of blueprintNodeActionInfo objects.
Table A-9 list the attributes of BlueprintNodeActionInfoArray object.
Blueprint nodes are organized in a hierarchical structure. Each blueprint node can have one or more blueprint nodes under it. The details of each blueprint node are captured in a blueprintNodeInfo.
Table A-10 list the attributes of blueprintNodeInfo object.
Table A-10 BlueprintNodeInfo Attributes
Name | Type | Description |
---|---|---|
childrenLists | blueprintNodeInfo | List of blueprint nodes. This attribute is only populated in the response of the createBlueprintNodes, getBlueprintNodes, and updateBlueprintNodes operations. |
childrenActions | blueprintNodeActionInfoArray | A list of actions to perform on the blueprint node. This is used in the createBlueprintNodes, updateBlueprintNodes operations when creating, updating, or deleting the blueprint nodes. |
description | string | Blueprint node description. |
endDate | dateTime | Effective end date of blueprint node. |
frameworkId | idInfo | Identifier object that uniquely identifies a framework. This attribute is mandatory for createBlueprintNodes operation. |
id | idInfo | Identifier object that uniquely identifies a blueprint node. |
name | string | Blueprint node name. This attribute is mandatory for createBlueprintNodes operation. |
parentId | idInfo | Identifier object that uniquely identifies the parent blueprint node. This attribute is only set in the response of createBlueprintNodes, getBlueprintNodes, and updateBlueprintNodes operations. |
startDate | dateTime | Effective start date of blueprint node. This attribute is mandatory for createBlueprintNodes operation. |
Typically, department and school would have academic calendars corresponding to the academic years. Under an academic calendar, there can be sub-calendars to represent shorter academic periods such as semesters.The details of each of these academic calendars and academic sub-calendars are captured in a CalendarInfo.
Table A-11 list the attributes of calendarInfo object.
Table A-11 CalendarInfo Attributes
Name | Type | Description |
---|---|---|
endDate | dateTime | End date of the academic calendar. This attribute is mandatory for createCalendars operation. |
id | idInfo | Identifier object that uniquely identifies the calendar. |
institutionId | idInfo | Identifier object that uniquely identifies the department or school. This attribute is mandatory for createCalendars operation. |
name | string | Calendar name. This attribute is mandatory for createCalendars operation. |
parentId | idInfo | Identifier object that uniquely identifies the parent calendar. |
startDate | dateTime | Start date of the academic calendar. This attribute is mandatory for createCalendars operation. |
After an offering is created, multiple classes can be created against the offering. Students enrolled in these classes are taught based on the course of the offering. After a class is created, the offering and school cannot be updated.
The start date and end date of a class should not exceed the start date and end date of the offering.
Table A-12 list the attributes of classInfo object.
Table A-12 ClassInfo Attributes
Name | Type | Description |
---|---|---|
description | string | Class description. |
endDate | dateTime | Effective end date of class. |
enrollmentActions | enrollmentActionInfoArray | A list of actions to perform in the class enrollments. This is used in the createClasses and updateClasses operations when creating, updating, or deleting the class enrollments. |
enrollmentsLists | enrollmentInfo | List of class enrollments. This attribute is only populated in the response of the createClasses, getClasses, and updateClasses operations. |
id | idInfo | Identifier object that uniquely identifies a class. |
institutionId | idInfo | Identifier object that uniquely identifies a school. This attribute is mandatory for createClasses operation. |
name | string | Class name. This attribute is mandatory for createClasses operation. |
offeringId | idInfo | Identifier object that uniquely identifies an offering. This attribute is mandatory for createClasses operation. |
startDate | dateTime | Effective start date of class. This attribute is mandatory for createClasses operation. |
ContactActionInfo captures the action to perform on a phone contact or email contact and the contact details relevant to the action.
Table A-13 list the attributes of contactActionInfo object.
Table A-13 ContactActionInfo Attributes
Name | Type | Description |
---|---|---|
action | action | Indicates the action to perform on the address. Example: A Create Action indicates that a new address would be created. This attribute is mandatory. |
contact | contactInfo | Email or phone contact details. This attribute is mandatory. |
Table A-14 lists the action type.
ContactActionInfoArray contains a list of ContactActionInfo objects.
Table A-15 list the attributes of contactActionInfoArray object.
Email contact details and phone contact details are captured in the contactInfo. A contactInfo represents either an email contact or a phone contact.
A phone contactInfo would have contactType PHONE and have the following attributes:
An email contactInfo would have contactType EMAIL and have the following attributes:
Note: * indicates mandatory attributes for create operations. |
Table A-16 list the attributes of contactInfo object.
Table A-16 ContactInfo Attributes
Name | Type | Description |
---|---|---|
areaCode | string | Area code for phone contact. This attribute is mandatory for create operation for phone contact. |
contactDetails | string | Additional details for the contact. |
contactEndDate | dateTime | Effective end date of the contact. |
contactPurpose | string | Purpose of the contact. This attribute is mandatory for create operation. |
contactStartDate | dateTime | Effective start date of the contact. This attribute is mandatory for create operation. |
contactType | contactType | ContactType – PHONE or EMAIL. This attribute is mandatory for create operation. |
countryCode | string | Country code for phone contact. This attribute is mandatory for create operation for phone contact. |
emailAddress | string | Email address for email contact. This attribute is mandatory for create operation for email contact. |
emailFormat | string | Email format for email contact. Example: plain text or HTML formatted text |
id | idInfo | Identifier object that uniquely identifies the phone or email contact. |
phoneExtension | string | Phone extension for phone contact. |
phoneNumber | string | Phone number for phone contact. This attribute is mandatory for create operation for phone contact. |
phoneType | string | Phone type for phone contact. This attribute is mandatory for create operation for phone contact. |
preferredContact | yesNoType | Indicates whether the contact is the preferred point of contact. This attribute is mandatory for create operation. |
Table A-17 lists the contactType type.
