aucun cas, Oracle Corporation et ses affiliés ne sauraient être tenus pour responsables des pertes subies, des coûts occasionnés ou des dommages causés par l'accès à des informations émanant de tiers. Oracle Corporation et ses affiliés déclinent toute responsabilité ou garantie expresse quant aux contenus, produits ou services émanant de tiers. Oracle Corporation et ses affiliés ne sauraient être tenus pour responsables des pertes subies, des coûts occasionnés ou des dommages causés par l'accès à des contenus, produits ou services tiers, ou à leur utilisation.

Les informations fournies dans ce document sont susceptibles de modification sans préavis. Par ailleurs, Oracle Corporation ne garantit pas qu'elles soient exemptes d'erreurs et vous invite, le cas échéant, à lui en faire part par écrit.

Si ce logiciel ou la documentation qui l'accompagne est concédé sous licence au Gouvernement des États-Unis, ou à toute entité qui délivre la licence de ce logiciel ou l'utilise pour le compte du Gouvernement des États-Unis, la notice suivante s'applique:

U.S. GOVERNMENT END USERS. Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

Ce logiciel et la documentation qui l’accompagne sont protégés par les lois sur la propriété intellectuelle. Ils sont concédés sous licence et soumis à des restrictions d’utilisation et de divulgation. Sauf disposition de votre contrat de licence ou de la loi, vous ne pouvez pas copier, reproduire, traduire, diffuser, modifier, breveter, transmettre, distribuer, exposer, exécuter, publier ou afficher le logiciel, même partiellement, sous quelque forme et par quelque procédé que ce soit. Par ailleurs, il est interdit de procéder à toute ingénierie inverse du logiciel, de le désassembler ou de le décompiler, excepté à des fins d’interopérabilité avec des logiciels tiers ou tel que prescrit par la loi.

Les informations fournies dans ce document sont susceptibles de modification sans préavis. Par ailleurs, Oracle Corporation ne garantit pas qu’elles soient exemptes d’erreurs et vous invite, le cas échéant, à lui en faire part par écrit.

Si ce logiciel ou la documentation qui l’accompagne est concédé sous licence au Gouvernement des États-Unis, ou à toute entité qui délivre la licence de ce logiciel ou l’utilise pour le compte du Gouvernement des États-Unis, la notice suivante s’applique:

U.S. GOVERNMENT END USERS. Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

Ce logiciel ou matériel a été développé pour un usage général dans le cadre d’applications de gestion des informations. Ce logiciel ou matériel n’est pas conçu ni n’est destiné à être utilisé dans des applications à risque, notamment dans des applications pouvant causer des dommages corporels. Si vous utilisez ce logiciel ou matériel dans le cadre d’applications dangereuses, il est de votre responsabilité de prendre toutes les mesures de secours, de sauvegarde, de redondance et autres mesures nécessaires à son utilisation dans des conditions optimales de sécurité. Oracle Corporation et ses affiliés déclinent toute responsabilité quant aux dommages causés par l’utilisation de ce logiciel ou matériel pour ce type d’applications.

Oracle et Java sont des marques déposées d’Oracle Corporation et/ou de ses affiliés. Tout autre nom mentionné peut correspondre à des marques appartenant à d’autres propriétaires qu’Oracle.

Intel et Intel Xeon sont des marques ou des marques déposées d’Intel Corporation. Toutes les marques SPARC sont utilisées sous licence et sont des marques ou des marques déposées d’SPARC International, Inc., AMD, Opteron, le logo AMD et le logo AMD Opteron sont des marques ou des marques déposées d’Advanced Micro Devices. UNIX est une marque déposée d’The Open Group.

Ce logiciel ou matériel et la documentation qui l’accompagne peuvent fournir des informations ou des liens donnant accès à des contenus, des produits et des services émanant de tiers. Oracle Corporation et ses affiliés déclinent toute responsabilité ou garantie expresse quant aux contenus, produits ou services émanant de tiers. En aucun cas, Oracle Corporation et ses affiliés ne sauraient être tenus pour responsables des pertes subies, des coûts occasionnés ou des dommages causés par l’accès à des contenus, produits ou services tiers, ou à leur utilisation.
Contents

Preface ...................................................................................................................................................15

1 Managing Terminals and Modems (Overview) ...........................................................................19
What’s New in Managing Terminals and Modems? ...................................................................19
   SPARC: Coherent Console .................................................................................................................19
   SPARC: Changes to How $TERM Value for Console Is Set .................................................................20
   ttymon Invocations on the System Console Managed by SMF .........................................................20
Terminals, Modems, Ports, and Services .......................................................................................21
   Terminal Description .........................................................................................................................21
   Modem Description ............................................................................................................................21
   Ports Description ...............................................................................................................................21
   Services Description ..........................................................................................................................22
   Port Monitors ....................................................................................................................................22
Tools for Managing Terminals and Modems ....................................................................................23
   Serial Ports Tool ...............................................................................................................................23
   Overview of the Service Access Facility ...........................................................................................23

2 Setting Up Terminals and Modems (Tasks) ...................................................................................25
Setting Terminals and Modems (Task Map) ....................................................................................25
   Setting Up Terminals and Modems With Serial Ports Tool (Overview) .........................................26
      Setting Up Terminals .....................................................................................................................26
      Setting Up Modems .......................................................................................................................27
How to Set Up a Terminal, a Modem, and Initialize a Port (Tasks) ....................................................28
   ▼ How to Set Up a Terminal ................................................................................................................28
   ▼ How to Set Up a Modem ..................................................................................................................29
   ▼ How to Initialize a Port ....................................................................................................................30
Troubleshooting Terminal and Modem Problems ............................................................................31
Service States .................................................................................................................. 52
Port Monitor States ........................................................................................................... 52
Port States ..................................................................................................................... 53

4 Managing System Resources (Overview) .................................................................................. 55
What's New in Managing System Resources? ........................................................................ 55
  New `prtconf` Option to Display Product Names .......................................................... 55
  `psrinfo` Command Option to Identify Chip Multithreading Features ..................... 56
  New `localeadm` Command ......................................................................................... 56
Managing System Resources (Road Map) ............................................................................. 57

5 Displaying and Changing System Information (Tasks) ................................................................. 59
Displaying System Information (Task Map) ........................................................................ 59
  Displaying System Information .................................................................................. 60
  ▼ How to Display a System's Physical Processor Type ............................................... 66
  ▼ How to Display a System's Logical Processor Type ................................................ 66
  ▼ How to Display Locales Installed on a System ....................................................... 67
  ▼ How to Determine If a Locale is Installed on a System ........................................... 67
Changing System Information (Task Map) ........................................................................ 68
  Changing System Information .................................................................................. 69
  ▼ How to Set a System's Date and Time Manually ..................................................... 69
  ▼ How to Set Up a Message-Of-The-Day ................................................................ 70
  ▼ How to Change a System's Host Name ................................................................. 70
  ▼ How to Add a Locale to a System ......................................................................... 71
  ▼ How to Remove a Locale From a System ............................................................. 72

6 Managing Disk Use (Tasks) ....................................................................................................... 73
Managing Disk Use (Task Map) ...................................................................................... 73
  Displaying Information About Files and Disk Space ............................................... 74
  ▼ How to Display Information About Files and Disk Space .................................... 75
Checking the Size of Files ............................................................................................ 77
  ▼ How to Display the Size of Files .......................................................................... 77
  ▼ How to Find Large Files ....................................................................................... 78
  ▼ How to Find Files That Exceed a Specified Size Limit ........................................ 79
Ways to Automatically Execute System Tasks ................................................................. 104
  For Scheduling Repetitive Jobs: crontab ................................................................. 105
  For Scheduling a Single Job: at ................................................................. 105
Scheduling a Repetitive System Task (cron) ................................................................. 106
  Inside a crontab File ................................................................. 106
  How the cron Daemon Handles Scheduling ................................................................. 107
  Syntax of crontab File Entries  ................................................................. 108
Creating and Editing crontab Files ........................................................................ 108
  ▼ How to Create or Edit a crontab File ................................................................. 109
  ▼ How to Verify That a crontab File Exists ................................................................. 110
Displaying crontab Files ...................................................................................... 110
  ▼ How to Display a crontab File ................................................................. 110
Removing crontab Files ...................................................................................... 112
  ▼ How to Remove a crontab File ................................................................. 112
Controlling Access to the crontab Command ................................................................. 113
  ▼ How to Deny crontab Command Access ................................................................. 113
  ▼ How to Limit crontab Command Access to Specified Users ................................................................. 114
    How to Verify Limited crontab Command Access ................................................................. 115
Using the at Command (Task Map) ......................................................................... 116
Scheduling a Single System Task (at) ......................................................................... 116
  Description of the at Command ........................................................................ 117
  Controlling Access to the at Command ................................................................. 117
  ▼ How to Create an at Job ................................................................. 117
  ▼ How to Display the at Queue ................................................................. 118
  ▼ How to Verify an at Job ................................................................. 119
  ▼ How to Display at Jobs ................................................................. 119
  ▼ How to Remove at Jobs ................................................................. 119
  ▼ How to Deny Access to the at Command ................................................................. 120
  ▼ How to Verify That at Command Access Is Denied ................................................................. 121

9 Managing System Accounting (Tasks) ....................................................................... 123
  What’s New in System Accounting ........................................................................ 123
  Oracle Solaris Process Accounting and Statistics Improvements ................................................................. 123
  What is System Accounting? ........................................................................ 124
    How System Accounting Works ........................................................................ 124
12 Managing System Processes (Tasks) .................................................................157

What's New in Managing System Processes? ......................................................157

Pseudo Kernel Processes .....................................................................................157

Managing System Processes (Task Map) .............................................................158

Commands for Managing System Processes ......................................................158

Using the ps Command ......................................................................................159

Using the /proc File System and Commands ....................................................161

Managing Processes With Process Commands (/proc) .....................................162

▼ How to List Processes ..................................................................................162

▼ How to Display Information About Processes ............................................163

▼ How to Control Processes ...........................................................................164

Terminating a Process (kill, kill) .....................................................................165

▼ How to Terminate a Process (kill) ...............................................................165

▼ How to Terminate a Process (kill) ...............................................................166

Debugging a Process (pargs, preap) .................................................................167

Managing Process Class Information (Task Map) .............................................168

Managing Process Class Information ................................................................169

Changing the Scheduling Priority of Processes (priocntl) ...............................169

▼ How to Display Basic Information About Process Classes (priocntl) ............170

▼ How to Display the Global Priority of a Process .........................................170

▼ How to Designate a Process Priority (priocntl) ...........................................171

▼ How to Change Scheduling Parameters of a Timesharing Process (priocntl) 172

▼ How to Change the Class of a Process (priocntl) .......................................172

Changing the Priority of a Timesharing Process (nice) ....................................173

▼ How to Change the Priority of a Process (nice) ..........................................174

Troubleshooting Problems With System Processes ...........................................175

13 Monitoring System Performance (Tasks) ....................................................177

Displaying System Performance Information (Task Map) ..............................177

Displaying Virtual Memory Statistics (vmstat) .................................................178

▼ How to Display Virtual Memory Statistics (vmstat) ....................................179
How to Display System Event Information (vmstat -s) ...................................................... 180
How to Display Swapping Statistics (vmstat -S) ......................................................... 180
How to Display Interrupts Per Device (vmstat -i) ...................................................... 181
Displaying Disk Utilization Information (iostat) .......................................................... 181
How to Display Disk Utilization Information (iostat) .................................................. 181
How to Display Extended Disk Statistics (iostat -xtc) ............................................ 183
Displaying Disk Space Statistics (df) ............................................................................ 183
How to Display Disk Space Information (df -k) ......................................................... 184
Monitoring System Activities (Task Map) ..................................................................... 185
Monitoring System Activities (sar) ............................................................................... 186
How to Check File Access (sar -a) .............................................................................. 186
How to Check Buffer Activity (sar -b) ....................................................................... 187
How to Check System Call Statistics (sar -c) ............................................................ 189
How to Check Disk Activity (sar -d) .......................................................................... 190
How to Check Page-Out and Memory (sar -g) .......................................................... 191
Checking Kernel Memory Allocation ......................................................................... 192
How to Check Kernel Memory Allocation (sar -k) ..................................................... 193
How to Check Interprocess Communication (sar -m) .............................................. 194
How to Check Page-In Activity (sar -p) ....................................................................... 195
How to Check Queue Activity (sar -q) ....................................................................... 196
How to Check Unused Memory (sar -r) ....................................................................... 197
How to Check CPU Utilization (sar -u) ....................................................................... 198
How to Check System Table Status (sar -v) ............................................................... 199
How to Check Swapping Activity (sar -w) ................................................................. 200
How to Check Terminal Activity (sar -y) ..................................................................... 202
How to Check Overall System Performance (sar -A) .................................................. 203
Collecting System Activity Data Automatically (sar) ................................................... 203
Running the sadc Command When Booting ................................................................. 203
Running the sadc Command Periodically With the sa1 Script ................................... 204
Producing Reports With the sa2 Shell Script ............................................................... 204
Setting Up Automatic Data Collection (sar) ............................................................... 204
How to Set Up Automatic Data Collection ................................................................... 206

14 Troubleshooting Software Problems (Overview) .................................................. 207
What’s New in Troubleshooting? .................................................................................. 207
Troubleshooting Core File Problems .................................................................................................................. 228
Examining Core Files ........................................................................................................................................... 228

17 Managing System Crash Information (Tasks) ............................................................................................................... 229
What’s New in Managing System Crash Information ............................................................................................... 229
  Fast Crash Dump Facility ........................................................................................................................................ 229
Managing System Crash Information (Task Map) ....................................................................................................... 229
System Crashes (Overview) ........................................................................................................................................ 230
  Oracle Solaris ZFS Support for Swap Area and Dump Devices .................................................................................. 231
  x86: System Crashes in the GRUB Boot Environment ............................................................................................... 231
  System Crash Dump Files .......................................................................................................................................... 231
  Saving Crash Dumps .................................................................................................................................................. 231
  The dumpadm Command .......................................................................................................................................... 232
  How the dumpadm Command Works ........................................................................................................................ 233
  Dump Devices and Volume Managers ........................................................................................................................ 233
Managing System Crash Dump Information ................................................................................................................ 234
  ▼ How to Display the Current Crash Dump Configuration ....................................................................................... 234
  ▼ How to Modify a Crash Dump Configuration ........................................................................................................ 234
  ▼ How to Examine a Crash Dump ................................................................................................................................ 236
  ▼ How to Recover From a Full Crash Dump Directory (Optional) .............................................................................. 237
  ▼ How to Disable or Enable Saving Crash Dumps ...................................................................................................... 238

18 Troubleshooting Miscellaneous Software Problems (Tasks) ................................................................................... 239
What to Do If Rebooting Fails ................................................................................................................................... 239
What to Do If You Forgot the Root Password ............................................................................................................ 240
x86: What to Do If the SMF Boot Archive Service Fails During a System Reboot ....................................................... 243
What to Do If a System Hangs ..................................................................................................................................... 244
What to Do If a File System Fills Up ........................................................................................................................... 245
  File System Fills Up Because a Large File or Directory Was Created ........................................................................ 245
  A TMPFS File System is Full Because the System Ran Out of Memory .................................................................. 246
What to Do If File ACLs Are Lost After Copy or Restore ............................................................................................... 246
Troubleshooting Backup Problems .............................................................................................................................. 246
  The root (/) File System Fills Up After You Back Up a File System ........................................................................... 246
  Make Sure the Backup and Restore Commands Match ............................................................................................ 247
  Check to Make Sure You Have the Right Current Directory ....................................................................................... 247
Interactive Commands ............................................................................................................ 247
Troubleshooting Common Agent Container Problems in the Oracle Solaris OS ..................... 247
Port Number Conflicts ........................................................................................................... 248
▼ How to Check Port Numbers ......................................................................................... 248
Compromised Security for Superuser Password ................................................................ 249
▼ How to Generate Security Keys for the Oracle Solaris OS ............................................ 249

19 Troubleshooting File Access Problems (Tasks) ............................................................... 251
Solving Problems With Search Paths (Command not found) .............................................. 251
▼ How to Diagnose and Correct Search Path Problems ...................................................... 252
Solving File Access Problems ............................................................................................. 253
Changing File and Group Ownements ............................................................................... 254
Recognizing Problems With Network Access ...................................................................... 254

20 Resolving UFS File System Inconsistencies (Tasks) ....................................................... 255
fsck Error Messages .............................................................................................................. 256
General fsck Error Messages ............................................................................................... 257
Initialization Phase fsck Messages ....................................................................................... 259
Phase 1: Check Blocks and Sizes Messages ......................................................................... 262
Oracle Solaris 10: Phase 1B: Rescan for More DUPS Messages .......................................... 266
Phase 1B: Rescan for More DUPS Messages ....................................................................... 266
Phase 2: Check Path Names Messages ................................................................................ 267
Phase 3: Check Connectivity Messages .............................................................................. 274
Phase 4: Check Reference Counts Messages ...................................................................... 276
Phase 5: Check Cylinder Groups Messages ......................................................................... 279
Phase 5: Check Cylinder Groups Messages ....................................................................... 280
fsck Summary Messages ...................................................................................................... 281
Cleanup Phase Messages ..................................................................................................... 281

21 Troubleshooting Software Package Problems (Tasks) .................................................. 283
Troubleshooting Software Package Symbolic Link Problems ............................................. 283
Specific Software Package Installation Errors .................................................................... 284
General Software Package Installation Problems ............................................................... 285
Preface

System Administration Guide: Advanced Administration is part of a documentation set that covers a significant part of the Oracle Solaris system administration information. This guide includes information for both SPARC and x86 based systems.

This book assumes that you have installed the Oracle Solaris operating system (OS). It also assumes that you have set up any networking software that you plan to use.

For the Oracle Solaris release, new features that are interesting to system administrators are covered in sections called What’s New in ... ? in the appropriate chapters.

Note – This Oracle Solaris release supports systems that use the SPARC and x86 families of processor architectures. The supported systems appear in the Oracle Solaris OS: Hardware Compatibility Lists. This document cites any implementation differences between the platform types.

In this document, these x86 related terms mean the following:

- x86 refers to the larger family of 64-bit and 32-bit x86 compatible products.
- x64 relates specifically to 64-bit x86 compatible CPUs.
- "32-bit x86" points out specific 32-bit information about x86 based systems.

For supported systems, see the Oracle Solaris OS: Hardware Compatibility Lists.

Who Should Use This Book

This book is intended for anyone responsible for administering one or more systems that are running Oracle Solaris 10. To use this book, you should have 1-2 years of UNIX system administration experience. Attending UNIX system administration training courses might be helpful.
How the System Administration Guides Are Organized

Here is a list of the topics that are covered by the System Administration Guides.

<table>
<thead>
<tr>
<th>Book Title</th>
<th>Topics</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>System Administration Guide: Basic Administration</strong></td>
<td>User accounts and groups, server and client support, shutting down and booting a system, managing services, and managing software (packages and patches)</td>
</tr>
<tr>
<td><strong>System Administration Guide: Advanced Administration</strong></td>
<td>Terminals and modems, system resources (disk quotas, accounting, and crontabs), system processes, and troubleshooting Oracle Solaris software problems</td>
</tr>
<tr>
<td><strong>System Administration Guide: Devices and File Systems</strong></td>
<td>Removable media, disks and devices, file systems, and backing up and restoring data</td>
</tr>
<tr>
<td><strong>System Administration Guide: IP Services</strong></td>
<td>TCP/IP network administration, IPv4 and IPv6 address administration, DHCP, IPSec, IKE, Solaris IP filter, Mobile IP, IP network multipathing (IPMP), and IPQoS</td>
</tr>
<tr>
<td><strong>System Administration Guide: Naming and Directory Services (DNS, NIS, and LDAP)</strong></td>
<td>DNS, NIS, and LDAP naming and directory services, including transitioning from NIS to LDAP and transitioning from NIS+ to LDAP</td>
</tr>
<tr>
<td><strong>System Administration Guide: Naming and Directory Services (NIS+)</strong></td>
<td>NIS+ naming and directory services</td>
</tr>
<tr>
<td><strong>System Administration Guide: Network Services</strong></td>
<td>Web cache servers, time-related services, network file systems (NFS and autofs), mail, SLP, and PPP</td>
</tr>
<tr>
<td><strong>System Administration Guide: Printing</strong></td>
<td>Printing topics and tasks, using services, tools, protocols, and technologies to set up and administer printing services and printers</td>
</tr>
<tr>
<td><strong>System Administration Guide: Security Services</strong></td>
<td>Auditing, device management, file security, BART, Kerberos services, PAM, Solaris Cryptographic Framework, privileges, RBAC, SASL, and Solaris Secure Shell</td>
</tr>
<tr>
<td><strong>System Administration Guide: Oracle Solaris Containers-Resource Management and Oracle Solaris Zones</strong></td>
<td>Resource management topics and tasks, extended accounting, resource controls, fair share scheduler (FSS), physical memory control using the resource capping daemon (rcapd), and resource pools; virtualization using Solaris Zones software partitioning technology and \lx branded zones</td>
</tr>
<tr>
<td><strong>Oracle Solaris ZFS Administration Guide</strong></td>
<td>ZFS storage pool and file system creation and management, snapshots, clones, backups, using access control lists (ACLs) to protect ZFS files, using ZFS on an Oracle Solaris system with zones installed, emulated volumes, and troubleshooting and data recovery</td>
</tr>
</tbody>
</table>
Related Third-Party Web Site References

Note – Oracle is not responsible for the availability of third-party web sites mentioned in this document. Oracle does not endorse and is not responsible or liable for any content, advertising, products, or other materials that are available on or through such sites or resources. Oracle will not be responsible or liable for any actual or alleged damage or loss caused by or in connection with the use of or reliance on any such content, goods, or services that are available on or through such sites or resources.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Typographic Conventions

The following table describes the typographic conventions that are used in this book.

<table>
<thead>
<tr>
<th>Typeface</th>
<th>Meaning</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>AaBbCc123</td>
<td>The names of commands, files, and directories, and onscreen computer output</td>
<td>Edit your .login file. Use ls -a to list all files. machine_name% you have mail.</td>
</tr>
<tr>
<td>AaBbCc123</td>
<td>What you type, contrasted with onscreen computer output</td>
<td>machine_name% su Password:</td>
</tr>
<tr>
<td>aabbcc123</td>
<td>Placeholder: replace with a real name or value</td>
<td>The command to remove a file is rm filename.</td>
</tr>
</tbody>
</table>
TABLE P–1  Typographic Conventions  (Continued)

<table>
<thead>
<tr>
<th>Typeface</th>
<th>Meaning</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>AaBbCc123</td>
<td>Book titles, new terms, and terms to be emphasized</td>
<td>Read Chapter 6 in the User's Guide. A cache is a copy that is stored locally. Do not save the file. <strong>Note:</strong> Some emphasized items appear bold online.</td>
</tr>
</tbody>
</table>

**Shell Prompts in Command Examples**

The following table shows the default UNIX system prompt and superuser prompt for shells that are included in the Oracle Solaris OS. Note that the default system prompt that is displayed in command examples varies, depending on the Oracle Solaris release.

TABLE P–2  Shell Prompts

<table>
<thead>
<tr>
<th>Shell</th>
<th>Prompt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bash shell, Korn shell, and Bourne shell</td>
<td>$</td>
</tr>
<tr>
<td>Bash shell, Korn shell, and Bourne shell for superuser</td>
<td>#</td>
</tr>
<tr>
<td>C shell</td>
<td>machine_name%</td>
</tr>
<tr>
<td>C shell for superuser</td>
<td>machine_name#</td>
</tr>
</tbody>
</table>

**General Conventions**

Be aware of the following conventions that are used in this book.

- When following steps or using examples, be sure to type double-quotes ("), left single-quotes (’), and right single-quotes (‘) exactly as shown.
- The key referred to as Return is labeled Enter on some keyboards.
- It is assumed that the root path includes the /sbin, /usr/sbin, /usr/bin, and /etc directories, so the steps in this book show the commands in these directories without absolute path names. Steps that use commands in other, less common, directories show the absolute path in the example.
Managing Terminals and Modems (Overview)

This chapter provides overview information for managing terminals and modems.

This is a list of the overview information in this chapter:
- “What’s New in Managing Terminals and Modems?” on page 19
- “Terminals, Modems, Ports, and Services” on page 21
- “Tools for Managing Terminals and Modems” on page 23
- “Serial Ports Tool” on page 23
- “Overview of the Service Access Facility” on page 23

For step-by-step instructions on how to set up terminals and modems with the Serial Ports tool, see Chapter 2, “Setting Up Terminals and Modems (Tasks).”

For step-by-step instructions on how to set up terminals and modems with the Service Access Facility (SAF), see Chapter 3, “Managing Serial Ports With the Service Access Facility (Tasks).”

What’s New in Managing Terminals and Modems?

This section describes new or changed features for managing terminals and modems in the Oracle Solaris release. For a complete listing a new features and a description of Oracle Solaris releases, see Oracle Solaris 10 8/11 What’s New.

SPARC: Coherent Console

Solaris 10 8/07: The coherent console subsystem feature implements a part of the kernel console subsystem to facilitate rendering console output. The coherent console uses the Oracle Solaris kernel mechanisms to render console output rather than Programmable Read-Only Memory (PROM) interfaces. This reduces the console rendering dependence on the OpenBoot PROM (OBP). The coherent console uses a kernel-resident frame-buffer driver to generate...
console output. The generated console output is more efficient than using OBP rendering. The coherent console also avoids idling CPUs during the SPARC console output and enhances the user experience.

**SPARC: Changes to How $TERM Value for Console Is Set**

**Solaris 10 8/07:** The $TERM value is now dynamically derived and depends on the terminal emulator that the console is using. On x86 based systems, the $TERM value is `sun-color` because the kernel’s terminal emulator is always used.

On SPARC based systems the $TERM value is as follows:

- `sun-color`: This value is used for $TERM if the system uses the kernel’s terminal emulator.
- `sun`: This value is used for $TERM if the system uses the PROM’s terminal emulator.

This change does not impact how the terminal type is set for the serial port. You can still use the `svc_cfg` command to modify the $TERM value, as shown in the following example:

```bash
# svc_cfg
svc:: select system/console-login
svc::system/console-login> setprop ttymon/terminal_type = "xterm"
svc::system/console-login> exit
```

**ttymon Invocations on the System Console Managed by SMF**

**Oracle Solaris 10:** `ttymon` invocations on the system console are managed by SMF. The addition of properties to the `svc::system/console-login::default` service enables you to specify `ttymon` command arguments with the `svc_cfg` command. Note that these properties are specific to `ttymon`, not generic SMF properties.

**Note** – You can no longer customize the `ttymon` invocation in the `/etc/inittab` file.

For step-by-step instructions on how to specify `ttymon` command arguments with SMF, see “How to Set the ttymon Console Terminal Type” on page 40.

For a complete overview of SMF, see Chapter 18, “Managing Services (Overview),” in *System Administration Guide: Basic Administration*. For information on the step-by-step procedures that are associated with SMF, see Chapter 19, “Managing Services (Tasks),” in *System Administration Guide: Basic Administration*. 
Terminals, Modems, Ports, and Services

Terminals and modems provide both local and remote access to system and network resources. Setting up terminals and modem access is an important responsibility of a system administrator. This section explains some of the concepts behind modem and terminal management in the Oracle Solaris operating system.

Terminal Description

Your system’s bitmapped graphics display is not the same as an alphanumeric terminal. An alphanumeric terminal connects to a serial port and displays only text. You don’t have to perform any special steps to administer the graphics display.

Modem Description

Modems can be set up in three basic configurations:

- Dial-out
- Dial-in
- Bidirectional

A modem connected to your home computer might be set up to provide dial-out service. With dial-out service, you can access other computers from your own home. However, nobody outside can gain access to your machine.

Dial-in service is just the opposite. Dial-in service allows people to access a system from remote sites. However, it does not permit calls to the outside world.

Bidirectional access, as the name implies, provides both dial-in and dial-out capabilities.

Ports Description

A port is a channel through which a device communicates with the operating system. From a hardware perspective, a port is a “receptacle” into which a terminal or modem cable might be physically connected.

However, a port is not strictly a physical receptacle, but an entity with hardware (pins and connectors) and software (a device driver) components. A single physical receptacle often provides multiple ports, allowing connection of two or more devices.

Common types of ports include serial, parallel, small computer systems interface (SCSI), and Ethernet.
A *serial port*, using a standard communications protocol, transmits a byte of information bit-by-bit over a single line.

Devices that have been designed according to RS-232-C or RS-423 standards, this include most modems, alphanumeric terminals, plotters, and some printers. These devices can be connected interchangeably, using standard cables, into serial ports of computers that have been similarly designed.

When many serial port devices must be connected to a single computer, you might need to add an *adapter board* to the system. The adapter board, with its driver software, provides additional serial ports for connecting more devices than could otherwise be accommodated.

**Services Description**

Modems and terminals gain access to computing resources by using serial port software. Serial port software must be set up to provide a particular “service” for the device attached to the port. For example, you can set up a serial port to provide bidirectional service for a modem.

**Port Monitors**

The main mechanism for gaining access to a service is through a *port monitor*. A port monitor is a program that continuously monitors for requests to log in or access printers or files.

When a port monitor detects a request, it sets whatever parameters are required to establish communication between the operating system and the device requesting service. Then, the port monitor transfers control to other processes that provide the services needed.

The following table describes the two types of port monitors included in the Oracle Solaris release.

**TABLE 1-1 Port Monitor Types**

<table>
<thead>
<tr>
<th>Man Page</th>
<th>Port Monitor</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>listen(1M)</td>
<td>listen</td>
<td>Controls access to network services, such as handling remote print requests prior to the Solaris 2.6 release. The default Oracle Solaris OS no longer uses this port monitor type.</td>
</tr>
<tr>
<td>ttymon(1M)</td>
<td>ttymon</td>
<td>Provides access to the login services needed by modems and alphanumeric terminals. The Serial Ports tool automatically sets up a ttymon port monitor to process login requests from these devices.</td>
</tr>
</tbody>
</table>
You might be familiar with an older port monitor called `getty`. The new `ttymon` port monitor is more powerful. A single `ttymon` port monitor can replace multiple occurrences of `getty`. Otherwise, these two programs serve the same function. For more information, see the `getty(1M)` man page.

### Tools for Managing Terminals and Modems

The following table lists the tools for managing terminals and modems.

<table>
<thead>
<tr>
<th>Managing Terminals and Modems Method</th>
<th>Tool</th>
<th>For More Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>The most comprehensive</td>
<td>Service Access Facility (SAF) commands</td>
<td>“Overview of the Service Access Facility” on page 23</td>
</tr>
<tr>
<td>The quickest setup</td>
<td>Solaris Management Console’s Serial Ports tool</td>
<td>Chapter 2, “Setting Up Terminals and Modems (Tasks),” and Solaris Management Console online help</td>
</tr>
</tbody>
</table>

### Serial Ports Tool

The Serial Ports tool sets up the serial port software to work with terminals and modems by calling the `pmadm` command with the appropriate information.

The tool also provides the following:

- Templates for common terminal and modem configurations
- Multiple port setup, modification, or deletion
- Quick visual status of each port

### Overview of the Service Access Facility

The SAF is the tool used for administering terminals, modems, and other network devices.

In particular, the SAF enables you to set up the following:

- `ttymon` and `listen` port monitors by using the `sacadm` command
- `ttymon` port monitor services by using the `pmadm` and `ttyadm` commands
- `listen` port monitor services by using the `pmadm` and `nlsadmin` commands
- Troubleshoot `tty` devices
- Troubleshoot incoming network requests for printing service
Troubleshoot the Service Access Controller by using the `sacadm` command

The SAF is an open-systems solution that controls access to system and network resources through `tty` devices and local-area networks (LANs). The SAF is not a program, but a hierarchy of background processes and administrative commands.
This chapter provides step-by-step instructions for setting up terminals and modems using Solaris Management Console’s Serial Ports tool.

For overview information about terminals and modems, see Chapter 1, “Managing Terminals and Modems (Overview).” For overview information about managing system resources, see Chapter 4, “Managing System Resources (Overview).”

For information about the procedures associated with setting up terminals and modems using Solaris Management Console’s Serial Ports tool, see “Setting Terminals and Modems (Task Map)” on page 25

### Setting Terminals and Modems (Task Map)

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set up a terminal.</td>
<td>Set up a terminal by using the Solaris Management Console Serial Ports tool. Configure the terminal by choosing the appropriate option from the Action menu.</td>
<td>“How to Set Up a Terminal” on page 28</td>
</tr>
<tr>
<td>Set up a modem.</td>
<td>Set up a modem by using the Solaris Management Console Serial Ports tool. Configure the modem by choosing the appropriate option from the Action menu.</td>
<td>“How to Set Up a Modem” on page 29</td>
</tr>
<tr>
<td>Initialize a port.</td>
<td>To initialize a port, use the Solaris Management Console Serial Ports tool. Choose the appropriate option from the Action menu.</td>
<td>“How to Initialize a Port” on page 30</td>
</tr>
</tbody>
</table>
You can set up serial ports with the Solaris Management Console’s Serial Ports tool.

Select a serial port from the Serial Ports window and then choose a Configure option from the Action menu to configure the following:

- Terminal
- Modem – Dial-In
- Modem – Dial-Out
- Modem – Dial-In/Dial-Out
- Initialize Only – No Connection

The Configure options provide access to the templates for configuring these services. You can view two levels of detail for each serial port: Basic and Advanced. You can access the Advanced level of detail for each serial port after it is configured by selecting the serial port and selecting the Properties option from the Action menu. After a serial port is configured, you can disable or enable the port with the SAF commands. For information on using the SAF commands, see Chapter 3, “Managing Serial Ports With the Service Access Facility (Tasks).”

For information on using the Serial Ports command-line interface, see the `smserialport(1M)` man page.

### Setting Up Terminals

The following table describes the menu items (and their default values) when you set up a terminal by using the Serial Ports tool.

<table>
<thead>
<tr>
<th>Table 2-1</th>
<th>Terminal Default Values</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Detail</strong></td>
<td><strong>Item</strong></td>
</tr>
<tr>
<td>Basic</td>
<td>Port</td>
</tr>
<tr>
<td>Description</td>
<td>Terminal</td>
</tr>
<tr>
<td>Service Status</td>
<td>Enabled</td>
</tr>
<tr>
<td>Baud Rate</td>
<td>9600</td>
</tr>
<tr>
<td>Terminal Type</td>
<td>vi925</td>
</tr>
<tr>
<td>Login Prompt</td>
<td>ttyn login:</td>
</tr>
<tr>
<td>Advanced</td>
<td>Carrier Detection</td>
</tr>
<tr>
<td>Option: Connect on Carrier</td>
<td>Not available</td>
</tr>
</tbody>
</table>
Setting Up Terminals and Modems With Serial Ports Tool (Overview)

Setting Up Terminals and Modems

The following table describes the three modem templates that are available when you set up a modem using the Serial Ports tool.

TABLE 2–2 Modem Templates

<table>
<thead>
<tr>
<th>Modem Configuration</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dial-In Only</td>
<td>Users can dial in to the modem but cannot dial out.</td>
</tr>
<tr>
<td>Dial-Out Only</td>
<td>Users can dial out from the modem but cannot dial in.</td>
</tr>
<tr>
<td>Dial-In and Out (Bidirectional)</td>
<td>Users can either dial in or dial out from the modem.</td>
</tr>
</tbody>
</table>

The following table describes the default values of each template.

TABLE 2–3 Modem Template Default Values

<table>
<thead>
<tr>
<th>Detail</th>
<th>Item</th>
<th>Modem - Dial-In Only</th>
<th>Modem - Dial-Out Only</th>
<th>Modem - Dial-In and Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic</td>
<td>Port Name</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Description</td>
<td>Modem – Dial In Only</td>
<td>Modem – Dial Out Only</td>
<td>Modem – Dial In and Out</td>
</tr>
<tr>
<td>Service Status</td>
<td>Enabled</td>
<td>Enabled</td>
<td>Enabled</td>
<td></td>
</tr>
<tr>
<td>Baud Rate</td>
<td>9600</td>
<td>9600</td>
<td>9600</td>
<td></td>
</tr>
<tr>
<td>Login Prompt</td>
<td>ttyn login:</td>
<td>ttyn login:</td>
<td>ttyn login:</td>
<td></td>
</tr>
<tr>
<td>Advanced</td>
<td>Carrier Detection</td>
<td>Software</td>
<td>Software</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Option: Connect on Carrier</td>
<td>Not available</td>
<td>Not available</td>
<td>Not available</td>
</tr>
<tr>
<td></td>
<td>Option: Bidirectional</td>
<td>Not available</td>
<td>Not available</td>
<td>Available</td>
</tr>
<tr>
<td></td>
<td>Option: Initialize Only</td>
<td>Not available</td>
<td>Available</td>
<td>Not available</td>
</tr>
</tbody>
</table>

Chapter 2 • Setting Up Terminals and Modems (Tasks)
How to Set Up a Terminal, a Modem, and Initialize a Port (Tasks)

### TABLE 2–3 Modem Template Default Values (Continued)

<table>
<thead>
<tr>
<th>Detail Item</th>
<th>Modem - Dial-In Only</th>
<th>Modem - Dial-Out Only</th>
<th>Modem - Dial In and Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timeout (seconds)</td>
<td>Never</td>
<td>Never</td>
<td>Never</td>
</tr>
<tr>
<td>Port Monitor</td>
<td>zsmon</td>
<td>zsmon</td>
<td>zsmon</td>
</tr>
<tr>
<td>Service Program</td>
<td>/usr/bin/login</td>
<td>/usr/bin/login</td>
<td>/usr/bin/login</td>
</tr>
</tbody>
</table>

The following table describes the default values for the Initialize Only template.

### TABLE 2–4 Initialize Only - No Connection Default Values

<table>
<thead>
<tr>
<th>Detail</th>
<th>Item</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic</td>
<td>Port Name</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Description</td>
<td>Initialize Only - No Connection</td>
</tr>
<tr>
<td></td>
<td>Service Status</td>
<td>Enabled</td>
</tr>
<tr>
<td></td>
<td>Baud Rate</td>
<td>9600</td>
</tr>
<tr>
<td></td>
<td>Login Prompt</td>
<td>ttyn login:</td>
</tr>
<tr>
<td>Advanced</td>
<td>Carrier Detection</td>
<td>Software</td>
</tr>
<tr>
<td></td>
<td>Option: Connect on Carrier</td>
<td>Not available</td>
</tr>
<tr>
<td></td>
<td>Option: Bidirectional</td>
<td>Available</td>
</tr>
<tr>
<td></td>
<td>Option: Initialize Only</td>
<td>Available</td>
</tr>
<tr>
<td></td>
<td>Timeout (seconds)</td>
<td>Never</td>
</tr>
<tr>
<td></td>
<td>Port Monitor</td>
<td>zsmon</td>
</tr>
<tr>
<td></td>
<td>Service Program</td>
<td>/usr/bin/login</td>
</tr>
</tbody>
</table>

### How to Set Up a Terminal, a Modem, and Initialize a Port (Tasks)

#### How to Set Up a Terminal

1. **Start the Solaris Management Console, if it's not already running.**
   ```bash
   % /usr/sadm/bin/smc &
   ```
   For information on starting the Solaris Management Console, see “Starting the Solaris Management Console” in *System Administration Guide: Basic Administration.*
2 Click This Computer icon in the Navigation pane.

3 Click Devices and Hardware —> Serial Ports.
The Serial Ports menu is displayed.

4 Select the port that will be used with a terminal.

5 Choose Configure —> Terminal from the Action menu.
The Configure Serial Port window is displayed in Basic Detail mode.
For a description of the Terminal menu items, see Table 2–1.

6 Click OK.

7 To configure the advanced items, select the port configured as a terminal.

8 Select Properties from the Action menu.

9 Change the values of template entries, if desired.

10 Click OK to configure the port.

11 Verify that the terminal service has been added.

   $ pmadm -l -s tty#2

▼ How to Set Up a Modem

1 Start the Solaris Management Console, if it’s not already running.
   % /usr/sadm/bin/smc &
   For information on starting the Solaris Management Console, see “Starting the Solaris Management Console” in System Administration Guide: Basic Administration.

2 Click This Computer icon in the Navigation pane.

3 Click Devices and Hardware —> Serial Ports.
The Serial Ports menu is displayed.

4 Select the port that will be used with a modem.

5 Choose one of the following Configure options from the Action menu.
   a. Configure —> Modem (Dial In)
b. Configure—>Modem (Dial Out)

c. Configure—> Modem (Dial In/Out)
The Configure Serial Port window is displayed in Basic Detail mode.
For a description of the Modem menu items, see Table 2–3.

6 Click OK.

7 To configure the advanced items, select the port configured as a modem.

8 Select Properties from the Action menu.

9 Change the values of template entries, if desired.

10 Click OK to configure the port.

11 Verify that the modem service has been configured.
   $ pmadm -l -s ttyH

▼ How to Initialize a Port

1 Start the Solaris Management Console, if it’s not already running.
   % /usr/sadm/bin/smc &
   For information on starting the Solaris Management Console, see “Starting the Solaris Management Console” in System Administration Guide: Basic Administration.

2 Click This Computer icon in the Navigation pane.

3 Click Devices and Hardware—> Serial Ports.
The Serial Ports menu is displayed.

4 Select the port to be initialized.

5 Choose Configure—> Initialize Only – No Connection.
The Serial Port window is displayed in Basic Detail mode.
   For a description of the Initialize Only menu items, see Table 2–4.

6 Click OK.
7 To configure the advanced items, select the port configured as initialize only. Then, select Properties from the Action menu.

8 Change the values of template entries, if desired.

9 Click OK to configure the port.

10 Verify that the modem service has been initialized.

   $ pmadm -l -s ttyH

**Troubleshooting Terminal and Modem Problems**

If users are unable to log in over serial port lines after you have added a terminal or modem and set up the proper services, consider the following possible causes of failure:

- Check with the user.
  
  Malfunctions in terminals and modem use are typically reported by a user who has failed to log in or dial in. For this reason, begin troubleshooting by checking for a problem on the desktop.

  Some common reasons for login failure include:
  
  - Login ID or password is incorrect
  - Terminal is waiting for X-ON flow control key (Control-Q)
  - Serial cable is loose or unplugged
  - Terminal configuration is incorrect
  - Terminal is shut off or otherwise has no power

- Check the terminal.
  
  Continue to troubleshoot by checking the configuration of the terminal or modem. Determine the proper *ttylabel* for communicating with the terminal or modem. Verify that the terminal or modem settings match the *ttylabel* settings.

- Check the terminal server.
  
  If the terminal checks out, continue to search for the source of the problem on the terminal or modem server. Use the *pmadm* command to verify that a port monitor has been configured to service the terminal or modem and that it has the correct *ttylabel* associated with it. For example:

  $ pmadm -l -t ttymon

  Examine the */etc/ttydefs* file and double-check the label definition against the terminal configuration. Use the *sacadm* command to check the port monitor’s status. Use *pmadm* to check the service associated with the port the terminal uses.

- Check the serial connection.
  
  If the Service Access Controller is starting the TTY port monitor and the following is true:
The `pmadm` command reports that the service for the terminal’s port is *enabled*.
The terminal’s configuration matches the port monitor’s configuration.

Then, continue to search for the problem by checking the serial connection. A serial connection comprises serial ports, cables, and terminals. Test each of these parts by using one part with two other parts that are known to be reliable.

Test all of the following:
- Serial ports
- Modems
- Cables
- Connectors

Do not use the Serial Ports tool to modify serial port settings if the serial port is being used as a console. Starting with Oracle Solaris 10, invocations of `ttymon` for the console are managed by SMF. For step-by-step instructions on how to change the console terminal type, see “How to Set the `ttymon` Console Terminal Type” on page 40.

For more information on `ttymon` and SMF, see “What’s New in Managing Terminals and Modems?” on page 19.
Managing Serial Ports With the Service Access Facility (Tasks)

This chapter describes how to manage serial port services using the Service Access Facility (SAF).

Also included in this chapter is information on how to perform console administration with the Service Management Facility (SMF).

Note – The SAF and SMF are two different tools in the Oracle Solaris OS. Starting with the Oracle Solaris 10, ttymon invocations on the system console are now managed by SMF. The SAF tool is still used to administer terminals, modems, and other network devices.

This is a list of the overview information in this chapter.

- “Using the Service Access Facility” on page 34
- “Overall SAF Administration (sacadm)” on page 35
- “Port Monitor Service Administration (pmadm)” on page 36
- “TTY Monitor and Network Listener Port Monitors” on page 38

For information on the step-by-step procedures that are associated with managing serial ports, see the following:

- “Managing Serial Ports (Task Map)” on page 34
- “Administering ttymon services (Task Map)” on page 45

For reference information about the SAF, see “Service Access Facility Administration (Reference)” on page 49.
Managing Serial Ports (Task Map)

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perform console administration.</td>
<td>You might need to perform the following console administration tasks:</td>
<td>&quot;How to Set the ttymon Console Terminal Type&quot; on page 40</td>
</tr>
<tr>
<td>■ Set the ttymon console terminal type.</td>
<td>Starting with Oracle Solaris 10, you must use the svccfg command to specify the ttymon console terminal type.</td>
<td>&quot;How to Set the Baud Rate Speed on the ttymon Console Terminal&quot; on page 41</td>
</tr>
<tr>
<td>■ Set the ttymon console terminal baud rate speed.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Add a ttymon port monitor.</td>
<td>Use the sacadm command to add a ttymon port monitor.</td>
<td>&quot;How to Add a ttymon Port Monitor&quot; on page 42</td>
</tr>
<tr>
<td>View a ttymon port monitor status.</td>
<td>Use the sacadm command to view ttymon port monitor status.</td>
<td>&quot;How to View ttymon Port Monitor Status&quot; on page 42</td>
</tr>
<tr>
<td>Stop a ttymon port monitor.</td>
<td>Use the sacadm command to stop a ttymon port monitor.</td>
<td>&quot;How to Stop a ttymon Port Monitor&quot; on page 43</td>
</tr>
<tr>
<td>Start a ttymon port monitor.</td>
<td>Use the sacadm command to start a ttymon port monitor.</td>
<td>&quot;How to Start a ttymon Port Monitor&quot; on page 43</td>
</tr>
<tr>
<td>Disable a ttymon port monitor.</td>
<td>Use the sacadm command to disable a ttymon port monitor.</td>
<td>&quot;How to Disable a ttymon Port Monitor&quot; on page 44</td>
</tr>
<tr>
<td>Enable a ttymon port monitor.</td>
<td>Use the sacadm command to enable a ttymon port monitor.</td>
<td>&quot;How to Enable a ttymon Port Monitor&quot; on page 44</td>
</tr>
<tr>
<td>Remove a ttymon port monitor.</td>
<td>Use the sacadm command to remove a ttymon port monitor.</td>
<td>&quot;How to Remove a ttymon Port Monitor&quot; on page 44</td>
</tr>
</tbody>
</table>

Using the Service Access Facility

You can set up terminals and modems with the Solaris Management Console’s Serial Ports tool or the SAF commands.

The SAF is a tool that is used to administer terminals, modems, and other network devices. The top-level SAF program is the Service Access Controller (SAC). The SAC controls port monitors that you administer through the sacadm command. Each port monitor can manage one or more ports.
You administer the services associated with ports through the `pmadm` command. While services provided through the SAC can differ from network to network, the SAC and its administrative commands, `sacadm` and `pmadm`, are network independent.

The following table describes the SAF control hierarchy. The `sacadm` command is used to administer the SAC, which controls the `ttymon` and `listen` port monitors.

The services of `ttymon` and `listen` are in turn controlled by the `pmadm` command. One instance of `ttymon` can service multiple ports. One instance of `listen` can provide multiple services on a network interface.

### TABLE 3–1 SAF Control Hierarchy

<table>
<thead>
<tr>
<th>Function</th>
<th>Program</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall administration</td>
<td>sacadm</td>
<td>Command for adding and removing port monitors</td>
</tr>
<tr>
<td>Service Access Controller</td>
<td>sac</td>
<td>SAF’s master program</td>
</tr>
<tr>
<td>Port monitors</td>
<td>ttymon</td>
<td>Monitors serial port login requests</td>
</tr>
<tr>
<td></td>
<td>listen</td>
<td>Monitors requests for network services</td>
</tr>
<tr>
<td>Port monitor service</td>
<td>pmadm</td>
<td>Command for controlling port monitors services</td>
</tr>
<tr>
<td>administrator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Services</td>
<td>logins, remote procedure calls</td>
<td>Services to which the SAF provides access</td>
</tr>
<tr>
<td>Console administration</td>
<td>console login</td>
<td>Console services are managed by the SMF service, <code>svc:/system/console-login:default</code>. This service invokes the <code>ttymon</code> port monitor. Do not use the <code>pmadm</code> or the <code>sacadm</code> command to manage the console. For more information, see &quot;<code>ttymon</code> and the Console Port&quot; on page 38, &quot;How to Set the <code>ttymon</code> Console Terminal Type&quot; on page 40, and &quot;How to Set the Baud Rate Speed on the <code>ttymon</code> Console Terminal&quot; on page 41.</td>
</tr>
</tbody>
</table>

**Overall SAF Administration (sacadm)**

The `sacadm` command is the top level of the SAF. The `sacadm` command primarily is used to add and remove port monitors such as `ttymon` and `listen`. Other `sacadm` functions include listing the current status of port monitors and administering port monitor configuration scripts.
**Service Access Controller (SAC Program)**

The Service Access Controller program (SAC) oversees all port monitors. A system automatically starts the SAC upon entering multiuser mode.

When the SAC program is invoked, it first looks for, and interprets, each system’s configuration script. You can use the configuration script to customize the SAC program environment. This script is empty by default. The modifications made to the SAC environment are inherited by all the “children” of the SAC. This inherited environment might be modified by the children.

After the SAC program has interpreted the per-system configuration script, the SAC program reads its administrative file and starts the specified port monitors. For each port monitor, the SAC program runs a copy of itself, forking a child process. Each child process then interprets its per-port monitor configuration script, if such a script exists.

Any modifications to the environment specified in the per-port monitor configuration script affect the port monitor and will be inherited by all its children. Finally, the child process runs the port monitor program by using the command found in the SAC program administrative file.

**SAC Initialization Process**

The following steps summarize what happens when SAC is first started:

1. The SAC program is started by the SMF service, `svc:/system/sac:default`.
2. The SAC program reads `/etc/saf/_sysconfig`, the per-system configuration script.
3. The SAC program reads `/etc/saf/_sactab`, the SAC administrative file.
4. The SAC program forks a child process for each port monitor it starts.
5. Each port monitor reads `/etc/saf/pmtag/_config`, the per-port monitor configuration script.

**Port Monitor Service Administration (pmadm)**

The `pmadm` command enables you to administer port monitors’ services. In particular, you use the `pmadm` command to add or remove a service and to enable or disable a service. You can also install or replace per-service configuration scripts, or print information about a service.

Each instance of a service must be uniquely identified by a port monitor and a port. When you use the `pmadm` command to administer a service, you specify a particular port monitor with the `pmtag` argument, and a particular port with the `svctag` argument.

For each port monitor type, the SAF requires a specialized command to format port monitor-specific configuration data. This data is used by the `pmadm` command. For `ttymon` and `listen` type port monitors, these specialized commands are `ttyadm` and `nlsadmin`, respectively.
**ttymon Port Monitor**

Whenever you attempt to log in by using a directly connected modem or alphanumeric terminal, ttymon goes to work. First, the SAC process is started by SMF. Then, the SAC automatically starts the port monitors that are designated in its administrative file, /etc/saf/_sactab. After the ttymon port monitor has been started, it monitors the serial port lines for service requests.

When someone attempts to log in by using an alphanumeric terminal or a modem, the serial port driver passes the activity to the operating system. The ttymon port monitor notes the serial port activity, and attempts to establish a communications link. The ttymon port monitor determines which data transfer rate, line discipline, and handshaking protocol are required to communicate with the device.

After the proper parameters for communication with the modem or terminal are established, the ttymon port monitor passes these parameters to the login program and transfers control to it.

**Port Initialization Process**

When an instance of the ttymon port monitor is invoked by the SAC, ttymon starts to monitor its ports. For each port, the ttymon port monitor first initializes the line disciplines, if they are specified, and the speed and terminal settings. The values used for initialization are taken from the appropriate entry in the /etc/ttydefs file.

The ttymon port monitor then writes the prompt and waits for user input. If the user indicates that the speed is inappropriate by pressing the Break key, the ttymon port monitor tries the next speed and writes the prompt again.

If *autobaud* is enabled for a port, the ttymon port monitor tries to determine the baud rate on the port automatically. Users must press Return before the ttymon port monitor can recognize the baud rate and print the prompt.

When valid input is received, the ttymon port monitor does the following tasks:

- Interprets the per-service configuration file for the port
- Creates an /etc/utmpx entry, if required
- Establishes the service environment
- Invokes the service associated with the port

After the service terminates, the ttymon port monitor cleans up the /etc/utmpx entry, if this entry exists, and returns the port to its initial state.
**Bidirectional Service**

If a port is configured for bidirectional service, the `ttymon` port monitor does the following:

- Allows users to connect to a service.
- Allows the `uucico`, `cu`, or `ct` commands to use the port for dialing out, if the port is free.
- Waits to read a character before printing a prompt.
- Invokes the port’s associated service, without sending the prompt message, when a connection is requested, if the connect-on-carrier flag is set.

**TTY Monitor and Network Listener Port Monitors**

Though the SAF provides a generic means for administering any future or third-party port monitors, only two port monitors are implemented in the Oracle Solaris release: `ttymon` and `listen`.

**TTY Port Monitor (`ttymon`)**

The `ttymon` port monitor is STREAMS-based and does the following:

- Monitors ports
- Sets terminal modes, baud rates, and line disciplines
- Invokes the login process

The `ttymon` port monitor provides users the same services that the `getty` port monitor did under previous versions of SunOS 4.1 software.

The `ttymon` port monitor runs under the SAC program and is configured with the `sacadm` command. Each instance of `ttymon` can monitor multiple ports. These ports are specified in the port monitor’s administrative file. The administrative file is configured by using the `pmadm` and `ttyadm` commands.

**ttymon and the Console Port**

Console services are not managed by the Service Access Controller (SAC), nor by any explicit `ttymon` administration file. `ttymon` invocations are managed by SMF. As a result, you can no longer invoke `ttymon` by adding an entry to the `/etc/inittab` file. A property group with the type, application, and the name `ttymon`, has been added to the SMF service, `svc:/system/console-login:default`. The properties within this property group are used by the method script, `/lib/svc/method/console-login`. This script uses the property values as arguments to the `ttymon` invocation. Usually, if the values are empty, or if the values are not
defined for any of the properties, then the value is not used for \texttt{ttymon}. However, if the \texttt{ttymon}
device value is empty, or not set, then \texttt{/dev/console} is used as the default to enable \texttt{ttymon} to
run.

The following properties are available under the SMF service,
\texttt{svc:/system/console-login:default}:

- \texttt{ttymon/nohangup} Specifies the nohangup property. If set to \texttt{true}, do not force a line
  hang up by setting the line speed to zero before setting the default
  or specified speed.
- \texttt{ttymon/prompt} Specifies the prompt string for the console port.
- \texttt{ttymon/terminal_type} Specifies the default terminal type for the console.
- \texttt{ttymon/device} Specifies the console device.
- \texttt{ttymon/label} Specifies the TTY label in the \texttt{/etc/ttydefs} line.

\textbf{ttymon-Specific Administrative Command (ttyadm)}

The \texttt{ttyadm} administrative file is updated by the \texttt{sacadm} and \texttt{pmadm} commands, as well as by the
\texttt{ttyadm} command. The \texttt{ttyadm} command formats \texttt{ttymon}-specific information and writes it to
standard output, providing a means for presenting formatted \texttt{ttymon}-specific data to the
\texttt{sacadm} and \texttt{pmadm} commands.

Thus, the \texttt{ttyadm} command does not administer \texttt{ttymon} directly. The \texttt{ttyadm} command
complements the generic administrative commands, \texttt{sacadm} and \texttt{pmadm}. For more information,
see the \texttt{ttyadm(1M)} man page.

