man pages section 3: Networking Library
Functions

Part No: 821-1466-10

ORACI_G November 2011

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual
property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software,
unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is
applicable:

U.S. GOVERNMENT RIGHTS

Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or
"commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication,
disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent
applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007).
Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently
dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall
be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any
liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered
trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and
its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation
and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

111206@25097

Contents

2 =) - L3OO 15

Networking Library Functions

ACCEPT(BSOCKET) vttt ettt et se s tese e s ese e esensesesesesensenessneseneanenn
ACCEPT(BXINET) ettt ettt ettt ettt es st eseaseseae s eseaseseas s esensesessesesensenean

DEr dECOUE(BLIDAP) ..ottt b bbb st s bbb s s ss s st et ebesessnasanensas 24
Der eNCOAE(BLIDAP) oottt ettt bbb bt as s st ese bt teasasananne 29
DINA(BSOCKET) .eovoieiieieierieirieieiririesteeeeassetses e esessssss s s s e e esesssssssessssasesssssssesessssssssesssssssesessssssensssseses 33
DANA(IXINET) ¢eooeoeeeoeeeeoeoeoeeeeeeeesesssssessssesssssssssssssesssssssssssssssssesssssssesssssessessesesssseesessseseseseseseeseeeeeeeeeeeeeeee 35
DY teorder(3SOCKET) .ottt ettt et b ettt s st esebetessasassesenes 38
CLdAP_CLOSE(BLIDAP) oottt ettt et b bbb e s bbbt beasanasnne 39
CLdAp_OPEN(BLIDAP) .ottt ettt b e ettt s s s s ae b b sesennannne
Cldap SEATCH S(BLDAP) ..ottt ettt s bbbt b s n s anaas
cldap_setretryinfo(3LDAP)

CONNECTE(BSOCKET) ..ottt st et sess et ese s ese s eseseesesenessensesesensesensanenn
CONNECT(BXINET) .ottt ettt ettt ettt s et et e s eas et ese et ese s esess s essnsesensesesssesensenenn
BLALBNSLY e eeeeeeeeeeeeeseeeseseeeeseseseseseeeeeeeeseeseseeeeesesseeeeeseeeseeeeeeeeeeeeeeeeseeeeeeeeeeeeeeeeeee 49
ALPi_ ArptYPE(BDLPI) oottt bbbttt s bbbt sesenenas 51
dlpi bind(3DLPI) ...

ALPL CLOSE(BDLPI) ..ottt ettt ettt ae b bese e a et sebesasasasaanssssesesasasasnnnans
dlpi_ disabnotify(BDLPI) ..ottt ettt ettt ettt eb st s ettt s s s seaeas 54
dlpi_ enabmMUTTI(B3DLPI) oottt ettt ae bbb b s s bbbt asasas s s senenas 55
dlpi_enabnotify(BDLPI) ..ottt ettt s st be s s s b sa s se s s s s senanas
AUPL FAGBDLPI) oooooeeeeeeeee e seeeeeeeeesee e seeeseeseese e eee s seeeesessesessessesssessseesesesseeseesesee
dlpi_get physaddr(3DLPI)

ALPL ATEYPE(BDLPI) ooveueeiiiiieteicteteeeete ettt a ettt a bbbt s bbbt e e e st sesesasesnnnans
AIPL_ ANTO(BDLPI) ettt bbb st et b s s s as s s sesens 61
dlpi 1AnKNAME(3DLPI) ..cooioiiieieieeieieteieteeecee ettt a et b st as bbb s s aeaee 65

Contents

ALPi MACTYPE(BDLPI) ottt et b bbb bbbt as s s b benean 66
ALPL_ OPEN(BDLPI) ettt ettt ettt ettt ettt sttt seseae e s s s s s seneas 67
dlpi promisSCON(3DLPI) ..ottt b bbbt bbb s anaee 69
ALPL FECV(BDLPI) .ottt s e a bbb s as s b bbb s s s ananaene 70
ALPL_ SENA(BDLPI) oottt ettt ettt s b e bbb esesesasasesennssesesesesasas 72
dlpi_set physaddr(3DLPI) ...cccciioeirireieeeceeteest sttt ee et s s st s s s se e ssas s st sesesens 74
dlpi_set tAMEOUT(BDLPI) ..cccocoiiiiiiiieeieete ettt ettt se st b bbb bbb sess s ansesesesenans 75
ALPL_STrerrOr(BDLPI) ..ottt et s bbbt ss s s e s s sesssnasasesesesesesnns 76
dlpi_unbind(3DLPI)

AUPL WATK(BDLPI) ottt et be bbbttt as s bbb bessssasanesesesesenenas
DNSServiceBrowSE(3DINS_SD) .ottt ettt sas e teas st ss s s s sasssesesensesensssenenes 79

DNSServiceConstructFULINGME(B3DINS_SD) ..ottt rene s 81
DNSServiceCreateConnection(3DNS_SD)
DNSServiceEnumerateDomains(3DNS_SD)

DNSServiceProcesSRESUTE(BDINS_SD) ..ottt s e s e seaean
DNSServiceQueryReCOord(3DNS_SD) ..ottt ettt ae s ae e
DNSServiceRecontirmReCOrd(3DINS_SD) ..ottt ese s eseseseseesesesesenens 89
DNSServiceRefDeallocate@(3DINS_SD) ..ottt es s sse e seneaes 90

DNSServiceRefSockFD(3DNS_SD)
DNSServiceRegister(3DNS_SD)
DNSServiceRESOLVE(ZDNS_SD) ..ottt ettt sttt s s e s s s enenenes 94
eNANOSTENT(BXINET) eovieieieieet ettt ettt a et ss st e s s s et sasse s s e s ssensssanenes
eNANELENT(BXINET) oottt ettt a s et esese s eseasesess s eseaseseneane
endprotoent(3XNET)
NASEIVENT(3XINET) oottt ettt ettt eter et s enssaess s snensetenesseneans
ETNEIS(BSOCKET) ettt ettt ettt ettt ettt et s et ese st e st et ess et esenseseaseseseans
TreeaddrinTO(BXINET) ...ttt ettt ee et ve et ese e s eseesesensesenseseaensessasesenssesensenn
a1 STrerrOr(BXINET) ittt ettt b ettt s s b b eae s s s s s s sesesenn
getaddrinfo(3SOCKET)
gEthOSTDYNAME(BINSL) .viuiuieieiieieieteteteieette ettt ettt s bbbt se s s s s esesasaseansssesesesanas
gethoSTNAME(BXINET) .ottt ettt et a et et es e et enseaessesesesetenseseneans
9etifaddrS(BSOCKET) .ottt ettt sttt ettt s et es s s asassesesesesean
getipnodebyname(3SOCKET) .ottt ettt st ss s es s sssnssesesesesesanan 127
getipsecalgbyName(3INSL) ... ieeieeeeeeereeeeeete ettt ettt rese e ese s e s eseeeesenseseseeseseneetensereneans 133
getipsecprotobyNaME(BINSL) ...ttt ettt ettt s bbbt an bbb esesean 136
getnameiNTO(BXINET) couiiiiceeeeeeee ettt ettt ettt sttt et ae st as et nnane 138