Table A-18 lists the yesNoType type.
ContextActionInfo captures the action to perform on a context and the context details relevant to the action.
Table A-19 list the attributes of contextActionInfo object.
Table A-19 ContextActionInfo Attributes
Name | Type | Description |
---|---|---|
action | action | Indicates the action to perform on a context. Example: A Create Action indicates that a context would be created. This attribute is mandatory. |
context | contextInfo | Context details. This attribute is mandatory. |
Table A-20 lists the action type.
ContextActionInfoArray contains a list of contextActionInfo objects.
Table A-21 list the attributes of contextActionInfoArray object.
During a framework adoption, schools have a choice of adopting one or more contexts within the context. If a child context is adopted, the parent context is also automatically adopted. The details of a context adoption are captured in a contextAdoptionInfo.
Table A-22 list the attributes of contextAdoptionInfo object.
Table A-22 contextAdoptionInfo Attributes
Name | Type | Description |
---|---|---|
contextId | idInfo | Identifier object that uniquely identifies a context. This attribute is mandatory for adoptContexts operation. |
frameworkAdoptionId | idInfo | Identifier object that uniquely identifies a framework adoption. This attribute is mandatory for adoptContexts operation. |
id | idInfo | Identifier object that uniquely identifies a context adoption. |
Under a framework item, there can be one or more contexts. In addition, there can be one or more sub-contexts created under a context. The detail of each context is captured in a contextInfo.
Table A-23 list the attributes of contextInfo object.
Table A-23 ContextInfo Attributes
Name | Type | Description |
---|---|---|
childrenLists | contextInfo | List of contexts. This attribute is only populated in the response of the createContexts, getContexts, and updateContexts operations. |
childrenActions | contextActionInfoArray | A list of actions to perform on the context. This is used in the createContexts, updateContexts operations when creating, updating, or deleting the contexts. |
code | string | Code of the context. |
description | string | Description of the context. |
endDate | dateTime | Effective end date of the context. |
frameworkItemId | idInfo | Identifier object that uniquely identifies a framework item. This attribute is mandatory for createContexts operation. |
id | idInfo | Identifier object that uniquely identifies a context. |
name | string | Context name. This attribute is mandatory for createContexts operation. |
parentId | idInfo | Identifier object that uniquely identifies a parent context. This attribute is only set in the response of createContexts, getContexts, and updateContexts operations. |
startDate | dateTime | Effective start date of the context. This attribute is mandatory for createContexts operation. |
A course is specific to a school and can be tagged to facilitate searching. The details of a course are captured in the courseInfo.
Table A-24 list the attributes of courseInfo object.
Table A-24 CourseInfo Attributes
Name | Type | Description |
---|---|---|
code | string | Course code. This attribute is mandatory for createCourses operation. |
description | string | Course description. |
endDate | dateTime | Effective end date of the course. |
id | idInfo | Identifier object to uniquely identify the course. |
institutionId | idInfo | Identifier object that uniquely identifies the school in which the course is taught. This attribute is mandatory for createCourses operation. |
name | string | Course name. This attribute is mandatory for createCourses operation. |
startDate | dateTime | Effective start date of the course. This attribute is mandatory for createCourses operation. |
tagActions | idActionInfoArray | A list of actions to perform on the course's tags. This is used in the createCourses and updateCourses operations when creating, updating, or deleting the course's tags. |
tagsLists | idInfo | List of tags of a course. This attribute is only populated in the response of the createCourses, getCourses, and updateCourses operations. |
EnrollmentActionInfo captures the actions to be performed on the class enrollment and the enrollment details relevant to the action.
Table A-25 list the attributes of enrollmentActionInfo object.
Table A-25 EnrollmentActionInfo Attributes
Name | Type | Description |
---|---|---|
action | action | Indicates the action to perform on a class enrollment. Example: A Create Action indicates that a class enrollment would be created. This attribute is mandatory. |
enrollment | enrollmentInfo | Class enrollment details. This attribute is mandatory. |
Table A-26 lists the action type.
EnrollmentActionInfoArray contains a list of enrollmentActionInfo objects.
Table A-27 list the attributes of enrollmentActionInfoArray object.
Both students and teachers can be enrolled in a class. Each student/teacher enrollment in a class is captured in an EnrollmentInfo. After a learning item has been created in the class lesson plan, students and teachers in the class cannot be un-enrolled from the class. Instead, their enrollment can only be end-dated. An end-dated enrollment would indicate the end of a student/teacher's participation in the class.Do note the start and end date of a class enrollment should not exceed the start and end date of the class.
Table A-28 list the attributes of enrollmentInfo object.
Table A-28 EnrollmentInfo Attributes
Name | Type | Description |
---|---|---|
endDate | dateTime | Effective end date of the class enrollment. |
id | idInfo | Identifier object that uniquely identifies the class enrollment. |
personId | idInfo | Identifier object that uniquely identifies the person enrolled in the class. This attribute is mandatory for create operation. |
startDate | dateTime | Effective start date of the class enrollment. This attribute is mandatory for create operation. |
type | enrollmentType | The type of class enrollment. Example: This attribute is mandatory for create operation. |
Table A-29 lists the enrollmentType type.
After the framework is published, schools have to adopt the framework before they can use it. The framework adoption details are captured in the frameworkAdoptionInfo.
Table A-30 list the attributes of frameworkAdoptionInfo object.
Table A-30 FrameworkAdoptionInfo Attributes
Name | Type | Description |
---|---|---|
calendarId | idInfo | Identifier object that uniquely identifies a school academic calendar. This attribute is mandatory for adoptFrameworks operation. |
frameworkId | idInfo | Identifier object that uniquely identifies a framework. |
id | idInfo | Identifier object that uniquely identifies a framework adoption. This attribute is mandatory for adoptFrameworks operation. |
institutionId | idInfo | Identifier object that uniquely identifies a school. This attribute is mandatory for adoptFrameworks operation. |
primary | yesNoType | Indicates whether the adopted framework is the primary framework. This attribute is mandatory for adoptFrameworks operation. |
Table A-31 lists the enrollmentType type.
