Oracle® Fusion Middleware
Application Developer's Guide for Oracle Identity Management

11gRelease 1 (11.1.1)
E10186-02

January 2011

ORACLE

Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management, 11¢ Release 1
(11.1.1)

E10186-02
Copyright © 1999, 2011, Oracle and/or its affiliates. All rights reserved.
Primary Author: Ellen Desmond

Contributors: Vasuki Ashok , Ajay Keni, Ashish Kolli, Stephen Lee, Venkat Medam, Samit Roy, David Lin,
Arun Theebaprakasam

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

Portions of this document are from "The C LDAP Application Program Interface," an Internet Draft of the
Internet Engineering Task Force (Copyright (C) The Internet Society (1997-1999). All Rights Reserved),
which expires on 8 April 2000. These portions are used in accordance with the following IETF directives:
"This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and
distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this paragraph are included on all such copies and derivative works. However, this document itself may
not be modified in any way, such as by removing the copyright notice or references to the Internet Society or
other Internet organizations, except as needed for the purpose of developing Internet standards in which
case the procedures for copyrights defined in the Internet Standards process must be followed, or as
required to translate it into languages other than English.”

=g ™

RSA Ilsl sacl"la RSA and RC4 are trademarks of RSA Data Security. Portions of Oracle

Internet Directory have been licensed by Oracle Corporation from RSA Data
Security.

This product contains SSLPlus Integration SuiteTM version 1.2, from Consensus Development Corporation.

Sun Java System Directory Server and iPlanet are registered trademarks of Sun Microsystems, Inc.

Contents

PUrOIACE ...ttt XVii
AN S Lo 1= VLT T T RRRR TR XVii
Documentation AcCeSSIDILItYcccciiiiiiiiiiiiiiiiicc s XVii
Related DOCUITIEIESveoeeeeeiieetieeeeeeeteeeee ettt et ete et e eae e eteeaessaaeeseesateebeesneeesteesseeenseeseesnseenens Xviii
CONMVEIEIONS ..ooittieiiee ettt ettt e eeet e e e eeat e e e e e saaeeeesessaaaeeeeesaaeaseeeseaaseeeseessaaesessesnsssaessesssaeseeesansseeesessns XiX

What's NeW INthe SDK? en XXi
New Features in the 11g Release 1 (11.1.1) SDKccccceiiiiiiiiiiiiiiinnnas XXi
New Features in the 10 (10.1.4.0.1) SDKcccccceiiiiiiiiiiiiiiiiiicccereeeeeeeees XXi
New Features in the Release 10.1.2 SDKoouiiiiiiiicieeeieeeeeeee ettt eee et saesesaeeesessnesesaeeesssnee s XXii
New Features in the Release 9.0.4 SDKoo ittt ettt st e sae e e saeseaaes XXii

Partl Programming for Oracle Identity Management

1 Developing Applications for Oracle Identity Management

Oracle Identity Management Services Available for Application Integration 1-1
Integrating Existing Applications with Oracle Identity Management..............ccccoceccinniccnn. 1-2
Oracle Identity Management Programming: An OVerview...........cccoccoeivniiinnniicinicccnnnns 1-2
Programming Languages Supported by the Oracle Internet Directory SDK 1-3
Oracle Identity Management SDK COMPONENtS..........ccciuiuiiiiiiiiiiiiiiiiiiiiceiecceeeieieeenenenas 1-3
Application Development in the Oracle Identity Management Environmentc......... 1-3
Architecture of an Oracle Identity Management Application...........ccccceevvivvvniiiinnninns 1-3

Oracle Identity Management Interactions During the Application Life Cycle 1-4
Services and APIs for Integrating Applications with Oracle Identity Management-........ 1-5
Integrating Existing Applications with Oracle Identity Management................cccccccoc.... 1-6

2 Developing Applications with Standard LDAP APIs

SAMPILE COE.......oiiiiiiiiiii s 2-1
History 0f LDAP ..o 2-1
LD AP IMOAEIS.....ccoiiiiieeiieiecieieeteteete et e e et te et esreeaesaeebesbaessessaessaessessesseensesssassesssessesssensenssessennsens 2-2
Naming MoOdel..........ouoi e 2-2
INfOrmMation IMOAEL.......cc.oiiiiiieiieeeee ettt ettt ettt e be et e beeas e beesseeseeraeseennas 2-3
FUNCHONAL IMOAEL ...ttt ettt ettt e re e b e e b e s sa e e e st e beessensaessensessnassensnas 2-3
SecUrity MOdel......c.coiiiiiiiiiiiiiiiiii s 2-4

NS a1y L Tar=X 1 o) o WU 2-4

Access Control and Authorization ... 2-5

Data INteGTitYc.coviiiiiiiiiiiic s 2-6

Data PIiVACYcccceieieieieieiiiit s 2-6
Password POLICIES..........ccoviiiiiiiniiiiiiiic s 2-6

About the Standard LDAP APIs............ccccoooiiiiiiiiiii 2-7
APTUSAZE MOl ...t 2-7
Getting Started with the C AP ... 2-7
Getting Started with the DBMS_LDAP Package..........ccccoeeiiiiiiiiieicceceeceeeeieenenennes 2-8
Getting Started with the Java APL.........cccooiiii e 2-8
Initializing an LDAP SeSSiONccccccoiiiiiiiiiiiiiii s 2-8
Initializing the Session by Using the C APLccccccoviniiiiinrcrrrrereeee e 2-8
Initializing the Session by Using DBMS_LDAPccooouiiiiiiiiice e 2-9
Initializing the Session by Using JNDL...........ccooiiiiiiiiiiicc e 2-9
Authenticating an LDAP SeSSion...........cccoviiiiiiiiiiiiiiii s 2-10
Authenticating an LDAP Session by Using the C APIccooooiiiiiiiiice 2-10
Authenticating an LDAP Session by Using DBMS_LDAPccccooiiiniiiiiiiceecie 2-11
Searching the Directory...........cccoviiiiiiiiiiii s 2-11
Program Flow for Search Operations..........c.cceuiueiiiriiniiniiccic s 2-12
S@ATCN SCOPE....eeitiicte b 2-13
FAIEETS oot 2-14
Searching the Directory by Using the C APL.........cccouiiiiiiiiiii e, 2-15
Searching the Directory by Using DBMS_LDAPccccoooiiiiiiiiiiicc e 2-16
Terminating the Session............cccoiiiiiiiii 2-17
Terminating the Session by Using the C APL..........ccccooiiiiii e, 2-17
Terminating the Session by Using DBMS_LDAP..........cccooeiiiiiiiiiiiiee e 2-18

Extensions to the LDAP Protocol

SASL AUtReNtiCAtiONc.oooiiiieiiieeceeeeee ettt b e e e st e ere e ae e e e s beesb e beesbesreensenseenes 3-1
SASL Authentication by Using DIGEST-MDS5cccccooiiiiiiiiiiicceeeeeeeeereneenenenenes 3-1
Steps Involved in SASL Authentication by Using DIGEST-MDS5...........coooiviiininiiiine. 3-2

SASL Authentication by Using External Mechanism ..., 3-3
USING CONLIOLS ..o 3-3
Proxying on Behalf of End USersccccoooiiiiiiiii e 3-5
Creating Dynamic Password Verifiers ... 3-6
Request Control for Dynamic Password Verifiers ... 3-7
Syntax for DynamicVerifierRequestControl ..o, 3-7
Parameters Required by the Hashing Algorithms ... 3-8
Configuring the Authentication APIS ..., 3-8
Parameters Passed If Idap_search Is Usedccccccoiiiiiiiiiniiiiiinniiiiccccce 3-8
Parameters Passed If Idap_compare Is Usedccccccciuiiiiiiiiiiiiiiiiiciiciccccccics 3-8
Response Control for Dynamic Password Verifiers ..., 3-9
Obtaining Privileges for the Dynamic Verifier Frameworkcccoooiiiiniiiiniiinins 3-9
Performing Hierarchical Searches..............ccccoiiiiiiiiiiiiiininiiiiccccee e 3-9
New Features of the CONNECT _BY CONIOL....uviiiiiieeeiieeeeeee et eeeeeeeeeeeeeeeeseveeeeereeseeaeeeseaveeens 3-9
Value Fields in the CONNECT _BY CONLIOL.....cooouuiiiiiecieieeeeieeeee e 3-9

Sorted LDAP Search ReSUIES.........ooooviiiiieieie ettt ettt ettt e e s eaae e s aaesseaaeessaeesennees 3-10

Paged LDAP Search Results...........ccccoooiiiiiiiiiiiii e 3-11

PasSWOIrd POLICIES ...t 3-11
USer PrOVISIONINE.......coviiiiiiiiiiiiiiiicii s 3-11
User AUthentication ... 3-12

LDAP Bind/Compare Operation-Based Authentication..........c.c.coooeeiiiiin 3-12
LDAP Search Operation-Based Authenticationc.cccceeeeiveiicinciiicricceene 3-13
User Account Maintenance............ccoviiiiiniiiniiii e 3-14

Developing Applications With Oracle Extensions to the Standard APIs

SAMPLE COL.....ooieiiniiiiiiieeeee ettt ettt sttt ettt ettt 4-1
Using Oracle Extensions to the Standard APISs ..o, 4-1
Creating an Application Identity in the Directoryccccoviiiini 4-2
Creating an Application Identity ..o 4-2
Assigning Privileges to an Application Identity ..o, 4-2
ManaGing USETS........c.cciiiiiiiiiiiiiiiiicc s 4-3
Managing GIOUPScccouviriiiiiiiiiiiiiiiic s 4-3
Managing Realms...........cccccoviiiiiiiiiiiniiiiiiii s 4-3
Discovering a Directory SerVer............ccooiiiiiiiiiiiiiic e 4-4
Benefits of Oracle Internet Directory Discovery Interfaces............coooevoiiiiiiiiiiiicne, 4-4
Usage Model for Discovery Interfaces..........ccooeuiioiiiicieiiiiciicec e 4-5
Determining Server Name and Port Number From DINS..........c.ccccccoiiiiiiiiiicciens 4-5
Mapping the DN of the Naming Context.........cccccoceeiinniiiiiiiiiicn, 4-6

Search by Domain Component of Local Machine...........ccccooiiiiiiiii 4-6

Search by Default SRV Record in DNS........ccccccoiiiiiiiinirrececrrereee e 4-6
Environment Variables for DNS Server DiSCOVErY ..o, 4-7
Programming Interfaces for DNS Server DiSCOVery ..o 4-7

Using the Java API Extensions to JNDI

SAMPLE COE.......oimiiiiiiiii s 5-1
Installing the Java EXteNSIiONS............ccccoiiiiiiiiiiii e 5-1
Using the oracle.ldap.util Package to Model LDAP Objects............cccocouvivinininnnnnnnninine, 5-2
The Classes PropertySetCollection, PropertySet, and Property...........ccccccovvvnnnnnnnnnninnnnce. 5-2
ManaGing USETS........c.ccciiiiiiiiiiiiiiiiicc e 5-3
Authenticating USeTScccovvviiiiiiiiiiiiiiiiii s 5-3
Creating USeIS..........coiiiiiiiiiiiic e 5-4
Retrieving User ODbjJects ... 5-4
Retrieving Objects from Realms ..o 5-5
Example: Search for Oracle Single Sign-On Login Name..............ccccccccoviiiiiiiiiinciiie, 5-5
Discovering a Directory ServVer...........cooiiiiiiiiiiiiiiic e 5-6
Example: Discovering a Directory SeIVer..........ccooiiiiiiiiiiiiiiiiiie s 5-7
Using DIGEST-MDS5 to Perform SASL Authentication ..o, 5-8
Example: Using SASL Digest-MD?5 auth-int and auth-conf Modes..............c.ccoviiinniinn. 5-8

Using the API Extensions in PL/SQL

SAMPLE COL.....ooeiiieeee ettt et 6-1
Installing the PL/SQL EXtENSIONScccccoviiiiiiiiiiiiiiiiiiicc s 6-1

Using Handles to Access Directory Data............cccooeiiiiiiiiniiiiiicccas
MaAnNa@ing USETS..........cciiiiiiiiiiiiicicc ettt
Authenticating USeIS ...
Dependencies and Limitations of the PL/SQL LDAP APIL..........cccccoiiiniiinniiiiicce

7 Developing Provisioning-Integrated Applications
Partll Oracle Internet Directory Programming Reference

8 C API Reference

About the Oracle Internet Directory C APL.............ccccocooiiiiiiiiiiicas
Oracle Internet Directory SDK C API SSL EXteNSIoNS..........cccuiviiicieieiicicieciccie e,
SSL INterface Callsc.ccooiuiiiieiiiiiiciiecccre e
Wallet SUPPOTT.....oiiiiiiii st
Functions in the C AP ...
The Functions at @ GIAnCec.ccccueuiiiiiiiiiiiieicceeceeecee e
Initializing an LDAP S@SSION........c.coiiiiiiiiiiieiccei s
ldap_init and 1dap_Open...........c.oii e
LDARP Session Handle Optionsc.cccccccuciciiiiiiiiiiiiicccccceeeeeeeeeeeeeseeeeeee e
ldap_get_option and ldap_set_Option ...
Getting Bind Credentials for Chasing Referralsccoooouiioiiiiiiiii,
ldap_set_rebind _Proc.......ccciiiiiiiiiiiiceceeee e
Authenticating to the Directory ...
ldap_sasl_bind, ldap_sasl_bind_s, ldap_simple_bind, and Idap_simple_bind_s..........
SASL Authentication Using Oracle EXteNSIONScccccceuiiciiiiciceiccceecccceeeeenenens
ora_ldap_init. SASL ...
ora_ldap_create_cred_hdl, ora_ldap_set_cred_props, ora_ldap_get_cred_props,
and ora_ldap_free_cred_hdl............ccccciiiiiiiiiiiicce s
Working With COntrols.........coiiiiiiii
ClLOSING the SESSIONo.viviiiiiiiiiiiic e
ldap_unbind, Idap_unbind_ext, and Idap_unbind_s..........ccccccocociiiiiiiiiiiininnenne.
Performing LDAP Operations...........cccoeueieiiiiieiiiicicie it
ldap_search_ext, Idap_search_ext_s, Idap_search, and ldap_search_s...........cccccc.cucc..
Reading an ENtry ..o
Listing the Children of an ENtrycccocoueiiiiiiiiiiiiccc e
ldap_compare_ext, ldap_compare_ext_s, ldap_compare, and ldap_compare_s...........
ldap_modify_ext, ldap_modify_ext_s, Idap_modify, and ldap_modify_s.....................
ldap_rename and ldap_rename_sccoriuiiiiiiiiiininiiii e
ldap_add_ext, Idap_add_ext_s, Idap_add, and ldap_add_scccccevuvvrnnnnnnnncnnns
ldap_delete_ext, ldap_delete_ext_s, ldap_delete, and ldap_delete_s............c.ccccoceeee.
ldap_extended_operation and ldap_extended_operation_s............cccceveiiiniiiinninnnee,
Abandoning an Operation ...
ldap_abandon_ext and ldap_abandon ...
Obtaining Results and Peeking Inside LDAP MeSSagescccceuvvrurieiiiiinieieiniccieeeeienen,
ldap_result, Idap_msgtype, and Idap_msgidccccoeurmviriiiiiiiiiic
Handling Errors and Parsing ReSults...........cccccciiiiiiiiiiiiccecceeeeeeeeeeeeeeeees
ldap_parse_result, ldap_parse_sasl_bind_result, Idap_parse_extended_result,

vi

and 1dap_err2string ... 8-33

Stepping Through a List of ReSULLSc.cooiiiiiii 8-36
ldap_first_message and ldap_next_meSSageccccecueueueueueremeueueiiieierceeeeeeeeeeeeeeeees 8-36
Parsing Search Results...........coiiiiiiiii e 8-36
ldap_first_entry, ldap_next_entry, Idap_first_reference, ldap_next_reference,
ldap_count_entries, and ldap_count_references............ccccceeeuvveereieirrnenrnnreereenes 8-37
ldap_first_attribute and ldap_next_attribute..........ccccoiiiiii 8-37
ldap_get_values, Idap_get_values_len, ldap_count_values,
ldap_count_values_len, Idap_value_free, and ldap_value_free_lencc.ccccccueueeee. 8-39
ldap_get_dn, Idap_explode_dn, ldap_explode_rdn, and ldap_dn2ufn........................ 8-40
ldap_get_entry_CONtrols ... 8-40
ldap_parse_referenCe.ccociiiiiiiiieirieicicieieieeece s 8-41
Sample C AP USAE. ..ottt teae 8-42
C API Usage With SSLcciiiiiiiiiiiiice s 8-42
C APT Usage WIthout SSL.......c.cccciuiiiiiiiiicieecceeeeeee e 8-43
C API Usage for SASL-Based DIGEST-MD5 Authentication..........c.cccouoeeicieiicicicniccicnnes 8-43
Setting and Using a Callback Function to Get Credentials When Chasing Referrals........... 8-46
Required Header Files and Libraries for the C API ..o 8-48
Dependencies and Limitations of the C API ..., 8-48

DBMS_ LDAP PL/SQL Reference

Summary of SUDPIOGIams.ccooiiiiiiiiiiiiiiii s 9-1
EXCePHON SUMIMATY ..ot 9-3
Data TYPe SUMMATYccoooiiiiiiiiiiiii s 9-5
SUDPIOGIAINS ...ttt 9-5
FUNCTION Z1UE 1 etititietieiieteeteetecteet ettt ettt et eteeteetestesaessesessessessessessesseseesessessessessessessessessessesens 9-5
FUNCTION SIMpPle_DINd_S ...ccceueieiiiiiiiiiieiieicicicieieeeieeeeeeeeeeeeeeeeeeesese s 9-6
FUNCTION DINA_S .vvevveiierieiieiiitiitieteiesteteteteveettetesteetestesaessestessessessessesesseesessassessessassessessssessessessens 9-7
FUNCTTON UNDINA_S .tuteutetietitietitesiesieie et teatett ettt steste st et este st et et eseeseebeebesbesaesensensensanseneasessens 9-8
FUNCTION COMPATE_S....oiuimiiiiiiiiiiiiiiiiiiiiinieiscs ittt 9-9
FUNCTION SEATCI_ S ...eiiouveiieeieieieieie ettt eeaee s eaae s et s e sateessraeessnaeesenaaesssanesesnsesesseessnnees 9-10
FUNCTION SEATCIL St..ceiueviiieeieiieieeeeeee et ettt eete e s et e e st e e s et e e sesaeessnaeesssaeeseasessenseessseesennes 9-12
FUNCTION fTSt_ENETY ...vviiiiiicicieieicicicieieicieeeteteie ettt ssees 9-13
FUNCTION NEXt_ENEIY 1.ovitiiiiiiiiiiiiiieiiicieieieetcie et 9-14
FUNCTION COUNE_EIIETIOS «.veeieiiieiieeieieiieeeeeeeeieeeeeeeesatteeeeesesreeeeesssssseesssssssssesssssssssessssssssesesesssnnes 9-15
FUNCTION firSt_ attrIDUte. e eeeeeieeeeeeeeeeeeeeeeeeeeeeeee ettt et eeeaee e e eateeeeaeeeeeaeesesneesssseesssraeesnnees 9-16
FUNCTION NEXE_QtETIDULE ...vvveiieeeie ettt et s e s e s s eaaeesenaeeesnaeesnnees 9-17
FUNCTION Get_dIN....cocuiiiiiiiiiiiiiiiiiiiiiiciiiet s 9-18
FUNCTION Get_vVallScucuuiiiiieicicicicieieicieeieieteieiete ettt seees 9-19
FUNCTION get_values_len.........cooiiiiiiiiiiiiiicie s 9-20
FUNCTTION dELEtE_S...cueeureuieuieuieiieiieiietiresiesiestestesietetetetestesessessessessessessensensensessessessesseseesessessensen 9-21
FUNCTION INOATANZ . Sttt ettt ee et e eeeaeeseeaeeeseateseeteeseaeeseaeesessaessentessaseesssseesanes 9-22
FUNCTION @IT2StING.....ocuiteieiiiiieteieiiecie sttt 9-23
FUNCTION create_mMod_arTaycccccceeueiiiiiiiiiiiiiiriiieieieeieiieieeese e sesssesesessseseseseaees 9-24
PROCEDURE populate_mod_array (String Version)ccccccceeceueeuereueneninneeneceeeeenenes 9-25
PROCEDURE populate_mod_array (Binary Version)cccceeeeeienieeeeneeeceieennens 9-25
PROCEDURE populate_mod_array (Binary Version. Uses BLOB Data Type) 9-26

vii

FUNCTION get_values_blOoDb ... 9-27

FUNCTION cOUNt_VaAIUES_DIODooieeiiieiieceee ettt ettt st e e e s 9-28
FUNCTION ValUe_fTee DIOD ...ccoeieeeeeeeeeee ettt eeeeeeeeateeeeaeeeeeaeesesaeeessaeesssseessnnees 9-29
FUNCTION MOGIfY_S ..vviviiiiiiiiniiiiiiiiicicr s 9-29
FUNCTION QAA_S c.viviiiiiieiietieeeeteeteeteete ettt ettt e s eteeteeteeveevesse st esessessessessessessereeseess 9-30
PROCEDURE free_mMOd_arTay.......ccccccueueueueueueiimeieieieiereeieieieieseieieeeienesesesesesesesseesesesesssssesesesseseses 9-31
FUNCTION COUNE_VALUECS ..cvvveeieeiieeceeee ettt s e e save s saaesssnaessenneeesnnees 9-32
FUNCTION COUNE_VAIUES_LON ...ttt et e e st e e saes 9-32
FUNCTION TONAIIIC S .uvvvieeieeieeieeeeeieeteeeeeseeiteeeeesssiaseeessssissresssssssssssessssssssseesssssssssesssssssesesssssnes 9-33
FUNCTION explode_dn ... s 9-34
FUNCTION OPEN_SSL...ooiiiiiiiiiiiiiiiiiiiiici i 9-35
FUNCTION ISGITEE........oviiiiicieicieieieieieieeeiee ettt eees 9-36
) S O\ (G N (O A =5 ol 5 =< SRR 9-37
FUNCTION NlIS_CONVEIt_tO_ UL ...cueeiiieeiiieeieeeee ettt et e e e e e 9-38
FUNCTION NIS_CONVEIt_tO U ..coneeieeeeie ettt eeteeeeeeeeeeeaeesseanesseaeessseesenes 9-38
FUNCTION nls_convert_from_UtE8..........coouiiieiiiiiieieieeee ettt ennaees 9-39
FUNCTION nls_convert_from_UtE8..........oovuiiiiiiiiiiie ettt saee e e 9-40
FUNCTION nls_get_dbcharset_Namec.cccccoceueiiiiiniiiicnnieeeeceeeeeeeeeeeeeeeeeeeeeeees 9-41

10 Java API Reference

11

viii

DBMS LDAP_ UTL PL/SQL Reference

Summary of SUbPrograms............ccccccciiviiiiiiiiiiii s 11-1
SUDPIOGIAMS ...t bbb s 11-2
User-Related SUDPIOZIamS..........cccueiiiuiicieiiccie et 11-3
FUNCHON QUENENTICATE USET oottt e e et eeeeaeeeeeaeeesereeeeenneesenneeseeeenns 11-3
Function create_user _handleoooviooiiiieiiiicieeeee et 11-5
Function set_user_handle_properties............ccccccoeiiiiiiniiiiiniiiieeees 11-5
Function get_user_properties.........coiiiiiniiiiiic s 11-6
Function set_user_properties..........ccuiiviiiiiiiiiiiiiins 11-7
Function get_user_extended_properties ..o 11-9
FUNCHON et _USET_AIN...oviiiiiiiic e 11-10
Function check_group_membership ... 11-11
Function locate_SubSCIIDEr fOT USETooovuviiiieiiieeeeeeeeeeeeeeeeeee ettt s 11-12
Function get_group_membershipccccccccciiiiiiiiiiiccceeereeese s 11-13
Group-Related SUbDPIograms ... 11-13
Function create_group_handle ... 11-14
Function set_group_handle_properties...........ccccccccerueiiicinninnerreereeeeceeeseeeeaes 11-15
Function get_group_properties ... 11-16
Function get_group_di..........cccccvviiiiiiiiiiii e 11-17
Subscriber-Related SUDPIOGIramsccceuvuruviiiiiiiriririirr e 11-18
Function create_subscriber_handlecoooviiiiiiiiiiiiiieeeeeeeeee e 11-19
Function get_subscriber_properties ... 11-19
Function get_subscriber_dn ... 11-21
Function get_subscriber_ext_properties...........cccceeieiininiiiiiiiiiccc 11-22
Property-Related SUbDPrograms ... 11-23
Miscellaneous SUDPIOGIAMS.c.ccuvuriiiiiiiiiriiiiicerree s 11-24

12

13

Function normalize_dn_ With_CaSE......c..coovuviieiuiiiieieieeieeeee et 11-24

Function get_property_Names ..o 11-24
Function get_property_valuescccoviiiiiiiiiii s 11-25
Function get_property_values_len ... 11-26
Procedure free_propertyset_collection...........cccooiiiiiiiioiiiicc 11-27
Function create_mod_propertyset.........cccccvcvrrriiirinirrrreerere s 11-28
Function populate_mod_propertyset ..o 11-29
Procedure free_mod_propertyset.........ccooceiiiciiiiiiccieece 11-29
Procedure f1ee NanAIeooooeeeeeeeeeeeeeeeeeeeeeee ettt e et e e eeaeeseaeesereeseeaeesenees 11-30
Function check_INterface_ VOISIONcc.coovviiiveiiiieiieiecee e 11-30
Function get_property_values_blob ..o 11-31
Procedure property_value_free_blob ... 11-32
Function Return Code SUMMATIY.........ccccooiviiiiiiiii s 11-32
Data Type SUMIMATYcoooviiiiiiiiiii ettt ne s 11-34
Oracle Directory Integration and Provisioning Java APl Reference
Application Configurationcccooviiiiiiiiiiiii 12-1
Application Registration and Provisioning Configuration............c.cccccccccceecicceenccnnnenes 12-2
Application Registrationcccoevveiiiiiiiiiiiiiiiiiiccc s 12-2
Provisioning Configuration...........cc.oeriiiiiicc s 12-4
Application Configuration Classes..........ccccceueueuimiuiiniriiiiieicieeeecereeee s 12-13
User Managementccocooiiiiiiiiiiiiii e 12-14
Creating @ USETccuciiiiiiiie s 12-14
MOIEYING @ USET ...t 12-15
Deleting @ USEToourueiiiiiieieiitcte e 12-15
LOOKING UP @ USET ..ottt s s 12-15
DebUGZING ...t 12-15
SaMPle Code........ooiiiiiiiiiii e 12-16
Oracle Directory Integration Platform PL/SQL API Reference

Versioning of Provisioning Files and Interfaces..............cccccocoviiniiiiiinii 13-1
Extensible Event Definition Configuration ..o, 13-1
Inbound and Outbound Events...............cccoooiiiiiiiiiccccc e 13-3
PL/SQL Bidirectional Interface (Version 3.0)cccceceeieriieiieniieiieneesieseeseseesseseessesseessesseessesns 13-4
PL/SQL Bidirectional Interface (Version 2.0)..........cccocuevieieieirinireniesiesiestesieteseeeeseesessessessessessens 13-8
Provisioning Event Interface (Version 1.1)ccccccocciiiiiiiiniiiiiiccc 13-9
Predefined Event TYPeSccooiiiiiiiicc 13-11
ATTIDULE TYPE oo 13-11
Attribute Modification TYPe.....c.ccciuiiiiiiiiiiiiiccrerrer e 13-11
Event Dispositions CONStANtS..........ccccvvvviiiiiiiiiiiiiiiiiii e 13-11
CalIDACKS. ...ttt 13-11
GetAPPEVENL() oo 13-12
PUutAppEventStatus().......cccovvieiiiiiiiiiiiiiiciii e 13-12
PULOIDEVENE() ... euvevtventrieiirieirieietetetetet ettt ettt ettt ettt et b et b et st et nene 13-12

Part Il Appendixes

A Java Plug-ins for User Provisioning

Provisioning Plug-in Types and Their Purpose ..o, A-1
Provisioning Plug-in Requirements...............ccccccocoiiiiiiiiiiiae A-2
Data Entry Provisioning Plug-in ... A-2

Pre-Data-Entry Provisioning PIUg-inccccoovoiiiiiiic s A-4

Post—Data-Entry Provisioning PIUg-iN........c.cccccceiiiiiiiiiiiieneececreesere s A-5
Data Access Provisioning PIug-in ... A-6
Event Delivery Provisioning Plug-inccccooviiiiis A-7
Provisioning Plug-in Return Status..............cccocooiiiiii A-10
Configuration Template for Provisioning Plug-ins..............cccooooiiiiiiii, A-10
Sample Code for a Provisioning PIug-incccocooiiiiiiiiccna A-11

B DSML Syntax

Capabilities 0f DSML..........ccocoiiiiiiii e B-1
Benefits Of DSIML........cocoiiiiiieieiieieeeeett ettt sttt e st te et e e et e st e enseeseessesseessesneessesnsensesnsensennsensenns B-1
DSML SYINEAX ..o B-2
TOP-LeVel SEIUCLUTEovoviiiiiiii s B-2
Directory ENtrIescoovviviiiiiiiiiiiiiic s B-2
bo ol aT<) 0 = T = a1 o (<1 T TSRS B-3
Tools Enabled for DSIML ...ttt sttt et e e teere e beesaesteessebeesaenseas B-3

C Migrating from Netscape LDAP SDK API to Oracle LDAP SDK API

FRATULES ...t e et e ettt e et e e sttt e ettt e eeaaeeeaateeesaeesesaateesanteeennteeesnaeeesseeesnnaeesneeas C-1

200 4 Lot 5 (o) o 1= SRR C-1

1Y T4 0 - TSR C-2
Index

List of Figures

A Directory-Enabled Application.........cccouoiiiieieiiiiieicec s 1-4
An Application Leveraging APIs and Services ... 1-6
A Directory Information TTeeccceueioiiiiiiiiiiiicc e 2-2
Attributes of the Entry for Anne Smith ... 2-3
Steps in Typical DBMS_LDAP USage........ccceueiriiurieiiiicieie et 2-7
Flow of Search-Related Operations..............ccoceueiiiiiiiiiiiicecc s 2-13
The Three Scope OPtioNS ..ot 2-14
Programmatic Flow for API EXteNSIONScccceviiirieiiiiiieieccc 4-2
The Directory Information Tree for Provisioning Configuration Datacccoccue... 12-6

xi

List of Tables

Xii

(JO(JOI\JI\)I\)I\)I})l\)l\)l\)l\)—l—l—L
WN =2 O0C0ONOOAPRWN—=WN =

w
|

Interactions During Application Lifecycle ..., 1-4
Services and APIs for Integrating with Oracle Internet Directorycccooeeiiirieninns 1-5
Services for Modifying Existing Applications............ccccceevveiiiiiiiiiiiii 1-6
LDAP FUNCHONS «.covvcttcett ettt 2-4
SSL Authentication Modescoeuiiiiiiiiiiiiiiiiiiiiicccc s 2-5
Parameters for Idap_init().......ccccocvviiiiniiiiii e 2-9
Arguments for Idap_simple_bind_s().......cccecverieiniiiiiiiiiiiic 2-11
Options for search_s() or search_st() FUNCtionscccccccovviviiiinniiiinniiiccc, 2-13
S€arCh FIIEETS.....oviiiiii 2-14
Boolean OPerators ..o 2-15
Arguments for Idap_search_s()........ccccecvrriiiiiniiiiiiiicic 2-16
Arguments for DBMS_LDAP .search_s() and DBMS_LDAP.search_st()........c.cccecouuue. 2-17
Request Controls Supported by Oracle Internet Directoryccccoveeiiiieiiiieeiiinennnnn 3-3
Response Controls Supported by Oracle Internet Directorycccoevvviiiiiiinnnnnnnns 3-5
Parameters in DynamicVerifierRequestControl............c.cccocovviiiiniiiiiiiniiee, 3-8
Parameters Required by the Hashing Algorithms............cccocoeiiiiiiiiiiiii 3-8
Environment Variables for DNS DiSCOVEIYccoviuiiiiriiiniiieiicec e 4-7
Methods for Directory Server DiSCOVETY ..., 5-6
Arguments for SSL Interface Callscccooouviiiiiniiiiiiiiccc 8-2
Functions and Procedures in the C APL.........cccccooiiiiiiiiiiicces 8-3
Parameters for Initializing an LDAP SeSsion.........c.cccccoiieiiiiiiiiiiiiiiicccececeees 8-6
Parameters for LDAP Session Handle Options...........cccoeveiiiiiiiiiiiiic 8-7
CONSLANESvvviiiicite s 8-8
Parameters for Callback Function and for Setting Callback Function.............c.ccocu....... 8-11
Parameters for Authenticating to the Directory ..., 8-12
Parameters passed to ora_ldap_init_sasl()........ccceoeovriiiiniiiinniiiic 8-14
Parameters for Managing SASL Credentials ... 8-16
Fields in Idapcontrol Structure ... 8-16
Parameters for Closing the Session ..., 8-18
Parameters for Search Operations...........c.cccceeeveiiiiiiiiiiii 8-20
Parameters for Compare Operationsccccceeeeiieiiiiiiinineiiien, 8-22
Parameters for Modify Operations.........ccccoveeieiiiicieiiiiiciee 8-24
Fields in LDAPMOd StrUCHUTE.........coviviiiiiiiiiiiiciciicccc e 8-24
Parameters for Rename Operationsccccceeeiiiiiiiiiiiiiiici, 8-26
Parameters for Add Operations...........cccceveeiieieiiiiiiiiiic 8-28
Parameters for Delete Operationscccceveieiiiiiiiiiiiicc, 8-29
Parameters for Extended Operations............cccccceeeeniiiiiiniiiiccne, 8-30
Parameters for Abandoning an Operation.............cccceeeinieieiiiiniciie, 8-31
Parameters for Obtaining Results and Peeking Inside LDAP Messages........................ 8-32
Parameters for Handling Errors and Parsing Resultscccocoevnnininnninnne, 8-35
Parameters for Stepping Through a List of Results..........cccccevvivivinnnnnnne, 8-36

Parameters for Retrieving Entries and Continuation References from a Search Result
Chain, and for Counting Entries Returned 8-37

Parameters for Stepping Through Attribute Types Returned with an Entry 8-38
Parameters for Retrieving and Counting Attribute Values............cccccooviinnnnnn. 8-39
Parameters for Retrieving, Exploding, and Converting Entry Namesccocou....... 8-40
Parameters for Extracting LDAP Controls from an Entrycccooeiiniiiiiiiinnnn, 8-41

Parameters for Extracting Referrals and Controls from a SearchResultReference Message ..
8-41

DBMS_LDAP API SUDPTOGIAIMScvrvviviiiiiiiiiiiiiteieiieieieeeeee s 9-1
DBMS_LDAP ExXception SUMMATYcovuiimimiiiiiiieieieiieeetee e 9-3
DBMS_LDAP Data Type SUIMMATYccovuimimiiiiiiiriiieieiieieetee e senns 9-5
INIT Function Parameters ...t 9-5

NN DN
N =0

9
9-23
9-24
9-25
9-26
9-27
9-28
9-29
9-30
9-31
9-32
9-33
9-34
9-35
9-36
9-37
9-38
9-39
9-40
9-41
9-42
9-43
9-44
9-45
9-46
9-47
9-48
9-49
9-50
9-51
9-52
9-53
9-54
9-55
9-56
9-57
9-58
9-59

INIT FUNction RETUIT VALUESoovveeiieieceeee ettt 9-6

INIT Function EXCEPHIONSovoviviviiieteticetectc ettt 9-6
SIMPLE_BIND_S FUuNction Parameters..........cceoovviiieeeiiieeeeeeeeeeee et eeeee e s e enes 9-7
SIMPLE_BIND_S Function Return Values..........c.oooeiiiiiiiiceieeeeeeeeeeee e 9-7
SIMPLE_BIND_S Function EXCeptions.........cccovuciiiiiiiiiiininiiiiiiicccicccceccnnas 9-7
BIND_S FUNCHON PATAIMETETS ...covvviieeeeeeeeeeeeeeeee ettt etee s s esane e s enaeeesnnnessnnnes 9-7
BIND_S Function RetUIN VAlUESccvviviieiieieieceee e 9-8
BIND_S Function EXCEPLIONSccceiiriiiiiiiiiiiiiiiicccicc s 9-8
UNBIND _S FUNCHON PaTameterSc.vvieeeeiiiieeeeieieeeeee ettt eae s eaee s s s 9-8
UNBIND_S Function Return VaAlUES.........c.uviieveiieiiiieeie e e 9-9
UNBIND_S Function EXCeptions..........cccccviiiiiiiiniiiiiiniiiiiiccicccceenas 9-9
COMPARE_S FUuNction Parameterscc.eeoeveeieiiiieeeeeeeeee et eeee e e 9-9
COMPARE_S Function Return ValUesS........coouviiieeiiiieiiieeee e 9-10
COMPARE_S Function EXCEPHONSccccviiuiiiiiiiiiiiiiiccccccs 9-10
SEARCH_S FUuNction Parametersc..ooooviiieieiiieiie ettt 9-10
SEARCH_S Function Return ValUe.........cooveiieiiiiiiiieee e 9-11
SEARCH_S Function EXCEPHONSccccvviviiiiiiiiiiiiiiiccc s 9-11
SEARCH_ST FUNCiON ParameEterS......c..ooooveiieeeiiiieiee et eeeeee e eeaeee et e e s ssnaeseenneeas 9-12
SEARCH_ST Function Return ValUesooouviiiiiiiiciieeeee et 9-13
SEARCH_ST Function EXCePHONSccovuiuiiiniiiiiiiiiiiiciincccccs 9-13
FIRST _ENTRY FUNction Parametersoc.eooeviiieeieecieieeeeee et eeee e eavessveeean 9-13
FIRST _ENTRY ReEtUIN VAIUESccoceveiiieiieeeeeeee ettt s enaee e 9-14
FIRST_ENTRY EXCEPHONS....cooiiiiiiiiiiiiiiiiiciccircci s 9-14
NEXT_ENTRY FUNCtiON Parametersocveveeeviiieeiieicieeeeeeeeeeeeeeeeeeeeaeee et eenveseenneeas 9-14
NEXT_ENTRY Function Return VAIUEScoouveiiiviiieeieeeeee e 9-15
NEXT_ENTRY Function EXCePiONSccceueiiiiiiiiiiiiiiiiiiicccs 9-15
COUNT_ENTRY Function Parameterscooveeveeeeeeeeeieeeeeeeeeeeeeeeeieeeeeeeeeeteeeeeaeesenneeens 9-15
COUNT_ENTRY Function Return Valuesocouveveviiieeeiiieieeeeeeeeeee e 9-16
COUNT_ENTRY Function EXCePHONScccciviiiiiiiiiiiiiiiicccccccis 9-16
FIRST _ATTRIBUTE FUunction ParametersS..........oooveieuveiieeeeiieieeeeeee et eeaee s 9-16
FIRST _ATTRIBUTE Function Return Valuesooooviieeeiiicieeeieeeeeeeeeeeeee e 9-17
FIRST_ATTRIBUTE Function EXCeptionscccccceviviriiiininiiiiiiniiiiiiicccceces 9-17
NEXT_ATTRIBUTE Function Parameterscc.eeeoeeiveeieiieiireeeeeeiieeeeeceeeireeeeeeeeveeeeee e 9-17
NEXT_ATTRIBUTE Function Return Valuesoooviiveiiieeiiieeeeeeeeeeeeeeee e 9-18
NEXT_ATTRIBUTE Function EXCePiONS ..o 9-18
GET_DN FUunction Parameterscooveeeeueiieeieieeee et et eaeeeesveesenveeseaanessnneeean 9-18
GET_DN Function Return ValUesc..eeeeiviiieeiiieieeeee e 9-19
GET_DN Function EXCEPHONScceuiuiiiiiiiiiiiiicciicicc s 9-19
GET_VALUES FUNCHON ParameterS.......ccovieieeviiiieieecee et eeieeeeeaeeeeeeeeeenveeseavessnneeean 9-19
GET_VALUES Function Return ValUescc.oooouviiooiiiieeii e 9-20
GET_VALUES Function EXCEPLIONScccouvuimiiiiiiiiiiiniiicciiccccs 9-20
GET_VALUES_LEN FUunction Parameters..........ooueeveveeieeeeieieeeeeeeeeeeeeeeeeeeerveeeeaeeseneeenn 9-20
GET_VALUES_LEN Function Return ValUescooovviveviiieeeieieeeeeeeee e 9-21
GET_VALUES_LEN Function EXCEPLIONScccovuiuiiiiiiiiiiiiniicciccccc 9-21
DELETE_S FUNCHON PATameterscoovviieiiiieeie et e e eneeeseaaeesenseeean 9-21
DELETE_S Function RetUrn VAIUEScooouviiieeiiieieeeee et 9-22
DELETE_S Function EXCEPHONScccuiiiiiiiiiiiiiiciciiicccc s 9-22
MODRDNZ2_S FUunction ParametersS.........c..oooueiiiieieeiieeieeeeeeeeeeeeeeeeee e seaeesenveeens 9-22
MODRDN2_S Function Return Valuescouvivieiiieiiiieeee e 9-23
MODRDN2_S Function EXCEPLIONScouvuiuiiiiiiiiiiiiiiiiiicccccas 9-23
ERR2STRING FUunction ParametersSc..ooveevieiieeeieeciieceecceeeeee ettt eeveeereeveeeneevee e 9-23
ERR2STRING Function Return Values.........ccuooiiiieeiiciiecieeeeceeeeecee et e 9-24
CREATE_MOD_ARRAY Function Parameters.........cccoovveveeveeeeeiieeeeeeeeeeeeee e 9-24
CREATE_MOD_ARRAY Function Return Valuesccceeveveieeviiceeeeecee e 9-24
POPULATE_MOD_ARRAY (String Version) Procedure Parametersccccooeueee. 9-25

xiii

Xiv

POPULATE_MOD_ARRAY (String Version) Procedure Exceptions............cccceuvvenne. 9-25

POPULATE_MOD_ARRAY (Binary Version) Procedure Parameters..............ccceccueuu. 9-26
POPULATE_MOD_ARRAY (Binary Version) Procedure Exceptions.............ccccceueuue. 9-26
POPULATE_MOD_ARRAY (Binary) Parametersccccoevvvinrinnninniniinnen, 9-27
POPULATE_MOD_ARRAY (Binary) EXCeptions.........cccccocvvvveiiiiiiiieiiiiiicine, 9-27
GET_VALUES_BLOB ParameterS.....cc.cccocviiieieeiicieieeieeeeeeeeeeeeeeeerteeeeeeeeeaeesesneessenaeessnneeeas 9-27
get_values_blob Return Values...........ccooviiiiiiiiiiiiniiii, 9-28
get_values_blob EXCEPLIONS........cccccovvviiiiiiiiiiiiiiii 9-28
COUNT_VALUES_BLOB ParameterSccoovuviiieueeeeeeeeeeeeeeeeeeeieeeeieeeeseeeesnvesseaeessnseeeas 9-28
COUNT_VALUES_BLOB Return ValUes.....ccuvcovuviiiieiieeee e 9-29
VALUE_FREE_BLOB Parametersc.uccooviiiiiieiiieieeeeeeeeeeeeeeeeeeeeeeeeaeeesseeeeenvessenanesssneen 9-29
MODIFY_S FUNCHON PATamEtersoocuvviiieieieeee ettt et e eaveseennees 9-30
MODIFY_S Function Return VAIUESocvveieieiiieiieieeeeeee et 9-30
MODIFY_S Function EXCeptionscccccviiiiiiiiiiiiiininiiiiiiiccccccics 9-30
ADD_S FUNCHON PATameterscoovviiieiiieieieceie ettt etee et eeaeseenvesseanessaneeen 9-31
ADD_S FUNction RetUIT VAIUESoooveiieeiiiceee et 9-31
ADD_S Function EXCEPLIONScccuviiuiiiiiiiiiiiiiiiciiccci s 9-31
FREE_MOD_ARRAY Procedure Parameterscooveveeeeeiieeeeeieeeeeeeeeeeeeeeeeeeeeseaveeens 9-32
COUNT_VALUES Function ParametersS...........coooveeeuveieieeeieeeeeeeeeeeeeeeeeee e eevee e 9-32
COUNT_VALUES Function Return Valuesccooooeeiieiciiiciicieecee e 9-32
COUNT_VALUES_LEN Function Parameters........cccccooovveveveeeeeieeeeeeeeeeeeeeee e 9-33
COUNT_VALUES_LEN Function Return Valuesccccoovvieeeieiiciieceeeeeeeeeeee e 9-33
RENAME_S FUNCHON ParameterS......o.eevvueiiieie et ssanaee s 9-33
RENAME_S Function Return VAlUES.......ccuveieeviiieiiiiceeeeeee e 9-34
RENAME_S Function EXCeptions.........ccccociiininiiiininiiiiicccicces 9-34
EXPLODE_DN FUNction Parameters.......oc.eioceiiiieeiieeieeeeeee ettt et e e eeavessnnaeeas 9-34
EXPLODE_DN Function Return ValUESscc..ooovviiieiiiiieieieeee e 9-35
EXPLODE_DN Function EXCeptions ... 9-35
OPEN_SSL FUNCHON Parameters........ooveeeeuviiieeieieeeeeeeeeeeeee et e e e sanessvaee s 9-35
OPEN_SSL Function RetUrn ValUesccceeviiiiiciiieeiieeieeeeeeeee ettt ettt et e 9-36
OPEN_SSL Function EXCeptions.........ccccccviiiiiiiiiiiiiiiiniiiiiiicccicccens 9-36
MSGFREE FUNCHON Parameterscoveiviiiiieeiecieeeee ettt eee et eeve vt eeeeeveeeneeveessneeneens 9-36
MSGEFREE RetUIN VAIUESccuviiviieiietieeteeeteeeeectte ettt ettt eaneebeesvaeeteesaveensaesneens 9-37
BER_FREE FUNCtion Parameterscooouviiiiiiiiiiiiicccieeee et ceetree e eeenanee e e eeennns 9-37
Parameters for NlS_cONVErt_t0_ULE8oooviiieiiiieeeeeeeeeee e 9-38
Return Values for nls_convert_tO_Utf8.........oooviiiiiiiiieiieeeeee e 9-38
Parameters for NlS_coONVErt_t0_ULE8ooouviiiviiiieeeee e 9-39
Return Values for nls_convert_tO_Utf8.........oooviiiiiiiiiiiieceeeeeeeeee e 9-39
Parameter for nls_convert_from_Utf8..........coovviiiiiiiiiiiceeee e 9-39
Return Value for nls_convert_from_Utf8...........ooovviiiiiiiieiiieeeeeeeeee e 9-39
Parameter for nls_convert_from_ U8coovviiiiiiiiiiiceee e 9-40
Return Value for nls_convert_from_Utf8...........coovveiiviiiiiiiiiieeeeeeee e 9-40
Return Value for nls_get_dbcharset_name..........cccccoveviiiniiiiiiiie, 9-41
DBMS_LDAP_UTL User-Related SUbprograms............cccceeveieieieiieieiieneeicieeeenenns 11-1
DBMS_LDAP_UTL Group-Related Subprograms............ccccceceueeiiiieiniiinniiiieeeeenn, 11-2
DBMS_LDAP_UTL Subscriber-Related Subprograms.............ccccceveveiiiiniiiiinnnininine. 11-2
DBMS_LDAP_UTL Miscellaneous SUbprograms.............ccceceevvniiinieinininininnnnnnnenen, 11-2
authenticate_user FUNCtON Parametersooouvviveviviieieiciieeeeee e 11-4
authenticate_user Function Return Valuesc..oooovivievieiiiiiieei e 11-4
CREATE_USER_HANDLE Function Parameters..........ccocvvevueeeeeeeeeeeeeeeeeeeeee e 11-5
CREATE_USER_HANDLE Function Return Valuesccooouveveviiieeeiieeieeeeeeeeee e 11-5
SET_USER_HANDLE_PROPERTIES Function Parameters..........cccceeveevveeneeereecreennnens 11-6
SET_USER_HANDLE_PROPERTIES Function Return Valuesccccceeveeeueervrecreennnenns 11-6
GET_USER_PROPERTIES Function Parametersccoevevevveeeevieeeeeeeeeeeeeeee e 11-6
GET_USER_PROPERTIES Function Return Valuescccoooveeevviiieeeiieeeeeeeeeeee e 11-7

11-13
11-14
11-15
11-16
11-17
11-18
11-19
11-20
11-21
11-22
11-23
11-24
11-25
11-26
11-27
11-28
11-29
11-30
11-31
11-32
11-33
11-34
11-35
11-36
11-37
11-38
11-39
11-40
11-41
11-42
11-43
11-44
11-45
11-46
11-47
11-48
11-49
11-50
11-51
11-52
11-53
11-54
11-55
11-56
11-57
11-58
11-59
11-60
11-61
11-62
12-1

12-2

12-3

12-4

12-5

SET_USER_PROPERTIES Function Parameterscccceeevveeeeiereeeeeeieeereeeeeeereeeveeneens 11-8

SET_USER_PROPERTIES Function Return Valuesccccoovevveviiicieiiieeeeeee e 11-8
GET_USER_EXTENDED_PROPERTIES Function Parametersccc.ccoeevevvvvvevnvreennen. 11-9
GET_USER_EXTENDED_PROPERTIES Function Return Values........cccccoeovvvvvuveeinnnenn. 11-9
GET_USER_DN Function ParametersScooveiieeeeiieeeeeiie et e s eenaee s 11-10
GET_USER_DN Function Return Values........c...oooveiiiiiiiceieeeee e 11-10
CHECK_GROUP_MEMBERSHIP Function Parametersccoocveeeeveeeveeeecieeeeireeennee 11-11
CHECK_GROUP_MEMBERSHIP Function Return Values.......ccccoevveevviiiveeeieieeenns 11-11
LOCATE_SUBSCRIBER_FOR_USER Function Parameters......c.cccoevevevuveecveeeenreeennee. 11-12
LOCATE SUBSCRIBER FOR USER Function Return Valuesccccceeeeeecerecreeeneennnen. 11-12
GET_GROUP_MEMBERSHIP Function Parameters..........ccooovevvvveeeeveeeeeeeeeeeeeieeeennes 11-13
GET_GROUP_MEMBERSHIP Function Return Valuescccoooveeeviveeeeeeciieeeeeenee 11-13
CREATE_GROUP_HANDLE Function Parameters..........ccooovevevvereeeveeeeeee e eeeeeeennes 11-15
CREATE_GROUP_HANDLE Function Return Valuescccccooovveeevveiiveeeiieeeeeeeeenns 11-15
SET_GROUP_HANDLE_PROPERTIES Function Parameters...........ccccceveevveevvvercnnen. 11-15
SET_GROUP_HANDLE_PROPERTIES Function Return Valuesc..cccoevvevuvevenneen. 11-16
GET_GROUP_PROPERTIES Function Parameterscccccooouveeeeeeeeveeeeeeee e 11-16
GET_GROUP_PROPERTIES Function Return Values.........ccccoevuveeeeeeeiiveeeeeieeeeee e 11-17
GET_GROUP_DN FUunction ParametersScoveeoeeeeiieeeieieeeeeeeeceeeeeeereeeeeeeeeeenveeeeaeeennnes 11-18
GET_GROUP_DN Function Return ValUes.........ccceeovveeieiiiiceiiieeeeeeee e 11-18
CREATE_SUBSCRIBER_HANDLE Function Parameters.........ccccccoevvveevvvieieeeeeeeeeenns 11-19
CREATE_SUBSCRIBER_HANDLE Function Return Values..........cccceevvevivveeevneeennns 11-19
GET_SUBSCRIBER_PROPERTIES Function Parameters.........ccocveeeeveeeeeeeeeveeeeereeennee 11-20
GET_SUBSCRIBER_PROPERTIES Function Return Valuescccccuvvvvevvevveeecnneeennee. 11-20
GET_SUBSCRIBER_DN Function Parametersocoeeeeveeieeeeiieeeeeeeee e eeieeeennes 11-21
GET_SUBSCRIBER_DN Function Return Values.........cccoouvvoeeiiiieiieeieeeeee s 11-21
GET_SUBSCRIBER_EXT_PROPERTIES Function Parameters........ccccccoeeuveevveeeerverennns 11-22
GET_USER_EXTENDED_PROPERTIES Function Return Values........ccccccoovuvvvenveenn. 11-22
NORMALIZE_DN_WITH_CASE Function Parameters.......c..cccoovveeevvvveeeeeecieeeeeeeeennee 11-24
NORMALIZE_DN_WITH_CASE Function Return Valuesccovvvvvevivieeecnreenen. 11-24
GET_PROPERTY_NAMES Function Parameterscoocueeeeeeeeeeeeeeeeeeeeee e e 11-25
GET_PROPERTY_NAMES Function Return Values..........ccoovvevvviieeveiieeeeeeeeeeeee e 11-25
GET_PROPERTY_VALUES Function Parameters.........cooueeveeeeeeeeeeceeeeeeee e e 11-25
GET_PROPERTY_VALUES Function Return Values.........ccccevvvveeeviiieeeeeeeeeeeeeeee, 11-26
GET_PROPERTY_VALUES_LEN Function Parameters..........ccoocveeevveveveeeecieeeeeeeeennee 11-26
GET_PROPERTY_VALUES_LEN Function Return Valuesccoevvvvvvveevveeeenreenne. 11-27
FREE_PROPERTYSET_ COLLECTION Procedure Parametersccoeeuvevvveeveenveennnes 11-28
CREATE_MOD_PROPERTYSET Function Parameters.......cccccoeeveeeveveeeeeeeeeveeeeeeeeennee 11-28
CREATE_MOD_PROPERTYSET Function Return Values........cccccooevevvveeeevveeeceeenee. 11-28
POPULATE_MOD_PROPERTYSET Function Parameterscccccoeeuveeveveeevveeeeereennee. 11-29
POPULATE_MOD_PROPERTYSET Function Return Values.......ccoccoovvvvvevieeeenneennne. 11-29
FREE_MOD_PROPERTYSET Procedure Parameters..........ccceevvuveeeeeeeeeeeeeereeeeeveeennne 11-30
FREE_HANDLE Procedure Parameters........c..eioveeieieeeeieeeeieeeeeeeeeeeeeeeeeeessnveeessveeennnes 11-30
CHECK_INTERFACE_VERSION Function Parameters.........cccocveeevveeeeeeeecveeeeeeeeennee 11-30
CHECK_VERSION_INTERFACE Function Return Valuesccecvvvvvvveevveeecnneenne. 11-31
GET_PROPERTY_VALUES_BLOB Function Parameterscccccceevveeevveeivveeeeveeeennns 11-31
GET_PROPERTY_VALUES_BLOB Return Values.........ccoceovveiieeeeeiieeeeee s 11-31
PROPERTY_VALUE_FREE_BLOB Function Parameters..........ccccccoeeveeevvieivveeeeneeeenns 11-32
FUuNction RetUIN COAESc.uvieiiiiiiiiieeiecceeeete ettt ettt et etae e evaeeteeeeveeeasenane s 11-32
DBMS_LDAP_UTL Data TYPeS......ccccceviiriiiiieiiiiiiieicicieeiceeeee e 11-34
Some Useful Privilege GroupsS ... 12-3
Interfaces and Their Configurationc.oceveuieiiiciniciiicc 12-8
Information Formats Supported by the PLSQL Interface..........ccccocoeviviiniiiinnnnnnn. 12-9
Properties Stored as Attributes in the Attribute Configuration Entry........c...ccccocc...... 12-10
Event propagation parameters............ccccoeeveieieiiiiiieiinee s 12-12

XV

XVi

13-1
13-2

Predefined Event Definitions.........c.cccooeoeveiiiiriennnns
Attributes of the Provisioning Subscription Profile

Audience

Preface

Oracle Fusion Middleware Application Developer’s Guide for Oracle Identity Management
explains how to modify applications to work with Oracle Identity Management,
including Oracle Application Server Single Sign-On, Oracle Internet Directory, Oracle
Delegated Administration Services, and the Directory Integration Platform.

This preface contains these topics:
= Audience

= Documentation Accessibility
= Related Documents

s Conventions

The following readers can benefit from this book:

= Developers who want to integrate applications with Oracle Identity Management.
This process involves storing and updating information in an Oracle Internet
Directory server. It also involves modifying applications to work with mod_osso,
an authentication module on the Oracle HTTP Server.

= Anyone who wants to learn about the LDAP APIs and Oracle extensions to these
APIs.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

xvii

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/support/contact.html or visit
http://www.oracle.com/accessibility/support.html if you are hearing
impaired.

Related Documents

xviii

For more information, see these Oracle resources:
» Oracle Fusion Middleware Installation Guide for Oracle Identity Management
» Oracle Internet Directory Administrator’s Guide

» Oracle Fusion Middleware Administrator’s Guide for Oracle Directory Integration
Platform

s PL/SQL User’s Guide and Reference
» Oracle Database Application Developer’s Guide - Fundamentals
» Oracle Fusion Middleware Reference for Oracle Security Developer Tools

If you are using Oracle Delegated Administration Services or Oracle Single Sign-On
10g (10.1.4.3.0) or later, please refer to the following documents in the Oracle
Application Server 10g (10.1.4.0.1) library:

» Oracle Identity Management Guide to Delegated Administration
» Oracle Application Server Single Sign-On Administrator’s Guide
For additional information, see:

» Chadwick, David. Understanding X.500—The Directory. Thomson Computer Press,
1996.

= Howes, Tim and Mark Smith. LDAP: Programming Directory-enabled Applications
with Lightweight Directory Access Protocol. Macmillan Technical Publishing, 1997.

= Howes, Tim, Mark Smith and Gordon Good, Understanding and Deploying LDAP
Directory Services. Macmillan Technical Publishing, 1999.

= Internet Assigned Numbers Authority home page, http://www.iana.org, for
information about object identifiers

= Internet Engineering Task Force (IETF) documentation available at:
http://www.letf.org, especially:

s The LDAPEXT charter and LDAP drafts
s The LDUP charter and drafts
= RFC 2251, "Lightweight Directory Access Protocol (v3)"
s RFC 2254, "The String Representation of LDAP Search Filters"
s RFC 1823, "The LDAP Application Program Interface"
s The OpenLDAP Community, http://www.openldap.org

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Xix

XX

What's New in the SDK?

This document acquaints you with new features of the Software Developer's Kit (SDK)
for Oracle Identity Management—both in the present release and in previous releases.
Use the links provided to learn more about each feature.

As of Release 11g Release 1 (11.1.1), the recommended security API for Fusion
Middleware application developers is Oracle Platform Security for Java, which is
documented in the Oracle Fusion Middleware Application Security Guide. The Oracle
Identity Management interfaces described in the current book are supported for
developers who maintain and extend existing solutions already integrated with the
SDK.

Oracle Fusion Middleware 11g Release 1 (11.1.1) does not include Oracle Single
Sign-On or Oracle Delegated Administration Services. Oracle Internet Directory 11g
Release 1 (11.1.1), however, is compatible with Oracle Single Sign-On 10g (10.1.4.3.0)
and Oracle Delegated Administration Services 10g (10.1.4.3.0).

New Features in the 11g Release 1 (11.1.1) SDK

The 11g Release 1 (11.1.1) SDK adds support for Internet Protocol version 6 (IPv6). The
C and Java APIs now support both IPv6 and IPv4 addresses.

New Features in the 10g (10.1.4.0.1) SDK
The 10g (10.1.4.0.1) SDK adds:
= Java plug-in support.

Server plug-ins can now be written in Java and in PL/SQL. For more information,
please see Oracle Fusion Middleware Administrator’s Guide for Oracle Internet
Directory for more information.

= Paging and sorting of LDAP search results.

You can now obtain paged and sorted results from LDAP searches. For more
information, please see "Sorted LDAP Search Results” and "Paged LDAP Search
Results" in Chapter 3, "Extensions to the LDAP Protocol".

= Added functionality for hierarchical searches.

You can now traverse the hierarchy in either direction and specify the number of
levels of the hierarchy to search. For more information, please see "Performing
Hierarchical Searches"in Chapter 3, "Extensions to the LDAP Protocol".

= Support for all three modes of SASL Digest-MD5 authentication.

XXi

Oracle Internet Directory now supports all three modes with the Java Naming and
Directory Interface (JNDI) of jdk1.4 API or with the OpenLDAP Java API. For
more information, please see "SASL Authentication" in Chapter 3, "Extensions to
the LDAP Protocol" and "Example: Using SASL Digest-MD5 auth-int and
auth-conf Modes" in Chapter 5, "Using the Java API Extensions to JNDI".

New Features in the Release 10.1.2 SDK

The release 10.1.2 SDK adds:

Centralized user provisioning.

This feature enables you to provision application users into the Oracle Identity
Management infrastructure. To learn more, see Chapter 12, "Oracle Directory
Integration and Provisioning Java API Reference".

Dynamic password verifiers

This feature addresses the needs of applications that provide parameters for
password verifiers only at runtime. To learn more, see "Creating Dynamic
Password Verifiers" in Chapter 3.

Binary support for 1dapmodify, 1dapadd, and 1dapcompare plug-ins

Directory plug-ins can now access binary attributes in the directory database. To
learn more, see "Binary Support in the PL/SQLPlug-in Framework" in Oracle
Fusion Middleware Administrator’s Guide for Oracle Internet Directory.

Plug-in support for the Oracle Directory Integration and Provisioning Server

These Java hooks enable an enterprise to incorporate its own business rules and to
tailor footprint creation to its needs. To learn more, see Appendix A.

New Features in the Release 9.0.4 SDK

The following features made their debut in the release 9.0.4 SDK:

XXii

URL API for Oracle Delegated Administration Services

This API enables you to build administrative and self-service consoles that
delegated administrators can use to perform directory operations.

PL/SQL API Enhancements:

= New functions in the LDAP v3 standard. Previously available only in the C
API, these functions are now available in PL/SQL.

= Functions that enable proxied access to middle-tier applications.

= Functions that create and manage provisioning profiles in the Oracle Directory
Integration and Provisioning.

To learn more, see Chapter 7.
Plug-in support for external authentication

This feature enables administrators to use Microsoft Active Directory to store and
manage security credentials for Oracle components. Chapter 12

Server discovery using DNS

This feature enables directory clients to discover the host name and port number
of a directory server. It reduces the cost of maintaining directory clients in large
deployments. To learn more, see "Discovering a Directory Server" in Chapter .