man pages section 3: Networking Library Functions « November 2011

Contents

getnetbyname(3SOCKET) ...ttt ettt b bbbt se b ts s s assesesesesas 141
GEtNETCONTIG(BINSL) voririeetieiieeeeteteteteeete ettt ettt ettt s bbb ae s s b s esebebeaeasasasesesenesas
GETNETPATIN(BINSL) vttt ettt ettt ettt s st et bt et eae s st eses et et eaeanasasesenesess
getpeername(3SOCKET)

getpeerNAME(BXINET) .ottt ettt ettt et ettt et esese et ese st eaneseneaes
getprotobyname(3SOCKET) ..ottt ettt s s s ss e s s s sesesanas 152
GETPUDTLCKEY(BINSL) vttt ettt ettt et et es et et ensesese et esesseseasesessnsesensesensesesensesenen

Gt rPCHYNAME(BINSL) ovieeeeieeteeeeetee ettt ettt ettt s et et s s esseseae s et ensesensesesensenenseseseneesenes
getservbyname(3SOCKET)

getSOCKNAME(BSOCKET) ...ouiiitieieeceeeeeeeeeeee ettt et s et st as et ese et esseassesesensesenessesenns
getSOCKNAME(3XINET) ..cvoviuitieiiieietetcteeettt ettt b ettt b s es b bsasan s s s esenesas
EtSOCKOPT(BSOCKET) c.vvvieieiieieretcteteeette ettt ettt bbbt b bbbt asas s s sesesenas
GEtSOCKOPT(BXINET) ..ottt ettt b ettt as sttt s ettt as s s sesesesan
getsourcefilter(3SOCKET)

95S_acCept SEC CONTEXT(3GSS) wuiiriiniriiieieeieieietetreeeee sttt ane 178
9SS _ACAUITE CTrEA(BGSS) wuiiieieieieieieieieirtetete ettt ettt et bbbt e et et esebebasesasessesesesas 184
0SS_A0A_CTEUA(3GSS) woviiiretitieiiiestet ettt ettt et be s e s b bbb esessas st esebebeseseasasssesesenas 187
gss_add 0id set MemMDEIr(BGSS) .ottt s bt s s b s nan 191
gss_canonicalize name(3GSS)

g5S_COMPAre NAME(3GSS) .uiivieieieietereeeitiete ettt ettt es b besesessse st esesesasessssassesesasas
95S_CONTEXT TAME(BGSS) wuiriiieieretereteietet ettt ettt b bbb s bbb anasassesesenan
gss_create empty 0id SET(3GSS) .ottt ettt ae s 196
gsS_delete SEC CONTEXT(3GSS) ittt ettt aee 197
gss_display name(3GSS)

955 _disSplay STATUS(BGSS) .ottt ettt b bbb s sttt as s s eseseaas 201
95S_duplicate NAME(3GSS) .ottt et b et s bbb e e s s esesenas 203
95S_eXPOTt _NAME(3GSS) wuiuieiiieieieteteeieetet ettt ettt s bbb b ss st s s b e besessasassesesenas 204
g5S_export SEC_ CONTEXT(BGSS) oottt s et s s seseaan 205
gss_get mic(3GSS)

95S_AMPOTt NAME(3GSS) vttt b et b bbbt sesesebesesa s s sesesenas 209
95S_import SEC_ CONTEXT(BGSS) oottt b e s s s s nas 211
955 _1iNdicate MECNS(BGSS) oottt ettt ettt et s sttt an st seseseas 213
9SS _init SEC CONTEXT(BGSS) wimiiiiiiririiiceeee ettt 214
95S_1NQUIre CONTEXT(BGSS) .ottt ettt s et s bbb ss s s s sesesenas 221
9SS _ANQUITE CrEA(BGSS) wuimiiieierereteteeeeet ettt ettt b ettt as bbb bbb anasasessesesens 224
gss_inquire _cred by MeCh(3GSS) ..ot 226

Contents

gss_inquire _mechs for NAME(3GSS) ...ttt se e se s an 228
gss_inquire _names for MECR(3GSS) ..ttt es e seaeas 230
95S_ 010 10 STI(B3GSS) oottt bbbt bbb s ane

gss_process_context token(3GSS)
9SS _release DUTTEI(BGSS) .ottt b e s s s s s nas
9SS _release CreA(BGSS) woiieeiiirieie ettt ettt e bbb se s ssssesesesesasnanssesesesesanas
g5S_1release NAME(BGSS) .oireereceeiiriet ettt s bbbt ss s bbb e s sasessanssesesesesenas
9SS _1elease 0L10(3GSS) ittt bbbt b bbbt an s s s s senas
gss_release _oid set(3GSS)
9SS _STOIE CrEA(3GSS) ittt ettt b ettt b bbb ssasan s s sesesenas
9SS _STI 10 0LA(BGSS) vttt ettt ettt st et b st asan s s b enenens
gss_test 0id set MemMDEIr(3GSS) ..ottt an
9SS _UNWIAP(BGSS) ettt ettt ettt a ettt s bbbt b teas st et esesetetsanasassesesesess
gss_verify mic(3GSS)
0SS WEAP(BGSS) ottt ettt bbb b ettt s s s e ane
9SS Wrap_$1z€ TIMIT(BGSS) wiveiiiiiriririeieieteeie ettt ettt s st s s sa e s s sesesanan
NEONT(BXINET) ettt ettt ettt ettt e s e eseasesese s et ensesesssesensesensesenensesensnas
iCmP6 FATEEIr(BSOCKET) oottt bbbt as s s s bbb anananas
if nametoindex(3SOCKET)
if NametoindeX(BXINET) .ottt ettt s e be st ae bt ss s s s s s sesasasannanas
ZNET(BSOCKET) ettt ettt es st etsse et ese e st ensssesensesessesessesesenseseneanas
AiNEt6 OPT(BSOCKET) oottt ettt ettt s st et ae s s st sesebetsanananas
INETE FEN(BSOCKET) oottt ettt ettt s bbb se s s s s sesasasanannns
inet_addr(3XNET)
inet cidr NtOP(BRESOLYV) oottt sttt s s b et ae s s s bbb s ananas
INET NTOP(BXINET) ittt ettt ettt e s bbb se e s s sesesabasannnnns
TAAP(BLIDAP) ..ttt ettt et s et e st eseae s esensesens et esensesenseneaesenenserensnan
1dap_abandon(BLIDAP) ...ttt ettt s bbbt ananas
ldap_add(3LDAP)
1dap_bEr_ Tre@(BLIDAP) ..ttt ettt s bbb se s e s sesebasennanas
1dap_DINA(BLIDAP) ettt ettt a bbbt s bbbt nnanas
1dap_ ChArSEE(BLIDAP) oottt ettt b ettt s s s et et anananas
1dap_ COMPATE(BLIDIAP) ..ottt ettt ettt s bbb aesesebenanannns
1dap_control Tre@(BLDAP) ettt et s bbbt ae bbbt ananas
1dap_ dELETE(BLIDAP) ottt s bbbt s s b ebebeteananas
1dap_ diSPEMPL(BLIDAP) .ottt ettt s bbb s s sebasasannns