\textbf{Network Listener Service (listen)}

The \texttt{listen} port monitor runs under the SAC and does the following:

- Monitors the network for service requests
- Accepts requests when they arrive
- Invokes servers in response to those service requests

The \texttt{listen} port monitor is configured by using the \texttt{sacadm} command. Each instance of \texttt{listen}
can provide multiple services. These services are specified in the port monitor’s administrative
file. This administrative file is configured by using the \texttt{pmadm} and \texttt{nlsadmin} commands.

The network listener process can be used with any connection-oriented transport provider that
conforms to the Transport Layer Interface (TLI) specification. In the Oracle Solaris OS, \texttt{listen}
port monitors can provide additional network services not provided by the \texttt{inetd} service.
Special listen-Specific Administrative Command (nlsadmin)

The listen port monitor's administrative file is updated by the sacadm and pmadm commands, as well as by the nlsadmin command. The nlsadmin command formats listen-specific information and writes it to standard output, providing a means of presenting formatted listen-specific data to the sacadm and pmadm commands.

Thus, the nlsadmin command does not administer listen directly. The command complements the generic administrative commands, sacadm and pmadm.

Each network, configured separately, can have at least one instance of the network listener process associated with it. The nlsadmin command controls the operational states of listen port monitors.

The nlsadmin command can establish a listen port monitor for a given network, configure the specific attributes of that port monitor, and start and kill the monitor. The nlsadmin command can also report on the listen port monitors on a machine.

For more information, see the nlsadmin(1M) man page.

Administering ttymon Port Monitors

Console administration for ttymon is now managed by SMF. Use the svccfg command to set ttymon system console properties. Continue to use the SAF command, sacadm, to add, list, remove, kill, start, enable, disable, enable, and remove ttymon port monitors.

▼ How to Set the ttymon Console Terminal Type

This procedure shows how to change the console terminal type by using the svccfg command.

1 Become superuser or assume an equivalent role.

Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in System Administration Guide: Security Services.

2 Run the svccfg command to set the property for the service instance that you want to change.

   # svccfg -s console-login setprop ttymon/terminal_type = "xterm"

   where xterm is an example of a terminal type that you might want to use.
3 (Optional) Restart the service instance.

```
# svcadm restart svc:/system/console-login:default
```

Caution – If you choose to restart the service instance immediately, you are logged out of the console. If you do not restart the service instance immediately, the property changes apply at the next login prompt on the console.

### How to Set the Baud Rate Speed on the ttymon Console Terminal

This procedure shows how to set the baud rate speed on the ttymon console terminal. Support for console speeds on x86 based systems are dependent on the specific platform.

The following are supported console speeds for SPARC based systems:

- 9600 bps
- 19200 bps
- 38400 bps

1 **Become superuser or assume an equivalent role.**

Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in System Administration Guide: Security Services.

2 **Use the `eeprom` command to set a baud rate speed that is appropriate for your system type.**

```
# eeprom ttya-mode=baud-rate,8,n,1,-
```

For example, to change the baud rate on an x86 based system’s console to 38400, type:

```
# eeprom ttya-mode=38400,8,n,1,-
```

3 **Change the console line in the `/etc/ttydefs` file as follows:**

```
console baud-rate hupcl opost onlcr:baud-rate::console
```

4 **Make the following additional changes for your system type.**

Note that these changes are platform-dependent.

- **On SPARC based systems:** Change the baud rate speed in the `/kernel/drv/options.conf` file.

  Use the following command to change the baud rate to 9600:

  ```
  # 9600
  :bd:
  ```
Use the following command to change the baud rate speed to 19200:

```
# 19200
:be:
```

Use the following command to change the baud rate speed to 38400:

```
# 38400
:bf:
```

- **On x86 based systems**: Change the console speed if the BIOS serial redirection is enabled. The method that you use to change the console speed is platform-dependent.

### How to Add a ttymon Port Monitor

1. **Become superuser or assume an equivalent role.**

   Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in System Administration Guide: Security Services.

2. **Add a ttymon port monitor.**

   ```
   # sacadm -a -p mbmon -t ttymon -c /usr/lib/saf/ttymon -v 'ttyadm -V' -y "TTY Ports a & b"
   ```

   - `-a` Specifies the `add` port monitor option.
   - `-p` Specifies the `pmtag` mbmon as the port monitor tag.
   - `-t` Specifies the port monitor type as `ttymon`.
   - `-c` Defines the `command` string used to start the port monitor.
   - `-v` Specifies the `version` number of the port monitor.
   - `-y` Defines a comment to describe this instance of the port monitor.

### How to View ttymon Port Monitor Status

1. **Become superuser or assume an equivalent role.**

   Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in System Administration Guide: Security Services.

2. **View the status of a ttymon port monitor.**

   ```
   # sacadm -l -p mbmon
   ```

   - `-l` Specifies the `list` port monitor status flag.
   - `-p` Specifies the `pmtag` mbmon as the port monitor tag.
### Viewing ttymon Port Monitor Status

This example shows how to view a port monitor named, mbmon.

```
# sacadm -l -p mbmon
PMTAG PMTYPE FLGS RCNT STATUS COMMAND
mbmon ttymon - 0 STARTING /usr/lib/saf/ttymon #TTY Ports a & b
```

- **PMTAG** Identifies the port monitor name, mbmon.
- **PMTYPE** Identifies the port monitor type, ttymon.
- **FLGS** Indicates whether the following flags are set:
  - d: Do not enable the new port monitor.
  - x: Do not start the new port monitor.
  - dash (-): No flags are set.
- **RCNT** Indicates the return count value. A return count of 0 indicates that the port monitor is not to be restarted if it fails.
- **STATUS** Indicates the current status of the port monitor.
- **COMMAND** Identifies the command used to start the port monitor.
- **#TTY Ports a & b** Identifies any comment used to describe the port monitor.

### How to Stop a ttymon Port Monitor

1. **Become superuser or assume an equivalent role.**

   Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in *System Administration Guide: Security Services*.

2. **Stop a ttymon port monitor.**

   ```
   # sacadm -k -p mbmon
   -k Specifies the kill port monitor status flag.
   -p Specifies the pmtag mbmon as the port monitor tag.
   ```

### How to Start a ttymon Port Monitor

1. **Become superuser or assume an equivalent role.**

   Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in *System Administration Guide: Security Services.*

---

**Chapter 3 • Managing Serial Ports With the Service Access Facility (Tasks)**
2 Start a killed ttymon port monitor.
   
   # sacadm -s -p mbmon
   
   -s Specifies the start port monitor status flag.
   -p Specifies the pmtag mbmon as the port monitor tag.

▼ How to Disable a ttymon Port Monitor

Disabling a port monitor prevents new services from starting, without affecting existing services.

1 Become superuser or assume an equivalent role.
   
   Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in System Administration Guide: Security Services.

2 Disable a ttymon port monitor.
   
   # sacadm -d -p mbmon
   
   -d Specifies the disable port monitor status flag.
   -p Specifies the pmtag mbmon as the port monitor tag.

▼ How to Enable a ttymon Port Monitor

Enabling a ttymon port monitor allows it to service new requests.

1 Become superuser or assume an equivalent role.
   
   Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in System Administration Guide: Security Services.

2 Enable a ttymon port monitor.
   
   # sacadm -e -p mbmon
   
   -e Specifies the enable port monitor status flag.
   -p Specifies the pmtag mbmon as the port monitor tag.

▼ How to Remove a ttymon Port Monitor

Removing a port monitor deletes all the configuration files associated with it.
Note – Port monitor configuration files cannot be updated or changed by using the sacadm command. To reconfigure a port monitor, remove it and then add a new one.

1 Become superuser or assume an equivalent role.
Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in System Administration Guide: Security Services.

2 Remove a ttymon port monitor.

```
# sacadm -r -p mbmon
```
- `-r` Specifies the remove port monitor status flag.
- `-p` Specifies the portmon tag `mbmon` as the port monitor tag.

### Administering ttymon services (Task Map)

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add a ttymon service.</td>
<td>Use the pmadm command to add a service.</td>
<td>“How to Add a Service” on page 45</td>
</tr>
<tr>
<td>View the Status of a TTY Port Service</td>
<td>Use the pmadm command to view the status of a TTY port.</td>
<td>“How to View the Status of a TTY Port Service” on page 46</td>
</tr>
<tr>
<td>Enable a port monitor service.</td>
<td>Use the pmadm command with the -e option to enable a port monitor.</td>
<td>“How to Enable a Port Monitor Service” on page 48</td>
</tr>
<tr>
<td>Disable a port monitor service.</td>
<td>Use the pmadm command with the -d option to disable a port monitor.</td>
<td>“How to Disable a Port Monitor Service” on page 49</td>
</tr>
</tbody>
</table>

### Administering ttymon Services

Use the pmadm command to add services, list the services of one or more ports associated with a port monitor, and enable or disable a service.

▼ **How to Add a Service**

1 Become superuser or assume an equivalent role.
Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in System Administration Guide: Security Services.
2 Add a standard terminal service to the mbmon port monitor.

```
# pmadm -a -p mbmon -s a -i root -v 'ttyadm -V' -m "'Terminal
disabled' -l contty -m ldterm,ttcompat -S y -d /dev/term/a
-s /usr/bin/login"
```

Note – In this example, the input wraps automatically to the next line. Do not use a Return key or line feed.

- `a` Specifies the `add` port monitor status flag.
- `p` Specifies the `pmtag` mbmon as the port monitor tag.
- `s` Specifies the `svctag` a as the port monitor `service` tag.
- `i` Specifies the `identity` to be assigned to `svctag` when the service runs.
- `v` Specifies the `version` number of the port monitor.
- `m` Specifies the `ttymon`-specific configuration data formatted by `ttyadm`.

The preceding `pmadm` command contains an embedded `ttyadm` command. The options in this embedded command are as follows:

- `b` Specifies the `bidirectional` port flag.
- `i` Specifies the `inactive` (disabled) response message.
- `l` Specifies which TTY label in the `/etc/ttydefs` file to use.
- `m` Specifies the STREAMS `modules` to push before invoking this service.
- `d` Specifies the full path name to the `device` to use for the TTY port.
- `s` Specifies the full path name of the `service` to invoke when a connection request is received. If arguments are required, enclose the command and its arguments in quotation marks ("').

▼ How to View the Status of a TTY Port Service

Use the `pmadm` command as shown in this procedure to list the status of a TTY port or all the ports that are associated with a port monitor.

1 Become superuser or assume an equivalent role.

Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in System Administration Guide: Security Services.
List one service of a port monitor.

```
# pmadm -l -p mbmon -s a
```

- `-l` Lists service information on the system.
- `-p` Specifies the `ptmtag mbmon` as the port monitor tag.
- `-s` Specifies the `svctag a` as the port monitor service tag.

**Example 3–2** Viewing the Status of a TTY Port Monitor Service

This example lists all services of a port monitor.

```
# pmadm -l -p mbmon
PMTAG PMTYPE SVCTAG FLGS ID <PMSPECIFIC>
mbmon ttymon a - root /dev/term/a - /usr/bin/login - contty
```

- **PMTAG** Identifies the port monitor name, `mbmon`, that is set by using the `pmadm -p` command.
- **PMTYPE** Identifies the port monitor type, `ttymon`.
- **SVCTAG** Indicates the service tag value that is set by using the `pmadm -s` command.
- **FLAGS** Identifies whether the following flags are set by using the `pmadm -f` command.
  - `x` – Do not enable the service.
  - `u` – Create a `utmpx` entry for the service.
  - dash (`-`) – No flags are set.
- **ID** Indicates the identity assigned to the service when it is started. This value is set by using the `pmadm -i` command.
- **<PMSPECIFIC>**

**Information**

```
/dev/term/a
```

Indicates the TTY port path name that is set by using the `ttyadm -d` command.

- Indicates whether the following flags are set by using the `ttyadm -c b h I r` command.
  - `c` – Sets the connect on carrier flag for the port.
  - `b` – Sets the port as bidirectional, allowing both incoming and outgoing traffic.
  - `h` – Suppresses an automatic hangup immediately after an incoming call is received.
  - `I` – Initializes the port.
- Forces ttymon to wait until it receives a character from the port before it prints the login: message.

- dash (-) - No flags are set.

Indicates a value that is set by using the ttyadm -r count option. This option determines when ttymon displays a prompt after receiving data from a port. If count is 0, ttymon waits until it receives any character. If count is greater than 0, ttymon waits until count new lines have been received. No value is set in this example.

/usr/bin/login Identifies the full pathname of the service to be invoked when a connection is received. This value is set by using the ttyadm -s command.

Identifies the ttyadm -t command's time-out value. This option specifies that ttymon should close a port if the open on the port succeeds, and no input data is received in timeout seconds. There is no time-out value in this example.

contty Identifies the TTY label in the /etc/ttydefs file. This value is set by using the ttyadm -l command.

Identifies the STREAMS modules to be pushed. These modules are set by using the ttyadmin -m command.

Identifies an inactive message to be displayed when the port is disabled. This message is set by using the ttyadm -i command.

tvi925 Identifies the terminal type, if set, by using the ttyadm -T command. The terminal type is tvi925 in this example.

Identifies the software carrier value that is set by using the ttyadm -S command. n turns the software carrier off. y turns the software carrier on. The software carrier is turned on in this example.

Identifies any comment specified with the pmadm -y command. There is no comment in this example.

How to Enable a Port Monitor Service

1 Become superuser or assume an equivalent role.

Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in System Administration Guide: Security Services.
Enable a disabled port monitor service.

```
# pmadm -e -p mbmon -s a
```

- `e` Specifies the *enable* flag.
- `p` Specifies the *pmtag* `mbmon` as the port monitor tag.
- `s` Specifies the *svctag* `a` as the port monitor *service* tag.

How to Disable a Port Monitor Service

1. Become superuser or assume an equivalent role.
   Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in *System Administration Guide: Security Services*.

2. Disable a port monitor service.

```
# pmadm -d -p mbmon -s a
```

- `d` Specifies the *disable* flag.
- `p` Specifies the *pmtag* `mbmon` as the port monitor tag.
- `s` Specifies the *svctag* `a` as the port monitor *service* tag.

Service Access Facility Administration (Reference)

This section includes reference information for administration of the Service Access Facility.

Files That Are Associated With the SAF

The SAF uses configuration files that can be modified by using the `sacam` and `pmadm` commands. You should not need to manually edit the configuration files.

<table>
<thead>
<tr>
<th>File Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/etc/saf/_sysconfig</td>
<td>Per-system configuration script</td>
</tr>
<tr>
<td>/etc/saf/_sactab</td>
<td>The SAC’s administrative file that contains configuration data for the port monitors that the SAC controls</td>
</tr>
<tr>
<td>/etc/saf/pmtag</td>
<td>Home directory for port monitor <em>pmtag</em></td>
</tr>
</tbody>
</table>
Service Access Facility Administration (Reference)

<table>
<thead>
<tr>
<th>File Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/etc/saf/pmtag/._config</td>
<td>Per-port monitor configuration script for port monitor pmtag if it exists</td>
</tr>
<tr>
<td>/etc/saf/pmtag/._pmtab</td>
<td>Port monitor pmtag's administrative file that contains port monitor-specific configuration data for the services pmtag provides</td>
</tr>
<tr>
<td>/etc/saf/pmtag/svctag</td>
<td>Per-service configuration script for service svctag</td>
</tr>
<tr>
<td>/var/saf/log</td>
<td>The SAC's log file</td>
</tr>
<tr>
<td>/var/saf/pmtag</td>
<td>Directory for files created by pmtag, for example, log files</td>
</tr>
</tbody>
</table>

//etc/saf/_sactab File

The information in the /etc/saf/_sactab file is as follows:

```bash
# VERSION=1
zsmon:ttymon::0:/usr/lib/saf/ttymon
#
# VERSION=1
zsmon
Is the name of the port monitor.

 ttymon
Is the type of port monitor.

 ::
Indicates whether the following two flags are set:

d  Do not enable the port monitor.

x  Do not start the port monitor. No flags are set in this example.

0
Indicates the return code value. A return count of 0 indicates that the port monitor is not be restarted if the port monitor fails.

/usr/lib/saf/ttymon
Indicates the port monitor path name.
```

//etc/saf/pmtab/_pmtab File

The /etc/saf/pmtab/_pmtab file, such as /etc/saf/zsmon/_pmtab, is similar to the following:

```bash
# VERSION=1
ttya:u:root:reserved:reserved:reserved:/dev/term/a:I::usr/bin/login::9600:
detm,tcompat:ttya login:\::tvi925:y:#
#
# VERSION=1
Indicates the Service Access Facility version number.
```
| **ttya** | Indicates the service tag. |
| **x, u** | Identifies whether the following flags are set: |
| **x** | Do not enable the service. |
| **u** | Create a utmpx entry for the service. |
| **root** | Indicates the identity assigned to the service tag. |
| **reserved** | This field is reserved for future use. |
| **reserved** | This field is reserved for future use. |
| **reserved** | This field is reserved for future use. |
| **/dev/term/a** | Indicates the TTY port path name. |
| **/usr/bin/login** | Identifies the full path name of the service to be invoked when a connection is received. |
| **:c,b,h,I,r:** | Indicates whether the following flags are set: |
| **c** | Sets the connect on carrier flag for the port. |
| **b** | Sets the port as bidirectional, allowing both incoming and outgoing traffic. |
| **h** | Suppresses an automatic hand-up immediately after an incoming call is received. |
| **I** | Initializes the port. |
| **r** | Forces ttymon to wait until it receives a character from the port before ttymon prints the login: message. |
| **9600** | Identifies the TTY label defined in the /etc/ttydefs file. |
| **ldterm, ttcompat** | Identifies the STREAMS modules to be pushed. |
| **ttya login\:** | Identifies the prompt to be displayed. |
| **:y/n:** | Indicates yes or no response. |
| **message** | Identifies any inactive (disabled) response message. |
| **tvi925** | Identifies the terminal type. |
| **y** | Indicates whether the software carrier is set (y/n). |
Service States

The sacadm command controls the states of services. The following list describes the possible states of services.

**Enabled**  
*Default state.* When the port monitor is added, the service operates.

**Disabled**  
*Default state.* When the port monitor is removed, the service stops.

To determine the state of any particular service, use the following:

```
# pmadm -l -p portmon-name -svctag
```

Port Monitor States

The sacadm command controls the states of the ttymon and listen port monitors. The following table describes the possible port monitor states.

<table>
<thead>
<tr>
<th>State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Started</td>
<td><em>Default state</em> – When the port monitor is added, it is automatically started.</td>
</tr>
<tr>
<td>Enabled</td>
<td><em>Default state</em> – When the port monitor is added, it is automatically ready to accept requests for service.</td>
</tr>
<tr>
<td>Stopped</td>
<td><em>Default state</em> – When the port monitor is removed, it is automatically stopped.</td>
</tr>
<tr>
<td>Disabled</td>
<td><em>Default state</em> – When the port monitor is removed, it automatically continues existing services and refuses to add new services.</td>
</tr>
<tr>
<td>Starting</td>
<td><em>Intermediate state</em> – The port monitor is in the process of starting.</td>
</tr>
<tr>
<td>Stopping</td>
<td><em>Intermediate state</em> – The port monitor has been manually terminated, but it has not completed its shutdown procedure. The port monitor is on the way to becoming stopped.</td>
</tr>
<tr>
<td>Notrunning</td>
<td><em>Inactive state</em> – The port monitor has been killed. All ports previously monitored are inaccessible. An external user cannot tell whether a port is disabled or notrunning.</td>
</tr>
<tr>
<td>Failed</td>
<td><em>Inactive state</em> – The port monitor is unable to start and remain running.</td>
</tr>
</tbody>
</table>

To determine the state of any particular port monitor, use the following command:

```
# sacadm -l -p portmon-name
```
## Port States

Ports can be enabled or disabled depending on the state of the port monitor that controls the ports.

<table>
<thead>
<tr>
<th>State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serial (ttymon) port states</td>
<td></td>
</tr>
<tr>
<td>Enabled</td>
<td>The ttymon port monitor sends a prompt message to the port and provides login service to it.</td>
</tr>
<tr>
<td>Disabled</td>
<td>Default state of all ports if ttymon is killed or disabled. If you specify this state, ttymon sends out the disabled message when it receives a connection request.</td>
</tr>
</tbody>
</table>
Managing System Resources (Overview)

This chapter provides a brief description of the system resource management features that are available in the Oracle Solaris OS and a road map to help you manage system resources.

Using these features, you can display general system information, monitor disk space, set disk quotas and use accounting programs. You can also schedule the `cron` and `at` commands to automatically run routine commands.

This section does not cover information on resource management that enables you to allocate, monitor, and control system resources in a flexible way.

For information on the procedures that are associated with managing system resources without resource management, see "Managing System Resources (Road Map)" on page 57.


What's New in Managing System Resources?

This section describes new or changed features for managing system resources in this Oracle Solaris release. For a complete listing of new features and a description of Oracle Solaris releases, see Oracle Solaris 10 8/11 What's New.

New `prtconf` Option to Display Product Names

**Solaris 10 1/06:** A new `-b` option has been added to the `prtconf` command for the purpose of displaying a system's product name. This option is similar to the `uname -v` command. However, the `prtconf -b` command is specifically designed to determine the marketing name of a product.
The firmware device tree root properties that are displayed by using the \texttt{-b} option to the \texttt{prtconf} command are as follows:

- name
- compatible
- banner-name
- model

To display additional platform-specific output that might be available, use the \texttt{prtconf -vb} command. For more information, see the \texttt{prtconf(1M)} man page and “How to Display a System’s Product Name” on page 65.

**psrinfo Command Option to Identify Chip Multithreading Features**

**Oracle Solaris 10:** The \texttt{psrinfo} command has been modified to provide information about physical processors, in addition to information about virtual processors. This enhanced functionality has been added to identify chip multithreading (CMT) features. The new \texttt{-p} option reports the total number of physical processors that are in a system. Using the \texttt{psrinfo -pv} command will list all the physical processors that are in the system, as well as the virtual processors that are associated with each physical processor. The default output of the \texttt{psrinfo} command continues to display the virtual processor information for a system.

For more information, see the \texttt{psrinfo(1M)} man page.

For information about the procedures associated with this feature, see “How to Display a System’s Physical Processor Type” on page 66.

**New localeadm Command**

**Oracle Solaris 10:** The new \texttt{localeadm} command allows you to change the locales on your system without reinstalling the OS or manually adding and removing packages. This command also allows you to query your system to determine which locales are installed. To run the \texttt{localeadm} command, you must have superuser privileges or assume an equivalent role through role-based access control (RBAC).

For more information, see the \texttt{localeadm(1M)} man page.

For more information in this guide, see Chapter 5, "Displaying and Changing System Information (Tasks)."

For a complete listing of new features and a description of Oracle Solaris releases, see \textit{Oracle Solaris 10 8/11 What’s New}. 

What’s New in Managing System Resources?
## Managing System Resources (Road Map)

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displaying and changing system information</td>
<td>Use various commands to display and change system information, such as general system information, the language environment, the date and time, and the system's host name.</td>
<td>Chapter 5, “Displaying and Changing System Information (Tasks)”</td>
</tr>
<tr>
<td>Managing disk use</td>
<td>Identify how disk space is used and take steps to remove old and unused files.</td>
<td>Chapter 6, “Managing Disk Use (Tasks)”</td>
</tr>
<tr>
<td>Managing quotas</td>
<td>Use UFS file system quotas to manage how much disk space is used by users.</td>
<td>Chapter 7, “Managing UFS Quotas (Tasks)”</td>
</tr>
<tr>
<td>Scheduling system events</td>
<td>Use cron and at jobs to help schedule system routines that can include clean up of old and unused files.</td>
<td>Chapter 8, “Scheduling System Tasks (Tasks)”</td>
</tr>
<tr>
<td>Managing system accounting</td>
<td>Use system accounting to identify how users and applications are using system resources.</td>
<td>Chapter 9, “Managing System Accounting (Tasks)”</td>
</tr>
</tbody>
</table>
Displaying and Changing System Information (Tasks)

This chapter describes the tasks that are required to display and change the most common system information.

For information about the procedures associated with displaying and changing system information, see the following:

- “Displaying System Information (Task Map)” on page 59
- “Changing System Information (Task Map)” on page 68

For overview information about managing system resources, see Chapter 4, “Managing System Resources (Overview).”

Displaying System Information (Task Map)

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Determine whether a system has 32–bit or 64–bit capabilities enabled.</td>
<td>Use the <code>isainfo</code> command to determine whether a system has 32–bit or 64–bit capabilities enabled. For x86 based systems, you can use the <code>lsallst</code> command to display this information.</td>
<td>“How to Determine Whether a System Has 32–Bit or 64–Bit Capabilities Enabled” on page 61</td>
</tr>
<tr>
<td>Display Oracle Solaris release information.</td>
<td>Display the contents of the <code>/etc/release</code> file to identify the Oracle Solaris release version.</td>
<td>“How to Display Oracle Solaris Release Information” on page 63</td>
</tr>
<tr>
<td>Display general system information.</td>
<td>Use the <code>shorrev</code> command to display general system information.</td>
<td>“How to Display General System Information” on page 63</td>
</tr>
</tbody>
</table>
The following table describes commands that enable you to display general system information.

<table>
<thead>
<tr>
<th>Command</th>
<th>System Information Displayed</th>
<th>Man Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>date</td>
<td>Date and time</td>
<td>date(1)</td>
</tr>
<tr>
<td>hostid</td>
<td>Host ID number</td>
<td>hostid(1)</td>
</tr>
</tbody>
</table>

---

Displaying System Information

The following table describes commands that enable you to display general system information.

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display a system's host ID number.</td>
<td>Use the hostid command to display your system's host id.</td>
<td>&quot;How to Display a System's Host ID Number&quot; on page 64</td>
</tr>
<tr>
<td>Display a system's product name.</td>
<td>Starting with the Solaris 10 1/06 release, you can use the prtconf -b command to display the product name of a system.</td>
<td>&quot;How to Display a System's Product Name&quot; on page 65</td>
</tr>
<tr>
<td>Display a system's installed memory.</td>
<td>Use the prtconf command to display information about your system's installed memory.</td>
<td>&quot;How to Display a System's Installed Memory&quot; on page 65</td>
</tr>
<tr>
<td>Display a system's date and time.</td>
<td>Use the date command to display your system's date and time.</td>
<td>&quot;How to Display the Date and Time&quot; on page 65</td>
</tr>
<tr>
<td>Display a system's physical processor type.</td>
<td>Use the psrinfo -p command to list the total number of physical processors on a system. Use the psrinfo -pv command to list all physical processors on a system and the virtual processors that is associated with each physical processor.</td>
<td>&quot;How to Display a System's Physical Processor Type&quot; on page 66</td>
</tr>
<tr>
<td>Display a system's logical processor type.</td>
<td>Use the psrinfo -v command to display a system's logical processor type.</td>
<td>&quot;How to Display a System's Logical Processor Type&quot; on page 66</td>
</tr>
<tr>
<td>Display locales that are installed on a system.</td>
<td>Use the localeadm command to display locales that are installed on your system.</td>
<td>&quot;How to Display Locales Installed on a System&quot; on page 67</td>
</tr>
<tr>
<td>Determine if a locale is installed on a system.</td>
<td>Use the -q option of the localeadm command and a locale to determine if a locale is installed on your system.</td>
<td>&quot;How to Determine If a Locale is Installed on a System&quot; on page 67</td>
</tr>
</tbody>
</table>
TABLE 5–1  Commands for Displaying System Information  (Continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>System Information Displayed</th>
<th>Man Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>isainfo</td>
<td>The number of bits supported by native applications on the running system, which can be passed as a token to scripts</td>
<td>isainfo(1)</td>
</tr>
<tr>
<td>isalist</td>
<td>Processor type for x86 based systems</td>
<td>psrinfo(1M)</td>
</tr>
<tr>
<td>localeadm</td>
<td>Locales installed on the system</td>
<td>localeadm(1M)</td>
</tr>
<tr>
<td>prtconf</td>
<td>System configuration information, installed memory, and product name</td>
<td>prtconf(1M)</td>
</tr>
<tr>
<td>psrinfo</td>
<td>Processor type</td>
<td>psrinfo(1M)</td>
</tr>
<tr>
<td>showrev</td>
<td>Host name, host ID, release, kernel architecture, application architecture, hardware provider, domain, and kernel version</td>
<td>showrev(1M)</td>
</tr>
<tr>
<td>uname</td>
<td>Operating system name, release, version, node name, hardware name, and processor type</td>
<td>uname(1)</td>
</tr>
</tbody>
</table>

▼ How to Determine Whether a System Has 32–Bit or 64–Bit Capabilities Enabled

- Use the isainfo command to determine whether a system has 32–bit or 64-bit capabilities enabled.

  # isainfo options

  The isainfo command, run without specifying any options, displays the name or names of the native instruction sets for applications supported by the current OS version.

  -v  Prints detailed information about the other options.
  -b  Prints the number of bits in the address space of the native instruction set.
  -n  Prints the name of the native instruction set used by portable applications supported by the current version of the OS.
  -k  Prints the name of the instruction set or sets that are used by the OS kernel components such as device drivers and STREAMS modules.

  Note  – For x86 based systems, the isalist command can also be used to display this information.

  For more information, see the isalist(1) man page.
Example 5–1  SPARC: Determining Whether a System Has 32–Bit or 64–Bit Capabilities Enabled

The `isainfo` command output for an UltraSPARC system that is running previous releases of the Oracle Solaris OS using a 32-bit kernel is displayed as follows:

```
$ isainfo -v
32-bit sparc applications
```

This output means that this system can support only 32–bit applications.

The current release of the Oracle Solaris OS only ships a 64–bit kernel on SPARC based systems. The `isainfo` command output for an UltraSPARC system that is running a 64–bit kernel is displayed as follows:

```
$ isainfo -v
64-bit sparcv9 applications
32-bit sparc applications
```

This output means that this system is capable of supporting both 32–bit and 64–bit applications.

Use the `isainfo -b` command to display the number of bits supported by native applications on the running system.

The output from a SPARC based, x86 based, or UltraSPARC system that is running the 32–bit Oracle Solaris OS is displayed as follows:

```
$ isainfo -b
32
```

The `isainfo` command output from a 64–bit UltraSPARC system that is running the 64–bit Oracle Solaris OS is displayed as follows:

```
$ isainfo -b
64
```

The command returns 64 only. Even though a 64–bit UltraSPARC system can run both types of applications, 64–bit applications are the best kind of applications to run on a 64–bit system.

Example 5–2  x86: Determining Whether a System Has 32–Bit or 64–Bit Capabilities Enabled

The `isainfo` command output for an x86 based system that is running the 64-bit kernel is displayed as follows:

```
$ isainfo
amd64 i386
```

This output means that this system can support 64–bit applications.
Use the `isainfo -v` command to determine if an x86-based system is capable of running a 32-bit kernel.

```
$ isainfo -v
64-bit amd64 applications
  fpu tsc cx8 cmov mmx ammx a3dnow a3dnowx fxsr sse sse2
32-bit i386 applications
  fpu tsc cx8 cmov mmx ammx a3dnow a3dnowx fxsr sse sse2
```

This output means that this system can support both 64-bit and 32-bit applications.

Use the `isainfo -b` command to display the number of bits supported by native applications on the running system.

The output from an x86-based system that is running the 32-bit Oracle Solaris OS is displayed as follows:

```
$ isainfo -b
32
```

The `isainfo` command output from an x86-based system that is running the 64-bit Oracle Solaris OS is displayed as follows:

```
$ isainfo -b
64
```

You can also use the `isalist` command to determine whether an x86-based system is running in 32-bit or 64-bit mode.

```
$ isalist
  amd64  pentium_pro+mmx  pentium_pro  pentium+mmx  pentium  i486  i386  i86
```

In the preceding example, `amd64` indicates that the system has 64-bit capabilities enabled.

### How to Display Oracle Solaris Release Information

- Display the contents of the `/etc/release` file to identify your release version.

  ```
  $ cat /etc/release
  Oracle Solaris 10 s10 51 SPARC
  Copyright (c) 1983, 2011, Oracle and/or its affiliates. All Rights Reserved.
  Use is subject to license terms.
  Assembled 28 February 2011
  ```

### How to Display General System Information

- To display general system information, use the `showrev` command.

  ```
  $ showrev options
  ```
-a (command) Prints all system revision information available.
-c (command) Prints the revision information about command.
-p Prints only the revision information about patches.
-R (root_path) Defines the full path name of a directory to use as the root_path.
-s (host name) Performs this operation on the specified host name.
-w Prints only the OpenWindows revision information.

You can also use the `uname` command to display system information. The following example shows the `uname` command output. The -a option displays the operating system name as well as the system node name, operating system release, operating system version, hardware name, and processor type.

```
$ uname
SunOS
$ uname -a
SunOS starbug 5.10 Generic sun4u sparc SUNW, Ultra-5 10
$ 
```

**Example 5–3  Displaying General System Information**

The following example shows the `showrev` command output. The -a option displays all available system information.

```
$ showrev -a
Hostname: stonetouch
Hostid: 8099dfb9
Release: 5.10
Kernel architecture: sun4u
Application architecture: sparc
Hardware provider:
Domain:
Kernel version: SunOS 5.10 s10_46
OpenWindows version:
Solaris X11 Version 6.6.2 19 November 2010
No patches are installed
```

**▼ How to Display a System's Host ID Number**

- To display the host ID number in hexadecimal format, use the `hostid` command.

**Example 5–4  Displaying a System's Host ID Number**

The following example shows sample output from the `hostid` command.
How to Display a System's Product Name

Solaris 10 1/06: The -b option to the `prtconf` command enables you to display a system's product name. For more information on this feature, see the `prtconf(1M)` man page.

To display the product name for your system, use the `prtconf` command with the -b option, as follows:

```
% prtconf -b
```

Example 5–5 Displaying a System's Product Name

This example shows sample output from the `prtconf` -b command.

```
$ prtconf -b
name: SUNW,Ultra-5_10
model: SUNW,375-0066
banner-name: Sun Ultra 5/10 UPA/PCI (UltraSPARC-IIi 333MHz)
```

This example shows sample output from the `prtconf` -vb command.

```
$ prtconf -vb
name: SUNW,Ultra-5_10
model: SUNW,375-0066
banner-name: Sun Ultra 5/10 UPA/PCI (UltraSPARC-IIi 333MHz)
idprom: 01800800.20a6c363.00000000.a6c363a9.00000000.00000000.405555aa.aa555500
openprom model: SUNW,3.15
openprom version: 'OBP 3.15.2 1998/11/10 10:35'
```

How to Display a System's Installed Memory

To display the amount of memory that is installed on your system, use the `prtconf` command.

Example 5–6 Displaying a System's Installed Memory

The following example shows sample output from the `prtconf` command. The `grep` `Memory` command selects output from the `prtconf` command to display memory information only.

```
$ prtconf | grep Memory
Memory size: 128 Megabytes
```

How to Display the Date and Time

To display the current date and time according to your system clock, use the `date` command.
Example 5–7  Displaying the Date and Time

The following example shows sample output from the date command.

$ date
Wed Jan 21 17:32:59 MST 2004
$

▼ How to Display a System's Physical Processor Type

● Use the `psrinfo -p` command to display the total number of physical processors on a system.

  $ psrinfo -p
  1

Use the `psrinfo -pv` command to display information about each physical processor on a system, and the virtual processor associated with each physical processor.

  $ psrinfo -pv
  The UltraSPARC-IV physical processor has 2 virtual processors (8, 520)
  The UltraSPARC-IV physical processor has 2 virtual processors (9, 521)
  The UltraSPARC-IV physical processor has 2 virtual processors (10, 522)
  The UltraSPARC-IV physical processor has 2 virtual processors (11, 523)
  The UltraSPARC-III+ physical processor has 1 virtual processor (16)
  The UltraSPARC-III+ physical processor has 1 virtual processor (17)
  The UltraSPARC-III+ physical processor has 1 virtual processor (18)
  The UltraSPARC-III+ physical processor has 1 virtual processor (19)

When you use the `psrinfo -pv` command on an x86 based system, the following output is displayed:

  $ psrinfo -pv
  The i386 physical processor has 2 virtual processors (0, 2)
  The i386 physical processor has 2 virtual processors (1, 3)

▼ How to Display a System's Logical Processor Type

● Use the `psrinfo -v` command to display information about a system's processor type.

  $ psrinfo -v

On an x86 based system, use the `isalist` command to display the virtual processor type.

  $ isalist

Example 5–8  SPARC: Displaying a System's Processor Type

This example shows how to display information about a SPARC based system's processor type.
Displaying System Information (Task Map)

```bash
$ psrinfo -v
Status of virtual processor 0 as of: 04/16/2004 10:32:13
    on-line since 03/22/2004 19:18:27.
The sparcv9 processor operates at 650 MHz,
    and has a sparcv9 floating point processor.
```

**Example 5–9**  x86: Displaying a System’s Processor Type

This example shows how to display information about an x86 based system’s processor type.

```bash
$ isalist
pentium_pro+mmx  pentium_pro  pentium+mmx  pentium  i486  i386  i86
```

▼ **How to Display Locales Installed on a System**

1. **Become superuser or assume an equivalent role.**

   Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in *System Administration Guide: Security Services*.

2. **Display the locales currently installed on your system using the `localeadm` command. The `-l` option displays the locales that are installed on the system. For example:**

   ```bash
   # localeadm -l
   Checking for installed pkgs. This could take a while.
   Checking for Australasia region (aua)
   (1of2 pkgs)
   [......]
   Central Europe (ceu)
   [ Austria, Czech Republic, Germany, Hungary, Poland, Slovakia, Switzerland (German), Switzerland (French) ]
   Done.
   ```

▼ **How to Determine If a Locale is Installed on a System**

1. **Become superuser or assume an equivalent role.**

   Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in *System Administration Guide: Security Services*. 
2 Determine if a locale is installed on your system using the `localeadm` command. The `-q` option and a locale queries the system to see if that locale is installed on the system. To see if the Central European region (ceu) is installed on your system, for example:

```bash
# localeadm -q ceu
locale/region name is ceu
Checking for Central Europe region (ceu)

The Central Europe region (ceu) is installed on this system
```

## Changing System Information (Task Map)

<table>
<thead>
<tr>
<th>Task</th>
<th>Directions</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manually set a system's date and time.</td>
<td>Manually set your system's date and time by using the date <code>mmddHHMM[[cc]yy]</code> command-line syntax.</td>
<td>&quot;How to Set a System's Date and Time Manually&quot; on page 69</td>
</tr>
<tr>
<td>Set up a message-of-the-day.</td>
<td>Set up a message-of-the-day on your system by editing the <code>/etc/motd</code> file.</td>
<td>&quot;How to Set Up a Message-Of-The-Day&quot; on page 70</td>
</tr>
<tr>
<td>Change a system's host name.</td>
<td>Change your system's host name by editing the following files:</td>
<td>&quot;How to Change a System's Host Name&quot; on page 70</td>
</tr>
<tr>
<td></td>
<td>■ <code>/etc/nodename</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td>■ <code>/etc/hostname.*</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td>■ <code>/etc/inet/hosts</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Note</strong> – If you are running the Solaris 3/05, 1/06, 6/06, or 11/06 releases, you also need to update the <code>/etc/inet/ipnodes</code> file. Starting with Solaris 10 8/07 release, there are no longer two separate hosts files in the OS. The <code>/etc/inet/hosts</code> file is the single hosts file that contains both IPv4 and IPv6 entries.</td>
<td></td>
</tr>
<tr>
<td>Add a locale to a system.</td>
<td>Use the <code>localeadm</code> command to add a locale to your system.</td>
<td>&quot;How to Add a Locale to a System&quot;</td>
</tr>
</tbody>
</table>
How to Remove a Locale From a System

Remove a locale from a system. Usethe `-r` option of the `localeadm` command and the locale to remove oflocale from your system.

<table>
<thead>
<tr>
<th>Task</th>
<th>Directions</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remove a locale from a system.</td>
<td>Use the <code>-r</code> option of the <code>localeadm</code> command and the locale to remove oflocale from your system.</td>
<td>How to Remove a Locale From a System</td>
</tr>
</tbody>
</table>

### Changing System Information

This section describes commands that enable you to change general system information.

#### How to Set a System’s Date and Time Manually

1. **Become superuser or assume an equivalent role.**
   Roles contain authorizations and privileged commands. For more information about roles, see "Configuring RBAC (Task Map)" in *System Administration Guide: Security Services*.

2. **Enter the new date and time.**
   ```
   # date mmdHHMM[ccyy]
   mm  Month, using two digits.
   dd  Day of the month, using two digits.
   HH  Hour, using two digits and a 24-hour clock.
   MM  Minutes, using two digits.
   cc  Century, using two digits.
   yy  Year, using two digits.
   
   See the `date(1)` man page for more information.
   ```

3. **Verify that you have reset your system’s date correctly by using the `date` command with no options.**

### Example 5–10

**Setting a System’s Date and Time Manually**

The following example shows how to use the `date` command to manually set a system’s date and time.

```
# date
Wed Mar  3 14:04:19 MST 2004
# date 0121173404
Thu Jan 21 17:34:34 MST 2004
```
How to Set Up a Message-Of-The-Day

Edit the message-of-the-day file, /etc/motd, to include announcements or inquiries to all users of a system when they log in. Use this feature sparingly, and edit this file regularly to remove obsolete messages.

1. **Become superuser or assume an equivalent role.**
   Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in System Administration Guide: Security Services.

2. **Edit the /etc/motd file and add a message of your choice.**
   Edit the text to include the message that will be displayed during user login. Include spaces, tabs, and carriage returns.

3. **Verify the changes by displaying the contents of the /etc/motd file.**
   
   ```
   $ cat /etc/motd
   Welcome to the UNIX Universe. Have a nice day.
   ```

Example 5–11 Setting Up a Message-Of-The-Day

The default message-of-the-day, which is provided when you install Oracle Solaris software, contains version information.

   ```
   $ cat /etc/motd
   Oracle Corporation SunOS 5.10  Generic January 2005
   ```

The following example shows an edited /etc/motd file that provides information about system availability to each user who logs in.

   ```
   $ cat /etc/motd
   The system will be down from 7:00 a.m to 2:00 p.m. on Saturday, July 7, for upgrades and maintenance. Do not try to access the system during those hours. Thank you.
   ```

How to Change a System's Host Name

A system’s host name is specified in several different locations.

Remember to update your name service database to reflect the new host name.

Use the following procedure to change or rename a system’s host name.

You can also use the `sys-unconfig` command to reconfigure a system, including the host name. For more information, see the `sys-unconfig(1M)` man page.
1 Become superuser or assume an equivalent role.
   Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in System Administration Guide: Security Services.

2 Change the system’s host name in the following files:
   - /etc/nodename
   - /etc/hostname.*interface
   - /etc/inet/hosts
   - /etc/inet/ipnodes (Applies only to some releases)

   Note – Starting with the Solaris 10 8/07 release, there is no longer two separate hosts files. The /etc/inet/hosts file is the single hosts file that contains both IPv4 and IPv6 entries. You do not need to maintain IPv4 entries in two hosts files that always require synchronization. For backward compatibility, the /etc/inet/ipnodes file is replaced with a symbolic link of the same name to the /etc/inet/hosts file. For more information, see the hosts(4) man page.

3 (Optional) If you are using a name service, change the system’s host name in the hosts file.

4 Rename the host name directory within the /var/crash directory.
   # cd /var/crash
   # mv old-host-name new-host-name

5 Reboot the system to activate the new host name.
   # init 6

▼ How to Add a Locale to a System

1 Become superuser or assume an equivalent role.
   Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in System Administration Guide: Security Services.

2 Add the packages for the locale you want to install on your system using the localeadm command.
   The -a option and a locale identifies the locale that you want to add. The -d option and a device identifies the device containing the locale packages you want to add. To add the Central European region (ceu) to your system, for example:
   # localeadm -a ceu -d /net/install/latest/Solaris/Product

   locale/region name is ceu
   Devices are /net/install/latest/Solaris/Product
How to Remove a Locale From a System

1. Become superuser or assume an equivalent role.
   Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in System Administration Guide: Security Services.

2. Remove the packages for the locale installed on your system using the `localeadm` command.
   The `-r` option and a locale identifies the locale that you want to remove from the system. To remove the Central European region (ceu) from your system, for example:

   ```
   # localeadm -r ceu
   locale/region name is ceu
   Removing packages for Central Europe (ceu)
   
   One or more locales have been removed.
   To update the list of locales available at the login screen’s "Options->Language" menu,
   ```
Managing Disk Use (Tasks)

This chapter describes how to optimize disk space by locating unused files and large directories.

For information on the procedures associated with managing disk use, see “Managing Disk Use (Task Map)” on page 73.

### Managing Disk Use (Task Map)

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display information about files and disk space.</td>
<td>Display information about how disk space is used by using the <code>df</code> command.</td>
<td>“How to Display Information About Files and Disk Space” on page 75</td>
</tr>
<tr>
<td>Display the size of files.</td>
<td>Display information about the size of files by using the <code>ls</code> command with the <code>-lh</code> option.</td>
<td>“How to Display the Size of Files” on page 77</td>
</tr>
<tr>
<td>Find large files.</td>
<td>The <code>ls -s</code> command allows you to sort files by size, in descending order.</td>
<td>“How to Find Large Files” on page 78</td>
</tr>
<tr>
<td>Find files that exceed a specified size limit.</td>
<td>Locate and display the names of files that exceed a specified size by using the <code>find</code> command with the <code>-size</code> option and the value of the specified size limit.</td>
<td>“How to Find Files That Exceed a Specified Size Limit” on page 79</td>
</tr>
<tr>
<td>Display the size of directories, subdirectories, and files.</td>
<td>Display the size of one or more directories, subdirectories, and files by using the <code>du</code> command.</td>
<td>“How to Display the Size of Directories, Subdirectories, and Files” on page 80</td>
</tr>
</tbody>
</table>
Displaying Information About Files and Disk Space

This table summarizes the commands available for displaying information about file size and disk space.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>Man Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>df</td>
<td>Reports the number of free disk blocks and files</td>
<td>df(1M)</td>
</tr>
<tr>
<td>du</td>
<td>Summarizes disk space allocated to each subdirectory</td>
<td>du(1)</td>
</tr>
<tr>
<td>find -size</td>
<td>Searches recursively through a directory based on the size specified with the -size option</td>
<td>find(1)</td>
</tr>
<tr>
<td>ls -lh</td>
<td>Lists the size of a file in the power of 1024 scaling</td>
<td>ls(1)</td>
</tr>
</tbody>
</table>
How to Display Information About Files and Disk Space

Display information about how disk space is used by using the **df** command.

```
$ df [directory] [-h] [-t]
```

- **df**: With no options, lists all mounted file systems and their device names, the number of 512-byte blocks used, and the number of files.
- **directory**: Specifies the directory whose file system you want to check.
- **-h**: Displays disk space in the power of 1024 scaling.
- **-t**: Displays the total blocks as well as the blocks used for all mounted file systems.

**Example 6–1**

Displaying Information About File Size and Disk Space

In the following example, all the file systems listed are locally mounted except for `/usr/dist`.

```
$ df

/ (dev/dsk/c0t0d0s0 ) : 101294 blocks 105480 files
/devices (dev ) : 0 blocks 0 files
/system/contract (ctfs ) : 0 blocks 2147483578 files
/proc (proc ) : 0 blocks 1871 files
/etc/mnttab (mnttab ) : 0 blocks 0 files
/etc/svc/volatile (swap ) : 992704 blocks 16964 files
/system/object (objfs ) : 0 blocks 2147483530 files
/usr (dev/dsk/c0t0d0s6 ) : 503774 blocks 299189 files
/dev/fd (fd ) : 0 blocks 0 files
/var/run (swap ) : 992704 blocks 16964 files
/tmp (swap ) : 992704 blocks 16964 files
/opt (dev/dsk/c0t0d0s5 ) : 23914 blocks 6947 files
/export/home (dev/dsk/c0t0d0s7 ) : 16810 blocks 7100 files

```

**Example 6–2**

Displaying File Size Information in 1024 Bytes on a System With a UFS Root File System

In the following example, file system information for a system with a UFS root file system is displayed in 1024 bytes.

```
$ df -h

Filesystem size used avail capacity Mounted on
/dev/dsk/c0t0d0s0 249M 200M 25M 90% /
/devices 0K 0K 0K 0% /devices
/ctfs 0K 0K 0K 0% /system/contract
/proc 0K 0K 0K 0% /proc
/mnttab 0K 0K 0K 0% /etc/mnttab
/swap 485M 376K 485M 1% /etc/svc/volatile
/objfs 0K 0K 0K 0% /system/object
/dev/dsk/c0t0d0s6 3.2G 2.9G 214M 94% /usr
```
Although /proc and /tmp are local file systems, they are not UFS file systems. /proc is a PROCFS file system, /var/run and /tmp are TMPFS file systems, and /etc/mnttab is an MNTFS file system.

**Example 6–3** Displaying File Size Information in 1024 Bytes on a System With a ZFS Root File System

In the following example, file system information for a system with an Oracle Solaris ZFS root file system is displayed in 1024 bytes.

```
Filesystem size used avail capacity Mounted on
rpool/ROOT/s1008be 67G 4.6G 58G 8% /
/devices 0K 0K 0K 0% /devices
tcfs 0K 0K 0K 0% /system/contract
proc 0K 0K 0K 0% /proc
mnttab 0K 0K 0K 0% /etc/mnttab
swap 1.9G 1.5M 1.9G 1% /etc/svc/volatile
objfs 0K 0K 0K 0% /system/object
sharefs 0K 0K 0K 0% /etc/dfs/sharetab
/platform/sun4u-us3/lib/libc_psr/libc_psr_hwcap1.so.1 63G 4.6G 58G 8% /platform/sun4u-us3/lib/libc_psr.so.1
/platform/sun4u-us3/lib/sparcv9/libc_psr/libc_psr_hwcap1.so.1 63G 4.6G 58G 8% /platform/sun4u-us3/lib/sparcv9/libc_psr.so.1
fd 0K 0K 0K 0% /dev/fd
rpool/ROOT/s1008be/var 67G 73M 58G 1% /var
swap 1.9G 32K 1.9G 1% /tmp
swap 1.9G 40K 1.9G 1% /var/run
rpool/export 67G 20K 58G 1% /export
rpool/export/home 67G 18K 58G 1% /export/home
```

**Example 6–4** Displaying Total Number of Blocks and Files Allocated for a File System

The following example shows a list of all mounted file systems, device names, total 512-byte blocks used, and the number of files. The second line of each two-line entry displays the total number of blocks and files that are allocated for the file system.

```
$ df -t
/ (/dev/dsk/c0t0d0s0 ): 101294 blocks 105480 files
total: 509932 blocks 129024 files
/devices (/devices ): 0 blocks 0 files
total: 0 blocks 113 files
/system/contract (ctcfs ): 0 blocks 2147483578 files
total: 0 blocks 69 files
/pro (proc ): 0 blocks 1871 files
total: 0 blocks 1916 files
```
### Checking the Size of Files

You can check the size of files and sort them by using the `ls` command. You can find files that exceed a size limit by using the `find` command. For more information, see the `ls(1)` and `find(1)` man pages.

Note – If you run out of space in the `/var` directory, do not symbolically link the `/var` directory to a directory on a file system with more disk space. Doing so, even as a temporary measure, might cause problems for certain daemon processes and utilities.

#### How to Display the Size of Files

1. Change to the directory where the files you want to check are located.

2. Display the size of the files.

   ```bash
   $ ls [-lh] [-s]
   
   - `l` displays a list of files and directories in long format, showing the sizes in bytes. (See the example that follows.)
   
   - `h` scales file sizes and directory sizes into Kbytes, Mbytes, Gbytes, or Tbytes when the file or directory size is larger than 1024 bytes. This option also modifies the output displayed by the `-o`, `-n`, `-g`, and `-g` options to display file or directory sizes in the new format. For more information, see the `ls(1)` man page.
   
   - `s` displays a list of the files and directories, showing the sizes in blocks.
Example 6–5  Displaying the Size of Files

The following example shows that the `lastlog` and `messages` files are larger than the other files in the `/var/adm` directory.

```bash
$ cd /var/adm
$ ls -lh
```

```
total 148
-rw------- 1 uucp bin 0 Nov 26 09:25 aculog
-drwxr-xr-x 2 adm adm 512 Nov 26 09:25 exacct/
-drwxr-xr-x 2 adm adm 512 Nov 26 09:25 lastlog
-drwxr-xr-x 2 adm adm 512 Nov 26 09:25 log/
-drwxr-xr-x 2 adm adm 512 Nov 26 09:25 passwd/
-drwxr-xr-x 2 adm adm 512 Nov 26 09:25 sa/
-drwxr-xr-x 2 root sys 512 Nov 26 09:39 streams/
-drwxr-xr-x 2 root sys 512 Nov 26 09:39 sa/
-rw-r--r-- 1 root root 342K Nov 26 13:56 utmpx
-rw-r--r-- 1 root root 20K Nov 26 13:55 messages
-rw-r--r-- 1 root root 19K Nov 26 13:56 wtmpx
-rw-r--r-- 1 root root 0 Nov 26 10:17 vold.log
```

The following example shows that the `lpsched.1` file uses two blocks.

```bash
$ cd /var/lp/logs
$ ls -s
```

```
total 2
-rw-r--r-- 1 root root 2 0 Nov 26 13:55 lpsched
-rw-r--r-- 1 root root 2 0 Nov 26 13:55 lpsched.1
```

▼ How to Find Large Files

1  Change to the directory that you want to search.

2  Display the size of files in blocks from largest to smallest.
   - If the characters or columns for the files are different, use the following command to sort a list of files by block size, from largest to smallest.

     ```bash
     $ ls -l | sort +4rn | more
     ```

   Note that this command sorts files in a list by the character that is in the fourth field, starting from the left.

   - If the characters or columns for the files are the same, use the following command to sort a list of files by block size, from largest to smallest.

     ```bash
     $ ls -s | sort -nr | more
     ```

   Note that this command sorts files in a list, starting with the left most character.
Finding Large Files (Sorting by the Fifth Field's Character)

$ cd /var/adm
$ ls -l | sort +4rn | more
-r--r--r-- 1 root root 4568368 Oct 17 08:36 lastlog
-rw-r--r-- 1 adm adm 697040 Oct 17 12:30 pacct.9
-rw-r--r-- 1 adm adm 280520 Oct 17 13:05 pacct.2
-rw-r--r-- 1 adm adm 277360 Oct 17 12:55 pacct.4
-rw-r--r-- 1 adm adm 264080 Oct 17 12:45 pacct.6
-rw-r--r-- 1 adm adm 255840 Oct 17 12:40 pacct.7
-rw-r--r-- 1 adm adm 254120 Oct 17 13:10 pacct.1
-rw-r--r-- 1 adm adm 250360 Oct 17 12:25 pacct.10
-rw-r--r-- 1 adm adm 248800 Oct 17 13:00 pacct.3
-rw-r--r-- 1 adm adm 247200 Oct 17 12:35 pacct.8
-rw-r--r-- 1 adm adm 246720 Oct 17 13:15 pacct.0
-rw-r--r-- 1 adm adm 245920 Oct 17 12:50 pacct.5
-rw-r--r-- 1 root root 190229 Oct 5 03:02 messages.1
-rw-r--r-- 1 adm adm 156800 Oct 17 13:17 pacct
-rw-r--r-- 1 adm adm 129084 Oct 17 08:36 wtmpx

Finding Large Files (Sorting by the Left Most Character)

In the following example, the lastlog and messages files are the largest files in the /var/adm directory.

$ cd /var/adm
$ ls -s | sort -nr | more
48 lastlog
30 messages
24 wtmpx
18 pacct
8 utmpx
2 vold.log
2 sulog
2 sm.bin/
2 sa/
2 passwd/
2 pacct1
2 log/
2 acct/
0 spellhist
0 aculog
total 144

Example 6–6

Example 6–7

How to Find Files That Exceed a Specified Size Limit

To locate and display the names of files that exceed a specified size, use the find command.

$ find directory -size +nnn

directory Identifies the directory that you want to search.
-size +nnn Is a number of 512-byte blocks. Files that exceed this size are listed.
Example 6–8  Finding Files That Exceed a Specified Size Limit

The following example shows how to find files larger than 400 blocks in the current working directory. The `-print` option displays the output of the `find` command.