XML support for the directory SDK and directory tools

This feature enables LDAP tools to process XML and LDIF notation. Directory
APIs can manipulate data in a DSML 1.0 format.

Caching for client-side referrals

This feature enables clients to cache referral information, speeding up referral
processing.

xXiii

XXiv

Part |

Programming for Oracle Identity
Management

Part I shows you how to modify your applications to work with the different
components of Oracle Identity Management. This section begins with an introduction
to the Oracle Internet Directory SDK and to LDAP programming concepts. You then
learn how to use the three LDAP APIs and their extensions to enable applications for
Oracle Internet Directory.

Part I contains these chapters:

Chapter 1, "Developing Applications for Oracle Identity Management"
Chapter 2, "Developing Applications with Standard LDAP APIs"
Chapter 3, "Extensions to the LDAP Protocol"

Chapter 4, "Developing Applications With Oracle Extensions to the Standard
APIs"

Chapter 5, "Using the Java API Extensions to JNDI"
Chapter 6, "Using the API Extensions in PL/SQL"
Chapter 7, "Developing Provisioning-Integrated Applications"

1

Developing Applications for Oracle Identity
Management

As of Release 11g Release 1 (11.1.1), the recommended security API for Fusion
Middleware application developers is Oracle Platform Security for Java, which is
documented in the Fusion Middleware Security Guide. The Oracle Identity Management
interfaces described in the current book are not part of Oracle Platform Security for
Java.

Oracle Identity Management provides a shared infrastructure for all Oracle
applications. It also provides services and interfaces that facilitate third-party
enterprise application development. These interfaces are useful for application
developers who need to incorporate identity management into their applications.

This chapter discusses these interfaces and recommends application development best
practices in the Oracle Identity Management environment.

This chapter contains the following topics:
s Oracle Identity Management Services Available for Application Integration
» Integrating Existing Applications with Oracle Identity Management

s Oracle Identity Management Programming: An Overview

Oracle Identity Management Services Available for Application Integration

Custom applications can use Oracle Identity Management through a set of
documented and supported services and APIs. For example:

s Oracle Internet Directory provides LDAP APIs for C, Java, and PL/SQL, and is
compatible with other LDAP SDKs.

s Oracle Delegated Administration Services provides a core self-service console that
can be customized to support third-party applications. In addition, they provide
several services for building customized administration interfaces that manipulate
directory data.

» Oracle Directory Integration Services facilitate the development and deployment
of custom solutions for synchronizing Oracle Internet Directory with third-party
directories and other user repositories.

= Oracle Provisioning Integration Services provide a mechanism for provisioning
third-party applications, and a means of integrating the Oracle environment with
other provisioning systems.

Developing Applications for Oracle Identity Management 1-1

Integrating Existing Applications with Oracle Identity Management

Oracle Single Sign-On provides APlIs for developing and deploying partner
applications that share a single sign-on session with other Oracle Web
applications.

JAZN is the Oracle implementation of the Java Authentication and Authorization
Service (JAAS) Support standard. JAZN allows applications developed for the
Web using the Oracle J2EE environment to use the identity management
infrastructure for authentication and authorization.

Note: Oracle Fusion Middleware 11g Release 1 (11.1.1) does not
include Oracle Single Sign-On or Oracle Delegated Administration
Services. Oracle Internet Directory 11¢ Release 1 (11.1.1), however, is
compatible with Oracle Single Sign-On and Oracle Delegated
Administration Services 10g (10.1.4.3.0) or later.

Integrating Existing Applications with Oracle Identity Management

For new applications, use Oracle Platform Security for Java, which is documented in
the Fusion Middleware Security Guide.

An enterprise may have already deployed certain applications to perform critical
business functions. Oracle Identity Management provides the following services that
can be leveraged by the deployment to modify existing applications:

Automated User Provisioning: The deployment can develop a custom
provisioning agent that automates the provisioning of users in the existing
application in response to provisioning events in the Oracle Identity Management
infrastructure. This agent must be developed using the interfaces of Oracle
Provisioning Integration Service.

See Also: Oracle Fusion Middleware Administrator’s Guide for Oracle
Internet Directory for more information about developing
automated user provisioning.

User Authentication Services: If the user interface of the existing application is
based on HTTD, integrating it with Oracle HTTP Server and protecting its URL
using mod_osso authenticates all incoming user requests using the Oracle Single
Sign-On service.

Centralized User Profile Management: If the user interface of the existing
application is based on HTTP, and it is integrated with Oracle Single Sign-On for
authentication, the application can use the self-service console of Oracle Delegated
Administration Services to enable centralized user profile management. The
self-service console can be customized by the deployment to address the specific
needs of the application.

Oracle Identity Management Programming: An Overview

This section introduces you to the Oracle Identity Management Software Developer's
Kit. It provides an overview of how an application can use the kit to integrate with the
directory. You are also acquainted with the rest of the directory product suite.

The section contains these topics:

Programming Languages Supported by the Oracle Internet Directory SDK
Oracle Identity Management SDK Components

1-2 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Oracle Identity Management Programming: An Overview

= Application Development in the Oracle Identity Management Environment

Programming Languages Supported by the Oracle Internet Directory SDK

The SDK is for application developers who use C, C++, and PL/SQL. Java developers
must use the JNDI provider from Sun Microsystems to integrate with the directory.

Oracle Identity Management SDK Components

The Oracle Identity Management Software Developer's Kit 11¢ Release 1 (11.1.1)
consists of the following:

s A CAPI compliant with LDAP Version 3
= A PL/SQL API contained in a PL/SQL package called DBMS_LDAP
» Oracle Identity Management Application Developer’s Guide (this document)

s Command-line tools

Application Development in the Oracle Identity Management Environment

This section contains these topics:

= Architecture of an Oracle Identity Management Application

= Oracle Identity Management Interactions During the Application Life Cycle

= Services and APIs for Integrating Applications with Oracle Identity Management
» Integrating Existing Applications with Oracle Identity Management

Architecture of an Oracle Identity Management Application

Most Oracle Identity Management applications are back-end programs that
simultaneously handle multiple requests from multiple users. Figure 1-1 shows how a
directory is used by such applications.

Developing Applications for Oracle Identity Management 1-3

Oracle Identity Management Programming: An Overview

Figure 1-1 A Directory-Enabled Application

User 1
e B
‘ q‘ —
User 2
[4 .—
P~ I 1
| I Multiple
— Connections Few
Connections
LDAP-Enabled Oracle
Application Internet
User 3 Directory
s B—
o User, Group,
Subscriber and
—_ Application Data
User N

!

As Figure 1-1 shows, when a user request involves an LDAP-enabled operation, the
application processes the request using a smaller set of pre-created directory
connections.

Oracle Identity Management Interactions During the Application Life Cycle

Table 1-1 on page 1-4 walks you through the directory operations that an application
typically performs during its lifecycle.

Table 1-1 Interactions During Application Lifecycle

Point in Application Lifecycle Logic

Application Installation 1. Create an application identity in the directory.
The application uses this identity to perform
most of its LDAP operations.

2. Give the application identity LDAP
authorizations by making it part of the correct
LDAP groups. These authorizations enable the
application to accept user credentials and
authenticate them against the directory. The
directory can also use application authorizations
to proxy for the user when LDAP operations
must be performed on the user's behalf.

Application Startup and Bootstrap The application must retrieve credentials that enable
it to authenticate itself to the directory.

If the application stores configuration metadata in
Oracle Internet Directory, it can retrieve that
metadata and initialize other parts of the application.

The application can then establish a pool of
connections to serve user requests.

1-4 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Oracle Identity Management Programming: An Overview

Table 1-1 (Cont.) Interactions During Application Lifecycle

Point in Application Lifecycle Logic

Application Runtime For every end-user request that needs an LDAP
operation, the application can:

= Pick a connection from the pool of LDAP
connections.

» Switch the user to the end-user identity if the
LDAP operation must be performed with the
effective rights of the end-user.

= Perform the LDAP operation by using either the
regular API or the API enhancements described
in this chapter.

s Ensure that the effective user is now the
application identity when the LDAP operation is

complete.
= Return the LDAP connection back to the pool of
connections.
Application Shutdown Abandon any outstanding LDAP operations and

close all LDAP connections.

Application Deinstallation Remove the application identity and the LDAP
authorizations granted to it.

Services and APIs for Integrating Applications with Oracle Identity Management

Application developers can integrate with Oracle Identity Management by using the
services and APIs listed and described in Table 1-2 on page 1-5.

Table 1-2 Services and APIs for Integrating with Oracle Internet Directory

Service/API Description More Information
Standard LDAP APIsin C,PL/SQL These provide basic LDAP Chapter 2, "Developing Applications
and Java operations. The standard LDAP API with Standard LDAP APIs"

used in Java is the JNDI API with the
LDAP service provider from Sun

Microsystems.
Oracle Extensions to Standard C, These APIs provide programmatic Chapter 4, "Developing Applications
PL/SQL and Java APIs interfaces that model various With Oracle Extensions to the
concepts related to identity Standard APIs"
management.

Oracle Delegated Administration Oracle Delegated Administration The 10g (10.1.4.0.1) Library.
Services Services consists of a self-service

console and administrative

interfaces. You can modify the

administrative interfaces to support

third-party applications.

Oracle Directory Provisioning You can use the Oracle Provisioning = Chapter 7, "Developing
Integration Service Integration System to provision Provisioning-Integrated
third-party applications and Applications"

integrate other provisioning systems. . Oracle Eusion Middleware

Administrator’s Guide for Oracle
Directory Integration Platform

Figure 1-2 shows an application leveraging some of the services illustrated in
Table 1-2 on page 1-5.

Developing Applications for Oracle Identity Management 1-5

Oracle Identity Management Programming: An Overview

Figure 1-2 An Application Leveraging APIs and Services

DAS
URL
Application APls DAS
Provisoning C, PL/SQL,

APIs Java APls
Directory Oracle
Integration Internet

Platform Directory

As Figure 1-2 shows, the application integrates with Oracle Internet Directory as

follows:

s Using PL/SQL, C, or Java APIs, it performs LDAP operations directly against the

directory.

= Insome cases, it directs users to self-service features of Oracle Delegated
Administration Services.

= Itisnotified of changes to entries for users or groups in Oracle Internet Directory.
The Oracle Directory Provisioning Integration Service provides this notification.

Integrating Existing Applications with Oracle Identity Management

Your enterprise may already have deployed applications that you may have wanted to
integrate with the Oracle identity management infrastructure. You can integrate these
applications using the services presented in Table 1-3.

Table 1-3 Services for Modifying Existing Applications

Service

Description

More Information

Automated User Provisioning

User Authentication Services

Centralized User Profile
Management

You can develop an agent that
automatically provisions users when
provisioning events occur in the
Oracle identity management
infrastructure. You use interfaces of
the Oracle Directory Provisioning
Integration Service to develop this

agent.

If your user interface is based on
HTTP, you can integrate it with the
Oracle HTTP Server. This enables
you to use mod_osso and OracleAS
Single Sign-On to protect the

application URL.

If your user interface is based on
HTTP and is integrated with
OracleAS Single Sign-On, you can
use the Oracle Internet Directory
Self-Service Console to manage user
profiles centrally. You can tailor the
console to the needs of your

application.

Chapter 7, "Developing
Provisioning-Integrated
Applications”

Oracle Application Server Single
Sign-On Administrator’s Guide

= The 10g (10.1.4.0.1) library.

The chapter about the delegated
administration services
framework in Oracle Identity
Management Guide to Delegated
Administration

1-6 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

2

Developing Applications with Standard

LDAP APIs

This chapter takes a high-level look at the operations that the standard LDAP API
enables. It explains how to integrate your applications with the API. Before presenting
these topics, the chapter revisits the Lightweight Directory Access Protocol (LDAP).

This chapter contains these topics:

Sample Code

Sample Code

History of LDAP

LDAP Models

About the Standard LDAP APIs
Initializing an LDAP Session
Authenticating an LDAP Session
Searching the Directory

Terminating the Session

Sample code is available at this URL:

http://www.oracle.com/technology/sample_code/

Look for the Oracle Identity Management link under Sample Applications—Fusion
Middleware.

History of LDAP

LDAP began as a lightweight front end to the X.500 Directory Access Protocol. LDAP
simplifies the X.500 Directory Access Protocol in the following ways:

It uses TCP/IP connections. These are lightweight compared to the OSI
communication stack required by X.500 implementations

It eliminates little-used and redundant features of the X.500 Directory Access
Protocol

It uses simple formats to represent data elements. These formats are easier to
process than the complicated and highly structured representations in X.500.

Developing Applications with Standard LDAP APIs 2-1

LDAP Models

= It uses a simplified version of the X.500 encoding rules used to transport data over
networks.

LDAP Models

LDAP uses four basic models to define its operations:
= Naming Model

s Information Model

= Functional Model

= Security Model

Naming Model

The LDAP naming model enables directory information to be referenced and
organized. Each entry in a directory is uniquely identified by a distinguished name
(DN). The DN tells you exactly where an entry resides in the directory hierarchy. A
directory information tree (DIT) is used to represent this hierarchy.

Figure 21 illustrates the relationship between a distinguished name and a directory
information tree.
Figure 2—1 A Directory Information Tree

root

ou=Server Development

cn=Anne Smith cn=Anne Smith

The DIT in Figure 2-1 shows entries for two employees of Example Corporation who
are both named Anne Smith. It is structured along geographical and organizational
lines. The Anne Smith represented by the left branch works in the Sales division in the
United States. Her counterpart works in the Server Development division in the
United Kingdom.

The Anne Smith represented by the right branch has the common name (cn) Anne
Smith. She works in an organizational unit (ou) named Server Development, in the
country (c) of United Kingdom of Great Britain and Northern Ireland (uk), in the
organization (o) Example. The DN for this Anne Smith entry looks like this:

cn=Anne Smith, ou=Server Development, c=uk, o=example

Note that the conventional format for a distinguished name places the lowest DIT
component at the left. The next highest component follows, on up to the root.

Within a distinguished name, the lowest component is called the relative distinguished
name (RDN). In the DN just presented, the RDN is cn=Anne Smith. The RDN for the
entry immediately above Anne Smith's RDN is ou=Server Development. And the
RDN for the entry immediately above ou=Server Development is c=uk, and so on.
A DN is thus a sequence of RDNs separated by commas.

2-2 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

LDAP Models

To locate a particular entry within the overall DIT, a client uniquely identifies that
entry by using the full DN—not simply the RDN—of that entry. To avoid confusion
between the two Anne Smiths in the global organization depicted in Figure 2-1, you
use the full DN for each. If there are two employees with the same name in the same
organizational unit, you can use other mechanisms. You may, for example, use a
unique identification number to identify these employees.

Information Model

The LDAP information model determines the form and character of information in the
directory. This model uses the concept of entries as its defining characteristic. In a
directory, an entry is a collection of information about an object. A telephone directory,
for example, contains entries for people. A library card catalog contains entries for
books. An online directory may contain entries for employees, conference rooms,
e-commerce partners, or shared network resources such as printers.

In a typical telephone directory, a person entry contains an address and a phone
number. In an online directory, each of these pieces of information is called an
attribute. A typical employee entry contains attributes for a job title, an e-mail address,
and a phone number.

In Figure 2-2, the entry for Anne Smith in Great Britain (uk) has several attributes.
Each provides specific information about her. Those listed in the balloon to the right of
the tree are emailaddrs, printername, jpegPhoto, and app preferences. Note
that the rest of the bullets in Figure 2-2 are also entries with attributes, although these
attributes are not shown.

Figure 2-2 Attributes of the Entry for Anne Smith

chn=Anne Smith

emailaddrs=
— printemame=
ipegPhoto=

app preferences=

ou=5erver Development

cn=Anne Smith cn=Anne Smith

Each attribute consists of an attribute type and one or more attribute values. The
attribute type is the kind of information that the attribute contains—jobTit1le, for
instance. The attribute value is the actual information. The value for the jobTitle
attribute, for example, might be manager.

Functional Model

The LDAP functional model determines what operations can be performed on
directory entries. Table 2-1 on page 2-4 lists and describes the three types of functions:

Developing Applications with Standard LDAP APIs 2-3

LDAP Models

Table 2-1 LDAP Functions

Function Description

Search and read The read operation retrieves the attributes of an entry whose
name is known. The list operation enumerates the children of a
given entry. The search operation selects entries from a defined
area of the tree based on some selection criteria known as a
search filter. For each matching entry, a requested set of
attributes (with or without values) is returned. The searched
entries can span a single entry, an entry's children, or an entire
subtree. Alias entries can be followed automatically during a
search, even if they cross server boundaries. An abandon
operation is also defined, allowing an operation in progress to
be canceled.

Modify This category defines four operations that modify the
directory:

= Modify—change existing entries. You can add and delete
values.

= Add—insert entries into the directory
= Delete—remove entries from the directory

= Modify RDN—change the name of an entry

Authenticate This category defines a bind operation. A bind enables a client
to initiate a session and prove its identity to the directory.
Oracle Internet Directory supports several authentication
methods, from simple clear-text passwords to public keys. The
unbind operation is used to terminate a directory session.

Security Model

The LDAP security model enables directory information to be secured. This model has
several parts:

= Authentication
Ensuring that the identities of users, hosts, and clients are correctly validated
» Access Control and Authorization

Ensuring that a user reads or updates only the information for which that user has
privileges

s Data Integrity: Ensuring that data is not modified during transmission
= Data Privacy

Ensuring that data is not disclosed during transmission
= Password Policies

Setting rules that govern how passwords are used

Authentication

Authentication is the process by which the directory server establishes the identity of
the user connecting to the directory. Directory authentication occurs when an LDAP
bind operation establishes an LDAP session. Every session has an associated user
identity, also referred to as an authorization ID.

Oracle Internet Directory provides three authentication options: anonymous, simple,
and SSL.

2-4 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

LDAP Models

Anonymous Authentication If your directory is available to everyone, users may log in
anonymously. In anonymous authentication, users leave the user name and password
fields blank when they log in. They then exercise whatever privileges are specified for
anonymous users.

Simple Authentication In simple authentication, the client uses an unencrypted DN and
password to identify itself to the server. The server verifies that the client's DN and
password match the DN and password stored in the directory.

Authentication Using Secure Sockets Layer (SSL) Secure Sockets Layer (SSL) is an industry
standard protocol for securing network connections. It uses a certificate exchange to
authenticate users. These certificates are verified by trusted certificate authorities. A
certificate ensures that an entity's identity information is correct. An entity can be an
end user, a database, an administrator, a client, or a server. A Certificate Authority
(CA) is an application that creates public key certificates that are given a high level of
trust by all parties involved.

You can use SSL in one of the three authentication modes presented in Table 2-2.

Table 2-2 SSL Authentication Modes
SSL Mode Description

No authentication Neither the client nor the server authenticates itself to the other.
No certificates are sent or exchanged. In this case, only SSL
encryption and decryption are used.

One-way authentication =~ Only the directory server authenticates itself to the client. The
directory server sends the client a certificate verifying that the
server is authentic.

Two-way authentication Both client and server authenticate themselves to each other,
exchanging certificates.

In an Oracle Internet Directory environment, SSL authentication between a client and a
directory server involves three basic steps:

1. The user initiates an LDAP connection to the directory server by using SSL on an
SSL port. The default SSL port is 3131.

2. SSL performs the handshake between the client and the directory server.

3. If the handshake is successful, the directory server verifies that the user has the
appropriate authorization to access the directory.

See Also: Oracle Advanced Security Administrator’s Guide for more
information about SSL.

Access Control and Authorization

The authorization process ensures that a user reads or updates only the information
for which he or she has privileges. The directory server ensures that the user—
identified by the authorization ID associated with the session—has the requisite
permissions to perform a given directory operation. Absent these permissions, the
operation is disallowed.

The mechanism that the directory server uses to ensure that the proper authorizations
are in place is called access control. And an access control item (ACI) is the directory
metadata that captures the administrative policies relating to access control.

An ACl is stored in Oracle Internet Directory as user-modifiable operational attributes.
Typically a whole list of these ACI attribute values is associated with a directory object.

Developing Applications with Standard LDAP APIs 2-5

LDAP Models

This list is called an access control list (ACL). The attribute values on that list govern
the access policies for the directory object.

ACIs are stored as text strings in the directory. These strings must conform to a
well-defined format. Each valid value of an ACI attribute represents a distinct access
control policy. These individual policy components are referred to as ACI Directives or
AClIs and their format is called the ACI Directive format.

Access control policies can be prescriptive: their security directives can be set to apply
downward to all entries at lower positions in the directory information tree (DIT). The
point from which an access control policy applies is called an access control policy
point (ACP).

Data Integrity

Oracle Internet Directory uses SSL to ensure that data is not modified, deleted, or
replayed during transmission. This feature uses cryptographic checksums to generate
a secure message digest. The checksums are created using either the MD5 algorithm or
the Secure Hash Algorithm (SHA). The message digest is included in each network
packet.

Data Privacy

Oracle Internet Directory uses public key encryption over SSL to ensure that data is
not disclosed during transmission. In public-key encryption, the sender of a message
encrypts the message with the public key of the recipient. Upon delivery, the recipient
decrypts the message using his or her private key. The directory supports two levels of
encryption:

s DES40

The DES40 algorithm, available internationally, is a DES variant in which the
secret key is preprocessed to provide forty effective key bits. It is designed for use
by customers outside the USA and Canada who want to use a DES-based
encryption algorithm.

. RC4_40

Oracle is licensed to export the RC4 data encryption algorithm with a 40-bit key
size to virtually all destinations where Oracle products are available. This makes it
possible for international corporations to safeguard their entire operations with
fast cryptography:.

Password Policies

A password policy is a set of rules that govern how passwords are used. When a user
attempts to bind to the directory, the directory server uses the password policy to
ensure that the password provided meets the various requirements set in that policy.

When you establish a password policy, you set the following types of rules, to mention
just a few:

s The maximum length of time a given password is valid
s The minimum number of characters a password must contain

» The ability of users to change their passwords

2-6 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

About the Standard LDAP APIs

About the Standard LDAP APIs

The standard LDAP APIs enable you to perform the fundamental LDAP operations
described in "LDAP Models". These APIs are available in C, PL/SQL, and Java. The
first two are part of the directory SDK. The last is part of the JNDI package provided
by Sun Microsystems. All three use TCP/IP connections. They are based on LDAP
Version 3, and they support SSL connections to Oracle Internet Directory.

This section contains these topics:

API Usage Model

API Usage Model

Getting Started with the C API

Getting Started with the Java API

Getting Started with the DBMS_LDAP Package

Typically, an application uses the functions in the API in four steps:

1.
2.
3.
4.

Initialize the library and obtain an LDAP session handle.
Authenticate to the LDAP server if necessary.
Perform some LDAP operations and obtain results and errors, if any.

Close the session.

Figure 2-3 illustrates these steps.

Figure 2-3 Steps in Typical DBMS_LDAP Usage

Initialize Session

v

Authenticate Session

v

Perform LDAP
Operations

v

Terminate Session

Getting Started with the C API

When you build applications with the C API, you must include the header file
ldap.h, located at SORACLE_HOME/ldap/public. In addition, you must
dynamically link to the library located at SORACLE_
HOME/lib/libclntsh.so.10.1.

See Also: "Sample C API Usage" on page 8-42 to learn how to use
the SSL and non-SSL modes.

Developing Applications with Standard LDAP APIs 2-7

Initializing an LDAP Session

Getting Started with the DBMS_LDAP Package

The DBMS_LDAP package enables PL/SQL applications to access data located in
enterprise-wide LDAP servers. The names and syntax of the function calls are similar
to those of the C APIL. These functions comply with current recommendations of the
Internet Engineering Task Force (IETF) for the C API. Note though that the PL/SQL
API contains only a subset of the functions available in the C API. Most notably, only
synchronous calls to the LDAP server are available in the PL/SQL APIL.

To begin using the PL/SQL LDAP API, use this command sequence to load DBMS_
LDAP into the database:

1. Log in to the database, using SQL*Plus. Run the tool in the Oracle home in which
your database is present. Connect as SYSDBA.

SQL> CONNECT / AS SYSDBA

2. Load the API into the database, using this command:

SQL> @?/rdbms/admin/catladap.sql

Getting Started with the Java API

Java developers can use the Java Naming and Directory Interface (JNDI) from Sun
Microsystems to gain access to information in Oracle Internet Directory. The JNDI is
found at this link:

http://java.sun.com/products/jndi
Although no Java APIs are provided in this chapter, the section immediately

following, "Initializing the Session by Using JNDI", shows you how to use wrapper
methods for the Sun JNDI to establish a basic connection.

Initializing an LDAP Session

All LDAP operations based on the C API require clients to establish an LDAP session
with the LDAP server. For LDAP operations based on the PL/SQL API, a database
session must first initialize and open an LDAP session. Most Java operations require a
Java Naming and Directory Interface (JNDI) connection. The

oracle.ldap.util. jndi package, provided here, simplifies the work involved in
achieving this connection.

The section contains the following topics:

s Initializing the Session by Using the C API

s Initializing the Session by Using DBMS_LDAP
s Initializing the Session by Using JNDI

Initializing the Session by Using the C API

The C function 1dap_init () initializes a session with an LDAP server. The server is
not actually contacted until an operation is performed that requires it, allowing
options to be set after initialization.

ldap_init has the following syntax:

LDAP *1ldap_init

(

const char *hostname,
int portno

2-8 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Initializing an LDAP Session

)i
Table 2-3 lists and defines the function parameters.

Table 2-3 Parameters for Idap_init()

Parameter Description

hostname Contains a space-separated list of directory host names or IP addresses
represented by dotted strings. You can pair each host name with a port
number if you use a colon to separate the two.

The hosts are tried in the order listed until a successful connection is
made.

Note: A suitable representation for including a literal IPv6[10] address in
the host name parameter is desired, but has not yet been determined or
implemented in practice.

portno Contains the TCP port number of the directory you would like to connect
to. The default LDAP port of 3060 can be obtained by supplying the
constant LDAP_PORT. If a host includes a port number, this parameter is
ignored.

ldap_init () and 1dap_open () both return a session handle, or pointer, to an
opaque structure that must be passed to subsequent calls to the session. These routines
return NULL if the session cannot be initialized. You can check the error reporting
mechanism for your operating system to determine why the call failed.

Initializing the Session by Using DBMS_LDAP

In the PL/SQL API, the function DBMS_LDAP.init () initiates an LDAP session. This
function has the following syntax:

FUNCTION init (hostname IN VARCHAR2, portnum IN PLS_INTEGER)
RETURN SESSION;

The function init requires a valid host name and port number to establish an LDAP
session. It allocates a data structure for this purpose and returns a handle of the type
DBMS_LDAP.SESSION to the caller. The handle returned from the call should be used
in all subsequent LDAP operations defined by DBMS_LDAP for the session. The API
uses these session handles to maintain state about open connections, outstanding
requests, and other information.

A single database session can obtain as many LDAP sessions as required, although the
number of simultaneous active connections is limited to 64. One database session
typically has multiple LDAP sessions when data must be obtained from multiple
servers simultaneously or when open sessions that use multiple LDAP identities are
required.

Note: The handles returned from calls to DBMS_LDAP.init () are
dynamic constructs. They do not persist across multiple database
sessions. Attempting to store their values in a persistent form, and to
reuse stored values at a later stage, can yield unpredictable results.

Initializing the Session by Using JNDI

The oracle.ldap.util.jndi package supports basic connections by providing
wrapper methods for the JNDI implementation from Sun Microsystems. If you want to
use the JNDI to establish a connection, see the following link:

Developing Applications with Standard LDAP APIs 2-9

Authenticating an LDAP Session

http://java.sun.com/products/jndi

Here is an implementation of oracle.ldap.util. jndi that establishes a non-SSL
connection:

import oracle.ldap.util.jndi
import javax.naming.*;

public static void main(String args(])
{
tryf{

InitialDirContext ctx = ConnectionUtil.getDefaultDirCtx(args[0], // host
args([l], // port
args(2], // DN
args[3]; // password)

// Do work

}
catch (NamingException ne)
{
// javax.naming.NamingException is thrown when an error occurs

}

Note:

» DNand password represent the bind DN and password. For
anonymous binds, set these to " ".

m Youcan use ConnectionUtil.getSSLDirCtx () to establish a
no-authentication SSL connection.

Authenticating an LDAP Session

Individuals or applications seeking to perform operations against an LDAP server
must first be authenticated. If the dn and passwd parameters of these entities are null,
the LDAP server assigns a special identity, called anonymous, to these users. Typically,
the anonymous user is the least privileged user of the directory.

When a bind operation is complete, the directory server remembers the new identity
until another bind occurs or the LDAP session terminates (unbind_s). The LDAP
server uses the identity to enforce the security model specified by the enterprise in
which it is deployed. The identity helps the LDAP server determine whether the user
or application identified has sufficient privileges to perform search, update, or
compare operations in the directory.

Note that the password for the bind operation is sent over the network in clear text. If
your network is not secure, consider using SSL for authentication and other LDAP
operations that involve data transfer.

This section contains these topics:
= Authenticating an LDAP Session by Using the C API
= Authenticating an LDAP Session by Using DBMS_LDAP

Authenticating an LDAP Session by Using the C API

The C function 1dap_simple_bind_s () enables users and applications to
authenticate to the directory server using a DN and password.

2-10 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Searching the Directory

The function 1dap_simple_bind_s () has this syntax:

int ldap_simple_bind_s
(

LDAP* 1d,

char* dn,

char* passwd

)i

Table 2—4 lists and describes the parameters for this function.

Table 2-4 Arguments for Idap_simple_bind_s()

Argument Description

1d A valid LDAP session handle
dn The identity that the application uses for authentication
passwd The password for the authentication identity

If the dn and passwd parameters for are NULL, the LDAP server assigns a special
identity, called anonymous, to the user or application.

Authenticating an LDAP Session by Using DBMS_LDAP

The PL/SQL function simple_bind_s enables users and applications to use a DN
and password to authenticate to the directory. simple_bind_s has this syntax:

FUNCTION simple_bind s (1d IN SESSION, dn IN VARCHAR2, passwd IN VARCHAR2)
RETURN PLS_INTEGER;

Note that this function requires as its first parameter the LDAP session handle
obtained from init.

The following PL/SQL code snippet shows how the PL/SQL initialization and
authentication functions just described might be implemented.

DECLARE
retvalPLS_INTEGER;
my_sessionDBMS_LDAP.session;

BEGIN

retval:= -1;

-- Initialize the LDAP session

my_session:= DBMS_LDAP.init ('yow.example.com',3060);
--Authenticate to the directory
retval:=DBMS_LDAP.simple_bind_s (my_session, 'cn=orcladmin',
'welcome') ;

In the previous example, an LDAP session is initialized on the LDAP server

yow. example. com. This server listens for requests at TCP/IP port number 3060. The
identity cn=orcladmin, whose password is welcome, is then authenticated. After
authentication is complete, regular LDAP operations can begin.

Searching the Directory

Searches are the most common LDAP operations. Applications can use complex search
criteria to select and retrieve entries from the directory.

This section contains these topics:

Developing Applications with Standard LDAP APIs 2-11

Searching the Directory

s Program Flow for Search Operations

» Search Scope

= Filters

= Searching the Directory by Using the C API

= Searching the Directory by Using DBMS_LDAP

Note: This release of the DBMS_LDAP API provides only
synchronous search capability. This means that the caller of the search
functions is blocked until the LDAP server returns the entire result set.

Program Flow for Search Operations

The programming required to initiate a typical search operation and retrieve results
can be broken down into the following steps:

1. Decide what attributes must be returned; then place them into an array.
2. Initiate the search, using the scope options and filters of your choice.

3. Obtain an entry from result set.

4. Obtain an attribute from the entry obtained in step 3.

5

Obtain the values of the attributes obtained in step 4; then copy these values into
local variables.

6. Repeat step 4 until all attributes of the entry are examined.
7. Repeat Step 3 until there are no more entries

Figure 2—4 on page 2-13 uses a flowchart to represent these steps.

2-12 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Searching the Directory

Figure 2-4 Flow of Search-Related Operations

T Collect Required Attributes

v

T Issue Search

v

No

Entry Count > 0

—}T Get First / Next Entry

N
Entry Valid =
T Get First / Next Attribute <=
Attribute Valid
vV Vv
T Get Attribute Values Ho End of Search

Search Scope

The scope of a search determines how many entries the directory server examines
relative to the search base. You can choose one of the three options described in
Table 2-5 and illustrated in Figure 2-5 on page 2-14.

Table 2-5 Options for search_s() or search_st() Functions

Option Description

SCOPE_BASE The directory server looks only for the entry corresponding to
the search base.

The directory server confines its search to the entries that are
SCOPE._ONELEVEL the immediate children of the search base entry.
The directory server looks at the search base entry and the

SCOPE_ SUBTREE entire subtree beneath it.

Developing Applications with Standard LDAP APIs 2-13

Searching the Directory

Figure 2-5 The Three Scope Options

SCOPE_BASE SCOPE_ONELEVEL SCOPE_SUBTREE

In Figure 2-5, the search base is the shaded circle. The shaded rectangle identifies the
entries that are searched.

Base of
Search

Filters

A search filter is an expression that enables you to confine your search to certain types
of entries. The search filter required by the search_s () and search_st () functions
follows the string format defined in RFC 1960 of the Internet Engineering Task Force
(IETF). As Table 2—-6 shows, there are six kinds of search filters. These are entered in
the format attribute operator value.

Table 2-6 Search Filters

Filter Type Format Example Matches

Equality (att=value) (sn=Keaton) Surnames exactly equal
to Keaton.

Approximate (att~=value) (sn~=Ketan) Surnames
approximately equal to
Ketan.

Substring (attr=[leading] *[any]*[tr (sn=*keaton*) Surnames containing

ailing] the string keaton.

Surnames starting with

(sn=keaton*)
keaton.

Surnames ending with
(sn=*keaton) keaton.

Surnames starting with
(sn=ke*at*on) ke, containing at and
ending with on.

Greater than or attr>=value (sn>=Keaton) Surnames

equal lexicographically
greater than or equal to
Keaton.

Less than or (attr<=value) (sn<=Keaton) Surnames

equal lexicographically less
than or equal to
Keaton.

Presence (attr=*) (sn=*) All entries having the

sn attribute.

2-14 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Searching the Directory

Table 2-6 (Cont.) Search Filters

Filter Type Format Example Matches
Extensible attr[:dn]:=value (sn:dn:=Mary All entries with a
Smith) surname attribute in the
entry or in the DN of
the entry matching
"Mary Smith".
Note:

= While Oracle Internet Directory supports extensible filters,
ldapsearch and the Oracle LDAP API do not. You must use a
different API, such as JNDJ, to use this type of filter.

s Oracle Internet Directory does not support extensible matching
using matching rules specified in the filter.

You can use boolean operators and prefix notation to combine these filters to form
more complex filters. Table 2-7 on page 2-15 provides examples. In these examples, the
& character represents AND, the | character represents OR, and the ! character
represents NOT.

Table 2-7 Boolean Operators

Filter Type Format Example Matches
AND (& (filterl) (filter2 (&(sn=keaton) (objec Entries with surname
). tclass=inetOrgPerso of Keaton and object
n)) class of
InetOrgPerson
OR (| (filterl) (filter2 (| (sn~=ketan) (cn=*k Entries with surname
). eaton)) approximately equal

to ketan or common
name ending in
keaton.

NOT (! (filter)) (! (mail=*)) Entries without a mail
attribute.

The complex filters in Table 2-7 can themselves be combined to create even more
complex, nested filters.

See Also:

s The LDAP Filter Definition appendix in Oracle Fusion Middleware
Administrator’s Guide for Oracle Internet Directory

s RFC2254 at: http://www.ietf.org

for more information about LDAP filters.

Searching the Directory by Using the C API
The C function 1dap_search_s () performs a synchronous search of the directory.
The syntax for 1dap_search_s () looks like this:

int ldap_search_s

(

Developing Applications with Standard LDAP APIs 2-15

Searching the Directory

LDAP* 14,

char* base,

int scope,
char* filter

int attrsonly,

LDAPMessage** res
)i

ldap_search_s works with several supporting functions to refine the search. The
steps that follow show how all of these C functions fit into the program flow of a

search operation. Chapter 8, "C API Reference", examines all of these functions in
depth.

1. Decide what attributes must be returned; then place them into an array of strings.
The array must be null terminated.

2. Initiate the search, using 1dap_search_s (). Refine your search with scope
options and filters.

3. Obtain an entry from the result set, using either the 1dap_first_entry ()
function or the 1dap_next_entry () function.

4. Obtain an attribute from the entry obtained in step 3. Use either the 1dap_first_
attribute () function or the 1dap_next_attribute () function for this
purpose.

5. Obtain all the values for the attribute obtained in step 4; then copy these values
into local variables. Use the 1dap_get_values () function or the ldap_get_
values_len () function for this purpose.

6. Repeat step 4 until all attributes of the entry are examined.

7. Repeat step 3 until there are no more entries.

Table 2-8 Arguments for Idap_search_s()

Argument Description

14 A valid LDAP session handle

base The DN of the search base.

scope The breadth and depth of the DIT to be searched.
filter The filter used to select entries of interest.

attrs The attributes of interest in the entries returned.
attrso If set to 1, only returns attributes.

res This argument returns the search results.

Searching the Directory by Using DBMS_LDAP

You use the function DBMS_LDAP. search_s () to perform directory searches if you
use the PL/SQL API.

Here is the syntax for DBMS_LDAP.search_s():

FUNCTION search_s

(

1d IN SESSION,

base IN VARCHAR2,

scope IN PLS_INTEGER,
filter IN VARCHAR2,

attrs IN STRING_COLLECTION,

2-16 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Terminating the Session

attronly IN PLS_INTEGER,
res OUT MESSAGE

)

RETURN PLS_INTEGER;

The function takes the arguments listed and described in Table 2-9 on page 2-17.

Table 2-9

Arguments for DBMS_LDAP.search_s() and DBMS_LDAP.search_st()

Argument

Description

1d

base
scope
filter
attrs
attronly

res

A valid session handle

The DN of the base entry in the LDAP server where search should start

The breadth and depth of the DIT that must be searched
The filter used to select entries of interest

The attributes of interest in the entries returned

If set to 1, only returns the attributes

An OUT parameter that returns the result set for further processing

search_s works with several supporting functions to refine the search. The steps that
follow show how all of these PL/SQL functions fit into the program flow of a search

operation.

1. Decide what attributes need to be returned; then place them into the DBMS_
LDAP.STRING_COLLECTION data-type.

2. Perform the search, using either DBMS_LDAP. search_s () or DBMS_
LDAP.search_st (). Refine your search with scope options and filters.

3. Obtain an entry from the result set, using eitherDBMS_LDAP. first_entry () or
DBMS_LDAP.next_entry ().

4. Obtain an attribute from the entry obtained in step 3. Use either DBMS_
LDAP.first_attribute() or DBMS_LDAP.next_attribute () for this
purpose.

5. Obtain all the values for the attribute obtained in step 4; then copy these values
into local variables. Use either DBMS_LDAP.get_values () or DBMS_LDAP.get_
values_len () for this purpose.

6. Repeat step 4 until all attributes of the entry are examined.

7. Repeat step 3 until there are no more entries.

Terminating the Session

This section contains these topics:

s Terminating the Session by Using the C API
s Terminating the Session by Using DBMS_LDAP

Terminating the Session by Using the C API

After an LDAP session handle is obtained and all directory-related work is complete,
the LDAP session must be destroyed. In the C API, the 1dap_unbind_s () function is
used for this purpose.

Developing Applications with Standard LDAP APIs 2-17

Terminating the Session

ldap_unbind_s () has this syntax:

int ldap_unbind_s

(
LDAP* 1d

)i

A successful call to 1dap_unbind_s () closes the TCP/IP connection to the directory.
It de-allocates system resources consumed by the LDAP session. Finally it returns the
integer LDAP_SUCCESS to its callers. After 1dap_unbind_s () is invoked, no other
LDAP operations are possible. A new session must be started with 1dap_init ().

Terminating the Session by Using DBMS_LDAP

The DBMS_LDAP.unbind_s () function destroys an LDAP session if the PL/SQL API
is used. unbind_s has the following syntax:

FUNCTION unbind_s (1d IN SESSION) RETURN PLS_INTEGER;

unbind_s closes the TCP/IP connection to the directory. It de-allocates system
resources consumed by the LDAP session. Finally it returns the integer DBMS_
LDAP.SUCCESS to its callers. After the unbind_ s is invoked, no other LDAP
operations are possible. A new session must be initiated with the init function.

2-18 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

3

Extensions to the LDAP Protocol

This chapter describes extensions to the LDAP protocol that are available in Oracle
Internet Directory 11¢ Release 1 (11.1.1).

This chapter contains these topics:

SASL Authentication

Using Controls

Proxying on Behalf of End Users
Creating Dynamic Password Verifiers
Performing Hierarchical Searches
Sorted LDAP Search Results

Paged LDAP Search Results

Password Policies

SASL Authentication

Oracle Internet Directory supports two mechanisms for SASL-based authentication.
This section describes the two methods. It contains these topics:

SASL Authentication by Using the DIGEST-MD5 Mechanism
SASL Authentication by Using External Mechanism

SASL Authentication by Using DIGEST-MD5

SASL Digest-MD5 authentication is the required authentication mechanism for LDAP
Version 3 servers (RFC 2829). LDAP Version 2 does not support Digest-MD5.

To use the Digest-MD5 authentication mechanism, you can use either the Java API or
the C API to set up the authentication. The C API supports only auth mode.

See Also:

= Java-specific information in "Using DIGEST-MD?5 to Perform
SASL Authentication” on page 5-8 and "Example: Using SASL
Digest-MD5 auth-int and auth-conf Modes" on page 5-8.

s C-specific information in "Authenticating to the Directory" on
page 8-11 and "SASL Authentication Using Oracle Extensions" on
page 8-13.

Extensions to the LDAP Protocol 3-1

SASL Authentication

The SASL Digest-MD5 mechanism includes three modes, each representing a different
security level or "Quality of Protection.” They are:

= auth—Authentication only. Authentication is required only for the initial bind.
After that, information is passed in clear text.

= auth-int—Authentication plus integrity. Authentication is required for the
initial bind. After that, check sums are used to guarantee the integrity of the data.

= auth-conf—Authentication plus confidentiality. Authentication is required for
the initial bind. After that, encryption is used to protect the data. Five cipher
choices are available:

- DES
- 3DES
- RC4
- RC4-56
- RC4-40
These are all symmetric encryption algorithms.

Prior to 10g (10.1.4.0.1), Oracle Internet Directory supported only the auth mode of
the Digest-MD5 mechanism. As of 10g (10.1.4.0.1), Oracle Internet Directory supports
all three modes with the Java Naming and Directory Interface (JNDI) of jdk1.4 API or
with the OpenLDAP Java API. The Oracle LDAP SDK supports only auth mode.

Out of the box, Oracle Internet Directory SASL Digest-MD5 authentication supports
generation of static SASL Digest-MD?5 verifiers based on user or password, but not
based on realm. If you want to use SASL Digest-MD5 with realms, you must enable
reversible password generation by changing the value of the
orclpasswordencryptionenable attribute to 1 in the related password policy
before provisioning new users. The LDIF file for modifying the value should look like
this:

dn: cn=default, cn=pwdPolicies, cn=Common, cn=Products, cn=0OracleContext
changetype: modify

replace: orclpwdencryptionenable

orclpwdencryptionenable: 1

The Digest-MD5 mechanism is described in RFC 2831 of the Internet Engineering Task
Force. It is based on the HTTP Digest Authentication (RFC 2617).

See Also:

» Internet Engineering Task Force Web site, at
http://www.ietf.org.

s Open LDAP class libraries http: //www.openldap.org.

Steps Involved in SASL Authentication by Using DIGEST-MD5
SASL Digest-MD5 authenticates a user as follows:

1. The directory server sends data that includes various authentication options that it
supports and a special token to the LDAP client.

2. The client responds by sending an encrypted response that indicates the
authentication options that it has selected. The response is encrypted in such a
way that proves that the client knows its password.

3. The directory server then decrypts and verifies the client's response.

3-2 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Using Controls

SASL Authentication by Using External Mechanism
The following is from section 7.4 of RFC 2222 of the Internet Engineering Task Force.

The mechanism name associated with external authentication is "EXTERNAL". The
client sends an initial response with the authorization identity. The server uses
information, external to SASL, to determine whether the client is authorized to
authenticate as the authorization identity. If the client is so authorized, the server
indicates successful completion of the authentication exchange; otherwise the server
indicates failure.

The system providing this external information may be, for example, IPsec or
SSL/TLS.

If the client sends the empty string as the authorization identity (thus requesting the
authorization identity be derived from the client's authentication credentials), the
authorization identity is to be derived from authentication credentials that exist in the
system which is providing the external authentication.

Oracle Internet Directory provides the SASL external mechanism over an SSL. mutual
connection. The authorization identity (DN) is derived from the client certificate
during the SSL network negotiation.

Using Controls

The LDAPv3 Protocol, as defined by RFC 2251, allows extensions by means of
controls. Oracle Internet Directory supports several controls. Some are standard and
described by RECs. Other controls, such as the CONNECT_BY control for hierarchical
searches are Oracle-specific. You can use controls with either Java or C.

Controls can be sent to a server or returned to the client with any LDAP message.
These controls are referred to as server controls. The LDAP API also supports a
client-side extension mechanism through the use of client controls. These controls
affect the behavior of the LDAP API only and are never sent to a server.

For information about using LDAP controls in C, see "Working With Controls" on
page 8-16.

For information about using LDAP controls in Java, see the documentation for the
JNDI package javax.naming.ldap athttp://java.sun.com/products/jndi.

The controls supported by Oracle Internet Directory 11¢ Release 1 (11.1.1) are listed in
Table 3-1, " Request Controls Supported by Oracle Internet Directory” and Table 3-2,
" Response Controls Supported by Oracle Internet Directory"

Table 3-1 Request Controls Supported by Oracle Internet Directory

Object Identifier Name Description

1.2.840.113556.1.4.319 OID_SEARCH_ See "Paged LDAP Search Results" on page 3-11.
PAGING_CONTROL

1.2.840.113556.1.4.473 OID_SEARCH_ See "Sorted LDAP Search Results" on page 3-10.
SORTING_REQUEST _
CONTROL

2.16.840.1.113730.3.4.2 GSL_MANAGE_DSA_ Used to manage referrals, dynamic groups, and alias objects in Oracle
CONTROL Internet Directory. For more information, please see RFC 3296,

"Named Subordinate References in Lightweight Directory Access
Protocol (LDAP) Directories," at http: //www.ietf.org.

Extensions to the LDAP Protocol 3-3

Using Controls

Table 3-1 (Cont.) Request Controls Supported by Oracle Internet Directory

Object Identifier Name Description
2.16.840.1.113894.1.8.1 OID_RESET_ Used to perform a proxy switch of an identity on an established LDAP
PROXYCONTROL_ connection. For example, suppose that Application A connects to the
IDENTITY directory server and then wishes to switch to Application B. It can
simply do a rebind by supplying the credentials of Application B.
However, there are times when the proxy mechanism for the
application to switch identities could be used even when the
credentials are not available. With this control, Application A can
switch to Application B provided Application A has the privilege in
Oracle Internet Directory to proxy as Application B.
2.16.840.1.113894.1.8.2 OID_ Sent by applications that require Oracle Internet Directory to check for
APPLYUSEPASSWORD account lockout before sending the verifiers of the user to the
_POLICY application. If Oracle Internet Directory detects this control in the
verifier search request and the user account is locked, then Oracle
Internet Directory does not send the verifiers to the application. It
sends an appropriate password policy error.
2.16.840.1.113894.1.8.3 CONNECT_BY See "Performing Hierarchical Searches" on page 3-9
2.16.840.1.113894.1.8.4 OID_CLIENT_IP_ Intended for a client to send the end user IP address if IP lockout is to
ADDRESS be enforced by Oracle Internet Directory.
2.16.840.1.113894.1.8.5 GSL_REQDATTR_ Used with dynamic groups. Directs the directory server to read the
CONTROL specific attributes of the members rather than the membership lists.

2.16.840.1.113894.1.8.6

2.16.840.1.113894.1.8.14

2.16.840.1.113894.1.8.16

2.16.840.1.113894.1.8.23

2.16.840.1.113894.1.8.29

2.16.840.1.113894.1.8.36

PasswordStatusRequest
Control

OID_DYNAMIC_
VERIFIER_REQUEST _
CONTROL

AccountStatusRequestC
ontrol

GSL_CERTIFICATE_

CONTROL"

EffectivePolicyControl

DelSubtreeControl

When packaged as part of the LDAP Bind /Compare operation
request, this control causes the server to generate a password policy
response control. The actual response control depends on the situation.
Cases include imminent password expiration, number of grace logins
remaining, password expired, and account locked.

The request control that the client sends when it wants the server to
create a dynamic password verifier. The server uses the parameters in
the request control to construct the verifier.

When packaged with the LDAP search operation associated with the
authentication process, the Oracle Internet Directory returns a
password policy response control to inform the client application of
account state related information like account lockout, password
expiration etc. The application can then parse and enforce the results.

Certificate search control. The request control that the client sends to
specify how to search for a user certificate. See the appendix
"Searching the Directory for User Certificates" in Oracle Fusion
Middleware Administrator’s Guide for Oracle Internet Directory.

This control is packaged as part of an LDAP base search, where the
base DN is that of the user entry being tested. The entry need not exist
in the directory at the time. Passing this control results in the return of
the LDAP entry describing the applicable password policy, assuming
the entity performing the search has the access rights to view the
password policy entry. If the desired password is provided as the
optional testPassword parameter, the directory server returns the
response control 2.16.840.1.113894.1.8.32.

When this control is sent with a delete operation, it causes the deletion
of the entire subtree below the DN provided. Any user having
necessary privileges can perform this operation.

3-4 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Proxying on Behalf of End Users

Table 3-2 Response Controls Supported by Oracle Internet Directory

Object Identifier Name Description

2.16.840.1.113894.1.8.7 OID_PASSWORD_ Password policy control. Response control that the server sends when
EXPWARNING_ the pwdExpireWarning attribute is enabled and the client sends the
CONTROL request control. The response control value contains the time in

2.16.840.1.113894.1.8.8

2.16.840.1.113894.1.8.9

2.16.840.1.113894.1.8.15

2.16.840.1.113894.1.8.32

OID_PASSWORD_
GRACELOGIN_
CONTROL

OID_PASSWORD_
MUSTCHANGE_
CONTROL

OID_DYNAMIC_
VERIFIER_RESPONSE _
CONTROL

PasswordValidationCon
trol

seconds to password expiration.

Password policy control. The response control that the server sends
when grace logins are configured and the client sends a request
control. The response control value contains the remaining number of
grace logins.

Password policy control. The response control that the server sends
when forced password reset is enabled and the client sends the request
control. The client must force the user to change the password upon
receipt of this control.

The response control that the server sends to the client when an error
occurs. The response control contains the error code.

The server sends this in response to control 2.16.840.1.113894.1.8.29
when the desired password is provided as the optional testPassword
parameter. A client application can parse the validationResult to
determine whether the password can be accepted by the server
("Success") or the reason it has been rejected. The same type of error
message generated during a failed LDAP modify operation on
userpassword is returned as the value.

To find out what controls are available in your Oracle Internet Directory installation,

type:

ldapsearch -p port -b "" -s base "objectclass=*"

Look for entries that begin with supportedcontrol=.

Proxying on Behalf of End Users

Often applications must perform operations that require impersonating an end user.
An application may, for example, want to retrieve resource access descriptors for an
end user. (Resource access descriptors are discussed in the concepts chapter of Oracle
Fusion Middleware Administrator’s Guide for Oracle Internet Directory.)

A proxy switch occurs at run time on the JNDI context. An LDAP v3 feature, proxying
can only be performed using InitialLdapContext, a subclass of
InitialDirContext. If you use the Oracle extension
oracle.ldap.util.jndi.ConnectionUtil to establish a connection (the
example following), InitialLdapContext is always returned. If you use JNDI to
establish the connection, make sure that it returns InitialLdapContext.

To perform the proxy switch to an end user, the user DN must be available. To learn
how to obtain the DN, see the sample implementation of the
oracle.ldap.util.User class at this URL:

http://www.oracle.com/technology/sample_code/

Look for the Oracle Identity Management link under Sample Applications—Fusion
Middleware, then look for "Sample Application Demonstrating Proxy Switching using
Oracle Internet Directory Java APL"

This code shows how the proxy switch occurs:

Extensions to the LDAP Protocol 3-5

Creating Dynamic Password Verifiers

import
import
import
import

public
{
tryf{

}

oracle.ldap.util.jndi.*;
javax.naming.directory.*;
javax.naming.ldap.*;
javax.naming. *;

static void main(String argsl[])

InitialLdapContext appCtx=ConnectionUtil.getDefaultDirCtx(args[0], // host
args[l], // port
args[2], // DN
args[3]; // pass)

// Do work as application
//
String userDN=null;
// assuming userDN has the end user DN value
// Now switch to end user
ctx.addToEnvironment (Context.SECURITY_PRINCIPAL, userDN) ;
ctx.addToEnvironment ("java.naming.security.credentials", "");
Control ctls[] = {
new ProxyControl ()
}i
((LdapContext)ctx) .reconnect (ctls);
// Do work on behalf of end user
//

catch (NamingException ne)

}

{

}

// javax.naming.NamingException is thrown when an error occurs

The ProxyControl class in the code immediately preceding implements a
javax.naming.ldap.Control. To learn more about LDAP controls, see the LDAP
control section of Oracle Fusion Middleware Reference for Oracle Identity Management.
Here is an example of what the ProxyControl class might look like:

import javax.naming.*;
import javax.naming.ldap.Control;
import java.lang.*;

public class ProxyControl implements Control {

public byte[] getEncodedvValue() {
return null;

public String getID() {
return "2.16.840.1.113894.1.8.1";

public boolean isCritical() {
return false;

Creating Dynamic Password Verifiers

You can modify the LDAP authentication APIs to generate application passwords
dynamically—that is, when users log in to an application. This feature has been

3-6 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Creating Dynamic Password Verifiers

designed to meet the needs of applications that provide parameters for password
verifiers only at runtime.

This section contains the following topics:

= Request Control for Dynamic Password Verifiers

= Syntax for DynamicVerifierRequestControl

= Parameters Required by the Hashing Algorithms
s Configuring the Authentication APIs

= Response Control for Dynamic Password Verifiers

s Obtaining Privileges for the Dynamic Verifier Framework

Request Control for Dynamic Password Verifiers

Creating a password verifier dynamically involves modifying the LDAP
authentication APIs 1dap_search or 1dap_modify to include parameters for
password verifiers. An LDAP control called DynamicVerifierRequestControl is
the mechanism for transmitting these parameters. It takes the place of the password
verifier profile used to create password verifiers statically. Nevertheless, dynamic
verifiers, like static verifiers, require that the directory attributes orclrevpwd
(synchronized case) and orclunsyncrevpwd (unsynchronized case) be present and
that these attributes be populated.

Note that the orclpwdencryptionenable attribute of the password policy entry in
the user's realm must be set to 1 if orclrevpwd is to be generated. If you fail to set
this attribute, an exception is thrown when the user tries to authenticate. To generate
orclunsyncrevpwd, you must add the crypto type 3DES to the entry
cn=defaultSharedPINProfileEntry, cn=common, cn=products, cn=oraclec
ontext.

Syntax for DynamicVerifierRequestControl
The request control looks like this:

DynamicVerifierRequestControl

controlOid: 2.16.840.1.113894.1.8.14

criticality: FALSE

controlValue: an OCTET STRING whose value is the BER encoding of the following

type:
ControlValue ::= SEQUENCE ({

version [0]

crypto [1] CHOICE OPTIONAL ({
SASL/MD5 [0] LDAPString,
SyncML1.0 [1] LDAPString,
SyncML1.1 [2] LDAPString,
CRAM-MD5 [3] LDAPString },

username [1] OPTIONAL LDAPString,

realm [2] OPTIONAL LDAPString,

nonce [3] OPTIONAL LDAPString,

}

Note that the parameters in the control structure must be passed in the order in which
they appear. Table 3-3 defines these parameters.

Extensions to the LDAP Protocol 3-7

Creating Dynamic Password Verifiers

Table 3-3 Parameters in DynamicVerifierRequestControl

Parameter Description
controlOID The string that uniquely identifies the control structure.
crypto The hashing algorithm. Choose one of the four identified in the

control structure.

username The distinguished name (DN) of the user. This value must
always be included.

realm A randomly chosen realm. It may be the identity management
realm that the user belongs to. It may even be an application
realm. Required only by the SASL/MD?5 algorithm.

nonce An arbitrary, randomly chosen value. Required by SYNCML1.0
and SYNCML1.1.

Parameters Required by the Hashing Algorithms

Table 34 lists the four hashing algorithms that are used to create dynamic password
verifiers. The table also lists the parameters that each algorithm uses as building
blocks. Note that, although all algorithms use the user name and password
parameters, they differ in their use of the realm and nonce parameters.

Table 3—-4 Parameters Required by the Hashing Algorithms

Algorithm Parameters Required

SASL/MD5 username, realm, password
SYNCML1.0 username, password, nonce
SYNCML1.1 username, password, nonce

CRAM-MD5 username, password

Configuring the Authentication APIs

Applications that require password verifiers to be generated dynamically must include
DynamicVerifierRequestControl in their authentication APIs. Either 1dap_
search or 1dap_compare must incorporate the controlOID and the control values
as parameters. They must BER-encode the control values as shown in "Syntax for
DynamicVerifierRequestControl"; then they must send both control0ID and the
control values to the directory server.

Parameters Passed If Idap_search Is Used

If you want the application to authenticate the user, use 1dap_search to pass the
control structure. If 1dap_search is used, the directory passes the password verifier
that it creates to the client.

ldap_search must include the DN of the user, the control0ID, and the control
values. If the user's password is a single sign-on password, the attribute passed is
authpassword. If the password is a numeric pin or another type of unsynchronized
password, the attribute passed is orclpasswordverifier; orclcommonpin.

Parameters Passed If Idap_compare Is Used

If you want Oracle Internet Directory to authenticate the user, use 1dap_compare to
pass the control structure. In this case, the directory retains the verifier and
authenticates the user itself.

3-8 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Performing Hierarchical Searches

Like 1dap_search, 1dap_compare must include the DN of the user, the
controlOID, the control values, and the user's password attribute. For 1dap_
compare, the password attribute is orclpasswordverifier;orclcommonpin
(unsynchronized case).

Response Control for Dynamic Password Verifiers

When it encounters an error, the directory sends the LDAP control
DynamicVerifierResponseControl to the client. This response control contains
the error code. To learn about the error codes that the response control sends, see the
troubleshooting chapter in Oracle Fusion Middleware Administrator’s Guide for Oracle
Internet Directory.

Obtaining Privileges for the Dynamic Verifier Framework

If you want the directory to create password verifiers dynamically, you must add your
application identity to the VerifierServices group of directory administrators. If you
fail to perform this task, the directory returns an LDAP_INSUFFICIENT_ACCESS
error.

Performing Hierarchical Searches

One of the server controls you can pass to an LDAP search function is CONNECT_BY.
This is an Oracle-specific control that causes the search to traverse a hierarchy. For
example, if you search for all the users in groupl, without the CONNECT_BY control,
the search function returns only users who are direct members of groupl. If you pass
the CONNECT_BY control, however, the search function traverses the hierarchy. If
group?2 is a member of groupl, the search also returns users in group2. If group3 is
a member of group2, the search also returns users in group3, and so forth.

New Features of the CONNECT_BY Control

In 10¢ (10.1.4.0.1), the CONNECT_BY control was enhanced in two ways:

= You can now traverse the hierarchy in either direction. That is, you can search
through all containers in which an entry is contained, and through all containers
contained within an entry.

= You can now specify the number of levels of the hierarchy to search.

Value Fields in the CONNECT_BY Control

In previous releases, the CONNECT_BY control required no values. Because of the new
functionality, you can now pass one or both of the following values to CONNECT_BY:

» Hierarchy-establishing attribute—A string representing the attribute to be searched.
This value is necessary only when searching through all containers in which an
entry is contained. When searching through containers contained within an entry,
you need not provide this value because the search filter provides that
information.

= Number of levels—An integer representing the number of levels to traverse. If the
value is 0, the search traverses all levels. The default value is 0, so you need not
pass this value if you want the search to traverse all leve.s

Extensions to the LDAP Protocol 3-9

Sorted LDAP Search Results

Example 1: Find All the Groups to Which a User Belongs

Using a filter such as (member=cn=jsmith), you do not need to provide the
hierarchy-establishing attribute member because it is in the search filter. You do not
need to pass a value for the number of levels because 0 is the default.

Example 2: Find Only the Groups to Which a User Directly Belongs

Using the same filter as in Example 1, you would pass the integer control value 1. The
result would be the same as if you did not use the CONNECT_BY control at all.

Example 3: Find All Members of a Group

In this case, your search filter would specify (objectclass=*), but if you want to
find all members of groupl, the attribute for traversing the hierarchy is member. For
this search, you must pass the string "member" as the hierarchy-establishing attribute.
You do not need to pass a value for the number of levels because 0 is the default.

Example 4: Finding all Managers of a User

This is similar to Example 3, except that you want to find all managers of the user
jsmith, so manager is the attribute for traversing the hierarchy. For this search, you
would pass the string "manager". You do not need to pass a value for the number of
levels because 0 is the default.

See Also:

s 'ldap_search_ext, ldap_search_ext_s, Idap_search, and ldap_
search_s" on page 8-18.

= "Working With Controls" on page 8-16.

Sorted LDAP Search Results

As of Oracle Internet Directory 10g (10.1.4.0.1), you can obtain sorted results from an
LDAP search, as described by IETF RFC 2891. You request sorted results by passing a
control of type 1.2.840.113556.1.4.473 to the search function. The server returns a
response control is of type 1.2.840.113556.1.4.474. Error processing and other details are
described in RFC 2891.

See Also: IETF RFC 2891, "LDAP Control Extension for Server Side
Sorting of Search Results," at http://www.ietf.org.

Sorting and paging may be used together.

The Oracle Internet Directory implementation of RFC 2891 has the following
limitations:

» It supports only one attributeType in the control value.

» It uses the default ordering rule defined in the schema for each attribute.
» Linguistic sorting is not supported.

» The default sorting order is ascending.

» If a sort key is a multi-valued attribute, and an entry has multiple values for that
attriute, and there are no other controls that affect the sorting order, then the server
uses the least value, according to the ordering rule for that attribute.