man pages section 3: Networking Library Functions « November 2011

Contents

1dap_ entry2teXt(BLIDAP) .ottt ettt ettt seneaeaas 306
1dAP_ €I TOT(BLIDAP) oottt ettt s bbb s s s s s eseseseteaessasassenenes 309
1dap first attribUt@(BLIDARP) ..ottt aee 313
ldap_first entry(3LDAP)
1dap_first MeSSAGE(BLIDAP) ..ottt ettt et se b eaesenas 316
1dap_ Friendly(BLDAP) .ottt ss sttt s s bbb e sss s s esebesesannassnsnnsas 317
1dap_get AN(BLIDAP) ..ottt ettt sttt s bbb s bbb s se s s s nenas 318
ldap_get_entry controlS(3LDAP) ...ttt se s s 320
ldap_getfilter(3LDAP)
ldap_get 1ang vValueS(BLDAP) ..ottt s s nan 323
1dap_get OPTION(BLIDAP) ..ottt ettt s bbbt sesenenan 325
1dap_get ValUES(BLIDAP) ..ottt s ettt s s esesenas 331
1dap_ MeMCAChE(BLIDAP) ..ottt ettt bbbttt s s b et asanas s sesesesas

ldap _memfree(3LDAP) ...
1dap MOAiTY(BLIDAP) .ottt b s st b s ae s sens

1dap_ MOArdN(3LIDAP) ..ottt ettt ettt a bbbt b b be s nnenes

1dap_0PEN(BLIDIAP) .ottt ettt bbbt b bt s s a s s bbb s sennasasnenas

1dap_parse reSULT(BLDAP) ..ottt ettt s bbbt s s s nan 343
ldap result(3LDAP)
ldap_search(3LDAP)
1dap_Searchprefs(BLDAP) ..ttt sttt bbb bt s s esesenas 349
1dAP_SOTT(BLIDAP) oottt ettt ettt s s b et et s st sesebesessnsasasenenes 351
ldap_ufn(3LDAP)
ldap_url(3LDAP)
1dap_ VErSiON(BLIDAP) ..ottt ettt ettt b sttt s an s enenenas 358
1isten(3SOCKET)
TASTEN(BXINET) ettt ettt ettt ettt ee et ens et essesesessesensesessnsesensesenesesenseneaen
NETALT(BINSL) oottt ettt s ettt s e et e s ese et es e s ssesesssse s esesessensssesensesensssesenneseneas
ns_sign(3RESOLV)
FEMA(BSOCKET) ittt ettt sttt ettt et be s s as s s ebebesesesssssnssesesebesaseasasanssasas

FECV(BSOCKET) oottt s st a e sese et enseaes e s esensesensesesenseseneanenn

FEEV(BXINET) oottt ettt ettt s sttt s et e s et et ene st es et ssentesensssessnsssenesanen

FECVTIFOM(BXINET) vttt ettt ettt ettt s et ese st s et ss et eae et eseasesenssesenseseaen

FECVMSG(BXINET) ettt ettt es et ese et enseseseesesesesensesensnsesensesenen

FESOLVET(BRESOLY) ..ottt s et a et se st ess st s s sseneesensssssensssensanenn 385
FEXEC(B3SOCKET) oottt ettt ettt ettt st ettt ssss s s s et et et eseasssasaseseseseseasnsnssesenenas 392

Contents

Lo oL (3]) IO
FPCOINA(BINSL) oottt ettt a st ettt bbbt asas st s s e s et et eteasas s b esesebetessasasesesesesesas
rpc_clnt_auth(3NSL)

rpc_clnt _calls(3NSL)
FPC_CUNT_ CrEAtE(BINSL) wouiiiiieieieieteteeee ettt s ettt s bbb e e e e st besesasasasnssssesesesasas
FPC_CONEIOL(BINSL) oottt ettt a ettt st s bbb e se e st s sesebasasasnassssesesesas
FPC_GSS_GEECTEU(BINSL) wuiuiiiieieieteteteieettete ettt a bt bese e s bbb esesasasessassesesesasas