```
$ find . -size +400 -print
./Howto/howto.doc
./Howto/howto.doc.backup
./howto/howtoread.doc
./Routine/routineBackupconcepts.doc
./Routine/routineIntro.doc
./Routine/routineTroublefsck.doc
./record
./Mail/pagination
./Config/configPrintadmin.doc
./Config/configPrintsetup.doc
./Config/configMailappx.doc
./Config/configMailconcepts.doc
./snapshot.rs
```

Checking the Size of Directories

You can display the size of directories by using the `du` command and options. Additionally, you can find the amount of disk space used by user accounts on local UFS file systems by using the `quot` command. For more information about these commands, see the `du(1)` and `quot(1M)` man pages.

▼ How to Display the Size of Directories, Subdirectories, and Files

- Display the size of one or more directories, subdirectories, and files by using the `du` command. Sizes are displayed in 512-byte blocks.

  ```
  $ du [-as] [directory...]
  du          Displays the size of each directory that you specify, including each subdirectory beneath it.
  -a          Displays the size of each file and subdirectory, and the total number of blocks that are contained in the specified directory.
  -s          Displays the total number of blocks that are contained in the specified directory.
  -h          Displays the size of each directory in 1024-byte blocks.
  -H          Displays the size of each directory in 1000-byte blocks.
  ```
Identifies one or more directories that you want to check. Separate multiple directories in the command-line syntax with spaces.

Example 6–9 Displaying the Size of Directories, Subdirectories, and Files

The following example shows the sizes of two directories.

$ du -s /var/adm /var/spool/lp
130 /var/adm
40 /var/spool/lp

The following example shows the sizes of two directories and includes the sizes of all the subdirectories and files that are contained within each directory. The total number of blocks that are contained in each directory is also displayed.

$ du /var/adm /var/spool/lp
2 /var/adm/exacct
2 /var/adm/log
2 /var/adm/streams
2 /var/adm/acct/fiscal
2 /var/adm/acct/nite
2 /var/adm/acct/sum
8 /var/adm/acct
2 /var/adm/sa
2 /var/adm/sm.bin
258 /var/adm
4 /var/spool/lp/admins
2 /var/spool/lp/requests/printing....
4 /var/spool/lp/requests
4 /var/spool/lp/system
2 /var/spool/lp/fifos
24 /var/spool/lp

The following example shows directory sizes in 1024-byte blocks.

$ du -h /usr/share/audio
796K /usr/share/audio/samples/au
797K /usr/share/audio/samples
798K /usr/share/audio

How to Display the User Ownership of Local UFS File Systems

1 Become superuser or assume an equivalent role.

Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in System Administration Guide: Security Services.
2 Display users, directories, or file systems, and the number of 1024-byte blocks used.

```bash
# quot [-a] [filesystem ...]
```

- `-a` Lists all users of each mounted UFS file system and the number of 1024-byte blocks used.

- `filesystem` Identifies a UFS file system. Users and the number of blocks used are displayed for that file system.

**Note** – The `quot` command works only on local UFS file systems.

### Example 6–10 Displaying the User Ownership of Local UFS File Systems

In the following example, users of the root (`/`) file system are displayed. In the subsequent example, users of all mounted UFS file systems are displayed.

```bash
# quot /
/dev/rdsk/c0t0d0s0:
43340 root
3142 rimmer
47 uucp
35 lp
30 adm
4 bin
4 daemon

# quot -a
/dev/rdsk/c0t0d0s0 (/):
43340 root
3150 rimmer
47 uucp
35 lp
30 adm
4 bin
4 daemon

/dev/rdsk/c0t0d0s6 (/usr):
460651 root
206632 bin
791 uucp
46 lp
4 daemon
1 adm

/dev/rdsk/c0t0d0s7 (/export/home):
9 root
```
Finding and Removing Old or Inactive Files

Part of the job of cleaning up heavily loaded file systems involves locating and removing files that have not been used recently. You can locate unused files by using the `ls` or `find` commands. For more information, see the `ls(1)` and `find(1)` man pages.

Other ways to conserve disk space include emptying temporary directories such as the directories located in `/var/tmp` or `/var/spool`, and deleting core and crash dump files. For more information about crash dump files, refer to Chapter 17, "Managing System Crash Information (Tasks)."

▼ How to List the Newest Files

- List files, displaying the most recently created or changed files first, by using the `ls -t` command.

  $ ls -t [directory]

  -t Sorts files by latest time stamp first.

  directory Identifies the directory that you want to search.

Example 6–11 Listing the Newest Files

The following example shows how to use the `ls -tl` command to locate the most recently created or changed files within the `/var/adm` directory. The `sulog` file was created or edited most recently.

$ ls -tl /var/adm
total 134
-rw------- 1 root root 315 Sep 24 14:00 sulog
-rw-r--r-- 1 root other 350700 Sep 22 22:11:04 lastlog
-rw-r--r-- 1 root bin 4464 Sep 22 22:11:04 utmpx
-rw-r--r-- 1 adm adm 20088 Sep 22 22:11:04 wtmpx
-rw-r--r-- 1 root other 0 Sep 19 03:10 messages
-rw-r--r-- 1 root other 0 Sep 12 03:10 messages.0
-rw-r--r-- 1 root root 11510 Sep 10 16:12 vold.log
-rw-r--r-- 1 root root 0 Sep 10 16:12 vold.log
-dwxr-xr-x 2 root sys 512 Sep 10 15:33 sm.bin
drwxrwxr-x 5 adm adm 512 Sep 10 15:19 acct
drwxrwxr-x 2 adm sys 512 Sep 10 15:19 sa
-drwxr-xr-x 2 adm adm 512 Sep 10 15:17 log
-drwxr-xr-x 2 adm adm 512 Sep 10 15:17 passwd
How to Find and Remove Old or Inactive Files

1. Become superuser or assume an equivalent role.
   Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in System Administration Guide: Security Services.

2. Find files that have not been accessed for a specified number of days and list them in a file.
   
   ```
   # find directory -type f [-atime +nnn] [-mtime +nnn] -print > filename &
   
   directory   Identifies the directory you want to search. Directories below this directory are also searched.
   -atime +nnn Finds files that have not been accessed within the number of days (nnn) that you specify.
   -mtime +nnn Finds files that have not been modified within the number of days (nnn) that you specify.
   filename   Identifies the file that contains the list of inactive files.
   ```

3. Remove the inactive files found listed in the previous step.
   
   ```
   # rm 'cat filename'
   
   where filename identifies the file that was created in the previous step. This file contains the list of inactive files.
   ```

Example 6–12 Finding and Removing Old or Inactive Files

The following example shows files in the /var/adm directory and the subdirectories that have not been accessed in the last 60 days. The /var/tmp/deadfiles file contains the list of inactive files. The rm command removes these inactive files.

```
# find /var/adm -type f -atime +60 -print > /var/tmp/deadfiles &
# more /var/tmp/deadfiles
/var/adm/aculog
/var/adm/spellhist
/var/adm/wtmpx
/var/adm/sa/sa13
/var/adm/sa/sa27
/var/adm/sa/sa11
/var/adm/sa/sa23
/var/adm/sulog
/var/adm/vold.log
/var/adm/messages.1
/var/adm/messages.2
/var/adm/messages.3
# rm 'cat /var/tmp/deadfiles'
#
```
How to Clear Out Temporary Directories

1  Become superuser or assume an equivalent role.
   Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in System Administration Guide: Security Services.

2  Change to the directory that you want to clean out.
   
   ```
   # cd directory
   ```

   **Caution** – Ensure that you are in the correct directory before completing Step 3. Step 3 deletes all files in the current directory.

3  Delete the files and subdirectories in the current directory.
   
   ```
   # rm -r *
   ```

4  Change to other directories that contain unnecessary, temporary or obsolete subdirectories and files.

5  Delete these subdirectories and files by repeating Step 3.

**Example 6–13**  Clearing Out Temporary Directories

The following example shows how to clear out the mywork directory, and how to verify that all files and subdirectories were removed.

```
# cd mywork
# ls
filea.000
fileb.000
filec.001
# rm -r *
# ls
#
```

How to Find and Delete core Files

1  Become superuser or assume an equivalent role.
   Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in System Administration Guide: Security Services.

2  Change to the directory where you want to search for core files.
Finding and Removing Old or Inactive Files

3 Find and remove any core files in this directory and its subdirectories.
   # find . -name core -exec rm {} \;

Example 6–14 Finding and Deleting core Files

The following example shows how to find and remove core files from the jones user account by using the find command.

   # cd /home/jones
   # find . -name core -exec rm {} \;

▼ How to Delete Crash Dump Files

Crash dump files can be very large. If you have enabled your system to store these files, do not retain them for longer than necessary.

1 Become superuser or assume an equivalent role.

Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in System Administration Guide: Security Services.

2 Change to the directory where crash dump files are stored.
   # cd /var/crash/system
   where system identifies a system that created the crash dump files.

   Caution – Ensure you are in the correct directory before completing Step 3. Step 3 deletes all files in the current directory.

3 Remove the crash dump files.
   # rm *

4 Verify that the crash dump files were removed.
   # ls

Example 6–15 Deleting Crash Dump Files

The following example shows how to remove crash dump files from the system venus, and how to verify that the crash dump files were removed.

   # cd /var/crash/venus
   # rm *
   # ls
Managing UFS Quotas (Tasks)

This chapter describes how to set up and administer UFS quotas for disk space and inodes.

For information associated with managing UFS quotas, see the following:

- “Setting Up UFS Quotas (Task Map)” on page 90
- “Maintaining UFS Quotas (Task Map)” on page 94

For information about managing Oracle Solaris ZFS quotas, see “Setting ZFS Quotas and Reservations” in Oracle Solaris ZFS Administration Guide.

What Are UFS Quotas?

UFS quotas enable system administrators to control the size of file systems. Quotas limit the amount of disk space and the number of inodes, which roughly corresponds to the number of files, that individual users can acquire. For this reason, quotas are especially useful on the file systems where user home directories reside. As a rule, the public and /tmp file systems usually do not benefit significantly by establishing quotas.

Using UFS Quotas

Once quotas are in place, they can be changed to adjust the amount of disk space or the number of inodes that users can consume. Additionally, quotas can be added or removed as system needs change. For instructions on changing quotas or the amount of time that quotas can be exceeded, disabling individual quotas, or removing quotas from file systems, see “Changing and Removing UFS Quotas” on page 97.

In addition, quota status can be monitored. UFS quota commands enable administrators to display information about quotas on a file system, or search for users who have exceeded their quotas. For procedures that describe how to use these commands, see “Checking UFS Quotas” on page 95.
Setting Soft Limits and Hard Limits for UFS Quotas

You can set both soft limits and hard limits. The system does not allow a user to exceed his or her hard limit. However, a system administrator might set a soft limit, which the user can temporarily exceed. The soft limit must be less than the hard limit.

Once the user exceeds the soft limit, a quota timer begins. While the quota timer is ticking, the user is allowed to operate above the soft limit but cannot exceed the hard limit. Once the user goes below the soft limit, the timer is reset. However, if the user’s usage remains above the soft limit when the timer expires, the soft limit is enforced as a hard limit. By default, the soft limit timer is set to seven days.

The `timelimit` field in the `requota` and `quota` commands shows the value of the timer.

For example, let’s say a user has a soft limit of 10,000 blocks and a hard limit of 12,000 blocks. If the user’s block usage exceeds 10,000 blocks and the seven-day timer is also exceeded, the user cannot allocate more disk blocks on that file system until his or her usage drops below the soft limit.

The Difference Between Disk Block and File Limits

A file system provides two resources to the user, blocks for data and inodes for files. Each file consumes one inode. File data is stored in data blocks. Data blocks are usually made up of 1Kbyte blocks.

Assuming no directories exist, a user can exceed his or her inode quota by creating all empty files without using any blocks. A user can also use one inode, yet exceed his or her block quota, by creating one file that is large enough to consume all the data blocks in the user’s quota.

Setting Up UFS Quotas

Setting up quotas involves these general steps:

1. Ensuring that quotas are enforced each time the system is rebooted by adding a quota option to the `/etc/vfstab` file entries. Also, creating a `quotas` file in the top-level directory of the file system.

2. After you create a quota for one use, copying the quota as a prototype to set up other user quotas.

3. Before you turn quotas on, checking the consistency of the proposed quotas with the current disk usage to make sure that there are no conflicts.

4. Turning on the quotas on for one or more file systems.

For specific information about these procedures, see “Setting Up UFS Quotas (Task Map)” on page 90.
The following table describes the commands that you use to set up disk quotas.

**TABLE 7–1  Commands for Setting Up UFS Quotas**

<table>
<thead>
<tr>
<th>Command</th>
<th>Task</th>
<th>Man Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>edquota</td>
<td>Sets the hard limits and soft limits on the number of inodes and the amount of disk space for each user.</td>
<td>edquota(1M)</td>
</tr>
<tr>
<td>quotacheck</td>
<td>Examines each mounted UFS file system, comparing the file system’s current disk usage against information stored in the file system’s disk quota file. Then, resolves inconsistencies.</td>
<td>quotacheck(1M)</td>
</tr>
<tr>
<td>quotaon</td>
<td>Activates the quotas for the specified file systems.</td>
<td>quotaon(1M)</td>
</tr>
<tr>
<td>quota</td>
<td>Displays users’ UFS disk quotas on mounted file systems to verify that the quotas have been correctly set up.</td>
<td>quota(1M)</td>
</tr>
</tbody>
</table>

**Guidelines for Setting Up UFS Quotas**

Before you set up UFS quotas, you need to determine how much disk space and how many inodes to allocate to each user. If you want to ensure that the total file system space is never exceeded, you can divide the total size of the file system between the number of users. For example, if three users share a 100-Mbyte slice and have equal disk space needs, you could allocate 33 Mbytes to each user.

In environments where not all users are likely to push their limits, you might want to set individual quotas so that they add up to more than the total size of the file system. For example, if three users share a 100-Mbyte slice, you could allocate 40 Mbytes to each user.

When you have established a quota for one user by using the edquota command, you can use this quota as a prototype to set the same quota for other users on the same file system.

Before you turn on the quotas, do the following:

- First, configure the UFS file systems for the quotas.
- Establish quotas for each user, and run the quotacheck command to check for consistency between current disk usage and quota files.
- Run the quotacheck command periodically if systems are rebooted infrequently.

The quotas you set up with the edquota command are not enforced until you turn them on by using the quotaon command. If you have properly configured the quota files, the quotas are turned on automatically each time a system is rebooted and the file system is mounted.
### Setting Up UFS Quotas (Task Map)

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Configure a file system for quotas.</td>
<td>Edit the <code>/etc/vfstab</code> file so that quotas are activated each time the file system is mounted. Also, create a quotas file.</td>
<td>&quot;How to Configure File Systems for UFS Quotas&quot; on page 90</td>
</tr>
<tr>
<td>2. Set up UFS quotas for a user.</td>
<td>Use the <code>edquota</code> command to create disk quotas and inode quotas for a single user account.</td>
<td>&quot;How to Set Up UFS Quotas for a User&quot; on page 91</td>
</tr>
<tr>
<td>3. (Optional) Set up UFS quotas for multiple users.</td>
<td>Use the <code>edquota</code> command to apply prototype quotas to other user accounts.</td>
<td>&quot;How to Set Up UFS Quotas for Multiple Users&quot; on page 92</td>
</tr>
<tr>
<td>4. Check for consistency.</td>
<td>Use the <code>quotachk</code> command to compare quotas to current disk usage for consistency across one or more file systems.</td>
<td>&quot;How to Check UFS Quota Consistency&quot; on page 92</td>
</tr>
<tr>
<td>5. Turn on UFS quotas.</td>
<td>Use the <code>quotaon</code> command to initiate UFS quotas on one or more file systems.</td>
<td>&quot;How to Turn On UFS Quotas&quot; on page 93</td>
</tr>
</tbody>
</table>

### How to Configure File Systems for UFS Quotas

1. Become superuser or assume an equivalent role.

   Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in *System Administration Guide: Security Services*.

2. Edit the `/etc/vfstab` file and add `rq` to the `mount options` field for each UFS file system that will have quotas.

3. Change directory to the root of the file system that will have quotas.

4. Create a file named `quotas`.

   ```bash
   # touch quotas
   ```

5. Change permissions to read/write for superuser access only.

   ```bash
   # chmod 600 quotas
   ```
Example 7–1 Configuring File Systems for UFS Quotas

The following /etc/vfstab example shows that the /export/home directory from the system pluto is mounted as an NFS file system on the local system. You can tell that quotas are enabled by the rq entry under the mount options column.

```
# device device mount FS fsck mount mount
# to mount to fsck point type pass at boot options
# pluto:/export/home - /export/home nfs - yes rq
```

The following example line from the /etc/vfstab file shows that the local /work directory is mounted with quotas enabled, signified by the rq entry under the mount options column.

```
# device device mount FS fsck mount mount
# to mount to fsck point type pass at boot options
#/dev/dsk/c0t4d0s0 /dev/rdsk/c0t4d0s0 /work ufs 3 yes rq
```

See Also
- “How to Set Up UFS Quotas for a User” on page 91
- “How to Set Up UFS Quotas for Multiple Users” on page 92
- “How to Check UFS Quota Consistency” on page 92
- “How to Turn On UFS Quotas” on page 93

▼ How to Set Up UFS Quotas for a User

1 Become superuser or assume an equivalent role.
   Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in System Administration Guide: Security Services.

2 Use the quota editor to create a temporary file that contains one line of quota information for each mounted UFS file system that has a quotas file in the file system’s root directory.
   
   ```
   # edquota username
   ```
   where username is the user for whom you want to set up quotas.

3 Change the number of 1-Kbyte disk blocks, both soft and hard, to the quotas that you specify for each file system.

4 Change the number of inodes, both soft and hard, from the default of 0, to the quotas that you specify for each file system.

5 Verify the user’s UFS quota.
   
   ```
   # quota -v username
   ```
   
   -v Displays the user’s quota information on all mounted file systems where quotas exist.
username  Specifies the user name to view quota limits.

**Example 7–2  Setting Up UFS Quotas for a User**

The following example shows the contents of the temporary file opened by edquota on a system where `/files` is the only mounted file system that contains a quotas file in the root directory.

```
fs /files blocks (soft = 0, hard = 0) inodes (soft = 0, hard = 0)
```

The following example shows the same line in the temporary file after quotas have been set up.

```
fs /files blocks (soft = 50, hard = 60) inodes (soft = 90, hard = 100)
```

**How to Set Up UFS Quotas for Multiple Users**

1. **Become superuser or assume an equivalent role.**
   
   Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in System Administration Guide: Security Services.

2. **Use the quota editor to apply the quotas you already established for a prototype user to the additional users that you specify.**

   ```
   # edquota -p prototype-user username ...
   
   prototype-user  Is the user name of the account for which you have set up quotas.
   
   username ...  Specifies one or more user names of additional accounts. More than one user name is specified by separating each user name with a space.
   ```

**Example 7–3  Setting Up Prototype UFS Quotas for Multiple Users**

The following example shows how to apply the quotas established for user bob to users mary and john.

```
# edquota -p bob mary john
```

**How to Check UFS Quota Consistency**

The quotacheck command is run automatically when a system is rebooted. You generally do not have to run the quotacheck command on an empty file system with quotas. However, if you are setting up quotas on a file system with existing files, you need to run the quotacheck command to synchronize the quota database with the files or inodes that already exist in the file system.
Also, keep in mind that running the quotacheck command on large file systems can be time-consuming.

**Note** – To ensure accurate disk data, the file systems being checked should be quiescent when you manually run the quotacheck command.

1 **Become superuser or assume an equivalent role.**

Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in System Administration Guide: Security Services.

2 **Run a consistency check on UFS file systems.**

   ```bash
   # quotacheck [-va] filesystem
   -v (Optional) Identifies the disk quotas for each user on a particular file system.
   -a Checks all file systems with an rq entry in the /etc/vfstab file.
   filesystem Specifies the file system to check.
   ```

   See the quotacheck(1M) man page for more information.

**Example 7–4 Checking UFS Quota Consistency**

The following example shows how to check quotas for the /export/home file system on the /dev/rdsk/c0t0d0s7 slice. The /export/home file system is the only file system with an rq entry in the /etc/vfstab file.

   ```bash
   # quotacheck -va
   *** Checking quotas for /dev/rdsk/c0t0d0s7 (/export/home)
   ```

**How to Turn On UFS Quotas**

1 **Become superuser or assume an equivalent role.**

Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in System Administration Guide: Security Services.

2 **Turn on file system quotas.**

   ```bash
   # quotaon [-v] -a filesystem ...
   -v Displays a message for each file system after quotas are turned on.
   -a Turns on quotas for all file systems with an rq entry in the /etc/vfstab file.
   ```
**Example 7–5** Turning On UFS Quotas

The following example shows how to turn quotas on for the file systems on the /dev/dsk/c0t4d0s7 and /dev/dsk/c0t3d0s7 slices.

```bash
# quotaon -v /dev/dsk/c0t4d0s7 /dev/dsk/c0t3d0s7
/dev/dsk/c0t4d0s7: quotas turned on
/dev/dsk/c0t3d0s7: quotas turned on
```

## Maintaining UFS Quotas (Task Map)

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check for exceeded UFS quotas.</td>
<td>Display the UFS quotas and disk use for individual users on file systems on which UFS quotas have been activated by using the quota command.</td>
<td>“How to Check for Exceeded UFS Quotas” on page 95</td>
</tr>
<tr>
<td>Check for UFS quotas on a file system.</td>
<td>Display the UFS quotas and disk use for all users on one or more file systems by using the repquota command.</td>
<td>“How to Check UFS Quotas on a File System” on page 96</td>
</tr>
<tr>
<td>Change the soft limit default.</td>
<td>Change the length of time that users can exceed their disk space quotas or inode quotas by using the edquota command.</td>
<td>“How to Change the Soft Limit Default” on page 97</td>
</tr>
<tr>
<td>Change UFS quotas for a user.</td>
<td>Use the quota editor, edquota, to change quotas for an individual user.</td>
<td>“How to Change UFS Quotas for a User” on page 98</td>
</tr>
<tr>
<td>Disable UFS quotas for a user.</td>
<td>Use the quota editor, edquota, to disable quotas for an individual user.</td>
<td>“How to Disable UFS Quotas for a User” on page 99</td>
</tr>
<tr>
<td>Turn off UFS quotas.</td>
<td>Turn off UFS quotas by using the quotaoff command.</td>
<td>“How to Turn Off UFS Quotas” on page 100</td>
</tr>
</tbody>
</table>
Checking UFS Quotas

After you have set up and turned on UFS disk quotas and inode quotas, you can check for users who exceed their quotas. In addition, you can check quota information for entire file systems.

The following table describes the commands that you use to check quotas.

<table>
<thead>
<tr>
<th>TABLE 7-2 Commands for Checking UFS Quotas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>quota(1M)</td>
</tr>
<tr>
<td>repquota(1M)</td>
</tr>
</tbody>
</table>

▼ How to Check for Exceeded UFS Quotas

You can display the UFS quotas and disk use for individual users on file systems on which quotas have been activated by using the quota command.

1. **Become superuser or assume an equivalent role.**
   Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in System Administration Guide: Security Services.

2. **Display user quotas for mounted file systems where quotas are enabled.**

   # quota [-v] username
   
   -v Displays one or more users’ quotas on all mounted file systems that have quotas.
   
   username Is the login name or UID of a user’s account.

Example 7-6 Checking for Exceeded UFS Quotas

The following example shows that the user account identified by UID 301 has one 1–Kbyte quota but has not used any disk space.

# quota -v 301
Disk quotas for bob (uid 301):
Filesystem usage quota limit timeleft files quota limit timeleft
/export/home 0 1 2 0 2 3

Filesystem Is the mount point for the file system.
usage Is the current block usage.
quota Is the soft-block limit.
How to Check UFS Quotas on a File System

Display the UFS quotas and disk use for all users on one or more file systems by using the repquota command.

1 Become superuser or assume an equivalent role.

Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in System Administration Guide: Security Services.

2 Display all UFS quotas for one or more file systems, even if there is no usage.

```
# repquota [-v] -a filesystem
```

- `v` Reports on UFS quotas for all users, even those users who do not consume resources.
- `a` Reports on all file systems.
- `filesystem` Reports on the specified file system.

Example 7–7  Checking UFS Quotas on a File System

The following example shows output from the repquota command on a system that has quotas enabled on only one file system (/export/home).

```
# repquota -va
/export/home:
Block limits File limits
User  used soft hard timeleft used soft hard timeleft
#301 -- 57 50 60 7.0 days 2 90 100
```

- **Block limits**
  - **used** Is the current block usage.
  - **soft** Is the soft-block limit.
Changing and Removing UFS Quotas

You can change quotas to adjust the amount of disk space or the number of inodes that users can consume. You can also remove quotas, for individual users or from entire file systems, as needed.

The following table describes the commands that you use to change quotas or to remove quotas.

### TABLE 7–3 Commands for Changing and Removing UFS Quotas

<table>
<thead>
<tr>
<th>Command</th>
<th>Man Page</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>edquota</td>
<td>edquota(1M)</td>
<td>Changes the hard limits and soft limits on the number of inodes or amount of disk space for each user. Also, changes the soft limit for each file system with a quota.</td>
</tr>
<tr>
<td>quotaoff</td>
<td>quotaon(1M)</td>
<td>Turns off quotas for specified file systems.</td>
</tr>
</tbody>
</table>

#### How to Change the Soft Limit Default

By default, users can exceed the soft time limits for their UFS quotas for one week. So, after a week of repeated violations of the soft time limits of either disk space quotas or inode quotas, the system prevents users from using any more inodes or disk blocks.

You can change the length of time that users can exceed their disk space quotas or inode quotas by using the edquota command.

1. **Become superuser or assume an equivalent role.**
   
   Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in System Administration Guide: Security Services.

2. **Use the quota editor to create a temporary file that contains soft time limits.**
   
   ```bash
   # edquota -t
   ```
where the -t option specifies the editing of the soft time limits for each file system.

3 Change the time limits from 0 (the default) to the time limits that you specify. So, use numbers and the keywords month, week, day, hour, min, or sec.

Note – This procedure does not affect current quota violators.

Example 7–8 Changing the Soft Limit Default

The following example shows the contents of the temporary file opened by the edquota command on a system where /export/home is the only mounted file system with quotas. The default value, 0, means that the default time limit of one week is used.

    fs /export/home blocks time limit = 0 (default), files time limit = 0 (default)

The following example shows the same temporary file after the time limit for exceeding the blocks quota has been changed to 2 weeks. Also, the time limit for exceeding the number of files has been changed to 16 days.

    fs /export/home blocks time limit = 2 weeks, files time limit = 16 days

▼ How to Change UFS Quotas for a User

1 Become superuser or assume an equivalent role.

Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in System Administration Guide: Security Services.

2 Use the quota editor to open a temporary file that contains one line for each mounted file system that has a quotas file in the file system’s root directory.

    # edquota username

where username specifies the user name whose quota you want to change.

Caution – You can specify multiple users as arguments to the edquota command. However, the user that this information belongs to, is not displayed. To avoid confusion, specify only one user name.

3 Specify the number of 1-Kbyte disk blocks, both soft and hard, and the number of inodes, both soft and hard.

4 Verify that a user’s UFS quota has been correctly changed.

    # quota -v username
Displays user UFS quota information on all mounted file systems with quotas enabled.

username Specifiesthe user name whose quota you want to check.

Example 7–9 Changing UFS Quotas for a User

The following example shows the contents of the temporary file opened by the edquota command. This temporary file is opened on a system where /files is the only mounted file system containing a quotas file in the file system's root directory.

fs /files blocks (soft = 0, hard = 0) inodes (soft = 0, hard = 0)

The following output shows the same temporary file after quotas have been changed.

fs /files blocks (soft = 0, hard = 500) inodes (soft = 0, hard = 100)

Example 7–10 Verifying That Hard UFS Quotas Have Been Changed

The following example shows how to verify that the hard quotas for user smith have been changed to 500 1-Kbyte blocks, and 100 inodes.

# quota -v smith

Disk quotas for smith (uid 12):  
Files system usage quota limit timeleft files quota limit timeleft  
/files  1  0  500  1  0  100

How to Disable UFS Quotas for a User

1 Become superuser or assume an equivalent role.

Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in System Administration Guide: Security Services.

2 Use the quota editor to create a temporary file containing one line for each mounted file system that has a quotas file in its top-level directory.

# edquota username

Where username specifies the user name whose quota you want to disable.

Caution – You can specify multiple users as arguments to the edquota command. However, the user that this information belongs to, is not displayed. To avoid confusion, specify only one user name.
3 Change the number of 1-Kbyte disk blocks, both soft and hard, to 0.

4 Change the number of inodes, both soft and hard, to 0.

Note – Ensure that you change the values to zero. Do not delete the line from the text file.

5 Verify that you have disabled a user’s UFS quota.

```
# quota -v username
```

- `v` Displays user UFS quota information on all mounted file systems with quotas enabled.
- `username` Specifies the user name (UID) whose UFS quota you want to check.

### Example 7–11 Disabling UFS Quotas for a User

The following example shows the contents of the temporary file opened by the edquota command on a system where `/files` is the only mounted file system that contains a quotas file in the file system’s root directory.

```
fs /files blocks (soft = 50, hard = 60) inodes (soft = 90, hard = 100)
```

The following example shows the same temporary file after UFS quotas have been disabled.

```
fs /files blocks (soft = 0, hard = 0) inodes (soft = 0, hard = 0)
```

### How to Turn Off UFS Quotas

1 Become superuser or assume an equivalent role.

Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in System Administration Guide: Security Services.

2 Turn off file system quotas.

```
# quotaoff [-v] -a filesystem ...
```

- `-v` Displays a message from each file system when UFS quotas are turned off.
- `-a` Turns off UFS quotas for all file systems.
- `filesystem` Turns off UFS quotas for one or more file systems that you specify. More than one file system is specified by separating each file system name with a space.
Example 7–12  Turning Off Quotas

The following example shows how to turn off the quotas for the /export/home file system.

```
# quotaoff -v /export/home
/export/home: quotas turned off
```
This chapter describes how to schedule routine or single (one-time) system tasks by using the `crontab` and `at` commands.

This chapter also explains how to control access to these commands by using the following files:

- `cron.deny`
- `cron-allow`
- `at.deny`

For information on the procedures that are associated with scheduling system tasks, see the following:

- “Creating and Editing `crontab` Files (Task Map)” on page 103
- “Using the `at` Command (Task Map)” on page 116

### Creating and Editing `crontab` Files (Task Map)

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create or edit a <code>crontab</code> file.</td>
<td>Use the <code>crontab -e</code> command to create or edit a <code>crontab</code> file.</td>
<td>“How to Create or Edit a `crontab File” on page 109</td>
</tr>
<tr>
<td>Verify that a <code>crontab</code> file exists.</td>
<td>Use the <code>ls -l</code> command to verify the contents of the <code>/var/spool/cron/crontabs</code> file.</td>
<td>“How to Verify That a <code>crontab</code> File Exists” on page 110</td>
</tr>
<tr>
<td>Display a <code>crontab</code> file.</td>
<td>Use the <code>ls -l</code> command to display the <code>crontab</code> file.</td>
<td>“How to Display a <code>crontab</code> File” on page 110</td>
</tr>
</tbody>
</table>
Ways to Automatically Execute System Tasks

You can set up many system tasks to execute automatically. Some of these tasks should occur at regular intervals. Other tasks need to run only once, perhaps during off hours such as evenings or weekends.

This section contains overview information about two commands, crontab and at, which enable you to schedule routine tasks to execute automatically. The crontab command schedules repetitive commands. The at command schedules tasks that execute once.

The following table summarizes crontab and at commands, as well as the files that enable you to control access to these commands.

<table>
<thead>
<tr>
<th>Task Description</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remove a crontab file.</td>
<td>The crontab file is set up with restrictive permissions. Use the crontab -r command, rather than the rm command to remove a crontab file.</td>
<td>“How to Remove a crontab File” on page 112</td>
</tr>
<tr>
<td>Deny crontab access.</td>
<td>To deny users access to crontab commands, add user names to the /etc/cron.d/cron.deny file by editing this file.</td>
<td>“How to Deny crontab Command Access” on page 113</td>
</tr>
<tr>
<td>Limit crontab access to specified users.</td>
<td>To allow users access to the crontab command, add user names to the /etc/cron.d/cron.allow file.</td>
<td>“How to Limit crontab Command Access to Specified Users” on page 114</td>
</tr>
</tbody>
</table>

### Ways to Automatically Execute System Tasks

You can set up many system tasks to execute automatically. Some of these tasks should occur at regular intervals. Other tasks need to run only once, perhaps during off hours such as evenings or weekends.

This section contains overview information about two commands, crontab and at, which enable you to schedule routine tasks to execute automatically. The crontab command schedules repetitive commands. The at command schedules tasks that execute once.

The following table summarizes crontab and at commands, as well as the files that enable you to control access to these commands.

**TABLE 8–1**  Command Summary: Scheduling System Tasks

<table>
<thead>
<tr>
<th>Command</th>
<th>What It Schedules</th>
<th>Location of Files</th>
<th>Files That Control Access</th>
</tr>
</thead>
<tbody>
<tr>
<td>crontab</td>
<td>Multiple system tasks at regular intervals</td>
<td>/var/spool/cron/crontabs</td>
<td>/etc/cron.d/cron.allow and /etc/cron.d/cron.deny</td>
</tr>
<tr>
<td>at</td>
<td>A single system task</td>
<td>/var/spool/cron/atjobs</td>
<td>/etc/cron.d/at.deny</td>
</tr>
</tbody>
</table>

You can also use the Solaris Management Console’s Scheduled Jobs tool to schedule routine tasks. For information on using and starting the Solaris Management Console, see Chapter 2, "Working With the Solaris Management Console (Tasks),” in System Administration Guide: Basic Administration.
For Scheduling Repetitive Jobs: crontab

You can schedule routine system administration tasks to execute daily, weekly, or monthly by using the `crontab` command.

Daily `crontab` system administration tasks might include the following:
- Removing files more than a few days old from temporary directories
- Executing accounting summary commands
- Taking snapshots of the system by using the `df` and `ps` commands
- Performing daily security monitoring
- Running system backups

Weekly `crontab` system administration tasks might include the following:
- Rebuilding the `catman` database for use by the `man -k` command
- Running the `fsck -n` command to list any disk problems

Monthly `crontab` system administration tasks might include the following:
- Listing files not used during a specific month
- Producing monthly accounting reports

Additionally, users can schedule `crontab` commands to execute other routine system tasks, such as sending reminders and removing backup files.

For step-by-step instructions on scheduling `crontab` jobs, see “How to Create or Edit a `crontab` File” on page 109.

For Scheduling a Single Job: at

The `at` command allows you to schedule a job for execution at a later time. The job can consist of a single command or a script.

Similar to `crontab`, the `at` command allows you to schedule the automatic execution of routine tasks. However, unlike `crontab` files, `at` files execute their tasks once. Then, they are removed from their directory. Therefore, the `at` command is most useful for running simple commands or scripts that direct output into separate files for later examination.

Submitting an `at` job involves typing a command and following the `at` command syntax to specify options to schedule the time your job will be executed. For more information about submitting at jobs, see “Description of the at Command” on page 117.

The `at` command stores the command or script you ran, along with a copy of your current environment variable, in the `/var/spool/cron/at jobs` directory. Your `at` job file name is given a long number that specifies its location in the `at` queue, followed by the `.a` extension, such as `793962000.a`. 
The cron daemon checks for at jobs at startup and listens for new jobs that are submitted. After the cron daemon executes an at job, the at job’s file is removed from the at jobs directory. For more information, see the at(1) man page.

For step-by-step instructions on scheduling at jobs, see “How to Create an at Job” on page 117.

Scheduling a Repetitive System Task (cron)

The following sections describe how to create, edit, display, and remove crontab files, as well as how to control access to them.

Inside a crontab File

The cron daemon schedules system tasks according to commands found within each crontab file. A crontab file consists of commands, one command per line, that will be executed at regular intervals. The beginning of each line contains date and time information that tells the cron daemon when to execute the command.

For example, a crontab file named root is supplied during SunOS software installation. The file’s contents include these command lines:

1 0 3 * * /usr/sbin/logadm (1)
15 3 * * 0 /usr/lib/fs/nfs/nfsfind (2)
1 2 * * * [ -x /usr/sbin/rtc ] && /usr/sbin/rtc -c > /dev/null 2>&1 (3)
30 3 * * * [ -x /usr/lib/gss/gsscred_clean ] && /usr/lib/gss/gsscred_clean (4)

The following describes the output for each of these command lines:

- The first line runs the logadm command at 3:10 a.m. every day.
- The second line executes the nfsfind script every Sunday at 3:15 a.m.
- The third line runs a script that checks for daylight savings time (and make corrections, if necessary) at 2:10 a.m. daily.

If there is no RTC time zone, nor an /etc/rtc_config file, this entry does nothing.

x86 only – The /usr/sbin/rtc script can only be run on an x86 based system.

- The fourth line checks for (and removes) duplicate entries in the Generic Security Service table, /etc/gss/gsscred_db, at 3:30 a.m. daily.

For more information about the syntax of lines within a crontab file, see “Syntax of crontab File Entries” on page 108.
The `crontab` files are stored in the `/var/spool/cron/crontabs` directory. Several `crontab` files besides `root` are provided during the Oracle Solaris software installation. See the following table.

### TABLE 8-2  Default crontab Files

<table>
<thead>
<tr>
<th>crontab File</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>adm</td>
<td>Accounting</td>
</tr>
<tr>
<td>lp</td>
<td>Printing</td>
</tr>
<tr>
<td>root</td>
<td>General system functions and file system cleanup</td>
</tr>
<tr>
<td>sys</td>
<td>Performance data collection</td>
</tr>
<tr>
<td>uucp</td>
<td>General uucp cleanup</td>
</tr>
</tbody>
</table>

Besides the default `crontab` files, users can create `crontab` files to schedule their own system tasks. Other `crontab` files are named after the user accounts in which they are created, such as `bob`, `mary`, `smith`, or `jones`.

To access `crontab` files that belong to `root` or other users, superuser privileges are required.

Procedures explaining how to create, edit, display, and remove `crontab` files are described in subsequent sections.

## How the `cron` Daemon Handles Scheduling

The `cron` daemon manages the automatic scheduling of `crontab` commands. The role of the `cron` daemon is to check the `/var/spool/cron/crontab` directory for the presence of `crontab` files.

The `cron` daemon performs the following tasks at startup:

- Checks for new `crontab` files.
- Reads the execution times that are listed within the files.
- Submits the commands for execution at the proper times.
- Listens for notifications from the `crontab` commands regarding updated `crontab` files.

In much the same way, the `cron` daemon controls the scheduling of `at` files. These files are stored in the `/var/spool/cron/atjobs` directory. The `cron` daemon also listens for notifications from the `crontab` commands regarding submitted `at` jobs.
Syntax of crontab File Entries

A crontab file consists of commands, one command per line, that execute automatically at the time specified by the first five fields of each command line. These five fields, described in the following table, are separated by spaces.

<table>
<thead>
<tr>
<th>Time Field</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minute</td>
<td>0-59</td>
</tr>
<tr>
<td>Hour</td>
<td>0-23</td>
</tr>
<tr>
<td>Day of month</td>
<td>1-31</td>
</tr>
<tr>
<td>Month</td>
<td>1-12</td>
</tr>
<tr>
<td>Day of week</td>
<td>0-6 (0 = Sunday)</td>
</tr>
</tbody>
</table>

Follow these guidelines for using special characters in crontab time fields:

- Use a space to separate each field.
- Use a comma to separate multiple values.
- Use a hyphen to designate a range of values.
- Use an asterisk as a wildcard to include all possible values.
- Use a comment mark (#) at the beginning of a line to indicate a comment or a blank line.

For example, the following crontab command entry displays a reminder in the user's console window at 4 p.m. on the first and fifteenth days of every month.

```
0 16 1,15 * * echo Timesheets Due > /dev/console
```

Creating and Editing crontab Files

The simplest way to create a crontab file is to use the crontab -e command. This command invokes the text editor that has been set for your system environment. The default editor for your system environment is defined in the EDITOR environment variable. If this variable has not been set, the crontab command uses the default editor, ed. Preferably, you should choose an editor that you know well.
The following example shows how to determine if an editor has been defined, and how to set up vi as the default.

```
$ which $EDITOR
$ EDITOR=vi
$ export EDITOR
```

When you create a crontab file, it is automatically placed in the `/var/spool/cron/crontabs` directory and is given your user name. You can create or edit a crontab file for another user, or root, if you have superuser privileges.

### How to Create or Edit a crontab File

**Before You Begin**

If you are creating or editing a crontab file that belongs to root or another user you must become superuser or assume an equivalent role. Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in System Administration Guide: Security Services.

You do not need to become superuser to edit your own crontab file.

1. **Create a new crontab file, or edit an existing file.**
   ```
   $ crontab -e [username]
   ```
   where `username` specifies the name of the user’s account for which you want to create or edit a crontab file. You can create your own crontab file without superuser privileges, but you must have superuser privileges to creating or edit a crontab file for root or another user.

   **Caution** – If you accidentally type the `crontab` command with no option, press the interrupt character for your editor. This character allows you to quit without saving changes. If you instead saved changes and exited the file, the existing crontab file would be overwritten with an empty file.

2. **Add command lines to the crontab file.**
   Follow the syntax described in “Syntax of crontab File Entries” on page 108. The crontab file will be placed in the `/var/spool/cron/crontabs` directory.

3. **Verify your crontab file changes.**
   ```
   # crontab -l [username]
   ```

**Example 8–1 Creating a crontab File**

The following example shows how to create a crontab file for another user.

```
# crontab -e jones
```
The following command entry added to a new crontab file automatically removes any log files from the user’s home directory at 1:00 a.m. every Sunday morning. Because the command entry does not redirect output, redirect characters are added to the command line after *.log. Doing so ensures that the command executes properly.

```
# This command helps clean up user accounts.
1 0 * * 0 rm /home/jones/*.log > /dev/null 2>&1
```

### How to Verify That a crontab File Exists

To verify that a crontab file exists for a user, use the `ls -l` command in the `/var/spool/cron/crontabs` directory. For example, the following output shows that crontab files exist for users jones and smith.

```
$ ls -l /var/spool/cron/crontabs
-rw-r----- 1 root staff 225 Mar 1 9:19 jones
-rw-r----- 1 root root 1063 Feb 26 16:23 lp
```

Verify the contents of user’s crontab file by using the `crontab -l` command as described in “How to Display a crontab File” on page 110.

### Displaying crontab Files

The `crontab -l` command displays the contents of a crontab file much the same way that the `cat` command displays the contents of other types of files. You do not have to change the directory to `/var/spool/cron/crontabs` directory (where crontab files are located) to use this command.

By default, the `crontab -l` command displays your own crontab file. To display crontab files that belong to other users, you must be superuser.

### How to Display a crontab File

**Before You Begin**

Become superuser or assume an equivalent role to display a crontab file that belongs to root or another user.

You do not need to become superuser or assume an equivalent role to display your own crontab file.

- Display the crontab file.

  ```
  $ crontab -l [username]
  ```
where *username* specifies the name of the user’s account for which you want to display a
*crontab* file. Displaying another user’s *crontab* file requires superuser privileges.

**Caution** – If you accidentally type the *crontab* command with no option, press the interrupt
character for your editor. This character allows you to quit without saving changes. If you
instead saved changes and exited the file, the existing *crontab* file would be overwritten with an
empty file.

---

**Example 8–2**  
Displaying a *crontab* File

This example shows how to use the *crontab -l* command to display the contents of the user’s
default *crontab* file.

```bash
$ crontab -l
1 31 3*** chmod g+w /home1/documents/*.book > /dev/null 2>&1
```

**Example 8–3**  
Displaying the Default *root* *crontab* file.

This example shows how to display the default *root* *crontab* file.

```bash
$ su
Password: Oracle Corporation SunOS 5.10 Generic Patch January 2005
# crontab -l
#ident "@(#)root 1.19 98/07/06 SMI" /* SVr4.0 1.1.3.1 */
# The root crontab should be used to perform accounting data collection.
#
10 3 * * * /usr/sbin/logadm
15 3 * * 0 /usr/lib/fs/nfs/nfsfind
30 3 * * [ -x /usr/lib/gss/gsscred_clean ] & & /usr/lib/gss/gsscred_clean
#10 3 * * * /usr/lib/krb5/kprop_script ___slave_kdcs___
```

**Example 8–4**  
Displaying the *crontab* File of Another User

This example shows how to display the *crontab* file that belongs to another user.

```bash
$ su
Password: Oracle Corporation SunOS 5.10 Generic Patch January 2005
# crontab -l jones
13 13 * * * cp /home/jones/work_files /usr/backup/.* > /dev/null 2>&1
```
Removing crontab Files

By default, crontab file protections are set up so that you cannot inadvertently delete a crontab file by using the rm command. Instead, use the crontab -r command to remove crontab files.

By default, the crontab -r command removes your own crontab file.

You do not have to change the directory to /var/spool/cron/crontabs (where crontab files are located) to use this command.

▼ How to Remove a crontab File

Before You Begin

Become superuser or assume an equivalent role to remove a crontab file that belongs to root or another user. Roles contain authorizations and privileged commands.

You do not need to become superuser or assume an equivalent role to remove your own crontab file.

1 Remove the crontab file.

$ crontab -r [username]

where username specifies the name of the user’s account for which you want to remove a crontab file. Removing crontab files for another user requires superuser privileges.

Caution – If you accidentally type the crontab command with no option, press the interrupt character for your editor. This character allows you to quit without saving changes. If you instead saved changes and exited the file, the existing crontab file would be overwritten with an empty file.

2 Verify that the crontab file has been removed.

# ls /var/spool/cron/crontabs

Example 8–5 Removing a crontab File

The following example shows how user smith uses the crontab -r command to remove his crontab file.

$ ls /var/spool/cron/crontabs
adm  jones  lp  root  smith  sys  uucp
$ crontab -r
$ ls /var/spool/cron/crontabs
adm  jones  lp  root  sys  uucp
Controlling Access to the crontab Command

You can control access to the crontab command by using two files in the /etc/cron.d directory: cron.deny and cron.allow. These files permit only specified users to perform crontab command tasks such as creating, editing, displaying, or removing their own crontab files.

The cron.deny and cron.allow files consist of a list of user names, one user name per line.

These access control files work together as follows:

- If cron.allow exists, only the users who are listed in this file can create, edit, display, or remove crontab files.
- If cron.allow does not exist, all users can submit crontab files, except for users who are listed in cron.deny.
- If neither cron.allow nor cron.deny exists, superuser privileges are required to run the crontab command.

Superuser privileges are required to edit or create the cron.deny and cron.allow files.

The cron.deny file, which is created during SunOS software installation, contains the following user names:

```
$ cat /etc/cron.d/cron.deny
daemon
bin
smtp
nuucp
listen
nobody
noaccess
```

None of the user names in the default cron.deny file can access the crontab command. You can edit this file to add other user names that will be denied access to the crontab command.

No default cron.allow file is supplied. So, after Oracle Solaris software installation, all users (except users who are listed in the default cron.deny file) can access the crontab command. If you create a cron.allow file, only these users can access the crontab command.

▼ How to Deny crontab Command Access

1. **Become superuser or assume an equivalent role.**

Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in System Administration Guide: Security Services.
2 Edit the `/etc/cron.d/cron.deny` file and add user names, one user per line. Include users who will be denied access to the `crontab` commands.

```
demon
bin
smtp
nuucp
listen
nobody
noaccess
username1
username2
username3
```

3 Verify that the `/etc/cron.d/cron.deny` file contains the new entries.

```
# cat /etc/cron.d/cron.deny
demon
bin
smtp
nuucp
listen
nobody
noaccess
```

**How to Limit crontab Command Access to Specified Users**

1 **Become superuser or assume an equivalent role.**
   Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in System Administration Guide: Security Services.

2 **Create the `/etc/cron.d/cron.allow` file.**

3 **Add the root user name to the `cron.allow` file.**
   If you do not add `root` to the file, superuser access to crontab commands will be denied.

4 **Add the user names, one user name per line.**
   Include users that will be allowed to use the crontab command.

```
root
username1
username2
username3
```

Controlling Access to the crontab Command
Example 8–6  Limiting crontab Command Access to Specified Users

The following example shows a cron.deny file that prevents user names jones, temp, and visitor from accessing the crontab command.

```
$ cat /etc/cron.d/cron.deny
daemon
bin
smtp
nuucp
listen
nobody
noaccess
jones
temp
visitor
```

The following example shows a cron.allow file. The users root, jones, lp, and smith are the only users who can access the crontab command.

```
$ cat /etc/cron.d/cron.allow
root
jones
lp
smith
```

How to Verify Limited crontab Command Access

To verify if a specific user can access the crontab command, use the crontab -l command while you are logged into the user account.

```
$ crontab -l
```

If the user can access the crontab command, and already has created a crontab file, the file is displayed. Otherwise, if the user can access the crontab command but no crontab file exists, a message similar to the following message is displayed:

```
crontab: can't open your crontab file
```

Either this user either is listed in the cron.allow file (if the file exists), or the user is not listed in the cron.deny file.

If the user cannot access the crontab command, the following message is displayed whether or not a previous crontab file exists:

```
crontab: you are not authorized to use cron. Sorry.
```

This message means that either the user is not listed in the cron.allow file (if the file exists), or the user is listed in the cron.deny file.
Using the at Command (Task Map)

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create an at job.</td>
<td>Use the at command to do the following:</td>
<td>&quot;How to Create an at Job&quot; on page 117</td>
</tr>
<tr>
<td></td>
<td>■ Start the at utility from the command line.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>■ Type the commands or scripts that you want to execute, one per line.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>■ Exit the at utility and save the job.</td>
<td></td>
</tr>
<tr>
<td>Display the at queue.</td>
<td>User the atq command to display the at queue.</td>
<td>&quot;How to Display the at Queue&quot; on page 118</td>
</tr>
<tr>
<td>Verify an at job.</td>
<td>Use the atq command to confirm that at jobs that belong to a specific user have been submitted to the queue.</td>
<td>&quot;How to Verify an at Job&quot; on page 119</td>
</tr>
<tr>
<td>Display at jobs.</td>
<td>Use the at -l [job-id] command to display at jobs that have been submitted to the queue.</td>
<td>&quot;How to Display at Jobs&quot; on page 119</td>
</tr>
<tr>
<td>Remove at jobs.</td>
<td>Use the at -r [job-id] command to remove at jobs from the queue.</td>
<td>&quot;How to Remove at Jobs&quot; on page 119</td>
</tr>
<tr>
<td>Deny access to the at command.</td>
<td>To deny users access to the at command, edit the /etc/cron.d/at.deny file.</td>
<td>&quot;How to Deny Access to the at Command&quot; on page 120</td>
</tr>
</tbody>
</table>

Scheduling a Single System Task (at)

The following sections describe how to use the at command to perform the following tasks:

- Schedule jobs (command and scripts) for execution at a later time
- How to display and remove these jobs
- How to control access to the at command

By default, users can create, display, and remove their own at job files. To access at files that belong to root or other users, you must have superuser privileges.

When you submit an at job, it is assigned a job identification number along with the .a extension. This designation becomes the job’s file name, as well as its queue number.
Description of the at Command

Submitting an at job file involves these steps:
1. Invoking the at utility and specifying a command execution time.
2. Typing a command or script to execute later.

Note – If output from this command or script is important, be sure to direct the output to a file for later examination.

For example, the following at job removes core files from the user account smith near midnight on the last day of July.

$ at 11:45pm July 31

at> rm /home/smith/*core*

at> Press Control-d

commands will be executed using /bin/csh

job 933486300.a at Tue Jul 31 23:45:00 2004

Controlling Access to the at Command

You can set up a file to control access to the at command, permitting only specified users to create, remove, or display queue information about their at jobs. The file that controls access to the at command, /etc/cron.d/at.deny, consists of a list of user names, one user name per line. The users who are listed in this file cannot access at commands.

The at.deny file, which is created during SunOS software installation, contains the following user names:

daemon
bin
smtp
nuucp
listen
nobody
noaccess

With superuser privileges, you can edit the at.deny file to add other user names whose at command access you want to restrict.

▼ How to Create an at Job

1 Start the at utility, specifying the time you want your job executed.

$ at [-m] time [date]
Scheduling a Single System Task (at)

- `m` Sends you email after the job is completed.

`time` Specifies the hour that you want to schedule the job. Add `am` or `pm` if you do not specify the hours according to the 24-hour clock. Acceptable keywords are `midnight`, `noon`, and `now`. Minutes are optional.

`date` Specifies the first three or more letters of a month, a day of the week, or the keywords `today` or `tomorrow`.

2 **At the at prompt, type the commands or scripts that you want to execute, one per line.**
   You may type more than one command by pressing Return at the end of each line.

3 **Exit the at utility and save the at job by pressing Control-D.**
   Your at job is assigned a queue number, which is also the job's file name. This number is displayed when you exit the at utility.

**Example 8–7 Creating an at Job**

The following example shows the at job that user *jones* created to remove her backup files at 7:30 p.m. She used the `-m` option so that she would receive an email message after her job completed.

```
$ at -m 1930
at> rm /home/jones/*.*.backup
at> Press Control-D
job 897355800.a at Thu Jul 12 19:30:00 2004
```

She received a email message which confirmed the execution of her at job.

```
Your “at” job “rm /home/jones/*.*.backup” completed.
```

The following example shows how *jones* scheduled a large at job for 4:00 a.m. Saturday morning. The job output was directed to a file named `big.file`.

```
$ at 4 am Saturday
at> sort -r /usr/dict/words > /export/home/jones/big.file
```

**How to Display the at Queue**

● **To check your jobs that are waiting in the at queue, use the atq command.**

```
$ atq
```

This command displays status information about the at jobs that you have created.
How to Verify an at Job

To verify that you have created an at job, use the `atq` command. In the following example, the `atq` command confirms that at jobs that belong to jones have been submitted to the queue.

```
$ atq
```

<table>
<thead>
<tr>
<th>Rank</th>
<th>Execution Date</th>
<th>Owner</th>
<th>Job</th>
<th>Queue</th>
<th>Job Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Jul 12, 2004</td>
<td>jones</td>
<td>897355800.a</td>
<td>a</td>
<td>stdin</td>
</tr>
<tr>
<td>2nd</td>
<td>Jul 14, 2004</td>
<td>jones</td>
<td>897543900.a</td>
<td>a</td>
<td>stdin</td>
</tr>
<tr>
<td>3rd</td>
<td>Jul 17, 2004</td>
<td>jones</td>
<td>897732000.a</td>
<td>a</td>
<td>stdin</td>
</tr>
</tbody>
</table>
```

How to Display at Jobs

To display information about the execution times of your at jobs, use the `at -l` command.

```
$ at -l [job-id]
```

where the `-l job-id` option identifies the identification number of the job whose status you want to display.

Example 8-8  Displaying at Jobs

The following example shows output from the `at -l` command, which provides information on the status of all jobs submitted by a user.

```
$ at -l
897543900.a Sat Jul 14 23:45:00 2004
897355800.a Thu Jul 12 19:30:00 2004
897732000.a Tue Jul 17 04:00:00 2004
```

The following example shows the output that is displayed when a single job is specified with the `at -l` command.

```
$ at -l 897732000.a
897732000.a Tue Jul 17 04:00:00 2004
```

How to Remove at Jobs

Before You Begin

Become superuser or assume an equivalent role to remove an at job that belongs to root or another user. Roles contain authorizations and privileged commands.

You do not need to become superuser or assume an equivalent role to remove your own at job.

1. Remove the at job from the queue before the job is executed.

```
$ at -r [job-id]
```
where the \texttt{-r job-id} option specifies the identification number of the job you want to remove.

\textbf{2} Verify that the at job is removed by using the \texttt{at -l} (or the \texttt{atq}) command.

The \texttt{at -l} command displays the jobs remaining in the at queue. The job whose identification number you specified should not appear.

\begin{verbatim}
$ at -l [job-id]
\end{verbatim}

\textbf{Example 8–9} Removing at Jobs

In the following example, a user wants to remove an at job that was scheduled to execute at 4 a.m. on July 17th. First, the user displays the at queue to locate the job identification number. Next, the user removes this job from the at queue. Finally, the user verifies that this job has been removed from the queue.

\begin{verbatim}
$ at -l
897543900.a Sat Jul 14 23:45:00 2003
897355800.a Thu Jul 12 19:30:00 2003
897732000.a Tue Jul 17 04:00:00 2003
$ at -r 897732000.a
$ at -l 897732000.a
at: 858142000.a: No such file or directory
\end{verbatim}

\section*{How to Deny Access to the at Command}

\textbf{1} Become superuser or assume an equivalent role.

Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in \textit{System Administration Guide: Security Services}.

\textbf{2} Edit the \texttt{/etc/cron.d/at.deny} file and add the names of users, one user name per line, that will be prevented from using the at commands.

```
daemon
bin
smtp
nuucp
listen
nobody
noaccess
username1
username2
username3
```

Example 8–10  Denying at Access

The following example shows an at . deny file that has been edited so that the users smith and jones cannot access the at command.

$ cat at.deny
daemon
bin
smtp
nuucp
listen
nobody
noaccess
jones
smith

▼ How to Verify That at Command Access Is Denied

● To verify that a username was added correctly to the /etc/cron.d/at.deny file, use the at -l command while logged in as the user. If the user smith cannot access the at command, the following message is displayed:

  # su smith
  Password:
  $ at -l
  at: you are not authorized to use at. Sorry.

  Likewise, if the user tries to submit an at job, the following message is displayed:

  $ at 2:30pm
  at: you are not authorized to use at. Sorry.

  This message confirms that the user is listed in the at . deny file.

  If at command access is allowed, then the at -l command returns nothing.
This chapter describes how to set up and maintain system accounting.

This is a list of the overview information in this chapter.

- “What is System Accounting?” on page 124
- “Setting Up System Accounting” on page 129

For information on using extended accounting, see Chapter 4, “Extended Accounting (Overview),” in System Administration Guide: Oracle Solaris Containers-Resource Management and Oracle Solaris Zones.

For information on the step-by-step procedures that are associated with system accounting, see “System Accounting (Task Map)” on page 128.

For reference information about the various system accounting reports, see Chapter 10, “System Accounting (Reference).”

What’s New in System Accounting

This section describes new or changed features in system accounting in the Oracle Solaris release. For a complete listing of new features and a description of Oracle Solaris releases, see Oracle Solaris 10 8/11 What’s New.

Oracle Solaris Process Accounting and Statistics Improvements

Oracle Solaris 10: Changes have been made to the internals of the load averaging, cpu us r/sys/id t e, and accounting functions. Microstate accounting has replaced the old accounting mechanism and is enabled by default all of the time. As a result, you might notice slightly different process usage and timing statistics.
Switching to microstate accounting provides substantially more accurate data about user processes and the amount of time they spend in various states. In addition, this information is used to generate more accurate load averages and statistics from the /proc file system. For more information, see the proc(4) man page.

What is System Accounting?

System accounting software in the Oracle Solaris OS is a set of programs that enables you to collect and record data about user connect time, CPU time charged to processes, and disk usage. Once you collect this data, you can generate reports and charge fees for system usage.

You can use system accounting on a daily or monthly basis. Or, you can track disk usage per user.

You can use the accounting programs to perform these tasks:

- Monitor system usage
- Locate and correct performance problems
- Maintain system security

After you set up the system accounting programs, they run mostly on their own.

How System Accounting Works

Automatic accounting is set up by first putting the accounting startup script into root’s crontab file. The accounting startup script can then be started automatically by the cront command.

The following overview describes the system accounting process.

1. Between system startup and shutdown, raw data about system use (such as user logins, running processes, and data storage) are collected in accounting files.
2. Periodically (usually once a day), the /usr/lib/acct/runacct script processes the various accounting files and produces both cumulative summary files and daily accounting reports. Then, the /usr/lib/acct/prdaily script prints the daily reports.
   For more information about the runacct script, see “runacct Script” on page 137.
3. Monthly, you can process and print the cumulative runacct summary files by executing the monacct script. The summary reports produced by the monacct script provide an efficient means for billing users on a monthly or other fiscal basis.

System Accounting Components

The system accounting software provides C language programs and shell scripts that organize data into summary files and reports. These programs reside in the /usr/lib/acct directory. The accounting reports reside in the /var/adm/acct directory.
Daily accounting can help you perform four types of auditing:

- Connect accounting
- Process accounting
- Disk accounting
- Fee calculations

**Connect Accounting**

Connect accounting enables you to determine the following information:

- The length of time a user was logged in
- How the tty lines are being used
- The number of reboots on your system
- How many times the accounting software was turned off and on

To provide this information on connect sessions, the system stores the following data:

- Record of time adjustments
- Boot times
- Number of times the accounting software was turned off and on
- Changes in run levels
- The creation of user processes (login processes and init processes)
- The terminations of processes

These records are produced from the output of system programs such as `date`, `init`, `login`, `ttymon`, and `acctwtmp`. They are stored in the `/var/adm/wtmpx` file.

Entries in the `wtmpx` file can contain the following information:

- Login name
- Device name
- Process ID
- Entry type
- Time stamp that denotes when the entry was made

**Process Accounting**

Process accounting enables you to keep track of the following data about each process that runs on your system:

- User IDs and group IDs of users using the process
- Beginning times and elapsed times of the process
- CPU time for the process (user time and system time)
- Amount of memory used by the process
- Commands run by the process
- The tty that controls the process
Every time a process terminates, the exit program collects this information and writes it to the /var/adm/pacct file.

**Disk Accounting**

Disk accounting enables you to gather and format the following data about the files each user has on disks:

- User name and user ID of the user
- Number of blocks that are used by the user's files

This data is collected by the /usr/lib/acct/dodisk shell script at intervals that are determined by the entry you add to the /var/spool/cron/crontabs/root file. In turn, the dodisk script invokes the acctdisk and acctdusg commands. These commands gather disk usage by login name.

**Caution** – Information gathered by running the dodisk script is stored in the /var/adm/acct/nite/diskacct file. This information is overwritten the next time the dodisk script is run. Therefore, avoid running the dodisk script twice in the same day.

The acctdusg command might overcharge for files that are written randomly, which can create holes in the files. This problem occurs because the acctdusg command does not read the indirect blocks of a file when determining the file size. Rather, the acctdusg command determines the file size by checking the current file size value in the file's inode.

**Fee Calculations**

The chargefee utility stores charges for special services that are provided to a user in the /var/adm/fee file. A special service, for example, is file restoration. Each entry in the file consists of a user login name, user ID, and the fee. This file is checked by the runacct script every day, and new entries are merged into the accounting records. For instructions on running the chargefee script to bill users, see "How to Bill Users" on page 131.

**How Daily Accounting Works**

Here is a step-by-step summary of how daily accounting works:

1. When the system is switched into multiuser mode, the /usr/lib/acct/startup program is executed. The startup program executes several other programs that invoke daily accounting.
2. The acctwtmp program adds a “boot” record to the /var/adm/wtmpx file. In this record, the system name is shown as the user name in the wtmpx record. The following table summarizes how the raw accounting data is gathered and where it is stored.
### What is System Accounting?

<table>
<thead>
<tr>
<th>File in /var/adm</th>
<th>Information Stored</th>
<th>Written By</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>wtmpx</td>
<td>Connect sessions</td>
<td>login, init</td>
<td>Binary</td>
</tr>
<tr>
<td></td>
<td>Changes</td>
<td>date</td>
<td>Binary</td>
</tr>
<tr>
<td></td>
<td>Reboots</td>
<td>acctwtmp</td>
<td>Binary</td>
</tr>
<tr>
<td></td>
<td>Shutdowns</td>
<td>shutacct</td>
<td>Binary</td>
</tr>
<tr>
<td>pacctn</td>
<td>Processes</td>
<td>Kernel (when the process ends)</td>
<td>Binary</td>
</tr>
<tr>
<td></td>
<td></td>
<td>turnacct switch</td>
<td>Binary</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(which creates a new file when the old file reaches 500 blocks)</td>
<td></td>
</tr>
<tr>
<td>fee</td>
<td>Special charges</td>
<td>chargefee</td>
<td>ASCII</td>
</tr>
<tr>
<td>acct/nite/disktacct</td>
<td>Disk space used</td>
<td>dodisk</td>
<td>Binary</td>
</tr>
</tbody>
</table>

3. The `turnacct` script, invoked with the `-on` option, begins process accounting. Specifically, the `turnacct` script executes the `accton` program with the `/var/adm/pacct` argument.

4. The remove shell script “cleans up” the saved `pacct` and `wtmpx` files that are left in the `sum` directory by the `runacct` script.

5. The `login` and `init` programs record connect sessions by writing records into the `/var/adm/wtmpx` file. Date changes (using `date` with an argument) are also written to the `/var/adm/wtmpx` file. Reboots and shutdowns using the `acctwtmp` command are also recorded in the `/var/adm/wtmpx` file.

6. When a process ends, the kernel writes one record per process, using the `acct.h` format, in the `/var/adm/pacct` file.

   Every hour, the `cron` command executes the `ckpacct` script to check the size of the `/var/adm/pacct` file. If the file grows beyond 500 blocks (default), the `turnacct switch` command is executed. (The program moves the `pacct` file to the `pacctn` file and creates a new file.) The advantage of having several smaller `pacct` files becomes apparent when you try to restart the `runacct` script if a failure occurs when processing these records.

7. The `runacct` script is executed by the `cron` command each night. The `runacct` script processes the accounting files to produce command summaries and usage summaries by user name. These accounting files are processed: `/var/adm/pacct`, `/var/adm/wtmpx`, `/var/adm/fee`, and `/var/adm/acct/nite/disktacct`.

8. The `/usr/lib/acct/prdaily` script is executed on a daily basis by the `runacct` script to write the daily accounting information in the `/var/adm/acct/sum/rprt.MMDD` files.
9. The monacct script should be executed on a monthly basis (or at intervals you determine, such as at the end of every fiscal period). The monacct script creates a report that is based on data stored in the sum directory that has been updated daily by the runacct script. After creating the report, the monacct script “cleans up” the sum directory to prepare the directory’s files for the new runacct data.

What Happens If the System Shuts Down

If the system is shut down by using the shutdown command, the shutacct script is executed automatically. The shutacct script writes a reason record into the /var/adm/wtmpx file and turns off process accounting.

System Accounting (Task Map)

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set up system accounting.</td>
<td>Set up system accounting by performing the following tasks:</td>
<td>“How to Set Up System Accounting” on page 129</td>
</tr>
<tr>
<td></td>
<td>■ Create the /etc/rc0.d/K22acct and /etc/rc2.d/S22acct files.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>■ Modify the /var/spool/cron/crontabs/adm and /var/spool/cron/crontabs/root crontab files.</td>
<td></td>
</tr>
<tr>
<td>Bill users.</td>
<td>Run the /usr/lib/acct/chargefee username amount command.</td>
<td>“How to Bill Users” on page 131</td>
</tr>
<tr>
<td>Fix a corrupted wtmpx file.</td>
<td>Convert the wtmpx file from binary to ASCII format.</td>
<td>“How to Fix a Corrupted wtmpx File” on page 132</td>
</tr>
<tr>
<td>Fix tacct errors.</td>
<td>Run the prtacct script to check the /var/adm/acct/sum/tacctprev file. Then, patch the latest/var/adm/acct/sum/tacctMMDD file. You will need to re-create the /var/adm/acct/sum/tacct file.</td>
<td>“How to Fix tacct Errors” on page 133</td>
</tr>
<tr>
<td>Restart the runacct script.</td>
<td>Remove the lastdate file and any lock files. Then, manually restart the runacct script.</td>
<td>“How to Restart the runacct Script” on page 134</td>
</tr>
<tr>
<td>Disable system accounting temporarily.</td>
<td>Edit the /etc/crontab file to stop the ckpacct, runacct, and monacct programs from running.</td>
<td>“How to Temporarily Stop System Accounting” on page 135</td>
</tr>
<tr>
<td>Disable system accounting permanently.</td>
<td>Delete the entries for the ckpacct, runacct, and monacct programs in the adm and crontab files.</td>
<td>“How to Permanently Disable System Accounting” on page 135</td>
</tr>
</tbody>
</table>
Setting Up System Accounting

You can set up system accounting to run while the system is in multiuser mode (Run Level 2). Generally, this task involves these steps:

1. Creating the `/etc/rc0.d/K22acct` and `/etc/rc2.d/S22acct` startup scripts
2. Modifying the `/var/spool/cron/crontabs/adm` and `/var/spool/cron/crontabs/root` crontab files

The following table describes the default accounting scripts.

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Accounting Script</th>
<th>Man Page</th>
<th>Run Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Checks the size of the <code>/usr/adm/pacct</code> log file and makes sure that it does not get too large.</td>
<td>ckpacct</td>
<td>acctsh(1M)</td>
<td>Periodically</td>
</tr>
<tr>
<td>Processes connect, disk, and fee accounting information. You can remove from this script the commands for the accounting features you do not want processed.</td>
<td>runacct</td>
<td>runacct(1M)</td>
<td>Daily</td>
</tr>
<tr>
<td>Generates fiscal accounting summary reports on a monthly basis. You can determine how often this script is run. You can remove from this script the commands for the accounting features you do not want to use.</td>
<td>monacct</td>
<td>acctsh(1M)</td>
<td>On a fiscal basis</td>
</tr>
</tbody>
</table>

You can choose which accounting scripts run by default. After these entries have been added to the crontab files, system accounting should run automatically.

How to Set Up System Accounting

1. **Become superuser or assume an equivalent role.**
   Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in *System Administration Guide: Security Services*.
If necessary, install the SUNWaccr and SUNWaccu packages on your system by using the pkgadd command.

Install /etc/init.d/acct as the startup script for Run Level 2.

```
# ln /etc/init.d/acct /etc/rc2.d/S22acct
```

Install /etc/init.d/acct as the stop script for Run Level 0.

```
# ln /etc/init.d/acct /etc/rc0.d/K22acct
```

Add the following lines to the adm crontab file to start the ckpacct, runacct, and monacct scripts automatically.

```
# EDITOR=vi; export EDITOR
# crontab -e adm
0 * * * * /usr/lib/acct/ckpacct
30 2 * * * /usr/lib/acct/runacct 2> /var/adm/acct/nite/fd2log
30 7 1 * * /usr/lib/acct/monacct
```

Add the following line to the root crontab file to start the dodisk script automatically.

```
# crontab -e
30 2 2 * * 4 /usr/lib/acct/dodisk
```

Edit /etc/acct/holidays to include national holidays and local holidays.

For more information, see the holidays(4) man page and the example that follows.

Reboot the system, or start system accounting manually by typing:

```
# /etc/init.d/acct start
```

### Example 9–1  Setting Up Accounting (adm crontab)

This modified adm crontab contains entries for the ckpacct, runacct, and monacct scripts.

```
#ident "@(#)adm 1.5 92/07/14 SMI" /* SVr4.0 1.2 */
#
# The adm crontab file should contain startup of performance
# collection if the profiling and performance feature has been
# installed.
0 * * * * /usr/lib/acct/ckpacct
30 2 * * * /usr/lib/acct/runacct 2> /var/adm/acct/nite/fd2log
30 7 1 * * /usr/lib/acct/monacct
```

### Example 9–2  Setting Up Accounting (root crontab)

This modified root crontab contains entries for the dodisk program.

```
#ident "@(#)root 1.19 98/07/06 SMI" /* SVr4.0 1.1.3.1 */
#
# The root crontab should be used to perform accounting data collection.
#
Example 9–3 Setting Up Accounting (/etc/acct/holidays)

The following example shows a sample /etc/acct/holidays file.

* @(#)holidays January 1, 2004
* Prime/Nonprime Table for UNIX Accounting System
* Curr Prime Non-Prime
* Year Start Start
* 2004 0800 1800
* only the first column (month/day) is significant.
* month/day Company
* Holiday
* 1/1 New Years Day
7/4 Independ. Day
12/25 Christmas

Billing Users

If you provide special user services by request, you might want to bill users by running the chargefee utility. Special services include restoring files or remote printing. The chargefee utility records charges in the /var/adm/fee file. Each time the runacct utility is executed, new entries are merged into the total accounting records.

See the acctsh(1M) man page for more information.

▼ How to Bill Users

1 Become superuser or assume an equivalent role.

Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in System Administration Guide: Security Services.

2 Charge a user for special services.

# /usr/lib/acct/chargefee username amount

username Specifies the user account that you want to bill.
amount Specifies the number of units to bill the user. This value is an arbitrary unit that you set to charge users based on some task such as printing or restoring a file. You would have to write a script that invokes the chargefee utility and charges a user for a specific task.

Example 9–4 Billing Users

In the following example, the user print_customer is charged 10 units.

# /usr/lib/acct/chargefee print_customer 10

Maintaining Accounting Information

This section describes how to fix corrupted system accounting files and how to restart the runacct script.

Fixing Corrupted Files and wtmpx Errors

Unfortunately, system accounting is not foolproof. Occasionally, a file becomes corrupted or lost. Some files can simply be ignored or restored from backup. However, certain files must be fixed to maintain the integrity of system accounting.

The wtmpx files seem to cause the most problems in the daily operation of system accounting. When the date is changed manually and the system is in multiuser mode, a set of date change records is written to the /var/adm/wtmpx file. The wtmpfix utility is designed to adjust the time stamps in the wtmp records when a date change is encountered. However, some combinations of date changes and reboots slip through the wtmpfix utility and cause the acctcon program to fail.

▼ How to Fix a Corrupted wtmpx File

1 Become superuser or assume an equivalent role.
   Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in System Administration Guide: Security Services.

2 Change to the /var/adm directory.

3 Convert the wtmpx file from binary format to ASCII format.
   # /usr/lib/acct/fwtmp < wtmpx > wtmpx.ascii
4 Edit the `wtmpx.ascii` file to delete the corrupted records.

5 Convert the `wtmpx.ascii` file back to a binary file.

   ```bash
   # /usr/lib/acct/fwtmp -ic < wtmpx.ascii > wtmpx
   ```

   See the `fwtmp(1M)` man page for more information.

### Fixing tacct Errors

The integrity of the `/var/adm/acct/sum/tacct` file is important if you are charging users for system resources. Occasionally, unusual `tacct` records appear with negative numbers, duplicate user IDs, or a user ID of 65535. First, check the `/var/adm/acct/sum/tacctprev` file by using the `prtacct` script to print the file. If the contents look all right, patch the latest `/var/adm/acct/sum/tacctMMDD` file. Then, re-create the `/var/adm/acct/sum/tacct` file. The following steps outline a simple patch procedure.

#### ▼ How to Fix tacct Errors

1 Become superuser or assume an equivalent role.

   Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in *System Administration Guide: Security Services*.

2 Change to the `/var/adm/acct/sum` directory.

3 Convert the `tacctMMDD` file from binary format to ASCII format.

   ```bash
   # /usr/lib/acct/acctmerg -v < tacctMMDD > xtacct
   ```

   `MMDD` is pair of two-digit numbers that represent the month and day.

4 Edit the `xtacct` file, removing corrupted records and writing duplicate records to another file.

5 Convert the `xtacct` file from ASCII format to binary format.

   ```bash
   # /usr/lib/acct/acctmerg -i < xtacct > tacctMMDD
   ```

6 Merge the files `tacctprev` and `tacct.MMDD` into the `tacct` file.

   ```bash
   # /usr/lib/acct/acctmerg < tacctprev tacctMMDD > tacct
   ```
Restarting the runacct Script

The runacct script can fail for several reasons.

The following are the most common reasons:

- A system crash
- The /var directory is running out of space
- A corrupted wtmpx file

If the active.MMDD file exists, check it first for error messages. If the active and lock files exist, check the fd2log file for any relevant messages.

Run without arguments, the runacct script assumes that this invocation is the first invocation of the day. The argument MMDD is necessary if the runacct script is being restarted and specifies the month and day for which the runacct script reruns the accounting. The entry point for processing is based on the contents of the statefile file. To override the statefile file, include the desired state on the command line. For a description of the available states, see the runacct(1M) man page.

Caution – When you run the runacct program manually, be sure to run it as user adm.

▼ How to Restart the runacct Script

1. Change directories to the /var/adm/acct/nite directory.
   ```
   cd /var/adm/acct/nite
   ```

2. Remove the lastdate file and any lock* files, if any.
   ```
   rm lastdate lock*
   ```
   The lastdate file contains the date that the runacct program was last run. Restarting the runacct script in the next step re-creates this file.

3. Restart the runacct script.
   ```
   /usr/lib/acct/runacct MMDD [state] 2> /var/adm/acct/nite/fd2log &
   ```
   MMDD  Is the month and day specified by two-digit numbers.
   state  Specifies a state, or starting point, where the runacct script processing should begin.
Stopping and Disabling System Accounting

You can temporarily stop system accounting or permanently disable it.

▼ How to Temporarily Stop System Accounting

1 **Become superuser or assume an equivalent role.**

   Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in *System Administration Guide: Security Services*.

2 **Edit the adm crontab file to stop the ckpacct, runacct, and monacct programs from running by commenting out the appropriate lines.**

   ```bash
   # EDITOR=vi; export EDITOR
   # crontab -e adm
   #0 * * * * /usr/lib/acct/ckpacct
   #30 2 * * * /usr/lib/acct/runacct 2> /var/adm/acct/nite/fd2log
   #30 7 1 * * /usr/lib/acct/monacct
   ```

3 **Edit the root crontab file to stop the dodisk program from running by commenting out the appropriate line.**

   ```bash
   # crontab -e
   #30 22 * * 4 /usr/lib/acct/dodisk
   ```

4 **Stop the system accounting program.**

   ```bash
   # /etc/init.d/acct stop
   ```

5 **(Optional) Remove the newly added comment symbols from the crontab files.**

6 **Restart the system accounting program to re-enable system accounting.**

   ```bash
   # /etc/init.d/acct start
   ```

▼ How to Permanently Disable System Accounting

1 **Become superuser or assume an equivalent role.**

   Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in *System Administration Guide: Security Services*.

2 **Edit the adm crontab file and delete the entries for the ckpacct, runacct, and monacct programs.**

   ```bash
   # EDITOR=vi; export EDITOR
   # crontab -e adm
   ```
3 Edit the root crontab file and delete the entries for the dodisk program.
   # crontab -e

4 Remove the startup script for Run Level 2.
   # unlink /etc/rc2.d/S22acct

5 Remove the stop script for Run Level 0.
   # unlink /etc/rc0.d/K22acct

6 Stop the system accounting program.
   # /etc/init.d/acct stop
This chapter provides reference information about system accounting.

This is a list of the reference information in this chapter.

- "runacct Script" on page 137
- "Daily Accounting Reports" on page 140
- "System Accounting Files" on page 147

For more information about system accounting tasks, see Chapter 9, "Managing System Accounting (Tasks)."

**runacct Script**

The main daily accounting script, runacct, is normally invoked by the cron command outside of normal business hours. The runacct script processes connect, fee, disk, and process accounting files. This script also prepares daily and cumulative summary files for use by the prdaily and monacct scripts for billing purposes.

The runacct script takes care not to damage files if errors occur.

A series of protection mechanisms that are used to perform the following tasks:

- Recognize an error
- Provide intelligent diagnostics
- Complete processing in such a way that the runacct script can be restarted with minimal intervention

This script records its progress by writing descriptive messages to the active file. Files used by the runacct script are assumed to be in the /var/adm/acct/nite directory, unless otherwise noted. All diagnostic output during the execution of the runacct script is written to the fd2log file.
When the runacct script is invoked, it creates the lock and lock1 files. These files are used to prevent simultaneous execution of the runacct script. The runacct program prints an error message if these files exist when it is invoked. The last date file contains the month and day the runacct script was last invoked, and is used to prevent more than one execution per day.

If the runacct script detects an error, the following occurs:

- A message is written to the console
- Email is sent to root and adm
- Locks might be removed
- Diagnostics are saved
- Execution is ended

For instructions on how to restart the runacct script, see "How to Restart the runacct Script" on page 134.

To allow the runacct script to be restarted, processing is broken down into separate re-entrant states. The statefile file is used to track the last state completed. When each state is completed, the statefile file is updated to reflect the next state. After processing for the state is complete, the statefile file is read and the next state is processed. When the runacct script reaches the CLEANUP state, it removes the locks and ends. States are executed as shown in the following table.

**TABLE 10–1 States of the runacct Script**

<table>
<thead>
<tr>
<th>State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SETUP</td>
<td>The turnacct switch command is executed to create a new pacct file. The /var/adm/pacctn process accounting files (except for the pacct file) are moved to the /var/adm/Spacctn.MMDD files. The /var/adm/wtmpx file is moved to the /var/adm/acct/nite/wtmp.MMDD file (with the current time record added on the end) and a new /var/adm/wtmp file is created. The closewtmp and utmp2wtmp programs add records to the wtmp.MMDD file and the new wtmp file to account for users who are currently logged in.</td>
</tr>
<tr>
<td>WTMPFIX</td>
<td>The wtmpfix program checks the wtmp.MMDD file in the nite directory for accuracy. Because some date changes cause the acctcon program to fail, the wtmpfix program attempts to adjust the time stamps in the wtmpx file if a record of a date change appears. This program also deletes any corrupted entries from the wtmpx file. The fixed version of the wtmp.MMDD file is written to the tmpwtmp file.</td>
</tr>
<tr>
<td>CONNECT</td>
<td>The acctcon program is used to record connect accounting records in the file ctacct.MMDD. These records are in tacct.h format. In addition, the acctcon program creates the lineuse and reboots files. The reboots file records all the boot records found in the wtmpx file.</td>
</tr>
</tbody>
</table>
### TABLE 10–1  States of the runacct Script  (Continued)

<table>
<thead>
<tr>
<th>State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROCESS</td>
<td>The acctprc program is used to convert the /var/adm/Spacctn.MMDD process accounting files into complete accounting records in the ptacctn.MMDD files. The Spacct and ptacct files are correlated by number so that if the runacct script fails, the Spacct files are not processed.</td>
</tr>
<tr>
<td>MERGE</td>
<td>The acctmerg program merges the process accounting records with the connect accounting records to form the daytacct file.</td>
</tr>
<tr>
<td>FEES</td>
<td>The acctmerg program merges ASCII tacct records from the fee file into the daytacct file.</td>
</tr>
<tr>
<td>DISK</td>
<td>The dodisk script produces the disktacct file. If the dodisk script has been run, which produces the disktacct file, the DISK program merges the file into the daytacct file and moves the disktacct file to the /tmp/disktacct.MMDD file.</td>
</tr>
<tr>
<td>MERGETACCT</td>
<td>The acctmerg program merges the daytacct file with the sum/tacct file, the cumulative total accounting file. Each day, the daytacct file is saved in the sum/tacct.MMDD file so that the sum/tacct file can be re-created if it is corrupted or lost.</td>
</tr>
<tr>
<td>CMS</td>
<td>The acctcms program is run several times. This program is first run to generate the command summary by using the Spacct files and write the data to the sum/daycms file. The acctcms program is then run to merge the sum/daycms file with the sum/cms cumulative command summary file. Finally, the acctcms program is run to produce nite/daycms and nite/cms, the ASCII command summary files from the sum/daycms and sum/cms files, respectively. The lastlogin program is used to create the /var/adm/acct/sum/loginlog log file. This file reports when each user last logged in. If the runacct script is run after midnight, the dates showing the time last logged in by some users will be incorrect by one day.</td>
</tr>
<tr>
<td>USEREXIT</td>
<td>Any installation-dependent (local) accounting program can be run at this point. The runacct script expects this program to be called the /usr/lib/acct/runacct.local program.</td>
</tr>
<tr>
<td>CLEANUP</td>
<td>This state cleans up temporary files, runs the prdaily script and saves its output in the sum/rpt.MMDD file, removes the locks, and then exits.</td>
</tr>
</tbody>
</table>

**Caution** – When restarting the runacct script in the CLEANUP state, remove the last ptacct file because this file will not be complete.
Daily Accounting Reports

The `runacct` shell script generates five basic reports upon each invocation. The following table describes these reports.

### TABLE 10-2  Daily Accounting Reports

<table>
<thead>
<tr>
<th>Report Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&quot;Daily Report&quot; on page 140</td>
<td>Shows terminal line utilization by tty number.</td>
</tr>
<tr>
<td>&quot;Daily Usage Report&quot; on page 141</td>
<td>Indicates usage of system resources by users (listed in order of user ID).</td>
</tr>
<tr>
<td>&quot;Daily Command Summary&quot; on page 142</td>
<td>Indicates usage of system resources by commands, listed in descending order of memory use. In other words, the command that used the most memory is listed first. This same information is reported for the month in the monthly command summary.</td>
</tr>
<tr>
<td>&quot;Monthly Command Summary&quot; on page 143</td>
<td>A cumulative summary that reflects the data accumulated since the last invocation of the <code>monacct</code> program.</td>
</tr>
<tr>
<td>&quot;Last Login Report&quot; on page 144</td>
<td>Shows the last time each user logged in (listed in chronological order).</td>
</tr>
</tbody>
</table>

### Daily Report

This report gives information about each terminal line used. The following is a sample Daily Report:

```
Jan 16 02:30 2004 DAILY REPORT FOR venus Page 1
from Mon Jan 15 02:30:02 2004
to Tue Jan 16 02:30:01 2004
1 runacct
1 acctcon

TOTAL DURATION IS 1440 MINUTES
LINE MINUTES PERCENT # SESS # ON # OFF
console 868 60 1 1 2

TOTALS 868 -- 1 1 2
```

The `from` and `to` lines specify the time period reflected in the report. This time period covers the time the last Daily Report was generated to the time the current Daily Report was generated. Then, the report presents a log of system reboots, shutdowns, power failure recoveries, and any other record written to the `/var/adm/wtmpx` file by the `acctwtmp` program. For more information, see the `acct(1M)` man page.

The second part of the report is a breakdown of terminal line utilization. The `TOTAL DURATION` tells how long the system was in multiuser mode (accessible through the terminal lines). The following list describes the data provided by the Daily Report.
The terminal line or access port.

The number of minutes that the line was in use during the accounting period.

The TOTAL DURATION divided by the number of MINUTES.

The number of times this line or port was accessed for a login session.

Same as SESS. (This column no longer has meaning. Previously, this column listed the number of times that a line or port was used to log in a user.)

The number of times a user logs out and any interrupts that occur on that line. Generally, interrupts occur on a port when.ttymon is first invoked after the system is brought to multiuser mode. If the # OFF exceeds the # SESS by a large factor, the multiplexer, modem, or cable is probably going bad. Or, a bad connection exists somewhere. The most common cause is an unconnected cable dangling from the multiplexer.

During real time, you should monitor the /var/adm/wtmpx file because it is the file from which the connect accounting is derived. If the wtmpx file grows rapidly, execute the following command to see which tty line is the noisiest.

```
# /usr/lib/acct/acctcon -l file < /var/adm/wtmpx
```

If interruption is occurring frequently, general system performance will be affected. Additionally, the wtmp file might become corrupted. To correct this problem, see “How to Fix a Corrupted wtmpx File” on page 132.

### Daily Usage Report

The Daily Usage Report breaks down system resource utilization by user. A sample of this report follows:

<table>
<thead>
<tr>
<th>LOGIN</th>
<th>CPU (MINS)</th>
<th>KCORE- (MINS)</th>
<th>CONNECT (MINS)</th>
<th>DISK (# OF BLOCKS)</th>
<th>PROC (# OF SAMPLES)</th>
<th># DISK</th>
<th>FEE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 TOTAL</td>
<td>72 148</td>
<td>10006173 51168</td>
<td>26230634 57792</td>
<td>0 0</td>
<td>127 0</td>
<td>0 2150</td>
<td>1</td>
</tr>
<tr>
<td>0 root</td>
<td>32 76</td>
<td>11006164 33664</td>
<td>26230616 22784</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
<td>0</td>
</tr>
<tr>
<td>4 adm</td>
<td>0 0 22 51</td>
<td>0 0</td>
<td>420 0 0</td>
<td>0 0</td>
<td>0 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>101 rimmer</td>
<td>72 894385</td>
<td>1766820 539</td>
<td>330 0</td>
<td>1603 1</td>
<td>0 0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The following table describes the data provided by the Daily Usage Report.
### TABLE 10–3 Daily Usage Report Data

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UID</td>
<td>User ID number.</td>
</tr>
<tr>
<td>LOGIN NAME</td>
<td>Login (or user) name of the user. Identifies a user who has multiple login names.</td>
</tr>
<tr>
<td>CPU (MINS)</td>
<td>Amount of time, in minutes, that the user's process used the central processing unit. Divided into PRIME and NPRIME (nonprime) utilization. The accounting system's version of this data is located in the /etc/acct/holidays file.</td>
</tr>
<tr>
<td>KCORE-MINS</td>
<td>A cumulative measure of the amount of memory in Kbyte segments per minute that a process uses while running. Divided into PRIME and NPRIME utilization.</td>
</tr>
<tr>
<td>CONNECT (MINS)</td>
<td>Amount of time, in minutes, that the a user was logged in to the system, or &quot;real time.&quot; Divided into PRIME and NPRIME utilization. If these numbers are high while the # OF PROCS is low, you can conclude that the user logs in first thing in the morning and hardly touches the terminal the rest of the day.</td>
</tr>
<tr>
<td>DISK BLOCKS</td>
<td>Output from the acctdusg program, which runs the disk accounting programs and merges the accounting records (dayacct). For accounting purposes, a block is 512 bytes.</td>
</tr>
<tr>
<td># OF PROCS</td>
<td>Number of processes invoked by the user. If large numbers appear, a user might have a shell procedure that has run out of control.</td>
</tr>
<tr>
<td># OF SESS</td>
<td>Number of times that a user logged in to the system.</td>
</tr>
<tr>
<td># DISK SAMPLES</td>
<td>Number of times that disk accounting was run to obtain the average number of DISK BLOCKS.</td>
</tr>
<tr>
<td>FEE</td>
<td>Often unused field that represents the total accumulation of units charged against the user by the charge fee script.</td>
</tr>
</tbody>
</table>

### Daily Command Summary

The Daily Command Summary report shows the system resource utilization by command. With this report, you can identify the most heavily used commands. Based on how those commands use system resources, you can then gain insight on how best to tune the system.

These reports are sorted by TOTAL KCOREMIN, which is an arbitrary gauge but often useful for calculating drain on a system.

A sample Daily Command Summary follows:

<table>
<thead>
<tr>
<th>COMMAND NAME</th>
<th>NUMBER CMDS</th>
<th>TOTAL KCOREMIN</th>
<th>TOTAL CPU-MIN</th>
<th>TOTAL REAL-MIN</th>
<th>MEAN SIZE-K</th>
<th>MEAN CPU-MIN</th>
<th>HOG FACTOR</th>
<th>CHARS</th>
<th>BLOCKS</th>
<th>READ</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTALS</td>
<td>2150</td>
<td>1334999.75</td>
<td>219.59</td>
<td>724258.50</td>
<td>6079.48</td>
<td>0.10</td>
<td>0.00</td>
<td>397338982</td>
<td>419448</td>
<td></td>
</tr>
</tbody>
</table>
The following list describes the data provided by the Daily Command Summary.

### COMMAND NAME
Name of the command. All shell procedures are lumped together under the name `sh` because only object modules are reported by the process accounting system. You should monitor the frequency of programs called `a.out` or `core`, or any other unexpected name. You can use the `acct` command to determine who executed an oddly named command and if superuser privileges were used.

### NUMBER CMD
Total number of times this command was run.

### TOTAL KCOREMIN
Total cumulative measurement of the Kbyte segments of memory used by a process per minute of run time.

### TOTAL CPU-MIN
Total processing time this program accumulated.

### TOTAL REAL-MIN
Total real-time (wall-clock) minutes this program accumulated.

### MEAN SIZE-K
Mean (average) of the `TOTAL KCOREMIN` over the number of invocations reflected by the `NUMBER CMD`.

### MEAN CPU-MIN
Mean (average) derived from the `NUMBER CMD` and the `TOTAL CPU-MIN`.

### HOG FACTOR
Total CPU time divided by elapsed time. Shows the ratio of system availability to system utilization, providing a relative measure of total available CPU time consumed by the process during its execution.

### CHAR S TRNSFD
Total number of characters transferred by the read and write system calls. Might be negative due to overflow.

### BLOCKS READ
Total number of the physical block reads and writes that a process performed.

## Monthly Command Summary

The format of the Daily Command Summary and the Monthly Command Summary reports are virtually the same. However, the daily summary reports only on the current accounting period.
while the monthly summary reports on the start of the fiscal period to the current date. In other words, the monthly report is a cumulative summary that reflects the data accumulated since the last invocation of the monacct program.

A sample Monthly Command Summary follows.

```
Jan 16 02:30 2004 MONTHLY TOTAL COMMAND SUMMARY Page 1

TOTAL COMMAND SUMMARY

<table>
<thead>
<tr>
<th>COMMAND NAME</th>
<th>CMD</th>
<th>KCORE</th>
<th>CPU-MIN</th>
<th>TOTAL</th>
<th>REAL-MIN</th>
<th>MEAN</th>
<th>SIZE-K</th>
<th>CPU-MIN</th>
<th>FACTOR</th>
<th>TRNSFD</th>
<th>READ</th>
</tr>
</thead>
<tbody>
<tr>
<td>netscape</td>
<td>789</td>
<td>3110437.25</td>
<td>121.03</td>
<td>79101.12</td>
<td>25699.58</td>
<td>0.15</td>
<td>3930527232</td>
<td>82486</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>adepted</td>
<td>84</td>
<td>121449.00</td>
<td>50.20</td>
<td>4174.65</td>
<td>24193.62</td>
<td>0.60</td>
<td>890216640</td>
<td>107237</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>acroread</td>
<td>145</td>
<td>165297.78</td>
<td>7.01</td>
<td>18180.74</td>
<td>25699.58</td>
<td>0.05</td>
<td>302486</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dtmail</td>
<td>2</td>
<td>64208.90</td>
<td>6.35</td>
<td>20557.14</td>
<td>4226.93</td>
<td>0.01</td>
<td>43208</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dtaction</td>
<td>800</td>
<td>47602.28</td>
<td>11.26</td>
<td>15.37</td>
<td>4226.93</td>
<td>0.01</td>
<td>60057536</td>
<td>8905</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>soffice</td>
<td>13</td>
<td>35506.79</td>
<td>0.97</td>
<td>9.23</td>
<td>36510.84</td>
<td>0.07</td>
<td>134754320</td>
<td>5712</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dtwm</td>
<td>2</td>
<td>26350.98</td>
<td>3.17</td>
<td>20557.14</td>
<td>419.87</td>
<td>1.59</td>
<td>10636832</td>
<td>14049</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

For a description of the data provided by the Monthly Command Summary, see "Daily Command Summary" on page 142.

**Last Login Report**

This report gives the date when a particular login was last used. You can use this information to find unused logins and login directories that can be archived and deleted. A Last Login Report follows.

```
Jan 16 02:30 2004 LAST LOGIN Page 1

01-06-12 kryten 01-09-08 protoA 01-10-14 ripley
01-07-14 lister 01-09-08 protoB 01-10-15 scutter1
01-08-16 pmorph 01-10-12 rimmer 01-10-16 scutter2
```

**Examining the pacct File With acctcom**

At any time, you can examine the contents of the /var/adm/pacctn files, or any file with records in the acct.h format, by using the acctcom program. If you do not specify any files and do not provide any standard input when you run this command, the acctcom command reads the pacct file. Each record read by the acctcom command represents information about a terminated process. Active processes can be examined by running the ps command.

The default output of the acctcom command provides the following information:
The following list describes each field:

- **COMMAND**
  Command name (pound (#) sign if the command was executed with superuser privileges)
- **NAME**
  User name
- **TTYNAME**
  TTY name (listed as ? if unknown)
- **START**
  Command execution starting time
- **END**
  Command execution ending time
- **REAL (SECS)**
  Real time (in seconds)
- **CPU (SECS)**
  CPU time (in seconds)
- **MEAN SIZE (K)**
  Mean size (in Kbytes)

You can obtain the following information by using `acctcom` command options.

- State of the fork/exec flag (1 for fork without exec)
- System exit status
- Hog factor
- Total kcore minutes
- CPU factor
- Characters transferred
- Blocks read

The following list describes the `acctcom` command options.

- `-a`
  Shows average statistics about the processes selected. The statistics are printed after the output is recorded.
- `-b`
  Reads the files backward, showing latest commands first. This option has no effect if reading standard input.
- `-f`
  Prints the fork/exec flag and system exit status columns. The output is an octal number.
Instead of mean memory size, shows the hog factor, which is the fraction of total available CPU time consumed by the process during its execution. Hog factor = \( \frac{\text{total-CPU-time}}{\text{elapsed-time}} \).

- **i**: Prints columns that contains the I/O counts in the output.

- **k**: Shows total core minutes instead of memory size.

- **m**: Shows mean core size. This size is the default.

- **q**: Prints average statistics, not output records.

- **r**: Shows CPU factor: \( \frac{\text{user-time}}{\text{system-time + user-time}} \).

- **t**: Shows separate system and user CPU times.

- **v**: Excludes column headings from the output.

- **C sec**: Shows only processes with total CPU time (system plus user) that exceeds sec seconds.

- **e time**: Shows processes existing at or before time, given in the format \( hr[:min[:sec]] \).

- **E time**: Shows processes starting at or before time, given in the format \( hr[:min[:sec]] \). Using the same time for both -S and -E, shows processes that existed at the time.

- **g group**: Shows only processes that belong to group.

- **H factor**: Shows only processes that exceed factor, where factor is the “hog factor” (see the -h option).

- **I chars**: Shows only processes that transferred more characters than the cutoff number specified by chars.

- **l line**: Show only processes that belong to the terminal /dev/line.

- **n pattern**: Shows only commands that match pattern (a regular expression except that “+” means one or more occurrences).

- **o ofile**: Instead of printing the records, copies them in acct . h format to ofile.

- **o sec**: Shows only processes with CPU system time that exceeds sec seconds.

- **s time**: Show processes existing at or after time, given in the format \( hr[:min[:sec]] \).

- **S time**: Show processes starting at or after time, given in the format \( hr[:min[:sec]] \).

- **u user**: Shows only processes that belong to user.
System Accounting Files

The /var/adm directory contains the active data collection files. The following list describes the accounting files in this directory.

dtmp  Output from the acctdusg program
fee   Output from the chargefee program, which are the ASCII tacct records
pacct Active process accounting file
pacct n Process accounting files that are switched by running the turnacct script
Spacctn.MMDD Process accounting files for MMDD during execution of the runacct script

The /var/adm/acct directory contains the nite, sum, and fiscal directories. These directories contain the actual data collection files. For example, the nite directory contains files that are reused daily by the runacct script. A brief summary of the files in the /var/adm/acct/nite directory follows.

<table>
<thead>
<tr>
<th>File</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>active</td>
<td>Used by the runacct script to record progress and print warning and error messages</td>
</tr>
<tr>
<td>active.MMDD</td>
<td>Same as the active file after the runacct script detects an error</td>
</tr>
<tr>
<td>cms</td>
<td>ASCII total command summary used by the prdaily script</td>
</tr>
<tr>
<td>ctacct.MMDD</td>
<td>Connect accounting records in tacct.h format</td>
</tr>
<tr>
<td>ctmp</td>
<td>Output of acctcon1 program, which consists of connect session records in ctmp.h format (acctcon1 and acctcon2 are provided for compatibility purposes)</td>
</tr>
<tr>
<td>daycms</td>
<td>ASCII daily command summary used by the prdaily script</td>
</tr>
<tr>
<td>daytacct</td>
<td>Total accounting records for one day in tacct.h format</td>
</tr>
<tr>
<td>disktacct</td>
<td>Disk accounting records in tacct.h format, created by the dodisk script</td>
</tr>
<tr>
<td>fd2log</td>
<td>Diagnostic output during execution of the runacct script</td>
</tr>
<tr>
<td>lastdate</td>
<td>Last day the runacct script executed (in date +%md format)</td>
</tr>
<tr>
<td>lineuse</td>
<td>tty line usage report used by the prdaily script</td>
</tr>
<tr>
<td>lock</td>
<td>Used to control serial use of the runacct script</td>
</tr>
<tr>
<td>log</td>
<td>Diagnostic output from the acctcon program</td>
</tr>
</tbody>
</table>
**TABLE 10–4**  Files in the /var/adm/acct/nite Directory  
(Continued)

<table>
<thead>
<tr>
<th>File</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>log.MMDD</td>
<td>Same as the log file after the runacct script detects an error</td>
</tr>
<tr>
<td>owtmpx</td>
<td>Previous day's wtmpx file</td>
</tr>
<tr>
<td>reboots</td>
<td>Beginning and ending dates from the wtmpx file, and a listing of reboots</td>
</tr>
<tr>
<td>statefile</td>
<td>Used to record current state during execution of the runacct script</td>
</tr>
<tr>
<td>tmpwtmp</td>
<td>wtmpx file corrected by the wtmpfix program</td>
</tr>
<tr>
<td>wtmperror</td>
<td>Contains wtmpfix error messages</td>
</tr>
<tr>
<td>wtmperror MMDD</td>
<td>Same as the wtmperror file after the runacct script detects an error</td>
</tr>
<tr>
<td>wtmpMMDD</td>
<td>The runacct script's copy of the wtmpx file</td>
</tr>
</tbody>
</table>

The sum directory contains the cumulative summary files updated by the runacct script and used by the monacct script. The following table summarizes the files in the /var/adm/acct/sum directory.

**TABLE 10–5**  Files in the /var/adm/acct/sum Directory

<table>
<thead>
<tr>
<th>File</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cms</td>
<td>Total command summary file for current fiscal period in binary format</td>
</tr>
<tr>
<td>cmsprev</td>
<td>Command summary file without latest update</td>
</tr>
<tr>
<td>daycms</td>
<td>Command summary file for the day's usage in internal summary format</td>
</tr>
<tr>
<td>loginlog</td>
<td>Record of last date each user logged in; created by the lastlogin script and used in the prdaily script</td>
</tr>
<tr>
<td>rprr.MMDD</td>
<td>Saved output of prdaily script</td>
</tr>
<tr>
<td>tacct</td>
<td>Cumulative total accounting file for current fiscal period</td>
</tr>
<tr>
<td>tacctprev</td>
<td>Same as the tacct file without latest update</td>
</tr>
<tr>
<td>tacct.MMDD</td>
<td>Total accounting file for MMDD</td>
</tr>
</tbody>
</table>

The fiscal directory contains periodic summary files that are created by the monacct script. The following table summarizes the files in the /var/adm/acct/fiscal directory.

**TABLE 10–6**  Files in the /var/adm/acct/fiscal Directory

<table>
<thead>
<tr>
<th>File</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>crsni</td>
<td>Total command summary file for fiscal period n in internal summary format</td>
</tr>
</tbody>
</table>
TABLE 10–6  Files in the /var/adm/acct/fiscal Directory  (Continued)

<table>
<thead>
<tr>
<th>File</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fiscrpt</td>
<td>Report similar to rprt for fiscal period n</td>
</tr>
<tr>
<td>tacctn</td>
<td>Total accounting file for fiscal period n</td>
</tr>
</tbody>
</table>

Files Produced by the runacct Script

The following table summarizes the most useful files produced by the runacct script. These files are found in the /var/adm/acct directory.

TABLE 10–7  Files Created by the runacct Script

<table>
<thead>
<tr>
<th>File</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>nite/daytacct</td>
<td>The total accounting file for the day in tacct.h format.</td>
</tr>
<tr>
<td>nite/lineuse</td>
<td>The runacct script calls the acctcon program to gather data on terminal line usage from the /var/adm/acct/nite/tmpwtmp file and writes the data to the /var/adm/acct/nite/lineuse file. The prdaily script uses this data to report line usage. This report is especially useful for detecting bad lines. If the ratio between the number of logouts to logins is greater than three to one, the line is very likely failing.</td>
</tr>
<tr>
<td>sum/cms</td>
<td>This file is the accumulation of each day's command summaries. The accumulation restarts when the monacct script is executed. The ASCII version is the nite/cms file.</td>
</tr>
<tr>
<td>sum/daycms</td>
<td>The runacct script calls the acctcms program to process the commands used during the day to create the Daily Command Summary report and stores the data in the /var/adm/acct/sum/daycms file. The ASCII version is the /var/adm/acct/nite/daycms file.</td>
</tr>
<tr>
<td>sum/loginlog</td>
<td>The runacct script calls the lastlogin script to update the last date logged in for the logins in the /var/adm/acct/sum/loginlog file. The lastlogin command also removes from this file any logins that are no longer valid.</td>
</tr>
<tr>
<td>sum/rprt.MMDD</td>
<td>Each execution of the runacct script saves a copy of the daily report that was printed by the prdaily script.</td>
</tr>
<tr>
<td>sum/tacct</td>
<td>Contains the accumulation of each day's nite/daytacct data and is used for billing purposes. The monacct script restarts accumulating this data each month or fiscal period.</td>
</tr>
</tbody>
</table>
Achieving good performance from a computer or network is an important part of system administration. This chapter provides an overview of some factors that contribute to managing the performance of the computer systems in your care.

This is a list of the overview information in this chapter.

- “What’s New in Managing System Performance?” on page 151
- “Where to Find System Performance Tasks” on page 152
- “System Performance and System Resources” on page 153
- “Processes and System Performance” on page 153
- “About Monitoring System Performance” on page 155

What’s New in Managing System Performance?

This section describes new or changed features in managing system performance in the Oracle Solaris release. For a complete listing of new features and a description of Oracle Solaris releases, see the Oracle Solaris 10 8/11 What’s New.

Enhanced pfiles Tool

Oracle Solaris 10: The /proc file system has been enhanced to include file name information in the /proc/pic/path directory. This information is used by pfiles to display file names for each file in the process. This change provides new insight into process behavior. For more information, see “How to Display Information About Processes” on page 163 and the proc(1) man page.
CPU Performance Counters

**Oracle Solaris 10**: The CPU Performance Counter (CPC) system has been updated to give better access to the performance analysis features available in the SPARC and x86 platforms that run the Oracle Solaris OS.

The CPC commands `cpustat` and `cputrack` have enhanced, command-line syntax for specifying CPU information. For example, in previous versions of the Oracle Solaris OS, you were required to specify two counters. The configuration of both commands now allows you to specify only one counter, as shown in the following example:

```
# cputrack -c pic0=Cycle_cnt ls -d .
  time  lwp  event  pic0  pic1
   0.034   1  exit   841167
```

For simple measurements, you can even omit the counter configuration, as shown in the following example:

```
# cputrack -c Cycle_cnt ls -d .
  time  lwp  event  pic0  pic1
   0.016   1  exit   850736
```

For more information on using the `cpustat` command, see the `cpustat(1M)` man page. For more information on using the `cputrack` command, see the `cputrack(1)` man page.

Where to Find System Performance Tasks

<table>
<thead>
<tr>
<th>System Performance Task</th>
<th>For More Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manage processes</td>
<td>Chapter 12, “Managing System Processes (Tasks)”</td>
</tr>
<tr>
<td>Monitor system performance</td>
<td>Chapter 13, “Monitoring System Performance (Tasks)”</td>
</tr>
<tr>
<td>Change tunable parameters</td>
<td><em>Oracle Solaris Tunable Parameters Reference Manual</em></td>
</tr>
<tr>
<td>Manage System Performance Tasks</td>
<td>Chapter 2, “Projects and Tasks (Overview),” in <em>System Administration Guide: Oracle Solaris Containers-Resource Management and Oracle Solaris Zones</em></td>
</tr>
<tr>
<td>Manage Processes With FX and FS Schedulers</td>
<td>Chapter 8, “Fair Share Scheduler (Overview),” in <em>System Administration Guide: Oracle Solaris Containers-Resource Management and Oracle Solaris Zones</em></td>
</tr>
</tbody>
</table>
System Performance and System Resources

The performance of a computer system depends upon how the system uses and allocates its resources. Monitor your system’s performance regularly so that you know how it behaves under normal conditions. You should have a good idea of what to expect, and be able to recognize a problem when it occurs.

System resources that affect performance are described in the following table.

<table>
<thead>
<tr>
<th>System Resource</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central processing unit (CPU)</td>
<td>The CPU processes instructions by fetching instructions from memory and executing them.</td>
</tr>
<tr>
<td>Input/output (I/O) devices</td>
<td>I/O devices transfer information into and out of the computer. Such a device could be a terminal and keyboard, a disk drive, or a printer.</td>
</tr>
<tr>
<td>Memory</td>
<td>Physical (or main) memory is the amount of random access memory (RAM) on the system.</td>
</tr>
</tbody>
</table>

Chapter 13, “Monitoring System Performance (Tasks),” describes the tools that display statistics about the system’s activity and performance.

Processes and System Performance

The following table describes terms that are related to processes.

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process</td>
<td>Any system activity or job. Each time you boot a system, execute a command, or start an application, the system activates one or more processes.</td>
</tr>
<tr>
<td>Lightweight process (LWP)</td>
<td>A virtual CPU or execution resource. LWPs are scheduled by the kernel to use available CPU resources based on their scheduling class and priority. LWPs include a kernel thread and an LWP. A kernel thread contains information that has to be in memory all the time. An LWP contains information that is swappable.</td>
</tr>
<tr>
<td>Application thread</td>
<td>A series of instructions with a separate stack that can execute independently in a user’s address space. Application threads can be multiplexed on top of LWPs.</td>
</tr>
</tbody>
</table>
A process can consist of multiple LWPs and multiple application threads. The kernel schedules a kernel-thread structure, which is the scheduling entity in the SunOS environment. Various process structures are described in the following table.

**TABLE 11–2 Process Structures**

<table>
<thead>
<tr>
<th>Structure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>proc</td>
<td>Contains information that pertains to the whole process and must be in main memory all the time</td>
</tr>
<tr>
<td>kthread</td>
<td>Contains information that pertains to one LWP and must be in main memory all the time</td>
</tr>
<tr>
<td>user</td>
<td>Contains the &quot;per process&quot; information that is swappable</td>
</tr>
<tr>
<td>klwp</td>
<td>Contains the &quot;per LWP process&quot; information that is swappable</td>
</tr>
</tbody>
</table>

The following figure illustrates the relationships among these process structures.

**FIGURE 11–1 Relationships Among Process Structures**

Most process resources are accessible to all the threads in the process. Almost all process virtual memory is shared. A change in shared data by one thread is available to the other threads in the process.
About Monitoring System Performance

While your computer is running, counters in the operating system are incremented to track various system activities.

System activities that are tracked are as follows:

- Central processing unit (CPU) utilization
- Buffer usage
- Disk and tape input/output (I/O) activity
- Terminal device activity
- System call activity
- Context switching
- File access
- Queue activity
- Kernel tables
- Interprocess communication
- Paging
- Free memory and swap space
- Kernel memory allocation (KMA)

Monitoring Tools

The Oracle Solaris software provides several tools to help you track how your system is performing. The following table describes these tools.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>For More Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>cpustat and cputrack commands</td>
<td>Monitors performance of a system or a process using CPU performance counters.</td>
<td>cpustat(1M) and cputrack(1)</td>
</tr>
<tr>
<td>netstat and nfsstat commands</td>
<td>Displays information about network performance.</td>
<td>netstat(1M) and nfsstat(1M)</td>
</tr>
<tr>
<td>ps and prstat commands</td>
<td>Displays information about active processes.</td>
<td>Chapter 12, “Managing System Processes (Tasks)”</td>
</tr>
<tr>
<td>sar and sadc commands</td>
<td>Collects and reports on system activity data.</td>
<td>Chapter 13, “Monitoring System Performance (Tasks)”</td>
</tr>
<tr>
<td>Sun Enterprise SyMON</td>
<td>Collects system activity data on Sun’s enterprise-level systems.</td>
<td>Sun Enterprise SyMON 2.0.1 Software User’s Guide</td>
</tr>
</tbody>
</table>
### TABLE 11-3  Performance Monitoring Tools  (Continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>For More Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>swap command</td>
<td>Displays information about available swap space on your system.</td>
<td>Chapter 19, “Configuring Additional Swap Space (Tasks),” in System Administration Guide: Devices and File Systems</td>
</tr>
<tr>
<td>vmstat and iostat commands</td>
<td>Summarizes system activity data, such as virtual memory statistics, disk usage, and CPU activity.</td>
<td>Chapter 13, “Monitoring System Performance (Tasks)”</td>
</tr>
<tr>
<td>cputrack and cpustat commands</td>
<td>Assists in accessing hardware performance counter facilities provided by microprocessors.</td>
<td>cputrack(1) and cpustat(1M) man pages</td>
</tr>
<tr>
<td>kstat and mpstat commands</td>
<td>Examines the available kernel statistics, or kstats, on the system and reports those statistics which match the criteria specified on the command line. The mpstat command reports processor statistics in tabular form.</td>
<td>kstat(1M) and mpstat(1M) man pages.</td>
</tr>
</tbody>
</table>
This chapter describes the procedures for managing system processes.