» The sort attribute must be searchable. That is, it must be a cataloged attribute in
Oracle Internet Directory.

3-10 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Password Policies

Paged LDAP Search Results

As of Oracle Internet Directory 10g (10.1.4.0.1), you can obtain paged results from an
LDAP search, as described by IETF RFC 2696. You request sorted results by passing a
control of type 1.2.840.113556.1.4.319 to the search function. Details are described in
RFC 2696.

See Also: IETF RFC 2696, "LDAP Control Extension for Simple
Paged Results Manipulation," at http: //www.ietf.org.

Sorting and paging may be used together.

The Oracle Internet Directory implementation of RFC 2696 has the following
limitations:

s The number of entries in a page might be less than the page size if an ACI partially
blocks some entries from the search results.

s The paging response control does not contain the total entry count estimation. The
return value is always 0.

Password Policies

The Oracle Internet Directory natively supports a rich set of policies governing
passwords. See "Managing Password Policies" in Oracle Fusion Middleware
Administrator’s Guide for Oracle Internet Directory. You should design your applications
to interact with the directory's password policies at runtime and handle any resulting
events gracefully. Oracle Internet Directory provides several mechanisms to allow
clients to interact with the server's password policies.

This section contains the following topics:
= User Provisioning
s User Authentication

s User Account Maintenance

User Provisioning

If your application provisions its own users in the directory, you should test
passwords for acceptability by the server before committing the new user entry into
the directory. You can test a password by using the following custom control:

EffectivePolicyControl

::= SEQUENCE ({
controlType 2.16.840.1.113894.1.8.29,
criticality BOOLEAN DEFAULT FALSE,
controlvValue testPassword
}

testPassword ::= OCTET STRING (optional)

Package this control as part of an LDAP base search, where the base DN is that of the
user entry being tested. The entry does not need to exist in the directory at the time.
The server returns the LDAP entry describing the applicable password policy,
assuming the entity performing the search has the access rights to view the password
policy entry. Providing the desired password as the optional testPassword parameter
results in the directory server returning the following response control:

PasswordValidationControl

Extensions to the LDAP Protocol 3-11

Password Policies

::= SEQUENCE ({
controlType 2.16.840.1.113894.1.8.32,
criticality BOOLEAN DEFAULT FALSE,
controlValue validationResult
}

validationResult ::= OCTET STRING

Your client application can parse the validationResult to determine whether the
password is accepted by the server ("Success") or the reason it has been rejected. The
error message is the same as that generated during a failed LDAP modify operation on
userpassword.

User Authentication

User authentication use-cases broadly fall into two main categories:
1. LDAP Bind/Compare Operation-Based Authentication
2. LDAP Search Operation-Based Authentication

The former refers to authentication performed on the standard userpassword
attribute. The entire authentication process is performed within the directory server,
and appropriate internal events are generated to update various account states as
necessary.

The latter refers to authentication performed against other authentication tokens, such
as password verifiers, maintained as part of a user entry. The token may be retrieved
by the application. The authentication process occurs within the application and
outside the scope of the directory server. Therefore in LDAP search-based
authentications, the directory does not implicitly know the result of the authentication
attempt.

The following two subsections describe the best practices for application integration
when dealing with these two types of authentication scenarios.

LDAP Bind/Compare Operation-Based Authentication

The traditional use of this type of authentication is in an unsophisticated protocol. The
application performs either an LDAP bind or compare operation against the server
and checks for success. It handles all other cases as authentication failures.

When an authentication attempt fails, an application can determine the cause and
either take action to remedy the situation or to expose the cause to the end user so that
the end user can take an action to remedy the situation. This enhances the user
experience and reduces administrative overhead. To retrieve such cause information
during an LDAP Bind/Compare operation, you use the following LDAP control:

PasswordStatusRequestControl

::= SEQUENCE ({
controlType 2.16.840.1.113894.1.8.6,
criticality BOOLEAN DEFAULT FALSE,
}

When packaged as part of the LDAP Bind/Compare operation request, this control is
processed by the server and causes the generation of a response control. The actual
response control depends on the situation. See the password response controls in
Table 3-2, " Response Controls Supported by Oracle Internet Directory" on page 3-5.
Cases include imminent password expiration, number of grace logins remaining,
password expired, and account locked.

3-12 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Password Policies

LDAP Search Operation-Based Authentication

If an application performs its own authentication after retrieving an authentication
token from the directory, then none of the state-related policies are effective. Without
these policies, scenarios such as locked accounts aren't enforceable, and users with
expired accounts can still authenticate against the application.

The Oracle Internet Directory provides two mechanism that allow such an application
to leverage the state related policy framework already present in the directory server:

= Ability to Check and Enforce State Policies at Authentication Time

= Ability to Inform the Directory of Authentication Success/Failure

Ability to Check and Enforce State Policies at Authentication Time This ability is enabled
through the following custom control:

AccountStatusRequestControl

::= SEQUENCE {
controlType 2.16.840.1.113894.1.8.16,
criticality BOOLEAN DEFAULT FALSE,
}

When this control is packaged with the LDAP search operation associated with the
authentication process, Oracle Internet Directory processes this control and returns a
response control to inform the client application of account state related information
like account lockout, password expiration etc. See the password response controls in
Table 3-2, " Response Controls Supported by Oracle Internet Directory" on page 3-5.
The application can then parse and enforce the results.

While this addresses the issue of how the policies can be enforced by the client
application, another fundamental application requirement is as follows:

Ability to Inform the Directory of Authentication Success/Failure Oracle Internet Directory
provides this ability through the virtual attribute: orc1AccountStatusEvent.

This attribute is available on all user entries as a virtual attribute. That is, it has no disk
footprint. However, modify operations can be applied on it. By default, a directory
ships with restricted access to this attribute, so you must ask the directory
administrator to grant your application identity write access on the attribute for the
relevant user population.

You communicate authentication success or failure to the directory by modifying this
attribute to hold UserAccountEvent. The following LDIF illustrates this.

dn: UserDN

changetype: modify

replace: orclAccountStatusEvent
orclAccountStatusEvent: UserAccountEvent

The Oracle Internet Directory understands the following values for UserAccountEvent:

(Authentication Success)
(Authentication Failure)

UserAccountEvent = 1
UserAccountEvent = 2
Upon receipt of these events, the Oracle Internet Directory invokes the same logic that
is invoked during an authentication/success failure of an LDAP bind or compare
operation, thereby updating the necessary account states.

In this way, you can leverage the existing account state related infrastructure available
in the Oracle Internet Directory to secure your application.

Extensions to the LDAP Protocol 3-13

Password Policies

User Account Maintenance

User account maintenance and its interaction with password policies occur mostly
around periodic password modifications. We recommend that applications utilize the
EffectivePolicyControl described above to retrieve the effective policy and parse it to
generate a message guiding the end user to the password construction requirements.
Furthermore, we encourage the usage of the "test" capabilities encapsulated in this
control to direct the end user towards the cause behind a modification failure.
Handling these situations within the application reduces administrative overhead.

Secondly, there are a multitude of use-cases requiring a user to change his or her
password upon next logon. The Oracle Internet Directory natively triggers this
requirement when the pwdmustchange password policy element is enabled and a
userpassword undergoes a non-self modification. However, in the event that an
explicit trigger of this requirement is needed, the Oracle Internet Directory supports it
also via the orclAccountStatusEvent attribute described above. The relevant events are:

UserAccountEvent = 3 (Require Password Reset on next Logon)
UserAccountEvent = 4 (Clear Password Reset Requirement)

If the application has an administrative interface, this functionality may be desirable
and can be exposed to the administrator.

3-14 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

4

Developing Applications With Oracle

Extensions to the Standard APls

This chapter introduces the Oracle extensions to the Java and PL/SQL LDAP APIs.
Chapter 5 explains how the Java extensions are used. Chapter 6 is about the PL/SQL
extensions. Oracle does not support extensions to the C APL

This chapter contains these topics:

Sample Code

Sample Code

Using Oracle Extensions to the Standard APIs
Creating an Application Identity in the Directory
Managing Users

Managing Groups

Managing Realms

Discovering a Directory Server

Sample code is available at this URL:

http://www.oracle.com/technology/sample_code/

Look for the Oracle Identity Management link under Sample Applications—Fusion
Middleware.

Using Oracle Extensions to the Standard APls
The APIs that Oracle has added to the existing APIs fulfill these functions:

User management

Applications can set or retrieve various user properties

Group management

Applications can query group properties

Realm management

Applications can set or retrieve properties about identity management realms
Server discovery management

Applications can locate a directory server in the Domain Name System (DNS)

Developing Applications With Oracle Extensions to the Standard APIs 4-1

Creating an Application Identity in the Directory

Subsequent sections examine each of these functions in detail. Note that applications
must use the underlying APIs for such common tasks as establishing and closing
connections and looking up directory entries not searchable with the API extensions.

Figure 4-1 shows what program flow looks like when the API extensions are used.

Figure 4-1 Programmatic Flow for API Extensions

Established Connection
to Oracle Internet
Directory

v

Use Regular [=——p»| Use Oracle
API Functions | gee={ Extension API

v

Close Oracle Internet
Directory Connection

Connected State

As Figure 4-1 shows, an application first establishes a connection to Oracle Internet
Directory. It can then use the standard API functions and the API extensions
interchangeably.

Creating an Application Identity in the Directory

Before an application can use the LDAP APIs and their extensions, it must establish an
LDAP connection. After it establishes a connection, it must have permission to
perform operations. But neither task can be completed if the application lacks an
identity in the directory.

Creating an Application Identity

Creating an application identity in the directory is relatively simple. Such an entry
requires only two object classes: orclApplicationEntity and top. You can use
either Oracle Directory Services Manager or an LDIF file to create the entry. In LDIF
notation, the entry looks like this:

dn: orclapplicationcommonname=application_name
changetype: add

objectclass:top

objectclass: orclApplicationEntity
userpassword: password

The value provided for userpassword is the value that the application uses to bind
to the directory.

Assigning Privileges to an Application Identity

To learn about the privileges available to an application, see the chapter about
delegating privileges for an Oracle technology deployment in Oracle Fusion Middleware
Administrator’s Guide for Oracle Internet Directory. After identifying the right set of
privileges, add the application entity DN to the appropriate directory groups. The

4-2 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Managing Realms

reference just provided explains how to perform this task using either Oracle Directory
Services Manager or the 1dapmodify command.

Managing Users

This section describes user management features of the LDAP APIs.

Directory-enabled applications need to perform the following operations:

Retrieve properties of user entries

These properties are stored as attributes of the user entry itself—in the same way,
for example, that a surname or a home address is stored.

Retrieve extended user preferences

These preferences apply to a user but are stored in a DIT different from the DIT
containing user entries. Extended user preferences are either user properties
common to all applications or user properties specific to an application. Those of
the first type are stored in a common location in the Oracle Context. Those of the
second type are stored in the application-specific DIT.

Query the group membership of a user
Authenticate a user given a simple name and credential

Typically an application uses a fully qualified DN, GUID, or simple user name to
identify a user. In a hosted environment, the application may use both a user name
and a realm name for identification.

Managing Groups

Groups are modeled in Oracle Internet Directory as a collection of distinguished
names. Directory-enabled applications must access Oracle Internet Directory to obtain
the properties of a group and to verify that a given user is a member of that group.

A group is typically identified by one of the following:

A fully qualified LDAP distinguished name
A global unique identifier

A simple group name along with a subscriber name

Managing Realms

An identity management realm is an entity or organization that subscribes to the
services offered in the Oracle product stack. Directory-enabled applications must
access Oracle Internet Directory to obtain realm properties such as user search base or
password policy.

A realm is typically identified by one of the following:

A fully qualified LDAP distinguished name
A global unique identifier

A simple enterprise name

Developing Applications With Oracle Extensions to the Standard APIls 4-3

Discovering a Directory Server

Discovering a Directory Server

Directory server discovery (DSD) enables automatic discovery of the Oracle directory
server by directory clients. It enables deployments to manage the directory host name
and port number information in the central DNS server. All directory clients perform a
DNS query at runtime and connect to the directory server. Directory server location
information is stored in a DNS service location record (SRV).

An SRV contains:
= The DNS name of the server providing LDAP service
s The port number of the corresponding port

= Any parameters that enable the client to choose an appropriate server from
multiple servers

DSD also allows clients to discover the directory host name information from the
ldap. ora file itself.

This section contains these topics:

= Benefits of Oracle Internet Directory Discovery Interfaces
= Usage Model for Discovery Interfaces

s Determining Server Name and Port Number From DNS
» Environment Variables for DNS Server Discovery

= Programming Interfaces for DNS Server Discovery

See Also:
s "Discovering LDAP Services with DNS" by Michael P. Armijo at
this URL:

http://www.ietf.org.

= "A DNS RR for specifying the location of services (DNS SRV)",
Internet RFC 2782 at the same URL.

Benefits of Oracle Internet Directory Discovery Interfaces

Typically, the LDAP host name and port information is provided statically in a file
called 1dap . ora which is located on the client in SORACLE_HOME /network/admin.
For large deployments with many clients, this information becomes very cumbersome
to manage. For example, each time the host name or port number of a directory server
is changed, the 1dap . ora file on each client must be modified.

Directory server discovery eliminates the need to manage the host name and port
number in the 1dap . ora file. Because the host name information resides on one
central DNS server, the information must be updated only once. All clients can then
discover the new host name information dynamically from the DNS when they
connect to it.

DSD provides a single interface to obtain directory server information without regard
to the mechanism or standard used to obtain it. Currently, Oracle directory server
information can be obtained either from DNS or from 1dap . ora using a single
interface.

4-4 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Discovering a Directory Server

Usage Model for Discovery Interfaces

The first step in discovering host name information is to create a discovery handle. A
discovery handle specifies the source from which host name information is discovered.
In case of the Java API, the discovery handle is created by creating an instance of the
oracle.ldap.util.discovery.DiscoveryHelper class.

DiscoveryHelper disco = new DiscoveryHelper (DiscoveryHelper.DNS_DISCOVER) ;

The argument DiscoveryHelper .DNS_DISCOVER specifies the source. In this case
the source is DNS.

Each source may require some inputs to be specified for discovery of host name
information. In the case of DNS these inputs are:

s domain name
s discover method
s SSL mode

Detailed explanation of these options is given in "Determining Server Name and Port
Number From DNS".

// Set the property for the DNS_DN

disco.setProperty (DiscoveryHelper.DNS_DN, "dc=us,dc=fiction,dc=com") ;

// Set the property for the DNS_DISCOVER_METHOD

disco.setProperty (DiscoveryHelper.DNS_DISCOVER_METHOD
,DiscoveryHelper.USE_INPUT_DN_METHOD) ;

// Set the property for the SSLMODE

disco.setProperty (DiscoveryHelper.SSLMODE, "0") ;

Now the information can be discovered.

// Call the discover method
disco.discover (reshdl);

The discovered information is returned in a result handle (reshdl). Now the results
can be extracted from the result handle.

ArrayList result =
(ArrayList)reshdl.get (DiscoveryHelper.DIR_SERVERS) ;
if (result != null)
{
if (result.size() == 0) return;
System.out.println("The hostnames are :-");
for (int i = 0; i< result.size();i++)
{
String host = (String)result.get(i);
System.out.println((i+1)+"."'"+host+"'");

Determining Server Name and Port Number From DNS

Determining a host name and port number from a DNS lookup involves obtaining a
domain and then searching for SRV resource records based on that domain. If there is
more than one SRV resource record, they are sorted by weight and priority. The SRV
resource records contain host names and port numbers required for connection. This
information is retrieved from the resourcerecords and returned to the user.

There are three approaches for determining the domain name required for lookup:

Developing Applications With Oracle Extensions to the Standard APIls 4-5

Discovering a Directory Server

s Mapping the distinguished name (DN) of the naming context
= Using the domain component of local machine

s Looking up the default SRV record in the DNS

Mapping the DN of the Naming Context

The first approach is to map the distinguished name (DN) of naming context into
domain name using the algorithm given here.

The output domain name is initially empty. The DN is processed sequentially from
right to left. An RDN is able to be converted if it meets the following conditions:

= It consists of a single attribute type and value
s The attribute type is dc
s The attribute value is non-null

If the RDN can be converted, then the attribute value is used as a domain name
component (label).

The first such value becomes the rightmost, and the most significant, domain name
component. Successive converted RDN values extend to the left. If an RDN cannot be
converted, then processing stops. If the output domain name is empty when
processing stops, then the DN cannot be converted into a domain name.

For the DN cn=John Doe, ou=accounting, dc=example, dc=net, the client
converts the dc components into the DNS name example.net.

Search by Domain Component of Local Machine

Sometimes a DN cannot be mapped to a domain name. For example, the DN
o=Oracle IDC,Bangalore cannotbe mapped to a domain name. In this case, the
second approach uses the domain component of the local machine on which the client
is running. For example, if the client machine domain name is mc1 . example. com,
the domain name for the lookup is example. com.

Search by Default SRV Record in DNS

The third approach looks for a default SRV record in the DNS. This record points to the
default server in the deployment. The domain component for this default record is _
default.

After the domain name has been determined, it is used to send a query to DNS. The
DNS is queried for SRV records specified in Oracle Internet Directory-specific format.
For example, if the domain name obtained is example.net, the query for non-SSL
LDAP servers is for SRV resource records having the owner name _ldap._tcp._
oid.example.net.

It is possible that no SRV resource records are returned from the DNS. In such a case
the DNS lookup is performed for the SRV resource records specified in standard
format. For example, the owner name would be _ldap._tcp.example.net.

The result of the query is a set of SRV records. These records are then sorted and the
host information is extracted from them. This information is then returned to the user.

4-6 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Discovering a Directory Server

Note: The approaches mentioned here can also be tried in
succession, stopping when the query lookup of DNS is successful. Try
the approaches in the order as described in this section. DNS is
queried only for SRV records in Oracle Internet Directory-specific
format. If none of the approaches is successful, then all the approaches
are tried again, but this time DNS is queried for SRV records in
standard format.

Environment Variables for DNS Server Discovery

The following environment variables override default behavior for discovering a DNS
server.

Table 4-1 Environment Variables for DNS Discovery

Environment Variable Description

ORA_LDAP_DNS IP address of the DNS server containing the SRV records. If the
variable is not defined, then the DNS server address is obtained
from the host machine.

ORA_LDAP_DNSPORT Port number on which the DNS server listens for queries. If the
variable is not defined, then the DNS server is assumed to be
listening at standard port number 53.

ORA_LDAP_DOMAIN Domain of the host machine. If the variable is not defined, then
the domain is obtained from the host machine itself.

Programming Interfaces for DNS Server Discovery

The programming interface provided is a single interface to discover directory server
information without regard to the mechanism or standard used to obtain it.
Information can be discovered from various sources. Each source can use its own
mechanism to discover the information. For example, the LDAP host and port
information can be discovered from the DNS acting as the source. Here DSD is used to
discover host name information from the DNS.

See Also: For detailed reference information and class descriptions,
refer to the Javadoc located on the product CD.

Developing Applications With Oracle Extensions to the Standard APIs 4-7

Discovering a Directory Server

4-8 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

O

Using the Java API Extensions to JNDI

This chapter explains how to use Java extensions to the standard directory APIs to
perform many of the operations introduced in Chapter 3. The chapter presents use
cases. The Oracle extensions to the standard APIs are documented in full in Oracle
Fusion Middleware Java API Reference for Oracle Internet Directory.

The chapter contains the following topics:

= Sample Code

» Installing the Java Extensions

= Using the oracle.ldap.util Package to Model LDAP Objects

» The Classes PropertySetCollection, PropertySet, and Property
s Managing Users

= Authenticating Users

» Creating Users

= Retrieving User Objects

= Retrieving Objects from Realms

= Example: Search for Oracle Single Sign-On Login Name

= Discovering a Directory Server

= Example: Discovering a Directory Server

s Using DIGEST-MDS5 to Perform SASL Authentication

= Example: Using SASL Digest-MD5 auth-int and auth-conf Modes

Sample Code
Sample code is available at this URL:

http://www.oracle.com/technology/sample_code/

Look for the Oracle Identity Management link under Sample Applications-Oracle
Application Server.

Installing the Java Extensions

The Java extensions are installed along with the standard Java APIs when the LDAP
client is installed. The APIs and their extensions are found at $SORACLE__
HOME/jlib/ldapjclntl0.jar.

Using the Java API Extensions to JNDI 5-1

Using the oracle.ldap.util Package to Model LDAP Objects

Using the oracle.ldap.util Package to Model LDAP Objects

In Java, LDAP entities—users, groups, realms, and applications—are modeled as Java
objects instead of as handles. This modeling is done in the oracle.java.util
package. All other utility functionality is modeled either as individual objects—as, for
example, GUID—or as static member functions of a utility class.

For example, to authenticate a user, an application must follow these steps:
1. Create oracle.ldap.util.User object, given the user DN.

2. Create a DirContext JNDI object with all of the required properties, or get one
from a pool of DirContext objects.

3. Invoke the User.authenticateUser method, passing in a reference to the
DirContext object and the user credentials.

4. If the DirContext object was retrieved from a pool of existing DirContext
objects, return it to that pool.

Unlike their C and PL/SQL counterparts, Java programmers do not have to explicitly
free objects. The Java garbage collection mechanism performs this task.

The Classes PropertySetCollection, PropertySet, and Property

Many of the methods in the user, subscriber, and group classes return a
PropertySetCollection object. The object represents a collection of one or more
LDAP entries. Each of these entries is represented by a PropertySet object,
identified by a DN. A property set can contain attributes, each represented as a
property. A property is a collection of one or more values for the particular attribute it
represents. An example of the use of these classes follows:

PropertySetCollection psc = Util.getGroupMembership(ctx,
myuser,
null,
true);

// for loop to go through each PropertySet
for (int 1 = 0; 1 < psc.size(); i++) {

PropertySet ps = psc.getPropertySet(i);

// Print the DN of each PropertySet
System.out.println("dn: " + ps .getDN());

// Get the values for the "objectclass" Property
Property objectclass = ps.getProperty("objectclass");
// for loop to go through each value of Property "objectclass"

for (int j = 0; j< objectclass.size(); j++) {

// Print each "objectclass" value
System.out.println("objectclass: " + objectclass.getValue(j));

}
The entity myuser is a user object. The psc object contains all the nested groups that

myuser belongs to. The code loops through the resulting entries and prints out all the
object class values of each entry.

5-2 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Authenticating Users

Managing Users

All user-related functionality is abstracted in a Java class called
oracle.ldap.util.User. The process works like this:

1.

Construct a oracle.ldap.util.User object based on a DN, GUID, or simple
name.

Invoke User.authenticateUser (DirContext, int, Object) to
authenticate the user if necessary.

Invoke User.getProperties (DirContext) to get the attributes of the user
entry.

Invoke User .getExtendedProperties (DirContext, int, String[]) to
get the extended properties of the user. int is either shared or application-specific.
String[] is the object that represents the type of property desired. If String[]
is null, all properties in a given category are retrieved.

Invoke PropertySetCollection.getProperties (int) to get the metadata
required to parse the properties returned in step 4.

Parse the extended properties and continue with application-specific logic. This
parsing is also performed by application-specific logic.

Authenticating Users

User authentication is a common LDAP operation that compares the credentials that a
user provides at login with the user's credentials in the directory. Oracle Internet
Directory supports the following:

Arbitrary attributes can be used during authentication

Appropriate password policy exceptions are returned by the authentication
method. Note, however, that the password policy applies only to the
userpassword attribute.

The following code fragment shows how the APl is used to authenticate a user:

// User userl - is a valid User Object

try
{
userl.authenticateUser (ctx,
User.CREDTYPE_PASSWD, "welcome");

// or
// userl.authenticateUser (ctx, <any

attribute>, <attribute value>);

}

catch (UtilException ue)

{

// Handle the password policy error

accordingly

if (ue instanceof PasswordExpiredException)
// do something

else if (ue instanceof GraceLoginException)
// do something

Using the Java API Extensions to JNDI 5-3

Creating Users

Creating Users

The subscriber class uses the createUser () method to programmatically create
users. The object classes required by a user entry are configurable through Oracle
Delegated Administration Services. The createUser () method assumes that the
client understands the requirement and supplies the values for the mandatory
attributes during user creation. If the programmer does not supply the required
information the server returns an error.

The following snippet of sample code demonstrates the usage.

// Subscriber sub is a valid Subscriber object
// DirContext ctx is a valid DirContext

// Create ModPropertySet object to define all the attributes and their values.
ModPropertySet mps = new ModPropertySet () ;

mps .addProperty (LDIF.ATTRIBUTE_CHANGE_TYPE_ADD, "cn", "Anika");

mps . addProperty (LDIF.ATTRIBUTE_CHANGE_TYPE_ADD, "sn", "Anika");

mps . addProperty (LDIF.ATTRIBUTE_CHANGE_TYPE_ADD, "mail",

"Anika@example.com") ;

// Create user by specifying the nickname and the ModPropertySet just defined
User newUser = sub.createUser(ctx, mps, true);

// Print the newly created user DN
System.out.println(newUser.getDN(ctx));

// Perform other operations with this new user

Retrieving User Objects

The subscriber class offers the getUser () method to replace the public constructors
of the User class. A user object is returned based on the specified information.

The following is a piece of sample code demonstrating the usage:

// DirContext ctx is contains a valid directory connection with
sufficient privilege to perform the operations

// Creating RootOracleContext object
RootOracleContext roc = new RootOracleContext (ctx);

// Obtain a Subscriber object representing the default
subscriber

Subscriber sub = roc.getSubscriber (ctx,
Util.IDTYPE_DEFAULT, null, null);

// Obtain a User object representing the user whose
nickname is "Anika"

User userl = sub.getUser(ctx, Util.IDTYPE_SIMPLE, "Anika",
null);

// Do work with this user

The getUser() method can retrieve users based on DN, GUID
and simple name. A getUsers() method is also available to
perform a filtered search to return more than one user at a
time. The returned object is an array of User objects.

For example,

// Obtain an array of User object where the user's nickname
starts with "Ani"

5-4 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Example: Search for Oracle Single Sign-On Login Name

User[] userArr = sub.getUsers(ctx, Util.IDTYPE_SIMPLE,
"Ani", null);
// Do work with the User array

Retrieving Objects from Realms

This section describes how the Java API can be used to retrieve objects in identity
management realms.

The RootOracleContext class represents the root Oracle Context. Much of the
information needed for identity management realm creation is stored within the root
Oracle Context. The RootOracleContext class offers the get Subscriber ()
method. It replaces the public constructors of the subscriber class and returns an
identity management realm object based on the specified information.

The following is a piece of sample code demonstrating the usage:

// DirContext ctx contains a valid directory
// connection with sufficient privilege to perform the
// operations

// Creating RootOracleContext object
RootOracleContext roc = new RootOracleContext (ctx);

// Obtain a Subscriber object representing the
// Subscriber with simple name "Oracle"
Subscriber sub = roc.getSubscriber (ctx,
Util.IDTYPE_SIMPLE, "Oracle", null);

// Do work with the Subscriber object

Example: Search for Oracle Single Sign-On Login Name

The following example shows how to find a user's login name when you have the
simple name, GUID, or DN. The Oracle Single Sign-On login name is also referred to
as nickname.

There are two parts to this example:
1. Determine which attribute is used to store the nickname in this realm.
2. Retrieve the User object and determine the value of the nickname attribute.

import javax.naming.*;

import javax.naming.directory.*;
import javax.naming.ldap.*;
import oracle.ldap.util.jndi.*;
import oracle.ldap.util.*;
import java.io.*;

public class NickNameSearch {

public static void main(String[] args)
throws Exception

InitialLdapContext ctx = ConnectionUtil.getDefaultDirCtx(args([0],
args[1l], args[2],args[3]);

RootOracleContext roc=new RootOracleContext (ctx);

Subscriber sub = null;
sub = roc.getSubscriber (ctx, Util.IDTYPE_DEFAULT, null, null) ;

Using the Java API Extensions to JNDI 5-5

Discovering a Directory Server

PropertySetCollection psc = sub.getProperties(ctx,
Subscriber.USER_NAMING_PROPERTIES, null);

String nickNameAttribute = null;
try
{
nickNameAttribute = (String)
psc.getPropertySet (0) .getProperty (Subscriber.USER_NAMING_ATTR_SIMPLE) .getValue(0) ;
}

catch (Exception e)

{
// unable to retrieve the attribute name
System.exit (0);

}

System.out.println("Nickname attribute: " + nickNameAttribute);

// Retrieve user using simple name, guid or DN
User user = sub.getUser(ctx, Util.IDTYPE_SIMPLE, "orcladmin", null);
System.out.println("user DN: " + user.getDN(ctx));

// Retrieve nickname value using User object
psc = user.getProperties(ctx, new String[]{ nickNameAttribute });

String nickName = null;
try
{
nickName = (String)
psc.getPropertySet (0) .getProperty (nickNameAttribute) .getValue(0);
}
catch (Exception e)
{
// unable to retrieve the attribute value
System.exit (0);
}

System.out.println("Nickname : " + nickName);

Discovering a Directory Server
A new Java class, the public class, has been introduced:

public class oracle.ldap.util.discovery.DiscoveryHelper

This class provides a method for discovering specific information from the specified
source.

Table 5-1 Methods for Directory Server Discovery

Method Description

discover Discovers the specific information from a given source
setProperty Sets the properties required for discovery

getProperty Accesses the value of properties

Two new methods are added to the existing Java class
oracle.ldap.util.jndi.ConnectionUtil:

5-6 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Example: Discovering a Directory Server

s getDefaultDirCtx: This overloaded function determines the host name and
port information of non-SSL ldap servers by making an internal call to
oracle.ldap.util.discovery.DiscoveryHelper.discover ().

s getSSLDirCtx: This overloaded function determines the host name and port
information of SSL ldap servers by making an internal call to
oracle.ldap.util.discovery.DiscoveryHelper.discover ().

Example: Discovering a Directory Server
The following is a sample Java program for directory server discovery:

import java.util.*;

import java.lang.*;

import oracle.ldap.util.discovery.*;
import oracle.ldap.util.jndi.*;

public class dsdtest
{
public static void main(String s[]) throws Exception
{
HashMap reshdl = new HashMap() ;
String result = new String();
Object resultObj = new Object();
DiscoveryHelper disco = new
DiscoveryHelper (DiscoveryHelper.DNS_DISCOVER) ;

// Set the property for the DNS_DN
disco.setProperty (DiscoveryHelper.DNS_DN, "dc=us,dc=fiction,dc=com")

i

// Set the property for the DNS_DISCOVER_METHOD
disco.setProperty (DiscoveryHelper.DNS_DISCOVER_METHOD,
DiscoveryHelper.USE_INPUT_DN_METHOD) ;

// Set the property for the SSLMODE
disco.setProperty (DiscoveryHelper.SSLMODE, "0") ;

// Call the discover method
int res=disco.discover (reshdl);
if (res!=0)
System.out.println("Error Code returned by the discover method is :"+res) ;

// Print the results
printReshdl (reshdl) ;
}

public static void printReshdl (HashMap reshdl)

{
ArrayList result = (ArrayList)reshdl.get (DiscoveryHelper.DIR_SERVERS) ;

if (result != null)

if (result.size() == 0) return;
System.out.println("The hostnames are :-");
for (int 1 = 0; i< result.size();i++)
{
String host = (String)result.get(i);
System.out.println((i+1)+".
'"+host+"'");

Using the Java API Extensions to JNDI 5-7

Using DIGEST-MDS5 to Perform SASL Authentication

Using DIGEST-MD5 to Perform SASL Authentication

When using JNDI to create a SASL connection, you must set these
javax.naming.Context properties:

s Context.SECURITY_ AUTHENTICATION = "DIGEST-MD5"
s Context.SECURITY_PRINCIPAL

The latter sets the principal name. This name is a server-specific format. It can be either
of the following:

s The DN—that is, dn : —followed by the fully qualified DN of the entity being
authenticated

s Thestring u: followed by the user identifier.

The Oracle directory server accepts just a fully qualified DN such as
cn=user,ou=my department,o=my company.

Note: The SASL DN must be normalized before it is passed to the
API that calls the SASL bind. To generate SASL verifiers, Oracle
Internet Directory supports only normalized DNs.

Example: Using SASL Digest-MD5 auth-int and auth-conf Modes

The following code provides an example of Java LDAP/JNDI using SASL
Digest-MD5.

/* SHeader: LdapSasl.java 27-oct-2005.11:26:59 gdinh Exp $ */
/* Copyright (c) 2003, 2005, Oracle. All rights reserved. */

/*
DESCRIPTION
<short description of component this file declares/defines>

PRIVATE CLASSES
<list of private classes defined - with one-line descriptions>

NOTES
<other useful comments, qualifications, and so on.>

MODIFIED (MM/DD/YY)
gdinh 04/23/03 - Creation
*/

/**

* Q@version $Header: LdapSasl.java 27-oct-2005.11:26:59 gdinh Exp $

* @author gdinh * @since release specific (what release of product did this
appear in)

*/

package oracle.ldap.util.jndi;

5-8 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Example: Using SASL Digest-MD5 auth-int and auth-conf Modes

import javax.naming.*;
import javax.naming.directory.*;
import javax.naming.ldap.*;
import oracle.ldap.util.jndi.*;
import oracle.ldap.util.*;
import java.lang.*;
import java.util.*;
public class LdapSasl
{

public static void main(String[] args)

throws Exception

int numofargs;
numofargs = args.length;
Hashtable hashtable = new Hashtable();

// Look through System Properties for Context Factory if it is available
// then set the CONTEXT factory only if it has not been set

// in the environment -

// set default to com.sun.jndi.ldap.LdapCtxFactory

hashtable.put (Context.INITIAL CONTEXT_ FACTORY,
"com.sun.jndi.ldap.LdapCtxFactory");
// possible valid arguments

// args[0] - hostname

// args[l] - port number

// args[2] - Entry DN

// args[3] - Entry Password

// args[4] - QoP [auth | auth-int | auth-conf]
// args[5] - SASL Realm

// args[6] - Cipher Choice

// If QoP == "auth-conf" then args[6] cipher choice can be
// - des

// - 3des

// - rcd

// - rcd-56

// - rc4-40

hashtable.put (Context.PROVIDER_URL, "ldap://"+args[0]+":"+args[1]);
hashtable.put (Context.SECURITY_AUTHENTICATION, "DIGEST-MD5");
System.out.println("hash put security dn: " + args[2]);
hashtable.put (Context.SECURITY_PRINCIPAL, args([2]);
hashtable.put (Context .SECURITY_CREDENTIALS, args[3]);

// For Quality of Protection modes
// 1. Authentication and Data Integrity Mode - "auth-int"
// 2. Authentication and Data Confidentiality Mode "auth-conf"

//

// hashtable.put ("javax.security.sasl.qgop",args[4]);
hashtable.put ("javax.naming.security.sasl.realm", args[5]);
// Setup Quality of Protection

//

// System.out.println("hash sasl.qgop: " + args([4]);

hashtable.put ("javax.security.sasl.qgop",args([4]);

Using the Java API Extensions to JNDI 5-9

Example: Using SASL Digest-MD5 auth-int and auth-conf Modes

if (numofargs > 4)

{

if (args[4].equalsIgnoreCase ("AUTH-CONF"))
{

// Setup a cipher choice only if QoP == "auth-conf"
String strength = "high";
String cipher = new String(args[6]);
if (cipher.compareToIgnoreCase("rc4-40") == 0)
strength = "low";
else if (cipher.compareToIgnoreCase("rc4-56") == 0 ||
cipher.compareToIgnoreCase("des")== 0)
strength = "medium";
else if (cipher.compareToIgnoreCase("3des") == ||
cipher.compareToIgnoreCase("rcd") == 0)
strength = "high";

// setup cipher choice

System.out.println("hash sasl.strength:"+strength);
hashtable.put ("javax.security.sasl.strength", strength);

// set maxbuffer length if necessary
if (numofargs > 7 && !"".equals(args[6]))
hashtable.put ("javax.security.sasl.maxbuf", args[5].toString());

// Enable Debug --
// hashtable.put("com.sun.jndi.ldap.trace.ber", System.err);

LdapContext ctx = new InitialLdapContext (hashtable,null);

// At this stage - SASL Digest -MD5 has been successfully
System.out.println("sasl bind successful");

// Ldap Search Scope Options

//

// - Search base - OBJECT_SCOPE
// - One Level - ONELEVEL_SCOPE
// - Sub Tree - SUBTREE_SCOPE
//

// Doing an LDAP Search
PropertySetCollection psc =
Util.ldapSearch(ctx, "o=oracle,dc=com", "objectclass=*", SearchControls.OBJECT SCOPE,
new String[] {"*"});
// Print out the serach result
Util.printResults(psc);

System.exit (0);

5-10 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

6

Using the API Extensions in PL/SQL

This chapter explains how to use PL/SQL extensions to the standard directory APIs to
manage and authenticate users. Note that the Oracle extensions do not include
PL/SQL APIs that create users. The Oracle extensions to the standard APIs are
documented in full in Chapter 11.

This chapter contains these topics:

= Sample Code

» Installing the PL/SQL Extensions

= Using Handles to Access Directory Data
s Managing Users

= Authenticating Users

= Dependencies and Limitations of the PL/SQL LDAP API

Sample Code
Sample code is available at this URL:
http://www.oracle.com/technology/sample_code/

Look for the Oracle Identity Management link under Sample Applications-Oracle
Application Server.

Installing the PL/SQL Extensions

The PL/SQL extensions are installed with the DBMS_LDAP package when the Oracle
database is installed. You must run the script SORACLE_
HOME/rdbms/admin/catldap.sqgl.

Using Handles to Access Directory Data

Most of the extensions described in this chapter are helper functions. They access data
about specific LDAP entities such as users, groups, realms, and applications. In many
cases, these functions must pass a reference to one of these entities to the standard API
functions. To do this, the API extensions use opaque data structures called handles.
The steps that follow show an extension creating a user handle:

1. Establish an LDAP connection or get one from a pool of connections.

2. Create a user handle from user input. This could be a DN, a GUID, or a single
sign-on user ID.

Using the API Extensions in PL/SQL 6-1

Managing Users

Authenticate the user with the LDAP connection handle, user handle, or
credentials.

Free the user handle.

Close the LDAP connection, or return the connection back to the connection pool.

Managing Users

The steps that follow show how the DBMS_LDAP_UTL package is used to create and
use a handle that retrieves user properties from the directory.

1.

Invoke DBMS_LDAP_UTL.create_user_handle (user_hd, user_type,
user_id) to create a user handle from user input. The input can be a DN, a
GUID, or a single sign-on user ID.

Invoke DBMS_LDAP_UTL.set_user_handle_properties (user_hd,
property type, property) to associate a realm with the user handle.

Invoke DBMS_LDAP_UTL.get_user_properties(ld, user_handle,
attrs, ptype, ret_pset_coll) to place the attributes of a user entry into a
result handle.

Invoke DBMS_LDAP_UTL.get_property_names (pset, property names)
and DBMS_LDAP_UTL.get_property_values (pset, property_name,
property_values) to extract user attributes from the result handle that you
obtained in step 3.

Authenticating Users

Use DBMS_LDAP_UTL.authenticate_user (session, user_handle, auth_
type, cred, binary_cred) to authenticate a user to the directory. This function
compares the password provided by the user with the password attribute in the user's
directory entry.

Dependencies and Limitations of the PL/SQL LDAP API

The PL/SQL LDAP API for this release has the following limitations:

The LDAP session handles obtained from the API are valid only for the duration
of the database session. The LDAP session handles cannot be written to a table and
reused in other database sessions.

Only synchronous versions of LDAP API functions are supported in this release.

The PL/SQL LDAP API requires a database connection to work. It cannot be used
in client-side PL/SQL engines (like Oracle Forms) without a valid database
connection.

6-2 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

7

Developing Provisioning-Integrated
Applications

As of 10g (10.1.4.0.1), new APIs were added for developing provisioning-integrated
applications. Nothing has changed for 11g Release 1 (11.1.1). Please refer to: Oracle
Fusion Middleware Administrator’s Guide for Oracle Directory Integration Platform.

Developing Provisioning-Integrated Applications 7-1

7-2 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Part li

Oracle Internet Directory Programming

Reference

Part II presents the standard APIs and the Oracle extensions to these APIs. It contains
these chapters:

Chapter 8, "C API Reference"

Chapter 9, "DBMS_LDAP PL/SQL Reference"

Chapter 10, "Java API Reference"

Chapter 11, "'DBMS_LDAP_UTL PL/SQL Reference"

Chapter 12, "Oracle Directory Integration and Provisioning Java API Reference"

Chapter 13, "Oracle Directory Integration Platform PL/SQL API Reference"

8

C API Reference

This chapter introduces the Oracle Internet Directory C API and provides examples of
how to use it.

The chapter contains these topics:

= About the Oracle Internet Directory C API

= Functions in the C API

= Sample C API Usage

= Required Header Files and Libraries for the C API
= Dependencies and Limitations of the C API

About the Oracle Internet Directory C API

The Oracle Internet Directory SDK C API is based on LDAP Version 3 C API and
Oracle extensions to support SSL.

You can use the Oracle Internet Directory API 11¢ Release 1 (11.1.1) in the following
modes:

s SSL—AIl communication secured by using SSL
s Non-SSL—Client/server communication not secure

The API uses TCP/IP to connect to a directory server. When it does this, it uses, by
default, an unencrypted channel. To use the SSL mode, you must use the Oracle SSL
call interface. You determine which mode you are using by the presence or absence of
the SSL calls in the API usage. You can easily switch between SSL and non-SSL modes.

See Also: "Sample C API Usage" on page 8-42 for more details on
how to use the two modes.

This section contains these topics:

s Oracle Internet Directory SDK C API SSL Extensions

s The Functions at a Glance

Oracle Internet Directory SDK C API SSL Extensions

Oracle SSL extensions to the LDAP API are based on standard SSL protocol. The SSL
extensions provide encryption and decryption of data over the wire and
authentication.

There are three modes of authentication:

C API Reference 8-1

Functions in the C API

s None—Neither client nor server is authenticated, and only SSL encryption is used
s One-way—Only the server is authenticated by the client
s Two-way—Both the server and the client are authenticated by each other

The type of authentication is indicated by a parameter in the SSL interface call.

SSL Interface Calls

There is only one call required to enable SSL.:

int ldap_init_SSL(Sockbuf *sb, char *sslwallet, char *sslwalletpasswd, int
sslauthmode)

The 1dap_init_SSL call performs the necessary handshake between client and
server using the standard SSL protocol. If the call is successful, then all subsequent
communication happens over a secure connection.

Table 8—-1 Arguments for SSL Interface Calls

Argument Description

sb Socket buffer handle returned by the 1dap_open call as part of LDAP
handle.

sslwallet Location of the user wallet.

sslwalletpasswd Password required to use the wallet.

sslauthmode SSL authentication mode user wants to use. Possible values are:
m» GSLC_SSL_NO_AUTH—NOo authentication required
= GSLC_SSL_ONEWAY_AUTH—Only server authentication required.

= GSLC_SSL_TWOWAY_AUTH—Both server and client
authentication required.

A return value of 0 indicates success. A nonzero return value
indicates an error. The error code can be decoded by using the
function 1dap_err2string.

See Also: "Sample C API Usage" on page 8-42.

Wallet Support

depending on which authentication mode is being used, both the server and the client
may require wallets to use the SSL feature. 11g Release 1 (11.1.1) of the API supports
only the Oracle Wallet. You can create wallets by using Oracle Wallet Manager.

Functions in the C API

This section examines each of the functions and procedures in the C API. It explains
their purpose and syntax. It also provides tips for using them.

The section contains the following topics:

s The Functions at a Glance

» Initializing an LDAP Session

s LDAP Session Handle Options

s Getting Bind Credentials for Chasing Referrals

8-2 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Functions in the C API

= Authenticating to the Directory

= SASL Authentication Using Oracle Extensions

= Working With Controls

s Closing the Session

s Performing LDAP Operations

= Abandoning an Operation

s Obtaining Results and Peeking Inside LDAP Messages

= Handling Errors and Parsing Results

= Stepping Through a List of Results

= Parsing Search Results

The Functions at a Glance

Table 8-2 lists all of the functions and procedures in the C API and briefly explains

their purpose.

Table 8-2 Functions and Procedures in the C API

Function or Procedure

Description

ber_ free

Free the memory allocated for a BerElement structure

ldap_abandon_ext
ldap_abandon

Cancel an asynchronous operation

ldap_add_ext
ldap_add_ext_s
ldap_add
ldap_add_s

Add a new entry to the directory

ldap_compare_ext
ldap_compare_ext_s
ldap_compare
ldap_compare_s

Compare entries in the directory

ldap_count_entries

Count the number of entries in a chain of search results

ldap_count_values

Count the string values of an attribute

ldap_count_values_len

Count the binary values of an attribute

ora_ldap_create_clientctx

Create a client context and returns a handle to it.

ora_ldap_create_cred_hdl

Create a credential handle.

ldap_delete_ext
ldap_delete_ext_s
ldap_delete
ldap_delete_s

Delete an entry from the directory

ora_ldap_destroy_clientctx

Destroy the client context.

ora_ldap_free_cred_hdl

Destroy the credential handle.

ldap_dn2ufn

Converts the name into a more user friendly format

ldap_err2string

Get the error message for a specific error code

ldap_explode_dn

ldap_explode_rdn

Split up a distinguished name into its components

C API Reference 8-3

Functions in the C API

Table 8-2 (Cont.) Functions and Procedures in the C API

Function or Procedure

Description

ldap_first_attribute

Get the name of the first attribute in an entry

ldap_first_entry

Get the first entry in a chain of search results

ora_ldap_get_cred_props

Retrieve properties associated with credential handle.

ldap_get_dn

Get the distinguished name for an entry

ldap_get_option

Access the current value of various session-wide
parameters

ldap_get_values

Get the string values of an attribute

ldap_get_values_len

Get the binary values of an attribute

ldap_init
ldap_open

Open a connection to an LDAP server

ora_ldap_init_SASL

Perform SASL authentication

ldap_memfree

Free memory allocated by an LDAP API function call

ldap_modify_ext
ldap_modify ext_s
ldap_modify
ldap_modify_s

Modify an entry in the directory

ldap_msgfree

Free the memory allocated for search results or other
LDAP operation results

ldap_first_attribute
ldap_next_attribute

Get the name of the next attribute in an entry

ldap_next_entry

Get the next entry in a chain of search results

ldap_perror
(Deprecated)

Prints the message supplied in message.

ldap_rename
ldap_rename_s

Modify the RDN of an entry in the directory

ldap_result2error

(Deprecated)

Return the error code from result message.

ldap_result
ldap_msgfree
ldap_msgtype
ldap_msgid

Check the results of an asynchronous operation

ldap_sasl_bind
ldap_sasl_bind_s

General authentication to an LDAP server

ldap_search_ext
ldap_search_ext_s
ldap_search
ldap_search_s

Search the directory

ldap_search_st

Search the directory with a timeout value

ldap_get_option
ldap_set_option

Set the value of these parameters

ldap_set_rebind_proc

Set the callback function to be used to get bind credential
to a new server when chasing referrals.

ora_ldap_set_clientctx

Add properties to the client context handle.

8-4 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Functions in the C API

Table 8-2 (Cont.) Functions and Procedures in the C API

Function or Procedure Description
ora_ldap_set_cred_props Add properties to credential handle.
ldap_simple_bind Simple authentication to an LDAP server

ldap_simple_bind_s
ldap_sasl_bind
ldap_sasl_bind_s

ldap_unbind_ext End an LDAP session
1ldap_unbind
ldap_unbind_s

ldap_value_free Free the memory allocated for the string values of an
attribute

ldap_value_free Free the memory allocated for the binary values of an

ldap_value_free_len attribute

This section lists all the calls available in the LDAP C API found in RFC 1823.

See Also: The following URL for a more detailed explanation of
these calls:

http://www.ietf.org

Initializing an LDAP Session

The calls in this section initialize a session with an LDAP server.

Idap_init and Idap_open

ldap_init () initializes a session with an LDAP server, but does not open a
connection. The server is not actually contacted until an operation is performed that
requires it, allowing various options to be set after initialization. 1dap_open ()
initializes a session and opens a connection. The two fulfill the same purpose and have
the same syntax, but the first is preferred.

Syntax

LDAP *ldap_init

(
const char *hostname,
int portno

C API Reference 8-5

Functions in the C API

Parameters

Table 8-3 Parameters for Initializing an LDAP Session

Parameter Description

hostname Contains a space-separated list of host names or dotted strings representing
the IP address of hosts running an LDAP server to connect to. Each host
name in the list may include a port number. The two must be separated by a
colon. The hosts are tried in the order listed until a successful connection
occurs.

IPv6 addresses must be enclosed in brackets ([]). The following are
examples of valid hostname values:

hostl.example.com
192.168.1.10
[2002:2e5:4000:1::8c57:352]
hostl.example.com:3060
192.168.1.10:3060

[2002:2e5:4000:1::8c57:352]1:3060
portno Contains the TCP port number to connect to. The default LDAP port of

3060 can be obtained by supplying the constant LDAP_PORT. If hostname
includes a port number, portno is ignored.

Usage Notes

ldap_init () and 1dap_open () both return a session handle. This is a pointer to an
opaque structure that must be passed to subsequent calls pertaining to the session.
These routines return NULL if the session cannot be initialized. If the session cannot be
initialized, check the error reporting mechanism for the operating system to see why
the call failed.

Note that if you connect to an LDAPv2 server, one of the LDAP bind calls described
later SHOULD be completed before other operations can be performed on the session.
LDAPv3 does not require that a bind operation be completed before other operations
are performed.

The calling program can set various attributes of the session by calling the routines
described in the next section.

LDAP Session Handle Options

The LDAP session handle returned by 1dap_init () is a pointer to an opaque data
type representing an LDAP session. In RFC 1823 this data type was a structure
exposed to the caller, and various fields in the structure could be set to control aspects
of the session, such as size and time limits on searches.

In the interest of insulating callers from inevitable changes to this structure, these
aspects of the session are now accessed through a pair of accessor functions, described
in this section.

Idap_get_option and Idap_set_option

ldap_get_option () is used to access the current value of various session-wide
parameters. 1dap_set_option () is used to set the value of these parameters. Note
that some options are read only and cannot be set; it is an error to call 1dap_set_
option () and attempt to set a read only option.

8-6 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Functions in the C API

Note that if automatic referral following is enabled (the default), any connections

created during the course of following referrals inherit the options associated with the

session that sent the original request that caused the referrals to be returned.

Syntax

int ldap_get_option

(
LDAP

int
void
)

i

*1d,
option,
*outvalue

int ldap_set_option

(

LDAP *1d,

int option,

const void *invalue

)

#define LDAP_OPT ON ((void *)1)
#define LDAP_OPT_OFF ((void *)0)

Parameters

Table 84 lists and describes the parameters for LDAP session handle options.

Table 8—4 Parameters for LDAP Session Handle Options

Parameters

Description

1d

option

outvalue

invalue

The session handle. If this is NULL, a set of global defaults is accessed. New
LDAP session handles created with 1dap_init () or 1dap_open ()
inherit their characteristics from these global defaults.

The name of the option being accessed or set. This parameter should be one
of the constants listed and described in Table 8-5 on page 8-8. The
hexadecimal value of the constant is listed in parentheses after the
constant.

The address of a place to put the value of the option. The actual type of this
parameter depends on the setting of the option parameter. For outvalues of
type char ** and LDAPControl **,a copy of the data that is associated
with the LDAP session 1d is returned. Callers should dispose of the
memory by calling 1dap_memfree () or ldap_controls_free(),
depending on the type of data returned.

A pointer to the value the option is to be given. The actual type of this
parameter depends on the setting of the option parameter. The data
associated with invalue is copied by the API implementation to allow
callers of the API to dispose of or otherwise change their copy of the data
after a successful call to 1dap_set_option().If a value passed for
invalue is invalid or cannot be accepted by the implementation, 1dap_
set_option () should return -1 to indicate an error.

Constants

Table 8-5 on page 8-8 lists and describes the constants for LDAP session handle

options.

C API Reference 8-7

Functions in the C API

Table 8-5 Constants

Constant

Type for invalue
parameter

Type for outvalue
parameter

Description

LDAP_OPT_API_
INFO (0x00)

ORA_LDAP_OPT_RFRL_
CACHE

ORA_LDAP_OPT_RFRL_
CACHE_SZ

LDAP_OPT_
DEREF (0x02)

LDAP_OPT_
SIZELIMIT (0x03)

LDAP_OPT_
TIMELIMIT (0x04)

Not applicable.
Option is read
only.

void*
ON
void*
OFF)

(LDAP_OPT_

(LDAP_OPT _

int *

int *

int *

int *

LDAPAPIInfo*

int *

int *

int *

int *

int *

Used to retrieve some basic information
about the LDAP API implementation at
execution time. Applications need to be
able to determine information about the
particular API implementation they are
using both at compile time and during
execution. This option is read only and
cannot be set.

This option determines whether referral
cache is enabled or not. If this option is set
to LDAP_OPT_ON, the cache is enabled;
otherwise, the cache is disabled.

This option sets the size of referral cache.
The size is maximum size in terms of
number of bytes the cache can grow to. It is
set to 1IMB by default.

Determines how aliases are handled
during search. It should have one of the
following values: LDAP_DEREF_NEVER
(0x00), LDAP_DEREF SEARCHING
(0x01), LDAP_DEREF_FINDING
(0x02), or LDAP_DEREF_ALWAYS
(0x03).The LDAP_DEREF_SEARCHING
value means aliases are dereferenced
during the search but not when locating
the base object of the search. The LDAP_
DEREF_FINDING value means aliases are
dereferenced when locating the base object
but not during the search. The default
value for this option is LDAP_DEREF_
NEVER.

A limit on the number of entries to return
from a search. A value of LDAP_NO_LIMIT
(0) means no limit. The default value for

this option is LDAP_NO_LIMIT.

A limit on the number of seconds to spend
on a search. A value of LDAP_NO_LIMIT
(0) means no limit. This value is passed to
the server in the search request only; it
does not affect how long the C LDAP API
implementation itself waits locally for
search results. The timeout parameter
passed to 1dap_search_ext_s () or
ldap_result () —both of which are
described later in this document—can be
used to specify both a local and server side
time limit. The default value for this option
is LDAP_NO_LIMIT.

8-8 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Functions in the C API

Table 8-5 (Cont.) Constants

Constant

Type for invalue

parameter

Type for outvalue

parameter

Description

LDAP_OPT

REFERRALS (0x08)

LDAP_OPT_
RESTART (0X09)

LDAP_OPT_PROTOCOL_

VERSION (0x11)

LDAP_OPT_SERVER_

CONTROLS (0x12)

LDAP_OPT_CLIENT

CONTROLS (0x13)

LDAP_OPT_API_

FEATURE_INFO (0x15)

LDAP_OPT_HOST_
NAME (0x30)

LDAP_OPT_ERROR_

NUMBER (0x31)

void * (LDAP_OPT

ON)

void * (LDAP_OPT _

OFF)

void * (LDAP_
OPT_ON)

void * (LDAP_
OPT_OFF)

int *

LDAPControl**

LDAPControl**

Not applicable.
Option is read
only.

char *

int *

int *

int *

int *

LDAPControl***

LDAPControl***

LDAPAPIFeatureInfo *

char **

int *

Determines whether the LDAP library
automatically follows referrals returned by
LDAP servers or not. It may be set to one
of the constants LDAP_OPT_ON or LDAP_
OPT_OFF. Any non-null pointer value
passed to 1dap_set_option() enables
this option. When the current setting is
read using 1dap_get_option(), a zero
value means off and any nonzero value
means on. By default, this option is turned

on.

Determines whether LDAP input and
output operations are automatically
restarted if they stop prematurely. It may
be set to either LDAP_OPT_ON or LDAP_
OPT_OFF. Any non-null pointer value
passed to 1dap_set_option() enables
this option. When the current setting is
read using 1dap_get_option(), a zero
value means off and any nonzero value
means on. This option is useful if an input
or output operation can be interrupted
prematurely—by a timer going off, for
example. By default, this option is turned

off.

This option indicates the version of the
LDAP protocol used when communicating
with the primary LDAP server. The option
should be either LDAP_VERSION2 (2) or
LDAP_VERSION3 (3).If no version is set,
the default is LDAP_VERSION2 (2).

A default list of LDAP server controls to be

sent with each request.

See Also: "Working With Controls" on

page 8-16.

A default list of client controls that affect

the LDAP session.

See Also: "Working With Controls" on

page 8-16.

Used to retrieve version information about
LDAP API extended features at execution
time. Applications need to be able to
determine information about the particular
API implementation they are using both at
compile time and during execution. This
option is read only. It cannot be set.

The host name (or list of hosts) for the
primary LDAP server. See the definition of
the hostname parameter for 1dap_

init () to determine the syntax.

The code of the most recent LDAP error

during this session.

C API Reference 8-9

Functions in the C API

Table 8-5 (Cont.) Constants

Type for invalue

Type for outvalue

Constant parameter parameter Description

LDAP_OPT_ERROR_ char * - The message returned with the most recent

STRING (0x32) LDAP error during this session.

LDAP_OPT_MATCHED_ char * char ** The matched DN value returned with the

DN (0x33) most recent LDAP error during this
session.

ORA_LDAP_OPT_ int * int * This option sets the LDAP connection

CONNECT_TIMEOUT
(0xD2)

timeout value in seconds. The connection
timeout must be set before calling 1dap_
open. Valid values are 0 — 300 seconds. If
the value is set to 0, then the timeout
defaults to TCP timeout. If this option is
not set, then 1dap_open() call times out in
15 sec if the host is not reachable.

Usage Notes

Both 1dap_get_option() and 1dap_set_option () return 0 if successful and -1
if an error occurs. If -1 is returned by either function, a specific error code may be
retrieved by calling 1dap_get_option () with an option value of LDAP_OPT_
ERROR_NUMBER. Note that there is no way to retrieve a more specific error code if a
call to 1dap_get_option () with an option value of LDAP_OPT_ERROR_NUMBER
fails.

When a call to 1dap_get_option () succeeds, the APl implementation MUST NOT
change the state of the LDAP session handle or the state of the underlying
implementation in a way that affects the behavior of future LDAP API calls. When a
call to 1dap_get_option () fails, the only session handle change permitted is setting
the LDAP error code (as returned by the LDAP_OPT_ERROR_NUMBER option).

When a call to 1dap_set_option() fails, it must not change the state of the LDAP
session handle or the state of the underlying implementation in a way that affects the
behavior of future LDAP API calls.

Standards track documents that extend this specification and specify new options
should use values for option macros that are between 0x1000 and 0x3FFF inclusive.
Private and experimental extensions should use values for the option macros that are
between 0x4000 and 0x7FFF inclusive. All values less than 0x1000 and greater than
Ox7FFF that are not defined in this document are reserved and should not be used. The
following macro must be defined by C LDAP API implementations to aid extension
implementers:

#define LDAP_OPT PRIVATE EXTENSION BASE 0x4000 /* to Ox7FFF inclusive */

Getting Bind Credentials for Chasing Referrals

The functions in this section are used to get the bind credentials of a new server while
chasing referrals.

Idap_set_rebind_proc

The 1dap_set_rebind_proc() function is used to set the callback function that the
library uses to get the bind credentials for connecting to a new server while chasing
LDAP referrals. The library uses the callback function only if LDAP_OPT_REFERRALS
is set using 1dap_set_option(). If 1dap_set_rebind_proc() is not called, then

8-10 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Functions in the C API

the library uses an anonymous bind to connect to the new server while chasing LDAP
referrals.

See Also: "LDAP Session Handle Options" on page 8-6.

Syntax

void ldap_set_rebind_proc
(
LDAP *1d,
int (*rebindproc) (LDAP *1d,
char **dnp,
char **passwdp,
int *authmethodp,
int freeit)

)

The reprocbind() function is the function to be called to get the bind credentials of
the new server.

Table 8-6 Parameters for Callback Function and for Setting Callback Function

Parameter Description

14 The session handle

rebindproc The callback function to be used to get the bind credentials for
connecting to a new server while chasing LDAP referrals

1d The session handle to the new server

dnp Pointer to bind dn for new server

passwdp Pointer to bind password for new server

authmethodp Pointer to authentication method for new server

freeit 0 - returns bind dn pointer, bind password pointer, and bind

authentication method pointer for new server

1 - frees any memory allocated in previous call

When the freeit parameter value is 0, then rebindproc must return bind dn
pointer, bind password pointer, and bind authentication method pointer. When the
freeit parameter value is 1, then rebindproc must free any memory allocated in
the previous call. The LDAP library call this function twice, first to get the bind
credentials and second time to free the memory.

See Also: "Setting and Using a Callback Function to Get Credentials
When Chasing Referrals" on page 8-46

Authenticating to the Directory

The functions in this section are used to authenticate an LDAP client to an LDAP
directory server.

Idap_sasl_bind, Idap_sasl_bind_s, Idap_simple_bind, and Idap_simple_bind_s
The 1dap_sasl_bind() and 1dap_sasl_bind_s () functions can be used to do
general and extensible authentication over LDAP through the use of the Simple
Authentication Security Layer. The routines both take the DN to bind as, the method
to use, as a dotted-string representation of an object identifier (OID) identifying the
method, and a struct berval holding the credentials. The special constant value

C API Reference 8-11

Functions in the C API

LDAP_SASL_SIMPLE (NULL) can be passed to request simple authentication, or the
simplified routines 1dap_simple_bind() or ldap_simple_bind_s () can be

used.

Syntax

int ldap_sasl_bind

(

LDAP *1d,

const char *dn,

const char *mechanism,
const struct berval *cred,
LDAPControl **gerverctrls,
LDAPControl **clientctrls,
int *msgidp

)i

int ldap_sasl_bind_s(

LDAP *1d,

const char *dn,

const char *mechanism,
const struct berval *cred,
LDAPControl **serverctrls,
LDAPControl **clientctrls,
struct berval **gervercredp

)i

int ldap_simple_bind(

LDAP *1d,
const char *dn,
const char *passwd

)i

int ldap_simple_bind_s(

LDAP *1d,
const char *dn,
const char *passwd

)i
The use of the following routines is deprecated and more complete descriptions can be
found in RFC 1823:

m int ldap_bind(LDAP *1d, const char *dn, const char *cred,
int method);

m int ldap_bind_s(LDAP *1d, const char *dn, const char *cred,
int method);

m int ldap_kerberos_bind(LDAP *1d, const char *dn);

m int ldap_kerberos_bind_s(LDAP *1d, const char *dn);

Parameters
Table 8-7 lists and describes the parameters for authenticating to the directory.