rPC_gSS_get @rTOI(BINSL) wouiiieieieieeceeeeie ettt ettt s ettt s st s b sessssanasesesesesenas
rpc_gss_get _mechanisms(3NSL)
rpc_gss_get principal NAame(3INSL) ...ttt es s asses bbb s ns
rpc_gss_max_data 1ength(BINSL) ...ttt s bbb s s bbb s nas
rpc_gss MECh t0 01A(BNSL) oottt ettt a ettt s bbbt as s s esesenenan
rPC_g5s_ SECCIEATE(BINSL) .ottt ettt st a ettt bbb be s as s s s esesesesan
rpc_gss_set callback(3NSL)
rpc_gss set defaults(3NSL)
rpc_gss_set svc_name(3NSL)
FPCSEC_GSS(BINSL) wuiuiieieieeeieiiiietete ettt ettt s ettt s st s s et ebesesaas s s s esesasasesnanssesesesesas
FPC_SOC(BINSL) vttt ettt s bttt b bbb st as s bbb et et etessas s s besebeseteasasasasesesesas
rpc_svc_calls(3NSL)
FPC_SVC_CrEATE(3INSL) iiuiieiiieieieteteteeettet ettt ettt s bbb e se e s s s s sesasasesnas s ssesesesas
FPC_SVC_EFT(BINSL) oottt ettt ettt b ettt s bbbt ssss s bbb esesesetsanasasesesenesas
FPC_SVC_ ANPUT(BINSL) vttt ettt ettt ettt s et ettt as s s st sebetessasesesesesesesan
FPC_SVC_ TEY(BINSL) oottt ettt s ettt se e a s e b ebase e st s sesebesasasnasssesesesasas
rpc_xdr(3NSL) ...
LR =R (12 2L T
FUSEIS(BRPOC) ottt ettt ettt ettt et s et et e seas s ess b ebe s et ess et esensesessseseasesensnas
FWALT(BRPEC) vttt ettt et ese et es et eseas s et ensesessesesessetensesessesesensesensnsesensesensanas
SAST AUTNOTIZE T(BSASL) oottt s bt as s s s s bbb anananes
sasl auxprop(3SASL)
sasl _auxprop_add PLUGIN(BSASL) .ottt ae e s s s s s s s sssnsnanes
SaST _AUXPrOP_GETCTEX(BSASL) ittt ettt s s b s s asananes
5aST _AUXPrOP_ reQUEST(BSASL) w.ooieieeeriretceeeeeeeeetete ettt ettt et b et s s st se s st ananenes
sasl _canonuser_add PLUGIN(3SASL) .ottt eae e ss et s s ansnenes
SAST _CANON_USET T(BSASL) 1ottt ettt ettt et b s b et as s bbb s b sasesnnnanas
SaST Chalprompt T(BSASL) .ottt ettt ettt s et as s s s s b s tsanananas
SAST CHECKAPOP(BSASL) oottt ettt ettt e a bbb ese e sseaesesasananannas

man pages section 3: Networking Library Functions « November 2011

Contents

SAST CHECKPASS(BSASL) oottt ettt ettt s bbb ese s s s s sesebeseananas 488
sasl client_add PLUGIN(BSASL) .ottt ettt be st asananas 490
SAST CLAieNT ANIT(BSASL) wiiioeiiieeceetete ettt et et bbb s bbb snsnanas 491
SAST CLIENT NEW(3SASL) oottt ettt sttt s et et se e s s esebesananens 492
sasl client plug init t(3SASL) .ottt eenes 494
SAST CLIeNT STATT(BSASL) wouoooiiieeeeier ettt ettt eaenn 495
SAST _CLIeNT STEP(BSASL) ittt ettt s bbb s bbb esennnnas 497
SAST _dECOUR(BSASL) vttt ettt sttt s bbb ebess s as s s sebebesesessssasasesesebesesnnnas

sasl _decode64(3SASL)
sasl dispose(3SASL)
SAST dONE(BSASL) vttt ettt bbbttt s b s bbb se s asn s eb et ebennanas
SAST ENCOUR(BSASL) vttt b ettt b bbbt s as s b s et e b esessss s assesebebesesnanas
sasl _encode64(3SASL)
sasl _erasebuffer(3SASL)
SAST errdetail(BSASL) .ottt b st b bbbt b s nananas
SAST EITOTS(BSASL) ittt ettt sttt ettt se e a et et b ese e e e e nesesebesenanens
SAST_€rrSTriNG(BSASL) oottt ettt b et s bbb ese s s s s st esebesenennas
5aST getCallback T(BSASL) .ottt ettt s bbbt s s bbb aeananas 510
sasl getopt t(3SASL)
SAST_gETPATN_T(BSASL) oottt sttt s e n bbb esenannns
SAST GETPIOP(BSASL) oottt ettt b e et a bbb bt s bbb s ananas
SAST getrealm t(BSASL) ittt ettt s ettt s ettt s s sttt aeananas
sasl _getsecret t(3SASL)
sasl getsimple t(3SASL)
5aS1 global TiSTMECN(BSASL) wouiioieiiierereretieieeetete ettt s ettt s s s bbb anananas
SAST _ZATE(BSASL) ettt et bbbttt b b s s ettt s s s s ananeas
SAST _TiSTMECN(BSASL) oottt ettt e s bbb s bebebesenennas
SAST 100 T(BSASL) vttt ettt et b bbb a bbbt et as s bbb eteananas
sasl server add plugin(3SASL)
SAST SEIVEr INIT(BSASL) wooooriiiceeer ettt ettt s s enens
SAST _SEIVEr NEW(3SASL) oottt ettt e s bbbt se bbb sesnanas
sasl server plug init T(BSASL) .ttt ettt ettt be b anenas 528
SAST SEIVEr STArT(BSASL) .ottt ettt eaenes 529
SAST _SErVEr STEP(BSASL) oottt ettt s bbb ae e s bbbt snanas 531
sasl server_userdb checkpass t(3SASL) .ottt 532
sasl server_userdb Setpass T(3SASL) .ttt 533

Contents

10

SAST SET ALLOC(BSASL) oottt ettt s bbb as s s s s b beteanananas 534
SAST SETEITON(BSASL) oottt ettt ettt ettt a bt ts e s s st seteseteanananas 535
SAST SO MULEX(BSASL) oottt et a bbb se et aesesesasasannns 536
sasl _setpass(3SASL)

sasl _setprop(3SASL)

SAST UTTBVETITY(BSASL) ottt sttt e a bbb se st s b sasasasnnnas 540
SAST VEriTYTile T(BSASL) vttt ettt et s bbb se s s s s sasasennnnes 541
SAST _VEISION(BSASL) eoieieieieeeectcceeete ettt a et s bbb ss s s s s esabesesnanas
sctp_bindx(3SOCKET)

SCtp cONNECEX(BSOCKET) ..ottt s bbb as s s s b st anananas 545
sctp getladdrs(BSOCKET) ..ottt s sttt s s se b st anananas 547
sctp getpaddrs(BSOCKET) ..ottt ettt s st as s st se s bt anananas 549
SCtp 0pt_AiNTO(BSOCKET) ..ottt ettt bbbt as s s st se b st anananas 551

sctp_peeloff(3SOCKET)
sctp_recvmsg(3SOCKET)
SCEP_ FECVV(BSOCKET) ettt sttt ettt et ae bbb se e s s sesasasasannns
SCEP_SENA(BSOCKET) .ottt ettt et s bbb ss s s s s sesasasesnnnas
sctp_sendmsg(3SOCKET)
sctp_sendv(3SOCKET)
sdp_add_origin(BCOMMPUTIL)ccoceeereirieieieietere ettt sese s sssssssesese s s s ssssssesesesesannas
sdp_clone _sesSi0N(BCOMMPUTIL) ...ccooiiieieieiererereecieete e se b s bbb ananas
sdp_delete all field(3COMMPUTIL)
sdp_delete media(BCOMMPUTIL) ...ccccciiivirieirieietereeieeese et e e eessesse s b s s s s sesesasesanens
sdp_find attribute(3COMMPUTIL)
sdp_find media(BCOMMPUTIL)ccooeeriiiiieieeereteteeeeeete et ese s b ae s s bbb seananas

sdp_find media rtpmap(3COMMPUTIL) ...cccoeeeeeeiiiieieiete ettt sessesesesesesesanens 585
sdp_new_sesSioN(3COMMPUTIL)cccceiiiirerieiereteeeetete et esssssse s b se s sese s b s sannas