For information on the procedures associated with managing system processes, see the following:

- “What's New in Managing System Processes?” on page 157
- “Managing System Processes (Task Map)” on page 158
- “Managing Process Class Information (Task Map)” on page 168

For overview information about managing system processes, see the following:

- “Commands for Managing System Processes” on page 158
- “Managing Process Class Information” on page 169

**What's New in Managing System Processes?**

**Pseudo Kernel Processes**

Oracle Solaris includes several processes that are running on the system. These processes perform a specific task, but do not require any administration. Note that there are no reference manual documents (man pages) that describe these processes.

The following table describes each of these processes.

<table>
<thead>
<tr>
<th>Process</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fsflush</td>
<td>System daemon that flushes pages to the disk</td>
</tr>
<tr>
<td>init</td>
<td>Initial system process that starts and restarts other processes and SMF components</td>
</tr>
<tr>
<td>intrd</td>
<td>System process that monitors and balances system load due to interrupts</td>
</tr>
</tbody>
</table>
### Managing System Processes (Task Map)

<table>
<thead>
<tr>
<th>Process</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>kmem_task</td>
<td>System process that monitors memory cache sizes</td>
</tr>
<tr>
<td>pageout</td>
<td>System process that controls memory paging to disk</td>
</tr>
<tr>
<td>sched</td>
<td>System process that is responsible for OS scheduling and process swapping</td>
</tr>
<tr>
<td>vm_tasks</td>
<td>System process with one thread per processor that balances and distributes virtual memory related workloads across CPUs for better performance</td>
</tr>
<tr>
<td>zpool-pool-name</td>
<td>System process for each ZFS storage pool containing the I/O taskq threads for the associated pool</td>
</tr>
</tbody>
</table>

### Commands for Managing System Processes

The following table describes the commands for managing system processes.

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>List processes.</td>
<td>Use the <code>ps</code> command to list all the processes on a system.</td>
<td>&quot;How to List Processes&quot; on page 162</td>
</tr>
<tr>
<td>Display information about processes.</td>
<td>Use the <code>pgrep</code> command to obtain the process IDs for processes that you want to display more information about.</td>
<td>&quot;How to Display Information About Processes&quot; on page 163</td>
</tr>
<tr>
<td>Control processes.</td>
<td>Locate processes by using the <code>pgrep</code> command. Then, use the appropriate <code>p</code> command (/proc) to control the process. See Table 12–3 for a description of the (/proc) commands.</td>
<td>&quot;How to Control Processes&quot; on page 164</td>
</tr>
<tr>
<td>Kill a process.</td>
<td>Locate a process, either by process name or process ID. You can use either the <code>pkill</code> or <code>kill</code> commands to terminate the process.</td>
<td>&quot;How to Terminate a Process (pkill)&quot; on page 165</td>
</tr>
<tr>
<td></td>
<td></td>
<td>&quot;How to Terminate a Process (kill)&quot; on page 166</td>
</tr>
</tbody>
</table>
### TABLE 12-1  Commands for Managing Processes

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>Man Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ps, pgrep, prstat, pkill</td>
<td>Checks the status of active processes on a system, as well as displays detailed information about the processes.</td>
<td>ps(1), pgrep(1), and prstat(1M)</td>
</tr>
<tr>
<td>pkill</td>
<td>Functions identically to pgrep but finds or signals processes by name or other attribute and terminates the process. Each matching process is signaled as if by the kill command, instead of having its process ID printed.</td>
<td>pgrep(1), and pkill(1)</td>
</tr>
<tr>
<td>kill</td>
<td></td>
<td>kill(1)</td>
</tr>
<tr>
<td>pargs, preap</td>
<td>Assists with processes debugging.</td>
<td>pargs(1), and preap(1)</td>
</tr>
<tr>
<td>dispadmin</td>
<td>Lists default process scheduling policies.</td>
<td>dispadmin(1M)</td>
</tr>
<tr>
<td>priocntl</td>
<td>Assigns processes to a priority class and manages process priorities.</td>
<td>priocntl(1)</td>
</tr>
<tr>
<td>nice</td>
<td>Changes the priority of a timesharing process.</td>
<td>nice(1)</td>
</tr>
<tr>
<td>psrset</td>
<td>Binds specific process groups to a group of processors rather than to just a single processor.</td>
<td>psrset(1M)</td>
</tr>
</tbody>
</table>

The Solaris Management Console’s Processes tool enables you to manage processes with a user-friendly interface. For information on using and starting the Solaris Management Console, see Chapter 2, “Working With the Solaris Management Console (Tasks),” in System Administration Guide: Basic Administration.

### Using the ps Command

The ps command enables you to check the status of active processes on a system, as well as display technical information about the processes. This data is useful for administrative tasks such as determining how to set process priorities.

Depending on which options you use, the ps command reports the following information:

- Current status of the process
- Process ID
- Parent process ID
- User ID
- Scheduling class
- Priority
- Address of the process
- Memory used
- CPU time used

The following table describes some fields that are reported by the ps command. Which fields are displayed depend on which option you choose. For a description of all available options, see the ps(1) man page.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UID</td>
<td>The effective user ID of the process's owner.</td>
</tr>
<tr>
<td>PID</td>
<td>The process ID.</td>
</tr>
<tr>
<td>PPID</td>
<td>The parent process ID.</td>
</tr>
<tr>
<td>C</td>
<td>The processor utilization for scheduling. This field is not displayed when the -c option is used.</td>
</tr>
<tr>
<td>CLS</td>
<td>The scheduling class to which the process belongs such as real-time, system, or timesharing. This field is included only with the -c option.</td>
</tr>
<tr>
<td>PRI</td>
<td>The kernel thread's scheduling priority. Higher numbers indicate a higher priority.</td>
</tr>
<tr>
<td>NI</td>
<td>The process’s nice number, which contributes to its scheduling priority. Making a process “nicer” means lowering its priority.</td>
</tr>
<tr>
<td>ADDR</td>
<td>The address of the proc structure.</td>
</tr>
<tr>
<td>SZ</td>
<td>The virtual address size of the process.</td>
</tr>
<tr>
<td>WCHAN</td>
<td>The address of an event or lock for which the process is sleeping.</td>
</tr>
<tr>
<td>STIME</td>
<td>The starting time of the process in hours, minutes, and seconds.</td>
</tr>
<tr>
<td>TTY</td>
<td>The terminal from which the process, or its parent, was started. A question mark indicates that there is no controlling terminal.</td>
</tr>
<tr>
<td>TIME</td>
<td>The total amount of CPU time used by the process since it began.</td>
</tr>
<tr>
<td>CMD</td>
<td>The command that generated the process.</td>
</tr>
</tbody>
</table>
Using the /proc File System and Commands

You can display detailed information about the processes that are listed in the /proc directory by using process commands. The following table lists the /proc process commands. The /proc directory is also known as the process file system (PROCFS). Images of active processes are stored here by their process ID number.

<table>
<thead>
<tr>
<th>Process Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pcred</td>
<td>Displays process credential information</td>
</tr>
<tr>
<td>pfiles</td>
<td>Reports fstat and fcntl information for open files in a process</td>
</tr>
<tr>
<td>pflags</td>
<td>Prints /proc tracing flags, pending signals and held signals, and other status information</td>
</tr>
<tr>
<td>pldd</td>
<td>Lists the dynamic libraries that are linked into a process</td>
</tr>
<tr>
<td>pmap</td>
<td>Prints the address space map of each process</td>
</tr>
<tr>
<td>psig</td>
<td>Lists the signal actions and handlers of each process</td>
</tr>
<tr>
<td>prun</td>
<td>Starts each process</td>
</tr>
<tr>
<td>pstack</td>
<td>Prints a hex+symbolic stack trace for each lwp in each process</td>
</tr>
<tr>
<td>pstop</td>
<td>Stops each process</td>
</tr>
<tr>
<td>ptime</td>
<td>Times a process by using microstate accounting</td>
</tr>
<tr>
<td>ptree</td>
<td>Displays the process trees that contain the process</td>
</tr>
<tr>
<td>pwait</td>
<td>Displays status information after a process terminates</td>
</tr>
<tr>
<td>pwdx</td>
<td>Displays the current working directory for a process</td>
</tr>
</tbody>
</table>

For more information, see proc(1).

The process tools are similar to some options of the ps command, except that the output that is provided by these commands is more detailed.

In general, the process commands do the following:

- Display more information about processes, such as fstat and fcntl, working directories, and trees of parent and child processes.
- Provide control over processes by allowing users to stop or resume them.
Managing Processes With Process Commands (/proc)

You can display detailed, technical information about processes or control active processes by using some of the process commands. Table 12–3 lists some of the /proc commands.

If a process becomes trapped in an endless loop, or if the process takes too long to execute, you might want to stop (kill) the process. For more information about stopping processes using the kill or the pkill command, see Chapter 12, “Managing System Processes (Tasks).”

The /proc file system is a directory hierarchy that contains additional subdirectories for state information and control functions.

The /proc file system also provides an xwatchpoint facility that is used to remap read-and-write permissions on the individual pages of a process’s address space. This facility has no restrictions and is MT-safe.

Debugging tools have been modified to use /proc’s xwatchpoint facility, which means that the entire xwatchpoint process is faster.

The following restrictions have been removed when you set xwatchpoints by using the dbx debugging tool:

- Setting xwatchpoints on local variables on the stack due to SPARC based system register windows.
- Setting xwatchpoints on multithreaded processes.

For more information, see the proc(4), and mdb(1) man pages.

▼ How to List Processes

- Use the ps command to list all the processes on a system.

  $ ps [-efc]
  
  ps Displays only the processes that are associated with your login session.
  -ef Displays full information about all the processes that are being executed on the system.
  -c Displays process scheduler information.

Example 12–1 Listing Processes

The following example shows output from the ps command when no options are used.

$ ps
  PID TTY TIME COMD
  1664 pts/4 0:06 csh
  2081 pts/4 0:00 ps
The following example shows output from the ps -ef command. This output shows that the first process that is executed when the system boots is sched (the swapper) followed by the init process, pageout, and so on.

$ ps -ef

<table>
<thead>
<tr>
<th>USER</th>
<th>PID</th>
<th>PPID</th>
<th>C</th>
<th>STIME</th>
<th>TTY</th>
<th>TIME</th>
<th>CMD</th>
</tr>
</thead>
<tbody>
<tr>
<td>root</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Dec 20</td>
<td>?</td>
<td>0:17</td>
<td>sched</td>
</tr>
<tr>
<td>root</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>Dec 20</td>
<td>?</td>
<td>0:00</td>
<td>/etc/init</td>
</tr>
<tr>
<td>root</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>Dec 20</td>
<td>?</td>
<td>0:00</td>
<td>pageout</td>
</tr>
<tr>
<td>root</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>Dec 20</td>
<td>?</td>
<td>4:20</td>
<td>fsflush</td>
</tr>
<tr>
<td>root</td>
<td>367</td>
<td>374</td>
<td>0</td>
<td>Dec 20</td>
<td>?</td>
<td>0:00</td>
<td>/usr/lib/saf/ttymon</td>
</tr>
<tr>
<td>root</td>
<td>126</td>
<td>0</td>
<td>0</td>
<td>Dec 20</td>
<td>?</td>
<td>0:00</td>
<td>/usr/lib/saf/sac-t300</td>
</tr>
<tr>
<td>root</td>
<td>54</td>
<td>0</td>
<td>0</td>
<td>Dec 20</td>
<td>?</td>
<td>0:00</td>
<td>/usr/lib/sysvent/sysventd</td>
</tr>
<tr>
<td>root</td>
<td>59</td>
<td>0</td>
<td>0</td>
<td>Dec 20</td>
<td>?</td>
<td>0:00</td>
<td>/usr/lib/picl/picld</td>
</tr>
<tr>
<td>root</td>
<td>178</td>
<td>1</td>
<td>0</td>
<td>Dec 20</td>
<td>?</td>
<td>0:03</td>
<td>/usr/lib/autofs/automountd</td>
</tr>
<tr>
<td>root</td>
<td>129</td>
<td>3</td>
<td>0</td>
<td>Dec 20</td>
<td>?</td>
<td>0:00</td>
<td>/usr/sbin/rpcbind</td>
</tr>
<tr>
<td>root</td>
<td>315</td>
<td>1</td>
<td>0</td>
<td>Dec 20</td>
<td>?</td>
<td>0:00</td>
<td>/usr/lib/nfs/mountd</td>
</tr>
<tr>
<td>root</td>
<td>237</td>
<td>1</td>
<td>0</td>
<td>Dec 20</td>
<td>?</td>
<td>0:00</td>
<td>/usr/lib/utmpd</td>
</tr>
</tbody>
</table>

▼ How to Display Information About Processes

1 Obtain the process ID of the process that you want to display more information about.

   # pgrep process

   where process is the name of the process you want to display more information about.

   The process ID is displayed in the first column of the output.

2 Display the process information that you need.

   # /usr/bin/pcommand pid

   pcommand is the (/proc) command that you want to run. Table 12–3 lists and describes these commands.

   pid identifies the process ID.
Example 12-2  Displaying Information About Processes

The following example shows how to use process commands to display more information about a cron process.

```
# pgrave cron      1
4780
# pwdx 4780        2
4780: /var/spool/cron/atjobs
# ptree 4780       3
4780 /usr/sbin/cron
# pfiles 4780      4
4780: /usr/sbin/cron
```

Current rlimit: 256 file descriptors

0: S_IFCHR mode:0666 dev:290,0 ino:6815752 uid:0 gid:3 rdev:13,2
O_RDONLY|O_LARGEFILE
/devices/pseudo/mm@0:null

1: S_IFREG mode:0600 dev:32,128 ino:42054 uid:0 gid:0 size:9771
O_WRONLY|O_APPEND|O_CREAT|O_LARGEFILE
/var/cron/log

2: S_IFREG mode:0600 dev:32,128 ino:42054 uid:0 gid:0 size:9771
O_WRONLY|O_APPEND|O_CREAT|O_LARGEFILE
/var/cron/log

3: S_IFIFO mode:0600 dev:32,128 ino:42049 uid:0 gid:0 size:0
O_RDWR|O_LARGEFILE
/etc/cron.d/FIFO

4: S_IFIFO mode:0000 dev:293,0 ino:4630 uid:0 gid:0 size:0
O_RDWR

5: S_IFIFO mode:0000 dev:293,0 ino:4630 uid:0 gid:0 size:0
O_RDWR

1. Obtains the process ID for the cron process
2. Displays the current working directory for the cron process
3. Displays the process tree that contains the cron process
4. Displays fstat and fcntl information

♦ How to Control Processes

1. Obtain the process ID of the process that you want to control.

   ```
   # pgrave process
   ```

   where process is the name of the process you want to control.

   The process ID displayed in the first column of the output.
2 Use the appropriate process command to control the process.
   
   `/usr/bin/pcommand pid`
   
   `pcommand` is the process (`/proc`) command that you want to run. **Table 12–3** lists and describes these commands.
   
   `pid` Identifies the process ID.

3 Verify the process status.
   
   `# ps -ef | grep pid`

**Example 12–3** Controlling Processes

The following example shows how to use process command to stop and restart the `dtpad` process.

```
# pgrep dtpad  
2921
# pstop 2921  
2
# prun 2921    
3
```

1. Obtains the process ID for the `dtpad` process
2. Stops the `dtpad` process
3. Restarts the `dtpad` process

**Terminating a Process (pkill, kill)**

Sometimes, you might need to stop (kill) a process. The process might be in an endless loop. Or, you might have started a large job that you want to stop before it is completed. You can kill any process that you own. Superuser can kill any process in the system except for those processes with process IDs of 0, 1, 2, 3, and 4. Killing these processes most likely will crash the system.

For more information, see the **pgrep(1)** and **pkill(1)** and **kill(1)** man pages.

▼ **How to Terminate a Process (pkill)**

1 (Optional) To terminate the process of another user, become superuser or assume an equivalent role.

2 Obtain the process ID for the process that you want to terminate.
   
   `$ pgrep process`
   
   where `process` is the name of the process that you want to terminate.
For example:

$ pgrep netscape
  587
  566

The process ID is displayed in the output.

**Note** – To obtain process information on a Sun Ray, use the following commands:

```
# ps -fu user
```

This command lists all user processes.

```
# ps -fu user | grep process
```

This command locates a specific process for a user.

---

### 3 Terminate the process.

```
$ pkill [signal] process
```

*signal*  
When no signal is included in the *pkill* command-line syntax, the default signal that is used is -15 (SIGKILL). Using the -9 signal (SIGTERM) with the *pkill* command ensures that the process terminates promptly. However, the -9 signal should not be used to kill certain processes, such as a database process, or an LDAP server process. The result is that data might be lost.

*process*  
Is the name of the process to stop.

**Tip** – When using the *pkill* command to terminate a process, first try using the command by itself, without including a signal option. Wait a few minutes to see if the process terminates before using the *pkill* command with the -9 signal.

### 4 Verify that the process has been terminated.

```
$ pgrep process
```

The process you terminated should no longer be listed in the output of the *pgrep* command.

---

**How to Terminate a Process (kill)**

1  
(Optional) To terminate the process of another user, become superuser or assume an equivalent role.
2 Obtain the process ID of the process that you want to terminate.
   $ ps -fu user
where user is the user that you want to display processes for.
   The process ID is displayed in the first column of the output.

3 Terminate the process.
   $ kill [signal-number] pid
   signal When no signal is included in the kill command-line syntax, the default signal that
   is used is –15 (SIGKILL). Using the –9 signal (SIGTERM) with the kill command
   ensures that the process terminates promptly. However, the –9 signal should not be
   used to kill certain processes, such as a database process, or an LDAP server process.
   The result is that data might be lost.
   pid Is the process ID of the process that you want to terminate.

   Tip– When using the kill command to stop a process, first try using the command by itself,
   without including a signal option. Wait a few minutes to see if the process terminates before
   using the kill command with the -9 signal.

4 Verify that the process has been terminated.
   $ pgrep pid
   The process you terminated should no longer be listed in the output of the pgrep command.

Debugging a Process (pargs, preap)

The pargs command and the preap command improve process debugging. The pargs
command prints the arguments and environment variables associated with a live process or
core file. The preap command removes defunct (zombie) processes. A zombie process has not
yet had its exit status claimed by its parent. These processes are generally harmless but can
consume system resources if they are numerous. You can use the pargs and preap commands
to examine any process that you have the privileges to examine. As superuser, you can examine
any process.

For information on using the preap command, see the preap(1) man page. For information on
using the pargs command, see the pargs(1) man page. See also, the proc(1) man page.
EXAMPLE 12–4  Debugging a Process (pargs)

The pargs command solves a long-standing problem of being unable to display with the ps command all the arguments that are passed to a process. The following example shows how to use the pargs command in combination with the pgrep command to display the arguments that are passed to a process.

# pargs 'pgrep ttymon'
579: /usr/lib/saf/ttymon -g -h -p system-name console login: -T sun -d /dev/console -l
argv[0]: /usr/lib/saf/ttymon
argv[1]: -g
argv[2]: -h
argv[3]: -p
argv[4]: system-name console login:
argv[5]: -T
argv[6]: sun
argv[7]: -d
argv[8]: /dev/console
argv[9]: -l
argv[10]: console
argv[11]: -m
argv[12]: ldterm,ttcompat
548: /usr/lib/saf/ttymon
argv[0]: /usr/lib/saf/ttymon
argv[8]: /dev/console
argv[9]: -l
argv[10]: console
argv[11]: -m
argv[12]: ldterm,ttcompat

The following example shows how to use the pargs -e command to display the environment variables that are associated with a process.

$ pargs -e 6763
6763: tcsh
envp[0]: DISPLAY=:0.0

Managing Process Class Information (Task Map)

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display basic information about process classes.</td>
<td>Use the priocntl -l command to Display process scheduling classes and priority ranges.</td>
<td>“How to Display Basic Information About Process Classes (priocntl)” on page 170</td>
</tr>
<tr>
<td>Display the global priority of a process.</td>
<td>Use the ps -ecl command to display the global priority of a process.</td>
<td>“How to Display the Global Priority of a Process” on page 170</td>
</tr>
<tr>
<td>Designate a process priority.</td>
<td>Start a process with a designated priority by using the priocntl -e -c command.</td>
<td>“How to Designate a Process Priority (priocntl)” on page 171</td>
</tr>
</tbody>
</table>
Managing Process Class Information

The following list identifies the process scheduling classes that can be configured on your system. Also included is the user priority range for the timesharing class.

The possible process scheduling classes are as follows:

- **Fair share (FSS)**
- **Fixed (FX)**
- **System (SYS)**
- **Interactive (IA)**
- **Real-time (RT)**
- **Timesharing (TS)**
  - The user-supplied priority ranges from -60 to +60.
  - The priority of a process is inherited from the parent process. This priority is referred to as the user-mode priority.
  - The system looks up the user-mode priority in the timesharing dispatch parameter table. Then, the system adds in any nice or priocntl (user-supplied) priority and ensures a 0–59 range to create a global priority.

### Changing the Scheduling Priority of Processes (priocntl)

The scheduling priority of a process is the priority assigned by the process scheduler, according to scheduling policies. The dispadmin command lists the default scheduling policies. For more information, see the dispadmin(1M) man page.

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change scheduling parameters of a timesharing process.</td>
<td>Use the priocntl -s -m command to change scheduling parameters in a timesharing process.</td>
<td>“How to Change Scheduling Parameters of a Timesharing Process (priocntl)” on page 172</td>
</tr>
<tr>
<td>Change the class of a process.</td>
<td>Use the priocntl -s -c command to change the class of a process.</td>
<td>“How to Change the Class of a Process (priocntl)” on page 172</td>
</tr>
<tr>
<td>Change the priority of a process.</td>
<td>Use the /usr/bin/nice command with the appropriate options to lower or raise the priority of a process.</td>
<td>“How to Change the Priority of a Process (nice)” on page 174</td>
</tr>
</tbody>
</table>
You can use the `priocntl` command to assign processes to a priority class and to manage process priorities. For instructions on using the `priocntl` command to manage processes, see “How to Designate a Process Priority (priocntl)” on page 171.

**How to Display Basic Information About Process Classes (priocntl)**

- Display process scheduling classes and priority ranges with the `priocntl -l` command.
  ```
  $ priocntl -l
  ```

**Example 12–5** Displaying Basic Information About Process Classes (priocntl)

The following example shows output from the `priocntl -l` command.

```bash
# priocntl -l
CONFIGURED CLASSES
==================
SYS (System Class)
TS (Time Sharing)
  Configured TS User Priority Range: -60 through 60
FX (Fixed priority)
  Configured FX User Priority Range: 0 through 60
IA (Interactive)
  Configured IA User Priority Range: -60 through 60
```

**How to Display the Global Priority of a Process**

- Display the global priority of a process by using the `ps` command.
  ```
  $ ps -ecl
  ```

**Example 12–6** Displaying the Global Priority of a Process

The following example shows `ps -ecl` command output. The values in the PRI column show that the pageout process has the highest priority, while the `sh` process has the lowest priority.

```bash
$ ps -ecl
  F S UID PID PPID CLS PRI ADDR SZ WCHAN TTY TIME COMD
19 T 0 0 0 SYS 96 f00d05a8 0 ? 0:03 sched
 8 S 0 1 0 TS 50 ff0f4678 185 ff0f4848 ? 36:51 init
```
How to Designate a Process Priority (priocntl)

1 Become superuser or assume an equivalent role. Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in System Administration Guide: Security Services.

2 Start a process with a designated priority.

   # priocntl -e -c class -m user-limit -p pri command-name

   - e

   - c class Specifies the class within which to run the process. The valid classes are TS (timesharing), RT (real time), IA (interactive), FSS (fair share), and FX (fixed priority).

   - m user-limit When you use the - p option, specifies the maximum amount you can raise or lower your priority.

   - p pri command-name Lets you specify the relative priority in the RT class for a real-time thread. For a timesharing process, the - p option lets you specify the user-supplied priority, which ranges from -60 to +60.

3 Verify the process status.

   # ps -ecl | grep command-name

Example 12–7 Designating a Process Priority (priocntl)

The following example shows how to start the `find` command with the highest possible user-supplied priority.

   # priocntl -e -c TS -m 60 -p 60 find . -name core -print
   # ps -ecl | grep find
How to Change Scheduling Parameters of a Timesharing Process (priocntl)

1 Become superuser or assume an equivalent role.
   Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in System Administration Guide: Security Services.

2 Change the scheduling parameters of a running timesharing process.
   # priocntl -s -m user-limit [-p user-priority] -i idtype idlist
   -s Lets you set the upper limit on the user priority range and change the current priority.
   -m user-limit When you use the -p option, specifies the maximum amount you can raise or lower the priority.
   -p user-priority Allows you to designate a priority.
   -i xidtype xidlist Uses a combination of xidtype and xidlist to identify the process or processes. The xidtype specifies the type of ID, such as the process ID or the user ID. Use xidlist to identify a list of process IDs or user IDs.

3 Verify the process status.
   # ps -ecl | grep idlist

Example 12–8 Changing Scheduling Parameters of a Timesharing Process (priocntl)

The following example shows how to execute a command with a 500-millisecond time slice, a priority of 20 in the RT class, and a global priority of 120.

   # priocntl -e -c RT -m 500 -p 20 myprog
   # ps -ecl | grep myprog

How to Change the Class of a Process (priocntl)

1 (Optional) Become superuser or assume an equivalent role.

2 Change the class of a process.
   # priocntl -s -c class -i idtype idlist
   -s Lets you set the upper limit on the user priority range and change the current priority.
Managing Process Class Information

- `c class` Specifies the class, TS for time-sharing or RT for real-time, to which you are changing the process.

- `i idtype idlist` Uses a combination of `xidtype` and `xidlist` to identify the process or processes. The `xidtype` specifies the type of ID, such as the process ID or user ID. Use `xidlist` to identify a list of process IDs or user IDs.

**Note** - You must be superuser or working in a real-time shell to change a process from, or to, a real-time process. If, as superuser, you change a user process to the real-time class, the user cannot subsequently change the real-time scheduling parameters by using the `priocntl -s` command.

3 Verify the process status.

```
# ps -ecl | grep idlist
```

**Example 12–9** Changing the Class of a Process (`priocntl`)

The following example shows how to change all the processes that belong to user 15249 to real-time processes.

```
# priocntl -s -c RT -i uid 15249
# ps -ecl | grep 15249
```

### Changing the Priority of a Timesharing Process (`nice`)

The `nice` command is only supported for backward compatibility to previous Solaris releases. The `priocntl` command provides more flexibility in managing processes.

The priority of a process is determined by the policies of its scheduling class and by its `nice number`. Each timesharing process has a global priority. The global priority is calculated by adding the user-supplied priority, which can be influenced by the `nice` or `priocntl` commands, and the system-calculated priority.

The execution priority number of a process is assigned by the operating system. The priority number is determined by several factors, including the process’s scheduling class, how much CPU time it has used, and in the case of a timesharing process, its `nice` number.

Each timesharing process starts with a default `nice` number, which it inherits from its parent process. The `nice` number is shown in the `NI` column of the `ps` report.
A user can lower the priority of a process by increasing its user-supplied priority. However, only superuser can lower a nice number to increase the priority of a process. This restriction prevents users from increasing the priorities of their own processes, thereby monopolizing a greater share of the CPU.

The nice numbers range from 0 to +39, with 0 representing the highest priority. The default nice value for each timesharing process is 20. Two versions of the command are available: the standard version, /usr/bin/nice, and the C-shell built-in command.

### How to Change the Priority of a Process (nice)

Using this procedure, a user can lower the priority of a process. However, superuser can raise or lower the priority of a process.

#### Note

This section describes the syntax of the /usr/bin/nice command and not the C-shell built-in nice command. For information about the C-shell nice command, see the csh(1) man page.

1. **Determine whether you want to change the priority of a process, either as a user or as superuser.** Then, select one of the following:

   - As a user, follow the examples in Step 2 to lower the priority of a command.
   - As a superuser, follow the examples in Step 3 to raise or lower priorities of a command.

2. **As a user, lower the priority of a command by increasing the nice number.**

   The following nice command executes `command-name` with a lower priority by raising the nice number by 5 units.

   ```bash
   $ /usr/bin/nice -5 command-name
   ```

   In the preceding command, the minus sign designates that what follows is an option. This command could also be specified as follows:

   ```bash
   % /usr/bin/nice -n 5 command-name
   ```

   The following nice command lowers the priority of `command-name` by raising the nice number by the default increment of 10 units, but not beyond the maximum value of 39.

   ```bash
   % /usr/bin/nice command-name
   ```
As superuser or assuming an equivalent role, raise or lower the priority of a command by changing the nice number.

The following `nice` command raises the priority of `command-name` by lowering the nice number by 10 units, but not below the minimum value of 0.

```
# /usr/bin/nice --10 command-name
```

In the preceding command, the first minus sign designates that what follows is an option. The second minus sign indicates a negative number.

The following `nice` command lowers the priority of `command-name` by raising the nice number by 5 units, but not beyond the maximum value of 39.

```
# /usr/bin/nice -5 command-name
```

For more information, see the `nice(1)` man page.

**Troubleshooting Problems With System Processes**

Here are some tips on obvious problems you might encounter:

- Look for several identical jobs that are owned by the same user. This problem might occur because of a running script that starts a lot of background jobs without waiting for any of the jobs to finish.
- Look for a process that has accumulated a large amount of CPU time. You can identify this problem by checking the `TIME` field in the `ps` output. Possibly, the process is in an endless loop.
- Look for a process that is running with a priority that is too high. Use the `ps -c` command to check the `CLS` field, which displays the scheduling class of each process. A process executing as a real-time (RT) process can monopolize the CPU. Or, look for a timesharing (TS) process with a high `nice` number. A user with superuser privileges might have increased the priority of a process. The system administrator can lower the priority by using the `nice` command.
- Look for a runaway process. A runaway process progressively uses more and more CPU time. You can identify this problem by looking at the time when the process started (`STIME`) and by watching the cumulation of CPU time (`TIME`) for a while.
Monitoring System Performance (Tasks)

This chapter describes procedures for monitoring system performance by using the vmstat, iostat, df, and sar commands.

For information on the procedures that are associated with monitoring system performance, see the following:

- “Displaying System Performance Information (Task Map)” on page 177
- “Monitoring System Activities (Task Map)” on page 185

### Displaying System Performance Information (Task Map)

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display virtual memory Statistics.</td>
<td>Collect virtual memory statistics by using the vmstat command.</td>
<td>“How to Display Virtual Memory Statistics (vmstat)” on page 179</td>
</tr>
<tr>
<td>Display system event information.</td>
<td>Display system event information by using the vmstat command with the -s option.</td>
<td>“How to Display System Event Information (vmstat -s)” on page 180</td>
</tr>
<tr>
<td>Display swapping statistics.</td>
<td>Use the vmstat command with the -S option to display swapping statistics.</td>
<td>“How to Display Swapping Statistics (vmstat -S)” on page 180</td>
</tr>
<tr>
<td>Display interrupts per device.</td>
<td>Use the vmstat command with the -i option to show the number of interrupts per device.</td>
<td>“How to Display Interrupts Per Device (vmstat -i)” on page 181</td>
</tr>
<tr>
<td>Display disk utilization.</td>
<td>Use the iostat command to report disk input and output statistics.</td>
<td>“How to Display Disk Utilization Information (iostat)” on page 181</td>
</tr>
</tbody>
</table>
Display extended disk statistics. Use the `iostat` command with the `-xtc` option to display extended disk statistics.

Display disk space information. The `df -k` command displays disk space information in Kbytes.

---

### Displaying Virtual Memory Statistics (vmstat)

You can use the `vmstat` command to report virtual memory statistics and information about system events such as CPU load, paging, number of context switches, device interrupts, and system calls. The `vmstat` command can also display statistics on swapping, cache flushing, and interrupts.

The following table describes the fields in the `vmstat` command output.

**TABLE 13–1  Output From the vmstat Command**

<table>
<thead>
<tr>
<th>Category</th>
<th>Field Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>procs</td>
<td>r</td>
<td>The number of kernel threads in the dispatch queue</td>
</tr>
<tr>
<td></td>
<td>b</td>
<td>The number of blocked kernel threads that are waiting for resources</td>
</tr>
<tr>
<td></td>
<td>w</td>
<td>The number of swapped out LWP that are waiting for processing resources to finish</td>
</tr>
<tr>
<td>memory</td>
<td>swap</td>
<td>Available swap space</td>
</tr>
<tr>
<td></td>
<td>free</td>
<td>Size of the free list</td>
</tr>
<tr>
<td>page</td>
<td>re</td>
<td>Pages reclaimed</td>
</tr>
<tr>
<td></td>
<td>mf</td>
<td>Minor faults and major faults</td>
</tr>
<tr>
<td></td>
<td>pi</td>
<td>Kbytes paged in</td>
</tr>
<tr>
<td></td>
<td>po</td>
<td>Kbytes paged out</td>
</tr>
<tr>
<td></td>
<td>fr</td>
<td>Kbytes freed</td>
</tr>
<tr>
<td></td>
<td>de</td>
<td>Anticipated memory that is needed by recently swapped-in processes</td>
</tr>
</tbody>
</table>
### How to Display Virtual Memory Statistics (vmstat)

- Collect virtual memory statistics by using the `vmstat` command with a time interval in seconds.
  
  ```sh
  $ vmstat n
  ```
  
  where `n` is the interval in seconds between reports.

#### Example 13–1  
Displaying Virtual Memory Statistics

The following example shows the `vmstat` display of statistics that were gathered at five-second intervals:

```
$ vmstat 5
```

<table>
<thead>
<tr>
<th>Category</th>
<th>Field Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sr</td>
<td>· Pagesscannedbythepagedaemonnotcurrentlyinuse.If sr doesnotequalzero,thepagedaemonhasbeenrunning.</td>
<td></td>
</tr>
<tr>
<td>disk</td>
<td>· Reportsthenumberofdiskoperationspersecond,showingdataonuptofourdisks</td>
<td></td>
</tr>
<tr>
<td>faults</td>
<td>· Reportsthetrap/interruptratespersecond:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>in</td>
<td>Interruptspersecond</td>
</tr>
<tr>
<td></td>
<td>sy</td>
<td>Systemcallspersecond</td>
</tr>
<tr>
<td></td>
<td>cs</td>
<td>CPUcontextswitchrate</td>
</tr>
<tr>
<td>cpu</td>
<td>· ReportsonthenewofCPUtime:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>us</td>
<td>User time</td>
</tr>
<tr>
<td></td>
<td>sy</td>
<td>System time</td>
</tr>
<tr>
<td></td>
<td>id</td>
<td>Idle time</td>
</tr>
</tbody>
</table>

For a more detailed description of this command, see the `vmstat(1M)` man page.
How to Display System Event Information (vmstat -s)

- Run the `vmstat -s` command to show how many system events have taken place since the last time the system was booted.

```bash
$ vmstat -s
  0 swap ins
  0 swap outs
  0 pages swapped in
  0 pages swapped out
522586 total address trans. faults taken
17006 page ins
  25 page outs
23361 pages paged in
  28 pages paged out
45594 total reclaims
45592 reclaims from free list
  0 micro (hat) faults
522586 minor (as) faults
16189 major faults
98241 copy-on-write faults
137280 zero fill page faults
45052 pages examined by the clock daemon
  0 revolutions of the clock hand
  26 pages freed by the clock daemon
  2857 forks
  78 vforks
  1647 execs
34673885 cpu context switches
65943468 device interrupts
711250 traps
63957605 system calls
3523925 total name lookups (cache hits 99%)
  92590 user cpu
  65952 system cpu
16085832 idle cpu
  7450 wait cpu
```

How to Display Swapping Statistics (vmstat -S)

- Run `vmstat -S` to show swapping statistics.

```bash
$ vmstat -S
  kthr memory page disk faults cpu
  r  b  w  swap  free  si  so  pi  po  fr  sr  dd  f0  s1  --  in  sy  cs  us  sy  id
  0  0  0  862608  364792  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
```

The swapping statistics fields are described in the following list. For a description of the other fields, see Table 13–1.

- `si`: Average number of LWPs that are swapped in per second
- `so`: Number of whole processes that are swapped out
Note – The `vmstat` command truncates the output of `si` and `so` fields. Use the `sar` command to display a more accurate accounting of swap statistics.

▼ How to Display Interrupts Per Device (vmstat -i)

- Run the `vmstat -i` command to show the number of interrupts per device.

**Example 13–2**

Displaying Interrupts Per Device

The following example shows output from the `vmstat -i` command.

```bash
$ vmstat -i
interrupt total rate
----------------------
clock 52163269 100
esp0   2600077  4
zsc0   25341   0
zsc1   48917   0
cgsixc0 459   0
lec0   400882  0
fdc0    14   0
bppc0   0   0
audiocs0 0   0
----------------------
Total   55238959 105
```

Displaying Disk Utilization Information (iostat)

Use the `iostat` command to report statistics about disk input and output, and to produce measures of throughput, utilization, queue lengths, transaction rates, and service time. For a detailed description of this command, refer to the `iostat(1M)` man page.

▼ How to Display Disk Utilization Information (iostat)

- You can display disk utilization information by using the `iostat` command with a time interval in seconds.

```bash
$ iostat 5
```

```bash
tty  fd0  sd3  nfs1  nfs31 cpu
    tin  tout kps  tps  serv  kps  tps  serv  kps  tps  serv  kps  tps  serv  us  sy  wt  id
0  1  0  0  410  3  0  29  0  0  9  3  0  47  4  2  0  94
```
Displaying Disk Utilization Information (iostat)

The first line of output shows the statistics since the last time the system was booted. Each subsequent line shows the interval statistics. The default is to show statistics for the terminal (tty), disks (fd and sd), and CPU (cpu).

Example 13–3  Displaying Disk Utilization Information

The following example shows disk statistics that were gathered every five seconds.

```
iostat 5
```

<table>
<thead>
<tr>
<th>Device Type</th>
<th>Field Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminal</td>
<td>Device Type</td>
<td>Number of characters in the terminal input queue</td>
</tr>
<tr>
<td></td>
<td>tin</td>
<td>Number of characters in the terminal output queue</td>
</tr>
<tr>
<td>Disk</td>
<td>Device Type</td>
<td>Blocks per second</td>
</tr>
<tr>
<td></td>
<td>bps</td>
<td>Transactions per second</td>
</tr>
<tr>
<td></td>
<td>tps</td>
<td>Average service time, in milliseconds</td>
</tr>
<tr>
<td>CPU</td>
<td>Device Type</td>
<td>In user mode</td>
</tr>
<tr>
<td></td>
<td>us</td>
<td>In system mode</td>
</tr>
</tbody>
</table>

The following table describes the fields in the output of the `iostat n` command.
### How to Display Extended Disk Statistics (iostat -xtc)

- Run the `iostat -xtc` command to display extended disk statistics.

```
$ iostat -xtc
```

<table>
<thead>
<tr>
<th>device</th>
<th>r/s</th>
<th>w/s</th>
<th>kr/s</th>
<th>kw/s</th>
<th>wait</th>
<th>actv</th>
<th>svc_t</th>
<th>%w</th>
<th>%b</th>
<th>tty</th>
<th>cpu</th>
</tr>
</thead>
<tbody>
<tr>
<td>fd0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>sd0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.4</td>
<td>0.4</td>
<td>0.0</td>
<td>0.0</td>
<td>49.5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>sd6</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>nfs1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>nfs49</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>15.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>nfs53</td>
<td>0.0</td>
<td>0.0</td>
<td>0.4</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>24.5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>nfs54</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>6.3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>nfs55</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>4.9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

The `iostat -xtc` command displays a line of output for each disk. The output fields are described in the following list.

- **r/s**: Reads per second
- **w/s**: Writes per second
- **kr/s**: Kbytes read per second
- **kw/s**: Kbytes written per second
- **wait**: Average number of transactions that are waiting for service (queue length)
- **actv**: Average number of transactions that are actively being serviced
- **svc_t**: Average service time, in milliseconds
- **%w**: Percentage of time that the queue is not empty
- **%b**: Percentage of time that the disk is busy

### Displaying Disk Space Statistics (df)

Use the `df` command to show the amount of free disk space on each mounted disk. The usable disk space that is reported by `df` reflects only 90 percent of full capacity, as the reporting statistics allows for 10 percent above the total available space. This **head room** normally stays empty for better performance.
The percentage of disk space actually reported by the `df` command is used space divided by usable space.

If the file system exceeds 90 percent capacity, you could transfer files to a disk that is not as full by using the `cp` command. Alternately, you could transfer files to a tape by using the `tar` or `cpio` commands. Or, you could remove the files.

For a detailed description of this command, see the `df(1M)` man page.

### How to Display Disk Space Information (df -k)

- **Use the `df -k` command to display disk space information in Kbytes.**

  ```
  $ df -k
  Filesystem  kbytes  used  avail  capacity  Mounted on
  /dev/dsk/c0t3d0s0  192807  40231  133296  24%  /
  ```

  **Example 13–4**

  **Displaying File System Information**

  The following example shows the output from the `df -k` command.

  ```
  $ df -k
  Filesystem  kbytes  used  avail  capacity  Mounted on
  /dev/dsk/c0t0d0s0  254966  204319  25151  90%  /
  /devices  0  0  0  0%  /devices
  ctrfs  0  0  0  0%  /system/contract
  proc  0  0  0  0%  /proc
  mnttab  0  0  0  0%  /etc/mnttab
  swap  496808  376  496432  1%  /etc/svc/volatile
  objs  0  0  0  0%  /system/object
  /dev/dsk/c0t0d0s6  3325302  3073415  218634  94%  /usr
  fd  0  0  0  0%  /dev/fd
  swap  496472  40  496432  1%  /var/run
  swap  496472  40  496432  1%  /tmp
  /dev/dsk/c0t0d0s5  13702  1745  10587  15%  /opt
  /dev/dsk/c0t0d0s7  9450  1045  7460  13%  /export/home
  ```

  The following table describes the output of the `df -k` command.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>kbytes</td>
<td>Total size of usable space in the file system</td>
</tr>
<tr>
<td>used</td>
<td>Amount of space used</td>
</tr>
<tr>
<td>avail</td>
<td>Amount of space available for use</td>
</tr>
<tr>
<td>capacity</td>
<td>Amount of space used, as a percentage of the total capacity</td>
</tr>
</tbody>
</table>
## Monitoring System Activities (Task Map)

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check file access.</td>
<td>Display file access operation status by using the sar command with the -a option.</td>
<td>&quot;How to Check File Access (sar -a)&quot; on page 186</td>
</tr>
<tr>
<td>Check buffer activity.</td>
<td>Display buffer activity statistics by using the sar command with the -b option.</td>
<td>&quot;How to Check Buffer Activity (sar -b)&quot; on page 187</td>
</tr>
<tr>
<td>Check system call statistics.</td>
<td>Display system call statistics by using the sar command with the -c option.</td>
<td>&quot;How to Check System Call Statistics (sar -c)&quot; on page 189</td>
</tr>
<tr>
<td>Check disk activity.</td>
<td>Check disk activity by using the sar command with the -d option.</td>
<td>&quot;How to Check Disk Activity (sar -d)&quot; on page 190</td>
</tr>
<tr>
<td>Check page-out and memory.</td>
<td>Use the sar command with the -g option to display page-out memory freeing activities.</td>
<td>&quot;How to Check Page-Out and Memory (sar -g)&quot; on page 191</td>
</tr>
<tr>
<td>Check kernel memory allocation.</td>
<td>The kernel memory allocation (KMA) allows a kernel subsystem to allocate and free memory, as needed. Use the sar command with the -k option to check KMA.</td>
<td>&quot;How to Check Kernel Memory Allocation (sar -k)&quot; on page 193</td>
</tr>
<tr>
<td>Check interprocess communication.</td>
<td>Use the sar command with the -m option to report interprocess communication activities.</td>
<td>&quot;How to Check Interprocess Communication (sar -m)&quot; on page 194</td>
</tr>
<tr>
<td>Check page-in activity.</td>
<td>Use the sar command with the -p option to report page-in activity.</td>
<td>&quot;How to Check Page-In Activity (sar -p)&quot; on page 195</td>
</tr>
<tr>
<td>Check queue activity.</td>
<td>Use the sar command with the -q option to check the following:</td>
<td>&quot;How to Check Queue Activity (sar -q)&quot; on page 196</td>
</tr>
<tr>
<td></td>
<td>■ Average queue length while queue is occupied</td>
<td></td>
</tr>
<tr>
<td></td>
<td>■ Percentage of time that the queue is occupied</td>
<td></td>
</tr>
<tr>
<td>Check unused memory.</td>
<td>Use the sar command with the -r option to report the number of memory pages and swap file disk blocks that are currently used.</td>
<td>&quot;How to Check Unused Memory (sar -r)&quot; on page 197</td>
</tr>
<tr>
<td>Check CPU utilization.</td>
<td>Use the sar command with the -u option to display CPU utilization statistics.</td>
<td>&quot;How to Check CPU Utilization (sar -u)&quot; on page 198</td>
</tr>
</tbody>
</table>
Monitoring System Activities (sar)

Use the sar command to perform the following tasks:

- Organize and view data about system activity.
- Access system activity data on a special request basis.
- Generate automatic reports to measure and monitor system performance, as well as special request reports to pinpoint specific performance problems. For information on how to set up the sar command to run on your system, as well as a description of these tools, see "Collecting System Activity Data Automatically (sar)" on page 203.

For a detailed description of this command, see the sar(1) man page.

▼ How to Check File Access (sar -a)

- Display file access operation statistics with the sar -a command.

  $ sar -a

  SunOS balmyday 5.10 s10.51 sun4u 03/18/2004
The following list describes the field names and description of operating system routines that are reported by the sar -a command.

- **iget/s**: The number of requests made for inodes that were not in the directory name look-up cache (DNLC).
- **namei/s**: The number of file system path searches per second. If namei does not find a directory name in the DNLC, it calls iget to get the inode for either a file or directory. Hence, most igets are the result of DNLC misses.
- **dirbk/s**: The number of directory block reads issued per second.

The larger the reported values for these operating system routines, the more time the kernel is spending to access user files. The amount of time reflects how heavily programs and applications are using the file systems. The -a option is helpful for viewing how disk-dependent an application is.

### How to Check Buffer Activity (sar -b)

- **Display buffer activity statistics with the sar -b command.**

  The buffer is used to cache metadata. Metadata includes inodes, cylinder group blocks, and indirect blocks.

  ```
  $ sar -b
  00:00:00 bread/s lread/s %rcache bwrite/s lwrite/s %wcache pread/s pwrite/s
  01:00:00  0  0  100  0  0  55  0  0  0
  ```

**Example 13-5 Checking Buffer Activity (sar -b)**

The following example of sar -b command output shows that the %rcache and %wcache buffers are not causing any slowdowns. All the data is within acceptable limits.
The following table describes the buffer activities that are displayed by the `sar -b` option.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bread/s</td>
<td>Average number of reads per second that are submitted to the buffer cache from the disk</td>
</tr>
<tr>
<td>lread/s</td>
<td>Average number of logical reads per second from the buffer cache</td>
</tr>
<tr>
<td>%cache</td>
<td>Fraction of logical reads that are found in the buffer cache (100% minus the ratio of bread/s to lread/s)</td>
</tr>
<tr>
<td>bwrit/s</td>
<td>Average number of physical blocks (512 blocks) that are written from the buffer cache to disk, per second</td>
</tr>
<tr>
<td>lwrit/s</td>
<td>Average number of logical writes to the buffer cache, per second</td>
</tr>
<tr>
<td>%wcache</td>
<td>Fraction of logical writes that are found in the buffer cache (100% minus the ratio of bwrit/s to lwrit/s)</td>
</tr>
<tr>
<td>pread/s</td>
<td>Average number of physical reads, per second, that use character device interfaces</td>
</tr>
<tr>
<td>pwrit/s</td>
<td>Average number of physical write requests, per second, that use character device interfaces</td>
</tr>
</tbody>
</table>
The most important entries are the cache hit ratios \%rcache and \%wcache. These entries measure the effectiveness of system buffering. If \%rcache falls below 90 percent, or if \%wcache falls below 65 percent, it might be possible to improve performance by increasing the buffer space.

### How to Check System Call Statistics (sar -c)

- **Display system call statistics by using the sar -c command.**

  ```
  $ sar -c
  00:00:00 scall/s sread/s swrit/s fork/s exec/s rchar/s wchar/s
  01:00:00 38 2 2 0.00 0.00 149 120
  ```

#### Example 13–6 Checking System Call Statistics (sar -c)

The following example shows output from the **sar -c** command.

```
$ sar -c
SunOS balmyday 5.10 s10_51 sun4u 03/18/2004
  00:00:04 scall/s sread/s swrit/s fork/s exec/s rchar/s wchar/s
  01:00:00 89 14 9 0.01 0.00 2906 2394
  02:00:01 89 14 9 0.01 0.00 2905 2393
  03:00:00 89 14 9 0.01 0.00 2908 2393
  04:00:00 90 14 9 0.01 0.00 2912 2393
  05:00:00 89 14 9 0.01 0.00 2905 2393
  06:00:00 89 14 9 0.01 0.00 2905 2393
  07:00:00 89 14 9 0.01 0.00 2905 2393
  08:00:00 89 14 9 0.01 0.00 2906 2393
  08:20:00 90 14 9 0.01 0.01 2914 2395
  08:40:01 90 14 9 0.01 0.00 2914 2396
  09:00:00 90 14 9 0.01 0.01 2915 2396
  09:20:00 90 14 9 0.01 0.01 2915 2396
  09:40:00 880 207 156 0.08 0.08 26671 9290
  10:00:00 2020 530 322 0.14 0.13 57675 36393
  10:20:00 853 129 75 0.02 0.01 10500 8594
  10:40:00 2061 524 450 0.08 0.08 579217 567072
  11:00:00 1658 404 350 0.07 0.06 1152916 1144203
  Average 302 66 49 0.02 0.01 57842 55544
```

The following table describes the system call categories that are reported by the -c option. Typically, reads and writes account for about half of the total system calls. However, the percentage varies greatly with the activities that are being performed by the system.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>scall/s</td>
<td>The number of all types of system calls per second, which is generally about 30 per second on a system with 4 to 6 users.</td>
</tr>
<tr>
<td>Field Name</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>sread/s</td>
<td>The number of read system calls per second.</td>
</tr>
<tr>
<td>swrit/s</td>
<td>The number of write system calls per second.</td>
</tr>
<tr>
<td>fork/s</td>
<td>The number of fork system calls per second, which is about 0.5 per second on a system with 4 to 6 users. This number increases if shell scripts are running.</td>
</tr>
<tr>
<td>exec/s</td>
<td>The number of exec system calls per second. If exec/s divided by fork/s is greater than 3, look for inefficient PATH variables.</td>
</tr>
<tr>
<td>rchar/s</td>
<td>The number of characters (bytes) transferred by read system calls per second.</td>
</tr>
<tr>
<td>wchar/s</td>
<td>The number of characters (bytes) transferred by write system calls per second.</td>
</tr>
</tbody>
</table>

### How to Check Disk Activity (sar -d)

- Display disk activity statistics with the `sar -d` command.

```
$ sar -d
```

**Example 13–7** Checking Disk Activity

This abbreviated example illustrates the output from the `sar -d` command.

```
$ sar -d

SunOS balmyday 5.10 s10_51 sun4u 03/18/2004
12:36:32 device %busy avque r+w/s blks/s avwait avserv
```

<table>
<thead>
<tr>
<th>Time</th>
<th>Device</th>
<th>%Busy</th>
<th>AVque</th>
<th>RW/S</th>
<th>BLKS/S</th>
<th>AVWait</th>
<th>AVServ</th>
</tr>
</thead>
<tbody>
<tr>
<td>12:40:01</td>
<td>dad1</td>
<td>15</td>
<td>0.7</td>
<td>26</td>
<td>398</td>
<td>18.1</td>
<td>10.0</td>
</tr>
<tr>
<td></td>
<td>dad1,a</td>
<td>15</td>
<td>0.7</td>
<td>26</td>
<td>398</td>
<td>18.1</td>
<td>10.0</td>
</tr>
<tr>
<td></td>
<td>dad1,b</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>1</td>
<td>1.0</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>dad1,c</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>dad1,h</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td>fd0</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>nfs1</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>nfs2</td>
<td>1</td>
<td>0.0</td>
<td>1</td>
<td>12</td>
<td>0.0</td>
<td>13.2</td>
</tr>
<tr>
<td></td>
<td>nfs3</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>2</td>
<td>0.0</td>
<td>1.9</td>
</tr>
<tr>
<td></td>
<td>nfs4</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td>nfs5</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>57.1</td>
</tr>
<tr>
<td></td>
<td>nfs6</td>
<td>1</td>
<td>0.0</td>
<td>6</td>
<td>125</td>
<td>4.3</td>
<td>3.2</td>
</tr>
<tr>
<td></td>
<td>nfs7</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td>sd1</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>5.4</td>
</tr>
<tr>
<td></td>
<td>ohci0,bu</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>ohci0,ct</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>
The following table describes the disk device activities that are reported by the -d option.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>device</td>
<td>Name of the disk device that is being monitored.</td>
</tr>
<tr>
<td>%busy</td>
<td>Portion of time the device was busy servicing a transfer request.</td>
</tr>
<tr>
<td>avque</td>
<td>Average number of requests during the time the device was busy servicing a transfer request.</td>
</tr>
<tr>
<td>r+w/s</td>
<td>Number of read-and-write transfers to the device, per second.</td>
</tr>
<tr>
<td>blks/s</td>
<td>Number of 512-byte blocks that are transferred to the device, per second.</td>
</tr>
<tr>
<td>avwait</td>
<td>Average time, in milliseconds, that transfer requests wait idly in the queue. This time is measured only when the queue is occupied.</td>
</tr>
<tr>
<td>avserv</td>
<td>Average time, in milliseconds, for a transfer request to be completed by the device. For disks, this value includes seek times, rotational latency times, and data transfer times.</td>
</tr>
</tbody>
</table>

Note that queue lengths and wait times are measured when something is in the queue. If %busy is small, large queues and service times probably represent the periodic efforts by the system to ensure that altered blocks are promptly written to the disk.

**How to Check Page-Out and Memory (sar -g)**

- **Use the sar -g command to display page-out and memory freeing activities in averages.**

  ```
  $ sar -g
  00:00:00  pgout/s  ppgout/s  pgfree/s  pgscan/s  %ufs_ipf
  01:00:00  0.00  0.00  0.00  0.00  0.00
  ```

  The output displayed by the sar -g command is a good indicator of whether more memory might be needed. Use the ps -elf command to show the number of cycles that are used by the page daemon. A high number of cycles, combined with high values for the pgfree/s and pgscan/s fields, indicates a memory shortage.

  The sar -g command also shows whether inodes are being recycled too quickly and causing a loss of reusable pages.

  **Example 13–8 Checking Page-Out and Memory (sar -g)**

  The following example shows output from the sar -g command.
$ sar -g

SunOS balmyday 5.10 s10_51 sun4u 03/18/2004

00:00:00 pgout/s  ppgout/s  pgfree/s  pgscan/s  %ufs_ipf
01:00:00 0.00 0.00 0.00 0.00 0.00
02:00:00 0.01 0.01 0.01 0.00 0.00
03:00:00 0.00 0.00 0.00 0.00 0.00
04:00:00 0.00 0.00 0.00 0.00 0.00
05:00:00 0.00 0.00 0.00 0.00 0.00
06:00:00 0.00 0.00 0.00 0.00 0.00
07:00:00 0.00 0.00 0.00 0.00 0.00
08:00:00 0.00 0.00 0.00 0.00 0.00
08:20:01 0.00 0.00 0.00 0.00 0.00
08:40:00 0.00 0.00 0.00 0.00 0.00
09:00:00 0.00 0.00 0.00 0.00 0.00
09:20:01 0.05 0.52 1.62 10.16 0.00
09:40:01 0.03 0.44 1.47 4.77 0.00
10:00:02 0.13 2.00 4.38 12.28 0.00
10:20:03 0.37 4.68 12.26 33.80 0.00

Average 0.02 0.25 0.64 1.97 0.00

The following table describes the output from the -g option.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pgout/s</td>
<td>The number of page-out requests per second.</td>
</tr>
<tr>
<td>ppgout/s</td>
<td>The actual number of pages that are paged-out, per second. A single page-out request might involve paging-out multiple pages.</td>
</tr>
<tr>
<td>pgfree/s</td>
<td>The number of pages, per second, that are placed on the free list.</td>
</tr>
<tr>
<td>pgscan/s</td>
<td>The number of pages, per second, that are scanned by the page daemon. If this value is high, the page daemon is spending a lot of time checking for free memory. This situation implies that more memory might be needed.</td>
</tr>
<tr>
<td>%ufs_ipf</td>
<td>The percentage of ufs inodes taken off the free list by igrut that had reusable pages associated with them. These pages are flushed and cannot be reclaimed by processes. Thus, this field represents the percentage of igrut s with page flushes. A high value indicates that the free list of inodes is page-bound, and that the number of ufs inodes might need to be increased.</td>
</tr>
</tbody>
</table>

### Checking Kernel Memory Allocation

The KMA allows a kernel subsystem to allocate and free memory, as needed.
Rather than statically allocating the maximum amount of memory it is expected to require under peak load, the KMA divides requests for memory into three categories:

- Small (less than 256 bytes)
- Large (512 bytes to 4 Kbytes)
- Oversized (greater than 4 Kbytes)

The KMA keeps two pools of memory to satisfy small requests and large requests. The oversized requests are satisfied by allocating memory from the system page allocator.