Table 8-7 Parameters for Authenticating to the Directory

Parameter Description

14 The session handle

8-12 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Functions in the C API

Table 8-7 (Cont.) Parameters for Authenticating to the Directory

Parameter Description
dn The name of the entry to bind as
mechanism Either LDAP_SASL_SIMPLE (NULL) to get simple authentication, or

a text string identifying the SASL method

cred The credentials with which to authenticate. Arbitrary credentials can
be passed using this parameter. The format and content of the
credentials depends on the setting of the mechanism parameter.

passwd For 1dap_simple_bind(), the password to compare to the entry's
userPassword attribute

serverctrls List of LDAP server controls

clientctrls List of client controls

msgidp This result parameter is set to the message id of the request if the

ldap_sasl_bind() call succeeds

servercredp This result parameter is filled in with the credentials passed back by
the server for mutual authentication, if given. An allocated berval
structure is returned that should be disposed of by calling
ber_bvfree (). NULL should be passed to ignore this field.

Usage Notes

Additional parameters for the deprecated routines are not described. Interested
readers are referred to RFC 1823.

The 1dap_sasl_bind () function initiates an asynchronous bind operation and
returns the constant LDAP_SUCCESS if the request was successfully sent, or another
LDAP error code if not. If successful, 1dap_sasl_bind () places the message id of
the request in *msgidp. A subsequent call to 1dap_result () can be used to obtain
the result of the bind.

The 1dap_simple_bind () function initiates a simple asynchronous bind operation
and returns the message id of the operation initiated. A subsequent call to 1dap_
result (), described in, can be used to obtain the result of the bind. In case of error,
ldap_simple_bind () returns -1, setting the session error parameters in the LDAP
structure appropriately.

The synchronous 1dap_sasl_bind_s() and 1dap_simple_bind_s () functions
both return the result of the operation, either the constant LDAP_SUCCESS if the
operation was successful, or another LDAP error code if it was not.

Note that if an LDAPv2 server is contacted, no other operations over the connection
can be attempted before a bind call has successfully completed.

Subsequent bind calls can be used to re-authenticate over the same connection, and
multistep SASL sequences can be accomplished through a sequence of calls to 1dap_
sasl_bind() or ldap_sasl_bind_s().

See Also: "Handling Errors and Parsing Results" for more
information about possible errors and how to interpret them.

SASL Authentication Using Oracle Extensions

This section contains the following topics:

= ora_ldap_init SASL

C API Reference 8-13

Functions in the C API

= ora_ldap_create_cred_hdl, ora_ldap_set_cred_props, ora_ldap_get_cred_props,
and ora_ldap_free_cred_hdl

ora_ldap_init_SASL

The function ora_1ldap_init_SASL () can be used for SASL based authentication. It
performs authentication based on the mechanism specified as one of its input
arguments.

This function encapsulates the SASL handshake between the client and the directory
server for various standard SASL mechanisms thereby reducing the coding effort
involved in establishing a SASL-based connection to the directory server.

Syntax

int ora_ldap_init_SASL

(

OraLdapClientCtx * clientCtx,
LDAP*14,

char* dn,

char* mechanism,
OraLdapHandle cred,
LDAPControl**serverctrls,
LDAPControl**clientctrls

)i

Parameters

Table 8-8 Parameters passed to ora_Ildap_init_sasl()

Parameter Description

clientCtx C API Client context. This can be managed using ora_ldap_init_clientctx()
and ora_ldap_free_clientctx () functions.

1d Ldap session handle.

dn User DN to be authenticated.

mechanism SASL mechanism.

cred Credentials needed for SASL authentication.

serverctrls List of LDAP server controls

clientctrls List of client controls

The cred parameter is a SASL credential handle for the user. This handle can be
managed using ora_ldap_create_cred_hdl (), ora_ldap_set_cred_props ()
and ora_ldap_free_cred_hdl () functions.

Supported SASL mechanisms:
s DIGEST-MD5

The Oracle Internet Directory SASL API supports the authentication-only mode of
DIGEST-MDS5. The other two authentication modes addressing data privacy and
data integrity are yet to be supported.

While authenticating against Oracle Internet Directory, the DN of the user has to
be normalized before it is sent across to the server. This can be done either outside
the SASL API using the ora_ldap_normalize_dn () function before the DN is

8-14 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Functions in the C API

passed on to the SASL API or with the SASL API by setting the ORA_LDAP_CRED_

SASL_NORM_AUTHDN option in SASL credentials handle using ora_ldap_set_
cred_handle ().

s EXTERNAL:

The SASL API and SASL implementation in Oracle Internet Directory use SSL
authentication as one of the external authentication mechanisms.

Using this mechanism requires that the SSL connection (mutual authentication
mode) be established to the directory server by using the ora_ldap_init_
SSL () function. The ora_ldap_init_SASL () function can then be invoked
with the mechanism argument as EXTERNAL. The directory server would then

authenticate the user based on the user credentials in SSL connection.

ora_ldap_create_cred_hdl, ora_ldap_set_cred_props, ora_ldap_get_cred_props,

and ora_ldap_free_cred_hdl

Use these functions to create and manage SASL credential handles. The ora_ldap_

create_cred_hdl function should be used to create a SASL credential handle of

certain type based on the type of mechanism used for SASL authentication. The ora_
ldap_set_cred_props () function can be used to add relevant credentials to the

handle needed for SASL authentication. The ora_ldap_get_cred_props ()

function can be used for retrieving the properties stored in the credential handle, and

the ora_ldap_free_cred_hdl () function should be used to destroy the handle

after its use.

Syntax

OraLdapHandle ora_ldap_create_cred_hdl
(
OraLdapClientCtx * clientCtx,
int credType
)

OraLdapHandle ora_ldap_set_cred_props
(
OraLdapClientCtx * clientCtx,

OraLdapHandle cred,
int Stringl[],
void * inProperty

)i
OralLdapHandle ora_ldap_get_cred_props
(
OraLdapClientCtx * clientCtx,
OraLdapHandle cred,
int Stringl[],
void * outProperty
)i

OralLdapHandle ora_ldap_free_cred_hdl

(
OraLdapClientCtx * clientCtx,
OraLdapHandle cred

C API Reference

8-15

Functions in the C API

Parameters

Table 8-9 Parameters for Managing SASL Credentials

Parameter Description

clientCtx C API Client context. This can be managed using ora_ldap_
init_clientctx() and ora_ldap_free clientctx()
functions.

credType Type of credential handle specific to SASL mechanism.

cred Credential handle containing SASL credentials needed for a
specific SASL mechanism for SASL authentication.

String[] Type of credential, which must be added to credential handle.

inProperty One of the SASL Credentials to be stored in credential handle.

outProperty One of the SASL credentials stored in credential handle.

Working With Controls

LDAPv3 operations can be extended through the use of controls. Controls can be sent
to a server or returned to the client with any LDAP message. These controls are
referred to as server controls.

The LDAP API also supports a client-side extension mechanism through the use of
client controls. These controls affect the behavior of the LDAP API only and are never
sent to a server. A common data structure is used to represent both types of controls:

typedef struct ldapcontrol
{

char *1dctl_oid;
struct berval ldctl_value;
char ldctl_iscritical;

} LDAPControl;
The fields in the 1dapcontrol structure are described in Table 8-10.

Table 8-10 Fields in Idapcontrol Structure

Field Description
ldctl_oid The control type, represented as a string.
ldctl_value The data associated with the control (if any). To specify a zero-length

value, set 1dctl_value.bv_len to zero and 1dctl_value.bv_val
to a zero-length string. To indicate that no data is associated with the
control, set 1dctl_value.bv_val to NULL.

ldctl_iscritical Indicates whether the control is critical of not. If this field is nonzero, the
operation is only carried out if the control is recognized by the server or
the client. Note that the LDAP unbind and abandon operations have no
server response. Clients should not mark server controls critical when
used with these two operations.

See Also: Chapter 3, "Extensions to the LDAP Protocol” for more
information about controls.

Some LDAP API calls allocate an 1dapcontrol structure or a NULL-terminated array
of 1dapcontrol structures. The following routines can be used to dispose of a single
control or an array of controls:

void ldap_control_free(LDAPControl *ctrl);

8-16 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Functions in the C API

void ldap_controls_free(LDAPControl **ctrls);

If the ctrl or ctrls parameter is NULL, these calls do nothing.

A set of controls that affect the entire session can be set using the 1dap_set_

option () function described in "ldap_get_option and Idap_set_option" on page 8-6.
A list of controls can also be passed directly to some LDAP API calls such as 1dap_
search_ext (), in which case any controls set for the session through the use of
ldap_set_option() are ignored. Control lists are represented as a NULL-terminated
array of pointers to 1dapcontrol structures.

Server controls are defined by LDAPv3 protocol extension documents; for example, a
control has been proposed to support server-side sorting of search results.

One client control is defined in this chapter (described in the following section).

Client-Controlled Referral Processing As described previously in "LDAP Session
Handle Options" on page 8-6, applications can enable and disable automatic chasing of
referrals on a session-wide basic by using the 1dap_set_option () function with the
LDAP_OPT_REFERRALS option. It is also useful to govern automatic referral chasing
on per-request basis. A client control with an object identifier (OID) of
1.2.840.113556.1.4.616 exists to provide this functionality.

/* OID for referrals client control */
#define LDAP_CONTROL_REFERRALS "1.2.840.113556.1.4.616"

/* Flags for referrals client control value */
#define LDAP_CHASE_SUBORDINATE_REFERRALS 0x00000020U0
#define LDAP_CHASE_EXTERNAL_REFERRALS 0x00000040U0

To create a referrals client control, the 1dctl_oid field of an LDAPControl structure
must be set to LDAP_CONTROL_REFERRALS ("1.2.840.113556.1.4.616") and
the 1dctl_value field must be set to a four-octet value that contains a set of flags.
The 1dctl_value.bv_len field must always be set to 4. The 1dctl_value.bv_
val field must point to a four-octet integer flags value. This flags value can be set to
zero to disable automatic chasing of referrals and LDAPv3 references altogether.
Alternatively, the flags value can be set to the value LDAP_ CHASE SUBORDINATE
REFERRALS (0x00000020U) to indicate that only LDAPv3 search continuation
references are to be automatically chased by the API implementation, to the value
LDAP_CHASE_EXTERNAL_REFERRALS (0x00000040U) to indicate that only
LDAPv3 referrals are to be automatically chased, or the logical OR of the two flag
values (0x00000060U) to indicate that both referrals and references are to be
automatically chased.

See Also: "Directory Schema Administration” in Oracle Fusion
Middleware Administrator’s Guide for Oracle Internet Directory for more
information about object identifiers.

Closing the Session

Use the functions in this section to unbind from the directory, to close open
connections, and to dispose of the session handle.

Idap_unbind, Idap_unbind_ext, and Idap_unbind_s

ldap_unbind_ext (), ldap_unbind (), and 1dap_unbind_s () all work
synchronously in the sense that they send an unbind request to the server, close all
open connections associated with the LDAP session handle, and dispose of all

C API Reference 8-17

Functions in the C API

resources associated with the session handle before returning. Note, however, that
there is no server response to an LDAP unbind operation. All three of the unbind
functions return LDAP_SUCCESS (or another LDAP error code if the request cannot be
sent to the LDAP server). After a call to one of the unbind functions, the session
handle 1d is invalid and it is illegal to make any further LDAP API calls using 1d.

The 1dap_unbind () and 1dap_unbind_s () functions behave identically. The
ldap_unbind_ext () function allows server and client controls to be included
explicitly, but note that since there is no server response to an unbind request there is
no way to receive a response to a server control sent with an unbind request.

Syntax

int ldap_unbind_ext(LDAP *1d, LDAPControl **serverctrls,
LDAPControl **clientctrls);

int ldap_unbind(LDAP *1d);

int ldap_unbind_s(LDAP *1d);

Parameters

Table 8—-11 Parameters for Closing the Session

Parameter Description

1d The session handle
serverctrls List of LDAP server controls
clientctrls List of client controls

Performing LDAP Operations

Use the functions in this section to search the LDAP directory and to return a
requested set of attributes for each entry matched.

Idap_search_ext, Idap_search_ext_s, Idap_search, and Idap_search_s

The 1dap_search_ext () function initiates an asynchronous search operation and
returns the constant LDAP_SUCCESS if the request was successfully sent, or another
LDAP error code if not. If successful, 1dap_search_ext () places the message id of
the request in *msgidp. A subsequent call to 1dap_result () can be used to obtain
the results from the search. These results can be parsed using the result parsing
routines described in detail later.

Similar to 1dap_search_ext (), the 1dap_search () function initiates an
asynchronous search operation and returns the message id of the operation initiated.
As for 1dap_search_ext (), a subsequent call to 1dap_result () can be used to
obtain the result of the bind. In case of error, 1dap_search () returns -1, setting the
session error parameters in the LDAP structure appropriately.

The synchronous 1dap_search_ext_s (), ldap_search_s (), and ldap_search_
st () functions all return the result of the operation, either the constant LDAP_
SUCCESS if the operation was successful, or another LDAP error code if it was not.
Entries returned from the search, if any, are contained in the res parameter. This
parameter is opaque to the caller. Entries, attributes, values, and so on, can be
extracted by calling the parsing routines described in this section. The results
contained in res should be freed when no longer in use by calling 1dap_msgfree (),
which is described later.

The 1dap_search_ext () and 1dap_search_ext_s () functions support LDAPv3
server controls, client controls, and allow varying size and time limits to be easily

8-18 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Functions in the C API

specified for each search operation. The 1dap_search_st () function is identical to
ldap_search_s () except that it takes an additional parameter specifying a local
timeout for the search. The local search timeout is used to limit the amount of time the
API implementation waits for a search to complete. After the local search timeout
expires, the API implementation sends an abandon operation to stop the search

operation.

See Also:

"Handling Errors and Parsing Results" for more

information about possible errors and how to interpret them.

Syntax

int ldap_search_ext

(

LDAP

const char
int

const char
char

int
LDAPControl
LDAPControl
struct timeval
int

int

)i

*1d,

*base,

scope,
*filter,
**attrs,
attrsonly,
**serverctrls,
**clientctrls,
*timeout,
sizelimit,
*msgidp

int ldap_search_ext_s

(

LDAP

const char
int

const char
char

int
LDAPControl
LDAPControl
struct timeval
int
LDAPMessage
)i

int ldap_search
(

LDAP

const char

int

const char

char

int

)i

int ldap_search_

(

LDAP

const char
int

const char
char

int

*1d,

*base,

scope,
*filter,
**attrs,
attrsonly,
**gserverctrls,
**clientctrls,
*timeout,
sizelimit,
**res

*1d,
*base,
scope,
*filter,
**attrs,
attrsonly

S

*1d,
*base,
scope,
*filter,
**attrs,
attrsonly,

C API Reference 8-19

Functions in the C API

LDAPMessage
)i

**res

int ldap_search_st

)i

LDAP

const char

int

const char
char

int

struct timeval
LDAPMessage

)i

Parameters

*1d,
*base,
scope,
*filter,
**attrs,
attrsonly,
*timeout,
**res

Table 8-12 lists and describes the parameters for search operations.

Table 8-12 Parameters for Search Operations

Parameter

Description

1d
base

scope

filter

attrs

attrsonly

timeout

sizelimit

The session handle.
The DN of the entry at which to start the search.

One of LDAP_SCOPE_BASE (0x00), LDAP_SCOPE_ONELEVEL (0x01),or
LDAP_SCOPE_SUBTREE (0x02), indicating the scope of the search.

A character string representing the search filter. The value NULL can be passed to
indicate that the filter " (objectclass=*)" which matches all entries is to be
used. Note that if the caller of the API is using LDAPv2, only a subset of the filter
functionality can be successfully used.

A NULL-terminated array of strings indicating which attributes to return for each
matching entry. Passing NULL for this parameter causes all available user
attributes to be retrieved. The special constant string LDAP_NO_ATTRS ("1.1")
may be used as the only string in the array to indicate that no attribute types are to
be returned by the server. The special constant string LDAP_ALL_USER_ATTRS
("*") can be used in the attrs array along with the names of some operational
attributes to indicate that all user attributes plus the listed operational attributes
are to be returned.

A boolean value that must be zero if both attribute types and values are to be
returned, and nonzero if only types are wanted.

For the 1dap_search_st () function, this specifies the local search timeout value
(if it is NULL, the timeout is infinite). If a zero timeout (where tv_sec and tv_
usec are both zero) is passed, API implementations should return LDAP_
PARAM_ERROR. For the 1dap_search_ext () and 1dap_search_ext_s ()
functions, the timeout parameter specifies both the local search timeout value and
the operation time limit that is sent to the server within the search request. Passing
a NULL value for timeout causes the global default timeout stored in the LDAP
session handle (set by using 1dap_set_option () with the LDAP_OPT_
TIMELIMIT parameter) to be sent to the server with the request but an infinite
local search timeout to be used. If a zero timeout (where tv_sec and tv_usec are
both zero) is passed in, API implementations should return LDAP_ PARAM_ERROR.
If a zero value for tv_sec is used but tv_usec is nonzero, an operation time
limit of 1 should be passed to the LDAP server as the operation time limit. For
other values of tv_sec, the tv_sec value itself should be passed to the LDAP
server.

For the 1dap_search_ext () and 1dap_search_ext_s () calls, this is a limit
on the number of entries to return from the search. A value of LDAP_NO_LIMIT
(0) means no limit.

8-20 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Functions in the C API

Table 8-12 (Cont.) Parameters for Search Operations

Parameter Description

res For the synchronous calls, this is a result parameter which contains the results of
the search upon completion of the call. If no results are returned, *res is set to
NULL.

serverctrls List of LDAP server controls.
clientctrls List of client controls.

msgidp This result parameter is set to the message id of the request if the 1dap_search_
ext () call succeeds.There are three options in the session handle 1d which
potentially affect how the search is performed. They are:

s LDAP_OPT_ SIZELIMIT—A limit on the number of entries to return from the
search. A value of LDAP_NO_LIMIT (0) means no limit. Note that the value
from the session handle is ignored when using the 1dap_search_ext () or
ldap_search_ext_s () functions.

= LDAP_OPT_TIMELIMIT—A limit on the number of seconds to spend on the
search. A value of LDAP_NO_LIMIT (0) means no limit. Note that the value
from the session handle is ignored when using the 1dap_search_ext () or
ldap_search_ext_s () functions.

= LDAP_OPT DEREF—One of LDAP_DEREF NEVER (0x00), LDAP DEREF
SEARCHING (0x01),LDAP_DEREF_FINDING (0x02),or LDAP_DEREF_
ALWAYS (0x03), specifying how aliases are handled during the search. The
LDAP_DEREF_SEARCHING value means aliases are dereferenced during the
search but not when locating the base object of the search. The LDAP_DEREF_
FINDING value means aliases are dereferenced when locating the base object
but not during the search.

Reading an Entry

LDAP does not support a read operation directly. Instead, this operation is emulated
by a search with base set to the DN of the entry to read, scope set to LDAP_SCOPE_
BASE, and filter set to " (objectclass=*) " or NULL. The attrs parameter contains
the list of attributes to return.

Listing the Children of an Entry

LDAP does not support a list operation directly. Instead, this operation is emulated by
a search with base set to the DN of the entry to list, scope set to LDAP_SCOPE_
ONELEVEL, and filter set to " (objectclass=*) " or NULL. The parameter attrs
contains the list of attributes to return for each child entry.

Idap_compare_ext, Idap_compare_ext_s, Idap_compare, and Idap_compare_s
Use these routines to compare an attribute value assertion against an LDAP entry.

The 1dap_compare_ext () function initiates an asynchronous compare operation
and returns the constant LDAP_ SUCCESS if the request was successfully sent, or
another LDAP error code if not. If successful, 1dap_compare_ext () places the
message id of the request in *msgidp. A subsequent call to 1dap_result () canbe
used to obtain the result of the compare.

Similar to 1dap_compare_ext (), the 1dap_compare () function initiates an
asynchronous compare operation and returns the message id of the operation initiated.
As for 1dap_compare_ext (), a subsequent call to 1dap_result () can be used to
obtain the result of the bind. In case of error, 1dap_compare () returns -1, setting
the session error parameters in the LDAP structure appropriately.

C API Reference 8-21

Functions in the C API

The synchronous 1dap_compare_ext_s () and ldap_compare_s () functions both
return the result of the operation, either the constant LDAP_SUCCESS if the operation
was successful, or another LDAP error code if it was not.

The 1dap_compare_ext () and 1dap_compare_ext_s () functions support
LDAPvV3 server controls and client controls.

See Also: "Handling Errors and Parsing Results" for more
information about possible errors and how to interpret them.

Syntax

int ldap_compare_ext

(

LDAP *1d,

const char *dn,

const char *attr,

const struct berval *bvalue,
LDAPControl **gerverctrls,
LDAPControl **clientctrls,
int *msgidp

)i

int ldap_compare_ext_s

(

LDAP *1d,

const char *dn,

const char *attr,

const struct berval *bvalue,
LDAPControl **gerverctrls,
LDAPControl **clientctrls

)i

int ldap_compare

(

LDAP *1d,
const char *dn,
const char *attr,
const char *value

)i
int ldap_compare_s

(

LDAP *1d,
const char *dn,
const char *attr,
const char *value
)i

Parameters

Table 8-13 lists and describes the parameters for compare operations.

Table 8-13 Parameters for Compare Operations

Parameter Description

1d The session handle.

dn The name of the entry to compare against.
attr The attribute to compare against.

8-22 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Functions in the C API

Table 8-13 (Cont.) Parameters for Compare Operations

Parameter Description

bvalue The attribute value to compare against those found in the given entry. This
parameter is used in the extended routines and is a pointer to a struct
berval so it is possible to compare binary values.

value A string attribute value to compare against, used by the 1dap_compare ()
and 1dap_compare_s () functions. Use 1dap_compare_ext () or
ldap_compare_ext_s () if you need to compare binary values.

serverctrls List of LDAP server controls.
clientctrls List of client controls.
msgidp This result parameter is set to the message id of the request if the 1dap_

compare_ext () call succeeds.

Idap_modify_ext, Idap_modify_ext_s, Idap_modify, and Idap_modify_s

Use these routines to modify an existing LDAP entry.

The 1dap_modify_ext () function initiates an asynchronous modify operation and
returns the constant LDAP_SUCCESS if the request was successfully sent, or another
LDAP error code if not. If successful, 1dap_modify_ ext () places the message id of
the request in *msgidp. A subsequent call to 1dap_result () can be used to obtain
the result of the modify.

Similar to 1dap_modify_ ext (), the 1dap_modify () function initiates an
asynchronous modify operation and returns the message id of the operation initiated.
As for 1dap_modify_ext (), a subsequent call to 1dap_result () can be used to
obtain the result of the modify. In case of error, 1dap_modify () returns -1, setting
the session error parameters in the LDAP structure appropriately.

The synchronous 1dap_modify_ext_s() and 1dap_modify_s () functions both
return the result of the operation, either the constant LDAP_SUCCESS if the operation
was successful, or another LDAP error code if it was not.

The 1dap_modify_ext () and 1dap_modify_ext_s () functions support LDAPv3

server controls and client controls.

See Also: "Handling Errors and Parsing Results" for more
information about possible errors and how to interpret them.

Syntax

typedef struct ldapmod

{

int mod_op;
char *mod_type;

union mod_vals_u

{

char **modv_strvals;

struct berval **modv_bvals;

} mod_vals;
} LDAPMod;
#define mod_values mod_vals.modv_strvals
#define mod_bvalues mod_vals.modv_bvals

int ldap_modify_ext

(
LDAP *1d,
const char *dn,

C API Reference 8-23

Functions in the C API

LDAPMod
LDAPControl
LDAPControl
int

)i

**mods,
**gserverctrls,
**clientctrls,
*msgidp

int ldap_modify ext_s

(

LDAP

const char
LDAPMod
LDAPControl
LDAPControl
)i

*1d,

*dn,

**mods,
**serverctrls,
**clientctrls

int ldap_modify

(

LDAP

const char
LDAPMod

)i

*1d,
*dn,
**mods

int ldap_modify_s

(

LDAP

const char
LDAPMod

)i

Parameters

*1d,
*dn,
**mods

Table 8-14 lists and describes the parameters for modify operations.

Table 8-14

Parameters for Modify Operations

Parameter

Description

1d

dn

mods
serverctrls
clientctrls

msgidp

The session handle

The name of the entry to modify

A NULL-terminated array of modifications to make to the entry
List of LDAP server controls

List of client controls

This result parameter is set to the message id of the request if the 1dap_
modify ext () call succeeds

Table 8-15 lists and describes the fields in the LDAPMod structure.

Table 8-15

Fields in LDAPMod Structure

Field

Description

mod_op

mod_type

The modification operation to perform. It must be one of LDAP_MOD_ADD
(0x00), LDAP_MOD_DELETE (0x01), or LDAP_MOD_REPLACE (0x02). This
field also indicates the type of values included in the mod_vals union. It is
logically ORed with LDAP_MOD_BVALUES (0x80) to select the
mod_bvalues form. Otherwise, the mod_values form is used.

The type of the attribute to modify.

8-24 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Functions in the C API

Table 8-15 (Cont.) Fields in LDAPMod Structure

Field Description

mod_vals The values (if any) to add, delete, or replace. Only one of the mod_values or
mod_bvalues variants can be used, selected by ORing the mod_op field with
the constant LDAP_MOD_BVALUES. mod_values is a NULL-terminated array of
zero-terminated strings and mod_bvalues is a NULL-terminated array of
berval structures that can be used to pass binary values such as images.

Usage Notes

For LDAP_MOD_ADD modifications, the given values are added to the entry, creating
the attribute if necessary.

For LDAP_MOD_DELETE modifications, the given values are deleted from the entry,
removing the attribute if no values remain. If the entire attribute is to be deleted, the
mod_vals field can be set to NULL.

For LDAP_MOD_REPLACE modifications, the attribute has the listed values after the
modification, having been created if necessary, or removed if the mod_vals field is
NULL. All modifications are performed in the order in which they are listed.

Idap_rename and Idap_rename_s
Use these routines to change the name of an entry.

The 1dap_rename () function initiates an asynchronous modify DN operation and
returns the constant LDAP_SUCCESS if the request was successfully sent, or another
LDAP error code if not. If successful, 1dap_rename () places the DN message id of
the request in *msgidp. A subsequent call to 1dap_result () can be used to obtain
the result of the rename.

The synchronous 1dap_rename_s () returns the result of the operation, either the
constant LDAP_SUCCESS if the operation was successful, or another LDAP error code
if it was not.

The 1dap_rename () and 1dap_rename_s () functions both support LDAPv3 server
controls and client controls.

See Also: "Handling Errors and Parsing Results" for more
information about possible errors and how to interpret them.

Syntax

int ldap_rename

(

LDAP *1d,

const char *dn,

const char *newrdn,

const char *newparent,
int deleteoldrdn,
LDAPControl **serverctrls,
LDAPControl **clientctrls,
int *msgidp

)i

int ldap_rename_s

(

LDAP *1d,

const char *dn,

const char *newrdn,
const char *newparent,

C API Reference 8-25

Functions in the C API

int
LDAPControl
LDAPControl
)i

deleteoldrdn,
**gserverctrls,
**clientctrls

The use of the following routines is deprecated and more complete descriptions can be
found in RFC 1823:

int ldap_modrdn

(

LDAP

const char
const char
)i

*1d,
*dn,
*newrdn

int ldap_modrdn_s

(

LDAP

const char
const char
)i

*1d,
*dn,
*newrdn

int ldap_modrdn2

(

LDAP

const char
const char
int

)i

*1d,

*dn,
*newrdn,
deleteoldrdn

int ldap_modrdn2_s

(

LDAP

const char
const char
int

)i

Parameters

*1d,

*dn,

*newrdn,
deleteoldrdn

Table 8-16 lists and describes the parameters for rename operations.

Table 8-16

Parameters for Rename Operations

Parameter

Description

1d
dn
newrdn

newparent

deleteoldrdn

serverctrls

The session handle.
The name of the entry whose DN is to be changed.
The new RDN to give the entry.

The new parent, or superior entry. If this parameter is NULL, only the RDN of
the entry is changed. The root DN should be specified by passing a zero
length string, " ". The newparent parameter should always be NULL when
using version 2 of the LDAP protocol; otherwise the server's behavior is
undefined.

This parameter only has meaning on the rename routines if newrdn is
different than the old RDN. It is a boolean value, if nonzero indicating that
the old RDN value is to be removed, if zero indicating that the old RDN
value is to be retained as non-distinguished values of the entry.

List of LDAP server controls.

8-26 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Functions in the C API

Table 8-16 (Cont.) Parameters for Rename Operations

Parameter Description
clientctrls List of client controls.
msgidp This result parameter is set to the message id of the request if the 1dap_

rename () call succeeds.

Idap_add_ext, Idap_add_ext_s, Idap_add, and Idap_add_s
Use these functions to add entries to the LDAP directory.

The 1dap_add_ext () function initiates an asynchronous add operation and returns
the constant LDAP_SUCCESS if the request was successfully sent, or another LDAP
error code if not. If successful, 1dap_add_ext () places the message id of the request
in *msgidp. A subsequent call to 1dap_result () can be used to obtain the result of
the add.

Similar to 1dap_add_ext (), the 1dap_add () function initiates an asynchronous
add operation and returns the message id of the operation initiated. As for 1dap_
add_ext (), a subsequent call to 1dap_result () can be used to obtain the result of
the add. In case of error, 1dap_add () returns -1, setting the session error parameters
in the LDAP structure appropriately.

The synchronous 1dap_add_ext_s () and 1dap_add_s () functions both return the
result of the operation, either the constant LDAP_SUCCESS if the operation was
successful, or another LDAP error code if it was not.

The 1dap_add_ext () and 1dap_add_ext_s () functions support LDAPv3 server

controls and client controls.

See Also: "Handling Errors and Parsing Results" for more
information about possible errors and how to interpret them.

Syntax

int ldap_add_ext

(

LDAP *1d,

const char *dn,

LDAPMod **attrs,
LDAPControl **gerverctrls,
LDAPControl **clientctrls,
int *msgidp

)i

int ldap_add_ext_s
(

LDAP *1d,

const char *dn,

LDAPMod **attrs,
LDAPControl **gserverctrls,
LDAPControl **clientctrls

)i

int ldap_add
(

LDAP *1d,
const char *dn,
LDAPMod **attrs

)i

C API Reference 8-27

Functions in the C API

int ldap_add_s
(

LDAP *1d,
const char *dn,
LDAPMod **attrs
)i

Parameters

Table 8-17 lists and describes the parameters for add operations.

Table 8—17 Parameters for Add Operations

Parameter Description

1d The session handle.

dn The name of the entry to add.

attrs The entry attributes, specified using the LDAPMod structure defined for 1dap_

modify (). The mod_type and mod_vals fields must be filled in. The mod_op
field is ignored unless ORed with the constant LDAP_MOD_BVALUES, used to
select the mod_bvalues case of the mod_vals union.

serverctrls List of LDAP server controls.
clientctrls List of client controls.

msgidp This result parameter is set to the message id of the request if the 1dap_add_
ext () call succeeds.

Usage Notes

Note that the parent of the entry being added must already exist or the parent must be
empty—that is, equal to the root DN—for an add to succeed.

Idap_delete_ext, Idap_delete_ext_s, Idap_delete, and Idap_delete_s
Use these functions to delete a leaf entry from the LDAP directory.

The 1dap_delete_ext () function initiates an asynchronous delete operation and
returns the constant LDAP_SUCCESS if the request was successfully sent, or another
LDAP error code if not. If successful, 1dap_delete_ext () places the message id of
the request in *msgidp. A subsequent call to 1dap_result () can be used to obtain
the result of the delete.

Similar to 1dap_delete_ext (), the 1dap_delete () function initiates an
asynchronous delete operation and returns the message id of the operation initiated.
As for 1dap_delete_ext (), a subsequent call to 1dap_result () can be used to
obtain the result of the delete. In case of error, 1dap_delete () returns -1, setting the
session error parameters in the LDAP structure appropriately.

The synchronous 1dap_delete_ext_s () and 1dap_delete_s () functions both
return the result of the operation, either the constant LDAP_SUCCESS if the operation
was successful, or another LDAP error code if it was not.

The 1dap_delete_ext () and 1dap_delete_ext_s () functions support LDAPv3
server controls and client controls.

See Also: "Handling Errors and Parsing Results" for more
information about possible errors and how to interpret them.

8-28 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Functions in the C API

Syntax

int ldap_delete_ext

(

LDAP *1d,

const char *dn,
LDAPControl **gerverctrls,
LDAPControl **clientctrls,
int *msgidp

)i

int ldap_delete_ext_s
(

LDAP *1d,

const char *dn,
LDAPControl **gerverctrls,
LDAPControl **clientctrls

)i

int Idap_delete

(

LDAP *1d,
const char *dn
)i

int ldap_delete_s
(

LDAP *1d,
const char *dn
)i

Parameters

Table 8-18 lists and describes the parameters for delete operations.

Table 8-18 Parameters for Delete Operations

Parameter Description

14 The session handle.

dn The name of the entry to delete.
serverctrls List of LDAP server controls.
clientctrls List of client controls.

msgidp This result parameter is set to the message id of the request if the 1dap_
delete_ext () call succeeds.

Usage Notes

Note that the entry to delete must be a leaf entry—that is, it must have no children.
Deletion of entire subtrees in a single operation is not supported by LDAP.

Idap_extended_operation and Idap_extended_operation_s

These routines enable extended LDAP operations to be passed to the server, providing
a general protocol extensibility mechanism.

The 1dap_extended_operation () function initiates an asynchronous extended
operation and returns the constant LDAP_SUCCESS if the request was successfully
sent, or another LDAP error code if not. If successful, 1dap_extended_
operation () places the message id of the request in *msgidp. A subsequent call to

C API Reference 8-29

Functions in the C API

ldap_result () can be used to obtain the result of the extended operation which can
be passed to 1dap_parse_extended_result () to obtain the object identifier (OID)
and data contained in the response.

The synchronous 1dap_extended_operation_s () function returns the result of
the operation, either the constant LDAP_SUCCESS if the operation was successful, or
another LDAP error code if it was not. The retoid and retdata parameters are
filled in with the OID and data from the response. If no OID or data was returned,
these parameters are set to NULL.

The 1dap_extended_operation () and 1dap_extended_operation_s ()
functions both support LDAPv3 server controls and client controls.

See Also: "Handling Errors and Parsing Results" for more
information about possible errors and how to interpret them.

Syntax

int ldap_extended_operation

(

LDAP *1d,

const char *requestoid,
const struct berval *requestdata,
LDAPControl **gserverctrls,
LDAPControl **clientctrls,
int *msgidp

)i

int ldap_extended_operation_s

(

LDAP *1d,

const char *requestoid,
const struct berval *requestdata,
LDAPControl **gerverctrls,
LDAPControl **clientctrls,
char **retoidp,
struct berval **retdatap

)i

Parameters

Table 8-19 lists and describes the parameters for extended operations.

Table 8-19 Parameters for Extended Operations

Parameter Description

14 The session handle

requestoid The dotted-OID text string naming the request

requestdata The arbitrary data needed by the operation (if NULL, no data is sent to the
server)

serverctrls List of LDAP server controls

clientctrls List of client controls

msgidp This result parameter is set to the message id of the request if the 1dap_

extended_operation () call succeeds.

retoidp Pointer to a character string that is set to an allocated, dotted-OID text string
returned by the server. This string should be disposed of using the 1dap_
memfree () function. If no OID was returned, *retoidp is set to NULL.

8-30 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Functions in the C API

Table 8-19 (Cont) Parameters for Extended Operations

Parameter Description

retdatap Pointer to a berval structure pointer that is set an allocated copy of the data
returned by the server. This struct berval should be disposed of using
ber_bvfree (). If no data is returned, *retdatap is set to NULL.

Abandoning an Operation

Use the functions in this section to abandon an operation in progress:

Idap_abandon_ext and Idap_abandon

ldap_abandon_ext () abandons the operation with message id msgid and returns
the constant LDAP_ SUCCESS if the abandon was successful or another LDAP error
code if not.

ldap_abandon () is identical to 1dap_abandon_ext () except that it does not
accept client or server controls and it returns zero if the abandon was successful, -1
otherwise.

After a successful call to 1dap_abandon () or 1dap_abandon_ext (), results with
the given message id are never returned from a subsequent call to 1dap_result ().
There is no server response to LDAP abandon operations.

Syntax

int ldap_abandon_ext

(

LDAP *1d,

int msgid,
LDAPControl **gerverctrls,
LDAPControl **clientctrls

)i

int ldap_abandon
(

LDAP *1d,
int msgid
)

Parameters

Table 8-20 lists and describes the parameters for abandoning an operation.

Table 8-20 Parameters for Abandoning an Operation

Parameter Description
1d The session handle.
msgid The message id of the request to be abandoned.

serverctrls List of LDAP server controls.

clientctrls List of client controls.

See Also: "Handling Errors and Parsing Results" for more
information about possible errors and how to interpret them.

C API Reference 8-31

Functions in the C API

Obtaining Results and Peeking Inside LDAP Messages

Use the functions in this section to return the result of an operation initiated
asynchronously. They identify messages by type and by ID.

Idap_result, Idap_msgtype, and Idap_msgid

ldap_result () is used to obtain the result of a previous asynchronously initiated
operation. Note that depending on how it is called, 1dap_result () can actually
return a list or "chain" of result messages. The 1dap_result () function only returns
messages for a single request, so for all LDAP operations other than search only one
result message is expected; that is, the only time the "result chain" can contain more
than one message is if results from a search operation are returned.

After a chain of messages has been returned to the caller, it is no longer tied in any
caller-visible way to the LDAP request that produced it. Therefore, a chain of messages
returned by calling 1dap_result () or by calling a synchronous search routine is
never affected by subsequent LDAP API calls (except for 1dap_msgfree () whichis
used to dispose of a chain of messages).

ldap_msgfree () frees the result messages (possibly an entire chain of messages)
obtained from a previous call to 1dap_result () or from a call to a synchronous
search routine.

ldap_msgtype () returns the type of an LDAP message. 1dap_msgid () returns the
message ID of an LDAP message.

Syntax

int ldap_result

(

LDAP *1d,

int msgid,
int all,
struct timeval *timeout,
LDAPMessage **res

)i

int ldap_msgfree(LDAPMessage *res);
int ldap_msgtype(LDAPMessage *res);
int ldap_msgid(LDAPMessage *res);

Parameters

Table 8-21 on page 8-32 lists and describes the parameters for obtaining results and
peeling inside LDAP messages.

Table 8-21 Parameters for Obtaining Results and Peeking Inside LDAP Messages

Parameter Description

1d The session handle.

msgid The message id of the operation whose results are to be returned, the constant
LDAP_RES_UNSOLICITED (0) if an unsolicited result is desired, or the
constant LDAP_RES_ANY (-1) if any result is desired.

all Specifies how many messages is retrieved in a single call to 1dap_result ().
This parameter only has meaning for search results. Pass the constant LDAP_
MSG_ONE (0x00) to retrieve one message at a time. Pass LDAP_MSG_ALL
(0x01) to request that all results of a search be received before returning all
results in a single chain. Pass LDAP_MSG_RECEIVED (0x02) to indicate that
all messages retrieved so far are to be returned in the result chain.

8-32 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Functions in the C API

Table 8-21 (Cont.) Parameters for Obtaining Results and Peeking Inside LDAP

Parameter Description

timeout A timeout specifying how long to wait for results to be returned. A NULL value
causes 1dap_result () to block until results are available. A timeout value of
zero seconds specifies a polling behavior.

res For 1dap_result (), a result parameter that contains the result of the
operation. If no results are returned, *res is set to NULL. For 1dap_
msgfree (), the result chain to be freed, obtained from a previous call to
ldap_result (), ldap_search_s(),or ldap_search_st ().Ifres is
NULL, nothing is done and 1dap_msgfree () returns zero.

Usage Notes

Upon successful completion, 1dap_result () returns the type of the first result
returned in the res parameter. This is one of the following constants.

LDAP_RES_BIND (0x61)

LDAP_RES_SEARCH_ENTRY (0x64)
LDAP_RES_SEARCH_REFERENCE (0x73)--new in LDAPv3
LDAP_RES_SEARCH_RESULT (0x65)

LDAP_RES_MODIFY (0x67)

LDAP_RES_ADD (0x69)

LDAP_RES_DELETE (0x6B)

LDAP_RES_MODDN (0x6D)

LDAP_RES_COMPARE (0x6F)

LDAP_RES_EXTENDED (0x78) -- new in LDAPv3

ldap_result () returns 0 if the timeout expired and -1 if an error occurs, in which
case the error parameters of the LDAP session handle is set accordingly.

ldap_msgfree () frees each message in the result chain pointed to by res and
returns the type of the last message in the chain. If res is NULL, then nothing is done
and the value zero is returned.

ldap_msgtype () returns the type of the LDAP message it is passed as a parameter.
The type is one of the types listed previously, or -1 on error.

ldap_msgid () returns the message ID associated with the LDAP message passed as
a parameter, or -1 on error.

Handling Errors and Parsing Results

Use the functions in this section to extract information from results and to handle
errors returned by other LDAP API routines.

Idap_parse_result, Idap_parse_sasl_bind_result, Idap_parse_extended_result, and
Idap_err2string

Note that 1dap_parse_sasl_bind_result () and ldap_parse_extended_
result () must typically be used in addition to 1dap_parse_result () to retrieve
all the result information from SASL Bind and Extended Operations respectively.

The 1dap_parse_result (), ldap_parse_sasl_bind_result (), and ldap_
parse_extended_result () functions all skip over messages of type LDAP_RES_

C API Reference 8-33

Functions in the C API

SEARCH_ENTRY and LDAP_RES_SEARCH_REFERENCE when looking for a result
message to parse. They return the constant LDAP_SUCCESS if the result was
successfully parsed and another LDAP error code if not. Note that the LDAP error
code that indicates the outcome of the operation performed by the server is placed in
the errcodep 1dap_parse_result () parameter. If a chain of messages that contains
more than one result message is passed to these routines they always operate on the
first result in the chain.

ldap_err2string () is used to convert a numeric LDAP error code, as returned by
ldap_parse_result (), ldap_parse_sasl_bind_result (), ldap_parse_
extended_result () or one of the synchronous API operation calls, into an
informative zero-terminated character string message describing the error. It returns a
pointer to static data.

Syntax

int ldap_parse_result

(

LDAP *1d,
LDAPMessage *res,

int *errcodep,
char **matcheddnp,
char **errmsgp,
char ***referralsp,
LDAPControl ***gerverctrlsp,
int freeit

)i

int ldap_parse_sasl_bind_result

(

LDAP *1d,
LDAPMessage *res,

struct berval **gservercredp,
int freeit

)i

int ldap_parse_extended_result

(

LDAP *1d,

LDAPMessage *res,

char **retoidp,

struct berval **retdatap,

int freeit

)

#define LDAP_NOTICE_OF_DISCONNECTION "1.3.6.1.4.1.1466.20036"

char *ldap_err2string(int err);

The routines immediately following are deprecated. To learn more about them, see
RFC 1823.

int ldap_result2error

(

LDAP *1d,
LDAPMessage *res,
int freeit

)i
void ldap_perror(LDAP *1d, const char *msg);

8-34 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Functions in the C API

Parameters

Table 8-22 lists and describes parameters for handling errors and parsing results.

Table 8-22 Parameters for Handling Errors and Parsing Results

Parameter

Description

1d

res

errcodep

matcheddnp

errmsgp

referralsp

serverctrlsp

freeit

servercredp

retoidp

retdatap

err

The session handle.

The result of an LDAP operation as returned by 1dap_result () or one of the
synchronous API operation calls.

This result parameter is filled in with the LDAP error code field from the
LDAPMessage message. This is the indication from the server of the outcome
of the operation. NULL should be passed to ignore this field.

In the case of a return of LDAP_NO_SUCH_OBJECT, this result parameter is
filled in with a DN indicating how much of the name in the request was
recognized. NULL should be passed to ignore this field. The matched DN string
should be freed by calling 1dap_memfree () which is described later in this
document.

This result parameter is filled in with the contents of the error message field
from the LDAPMessage message. The error message string should be freed by
calling 1dap_memfree () which is described later in this document. NULL
should be passed to ignore this field.

This result parameter is filled in with the contents of the referrals field from the
LDAPMessage message, indicating zero or more alternate LDAP servers
where the request is to be retried. The referrals array should be freed by calling
ldap_value_free () which is described later in this document. NULL should
be passed to ignore this field.

This result parameter is filled in with an allocated array of controls copied out
of the LDAPMessage message. The control array should be freed by calling
ldap_controls_free () which was described earlier.

A Boolean that determines whether the res parameter is disposed of or not.
Pass any nonzero value to have these routines free res after extracting the
requested information. This is provided as a convenience; you can also use
ldap_msgfree () to free the result later. If freeit is nonzero, the entire
chain of messages represented by res is disposed of.

For SASL bind results, this result parameter is filled in with the credentials
passed back by the server for mutual authentication, if given. An allocated
berval structure is returned that should be disposed of by calling ber_
bvfree ().NULL should be passed to ignore this field.

For extended results, this result parameter is filled in with the dotted-OID text
representation of the name of the extended operation response. This string
should be disposed of by calling 1dap_memfree (). NULL should be passed to
ignore this field. The LDAP_NOTICE_OF_DISCONNECTION macro is defined as
a convenience for clients that wish to check an OID to see if it matches the one
used for the unsolicited Notice of Disconnection (defined in RFC 2251[2]
section 4.4.1).

For extended results, this result parameter is filled in with a pointer to a
struct berval containing the data in the extended operation response. It
should be disposed of by calling ber_bvfree (). NULL should be passed to
ignore this field.

For 1dap_err2string (), an LDAP error code, as returned by 1dap_
parse_result () or another LDAP API call.

Usage Notes

See RFC 1823 for a description of parameters peculiar to the deprecated routines.

C API Reference 8-35

Functions in the C API

Stepping Through a List of Results

Use the routines in this section to step through the list of messages in a result chain
returned by 1dap_result ().

Idap_first_message and Idap_next_message
The result chain for search operations can include referral messages, entry messages,
and result messages.

ldap_count_messages () is used to count the number of messages returned. The
ldap_msgtype () function, described previously, can be used to distinguish between
the different message types.

LDAPMessage *ldap_first_message(LDAP *1d, LDAPMessage *res);
LDAPMessage *ldap_next_message(LDAP *1d, LDAPMessage *msg);
int ldap_count_messages(LDAP *1d, LDAPMessage *res);

Parameters
Table 8-23 lists and describes the parameters for stepping through a list of results.

Table 8-23 Parameters for Stepping Through a List of Results

Parameter Description
1d The session handle.
res The result chain, as obtained by a call to one of the synchronous search

routines or 1dap_result ().

msg The message returned by a previous call to 1dap_first_message() or
ldap_next_message ().

Usage Notes

ldap_first_message () and 1dap_next_message () returns NULL when no more
messages exist in the result set to be returned. NULL is also returned if an error occurs
while stepping through the entries, in which case the error parameters in the session
handle 1d is set to indicate the error.

If successful, 1dap_count_messages () returns the number of messages contained
in a chain of results; if an error occurs such as the res parameter being invalid, -1 is
returned. The 1dap_count_messages () call can also be used to count the number
of messages that remain in a chain if called with a message, entry, or reference
returned by ldap_first_message(), ldap_next_message (), ldap_first_
entry (), ldap_next_entry (), ldap_first_reference (), l1dap_next_
reference().

Parsing Search Results

Use the functions in this section to parse the entries and references returned by 1dap_
search functions. These results are returned in an opaque structure that may be
accessed by calling the routines described in this section. Routines are provided to step
through the entries and references returned, step through the attributes of an entry,
retrieve the name of an entry, and retrieve the values associated with a given attribute
in an entry.

8-36 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Functions in the C API

Idap_first_entry, Idap_next_entry, Idap_first_reference, Idap_next_reference, Idap_
count_entries, and Idap_count_references

The 1dap_first_entry () and 1dap_next_entry () routines are used to step
through and retrieve the list of entries from a search result chain. The 1dap_first_
reference () and ldap_next_reference () routines are used to step through
and retrieve the list of continuation references from a search result chain. 1dap_
count_entries () is used to count the number of entries returned. 1dap_count_
references () is used to count the number of references returned.

LDAPMessage *ldap_first_entry(LDAP *1d, LDAPMessage *res);
LDAPMessage *ldap_next_entry(LDAP *1d, LDAPMessage *entry);
LDAPMessage *ldap_first_reference(LDAP *1d, LDAPMessage *res);
LDAPMessage *ldap_next_reference(LDAP *1d, LDAPMessage *ref);
int ldap_count_entries(LDAP *1d, LDAPMessage *res);

int ldap_count_references(LDAP *1d, LDAPMessage *res);

Parameters

Table 8-24 lists and describes the parameters or retrieving entries and continuation
references from a search result chain, and for counting entries returned.

Table 8-24 Parameters for Retrieving Entries and Continuation References from a
Search Result Chain, and for Counting Entries Returned

Parameter Description
1d The session handle.
res The search result, as obtained by a call to one of the synchronous search

routines or 1dap_result ().

entry The entry returned by a previous call to 1dap_first_entry () or 1dap_
next_entry ().

ref The reference returned by a previous call to 1dap_first_reference() or
ldap_next_reference().

Usage Notes

ldap_first_entry (), ldap_next_entry(), ldap_first_reference (), and
ldap_next_reference () all return NULL when no more entries or references exist
in the result set to be returned. NULL is also returned if an error occurs while stepping
through the entries or references, in which case the error parameters in the session
handle 1d is set to indicate the error.

ldap_count_entries () returns the number of entries contained in a chain of
entries; if an error occurs such as the res parameter being invalid, -1 is returned. The
ldap_count_entries () call can also be used to count the number of entries that
remain in a chain if called with a message, entry or reference returned by 1dap_
first_message (), ldap_next_message (), ldap_first_entry (), ldap_
next_entry (), ldap_first_reference (), ldap_next_reference().

ldap_count_references () returns the number of references contained in a chain
of search results; if an error occurs such as the res parameter being invalid, -1 is
returned. The 1dap_count_references () call can also be used to count the
number of references that remain in a chain.

Idap_first_attribute and Idap_next_attribute

Use the functions in this section to step through the list of attribute types returned
with an entry.

C API Reference 8-37

Functions in the C API

Syntax

char *ldap_first_attribute
(

LDAP *1d,
LDAPMessage *entry,
BerElement **ptr

)i

char *1ldap_next_attribute

(

LDAP *1d,
LDAPMessage *entry,
BerElement *ptr

)i
void ldap_memfree(char *mem);

Parameters

Table 8-25 lists and describes the parameters for stepping through attribute types
returned with an entry.

Table 8-25 Parameters for Stepping Through Attribute Types Returned with an Entry

Parameter Description

1d The session handle.

entry The entry whose attributes are to be stepped through, as returned by 1dap_
first_entry () or ldap_next_entry().

ptr In 1dap_first_attribute (), the address of a pointer used internally to
keep track of the current position in the entry. In 1dap_next_attribute(),
the pointer returned by a previous call to 1dap_first_attribute (). The
BerElement type itself is an opaque structure.

mem A pointer to memory allocated by the LDAP library, such as the attribute type
names returned by 1dap_first_attribute() and 1dap_next_attribute,
or the DN returned by 1dap_get_dn (). If mem is NULL, the 1dap_memfree ()
call does nothing.

Usage Notes

ldap_first_attribute() and 1ldap_next_attribute () returns NULL when
the end of the attributes is reached, or if there is an error. In the latter case, the error
parameters in the session handle 1d are set to indicate the error.

Both routines return a pointer to an allocated buffer containing the current attribute
name. This should be freed when no longer in use by calling ldap_memfree ().

ldap_first_attribute () allocates and returns in ptr a pointer to a BerElement
used to keep track of the current position. This pointer may be passed in subsequent
calls to ldap_next_attribute () to step through the entry's attributes. After a set
of calls to 1dap_first_attribute() and 1dap_next_attribute(), if ptris
non-null, it should be freed by calling ber_free (ptr, 0).Note thatitis very
important to pass the second parameter as 0 (zero) in this call, since the buffer
associated with the BerElement does not point to separately allocated memory.

The attribute type names returned are suitable for passing in a call to 1dap_get_
values () and friends to retrieve the associated values.

8-38 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Functions in the C API

Idap_get_values, Idap_get_values_len, Idap_count_values, Idap_count_values_len,
Idap_value_free, and Idap_value_free_len

ldap_get_values () and ldap_get_values_len () are used to retrieve the
values of a given attribute from an entry. 1dap_count_values () and 1dap_count_
values_len () are used to count the returned values.

ldap_value_free() and 1dap_value_free_ len () are used to free the values.

Syntax

char **ldap_get_values
(

LDAP *1d,
LDAPMessage *entry,
const char *attr

)i

struct berval **ldap_get_values_len

(

LDAP *1d,
LDAPMessage *entry,
const char *attr

)i

int ldap_count_values(char **vals);
int ldap_count_values_len(struct berval **vals);
void ldap_value_free(char **vals);
void ldap_value_free_len(struct berval **vals);

Parameters

Table 8-26 lists and describes the parameters for retrieving and counting attribute
values.

Table 8-26 Parameters for Retrieving and Counting Attribute Values

Parameter Description

14 The session handle.

entry The entry from which to retrieve values, as returned by 1dap_first_
entry () or 1dap_next_entry ().

attr The attribute whose values are to be retrieved, as returned by 1dap_first_
attribute () or 1dap_next_attribute (), or a caller-supplied string (for
example, "mail").

vals The values returned by a previous call to 1dap_get_values () or 1dap_
get_values_len ().

Usage Notes

Two forms of the various calls are provided. The first form is only suitable for use with
non-binary character string data. The second _len form is used with any kind of data.

ldap_get_values () and 1dap_get_values_len () return NULL if no values are
found for attr or if an error occurs.

ldap_count_values () and 1dap_count_values_len () return -1 if an error
occurs such as the vals parameter being invalid.

If a NULL vals parameter is passed to 1dap_value_free() or ldap_value_free_
len (), nothing is done.

C API Reference 8-39

Functions in the C API

Note that the values returned are dynamically allocated and should be freed by calling
either 1dap_value_free() or 1dap_value_free_len () when no longer in use.

Idap_get_dn, Idap_explode_dn, Idap_explode_rdn, and Idap_dn2ufn

ldap_get_dn() is used to retrieve the name of an entry. 1dap_explode_dn () and
ldap_explode_rdn () are used to break up a name into its component parts. 1dap_
dn2ufn () is used to convert the name into a more user friendly format.

Syntax

char *1ldap_get_dn(LDAP *1d, LDAPMessage *entry);

char **1dap_explode_dn(const char *dn, int notypes);
char **1dap_explode_rdn(const char *rdn, int notypes);
char *ldap_dn2ufn(const char *dn);

Parameters

Table 8-27 lists and describes the parameters for retrieving, exploding, and converting
entry names.

Table 8-27 Parameters for Retrieving, Exploding, and Converting Entry Names

Parameter Description

1d The session handle.

entry The entry whose name is to be retrieved, as returned by 1dap_first_
entry () or 1dap_next_entry ().

dn The DN to explode, such as returned by 1dap_get_dn ().

rdn The RDN to explode, such as returned in the components of the array

returned by 1dap_explode_dn ().

notypes A Boolean parameter, if nonzero indicating that the DN or RDN components
are to have their type information stripped off: cn=Babs would become Babs.

Usage Notes

ldap_get_dn () returns NULL if a DN parsing error occurs. The function sets error
parameters in the session handle 1d to indicate the error. It returns a pointer to newly
allocated space that the caller should free by calling 1dap_memfree () when it is no
longer in use.

ldap_explode_dn () returns a NULL-terminated char * array containing the RDN
components of the DN supplied, with or without types as indicated by the notypes
parameter. The components are returned in the order they appear in the DN. The array
returned should be freed when it is no longer in use by calling 1dap_value_free().

ldap_explode_rdn () returns a NULL-terminated char * array containing the

components of the RDN supplied, with or without types as indicated by the notypes
parameter. The components are returned in the order they appear in the rdn. The array
returned should be freed when it is no longer in use by calling 1dap_value_free().

ldap_dn2ufn () converts the DN into a user friendly format. The UEN returned is
newly allocated space that should be freed by a call to 1dap_memfree () when no
longer in use.

Idap_get_entry_controls
ldap_get_entry_controls () is used to extract LDAP controls from an entry.

8-40 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Functions in the C API

Syntax

int ldap_get_entry_controls

(

LDAP *1d,
LDAPMessage *entry,
LDAPControl ***gerverctrlsp
)

Parameters

Table 8-28 lists and describes the parameters for extracting LDAP control from an
entry.

Table 8-28 Parameters for Extracting LDAP Controls from an Entry

Parameters Description
14 The session handle.
entry The entry to extract controls from, as returned by 1dap_first_entry () or

ldap_next_entry ().

serverctrlsp This result parameter is filled in with an allocated array of controls copied out
of entry. The control array should be freed by calling 1dap_controls_
free().If serverctrlsp is NULL, no controls are returned.

Usage Notes

ldap_get_entry controls () returns an LDAP error code that indicates whether
the reference could be successfully parsed (LDAP_SUCCESS if all goes well).

Idap_parse_reference

Use 1dap_parse_reference () to extract referrals and controls from a
SearchResultReference message.

Syntax

int ldap_parse_reference

(

LDAP *1d,
LDAPMessage *ref,

char ***referralsp,
LDAPControl ***gerverctrlsp,
int freeit

)i

Parameters

Table 8-29 lists and describes parameters for extracting referrals and controls from a
SearchResultReference message.

Table 8-29 Parameters for Extracting Referrals and Controls from a
SearchResultReference Message

Parameter Description
1d The session handle.
ref The reference to parse, as returned by 1dap_result (), ldap_first_

reference (), or ldap_next_reference().

C API Reference 8-41

Sample C APl Usage

Table 8-29 (Cont.) Parameters for Extracting Referrals and Controls from a
SearchResultReference Message

Parameter Description

referralsp This result parameter is filled in with an allocated array of character strings.
The elements of the array are the referrals (typically LDAP URLs) contained in
ref. The array should be freed when no longer in used by calling 1dap_
value_free().If referralsp is NULL, the referral URLs are not returned.

serverctrlsp This result parameter is filled in with an allocated array of controls copied out
of ref. The control array shouldbe freed by calling 1dap_controls_
free().If serverctrlsp is NULL, no controls are returned.

freeit A Boolean that determines whether the ref parameter is disposed of or not.
Pass any nonzero value to have this routine free ref after extracting the
requested information. This is provided as a convenience. You can also use
ldap_msgfree () to free the result later.

Usage Notes

ldap_parse_reference () returns an LDAP error code that indicates whether the
reference could be successfully parsed (LDAP_SUCCESS if all goes well).

Sample C API Usage

The first three examples show how to use the C API both with and without SSL and
for SASL authentication. More complete examples are given in RFC 1823. The sample
code for the command-line tool to perform an LDAP search also demonstrates use of
the API in both the SSL and the non-SSL mode.

This section contains these topics:

s C API Usage with SSL

s C API Usage Without SSL

s C API Usage for SASL-Based DIGEST-MD5 Authentication

= Setting and Using a Callback Function to Get Credentials When Chasing Referrals

C API Usage with SSL

#include <stdio.h>
#include <ldap.h>

main ()

{

LDAP *1d;

int ret = 0;

/* open a connection */
if ((1d = ldap_open("MyHost", 3131)) == NULL)
exit(1);

/* SSL initialization */

ret = ldap_init_SSL(&1d->1d_sb, "file:/sslwallet", "welcome",
GSLC_SSL_ONEWAY_AUTH) ;

if(ret != 0)

{

printf(" %s \n", ldap_err2string(ret));

exit (1) ;

}

8-42 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Sample C APl Usage

/* authenticate as nobody */

if (ldap_bind_s(1d, NULL, NULL) != LDAP_SUCCESS) {
ldap_perror(1d, "ldap_bind_s");
exit(1);

}
Because the user is making the 1dap_init_SSL call, the client/server
communication in the previous example is secured by using SSL.

C API Usage Without SSL

#include <stdio.h>
#include <ldap.h>

main ()

{

LDAP *1d;

int ret = 0;

/* open a connection */
if ((1d = ldap_open("MyHost", LDAP_PORT
)) == NULL)
exit(1);

/* authenticate as nobody */

if (ldap_bind_s(1d, NULL, NULL) != LDAP_SUCCESS) {
ldap_perror(1d, "ldap_bind_s");
exit(1);

}
In the previous example, the user is not making the 1dap_init_SSL call, and the
client-to-server communication is therefore not secure.

C API Usage for SASL-Based DIGEST-MD5 Authentication

This sample program illustrates the usage of LDAP SASL C-API for SASL-based
DIGEST-MDS5 authentication to a directory server.

/*
EXPORT FUNCTION (S)
NONE

INTERNAL FUNCTION(S)
NONE

STATIC FUNCTION(S)
NONE

C API Reference 8-43

Sample C APl Usage

NOTES
Usage:
saslbind -h ldap_host -p ldap_port -D authentication_identity dn \
-w password

options
-h LDAP host
-p LDAP port
-D DN of the identity for authentication
-p Password

Default SASL authentication parameters used by the demo program
SASL Security Property : Currently only "auth" security property
is supported by the C-API. This demo
program uses this security property.
SASL Mechanism : Supported mechanisms by OID
"DIGEST-MD5" - This demo program
illustrates it's usage.
"EXTERNAL" - SSL authentication is used.
(This demo program does
not illustrate it's usage.)
Authorization identity : This demo program does not use any
authorization identity.