The framework forms the basis on which the students' learning progress is assessed against. A framework has to be created before the blueprint node hierarchy, framework item hierarchy, and outcome proficiency sets can be created.
After a framework is created, it has to be made available to schools and institution groups before it can be adopted.The basic details of the framework are captured in a frameworkInfo.
Table A-32 list the attributes of frameworkInfo object.
Table A-32 FrameworkInfo Attributes
Name | Type | Description |
---|---|---|
endDate | dateTime | Effective end date of the framework. |
groupAvailableToActions | idActionInfoArray | A list of actions to perform on the institution group. This is used in the createFrameworks, updateFrameworks operations when creating, updating, or deleting the frameworks. |
groupsAvailableToLists | idInfo | List of institution groups. This attribute is only populated in the response of the createFrameworks, getFrameworks, and updateFrameworks operations. |
id | idInfo | Identifier object that uniquely identifies a framework. |
institutionAvailableToLists | idInfo | List of institutions. This attribute is only populated in the response of the createFrameworks, getFrameworks, and updateFrameworks operations. |
institutionAvailableToActions | idActionInfoArray | A list of actions to perform on the institution. This is used in the createFrameworks, updateFrameworks operations when creating, updating, or deleting the frameworks. |
name | string | Framework name. This attribute is mandatory for createFrameworks operation. |
publishedDate | dateTime | Date on which the date is published. This attribute is only set in the response of getFrameworks operation. |
startDate | dateTime | Effective start date of the framework. This attribute is mandatory for createFrameworks operation. |
FrameworkItemActionInfo captures the action to perform on child framework items and the details of framework items relevant to the action.
Table A-33 list the attributes of frameworkItemActionInfo object.
Table A-33 FrameworkItemActionInfo Attributes
Name | Type | Description |
---|---|---|
action | action | Indicates the action to perform on a framework item. Example: A Create Action indicates that a framework item would be created. This attribute is mandatory. |
frameworkItem | frameworkItemInfo | Framework item details. This attribute is mandatory. |
Table A-34 lists the action type.
FrameworkItemActionInfoArray contains a list of frameworkItemActionInfo objects.
Table A-35 list the attributes of frameworkItemActionInfoArray object.
Framework items are organized in a hierarchical structure. Each framework item can have one or more framework items under it. The details of each framework item are captured in a frameworkItemInfo.
Table A-36 list the attributes of frameworkItemInfo object.
Table A-36 FrameworkItemInfo Attributes
Name | Type | Description |
---|---|---|
blueprintNodeId | idInfo | Identifier object that uniquely identifies a blueprint node. This attribute is mandatory for createFrameworkItems operation. |
childrenLists | frameworkItemInfo | List of child framework items. This attribute is only populated in the response of the createFrameworkItems, getFrameworkItems, and updateFrameworkItems operations. |
childrenActions | frameworkItemActionInfoArray | A list of actions to perform in the child framework items. This is used in the createFrameworkItems, updateFrameworkItems operations when creating, updating, or deleting the framework items. |
code | string | Code of the framework item. This attribute is mandatory for createFrameworkItems operation. |
confirmingLevel | yesNoType | Indicates whether the confirmations can be made against the framework item. This attribute is mandatory for createFrameworkItems operation. |
description | string | Framework item description. |
endDate | dateTime | Effective end date of the framework item. |
frameworkId | idInfo | Identifier object that uniquely identifies a framework. This attribute is mandatory for createFrameworkItems operation. |
id | idInfo | Identifier object that uniquely identifies the framework item. |
name | string | Framework item name.This attribute is mandatory for createFrameworkItems operation. |
parentId | idInfo | Identifier object that uniquely identifies the parent framework item. This attribute is only populated in the response of the createFrameworkItems, getFrameworkItems, and updateFrameworkItems operations. |
proficiencySetId | idInfo | Identifier object that uniquely identifies the proficiency set. |
shortName | string | Short name for the framework item. |
startDate | dateTime | Effective start date of the framework item. This attribute is mandatory for createFrameworkItems operation. |
Table A-37 lists the yesNoType type.
Users can use FrameworkLoadInfo to create a complete framework with all the outcome proficiency sets, framework item hierarchy, blueprint node hierarchy, outcome statements created with the framework in one operation.
Table A-38 list the attributes of frameworkLoadInfo object.
Table A-38 FrameworkLoadInfoAttributes
Name | Type | Description |
---|---|---|
blueprint | blueprintNodeInfo | Root blueprint node of the blueprint node hierarchy. |
contextsLists | contextInfo | List of contexts. |
framework | frameworkInfo | Framework basic details. |
frameworkItemsLists | frameworkItemInfo | List of framework item hierarchies. |
outcomeStatementDescTypesLists | outcomeStatementDescTypeInfo | List of outcome statement descriptor types. |
outcomeStatementsLists | outcomeStatementInfo | List of outcome statements. |
proficiencySetsLists | proficiencySetInfo | List of outcome proficiency sets. |
publishFramework | yesNoType | Indicates whether to publish the framework after the framework is created. |
Table A-39 lists the yesNoType type.
IdActionInfo captures the action to perform given the id of an entity. Typical scenarios involve adding an entity as part of a larger entity. For example, adding institutions to an institution group.
Table A-40 list the attributes of idActionInfo object.
Table A-40 IdActionInfo Attributes
Name | Type | Description |
---|---|---|
action | action | Indicates the action to perform given the id of an entity. Example: A Create Action indicates that the entity would be added as part of a larger entity. This attribute is mandatory. |
id | idInfo | Identifier object that uniquely identifies the entity. This attribute is mandatory. |
Table A-41 lists the action type.