If you are checking a system that is being used to write drivers or STREAMS that use KMA resources, then the `sar -k` command will likely prove useful. Otherwise, you will probably not need the information it provides. Any driver or module that uses KMA resources, but does not specifically return the resources before it exits, can create a memory leak. A memory leak causes the amount of memory that is allocated by KMA to increase over time. Thus, if the `alloc` fields of the `sar -k` command increase steadily over time, there might be a memory leak. Another indication of a memory leak is failed requests. If this problem occurs, a memory leak has probably caused KMA to be unable to reserve and allocate memory.

If it appears that a memory leak has occurred, you should check any drivers or STREAMS that might have requested memory from KMA and not returned it.

### How to Check Kernel Memory Allocation (sar -k)

- Use the `sar -k` command to report on the following activities of the Kernel Memory Allocator (KMA).

  ```
  $ sar -k
  00:00:00 sml_mem alloc fail lg_mem alloc fail ovsz_alloc fail
  01:00:00 2523136 1866512 0 18939904 14762364 0 360448 0
  02:00:02 2523136 1861724 0 18939904 14778748 0 360448 0
  ```

#### Example 13–9  Checking Kernel Memory Allocation (sar -k)

The following is an abbreviated example of `sar -k` output.

```
$ sar -k
SunOS balmyday 5.10 s10_51 sun4u 03/18/2004
 00:00:04 sml_mem alloc fail lg_mem alloc fail ovsz_alloc fail
01:00:00 6119744 4852865 0 60243968 54334808 156 9666560 0
02:00:01 6119744 4853057 0 60243968 54336088 156 9666560 0
03:00:00 6119744 4853297 0 60243968 54335760 156 9666560 0
04:00:00 6119744 4857673 0 60252160 54375280 156 9666560 0
05:00:00 6119744 4858097 0 60252160 54376240 156 9666560 0
06:00:00 6119744 4858289 0 60252160 54375608 156 9666560 0
07:00:00 6119744 4858793 0 60252160 54442424 156 9666560 0
```
The following table describes the output from the `-k` option.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sml_mem</td>
<td>The amount of memory, in bytes, that the KMA has available in the small memory request pool. In this pool, here a small request is less than 256 bytes.</td>
</tr>
<tr>
<td>alloc</td>
<td>The amount of memory, in bytes, that the KMA has allocated from its small memory request pool to small memory requests.</td>
</tr>
<tr>
<td>fail</td>
<td>The number of requests for small amounts of memory that failed.</td>
</tr>
<tr>
<td>lg_mem</td>
<td>The amount of memory, in bytes, that the KMA has available in the large memory request pool. In this pool, a large request is from 512 bytes to 4 Kbytes.</td>
</tr>
<tr>
<td>alloc</td>
<td>The amount of memory, in bytes, that the KMA has allocated from its large memory request pool to large memory requests.</td>
</tr>
<tr>
<td>fail</td>
<td>The number of failed requests for large amounts of memory.</td>
</tr>
<tr>
<td>ovsz_alloc</td>
<td>The amount of memory that is allocated for oversized requests, which are requests that are greater than 4 Kbytes. These requests are satisfied by the page allocator. Thus, there is no pool.</td>
</tr>
<tr>
<td>fail</td>
<td>The number of failed requests for oversized amounts of memory.</td>
</tr>
</tbody>
</table>

##### How to Check Interprocess Communication (sar -m)

- Use the `sar -m` command to report interprocess communication activities.

```bash
$ sar -m
00:00:00 msg/s sema/s
01:00:00 0.00 0.00
```

These figures are usually zero (0.00), unless you are running applications that use messages or semaphores.
The following list describes the output from the `-m` option.

- **msg/s**  The number of message operations (sends and receives) per second
- **sema/s** The number of semaphore operations per second

### Example 13–10  Checking Interprocess Communication (sar -m)

The following abbreviated example shows output from the `sar -m` command.

```
$ sar -m
SunOS balmyday 5.10 s10_51 sun4u 03/18/2004
00:00:00  msg/s  sema/s
  01:00:00  0.00  0.00
  02:00:02  0.00  0.00
  03:00:00  0.00  0.00
  04:00:00  0.00  0.00
  05:00:01  0.00  0.00
  06:00:00  0.00  0.00
Average    0.00  0.00
```

### How to Check Page-In Activity (sar -p)

- Use the `sar -p` command to report page-in activity, which includes protection and translation faults.

```
$ sar -p
SunOS balmyday 5.10 s10_51 sun4u 03/18/2004
00:00:00  atch/s pgin/s ppgin/s pflt/s vflt/s slock/s
01:00:00  0.07  0.00  0.00  0.21  2.02  0.00
02:00:01  0.08  0.00  0.00  0.78  2.02  0.00
03:00:00  0.09  0.00  0.00  0.81  2.07  0.00
04:00:00  0.11  0.01  0.01  0.88  2.18  0.00
05:00:00  0.08  0.00  0.00  0.78  2.02  0.00
06:00:00  0.08  0.00  0.00  0.78  2.02  0.00
07:00:00  0.08  0.00  0.00  0.78  2.02  0.00
08:00:00  0.09  0.00  0.00  0.78  2.02  0.00
08:20:00  0.11  0.00  0.00  0.87  2.24  0.00
```

### Example 13–11  Checking Page-In Activity (sar -p)

The following example shows output from the `sar -p` command.

```
$ sar -p
SunOS balmyday 5.10 s10_51 sun4u 03/18/2004
00:00:04  atch/s pgin/s ppgin/s pflt/s vflt/s slock/s
01:00:00  0.09  0.00  0.00  0.78  2.02  0.00
02:00:01  0.08  0.00  0.00  0.78  2.02  0.00
03:00:00  0.09  0.00  0.00  0.81  2.07  0.00
04:00:00  0.11  0.01  0.01  0.88  2.18  0.00
05:00:00  0.08  0.00  0.00  0.78  2.02  0.00
06:00:00  0.08  0.00  0.00  0.78  2.02  0.00
07:00:00  0.08  0.00  0.00  0.78  2.02  0.00
08:00:00  0.09  0.00  0.00  0.78  2.02  0.00
08:20:00  0.11  0.00  0.00  0.87  2.24  0.00
```
The following table describes the reported statistics from the -p option.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>atch/s</td>
<td>The number of page faults, per second, that are satisfied by reclaiming a page currently in memory (attaches per second). Instances include reclaiming an invalid page from the free list and sharing a page of text that is currently being used by another process. An example is two or more processes that are accessing the same program text.</td>
</tr>
<tr>
<td>pgin/s</td>
<td>The number of times, per second, that file systems receive page-in requests.</td>
</tr>
<tr>
<td>ppgin/s</td>
<td>The number of pages paged in, per second. A single page-in request, such as a soft-lock request (see slock/s) or a large block size, might involve paging-in multiple pages.</td>
</tr>
<tr>
<td>pflt/s</td>
<td>The number of page faults from protection errors. Instances of protection faults indicate illegal access to a page and &quot;copy-on-writes.&quot; Generally, this number consists primarily of &quot;copy-on-writes.&quot;</td>
</tr>
<tr>
<td>vflt/s</td>
<td>The number of address translation page faults, per second. These faults are known as validity faults. Validity faults occur when a valid process table entry does not exist for a given virtual address.</td>
</tr>
<tr>
<td>slock/s</td>
<td>The number of faults, per second, caused by software lock requests that require physical I/O. An example of the occurrence of a soft-lock request is the transfer of data from a disk to memory. The system locks the page that is to receive the data so that the page cannot be claimed and used by another process.</td>
</tr>
</tbody>
</table>

**How to Check Queue Activity (sar -q)**

- Use the sar -q command to report the following information:
  - The Average queue length while the queue is occupied.
The percentage of time that the queue is occupied.

```bash
$ sar -q
00:00:00 runq-sz %runocc swpq-sz %swpocc
```

The following list describes the output from the `-q` option.

- **runq-sz**: The number of kernel threads in memory that are waiting for a CPU to run. Typically, this value should be less than 2. Consistently higher values mean that the system might be CPU-bound.
- **%runocc**: The percentage of time that the dispatch queues are occupied.
- **swpq-sz**: Average number of swapped out processes.
- **%swpocc**: Percentage of time during which the processes are swapped out.

### Example 13–12 Checking Queue Activity

The following example shows output from the `sar -q` command. If the `%runocc` value is high (greater than 90 percent) and the `runq-sz` value is greater than 2, the CPU is heavily loaded and response is degraded. In this case, additional CPU capacity might be required to obtain acceptable system response.

```bash
# sar -q
SunOS system2 5.10 Generic_142909-13 sun4u 06/28/2010
00:00:00 runq-sz %runocc swpq-sz %swpocc
01:00:00 1.0 7 0.0 0
02:00:00 1.0 7 0.0 0
03:00:00 1.0 7 0.0 0
04:00:00 1.0 7 0.0 0
05:00:00 1.0 6 0.0 0
06:00:00 1.0 7 0.0 0
Average 1.0 7 0.0 0
```

▼ How to Check Unused Memory (sar -r)

- Use the `sar -r` command to report the number of memory pages and swap-file disk blocks that are currently unused.

```bash
$ sar -r
00:00:00 freemem freeswap
01:00:00 2135 401922
```

The following list describes the output from the `-r` option:

- **freemem**: The average number of memory pages that are available to user processes over the intervals sampled by the command. Page size is machine-dependent.
freeswap  The number of 512-byte disk blocks that are available for page swapping.

**Example 13-13**  Checking Unused Memory (sar -r)

The following example shows output from the sar -r command.

```
$ sar -r
SunOS balmyday 5.10 s10_51 sun4u 03/18/2004
00:00:04 freemem freeswap
01:00:00 44717 1715062
02:00:01 44733 1715496
03:00:00 44715 1714746
04:00:00 44751 1715483
05:00:00 44784 1714743
06:00:00 44794 1715186
07:00:00 44793 1715159
08:00:00 44786 1714914
08:20:00 44805 1715576
08:40:01 44797 1715347
09:00:00 44761 1713948
09:20:00 44802 1715478
09:40:00 41770 1682239
10:00:00 35401 1610833
10:20:00 34295 1599141
10:40:00 33943 1598425
11:00:00 30500 1561959
Average 43312 1699242
```

**▼ How to Check CPU Utilization (sar -u)**

- **Use the sar -u command to display CPU utilization statistics.**

```
$ sar -u
00:00:00 %usr %sys %wio %idle
01:00:00 0 0 0 100
```

The sar command without any options is equivalent to the sar -u command. At any given moment, the processor is either busy or idle. When busy, the processor is in either user mode or system mode. When idle, the processor is either waiting for I/O completion or “sitting still” with no work to do.

The following list describes output from the -u option:

- `%usr`  Lists the percentage of time that the processor is in user mode.
- `%sys`  Lists the percentage of time that the processor is in system mode.
- `%wio`  Lists the percentage of time that the processor is idle and waiting for I/O completion.
%idle  Lists the percentage of time that the processor is idle and not waiting for I/O. A high %io value generally means that a disk slowdown has occurred.

Example 13–14  Checking CPU Utilization (sar -u)

The following example shows output from the sar -u command.

```bash
$ sar -u
SunOS balmyday 5.10 s10_51 sun4u 03/18/2004
00:00:00 %usr %sys %wio %idle
01:00:00 0 0 0 100
02:00:01 0 0 0 100
03:00:00 0 0 0 100
04:00:00 0 0 0 100
05:00:00 0 0 0 100
06:00:00 0 0 0 100
07:00:00 0 0 0 100
08:00:00 0 0 0 100
09:00:00 0 0 0 99
09:10:00 0 0 0 99
10:00:00 4 1 0 95
10:10:00 4 2 0 94
10:20:00 1 1 0 98
10:40:00 18 3 0 79
11:00:00 25 3 0 72
Average 2 0 0 98
```

Example 13–15  Checking System Table Status (sar -v)

The following abbreviated example shows output from the sar -v command. This example shows that all tables are large enough to have no overflows. These tables are all dynamically allocated based on the amount of physical memory.

```bash
$ sar -v
199
```
Output from the -v option is described in the following table.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>proc-sz</td>
<td>The number of process entries (proc structures) that are currently being used, or allocated, in the kernel.</td>
</tr>
<tr>
<td>inod-sz</td>
<td>The total number of inodes in memory compared to the maximum number of inodes that are allocated in the kernel. This number is not a strict high watermark. The number can overflow.</td>
</tr>
<tr>
<td>file-sz</td>
<td>The size of the open system file table. The sz is given as 0, because space is allocated dynamically for the file table.</td>
</tr>
<tr>
<td>ov</td>
<td>The overflows that occur between sampling points for each table.</td>
</tr>
<tr>
<td>lock-sz</td>
<td>The number of shared memory record table entries that are currently being used, or allocated, in the kernel. The sz is given as 0 because space is allocated dynamically for the shared memory record table.</td>
</tr>
</tbody>
</table>

### How to Check Swapping Activity (sar -w)

- Use the sar -w command to report swapping and switching activity.

```bash
sar -w
00:00:00 swpin/s bswin/s swpot/s bswot/s pswch/s
01:00:00 0.00 0.0 0.00 0.0 22
```
The following list describes target values and observations related to the `sar -w` command output.

- **swpin/s**: The number of LWP transfers into memory per second.
- **bswin/s**: The number of blocks transferred for swap-ins per second. /*
  (float)PGTOBLK(xx->cvmi.pgswapin) / sec_diff */.
- **swpot/s**: The average number of processes that are swapped out of memory per second. If the number is greater than 1, you might need to increase memory.
- **bswot/s**: The number of blocks that are transferred for swap-outs per second.
- **pswch/s**: The number of kernel thread switches, per second.

**Note** – All process swap-ins include process initialization.

### Example 13–16
**Checking Swap Activity (sar -w)**

The following example shows output from the `sar -w` command.

```
$ sar -w

SunOS balmyday 5.10 s10_51 sun4u 03/18/2004
00:00:04 swpin/s bswin/s swpot/s bswot/s pswch/s
01:00:00 0.00 0.0 0.00 0.0 132
02:00:01 0.00 0.0 0.00 0.0 133
03:00:00 0.00 0.0 0.00 0.0 133
04:00:00 0.00 0.0 0.00 0.0 134
05:00:00 0.00 0.0 0.00 0.0 133
06:00:00 0.00 0.0 0.00 0.0 133
07:00:00 0.00 0.0 0.00 0.0 132
08:00:00 0.00 0.0 0.00 0.0 131
08:20:00 0.00 0.0 0.00 0.0 133
08:40:01 0.00 0.0 0.00 0.0 132
09:00:00 0.00 0.0 0.00 0.0 132
09:20:00 0.00 0.0 0.00 0.0 132
09:40:00 0.00 0.0 0.00 0.0 335
10:00:00 0.00 0.0 0.00 0.0 601
10:20:00 0.00 0.0 0.00 0.0 353
10:40:00 0.00 0.0 0.00 0.0 747
11:00:00 0.00 0.0 0.00 0.0 804
Average 0.00 0.0 0.00 0.0 198
```
How to Check Terminal Activity (sar -y)

Use the `sar -y` command to monitor terminal device activities.

```
$ sar -y
00:00:00 rawch/s canch/s outch/s rcvin/s xmtin/s mdmin/s
01:00:00 0 0 0 0 0 0
```

If you have a lot of terminal I/O, you can use this report to determine if any bad lines exist. The activities recorded are defined in the following list:

- **rawch/s**: Input characters (raw queue) per second.
- **canch/s**: Input characters that are processed by canon (canonical queue) per second.
- **outch/s**: Output characters (output queue) per second.
- **rcvin/s**: Receiver hardware interrupts per second.
- **xmtin/s**: Transmitter hardware interrupts per second.
- **mdmin/s**: Modem interrupts per second.

The number of modem interrupts per second (mdmin/s) should be close to zero. The receive and transmit interrupts per second (xmtin/s and rcvin/s) should be less than or equal to the number of incoming or outgoing characters, respectively. If not, check for bad lines.

Example 13–17 Checking Terminal Activity (sar -y)

The following example shows output from the `sar -y` command.

```
$ sar -y
SunOS balmyday 5.10 s10_51 sun4u 03/18/2004
00:00:04 rawch/s canch/s outch/s rcvin/s xmtin/s mdmin/s
02:00:01 0 0 0 0 0 0
03:00:00 0 0 0 0 0 0
04:00:00 0 0 0 0 0 0
05:00:00 0 0 0 0 0 0
06:00:00 0 0 0 0 0 0
07:00:00 0 0 0 0 0 0
08:00:00 0 0 0 0 0 0
08:20:00 0 0 0 0 0 0
08:40:01 0 0 0 0 0 0
09:00:00 0 0 0 0 0 0
09:20:00 0 0 0 0 0 0
09:40:00 0 0 1 0 0 0
10:00:00 0 0 37 0 0 0
10:20:00 0 0 0 0 0 0
10:40:00 0 0 3 0 0 0
11:00:00 0 0 3 0 0 0
```
How to Check Overall System Performance (sar -A)

- Use the `sar -A` command to display statistics from all options to provide a view of overall system performance.
  This command provides a more global perspective. If data from more than a single time segment is shown, the report includes averages.

Collecting System Activity Data Automatically (sar)

Three commands are involved in the automatic collection of system activity data: `sadc`, `sa1`, and `sa2`.

The `sadc` data collection utility periodically collects data on system activity and saves the data in a file in binary format, one file for each 24-hour period. You can set up the `sadc` command to run periodically (usually once each hour), and whenever the system boots to multiuser mode. The data files are placed in the `/var/adm/sa` directory. Each file is named `sadd`, where `dd` is the current date. The format of the command is as follows:

```
/usr/lib/sa/sadc [t n] [ofile]
```

The command samples `n` times with an interval of `t` seconds, which should be greater than five seconds between samples. This command then writes to the binary `ofile` file, or to standard output.

Running the `sadc` Command When Booting

The `sadc` command should be run at system boot time to record the statistics from when the counters are reset to zero. To make sure that the `sadc` command is run at boot time, the `svcadm` command writes a record to the daily data file.

The command entry has the following format:

```
/usr/bin/su sys -c "/usr/lib/sa/sadc /var/adm/sa/sa'date +%d"
```
Running the sadc Command Periodically With the sa1 Script

To generate periodic records, you need to run the sadc command regularly. The simplest way to do so is to uncomment the following lines in the `/var/spool/cron/crontabs/sys` file:

```
# 0 * * 0-6 /usr/lib/sa/sa1
# 20,40 8-17 * * 1-5 /usr/lib/sa/sa1
# 5 18 * * 1-5 /usr/lib/sa/sa2 -s 8:00 -e 18:01 -i 1200 -A
```

The `sys crontab` entries do the following:

- The first two crontab entries cause a record to be written to the `/var/adm/sa/sadd` file every 20 minutes from 8 a.m. to 5 p.m., Monday through Friday, and every hour on the hour otherwise.
- The third entry writes a record to the `/var/adm/sa/sar` file hourly, Monday through Friday, and includes all `sar` options.

You can change these defaults to meet your needs.

Producing Reports With the sa2 Shell Script

Another shell script, sa2, produces reports rather than binary data files. The sa2 command invokes the `sar` command and writes the ASCII output to a report file.

Setting Up Automatic Data Collection (sar)

The `sar` command can be used either to gather system activity data itself or to report what has been collected in the daily activity files that are created by the sadc command.

The `sar` command has the following formats:

```
sar [-aAbcdgkmpqruwvy] [-o file] t [n]
sar [-aAbcdgkmpqruwvy] [-s time] [-e time] [-i sec] [-f file]
```

The following `sar` command samples cumulative activity counters in the operating system every `t` seconds, `n` times. The `t` should be five seconds or greater. Otherwise, the command itself might affect the sample. You must specify a time interval in which to take the samples. Otherwise, the command operates according to the second format. The default value of `n` is 1. The following example takes two samples separated by 10 seconds. If the `-o` option were specified, samples are saved in binary format.
Other important information about the `sar` command includes the following:

- With no sampling interval or number of samples specified, the `sar` command extracts data from a previously recorded file. This file is either the file specified by the `-f` option or, by default, the standard daily activity file, `/var/adm/sa/sadd`, for the most recent day.
- The `-s` and `-e` options define the starting time and the ending time for the report. Starting and ending times are of the form `hh[:mm[:ss]]`, where `hh`, `mm`, and `ss` represent hours, minutes, and seconds.
- The `-i` option specifies, in seconds, the intervals between record selection. If the `-i` option is not included, all intervals that are found in the daily activity file are reported.

The following table lists the `sar` options and their actions.

**TABLE 13-2 Options for the sar Command**

<table>
<thead>
<tr>
<th>Option</th>
<th>Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-a</code></td>
<td>Checks file access operations</td>
</tr>
<tr>
<td><code>-b</code></td>
<td>Checks buffer activity</td>
</tr>
<tr>
<td><code>-c</code></td>
<td>Checks system calls</td>
</tr>
<tr>
<td><code>-d</code></td>
<td>Checks activity for each block device</td>
</tr>
<tr>
<td><code>-g</code></td>
<td>Checks page-out and memory freeing</td>
</tr>
<tr>
<td><code>-k</code></td>
<td>Checks kernel memory allocation</td>
</tr>
<tr>
<td><code>-m</code></td>
<td>Checks interprocess communication</td>
</tr>
<tr>
<td><code>-n</code></td>
<td>Checks system table status</td>
</tr>
<tr>
<td><code>-p</code></td>
<td>Checks swap and dispatch activity</td>
</tr>
<tr>
<td><code>-q</code></td>
<td>Checks queue activity</td>
</tr>
<tr>
<td><code>-r</code></td>
<td>Checks unused memory</td>
</tr>
<tr>
<td><code>-u</code></td>
<td>Checks CPU utilization</td>
</tr>
<tr>
<td><code>-w</code></td>
<td>Checks swapping and switching volume</td>
</tr>
<tr>
<td><code>-y</code></td>
<td>Checks terminal activity</td>
</tr>
<tr>
<td><code>-A</code></td>
<td>Reports overall system performance, which is the same as entering all options.</td>
</tr>
</tbody>
</table>

Using no option is equivalent to calling the `sar` command with the `-u` option.
How to Set Up Automatic Data Collection

1. **Become superuser or assume an equivalent role.**
   Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in *System Administration Guide: Security Services*.

2. **Run the svcadm enable system/sar:default command.**
   This version of the sadc command writes a special record that marks the time when the counters are reset to zero (boot time).

3. **Edit the /var/spool/cron/crontabs/sys crontab file.**
   ```
   # crontab -e sys
   Uncomment the following lines:
   0 * * * * /usr/lib/sa/sa1
   20,40 8-17 * * 1-5 /usr/lib/sa/sa1
   5 18 * * 1-5 /usr/lib/sa/sa2 -s 8:00 -e 18:01 -i 1200 -A
   For more information, see the crontab(1) man page.
   ```

4. **Note** – Do not edit a crontab file directly. Instead, use the `crontab -e` command to make changes to an existing crontab file.
Troubleshooting Software Problems (Overview)

This chapter provides a general overview of troubleshooting software problems, including information on troubleshooting system crashes and viewing system messages.

This is a list of information in this chapter.

- “What's New in Troubleshooting?” on page 207
- “Where to Find Software Troubleshooting Tasks” on page 209
- “Troubleshooting a System Crash” on page 210
- “Troubleshooting a System Crash Checklist” on page 211

What's New in Troubleshooting?

This section describes new or changed troubleshooting information in this release.

For information on new or changed troubleshooting features in the Oracle Solaris 10 release, see the following:

- “Dynamic Tracing Facility” on page 208
- “kmdb Replaces kadb as Standard Solaris Kernel Debugger” on page 208

For a complete listing of new features and a description of Oracle Solaris releases, see Oracle Solaris 10 8/11 What’s New.

Common Agent Container Problems

Solaris 10 6/06: The common agent container is a stand-alone Java program that is included in the Oracle Solaris OS. This program implements a container for Java management applications. The common agent container provides a management infrastructure that is designed for Java Management Extensions (JMX) and Java Dynamic Management Kit (Java DMK) based functionality. The software is installed by the SUNWcacaor t package and resides in the /usr/lib/cacao directory.
Typically, the container is not visible. However, there are two instances when you might need to interact with the container daemon:

- It is possible that another application might attempt to use a network port that is reserved for the common agent container.
- In the event that a certificate store is compromised, you might have to regenerate the common agent container certificate keys.

For information about how to troubleshoot these problems, see “Troubleshooting Common Agent Container Problems in the Oracle Solaris OS” on page 247.

**x86: SMF Boot Archive Service Might Fail During System Reboot**

**Solaris 10 1/06:** If a system crash occurs in the GRUB based boot environment, it is possible that the SMF service svc:/system/boot-archive:default might fail when the system is rebooted. If this problem occurs, reboot the system and select the failsafe archive in the GRUB boot menu. Follow the prompts to rebuild the boot archive. After the archive is rebuilt, reboot the system. To continue the boot process, you can use the svcadm command to clear the svc:/system/boot-archive:default service. For more information on GRUB based booting, see “Booting an x86 Based System by Using GRUB (Task Map)” in System Administration Guide: Basic Administration.

**Dynamic Tracing Facility**

The Oracle Solaris Dynamic Tracing (DTrace) facility is a comprehensive dynamic tracking facility that gives you a new level of observerability into the Solaris kernel and user processes. DTrace helps you understand your system by permitting you to dynamically instrument the OS kernel and user processes to record data that you specify at locations of interest, called, *probes*. Each probe can be associated with custom programs that are written in the new D programming language. All of DTrace's instrumentation is entirely dynamic and available for use on your production system. For more information, see the *dtrace*(1M) man page and the Solaris Dynamic Tracing Guide.

**kmdb Replaces kadb as Standard Solaris Kernel Debugger**

*kmdb* has replaced *kadb* as the standard “in situ” Solaris kernel debugger.
kmdb brings all the power and flexibility of mdb to live kernel debugging. kmdb supports the following:

- Debugger commands (dcmds)
- Debugger modules (dmods)
- Access to kernel type data
- Kernel execution control
- Inspection
- Modification

For more information, see the kmdb(1) man page. For step-by-step instructions on using kmdb to troubleshoot a system, see “How to Boot the System With the Kernel Debugger (kmdb)” in System Administration Guide: Basic Administration and “How to Boot a System With the Kernel Debugger in the GRUB Boot Environment (kmdb)” in System Administration Guide: Basic Administration.

### Where to Find Software Troubleshooting Tasks

<table>
<thead>
<tr>
<th>Troubleshooting Task</th>
<th>For More Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manage system crash information</td>
<td>Chapter 17, “Managing System Crash Information (Tasks)”</td>
</tr>
<tr>
<td>Manage core files</td>
<td>Chapter 16, “Managing Core Files (Tasks)”</td>
</tr>
<tr>
<td>Troubleshoot software problems such as reboot failures and backup problems</td>
<td>Chapter 18, “Troubleshooting Miscellaneous Software Problems (Tasks)”</td>
</tr>
<tr>
<td>Troubleshoot file access problems</td>
<td>Chapter 19, “Troubleshooting File Access Problems (Tasks)”</td>
</tr>
<tr>
<td>Troubleshoot printing problems</td>
<td>Chapter 13, “Troubleshooting Printing Problems in the Oracle Solaris OS (Tasks),” in System Administration Guide: Printing</td>
</tr>
<tr>
<td>Resolve UFS file system inconsistencies</td>
<td>Chapter 20, “Resolving UFS File System Inconsistencies (Tasks)”</td>
</tr>
<tr>
<td>Troubleshoot software package problems</td>
<td>Chapter 21, “Troubleshooting Software Package Problems (Tasks)”</td>
</tr>
</tbody>
</table>
Troubleshooting a System Crash

If a system running the Oracle Solaris OS crashes, provide your service provider with as much information as possible, including crash dump files.

What to Do If the System Crashes

The most important things to remember are as follows:

1. Write down the system console messages.

   If a system crashes, making it run again might seem like your most pressing concern. However, before you reboot the system, examine the console screen for messages. These messages can provide some insight about what caused the crash. Even if the system reboots automatically and the console messages have disappeared from the screen, you might be able to check these messages by viewing the system error log, the /var/adm/messages file. For more information about viewing system error log files, see “How to View System Messages” on page 214.

   If you have frequent crashes and can’t determine their cause, gather all the information you can from the system console or the /var/adm/messages files, and have it ready for a customer service representative to examine. For a complete list of troubleshooting information to gather for your service provider, see “Troubleshooting a System Crash” on page 210.

   If the system fails to reboot successfully after a system crash, see Chapter 18, “Troubleshooting Miscellaneous Software Problems (Tasks).”

2. Synchronize the disks and reboot.

   ok sync

   If the system fails to reboot successfully after a system crash, see Chapter 18, “Troubleshooting Miscellaneous Software Problems (Tasks).”

Check to see if a system crash dump was generated after the system crash. System crash dumps are saved by default. For information about crash dumps, see Chapter 17, “Managing System Crash Information (Tasks).”

Gathering Troubleshooting Data

Answer the following questions to help isolate the system problem. Use “Troubleshooting a System Crash Checklist” on page 211 for gathering troubleshooting data for a crashed system.
TABLE 14-1  Identifying System Crash Data

<table>
<thead>
<tr>
<th>Question</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Can you reproduce the problem?</td>
<td>This is important because a reproducible test case is often essential for debugging really hard problems. By reproducing the problem, the service provider can build kernels with special instrumentation to trigger, diagnose, and fix the bug.</td>
</tr>
<tr>
<td>Are you using any third-party drivers?</td>
<td>Drivers run in the same address space as the kernel, with all the same privileges, so they can cause system crashes if they have bugs.</td>
</tr>
<tr>
<td>What was the system doing just before it crashed?</td>
<td>If the system was doing anything unusual like running a new stress test or experiencing higher-than-usual load, that might have led to the crash.</td>
</tr>
<tr>
<td>Were there any unusual console messages right before the crash?</td>
<td>Sometimes the system will show signs of distress before it actually crashes; this information is often useful.</td>
</tr>
<tr>
<td>Did you add any tuning parameters to the /etc/system file?</td>
<td>Sometimes tuning parameters, such as increasing shared memory segments so that the system tries to allocate more than it has, can cause the system to crash.</td>
</tr>
<tr>
<td>Did the problem start recently?</td>
<td>If so, did the onset of problems coincide with any changes to the system, for example, new drivers, new software, different workload, CPU upgrade, or a memory upgrade.</td>
</tr>
</tbody>
</table>

**Troubleshooting a System Crash Checklist**

Use this checklist when gathering system data for a crashed system.

<table>
<thead>
<tr>
<th>Item</th>
<th>Your Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is a system crash dump available?</td>
<td></td>
</tr>
<tr>
<td>Identify the operating system release and appropriate software application release levels.</td>
<td></td>
</tr>
<tr>
<td>Identify system hardware.</td>
<td></td>
</tr>
<tr>
<td>Include prtdiag output for sun4u systems. Include Explorer output for other systems.</td>
<td></td>
</tr>
<tr>
<td>Are patches installed? If so, include showrev -p output.</td>
<td></td>
</tr>
<tr>
<td>Is the problem reproducible?</td>
<td></td>
</tr>
<tr>
<td>Does the system have any third-party drivers?</td>
<td></td>
</tr>
</tbody>
</table>
## Troubleshooting a System Crash Checklist

<table>
<thead>
<tr>
<th>Item</th>
<th>Your Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>What was the system doing before it crashed?</td>
<td></td>
</tr>
<tr>
<td>Were there any unusual console messages right before the system crashed?</td>
<td></td>
</tr>
<tr>
<td>Did you add any parameters to the <code>/etc/system</code> file?</td>
<td></td>
</tr>
<tr>
<td>Did the problem start recently?</td>
<td></td>
</tr>
</tbody>
</table>
Managing System Messages

This chapter describes system messaging features in the Oracle Solaris OS.

Viewing System Messages

System messages display on the console device. The text of most system messages look like this:

[ID msgid facility.priority]

For example:

[ID 672855 kern.notice] syncing file systems...

If the message originated in the kernel, the kernel module name is displayed. For example:

Oct 1 14:07:24 mars ufs: [ID 845546 kern.notice] alloc: /: file system full

When a system crashes, it might display a message on the system console like this:

panic: error message

Less frequently, this message might be displayed instead of the panic message:

Watchdog reset !

The error logging daemon, syslogd, automatically records various system warnings and errors in message files. By default, many of these system messages are displayed on the system console and are stored in the /var/adm directory. You can direct where these messages are stored by setting up system message logging. For more information, see “Customizing System Message Logging” on page 216. These messages can alert you to system problems, such as a device that is about to fail.

The /var/adm directory contains several message files. The most recent messages are in /var/adm/messages file (and in messages.*), and the oldest are in the messages.3 file. After a
period of time (usually every ten days), a new messages file is created. The messages.0 file is renamed messages.1, messages.1 is renamed messages.2, and messages.2 is renamed messages.3. The current /var/adm/messages.3 file is deleted.

Because the /var/adm directory stores large files containing messages, crash dumps, and other data, this directory can consume lots of disk space. To keep the /var/adm directory from growing too large, and to ensure that future crash dumps can be saved, you should remove unneeded files periodically. You can automate this task by using the crontab file. For more information on automating this task, see "How to Delete Crash Dump Files" on page 86 and Chapter 8, "Scheduling System Tasks (Tasks)."

### How to View System Messages

- **Display recent messages generated by a system crash or reboot by using the dmesg command.**

  ```
  $ dmesg
  
  Or, use the more command to display one screen of messages at a time.
  ```

  ```
  $ more /var/adm/messages
  ```

**Example 15–1** Viewing System Messages

The following example shows output from the dmesg command.

```bash
$ dmesg
Jan 3 08:44:41 starbug genunix: [ID 540533 kern.notice] SunOS Release 5.10 ...
Jan 3 08:44:41 starbug genunix: [ID 913631 kern.notice] Copyright 1983-2003 ...
Jan 3 08:44:41 starbug genunix: [ID 678236 kern.info] Ethernet address ...
Jan 3 08:44:41 starbug unix: [ID 389951 kern.info] mem = 131072K (0x8000000)
Jan 3 08:44:41 starbug unix: [ID 930857 kern.info] avail mem = 121888768
Jan 3 08:44:41 starbug rootnex: [ID 466748 kern.info] root nexus = Sun Ultra 5/10 UPA/PCI (UltraSPARC-III 333MHz)
Jan 3 08:44:41 starbug rootnex: [ID 349649 kern.info] pcipsy0 at root: UPA 0x1f0x0
Jan 3 08:44:41 starbug genunix: [ID 936769 kern.info] pcipsy0 is /pci@1f,0
Jan 3 08:44:41 starbug pcipsy: [ID 370704 kern.info] PCI-device: pci@1,1, simba0
Jan 3 08:44:41 starbug genunix: [ID 936769 kern.info] simba0 is /pci@1f,0/pci@1,1
Jan 3 08:44:41 starbug pcipsy: [ID 370704 kern.info] PCI-device: pci@1, simba1
Jan 3 08:44:41 starbug genunix: [ID 936769 kern.info] simba1 is /pci@1f,0/pci@1
Jan 3 08:44:57 starbug simba: [ID 370704 kern.info] PCI-device: ide@3, uata0
Jan 3 08:44:57 starbug simba: [ID 936769 kern.info] uata0 is /pci@1f,0/pci@1,1/ide@3
Jan 3 08:44:57 starbug uata: [ID 114370 kern.info] dad0 at pci0@95,6460
```

See Also For more information, see the **dmesg(1M)** man page.
System Log Rotation

System log files are rotated by the logadm command from an entry in the root crontab file. The /usr/lib/newsyslog script is no longer used.

The system log rotation is defined in the /etc/logadm.conf file. This file includes log rotation entries for processes such as syslogd. For example, one entry in the /etc/logadm.conf file specifies that the /var/log/syslog file is rotated weekly unless the file is empty. The most recent syslog file becomes syslog.0, the next most recent becomes syslog.1, and so on. Eight previous syslog log files are kept.

The /etc/logadm.conf file also contains time stamps of when the last log rotation occurred.

You can use the logadm command to customize system logging and to add additional logging in the /etc/logadm.conf file as needed.

For example, to rotate the Apache access and error logs, use the following commands:

```bash
# logadm -w /var/apache/logs/access_log -s 100m
# logadm -w /var/apache/logs/error_log -s 10m
```

In this example, the Apache access_log file is rotated when it reaches 100 MB in size, with a .0, .1, (and so on) suffix, keeping 10 copies of the old access_log file. The error_log is rotated when it reaches 10 MB in size with the same suffixes and number of copies as the access_log file.

The /etc/logadm.conf entries for the preceding Apache log rotation examples look similar to the following:

```bash
# cat /etc/logadm.conf
.
.
./var/apache/logs/error_log -s 10m
./var/apache/logs/access_log -s 100m
```

For more information, see `logadm(1M)`.

You can use the logadm command as superuser or by assuming an equivalent role (with Log Management rights). With role-based access control (RBAC), you can grant non-root users the privilege of maintaining log files by providing access to the logadm command.

For example, add the following entry to the /etc/user_attr file to grant user andy the ability to use the logadm command:

```bash
andy::::profiles=Log Management
```

Or, you can set up a role for log management by using the Solaris Management Console. For more information about setting up a role, see “Role-Based Access Control (Overview)” in *System Administration Guide: Security Services*. 

Chapter 15 • Managing System Messages 215
Customizing System Message Logging

You can capture additional error messages that are generated by various system processes by modifying the `/etc/syslog.conf` file. By default, the `/etc/syslog.conf` file directs many system process messages to the `/var/adm/messages` files. Crash and boot messages are stored here as well. To view `/var/adm` messages, see “How to View System Messages” on page 214.

The `/etc/syslog.conf` file has two columns separated by tabs:

facility.level  ...  action

facility.level  A facility or system source of the message or condition. May be a comma-separated listed of facilities. Facility values are listed in Table 15–1. A level, indicates the severity or priority of the condition being logged. Priority levels are listed in Table 15–2.

Do not put two entries for the same facility on the same line, if the entries are for different priorities. Putting a priority in the syslog file indicates that all messages of that all messages of that priority or higher are logged, with the last message taking precedence. For a given facility and level, syslogd matches all messages for that level and all higher levels.

action  The action field indicates where the messages are forwarded.

The following example shows sample lines from a default `/etc/syslog.conf` file.

```
user.err  /dev/sysmsg
user.err  /var/adm/messages
user.alert  'root, operator'
user.emerg  *
```

This means the following user messages are automatically logged:

- User errors are printed to the console and also are logged to the `/var/adm/messages` file.
- User messages requiring immediate action (alert) are sent to the root and operator users.
- User emergency messages are sent to individual users.

Note – Placing entries on separate lines might cause messages to be logged out of order if a log target is specified more than once in the `/etc/syslog.conf` file. Note that you can specify multiple selectors in a single line entry, each separated by a semi-colon.

The most common error condition sources are shown in the following table. The most common priorities are shown in Table 15–2 in order of severity.
TABLE 15–1 Source Facilities for syslog.conf Messages

<table>
<thead>
<tr>
<th>Source</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>kern</td>
<td>The kernel</td>
</tr>
<tr>
<td>auth</td>
<td>Authentication</td>
</tr>
<tr>
<td>daemon</td>
<td>All daemons</td>
</tr>
<tr>
<td>mail</td>
<td>Mail system</td>
</tr>
<tr>
<td>lp</td>
<td>Spooling system</td>
</tr>
<tr>
<td>user</td>
<td>User processes</td>
</tr>
</tbody>
</table>

Note – The number of syslog facilities that can be activated in the /etc/syslog.conf file is unlimited.

TABLE 15–2 Priority Levels for syslog.conf Messages

<table>
<thead>
<tr>
<th>Priority</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>emerg</td>
<td>System emergencies</td>
</tr>
<tr>
<td>alert</td>
<td>Errors requiring immediate correction</td>
</tr>
<tr>
<td>crit</td>
<td>Critical errors</td>
</tr>
<tr>
<td>err</td>
<td>Other errors</td>
</tr>
<tr>
<td>info</td>
<td>Informational messages</td>
</tr>
<tr>
<td>debug</td>
<td>Output used for debugging</td>
</tr>
<tr>
<td>none</td>
<td>This setting doesn’t log output</td>
</tr>
</tbody>
</table>

▼ How to Customize System Message Logging

1 Become superuser or assume an equivalent role.
   Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in System Administration Guide: Security Services.

2 Edit the /etc/syslog.conf file, adding or changing message sources, priorities, and message locations according to the syntax described in syslog.conf(4).

3 Exit the file, saving the changes.
Customizing System Message Logging

This sample /etc/syslog.conf user.emerg facility sends user emergency messages to root and individual users.

```
user.emerg 'root, *'
```

Enabling Remote Console Messaging

The following new console features improve your ability to troubleshoot remote systems:

- The `consadm` command enables you to select a serial device as an auxiliary (or remote) console. Using the `consadm` command, a system administrator can configure one or more serial ports to display redirected console messages and to host `su` sessions when the system transitions between run levels. This feature enables you to dial in to a serial port with a modem to monitor console messages and participate in `init` state transitions. (For more information, see `su`(1M) and the step-by-step procedures that follow.)

  While you can log in to a system using a port configured as an auxiliary console, it is primarily an output device displaying information that is also displayed on the default console. If boot scripts or other applications read and write to and from the default console, the write output displays on all the auxiliary consoles, but the input is only read from the default console. (For more information on using the `consadm` command during an interactive login session, see “Using the consadm Command During an Interactive Login Session” on page 220.)

- Console output now consists of kernel and syslog messages written to a new pseudo device, `/dev/sysmsg`. In addition, `rc` script startup messages are written to `/dev/msglog`. Previously, all of these messages were written to `/dev/console`. Scripts that direct console output to `/dev/console` need to be changed to `/dev/msglog` if you want to see script messages displayed on the auxiliary consoles. Programs referencing `/dev/console` should be explicitly modified to use `syslog()` or `strlog()` if you want messages to be redirected to an auxiliary device.

- The `consadm` command runs a daemon to monitor auxiliary console devices. Any display device designated as an auxiliary console that disconnects, hangs up or loses carrier, is removed from the auxiliary console device list and is no longer active. Enabling one or more auxiliary consoles does not disable message display on the default console; messages continue to display on `/dev/console`.

Example 15–2  Customizing System Message Logging

This sample `/etc/syslog.conf user.emerg facility sends user emergency messages to root and individual users.

```
user.emerg 'root, *'
```
Using Auxiliary Console Messaging During Run Level Transitions

Keep the following in mind when using auxiliary console messaging during run level transitions:

- Input cannot come from an auxiliary console if user input is expected for an rc script that is run when a system is booting. The input must come from the default console.

- The sulogin program, invoked by init to prompt for the superuser password when transitioning between run levels, has been modified to send the superuser password prompt to each auxiliary device in addition to the default console device.

- When the system is in single-user mode and one or more auxiliary consoles are enabled using the consadm command, a console login session runs on the first device to supply the correct superuser password to the sulogin prompt. When the correct password is received from a console device, sulogin disables input from all other console devices.

- A message is displayed on the default console and the other auxiliary consoles when one of the consoles assumes single-user privileges. This message indicates which device has become the console by accepting a correct superuser password. If there is a loss of carrier on the auxiliary console running the single-user shell, one of two actions might occur:
  - If the auxiliary console represents a system at run level 1, the system proceeds to the default run level.
  - If the auxiliary console represents a system at run level S, the system displays the ENTER RUN LEVEL (0-6, s or S): message on the device where the init s or shutdown command had been entered from the shell. If there isn't any carrier on that device either, you will have to reestablish carrier and enter the correct run level. The init or shutdown command will not redisplay the run-level prompt.

- If you are logged into a system using a serial port, and an init or shutdown command is issued to transition to another run level, the login session is lost whether this device is the auxiliary console or not. This situation is identical to releases without auxiliary console capabilities.

- Once a device is selected as an auxiliary console using the consadm command, it remains the auxiliary console until the system is rebooted or the auxiliary console is unselected. However, the consadm command includes an option to set a device as the auxiliary console across system reboots. (See the following procedure for step-by-step instructions.)
Using the consadm Command During an Interactive Login Session

If you want to run an interactive login session by logging into a system using a terminal that is connected to a serial port, and then using the consadm command to see the console messages from the terminal, note the following behavior:

- If you use the terminal for an interactive login session while the auxiliary console is active, the console messages are sent to the /dev/sysmsg or /dev/msglog devices.
- While you issue commands on the terminal, input goes to your interactive session and not to the default console (/dev/console).
- If you run the init command to change run levels, the remote console software kills your interactive session and runs the su|login program. At this point, input is accepted only from the terminal and is treated like it’s coming from a console device. This allows you to enter your password to the su|login program as described in “Using Auxiliary Console Messaging During Run Level Transitions” on page 219.

Then, if you enter the correct password on the (auxiliary) terminal, the auxiliary console runs an interactive su|login session, locks out the default console and any competing auxiliary console. This means the terminal essentially functions as the system console.

- From here you can change to run level 3 or go to another run level. If you change run levels, su|login runs again on all console devices. If you exit or specify that the system should come up to run level 3, then all auxiliary consoles lose their ability to provide input. They revert to being display devices for console messages.

As the system is coming up, you must provide information to rc scripts on the default console device. After the system comes back up, the login program runs on the serial ports and you can log back into another interactive session. If you’ve designated the device to be an auxiliary console, you will continue to get console messages on your terminal, but all input from the terminal goes to your interactive session.

How to Enable an Auxiliary (Remote) Console

The consadm daemon does not start monitoring the port until after you add the auxiliary console with the consadm command. As a security feature, console messages are only redirected until carrier drops, or the auxiliary console device is unselected. This means carrier must be established on the port before you can successfully use the consadm command.

For more information on enabling an auxiliary console, see the consadm(1m) man page.

1 Log in to the system as superuser.

2 Enable the auxiliary console.

   # consadm -a devicename
Verify that the current connection is the auxiliary console.
   # consadm

**Example 15–3** Enabling an Auxiliary (Remote) Console

   # consadm -a /dev/term/a
   # consadm
   /dev/term/a

▼ **How to Display a List of Auxiliary Consoles**

1. Log in to the system as superuser.

2. Select one of the following steps:
   a. Display the list of auxiliary consoles.
      
      # consadm
      /dev/term/a
   b. Display the list of persistent auxiliary consoles.
      
      # consadm -p
      /dev/term/b

▼ **How to Enable an Auxiliary (Remote) Console Across System Reboots**

1. Log in to the system as superuser.

2. Enable the auxiliary console across system reboots.
   
   # consadm -a -p devicename
   This adds the device to the list of persistent auxiliary consoles.

3. Verify that the device has been added to the list of persistent auxiliary consoles.
   
   # consadm

**Example 15–4** Enabling an Auxiliary (Remote) Console Across System Reboots

   # consadm -a -p /dev/term/a
   # consadm
   /dev/term/a
How to Disable an Auxiliary (Remote) Console

1. Log in to the system as superuser.

2. Select one of the following steps:
   
   a. Disable the auxiliary console.
      
      ```
      # consadm -d devicename
      
      or
      ```

   b. Disable the auxiliary console and remove it from the list of persistent auxiliary consoles.
      
      ```
      # consadm -p -d devicename
      ```

3. Verify that the auxiliary console has been disabled.
   
   ```
   # consadm
   ```

Example 15–5 Disabling an Auxiliary (Remote) Console

```bash
# consadm -d /dev/term/a
# consadm
```
This chapter describes how to manage core files with the `coreadm` command.

For information on the procedures associated with managing core files, see “Managing Core Files (Task Map)” on page 223.

### Managing Core Files (Task Map)

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Display the current core dump configuration.</td>
<td>Display the current core dump configuration by using the <code>coreadm</code> command.</td>
<td>“How to Display the Current Core Dump Configuration” on page 226</td>
</tr>
</tbody>
</table>
| 2. Modify the core dump configuration. | Modify the core dump configuration to do one of the following:  
Set a core file name pattern.  
Enable a per-process core file path.  
Enable a global core file path. | “How to Set a Core File Name Pattern” on page 226  
“How to Enable a Per-Process Core File Path” on page 227  
“How to Enable a Global Core File Path” on page 227 |
| 3. Examine a core dump file. | Use the `proc` tools to view a core dump file. | “Examining Core Files” on page 228 |
Managing Core Files Overview

Core files are generated when a process or application terminates abnormally. Core files are managed with the `coreadm` command.

For example, you can use the `coreadm` command to configure a system so that all process core files are placed in a single system directory. This means it is easier to track problems by examining the core files in a specific directory whenever a process or daemon terminates abnormally.

Configurable Core File Paths

Two new configurable core file paths that can be enabled or disabled independently of each other are:

- A per-process core file path, which defaults to `/core` and is enabled by default. If enabled, the per-process core file path causes a core file to be produced when the process terminates abnormally. The per-process path is inherited by a new process from its parent process.

  When generated, a per-process core file is owned by the owner of the process with read/write permissions for the owner. Only the owning user can view this file.

- A global core file path, which defaults to `/core` and is disabled by default. If enabled, an additional core file with the same content as the per-process core file is produced by using the global core file path.

  When generated, a global core file is owned by superuser with read/write permissions for superuser only. Non-privileged users cannot view this file.

When a process terminates abnormally, it produces a core file in the current directory by default. If the global core file path is enabled, each abnormally terminating process might produce two files, one in the current working directory, and one in the global core file location.

By default, a `setuid` process does not produce core files using either the global or per-process path.

Expanded Core File Names

If a global core file directory is enabled, core files can be distinguished from one another by using the variables described in the following table.

<table>
<thead>
<tr>
<th>Variable Name</th>
<th>Variable Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>%d</td>
<td>Executable file directory name, up to a maximum of MAXPATHLEN characters</td>
</tr>
<tr>
<td>%f</td>
<td>Executable file name, up to a maximum of MAXCOMLEN characters</td>
</tr>
</tbody>
</table>
Variable Name | Variable Definition
---|---
%g | Effective group ID
%m | Machine name (uname -m)
%n | System node name (uname -n)
%p | Process ID
%t | Decimal value of time(2)
%u | Effective user ID
%z | Name of the zone in which process is executed (zonename)
%% | Literal %

For example, if the global core file path is set to:

/var/core/core.%f.%p

and a sendmail process with PID 12345 terminates abnormally, it produces the following core file:

/var/core/core.sendmail.12345

**Setting the Core File Name Pattern**

You can set a core file name pattern on a global, zone, or per-process basis. In addition, you can set the per-process defaults that persist across a system reboot.

For example, the following coreadm command sets the default per-process core file pattern. This setting applies to all processes that have not explicitly overridden the default core file pattern. This setting persists across system reboots.

```
# coreadm -i /var/core/core.%f.%p
```

The following coreadm command sets the per-process core file name pattern for any processes:

```
$ coreadm -p /var/core/core.%f.%p $$
```

The $$ symbols represent a placeholder for the process ID of the currently running shell. The per-process core file name pattern is inherited by all child processes.

Once a global or per-process core file name pattern is set, it must be enabled with the coreadm -e command. See the following procedures for more information.

You can set the core file name pattern for all processes run during a user's login session by putting the command in a user's $HOME/.profile or .login file.
Enabling setuid Programs to Produce Core Files

You can use the coreadm command to enable or disable setuid programs to produce core files for all system processes or on a per-process basis by setting the following paths:

- If the global setuid option is enabled, a global core file path allows all setuid programs on a system to produce core files.
- If the per-process setuid option is enabled, a per-process core file path allows specific setuid processes to produce core files.

By default, both flags are disabled. For security reasons, the global core file path must be a full pathname, starting with a leading / . If superuser disables per-process core files, individual users cannot obtain core files.

The setuid core files are owned by superuser with read/write permissions for superuser only. Regular users cannot access them even if the process that produced the setuid core file was owned by an ordinary user.

For more information, see the coreadm(1M) man page.

How to Display the Current Core Dump Configuration

Use the coreadm command without any options to display the current core dump configuration.

```
$ coreadm
    global core file pattern:
    global core file content: default
    init core file pattern: core
    init core file content: default
    global core dumps: disabled
    per-process core dumps: enabled
    global setid core dumps: disabled
    per-process setid core dumps: disabled
    global core dump logging: disabled
```

How to Set a Core File Name Pattern

- Determine whether you want to set a per-process or global core file name and select one of the following:

  a. Set a per-process file name pattern.
     
     ```
     $ coreadm -p $HOME/corefiles/%f.%p $$
     ```
b. Become superuser or assume an equivalent role.
   Roles contain authorizations and privileged commands. For more information about roles, see "Configuring RBAC (Task Map)" in System Administration Guide: Security Services.

c. Set a global file name pattern.
   
   # coreadm -g /var/corefiles/%f.%p

▼ How to Enable a Per-Process Core File Path

1 Become superuser or assume an equivalent role.
   Roles contain authorizations and privileged commands. For more information about roles, see "Configuring RBAC (Task Map)" in System Administration Guide: Security Services.

2 Enable a per-process core file path.
   
   # coreadm -e process

3 Display the current process core file path to verify the configuration.
   
   $ coreadm $$
   1180: /home/kryten/corefiles/%f.%p

▼ How to Enable a Global Core File Path

1 Become superuser or assume an equivalent role.
   Roles contain authorizations and privileged commands. For more information about roles, see "Configuring RBAC (Task Map)" in System Administration Guide: Security Services.

2 Enable a global core file path.
   
   # coreadm -e global -g /var/core/core.%f.%p

3 Display the current process core file path to verify the configuration.
   
   # coreadm
   global core file pattern: /var/core/core.%f.%p
   global core file content: default
   init core file pattern: core
   init core file content: default
   global core dumps: enabled
   per-process core dumps: enabled
   global setid core dumps: disabled
   per-process setid core dumps: disabled
   global core dump logging: disabled
Troubleshooting Core File Problems

Error Message

NOTICE: ‘set allow_setid_core = 1’ in /etc/system is obsolete
NOTICE: Use the coreadm command instead of 'allow_setid_core'

Cause
You have an obsolete parameter that allows setuid core files in your /etc/system file.

Solution
Remove allow_setid_core=1 from the /etc/system file. Then use the coreadm command to enable global setuid core file paths.

Examining Core Files

Some of the proc tools have been enhanced to examine process core files as well as live processes. The proc tools are utilities that can manipulate features of the /proc file system.

The /usr/proc/bin/pstack, pmap, pldd, pflags, and pcred tools can now be applied to core files by specifying the name of the core file on the command line, similar to the way you specify a process ID to these commands.

For more information on using proc tools to examine core files, see proc(1).

EXAMPLE 16–1 Examining Core Files With proc Tools

$ ./a.out
Segmentation Fault(coredump)
$ /usr/proc/bin/pstack ./core
core './core' of 19305: ./a.out
0000108c4 main (1, ffbef5cc, ffbef5d4, 20800, 0, 0) + 1c
00010880 _start (0, 0, 0, 0, 0) + b8
Managing System Crash Information (Tasks)

This chapter describes how to manage system crash information in the Oracle Solaris OS.

For information on the procedures associated with managing system crash information, see “Managing System Crash Information (Task Map)” on page 230.