MODIFIED (MM/DD/YY)

Rk Kk 06/12/03 - Creation
*/
e
PRIVATE TYPES AND CONSTANTS
___ */
2 N ——————
STATIC FUNCTION DECLARATIONS
___ */

#include <stdio.h>
#include <stdlib.h>
#include <ldap.h>

static int ldap_version = LDAP_VERSION3;

main (int argc, char **argv)

{

LDAP* 14d;

extern char* optarg;

char* ldap_host = NULL;

char* ldap_bind_dn = NULL;

char* ldap_bind_pw = NULL;

int authmethod = 0;

char ldap_local_host[256] = "localhost";
int ldap_port = 3060;

char* authcid = (char *)NULL;

char* mech = "DIGEST-MD5"; /* SASL mechanism */
char* authzid = (char *)NULL;

char* sasl_secprops = "auth";

char* realm = (char *)NULL;

int status = LDAP_SUCCESS;

OraLdapHandle sasl_cred = (OraLdapHandle)NULL;

8-44 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Sample C APl Usage

OraLdapClientCtx *cctx = (OralLdapClientCtx *)NULL;

int i=20;
while ((i = getopt(argc, argv,
"D:h:p:w:E:P:U:V:W:0:R:X:Y:2"
)) != EOF) {

switch(1) {

case 'h':/* ldap host */
ldap_host = (char *)strdup(optarg);
break;

case 'D':/* bind DN */
authcid = (char *)strdup(optarg);
break;

case 'p':/* ldap port */
ldap_port = atoi(optarg);
break;
case 'w':/* Password */
ldap_bind_pw = (char *)strdup(optarg);
break;

default:
printf("Invalid Arguments passed\n");

/* Get the connection to the LDAP server */
if (ldap_host == NULL)
ldap_host = ldap_local_host;

if ((1d = ldap_open (ldap_host, ldap_port)) == NULL)
{

ldap_perror (1d, "ldap_init");

exit (1);

/* Create the client context needed by LDAP C-API Oracle Extension functions*/
status = ora_ldap_init_clientctx(&cctx);

if (LDAP_SUCCESS != status) {
printf("Failed during creation of client context \n");
exit(1);

/* Create SASL credentials */
sasl_cred = ora_ldap_create_cred hdl (cctx, ORA_LDAP_CRED_HANDLE_SASL_MD5) ;

ora_ldap_set_cred_props(cctx, sasl_cred, ORA_LDAP_CRED_SASL_REALM,
(void *)realm);

ora_ldap_set_cred_props(cctx, sasl_cred, ORA_LDAP_CRED_SASL_AUTH_PASSWORD,
(void *)ldap_bind_pw) ;

ora_ldap_set_cred_props(cctx, sasl_cred, ORA_LDAP_CRED_SASL_AUTHORIZATION_ID,
(void *)authzid);

ora_ldap_set_cred_props(cctx, sasl_cred, ORA_LDAP_CRED_SASL_SECURITY_PROPERTIES,
(void *)sasl_secprops);

/* If connecting to the directory using SASL DIGEST-MD5, the Authentication ID

C API Reference 8-45

Sample C APl Usage

has to be normalized before it's sent to the server,
the LDAP C-API does this normalization based on the following flag set in
SASL credential properties */
ora_ldap_set_cred_props(cctx, sasl_cred, ORA_LDAP_CRED_SASL_NORM_AUTHDN, (void
*)NULL) ;

/* SASL Authetication to LDAP Server */
status = (int)ora_ldap_init_SASL(cctx, 1d, (char *)authcid, (char *)ORA_LDAP_
SASL_MECH_DIGEST MD5,
sasl_cred, NULL, NULL);

if (LDAP_SUCCESS == status) {
printf ("SASL bind successful \n");
telse {
printf ("SASL bind failed with status : %d\n", status);

/* Free SASL Credentials */
ora_ldap_free_cred_hdl (cctx, sasl_cred);

status = ora_ldap_free_clientctx(cctx);

/* Unbind from LDAP server */
ldap_unbind (14d);

return (0);

/* end of file saslbind.c */

Setting and Using a Callback Function to Get Credentials When Chasing Referrals

To set the callback function, you use ldap_set_rebind_proc(). The callback function is
used only if LDAP_OPT_REFERRALS is set using ldap_set_option(). If ldap_set_
rebind_proc() is not called, then the library uses anonymous bind to connect to a new
server while chasing LDAP referrals.

/* referralsample.c - Sample program to demonstrate the usage of ldap_set_rebind_
proc() for referrals */

#include <stdio.h>
#include <stdlib.h>
#include <ldap.h>

/*
* Prints the Entry DNs of the search result
*/
void print_entry_dns(LDAP *1d, LDAPMessage *result)
{
LDAPMessage *e;
char *dn;

for (e = ldap_first_entry(1d, result); e != NULL;
e = ldap_next_entry(ld, e))

if ((dn = ldap_get_dn(1d, e)) != NULL) {

printf("dn: %s\n\n", dn);
ldap_memfree(dn);

8-46 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Sample C APl Usage

}
else {
ldap_perror(1d, "ldap_get_dn");
}
}
}
/*

* Rebind function for providing the credentials to bind referral servers
*/
int getbindcredentials (LDAP *1d, char **binddn, char **bindpwd, int *authmethod,
int freeit)
{
if (freeit == 0) {
/* In this example bind credentials are static. Typically, Bind credentials
are fetched from wallet or
some other means for the server information in input session handle */

*binddn = "cn=orcladmin";

*bindpwd = "xyz";

*authmethod = LDAP_AUTH_SIMPLE;
}
else {
/* In this example there is no memory allocation.

If the memory is allocated for binddn/bindpwd/authmehod, they should be
freed here */

*binddn = NULL;
*bindpwd = NULL;
*authmethod = 0;

}
return 0;
}
main ()
{
char ldaphost[] = "localhost";
char binddn[] = "cn=orcladmin";
char bindpwd[] = "password";
int ldapport = 3060;
char searchbase[] = "dc=oracle,dc=com";
char filter[] = "objectclass=*";
int scope = LDAP_SCOPE_SUBTREE;
LDAP *1d;
LDAPMessage *result;
int ret = 0;
if ((1d = ldap_open(ldaphost, ldapport)) == NULL) ({
printf("ldap_open: Connection failed\n");
exit(1);
}
if (ldap_simple_bind_s(1d, binddn, bindpwd) != LDAP_SUCCESS) {
ldap_perror(1d, "ldap_simple_bind_s");
exit(1);
}

C API Reference 8-47

Required Header Files and Libraries for the C API

/* Set this option to connect to the referrals */
ldap_set_option (1d, LDAP_OPT REFERRALS, (void *)1);

/* set the function pointer which provides the bind credentials for referral
server */

ldap_set_rebind_proc(ld, (int (*) (LDAP*, char**, char**, int*,
int))getbindcredentials);

ret = ldap_search_s(1d, searchbase, scope, filter, NULL, 0, &result);
if (LDAP_SUCCESS != ret) {

ldap_perror(ld, "ldap_search_s");

exit(1);
}

print_entry dns(1ld, result);

ldap_unbind(1d) ;
return(0) ;

}

Required Header Files and Libraries for the C API
To build applications with the C API, you need to:
s Include the header file located at SORACLE_HOME/ldap/public/ldap.h.
= Dynamically link to the library located at
— SORACLE_HOME/lib/libclntsh.so.10.1 on UNIX operating systems

- $%ORACLE_HOME%$\bin\oraldapclnt10.d1ll on Windows operating
systems

Dependencies and Limitations of the C API

This API can work against any release of Oracle Internet Directory. It requires either
an Oracle environment or, at minimum, globalization support and other core libraries.

To use the different authentication modes in SSL, the directory server requires

corresponding configuration settings.

See Also: Oracle Fusion Middleware Administrator’s Guide for Oracle
Internet Directory for details about how to set the directory server in
various SSL authentication modes.

Oracle Wallet Manager is required for creating wallets if you are using the C APIin
SSL mode.

TCP/IP Socket Library is required.

The following Oracle libraries are required:

= Oracle SSL-related libraries

s Oracle system libraries

Sample libraries are included in the release for the sample command line tool. You
should replace these libraries with your own versions of the libraries.

The product supports only those authentication mechanisms described in LDAP SDK
specifications (RFC 1823).

8-48 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Dependencies and Limitations of the C API

All strings input to the C API must be in UTF-8 format. If the strings are not in the
UTF-8 format, you can use the OCI function OCINl1sCharSetConvert to perform the
conversion. Please see the Oracle Call Interface Programmer’s Guide in the Oracle
Database Library at http: //www.oracle.com/technology/documentation.

C API Reference 8-49

Dependencies and Limitations of the C API

8-50 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

9

DBMS LDAP PL/SQL Reference

DBMS_LDAP contains the functions and procedures that enable PL/SQL programmers
to access data from LDAP servers. This chapter examines all of the API functions in

detail.

The chapter contains these topics:

= Summary of Subprograms

s Exception Summary
s Data Type Summary

= Subprograms

Note: Sample code for the DBMS_LDAP package is available at this

URL:

http://www.oracle.com/technology/sample_code/

Look for the Oracle Identity Management link under Sample
Applications—Fusion Middleware.

Summary of Subprograms

Table 9-1 DBMS_LDAP API Subprograms

Function or Procedure

Description

FUNCTION init

FUNCTION simple_bind_s

FUNCTION bind_s

FUNCTION unbind_s

FUNCTION compare_s

FUNCTION search_s

init () initializes a session with an LDAP server. This actually
establishes a connection with the LDAP server.

The function simple_bind_s () can be used to perform
simple user name and password authentication to the directory
server.

The function bind_s () can be used to perform complex
authentication to the directory server.

The function unbind_s () is used for closing an active LDAP
session.

The function compare_s () can be used to test if a particular
attribute in a particular entry has a particular value.

The function search_s () performs a synchronous search in
the LDARP server. It returns control to the PL/SQL environment
only after all of the search results have been sent by the server
or if the search request is 'timed-out by the server.

DBMS_LDAP PL/SQL Reference 9-1

Summary of Subprograms

Table 9-1 (Cont.) DBMS_LDAP API Subprograms

Function or Procedure Description

FUNCTION search_st The function search_st () performs a synchronous search in
the LDAP server with a client side time out. It returns control
to the PL/SQL environment only after all of the search results
have been sent by the server or if the search request is
'timed-out' by the client or the server.

FUNCTION first_entry The function first_entry is used to retrieve the first entry in the
result set returned by either search_s () or search_st.

FUNCTION next_entry The function next_entry () is used to iterate to the next entry
in the result set of a search operation.

FUNCTION count_entries This function is used to count the number of entries in the
result set. It can also be used to count the number of entries
remaining during a traversal of the result set using a
combination of the functions first_entry () and next_
entry.

FUNCTION first_attribute The function first_attribute () fetches the first attribute
of a given entry in the result set.

FUNCTION next_attribute The function next_attribute () fetches the next attribute of
a given entry in the result set.

FUNCTION get_dn The function get_dn () retrieves the X.500 distinguished name
of a given entry in the result set.

FUNCTION get_values The function get_values () can be used to retrieve all of the
values associated with a given attribute in a given entry.

FUNCTION get_values_len The function get_values_len () canbe used to retrieve
values of attributes that have a 'Binary' syntax.

FUNCTION delete_s This function can be used to remove a leaf entry in the LDAP
Directory Information Tree.

FUNCTION modrdn2_s The function modrdn2_s () can be used to rename the relative
distinguished name of an entry.

FUNCTION err2string The function err2string () can be used to convert an LDAP
error code to a string in the local language in which the APl is
operating.

FUNCTION create_mod_array The function create_mod_array () allocates memory for
array modification entries that are applied to an entry using the
modify_s () functions.

PROCEDURE populate_mod_ Populates one set of attribute information for add or modify
array (String Version) operations. This procedure call has to happen after DBMS_
LDAP.create_mod_array () is called.

PROCEDURE populate_mod_ Populates one set of attribute information for add or modify
array (Binary Version) operations. This procedure call has to occur after DBMS_
LDAP.create_mod_array () is called.

PROCEDURE populate_mod_ Populates one set of attribute information for add or modify
array (Binary Version. Uses operations. This procedure call has to happen after DBMS_
BLOB Data Type) LDAP.create_mod_array () is called.

FUNCTION get_values_blob The function get_values_blob () can be used to retrieve
larger values of attributes that have a binary syntax.

FUNCTION count_values_blob Counts the number of values returned by DBMS_LDAP.get_
values_blob ().

FUNCTION value_free_blob Frees the memory associated with the BLOB_COLLECTION
returned by DBMS_LDAP.get_values_blob().

9-2 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Exception Summary

Table 9-1 (Cont.) DBMS_LDAP API Subprograms

Function or Procedure

Description

FUNCTION modify_s

FUNCTION add_s

PROCEDURE free_mod_array
FUNCTION count_values
FUNCTION count_values_len

FUNCTION rename_s
FUNCTION explode_dn
FUNCTION open_ssl

FUNCTION msgfree
FUNCTION ber_free

FUNCTION nls_convert_to_
utf8

FUNCTION nls_convert_from_
utf8

FUNCTION nls_get_
dbcharset_name

Performs a synchronous modification of an existing LDAP
directory entry. Before calling add_s, you must call DBMS_
LDAP.creat_mod_array () and DBMS_LDAP.populate_
mod_array ().

Adds a new entry to the LDAP directory synchronously. Before
calling add_s, you must call DBMS_LDAP.creat_mod_
array () and DBMS_LDAP.populate_mod_array ().

Frees the memory allocated by DBMS_LDAP . create_mod_
array ().

Counts the number of values returned by DBMS_LDAP.get_
values().

Counts the number of values returned by DBMS_LDAP.get_
values_len ().

Renames an LDAP entry synchronously.
Breaks a DN up into its components.

Establishes an SSL (Secure Sockets Layer) connection over an
existing LDAP connection.

This function frees the chain of messages associated with the
message handle returned by synchronous search functions.

This function frees the memory associated with a handle to
BER_ELEMENT.

The nls_convert_to_utf8 function converts the input
string containing database character set data to UTF-8 character
set data and returns it.

The nls_convert_from_utf8 function converts the input
string containing UTF-8 character set data to database character
set data and returns it.

The nls_get_dbcharset_name function returns a string
containing the database character set name.

See Also:

"Searching the Directory" in Chapter 3 for more about DBMS_
LDAP.search_

"Terminating the Session by Using DBMS_LDAP" in Chapter 3 for

s () and DBMS_LDAP.search_st ().

more about DBMS_ LDAP.unbind_s ().

Exception Summary

DBMS_LDAP can generate the exceptions described in Table 9-2 on page 9-3.

Table 9-2 DBMS_LDAP Exception Summary

Exception Name

Oracle
Error
Number Cause of Exception

general_error

31202

Raised anytime an error is encountered that does not
have a specific PL/SQL exception associated with it.
The error string contains the description of the problem
in the user's language.

DBMS_LDAP PL/SQL Reference 9-3

Exception Summary

Table 9-2 (Cont.) DBMS_LDAP Exception Summary

Exception Name

Oracle
Error
Number Cause of Exception

init_failed

invalid_session

invalid_auth_method

invalid_search_scope

invalid_search_time_val

invalid_message

count_entry_error

get_dn_error

invalid_entry_dn

invalid_mod_array

invalid_mod_option

invalid_mod_type

invalid_mod_value

invalid_rdn

invalid_newparent

invalid_deleteoldrdn

invalid_notypes

invalid_ssl_wallet_loc

invalid_ssl _wallet_
password

invalid_ssl_auth_mode

31203 Raised by DBMS_LDAP. init () if there are problems.

31204 Raised by all functions and procedures in the DBMS_
LDAP package if they are passed an invalid session
handle.

31205 Raised by DBMS_LDAP.bind_s () if the authentication
method requested is not supported.

31206 Raised by all search functions if the scope of the search
is invalid.

31207 Raised by DBMS_LDAP . search_st () if itis given an
invalid value for a time limit.

31208 Raised by all functions that iterate through a result-set
for getting entries from a search operation if the
message handle given to them is invalid.

31209 Raised by DBMS_LDAP.count_entries if it cannot
count the entries in a given result set.

31210 Raised by DBMS_LDAP.get_dn if the DN of the entry
it is retrieving is NULL.

31211 Raised by all functions that modify, add, or rename an
entry if they are presented with an invalid entry DN.

31212 Raised by all functions that take a modification array as
an argument if they are given an invalid modification
array.

31213 Raised by DBMS_LDAP.populate_mod_array if the
modification option given is anything other than MOD_
ADD, MOD_DELETE or MOD_REPLACE

31214 Raised by DBMS_LDAP.populate_mod_array if the
attribute type that is being modified is NULL.

31215 Raised by DBMS_LDAP.populate_mod_array if the
modification value parameter for a given attribute is
NULL.

31216 Raised by all functions and procedures that expect a
valid RDN and are provided with an invalid one.

31217 Raised by DBMS_LDAP . rename_s if the new parent of
an entry being renamed is NULL.

31218 Raised by DBMS_LDAP. rename_s if the
deleteoldrdn parameter is invalid.

31219 Raised by DBMS_LDAP. explode_dn if the notypes
parameter is invalid.

31220 Raised by DBMS_LDAP . open_ssl if the wallet
location is NULL but the SSL authentication mode
requires a valid wallet.

31221 Raised by DBMS_LDAP. open_ssl if the wallet
password given is NULL.

31222 Raised by DBMS_LDAP. open_ssl if the SSL
authentication mode isnot 1, 2 or 3.

9-4 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Subprograms

Data Type Summary

The DBMS_LDAP package uses the data types described in Table 9-3.

Table 9-3 DBMS_LDAP Data Type Summary

Data-Type Purpose

SESSION Used to hold the handle of the LDAP session. Nearly all of the
functions in the API require a valid LDAP session to work.

MESSAGE Used to hold a handle to the message retrieved from the result set. This
is used by all functions that work with entry attributes and values.

MOD_ARRAY Used to hold a handle to the array of modifications being passed to
either modify_s () oradd_s().

TIMEVAL Used to pass time limit information to the LDAP API functions that
require a time limit.

BER_ELEMENT Used to hold a handle to a BER structure used for decoding incoming
messages.

STRING_COLLECTION Used to hold a list of VARCHAR2 strings that can be passed on to the
LDAP server.

BINVAL_COLLECTION Used to hold a list of RAW data, which represent binary data.

BERVAL_COLLECTION Used to hold a list of BERVAL values that are used for populating a
modification array.

BLOB_COLLECTION Used to hold a list of BLOB data, which represent binary data.

Subprograms

This section takes a closer look at each of the DBMS_LDAP subprograms.

FUNCTION init

init () initializes a session with an LDAP server. This actually establishes a
connection with the LDAP server.

Syntax
FUNCTION init

(
hostname IN VARCHAR2,
portnum IN PLS_INTEGER

)
RETURN SESSION;

Parameters

Table 9-4 INIT Function Parameters

Parameter Description

hostname Contains a space-separated list of host names or dotted strings
representing the IP address of hosts running an LDAP server to
connect to. Each host name in the list may include a port
number, which is separated from the host by a colon. The hosts
are tried in the order listed, stopping with the first one to
which a successful connection is made.

DBMS_LDAP PL/SQL Reference 9-5

Subprograms

Table 9-4 (Cont.) INIT Function Parameters

Parameter Description

portnum Contains the TCP port number to connect to. If the port
number is included with the host name, this parameter is
ignored. If the parameter is not specified, and the host name
does not contain the port number, a default port number of
3060 is assumed.

Return Values

Table 9-5 INIT Function Return Values

Value Description

SESSION A handle to an LDAP session that can be used for further calls
to the APIL

Exceptions

Table 9-6 INIT Function Exceptions

Exception Description
init_failed Raised when there is a problem contacting the LDAP server.
general_error For all other errors. The error string associated with the

exception describes the error in detail.

Usage Notes

DBMS_LDAP.init () is the first function that should be called because it establishes a
session with the LDAP server. Function DBMS_LDAP.init () returns a session
handle, a pointer to an opaque structure that must be passed to subsequent calls
pertaining to the session. This routine returns NULL and raises the INIT_FAILED
exception if the session cannot be initialized. After init () has been called, the
connection has to be authenticated using DBMS_LDAP.bind_s or DBMS_
LDAP.simple_bind_s().

See Also
DBMS_LDAP.simple_bind_s(),DBMS_LDAP.bind_s().

FUNCTION simple_bind_s

The function simple_bind_s can be used to perform simple user name and
password authentication to the directory server.

Syntax

FUNCTION simple_bind_s
(

1d IN SESSION,

dn IN VARCHAR2,
passwd IN VARCHAR2

)
RETURN PLS_INTEGER;

9-6 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Subprograms

Parameters

Table 9-7 SIMPLE_BIND_S Function Parameters

Parameter Description

1d A valid LDAP session handle.

dn The Distinguished Name of the User that we are trying to login
as.

passwd A text string containing the password.

Return Values

Table 9-8 SIMPLE_BIND_S Function Return Values

Value Description

PLS_INTEGER DBMS_LDAP . SUCCESS on a successful completion. If there was
a problem, one of the following exceptions are raised.

Exceptions

Table 9-9 SIMPLE_BIND_S Function Exceptions

Exception Description
invalid_session Raised if the session handle 1d is invalid.
general_error For all other errors. The error string associated with this

exception explains the error in detail.

Usage Notes

DBMS_LDAP.simple_bind_s () can be used to authenticate a user whose directory
distinguished name and directory password are known. It can be called only after a
valid LDAP session handle is obtained from a call to DBMS_LDAP.init ().

FUNCTION bind_s

The function bind_s can be used to perform complex authentication to the directory
server.

Syntax

FUNCTION bind_s

(

1d IN SESSION,
dn IN VARCHAR2,
cred IN VARCHAR2,
meth IN PLS_INTEGER
)

RETURN PLS_INTEGER;

Parameters

Table 9-10 BIND_S Function Parameters

Parameter Description
1d A valid LDAP session handle.
dn The distinguished name of the user.

DBMS_LDAP PL/SQL Reference 9-7

Subprograms

Table 9-10 (Cont.) BIND_S Function Parameters

Parameter Description
cred A text string containing the credentials used for authentication.
meth The authentication method. The only valid value is DBMS_

LDAP_UTL.AUTH_SIMPLE.

Return Values

Table 9-11 BIND_S Function Return Values

Value Description

PLS_INTEGER DBMS_LDAP . SUCCESS upon successful completion. One of the
following exceptions is raised if there is a problem.

Exceptions

Table 9—-12 BIND_S Function Exceptions

Exception Description

invalid_session Raised if the session handle 14 is invalid.

invalid_auth_method Raised if the authentication method requested is not
supported.

general_error For all other errors. The error string associated with this

exception explains the error in detail.

Usage Notes

DBMS_LDAP.bind_s () can be used to authenticate a user. It can be called only after a
valid LDAP session handle is obtained from a call to DBMS_LDAP.init ().

See Also
DBMS_LDAP.init (), DBMS_LDAP.simple_bind s().

FUNCTION unbind_s

The function unbind_s is used for closing an active LDAP session.

Syntax

FUNCTION unbind_s

(
1d IN OUT SESSION

)
RETURN PLS_INTEGER;

Parameters

Table 9-13 UNBIND_S Function Parameters

Parameter Description
1a A valid LDAP session handle.

9-8 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Subprograms

Return Values

Table 9-14 UNBIND_S Function Return Values

Value Description

PLS_INTEGER DBMS_LDAP. SUCCESS on proper completion. One of the
following exceptions is raised otherwise.

Exceptions

Table 9—-15 UNBIND_S Function Exceptions

Exception Description
invalid_session Raised if the sessions handle 1d is invalid.
general_error For all other errors. The error string associated with this

exception explains the error in detail.

Usage Notes

The unbind_s () function sends an unbind request to the server, closes all open
connections associated with the LDAP session, and disposes of all resources associated
with the session handle before returning. After a call to this function, the session
handle 14 is invalid.

See Also
DBMS_LDAP.bind_s (), DBMS_LDAP.simple_bind_s().

FUNCTION compare_s

The function compare_s can be used to test if a particular attribute in a particular
entry has a particular value.

Syntax

FUNCTION compare_s
(

1d IN SESSION,
dn IN VARCHAR2,
attr IN VARCHAR2,
value IN VARCHAR2

)

RETURN PLS_INTEGER;

Parameters

Table 9-16 COMPARE_S Function Parameters

Parameter Description

1d A valid LDAP session handle.

dn The name of the entry to compare against.
attr The attribute to compare against.

value A string attribute value to compare against.

DBMS_LDAP PL/SQL Reference 9-9

Subprograms

Return Values

Table 9-17 COMPARE_S Function Return Values

Value Description

PLS_INTEGER COMPARE_TRUE if the given attribute has a matching value.

COMPARE_FALSE if the given attribute does not have a
matching value.

Exceptions

Table 9-18 COMPARE_S Function Exceptions

Exception Description
invalid_session Raised if the session handle 1d is invalid.
general_error For all other errors. The error string associated with this

exception explains the error in detail.

Usage Notes

The function compare_s can be used to assert that an attribute in the directory has a
certain value. This operation can be performed only on attributes whose syntax
enables them to be compared. The compare_s function can be called only after a valid
LDAP session handle has been obtained from the init () function and authenticated
by the bind_s () or simple_bind_s () functions.

See Also
DBMS_LDAP.bind s ().

FUNCTION search_s

The function search_s performs a synchronous search in the directory. It returns
control to the PL/SQL environment only after all of the search results have been sent
by the server or if the search request is timed out by the server.

Syntax

FUNCTION search_s

(

1d IN SESSION,
base IN VARCHAR2,
scope IN PLS_INTEGER,
filter IN VARCHAR2,
attrs IN STRING_COLLECTION,
attronly IN PLS_INTEGER,
res OUT MESSAGE

)

RETURN PLS_INTEGER;

Parameters

Table 9-19 SEARCH_S Function Parameters

Parameter Description
1d A valid LDAP session handle.
base The DN of the entry at which to start the search.

9-10 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Subprograms

Table 9-19 (Cont) SEARCH_S Function Parameters

Parameter Description

scope One of SCOPE_BASE (0x00) , SCOPE_ONELEVEL (0x01),or
SCOPE_SUBTREE (0x02), indicating the scope of the search.

filter A character string representing the search filter. The value NULL can be
passed to indicate that the filter " (objectclass=*) ", which
matches all entries, is to be used.

attrs A collection of strings indicating which attributes to return for each
matching entry. Passing NULL for this parameter causes all available
user attributes to be retrieved. The special constant string NO_ATTRS
("1.1") may be used as the only string in the array to indicate that
no attribute types are to be returned by the server. The special constant
string ALL_USER_ATTRS ("*") can be used in the attrs array along
with the names of some operational attributes to indicate that all user
attributes plus the listed operational attributes are to be returned.

attrsonly A boolean value that must be zero if both attribute types and values
are to be returned, and nonzero if only types are wanted.

res This is a result parameter that contains the results of the search upon
completion of the call. If no results are returned, *res is set to NULL.

Return Values

Table 9-20 SEARCH_S Function Return Value

Value Description

PLS_INTEGER DBMS_LDAP . SUCCESS if the search operation succeeded. An
exception is raised in all other cases.

res If the search succeeded and there are entries, this parameter is
set to a non-null value which can be used to iterate through the
result set.

Exceptions

Table 9-21 SEARCH_S Function Exceptions

Exception Description
invalid_session Raised if the session handle 1d is invalid.
invalid_search_scope Raised if the search scope is not one of SCOPE_BASE, SCOPE_

ONELEVEL, or SCOPE_SUBTREE.

general_error For all other errors. The error string associated with this
exception explains the error in detail.

Usage Notes

The function search_s () issues a search operation and does not return control to the
user environment until all of the results have been returned from the server. Entries
returned from the search, if any, are contained in the res parameter. This parameter is
opaque to the caller. Entries, attributes, and values can be extracted by calling the
parsing routines described in this chapter.

See Also

DBMS_LDAP.search_st (), DBMS_LDAP.first_entry (), DBMS_LDAP.next_
entry.

DBMS_LDAP PL/SQL Reference 9-11

Subprograms

FUNCTION search_st

The function search_st () performs a synchronous search in the LDAP server with a
client-side time out. It returns control to the PL/SQL environment only after all of the
search results have been sent by the server or if the search request is timed out by the
client or the server.

Syntax

FUNCTION search_st

(

1d IN SESSION,
base IN VARCHAR2,

scope IN PLS_INTEGER,
filter IN VARCHAR2,

attrs IN STRING_COLLECTION,
attronly IN PLS_INTEGER,

tv IN TIMEVAL,

res OUT MESSAGE

)

RETURN PLS_INTEGER;

Parameters

Table 9-22 SEARCH_ST Function Parameters

Parameter Description

14 A valid LDAP session handle.

base The DN of the entry at which to start the search.

scope One of SCOPE_BASE (0x00),SCOPE_ONELEVEL (0x01),or

SCOPE_SUBTREE (0x02), indicating the scope of the search.

filter A character string representing the search filter. The value
NULL can be passed to indicate that the filter
" (objectclass=*) ", which matches all entries, is to be
used.

attrs A collection of strings indicating which attributes to return for
each matching entry. Passing NULL for this parameter causes
all available user attributes to be retrieved. The special constant
string NO_ATTRS ("1.1") may be used as the only string in
the array to indicate that no attribute types are to be returned
by the server. The special constant string ALL_USER_ATTRS
("*") canbe used in the attrs array along with the names of
some operational attributes to indicate that all user attributes
plus the listed operational attributes are to be returned.

attrsonly A boolean value that must be zero if both attribute types and
values are to be returned, and nonzero if only types are
wanted.

tv The time out value, expressed in seconds and microseconds,

that should be used for this search.

res This is a result parameter which contains the results of the
search upon completion of the call. If no results are returned,
*res is set to NULL.

9-12 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Subprograms

Return Values

Table 9-23 SEARCH_ST Function Return Values

Value Description

PLS_INTEGER DBMS_LDAP. SUCCESS if the search operation succeeded. An
exception is raised in all other cases.

res If the search succeeded and there are entries, this parameter is
set to a non-null value which can be used to iterate through the
result set.

Exceptions

Table 9-24 SEARCH_ST Function Exceptions

Exception Description

invalid_session Raised if the session handle 1d is invalid.

invalid_search_scope Raised if the search scope is not one of SCOPE_BASE, SCOPE_
ONELEVEL or SCOPE_SUBTREE

invalid_search_time_ Raised if the time value specified for the time out is invalid.

value

general_error For all other errors. The error string associated with this

exception explains the error in detail.

Usage Notes

This function is very similar to DBMS_LDAP.search_s () except that it requires a
time out value to be given.

See Also

DBMS_LDAP.search_s(),DBML_LDAP.first_entry (), DBMS_LDAP.next_
entry.

FUNCTION first_entry

The function first_entry () is used to retrieve the first entry in the result set
returned by either search_s () or search_st ().

Syntax

FUNCTION first_entry
(

1d 1IN SESSION,

msg IN MESSAGE

)

RETURN MESSAGE;

Parameters

Table 9-25 FIRST_ENTRY Function Parameters

Parameter Description
1a A valid LDAP session handle.
msg The search result, as obtained by a call to one of the

synchronous search routines.

DBMS_LDAP PL/SQL Reference 9-13

Subprograms

Return Values

Table 9-26 FIRST_ENTRY Return Values

Value Description

MESSAGE A handle to the first entry in the list of entries returned from
the LDAP server. It is set to NULL if there was an error and an
exception is raised.

Exceptions

Table 9-27 FIRST_ENTRY Exceptions

Exception Description
invalid_session Raised if the session handle 1d is invalid.
invalid_message Raised if the incoming msg handle is invalid.

Usage Notes

The function first_entry () should always be the first function used to retrieve the
results from a search operation.

See Also

DBMS_LDAP.next_entry (), DBMS_LDAP.search_s (), DBMS_LDAP.search_
st ().

FUNCTION next_entry

The function next_entry () is used to iterate to the next entry in the result set of a
search operation.

Syntax

FUNCTION next_entry
(

1d 1IN SESSION,
msg IN MESSAGE

)
RETURN MESSAGE;

Parameters

Table 9-28 NEXT_ENTRY Function Parameters

Parameter Description
14 A valid LDAP session handle.
msg The search result, as obtained by a call to one of the

synchronous search routines.

9-14 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Subprograms

Return Values

Table 9-29 NEXT_ENTRY Function Return Values

Value Description

MESSAGE A handle to the next entry in the list of entries returned from
the LDAP server. It is set to null if there was an error and an
exception is raised.

Exceptions

Table 9-30 NEXT_ENTRY Function Exceptions

Exception Description
invalid_session Raised if the session handle, 1d is invalid.
invalid_message Raised if the incoming msg handle is invalid.

Usage Notes

The function next_entry () should always be called after a call to the function
first_entry (). Also, the return value of a successful call to next_entry () should
be used as msg argument used in a subsequent call to the function next_entry () to
fetch the next entry in the list.

See Also

DBMS_LDAP.first_entry (), DBMS_LDAP.search_s (), DBMS_LDAP.search_
st().

FUNCTION count_entries

This function is used to count the number of entries in the result set. It can also be used
to count the number of entries remaining during a traversal of the result set using a
combination of the functions first_entry () and next_entry ().

Syntax

FUNCTION count_entries
(

1d 1IN SESSION,

msg IN MESSAGE

)
RETURN PLS_INTEGER;

Parameters

Table 9-31 COUNT_ENTRY Function Parameters

Parameter Description
14 A valid LDAP session handle.
msg The search result, as obtained by a call to one of the

synchronous search routines.

DBMS_LDAP PL/SQL Reference 9-15

Subprograms

Return Values

Table 9-32 COUNT_ENTRY Function Return Values

Value Description

PLS_INTEGER Nonzero if there are entries in the result set. -1 if there was a
problem.

Exceptions

Table 9-33 COUNT_ENTRY Function Exceptions

Exception Description

invalid_session Raised if the session handle 14 is invalid.
invalid_message Raised if the incoming msg handle is invalid.
count_entry_error Raised if there was a problem in counting the entries.

Usage Notes

count_entries () returns the number of entries contained in a chain of entries; if an
error occurs such as the res parameter being invalid, -1 is returned. The count_
entries () call can also be used to count the number of entries that remain in a chain
if called with a message, entry, or reference returned by first_message (), next_
message (), first_entry (), next_entry (), first_reference (), next_
reference().

See Also
DBMS_LDAP.first_entry (), DBMS_LDAP.next_entry ().

FUNCTION first_attribute

The function first_attribute () fetches the first attribute of a given entry in the
result set.

Syntax

FUNCTION first_attribute

(

1d IN SESSION,
ldapentry IN MESSAGE,
ber_elem OUT BER_ELEMENT
)

RETURN VARCHAR2;

Parameters

Table 9-34 FIRST_ATTRIBUTE Function Parameters

Parameter Description
1d A valid LDAP session handle.
ldapentry The entry whose attributes are to be stepped through, as

returned by first_entry () ornext_entry ().

ber_elem A handle to a BER_ELEMENT that is used to keep track of
attributes in the entry that have already been read.

9-16 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Subprograms

Return Values

Table 9-35 FIRST_ATTRIBUTE Function Return Values

Value Description

VARCHAR2 The name of the attribute if it exists.

NULL if no attribute exists or if an error occurred.

ber_elem A handle used by DBMS_LDAP.next_attribute () toiterate
over all of the attributes

Exceptions

Table 9-36 FIRST_ATTRIBUTE Function Exceptions

Exception Description
invalid_session Raised if the session handle 1d is invalid.
invalid_message Raised if the incoming msg handle is invalid.

Usage Notes

The handle to the BER_ELEMENT returned as a function parameter to first_
attribute () should be used in the next call to next_attribute () to iterate
through the various attributes of an entry. The name of the attribute returned from a
call to first_attribute () can in turn be used in calls to the functions get_
values () or get_values_len() to get the values of that particular attribute.

See Also

DBMS_LDAP.next_attribute (), DBMS_LDAP.get_values (), DBMS_LDAP.get_
values_len (), DBMS_LDAP.first_entry (), DBMS_LDAP.next_entry ().

FUNCTION next_attribute

The function next_attribute () retrieves the next attribute of a given entry in the
result set.

Syntax

FUNCTION next_attribute

(

1d IN SESSION,
ldapentry IN MESSAGE,
ber_elem IN BER_ELEMENT

)
RETURN VARCHAR2;

Parameters

Table 9-37 NEXT_ATTRIBUTE Function Parameters

Parameter Description
1d A valid LDAP session handle.
ldapentry The entry whose attributes are to be stepped through, as

returned by first_entry () ornext_entry ().

ber_elem A handle to a BER_ELEMENT that is used to keep track of
attributes in the entry that have been read.

DBMS_LDAP PL/SQL Reference 9-17

Subprograms

Return Values

Table 9-38 NEXT_ATTRIBUTE Function Return Values

Value Description

VARCHAR2 The name of the attribute if it exists.

(function return)

Exceptions

Table 9-39 NEXT_ATTRIBUTE Function Exceptions

Exception Description
invalid_session Raised if the session handle 1d is invalid.
invalid_message Raised if the incoming msg handle is invalid.

Usage Notes

The handle to the BER_ELEMENT returned as a function parameter to first_
attribute () should be used in the next call to next_attribute () to iterate
through the various attributes of an entry. The name of the attribute returned from a
call to next_attribute () canin turn be used in calls to the functions get__
values () or get_values_len() to get the values of that particular attribute.

See Also

DBMS_LDAP.first_attribute (), DBMS_LDAP.get_values (), DBMS_
LDAP.get_values_len(),DBMS_LDAP.first_entry (), DBMS_LDAP.next_
entry ().

FUNCTION get_dn

The function get_dn () retrieves the X.500 distinguished name of given entry in the
result set.

Syntax

FUNCTION get_dn

(

1d 1IN SESSION,
ldapentrymsg IN MESSAGE

)
RETURN VARCHAR2;

Parameters

Table 9-40 GET_DN Function Parameters

Parameter Description
1a A valid LDAP session handle.
ldapentry The entry whose DN is to be returned.

9-18 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Subprograms

Return Values

Table 9-41 GET_DN Function Return Values

Value Description

VARCHAR2 The X.500 Distinguished name of the entry as a PL/SQL string.

NULL if there was a problem.

Exceptions

Table 9-42 GET_DN Function Exceptions

Exception Description

invalid_session Raised if the session handle 1d is invalid.
invalid_message Raised if the incoming msg handle is invalid.
get_dn_error Raised if there was a problem in determining the DN.

Usage Notes

The function get_dn () can be used to retrieve the DN of an entry as the program
logic is iterating through the result set. This can in turn be used as an input to
explode_dn () to retrieve the individual components of the DN.

See Also
DBMS_LDAP.explode_dn().

FUNCTION get_values

The function get_values () can be used to retrieve all of the values associated with a
given attribute in a given entry.

Syntax

FUNCTION get_values

(

1d IN SESSION,
ldapentry IN MESSAGE,
attr IN VARCHAR2

)
RETURN STRING_COLLECTION;

Parameters

Table 9-43 GET_VALUES Function Parameters

Parameter Description

14 A valid LDAP session handle.

ldapentry A valid handle to an entry returned from a search result.
attr The name of the attribute for which values are being sought.

DBMS_LDAP PL/SQL Reference 9-19

Subprograms

Return Values

Table 9-44 GET_VALUES Function Return Values

Value Description

STRING_COLLECTION A PL/SQL string collection containing all of the values of the
given attribute.

NULL if there are no values associated with the given attribute.

Exceptions

Table 9-45 GET_VALUES Function Exceptions

Exception Description
invalid_session Raised if the session handle 1d is invalid.
invalid_message Raised if the incoming entry handle is invalid.

Usage Notes

The function get_values () can only be called after the handle to entry has been first
retrieved by call to either first_entry () or next_entry (). The name of the
attribute may be known beforehand or can be determined by a call to first_
attribute () ornext_attribute ().The function get_values () always assumes
that the data type of the attribute it is retrieving is a string. For retrieving binary data
types, get_values_len () should be used.

See Also

DBMS_LDAP.first_entry (), DBMS_LDAP.next_entry (), DBMS_LDAP.count_
values (), DBMS_LDAP.get_values_len().

FUNCTION get_values_len

The function get_values_len () can be used to retrieve values of attributes that
have a binary syntax.

Syntax

FUNCTION get_values_len

(

1d IN SESSION,
ldapentry IN MESSAGE,
attr IN VARCHAR2

)

RETURN BINVAL_COLLECTION;

Parameters

Table 9-46 GET_VALUES_LEN Function Parameters

Parameter Description

1d A valid LDAP session handle.

ldapentrymsg A valid handle to an entry returned from a search result.

attr The string name of the attribute for which values are being
sought.

9-20 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Subprograms

Return Values

Table 9-47 GET_VALUES_LEN Function Return Values

Value Description

BINVAL_COLLECTION A PL/SQL 'Raw’ collection containing all the values of the
given attribute.

NULL if there are no values associated with the given attribute.

Exceptions

Table 9-48 GET_VALUES_LEN Function Exceptions

Exception Description
invalid_session Raised if the session handle 1d is invalid.
invalid_message Raised if the incoming entry handle is invalid.

Usage Notes

The function get_values_len () can only be called after the handle to an entry has
been retrieved by a call to either first_entry () or next_entry ().The name of the
attribute may be known beforehand or can also be determined by a call to first_
attribute () or next_attribute ().This function can be used to retrieve both
binary and non-binary attribute values.

See Also
DBMS_LDAP.first_entry (), DBMS_LDAP.next_entry (), DBMS_LDAP.count_
values_len (), DBMS_LDAP.get_values().

FUNCTION delete s

The function delete_s () can be used to remove a leaf entry in the DIT.

Syntax

FUNCTION delete_s

(

1d IN SESSION,
entrydn IN VARCHAR2

)
RETURN PLS_INTEGER;

Parameters

Table 9-49 DELETE_S Function Parameters

Parameter Name Description
14 A valid LDAP session.
entrydn The X.500 distinguished name of the entry to delete.

DBMS_LDAP PL/SQL Reference 9-21

Subprograms

Return Values

Table 9-50 DELETE_S Function Return Values

Value Description

PLS_INTEGER DBMS_LDAP. SUCCESS if the delete operation was successful.
An exception is raised otherwise.

Exceptions

Table 9-51 DELETE_S Function Exceptions

Exception Description

invalid_session Raised if the session handle 14 is invalid.
invalid_entry dn Raised if the distinguished name of the entry is invalid.
general_error For all other errors. The error string associated with this

exception explains the error in detail.

Usage Notes

The function delete_s () can be used to remove only leaf entries in the DIT. A leaf
entry is an entry that does not have any entries under it. This function cannot be used
to delete non-leaf entries.

See Also
DBMS_LDAP.modrdn2_s ().

FUNCTION modrdn2_s

The function modrdn2_s () can be used to rename the relative distinguished name of
an entry.

Syntax

FUNCTION modrdn2_s

(

1d IN SESSION,

entrydn in VARCHAR2

newrdn in VARCHAR2
deleteoldrdn IN PLS_INTEGER
)

RETURN PLS_INTEGER;

Parameters

Table 9-52 MODRDN2_S Function Parameters

Parameter Description

14 A valid LDAP session handle.

entrydn The distinguished name of the entry (This entry must be a leaf
node in the DIT.).

newrdn The new relative distinguished name of the entry.

deleteoldrdn A boolean value that, if nonzero, indicates that the attribute

values from the old name should be removed from the entry.

9-22 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Subprograms

Return Values

Table 9-53 MODRDN2_S Function Return Values

Value Description

PLS_INTEGER DBMS_LDAP. SUCCESS if the operation was successful. An
exception is raised otherwise.

Exceptions

Table 9-54 MODRDN2_S Function Exceptions

Exception Description

invalid_session Raised if the session handle 1d is invalid.
invalid_entry dn Raised if the distinguished name of the entry is invalid.
invalid_rdn Invalid LDAP RDN.

invalid_deleteoldrdn Invalid LDAP deleteoldrdn.

general_error For all other errors. The error string associated with this
exception explains the error in detail.

Usage Notes

The function nodrdn2_s () can be used to rename the leaf nodes of a DIT. It simply
changes the relative distinguished name by which they are known. The use of this
function is being deprecated in the LDAP v3 standard. Please use rename_s (), which
fulfills the same purpose.

See Also
DBMS_LDAP.rename_s ().

FUNCTION err2string

The function err2string () canbe used to convert an LDAP error code to a string in
the local language in which the APl is operating.

Syntax

FUNCTION err2string

(

ldap_err IN PLS_INTEGER
)

RETURN VARCHAR2Z;

Parameters

Table 9-55 ERR2STRING Function Parameters

Parameter Description

ldap_err An error number returned from one of the API calls.

DBMS_LDAP PL/SQL Reference 9-23

Subprograms

Return Values

Table 9-56 ERR2STRING Function Return Values

Value Description

VARCHAR2 A character string translated to the local language. The string
describes the error in detail.

Exceptions
err2string () raises no exceptions.

Usage Notes

In this release, the exception handling mechanism automatically invokes this function
if any of the API calls encounter an error.

FUNCTION create_mod_array

The function create_mod_array () allocates memory for array modification entries
that are applied to an entry using themodify s () or add_s () functions.

Syntax

FUNCTION create_mod_array

(
num IN PLS_INTEGER

)
RETURN MOD_ARRAY;

Parameters

Table 9-57 CREATE_MOD_ARRAY Function Parameters

Parameter Description

num The number of the attributes that you want to add or modify.

Return Values

Table 9-58 CREATE_MOD_ARRAY Function Return Values

Value Description

MOD_ARRAY The data structure holds a pointer to an LDAP mod array.

Returns NULL if there was a problem.

Exceptions
create_mod_array () raises no exceptions.

Usage Notes

This function is one of the preparation steps for DBMS_LDAP.add_s and DBMS_
LDAP.modify_s. It calls DBMS_LDAP. free_mod_array to free memory after the
calls to add_s or modify_s have completed.

See Also

DBMS_LDAP.populate_mod_array (), DBMS_LDAP.modify_s (), DBMS_
LDAP.add_s (), and DBMS_LDAP. free_mod_array ().

9-24 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Subprograms

PROCEDURE populate_mod_array (String Version)

Populates one set of attribute information for add or modify operations.

Syntax

PROCEDURE populate_mod_array

(

modptr IN DBMS_LDAP.MOD_ARRAY,

mod_op IN PLS_INTEGER,

mod_type IN VARCHAR2,

modval IN DBMS_LDAP.STRING_COLLECTION
)i

Parameters

Table 9-59 POPULATE_MOD_ARRAY (String Version) Procedure Parameters

Parameter Description
modptr The data structure holds a pointer to an LDAP mod array:.
mod_op This field specifies the type of modification to perform, MOD_

ADD, MOD_DELETE or MOD_REPLACE.

mod_type This field indicates the name of the attribute type to which the
modification applies.

modval This field specifies the attribute values to add, delete, or
replace. It is for string values only.

Exceptions

Table 9-60 POPULATE_MOD_ARRAY (String Version) Procedure Exceptions

Exception Description
invalid_mod_array Invalid LDAP mod array
invalid_mod_option Invalid LDAP mod option
invalid_mod_type Invalid LDAP mod type
invalid_mod_value Invalid LDAP mod value

Usage Notes

This function is one of the preparation steps for DBMS_LDAP . add_s and DBMS_
LDAP.modify_s. It has to happen after DBMS_LDAP.create_mod_array is called.

See Also

DBMS_LDAP.create_mod_array (), DBMS_LDAP.modify s (), DBMS_LDAP.add_
s (),and DBMS_LDAP. free_mod_array ().

PROCEDURE populate_mod_array (Binary Version)

Populates one set of attribute information for add or modify operations. This
procedure call occurs after DBMS_LDAP. create_mod_array () is called.

Syntax

PROCEDURE populate_mod_array
(
modptr IN DBMS_LDAP.MOD_ARRAY,

DBMS_LDAP PL/SQL Reference 9-25

Subprograms

mod_op IN PLS_INTEGER,

mod_type IN VARCHAR2,

modbval IN DBMS_LDAP.BERVAL_COLLECTION
)i

Parameters

Table 9-61 POPULATE_MOD_ARRAY (Binary Version) Procedure Parameters

Parameter Description
modptr This data structure holds a pointer to an LDAP mod array.
mod_op This field specifies the type of modification to perform, MOD_

ADD, MOD_DELETE or MOD_REPLACE.

mod_type This field indicates the name of the attribute type to which the
modification applies.

modbval This field specifies the attribute values to add, delete, or
replace. It is for the binary values.

Exceptions

Table 9-62 POPULATE_MOD_ARRAY (Binary Version) Procedure Exceptions

Exception Description
invalid_mod_array Invalid LDAP mod array.
invalid_mod_option Invalid LDAP mod option.
invalid_mod_type Invalid LDAP mod type.
invalid_mod_value Invalid LDAP mod value.

Usage Notes

This function is one of the preparation steps for DBMS_LDAP . add_s and DBMS_
LDAP.modify_s. Itis invoked after DBMS_LDAP.create_mod_array is called.

See Also
DBMS_LDAP.create_mod_array (), DBMS_LDAP.modify s (), DBMS_LDAP.add_
s (),and DBMS_LDAP. free_mod_array ().

PROCEDURE populate_mod_array (Binary Version. Uses BLOB Data Type)

Populates one set of attribute information for add or modify operations. This
procedure call occurs after DBMS_LDAP.create_mod_array () is called.

Syntax

PROCEDURE populate_mod_array

(

modptr IN DBMS_LDAP.MOD_ARRAY,
mod_op IN PLS_INTEGER,

mod_type IN VARCHAR2Z,

modbval IN DBMS_LDAP.BLOB_COLLECTION
)i

9-26 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Subprograms

Parameters

Table 9-63 POPULATE_MOD_ARRAY (Binary) Parameters

Parameter Description

modptr This data structure holds a pointer to an LDAP mod array.

mod_op This field specifies the type of modification to perform, MOD_
ADD, MOD_DELETE or MOD_REPLACE.

mod_type This field indicates the name of the attribute type to which the
modification applies.

modbval This field specifies the binary attribute values to add, delete, or
replace.

Exceptions

Table 9-64 POPULATE_MOD_ARRAY (Binary) Exceptions

Exception Description
invalid_mod_array Invalid LDAP mod array.
invalid_mod_option Invalid LDAP mod option.
invalid_mod_type Invalid LDAP mod type.
invalid_mod_value Invalid LDAP mod value.

Usage Notes

This function is one of the preparation steps for DBMS_LDAP . add_s and DBMS_
LDAP.modify_s.Itisinvoked after DBMS_LDAP.create_mod_array is called.

See Also

DBMS_LDAP.create_mod_array (), DBMS_LDAP.modify s (), DBMS_LDAP.add_
s (),and DBMS_LDAP. free_mod_array ().

FUNCTION get_values_blob

The function get_values_blob () can be used to retrieve larger values of attributes
that have a binary syntax.

Syntax

Syntax

FUNCTION get_values_blob
(

1d IN SESSION,

ldapentry IN MESSAGE,
attr IN VARCHAR2

)
RETURN BLOB_COLLECTION;

Parameters

Table 9-65 GET_VALUES_ BLOB Parameters

Parameter Description

1a A valid LDAP session handle.

DBMS_LDAP PL/SQL Reference 9-27

Subprograms

Table 9-65 (Cont) GET_VALUES_BLOB Parameters

Parameter Description

ldapentrymsg A valid handle to an entry returned from a search result.

attr The string name of the attribute for which values are being
sought.

Return Values

Table 9-66 get _values_blob Return Values

Value Description

BLOB_COLLECTION A PL/SQL BLOB collection containing all the values of the given
attribute.

NULL No values are associated with the given attribute.

Exceptions

Table 9-67 get _values_blob Exceptions

Exception Description
invalid_session Raised if the session handle 14 is invalid.
invalid message Raised if the incoming entry handle is invalid.

Usage Notes

The function get_values_blob () can only be called after the handle to an entry has
been retrieved by a call to either first_entry () or next_entry (). The name of
the attribute may be known beforehand or can also be determined by a call to first_
attribute () ornext_attribute (). This function can be used to retrieve both
binary and nonbinary attribute values.

See Also
DBMS_LDAP.first_entry (), DBMS_LDAP.next_entry (), DBMS_LDAP.count_
values_blob (), DBMS_LDAP.get_values().

FUNCTION count_values_blob

Counts the number of values returned by DBMS_LDAP.get_values_blob().

Syntax

FUNCTION count_values_blob

(
values IN DBMS_LDAP.BLOB_COLLECTION

)
RETURN PLS_INTEGER;

Parameters

Table 9-68 COUNT_VALUES BLOB Parameters

Parameter Description

values The collection of large binary values.

9-28 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Subprograms

Return Values

Table 9-69 COUNT_VALUES_BLOB Return Values

Values Description
PLS_INTEGER Indicates the success or failure of the operation.
Exceptions

The function count_values_blob () raises no exceptions.

See Also
DBMS_LDAP.count_values (), DBMS_LDAP.get_values_blob().

FUNCTION value_free blob

Frees the memory associated with BLOB_COLLECTION returned by DBMS_LDAP.get_
values_blob().

Syntax

PROCEDURE value_free_blob
(

vals IN OUT DBMS_LDAP.BLOB_COLLECTION
)
Parameters

Table 9-70 VALUE_FREE_BLOB Parameters

Parameter Description

vals The collection of large binary values returned by DBMS_
LDAP.get_values_blob().

Exceptions
value_free_blob () raises no exceptions.

See Also
DBMS_LDAP.get_values_blob().

FUNCTION modify_s

Performs a synchronous modification of an existing LDAP directory entry.

Syntax

FUNCTION modify_s

(

1d IN DBMS_LDAP.SESSION,
entrydn IN VARCHAR2,

modptr IN DBMS_LDAP.MOD_ARRAY
)

RETURN PLS_INTEGER;

DBMS_LDAP PL/SQL Reference 9-29

Subprograms

Parameters

Table 9-71 MODIFY_S Function Parameters

Parameter Description

14 This parameter is a handle to an LDAP session returned by a
successful call to DBMS_LDAP.init ().

entrydn This parameter specifies the name of the directory entry whose
contents are to be modified.

modptr This parameter is the handle to an LDAP mod structure, as
returned by successful call to DBMS_LDAP.create_mod_
array ().

Return Values

Table 9-72 MODIFY_S Function Return Values

Value Description
PLS_INTEGER Indicates the success or failure of the modification operation.
Exceptions

Table 9-73 MODIFY_S Function Exceptions

Exception Description
invalid_session Invalid LDAP session.
invalid_entry dn Invalid LDAP entry dn.
invalid_mod_array Invalid LDAP mod array.

Usage Notes

This function call has to follow successful calls of DBMS_LDAP.create_mod_
array () and DBMS_LDAP.populate_mod_array ().

See Also

DBMS_LDAP.create_mod_array (),DBMS_LDAP.populate_mod_array (),
DBMS_LDAP.add_s (), and DBMS_LDAP. free_mod_array ().

FUNCTION add_s

Adds a new entry to the LDAP directory synchronously. Before calling add_s, DBMS_
LDAP.create_mod_array () and DBMS_LDAP.populate_mod_array () must be
called.

Syntax

FUNCTION add_s

(

1d IN DBMS_LDAP.SESSION,
entrydn IN VARCHAR2,

modptr IN DBMS_LDAP.MOD_ARRAY
)

RETURN PLS_INTEGER;

9-30 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Subprograms

Parameters

Table 9-74 ADD_S Function Parameters

Parameter Description

14 This parameter is a handle to an LDAP session, as returned by
a successful call to DBMS_LDAP.init ().

entrydn This parameter specifies the name of the directory entry to be
created.

modptr This parameter is the handle to an LDAP mod structure, as
returned by successful call to DBMS_LDAP.create_mod_
array ().

Return Values

Table 9-75 ADD_S Function Return Values

Value Description
PLS_INTEGER Indicates the success or failure of the modification operation.
Exceptions

Table 9-76 ADD_S Function Exceptions

Exception Description
invalid_session Invalid LDAP session.
invalid_entry dn Invalid LDAP entry dn.
invalid_mod_array Invalid LDAP mod array.

Usage Notes

The parent entry of the entry to be added must already exist in the directory. This
function call has to follow successful calls to DBMS_LDAP.create_mod_array ()
and DBMS_LDAP.populate_mod_array ().

See Also

DBMS_LDAP.create_mod_array (), DBMS_LDAP.populate_mod_array (),
DBMS_LDAP.modify_s(),and DBMS_LDAP.free_mod_array ().

PROCEDURE free_mod_array

Frees the memory allocated by DBMS_LDAP.create_mod_array ().

Syntax

PROCEDURE free_mod_array

(
modptr IN DBMS_LDAP.MOD_ARRAY

)i

DBMS_LDAP PL/SQL Reference 9-31

Subprograms

Parameters

Table 9-77 FREE_MOD_ARRAY Procedure Parameters

Parameter Description

modptr This parameter is the handle to an LDAP mod structure
returned by a successful call to DBMS_LDAP.create_mod_
array ().

Exceptions

free_mod_array raises no exceptions.

See Also

DBMS_LDAP.populate_mod_array (), DBMS_LDAP.modify_ s (), DBMS_
LDAP.add_s (), and DBMS_LDAP.create_mod_array ().

FUNCTION count_values

Counts the number of values returned by DBMS_LDAP.get_values ().

Syntax

FUNCTION count_values

(

values IN DBMS_LDAP.STRING_COLLECTION
)

RETURN PLS_INTEGER;

Parameters

Table 9-78 COUNT_VALUES Function Parameters

Parameter Description

values The collection of string values.

Return Values

Table 9-79 COUNT_VALUES Function Return Values

Value Description
PLS_INTEGER Indicates the success or failure of the operation.
Exceptions

count_values raises no exceptions.

See Also
DBMS_LDAP.count_values_len(), DBMS_LDAP.get_values ().

FUNCTION count_values_len

Counts the number of values returned by DBMS_LDAP.get_values_len().
Syntax

FUNCTION count_values_len
(

9-32 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Subprograms

values IN DBMS_LDAP.BINVAL_COLLECTION
)
RETURN PLS_INTEGER;

Parameters

Table 9-80 COUNT_VALUES_LEN Function Parameters

Parameter Description

values The collection of binary values.

Return Values

Table 9-81 COUNT_VALUES_LEN Function Return Values

Value Description
PLS_INTEGER Indicates the success or failure of the operation.
Exceptions

count_values_len raises no exceptions.

See Also
DBMS_LDAP.count_values (), DBMS_LDAP.get_values_len().

FUNCTION rename_s

Renames an LDAP entry synchronously.

Syntax

FUNCTION rename_s

(

1d IN SESSION,
dn IN VARCHAR2,
newrdn IN VARCHAR2,

newparent IN VARCHAR2,
deleteoldrdn IN PLS_INTEGER,
serverctrls IN LDAPCONTROL,
clientctrls IN LDAPCONTROL
)

RETURN PLS_INTEGER;

Parameters

Table 9-82 RENAME_S Function Parameters

Parameter Description

14 This parameter is a handle to an LDAP session returned by a
successful call to DBMS_LDAP.init ().

dn This parameter specifies the name of the directory entry to be
renamed or moved.

newrdn This parameter specifies the new RDN.

newparent This parameter specifies the DN of the new parent.

deleteoldrdn This parameter specifies whether the old RDN should be

retained. If this value is 1, the old RDN is removed.

DBMS_LDAP PL/SQL Reference 9-33

Subprograms

Table 9-82 (Cont) RENAME_S Function Parameters

Parameter Description
serverctrls Currently not supported.
clientctrls Currently not supported.

Return Values

Table 9-83 RENAME_S Function Return Values

Value Description
PLS_INTEGER The indication of the success or failure of the operation.
Exceptions

Table 9-84 RENAME_S Function Exceptions

Exception Description
invalid_session Invalid LDAP Session.
invalid_entry_dn Invalid LDAP DN.
invalid_rdn Invalid LDAP RDN.
invalid_newparent Invalid LDAP newparent.

invalid_deleteoldrdn Invalid LDAP deleteoldrdn.

See Also
DBMS_LDAP.modrdn2_s ().

FUNCTION explode_dn

Breaks a DN up into its components.

Syntax

FUNCTION explode_dn

(
dn IN VARCHAR2,
notypes IN PLS_INTEGER

)
RETURN STRING_COLLECTION;

Parameters

Table 9-85 EXPLODE_DN Function Parameters

Parameter Description

dn This parameter specifies the name of the directory entry to be
broken up.

notypes This parameter specifies whether the attribute tags are

returned. If this value is not 0, no attribute tags are returned.

9-34 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Subprograms

Return Values

Table 9-86 EXPLODE_DN Function Return Values

Value Description

STRING_COLLECTION An array of strings. If the DN cannot be broken up, NULL is
returned.

Exceptions

Table 9-87 EXPLODE_DN Function Exceptions

Exception Description
invalid_entry dn Invalid LDAP DN.
invalid_notypes Invalid LDAP notypes value.
See Also

DBMS_LDAP.get_dn().

FUNCTION open_ssl

Establishes an SSL (Secure Sockets Layer) connection over an existing LDAP

connection.

Syntax

FUNCTION open_ssl

(

1d IN SESSION,
sslwrl IN VARCHAR2,
sslwalletpasswd IN VARCHAR2,
sslauth IN PLS_INTEGER

)
RETURN PLS_INTEGER;

Parameters

Table 9-88 OPEN_SSL Function Parameters

Parameter Description

1d This parameter is a handle to an LDAP session that is returned
by a successful call to DBMS_LDAP.init ().

sslwrl This parameter specifies the wallet location. The format is
file:path. Required for one-way or two-way SSL connections.

sslwalletpasswd This parameter specifies the wallet password. Required for
one-way or two-way SSL connections.

sslauth This parameter specifies the SSL Authentication Mode. (1 for no
authentication, 2 for one-way authentication required, 3 for
two-way authentication).

DBMS_LDAP PL/SQL Reference 9-35

Subprograms

Return Values

Table 9-89 OPEN_SSL Function Return Values

Value

Description

PLS_INTEGER

Indicates the success or failure of the operation.

Exceptions

Table 9-90 OPEN_SSL Function Exceptions

Exception

Description

invalid_session

Invalid LDAP Session.

invalid_ssl_wallet_loc Invalid LDAP SSL wallet location.

invalid_ssl_wallet_
passwd

invalid_ssl_auth_mode

Invalid LDAP SSL wallet password.

Invalid LDAP SSL authentication mode.

Usage Notes

Need to call DBMS_LDAP. init () first to acquire a valid ldap session.

See Also
DBMS_LDAP.init ().

FUNCTION msgfree

This function frees the chain of messages associated with the message handle returned

by synchronous search functions.

Syntax

FUNCTION msgfree
(

res IN MESSAGE

)
RETURN PLS_INTEGER;

Parameters

Table 9-91 MSGFREE Function Parameters

Parameter

Description

res

The message handle obtained by a call to one of the synchronous
search routines.

9-36 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Subprograms

Return Values

Table 9-92 MSGFREE Return Values

Value Description

PLS_INTEGER Indicates the type of the last message in the chain.
The function might return any of the following values:
= DBMS_LDAP.LDAP RES_BIND
= DBMS LDAP.LDAP RES SEARCH_ ENTRY
= DBMS_LDAP.LDAP RES_ SEARCH REFERENCE
u DBMS_LDAP.LDAP_RES_SEARCH_RESULT
= DBMS_ LDAP.LDAP RES_MODIFY
= DBMS_LDAP.LDAP RES_ADD
L] DBMS_LDAP.LDAP_RES_DELETE
u DBMS_LDAP.LDAP_RES_MODDN
L] DBMS_LDAP.LDAP_RES_COMPARE
u DBMS_LDAP.LDAP_RES_EXTENDED

Exceptions
msgfree raises no exceptions.