SAP_PArSE(BCOMMPUTIL) ...oouiiiiiieeereteteteeeteeetet ettt et s bbbt se bbb eseananas

sdp_session to str(3COMMPUTIL)
SECUTE_TPC(BINSL) 1vitieiiiiieieteteieteteieet st ettt sttt be et ss s s b e b ebesesessasassesebesesesessssasssesesesasasannns
SENA(BSOCKET) vttt ettt ettt es et et sseesese e st ensssesensesessessasesenenseseneaeas
LYY Le [0 23 1) TR
SENAMSG(BXINET) .ottt ettt ettt a et et ae et ese s s easesessesesenseseaseseneseseasnan
SENATO(BXINET) ..oeieeeeeeeeeeeeeteeet ettt ettt ettt e et et e s s e te s et eseesese s et ensesesesesensessnsesenensesenens
SETSOCKOPT(BXINET) .ottt ettt es s r st se et ens st esesssessessnsssenesseseneanan
SHUTAOWN(BSOCKET) ..ttt et s sttt ese st s s st eteasasaseseseseseseteaennanas

man pages section 3: Networking Library Functions « November 2011

Contents

ShUTAOWN(BXINET) .ttt ettt ettt esestes et sesssaesesaebe s ssensssesssesensssesenenennas 617
sip_add branchid t0 VIA(BSIP) ...ttt es s s s eas s es s s s s seasananas 619
SIP AAA TrOM(BSIP) oottt et b bbb bbb s s se bbb esnananens
sip_add_header(3SIP)
Sip_add PAramM(3SIP) .cccicioieieieieieicieeirirt et etsee sttt ettt ae et et b s ae et et b esenanens
Sip_add request TINE(BSIP) ettt ettt a s b e ese e s s s sesesesasannns 631
SIP_DrANCRLIA(BSIP) oovieieiiiieieietetccee ettt ettt b e ae s s s s bbb e sess s assnsesebesesennns
SIP_CLONE MSG(BSIP) ettt b et s bbb a s s e bt esessssssassnesesebesesnnnas

sip_copy_start_line(3SIP)
sip_create dialog_ req(3SIP)
SiP_ Create OKACK(BSIP) .ottt ettt b bbb bbbt as s s b et esennanas
Sip_create resSPONSE(3SIP) ..ottt et b bt aeananas
Sip_delete dialog(BSIP) ..ttt s et s bbbt s s s s b beseananas
sip delete start line(3SIP)
Sip_enable COUNTEIS(3SIP) .ottt bbb bbbt b s s snanas

sip_enable trans 10gging(3SIP) .ttt s e senens 648
sip_get _contact display_Name(3SIP) ...ttt se s ananas 651

SIP_GET CSEU(BSIP) ottt bbb bbbt b et n bbbt ananas
sip get dialog state(3SIP)
SIP_GET NEAUEI(BSIP) w.oueiiieieeeietceeetiet ettt sttt ettt b bbb s s s s s e b e s esesessssasasesesesesesannns
sip_get header value(3SIP)

SiP T MSG LEN(BSIP) oottt ettt s bbb ese e s s st st eseananas
SIP_GET NUM VIA(3SIP) oottt ettt s bbb b e as st esebesenanens
sip_get param_value(3SIP)
sip_get request METhOA(BSIP) ..ottt et a bbbt ananas 672
Sip_get request Uri STr(3SIP) ettt bbbt nnanas 674
SIiP_GET reSP AESC(BSIP) .oovoiiceieieiiieieietete ettt b et se s s bbb se e as s bbb esennnnas

SIP_GET TrANS(BSIP) ettt ettt et b et b e s bbbt ananas

sip_get trans method(3SIP)
Sip_get Uri PArSEA(3SIP) ..ottt ettt s bbb s bbb esenanens
SEIP GUIA(BSIP) oeeeerereteteeeeisiet ettt ettt b bbbt bbb b ebesess s anasesebesesesessssasanesesebebennanas
SiP _NOTA dIATOG(BSIP) ottt ettt s bbb ese s s s s sesebeseannnas
SIP_NOTA MSG(BSIP) vttt ettt sttt ettt be et et b esesa e s snsesebesesanens
SIP _NOTA TrANS(BSIP) weouiiiieecectetceeetreetet ettt ettt b e eae s s bbb esesessssasassesebesesnnnas
sip_init_conn_object(3SIP)

SIP 1S SIP UTL(BSIP) wouiuieieircieieiieeeece ettt ettt bbbt bbbt bbb snananens

Contents

12

Sip MSY 1S reQUEST(ZSIP) oottt ettt b ettt se bttt ananas
SIP MSG TO STI(BSIP) cuoieiieeereteeeieeeeteeet ettt ettt ettt et b et bbb as s s s s esesebebeanananas
SIP NEW MSG(BSIP) eriiieiceiteiee ettt bbbt bbb s s as bbb s nsnanas