What's New in Managing System Crash Information

This section describes new or changed features for managing system resources in this Oracle Solaris release.

Fast Crash Dump Facility

Oracle Solaris 10 9/10: This feature enhancement enables the system to save crash dumps in less time, using less space. The time that is required for a crash dump to complete is now 2 to 10 times faster, depending on the platform. The amount of disk space that is required to save crash dumps in the savecore directory is reduced by the same factors. To accelerate the creation and compression of the crash dump file, the fast crash dump facility utilizes lightly used CPUs on large systems. A new crash dump file, vmdump.n, is a compressed version of the vmcore.n and unix.n files. Compressed crash dumps can be moved over the network more quickly and then analyzed off-site. Note that the dump file must first be uncompressed to use it with tools like the mdb utility. You can uncompress a dump file by using the savecore command, either locally or remotely.

To support the new crash dump facility, the -z option has been added to the dumpadm command. Use this option to specify whether to save dumps in a compressed or an uncompressed format. The default format is compressed.

For more detailed information, see the dumpadm(1M) and the savecore(1M) man pages.
Managing System Crash Information (Task Map)

The following task map identifies the procedures needed to manage system crash information.

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Display the current crash dump configuration.</td>
<td>Display the current crash dump configuration by using the <code>dumpadm</code> command.</td>
<td>&quot;How to Display the Current Crash Dump Configuration&quot; on page 234</td>
</tr>
<tr>
<td>2. Modify the crash dump configuration.</td>
<td>Use the <code>dumpadm</code> command to specify the type of data to dump, whether or not the system will use a dedicated dump device, the directory for saving crash dump files, and the amount of space that must remain available after crash dump files are written.</td>
<td>&quot;How to Modify a Crash Dump Configuration&quot; on page 234</td>
</tr>
<tr>
<td>3. Examine a crash dump file.</td>
<td>Use the <code>mdb</code> command to view crash dump files.</td>
<td>&quot;How to Examine a Crash Dump&quot; on page 236</td>
</tr>
<tr>
<td>4. (Optional) Recover from a full crash dump directory.</td>
<td>The system crashes, but no room is available in the <code>savecore</code> directory, and you want to save some critical system crash dump information.</td>
<td>&quot;How to Recover From a Full Crash Dump Directory (Optional)&quot; on page 237</td>
</tr>
<tr>
<td>5. (Optional) Disable or enable the saving of crash dump files.</td>
<td>Use the <code>dumpadm</code> command to disable or enable the saving the crash dump files. Saving crash dump files is enabled by default.</td>
<td>&quot;How to Disable or Enable Saving Crash Dumps&quot; on page 238</td>
</tr>
</tbody>
</table>

System Crashes (Overview)

System crashes can occur due to hardware malfunctions, I/O problems, and software errors. If the system crashes, it will display an error message on the console, and then write a copy of its physical memory to the dump device. The system will then reboot automatically. When the system reboots, the `savecore` command is executed to retrieve the data from the dump device and write the saved crash dump to your `savecore` directory. The saved crash dump files provide invaluable information to your support provider to aid in diagnosing the problem.

The crash dump information is written in a compressed format to the `vmdump. n` file, where `n` is an integer that identifies the crash dump. Afterwards, the `savecore` command can be invoked on the same system or another system to expand the compressed crash dump to a pair of files that are named `unix. n` and `vmcore. n`. The directory in which the crash dump is saved upon reboot can also be configured by using the `dumpadm` command.

For systems that have a UFS root file system, the default dump device is configured as an appropriate swap partition. Swap partitions are disk partitions that are reserved as virtual memory backing storage for the operating system. Therefore, no permanent information
resides in the swap area that is to be overwritten by the crash dump. For systems that have an Oracle Solaris ZFS root file system, dedicated ZFS volumes are used for swap and dump areas. See “Oracle Solaris ZFS Support for Swap Area and Dump Devices” on page 231 for more information.

Oracle Solaris ZFS Support for Swap Area and Dump Devices

If you install an Oracle Solaris ZFS root file system or if you use the Oracle Solaris Live Upgrade program to migrate from a UFS root file system to a ZFS root file system, swap and dump devices are created on two ZFS volumes. For example, with a default root pool name, rpool, the /rpool/swap and /rpool/dump volumes are created automatically. You can adjust the sizes of your swap and dump volumes to sizes of your choosing as long as the new sizes support system operation. For more information, see “ZFS Support for Swap and Dump Devices” in Oracle Solaris ZFS Administration Guide.

If you need to modify your ZFS swap device or dump device after installation, use the swap or dumpadm commands, as in previous releases.

For information about managing dump devices in this document, see “Managing System Crash Dump Information” on page 234.

x86: System Crashes in the GRUB Boot Environment

If a system crash occurs on an x86 based system in the GRUB boot environment, it is possible that the SMF service that manages the GRUB boot archive, svc:/system/boot-archive:default, might fail on the next system reboot. For more information on GRUB based booting, see “Booting an x86 Based System by Using GRUB (Task Map)” in System Administration Guide: Basic Administration.

System Crash Dump Files

The savecore command runs automatically after a system crash to retrieve the crash dump information from the dump device and writes a pair of files called unix.X and vmcore.X, where X identifies the dump sequence number. Together, these files represent the saved system crash dump information.

Crash dump files are sometimes confused with core files, which are images of user applications that are written when the application terminates abnormally.

Crash dump files are saved in a predetermined directory, which by default, is /var/crash/hostname. In previous releases, crash dump files were overwritten when a system
rebooted, unless you manually enabled the system to save the images of physical memory in a crash dump file. Now, the saving of crash dump files is enabled by default.

System crash information is managed with the `dumpadm` command. For more information, see “The `dumpadm` Command” on page 232.

## Saving Crash Dumps

You can examine the control structures, active tables, memory images of a live or crashed system kernel, and other information about the operation of the kernel by using the `mdb` utility. Using `mdb` to its full potential requires a detailed knowledge of the kernel, and is beyond the scope of this manual. For information on using this utility, see the `mdb(1)` man page.

Additionally, crash dumps saved by `savecore` can be useful to send to a customer service representative for analysis of why the system is crashing.

## The `dumpadm` Command

Use the `dumpadm` command to manage system crash dump information in the Oracle Solaris OS.

- The `dumpadm` command enables you to configure crash dumps of the operating system. The `dumpadm` configuration parameters include the dump content, dump device, and the directory in which crash dump files are saved.
- Dump data is stored in compressed format on the dump device. Kernel crash dump images can be as big as 4 Gbytes or more. Compressing the data means faster dumping and less disk space needed for the dump device.
- Saving crash dump files is run in the background when a dedicated dump device, not the swap area, is part of the dump configuration. This means a booting system does not wait for the `savecore` command to complete before going to the next step. On large memory systems, the system can be available before `savecore` completes.
- System crash dump files, generated by the `savecore` command, are saved by default.
- The `savecore -L` command is a new feature which enables you to get a crash dump of the live running the Oracle Solaris OS. This command is intended for troubleshooting a running system by taking a snapshot of memory during some bad state, such as a transient performance problem or service outage. If the system is up and you can still run some commands, you can execute the `savecore -L` command to save a snapshot of the system to the dump device, and then immediately write out the crash dump files to your `savecore` directory. Because the system is still running, you can only use the `savecore -L` command if you have configured a dedicated dump device.

The following table describes `dumpadm`'s configuration parameters.
Dump Parameter | Description
---|---
dump device | The device that stores dump data temporarily as the system crashes. When the dump device is not the swap area, savecore runs in the background, which speeds up the boot process.
savecore directory | The directory that stores system crash dump files.
dump content | Type of memory data to dump.
minimum free space | Minimum amount of free space required in the savecore directory after saving crash dump files. If no minimum free space has been configured, the default is one Mbyte.

For more information, see dumpadm(1M).

Dump configuration parameters are managed by the dumpadm command.

**How the dumpadm Command Works**

During system startup, the dumpadm command is invoked by the svc:/system/dumpadm:default service to configure crash dumps parameters.

Specifically, dumpadm initializes the dump device and the dump content through the /dev/dump interface.

After the dump configuration is complete, the savecore script looks for the location of the crash dump file directory. Then, savecore is invoked to check for crash dumps and check the content of the minfree file in the crash dump directory.

**Dump Devices and Volume Managers**

Do not configure a dedicated dump device that is under the control of volume management product such as Solaris Volume Manager for accessibility and performance reasons. You can keep your swap areas under the control of Solaris Volume Manager and this is a recommend practice, but keep your dump device separate.
Managing System Crash Dump Information

Keep the following key points in mind when you are working with system crash information:

- You must be superuser or assume an equivalent role to access and manage system crash information.
- Do not disable the option of saving system crash dumps. System crash dump files provide an invaluable way to determine what is causing the system to crash.
- Do not remove important system crash information until it has been sent to your customer service representative.

▼ How to Display the Current Crash Dump Configuration

1 Become superuser or assume an equivalent role.
   Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in System Administration Guide: Security Services.

2 Display the current crash dump configuration.

   # dumpadm
   Dump content: kernel pages
   Dump device: /dev/dsk/c0t3d0s1 (swap)
   Savecore directory: /var/crash/venus
   Savecore enabled: yes
   Saved compressed: on

   The preceding example output means:
   - The dump content is kernel memory pages.
   - Kernel memory will be dumped on a swap device, /dev/dsk/c0t3d0s1. You can identify all your swap areas with the swap -1 command.
   - System crash dump files will be written in the /var/crash/venus directory.
   - Saving crash dump files is enabled.
   - Save crash dumps in compressed format.

▼ How to Modify a Crash Dump Configuration

1 Become superuser or assume an equivalent role.
   Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in System Administration Guide: Security Services.
Identify the current crash dump configuration.

```
# dumpadm
   Dump content: kernel pages
   Dump device: /dev/dsk/c0t3d0s1 (swap)
Savecore directory: /var/crash/pluto
   Savecore enabled: yes
   Save compressed: on
```

This output identifies the default dump configuration for a system running the Oracle Solaris 10 release.

Modify the crash dump configuration.

```
# /usr/sbin/dumpadm [-nuy] [-c content-type] [-d dump-device] [-m mink | mnm | min%]
                     [-s savecore-dir] [-r root-dir] [-z on | off]
```

- **-c content**  
  Specifies the type of data to dump. Use kernel to dump all kernel memory, all to dump all of memory, or curproc, to dump kernel memory and the memory pages of the process whose thread was executing when the crash occurred. The default dump content is kernel memory.

- **-d dump-device**  
  Specifies the device that stores dump data temporarily as the system crashes. The primary swap device is the default dump device.

- **-m mnnk | mnm | min%**  
  Specifies the minimum free disk space for saving crash dump files by creating a minfree file in the current savecore directory. This parameter can be specified in Kbytes (mnnk), Mbytes (mnm) or file system size percentage (min%). The savecore command consults this file prior to writing the crash dump files. If writing the crash dump files, based on their size, would decrease the amount of free space below the minfree threshold, the dump files are not written and an error message is logged. For information on recovering from this scenario, see "How to Recover From a Full Crash Dump Directory (Optional)" on page 237.

- **-n**  
  Specifies that savecore should not be run when the system reboots. This dump configuration is not recommended. If system crash information is written to the swap device, and savecore is not enabled, the crash dump information is overwritten when the system begins to swap.

- **-s**  
  Specifies an alternate directory for storing crash dump files. The default directory is `/var/crash/hostname` where `hostname` is the output of the `uname -n` command.

- **-u**  
  Forcibly updates the kernel dump configuration based on the contents of the `/etc/dumpadm.conf` file.
Modifies the dump configuration to automatically execute the
savecore command upon reboot, which is the default for this
dump setting.

-modifies the dump configuration to control the operation of the
savecore command upon reboot. The on setting enables the saving
of core file in a compressed format. The off setting automatically
uncompresses the crash dump file. Because crash dump files can be
extremely large and therefore require less file system space if they
are saved in a compressed forma, the default is on.

Example 17–1  Modifying a Crash Dump Configuration

In this example, all of memory is dumped to the dedicated dump device, /dev/dsk/c0t1d0s1,
and the minimum free space that must be available after the crash dump files are saved is 10% of
the file system space.

```
# dumpadm
Dump content: kernel pages
Dump device: /dev/dsk/c0t3d0s1 (swap)
Savecore directory: /var/crash/pluto
Savecore enabled: yes
Save compressed: on
# dumpadm -c all -d /dev/dsk/c0t1d0s1 -m 10%
Dump content: all pages
Dump device: /dev/dsk/c0t1d0s1 (dedicated)
Savecore directory: /var/crash/pluto (minfree = 77071KB)
Savecore enabled: yes
Save compressed: on
```

▼ How to Examine a Crash Dump

1  Become superuser or assume an equivalent role.
   Roles contain authorizations and privileged commands. For more information about roles, see

2  Examine a crash dump by using the mdb utility.
   
   ```
   # /usr/bin/mdb [-k] crashdump-file
   -k  Specifies kernel debugging mode by assuming the file is an operating system
       crash dump file.
   crashdump-file  Specifies the operating system crash dump file.
   ```
3 Display crash status information.
   
   # /usr/bin/mdb file-name
   > ::status
   
   > ::system
   

Example 17–2 Examining a Crash Dump

The following example shows sample output from the \texttt{mdb} utility, which includes system information and identifies the tunables that are set in this system’s /etc/system file.

```
# /usr/bin/mdb -k unix.0
Loading modules: [ unix krtld genunix ip nfs ipc ptm ]
> ::status
debugging crash dump /dev/mem (64-bit) from ozlo
operating system: 5.10 Generic (sun4u)
> ::system
set ufs_ninode=0x9c40 [0t40000]
set ncsize=0x4e20 [0t20000]
set pt_cnt=0x400 [0t1024]
```

\section*{How to Recover From a Full Crash Dump Directory (Optional)}

In this scenario, the system crashes but no room is left in the savecore directory, and you want to save some critical system crash dump information.

1 After the system reboots, log in as superuser or assume an equivalent role.

2 Clear out the savecore directory, usually /var/crash/hostname, by removing existing crash dump files that have already been sent to your service provider.

   - Alternatively, you can manually run the savecore command to specify an alternate directory that has sufficient disk space.

   ```
   # savecore [ directory ]
   ```
How to Disable or Enable Saving Crash Dumps

1. Become superuser or assume an equivalent role.
   Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in System Administration Guide: Security Services.

2. Disable or enable the saving of crash dumps on your system.
   
   ```
   # dumpadm -n | -y
   ```

Example 17–3 Disabling the Saving of Crash Dumps

This example illustrates how to disable the saving of crash dumps on your system.

```
# dumpadm -n
Dump content: all pages
   Dump device: /dev/dsk/c0t1d0s1 (dedicated)
Savecore directory: /var/crash/pluto (minfree = 77071KB)
Savecore enabled: no
Save Compressed: on
```

Example 17–4 Enabling the Saving of Crash Dumps

This example illustrates how to enable the saving of crash dump on your system.

```
# dumpadm -y
Dump content: all pages
   Dump device: /dev/dsk/c0t1d0s1 (dedicated)
Savecore directory: /var/crash/pluto (minfree = 77071KB)
Savecore enabled: yes
Save compressed: on
```
This chapter describes miscellaneous software problems that might occur occasionally and are relatively easy to fix. Troubleshooting miscellaneous software problems includes solving problems that aren’t related to a specific software application or topic, such as unsuccessful reboots and full file systems. Resolving these problems are described in the following sections.

This is a list of the information in this chapter.

- “What to Do If Rebooting Fails” on page 239
- “x86: What to Do If the SMF Boot Archive Service Fails During a System Reboot” on page 243
- “What to Do If a System Hangs” on page 244
- “What to Do If a File System Fills Up” on page 245
- “What to Do If File ACLs Are Lost After Copy or Restore” on page 246
- “Troubleshooting Backup Problems” on page 246
- “Troubleshooting Common Agent Container Problems in the Oracle Solaris OS” on page 247

### What to Do If Rebooting Fails

If the system does not reboot completely, or if it reboots and then crashes again, there might be a software or hardware problem that is preventing the system from booting successfully.

<table>
<thead>
<tr>
<th>Cause of System Not Booting</th>
<th>How to Fix the Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>The system can't find <code>/platform/uname -m/kernel/unix.</code></td>
<td>You may need to change the boot-device setting in the PROM on a SPARC based system. For information on changing the default boot device, see “How to Change the Default Boot Device by Using the Boot PROM” in System Administration Guide: Basic Administration.</td>
</tr>
</tbody>
</table>
What to Do If You Forgot the Root Password

If you forget the root password and you cannot log into the system, you will have to do the following:

- Stop the system by using the keyboard stop sequence.
- **Oracle Solaris 10:** Boot the system from a boot server or an install server, or from a local CD-ROM.
- Mount the root (/) file system.
- Remove the root password from the /etc/shadow file.
- Reboot the system.
- Log in and set root's password.

## Cause of System Not Booting

<table>
<thead>
<tr>
<th>Cause of System Not Booting</th>
<th>How to Fix the Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Oracle Solaris 10:</strong> There is no default boot device on an x86 based system. The message displayed is: Not a UFS filesystem.</td>
<td><strong>Oracle Solaris 10:</strong> Boot the system by using the Configuration Assistant/boot diskette and select the disk from which to boot.</td>
</tr>
<tr>
<td><strong>Solaris 10 1/06:</strong> The GRUB boot archive has become corrupted. Or, the SMF boot archive service has failed. An error message is displayed if you run the svc -x command.</td>
<td><strong>Solaris 10 1/06:</strong> Boot the failsafe archive.</td>
</tr>
<tr>
<td>There's an invalid entry in the /etc/passwd file.</td>
<td>For information on recovering from an invalid passwd file, see Chapter 12, &quot;Booting an Oracle Solaris System (Tasks),&quot; in <em>System Administration Guide: Basic Administration</em>.</td>
</tr>
</tbody>
</table>
| There's a hardware problem with a disk or another device. | Check the hardware connections:  
  - Make sure the equipment is plugged in.  
  - Make sure all the switches are set properly.  
  - Look at all the connectors and cables, including the Ethernet cables.  
  - If all this fails, turn off the power to the system, wait 10 to 20 seconds, and then turn on the power again. |

If none of the above suggestions solve the problem, contact your local service provider.
If you forget the root password and you cannot log into the system, you will have to do the following:

- Stop the system by using the keyboard stop sequence.
- **Starting with Solaris 10 1/06 release**: On x86 based systems, boot the system in the Solaris failsafe archive.
- **Oracle Solaris 10**: Boot the system from a boot server or an install server, or from a local CD-ROM.
- Mount the root (/) file system.
- Remove the root password from the /etc/shadow file.
- Reboot the system.
- Log in and set root's password.

These procedures are fully described in Chapter 12, “Booting an Oracle Solaris System (Tasks),” in *System Administration Guide: Basic Administration*.

**Note** – GRUB based booting is not available on SPARC based systems in this release.

The following examples describe how to recover from a forgotten root password on both SPARC and x86 based systems.

**EXAMPLE 18-1**  SPARC: What to Do If You Forgot the Root Password

The following example shows how to recover when you forget the root password by booting from the network. This example assumes that the boot server is already available. Be sure to apply a new root password after the system has rebooted.

(Use keyboard abort sequence--Press Stop A keys to stop the system)
ok boot net -s
# mount /dev/dsk/c0t3d0s0 /a
# cd /a/etc
# TERM=vt100
# export TERM
# vi shadow
(Remove root's encrypted password string)
# cd /
# umount /a
# init 6

**EXAMPLE 18-2**  x86: Performing a GRUB Based Boot When You Have Forgotten the Root Password

This example assumes that the boot server is already available. Be sure to apply a new root password after the system has rebooted.

GNU GRUB version 0.95 (637K lower / 3144640K upper memory)
+----------------------------------------+
| be1
EXAMPLE 18–2

x86: Performing a GRUB Based Boot When You Have Forgotten the Root Password

(Continued)

<table>
<thead>
<tr>
<th>be1 failsafe</th>
</tr>
</thead>
<tbody>
<tr>
<td>be3</td>
</tr>
<tr>
<td>be3 failsafe</td>
</tr>
<tr>
<td>be2</td>
</tr>
<tr>
<td>be2 failsafe</td>
</tr>
</tbody>
</table>

Use the ^ and v keys to select which entry is highlighted.
Press enter to boot the selected OS, ‘e’ to edit the commands before booting, or ‘c’ for a command-line.

Searching for installed OS instances...

An out of sync boot archive was detected on /dev/dsk/c0t0d0s0. The boot archive is a cache of files used during boot and should be kept in sync to ensure proper system operation.

Do you wish to automatically update this boot archive? [y,n,?] n

Searching for installed OS instances...

Multiple OS instances were found. To check and mount one of them read-write under /a, select it from the following list. To not mount any, select 'q'.

1  pool10:13292304648356142148  ROOT/be10
2  rpool:14465159259155950256  ROOT/be01

Please select a device to be mounted (q for none) [?,??,q]: 1
mounting /dev/dsk/c0t0d0s0 on /a
starting shell.

# cd /a/etc
# vi shadow
(Remove root’s encrypted password string)
# cd /
# umount /a
# reboot

EXAMPLE 18–3

x86: Booting a System When You Have Forgotten the Root Password

Oracle Solaris 10: The following example shows how to recover when you forget root’s password by booting from the network. This example assumes that the boot server is already available. Be sure to apply a new root password after the system has rebooted.

Press any key to reboot.
Resetting...
.
.
Initializing system
Please wait...
EXAMPLE 18–3  x86: Booting a System When You Have Forgotten the Root Password  (Continued)

<<< Current Boot Parameters >>>
Boot path: /pci@0,0/pci-ide@7,1/ide@0/cmdk@0,0:a
Boot args:

Type b [file-name] [boot-flags] <ENTER> to boot with options
or i <ENTER> to enter boot interpreter
or <ENTER> to boot with defaults

<<< timeout in 5 seconds >>>
Select (b)oot or (i)nterpreter: b -s
SunOS Release 5.10 Version amd64-gate-2004-09-30 32-bit
Copyright (c) 1983, 2011, Oracle and/or its affiliates. All rights reserved.
Use is subject to license terms.
DEBUG enabled
Booting to milestone "milestone/single-user:default".
Hostname: venus
NIS domain name is example.com
Requesting System Maintenance Mode
SINGLE USER MODE

Root password for system maintenance (control-d to bypass): xxxxxx
Entering System Maintenance Mode
.
.
# mount /dev/dsk/c0t0d0s0 /a
.
.
# cd /a/etc
# vi shadow
(Remove root’s encrypted password string)
# cd /
# umount /a
# init 6

x86: What to Do If the SMF Boot Archive Service Fails During a System Reboot

Solaris 10 1/06: In this release, if the system crashes, the boot archive SMF service,
svc:/system/boot-archive:default, might fail when the system is rebooted. If the boot
archive service has failed, a message similar to the following is displayed when you run the svcs
-x command:

svc:/system/boot-archive:default (check boot archive content)
  State: maintenance since Fri Jun 03 10:24:52 2005
  Reason: Start method exited with $SMF_EXIT_ERR_FATAL.
  See: http://sun.com/msg/SMF-8000-KS
See: /etc/svc/volatile/system-boot-archive:default.log
Impact: 48 dependent services are not running. (Use -v for list.)

svc:/network/rpc/gss:default (Generic Security Service)
State: uninitialized since Fri Jun 03 10:24:51 2005
Reason: Restarter svc:/network/inetd:default is not running.
See: http://sun.com/msg/SMF-8000-5H
See: gssd(1M)
Impact: 10 dependent services are not running. (Use -v for list.)

svc:/application/print/server:default (LP print server)
State: disabled since Fri Jun 03 10:24:51 2005
Reason: Disabled by an administrator.
See: http://sun.com/msg/SMF-8000-05
See: lpsched(1M)
Impact: 1 dependent service is not running. (Use -v for list.)

To correct the problem, take the following action:

1. Reboot the system and select the failsafe archive option from the GRUB boot menu.
2. Answer y when prompted by the system to rebuild the boot archive.
   After the boot archive is rebuilt, the system is ready to boot.
3. To continue booting, clear the SMF boot archive service by using the following command.

   # svcadm clear boot-archive

Note that you must become superuser or the equivalent to run this command.

For more information on rebuilding the GRUB boot archive, see "How to Boot an x86 Based System in Failsafe Mode" in System Administration Guide: Basic Administration and the bootadm(1M) man page.

---

What to Do If a System Hangs

A system can freeze or hang rather than crash completely if some software process is stuck. Follow these steps to recover from a hung system.

1. Determine whether the system is running a window environment and follow these suggestions. If these suggestions don’t solve the problem, go to step 2.
   ■ Make sure the pointer is in the window where you are typing the commands.
   ■ Press Control-q in case the user accidentally pressed Control-s, which freezes the screen. Control-s freezes only the window, not the entire screen. If a window is frozen, try using another window.
   ■ If possible, log in remotely from another system on the network. Use the pGREP utility to look for the hung process. If it looks like the window system is hung, identify the process and kill it.
2. Press Control-\ to force a “quit” in the running program and (probably) write out a core file.
3. Press Control-c to interrupt the program that might be running.
4. Log in remotely and attempt to identify and kill the process that is hanging the system.
5. Log in remotely, become superuser or assume an equivalent role and reboot the system.
6. If the system still does not respond, force a crash dump and reboot. For information on forcing a crash dump and booting, see "Forcing a Crash Dump and Reboot of the System" in System Administration Guide: Basic Administration.
7. If the system still does not respond, turn the power off, wait a minute or so, then turn the power back on.
8. If you cannot get the system to respond at all, contact your local service provider for help.

What to Do If a File System Fills Up

When the root (/) file system or any other file system fills up, you will see the following message in the console window:

.... file system full

There are several reasons why a file system fills up. The following sections describe several scenarios for recovering from a full file system. For information on routinely cleaning out old and unused files to prevent full file systems, see Chapter 6, "Managing Disk Use (Tasks)."

File System Fills Up Because a Large File or Directory Was Created

<table>
<thead>
<tr>
<th>Reason Error Occurred</th>
<th>How to Fix the Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Someone accidentally copied a file or directory to the wrong location. This also happens when an application crashes and writes a large core file into the file system.</td>
<td>Log in as superuser or assume an equivalent role and use the ls -lt command in the specific file system to identify which large file is newly created and remove it. For information on removing core files, see &quot;How to Find and Delete core Files&quot; on page 85.</td>
</tr>
</tbody>
</table>
A TMPFS File System is Full Because the System Ran Out of Memory

<table>
<thead>
<tr>
<th>Reason Error Occurred</th>
<th>How to Fix the Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>This can occur if TMPFS is trying to write more than it is allowed or some current processes are using a lot of memory.</td>
<td>For information on recovering from tmpfs-related error messages, see the tmpfs(7FS) man page.</td>
</tr>
</tbody>
</table>

What to Do If File ACLs Are Lost After Copy or Restore

What to Do If File ACLs Are Lost After Copy or Restore

<table>
<thead>
<tr>
<th>Reason Error Occurred</th>
<th>How to Fix the Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>If files or directories with ACLs are copied or restored into the /tmp directory, the ACL attributes are lost. The /tmp directory is usually mounted as a temporary file system, which doesn't support UFS file system attributes such as ACLs.</td>
<td>Copy or restore files into the /var/tmp directory instead.</td>
</tr>
</tbody>
</table>

Troubleshooting Backup Problems

This section describes some basic troubleshooting techniques to use when backing up and restoring data.

The root (/) File System Fills Up After You Back Up a File System

You back up a file system, and the root (/) file system fills up. Nothing is written to the media, and the ufsdump command prompts you to insert the second volume of media.

<table>
<thead>
<tr>
<th>Reason Error Occurred</th>
<th>How to Fix the Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>If you used an invalid destination device name with the -f option, the ufsdump command wrote to a file in the /dev directory of the root (/) file system, filling it up. For example, if you typed /dev/rmt/st0 instead of /dev/rmt/0, the backup file /dev/rmt/st0 was created on the disk rather than being sent to the tape drive.</td>
<td>Use the ls -tl command in the /dev directory to identify which file is newly created and abnormally large, and remove it.</td>
</tr>
</tbody>
</table>
**Make Sure the Backup and Restore Commands Match**

You can only use the `ufsrestore` command to restore files backed up with the `ufsdump` command. If you back up with the `tar` command, restore with the `tar` command. If you use the `ufsrestore` command to restore a tape that was written with another command, an error message tells you that the tape is not in `ufsdump` format.

**Check to Make Sure You Have the Right Current Directory**

It is easy to restore files to the wrong location. Because the `ufsdump` command always copies files with full path names relative to the root of the file system, you should usually change to the root directory of the file system before running the `ufsrestore` command. If you change to a lower-level directory, after you restore the files you will see a complete file tree created under that directory.

**Interactive Commands**

When you use the interactive command, a `ufsrestore>` prompt is displayed, as shown in this example:

```
# ufsrestore ivf /dev/rmt/0
Verify volume and initialize maps
Media block size is 126
Dump date: Fri Jan 30 10:13:46 2004
Dumped from: the epoch
Level 0 dump of /export/home on starbug:/dev/dsk/c0t0d0s7
Label: none
Extract directories from tape
Initialize symbol table.
ufsrestore >
```

**Troubleshooting Common Agent Container Problems in the Oracle Solaris OS**

This section addresses problems that you might encounter with the common agent container shared component. In this Oracle Solaris release, the common agent container Java program is included in the Oracle Solaris OS. The program implements a container for Java management applications. Typically, the container is not visible to the user.
The following are potential problems:

- Port number conflicts
- Compromised security for the superuser password

### Port Number Conflicts

The common agent container occupies the following port numbers by default:

- JMX port (TCP) = 11162
- SNMPAdaptor port (UDP) = 11161
- SNMPAdaptor port for traps (UDP) = 11162
- Commandstream Adaptor port (TCP) = 11163
- RMI connector port (TCP) = 11164

---

**Note** – If you are troubleshooting an installation of Oracle Solaris Cluster, the port assignments are different.

If your installation already reserves any of these port numbers, change the port numbers that are occupied by the common agent container, as described in the following procedure.

### How to Check Port Numbers

This procedure shows you how to verify the port.

1. **Become superuser or assume an equivalent role.**
   Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in *System Administration Guide: Security Services*.

2. **Stop the common agent container management daemon.**
   
   
   ```
   # /usr/sbin/cacaoadm stop
   ```

3. **Change the port numbers by using the following syntax:**
   
   ```
   # /usr/sbin/cacaoadm set-param param=value
   ```

   For example, to change the port occupied by the SNMPAdaptor from the default of 11161 to 11165, type:

   ```
   # /usr/sbin/cacaoadm set-param snmp-adaptor-port=11165
   ```

4. **Restart the common agent container management daemon.**
   
   ```
   # /usr/sbin/cacaoadm start
   ```
Compromised Security for Superuser Password

It might be necessary to regenerate security keys on a host that is running the Java ES. For example, if there is a risk that a superuser password has been exposed or compromised, you should regenerate the security keys. The keys that are used by the common agent container services are stored in /etc/cacao/instances/instance-name/security directory. The following task shows you how to generate security keys for the Oracle Solaris OS.

▼ How to Generate Security Keys for the Oracle Solaris OS

1 Become superuser or assume an equivalent role.
   Roles contain authorizations and privileged commands. For more information about roles, see “Configuring RBAC (Task Map)” in System Administration Guide: Security Services.

2 Stop the common agent container management daemon.
   # /usr/sbin/cacaoadm stop

3 Regenerate the security keys.
   # /usr/sbin/cacaoadm create-keys --force

4 Restart the common agent container management daemon.
   # /usr/sbin/cacaoadm start

Note – For the Oracle Sun Cluster software, you must propagate this change across all nodes in the cluster.
This chapter provides information on resolving file access problems such as those related to incorrect permissions and search paths.

This is a list of troubleshooting topics in this chapter.
- "Solving Problems With Search Paths (Command not found)" on page 251
- "Solving File Access Problems" on page 253
- "Recognizing Problems With Network Access" on page 254

Users frequently experience problems, and call on a system administrator for help, because they cannot access a program, a file, or a directory that they could previously use.

Whenever you encounter such a problem, investigate one of three areas:
- The user’s search path may have been changed, or the directories in the search path may not be in the proper order.
- The file or directory may not have the proper permissions or ownership.
- The configuration of a system accessed over the network may have changed.

This chapter briefly describes how to recognize problems in each of these three areas and suggests possible solutions.

**Solving Problems With Search Paths (Command not found)**

A message of Command not found indicates one of the following:
- The command is not available on the system.
- The command directory is not in the search path.

To fix a search path problem, you need to know the pathname of the directory where the command is stored.
If the wrong version of the command is found, a directory that has a command of the same name is in the search path. In this case, the proper directory may be later in the search path or may not be present at all.

You can display your current search path by using the `echo $PATH` command. For example:

```bash
$ echo $PATH
/home/kryten/bin:/sbin:/usr/sbin:/usr/bin:/usr/dt:/usr/dist/exe
```

Use the `which` command to determine whether you are running the wrong version of the command. For example:

```bash
$ which acroread
/usr/doctools/bin/acroread
```

Note – The `which` command looks in the `.cshrc` file for path information. The `which` command might give misleading results if you execute it from the Bourne or Korn shell and you have a `.cshrc` file than contains aliases for the `which` command. To ensure accurate results, use the `which` command in a C shell, or, in the Korn shell, use the `whence` command.

### How to Diagnose and Correct Search Path Problems

1. **Display the current search path to verify that the directory for the command is not in your path or that it isn’t misspelled.**
   ```bash
   $ echo $PATH
   ```

2. **Check the following:**
   - Is the search path correct?
   - Is the search path listed before other search paths where another version of the command is found?
   - Is the command in one of the search paths?

   If the path needs correction, go to step 3. Otherwise, go to step 4.

3. **Add the path to the appropriate file, as shown in this table.**

<table>
<thead>
<tr>
<th>Shell</th>
<th>File</th>
<th>Syntax</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bourne and Korn</td>
<td><code>$HOME/.profile</code></td>
<td><code>$PATH=$HOME/bin:/sbin:/usr/local/bin ...</code></td>
<td>A colon separates path names.</td>
</tr>
</tbody>
</table>
<pre><code>                        |                  | `$ export PATH`               |                              |
</code></pre>
### Solving File Access Problems

When users cannot access files or directories that they previously could access, the permissions or ownership of the files or directories probably has changed.

---

**Example 19–1** Diagnosing and Correcting Search Path Problems

This example shows that the `mytool` executable is not in any of the directories in the search path using the `which` command.

```
venus% mytool
mytool: Command not found
venus% which mytool
no mytool in /sbin /usr/sbin /usr/bin /etc /home/ignatz/bin .
venus% echo $PATH
/sbin /usr/sbin /usr/bin /etc /home/ignatz/bin
venus% vi ~/.cshrc
(Add appropriate command directory to the search path)
venus% source .cshrc
venus% mytool
```

If you cannot find a command, look at the man page for its directory path. For example, if you cannot find the `lpsched` command (the `lp` printer daemon), the `lpsched(1M)` man page tells you the path is `/usr/lib/lp/lpsched`.

---

**Table: Shell File Syntax Notes**

<table>
<thead>
<tr>
<th>Shell</th>
<th>File Where Path Is Located</th>
<th>Use this Command to Activate The Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bourne and Korn</td>
<td>.profile</td>
<td><code>.profile</code></td>
</tr>
<tr>
<td>C</td>
<td>.cshrc</td>
<td><code>hostname% source .cshrc</code></td>
</tr>
<tr>
<td></td>
<td>.login</td>
<td><code>hostname% source .login</code></td>
</tr>
</tbody>
</table>

---

**4 Activate the new path as follows:**

- Bourne and Korn: 
  ```
  $ ./.profile
  ```
- C:
  ```
  hostname% source .cshrc
  hostname% source .login
  ```

**5 Verify the new path.**

```
$ which command
```
Changing File and Group Ownerships

Frequently, file and directory ownerships change because someone edited the files as superuser. When you create home directories for new users, be sure to make the user the owner of the dot (.) file in the home directory. When users do not own “.” they cannot create files in their own home directory.

Access problems can also arise when the group ownership changes or when a group of which a user is a member is deleted from the /etc/group database.

For information about how to change the permissions or ownership of a file that you are having problems accessing, see Chapter 6, “Controlling Access to Files (Tasks),” in System Administration Guide: Security Services.

Recognizing Problems With Network Access

If users have problems using the rcp remote copy command to copy files over the network, the directories and files on the remote system may have restricted access by setting permissions. Another possible source of trouble is that the remote system and the local system are not configured to allow access.

See “Strategies for NFS Troubleshooting” in System Administration Guide: Network Services for information about problems with network access and problems with accessing systems through AutoFS.
This chapter describes the \texttt{fsck} error messages and the possible responses you can make to resolve the error messages.

\textbf{Note} – Starting with the Solaris 10 6/06 release, error messages that are displayed when you run the \texttt{fsck} command have changed. This chapter includes the revised \texttt{fsck} error messages. For information that applies to running the \texttt{fsck} command on systems that are not running at least the Solaris 10 6/06 release, refer to the error messages in sections that are labeled “Oracle Solaris 10”. For a detailed description of all the \texttt{fsck} improvements in the current release, see \textit{System Administration Guide: Devices and File Systems}.

This is a list of the information in this chapter:

- “General \texttt{fsck} Error Messages” on page 257
- “Initialization Phase \texttt{fsck} Messages” on page 259
- ”Phase 1: Check Blocks and Sizes Messages” on page 262
- ”Phase 1B: Rescan for More DUPS Messages” on page 266
- \textbf{Oracle Solaris 10}: ”Oracle Solaris 10: Phase 1B: Rescan for More DUPS Messages” on page 266
- ”Phase 2: Check Path Names Messages” on page 267
- ”Phase 3: Check Connectivity Messages” on page 274
- ”Phase 4: Check Reference Counts Messages” on page 276
- ”Phase 5: Check Cylinder Groups Messages” on page 279
- \textbf{Oracle Solaris 10}: ”Phase 5: Check Cylinder Groups Messages” on page 280
- ”\texttt{fsck} Summary Messages” on page 281
- \textbf{Oracle Solaris 10}: ”Cleanup Phase Messages” on page 281

For information about the \texttt{fsck} command and how to use it to check file system integrity, see Chapter 20, “Checking UFS File System Consistency (Tasks),” in \textit{System Administration Guide: Devices and File Systems}.
fsck Error Messages

Normally, the fsck command is run non-interactively to preen the file systems after an abrupt system halt in which the latest file system changes were not written to disk. Preening automatically fixes any basic file system inconsistencies and does not try to repair more serious errors. While preening a file system, the fsck command fixes the inconsistencies it expects from such an abrupt halt. For more serious conditions, the command reports the error and terminates.

When you run the fsck command interactively, it reports each inconsistency found and fixes innocuous errors. However, for more serious errors, the command reports the inconsistency and prompts you to choose a response. When you run the fsck command with the -y or -n options, your response is predefined as yes or no to the default response suggested by the fsck command for each error condition.

Some corrective actions will result in some loss of data. The amount and severity of data loss might be determined from the fsck diagnostic output.

The fsck command is a multipass file system check program. Each pass invokes a different phase of the fsck command with different sets of messages. After initialization, the fsck command performs successive passes over each file system, checking blocks and sizes, path names, connectivity, reference counts, and the map of free blocks (possibly rebuilding it). It also performs some cleanup.

The phases (passes) performed by the UFS version of the fsck command are:

- Initialization
- Phase 1 – Check Blocks and Sizes
- Phase 2a – Check Duplicated Names
- Phase 2b – Check Pathnames
- Phase 3 – Check Connectivity
- Phase 3b – Verify Shadows/ACLs
- Phase 4 – Check Reference Counts
- Phase 5 – Check Cylinder Groups

The next sections describe the error conditions that might be detected in each phase, the messages and prompts that result, and possible responses you can make.

Messages that might appear in more than one phase are described in “General fsck Error Messages” on page 257. Otherwise, messages are organized alphabetically by the phases in which they occur.

The following table lists many of the abbreviations included in the fsck error messages.
Many of the messages also include variable fields, such as inode numbers, which are represented in this book by an italicized term, such as \textit{inode-number}. For example, this screen message:

\textbf{INCORRECT BLOCK COUNT I=2529}

is shown as follows:

\textbf{INCORRECT BLOCK COUNT I=inode-number}

### General fsck Error Messages

The error messages in this section might be displayed in any phase after initialization. Although they offer the option to continue, it is generally best to regard them as fatal. They reflect a serious system failure and should be handled immediately. When confronted with such a message, terminate the program by entering \texttt{n(o)}. If you cannot determine what caused the problem, contact your local service provider or another qualified person.

\textbf{CANNOT SEEK: BLK disk-block-number (CONTINUE)}

**Oracle Solaris 10:**

\textbf{CANNOT SEEK: BLK block-number (CONTINUE)}

**Cause**

A request to move to the specified block number, \texttt{disk-block-number}, in the file system failed. This message indicates a serious problem, probably a hardware failure.

**Oracle Solaris 10:** A request to move to the specified block number, \texttt{block-number}, in the file system failed. This message indicates a serious problem, probably a hardware failure.

If you want to continue the file system check, \texttt{fsck} will retry the move and display a list of sector numbers that could not be moved. If the block was part of the virtual memory buffer cache, \texttt{fsck} will terminate with a fatal I/O error message.
Action
If the disk is experiencing hardware problems, the problem will persist. Run fsck again to recheck the file system.

If the recheck fails, contact your local service provider or another qualified person.

CANNOT READ: DISK BLOCK disk-block-number: I/O ERROR
CONTINUE?

Oracle Solaris 10:

CANNOT READ: DISK BLOCK block-number: I/O ERROR
CONTINUE?

Cause
A request to read the specified block number, disk-block-number, in the file system failed. The message indicates a serious problem, probably a hardware failure.

Oracle Solaris 10: A request to read a specified block number, block-number, in the file system failed. The message indicates a serious problem, probably a hardware failure.

If you want to continue the file system check, fsck will retry the read and display a list of sector numbers that could not be read. If the block was part of the virtual memory buffer cache, fsck will terminate with a fatal I/O error message. If fsck tries to write back one of the blocks on which the read failed, it will display the following message:

WRITING ZERO’ED BLOCK sector-numbers TO DISK

Action
If the disk is experiencing hardware problems, the problem will persist. Run fsck again to recheck the file system. If the recheck fails, contact your local service provider or another qualified person.

CANNOT WRITE: BLK disk-block-number (CONTINUE)

Oracle Solaris 10:

CANNOT WRITE: BLK block-number (CONTINUE)

Cause
A request to write the specified block number, disk-block-number, in the file system failed.

If you continue the file system check, fsck will retry the write and display a list of sector numbers that could not be written. If the block was part of the virtual memory buffer cache, fsck will terminate with a fatal I/O error message.

Oracle Solaris 10: A request to write a specified block number, block-number, in the file system failed.
If you continue the file system check, fsck will retry the write and display a list of sector numbers that could not be written. If the block was part of the virtual memory buffer cache, fsck will terminate with a fatal I/O error message.

Action
The disk might be write-protected. Check the write-protect lock on the drive. If the disk has hardware problems, the problem will persist. Run fsck again to recheck the file system. If the write-protect is not the problem or the recheck fails, contact your local service provider or another qualified person.

Initialization Phase fsck Messages

In the initialization phase, command-line syntax is checked. Before the file system check can be performed, fsck sets up tables and opens files.

The messages in this section relate to error conditions resulting from command-line options, memory requests, the opening of files, the status of files, file system size checks, and the creation of the scratch file. All such initialization errors terminate fsck when it is preening the file system.

Can’t roll the log for device-name.
DISCARDING THE LOG MAY DISCARD PENDING TRANSACTIONS.
DISCARD THE LOG AND CONTINUE?

Cause
fsck was unable to flush the transaction log of a logging UFS file system prior to checking the file system for errors.

Action
Answering yes means the file system operations that were in the log, but had not been applied to the file system, are lost. In this case, fsck runs the same checks it always runs and asks the following question in phase 5:

FREE BLK COUNT(S) WRONG IN SUPERBLK (SALVAGE)

Answering yes at this point recovers the blocks that were used for the log. The next time the file system is mounted with logging enabled, the log will be recreated.

Answering no preserves the log and exits, but the file system isn’t mountable.

bad inode number inode-number to ginode

Cause
An internal error occurred because of a nonexistent inode inode-number. fsck exits.

Action
Contact your local service provider or another qualified person.
fsck Error Messages

cannot alloc size-of-block map bytes for blockmap
cannot alloc size-of-free map bytes for freemap
cannot alloc size-of-state map bytes for statemap
cannot alloc size-of-lncntp bytes for lncntp

Cause
Request for memory for its internal tables failed. fsck terminates. This message indicates a serious system failure that should be handled immediately. This condition might occur if other processes are using a very large amount of system resources.

Action
Killing other processes might solve the problem. If not, contact your local service provider or another qualified person.

Can’t open checklist file: filename

Cause
The file system checklist file filename (usually /etc/vfstab) cannot be opened for reading. fsck terminates.

Action
Check if the file exists and if its access modes permit read access.

Can’t open filename

Cause
fsck cannot open file system filename. When running interactively, fsck ignores this file system and continues checking the next file system given.

Action
Check to see if read and write access to the raw device file for the file system is permitted.

Can’t stat root

Cause
fsck request for statistics about the root directory failed. fsck terminates.

Action
This message indicates a serious system failure. Contact your local service provider or another qualified person.

Can’t stat filename
Can’t make sense out of name filename

Cause
fsck request for statistics about the file system filename failed. When running interactively, fsck ignores this file system and continues checking the next file system given.

Action
Check if the file system exists and check its access modes.

filename: (NO WRITE)
Cause
Either the -n option was specified or fsck could not open the file system filename for writing. When fsck is running in no-write mode, all diagnostic messages are displayed, but fsck does not attempt to fix anything.

Action
If -n was not specified, check the type of the file specified. It might be the name of a regular file.

IMPOSSIBLE MINFREE=percent IN SUPERBLOCK (SET TO DEFAULT)

Cause
The superblock minimum space percentage is greater than 99 percent or less than 0 percent.

Action
To set the minfree parameter to the default 10 percent, type y at the default prompt. To ignore the error condition, type n at the default prompt.

filename: BAD SUPER BLOCK: message
USE AN ALTERNATE SUPER-BLOCK TO SUPPLY NEEDED INFORMATION;
e.g., fsck[-f ufs] -o b=# [special ...]
where # is the alternate superblock. See fsck_ufs(1M)

Cause
The superblock has been corrupted.

Action
One of the following messages might be displayed:

CPG OUT OF RANGE
FRAGS PER BLOCK OR FRAGSIZE WRONG
INODES PER GROUP OUT OF RANGE
INODB NONSENSICAL RELATIVE TO BSIZE
MAGIC NUMBER WRONG
NCG OUT OF RANGE
NCYL IS INCONSISTENT WITH NCG*CPG
NUMBER OF DATA BLOCKS OUT OF RANGE
NUMBER OF DIRECTORIES OUT OF RANGE
ROTATIONAL POSITION TABLE SIZE OUT OF RANGE
SIZE OF CYLINDER GROUP SUMMARY AREA WRONG
SIZE TOO LARGE
BAD VALUES IN SUPERBLOCK

Try to rerun fsck with an alternative superblock. Specifying block 32 is a good first choice. You can locate an alternative copy of the superblock by running the newfs -N command on the slice. Be sure to specify the -N option; otherwise, newfs overwrites the existing file system.

UNDEFINED OPTIMIZATION IN SUPERBLOCK (SET TO DEFAULT)

Cause
The superblock optimization parameter is neither OPT_TIME nor OPT_SPACE.
Action
To minimize the time to perform operations on the file system, type y at the SET TO DEFAULT prompt. To ignore this error condition, type n.

Phase 1: Check Blocks and Sizes Messages
This phase checks the inodelist. It reports error conditions encountered while:

- Checking inode types
- Setting up the zero-link-count table
- Examining inode block numbers for bad or duplicate blocks
- Checking inode size
- Checking inode format

All errors in this phase except INCORRECT BLOCK COUNT, PARTIALLY TRUNCATED INODE, PARTIALLY ALLOCATED INODE, and UNKNOWN FILE TYPE terminate fsck when it is preening a filesystem.

These messages (in alphabetical order) might occur in phase 1:

**block-number BAD I=inode-number**

Cause
Inode *inode-number* contains a block number *block-number* with a number lower than the number of the first data block in the file system or greater than the number of the last block in the file system. This error condition might generate the EXCESSIVE BAD BLKS error message in phase 1 if inode *inode-number* has too many block numbers outside the file system range. This error condition generates the BAD/DUP error message in phases 2 and 4.

Action
N/A

BAD MODE: MAKE IT A FILE?

Cause
The status of a given inode is set to all 1s, indicating file system damage. This message does not indicate physical disk damage, unless it is displayed repeatedly after fsck -y has been run.

Action
Type y to reinitialize the inode to a reasonable value.

BAD STATE *state-number* TO BLKERR

Cause
An internal error has scrambled the fsck state map so that it shows the impossible value *state-number*. fsck exits immediately.
Action
   Contact your local service provider or another qualified person.

fragment-number DUP I=inode-number

Oracle Solaris 10:

block-number DUP I=inode-number

Cause
   Inode inode-number contains a block number fragment-number, which is already claimed by
   the same or another inode. This error condition might generate the EXCESSIVE DUP BLKS
   error message in phase 1 if inode inode-number has too many block numbers claimed by
   the same or another inode. This error condition invokes phase 1B and generates the BAD/DUP
   error messages in phases 2 and 4.

Oracle Solaris 10: Inode inode-number contains a block number block-number, which is
   already claimed by the same or another inode. This error condition might generate the
   EXCESSIVE DUP BLKS error message in phase 1 if inode inode-number has too many block
   numbers claimed by the same or another inode. This error condition invokes phase 1B and
   generates the BAD/DUP error messages in phases 2 and 4.

Action
   N/A

DUP TABLE OVERFLOW (CONTINUE)

Cause
   fsck could not allocate memory to track duplicate fragments. If the -o p option is specified,
   the program terminates.

Oracle Solaris 10: There is no more room in an internal table in fsck containing duplicate
   block numbers. If the -o p option is specified, the program terminates.

Action
   To continue the program, type y at the CONTINUE prompt. When this error occurs, a
   complete check of the file system is not possible. If another duplicate fragment is found, this
   error condition repeats. Increase the amount of virtual memory available (by killing some
   processes, increasing swap space) and run fsck again to recheck the file system. To
   terminate the program, type n.

Oracle Solaris 10: To continue the program, type y at the CONTINUE prompt. When this error
   occurs, a complete check of the file system is not possible. If another duplicate block is found,
   this error condition repeats. Increase the amount of virtual memory available (by killing some
   processes, increasing swap space) and run fsck again to recheck the file system. To
   terminate the program, type n.

EXCESSIVE BAD FRAGMENTS I=inode-number (CONTINUE)
Oracle Solaris 10:

EXCESSIVE BAD BLOCKS I=inode-number (CONTINUE)

Cause
Too many (usually more than 10) fragments indicate an invalid disk address. If the -o p (preen) option is specified, the program terminates.

Oracle Solaris 10: Too many (usually more than 10) blocks have a number lower than the number of the first data block in the file system or greater than the number of the last block in the file system associated with inode *inode-number*. If the -o p (preen) option is specified, the program terminates.

Action
To continue the program, type y at the CONTINUE prompt. When this error occurs, a complete check of the file system is not possible. You should run fsck again to recheck the file system. To terminate the program, type n.

EXCESSIVE DUP BLKS DUPLICATE FRAGMENTS I=inode-number (CONTINUE)

Oracle Solaris 10:

EXCESSIVE DUPS I=inode-number (CONTINUE)

Cause
Too many (usually more than 10) fragments are claimed by the same or another inode or by a free-list. If the -o p option is specified, the program terminates.

Oracle Solaris 10: Too many (usually more than 10) blocks are claimed by the same or another inode or by a free-list. If the -o p option is specified, the program terminates.

Action
To continue the program, type y at the CONTINUE prompt. When this error occurs, a complete check of the file system is not possible. You should run fsck again to recheck the file system. To terminate the program, type n.

INCORRECT DISK BLOCK COUNT I=inode-number (number-of-BAD-DUP-or-missing-blocks should be number-of-blocks-in-filesystem) (CORRECT)

Oracle Solaris 10:

INCORRECT BLOCK COUNT I=inode-number (number-of-BAD-DUP-or-missing-blocks should be number-of-blocks-in-filesystem) (CORRECT)

Cause
The disk block count for inode *inode-number* is incorrect. When preening, fsck corrects the count.
**Oracle Solaris 10:** The block count for inode *inode-number* is 
`number-of-BAD-DUP-or-missing-blocks`, but should be `number-of-blocks-in-filesystem`.
When preening, `fsck` corrects the count.

**Action**
To correct the disk block count of inode *inode-number* by `number-of-blocks-in-file`, type `y` at the CORRECT prompt.

**Oracle Solaris 10:** To replace the block count of inode *inode-number* by `number-of-blocks-in-filesystem`, type `y` at the CORRECT prompt. To terminate the program, type `n`.

**LINK COUNT TABLE OVERFLOW (CONTINUE)**

**Cause**
There is no more room in an internal table for `fsck` containing allocated inodes with a link count of zero. If the `-o p` (preen) option is specified, the program exits and `fsck` has to be completed manually.

**Action**
To continue the program, type `y` at the CONTINUE prompt. If another allocated inode with a zero-link count is found, this error condition repeats. When this error occurs, a complete check of the file system is not possible. You should run `fsck` again to recheck the file system. Increase the virtual memory available by killing some processes or increasing swap space, then run `fsck` again. To terminate the program, type `n`.

**PARTIALLY ALLOCATED INODE I=*inode-number* (CLEAR)**

**Cause**
Inode *inode-number* is neither allocated nor unallocated. If the `-o p` (preen) option is specified, the inode is cleared.

**Action**
To deallocate the inode *inode-number* by zeroing out its contents, type `y`. This might generate the UNALLOCATED error condition in phase 2 for each directory entry pointing to this inode. To ignore the error condition, type `n`. A no response is appropriate only if you intend to take other measures to fix the problem.

**PARTIALLY TRUNCATED INODE I=*inode-number* (SALVAGE)**

**Cause**
`fsck` has found inode *inode-number* whose size is shorter than the number of fragments allocated to it. This condition occurs only if the system crashes while truncating a file. When preening the file system, `fsck` completes the truncation to the specified size.

**Oracle Solaris 10:** `fsck` has found inode *inode-number* whose size is shorter than the number of blocks allocated to it. This condition occurs only if the system crashes while truncating a file. When preening the file system, `fsck` completes the truncation to the specified size.
Action
To complete the truncation to the size specified in the inode, type y at the SALVAGE prompt.
To ignore this error condition, type n.

UNKNOWN FILE TYPE I=inode-number (CLEAR)

Cause
The mode word of the inode \textit{inode-number} shows that the inode is not a pipe, character device, block device, regular file, symbolic link, FIFO file, or directory inode. If the -o p option is specified, the inode is cleared.

\textbf{Oracle Solaris 10:} The mode word of the inode \textit{inode-number} shows that the inode is not a pipe, special character inode, special block inode, regular inode, symbolic link, FIFO file, or directory inode. If the -o p option is specified, the inode is cleared.

Action
To deallocate the inode \textit{inode-number} by zeroing its contents, which results in the UNALLOCATED error condition in phase 2 for each directory entry pointing to this inode, type y at the CLEAR prompt. To ignore this error condition, type n.

\textbf{Oracle Solaris 10: Phase 1B: Rescan for More DUPS Messages}

This section contains phase 1B \texttt{fsck} messages in the current release.

When a duplicate fragment is found in the file system, this message is displayed:

\begin{verbatim}
fragment DUP I=inode-number
\end{verbatim}

Cause
Inode \textit{inode-number} contains a fragment number \textit{fragment-number} that is already claimed by the same or another inode. This error condition generates the BAD/DUP error message in phase 2. Inodes that have overlapping fragments might be determined by examining this error condition and the DUP error condition in phase 1. This is simplified by the duplicate fragment report produced at the fsck run.

Action
When a duplicate block is found, the file system is rescanned to find the inode that previously claimed that block.

\textbf{Phase 1B: Rescan for More DUPS Messages}

This section contains \texttt{fsck} messages that are displayed in the Oracle Solaris 10 release and other supported Solaris releases.