See Also
DBMS_LDAP.search_s (), DBMS_LDAP.search_st().

FUNCTION ber_free

This function frees the memory associated with a handle to BER ELEMENT.

Syntax

FUNCTION ber_free

(

ber elem IN BER_ELEMENT,
freebuf 1IN PLS_INTEGER
)

Parameters

Table 9-93 BER_FREE Function Parameters

Parameter Description
ber_elem A handle to BER ELEMENT.
freebuf The value of this flag should be 0 while the BER ELEMENT

returned from DBMS_LDAP. first_attribute() is being
freed. For any other case, the value of this flag should be 1.

The default value of this parameter is zero.

Return Values
ber_free returns no values.

Exceptions
ber_free raises no exceptions.

DBMS_LDAP PL/SQL Reference 9-37

Subprograms

See Also
DBMS_LDAP.first_attribute(),DBMS_LDAP.next_attribute().

FUNCTION nls_convert_to_utf8

Thenls_convert_to_utf8 () function converts the input string containing
database character set data to UTF-8 character set data and returns it.

Syntax

Function nls_convert_to_utf8
(
data_local IN VARCHAR2

)
RETURN VARCHAR2;

Parameters

Table 9-94 Parameters for nls_convert _to_utf8

Parameter Description

data_local Contains the database character set data.

Return Values

Table 9-95 Return Values for nls_convert_to_utf8

Value Description

VARCHAR2 UTE-8 character set data string.

Usage Notes

The functions in DBMS_LDAP package expect the input data to be UTF-8 character set
data if the UTF8_CONVERSION package variable is set to FALSE. The nls_convert_
to_utf8 () function converts database character set data to UTF-8 character set data.

If the UTF8_CONVERSION package variable of the DBMS_LDAP package is set to TRUE,
functions in the DBMS_LDAP package expect input data to be database character set
data.

See Also

DBMS_LDAP.nls_convert_from_utf8(),DBMS_LDAP.nls_get_dbcharset_
name ().

FUNCTION nls_convert_to utf8

The nls_convert_to_utf8 () function converts the input string collection
containing database character set data to UTF-8 character set data. It then returns the
converted data.

Syntax

Function nls_convert_to_utf8

(
data_local IN STRING_COLLECTION

)
RETURN STRING_COLLECTION;

9-38 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Subprograms

Parameters

Table 9-96 Parameters for nls_convert_to_utf8

Parameter Description

data_local Collection of strings containing database character set data.

Return Values

Table 9-97 Return Values for nls_convert_to_utf8

Value Description

STRING_COLLECTION Collection of strings containing UTF-8 character set data.

Usage Notes

The functions in the DBMS_LDAP package expect the input data to be in the UTF-8
character set if the UTF8_CONVERSION package variable is set to FALSE. Thenls_
convert_to_utf8 () function converts the input data from the database character
set to the UTF-8 character set.

If the UTF8_CONVERSION package variable of the DBMS_LDAP package is set to TRUE,
functions in the DBMS_LDAP package expect the input data to be in the database
character set.

See Also

DBMS_LDAP.nls_convert_from_utf8(),DBMS_LDAP.nls_get_dbcharset_
name ().

FUNCTION nls_convert_from_utf8

Thenls_convert_from_utf8 () function converts the input string containing
UTF-8 character set to database character set data. It then returns this data.

Syntax

Function nls_convert_from_utf8

(
data_utf8 IN VARCHAR2

)
RETURN VARCHAR2;

Parameters

Table 9-98 Parameter for nls_convert_from_utf8

Parameter Description

data_utf8 Contains UTF-8 character set data.

Return Values

Table 9-99 Return Value for nils_convert_from_utf8

Value Description

VARCHAR2 Data string in the database character set.

DBMS_LDAP PL/SQL Reference 9-39

Subprograms

Usage Notes

The functions in the DBMS_LDAP package return UTF-8 character set data if the UTF8_
CONVERSION package variable is set to FALSE. The nls_convert_from utf8()
function converts the output data from the UTF-8 character set to the database
character set.

If the UTF8_CONVERSION package variable of the DBMS_LDAP package is set to TRUE,
functions in the DBMS_LDAP package return database character set data.

See Also

DBMS_LDAP.nls_convert_to_utf8(),DBMS_LDAP.nls_get_dbcharset_
name ().

FUNCTION nls_convert_from_utf8

The nls_convert_from_utf8 () function converts the input string collection
containing UTF-8 character set data to database character set data. It then returns this
data.

Syntax

Function nls_convert_from_ utf§

(
data_utf8 IN STRING_COLLECTION

)
RETURN STRING_COLLECTION;

Parameters

Table 9-100 Parameter for nls_convert_from_utf8

Parameter Description

data_utfs Collection of strings containing UTF-8 character set data.

Return Values

Table 9-101 Return Value for nils_convert_from_utf8

Value Description

VARCHAR2 Collection of strings containing database character set data.

Usage Notes

The functions in the DBMS_LDAP package return UTF-8 character set data if the UTF8_
CONVERSION package variable is set to FALSE. nls_convert_from utf8 ()
converts the output data from the UTF-8 character set to the database character set. If
the UTF8_CONVERSION package variable of the DBMS_LDAP package is set to TRUE,
functions in the DBMS_LDAP package return database character set data.

See Also

DBMS_LDAP.nls_convert_to_utf8(),DBMS_LDAP.nls_get_dbcharset_
name ().

9-40 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Subprograms

FUNCTION nis_get_dbcharset_name

The nls_get_dbcharset_name () function returns a string containing the database
character set name.

Syntax

Function nls_get_dbcharset_name

RETURN VARCHAR2;
Parameters
None.

Return Values

Table 9-102 Return Value for nls_get_dbcharset_name

Value Description

VARCHAR2 String containing the database character set name.

See Also

DBMS_LDAP.nls_convert_to_utf8 (), DBMS_LDAP.nls_convert_from_
utf8 ().

DBMS_LDAP PL/SQL Reference 9-41

Subprograms

9-42 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

10

Java API Reference

The standard Java APlIs for Oracle Internet Directory are available as the Java Naming
and Directory Interface (JNDI). The JNDI is found at this link:

http://java.sun.com/products/jndi

The Oracle extensions to the standard APIs are found in Oracle Fusion Middleware Java
API Reference for Oracle Internet Directory.

Sample code for the Java APIs is available at this URL:

http://www.oracle.com/technology/sample_code/

Look for the Oracle Identity Management link under Sample Applications-Oracle
Application Server.

Java API| Reference 10-1

10-2 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

11

DBMS LDAP UTL PL/SQL Reference

This chapter contains reference material for the DBMS_LDAP_UTL package, which
contains Oracle Extension utility functions. The chapter contains these topics:

= Summary of Subprograms
= Subprograms
s Function Return Code Summary

s Data Type Summary

Note: Sample code for the DBMS_LDAP_UTL package is available at
this URL:

http://www.oracle.com/technology/sample_code/

Look for the Oracle Identity Management link under Sample
Applications—Fusion Middleware.

Summary of Subprograms

Table 11-1 DBMS_LDAP_UTL User-Related Subprograms

Function or Procedure Purpose
Function authenticate_user Authenticates a user against an LDAP server.
Function create_user_handle Creates a user handle.

Function set_user_handle_properties =~ Associates the given properties to the user handle.
Function get_user_properties Retrieves user properties from an LDAP server.
Function set_user_properties Modifies the properties of a user.

Function get_user_extended_properties Retrieves user extended properties.

Function get_user_dn Retrieves a user DN.

Function check_group_membership Checks whether a user is member of a given group.

Function locate_subscriber_for_user Retrieves the subscriber for the given user.

Function get_group_membership Retriives a list of groups of which the user is a
member.

DBMS_LDAP_UTL PL/SQL Reference 11-1

Subprograms

Table 11-2 DBMS_LDAP_UTL Group-Related Subprograms

Function or Procedure

Purpose

Function create_group_handle
Function set_group_handle_properties
Function get_group_properties

Function get_group_dn

Creates a group handle.
Associates the given properties with the group handle.
Retrieves group properties from an LDAP server.

Retrieves a group DN.

Table 11-3 DBMS_LDAP_UTL Subscriber-Related Subprograms

Function or Procedure

Purpose

Function create_subscriber_handle

Function get_subscriber_properties

Function get_subscriber_dn

Creates a subscriber handle.

Retrieves subscriber properties from an LDAP
server.

Retrieves a subscriber DN.

Table 11-4 DBMS_LDAP_UTL Miscellaneous Subprograms

Function or Procedure

Purpose

Function normalize_dn_with_case
Function get_property_names
Function get_property_values

Function get_property_values_blob

Procedure property_value_free_blob

Function get_property_values_len
Procedure free_propertyset_collection
Function create_mod_propertyset
Function populate_mod_propertyset
Procedure free_mod_propertyset
Procedure free_handle

Function check_interface_version

Normalizes the DN string.
Retrieves a list of property names in a PROPERTY_SET.
Retrieves a list of values for a property name.

Retrieves a list of large binary values for a property
name.

Frees the memory associated with BLOB_COLLECTION
returned by DBMS_LDAP_UTL.get_property_
values_blob ().

Retrieves a list of binary values for a property name.
Frees PROPERTY_SET_ COLLECTION.

Creates a MOD_ PROPERTY_ SET.

Populates a MOD_PROPERTY_SET structure.

Frees a MOD_PROPERTY_SET.

Frees handles.

Checks for support of the interface version.

Subprograms

This section contains the following topics:

s User-Related Subprograms
s Group-Related Subprograms

= Subscriber-Related Subprograms

s Property-Related Subprograms

= Miscellaneous Subprograms

11-2 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Subprograms

User-Related Subprograms

A user is represented by the DBMS_LDAP_UTL . HANDLE data type. You can create a
user handle by using a DN, GUID, or simple name, along with the appropriate
subscriber handle. When a simple name is used, additional information from the root
Oracle Context and the subscriber Oracle Context is used to identify the user. This
example shows a user handle being created:

retval := DBMS_LDAP_UTL.create_user_handle(
user_handle,

DBMS_LDAP_UTL.TYPE_DN,
"cn=userl, cn=users, o=example,dc=com"

)i

This user handle must be associated with an appropriate subscriber handle. If, for
example, subscriber_handle is o=example, dc=com, the subscriber handle can be
associated in the following way:

retval := DBMS_LDAP_UTL.set_user_handle_properties (
user_handle,

DBMS_LDAP_UTL.SUBSCRIBER_HANDLE,

subscriber_handle

)i

Common uses of user handles include setting and getting user properties and
authenticating the user. Here is a handle that authenticates a user:

retval := DBMS_LDAP UTL.authenticate_user (
my_session

user_handle

DBMS_LDAP_UTL.AUTH_SIMPLE,

"welcome"

NULL

)i

In this example, the user is authenticated using a clear text password welcome.
Here is a handle that retrieves a user's telephone number:

--my_attrs is of type DBMS_LDAP.STRING_COLLECTION
my_attrs(l) :='telephonenumber';

retval := DBMS_LDAP_UTL.get_user_properties (
my_session,

my_attrs,

DBMS_LDAP_UTL.ENTRY_PROPERTIES,

my_pset_coll

)

Function authenticate_user

The function authenticate_user () authenticates the user against Oracle Internet
Directory.

Syntax

FUNCTION authenticate_user
(

1d IN SESSION,

user_handle IN HANDLE,
auth_type IN PLS_INTEGER,
credentials IN VARCHAR2,
binary_credentials IN RAW

DBMS_LDAP_UTL PL/SQL Reference 11-3

Subprograms

)
RETURN PLS_INTEGER;

Parameters

Table 11-5 authenticate _user Function Parameters

Parameter Name Parameter Type Parameter Description

14 SESSION A valid LDAP session handle.

user_handle HANDLE The user handle.

auth_type PLS_INTEGER Type of authentication. The only valid value is
DBMS_LDAP_UTL.AUTH_SIMPLE

credentials VARCHAR2 The user credentials.

binary_credentials RAW

The binary credentials. This parameter is optional.
It can be NULL by default.

Return Values

Table 11-6 authenticate_user Function Return Values

Value

Description

DBMS_LDAP_UTL. SUCCESS
DBMS_LDAP_UTL.PARAM_ERROR
DBMS_LDAP_UTL.GENERAL_ERROR
DBMS_LDAP_UTL.NO_SUCH_USER
DBMS_LDAP_UTL.MULTIPLE_USER_ENTRIES

DBMS_LDAP_UTL.INVALID SUBSCRIBER_
ORCL_CTX

DBMS_LDAP_UTL.NO_SUCH_SUBSCRIBER

DBMS_LDAP_UTL.MULTIPLE_SUBSCRIBER_
ENTRIES

DBMS_LDAP_UTL. INVALID_ROOT_ORCL_CTX

DBMS_LDAP_UTL.ACCT TOTALLY LOCKED_
EXCP

DBMS_LDAP_UTL.AUTH_PASSWD_CHANGE_WARN
DBMS_LDAP_UTL.AUTH_FAILURE_EXCP
DBMS_LDAP_UTL. PWD_EXPIRED_EXCP
DBMS_LDAP_UTL. PWD_GRACELOGIN_WARN

DBMS_LDAP error codes

On a successful completion.
Invalid input parameters.
Authentication failed.

User does not exist.

The user has multiple DN entries.

Invalid Subscriber Oracle Context.

Subscriber doesn't exist.

The subscriber has multiple DN entries.

Invalid Root Oracle Context.

User account is locked.

This return value is deprecated.
Authentication failed.

User password has expired.
Grace login for user.

Return proper DBMS_LDAP error codes for
unconditional failures that occurred when LDAP
operations were carried out.

Usage Notes

This function can be called only after a valid LDAP session is obtained from a call to

DBMS_LDAP.init ().

See Also

DBMS_LDAP.init (), DBMS_LDAP_UTL.create_user_handle().

11-4 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Subprograms

Function create_user_handle
The function create_user_handle () creates a user handle.

Syntax

FUNCTION create_user_handle
(

user_hd OUT HANDLE,
user_type IN PLS_INTEGER,
user_id IN VARCHAR2,

)
RETURN PLS_INTEGER;

Parameters

Table 11-7 CREATE_USER_HANDLE Function Parameters

Parameter Name Parameter Type Parameter Description

user_hd HANDLE A pointer to a handle to a user.

user_type PLS_INTEGER The type of user ID that is passed. Valid values for this
argument are as follows:

L] DBMS_LDAP_UTL.TYPE_DN
L] DBMS_LDAP_UTL.TYPE_GUID
L] DBMS_LDAP_UTL.TYPE_NICKNAME

user_id VARCHAR2 The user ID representing the user entry.

Return Values

Table 11-8 CREATE_USER_HANDLE Function Return Values

Value Description
DBMS_LDAP_UTL. SUCCESS On a successful completion.
DBMS_LDAP_UTL . PARAM_ERROR Invalid input parameters.

DBMS_LDAP_UTL.GENERAL_ERROR Other error.

See Also

DBMS_LDAP_UTL.get_user_properties (), DBMS_LDAP_UTL.set_user_
handle_properties().

Function set_user_handle_properties

The function set_user_handle_properties () configures the user handle
properties.

Syntax

FUNCTION set_user_handle_properties
(

user_hd IN HANDLE,

property_type IN PLS_INTEGER,
property IN HANDLE

)

RETURN PLS_INTEGER;

DBMS_LDAP_UTL PL/SQL Reference 11-5

Subprograms

Parameters

Table 11-9 SET_USER_HANDLE_PROPERTIES Function Parameters

Parameter Name Parameter Type Parameter Description

user_hd HANDLE A pointer to a handle to a user.

property_type PLS_INTEGER The type of property that is passed. Valid values for
this argument are as follows: - DBMS_LDAP_
UTL . SUBSCRIBER_HANDLE.

property HANDLE The property describing the user entry.

Return Values

Table 11-10 SET_USER_HANDLE_PROPERTIES Function Return Values

Value Description

DBMS_LDAP_UTL. SUCCESS On a successful completion.
DBMS_LDAP_UTL.PARAM_ERROR Invalid input parameters.
DBMS_LDAP_UTL.RESET_HANDLE When a caller tries to reset the existing handle properties.

DBMS_LDAP_UTL.GENERAL_ERROR Other error.

Usage Notes

The subscriber handle does not have to be set in User Handle Properties if the user
handle is created with TYPE_DN or TYPE_GUID as the user type.

See Also
DBMS_LDAP_UTL.get_user_properties().

Function get_user_properties
The function get_user_properties () retrieves the user properties.

Syntax

FUNCTION get_user_properties

(

1d IN SESSION,

user_handle IN HANDLE,

attrs IN STRING_COLLECTION,

ptype IN PLS_INTEGER,

ret_pset_coll OUT PROPERTY_SET_COLLECTION
)

RETURN PLS_INTEGER;

Parameters

Table 11-11 GET_USER_PROPERTIES Function Parameters

Parameter Name Parameter Type Parameter Description

14 SESSION A valid LDAP session handle.
user_handle HANDLE The user handle.

attrs STRING_COLLECTION The list of user attributes to retrieve.

11-6 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Subprograms

Table 11-11 (Cont.) GET_USER_PROPERTIES Function Parameters

Parameter Name Parameter Type Parameter Description

ptype PLS_INTEGER Type of properties to return. These are
valid values:

[DBMS_LDAP_UTL.ENTRY__
PROPERTIES

= DBMS_LDAP_UTL.NICKNAME
PROPERTY

ret-pset_collection PROPERTY_SET COLLECTION User details contained in attributes
requested by the caller.

Return Values

Table 11-12 GET_USER_PROPERTIES Function Return Values

Value Description
DBMS_LDAP_UTL.SUCCESS On a successful completion.
DBMS_LDAP_UTL.PARAM_ERROR Invalid input parameters.
DBMS_LDAP_UTL.NO_SUCH_USER User does not exist.

DBMS_LDAP_UTL .MULTIPLE_USER_ENTRIES The user has multiple DN entries.
DBMS_LDAP_UTL.INVALID_ROOT_ORCL_CTX Invalid root Oracle Context.
DBMS_LDAP_UTL.GENERAL_ERROR Other error.

DBMS_LDAP error codes Return proper DBMS_LDAP error codes for
unconditional failures that occur when LDAP
operations are carried out.

Usage Notes
This function requires the following:

s A valid LDAP session handle, which must be obtained from the DBMS_
LDAP.init () function.

= A valid subscriber handle to be set in the group handle properties if the user type
is of DBMS_LDAP_UTL.TYPE_NICKNAME.

This function does not identify a NULL subscriber handle as a default subscriber. The
default subscriber can be obtained from DBMS_LDAP_UTL.create_subscriber_
handle (), where a NULL subscriber_id is passed as an argument.

If the group type is either DBMS_LDAP_UTL.TYPE_GUID or DBMS_LDAP_UTL.TYPE_
DN, the subscriber handle need not be set in the user handle properties. If the
subscriber handle is set, it is ignored.

See Also
DBMS_LDAP.init (), DBMS_LDAP_ UTL.create_user_handle().

Function set_user_properties
The function set_user_properties () modifies the properties of a user.

Syntax

FUNCTION set_user_properties
(

DBMS_LDAP_UTL PL/SQL Reference 11-7

Subprograms

1d IN SESSION,
user_handle IN HANDLE,
pset_type IN PLS_INTEGER,
mod_pset IN PROPERTY_SET,
mod_op IN PLS_INTEGER

)

RETURN PLS_INTEGER;

Parameters

Table 11-13 SET_USER_PROPERTIES Function Parameters

Parameter Name Parameter Type Description

14 SESSION A valid LDAP session handle.

user_handle HANDLE The user handle.

pset_type PLS_INTEGER The type of property set being modified. A valid

value is ENTRY_PROPERTIES.

mod_pset PROPERTY_SET Data structure containing modify operations to
perform on the property set.

mod_op PLS_INTEGER The type of modify operation to be performed on
the property set. Here are valid values:

] ADD_PROPERTYSET
] MODIFY_PROPERTYSET
] DELETE_PROPERTYSET

Return Values

Table 11-14 SET_USER_PROPERTIES Function Return Values

Value Description
DBMS_LDAP_UTL. SUCCESS On a successful completion.
DBMS_LDAP_UTL.NO_SUCH_USER User does not exist.

DBMS_LDAP_UTL.MULTIPLE_USER_ENTRIES The user has multiple DN entries.

DBMS_LDAP_UTL.INVALID_ROOT_ ORCL_CTX Invalid root Oracle Context.

DBMS_LDAP_UTL. PWD_MIN_LENGTH_ERROR Password length is less than the minimum required
length.

DBMS_LDAP_UTL . PWD_NUMERIC_ERROR Password must contain numeric characters.

DBMS_LDAP_UTL . PWD_NULL_ERROR Password cannot be NULL.

DBMS_LDAP_UTL . PWD_INHISTORY_ERROR Password cannot be the same as the one that is being
replaced.

DBMS_LDAP_UTL. PWD_ILLEGALVALUE_ERROR Password contains illegal characters.

DBMS_LDAP_UTL.GENERAL_ERROR Other error.

DBMS_LDAP error codes Return proper DBMS_LDAP error codes for

unconditional failures while carrying out LDAP
operations by the LDAP server.

Usage Notes

This function can only be called after a valid LDAP session is obtained from a call to
DBMS_LDAP.init ().

11-8 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Subprograms

See Also

DBMS_LDAP.init (), DBMS_LDAP_UTL.get_user_properties().

Function get_user_extended_properties

The function get_user_extended_properties () retrieves user extended

properties.

Syntax

FUNCTION get_user_extended_properties
(

1d IN SESSION,

user_handle IN HANDLE,

attrs IN STRING_COLLECTION

ptype IN PLS_INTEGER,

filter IN VARCHAR2,

rep_pset_coll OUT PROPERTY_SET COLLECTION

)
RETURN PLS_INTEGER;

Parameters

Table 11-15 GET_USER_EXTENDED_PROPERTIES Function Parameters

Parameter Name Parameter Type Parameter Description

1d SESSION A valid LDAP session handle.

user_handle HANDLE The user handle.

attrs STRING_COLLECTION A list of attributes to fetch for the
user.

ptype PLS_INTEGER The type of properties to return.
Here is a valid value: - DBMS_
LDAP_UTL.EXTPROPTYPE_RAD

filter VARCHAR2 An LDAP filter to further refine the
user properties returned by the
function.

ret_pset_collection PROPERTY_SET_COLLECTION The user details containing the

attributes requested by the caller.

Return Values

Table 11-16 GET_USER_EXTENDED_PROPERTIES Function Return Values

Value

Description

DBMS_LDAP_UTL. SUCCESS
DBMS_LDAP_UTL.PARAM_ERROR
DBMS_LDAP_UTL.NO_SUCH_USER
DBMS_LDAP_UTL.MULTIPLE_USER_ENTRIES
USER_PROPERTY_NOT_FOUND
DBMS_LDAP_UTL. INVALID_ROOT_ORCL_CTX

DBMS_LDAP_UTL.GENERAL_ERROR

On a successful completion.

Invalid input parameters.

User does not exist.

The user has multiple DN entries.
User extended property does not exist.
Invalid root Oracle Context.

Other error.

DBMS_LDAP_UTL PL/SQL Reference 11-9

Subprograms

Table 11-16 (Cont.) GET_USER_EXTENDED PROPERTIES Function Return Values

Value Description

DBMS_LDAP error codes Return proper DBMS_LDAP error codes for
unconditional failures that occur when LDAP
operations are carried out.

Usage Notes

This function can be called only after a valid LDAP session is obtained from a call to
DBMS_LDAP.init ().

See Also
DBMS_LDAP.init (), DBMS_LDAP_UTL.get_user_properties().

Function get_user_dn
The function get_user_dn () returns the user DN.

Syntax

FUNCTION get_user_dn

(

1d IN SESSION,
user_handle IN HANDLE,
dn OUT VARCHAR2

)
RETURN PLS_INTEGER;

Parameters

Table 11-17 GET_USER_DN Function Parameters

Parameter Name Parameter Type Parameter Description

1d SESSION A valid LDAP session handle.
user_handle HANDLE The user handle.

dn VARCHAR2 The user DN.

Return Values

Table 11-18 GET_USER_DN Function Return Values

Value Description
DBMS_LDAP_UTL.SUCCESS On a successful completion.
DBMS_LDAP_UTL.PARAM_ERROR Invalid input parameters.
DBMS_LDAP_UTL.GENERAL_ERROR Authentication failed.
DBMS_LDAP_UTL.NO_SUCH_USER User does not exist.

DBMS_LDAP_UTL.MULTIPLE_USER_ENTRIES The user has multiple DN entries.
DBMS_LDAP_UTL.INVALID_ROOT ORCL_CTX Invalid root Oracle Context.
DBMS_LDAP_UTL.GENERAL_ERROR Other error.

DBMS_LDAP error codes Return proper DBMS_LDAP error codes for
unconditional failures that occur when LDAP
operations are carried out.

11-10 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Subprograms

Usage Notes

This function can be called only after a valid LDAP session is obtained from a call to
DBMS_LDAP.init ().

See Also
DBMS_LDAP.init ().

Function check_group_membership
The function check_group_membership () checks whether the user belongs to a
group.

Syntax

FUNCTION check_group_membership
(

1d IN SESSION,

user_handle IN HANDLE,
group_handle IN HANDLE,

nested IN PLS_INTEGER

)

RETURN PLS_INTEGER;

Parameters

Table 11-19 CHECK_GROUP_MEMBERSHIP Function Parameters

Parameter Name Parameter Type Parameter Description

1d SESSION A valid LDAP session handle.

user_handle HANDLE The user handle.

group_handle HANDLE The group handle.

nested PLS_INTEGER The type of membership the user holds in groups.

Here are valid values:
] DBMS_LDAP_UTL.NESTED_MEMBERSHIP
] DBMS_LDAP_UTL.DIRECT_MEMBERSHIP

Return Values

Table 11-20 CHECK_GROUP_MEMBERSHIP Function Return Values

Value Description
DBMS_LDAP_UTL. SUCCESS If user is a member.
DBMS_LDAP_UTL. PARAM_ERROR Invalid input parameters.

DBMS_LDAP_UTL.NO_GROUP_MEMBERSHIP If user is not a member.

Usage Notes

This function can be called only after a valid LDAP session is obtained from a call to
DBMS_LDAP.init ().

See Also
DBMS_LDAP.get_group_membership().

DBMS_LDAP_UTL PL/SQL Reference 11-11

Subprograms

Function locate_subscriber_for_user

The function locate_subscriber_ for_ user () retrieves the subscriber for the
given user and returns a handle to it.

Syntax

FUNCTION locate_subscriber_for_user
(

1d IN SESSION,

user_handle IN HANDLE,
subscriber_handle OUT HANDLE

)
RETURN PLS_INTEGER;

Parameters

Table 11-21 LOCATE_SUBSCRIBER FOR_USER Function Parameters

Parameter Name Parameter Type Parameter Description

1d SESSION A valid LDAP session handle.
user_handle HANDLE The user handle.
subscriber_handle HANDLE The subscriber handle.

Return Values

Table 11-22 LOCATE SUBSCRIBER FOR USER Function Return Values

Value Description
DBMS_LDAP_UTL. SUCCESS On a successful completion.
DBMS_LDAP_UTL.NO_SUCH_SUBSCRIBER Subscriber doesn't exist.

DBMS_LDAP_UTL.MULTIPLE_SUBSCRIBER_ENTRIES Multiple number of subscriber DN entries
exist in the directory for the given subscriber.

DBMS_LDAP_UTL.NO_SUCH_USER User doesn't exist.

DBMS_LDAP_UTL.MULTIPLE_USER_ENTRIES Multiple number of user DN entries exist in
the directory for the given user.

DBMS_LDAP_UTL.SUBSCRIBER_NOT_FOUND Unable to locate subscriber for the given user.

DBMS_LDAP_UTL.INVALID_ROOT_ORCL_CTX Invalid Root Oracle Context.

DBMS_LDAP_UTL.ACCT_TOTALLY_LOCKED_EXCP User account is locked.

DBMS_LDAP_UTL . GENERAL_ERROR Other error.

DBMS_LDAP error codes Return proper DBMS_LDAP error codes for

unconditional failures while carrying out
LDAP operations by the LDAP server.

Usage Notes

This function can be called only after a valid LDAP session is obtained from a call to
DBMS_LDAP.init ().

See Also
DBMS_LDAP.init (), DBMS_LDAP_UTL.create_user_handle().

11-12 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Subprograms

Function get_group_membership

The function get_group_membership () returns the list of groups to which the user
is a member.

Syntax

FUNCTION get_group_membership

(

user_handle IN HANDLE,

nested IN PLS_INTEGER,

attr_list IN STRING_COLLECTION,
ret_groups OUT PROPERTY_SET COLLECTION
)

RETURN PLS_INTEGER;

Parameters

Table 11-23 GET_GROUP_MEMBERSHIP Function Parameters

Parameter Name Parameter Type Parameter Description

1d SESSION A valid LDAP session handle.
user_handle HANDLE The user handle.

nested PLS_INTEGER The type of membership the user holds

in groups. Here are valid values:

[DBMS_LDAP_UTL.NESTED_

MEMBERSHIP
] DBMS_LDAP_UTL.DIRECT
MEMBERSHIP
attr_list STRING_COLLECTION A list of attributes to be returned.
ret_groups PROPERTY_SET_COLLECTION A pointer to a pointer to an array of

group entries.

Return Values

Table 11-24 GET_GROUP_MEMBERSHIP Function Return Values

Value Description

DBMS_LDAP_UTL. SUCCESS On a successful completion.
DBMS_LDAP_UTL.PARAM ERROR Invalid input parameters.

DBMS_LDAP_UTL.GENERAL_ERROR Other error.

Usage Notes

This function can be called only after a valid LDAP session is obtained from a call to
DBMS_LDAP.init ().

See Also
DBMS_LDAP.init ().

Group-Related Subprograms

A group is represented using by using the DBMS_LDAP_UTL . HANDLE data type. A
group handle represents a valid group entry. You can create a group handle by using a
DN, GUID or a simple name, along with the appropriate subscriber handle. When a

DBMS_LDAP_UTL PL/SQL Reference 11-13

Subprograms

simple name is used, additional information from the Root Oracle Context and the
Subscriber Oracle Context is used to identify the group. Here is an example of a group
handle creation:

retval := DBMS_LDAP_UTL.create_group_handle (
group_handle,

DBMS_LDAP_UTL.TYPE_DN,
"cn=groupl, cn=Groups, o=example, dc=com"

)i

This group handle has to be associated with an appropriate subscriber handle. For
example, given a subscriber handle: subscriber_handle representing
o=example, dc=com, the subscriber handle can be associated in the following way:

retval := DBMS_LDAP_UTL.set_group_handle_properties (
group_handle,

DBMS_LDAP_UTL.SUBSCRIBER_HANDLE,

subscriber_handle

)i

A sample use of group handle is getting group properties. Here is an example:

my_attrs is of type DBMS_LDAP.STRING_COLLECTION
my_attrs(l) :='uniquemember';

retval := DBMS_LDAP_UTL.get_group_properties (
my_session,

my_attrs,

DBMS_LDAP_UTL.ENTRY_PROPERTIES,

my_pset_coll

)i

The group-related subprograms also support membership-related functionality. Given
a user handle, you can find out if it is a direct or a nested member of a group by using
the DBMS_LDAP_UTL. check_group_membership () function. Here is an example:

retval := DBMS_LDAP_UTL.check_group_membership (
session,

user_handle,

group_handle,

DBMS_LDAP_UTL.DIRECT_ MEMBERSHIP

You can also obtain a list of groups that a particular group belongs to, using the DBMS_
LDAP_UTL.get_group_membership () function. For example:

my_attrs is of type DBMS_LDAP.STRING_COLLECTION
my_attrs(l) :='cn';

retval := DBMS_LDAP_UTL.get_group_membership (
my_session,

user_handle,

DBMS_LDAP_UTL.DIRECT MEMBERSHIP,

my_attrs

my_pset_coll

)i

Function create_group_handle
The function create_group_handle () creates a group handle.

Syntax

FUNCTION create_group_handle
(

11-14 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Subprograms

group_hd OUT HANDLE,
group_type IN PLS_INTEGER,
group_id IN VARCHAR2

)
RETURN PLS_INTEGER;

Parameters

Table 11-25 CREATE_GROUP_HANDLE Function Parameters

Parameter Name Parameter Type Parameter Description
group_hd HANDLE A pointer to a handle to a group.
group_type PLS_INTEGER The type of group ID that is passed. Valid

values for this argument are as follows:

u DBMS_LDAP_UTL.TYPE_DN

s DBMS_LDAP UTL.TYPE GUID

u DBMS_LDAP_UTL.TYPE_NICKNAME

group_id VARCHAR2 The group ID representing the group entry.

Return Values

Table 11-26 CREATE_GROUP_HANDLE Function Return Values

Value Description
DBMS_LDAP_UTL. SUCCESS On a successful completion.
DBMS_LDAP_UTL. PARAM_ERROR Invalid input parameters.

DBMS_LDAP_UTL.GENERAL_ERROR Other error.

See Also

DBMS_LDAP_UTL.get_group_properties (), DBMS_LDAP_UTL.set_group_
handle_properties().

Function set_group_handle_properties

The function set_group_handle_properties () configures the group handle
properties.

Syntax

FUNCTION set_group_handle_properties
(

group_hd IN HANDLE,

property_type IN PLS_INTEGER,
property IN HANDLE

)

RETURN PLS_INTEGER;

Parameters

Table 11-27 SET_GROUP_HANDLE_PROPERTIES Function Parameters

Parameter Name Parameter Type Parameter Description

group_hd HANDLE A pointer to the handle to the group.

DBMS_LDAP_UTL PL/SQL Reference 11-15

Subprograms

Table 11-27 (Cont.) SET_GROUP_HANDLE_PROPERTIES Function Parameters

Parameter Name Parameter Type Parameter Description

property_type PLS_INTEGER The type of property that is passed. Valid values
for this argument are as follows: DBMS_LDAP_
UTL.GROUP_HANDLE

property HANDLE The property describing the group entry.

Return Values

Table 11-28 SET_GROUP_HANDLE_PROPERTIES Function Return Values

Value Description

DBMS_LDAP_UTL. SUCCESS On a successful completion.
DBMS_LDAP_UTL.PARAM_ERROR Invalid input parameters.

DBMS_LDAP_UTL.RESET HANDLE When a caller tries to reset the existing handle properties.
DBMS_LDAP_UTL.GENERAL_ERROR Other error.

Usage Notes

The subscriber handle doesn't need to be set in Group Handle Properties if the group
handle is created with TYPE_DN or TYPE_GUID as the group type.

See Also
DBMS_LDAP_UTL.get_group_properties ().

Function get_group_properties
The function get_group_properties () retrieves the group properties.

Syntax

FUNCTION get_group_properties

(

1d IN SESSION,

group_handle IN HANDLE,

attrs IN STRING_COLLECTION,

ptype IN PLS_INTEGER,

ret_pset_coll OUT PROPERTY_SET_COLLECTION
)

RETURN PLS_INTEGER;

Parameters

Table 11-29 GET_GROUP_PROPERTIES Function Parameters

Parameter Name Parameter Type Parameter Description

14 SESSION A valid LDAP session handle.

group_handle HANDLE The group handle.

attrs STRING_COLLECTION A list of attributes that must be fetched for
the group.

ptype PLS_INTEGER The type of properties to be returned. The
valid value is DBMS_LDAP_UTL.ENTRY_
PROPERTIES

11-16 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Subprograms

Table 11-29 (Cont.) GET_GROUP_PROPERTIES Function Parameters

Parameter Name Parameter Type Parameter Description
ret_pset_coll PROPERTY_SET_COLLECTION The group details containing the attributes
requested by the caller.

Return Values

Table 11-30 GET_GROUP_PROPERTIES Function Return Values

Value Description
DBMS_LDAP_UTL.SUCCESS On a successful completion.
DBMS_LDAP_UTL.PARAM_ERROR Invalid input parameters.
DBMS_LDAP_UTL.NO_SUCH_GROUP Group doesn't exist.

DBMS_LDAP_UTL.MULTIPLE_GROUP_ENTRIES Multiple number of group DN entries exist in the
directory for the given group.

DBMS_LDAP_UTL.INVALID_ROOT_ ORCL_CTX Invalid Root Oracle Context.
DBMS_LDAP_UTL.GENERAL_ERROR Other error.

DBMS_LDAP error codes Return proper DBMS_LDAP error codes for
unconditional failures while carrying out LDAP
operations by the LDAP server.

Usage Notes
This function requires the following:

s A valid LDAP session handle which must be obtained from the DBMS__
LDAP.init () function.

= A valid subscriber handle to be set in the group handle properties if the group
type is of: DBMS_LDAP_UTL . TYPE_NICKNAME.

This function does not identify a NULL subscriber handle as a default subscriber. The
default subscriber can be obtained from DBMS_LDAP_UTL.create_subscriber_
handle (), where a NULL subscriber_id is passed as an argument.

If the group type is either DBMS_LDAP_UTL.TYPE_GUID or DBMS_LDAP_UTL.TYPE_
DN, the subscriber handle does not have to be set in the group handle properties. If the
subscriber handle is set, it is ignored.

See Also
DBMS_LDAP.init (), DBMS_LDAP_UTL.create_group_handle().

Function get_group_dn
The function get_group_dn () returns the group DN.

Syntax

FUNCTION get_group_dn
(

1d IN SESSION,
group_handle IN HANDLE
dn OUT VARCHAR2

)

RETURN PLS_INTEGER;

DBMS_LDAP_UTL PL/SQL Reference 11-17

Subprograms

Parameters

Table 11-31 GET_GROUP_DN Function Parameters

Parameter Name Parameter Type Parameter Description

1d SESSION A valid LDAP session handle.
group_handle HANDLE The group handle.

dn VARCHAR2 The group DN.

Return Values

Table 11-32 GET_GROUP_DN Function Return Values

Value Description

DBMS_LDAP_UTL. SUCCESS On a successful completion.
DBMS_LDAP_UTL.PARAM_ERROR Invalid input parameters.
DBMS_LDAP_UTL.NO_SUCH_GROUP Group doesn't exist.
DBMS_LDAP_UTL.MULTIPLE_GROUP_ENTRIES Multiple number of group DN

entries exist in the directory for
the given group.

DBMS_LDAP_UTL . INVALID_ROOT_ORCL_CTX Invalid Root Oracle Context.
DBMS_LDAP_UTL.GENERAL_ERROR Other error.
DBMS_LDAP error codes Return proper DBMS_LDAP error

codes for unconditional failures
that are encountered when LDAP
operations are carried out.

Usage Notes
This function can only be called after a valid LDAP session is obtained from a call to
DBMS_LDAP.init ().

See Also
DBMS_LDAP.init ().

Subscriber-Related Subprograms

A subscriber is represented by using dbms_1ldap_utl.handle data type. You can
create a subscriber handle by using a DN, GUID or simple name. When a simple name
is used, additional information from the root Oracle Context is used to identify the
subscriber. This example shows a subscriber handle being created:

retval := DBMS_LDAP UTL.create_subscriber_handle(
subscriber_handle,

DBMS_LDAP_UTL.TYPE_DN,

"o=example,dc=com"

)i

subscriber_handle is created by it's DN: o=oracle, dc=com.

Getting subscriber properties is one common use of a subscriber handle. Here is an
example:

my_attrs is of type DBMS_LDAP.STRING_COLLECTION
my_attrs(l) :='orclguid';

11-18 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Subprograms

retval := DBMS_LDAP UTL.get_subscriber_properties (
my_session,
my_attrs,
DBMS_LDAP_UTL.ENTRY_PROPERTIES,
my_pset_coll
)i

Function create_subscriber_handle
The function create_subscriber_ handle () creates a subscriber handle.

Syntax

FUNCTION create_subscriber_handle
(

subscriber_hd OUT HANDLE,
subscriber_type IN PLS_INTEGER,
subscriber_id IN VARCHAR2

)
RETURN PLS_INTEGER;

Parameters

Table 11-33 CREATE_SUBSCRIBER_HANDLE Function Parameters

Parameter Name Parameter Type Parameter Description
subscriber_hd HANDLE A pointer to a handle to a subscriber.
subscriber_type PLS_INTEGER The type of subscriber ID that is passed. Valid

values for this argument are:

n DBMS_LDAP_UTL.TYPE_DN

] DBMS_LDAP_UTL.TYPE_GUID

n DBMS_LDAP_UTL.TYPE_NICKNAME
] DBMS_LDAP_UTL.TYPE_DEFAULT

subscriber_id VARCHAR2 The subscriber ID representing the subscriber
entry. This can be NULL if subscriber_
type is DBMS_LDAP_UTL.TYPE_DEFAULT.
In this case, the default subscriber is retrieved
from the root Oracle Context.

Return Values

Table 11-34 CREATE_SUBSCRIBER HANDLE Function Return Values

Value Description
DBMS_LDAP_UTL. SUCCESS On a successful completion.
DBMS_LDAP_UTL. PARAM_ERROR Invalid input parameters.
DBMS_LDAP_UTL.GENERAL_ERROR Other error.

See Also

DBMS_LDAP_UTL.get_subscriber_properties().
Function get_subscriber_properties

The function get_subscriber_properties () retrieves the subscriber properties
for the given subscriber handle.

DBMS_LDAP_UTL PL/SQL Reference 11-19

Subprograms

Syntax

FUNCTION get_subscriber_properties

(

1d IN SESSION,

subscriber_handle IN HANDLE,

attrs IN STRING_COLLECTION,

ptype IN PLS_INTEGER,

ret_pset_coll OUT PROPERTY_SET COLLECTION
)

RETURN PLS_INTEGER;

Parameters

Table 11-35 GET_SUBSCRIBER_PROPERTIES Function Parameters

Parameter Name Parameter Type Parameter Description

1a SESSION A valid LDAP session handle.

subscriber_handle HANDLE The subscriber handle.

attrs STRING_COLLECTION A list of attributes that must be
retrieved for the subscriber.

ptype PLS_INTEGER Properties of the subscriber's Oracle
Context to return. These are valid
values:

L] DBMS_LDAP_UTL.ENTRY__

PROPERTIES
= DBMS_LDAP_UTL.COMMON_
PROPERTIES
ret_pset_coll PROPERTY_SET COLLECTION The subscriber details containing the

attributes requested by the caller.

Return Values

Table 11-36 GET_SUBSCRIBER _PROPERTIES Function Return Values

Value Description
DBMS_LDAP_UTL.SUCCESS On a successful completion.
DBMS_LDAP_UTL.PARAM_ERROR Invalid input parameters.
DBMS_LDAP_UTL.NO_SUCH_SUBSCRIBER Subscriber doesn't exist.
DBMS_LDAP_UTL.MULTIPLE_SUBSCRIBER_ENTRIES Subscriber has a multiple
number of DN entries.
DBMS_LDAP_UTL.INVALID_ROOT_ ORCL_CTX Invalid root Oracle Context.
DBMS_LDAP_UTL.GENERAL_ERROR Other error.
DBMS_LDAP error codes Return proper DBMS_LDAP error
codes for unconditional failures
encountered while LDAP

operations are carried out.

Usage Notes

This function can only be called after a valid LDAP session is obtained from a call to
DBMS_LDAP.init ().

11-20 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Subprograms

See Also
DBMS_LDAP.init (), DBMS_LDAP_UTL.create_subscriber_handle().

Function get_subscriber_dn
The function get_subscriber_dn () returns the subscriber DN.

Syntax

FUNCTION get_subscriber_dn

(

1d IN SESSION,
subscriber_handle IN HANDLE,
dn OUT VARCHAR2

)
RETURN PLS_INTEGER;

Parameters

Table 11-37 GET_SUBSCRIBER DN Function Parameters

Parameter Name Parameter Type Parameter Description

1d SESSION A valid LDAP session handle.
subscriber_handle HANDLE The subscriber handle.

dn VARCHAR2 The subscriber DN.

Return Values

Table 11-38 GET_SUBSCRIBER DN Function Return Values

Value Description
DBMS_LDAP_UTL. SUCCESS On a successful completion.
DBMS_LDAP_UTL . PARAM_ERROR Invalid input parameters.
DBMS_LDAP_UTL.NO_SUCH_SUBSCRIBER Subscriber doesn't exist.

DBMS_LDAP_UTL.MULTIPLE_SUBSCRIBER_ENTRIES Multiple number of subscriber DN
entries exist in the directory for the
given subscriber.

DBMS_LDAP_UTL.INVALID_ROOT_ ORCL_CTX Invalid root Oracle Context.
DBMS_LDAP_UTL.GENERAL_ERROR Other error.
DBMS_LDAP error codes Return proper DBMS_LDAP error codes

for unconditional failures encountered
when LDAP operations are carried
out.

Usage Notes

This function can only be called after a valid LDAP session is obtained from a call to
DBMS_LDAP.init ().

See Also
DBMS_LDAP.init ().

DBMS_LDAP_UTL PL/SQL Reference 11-21

Subprograms

Function get_subscriber_ext_properties

The function get_subscriber_ext_properties () retrieves the subscriber
extended properties. Currently this can be used to retrieve the subscriber-wide default
Resource Access Descriptors.

Syntax

FUNCTION get_subscriber_ext_properties

(

1d IN SESSION,

subscriber_handle IN HANDLE,

attrs IN STRING_COLLECTION,

ptype IN PLS_INTEGER,

filter IN VARCHAR2,

rep_pset_coll OUT PROPERTY_SET COLLECTION
)

RETURN PLS_INTEGER;

Parameters

Table 11-39 GET_SUBSCRIBER _EXT_PROPERTIES Function Parameters

Parameter Name Parameter Type Parameter Description

1d SESSION A valid LDAP session
handle.

subscriber_handle HANDLE The subscriber handle.

attrs STRING_COLLECTION A list of subscriber attributes
to retrieve.

ptype PLS_INTEGER The type of properties to
return. A valid value is
DBMS_LDAP__
UTL.DEFAULT_RAD__
PROPERTIES

filter VARCHAR2 An LDAP filter to further

refine the subscriber
properties returned by the
function.

ret_pset_collection PROPERTY_SET_COLLECTION The subscriber details
containing the attributes
requested by the caller.

Return Values

Table 11-40 GET_USER_EXTENDED PROPERTIES Function Return Values

Value Description
DBMS_LDAP_UTL. SUCCESS On a successful completion.
DBMS_LDAP_UTL.PARAM_ERROR Invalid input parameters.
DBMS_LDAP_UTL.NO_SUCH_USER User does not exist.

DBMS_LDAP_UTL. INVALID_ROOT_ORCL_CTX Invalid root Oracle Context.
DBMS_LDAP_UTL.GENERAL_ERROR Other error.

DBMS_LDAP error codes Return proper DBMS_LDAP error codes for
unconditional failures encountered when
LDAP operations are carried out.

11-22 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Subprograms

Usage Notes

This function can be called only after a valid LDAP session is obtained from a call to
DBMS_LDAP.init ().

See Also DBMS_LDAP.init (), DBMS_LDAP_UTL.get_subscriber_
properties ().

Property-Related Subprograms

Many of the user-related, subscriber-related, and group-related subprograms return
DBMS_LDAP_UTL . PROPERTY_SET_COLLECTION, which is a collection of one or more
LDAP entries representing results. Each of these entries is represented by a DBMS_
LDAP_UTL.PROPERTY_SET. A PROPERTY_SET may contain attributes—that is,
properties—and its values. Here is an example that illustrates the retrieval of
properties from DBMS_LDAP_UTL . PROPERTY_SET_COLLECTION:

my_attrs is of type DBMS_LDAP.STRING_COLLECTION
my_attrs(l) :='cn';

retval := DBMS_LDAP_UTL.get_group_membership (
my_session,

user_handle,

DBMS_LDAP_UTL.DIRECT MEMBERSHIP,

my_attrs,

my_pset_coll

)i

IF my_pset_coll.count > 0 THEN
FOR i1 in my_pset_coll.first .. my_pset_coll.last LOOP
-- my_property_names is of type DBMS_LDAP.STRING_COLLECTION
retval := DBMS_LDAP_UTL.get_property_names (
pset_coll(i),
property_names
IF my_property_names.count > 0 THEN
FOR j in my_property names.first .. my_property_names.last LOOP
retval := DBMS_LDAP_UTL.get_property_values (
pset_coll(i),
property_names (j),
property_values
if my_property_values.COUNT > 0 then
FOR k in my_property values.FIRST..my property_values.LAST LOOP
DBMS_OUTPUT . PUT_LINE (my_property_names(3j) || ':'
| |my_property_values(k));
END LOOP; -- For each value
else
DBMS_OUTPUT.PUT LINE('NO VALUES FOR' || my_property_names(j));
end if;
END LOOP; -- For each property name
END IF; -- IF my_property names.count > 0
END LOOP; -- For each propertyset
END IF; -- If my_pset_coll.count > 0

use_handle is a user handle. my_pset_coll contains all the nested groups that
user_handle belongs to. The code loops through the resulting entries and prints out
the cn of each entry.

DBMS_LDAP_UTL PL/SQL Reference 11-23

Subprograms

Miscellaneous Subprograms

The miscellaneous subprograms in the DBMS_LDAP_UTL package perform a variety of
different functions.

Function normalize_dn_with_case

The function normalize_dn_with_case () removes unnecessary white space
characters from a DN and converts all characters to lowercase based on a flag.

Syntax

FUNCTION normalize_ dn_with case
(

dn IN VARCHAR2,

lower_case IN PLS_INTEGER,
norm_dn OUT VARCHAR?2

)
RETURN PLS_INTEGER;

Parameters

Table 11-41 NORMALIZE_DN_WITH_CASE Function Parameters

Parameter Name Parameter Type Parameter Description
dn VARCHAR2 The DN.
lower_case PLS_INTEGER If set to 1: The normalized DN returns in

lowercase. If set to 0: The case is preserved in
the normalized DN string.

norm_dn VARCHAR2 The normalized DN.

Return Values

Table 11-42 NORMALIZE_DN_WITH_CASE Function Return Values

Value Description
DBMS_LDAP_UTL. SUCCESS On a successful completion.
DBMS_LDAP_UTL . PARAM_ERROR Invalid input parameters.
DBMS_LDAP_UTL.GENERAL_ERROR On failure.

Usage Notes
This function can be used while comparing two DNs.

Function get_property_names

The function get_property_names () retrieves the list of property names in the
property set.

Syntax

FUNCTION get_property_names

(

pset IN PROPERTY_SET,

property_names OUT STRING_COLLECTION

)
RETURN PLS_INTEGER;

11-24 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Subprograms

Parameters

Table 11-43 GET_PROPERTY_NAMES Function Parameters

Parameter Name Parameter Type Parameter Description

pset PROPERTY_SET The property set in the property set
collection returned from any of the
following functions:

n DBMS_LDAP_UTL.get_group_
membership ()

= DBMS_LDAP UTL.get_
subscriber_properties|()

n DBMS_LDAP_UTL.get_user_
properties ()

s DBMS_LDAP UTL.get_group_
properties()

property_names STRING_COLLECTION A list of property names associated
with the property set.

Return Values

Table 11-44 GET_PROPERTY_NAMES Function Return Values

Value Description
DBMS_LDAP_UTL.SUCCESS On a successful completion.
DBMS_LDAP_UTL.PARAM_ERROR Invalid input parameters.
DBMS_LDAP_UTL.GENERAL_ERROR On error.

See Also

DBMS_LDAP_UTL.get_property values().

Function get_property_values

The function get_property_values () retrieves the property values (the strings)
for a given property name and property.

Syntax

FUNCTION get_property values

(

pset IN PROPERTY_SET,

property_name IN VARCHARZ2,
property_values OUT STRING_COLLECTION

)
RETURN PLS_INTEGER;

Parameters

Table 11-45 GET_PROPERTY_VALUES Function Parameters

Parameter Name Parameter Type Parameter Description

property_name VARCHAR2 The property name.

DBMS_LDAP_UTL PL/SQL Reference 11-25

Subprograms

Table 11-45 (Cont.) GET_PROPERTY_VALUES Function Parameters

Parameter Name Parameter Type Parameter Description

pset PROPERTY_SET The property set in the property set
collection obtained from any of the
following function returns:

n DBMS_LDAP_UTL.get_group_
membership ()

= DBMS_LDAP_UTL.get_
subscriber_properties|()

n DBMS_LDAP_UTL.get_user_
properties ()

s DBMS_LDAP UTL.get_group_
properties ()

property_values STRING_COLLECTION A list of property values (strings).

Return Values

Table 11-46 GET_PROPERTY_VALUES Function Return Values

Value Description
DBMS_LDAP_UTL. SUCCESS On a successful completion.
DBMS_LDAP_UTL.PARAM_ERROR Invalid input parameters.
DBMS_LDAP_UTL.GENERAL_ERROR On failure.

See Also

DBMS_LDAP_UTL.get_property_values_len().

Function get_property_values_len

The function get_property_values_len /() retrieves the binary property values
for a given property name and property.

Syntax

FUNCTION get_property_values_len

(

pset IN PROPERTY_SET,

property_name IN VARCHAR2,

auth_type IN PLS_INTEGER,
property_values OUT BINVAL_COLLECTION
)

RETURN PLS_INTEGER;

Parameters

Table 11-47 GET_PROPERTY_VALUES_LEN Function Parameters

Parameter Name Parameter Type Parameter Description

property_name VARCHAR2 A property name.

11-26 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Subprograms

Table 11-47 (Cont.) GET_PROPERTY_VALUES_LEN Function Parameters

Parameter Name Parameter Type Parameter Description

pset PROPERTY_SET The property set in the property set collection
obtained from any of the following function
returns:

n DBMS_LDAP_UTL.get_group_
membership ()

n DBMS_LDAP_UTL.get_subscriber_
properties ()

] DBMS_LDAP_UTL.get_user_
properties ()

s DBMS_LDAP_UTL.get_group_
properties ()

property_values BINVAL_COLLECTION A list of binary property values.

Return Values

Table 11-48 GET_PROPERTY_VALUES_LEN Function Return Values

Value Description

DBMS_LDAP_UTL.SUCCESS On a successful completion.

DBMS_LDAP_UTL.PARAM_ Invalid input parameters.
ERROR

DBMS_LDAP_UTL.GENERAL_ On failure.
ERROR

See Also
DBMS_LDAP_UTL.get_property values().

Procedure free_propertyset_collection

The procedure free_propertyset_collection() frees the memory associated
with property set collection.

Syntax

PROCEDURE free_propertyset_collection

(
pset_collection IN OUT PROPERTY_SET COLLECTION

)i

DBMS_LDAP_UTL PL/SQL Reference 11-27

Subprograms

Parameters

Table 11-49 FREE_PROPERTYSET_COLLECTION Procedure Parameters

Parameter Name Parameter Type Parameter Description
pset_collection PROPERTY_SET_ The property set collection returned from one
COLLECTION of the following functions:

n DBMS_LDAP_UTL.get_group_
membership ()

. DBMS_LDAP_UTL.get_subscriber_
properties()

n DBMS_LDAP_UTL.get_user_
properties ()

n DBMS_LDAP_UTL.get_group_
properties ()

See Also

DBMS_LDAP_UTL.get_group_membership (), DBMS_LDAP_ UTL.get_
subscriber_properties (), DBMS_LDAP_UTL.get_user_properties(),
DBMS_LDAP_UTL.get_group_properties().

Function create_mod_propertyset

The function create_mod_propertyset () creates a MOD_PROPERTY_SET data
structure.

Syntax

FUNCTION create_mod_propertyset
(

pset_type IN PLS_INTEGER,
pset_name IN VARCHAR2,

mod_pset OUT MOD_PROPERTY_SET

)
RETURN PLS_INTEGER;

Parameters

Table 11-50 CREATE_MOD_PROPERTYSET Function Parameters

Parameter Name Parameter Type Parameter Description

pset_type PLS_INTEGER The type of property set being modified. Here is
a valid value: ENTRY_PROPERTIES

pset_name VARCHAR2 The name of the property set. This can be NULL
if ENTRY_PROPERTIES are being modified.

mod_pset MOD_PROPERTY_SET The data structure to contain modify operations
to be performed on the property set.

Return Values

Table 11-51 CREATE_MOD_PROPERTYSET Function Return Values

Value Description
DBMS_LDAP_UTL. SUCCESS On a successful completion.
DBMS_LDAP_UTL.GENERAL_ERROR Other error.

11-28 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Subprograms

See Also
DBMS_LDAP_UTL.populate_mod_propertyset ().

Function populate_mod_propertyset

The function populate_mod_propertyset () populates the MOD_PROPERTY_SET
data structure.

Syntax

FUNCTION populate_mod_propertyset

(

mod_pset IN MOD_PROPERTY_SET,
property _mod_op IN PLS_INTEGER,
property_name IN VARCHAR2,
property_values IN STRING_COLLECTION
)

RETURN PLS_INTEGER;

Parameters

Table 11-52 POPULATE_MOD_PROPERTYSET Function Parameters

Parameter Name Parameter Type Parameter Description
mod_pset MOD_PROPERTY_SET Mod-PropertySet data structure.
property_mod_op PLS_INTEGER The type of modify operation to perform on

a property. These are valid values:

L] ADD_PROPERTY

u REPLACE_PROPERTY

L] DELETE_PROPERTY
property_name VARCHAR2 The name of the property

property_values STRING_COLLECTION Values associated with the property.

Return Values

Table 11-53 POPULATE_MOD_PROPERTYSET Function Return Values

Value Description
DBMS_LDAP_UTL. SUCCESS On a successful completion.
DBMS_LDAP_UTL.GENERAL_ERROR Authentication failed.
DBMS_LDAP_UTL . PWD_GRACELOGIN_WARN Grace login for user.

See Also

DBMS_LDAP_UTL.create_mod_propertyset ().

Procedure free_mod_propertyset

The procedure free_mod_propertyset () frees the MOD_PROPERTY_SET data
structure.

Syntax

PROCEDURE free_mod_propertyset

(
mod_pset IN MOD_PROPERTY_SET

DBMS_LDAP_UTL PL/SQL Reference 11-29

Subprograms

)i

Parameters

Table 11-54 FREE_MOD_PROPERTYSET Procedure Parameters

Parameter Name Parameter Type Parameter Description
mod_pset PROPERTY_SET Mod_PropertySet data structure.
See Also

DBMS_LDAP_UTL.create_mod_propertyset ().

Procedure free_handle
The procedure free_handle () frees the memory associated with the handle.

Syntax

PROCEDURE free_handle
(

handle IN OUT HANDLE
)
Parameters

Table 11-55 FREE_HANDLE Procedure Parameters

Parameter Name Parameter Type Parameter Description

handle HANDLE A pointer to a handle.

See Also

DBMS_LDAP_UTL.create_user_handle (), DBMS_LDAP_UTL.create_
subscriber_handle (), DBMS_LDAP_UTL.create_group_handle().

Function check_interface_version
The function check_interface_version () checks the interface version.

Syntax

FUNCTION check_interface_version

(
interface_version IN VARCHAR2

)
RETURN PLS_INTEGER;

Parameters

Table 11-56 CHECK_INTERFACE_VERSION Function Parameters

Parameter Name Parameter Type Parameter Description

interface_version VARCHAR2 Version of the interface.

11-30 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Subprograms

Return Values

Table 11-57 CHECK_VERSION_INTERFACE Function Return Values

Value Description
DBMS_LDAP_UTL. SUCCESS Interface version is supported.
DBMS_LDAP_UTL . GENERAL_ERROR Interface version is not supported.

Function get_property_values_blob

The function get_property_values_blob () retrieves large binary property values
for a given property name and property.

Syntax

FUNCTION get_property values_blob

(

pset IN PROPERTY_SET,

property_name IN VARCHAR2,
auth_type IN PLS_INTEGER,
property_values OUT BLOB_COLLECTION
)

RETURN PLS_INTEGER;

Parameters

Table 11-58 GET_PROPERTY_VALUES_BLOB Function Parameters

Parameters Parameter Type Description

property_name VARCHAR2 A property name.

pset PROPERTY_SET The property set in the property set collection
obtained from any of the following function
returns:

n DBMS_LDAP_UTL.get_group_
membership ()

n DBMS_LDAP_UTL.get_subscriber_
properties ()

n DBMS_LDAP_UTL.get_user_
properties ()

n DBMS_LDAP_UTL.get_group_
properties()

property_values BLOB_COLLECTION A list of binary property values.

Return Values

Table 11-59 GET_PROPERTY_VALUES_BLOB Return Values

Value Description
DBMS_LDAP_UTL.SUCCESS On a successful completion.
DBMS_LDAP_UTL.PARAM_ERROR Invalid input parameters.
DBMS_LDAP_UTL.GENERAL_ERROR On failure.

See Also

DBMS_LDAP_UTL.get_property values().

DBMS_LDAP_UTL PL/SQL Reference 11-31

Function Return Code Summary

Procedure property_value_free_blob
Frees the memory associated with BLOB_COLLECTION returned by DBMS_LDAP.get_

property_ values_blob().

Syntax
Syntax

PROCEDURE property_value_free_blob

(

vals IN OUT DBMS_LDAP.BLOB_COLLECTION

)i

Parameters

Table 11-60 PROPERTY_VALUE_FREE_BLOB Function Parameters

Parameter Description

vals The collection of large binary values returned by DBMS_
LDAP.get_property_values_blob().

See Also

DBMS_LDAP.get_property values_blob().

Function Return Code Summary

The DBMS_LDAP_UTL functions can return the values in the following table

Table 11-61 Function Return Codes
Return

Name Code Description

SUCCESS 0 Operation successful.

GENERAL_ERROR -1 This error code is returned on failure conditions other
than those conditions listed here.

PARAM_ERROR -2 Returned by all functions when an invalid input
parameter is encountered.

NO_GROUP_MEMBERSHIP -3 Returned by user-related functions and group
functions when the user is not a member of a group.

NO_SUCH_SUBSCRIBER -4 Returned by subscriber-related functions when the
subscriber does not exist in the directory.

NO_SUCH_USER -5 Returned by user-related functions when the user
does not exist in the directory.

NO_ROOT_ORCL_CTX -6 Returned by most functions when the root oracle
context does not exist in the directory.

MULTIPLE_SUBSCRIBER_ENTRIES -7 Returned by subscriber-related functions when
multiple subscriber entries are found for the given
subscriber nickname.