Identifier object used to uniquely identify an entity such as an institution. An entity can be identified by either its OSL id or a pair of external system id and external id. The OSL id is generated by the OSL application.The external id uniquely identifies the entity in another system that is external to OSL, while the external system id uniquely identifies this external system. If used, both the external id and external system id must be provided.
Table A-42 list the attributes of idInfo object.
Table A-42 IdInfo Attributes
Name | Type | Description |
---|---|---|
externalId | string | Id that is used to identify an entity in an external system. If present, must be used with the externalSystemId. |
externalSystemId | string | Id that is used to identify an external system. If present, must be used with the externalId. |
oslId | string | Number that is generated by OSL to uniquely identify an entity. |
Institutions can be grouped into institution groups and are not constrained by their position in the institution hierarchy.
Table A-43 list the attributes of institutionGroupInfo object.
Table A-43 InstitutionGroupInfo Attributes
Name | Type | Description |
---|---|---|
description | string | Description of the institution group. |
endDate | dateTime | Effective end date of the institution group. |
id | idInfo | Identifier object that uniquely identifies the institution group. |
institutionActions | idActionInfoArray | A list of actions to perform on the institutions in the institution group. This is used in the createInstitutionGroups and updateInstitutionGroups operations when adding or removing the institution from the institution group. |
institutionsLists | idInfo | List of institutions in the institution group. This is only populated in the response of the createInstitutionGroups, getInstitutionGroups, and updateInstitutionGroups operations. |
name | string | Institution group name. This attribute is mandatory for createInstitutionGroups operation. |
startDate | dateTime | Effective start date of the institution group. This attribute is mandatory for createInstitutionGroups operation. |
The department, schools, and other organizational entities such as regional or district level education entities are represented as institutions in OSL. All institutions are organized in a hierarchy with the department as the root of the institution hierarchy. The attributes of an institution is captured in the InstitutionInfo object.
Table A-44 list the attributes of institutionInfo object.
Table A-44 institutionInfo Attributes
Name | Type | Description |
---|---|---|
Sort Name | string | The sort order of party names when displayed in a list. |
addressActions | addressActionInfoArray | A list of actions to perform on the institution's addresses. This is used in the createInstitutions and updateInstitutions operations when creating, updating, or deleting the institution's addresses. |
addressesLists | addressInfo | List of addresses of the institution. This attribute is only populated in the response of the createInstitutions, getInstitutions, and updateInstitutions operations. |
emailContactActions | contactActionInfoArray | A list of actions to perform on the institution's email addresses. This is used in the createInstitutions and updateInstitutions operations when creating, updating, or deleting the institution's email addresses. |
emailContactsLists | contactInfo | List of email addresses of the institution. This attribute is only populated in the response of the createInstitutions, getInstitutions, and updateInstitutions operations. |
id | idInfo | Identifier object that uniquely identifies an institution. This attribute is mandatory for updateInstitutions and getInstitutions operations. |
institutionType | string | The type of the institution. Example: Department, Primary School, Non-School school. Refer to the list of value |
name | string | The name of the institution. This attribute is mandatory for createInstitutions operation. |
parentInstitutionId | idInfo | Identifier object that uniquely identifies the parent institution. This attribute is mandatory for createInstitutions operation. This attribute cannot be updated. |
phoneContactActions | contactActionInfoArray | A list of actions to perform on the institution's phone numbers. This is used in the createInstitutions and updateInstitutions operations when creating, updating, or deleting the institution's phone numbers. |
phoneContactsLists | contactInfo | List of phone numbers of the institution. This attribute is only populated in the response of the createInstitutions, getInstitutions, and updateInstitutions operations. |
LanguageActionInfo captures the action to perform on the language known by a person.
Table A-45 list the attributes of languageActionInfo object.
Table A-45 LanguageActionInfo Attributes
Name | Type | Description |
---|---|---|
action | action | Indicates the action to perform on the known language. Example: A Create Action indicates that a new known language would be created. This attribute is mandatory. |
language | languageInfo | Language details. This attribute is mandatory. |
Table A-46 lists the action type.
LanguageActionInfoArray contains a list of LanguageActionInfo objects.
Table A-47 list the attributes of languageActionInfoArray object.
A person may be proficient in multiple languages. His/her proficiency in each of the language is captured in the LanguageInfo.
Table A-48 list the attributes of languageInfo object.
Table A-48 LanguageInfo Attributes
Name | Type | Description |
---|---|---|
comprehensionLevel | string | Level of proficiency in the language. |
id | idInfo | Identifier object that uniquely identifies the known language.This attribute is mandatory for createPersons operation. |
languageCode | string | Code representing the language. Example: GB represents British English, US represents American English. This attribute is mandatory for createPersons operation. |
nativeLanguage | yesNoType | Indicates whether the language is the native language of a person. This attribute is mandatory for createPersons operation. |
primaryLanguage | yesNoType | Indicates whether the language is the person's primary language for communications. This attribute is mandatory for createPersons operation. |
Table A-49 lists the yesNoType type.
LookupValueActionInfo captures the action to perform on a value and the details of the value relevant to the action.
Table A-50 list the attributes of lookupValueActionInfo object.
Table A-50 LookupValueActionInfo Attributes
Name | Type | Description |
---|---|---|
action | action | Indicates the action to perform on a value. Example: A Create Action indicates that the value would be added to the list of values. This attribute is mandatory. |
lookupValue | lookupValueInfo | Value details. This attribute is mandatory. |
Table A-51 lists the action type.
LookupValueActionInfoArray contains a list of lookupValueActionInfo objects.
Table A-52 list the attributes of lookupValueActionInfoArray object.
The details of the values contained in a list of values are captured in a lookupValueInfo.
Table A-53 list the attributes of lookupValueInfo object..