SIP _PArSE UFL(BSIP) oottt bbb st b s
sip_process_new_packet(3SIP)
Sip_regiSter SENt DY (BSIP) .ottt a et s s ae bbb e snanas
SIP_SENAMSG(BSIP) wevieieiiieieieictetceeet ettt sttt b bbb bbb sess s s s s bebebesesesssssssesesebasennnnas
SIP_ STACK ZNIT(BSIP) cuooieieieieteeeeieieiieieie ettt ettt s bbb as e s s b et bessss s s s sesesabesennanas
slp_api(3SLP)....
SLPCTLOSE(BSLP) oottt ettt ettt s st e s st st et ens et ensesesese et ensesesensesensetenessesenns
SLPDELATTIS(BSLP) ettt ettt ettt st e st es e e st enssaese s eseneeteneseenenns
SLPDEIEG(BSLP) .ottt ettt ettt sttt s ettt s et ettt an ettt es bt as s s s s enerenan
SLPESCAPE(BSLP) ettt ettt a ettt ettt ettt an sttt ea bt an s s st eneaenn
SLPFindAttrs(3SLP)
SLPFINASCOPES(BSLP) vttt ettt ettt ettt b ettt et et ess et ese st e s esesnane
SLPFINASTVS(BSLP) oottt ettt ettt ettt et as et ese st easesess et esensesennesereans
SLPFINASIVTYPES(BSLP) vttt ettt s et et ensesese e et ensenessesenensesenseseneans
S I =YY (1) 09 5 IO
SLPGetProperty(3SLP)
SLPGetRefreshInterval(3SLP)
SLPOPEN(BSLP) .ttt ettt et es et ea et s et et ene et eae et et et et ent et ete s enene et eneeeenenes
SLPPATSESIVURL(BSLP) .ottt ettt ettt s sttt sae s s s et tenesaenenns
SLPREG(BSLP) ettt ettt ettt ae e st b b se e st et ebebebesese s e st et esesesesennan st eaesanas
SLPSetProperty(3SLP)
SIP_ STFEITOT(BSLP) ittt ettt ettt b ettt as s s s bebebeteananas
SLPUNESCAPE(BSLP) ettt ettt ettt ettt ettt ettt as et ese st e st et ess et ese s s eanesesnane
SOCKATMATK(BXINET) .ouivieieeeeeieteeeeteteeeteee ettt eese et e ese et esessesese s esensesensesesensessnsesenensesensann
SOCKET(BSOCKET) ..ovieieetieeeceeeeeeeeetete ettt ettt es et e st ese e st enssseseasssensessssesenenseseneanas
socket(3XNET)
SOCKEEPALT(BSOCKET) oottt ettt s et s s bbb ese e s s sesesesabasannnnas
SOCKETPALF(BXINET) .ottt ettt ettt est et s et e e esese s st ensssesssesensensnsesenensesensanan
SPFAY(BSOCKET) oottt ettt a ettt bbbt ese s s st s et et esessas s sesesesebesesnanas
T ACCEPT(BINSL) ittt ettt ettt ae e et et be et et e b e b besesa s e e st esebasasesarnassesesesas
T ALLOC(BINSL) ittt ettt et bbbt b e se st sebebebesesessas s s esebeseseananasssesesasas
T DINA(BNSL) ottt ettt ettt s st b st a s b st nrnaesetne
T CLOSE(BINSL) ettt ettt ettt ettt ettt et e b e b b e s asa s e et et esebebasenasessesesesas

man pages section 3: Networking Library Functions « November 2011

Contents

T CONNECT(BINSL) 1ttt ettt ettt ve e s bbb as bbb e bt bessasasbesesesebeteasasasssesesesas 766
T @FTNO(BNSL) 1ottt et es ettt b et st as s s b esebebeseseas s s s et esetesesensasnenenas 770
T EITOT(BNSL) ottt ettt bbb st be bbb s s st et s s s sananasaeaetesens 772
t free(3NSL)

T GETINTO(BINSL) wuiiiieieteietcieettst ettt ettt ettt e et e st ebesesase s s esesesesesesansssasnesas 776
T getProtaddr(BINSL) cociciiiieieieieteteicte ettt ettt be et b bbb se e s s s b besesnsnan s esesesas 780
T gETESTATE(BINSL) ittt ettt b et et b et ebesessas st et esebesessasasssasesesas 782
T TEASTEN(BINSL) ittt ettt ettt s a e bbb b ss s s s esebebesessssas st s esesebesesensasasnnnas 784

t_Tlook(3NSL)
t_open(3NSL)
T OPEMGME(BINSL) wuieiiieietetetceeetet ettt et ve e a e bbb as st bbbt ebessasas s s esesebeseasasasssesesenas 793
T FCV(BINSL) ettt ettt s bbbttt b bbb et ae s a bbb e b et eaetennasnnenes 800
T rCVEONNECT(BINSL) ottt ettt a ettt s bbb bt as s s s e s bt easasasasseseseses 803
t rcvdis(3NSL)
t rcvrel(3NSL)
T rCVIrELAGTA(ZINSL) cioieieeeeiiiiiiete ettt ettt ettt ettt ese bbb e s e s s esebebesesansnnannenes 810
T FCVUAATA(BNSL) ittt a e bbb s b bbb esessas s s esesebesessasasssesesesas 812
T FCVUAETT(BNSL) ittt ettt b bbbt as b bbbt eseaessas b s esesebeseasasasssesesesas 815
t rcvv(3NSL)
T FCVVUAATA(BINSL) oottt a bbb s bbb s s e s asas et esesesesesansssannnnas
T USNA(BINSL) oottt ettt b bttt s bbb b b s s e bbb e b ebese s s as b b e b et eseseanasasnenes
T SNAALIS(BINSL) 1ottt ettt ettt a bbbt sesebebebesessasasesesesesesesensasasenenas
T SNATEL(BINSL) ettt ettt ettt as e a st b b bese e e s esebesesesaseasassesesesesesansnsasnnsns
t_sndreldata(3NSL) ...
T SNAUAATA(BNSL) ettt ettt ettt s bbb s bbbt ebeaeasas s s esebebeteasasasesesesenas
T SNAV(BINSL) ottt bbb a bbb a st et s b as s s et s nens
T SNAVUAATA(BINSL) oottt ettt b e bbb bt e s s ess s asesebesesesesessasanssesas
T STIEITOI(BNSL) ittt ettt s bbb s bbbt ebeasasas s s esebebeseanasassssesenas
t sync(3NSL)
T SYSCONT(BINSL) wuiiiieieteieteieeetstet ettt ettt et et a s b bbb s st esebebesesessasasesesesesesesansssassnasns

T UNDINA(BINSL) 1ottt ettt s ettt a bbbt ss s bbb ebebessssasassebesebesesennasasnenes

TXTRECOrdCreate(BDINS _SD) ..ottt et ae e st ese s ssassessenessssennanns 849
XAT(BNSL) ovverreeeeee e eeeeeeeeeee e seseesesssee e eeeeesee e eseseses e se s eeenneeeeeee 851
XAT_ @AMIN(BNSL) oottt ettt sttt a bbb essss s s s esesesebessssssssesesesesasasnanans 853
XAT COMPTLEX(BINSL) oottt ettt et a bbb bbbt ssss s s s esesebesessasasasnenas 855
XAT CrEATE(BINSL) ottt ettt ettt b bbb e st eaebesebasasa et et esesesasasnnnaes 858

Contents

14

XAT SIMPTLE(BINSL) wuvvreteteieeietetet ettt ettt a bbbt bbb bbb tsas st ebesesesetsanasasesesesesess
YPCUNT(BINSL) 1ottt ettt ettt be e sa s b et s e e se et esebebesasasass st esesesasannsnassesesasas
YP_UPAATE(BINSL) wuiiieieteteieiieitetet ettt ettt eb bbb ae s s e b ebebesesnssas b s esesesaanasasassesesasas

man pages section 3: Networking Library Functions « November 2011

Overview

Preface

Both novice users and those familar with the SunOS operating system can use online man pages
to obtain information about the system and its features. A man page is intended to answer
concisely the question “What does it do?” The man pages in general comprise a reference
manual. They are not intended to be a tutorial.