INVALID_ROOT_ORCL_CTX -8 Root Oracle Context does not contain all the required
information needed by the function.

NO_SUBSCRIBER_ORCL_CTX -9 Oracle Context does not exist for the subscriber.

INVALID_SUBSCRIBER_ORCL_CTX -10 Oracle Context for the subscriber is invalid.

MULTIPLE_USER_ENTRIES -11 Returned by user-related functions when multiple

user entries exist for the given user nickname.

11-32 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Function Return Code Summary

Table 11-61 (Cont.) Function Return Codes

Return
Name Code

Description

NO_SUCH_GROUP -12

MULTIPLE_GROUP_ENTRIES -13

ACCT_TOTALLY_LOCKED_EXCEPTION -14

AUTH_PASSWD_CHANGE_WARN -15

AUTH_FAILURE_EXCEPTION -16

PWD_EXPIRED_EXCEPTION -17

RESET_HANDLE -18

SUBSCRIBER_NOT_FOUND -19

PWD_EXPIRE_WARN -20

PWD_MINLENGTH_ERROR =21

PWD_NUMERIC_ERROR =22

PWD_NULL_ERROR -23

PWD_INHISTORY_ERROR -24

PWD_ILLEGALVALUE_ERROR -25

PWD_GRACELOGIN_WARN -26

Returned by group related functions when a group
does not exist in the directory.

Multiple group entries exist for the given group
nickname in the directory.

Returned by DBMS_LDAP_UTL.authenticate_
user () function when a user account is locked. This
error is based on the password policy set in the
subscriber oracle context.

This return code is deprecated.

Returned by DBMS_LDAP_UTL.authenticate_
user () function when user authentication fails.

Returned by DBMS_LDAP_UTL. authenticate_
user () function when the user password has
expired. This is a password policy error.

Returned when entity handle properties are being
reset by the caller.

Returned by DBMS_LDAP-UTL. locate_
subscriber_for_user () function when it is
unable to locate the subscriber.

Returned by DBMS_LDAP_UTL.authenticate_
user () function when the user password is about to
expire. This is a password policy error.

Returned by DBMS_LDAP_UTL.set_user_
properties () function while changing the user
password and the new user password is less than the
minimum required length. This is a password policy
€rror.

Returned by DBMS_LDAP_UTL. set_user_
properties () function while changing the user
password and the new user password does not
contain at least one numeric character. This is a
password policy error.

Returned by DBMS_LDAP_UTL.set_user_
properties () function while changing the user
password and the new user password is an empty
password. This is a password policy error.

Returned by DBMS_LDAP_UTL.set_user_
properties () function while changing the user
password and the new user password is the same as
the previous password. This is a password policy
error.

Returned by DBMS_LDAP_UTL.set_user_
properties () function while changing the user
password and the new user password has an illegal
character. This is a password policy error.

Returned by DBMS_LDAP_UTL.authenticate_
user () function to indicate that the user password
has expired and the user has been given a grace login.
This is a password policy error.

DBMS_LDAP_UTL PL/SQL Reference 11-33

Data Type Summary

Table 11-61 (Cont.) Function Return Codes

Return
Name Code Description
PWD_MUSTCHANGE_ERROR -27 Returned by DBMS_LDAP_UTL.authenticate_

user () function when user password must be
changed. This is a password policy error.

USER_ACCT_DISABLED_ERROR -29 Returned by DBMS_LDAP_UTL.authenticate_
user () function when user account has been
disabled. This is a password policy error.

PROPERTY_NOT_FOUND -30 Returned by user-related functions while searching
for a user property in the directory.

Data Type Summary

The DBMS_LDAP_UTL package uses the data types in the following table

Table 11-62 DBMS_LDAP_UTL Data Types

Data Type Purpose

HANDLE Used to hold the entity.

PROPERTY_SET Used to hold the properties of an entity.
PROPERTY_SET_COLLECTION List of PROPERTY_SET structures.
MOD_PROPERTY_SET Structure to hold modify operations on an entity.

11-34 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

12

Oracle Directory Integration and
Provisioning Java API Reference

As of 10g (10.1.4.0.1), Oracle offers two complementary provisioning products,
optimized for different use cases.

s Oracle Identity Manager, formerly known as Oracle Xellerate IP, is an enterprise
provisioning platform designed to manage complex environments with highly
heterogeneous technologies that can include directories, databases, mainframes,
proprietary technologies, and flat files. Oracle Identity Manager offers
full-functioned workflow and policy capabilities along with a rich set of audit and
compliance features.

s Oracle Directory Integration and Provisioning, a component of the Identity
Management infrastructure, is a meta-directory technology designed to perform
directory synchronization and provisioning tasks in a directory-centric
environment. Oracle Directory Integration and Provisioning is designed to
manage a more homogeneous environment consisting of directories and
compatible Oracle products. Oracle Directory Integration and Provisioning
performs provisioning tasks by using data synchronization. Oracle Directory
Integration and Provisioning offers a small deployment footprint when workflow
and a full feature policy engine are not required.

The Oracle Internet Directory SDK includes an Oracle Directory Integration and
Provisioning user provisioning API, which enables you to manage users and their
application properties in the Oracle Identity Management infrastructure. This chapter
describes the main features of the API and explains how to use them.

This chapter contains the following sections:
= Application Configuration

s User Management

s Debugging

= Sample Code

Application Configuration

Applications must register with the provisioning system in order to be recognized as
provisionable. They must also create their own configuration in Oracle Internet
Directory using the command-line interface. Java classes exist for viewing application
configurations.

This section contains the following topics:

Oracle Directory Integration and Provisioning Java API Reference 12-1

Application Configuration

= Application Registration and Provisioning Configuration

= Application Configuration Classes

Application Registration and Provisioning Configuration

In order to register with the provisioning system, an application must create a
provisioning configuration. After the provisioning configuration exists, the
provisioning system identifies the application as directory-enabled and provisionable.

The application must perform the following steps to create a provisioning
configuration:

1. Application Registration

2. Provisioning Configuration

Application Registration

Oracle applications typically register themselves by using the repository APlIs in the
repository.jar file under SORACLE_HOME/j1lib. This file is provided during
installation specifically for application registration. In addition to creating an
application entry in Oracle Internet Directory, repository APIs can be used to add the
application to privileged groups.

Applications written by customers, however, cannot use the repository.jar APIs
to perform application registration. So application developers must use LDIF
templates and create application entries in Oracle Internet Directory using LDAP
commands.

An application must create a container for itself under one of these containers:

s "cn=Products, cn=OracleContext"—for applications that service users in
multiple realms

s "cn=Products, cn=OracleContext, RealmDN "—for applications that service
users in a specific realm

If an application is configured for a specific realm, then that application cannot
manage users in other realms. In most cases, you should create the application outside
any identity management realm so that the application is not tied to a specific realm in
Oracle Internet Directory.

Whenever a new instance of the application installs, a separate entry for the
application instance is created under the application's container. Some of the
provisioning configuration is common to all the instances of a particular type and
some is specific to the instance. When multiple instances of an application are
deployed in an enterprise, each instance is independent of the others. Each instance is
defined as a separate provisionable application. Users can be provisioned for one or
more instances of this application, so that the user can get access to one or more
instances of this application.

The examples in this section are for a sample application similar to Oracle Files. When
the first instance of this application installs, specific entries must be created in Oracle
Internet Directory. In the following example, the name of this application, chosen at
run time, is Files-Appl and the type of the application is FILES. The application
can have LDIF templates that can be instantiated if required and then uploaded to
Oracle Internet Directory. In this example, the application identity is outside any
realm. That is, it is under the "cn=Products, cn=OracleContext" container.

dn: cn=FILES, cn=Products, cn=0OracleContext
changetype: add

12-2 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Application Configuration

objectclass: orclContainer

dn: orclApplicationCommonName=Files-Appl, cn=FILES, cn=Products, cn=0racleContext
changetype: add

orclappfullname: Files Application Instance 1

userpassword: welcomel23

description: This is a test Appliction instance.

protocolInformation: XXXxx

orclVersion: 1.0

orclaci: access to entry by group="cn=odisgroup,cn=DIPAdmins,
cn=Directory Integration Platform,cn=Products,
cn=0OracleContext" (browse,proxy) by group="cn=User Provisioning Admins,
cn=Groups, cn=0OracleContext" (browse,proxy)

orclaci: access to attr=(*) by group="cn=odisgroup, cn=DIPAdmins,
cn=Directory Integration Platform,cn=Products,
cn=0OracleContext" (search,read,write,compare)

by group="cn=User Provisioning Admins,
cn=Groups, cn=0racleContext" (search,read,write, compare)

The ACLs shown in the example are discussed in the "Application User Data Location"
section.

The application is expected to grant certain privileges to some provisioning services
and provisioning administrators.

When the second instance of this application installs, the following entries must be
created in Oracle Directory Integration and Provisioning, assuming the name of this
application, decided at run time, is Files-App2.

dn: orclApplicationCommonName=Files-App2,cn=FILES, cn=Products, cn=0OracleContext
changetype: add
orclappfullname: Files Application Instance 2
userpassword: welcomel23
description: This is a test Appliction instance.
orclVersion: 1.0
orclaci: access to entry by group="cn=odisgroup,
cn=DIPAdmins, cn=Directory Integration Platform,cn=Products,
cn=OracleContext" (browse,proxy) by group="cn=User Provisioning Admins,
cn=Groups, cn=0racleContext" (browse,proxy)
orclaci: access to attr=(*) by group="cn=odisgroup, cn=DIPAdmins,
cn=Directory Integration Platform,cn=Products,
cn=0OracleContext" (search,read,write,compare) by
group="cn=User Provisioning Admins, cn=Groups, cn=0racleContext"
(search, read,write, compare)

After the application creates its entries successfully, the application's identity is
registered in Oracle Internet Directory. At this point, the application can add itself to
certain privileged groups in Oracle Internet Directory, if it needs specific privileges.
Table 12-1, " Some Useful Privilege Groups" shows some of the privileged groups that
an application can add itself to. Each of these groups exists in every realm and also in
the RootOracleContext. The RootOracleContext Group is a member of the group in all
the realms

Table 12-1 Some Useful Privilege Groups

Group Name Privilege
OracleDASCreateUser Create a public user
OracleDASEditUser Edit a public user
OracleDASDeleteUser Delete a public user

Oracle Directory Integration and Provisioning Java APl Reference 12-3

Application Configuration

Table 12-1 (Cont.) Some Useful Privilege Groups

Group Name Privilege

OracleDASCreateGroup Create a new public group
OracleDASEditGroup Edit a public group
OracleDASDeleteGroup Delete a public group

For example, the following LDIF file adds the Files-Appl application to
cn=OracleCreateUser, which gives it the privilege to create users in all realms.

dn:cn=0racleCreateUser, cn=Groups, cn=0racleContext

changetype: modify

add: uniquemember

uniquemember :

orclApplicationCommonName=Files-Appl, cn=FILES, cn=Products, cn=0racleContext

Provisioning Configuration

An application's provisioning configuration is maintained in its provisioning profile.
The provisioning system supports three different provisioning profile versions:
Versions 1.1, 2.0 and 3.0. The provisioning service provides different service for the
different profile version. Some generic configuration details are common to all
applications, regardless of version.

Differences Between Provisioning Configuration Versions

The differences between the Version 3.0 profile and the Version 2.0 and Version 1.1
profiles are as follows:

s The new provisioning framework recognizes only Version 3.0 applications.
Therefore, only applications with provisioning profile Version 3.0 show up as
target applications to be provisioned in Oracle Provisioning Console. Applications
with Version 2.0 and Version 1.1 profiles do not show them up as applications to
be provisioned in the Provisioning Console. Still, the applications are notified
about the events that the applications have configured for.

s Creating the provisioning configuration of an application is a multi step process
for Version 3.0 profiles. For the earlier version profiles, provisioning registration
requires only a single step, running the oidprovtool command.

= Applications can subscribe for provisioning events using different interfaces. Two
of the interfaces, Java and OID-LDAP, are available only for interface Version 3.0,
which is coupled with provisioning configuration Version 3.0. See Table 12-2,
" Interfaces and Their Configuration".

= Anapplication can specify its application-specific user attributes configuration in
an LDIF file. This is supported only for interface Version 3.0, which is coupled
with provisioning configuration Version 3.0. See "Application User Attribute and
Defaults Configuration" on page 12-10

» The provisioning status of the user, discussed in the Oracle Fusion Middleware
Administrator’s Guide for Oracle Directory Integration Platform, is maintained only for
Version 3.0 applications. It is not maintained for applications having profiles
earlier than Version 3.0.

= Event propagation configuration parameters vary from one version to another. See
Table 12-5, " Event propagation parameters".

12-4 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Application Configuration

Version 3.0-Specific Provisioning Configuration

Unless otherwise stated, the remainder of this section describes the Version 3.0-specific
provisioning configuration. Figure 12-1 shows the DIT in Oracle Internet Directory
used to store the provisioning configuration. All the provisioning configuration
information is located under the following container:

cn=Provisioning, cn=Directory Integration Platform,cn=Products, cn=0OracleContext
Common provisioning configuration information is stored in entries under the
container:

cn=Profiles, cn=Provisioning, cn=Directory Integration Platform,

cn=Products, cn=0OracleContext

The rest of the provisioning configuration for an application is located under:
cn=ApplicationType,cn=Applications, cn=Provisioning,

cn=Directory Integration Platform,cn=Products,cn=0OracleContext

All the instances of a specific application type share the configuration under this
container. That is, whenever a second instance of an existing application type creates a
provisioning profile, all the configuration information under the
"cn=ApplicationType" container is shared.

Oracle Directory Integration and Provisioning Java APl Reference 12-5

Application Configuration

Figure 12-1 The Directory Information Tree for Provisioning Configuration Data

@ Root

@ cn=0OracleContext

@ cn=Products

@ cn=Directory Integration Platform

cn=Provisioning cn=Plug Ins

cn=Applications cn=Profiles

cn=EMAIL EMAIL Provisioning
Profile

cn=Attribute Provisioning Profile
Configuration (per application)
Managed by
oidprovtool

cn=Plug Ins

cn= cn= - i i
PRE_DATA_ENTRY o= DATA_ cn=User Configuration
POST _DATA_ ACCESS
ENTRY
cn=Attributes
entry for Entry for
orclmailstore orlmailquota

Configuration Common to all applications of the same type.
This includes Plug Ins and Attribute Configurations.

The Profiles container contains the following types of configuration information:
= Application Identity Information

= Application Identity Realm Information

= Application Provisioning and Default Policy

= Application User Data Location

= Event Interface Configuration

= Application User Attribute and Defaults Configuration

= Application Provisioning Plug-in Configuration

= Application Propagation Configuration

= Application Event Propagation Run Time Status

Whenever an instance of an application creates a profile, the new profile is stored as a
separate entry under the Profiles container in the following naming format:

orclODIPProfileName=GUID_of_the Realm_ Entry GUID of the Application_Identity,...

12-6 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Application Configuration

An application must specify the following information when creating a provisioning
configuration:

Application Identity Information An instance of an application is uniquely identified by
the following parameters:

= Application DN—A unique DN in the Oracle Internet Directory representing the
application. This is a mandatory parameter.

= Application Type— A parameter that is common to all instances of the same
application. Multiple instances of a particular type can share some configuration.
This is a mandatory parameter.

= Application Name—This can be separately specified. If not specified, it is
extracted from the DN. This is an optional parameter.

= Application Display Name—A user-friendly name for the application. This shows
up on the Provisioning Console as a target provisionable application. This is an
optional parameter.

You provide these application identity parameters while creating the provisioning
profile by using the following arguments to the $ORACLE_HOME/bin/oidprovtool
command line utility, respectively:

s application_type
s application_dn
s application_name

s application_display_name

See Also: The oidprovtool command-line tool reference in Oracle
Fusion Middleware Reference for Oracle Identity Management.

Application Identity Realm Information An application registers for a specific realm in
order to provide services to the users of that realm only. An application must create a
separate provisioning profile for each of the realms it provides services for. In a multi
realm scenario, such as a hosted Oracle Portal scenario, applications must register for
individual realms.

Whenever a provisioning administrator for a realm accesses the Provisioning Console,
only the applications that are registered for that realm are shown as provisionable
target applications.

The application specifies realm information while creating the provisioning profile by
using the SORACLE_HOME/bin/oidprovtool command line utility with the
argument organization_dn.

See Also: The oidprovtool command-line tool reference inOracle
Fusion Middleware Administrator’s Guide for Oracle Internet Directory.

Application Provisioning and Default Policy While creating a provisioning profile, an
application can specify whether the Provisioning Console should manage provisioning
to that application or not. If not, the application does not show up on the Provisioning
Console as an application to be provisioned. However, Oracle Directory Integration
and Provisioning still processes this profile and propagates the events as expected.

An application specifies this information while creating the provisioning profile by
using the application_isdasvisible argument to the SORACLE_
HOME/bin/oidprovtool command line utility. The default value is TRUE.

Oracle Directory Integration and Provisioning Java API Reference 12-7

Application Configuration

An application can configure a default policy determining whether all the users in that
realm should be provisioned for that application by default or no users should be
provisioned by default. The valid values are

= PROVISIONING_REQUIRED—all users are provisioned by default
= PROVISIONING_NOT_REQUIRED—nO users are provisioned by default
The default is set to PROVISIONING_REQUIRED

You can override the default policy with application-provided policy plug-ins at run
time. In addition, an administrator can override both the default policy and the
decision of the policy plug-in.

An application provides the default policy information by using the default_
provisioning_policy argument to the SORACLE_HOME/bin/oidprovtool
command line utility.

Application User Data Location Application-specific user information is stored in the
application-specific containers. If this data is to be managed by the provisioning
system, the application must specify the location of these containers during
provisioning registration. An application specifies its user data location by using the
user_data_location argument to the $ORACLE_HOME /bin/oidprovtool
command line utility. The application must ensure that the ACLs on this container
allow Oracle Delegated Administration Services and Oracle Directory Integration and
Provisioning to manage the information in this container.

Event Interface Configuration Applications can subscribe for provisioning events using
different interfaces: PLSQL, Java, and OID-LDAP. Table 12-2, " Interfaces and Their
Configuration" lists the supported interfaces and their associated configuration. Note
that INTERFACE_VERSION is coupled with provisioning profile version.

Table 12-2 Interfaces and Their Configuration

Configuration

Parameter PLSQL Java OID-LDAP
INTERFACE_VERSION 1.1,2.0,3.0 3.0 3.0
INTERFACE_NAME The name of the PLSQL Not used Not used
package that implements
the Interface
INTERFACE_ The Database Connect Not used Not used
CONNECT_INFO String. Multiple formats
supported for all
versions.
INTERFACE_ Not used Not used Not used

ADDITIONAL_INFO

Plugin types

PRE_DATA_ENTRY,
POST_DATA_ENTRY,
DATA_ACCESS

PRE_DATA_ENTRY,
POST_DATA_ENTRY,
DATA_ACCESS,
EVENT_DELIVERY
(MUST)

12-8 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

PRE_DATA_ENTRY,
POST_DATA_ENTRY,
DATA_ACCESS

Application Configuration

Table 12-2 (Cont.) Interfaces and Their Configuration

Configuration

Parameter PLSQL Java OID-LDAP
Description Mainly for applications If the Interface Type is Mainly used in cases
that have an Oracle JAVA, an event where the application is
Database back end. The delivering plug-in must very tightly bound to
DIP Server pushes the be configured or the Oracle Internet Directory
event to the remote server gives errors. The and event delivery
Database by invoking the plug-in configuration through the PLSQL
PLSQL procedure. determines the rest of the interface or the JAVA
configuration. See Event Delivery Plug-in is
Application Provisioning unnecessary. This
Plug-in Configuration. interface is deprecated in
future. Please use the
JAVA Interface instead.

Applications can use the following arguments to SORACLE_
HOME/bin/oidprovtool when specifying an event interface configuration:

s interface_type (Defaultis PLSQL)

» interface_version (Defaultis 2.0)

m Iinterface_name

m Interface_connect_info

m Interface_additional_info

Table 12-3, " Information Formats Supported by the PLSQL Interface" lists the
interface connection information formats that the PL/SQL interface supports when it
connects to a remote database. All the formats are supported for all interface versions.

Table 12-3 Information Formats Supported by the PLSQL Interface

Format

Description

dbHost:dbPort:dbSID:username:password Old format, not recommended. Oracle Directory

Integration and Provisioning passes this to the thin JDBC
Driver.

dbHost:dbPort:dbServiceName:username:password Newer format. Not Recommended for High Availability

implementations, as the database host and port might
change in such scenarios. DIP passes this to the thin JDBC
Driver.

DBSVC=DB_TNS_Connect_Sring_ Used by JDBC thick OCI Driver. The local

Alias:username:password

tnsnames . ora file must contain this alias on the node
where DIP is running.

DBURL=Idap://LDAP_host:LDAP_ Recommended format, as it takes care of High
port / ServiceName,cn=OracleContext Availability requirements. DIP passes this to the thin

JDBC Driver and the driver looks up the Database
Registration entry in Oracle Internet Directory to get the
actual Database connection information.

Some examples of supported formats are:

localhost:1521:iasdb:scott:tiger

localhost:1521:iasdbsvc:scott:tiger

DBSVC=TNSALIAS:scott:tiger

Oracle Directory Integration and Provisioning Java APl Reference 12-9

Application Configuration

DBURL=1dap://example.com:3060/samplegdbname:scott:tiger

Application User Attribute and Defaults Configuration An application can specify its
application-specific user attributes configuration in an LDIF file. This is supported
only for interface version 3.0.

As shown in Figure 12-1, "The Directory Information Tree for Provisioning
Configuration Data", the configuration for a particular attribute is stored as a separate

entry under the container:

"cn=Attributes,cn=User Configuration,cn=Attribute configuration,
cn=Application_Type,cn=Applications, cn=Provisioning,
cn=Directory Integration Platform,cn=Products,cn=0OracleContext"

There is no argument to oidprovtool for uploading this information. The
application must use an LDAP file and command-line tools to upload its attribute
configuration information to Oracle Internet Directory.

Each application-specific attribute is represented as a separate entry. The following
example is for the attribute orclFilesDomain:

dn: cn=orclFilesDomain,cn=Attributes, cn=User configuration,cn=Attribute

configuration,...
changetype: add
orcldasadminmodifiable: 1
orcldasviewable: 1
displayname: Files Domain
orcldasismandatory: 1
orcldasuitype: LOV
orcldaslov: us.example.com
orcldaslov: oraclecorp.com
orclDASAttrIsUIField: 1

orclDASAttrIsFieldForCreate: 1

orclDASAttrIsFieldForEdit:

1

orclDASAttrToDisplayByDefault: 1

orclDASSelfModifiable: 1
orclDASAttrDisplayOrder: 1

orclDASAttrDefaultValue: oraclecorp.com
orclDASAttrObjectClass: orclFILESUser
objectclass: orclDASConfigAttr

objectclass: orclcontainer

Table 12—4, " Properties Stored as Attributes in the Attribute Configuration Entry"
explains the significance of each of the properties that are stored as attributes in the
attribute configuration entry.

Table 12-4 Properties Stored as Attributes in the Attribute Configuration Entry

Property Name

Description

Comments

orclDASIsUIField

orcIDASUIType

orcIDASAdminModifiable

Whether this property is to be shown
in the DAS Console or not

The Type of the Ul Field: singletext,
multitext, LOV, DATE, Number,
password

Whether the field is modifiable by
the administrator or not

Not Used in 11g Release 1 (11.1.1). All
attributes are shown.

Used by Oracle Internet Directory
Self-Service Console only

Not Used in 11¢ Release 1 (11.1.1). All
attributes are modifiable by
administrator.

12-10 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Application Configuration

Table 12-4 (Cont.) Properties Stored as Attributes in the Attribute Configuration Entry

Property Name Description Comments

orcIDASViewAble Whether this attribute is a read-only Not Used in 11g Release 1 (11.1.1)
attribute in the Oracle Internet
Directory Self-Service Console

displayName The Localized Name of the attribute
as it shows on the Oracle Internet
Directory Self-Service Console

orcIDASIsMandatory Whether this attribute is mandatory If a mandatory attribute is not
or not populated, the Oracle Internet
Directory Self-Service Console

complains

orcIDASAttrIsFieldForCreate Whether to expose this attribute only Not Used in 11g Release 1 (11.1.1)
during user creation

orclDASAttrIsFieldForEdit Whether to expose this attribute only Not Used in 11g Release 1 (11.1.1)
during user editing

orcIDASAttrToDisplayByDef = Whether to hide the attribute by Not Used in 11¢ Release 1 (11.1.1)

ault default under a collapsed section

orclDASSelfModifiable Whether this attribute is modifiable =~ Not Used in 11 Release 1 (11.1.1), as
by the user or not Oracle Internet Directory Self-Service

Console is only for
application-specific attributes. Users
cannot change their user preferences
from the Oracle Internet Directory
Self-Service Console.

OrclDASAttrDisplayOrder The order is which the attribute is to Not Used in 11g Release 1 (11.1.1)
be displayed in the
application-specific section

OrclDASAttrDefaultValue The initial default value for the Can be changed using the Oracle
attribute that is used by the Internet Directory Self-Service
provisioning components: Oracle Console Application Management
Internet Directory Self-Service Page. The Plug-ins or the
Console, Oracle Directory administrator can override the initial

Integration and Provisioning, Bulk default values.
Provisioning Tool

OrcIDASALttrObjectClass The LDAP object class that the Used to create the
attribute belongs to. application-specific user entries that
the provisioning system maintains.

If an application has application-specific attributes, you can specify that the
provisioning system manage its attributes defaults. You do that by using the manage_
application_defaults argument to JORACLE_HOME/bin/oidprovtool. This
argument is TRUE by default.

Application Provisioning Plug-in Configuration Application provisioning plug-ins are
discussed in

Appendix A, "Java Plug-ins for User Provisioning".

Application Propagation Configuration Event propagation configuration parameters vary

from one profile version to another. Table 12-5, " Event propagation parameters" lists
and describes configuration parameters for event propagation.

Oracle Directory Integration and Provisioning Java API Reference 12-11

Application Configuration

Table 12-5 Event propagation parameters

Parameter

Supported
Provisioning
Profile Version

Description

profile_mode

Schedule

enable_bootstrap

enable_upgrade

lastchangenumber

max_prov_failure_
limit

max_events_per_
invocation

max_events_per_
schedule

event_subscription

2.0,.3.0

1.1,2.0,3.0

3.0

3.0

3.0

3.0

2.0,3.0

2.0

1.1,2.0,3.0

Whether the application is to receive outbound
provisioning events from Oracle Internet Directory, to send
inbound events, or both. Values are OUTBOUND (default),
INBOUND, and BOTH.

The scheduling interval after which pending events are
propagated

Enables events for application bootstrapping. This specifies
that the application should be notified of users that existed
in Oracle Internet Directory before the application created
its provisioning profile.

Enables events for application user upgrade. This specifies
that the application should be notified of users that existed
in Oracle Internet Directory before the upgrade. If the
application was present before the upgrade, users might
already exist in the application. For such users, Oracle
Directory Integration and Provisioning sends an Upgrade
Event to the application so that the user is handled
differently from a normal new user.

The change number in Oracle Internet Directoryfrom which
the events need to be sent to the application.

The maximum number of retries that the Oracle Directory
Integration and Provisioning server attempts when
provisioning a user for that application.

For bulk event propagation, this specifies the maximum
number of events that can be packaged and sent during one
invocation of the event interface.

Maximum number of events that Oracle Directory
Integration and Provisioning sends to an application in one
execution of the profile. The default is 25. In deployments
with many profiles and applications, this enables Oracle
Directory Integration and Provisioning, which is
multithreaded, to execute threads for multiple profiles.

Defines the types of OUTBOUND events an application is
to receive from the event propagation service. The format
is:

Object_Type:Domain:Operation(Attributes,..)
For example:
USER:cn=users,dc=example,dc=com:ADD (*)

specifies that USER_ADD event should be sent if the user
that was created is under the specified domain and that all
attributes should also be sent.
USER:cn=users,dc=example,dc=com:MODIFY (cn,sn.mail, t
elephonenumber)

specifies that USER_MODIFY event should be sent if the

user that was modified is under the specified domain and
any of the listed attributes were modified

USER:cn=users,dc=example, dc=com:DELETE

specifies that USER_DELETE event should be sent if a user
under the specified domain was deleted

12-12 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Application Configuration

Table 12-5 (Cont.) Event propagation parameters

Supported
Provisioning
Parameter Profile Version Description

event_permitted_ 2.0 Defines the types of INBOUND events an application is
operations privileged to send to the Oracle Directory Integration and
Provisioning server. The format is:

Object_Type:Domain:Operation(Attributes,..)
For example:
IDENTITY:cn=users,dc=example, dc=com:ADD (*)

specifies that IDENTITY_ADD event is allowed for the
specified domain and all attributes are also allowed. This
means that the application is allowed to create users in
Oracle Internet Directory.

IDENTITY:cn=users,dc=example, dc=com:MODIFY (cn, sn.ma
il, telephonenumber)

Specifies that IDENTITY_MODIFY is allowed for only the
attributes in the list. Other attributes are silently ignored.
This means that the application is allowed to modify the
listed attributes of the users in Oracle Internet Directory.

IDENTITY:cn=users, dc=example, dc=com:DELETE
Specifies that the application is allowed to delete users in
Oracle Internet Directory

event_mapping_ 2.0 For INBOUND profiles, this specifies the type of object

rules received from an application and a qualifying filter
condition to determine the domain of interest for this event.
Multiple rules are allowed. The format is:

Object_Type: Filter_condition: Domain Of_Interest
For example:
EMP: :cn=users, dc=example, dc=com

specifies that if the object type received is EMP, the event is
meant for the domain
"cn=users, dc=example, dc=com".

EMP:1=AMERICA:1=AMER, cn=users, dc=example, dc=com

specifies that if the object type received is EMP, and the
event has the attribute 1 (locality) and its value is
AMERICA, the event is meant for the domain
"1=AMER, cn=users, dc=example, dc=com".

Application Event Propagation Run Time Status The Oracle Provisioning Service records a
user's provisioning status in Oracle Internet Directory for each provisioning-integrated
application. This is described in the Deploying and Configuring Provisioning chapter
of Oracle Fusion Middleware Administrator’s Guide for Oracle Directory Integration
Platform.

Application Configuration Classes

The oracle.idm.user.provisioning.configuration.Configuration class
enables you to obtain provisioning schema information. The
oracle.idm.user.provisioning.configuration.Application classenables
you to obtain metadata for registered applications. These classes are documented
under the package oracle.idm.provisioning.configuration.

Oracle Directory Integration and Provisioning Java AP| Reference 12-13

User Management

The Configuration class provides access to application configurations. To construct,
a Configuration object, you must specify the realm. For example:

Configuration cfg = new Configuration ("us");
Then you use Configuration class methods to get one or all application
configurations in a realm. You must supply the LDAP context of the realm.

The Configuration object is a fairly heavy weight object, as its creation requires
access to the Oracle Internet Directory metadata. Best practice is to create a
Configuration object once during initialization of an application, then to reuse it for
all operations that require it.

The Application object represents an application instance. Its methods provide
metadata about a registered application in the infrastructure.

User Management

When Oracle Directory Integration and Provisioning or Oracle Delegated
Administration Services invokes a provisioning plug-in, it passes information about
the user being provisioned. A deployed application can use the user object to modify
the user.

The user management provisioning classes provide the following operations:
» Create, modify, and delete a base user

» Create, modify, and delete application-specific user information

= Search base users

» Retrieve user provisioning status for applications

This section includes the following topics:

s Creating a User

= Modifying a User

s Deleting a User

s Looking Up a User

Creating a User

Creating a user in the Oracle Identity Management repository consists of two steps:

1. Creating basic user information in the specified realm. This information is referred
to as the base user.

2. Creating the application-specific user attributes, or footprint. This information is
referred to as the application user.

The combination of the base user and application user in the repository is referred to
as the Oracle Identity Management user. Some methods create only the base user and
other create both components of the Oracle Identity Management user.

The minimum information required to create a user is a set of attributes representing
the base user. The attributes are in the form of name-value pairs. These user attributes
are represented as Java objects using the class
oracle.ldap.util.ModPropertySet.

Some user creation methods require you to specify the DN of the entry that you want
to create in the Oracle Identity Management user repository. Other methods do not

12-14 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Debugging

require the DN. Instead, they construct the Oracle Identity Management user using the
metadata configuration information from the Realm in which the user is created.

If the creation of the base user and application user succeeds, then the creation method
returns an IdmUser object. You use this object to manage the attributes of the base
user and application user.

Modifying a User

Modifying a base user in the Oracle Identity Management repository results in
= Modifying the base user information
s Creating or modifying application user information

You must supply the following information in order to modify an Oracle Identity
Management user:

1. The user's DN, GUID, or IdmUser object reference

2. The desired changes to the base user attributes, represented as an
oracle.ldap.util.ModPropertySet

Some user modification methods modify only the base user attributes. Others modify
the application user attributes as well.

Deleting a User

Deleting a base user in the Oracle Identity Management repository produces the
following results:

s Deleting the base user information
s Deleting the application user information

To modify an Oracle Identity Management user, you must supply the DN, GUID, or
IdmUser object reference.

As result of this operation, the base user and the application user attributes are
deleted.

Looking Up a User

Debugging

The lookup methods provide two lookup options:
= Look up a specific Oracle Identity Management user using GUID or DN
= Look up a set of Oracle Identity Management users using a search filter

In order to look up Oracle Identity Management users, you must provide the DN or
GUID.

The output of a lookup method is one of the following:
= A single IdmUser object
= Alist of IdmUser objects

Set UtilDebug.MODE_PROVISIONING_API mode to enable debugging and trace
information. If you do not specify an output stream for the log messages, they are
written to standard output.

Oracle Directory Integration and Provisioning Java AP| Reference 12-15

Sample Code

The following snippet shows how to set Uti1Debug.MODE_PROVISIONING_API
mode and specify an output stream:

Import oracle.ldap.util.UtilDebug;
FileOutputStream logStream = new FileOutputStream("ProvAPI.log")

UtilDebug.setDebugMode (UtilDebug.MODE_PROVISIONING_API) ;
UtilDebug.setPrintStream(logStream) ;

Sample Code

The following code example shows how to create, modify, and look up a user and how
to get user provisioning status for an application.

UtilDebug.setDebugMode (UtilDebug.MODE_PROVISIONING_API) ;

Configuration cfg = new Configuration(realm);
try {
debug ("Connecting...");
InitialLdapContext ctx =
ConnectionUtil.getDefaultDirCtx (hostName, port, bindDn, passwd);
debug ("Connected...");
UserFactory factory = UserFactoryBuilder.createUserFactory(ctx, cfg);

// Create

ModPropertySet mpSet = new ModPropertySet () ;
mpSet .addProperty("cn", "Heman") ;
mpSet.addProperty("sn", "The Master");
mpSet.addProperty ("uid", "Heman") ;

IdmUser idmUser = factory.createUser (mpSet) ;

// Modify

mpSet = new ModPropertySet();

mpSet .addProperty (LDIF.ATTRIBUTE_CHANGE_TYPE_ REPLACE, "sn",
"Heman The Master");

mpSet.addProperty ("givenName", "Master of the Universe");

factory.modifyUser (idmUser, mpSet);

// Lookup
List users = factory.searchUsers (Util.IDTYPE_SIMPLE, "Hema*", null);

// Get user provisioning status for an application.
Application app = cfg.getApplication(1Ctx, "Files", "FilesInstace");
String status = idmUser.getProvisioningStatus (app) ;

// Another way to get user provisioning status
String userDn = idmUser.getDNn() ;
String status = ProvUtil.getUserProvisioningStatus(dirctx,
Util.IDTYPE_DN, userDn, app.getType(), app.getName());
} catch (Exception ex) {
ex.printStackTrace();
//

12-16 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

13

Oracle Directory Integration Platform

PL/SQL API Reference

This chapter describes the registration API for the Directory Integration Platform. It
contains the following sections:

Versioning of Provisioning Files and Interfaces
Extensible Event Definition Configuration
Inbound and Outbound Events

PL/SQL Bidirectional Interface (Version 3.0)
PL/SQL Bidirectional Interface (Version 2.0)

Provisioning Event Interface (Version 1.1)

Versioning of Provisioning Files and Interfaces

In release 9.0.2, the default interface version was version 1.1. In releases 9.0.4 and
10.1.2.0.0, the interface version defaults to version 2.0. Release 10.1.2.0.1 adds yet a
third version. The administrator can use any one of these.

Extensible Event Definition Configuration

This feature is only for outbound events. It addresses the ability to define a new event
at run time so that the provisioning integration service can interpret a change in Oracle
Internet Directory and determine whether an appropriate event is to be generated and
propagated to an application. The following events are the only configured events at
installation time.

An event definition (entry) consists of the following attributes.

Event object type (orc10DIPProvEventObjectType): This specifies the type of
object the event is associated with. For example, the object could be a USER,
GROUP, or IDENTITY.

LDAP change type (orc10DIPProvEventChangeType): This indicates that all
kinds of LDAP operations can generate an event for this type of object. (e.g ADD,
MODIFY, DELETE)

Event criteria (orc10DIPProvEventCriteria): The additional selection criteria
that qualify an LDAP entry to be of a specific object type. For example,
Objectclass=orclUserV2 means that any LDAP entry that satisfies this
criteria can be qualified as this Object Type and any change to this entry can
generate appropriate events.

Oracle Directory Integration Platform PL/SQL API Reference 13-1

Extensible Event Definition Configuration

The object class that holds these attributes is orc10DIPProvEventTypeConfig. The
container cn=ProvisioningEventTypeConfig, cn=0di,cn=oracle internet
directory is used to store all the event type configurations.

Table 13-1 lists the event definitions predefined as a part of the installation.

Table 13—-1 Predefined Event Definitions

Event Object Type LDAP Change Type Event Criteria

ENTRY ADD objectclass=*
MODIFY
DELETE

USER ADD objectclass=interorgperson
MODIFY objectclass=orcluserv2
DELETE

IDENTITY ADD objectclass=interorgperson
MODIFY objectclass=orcluserv2
DELETE

GROUP ADD objectclass=orclgroup
MODIFY objectclass=groupofuniguenames
DELETE

SUBSCRPTION ADD objectclass=orclservicerecepient
MODIFY
DELETE

SUBSCRIBER ADD objectclass=orclsubscriber
MODIFY
DELETE

The container cn=ProvisioningEventTypeConfig, cn=odi, cn=oracle
internet directory is used to store all the event definition configurations. LDAP
configuration of the predefined event definitions is as follows:

dn: orclODIPProvEventObjectType=ENTRY, cn=ProvisioningEventTypeConfig, cn=o0di,
cn=oracle internet directory

orclODIPProvEventObjectType: ENTRY

orclODIPProvEventLDAPChangeType: Add

orclODIPProvEventLDAPChangeType: Modify

orclODIPProvEventLDAPChangeType: Delete

orclODIPProvEventCriteria: objectclass=*

objectclass: orclODIPProvEventTypeConfig

dn:

orclODIPProvEventObjectType=USER, cn=ProvisioningEventTypeConfig, cn=o0di, cn=oracle
internet directory

orclODIPProvEventObjectType: USER

orclODIPProvEventLDAPChangeType: Add

orclODIPProvEventLDAPChangeType: Modify

orclODIPProvEventLDAPChangeType: Delete

orclODIPProvEventCriteria: objectclass=InetOrgPerson

orclODIPProvEventCriteria: objectclass=orcluserv2

objectclass: orclODIPProvEventTypeConfig

dn: orclODIPProvEventObjectType=IDENTITY, cn=ProvisioningEventTypeConfig, cn=odi,
cn=oracle internet directory

orclODIPProvEventObjectType: IDENTITY

orclODIPProvEventLDAPChangeType: Add

orclODIPProvEventLDAPChangeType: Modify

13-2 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Inbound and Outbound Events

orclODIPProvEventLDAPChangeType: Delete
orclODIPProvEventCriteria: objectclass=inetorgperson
orclODIPProvEventCriteria: objectclass=orcluserv2
objectclass: orclODIPProvEventTypeConfig

dn: orclODIPProvEventObjectType=GROUP, cn=ProvisioningEventTypeConfig, cn=odi,
cn=oracle internet directory

orclODIPProvEventObjectType: GROUP

orclODIPProvEventLDAPChangeType: Add

orclODIPProvEventLDAPChangeType: Modify

orclODIPProvEventLDAPChangeType: Delete

orclODIPProvEventCriteria: objectclass=orclgroup

orclODIPProvEventCriteria: objectclass=groupofuniquenames

objectclass: orclODIPProvEventTypeConfig

dn:

orclODIPProvEventObjectType=SUBSCRIPTION, cn=ProvisioningEventTypeConfig, cn=o0di,
cn=oracle internet directory

orclODIPProvEventObjectType: SUBSCRIPTION

orclODIPProvEventLDAPChangeType: Add

orclODIPProvEventLDAPChangeType: Modify

orclODIPProvEventLDAPChangeType: Delete

orclODIPProvEventCriteria: objectclass=orclservicerecepient

objectclass: orclODIPProvEventTypeConfig

dn: orclODIPProvEventObjectType=SUBSCRIBER, cn=ProvisioningEventTypeConfig, cn=o0di,
cn=oracle internet directory

orclODIPProvEventObjectType: SUBSCRIBER

orclODIPProvEventLDAPChangeType: Add

orclODIPProvEventLDAPChangeType: Modify

orclODIPProvEventLDAPChangeType: Delete

orclODIPProvEventCriteria: objectclass=orclsubscriber

objectclass: orclODIPProvEventTypeConfig

To define a new event of Object type XYZ (which is qualified with the object class
objXYZz), create the following entry in Oracle Internet Directory. The DIP server
recognizes this new event definition and propagates events if necessary to applications
that subscribe to this event.

dn: orclODIPProvEventObjectType=XYZ,cn=ProvisioningEventTypeConfig, cn=odi,
cn=oracle internet directory

orclODIPProvEventObjectType: XYZ

orclODIPProvEventLDAPChangeType: Add

orclODIPProvEventLDAPChangeType: Modify

orclODIPProvEventLDAPChangeType: Delete

orclODIPProvEventCriteria: objectclass=0bjXYZ

objectclass: orclODIPProvEventTypeConfig

This means that if an LDAP entry with the object class objXYZ is added, modified, or
deleted, DIP propagates the XYz_ADD, XYZ_MODIFY, or XYZ_DELETE event to any
application concerned.

Inbound and Outbound Events

An application can register as a supplier as and as a consumer of events. The
provisioning subscription profile has the attributes described in Table 13-2 on
page 13-4.

Oracle Directory Integration Platform PL/SQL API Reference 13-3

PL/SQL Bidirectional Interface (Version 3.0)

Table 13-2 Attributes of the Provisioning Subscription Profile

Attribute Description

EventSubscriptions Outbound events only (multivalued).

Events for which DIP should send notification to this application. The format of
this string is [USER]GROUP] : [domain_of_

interest] : [DELETE |ADD |MODIFY (list_of_attributes_separated_by_
comma)]

Multiple values may be specified by listing the string multiple times, each time
with different values. If parameters are not specified, the following defaults are
assumed: USER: organization_DN:DELETEGROUP: organization_
DN:DELETE—that is, send user and group delete notifications under the
organization DN.

MappingRules Inbound events Only (multivalued).

This attribute is used to map the type of object received from an application and a
qualifying filter condition to determine the domain of interest for this event. The
mapping takes this form:

OBJECT _TYPE: Filter condition: domain_of interest

Multiple rules are allowed. In the mapping

EMP:cn=users, dc=example, dc=com, the object type received is EMP. The
event is meant for the domain cn=users, dc=example, dc=com. In the mapping
EMP:1=AMERICA:1=AMER, cn=users, dc=example, dc=com, the object type
received is EMP. The event is meant for the domain

1=AMER, cn=users, dc=example, dc=com.

permittedOperations Inbound events only (multi valued).

This attribute is used to define the types of events an application is privileged to
send to the provisioning integration service. The mapping takes this form:

Event_Object: affected domain:operation(attributes, . . .)

In the mapping IDENTITY : cn=users, dc=example, dc=com:ADD (*) the
IDENTITY_ADD event is allowed for the specified domain and all attributes are
also allowed. In the mapping

IDENTITY:cn=users,dc=example, dc=com:MODIFY (cn,sn.mail, telepho
nenumber), the IDENTITY_MODIFY event is allowed only for the attributes in the
list. Any extra attributes are silently ignored.

PL/SQL Bidirectional Interface (Version 3.0)

Before attempting to use Version 3.0 of the PL/SQL interface, please refer to:
s Appendix A, "Java Plug-ins for User Provisioning"

» The chapter "Understanding Oracle Directory Integration Platform for
Provisioning" in Oracle Fusion Middleware Administrator’s Guide for Oracle Directory
Integration Platform

s The chapter "Deploying Provisioning-Integrated Applications" in Oracle Fusion
Middleware Administrator’s Guide for Oracle Directory Integration Platform

The PL/SQL callback interface requires you to develop a PL/SQL package that Oracle
Directory Provisioning Integration Service invokes in the application specific database.
Choose any name for the package, but be sure to use the same name when you register
the package at subscription time. Implement the package by using the following
PL/SQL package specification:

DROP TYPE LDAP_EVENT LIST V3;

DROP TYPE LDAP_EVENT V3;

DROP TYPE LDAP_EVENT STATUS_LIST_V3;
DROP TYPE LDAP ATTR LIST V3;

13-4 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

PL/SQL Bidirectional Interface (Version 3.0)

DROP TYPE LDAP_ATTR_V3;
DROP TYPE LDAP_ATTR_VALUE_LIST V3;
DROP TYPE LDAP_ATTR_VALUE_V3;

-- Name: LDAP_ATTR_VALUE_V3

-- Data Type: OBJECT

-- DESCRIPTION: This structure contains values of an attribute. A list of one or
more of this object is passed in any event.

CREATE TYPE LDAP_ATTR_VALUES_V3 AS OBJECT (
attr_value VARCHAR2 (4000),
attr_bvalue RAW(2048),
attr value_len INTEGER

)i

GRANT EXECUTE ON LDAP_ATTR_VALUE_V3 to public;

CREATE TYPE LDAP_ATTR_VALUE_LIST_ V3 AS TABLE OF LDAP_ATTR_VALUE V3;
/
GRANT EXECUTE ON LDAP_ATTR_VALUE_LIST V3 to public;

-- Name: LDAP ATTR_V3

-- Data Type: OBJECT

-- DESCRIPTION: This structure contains details regarding an attribute. A list of
one or more of this object is passed in any event.

CREATE TYPE LDAP_ATTR_V3 AS OBJECT (

attr_name
attr_type
attr_mod_op
attr_values

VARCHAR2 (256)

INTEGER ,

INTEGER,
LDAP_ATTR_VALUE_LIST V3

)i
GRANT EXECUTE ON LDAP_ATTR_V3 to public;

CREATE TYPE LDAP_ATTR_LIST V3 AS TABLE OF LDAP_ATTR_V3;
/
GRANT EXECUTE ON LDAP_ATTR_LIST_V3 to public;

-- Name: LDAP_EVENT V3
-- Data Type: OBJECT
-- DESCRIPTION: This structure contains event information plus the attribute List.

CREATE TYPE LDAP_EVENT_V3 AS OBJECT (
event_type VARCHAR2(32),

event_id VARCHAR2 (32),

event_src VARCHAR2 (1024),

event_time VARCHAR2(32),

object_name VARCHAR2(1024),

object_type VARCHAR2 (32),
object_guid VARCHAR2 (32),

VARCHAR2 (1024),

3
3

object_dn

Oracle Directory Integration Platform PL/SQL API Reference 13-5

PL/SQL Bidirectional Interface (Version 3.0)

profile_id VARCHAR2(1024),
attr_list LDAP_ATTR_LIST V3) ;

GRANT EXECUTE ON LDAP_EVENT_V3 to public;

CREATE TYPE LDAP_EVENT LIST V3 AS TABLE OF LDAP_EVENT V3;
/

GRANT EXECUTE ON LDAP_EVENT LIST V3 to public;

-- Name: LDAP_EVENT_STATUS_V3

-- Data Type: OBJECT

-- DESCRIPTION: This structure contains information that is sent by the consumer
of an event to the supplier in response to the actual event.

CREATE TYPE LDAP_EVENT STATUS_V3 AS OBJECT (
event_id VARCHAR2 (32),
status VARCHAR2 (32),
status_msg VARCHAR2 (2048) ,
object_guid VARCHAR(32)

GRANT EXECUTE ON LDAP_EVENT_ STATUS_V3 to public;

CREATE TYPE LDAP_EVENT_STATUS_LIST V3 AS TABLE OF LDAP_EVENT_STATUS_V3;
/

GRANT EXECUTE ON LDAP_EVENT_STATUS_LIST V3 to public;

-- Name: LDAP_NTFY

-- DESCRIPTION: This is the interface to be implemented by provisioning integrated
applications to send information to and receive information from the directory.
The name of the package can be customized as needed. The function and procedure
names within this package should not be changed.

CREATE OR REPLACE PACKAGE LDAP_NTFY AS
-- The Predefined Event Types
ENTRY_ADD CONSTANT VARCHAR2 (32) 'ENTRY_ADD';

ENTRY_DELETE CONSTANT VARCHAR2 (32) :='ENTRY_DELETE';
ENTRY_MODIFY CONSTANT VARCHAR2 (32) 'ENTRY_MODIFY';

USER_ADD CONSTANT VARCHAR2 (32) :='USER_ADD';
USER_DELETE CONSTANT VARCHARZ2 (32) :='USER_DELETE';
USER_MODIFY CONSTANT VARCHAR2 (32) :='USER_MODIFY';
IDENTITY_ADD CONSTANT VARCHAR2 (32) :='IDENTITY_ADD';
IDENTITY DELETE CONSTANT VARCHAR2 (32) :='IDENTITY_ DELETE';
IDENTITY_MODIFY CONSTANT VARCHAR2 (32) :='IDENTITY_ MODIFY';
GROUP_ADD CONSTANT VARCHAR2 (32) :='GROUP_ADD';
GROUP_DELETE CONSTANT VARCHAR2 (32) :='GROUP_DELETE';
GROUP_MODIFY CONSTANT VARCHAR2 (32) :='GROUP_MODIFY';

13-6 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

PL/SQL Bidirectional Interface (Version 3.0)

SUBSCRIPTION_ADD CONSTANT VARCHAR2 (32) :='SUBSCRIPTION_ADD';
SUBSCRIPTION_DELETE CONSTANT VARCHAR2(32) :='SUBSCRIPTION_DELETE';
SUBSCRIPTION_MODI CONSTANT VARCHAR2 (32) :='SUBSCRIPTION_MODIFY';
SUBSCRIBER_ADD CONSTANT VARCHAR2 (32) :='SUBSCRIBER_ADD';
SUBSCRIBER_DELETE CONSTANT VARCHAR2(32) :='SUBSCRIBER_DELETE';
SUBSCRIBER_MODIFY CONSTANT VARCHAR2 (32) :='SUBSCRIBER_MODIFY';

-- The Attribute Type

ATTR_TYPE_STRING CONSTANT NUMBER := 0;
ATTR_TYPE_BINARY CONSTANT NUMBER := 1;
ATTR_TYPE_ENCRYPTED_STRING CONSTANT NUMBER := 2;

-- The Attribute Modification Type

MOD_ADD CONSTANT NUMBER = 0;
MOD_DELETE CONSTANT NUMBER := 1;
MOD_REPLACE CONSTANT NUMBER := 2;

-- The Event dispostions constants

EVENT_SUCCESS CONSTANT VARCHAR2 (32) :='EVENT_SUCCESS';

EVENT IN_PROGRESS CONSTANT VARCHAR2 (32) :='EVENT IN_PROGRESS';
EVENT_USER_NOT_REQUIRED CONSTANT VARCHAR2 (32) :='EVENT USER_NOT_REQUIRED';
EVENT_ERROR CONSTANT VARCHAR2 (32) :='EVENT_ERROR';
EVENT_ERROR_ALERT CONSTANT VARCHAR2 (32) :='EVENT_ERROR_ALERT';

EVENT ERROR_ABORT CONSTANT VARCHAR2 (32) :='EVENT ERROR_ABORT';

-- The Actual Callbacks

FUNCTION GetAppEvents (events OUT LDAP_EVENT_LIST V3)
RETURN NUMBER;

-- Return CONSTANTS
EVENT_FOUND CONSTANT NUMBER:= 0;
EVENT_NOT_FOUND CONSTANT NUMBER:= 1403;

If the provisioning server is unable to process an inbound event, it triggers an EVENT_
ERROR_ALERT status, which generates a trigger in Oracle Enterprise Manager.

If the provisioning server is able to process the event, but finds that the event cannot
be processed—for example, the user to be modified, subscribed, or deleted does not
exist—it responds with EVENT_ERROR to indicate to the application that something is
wrong. It is again up to the application to handle the status event.

EVENT_ERROR means no errors in directory operations. The event cannot be processed
for other reasons.

-- PutAppEventStatus() : DIP Server invokes this callback in the remote Data
base after processing an event it had received using the GetAppEvents()
callback. For every event received, the DIP server sends the status event
back after processing the event. This API will NOT be required by the
Oracle Collaboration Suite release 3.0 components.

PROCEDURE PutAppEventStatus (event_status IN LDAP_EVENT_STATUS_LIST_V3);
-- PutOIDEvents() : DIP Server invokes this API in the remote Database. DIP

server sends event to applications using this callback. It also expects a status
event object in response as an OUT parameter. This API needs to be implemented

Oracle Directory Integration Platform PL/SQL API Reference 13-7

PL/SQL Bidirectional Interface (Version 2.0)

by all the Oracle Collaboration Suite release 3.0 components.

PROCEDURE PutOIDEvents (event

event_status

IN LDAP_EVENT_LIST V3,
OUT LDAP_EVENT_STATUS_LIST V3);

END LDAP_NTFY;
/

PL/SQL Bidirectional Interface (Version 2.0)

The PL/SQL callback interface requires that you develop a PL/SQL package that the
provisioning integration service invokes in the application-specific database. Choose
any name for the package, but be sure to use the same name when you register the
package at subscription time. Implement the package using the following PL/SQL
package specification:

DROP TYPE LDAP_EVENT;

DROP TYPE LDAP_EVENT STATUS;
DROP TYPE LDAP ATTR LIST;
DROP TYPE LDAP ATTR;
LDAP_ATTR

OBJECT

-- Name:
-- Data Type:

DESCRIPTION: This structure contains details regarding an attribute. A list
or more of this object is passed in any event.

CREATE TYPE LDAP_ATTR AS OBJECT (
attr_name VARCHAR?2 (256)
attr_value VARCHAR2 (4000),

attr_bvalue RAW (2048),
attr_value_len INTEGER,
attr_type INTEGER ,
attr_mod_op INTEGER

)i
GRANT EXECUTE ON LDAP_ATTR to public;

CREATE TYPE LDAP_ATTR_LIST AS TABLE OF LDAP_ATTR;
/
GRANT EXECUTE ON LDAP_ATTR_LIST to public;

-- Name: LDAP_EVENT

-- Data Type: OBJECT

-- DESCRIPTION: This structure contains event information plus the attribute
list.

CREATE TYPE LDAP_EVENT AS OBJECT
event_type VARCHAR2 (3
event_id VARCHAR2
event_src VARCHAR2
event_time VARCHAR2
object_name VARCHAR2
object_type VARCHAR2
object_guid VARCHAR2

I

(
2)
(32),
(1024),
(32),
(1024
(32)
(32)

).

I

I

13-8 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Provisioning Event Interface (Version 1.1)

object_dn VARCHAR2(1024),
profile_id VARCHAR2(1024),
attr_list LDAP_ATTR_LIST) ;

GRANT EXECUTE ON LDAP_EVENT to public;

-- Name: LDAP_EVENT_STATUS

-- Data Type: OBJECT

-- DESCRIPTION: This structure contains information that is sent by the
-- consumer of an event to the supplier in response to the
-- actual event.

CREATE TYPE LDAP_EVENT STATUS AS OBJECT (

event_id VARCHAR2 (32),
orclguid VARCHAR (32),
error_code INTEGER,
error_String VARCHAR2 (1024),

error_disposition VARCHAR2 (32)) ;
GRANT EXECUTE ON LDAP_EVENT_ STATUS to public;

Provisioning Event Interface (Version 1.1)

You must develop logic to consume events generated by the provisioning integration
service. The interface between the application and the provisioning integration service
can be table-based, or it can use PL/SQL callbacks.

The PL/SQL callback interface requires that you develop a PL/SQL package that the
provisioning integration service invokes in the application-specific database. Choose
any name for the package, but be sure to use the same name when you register the
package at subscription time. Implement the package using the following PL/SQL
package specification:

Rem

Rem NAME

Rem ldap_ntfy.pks - Provisioning Notification Package Specification.
Rem

DROP TYPE LDAP ATTR LIST;
DROP TYPE LDAP ATTR;

-- LDAP ATTR
-- Name : LDAP_ATTR
-- Data Type : OBJECT

-- DESCRIPTION : This structure contains details regarding
- an attribute.

CREATE TYPE LDAP_ATTR AS OBJECT (
attr_name VARCHAR?2 (255) ,
attr_value VARCHAR2 (20438) ,

Oracle Directory Integration Platform PL/SQL API Reference 13-9

Provisioning Event Interface (Version 1.1)

attr_bvalue RAW (2048),

attr _value_len INTEGER,

attr_type INTEGER -- (0 - String, 1 - Binary)
attr_mod_op INTEGER

GRANT EXECUTE ON LDAP_ATTR to public;

-- Name : LDAP_ATTR_LIST

-- Data Type : COLLECTION

-- DESCRIPTION : This structure contains collection
-- of attributes.

CREATE TYPE LDAP_ATTR_LIST AS TABLE OF LDAP_ATTR;
/
GRANT EXECUTE ON LDAP_ATTR_LIST to public;

-- NAME : LDAP_NTFY

-- DESCRIPTION : This is a notifier interface implemented by Provisioning System
-- clients to receive information about changes in Oracle Internet
-- Directory. The name of package can be customized as needed.

-- The function names within this package should not be changed.

CREATE OR REPLACE PACKAGE LDAP_NTFY AS

-- LDAP_NTFY data type definitions

-- Event Types

USER_DELETE CONSTANT VARCHAR2 (256) := 'USER_DELETE';
USER_MODIFY CONSTANT VARCHAR2 (256) := 'USER_MODIFY';
GROUP_DELETE CONSTANT VARCHAR2 (256) := 'GROUP_DELETE';
GROUP_MODIFY CONSTANT VARCHAR2 (256) := 'GROUP_MODIFY';
-- Return Codes (Boolean)

SUCCESS CONSTANT NUMBER =1;

FAILURE CONSTANT NUMBER = 0;

-- Values for attr_mod_op in LDAP_ATTR object.

MOD_ADD CONSTANT NUMBER = 0;
MOD_DELETE CONSTANT NUMBER := 1;
MOD_REPLACE CONSTANT NUMBER := 2;

-- Name: LDAP_NTFY

-- DESCRIPTION: This is the interface to be implemented by Provisioning System
-- clients to send information to and receive information from

-- Oracle Internet Directory. The name of the package can be

-- customized as needed. The function names within this package
-- should not be changed.

13-10 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Provisioning Event Interface (Version 1.1)

CREATE OR REPLACE PACKAGE LDAP_NTFY AS

Predefined Event Types
ENTRY_ADD CONSTANT VARCHAR2 (32) := '"ENTRY_ADD';
ENTRY_DELETE CONSTANT VARCHAR2 (32) = 'ENTRY_DELETE';
ENTRY_MODIFY CONSTANT VARCHAR2 (32) = 'ENTRY_MODIFY';
USER_ADD CONSTANT VARCHAR2 (32) := 'USER_ADD';
USER_DELETE CONSTANT VARCHAR2 (32) := 'USER_DELETE';
USER_MODIFY CONSTANT VARCHAR2 (32) := 'USER_MODIFY';
IDENTITY_ADD CONSTANT VARCHAR2 (32) := '"IDENTITY_ADD';
IDENTITY_DELETE CONSTANT VARCHAR2 (32) = 'IDENTITY DELETE';
IDENTITY_MODIFY CONSTANT VARCHAR2 (32) = 'IDENTITY_MODIFY';
GROUP_ADD CONSTANT VARCHAR2 (32) = 'GROUP_ADD';
GROUP_DELETE CONSTANT VARCHAR2 (32) = 'GROUP_DELETE';
GROUP_MODIFY CONSTANT VARCHAR2 (32) := 'GROUP_MODIFY';
SUBSCRIPTION_ADD CONSTANT VARCHAR2 (32) = 'SUBSCRIPTION_ADD';
SUBSCRIPTION_DELETE CONSTANT VARCHAR2 (32) = 'SUBSCRIPTION_DELETE';
SUBSCRIPTION_MODI CONSTANT VARCHAR2 (32) = 'SUBSCRIPTION_MODIFY';
SUBSCRIBER_ADD CONSTANT VARCHAR2 (32) = 'SUBSCRIBER_ADD';
SUBSCRIBER_DELETE CONSTANT VARCHAR2 (32) := 'SUBSCRIBER_DELETE';
SUBSCRIBER_MODIFY CONSTANT VARCHAR2 (32) = 'SUBSCRIBER_MODIFY';

Attribute Type
ATTR_TYPE_STRING CONSTANT NUMBER =0;
ATTR_TYPE_BINARY CONSTANT NUMBER = 1;
ATTR_TYPE_ENCRYPTED_STRING CONSTANT NUMBER = 2;

Attribute Modification Type
MOD_ADD CONSTANT NUMBER =0;
MOD_DELETE CONSTANT NUMBER = 1;
MOD_REPLACE CONSTANT NUMBER = 2;

Event Dispositions Constants
EVENT_SUCCESS CONSTANT VARCHAR2 (32) := 'EVENT_SUCCESS';
EVENT_ERROR CONSTANT VARCHAR2 (32) := 'EVENT_ERROR';
EVENT_RESEND CONSTANT VARCHAR2 (32) = 'EVENT_RESEND';

Callbacks

A callback is a function invoked by the provisioning integration service to send or
receive notification events. While transferring events for an object, the related
attributes can also be sent along with other details. The attributes are delivered as a
collection (array) of attribute containers, which are in unnormalized form: if an
attribute has two values, two rows are sent in the collection.