Table A-53 LookupValueInfo Attributes
Name | Type | Description |
---|---|---|
customizationLevel | customizationLevel | Level of customization that is allowed on the value. |
description | string | Description of the value. |
endDate | dateTime | Effective end date of the value. |
id | idInfo | Identifier object that uniquely identifies a value. |
lookupCode | string | Code representation of the value. |
meaning | string | The meaning of the value. |
startDate | dateTime | Effective start date of the value. |
Table A-54 lists the customizationLevel type.
The list of values used within OSL is captured using a lookupTypeInfo.
Table A-55 list the attributes of lookupTypeInfo object.
Table A-55 LookupTypeInfo Attributes
Name | Type | Description |
---|---|---|
customizationLevel | customizationLevel | Level of customization that is allowed on the list of values. |
dataType | string | The data type allowed in the list of values. |
description | string | A description of the list of values. |
endDate | dateTime | Effective end date of the list of values. |
id | idInfo | Identifier object that uniquely identifies a list of values. |
lookupType | lookupType | Code representation of the list of values in OSL. |
maxDataLength | string | The maximum length of the values that can allow in the list of values. |
meaning | string | The meaning of the list of values. |
startDate | dateTime | Effective start date of the list of values. |
valuesList | lookupValueInfo | List of the actual values contained in the list of values. This attribute is only populated in the response of the updateValueTypes and getValueTypes operations. |
valuesActions | lookupValueActionInfoArray | A list of actions to perform on the values contained in the list of values. This is used in the updateValueTypes operation when updating the list of values. |
Table A-56 lists the customizationLevel type.
Table A-56 customizationLevel
Name | Description |
---|---|
APPL | Can be updated by Application |
INSTN | Can be updated by Institution |
Table A-57 lists the lookupType type.
Table A-57 lookupType
Name | Description |
---|---|
OSL_ADDRESS_USAGE_TYPE | Usage purpose of address |
OSL_APPROVAL_STATUS | Approval status of student to join the class |
OSL_ASSESSED_OUTCOME_TYPE | Type of assessed outcome |
OSL_ASSESSMENT_TYPE | Type of assessment |
OSL_COLLECTION_CATEGORY | Type of student collection |
OSL_COLLECTION_GROUP_RELATION | Relationship between collections |
OSL_COLLECTION_RELATIONSHIP | Enrollment Type in a collection |
OSL_CONTACT_POINT_PURPOSE | Purpose of the contact point |
OSL_CONTACT_POINT_TYPE | Type of contact point |
OSL_CONTENT_RESOURCE_TYPE | Type of the content resource |
OSL_CUSTOMISATION_LEVEL | Level of customization of the lookup |
OSL_DISCUSSION_TYPE | Type of discussion |
OSL_EMAIL_FORMAT | Format of email |
OSL_EVENT_ACTION | Action Type captured in the event |
OSL_EVENT_OBJECT_TYPE | Object captured in the event |
OSL_EXTENSION_REASON | Reason for learning item extension |
OSL_GENDER | Gender |
OSL_INSTITUTION_TYPE | Type of institution |
OSL_LANGUAGE | Language |
OSL_LEARNING_ITEM_TYPE | Type of Learning Item |
OSL_LOCK_TYPE | Type of lock applied on an object |
OSL_NOTE_AUDIENCE | Target audience of an observation |
OSL_NOTE_CATEGORY | Category of an observation |
OSL_NOTE_TYPE | Type of an observation |
OSL_OUTCOME_STATEMENT_TYPE | Outcome Statement Type |
OSL_PARTY_TYPE | Type of party |
OSL_PERSON_TITLE | Person title |
OSL_PHONE_TYPE | Phone type |
OSL_PROFICIENCY_LEVEL_TYPE | Type of proficiency level |
OSL_PROFICIENCY_SET_TYPE | Type of proficiency type |
OSL_RELATIONSHIP_TYPE | Party Relationship Type |
OSL_SPOKEN_COMPREHENSION_LEVEL | Level of mastery in a language |
OSL_WORKSPACE_TYPE | Workspace assigned to student |
OSL_YES_NO | Yes or no |
An offering is created when a course is offered by the school for an academic period. The details of the offering are captured in an OfferingInfo.
The start and end date of an offering should not exceed the start and end date of the academic calendar.
Table A-58 list the attributes of offeringInfo object.
Table A-58 OfferingInfo Attributes
Name | Type | Description |
---|---|---|
calendarId | idInfo | Identifier object that uniquely identifies the academic calendar in which the offering is made. |
code | string | Offering code. This attribute is mandatory for createOfferings operation. |
courseId | idInfo | Identifier object that uniquely identifies the course. This attribute is mandatory for createOfferings operation. |
endDate | dateTime | Effective end date of the offering. |
frameworkAdoptionId | idInfo | Identifier object that uniquely identifies the adopted framework. This attribute is mandatory for createOfferings operation. |
id | idInfo | Identifier object that uniquely identifies the offering. |
institutionId | idInfo | Identifier object that uniquely identifies the school. This attribute is mandatory for createOfferings operation. |
name | string | Offering name. This attribute is mandatory for createOfferings operation. |
startDate | dateTime | Effective start date of the offering. This attribute is mandatory for createOfferings operation. |
OutcomeStatementDescActionInfo captures the action to perform on an outcome statement descriptor and the outcome statement descriptor details relevant to the action.
Table A-59 list the attributes of outcomeStatementDescActionInfo object.
Table A-59 OutcomeStatementDescActionInfo Attributes
Name | Type | Description |
---|---|---|
action | action | Indicates the action to perform on an outcome statement descriptor. Example: A Create Action indicates that an outcome statement descriptor would be created. This attribute is mandatory. |
outcomeStatementDesc | outcomeStatementDescInfo | Outcome statement descriptor details. This attribute is mandatory. |
Table A-60 lists the action type.
OutcomeStatementDescActionInfoArray contains a list of outcomeStatementDescActionInfo objects.
Table A-61 list the attributes of outcomeStatementDescActionInfoArray object.