The following contains a brief description of each man page section and the information it
references:

Section 1 describes, in alphabetical order, commands available with the operating system.

Section 1M describes, in alphabetical order, commands that are used chiefly for system
maintenance and administration purposes.

Section 2 describes all of the system calls. Most of these calls have one or more error returns.
An error condition is indicated by an otherwise impossible returned value.

Section 3 describes functions found in various libraries, other than those functions that
directly invoke UNIX system primitives, which are described in Section 2.

Section 4 outlines the formats of various files. The C structure declarations for the file
formats are given where applicable.

Section 5 contains miscellaneous documentation such as character-set tables.

Section 7 describes various special files that refer to specific hardware peripherals and device
drivers. STREAMS software drivers, modules and the STREAMS-generic set of system calls
are also described.

Section 9E describes the DDI (Device Driver Interface)/DKI (Driver/Kernel Interface),
DDI-only, and DKI-only entry-point routines a developer can include in a device driver.

Section 9F describes the kernel functions available for use by device drivers.

Section 9S describes the data structures used by drivers to share information between the
driver and the kernel.

Below is a generic format for man pages. The man pages of each manual section generally
follow this order, but include only needed headings. For example, if there are no bugs to report,

15

Preface

16

there is no BUGS section. See the intro pages for more information and detail about each
section, and man(1) for more information about man pages in general.

NAME

SYNOPSIS

PROTOCOL

DESCRIPTION

IOCTL

This section gives the names of the commands or functions
documented, followed by a brief description of what they
do.

This section shows the syntax of commands or functions.
When a command or file does not exist in the standard
path, its full path name is shown. Options and arguments
are alphabetized, with single letter arguments first, and
options with arguments next, unless a different argument
order is required.

The following special characters are used in this section:

[] Brackets. The option or argument enclosed in
these brackets is optional. If the brackets are
omitted, the argument must be specified.

Ellipses. Several values can be provided for the
previous argument, or the previous argument
can be specified multiple times, for example,
“filename..”.

Separator. Only one of the arguments
separated by this character can be specified ata
time.

{1} Braces. The options and/or arguments
enclosed within braces are interdependent,
such that everything enclosed must be treated
asaunit.

This section occurs only in subsection 3R to indicate the
protocol description file.

This section defines the functionality and behavior of the
service. Thus it describes concisely what the command
does. It does not discuss OPTIONS or cite EXAMPLES.
Interactive commands, subcommands, requests, macros,
and functions are described under USAGE.

This section appears on pages in Section 7 only. Only the
device class that supplies appropriate parameters to the
ioctl(2) system call is called ioct1 and generates its own
heading. ioct1 calls for a specific device are listed
alphabetically (on the man page for that specific device).

man pages section 3: Networking Library Functions « November 2011

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1man-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ioctl-2

Preface

OPTIONS

OPERANDS

OUTPUT

RETURN VALUES

ERRORS

USAGE

EXAMPLES

ioctl calls are used for a particular class of devices all of
which have an io ending, such as mtio(71).

This section lists the command options with a concise
summary of what each option does. The options are listed
literally and in the order they appear in the SYNOPSIS
section. Possible arguments to options are discussed under
the option, and where appropriate, default values are
supplied.

This section lists the command operands and describes
how they affect the actions of the command.

This section describes the output - standard output,
standard error, or output files — generated by the
command.

If the man page documents functions that return values,
this section lists these values and describes the conditions
under which they are returned. If a function can return
only constant values, such as 0 or -1, these values are listed
in tagged paragraphs. Otherwise, a single paragraph
describes the return values of each function. Functions
declared void do not return values, so they are not
discussed in RETURN VALUES.

On failure, most functions place an error code in the global
variable errno indicating why they failed. This section lists
alphabetically all error codes a function can generate and
describes the conditions that cause each error. When more
than one condition can cause the same error, each
condition is described in a separate paragraph under the
error code.

This section lists special rules, features, and commands
that require in-depth explanations. The subsections listed
here are used to explain built-in functionality:

Commands
Modifiers
Variables
Expressions
Input Grammar

This section provides examples of usage or of how to use a
command or function. Wherever possible a complete

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mtio-7i

Preface

18

ENVIRONMENT VARIABLES

EXIT STATUS

FILES

ATTRIBUTES

SEE ALSO

DIAGNOSTICS

WARNINGS

NOTES

BUGS

example including command-line entry and machine
response is shown. Whenever an example is given, the
prompt is shown as example%, or if the user must be
superuser, example#. Examples are followed by
explanations, variable substitution rules, or returned
values. Most examples illustrate concepts from the
SYNOPSIS, DESCRIPTION, OPTIONS, and USAGE
sections.

This section lists any environment variables that the
command or function affects, followed by a brief
description of the effect.

This section lists the values the command returns to the
calling program or shell and the conditions that cause these
values to be returned. Usually, zero is returned for
successful completion, and values other than zero for
various error conditions.

This section lists all file names referred to by the man page,
files of interest, and files created or required by commands.
Each is followed by a descriptive summary or explanation.

This section lists characteristics of commands, utilities,
and device drivers by defining the attribute type and its
corresponding value. See attributes(5) for more
information.

This section lists references to other man pages, in-house
documentation, and outside publications.

This section lists diagnostic messages with a brief
explanation of the condition causing the error.

This section lists warnings about special conditions which
could seriously affect your working conditions. This is not
a list of diagnostics.

This section lists additional information that does not
belong anywhere else on the page. It takes the form of an
aside to the user, covering points of special interest.
Critical information is never covered here.