Oracle Directory Integration Platform PL/SQL API Reference 13-11

Provisioning Event Interface (Version 1.1)

GetAppEvent()

The Oracle Directory Integration and Provisioning server invokes this API in the
remote database. It is up to the application to respond with an event. The Oracle
Directory Integration and Provisioning processes the event and sends the status back
using the PutAppEventStatus () callback. The return value of GetAppEvent ()
indicates whether an event is returned or not.

FUNCTION GetAppEvent (event OUT LDAP_EVENT)
RETURN NUMBER;

-- Return CONSTANTS
EVENT_FOUND CONSTANT NUMBER := 0;
EVENT_NOT_FOUND CONSTANT NUMBER := 1403;

If the provisioning server is not able to process the event—that is, it runs into some
type of LDAP error—it responds with EVENT_RESEND. The application is expected to
resend that event when GetAppEvent () is invoked again.

If the provisioning server is able to process the event, but finds that the event cannot
be processed—for example, the user to be modified does not exist, or the user to be
subscribed does not exist, or the user to be deleted does not exist—then it responds
with EVENT_ERROR to indicate to the application that something was wrong.
Resending the event is not required. It is up to the application to handle the event.

Note the difference between EVENT_RESEND and EVENT_ERROR in the previous
discussion. EVENT_RESEND means that it was possible to apply the event but the
server could not. If it gets the event again, it might succeed.

EVENT_ERROR means there is no error in performing directory operations, but the
event could not be processed due to other reasons.

PutAppEventStatus()

The Oracle Directory Integration and Provisioning server invokes this callback in the
remote database after processing an event it has received using the GetAppEvent ()
callback. For every event received, the Oracle Directory Integration and Provisioning
server sends the status event back after processing the event.

PROCEDURE PutAppEventStatus (event_status IN LDAP_EVENT_STATUS) ;

PutOIDEvent()

The Oracle Directory Integration and Provisioning server invokes this API in the
remote database. It sends event to applications using this callback. It also expects a
status event object in response as an OUT parameter. If a valid event status object is not
sent back, or it indicates a RESEND, the Oracle Directory Integration and Provisioning
server resends the event. In case of EVENT_ERROR, the server does not resend the
event.

PROCEDURE PutOIDEvent (event IN LDAP_EVENT, event_status OUT LDAP_EVENT_
STATUS) ;

END LDAP_NTFY;

/

13-12 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Part lli

Appendixes

Part III presents plug-ins that can be used to customize provisioning in Oracle
Collaboration Suite. In addition, this section contains an appendix about DSML syntax
and usage.

s Appendix A, "Java Plug-ins for User Provisioning"
s Appendix B, "DSML Syntax"
s Appendix C, "Migrating from Netscape LDAP SDK API to Oracle LDAP SDK API"

A

Java Plug-ins for User Provisioning

This appendix explains how to use plug-ins to customize provisioning policy
evaluation, data validation, data manipulation, and event delivery in typical
deployments of Oracle Directory Integration and Provisioning Provisioning Service
version 3.0.

The Oracle provisioning server cannot support all of the provisioning needs of a
deployment. Hence, hooks are provided at various stages of user creation,
modification, and deletion. These hooks enable an enterprise to incorporate its own
business rules and to tailor information creation to its needs. The hooks take the form
of Java plug-ins.

This appendix contains these topics:

s Provisioning Plug-in Types and Their Purpose

= Provisioning Plug-in Requirements

= Data Entry Provisioning Plug-in

= Data Access Provisioning Plug-in

= Event Delivery Provisioning Plug-in

s Provisioning Plug-in Return Status

s Configuration Template for Provisioning Plug-ins

= Sample Code for a Provisioning Plug-in

Provisioning Plug-in Types and Their Purpose
There are three types of provisioning plug-ins:
= Data entry plug-ins
s Data manipulation and data access plug-ins
= Event Delivery plug-ins

The data entry plug-ins can be used by applications that integrate with the
provisioning framework using either synchronous or asynchronous provisioning. The
data access plug-ins are used only by applications that are integrated with the
provisioning framework for synchronous provisioning. The event delivery plug-ins
are used only by applications that integrate with the provisioning framework using
asynchronous provisioning.

Oracle Provisioning Console, Oracle Directory Integration and Provisioning server,
and other mechanisms that affect the base user information in the directory invoke

Java Plug-ins for User Provisioning A-1

Provisioning Plug-in Requirements

these plug-ins when the information is created. By configuring a data entry plug-in, a
deployment can do any of the following:

= Validate attribute values for application users
= Validate attribute values for base users

= Enhance attribute values for application users
= Enhance attribute values for base users

= Evaluate provisioning policies

If you want the deployed application to maintain application user information you
must configure a data access plug-in for it. This type of plug-in enables you to
maintain the application information either outside of the directory or within it as
several entries.

Data entry and data access plug-ins are typically invoked from one of these
environments:

= User provisioning console for Oracle Delegated Administration Services
s Oracle Directory Integration and Provisioning server

= Provisioning API

s Bulk Provisioning Tools

The event delivery plug-ins are required by applications that have the JAVA interface
type and that subscribe for provisioning events. Applications that have synchronous
provisioning should not implement event delivery plug-ins.

Provisioning Plug-in Requirements

All of the plug-ins that you provide for an application must be in a JAR file that can be
uploaded to the directory with the standard LDIF template. See the section
"Configuration Template for Provisioning Plug-ins" for an example. The plug-in
interface definitions are found in $ORACLE_HOME/jlib/ldapjclntl0.jar. Refer
to Oracle Fusion Middleware Java API Reference for Oracle Internet Directory and the
public interfaces for a more detailed description. If the application requires additional
jar files, you can upload them too.

Place the files in the directory:

SMW_HOME /user_projects/domains/DOMAIN_NAME/servers/MANAGED_
SERVER_NAME/tmp/_WL_user/DIP_VERSION_ NUMBER/RANDOM
CHARACTERS/APP-INF/1lib/

Data Entry Provisioning Plug-in
Data entry plug-ins take two forms:
= Pre-data-entry plug-ins
= Post-data-entry plug-ins

If you want to use either of these plug-ins, you must implement the
oracle.idm.provisioning.plugin.IdataEntryPlugin interface. This
interface has three methods. Here it is:

/* *

* The applications can perform a post data entry operation by
* implementing this method.

A-2 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Data Entry Provisioning Plug-in

* @param appCtx the application context

* @param idmUser the IdmUser object

* @param baseUserAttr Base user properties

* @param appUserAttr App user properties

* @throws PluginException when an exception occurs.
*/

public PluginStatus process (ApplicationContext appCtx,

IdmUser idmUser, ModPropertySet baseUserAttr,
ModPropertySet appUserAttr)throws PluginException;
/**
* Returns the Modified Base User properties
*
* @return ModPropertySet modified base user properties.
*/

public ModPropertySet getBaseAttrMods();

/**

* Returns the Modified App User properties
*

* @return ModPropertySet modified app user properties.
*/

public ModPropertySet getAppAttrMods () ;

Typically the plug-in implementer uses these methods for data validation or policy
evaluation. In the latter case, a base user attribute is used to make the decision.

The application context object contains this information:

LDAP directory context

If you want the application to perform a directory operation, you can have it
obtain the LDAP context from the application object. Note that this LDAP context
should not be closed in the plug-in.

Plug-in call mode

The plug-in is called from Oracle Provisioning Console, Oracle Directory
Integration and Provisioning server, or another environment that invokes the
provisioning APL. If the calling environment is Oracle Directory Integration and
Provisioning, the provisioning service calls the plug-in. The two possible values
are INTERACTIVE_MODE and AUTOMATIC_MODE. The first indicates that the
plug-in was invoked through interaction between Oracle Delegated
Administration Services and a client application. The second indicates that the
plug-in was invoked by Oracle Directory Integration and Provisioning, where user
intervention does not occur.

Client locale

The plug-in may want to know what the client locale is, especially if it is invoked
from Oracle Delegated Administration Services.

Plug-in call operation

You may decide to have data entry plug-ins for both create and modify user
operations. You may even implement these plug-ins in the same class. Under these
conditions, the plug-in must determine which operation is invoked. The
application context object uses the values OP_CREATE and OP_MODIFY to identify
the operation.

Plug-in invocation point

Java Plug-ins for User Provisioning A-3

Data Entry Provisioning Plug-in

The data entry plug-in is typically used to determine whether a user must be
provisioned for an application. The policy evaluation and data validation that
occurs can be performed in either a pre-data-entry plug-in or a post-data-entry
plug-in. You may choose either or both. If you choose both, you can implement
them in the same class. The application context object specifies which one is
actually invoked. It uses the values PRE_DATA_ENTRY and POST_DATA_ENTY to
do this.

s Callback context

If you decide to have both pre and post plug-ins for an operation and you want
the pre plug-in to share information with the post plug-in, you can set the callback
context in the application context object of the pre—data-entry plug-in. The post-
data-entry plug-in can then obtain and use this callback context.

= Logging
You can use the log methods provided in the application context object to log
information for the plug-in.

The calling sequence looks like this:

1. Download and instantiate a plug-in object based on the configuration
information object in Oracle Internet Directory

2, Construct an application context object that is passed to the plug-in.
3. Callprocess method()

4. Call getBaseAttrMods () to obtain base user attributes that are modified in
process ().

5. Merge the base user attributes returned by getBaseAttrMods () with the
base user attributes, depending on the plug-in execution status. The execution
status can be either success or failure. The plug-in implementer must
return a valid plug-in execution status object. If null is returned, the execution
status is considered a failure.

6. Merging of the base user is only done if the plug-in execution status is
successful.

7. Call getAppAttrMods () for the plug-in. This method obtains application
user attributes that are modified in process ().

8. Merge the application user attributes returned by getAppAttrMods () with
the application user attributes, depending on the user provisioning status
returned by the plug-in.

Pre-Data-Entry Provisioning Plug-in
The pre—data-entry plug-in generates values for application attributes. The attribute
defaults specified during application registration are passed to this plug in along with
the current base user attributes. The returned values are displayed in the Ul if the
invocation environment is interactive like Oracle Delegated Administration Services.

The pre—data-entry plug-in can decide whether the user should be provisioned for an
application. The plug-in examines base user attributes to make the decision. It is
invoked during create and modify operations. You can support both operations with
one plug-in class, or you can assign one class to each.

If the application decides to have pre—data- entry plug-ins for create and modify
operations, two configuration entries must be created in Oracle Internet Directory
under the application container. The first entry is for the create operation:

A-4 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Data Entry Provisioning Plug-in

dn: cn=PRE_DATA_ENTRY_ CREATE, cn=Plugins, cn=FILES, cn=Applications,
cn=Provisioning, cn=Directory Integration Platform, cn=Products,
cn=0OracleContext

changetype: add

objectClass: orclODIPPlugin

orclStatus: ENABLE

orclODIPPluginExecName: oracle.myapp.provisioning.UserCreatePlugin
orclODIPPluginAddInfo: Pre Data Entry Plugin for CREATE operation

The second entry is for the modify operation:

dn: cn=PRE_DATA_ENTRY_MODIFY, cn=Plugins, cn=FILES, cn=Applications,
cn=Provisioning, cn=Directory Integration Platform, cn=Products,
cn=0racleContext

changetype: add

objectClass: orclODIPPlugin

orclStatus: ENABLE

orclODIPPluginExecName: oracle.myapp.provisioning.UserModifyPlugin

orclODIPPluginAddInfo: Pre Data Entry Plugin for MODIFY operation

In this example, separate classes for create and modify plug-ins are shown.

Post-Data-Entry Provisioning Plug-in

The post-data-entry plug-in validates data entered by the user in the UL In addition, it
generates derived attribute values. If the plug in fails for any one application, the Ul
does not proceed. All applications must successfully validate the data before a user
entry can be created in the directory. However, in the case of non-UI environment or
automatic route, the plug-in implementer can decide to raise an error or continue,
based on the plug-in call mode (INTERACTIVE_MODE or AUTOMATIC_MODE).

Like the pre—data-entry plug-in, the post-data-entry plug-in is invoked during create
and modify operations. The application can decide to implement one plug-in class for
both operations or a separate class for each.

If you decide to have post—data-entry plug-ins for create and modify operations, create
two configuration entries in Oracle Internet Directory under the application container.
The first entry is for the create operation:

dn: cn=POST_DATA_ENTRY_CREATE, cn=Plugins, cn=FILES, cn=Applications,
cn=Provisioning, cn=Directory Integration Platform, cn=Products,
cn=OracleContext

changetype: add

objectClass: orclODIPPlugin

orclStatus: ENABLE

orclODIPPluginExecName: oracle.myapp.provisioning.UserMgmtPlugin
orclODIPPluginAddInfo: Post Data Entry Plugin for CREATE and MODIFY
operations

The second entry is for the modify operation:

dn: cn=POST_DATA_ENTRY_MODIFY, cn=Plugins, cn=FILES, cn=Applications,
cn=Provisioning, cn=Directory Integration Platform, cn=Products,
cn=0racleContext

changetype: add

objectClass: orclODIPPlugin

orclStatus: ENABLE

orclODIPPluginExecName: oracle.myapp.provisioning.UserMgmtPlugin
orclODIPPluginAddInfo: Post Data Entry Plugin for MODIFY and CREATE operation

In this example, too, separate classes for create and modify plug-ins are shown.

Java Plug-ins for User Provisioning A-5

Data Access Provisioning Plug-in

Data Access Provisioning Plug-in

The primary purpose of the data access plug in is to manage the application-specific
information of the user in the directory. You can use this plug-in to create and retrieve
the information.

The data access plug-in is invoked whenever a user is created and is requesting
provisioning for an application—whether by Oracle Delegated Administration
Services, by Oracle Directory Integration and Provisioning, or by bulk provisioning
tools.

The data access plug-in is invoked during modify and delete operations as well. It can
update the application information or remove it.

If you want to use the data access plug-in, implement the interface
oracle.idm.provisioning.plugin.IDataAccessPlugin. Here is the interface:

/**

* The applications can create/modify/delete the user footprint by
* implementing this method.

* @param appCtx the application context

* @param idmUser IdmUser object

* @param baseUserAttr Base user properties
* @param appUserAttr App user properties

* @return PluginStatus a plugin status object, which must contain
* the either <codE>IdmUser.PROVISION_SUCCESS</CODE> or

* <codE>IdmUser.PROVISION_FAILURE</CODE> provisioning status

*

* @throws PluginException when an exception occurs.

*/
public PluginStatus process (ApplicationContext appCtx,

IdmUser idmUser, ModPropertySet baseUserAttr,

ModPropertySet ppUserAttr) throws PluginException;

* The applications can return their user footprint by
* implementing this method. Use <CODE>

* oracle.ldap.util.VarPropertySet </CODE>

* as the return object

* <PRE>

* For Ex.

* PropertySet retPropertySet = null;

* retPropertySet = new VarPropertySet () ;

* //Fetch the App data and add it to retPropertySet
* retPropertySet.addProperty ("name", "value");

* return retPropertySet;
* </PRE>
*
* @throws PluginException when an exception occurs.
*/
public PropertySet getAppUserData (ApplicationContext appCtx,
IdmUser user, String regAttrs([]) throws PluginException;

If you want to manage the user information for an application, create a plug-in
configuration entry in the directory under the application container. The example that
follows shows what this entry looks like:

A-6 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Event Delivery Provisioning Plug-in

dn: cn=DATA_ACCESS, cn=Plugins, cn=FILES, cn=Applications,
cn=Provisioning, cn=Directory Integration Platform, cn=Products,
cn=0OracleContext

changetype: add

objectClass: orclODIPPlugin

orclStatus: ENABLE

orclODIPPluginExecName: oracle.myapp.provisioning.UserDataAccPlugin

orclODIPPluginAddInfo: Data Access Plugin

Event Delivery Provisioning Plug-in

The primary purpose of the event delivery plug-in is to use the events notified by the
Oracle Directory Integration and Provisioning server. Events are delivered to the
plug-in by the Oracle Directory Integration and Provisioning server. Based on the
event type and the action to be performed in the application repository, the plug-in
performs the required operations. The interface definitions for this plug-in are as
follows:

/* SHeader: IEventPlugin.java 09-jun-2005.12:45:53 *
/* Copyright (c) 2004, 2005, Oracle. All rights reserved. */
/*
DESCRIPTION
All of the plug-in interfaces must extend this common interface.
PRIVATE CLASSES
None
NOTES
None
*/
package oracle.idm.provisioning.plugin;
/* *
* This is the base interface
*/
public interface IEventPlugin
{
/* *
* The applications can perform the initialization logic in this method.
*
* @param Object For now it is the provisioning Profile that is passed.
* look at oracle.ldap.odip.engine.ProvProfile for more details.

*

* @throws PluginException when an exception occurs.
*/
public void initialize(Object profile) throws PluginException;
/**
* The applications can perform the termination logic in this method.

*

* @param void Provisioning Profile Object is sent.
* refer to oracle.ldap.odip.engine.ProvProfile for more details
* @throws PluginException when an exception occurs.
*/
public void terminate(Object profile) throws PluginException;
/**
* Set Additional Info.
* Since we pass on the complete profile, there is no requirement to set
* the additiona
* @param addInfo Plugin additional info
*/
//public void setAddInfo (Object addInfo);

Java Plug-ins for User Provisioning A-7

Event Delivery Provisioning Plug-in

/* SHeader: IEventsFromOID.java 09-jun-2005.12:45:53 */
/* Copyright (c) 2004, 2005, Oracle. All rights reserved. */
/*

DESCRIPTION

Applications interested in receiving changes from OID should
implement this

interface.

PRIVATE CLASSES

<None>

NOTES
*/
package oracle.idm.provisioning.plugin;
import oracle.idm.provisioning.event.Event;
import oracle.idm.provisioning.event.EventStatus;

* Applications interested in receiving changes from OID should implement this
* interface. The applications register with the OID for the changes occurring
* at OID. The DIP engine would instantiate an object of this class and invoke
* the initialize(), sendEventsToApp(), and truncate() method in the same
* gsequence. The initialize method would provide the appropriate information
* from the profile in the form of a java.util.Hashtable object.
* The property names, that is, the hash table key that could be used by the
* interface implementer is defined as constants in this interface.
*
* @version $Header: IEventsFromOID.java 09-jun-2005.12:45:53 §
*/
public interface IEventsFromOID extends IEventPlugin

{

* Initialize. The application would provide any initialization logic
* through method. The DIP engine after instantiating a class that
* implements this interface will first invoke this method.

* @param prop A HashMap that would contain necessary information exposed
* to the applications
* @throws EventInitializationException the applications must throw this
* exception in case of error.
*/
public void initialize(Object provProfile)
throws EventPluginInitException;

* QID Events are deliverd to the application through this method.

* @param evts an array of LDAPEvent objects returned by the DIP engine
* @return the application logc must process these events and return the
* status of the processed events
* @throws EventDeliveryException the applications must throw this exception
* in case of any error.
*/
public EventStatus[] sendEventsToApp (Event [] evts)
throws EventDeliveryException;

/* SHeader: IEventsToOID.java 09-jun-2005.12:45:53 § */
/* Copyright (c) 2004, 2005, Oracle. All rights reserved. */

A-8 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Event Delivery Provisioning Plug-in

/*
DESCRIPTION
Applications interested in sending changes to OID should implement this
interface.

*/

package oracle.idm.provisioning.plugin;

import oracle.idm.provisioning.event.Event;

import oracle.idm.provisioning.event.EventStatus;

* Applications interested in sending changes to OID should implement this
* interface. The applications must register with the OID for the sending
* changes at their end to DIP. The DIP engine would instantiate an object
* of this class and invoke the initialize(), sendEventsFromApp (), and
* truncate() method in the same sequence. The initialize method would
* provide the appropriate information from the profile in the form of
* a java.util.Hashtable object. The property names, that is, the hash table key
* that could be used by the interface implementer is defined as
* constants in this interface.
*
*/
public interface IEventsToOID extends IEventPlugin
{
/**
* Initialize. The application would provide any initialization logic
* through method. The DIP engine after instantiating a class that
* implements this interface will first invoke this method.

* @param prop ProvProfile
* oracle.ldap.odip.engine.ProvProfile
* @throws EventPluginInitException the applications must throw this
* exception in case of error.
*/
public void initialize(Object profile) throws EventPluginInitException;

/**
* Application Events are deliverd to OID through this method.
*
* @return an array of Event objects returned to be processed by the
* DIP engine.
* @throws EventDeliveryException the applications must throw this exception
* in case of any error.
*/
public Event[] receiveEventsFromApp ()
throws EventDeliveryException;

/**
* Application can let the DIP engine know whether there are more event to
* follow through this method
*
* @return ture if there are more events to be returned and false otherwise
* @throws PluginException the applications must throw this exception
* in case of any error.
*/
public boolean hasMore() throws PluginException;

/*'k
* The status of the application events are intimated through this method.

* i.e the DIP engine after processing the events calls this method to set
* the event status.

Java Plug-ins for User Provisioning A-9

Provisioning Plug-in Return Status

* @param an array of Event status objects describing the processed event
* status by the DIP engine.
* @throws EventDeliveryException the applications must throw this exception
* in case of any error.
*/
public void setAppEventStatus (EventStatus[] evtStatus)
throws EventDeliveryException;

To perform directory operations from a plug-in, you need the application context. You
can use ProvProfile.getApplicationContext () in the event delivery plug-in
initialize () method to get an instance of
oracle.idm.provisioning.plugin.ApplicationContext.You can use this
applicationContext to perform any directory operation in any plug-in method.

Provisioning Plug-in Return Status
Each of the provisioning plug-ins must return an object of the appropriate class.

IDataEntryPlugin and IDataAccessPlugins return an object of the class
oracle.idm.provisioning.plugin.PluginStatus. The EventDeliveryPlugins
(IEventFromOID and IEventToOID) return an array of objects of the class
‘oracle.idm.provisioning.event.EventStatus'.

The returned object indicates the execution status, which is either success or
failure. The object can return the user provisioning status as well.

Configuration Template for Provisioning Plug-ins

The LDIF template provided here is used in Oracle Internet Directory 11g Release 1
(11.1.1) to specify the application plug-in. You must create a directory entry for the
application and upload the JAR file that contains the classes that implement the
plug-in.

dn: cn=Plugins, cn=APPTYPE, cn=Applications, cn=Provisioning,
cn=Directory Integration Platform,cn=Products,cn=OracleContext
changetype: add

add: orclODIPPluginExecData

orclODIPPluginExecData: full path name_of_the JAR file

objectclass: orclODIPPluginContainer

dn: cn=PRE_DATA_ENTRY_CREATE, cn=Plugins, cn=APPTYPE, cn=Applications,
cn=Provisioning, cn=Directory Integration Platform, cn=Products,
cn=0racleContext

cn=Provisioning, cn=Directory Integration Platform, cn=Products,
cn=0OracleContext

changetype: add

objectClass: orclODIPPlugin

orclStatus: ENABLE

orclODIPPluginExecName: Name_of the_class that_implements_the plug-in
orclODIPPluginAddInfo: Pre Data Entry Plugin for CREATE operation

dn: cn=PRE_DATA_ENTRY_MODIFY, cn=Plugins, cn=APPTYPE, cn=Applications,
cn=Provisioning, cn=Directory Integration Platform, cn=Products,
cn=OracleContext

changetype: add

objectClass: orclODIPPlugin

orclStatus: ENABLE

A-10 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Sample Code for a Provisioning Plug-in

orclODIPPluginExecName: Name_of_the_class_that_implements_the_plug-in
orclODIPPluginAddInfo: Pre Data Entry Plugin for MODIFY operation

dn: cn=POST_DATA_ENTRY_CREATE, cn=Plugins, cn=APPTYPE, cn=Applications,
cn=Provisioning, cn=Directory Integration Platform, cn=Products,
cn=0OracleContext

changetype: add

objectClass: orclODIPPlugin

orclStatus: ENABLE

orclODIPPluginExecName: Name_of_the_class_that_implements_the_plug-in
orclODIPPluginAddInfo: Post Data Entry Plugin for CREATE and modify operations

dn: cn=POST_DATA_ENTRY_ MODIFY, cn=Plugins, cn=APPTYPE, cn=Applications,
cn=Provisioning, cn=Directory Integration Platform, cn=Products,
cn=0OracleContext

changetype: add

objectClass: orclODIPPlugin

orclStatus: ENABLE

orclODIPPluginExecName: Name_ of_the_class_that_implements_the_plug-in
orclODIPPluginAddInfo: Post Data Entry Plugin for MODIFY and CREATE operation

dn: cn=DATA_ACCESS, cn=Plugins, cn=APPTYPE, cn=Applications,
cn=Provisioning, cn=Directory Integration Platform, cn=Products,
cn=0racleContext

changetype: add

objectClass: orclODIPPlugin

orclStatus: ENABLE

orclODIPPluginExecName: Name_of_the_class_that_implements_the_plug-in
orclODIPPluginAddInfo: Data Access Plugin

dn: cn=EVENT_DELIVERY_OUT, cn=Plugins, cn=APPTYPE, cn=Applications,
cn=Provisioning, cn=Directory Integration Platform, cn=Products,
cn=0OracleContext

changetype: add

objectClass: orclODIPPlugin

orclStatus: ENABLE

orclODIPPluginExecName: Name_ of_the_class_that_implements_the_plug-in
orclODIPPluginAddInfo: Event Delivery Plugin for Outbound

dn: cn=EVENT_DELIVERY_IN, cn=Plugins, cn=APPTYPE, cn=Applications,
cn=Provisioning, cn=Directory Integration Platform, cn=Products,
cn=0racleContext

changetype: add

objectClass: orclODIPPlugin

orclStatus: ENABLE

orclODIPPluginExecName: Name_of_the_class_that_implements_the_plug-in
orclODIPPluginAddInfo: Event Delivery Plugin for Inbound

Sample Code for a Provisioning Plug-in

/* Copyright (c) 2004, Oracle. All rights reserved. */

/* *

DESCRIPTION

Sample PRE DATA Entry Plugin for CREATE operation that
validates the attribute.

PRIVATE CLASSES

None.

NOTES

This class implements the PRE_DATA_ENTRY_CREATE plugin ONLY
MODIFIED (MM/DD/YY)

Java Plug-ins for User Provisioning A-11

Sample Code for a Provisioning Plug-in

12/15/04 \226 Creation
*/
package oracle.ldap.idm;

import java.util.*;
import javax.naming.*;
import javax.naming.ldap.*;
import javax.naming.directory.*;
import oracle.ldap.util.*;
import oracle.idm.provisioning.plugin.*;
/**
* This class implements the PRE_DATA_ENTRY_CREATE plugin ONLY
*
*/
public class SamplePreDataEntryCreatePlugin implements IDataEntryPlugin
{
public ModPropertySet mpBaseUser = null;
public ModPropertySet mpAppUser = null;

public PluginStatus process (ApplicationContext appCtx,IdmUser idmuser,
ModPropertySet baseUserAttr, ModPropertySet appUserAttr)
throws PluginException

PluginStatus retPluginStatus = null;
String retProvStatus = null;
String retProvStatusMsg = null;

LDIFRecord 1Rec = null;
LDIFAttribute 1lAttr = null;
String val = null;
if (null == baseUserAttr.getModPropertyValue (\223departmentNumber\224))
{
mpBaseUser = new ModPropertySet () ;
mpBaseUser .addProperty ("departmentNumber", "ST") ;
appCtx.log(\223Base user attribute \226 departmentNumber missing\224 +
\223Setting default - ST\224);
}
else if (baseUserAttr.getModPropertyValue (\223departmentNumber\224)
.notIn(\223ST\224, \223APPS\224, \224CRM\224))

throw new PluginException(\223Invalid department Number\224);

}
if((null == appUserAttr) ||
null == appUserAttr.getModPropertyValue(\223emailQouta\224))

mpAppUser = new ModPropertySet();

mpAppUser.addProperty ("emailQouta", "50M") ;

appCtx.log (\223Application user attribute - email Qouta missing \224 +
\223Setting default - 50M\224);

}
return new PluginStatus(PluginStatus.SUCCESS, null, null);

public ModPropertySet getBaseAttrMods ()
{

return mpBaseUser;

public ModPropertySet getAppAttrMods ()
{

A-12 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Sample Code for a Provisioning Plug-in

return mpAppUser;

/* Copyright (c) 2004, Oracle. All rights reserved. */

/**

DESCRIPTION

Sample POST DATA Entry Plugin for CREATE operation. Implementing a
policy check to provision only those users who belong to \223SALES\224.
PRIVATE CLASSES

None.

NOTES

This class implements the POST_DATA_ENTRY_ CREATE plugin ONLY
MODIFIED (MM/DD/YY)

12/15/04 \226 Creation

*/
package oracle.ldap.idm;

import java.util.*;
import javax.naming.*;
import javax.naming.ldap.*;
import javax.naming.directory.*;
import oracle.ldap.util.*;
import oracle.idm.provisioning.plugin.*;
/**
* This class implements the POST_DATA_ENTRY_CREATE plugin ONLY
*
*/
public class SamplePostDataEntryCreatePlugin implements IDataEntryPlugin
{
public ModPropertySet mpBaseUser = null;
public ModPropertySet mpAppUser = null;

public PluginStatus process (ApplicationContext appCtx,IdmUser idmuser,
ModPropertySet baseUserAttr, ModPropertySet appUserAttr)
throws PluginException

PluginStatus retPluginStatus = null;
String retProvStatus = null;
String retProvStatusMsg = null;

if (null == baseUserAttr.getModPropertyValue (\223deptartmentNumber\224))
{
mpBaseUser = new ModPropertySet () ;
mpBaseUser .addProperty ("deptartmentNumber ", "SALES");
appCtx.log("Base user attribute \221c\222 is missing");

retProvStatus = IdmUser.PROVISION_ REQUIRED;
retProvStatusMsg = "Provision policy: Only \221SALES\222\224.
}
else if (baseUserAttr.getModPropertyValue (\223deptartmentNumber\224)
.equals (\223SALES\224))

{
retProvStatus = IdmUser.PROVISION_ REQUIRED;
retProvStatusMsg = "Provision policy: Only \221SALES\222\224.
}
else
{

// do not provision those users who do not belong to SALES.
retProvStatus = IdmUser.PROVISION_NOT REQUIRED;

Java Plug-ins for User Provisioning A-13

Sample Code for a Provisioning Plug-in

retProvStatusMsg =
"Do not provision the person who is not from \221SALES\222";

return new PluginStatus(PluginStatus. SUCCESS, retProvStatusMsg,
retProvStatus) ;

public ModPropertySet getBaseAttrMods ()
{

return mpBaseUser;

public ModPropertySet getAppAttrMods ()
{

return mpAppUser;

/* Copyright (c) 2004, Oracle. All rights reserved. */
/*'k

DESCRIPTION

Sample DATA Access Plugin.

NOTES

This class implements the DATA_ACCESS plugin
MODIFIED (MM/DD/YY)

12/15/04 \226 Creation

*/
package oracle.ldap.idm;

import javax.naming.*;
import javax.naming.ldap.*;
import javax.naming.directory.*;
import oracle.ldap.util.*;
import oracle.idm.provisioning.plugin.*;

/**

* This class implements the DATA_ACCESS plugin ONLY

*

*/
public class SampleDataAccessPlugin implements IDataAccessPlugin
{

public PluginStatus process(ApplicationContext appCtx,IdmUser idmuser,
ModPropertySet baseUserAttr,ModPropertySet appUserAttr)
throws PluginException

try {
DirContext dirCtx = appCtx.getDirCtx();
if (appCtx.getCallOp() .equals (ApplicationContext.OP_CREATE)
{
// Use the directory context and create the entry.
}
elseif (appCtx.getCallOp().equals (ApplicationContext.0OP_MODIFY)
{
// Use the directory context and modify the entry.
}
} catch (Exception e) {
throw new PluginException(e);
}
return new PluginStatus(PluginStatus.SUCCESS, null, null);

A-14 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Sample Code for a Provisioning Plug-in

public PropertySet getAppUserData(ApplicationContext appCtx,
IdmUser idmuser, String [] regAttrs) throws PluginException

VarPropertySet vpSet = null;
DirContext dirCtx = appCtx.getDirCtx();

try {
Attributes attrs= dirCtx.getAttributes (\223myAppContainer\224);

vpSet = new VarPropertySet(); // Populate the VarPropertySet from attrs
} catch(Exception ne) {

throw new PluginException(e);
}
return vpSet; }

Java Plug-ins for User Provisioning A-15

Sample Code for a Provisioning Plug-in

A-16 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

B

DSML Syntax

Directory Services Mark-up Language (DSML) is deprecated in Oracle Fusion
Middleware 11g Release 1 (11.1.1) and might not be supported in future releases.

This appendix contains the following sections:
» Capabilities of DSML

= Benefits of DSML

= DSML Syntax

= Tools Enabled for DSML

Capabilities of DSML

Directory services form a core part of distributed computing. XML is becoming the
standard markup language for Internet applications. As directory services are brought
to the Internet, there is a pressing and urgent need to express the directory information
as XML data. This caters to the growing breed of applications that are not
LDAP-aware yet require information exchange with a LDAP directory server.

Directory Services Mark-up Language (DSML) defines the XML representation of

LDAP information and operations. The LDAP Data Interchange Format (LDIF) is

used to convey directory information, or a set of changes to be applied to directory
entries. The former is called Attribute Value Record and the latter is called Change
Record.

Benefits of DSML

Using DSML with Oracle Internet Directory and Internet applications makes it easier
to flexibly integrate data from disparate sources. Also, DSML enables applications that
do not use LDAP to communicate with LDAP-based applications, easily operating on
data generated by an Oracle Internet Directory client tool or accessing the directory
through a firewall.

DSML is based on XML, which is optimized for delivery over the Web. Structured data
in XML is uniform and independent of application or vendors, thus making possible
numerous new flat file type synchronization connectors. After it is in XML format, the
directory data can be made available in the middle tier and have more meaningful
searches performed on it.

DSML Syntax B-1

DSML Syntax

DSML Syntax

A DSML version 1 document describes either directory entries, a directory schema or
both. Each directory entry has a unique name called a distinguished name (DN). A
directory entry has several property-value pairs called directory attributes. Every
directory entry is a member of several object classes. An entry's object classes constrain
the directory attributes the entry can take. Such constraints are described in a directory
schema, which may be included in the same DSML document or may be in a separate
document.

The following subsections briefly explain the top-level structure of DSML and how to
represent the directory and schema entries.

Top-Level Structure

The top-level document element of DSML is of the type dsml, which may have child
elements of the following types:

directory-entries
directory-schema

The child element directory-entries may in turn have child elements of the type entry.
Similarly the child element directory-schema may in turn have child elements of the
types class and attribute-type.

At the top level, the structure of a DSML document looks like this:

<!- a document with directory & schema entries -->
<dsml:directory-entries>
<dsml:entry dn="...">...</dsml:entry>

</dsml:directory-entries>

<dsml:directory-schema>
<dsml:class id="..." ...>...</dsml:class>
<dsml:attribute-type id="..." ...>...</dsml:attribute-type>

</dsml:directory-schema>
</dsml:dsml>

Directory Entries

The element type entry represents a directory entry in a DSML document. The
entry element contains elements representing the entry's directory attributes. The
distinguished name of the entry is indicated by the XML attribute dn.

Here is an XML entry to describe the directory entry:

<dsml:entry dn="uid=Heman, c=in, dc=oracle, dc=com">
<dsml:objectclass>
<dsml:oc-value>top</dsml:oc-value>
<dsml:oc-value ref="#person">person</dsml:oc-value>
<dsml:oc-value>organizationalPerson</dsml:oc-value>
<dsml :oc-value>inetOrgPerson</dsml :oc-value>

B-2 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

Tools Enabled for DSML

</dsml:objectclass>

<dsml:attr name="sn">
<dsml:value>Siva</dsml:value></dsml:attr>
<dsml:attr name="uid">

<dsml :value>Heman</dsml:value></dsml:attr>
<dsml:attr name="mail">

<dsml:attr name="givenname">

<dsml:value>Siva V. Kumar</dsml:value></dsml:attr>
<dsml:attr name="cn">

<dsml :value>SVK@example.com</dsml:value></dsml:attr>
<dsml:value>Siva Kumar</dsml:value></dsml:attr>

The oc-value's ref is a URI Reference to a class element that defines the object
class. In this case it is a URI [9] Reference to the element that defines the person object
class. The child elements objectclass and attr are used to specify the object
classes and the attributes of a directory entry.

Schema Entries

The element type class represents a schema entry in a DSML document. The class
element takes an XML attribute id to make referencing easier.

For example, the object class definition for the person object class might look like the
following:

<dsml:class id="person" superior="#top" type="structural">
<dsml :name>person</dsml : name>
<dsml:description>...</dsml:description>
<dsml:object-identifier>2.5.6.6</object-identifier>
<dsml:attribute ref="#sn" required="true"/>
<dsml:attribute ref="#cn" required="true"/>
<dsml:attribute ref="#userPassword" required="false"/>
<dsml:attribute ref="#telephoneNumber" required="false"/>
<dsml:attribute ref="#seeAlso" required="false"/>
<dsml:attribute ref="#description" required="false"/>

</dsml:class>

The directory attributes are described in a similar way. For example, the attribute
definition for the cn attribute may look like this:

<dsml:attribute-type id="cn">
<dsml : name>cn</dsml : name>
<dsml:description>...</dsml:description>
<dsml:object-identifier>2.5.4.3</object-identifier>
<dsml:syntax>1.3.6.1.4.1.1466.115.121.1.44</dsml:syntax>
</dsml:attribute-type>

Tools Enabled for DSML

With the XML framework, you can now use non-ldap applications to access directory
data. The XML framework broadly defines the access points and provides the
following tools:

s ldapadd
s ldapaddmt

m ldapsearch

DSML Syntax B-3

Tools Enabled for DSML

See Also: "Oracle Internet Directory Server Administration Tools"
in Oracle Fusion Middleware Reference for Oracle Identity Management for
information about syntax and usage.

The client tool 1difwrite generates directory data and schema LDIF files. If you
convert these LDIF files to XML, you can store the XML file on an application server
and query it. The query and response time is small compared to performing an LDAP
operation against an LDAP server.

B-4 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

C

Migrating from Netscape LDAP SDK API to

Features

Functions

Oracle LDAP SDK API

The Oracle Internet Directory SDK C API is described in Chapter 8, "C API Reference".
This Appendix outlines differences between the Netscape LDAP SDK and the Oracle
Internet Directory LDAP SDK that are important when migrating code.

The following features of the Oracle Internet Directory LDAP SDK are different from
Netscape's SDK.

In the Netscape SDK, a client must register an LDAP Rebind Call Back to handle a
referral. This is automatically handled in the Oracle LDAP SDK.

Access to the LDAP Structure is different. The LDAP handle in Netscape LDAP
SDK is type opaque. Accessory functions are required to access individual fields
within this handle. In the Oracle Internet Directory LDAP SDK, the LDAP
structure is exposed and a client can modify individual fields within the structure.

Use ldap_open() instead of 1dap_init() with the Oracle LDAP SDK.

SSL connection initialization requires different function calls and procedures in the
Oracle LDAP SDK. See Chapter 8, "C API Reference"for information about Oracle
Internet Directory function calls for SSL.

The Oracle Internet Directory C API depends on the Oracle environment,
including libraries and other files.You must install Oracle Application Server or
Oracle Database and set the environment variable §ORACLE_HOME to an
appropriate location before you build your application.

An LDAP SDK user must use an allocation function that clears memory, such as
calloc(), to allocate an LDAPMod structure().

The Oracle Internet Directory API is not thread-safe.

The following functions are available in Netscape LDAP SDK and not in Oracle LDAP
SDK:

The Oracle LDAP SDK does not have the function Idap_ber_free(). Use ber_free()
instead.

The Oracle LDAP SDK does not have the function ldap_get_lderrno() for
retrieving the 1d error and matched string. You can retrieve this information

Migrating from Netscape LDAP SDK API to Oracle LDAP SDK APl C-1

Macros

directly by accessing the field LDAPId_matched and LDAPId_error. These are the
only fields of the LDAP structure that you should ever need to access.

Macros

s LDAPS PORT is not defined in the Oracle LDAP SDK. Use LDAP_SSIL._PORT
instead.

s LDAP AFFECT MULTIPLE_DSA is not defined in the Oracle LDAP SDK. This is
a Netscape-specific macro.

C-2 Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management

A

abandoning an operation, 8-31
access control, 2-4,2-5
and authorization, 2-5
access control information (ACI), 2-6
attributes, 2-5
directives
format, 2-6
Access Control List (ACL), 2-5
access control lists (ACLs), 2-5
ACI. See access control information (ACI)
ACLs. See Access Control List (ACL)
anonymous authentication, 2-5
application context
provisioning plug-ins, A-10
applications, building
with the C API, 8-48
attributes
types, 2-3
values, 2-3
authentication, 2-4
anonymous, 2-5
certificate-based, 2-5
modes, SSL, 8-1,8-2
one-way SSL, 2-5
options, 2-4
password-based, 2-5
SSL, 2-5,8-1
none, 8-2
one-way, 8-2
two-way, 8-2
strong, 2-5
to a directory server
enabling, 2-10
enabling, by using DBMS_LDAP, 2-11
enabling, by using the C API, 2-10
to the directory, 8-11
two-way SSL, 2-5
authorization, 2-4,2-5
authorization ID, 2-4

Cc

C API
functions

Index

abandon, 8-31
abandon_ext, 8-31
add, 8-27

add_ext_s, 8-27
add_s, 8-27
compare, 8-21
compare_ext, 8-21
compare_ext_s, 8-21
compare_s, 8-21
count_entries, 8-37
count_references, 8-37
count_values, 8-39
count_values_len, 8-39
delete, 8-28
delete_ext, 8-28
delete_ext_s, 8-28
delete_s, 8-28
dn2ufn, 8-40
err2string, 8-33
explode_dn, 8-40
explode_rdn, 8-40
extended_operation, 8-29
extended_operation_s, 8-29
first_attribute, 8-37
first_entry, 8-37
first_message, 8-36
first_reference, 8-37
get_dn, 8-40
get_entry_controls, 8-40
get_option, 8-6
get_values, 8-39
get_values_len, 8-39
init_ssl call, 8-2
modify, 8-23
modify_ext, 8-23
modify_ext_s, 8-23
modify_s, 8-23
msgid, 8-32
msgtype, 8-32
next_attribute, 8-37
next_entry, 8-37
next_message, 8-36
next_reference, 8-37
parse_extended_result, 8-33
parse_reference, 8-41
parse_result, 8-33

Index-1

parse_sasl_bind_result, 8-33
rename, 8-25
rename_s, 8-25
result, 8-32
sasl_bind, 8-11
sasl_bind_s, 8-11
search_st, 8-18
set_option, 8-6
simple_bind, 8-11
simple_bind_s, 8-11
unbind_ext, 8-17
unbind_s, 8-17
value_free, 8-39
value_free_len, 8-39
sample usage, 8-42
summary, 8-3
usage with SSL, 8-42
usage without SSL, 8-43
certificate authority, 2-5
certificate-based authentication, 2-5
certificates, 2-5
children of an entry, listing, 8-21

components
Oracle Identity and Access Management
SDK, 1-3

CONNECT_BY control, 3-9
controls, working with, 3-7, 3-9, 8-16

D

DAP Information Model, 2-3
data
integrity, 2-4,2-6
privacy, 2-4,2-6
data-type summary, 9-5
DBMS_LDAP package
searching by using, 2-11
DBMS_LDAP_UTL
data-types, 11-34
function return codes, 11-32
group-related subprograms
about, 11-2
function create_group_handle, 11-14
function get_group_dn, 11-17
function get_group_properties, 11-16
function set_group_handle_properties, 11-15
miscellaneous subprograms
about, 11-2
function check_interface_version, 11-30
function create_mod_propertyset, 11-28
function get_property_names, 11-24
function get_property_values, 11-25
function get_property_values_len, 11-26
function normalize_dn_with_case, 11-24
function populate_mod_propertyset, 11-29
procedure free_handle, 11-30
procedure free_mod_propertyset, 11-29
procedure free_propertyset_collection, 11-27
subscriber-related subprograms
about, 11-2

Index-2

function create_subscriber_handle, 11-19
function get_subscriber_dn, 11-21
function get_subscriber_properties, 11-19
user-related subprograms
about, 11-1
function authenticate_user, 11-3
function check_group_membership, 11-11
function create_user_handle, 11-5
function get_group_membership, 11-13
function get_user_dn, 11-10
function get_user_extended_properties, 11-9
function get_user_properties, 11-6
function locate_subscriber_for_user, 11-12
function set_user_handle_properties, 11-5
function set_user_properties, 11-7
DBMS_LDAP_UTL PL/SQL Reference, 11-1
dependencies and limitations, 8-48
C API, 8-48
DES40 encryption, 2-6
directives, 2-6
Directory Information Tree, 2-2
directory information tree (DIT), 2-2
directory operations
provisioning plug-ins, A-10
directory server discovery, 4-4
distinguished names, 2-2
components of, 2-2
format, 2-2
DNis. see distinguished names.
documentation, related, 0-xviii
dynamic password verifiers
controls, 3-7,3-9
creating, 3-7to3-9
parameters, 3-7,3-8

E

encryption
DES40, 2-6
levels available in Oracle Internet Directory, 2-6
RC4_40, 2-6
entries
distinguished names of, 2-2
locating by using distinguished names
naming, 2-2
reading, 8-21
errors
handling and parsing results, 8-33
exception summary, 9-3

F

filters, 2-14
formats, of distinguished names, 2-2

H

header files and libraries, required, 8-48
hierarchical search, 3-9
history of LDAP, 2-1

integrity, data, 2-6
interface calls, SSL, 8-2

J

Java, 1-3,2-8
Java API reference
class descriptions
Property class, 5-2
PropertySet class, 5-2
PropertySetCollection class, 5-2
Java APIs for Oracle Internet Directory, 10-1
JAZN

see Oracle Application Server Java Authentication

and Authorization Service
JNDI, 1-3,2-8
JNDI location, 10-1

L

LDAP
functional model, 2-3
history, 2-1
information model, 2-3
messages, obtaining results and peeking
inside, 8-32
naming model, 2-2
operations, performing, 8-18
security model, 2-4
session handle options, 8-6
in the C API, 2-10
sessions
initializing, 2-8
version 2 C API, 8-1
LDAP APIs, 1-5
LDAP Functional Model, 2-3
LDAP Models, 2-2
LDAP Naming Model, 2-2
LDAP Security Model, 2-4
ldap-bind operation, 2-4
login name
finding, 5-5

N

naming entries, 2-2

(o)

one-way SSL authentication, 2-5, 8-2
OpenLDAP Community, 0-xviii
operational attributes

ACI, 2-5

Oracle Application Server Java Authentication and

Authorization Service
defined, 1-2
Oracle extensions
application
deinstallation logic, 1-5

runtime logic, 1-5
shutdown logic, 1-5
startup and bootstrap logic, 1-4
group management functionality, 4-3
programming abstractions
for Java language, 5-1, 6-1
for PL/SQL language, 6-1
programming abstractions for Java language,
6-1
user management functionality, 5-1, 6-1
Oracle extensions to support SSL, 8-1
Oracle Identity and Access Management
modifying existing applications, 1-2
Oracle Identity Management
integrating applications with
supported services, 1-1
Oracle SSL call interface, 8-1
Oracle SSL extensions, 8-1
Oracle SSL-related libraries, 8-48
Oracle system libraries, 8-48
Oracle wallet, 8-2
Oracle Wallet Manager, 8-2
required for creating wallets, 8-48
Oracle xxtensions
what an LDAP-integrated application looks
like, 1-3
overview of LDAP models, 2-2

P

5-1,

password-based authentication, 2-5
passwords
policies, 2-6
permissions, 2-4,2-5
PL/SQL API, 9-1
contains subset of C API, 2-8
data-type summary, 9-5
exception summary, 9-3

functions
add_s, 9-30
ber_free, 9-37
bind_s, 9-7

compare_s, 9-9
count_entries, 9-15
count_values, 9-32
count_values_len, 9-32
create_mod_array, 9-24
dbms_ldap.init, 9-6
delete_s, 9-21
err2string, 9-23
explode_dn, 9-34
first_attribute, 9-16
first_entry, 9-13
get_dn, 9-18
get_values, 9-19
get_values_len, 9-20
init, 9-5

modify_s, 9-29
modrdn2_s, 9-22
msgfree, 9-36

Index-3

next_attribute, 9-17
next_entry, 9-14
open_ssl, 9-35,9-36, 9-37
rename_s, 9-33
search_s, 9-10
search_st, 9-12
simple_bind_s, 9-6
unbind_s, 9-8
loading into database, 2-8
procedures
free_mod_array, 9-31
populate_mod_array (binary version), 9-25
populate_mod_array (string version), 9-25
subprograms, 9-5
summary, 9-1
plug-ins
provisioning interface, A-1
privacy, data, 2-4,2-6
privileges, 2-4,2-5
procedures, PL/SQL
free_mod_array, 9-31
populate_mod_array (binary version), 9-25
populate_mod_array (string version), 9-25
provisioning interface plug-ins, A-1
provisioning plug-ins
directory operations, A-10
getting application context, A-10

R

RC4_40 encryption, 2-6

RDN:s. see relative distinguished names (RDNs)
related documentation, 0-xviii

relative distinguished names (RDNs), 2-2
results, stepping through a list of, 8-36

RFC 1823, 8-48

S

sample C APl usage, 8-42
SDK components, 1-3

search
hierarchical, 3-9
results
parsing, 8-36
scope, 2-13

search-related operations, flow of, 2-12
security, within Oracle Internet Directory
environment, 2-4
service location record, 4-4
sessions
closing, 8-17
enabling termination by using DBMS_
LDAP, 2-18
initializing
by using DBMS_LDAP, 2-9
by using the C API, 2-8
session-specific user identity, 2-4
simple authentication, 2-5
Smith, Mark, 0-xviii

Index-4

SSL
authentication modes, 8-1
default port, 2-5
handshake, 8-2
interface calls, 8-2
no authentication, 2-5
one-way authentication, 2-5
Oracle extensions, 8-1

provide encryption and decryption,

two-way authentication, 2-5
wallets, 8-2

SSO login name
finding, 5-5

strong authentication, 2-5

T

8-1

TCP/IP socket library, 8-48
two-way authentication, SSL, 8-2
types of attributes, 2-3

w

wallets
SSL, 8-2
support, 8-2

	Contents
	List of Figures
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	What's New in the SDK?
	New Features in the 11g Release 1 (11.1.1) SDK
	New Features in the 10g (10.1.4.0.1) SDK
	New Features in the Release 10.1.2 SDK
	New Features in the Release 9.0.4 SDK

	Part I Programming for Oracle Identity Management
	1 Developing Applications for Oracle Identity Management
	Oracle Identity Management Services Available for Application Integration
	Integrating Existing Applications with Oracle Identity Management
	Oracle Identity Management Programming: An Overview
	Programming Languages Supported by the Oracle Internet Directory SDK
	Oracle Identity Management SDK Components
	Application Development in the Oracle Identity Management Environment
	Architecture of an Oracle Identity Management Application
	Oracle Identity Management Interactions During the Application Life Cycle
	Services and APIs for Integrating Applications with Oracle Identity Management
	Integrating Existing Applications with Oracle Identity Management

	2 Developing Applications with Standard LDAP APIs
	Sample Code
	History of LDAP
	LDAP Models
	Naming Model
	Information Model
	Functional Model
	Security Model
	Authentication
	Anonymous Authentication
	Simple Authentication
	Authentication Using Secure Sockets Layer (SSL)

	Access Control and Authorization
	Data Integrity
	Data Privacy
	Password Policies

	About the Standard LDAP APIs
	API Usage Model
	Getting Started with the C API
	Getting Started with the DBMS_LDAP Package
	Getting Started with the Java API

	Initializing an LDAP Session
	Initializing the Session by Using the C API
	Initializing the Session by Using DBMS_LDAP
	Initializing the Session by Using JNDI

	Authenticating an LDAP Session
	Authenticating an LDAP Session by Using the C API
	Authenticating an LDAP Session by Using DBMS_LDAP

	Searching the Directory
	Program Flow for Search Operations
	Search Scope
	Filters
	Searching the Directory by Using the C API
	Searching the Directory by Using DBMS_LDAP

	Terminating the Session
	Terminating the Session by Using the C API
	Terminating the Session by Using DBMS_LDAP

	3 Extensions to the LDAP Protocol
	SASL Authentication
	SASL Authentication by Using DIGEST-MD5
	Steps Involved in SASL Authentication by Using DIGEST-MD5

	SASL Authentication by Using External Mechanism

	Using Controls
	Proxying on Behalf of End Users
	Creating Dynamic Password Verifiers
	Request Control for Dynamic Password Verifiers
	Syntax for DynamicVerifierRequestControl
	Parameters Required by the Hashing Algorithms
	Configuring the Authentication APIs
	Parameters Passed If ldap_search Is Used
	Parameters Passed If ldap_compare Is Used

	Response Control for Dynamic Password Verifiers
	Obtaining Privileges for the Dynamic Verifier Framework

	Performing Hierarchical Searches
	New Features of the CONNECT_BY Control
	Value Fields in the CONNECT_BY Control

	Sorted LDAP Search Results
	Paged LDAP Search Results
	Password Policies
	User Provisioning
	User Authentication
	LDAP Bind/Compare Operation-Based Authentication
	LDAP Search Operation-Based Authentication
	Ability to Check and Enforce State Policies at Authentication Time
	Ability to Inform the Directory of Authentication Success/Failure

	User Account Maintenance

	4 Developing Applications With Oracle Extensions to the Standard APIs
	Sample Code
	Using Oracle Extensions to the Standard APIs
	Creating an Application Identity in the Directory
	Creating an Application Identity
	Assigning Privileges to an Application Identity

	Managing Users
	Managing Groups
	Managing Realms
	Discovering a Directory Server
	Benefits of Oracle Internet Directory Discovery Interfaces
	Usage Model for Discovery Interfaces
	Determining Server Name and Port Number From DNS
	Mapping the DN of the Naming Context
	Search by Domain Component of Local Machine
	Search by Default SRV Record in DNS

	Environment Variables for DNS Server Discovery
	Programming Interfaces for DNS Server Discovery

	5 Using the Java API Extensions to JNDI
	Sample Code
	Installing the Java Extensions
	Using the oracle.ldap.util Package to Model LDAP Objects
	The Classes PropertySetCollection, PropertySet, and Property
	Managing Users
	Authenticating Users
	Creating Users
	Retrieving User Objects
	Retrieving Objects from Realms
	Example: Search for Oracle Single Sign-On Login Name
	Discovering a Directory Server
	Example: Discovering a Directory Server
	Using DIGEST-MD5 to Perform SASL Authentication
	Example: Using SASL Digest-MD5 auth-int and auth-conf Modes

	6 Using the API Extensions in PL/SQL
	Sample Code
	Installing the PL/SQL Extensions
	Using Handles to Access Directory Data
	Managing Users
	Authenticating Users
	Dependencies and Limitations of the PL/SQL LDAP API

	7 Developing Provisioning-Integrated Applications
	Part II Oracle Internet Directory Programming Reference
	8 C API Reference
	About the Oracle Internet Directory C API
	Oracle Internet Directory SDK C API SSL Extensions
	SSL Interface Calls
	Wallet Support

	Functions in the C API
	The Functions at a Glance
	Initializing an LDAP Session
	ldap_init and ldap_open

	LDAP Session Handle Options
	ldap_get_option and ldap_set_option

	Getting Bind Credentials for Chasing Referrals
	ldap_set_rebind_proc

	Authenticating to the Directory
	ldap_sasl_bind, ldap_sasl_bind_s, ldap_simple_bind, and ldap_simple_bind_s

	SASL Authentication Using Oracle Extensions
	ora_ldap_init_SASL
	ora_ldap_create_cred_hdl, ora_ldap_set_cred_props, ora_ldap_get_cred_props, and ora_ldap_free_cred_hdl

	Working With Controls
	Closing the Session
	ldap_unbind, ldap_unbind_ext, and ldap_unbind_s

	Performing LDAP Operations
	ldap_search_ext, ldap_search_ext_s, ldap_search, and ldap_search_s
	Reading an Entry
	Listing the Children of an Entry
	ldap_compare_ext, ldap_compare_ext_s, ldap_compare, and ldap_compare_s
	ldap_modify_ext, ldap_modify_ext_s, ldap_modify, and ldap_modify_s
	ldap_rename and ldap_rename_s
	ldap_add_ext, ldap_add_ext_s, ldap_add, and ldap_add_s
	ldap_delete_ext, ldap_delete_ext_s, ldap_delete, and ldap_delete_s
	ldap_extended_operation and ldap_extended_operation_s

	Abandoning an Operation
	ldap_abandon_ext and ldap_abandon

	Obtaining Results and Peeking Inside LDAP Messages
	ldap_result, ldap_msgtype, and ldap_msgid

	Handling Errors and Parsing Results
	ldap_parse_result, ldap_parse_sasl_bind_result, ldap_parse_extended_result, and ldap_err2string

	Stepping Through a List of Results
	ldap_first_message and ldap_next_message

	Parsing Search Results
	ldap_first_entry, ldap_next_entry, ldap_first_reference, ldap_next_reference, ldap_ count_entries, and ldap_count_references
	ldap_first_attribute and ldap_next_attribute
	ldap_get_values, ldap_get_values_len, ldap_count_values, ldap_count_values_len, ldap_value_free, and ldap_value_free_len
	ldap_get_dn, ldap_explode_dn, ldap_explode_rdn, and ldap_dn2ufn
	ldap_get_entry_controls
	ldap_parse_reference

	Sample C API Usage
	C API Usage with SSL
	C API Usage Without SSL
	C API Usage for SASL-Based DIGEST-MD5 Authentication
	Setting and Using a Callback Function to Get Credentials When Chasing Referrals

	Required Header Files and Libraries for the C API
	Dependencies and Limitations of the C API

	9 DBMS_LDAP PL/SQL Reference
	Summary of Subprograms
	Exception Summary
	Data Type Summary
	Subprograms
	FUNCTION init
	FUNCTION simple_bind_s
	FUNCTION bind_s
	FUNCTION unbind_s
	FUNCTION compare_s
	FUNCTION search_s
	FUNCTION search_st
	FUNCTION first_entry
	FUNCTION next_entry
	FUNCTION count_entries
	FUNCTION first_attribute
	FUNCTION next_attribute
	FUNCTION get_dn
	FUNCTION get_values
	FUNCTION get_values_len
	FUNCTION delete_s
	FUNCTION modrdn2_s
	FUNCTION err2string
	FUNCTION create_mod_array
	PROCEDURE populate_mod_array (String Version)
	PROCEDURE populate_mod_array (Binary Version)
	PROCEDURE populate_mod_array (Binary Version. Uses BLOB Data Type)
	FUNCTION get_values_blob
	FUNCTION count_values_blob
	FUNCTION value_free_blob
	FUNCTION modify_s
	FUNCTION add_s
	PROCEDURE free_mod_array
	FUNCTION count_values
	FUNCTION count_values_len
	FUNCTION rename_s
	FUNCTION explode_dn
	FUNCTION open_ssl
	FUNCTION msgfree
	FUNCTION ber_free
	FUNCTION nls_convert_to_utf8
	FUNCTION nls_convert_to_utf8
	FUNCTION nls_convert_from_utf8
	FUNCTION nls_convert_from_utf8
	FUNCTION nls_get_dbcharset_name

	10 Java API Reference
	11 DBMS_LDAP_UTL PL/SQL Reference
	Summary of Subprograms
	Subprograms
	User-Related Subprograms
	Function authenticate_user
	Function create_user_handle
	Function set_user_handle_properties
	Function get_user_properties
	Function set_user_properties
	Function get_user_extended_properties
	Function get_user_dn
	Function check_group_membership
	Function locate_subscriber_for_user
	Function get_group_membership

	Group-Related Subprograms
	Function create_group_handle
	Function set_group_handle_properties
	Function get_group_properties
	Function get_group_dn

	Subscriber-Related Subprograms
	Function create_subscriber_handle
	Function get_subscriber_properties
	Function get_subscriber_dn
	Function get_subscriber_ext_properties

	Property-Related Subprograms
	Miscellaneous Subprograms
	Function normalize_dn_with_case
	Function get_property_names
	Function get_property_values
	Function get_property_values_len
	Procedure free_propertyset_collection
	Function create_mod_propertyset
	Function populate_mod_propertyset
	Procedure free_mod_propertyset
	Procedure free_handle
	Function check_interface_version
	Function get_property_values_blob
	Procedure property_value_free_blob

	Function Return Code Summary
	Data Type Summary

	12 Oracle Directory Integration and Provisioning Java API Reference
	Application Configuration
	Application Registration and Provisioning Configuration
	Application Registration
	Provisioning Configuration
	Application Identity Information
	Application Identity Realm Information
	Application Provisioning and Default Policy
	Application User Data Location
	Event Interface Configuration
	Application User Attribute and Defaults Configuration
	Application Provisioning Plug-in Configuration
	Application Propagation Configuration
	Application Event Propagation Run Time Status

	Application Configuration Classes

	User Management
	Creating a User
	Modifying a User
	Deleting a User
	Looking Up a User

	Debugging
	Sample Code

	13 Oracle Directory Integration Platform PL/SQL API Reference
	Versioning of Provisioning Files and Interfaces
	Extensible Event Definition Configuration
	Inbound and Outbound Events
	PL/SQL Bidirectional Interface (Version 3.0)
	PL/SQL Bidirectional Interface (Version 2.0)
	Provisioning Event Interface (Version 1.1)
	Predefined Event Types
	Attribute Type
	Attribute Modification Type
	Event Dispositions Constants
	Callbacks
	GetAppEvent()
	PutAppEventStatus()
	PutOIDEvent()

	Part III Appendixes
	A Java Plug-ins for User Provisioning
	Provisioning Plug-in Types and Their Purpose
	Provisioning Plug-in Requirements
	Data Entry Provisioning Plug-in
	Pre-Data-Entry Provisioning Plug-in
	Post-Data-Entry Provisioning Plug-in

	Data Access Provisioning Plug-in
	Event Delivery Provisioning Plug-in
	Provisioning Plug-in Return Status
	Configuration Template for Provisioning Plug-ins
	Sample Code for a Provisioning Plug-in

	B DSML Syntax
	Capabilities of DSML
	Benefits of DSML
	DSML Syntax
	Top-Level Structure
	Directory Entries
	Schema Entries

	Tools Enabled for DSML

	C Migrating from Netscape LDAP SDK API to Oracle LDAP SDK API
	Features
	Functions
	Macros

	Index
	A
	C
	D
	E
	F
	H
	I
	J
	L
	N
	O
	P
	R
	S
	T
	W

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