Outcome statement descriptor provides additional information on the outcome statements. The outcome statement descriptor details are captured in an outcomeStatementDescInfo.
Table A-62 list the attributes of outcomeStatementDescInfo object.
Table A-62 OutcomeStatementDescInfo Attributes
Name | Type | Description |
---|---|---|
descTypeId | idInfo | Identifier object that uniquely identifies the outcome statement descriptor type. This attribute is mandatory for createOutcomeStatementDescs operation. |
description | string | Description of the outcome statement descriptor. |
endDate | dateTime | Effective end date of the outcome statement descriptor. |
id | idInfo | Identifier object that uniquely identifies the outcome statement descriptor. |
name | string | Outcome statement descriptor name. This attribute is mandatory for createOutcomeStatementDescs operation. |
startDate | dateTime | Effective start date of the outcome statement descriptor. This attribute is mandatory for createOutcomeStatementDescs operation. |
A framework can have multiple types of outcome statement descriptors. The detail of an outcome statement descriptor type is captured in an outcomeStatementDescTypeInfo.
Table A-63 list the attributes of outcomeStatementDescTypeInfo object.
Table A-63 OutcomeStatementDescTypeInfo Attributes
Name | Type | Description |
---|---|---|
frameworkId | idInfo | Identifier object that uniquely identifies a framework. This attribute is mandatory for createOutcomeStatementDescTypes operation. |
id | idInfo | Identifier object that uniquely identifies an outcome statement descriptor type. |
name | string | Name of outcome statement descriptor type. This attribute is mandatory for createOutcomeStatementDescTypes operation. |
Outcome statement describes the outcomes that can be achieved for a framework item.
There are three types of outcome statements:
The outcome statement details are captured in outcomeStatementInfo.
Table A-64 list the attributes of outcomeStatementInfo object.
Table A-64 OutcomeStatementInfo Attributes
Name | Type | Description |
---|---|---|
descriptorActions | outcomeStatementDescActionInfoArray | A list of actions to perform on the outcome statement descriptors. This is used in the createOutcomeStatements, updateOutcomeStatements operations when creating, updating, or deleting the outcome statements. |
descriptorsLists | outcomeStatementDescInfo | List of outcome statement descriptors. This attribute is only populated in the response of the createOutcomeStatements, getOutcomeStatements, and updateOutcomeStatements operations. |
endDate | dateTime | Effective end date of outcome statement. |
frameworkItemId | idInfo | Identifier object that uniquely identifies a framework item. This attribute is mandatory for createOutcomeStatements operation. |
id | idInfo | Identifier object that uniquely identifies an outcome statement. |
name | string | Outcome statement name.This attribute is mandatory for createOutcomeStatements operation. |
proficiencyLevelId | idInfo | Identifier object that uniquely identifies a proficiency level. |
startDate | dateTime | Effective start date of outcome statement. This attribute is mandatory for createOutcomeStatements operation. |
type | outcomeStatementType | The outcome statement type – ANNOTATIVE, INDICATIVE, DEMONSTRABLE. This attribute is mandatory for createOutcomeStatements operation. |
Table A-65 lists the outcomeStatementType type.
Personal information such as the name, photograph, home addresses, emails, phone numbers, and the roles played by the person are captured as part of the PersonInfo.
Table A-66 list the attributes of personInfo object.
Table A-66 PersonInfo Attributes
Name | Type | Description |
---|---|---|
Display Name | string | The user name is specified by the Display Name attribute to distinguish between persons and institutions in the osl_parties table. This attribute is mandatory for createPersons and updatePersons operations. Missing this attribute will throw the exception |
Sort Name | string | The sort order of party names when displayed in a list. |
academicYearLevel | string | The current academic level of a student. |
addressActions | addressActionInfoArray | A list of actions to perform on the person's addresses. This is used in the createPersons and updatePersons operations when creating, updating, or deleting the person's addresses. |
addressesLists | addressInfo | List of addresses of the person. This attribute is only populated in the response of the createPersons, getPersons, and updatePersons operations. |
birthDate | dateTime | Date of birth. |
countryOfBirth | string | Country of birth. |
deathDate | dateTime | Death date. |
emailContactActions | contactActionInfoArray | A list of actions to perform on the person's email addresses. This is used in the createPersons and updatePersons operations when creating, updating, or deleting the person's email addresses. |
emailContactsLists | contactInfo | List of email addresses of the person. This attribute is only populated in the response of the createPersons, getPersons, and updatePersons operations. |
firstName | string | Given name. |
gender | gender | Gender. |
id | idInfo | Identifier object that uniquely identifies the person. |
languageActions | languageActionInfoArray | A list of actions to perform on the person's known languages. This is used in the createPersons and updatePersons operations when creating, updating, or deleting the person's known languages. |
languagesLists | languageInfo | List of languages a person knows. This attribute is only populated in the response of the createPersons, getPersons, and updatePersons operations. |
lastName | string | Family name. |
loginId | string | Login id. |
maritalStatus | string | Marital status. |
middleName | string | Middle name. |
nameSuffix | string | Name suffix. Example: Jr |
phoneContactActions | contactActionInfoArray | A list of actions to perform on the person's phone numbers. This is used in the createPersons and updatePersons operations when creating, updating, or deleting the person's phone numbers. |
phoneContactsLists | contactInfo | List of phone numbers of the person. This attribute is only populated in the response of the createPersons, getPersons, and updatePersons operations. |
photograph | base64Binary | Photograph of the person. |
placeOfBirth | string | Place of birth. |
preferredName | string | Preferred name to address a person. |
relationshipActions | relationshipActionInfoArray | A list of actions to perform in the person's relationships. This is used in the createPersons and updatePersons operations when creating, updating, or deleting the person's relationships. |
relationshipsLists | relationshipInfo | List of relationships of a person. This attribute is only populated in the response of the createPersons, getPersons, and updatePersons operations. |
title | string | Title. |
Table A-67 lists the gender type.