When a duplicate block is found in the file system, this message is displayed:
block-number DUP I=inode-number

Cause

Inode inode-number contains a block number block-number that is already claimed by the same or another inode. This error condition generates the BAD/DUP error message in phase 2. Inodes that have overlapping blocks might be determined by examining this error condition and the DUP error condition in phase 1.

Action

When a duplicate block is found, the file system is rescanned to find the inode that previously claimed that block.

Phase 2: Check Path Names Messages

This phase removes directory entries pointing to bad inodes found in phases 1 and 1B. It reports error conditions resulting from:

- Incorrect root inode mode and status
- Directory inode pointers out of range
- Directory entries pointing to bad inodes
- Directory integrity checks

When the file system is being preened (-o -p option), all errors in this phase terminate fsck, except those related to directories not being a multiple of the block size, duplicate and bad blocks, inodes out of range, and extraneous hard links.

These messages (in alphabetical order) might occur in phase 2:

BAD INODE state-number TO DESCEND

Cause

An fsck internal error has passed an invalid state state-number to the routine that descends the file system directory structure. fsck exits.

Action

If this error message is displayed, contact your local service provider or another qualified person.

BAD INODE NUMBER FOR ‘.’ I=inode-number OWNER=UID MODE=file-mode

SIZE=file-size MTIME=modification-time DIR=filename (FIX)

Cause

A directory inode-number has been found whose inode number for “.” does not equal inode-number.

Action

To change the inode number for “.” to be equal to inode-number, type y at the FIX prompt
To leave the inode numbers for “.” unchanged, type n.
BAD INODE NUMBER FOR ‘.’ I=inode-number OWNER=UID MODE=file-mode
SIZE=file-size MTIME=modification-time DIR=filename (FIX)

Cause
A directory inode-number has been found whose inode number for “.” does not equal the parent of inode-number.

Action
To change the inode number for “.” to be equal to the parent of inode-number, type y at the FIX prompt. (Note that “.” in the root inode points to itself.) To leave the inode number for “.” unchanged, type n.

BAD RETURN STATE state-number FROM DESCEND

Cause
An fsck internal error has returned an impossible state state-number from the routine that descends the file system directory structure. fsck exits.

Action
If this message is displayed, contact your local service provider or another qualified person.

BAD STATE state-number FOR ROOT INODE

Cause
An internal error has assigned an impossible state state-number to the root inode. fsck exits.

Action
If this error message is displayed, contact your local service provider or another qualified person.

BAD STATE state-number FOR INODE=inode-number

Cause
An internal error has assigned an impossible state state-number to inode inode-number. fsck exits.

Action
If this error message is displayed, contact your local service provider or another qualified person.

DIRECTORY TOO SHORT I=inode-number OWNER=UID MODE=file-mode
SIZE=file-size MTIME=modification-time DIR=filename (FIX)

Cause
A directory filename has been found whose size file-size is less than the minimum directory size. The owner UID, mode file-mode, size file-size, modify time modification-time, and directory name filename are displayed.

Action
To increase the size of the directory to the minimum directory size, type y at the FIX prompt. To ignore this directory, type n.
DIRECTORY filename: LENGTH file-size NOT MULTIPLE OF disk-block-size (ADJUST)

Oracle Solaris 10:

DIRECTORY filename: LENGTH file-size NOT MULTIPLE OF block-number (ADJUST)

Cause
A directory filename has been found with size file-size that is not a multiple of the directory block size disk-block-size.

Oracle Solaris 10:

A directory filename has been found with size file-size that is not a multiple of the directory block size block-number.

Action
To round up the length to the appropriate disk block size, type y. When preening the file system (-o p option), fsck only displays a warning and adjusts the directory. To ignore this condition, type n.

Oracle Solaris 10:

To round up the length to the appropriate block size, type y. When preening the file system (-o p option), fsck only displays a warning and adjusts the directory. To ignore this condition, type n.

DIRECTORY CORRUPTED

I=inode-number OWNER=UID\ MODE=file-mode
SIZE=file-size MTIME=modification-time DIR=filename (SALVAGE)

Cause
A directory with an inconsistent internal state has been found.

Action
To throw away all entries up to the next directory boundary (usually a 512-byte boundary), type y at the SALVAGE prompt. This drastic action can throw away up to 42 entries. Take this action only after other recovery efforts have failed. To skip to the next directory boundary and resume reading, but not modify the directory, type n.

DUP/BAD

I=inode-number OWNER=0 MODE=M SIZE=file-size
MTIME=modification-time TYPE=filename (REMOVE)

Cause
Phase 1 or phase 1B found duplicate fragments or bad fragments associated with directory or file entry filename, inode inode-number. The owner UID, mode file-mode, size file-size, modification time modification-time, and directory or file name filename are displayed. If the -op (preen) option is specified, the duplicate/bad fragments are removed.

Oracle Solaris 10:
Phase 1 or phase 1B found duplicate blocks or bad blocks associated with directory or file entry filename, inode inode-number. The owner UID, mode file-mode, size file-size, modification time modification-time, and directory or file name filename are displayed. If the -op (preen) option is specified, the duplicate/bad blocks are removed.

Action
To remove the directory or file entry filename, type y at the REMOVE prompt. To ignore this error condition, type n.

DUPS/BAD IN ROOT INODE (REALLOCATE)

Cause
Phase 1 or phase 1B has found duplicate fragments or bad fragments in the root inode, (inode number 20, of the file system.

Oracle Solaris 10:

Phase 1 or phase 1B has found duplicate blocks or bad blocks in the root inode (usually inode number 2 of the file system.

Action
To clear the existing contents of the root inode and reallocate it, type y at the REALLOCATE prompt. The files and directories usually found in the root inode will be recovered in phase 3 and put into the lost+found directory. If the attempt to allocate the root fails, fsck will exit with: CANNOT ALLOCATE ROOT INODE. Type n to get the CONTINUE prompt. Type: y to respond to the CONTINUE prompt, and ignore the DUPS/BAD error condition in the root inode and continue running the file system check. If the root inode is not correct, this might generate many other error messages. Type n to terminate the program.

EXTRA '.' ENTRY I=inode-number OWNER=UID MODE=file-mode
SIZE=file-size MTIME=modification-time DIR=filename (FIX)

Cause
A directory inode-number has been found that has more than one entry for “.”.

Action
To remove the extra entry for “.” type y at the FIX prompt. To leave the directory unchanged, type n.

EXTRA '..' ENTRY I=inode-number OWNER=UID MODE=file-mode
SIZE=file-size MTIME=modification-time DIR=filename (FIX)

Cause
A directory inode-number has been found that has more than one entry for “..” (the parent directory).

Action
To remove the extra entry for ‘..’ (the parent directory), type y at the FIX prompt. To leave the directory unchanged, type n.
**fsck Error Messages**

**hard-link-number IS AN EXTRANEOUS HARD LINK TO A DIRECTORY filename (REMOVE)**

**Cause**

fsck has found an extraneous hard link hard-link-number to a directory filename. When preening (-o p option), fsck ignores the extraneous hard links.

**Action**

To delete the extraneous entry hard-link-number type y at the REMOVE prompt. To ignore the error condition, type n.

**inode-number OUT OF RANGE I=inode-number NAME=filename (REMOVE)**

**Cause**

A directory entry filename has an inode number inode-number that is greater than the end of the inode list. If the -p (preen) option is specified, the inode will be removed automatically.

**Action**

To delete the directory entry filename type y at the REMOVE prompt. To ignore the error condition, type n.

**MISSING '.' I=inode-number OWNER=UID MODE=file-mode SIZE=file-size**

**MTIME=modification-time DIR=filename**

**MISSING '.' I=inode-number NAME=filename**

**MTIME=modification-time DIR=filename**

**DIR=filename**

**MISSING '.' I=inode-number OWNER=UID MODE=file-mode SIZE=file-size**

**MTIME=modification-time DIR=filename**

**Cannot fix, first entry in directory contains filename**

**Cause**

A directory inode-number has been found whose first entry is filename. fsck cannot resolve this problem.

**Action**

If this error message is displayed, contact your local service provider or another qualified person.

**MISSING '.' I=inode-number OWNER=UID MODE=file-mode SIZE=file-size**

**MTIME=modification-time DIR=filename**

**CANNOT FIX, INSUFFICIENT SPACE TO ADD '.'**

**Cause**

A directory inode-number has been found whose first entry is not ".". fsck cannot resolve the problem.
Action

If this error message is displayed, contact your local service provider or another qualified person.

MISSING '..' I=inode-number OWNER=UID MODE=file-mode SIZE=file-size
MTIME=modification-time DIR=filename (FIX)

Cause

A directory inode-number has been found whose second entry is unallocated.

Action

To build an entry for ".." with inode number equal to the parent of inode-number, type y at the FIX prompt. (Note that ".." in the root inode points to itself.) To leave the directory unchanged, type n.

MISSING '..' I=inode-number OWNER=UID MODE=file-mode SIZE=file-size
MTIME=modification-time DIR=filename CANNOT FIX, SECOND ENTRY IN
DIRECTORY CONTAINS filename

Cause

A directory inode-number has been found whose second entry is filename. fsck cannot resolve this problem.

Action

If this error message is displayed, contact your local service provider or another qualified person.

MISSING '..' I=inode-number OWNER=UID MODE=file-mode SIZE=file-size
MTIME=modification-time DIR=filename CANNOT FIX, INSUFFICIENT SPACE
TO ADD '..'

Cause

A directory inode-number has been found whose second entry is not ".." (the parent directory). fsck cannot resolve this problem.

Action

If this error message is displayed, contact your local service provider or another qualified person.

NAME TOO LONG filename

Cause

An excessively long path name has been found, which usually indicates loops in the file system name space. This error can occur if a privileged user has made circular links to directories.

Action

Remove the circular links.

ROOT INODE UNALLOCATED (ALLOCATE)
Cause
The root inode (usually inode number 2) has no allocate-mode bits.

Action
To allocate inode 2 as the root inode, type y at the ALLOCATE prompt. The files and directories usually found in the root inode will be recovered in phase 3 and put into the lost+found directory. If the attempt to allocate the root inode fails, fsck displays this message and exits: CANNOT ALLOCATE ROOT INODE. To terminate the program, type n.

ROOT INODE NOT DIRECTORY (REALLOCATE)
Cause
The root inode (usually inode number 2) of the file system is not a directory inode.

Action
To clear the existing contents of the root inode and reallocate it, type y at the REALLOCATE prompt. The files and directories usually found in the root inode will be recovered in phase 3 and put into the lost+found directory. If the attempt to allocate the root inode fails, fsck displays this message and exits: CANNOT ALLOCATE ROOT INODE. To have fsck prompt with FIX, type n.

UNALLOCATED I(inode-number) OWNER=UID MODE=file-mode SIZE=file-size MTIME=modification-time type=filename (REMOVE)

Cause
A directory or file entry filename points to an unallocated inode inode-number. The owner UID, mode file-mode, size file-size, modify time modification-time, and file name filename are displayed.

Action
To delete the directory entry filename, type y at the REMOVE prompt. To ignore the error condition, type n.

ZERO LENGTH DIRECTORY I(inode-number) OWNER=UID MODE=file-mode SIZE=file-size MTIME=modification-time DIR=filename (REMOVE)

Cause
A directory entry filename has a size file-size that is zero. The owner UID, mode file-mode, size file-size, modify time modification-time, and directory name filename are displayed.

Action
To remove the directory entry filename, type y at the REMOVE prompt. This results in the BAD/DUP error message in phase 4. To ignore the error condition, type n.
Phase 3: Check Connectivity Messages

This phase checks the directories examined in phase 2 and reports error conditions resulting from:

- Unreferenced directories
- Missing or full lost+found directories

These messages (in alphabetical order) might occur in phase 3:

**BAD INODE state-number TO DESCEND**

*Cause*

An internal error has caused an impossible state *state-number* to be passed to the routine that descends the file system directory structure. *fsck* exits.

*Action*

If this occurs, contact your local service provider or another qualified person.

**DIR I=inode-number1 CONNECTED. PARENT WAS I=inode-number2**

*Cause*

This is an advisory message indicating a directory inode *inode-number1* was successfully connected to the lost+found directory. The parent inode *inode-number2* of the directory *inode-number1* is replaced by the inode number of the lost+found directory.

*Action*

N/A

**DIRECTORY filename LENGTH file-size NOT MULTIPLE OF disk-block-size (ADJUST)**

**Oracle Solaris 10:**

**DIRECTORY filename LENGTH file-size NOT MULTIPLE OF block-number (ADJUST)**

*Cause*

A directory *filename* has been found with size *file-size* that is not a multiple of the directory block size *block*. (This condition can recur in phase 3 if it is not adjusted in phase 2.)

*Action*

To round up the length to the appropriate disk block size, type *y* at the ADJUST prompt. When preening, *fsck* displays a warning and adjusts the directory. To ignore this error condition, type *n*.

**Oracle Solaris 10:**

To round up the length to the appropriate block size, type *y* at the ADJUST prompt. When preening, *fsck* displays a warning and adjusts the directory. To ignore this error condition, type *n*. 
lost+found IS NOT A DIRECTORY (REALLOCATE)

Cause

The entry for lost+found is not a directory.

Action

To allocate a directory inode and change the lost+found directory to reference it, type y at the REALLOCATE prompt. The previous inode reference by the lost+found directory is not cleared and it will either be reclaimed as an unreferenced inode or have its link count adjusted later in this phase. Inability to create a lost+found directory displays the message: SORRY. CANNOT CREATE lost+found DIRECTORY and aborts the attempt to link up the lost inode, which generates the UNREF error message in phase 4. To abort the attempt to link up the lost inode, which generates the UNREF error message in phase 4, type n.

NO lost+found DIRECTORY (CREATE)

Cause

There is no lost+found directory in the root directory of the file system. When preening, fsck tries to create a lost+found directory.

Action

To create a lost+found directory in the root of the file system, type y at the CREATE prompt. This might lead to the message NO SPACE LEFT IN / (EXPAND). If the lost+found directory cannot be created, fsck displays the message: SORRY. CANNOT CREATE lost+found DIRECTORY and aborts the attempt to link up the lost inode. This in turn generates the UNREF error message later in phase 4. To abort the attempt to link up the lost inode, type n.

NO SPACE LEFT IN /lost+found (EXPAND)

Cause

Another entry cannot be added to the lost+found directory in the root directory of the file system because no space is available. When preening, fsck expands the lost+found directory.

Action

To expand the lost+found directory to make room for the new entry, type y at the EXPAND prompt. If the attempted expansion fails, fsck displays: SORRY. NO SPACE IN lost+found DIRECTORY and aborts the request to link a file to the lost+found directory. This error generates the UNREF error message later in phase 4. Delete any unnecessary entries in the lost+found directory. This error terminates fsck when preening is in effect. To abort the attempt to link up the lost inode, type n.

UNREF DIR I=inode-number OWNER=UID MODE=file-mode SIZE=file-size
MTIME=modification-time (RECONNECT)

Cause

The directory inode inode-number was not connected to a directory entry when the file system was traversed. The owner UID, mode file-mode, size file-size, and modification time
Modification-time of directory inode inode-number are displayed. When preening, fsck reconnects the non-empty directory inode if the directory size is non-zero. Otherwise, fsck clears the directory inode.

Action
To reconnect the directory inode inode-number into the lost+found directory, type y at the RECONNECT prompt. If the directory is successfully reconnected, a CONNECTED message is displayed. Otherwise, one of the lost+found error messages is displayed. To ignore this error condition, type n. This error causes the UNREF error condition in phase 4.

Phase 4: Check Reference Counts Messages
This phase checks the link count information obtained in phases 2 and 3. It reports error conditions resulting from:
- Unreferenced files
- A missing or full lost+found directory
- Incorrect link counts for files, directories, symbolic links, or special files
- Unreferenced files, symbolic links, and directories
- Bad or duplicate fragments in files and directories
  Oracle Solaris 10:
  Bad or duplicate blocks in files and directories
- Incorrect total free_inode counts

All errors in this phase (except running out of space in the lost+found directory) are correctable when the file system is being preened.

These messages (in alphabetical order) might occur in phase 4:

**BAD/DUP**

```
type 1=inode-number OWNER=UID MODE=file-mode SIZE=file-size
MTIME=modification-time (CLEAR)
```

Cause
Phase 1 or phase 1B found duplicate fragments or bad fragments associated with file or directory inode inode-number. The owner UID, mode file-mode, size file-size, and modification time modification-time of inode inode-number are displayed.

Oracle Solaris 10:
Phase 1 or phase 1B found duplicate blocks or bad blocks associated with file or directory inode inode-number. The owner UID, mode file-mode, size file-size, and modification time modification-time of inode inode-number are displayed.
Action
To deallocate inode *inode-number* by zeroing its contents, type *y* at the CLEAR prompt. To ignore this error condition, type *n*.

(CLEAR)

Cause
The inode mentioned in the UNREF error message immediately preceding cannot be reconnected. This message does not display if the file system is being preened because lack of space to reconnect files terminates *fsck*.

Action
To deallocate the inode by zeroing out its contents, type *y* at the CLEAR prompt. To ignore the preceding error condition, type *n*.

LINK COUNT type I=*inode-number* OWNER=UID MODE=file-mode
SIZE=file-size
MTIME=modification-time COUNT link-count SHOULD BE corrected-link-count (ADJUST)

Cause
The link count for directory or file inode *inode-number* is *link-count* but should be *corrected-link-count*. The owner UID, mode *file-mode*, size *file-size*, and modification time *modification-time* of inode *inode-number* are displayed. If the -o p option is specified, the link count is adjusted unless the number of references is increasing. This condition does not occur unless there is a hardware failure. When the number of references is increasing during preening, *fsck* displays the LINK COUNT INCREASING message and then exits.

Action
To replace the link count of directory or file inode *inode-number* with *corrected-link-count*, type *y* at the ADJUST prompt. To ignore this error condition, type *n*.

lost+found IS NOT A DIRECTORY (REALLOCATE)

Cause
The entry for *lost+found* is not a directory.

Action
To allocate a directory inode and change the *lost+found* directory to reference it, type *y* at the REALLOCATE prompt. The previous inode reference by the *lost+found* directory is not cleared. It will either be reclaimed as an unreferenced inode or have its link count adjusted later in this phase. Inability to create a *lost+found* directory displays this message: SORRY. CANNOT CREATE *lost+found* DIRECTORY and aborts the attempt to link up the lost inode. This error generates the UNREF error message later in phase 4. To abort the attempt to link up the lost inode, type *n*.

NO *lost+found* DIRECTORY (CREATE)
fsck Error Messages

Cause
There is no lost+found directory in the root directory of the file system. When preening, fsck tries to create a lost+found directory.

Action
To create a lost+found directory in the root of the file system, type y at the CREATE prompt. If the lost+found directory cannot be created, fsck displays the message: SORRY. CANNOT CREATE lost+found DIRECTORY and aborts the attempt to link up the lost inode. This error in turn generates the UNREF error message later in phase 4. To abort the attempt to link up the lost inode, type n.

NO SPACE LEFT IN / lost+found (EXPAND)

Cause
There is no space to add another entry to the lost+found directory in the root directory of the file system. When preening, fsck expands the lost+found directory.

Action
To expand the lost+found directory to make room for the new entry, type y at the EXPAND prompt. If the attempted expansion fails, fsck displays the message: SORRY. NO SPACE IN lost+found DIRECTORY and aborts the request to link a file to the lost+found directory. This error generates the UNREF error message later in phase 4. Delete any unnecessary entries in the lost+found directory. This error terminates fsck when preening (-o p option) is in effect. To abort the attempt to link up the lost inode, type n.

UNREF FILE I=inode-number OWNER=UID MODE=file-mode SIZE=file-size MTIME=modification-time (RECONNECT)

Cause
File inode inode-number was not connected to a directory entry when the file system was traversed. The owner UID, mode file-mode, size file-size, and modification time modification-time of inode inode-number are displayed. When fsck is preening, the file is cleared if either its size or its link count is zero; otherwise, it is reconnected.

Action
To reconnect inode inode-number to the file system in the lost+found directory, type y. This error might generate the lost+found error message in phase 4 if there are problems connecting inode inode-number to the lost+found directory. To ignore this error condition, type n. This error always invokes the CLEAR error condition in phase 4.

UNREF type I=inode-number OWNER=UID MODE=file-mode SIZE=file-size MTIME=modification-time (CLEAR)

Cause
Inode inode-number (whose type is directory or file) was not connected to a directory entry when the file system was traversed. The owner UID, mode file-mode, size file-size, and modification time modification-time of inode inode-number are displayed. When fsck is preening, the file is cleared if either its size or its link count is zero; otherwise, it is reconnected.
Action
To deallocate inode `inode-number` by zeroing its contents, type `y` at the CLEAR prompt. To ignore this error condition, type `n`.

ZERO LENGTH DIRECTORY

Cause
A directory entry `filename` has a size `file-size` that is zero. The owner `UID`, mode `file-mode`, size `file-size`, modification time `modification-time`, and directory name `filename` are displayed.

Action
To deallocate the directory inode `inode-number` by zeroing its contents, type `y`. To ignore the error condition, type `n`.

Phase 5: Check Cylinder Groups Messages
This section contains phase 5 `fsck` messages in the current Oracle Solaris release.

This phase checks the free-fragment and used-inode maps. It reports error conditions resulting from:

- Allocated inodes missing from used-inode maps
- Free fragments missing from free-fragment maps
- Free inodes in the used-inode maps
- Incorrect total free-fragment count
- Incorrect total used inode count

These messages (in alphabetical order) might occur in phase 5:

**FRAG BITMAP WRONG** (CORRECTED)

Cause
A cylinder group fragment map is missing some free fragments. During preening, `fsck` reconstructs the maps.

Action
To reconstruct the free-fragment map, type `y` at the SALVAGE prompt. To ignore this error condition, type `n`.

**CG cg-number: BAD MAGIC NUMBER**

Cause
The magic number of cylinder group `cg-number` is wrong. This error usually indicates that the cylinder group maps have been destroyed. When running interactively, the cylinder group is marked as needing reconstruction. `fsck` terminates if the file system is being preened.
**Action**
If this occurs, contact your local service provider or another qualified person.

**CORRECT GLOBAL SUMMARY (SALVAGE)**

**Cause**
The summary information is incorrect. When preening, fsck recomputes the summary information.

**Action**
To reconstruct the summary information, type `y` at the SALVAGE prompt. To ignore this error condition, type `n`.

---

**Phase 5: Check Cylinder Groups Messages**

This section contains phase 5 fsck messages in the Solaris 10 initial 3/05 release.

This phase checks the free-block and used-inode maps. It reports error conditions resulting from:
- Allocated inodes missing from used-inode maps
- Free blocks missing from free-block maps
- Free inodes in the used-inode maps
- Incorrect total free-block count
- Incorrect total used inode count

These messages (in alphabetical order) might occur in phase 5:

**BLK(S) MISSING IN BIT MAPS (SALVAGE)**

**Cause**
A cylinder group block map is missing some free blocks. During preening, fsck reconstructs the maps.

**Action**
To reconstruct the free-block map, type `y` at the SALVAGE prompt. To ignore this error condition, type `n`.

**CG character-for-command-option: BAD MAGIC NUMBER**

**Cause**
The magic number of cylinder group `character-for-command-option` is wrong. This error usually indicates that the cylinder group maps have been destroyed. When running interactively, the cylinder group is marked as needing reconstruction. fsck terminates if the file system is being preened.

**Action**
If this occurs, contact your local service provider or another qualified person.
FREE BLK COUNT(S) WRONG IN SUPERBLK (SALVAGE)

Cause
The actual count of free blocks does not match the count of free blocks in the superblock of the file system. If the -o p option was specified, the free-block count in the superblock is fixed automatically.

Action
To reconstruct the superblock free-block information, type y at the SALVAGE prompt. To ignore this error condition, type n.

SUMMARY INFORMATION BAD (SALVAGE)

Cause
The summary information is incorrect. When preening, fsck recomputes the summary information.

Action
To reconstruct the summary information, type y at the SALVAGE prompt. To ignore this error condition, type n.

fsck Summary Messages

This section contains fsck summary messages in the current Oracle Solaris release. If you are not running at least the Solaris 10 6/06 release, these messages are displayed in the cleanup phase. For more information, see "Cleanup Phase Messages" on page 281.

Once a file system has been checked, a few summary messages are displayed.

\[
\text{number-of files, number-of-files used, number-of-files free (number-of frags, number-of blocks, percent fragmentation)}
\]

This message indicates that the file system checked contains number-of files using number-of fragment-sized blocks, and that there are number-of fragment-sized blocks free in the file system. The numbers in parentheses break the free count down into number-of free fragments, number-of free full-sized blocks, and the percent fragmentation.

***** FILE SYSTEM WAS MODIFIED *****

This message indicates that the file system was modified by fsck. There is no need to rerun fsck if you see this message. This message is just informational about fsck’s corrective actions.

Cleanup Phase Messages

This section contains fsck cleanup phase messages in the Oracle Solaris 10 release. In this release, similar messages can be found in the fsck summary phase. See "fsck Summary Messages" on page 281 for more information.
Once a file system has been checked, a few cleanup functions are performed. The cleanup phase displays the following status messages.

\[ \text{number-of files, number-of-files used, number-of-files free (number-of frags, number-of blocks, percent fragmentation)} \]

This message indicates that the file system checked contains \text{number-of files} using \text{number-of fragment-sized blocks}, and that there are \text{number-of fragment-sized blocks} free in the file system. The numbers in parentheses break the free count down into \text{number-of free fragments}, \text{number-of free full-sized blocks}, and the \text{percent fragmentation}.

\[ \text{****** FILE SYSTEM WAS MODIFIED *****} \]

This message indicates that the file system was modified by \text{fsck}. If this file system is mounted or is the current root (/) file system, reboot. If the file system is mounted, you might need to unmount it and run \text{fsck} again; otherwise, the work done by \text{fsck} might be undone by the in-core copies of tables.

\[ \text{filename FILE SYSTEM STATE SET TO OKAY} \]

This message indicates that file system \text{filename} was marked as stable. Use the \text{fsck -m} command to determine if the file system needs checking.

\[ \text{filename FILE SYSTEM STATE NOT SET TO OKAY} \]

This message indicates that file system \text{filename} was not marked as stable. Use the \text{fsck -m} command to determine if the file system needs checking.
Troubleshooting Software Package Problems (Tasks)

This chapter describes problems you might encounter when installing or removing software packages. The Specific Software Package Installation Errors section describes package installation and administration errors you might encounter. The General Software Package Installation Problems section describes behavioral problems that might not display an error message.

This is a list of information in this chapter:

- “Specific Software Package Installation Errors” on page 284
- “General Software Package Installation Problems” on page 285

For information about managing software packages, see Chapter 20, "Managing Software (Overview)," in System Administration Guide: Basic Administration.

Troubleshooting Software Package Symbolic Link Problems

In previous Solaris releases, there was no way to specify a symbolic link target in the pkgmap file when creating a software package. This meant a package or patch-related symbolic link was always followed to the source of the symbolic link rather than to the target of the symbolic link when a package was added with the pkgadd command. This created problems when upgrading a package or a patch package that needed to change a symbolic link target destination to something else.

Now, the default behavior is that if a package needs to change the target of a symbolic link to something else, the target of the symbolic link and not the source of the symbolic link is inspected by the pkgadd command.

Unfortunately, this means that some packages may or may not conform to the new pkgadd behavior.
The `PKG_NONABI_SYMLINKS` environment variable might help you transition between the old and new `pkgadd` symbolic link behaviors. If this environment variable is set to true, `pkgadd` follows the source of the symbolic link.

Setting this variable enables a non-conforming package to revert to the old behavior if set by the administrator before adding a package with the `pkgadd` command.

The new `pkgadd` symbolic link behavior might cause an existing package to fail when added with the `pkgadd` command. You might see the following error message in this situation:

`unable to create symbolic link to <path>`

If a package doesn’t install due to this problem, do the following:

1. If this is an Oracle-supplied package, call My Oracle Support and report the non-conforming package name.
2. Set the `PKG_NONABI_SYMLINKS` environment variable and try adding the package with the `pkgadd` command again.

```
# PKG_NONABI_SYMLINKS=true
# export PKG_NONABI_SYMLINKS
# pkgadd pkg-name
```

### Specific Software Package Installation Errors

**WARNING: filename <not present on Read Only file system>**

<table>
<thead>
<tr>
<th>Reason Error Occurred</th>
<th>How to Fix the Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>This error message indicates that not all of a package’s files could be installed. This usually occurs when you are using <code>pkgadd</code> to install a package on a client. In this case, <code>pkgadd</code> attempts to install a package on a file system that is mounted from a server, but <code>pkgadd</code> doesn’t have permission to do so.</td>
<td>If you see this warning message during a package installation, you must also install the package on the server. See Chapter 20, &quot;Managing Software (Overview),&quot; in System Administration Guide: Basic Administration for details.</td>
</tr>
</tbody>
</table>
General Software Package Installation Problems

<table>
<thead>
<tr>
<th>Reason Error Occurred</th>
<th>How to Fix the Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>There is a known problem with adding or removing some packages developed prior to</td>
<td>Set the following environment variable and try to add the package again.</td>
</tr>
<tr>
<td>the Solaris 2.5 release and compatible versions. Sometimes, when adding or removing</td>
<td>NONABI_SCRIPTS=TRUE</td>
</tr>
<tr>
<td>these packages, the installation fails during user interaction or you are prompted for</td>
<td></td>
</tr>
<tr>
<td>user interaction and your responses are ignored.</td>
<td></td>
</tr>
</tbody>
</table>
Index

A
accounting, 132–133, 134, 148
See also billing users
connect, 125
runacct states and, 138
/var/adm acct nite directory and, 147
/var/adm/wtmpx, 141
daily, 126, 149
See also accounting, reports
step-by-step summary of, 128
disabling, 135–136
disk, 126, 127
acctdusg program, 142
files for, 147, 148
fixing corrupted files
tacct file, 133
wtmpx file, 132, 133, 138
maintaining, 134
overview, 124
process, 125, 127, 141, 142
raw data, 126
reports, 140
daily command summary, 142, 149
daily report (tty line utilization), 140, 141
daily usage report, 141, 142
last login report, 144
overview, 140
total command summary (monthly), 144, 148
set up to run automatically (how to), 130
starting, 130
stopping, 135
types of, 131
accounting (Continued)
user fee calculation, 126
See also billing users
acct.h format files, 144, 145
acctcms command, 138, 149
acctcom command, 144, 145
acctcon command, 132, 138, 147
acctdusg command, 126, 142, 147
acctprc command, 138
acctwtmp command, 125, 127, 140
active file, 137
active file, 134, 147
active.MMDD file, 134, 147
adapter board (serial port), 22
address space map, 161, 162
alert message priority (for syslogd), 217
alphanumeric terminal, See terminals
application threads, 153, 154
at command, 116, 117, 121
-l option (list), 119
-m option (mail), 117, 118
automatic scheduling of, 107
controlling access to, 117, 121
overview, 104
denying access, 120–121
error messages, 121
overview, 104, 105, 116
at. deny file, 117, 121
description, 104
at job files, 116, 120
creating, 117, 118
deleting, 120
Index

at job files (Continued)
description, 105
displaying, 119
location of, 105
submitting, 117
at jobs directory, 107
description, 104
automatic system activity data collection, 203
automatic system activity reporting, 203, 204
automatic system task execution
  repetitive tasks, 113, 115
  single tasks, 116, 117, 121
automatically turning on quotas, 88
automating system task execution, 104
auxiliary (remote) console, 218

B
baud rate
  how to set on ttymon terminal, 41–42
  how to set with the eeprom command, 41
bidirectional modem service, 21, 38
billing users, 131
  See also charge fee script
boot archive, SMF service failure on reboot, 208
boot archive service failure
x86
  GRUB troubleshooting, 243–244
booting
  displaying messages generated during, 214
  running sadc command when, 203

C
changing
  crontab files, 109
date, 69
message of the day, 70
priority, 172, 174
  timesharing processes, 173, 174
  scheduling classes, 172
soft limit time, 98
system’s hostname, 70–71
  changing (Continued)
    UFS quotas for individual users, 99
    charge fee script, 126, 127, 142
      billing users, 131
    cpacct script, 127, 129, 130
    closewtmp command, 138
    cmsprev file, 148
Command not found error message, 251
commands, monitoring usage of, 147
Common Agent Container
  troubleshooting, 247–249
  troubleshooting in Oracle Solaris OS, 207–208
Common Agent Container shared, shared component, 247–249
Common Agent container shared component
  port numbering (how to check), 248
Common Agent containers shared component
  types of problems
    port number conflicts, 247–249
Common Agent Container shared component
  types of problems
    security around superuser password, 247–249
connect accounting, See accounting, connect
consadm command, 220–221
  disabling an auxiliary console, 222
  displaying list of auxiliary consoles (how to), 221
  enabling an auxiliary console, 220–221
  across system reboots, 221
console
  auxiliary
    enabling across system reboots, 221
console terminal, how to set the baud rate on, 41–42
console terminal baud rate, setting with eeprom command, 41
controlling
  access to at command, 104, 117, 121
  access to crontab command, 113, 115
  overview, 104
  processes, 164–165
core dump configuration, displaying with
coreadm, 226
core file name pattern, setting with coreadm, 225
core files
  automatically deleting, 117
core files
   examining with proc tools, 228
   finding and deleting, 86
core files
   managing with coreadm, 224
coreadm command, 224
   displaying core dump configuration, 226
   managing core files, 224
   setting a core file name pattern, 226
CPU (central processing unit)
   displaying information on
      time usage, 142, 160, 175
      high-usage processes, 175
crash dump directory, recovering from a full, 237
crashes, 216, 245
   customer service and, 210, 232
   displaying system information generated by, 213, 237
   examining crash dumps, 236, 237
   procedure following, 210, 245
   rebooting fails after, 239–240
   saving crash dump information, 231
   saving other system information, 214
creating
   at jobs, 118
   at jobs, 117
   crontab files, 109, 110
cron.allow file, 113, 115
cron daemon, 106, 107
cron.deny file, 113, 114
defaults, 113
crontab command, 113
   accounting scripts run by, 129, 130
   controlling access to, 113, 115
      denying access, 113, 114
      limiting access to specific users, 113, 115
      overview, 104, 113
cron daemon and, 107
   -e option (edit), 109
   -l option (list), 110, 111
   -r option (remove), 112
/var/adm maintenance and, 214
daily tasks, 105
error messages, 115
crontab command (Continued)
   files used by, 107
   overview, 104, 105
   quitting without saving changes, 109
   scheduling of, 107
crontab files
   creating, 109, 110
   creating and editing, 103–104
   defaults, 107
   deleting, 112
   denying access, 113–114
   description, 107, 108
   displaying, 110, 111
   editing, 109, 110
   location of, 107
   removing, 112
   syntax, 108
cracct.MMDD file, 138, 147
ctmp file, 147
customer service, sending crash information, 210
customizing
   system message logging, 216
   system message logging (how to), 217–218

D
daily accounting, See accounting, daily
daily tasks (scheduling with crontab), 105

date command
   accounting data and, 125, 127
dayacct file
   Daily Usage Reports and, 142
   runacct script and, 138, 149
   /var/adm/acct/nite Directory, located in, 147
defaults
   for quotas, 97–98
   message of the day, 70
   nice number, 174
   soft limit time, 98
deleting
   at jobs, 120
   core files, 86
crontab files, 112
   finding and deleting old/inactive files, 83
deleting (Continued)
  log files, 110
  old/inactive files, 105
  temporary files, 85
df command, 183, 184
  -h option, 75
  -k option (kilobytes), 184
  -t option (total blocks), 76
  examples, 75, 184
  overview, 74, 183
dial-in modem service, 21
dial-out modem service, 21
directories
  current working directory for processes, 161, 162
  displaying information about, 77, 78, 80, 82
  size of, 80, 82
  temporary, clearing out, 83, 85
disabling
  an auxiliary console with the consadm command, 222
  quotas for individual users, 100
  system accounting, 135–136
disk accounting, See accounting, disk
disk block and file limits, difference between, 88
disk drives
  displaying information about
    free disk space, 183
  finding and deleting old/inactive files, 110
disk space
  displaying information about
    df command, 183
    directory sizes, 80, 82
    disk space owned per user, 82
    file sizes, 77, 78, 80
    mount point, 184
  finding and deleting old/inactive files, 83, 86
  finding files exceeding a size limit, 80
  finding large files, 78, 79
disktacct file, 127
disktacct file, 126, 138, 147
disktacct.MMDD file, 138
dispadmin command, overview, 169
display
  date and time, 65–66
display (Continued)
  host ID, 64–65
  system’s installed memory, 65
displaying
  acct.h format files, 144, 145
  at jobs, 119
  booting messages, 214
  core dump configuration with coreadm, 226
  crash information, 213, 237
  crontab files, 110, 111
  directory information, 77, 78, 80
  file information
    file size, 77, 78
    listing newest, 83
    using the du command, 80
  file system information, 82
  linked libraries, 161, 162
  LWP information, 161
  pacctn file, 144, 145
  priority information, 160, 170
  process information (how to), 163–164
  quota information, 89, 95
  quotas, 95–96
  scheduling class information, 160, 170
  size of files, 77–78
  system activity information, 186, 204
  system information
    commands for, 60, 66
  displaying a system’s physical processor type, psrinfo -p, 66
  displaying product name information, prtcnf command, 65
dmesg command, 214
dodisk script, 126
crontab entry that runs, 130
files created by, 126, 127, 138, 147
overview, 126, 127
dtmp file, 147
DTrace facility, 208
dump volume size, for systems with ZFS root file system, 231
dumpadm, managing system crash information, 232
E
editing
crontab files, 109, 110
edquota command
disabling quotas for individual users, 100
-p option (prototype), 92
-t option (time limit), 98
overview, 89, 97
setting up user quotas, 92
EEPROM command, using to set the baud rate on the
ttymon terminal, 41
enabling
an auxiliary console with consadm
command, 220–221
auxiliary console across system reboots, 221
erg error messages
at command, 121
crash messages, 214
crash related, 213
crontab command, 115
customizing logging of, 216
log file for, 210, 213
priorities for, 217
runacct script, 134
sources of, 216
specifying storage location for, 213, 216
/etc/acct/holidays file, 130, 131
/etc/cron.d/at.deny file, 117, 121
/etc/cron.d/cron.allow file, 113, 115
/etc/cron.d/cron.deny file, 113, 114
/etc/init.d/acct file, 130
/etc/syslog.conf file, 216
/etc/utmpx file, 37
/etc/vfstab file, 90
examining a core file, with proc tools, 228
executing routine tasks automatically (overview), 104

F
failed SMF boot archive service, troubleshooting GRUB
based booting, 231
failed x86 based system reboot, SMF boot archive
service, 208
fcntl information, 161, 162, 164
fd2log file, 134, 137, 147
fee file, 127, 131, 138, 147
fees, user, 127, 131
fees (user), 142
file or group ownership, solving file access
problems, 254
file systems
disk space usage, 183
mount point, 184
restoring, 131, 142
files
accounting, 147, 148
checking access operations, 186, 187
deleting
See deleting
displaying information about
listing, 77, 78
size, 77, 78, 80, 82
displaying size of, 77–78
finding files exceeding a size limit, 80
fixing corrupted
utmpx file, 138
for setting search path, 252
fstat and fcntl information display, 161, 162, 164
size of, 77, 78, 80, 82
usage monitoring, 126, 142
find command
core files, 86
finding files exceeding a size limit, 80
old/inactive files, 83, 84
finding
and deleting old/inactive files
See deleting
files exceeding a size limit, 80
large files, 78, 79
fiscriptn file, 148
fixing, 132–133
corrupted tacct file, 133
corrupted utmpx file, 132, 133
forcing programs to quit, 244
forget root password
SPARC, 241
x86, 241, 242
fsck command, 105
fstat information, 161, 162, 164

G
getty, 23
global core file path, setting with coreadm, 224
global priorities
  defined, 169
displaying, 170
GRUB based booting
  system crashes
    failed SMF boot archive service, 231
troubleshooting SMF boot archive service failure, 208

H
holidays file, 131
host name, changing, 70–71
hostid command, 60

I
initializing quotas, 93
initializing UFS quotas, 89
interrupting programs, 245
iostat command
  basic information display, 182
  overview, 181

K
kernel thread
  scheduling and, 160
  structures, 154, 160
killing processes, 162, 165
klwp structure, 154
kmdb utility, 241–242, 242–243
kthread structure, 154

L
large files, 79
last login report, 144
lastdate file, 138, 147
lastlogin command, 138
line discipline, 37
line usage
  connect accounting and, 125
daily report and, 140
/var/adm/acct/nite/lineuse file, 149
line usage monitoring, 141
lineuse file, See /var/adm/acct/nite/lineuse file listing
  files and directories, 77, 78, 83
  processes, 162
  processes being executed, 163
localeadm command, 56
lock file, 134, 138
lock1 file, 138
log file, 147
log files, deleting automatically, 110
log.MMDD file, 147
login monitoring
  last login, 138, 144, 149
  number of logins, 142
  time usage, 125, 127, 142
loginlog file, 138, 148, 149
ls command
  checking directory sizes, 77
  -l option (size in bytes), 78
  -s option (size in blocks), 78
  -t option (newest files), 83
LWPs (lightweight processes)
  defined, 153
  displaying information on, 161
  processes and, 153, 154
  structures for, 154

M
managing serial ports with SAF, task map, 34
managing system crash information, with dumpadm, 232
managing system resources, road map, 55
maximums
  finding files exceeding maximum size, 80
  nice number, 174

mdb utility, 236, 237

memory
  command for displaying information on, 60
  example of displaying information on, 65
  process structures and, 154
  shared
    process virtual memory, 154
    virtual
      process, 154
  message of the day (MOTD) facility, 70
  messages file, 210, 216
  messages.n file, 213
  minimums, nice number, 174
  modems, 29–30
    bidirectional service, 21, 38
    defined, 21
    dial-in service, 21
    dial-out service, 21
    different ways to use, 21
    overview of Serial Ports Tool, 26
    Serial Ports Tool modem templates, 27

monacct script
  crontab entry that runs, 130
  files used/produced by, 148, 149
  monthly command summary and, 142, 144
  runacct script and, 128, 137
  scheduling running of, 129
  monthly command summary, 144
  monthly tasks (scheduling with crontab), 105
  MOTD (message of the day) facility, 70
  motdf file, 70
  motdf file, 70

nice command, 173, 174, 175
  nice number, 160, 174
  nlsadmin command, 40

O
  Oracle Solaris process accounting and statistics
    improvements, 123–124
  owtmpx file, 148

P
  pacctn file
    displaying, 144, 145
    monitoring size of, 127, 137
    overview, 127, 138, 147
    panic messages, 213
    password security conflicts, superuser, Common Agent
      Container, 247–249
  per-process core file path, setting with coreadm, 224
  perf file, 203
  performance
    activities that are tracked, 155
    automatic collection of activity data, 203
    file access, 186, 187
    manual collection of activity data, 186, 204
    process management, 153, 162, 174
    reports on, 186
    system activity monitoring, 155, 186, 203
    tools for monitoring, 155
  pfiles command, 161, 162, 164
  pflags command, 161, 162
  pkill command, 162, 165
  pldd command, 161, 162
  pmadm command
    adding a ttymon service with, 46
    described, 36
    disabling a ttymon service with, 49
    enabling a ttymon service with, 49
    listing a ttymon service with, 47
  pmap command, 161, 162
  port, 30–31
    defined, 21

N
  networks, recognizing access problems, 254
  new features
    CPU performance counters, 152
    enhanced pfiles tool, 151
    svcadm enable system/sar:default
      command, 203
processes, scheduling classes (Continued)
  designating, 171
  displaying information on, 160, 170
  priority levels and, 169, 172
signal actions, 162
stack trace, 162
stopping temporarily, 161
structures for, 154, 160
terminology, 153, 154
tool commands, 162
tracing flags, 161, 162
trees, 161, 162, 164
troubleshooting, 175
PROCFS (process file system), 161
product name for a system, displaying with `prtconf` command, 65
programs
disk-dependency of, 187
forcing to quit running, 244
interrupting, 245
`prtconf` command, 60, 65
displaying a system's product name, 65
`ps` command, 159, 163
fields reported, 160
overview, 159
-`c` option (scheduling class), 160, 175
-`ecl` option (global priority), 170
-`ef` option (full information), 162, 163
`psig` command, 161, 162
`psrinfo` command option to identify chip
  multithreading features, `psrinfo -p`, 56
`pstack` command, 161, 162
`ptacctn.MMDD` file, 139
`ptime` command, 162
`ptree` command, 161, 162, 164
`pwait` command, 162
`pwdx` command, 161, 162, 164

Q
quitting, forcing programs to quit, 244
`quot` command, 82
`quotacheck` command, 89, 93
`quotaon` command, 89, 94

quotas
  changing, 97
  checking for exceeded, 95–96
  checking for exceeded user quotas, 95
  consistency checking, 93
  displaying, 95–96
  displaying information on, 95
  initializing, 93
  overview, 87
  prototype for multiple users, 92
  removing, 97
  setting hard limits for, 88
  setting soft limits for, 88
  setting up, 88
  turning on, 88
  turning on, example of, 94
  turning on and off, 89
  user
    changing for individual users, 99
    checking for exceeded, 95
    setting up, 92
    verifying, 89, 95, 98
quotas, UFS
  changing the soft limit default, 97–98
  checking on file systems, 96–97
  initializing, 89
  using, 87–88
quotas file, 88, 90

R
real-time processes, changing class of, 172
reason records, process accounting, 128
rebooting
  and `/var/adm/wtmpx` file, 127
  connect accounting and, 125
daily report and, 140
  fails after crash, 239–240
rebooting an x86 based system, boot archive SMF service fails, 208
`reboots` file, 138, 147
recognizing network access problems, 254
recover root password
  SPARC, 241
recover root password (Continued)
  x86, 241, 242
recovering from a full crash dump directory, 237
remote printing, user fee calculation for, 131
removing, crontab files, 112
repetitive system tasks, 113
repquota command, 95, 96–97
requirements, UFS quotas, 89

restarting
  processes, 161
  runacct script, 134, 138, 139
restore, using matching commands, 247
rm command, 84, 85
root crontab file, 126
root password, forget
  SPARC, 241
  x86, 241, 242
  GRUB based booting, 241–242
rprt .MMDD file, 127, 149
rpt .MMDD file, 138, 148
RS-232-C, See serial port
runacct script, 132–133, 137
  crontab entry that runs, 137
diagnostics file, 137
error messages, 134
error protection, 137, 138
failure of, 134
files used/produced by, 147, 149
fixing corrupted files, 132, 133, 138
last time executed, 147
monacct script and, 137
overview, 127
prdaily script and, 137, 148, 149
progress file, 137
restarting, 134, 138, 139
  scheduling running of, 129
  states of, 138
  user fee calculation and, 131, 142
runaway processes, 175

S
sa1 command, 203
sa2 command, 203, 204
SAC, See Service Access Controller
sacadm command, 44
  adding a ttymon port monitor with, 42
described, 35
  killing a ttymon port monitor with, 43
starting a ttymon port monitor with, 44
sadc command, 203, 204
sad file, 204
SAF, See Service Access Facility
sar command, 186, 204
  description of all options, 205
  options listed, 205
  overview, 186, 204
    -a option (file access), 186, 187
    -A option (overall performance), 203, 205
    -b option (buffers), 187
    -c option (system calls), 189
    -e option (ending time), 205
    -f option (file to extract data from), 205
    -i option (interval), 205
    -m option (interprocess communication), 194
    -p option (page-in/page faults), 195
    -q option (queue), 196, 197
    -r option (unused memory), 197
    -s option (starting time), 205
    -u option (CPU usage), 198
    -v option (system tables), 199
    -y option (terminal devices), 202
saving crash dump information, 232
scheduling
  See also crontab command, atcommand
  one-time system tasks, 105, 116
  repetitive system tasks, 105, 106
scheduling classes, 169
  changing, 172
  changing priority of, 172, 174
designating, 171
displaying information on, 160, 170
priority levels and, 169, 172
search path, files for setting, 252
security
  at command, 117
crontab command, 113
security around superuser password
  Common Agent Container shared component troubleshooting, 247–249
serial port
  adapter board, 22
  defined, 22
Service Access Controller, 36
Service Access Facility
  overview of, 23, 34
  programs associated with (table), 35
  services controlled by
    states of (table), 52
  uses for, 23, 34
setting, a core file name pattern with coreadm, 226
setting terminals and modems, task map, 25–26
setting the baud rate on the t tmon console terminal,
  how to, 41–42
shared memory, process virtual memory, 154
shutacct script, 127, 128
shutdown command, 128
shutdows
  monitoring, 127, 128, 140
size
  directory, 80, 82
  file, 77, 78, 80, 82
soft limit time, changing, 97–98
software packages, troubleshooting installation of, 283
Spacct n.MMDD file, 138, 147
startup command, acct, 126
statefile file, 134, 138, 147
states, (runacct script), 138
stopping
  processes temporarily, 161
  system accounting, 135
superuser (root) password, forget
  SPARC, 241
  x86, 241, 242
svcadm enable system/sar:default command, 203
swap volume size, for systems with ZFS root file
  system, 231
sys crontab, 204
sys log.conf file, 216
syslogd daemon, 213
system accounting, task map, 128–129
system activities
  automatic collection of data on, 203
  list of activities tracked, 155
  manual collection of data on, 204
system crash information, managing with
  dumpadm, 232
system message logging (customizing), 216
system messages
  customizing logging (how to), 217–218
  specifying storage location for, 213
system resources
  accounting
    overview, 124
  monitoring, 117
    accounting, 134
    accounting system for, 148
    automatic, 117
  crashes, 216, 245
  UFS quotas, 96–97
  overview, 153
system tasks
  See also crontab command, at command
  scheduling
    one-time tasks, 105, 116
    repetitive tasks, 105, 106
    scheduling automatically, 104
T
  tacct file, 133, 138, 148
  tacct.MMDD file, 133, 138, 148
  tacctn file, 148
  tacctprev file, 148
technical support
  crash dump analysis, 232
  sending crash information, 210
temporary directories, 83, 85
terminals, 28–29
  alphanumeric, 21
  defined, 21
  distinctions between types of, 21
  line usage
    connect accounting and, 125
    daily report and, 140, 141
Index

terminals, line usage (Continued)
   /var/adm/acct/nite/lineuse file, 149
overview of Serial Ports Tool, 26
process controlling, 160
Serial Ports Tool item descriptions, 26
troubleshooting bad lines, 141
time
   CPU usage, 142, 160, 175
   processes accumulating large amounts of CPU
time, 175
timesharing processes
   changing scheduling parameters, 172
   priority of
      changing, 172, 173, 174
      overview, 169
   range of, 169
   /tmp/diskacct.MMDD file, 138
tmp/wtmp file, 138, 147, 148
tools
   for displaying process information, 161
   process, 162
   system performance monitoring, 155
total command summary, 144, 148
tracing flags, 162
troubleshooting
   Common Agent Container, 207–208
   Common Agent container shared component
types of problems, 247–249
   processes, 175
   software package installation/removal, 283
tty lines, 141
troubleshooting failed SMF boot archive service
   x86
      GRUB failsafe archive, 243–244
troubleshooting system crashes
   GRUB
      boot archive service fails on reboot, 231
troubleshooting tasks, where to find, 209
tty lines
   troubleshooting bad lines, 141
   tty lines, usage monitoring, 140
tty lines
   usage monitoring, 125, 141, 148
   ttyadm command, 39
ttymon port monitor, 44
   (figure), 37
   adding, 42
   bidirectional modem service and, 38
   killing, 43
   starting, 44
ttymon service
   adding, 46
   disabling, 49
   enabling, 49
   listing, 47
tuning, daily command summary and, 142
turnacct switch script, 127
turnacct switch script, 137
turning off quotas, 89
turning on quotas, 89
turning on quotas, example of, 94

U
UFS file systems, displaying information about, 82
UFS quota, command, 95
UFS quota command, 89
UFS quotas, 96–97, 97–98
   changing for individual users, 99
   checking, 95
   disabling for individual users, 100
   requirements, 89
   soft limit time
      changing, 98
UNIX systems (crash information), 231
user fees, 126, 127, 142
See also billing users
user logins
   last login monitoring, 138, 144, 149
   number of logins, 142
   time monitoring, 125, 138, 142
user-mode priority, 169
user ownership of disk space, 82
user processes
   changing priority, 173, 174
   CPU usage by, 142
   priority of, 169
user quotas, 95–96
user quotas (Continued)
  changing for individual users, 99
  disabling for individual users, 100
  setting up, 92
user structure, 154
using UFS quotas, 87–88
/usr/adm/messages file, 210
/usr/bin/mdb utility, 236
/usr/proc/bin directory, 161, 162
utmp2wtmp command, 138

V
/var/adm/acct directory, 147
/var/adm/acct/fiscal directory, 147
/var/adm/acct/nite/active file, 134, 137, 147
/var/adm/acct/nite/active.MMDD file, 137, 147
/var/adm/acct/nite/cms file, 138
/var/adm/acct/nite/cms file, 147
/var/adm/acct/nite/ctacct.MMDD file, 138, 147
/var/adm/acct/nite/cmsg file, 147
/var/adm/acct/nite/daycms file, 138, 147, 149
/var/adm/acct/nite/daytaacct file, See daytaacct file
/var/adm/acct/nite/directory, 147
/var/adm/acct/nite/disktaacct file, 127
/var/adm/acct/nite/disktaacct file, 126, 127, 138, 147
/var/adm/acct/nite/disktaacct.MMDD file, 138
/var/adm/acct/nite/fd2log file, 134, 137, 147
/var/adm/acct/nite/lastdate file, 138, 147
/var/adm/acct/nite/lineuse file, 134, 137, 148
/var/adm/acct/nite/lock file, 134, 138, 147
/var/adm/acct/nite/lock1 file, 138
/var/adm/acct/nite/log file, 147
/var/adm/acct/nite/log.MMDD file, 147
/var/adm/acct/nite/owtmpx file, 148
/var/adm/acct/nite/reboots file, 138, 147
/var/adm/acct/nite/statefile file, 134, 138, 147
/var/adm/acct/nite/tmpwtmp file, 138, 147, 148
/var/adm/acct/nite/wtmp.MMDD file, 138, 148
/var/adm/acct/nite/wtmperror file, 147
/var/adm/acct/nite/wtmperror.MMDD file, 147
/var/adm/acct/sum/cms file, 138
/var/adm/acct/sum/cms file, 148, 149
/var/adm/acct/sum/daycms file, 138
/var/adm/acct/sum/daycms file, 148, 149
/var/adm/acct/sum/directory, 127, 147, 148
/var/adm/acct/sum/loginlog file, 138, 148, 149
/var/adm/acct/sum/rprt.MMDD file, 149
/var/adm/acct/sum/rprt.MMDD file, 127
/var/adm/acct/sum/rpt.MMDD file, 138
/var/adm/acct/sum/tacct file, 138
/var/adm/acct/sum/tacct file, 133, 148
/var/adm/acct/sum/tacct.MMDD file, 138, 148
/var/adm/acct/sum/tacct.MMDD file, 133
/var/adm/acct/sum/tacctprev file, 133, 148
/var/adm/acct/sum/tacctprev file, 133, 148
/var/adm/dtmp file, 147
/var/adm/fee file, 127, 131, 138, 147
/var/adm/messages file, 210, 216
/var/adm/messages.n file, 213
/var/adm/sa/sadd file, 204
/var/adm/Spacct.MMDD file, 138, 147
/var/spool/cron/atjobs directory, 104, 105, 107
/var/spool/cron/crontabs directory, 107
/var/spool/cron/crontabs/root file, 106, 126
/var/spool/cron/crontabs/sys crontab, 204
verifying
  quotas, 98
  UFS quotas, 95
vfstab file, quotas and, 90
vmstat command
  fields in reports from, 178
  overview, 178

W
Watchdog reset! message, 213
weekly tasks (scheduling with crontab), 105
what to do if boot archive service fails x86
  booting the failsafe archive, 243–244
wtmp.MMDD file, 138, 148
wtmperror file, 147

299
Index

wtmperror.MMDD file, 147
wtmpfix command, 132, 138, 147
wtmpx file, 132–133
daily report and, 140
fixing corrupted, 132, 133, 138
overview, 127, 132, 138
shutdowns and, 128

Z
ZFS, swap area and dump volume requirements, 231