ProficiencyLevelActionInfo captures the action to perform on proficiency levels and the proficiency level details relevant to the action.
Table A-68 list the attributes of proficiencyLevelActionInfo object.
Table A-68 ProficiencyLevelActionInfo Attributes
Name | Type | Description |
---|---|---|
action | action | Indicates the action to perform on a proficiency level. Example: A Create Action indicates that a proficiency level would be created. This attribute is mandatory. |
proficiencyLevel | proficiencyLevelInfo | Proficiency Level details. This attribute is mandatory. |
Table A-69 lists the action type.
ProficiencyLevelActionInfoArray contains a list of proficiencyLevelActionInfo objects.
Table A-70 list the attributes of proficiencyLevelActionInfoArray object.
Both outcome proficiency sets and graded proficiency sets can have proficiency levels.
In an outcome proficiency set, proficiency sub-levels can then be created under a proficiency level. Furthermore, the depth of the outcome proficiency levels can have maximumly two levels.
In a graded proficiency set, proficiency sub-levels cannot be created under a proficiency level. A graded proficiency levels cannot have sub-levels. Every graded proficiency level contains a range of values collectively. These ranges should not overlap and should cover the full range of values from 0 to 100.The details of the outcome proficiency level, outcome proficiency sub-levels, or graded proficiency levels are captured in the proficiencyLevelInfo.
An outcome proficiency level has the following attributes:
A graded proficiency level has the following attributes:
Note: * indicates mandatory attributes for create operations. |
Table A-71 list the attributes of proficiencyLevelInfo object.
Table A-71 ProficiencyLevelInfo Attributes
Name | Type | Description |
---|---|---|
absoluteValue | string | Numeric value representation of the graded proficiency level. This attribute is mandatory for create operation for graded proficiency levels. |
childrenLists | proficiencyLevelInfo | List of proficiency sub-levels. This attribute is only populated in the response of the createProficiencySets, getProficiencySets, and updateProficiencySets operations. |
childrenActions | proficiencyLevelActionInfoArray | A list of actions to perform on the proficiency sub-levels. This is used in the createProficiencySets, updateProficiencySets operations when creating, updating, or deleting the proficiency sets. |
code | string | Code of the proficiency level. This attribute is mandatory for create operation for outcome proficiency levels. |
description | string | Description of the proficiency level. |
id | idInfo | Identifier object that uniquely identifies the proficiency level. |
lowerRange | string | Numeric value of the lower limit of the graded proficiency level. This attribute is mandatory for create operation for graded proficiency levels. |
lowerRangeInclusive | yesNoType | Indicates whether the lower limit of a graded proficiency level should be included in the range. This attribute is mandatory for create operation for graded proficiency levels. |
name | string | Name of the proficiency level. This attribute is mandatory for create operation. |
orderSequence | string | Order of display of the outcome proficiency levels. This attribute is mandatory for create operation for outcome proficiency levels. |
parentId | idInfo | Identifier object that uniquely identifies the parent outcome proficiency level. This attribute is only set in the response of createProficiencySets, getProficiencySets, and updateProficiencySets operations. |
type | string | Proficiency level type – CORE or FOUNDATION. This attribute is mandatory for create operation for outcome proficiency levels. |
upperRange | string | Numeric value of the upper limit of the graded proficiency level. This attribute is mandatory for create operation for graded proficiency levels. |
upperRangeInclusive | yesNoType | Indicates whether the upper limit of a graded proficiency level should be included in the range. This attribute is mandatory for create operation for graded proficiency levels. |
Table A-72 lists the yesNoType type.
Both the details of an outcome proficiency set and graded proficiency set are captured using a proficiencySetInfo.An outcome proficiency set would have type OUTCOME and the following attributes are:
A graded proficiency set would have type GRADED and the following attributes are:
Note: * indicates mandatory attributes for create operations. |
Table A-73 list the attributes of proficiencySetInfo object.
Table A-73 ProficiencySetInfo Attributes
Name | Type | Description |
---|---|---|
description | string | Proficiency set description. |
endDate | dateTime | Effective end date of proficiency set. |
frameworkId | idInfo | Identifier object that uniquely identifies the framework. This attribute is mandatory for createProficiencySets operation. |
id | idInfo | Identifier object that uniquely identifies the proficiency set. |
institutionId | idInfo | Identifier object that uniquely identifies the department or school. This attribute is mandatory for createGradedProficiencySets operation. |
levelsLists | proficiencyLevelInfo | List of proficiency levels. This attribute is only populated in the response of the createProficiencySets, getProficiencySets, updateProficiencySets, createGradedProficiencySets, getGradedProficiencySets, and updateGradedProficiencySets operations. |
levelsActions | proficiencyLevelActionInfoArray | A list of actions to perform on the proficiency levels. This is used in the createProficiencySets, updateProficiencySets, createGradedProficiencySets, and updateGradedProficiencySets operations when creating, updating, or deleting the proficiency sets. |
name | string | Proficiency set name. This attribute is mandatory for createProficiencySets and createGradedProficiencySets operations. |
startDate | dateTime | Effective start date of outcome proficiency set. This attribute is mandatory for createProficiencySets and createGradedProficiencySets operations. |
type | proficiencySetType | Proficiency set type. This should be set to OUTCOME or GRADED for outcome proficiency sets and graded proficiency sets, respectively. This attribute is mandatory for createProficiencySets and createGradedProficiencySets operations. |
Table A-74 lists the proficiencySetType type.
RelationshipActionInfoArray contains a list of relationshipActionInfo objects.
Table A-75 list the attributes of relationshipActionInfoArray object.
Table A-75 RelationshipActionInfo Attributes
Name | Type | Description |
---|---|---|
action | action | Indicates the action to perform on a person relationship. Example: A Create Action indicates that a new person relationship would be created. This attribute is mandatory. |
relationship | relationshipInfo | Person relationship details. This attribute is mandatory. |
Table A-76 lists the action type.
RelationshipActionInfoArray contains a list of relationshipActionInfo objects.
Table A-77 list the attributes of relationshipActionInfoArray object.
A person may have multiple relationships with multiple parties. For example, a person can be a teacher in a school and also be the parent of another person. Each of these relationships is captured by a relationshipInfo. The role of a person within a relationship is indicated by the relationshipType. The id of the institution or person that the current person is in a relationship with is stored in the targetPartyId.
Hence, person A is a parent of person B would be represented as such:
RelationshipType: PARENT_OF
TargetPartyId: Id of person B
Table A-78 list the attributes of relationshipInfo object.
Table A-78 RelationshipInfo Attributes
Name | Type | Description |
---|---|---|
endDate | dateTime | Effective end date of the person relationship. |
id | idInfo | Identifier object that uniquely identifies a person relationship. |
relationshipType | relationshipType | Denotes a person's role in the relationship. This attribute is mandatory for create operation. |
startDate | dateTime | Effective start date of the person relationship. This attribute is mandatory for create operation. |
targetPartyId | idInfo | Identifier object that uniquely identifies the institution or person that the current person is in a relationship with. This attribute is mandatory for create operation. |
Table A-79 lists the relationshipType type.
Table A-79 relationshipType
Name | Description |
---|---|
DEPARTMENT_ADMIN_OF | Department Administrator |
DEPARTMENT_CURRICULUM_ADMIN_OF | Department Curriculum Administrator |
GUARDIAN_OF | Guardian |
PARENT_OF | Parent |
SCHOOL_ADMIN_OF | School Administrator |
SCHOOL_CURRICULUM_ADMIN_OF | School Curriculum Administrator |
STUDENT_OF | Student |
TEACHER_OF | Teacher |
Each school can create a series of tags. These tags are used to tag courses to facilitate search function within OSL.
Table A-80 list the attributes of tagInfo object.
Table A-80 TagInfo Attributes
Name | Type | Description |
---|---|---|
id | idInfo | Identifier object that uniquely identifies the tag. |
institutionId | idInfo | Identifier object that uniquely identifies the school. This attribute is mandatory for createTags operation. |
name | string | Tag name. This attribute is mandatory for createTags operation. |
This appendix contains OSL content integration service object references.
Represents Information about General Content references being associated with Rich Data.
Table B-1 list the attributes of ContentsAssociationInfo object.
Represents List of OSL Context.
Table B-2 list the attributes of ContentContextInfo object.
Table B-2 ContentContextInfo Attributes
Name | Type | Mandatory | Description |
---|---|---|---|
contexts | context[] | Yes | List of OSL Context |
Table B-3 lists the context type.
Table B-3 context
Name | Type | Mandatory | Description |
---|---|---|---|
contextType | contextType | Yes | Type of OSL Context |
contextValue | string | Yes | Value of OSL Context |
Table B-4 lists the contextType type.
Table B-4 contextType
Name | Type | Mandatory | Description |
---|---|---|---|
Enumeration | string | Yes | Legal Values are: UserName, UserId, SchoolName, SchoolId, CourseName, CourseId, ClassName, ClassId, LearningItemName, LearningItemId, CourseTagName, CourseTagId, FrameworkItemName, FrameworkItemId, OutcomeStatementName, OutcomeStatementId, StudentName, StudentId, SubmissionGroupName, SubmissionGroupId |
Represents Identity Information for Content in ECMS.
Table B-5 list the attributes of ContentIdInfo object.
Table B-5 ContentIdInfo Attributes
Name | Type | Mandatory | Description |
---|---|---|---|
contentId | string | Yes | Identifier of Content in ECMS. |
contentVersionId | string | No | Version Identifier of Content in ECMS. If version identifier is not specified, then information contained in this structure represents the latest version. |
Represents a list of Identity Informations for Content in ECMS.
Table B-6 list the attributes of ContentIdsInfo object.
Represents Content Information for Content in ECMS.
Table B-7 list the attributes of ContentInfo object.
Table B-7 ContentInfo Attributes
Name | Type | Mandatory | Description |
---|---|---|---|
contentId | ContentIdInfo | Yes | Identifier of Content in ECMS. If version identifier is not specified, then the content information should represent the latest version. Otherwise, it should be version specific. |
contentURL | string | No | For ECMS supporting URL, this field should specify the URL of Content. If contentId specifies identifier for the latest version, then the URL should be for the latest version. Otherwise, the URL should point to the specific version. |
contentTitle | string | Yes | Title of the Content. |
contentFileName | string | No | File name of the Content in ECMS. |
data | string | Yes | Raw data of Content. |
Represents Informations that corresponds search criteria to List General Content.
Table B-8 list the attributes of ContentSearchCriteriaInfo object.
Table B-8 ContentSearchCriteriaInfo Attributes
Name | Type | Mandatory | Description |
---|---|---|---|
filters | searchFilter[] | Yes | Filter. |
context | ContentContextInfo | Yes | OSL Context. |
Table B-9 list the searchFilter type.
Represents Information to upload OSL Content.
Table B-10 list the attributes of ContentsUploadInfo object.
Table B-10 ContentsUploadInfo Attributes
Name | Type | Mandatory | Description |
---|---|---|---|
uploadInfos | uploadInfo[] | Yes | OSL Content Upload information. |
userContext | UserContextInfo | Yes | OSL user making the CIWSI invocation. |
Table B-11 lists the uploadInfo type.
Represents Information to upload Exported Learning Item. Inherits from ContentsUploadInfo.
Table B-12 list the attributes of LearningItemPublishInfo object.
Represents OSL user making the CIWSI invocation.
Table B-13 list the attributes of UserContextInfo object.
 Copyright © 2009, 2012, Oracle and/or its affiliates. All rights reserved. |