This section describes known bugs and, wherever possible,
suggests workarounds.

man pages section 3: Networking Library Functions « November 2011

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

REFERENCE

Networking Library Functions

accept(3SOCKET)

Name

Synopsis

Description

Return Values

Errors

20

accept — accept a connection on a socket

cc [flag ... 1 file ... -lsocket -lnsl [library ...]
#include <sys/socket.h>

int accept(int s, struct sockaddr *addr, socklen t *addrlen);

The argument s is a socket that has been created with socket(3SOCKET) and bound to an
address with bind(3SOCKET), and that is listening for connections after a call to
listen(3SOCKET). The accept () function extracts the first connection on the queue of
pending connections, creates a new socket with the properties of s, and allocates a new file
descriptor, us, for the socket. If no pending connections are present on the queue and the
socket is not marked as non-blocking, accept () blocks the caller until a connection is present.
If the socket is marked as non-blocking and no pending connections are present on the queue,
accept () returns an error as described below. The accept () function uses the netconfig(4)
file to determine the STREAMS device file name associated with s. This is the device on which
the connect indication will be accepted. The accepted socket, ns, is used to read and write data
to and from the socket that connected to #s. It is not used to accept more connections. The
original socket (s) remains open for accepting further connections.

The argument addr is a result parameter that is filled in with the address of the connecting
entity as it is known to the communications layer. The exact format of the addr parameter is
determined by the domain in which the communication occurs.

The argument addrlen is a value-result parameter. Initially, it contains the amount of space
pointed to by addr; on return it contains the length in bytes of the address returned.

The accept() function is used with connection-based socket types, currently with
SOCK_STREAM.

It is possible to select(3C) or pol1(2) a socket for the purpose of an accept () by selecting or
polling it for a read. However, this will only indicate when a connect indication is pending; it is
still necessary to call accept ().

The accept() function returns —1 on error. If it succeeds, it returns a non-negative integer
that is a descriptor for the accepted socket.

accept () will fail if:

EBADF The descriptor is invalid.

ECONNABORTED The remote side aborted the connection before the accept () operation
completed.

EFAULT The addr parameter or the addrlen parameter is invalid.

EINTR The accept () attempt was interrupted by the delivery of a signal.

EMFILE The per-process descriptor table is full.

man pages section 3: Networking Library Functions « Last Revised 24 Mar 2011

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1netconfig-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1select-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1poll-2

accept(3SOCKET)

Attributes

See Also

ENODEV The protocol family and type corresponding to s could not be found in the
netconfig file.

ENOMEM There was insufficient user memory available to complete the operation.

ENOSR There were insufficient STREAMS resources available to complete the
operation.

ENOTSOCK The descriptor does not reference a socket.

EOPNOTSUPP The referenced socket is not of type SOCK_STREAM.

EPROTO A protocol error has occurred; for example, the STREAMS protocol stack
has not been initialized or the connection has already been released.

EWOULDBLOCK The socket is marked as non-blocking and no connections are present to be
accepted.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

MT-Level Safe

poll(2), bind(3SOCKET), connect(3SOCKET), listen(3SOCKET), select(3C),
socket.h(3HEAD), socket(3SOCKET), netconfig(4), attributes(5)

Networking Library Functions 21

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1poll-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1select-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1socket.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1netconfig-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

accept(3XNET)

Name

Synopsis

Description

Usage

ReturnValues

22

accept — accept a new connection on a socket

cc [flag ... 1 file ... -lxnet [library ...]
#include <sys/socket.h>

int accept(int socket, struct sockaddr *restrict address,
socklen t *restrict address_len);

The accept () function extracts the first connection on the queue of pending connections,
creates a new socket with the same socket type protocol and address family as the specified
socket, and allocates a new file descriptor for that socket.

The function takes the following arguments:

socket Specifies a socket that was created with socket(3XNET), has been bound to
an address with bind(3XNET), and has issued a successful call to
listen(3XNET).

address Either a null pointer, or a pointer to a sockaddr structure where the address of

the connecting socket will be returned.

address_len ~ Points to a socklen_t which on input specifies the length of the supplied
sockaddr structure, and on output specifies the length of the stored address.

If address is not a null pointer, the address of the peer for the accepted connection is stored in
the sockaddr structure pointed to by address, and the length of this address is stored in the
object pointed to by address_len.

If the actual length of the address is greater than the length of the supplied sockaddr structure,
the stored address will be truncated.

If the protocol permits connections by unbound clients, and the peer is not bound, then the
value stored in the object pointed to by address is unspecified.

If the listen queue is empty of connection requests and O_NONBLOCK is not set on the file
descriptor for the socket, accept () will block until a connection is present. If the
listen(3XNET) queue is empty of connection requests and O_NONBLOCK is set on the file
descriptor for the socket, accept () will fail and set errno to EAGAIN or EWOULDBLOCK.

The accepted socket cannot itself accept more connections. The original socket remains open
and can accept more connections.

When a connection is available, select(3C) will indicate that the file descriptor for the socket
is ready for reading.

Upon successful completion, accept () returns the nonnegative file descriptor of the accepted
socket. Otherwise, —1 is returned and errno is set to indicate the error.

man pages section 3: Networking Library Functions « Last Revised 1 Nov 2003

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1select-3c

accept(3XNET)

Errors The accept () function will fail if:

EAGAIN
EWOULDBLOCK O_NONBLOCK is set for the socket file descriptor and no connections are
present to be accepted.

EBADF The socket argument is not a valid file descriptor.
ECONNABORTED A connection has been aborted.

EFAULT The address or address_len parameter can not be accessed or written.

EINTR The accept () function was interrupted by a signal that was caught before a
valid connection arrived.

EINVAL The socket is not accepting connections.

EMFILE OPEN_MAX file descriptors are currently open in the calling process.

ENFILE The maximum number of file descriptors in the system are already open.

ENOTSOCK The socket argument does not refer to a socket.

EOPNOTSUPP The socket type of the specified socket does not support accepting
connections.

The accept () function may fail if:

ENOBUFS No buffer space is available.

ENOMEM There was insufficient memory available to complete the operation.

ENOSR There was insufficient STREAMS resources available to complete the operation.

EPROTO A protocol error has occurred; for example, the STREAMS protocol stack has not
been initialized.

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level MT-Safe
Standard See standards(5).

SeeAlso bind(3XNET), connect(3XNET), listen(3XNET), socket(3XNET), attributes(5),
standards(5)

Networking Library Functions 23

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

ber_decode(3LDAP)

Name ber_decode, ber_alloc_t, ber_free, ber_bvdup, ber_init, ber_flatten, ber_get_next,
ber_skip_tag, ber_peek_tag, ber_scanf, ber_get_int, ber_get_stringa, ber_get_stringal,
ber_get_stringb, ber_get_null, ber_get_boolean, ber_get_bitstring, ber_first_element,
ber_next_element, ber_bvfree, ber_bvecfree — Basic Encoding Rules library decoding
functions

Synopsis cc [flag... 1 file... -1ldap [library...]
#include <lber.h>
BerElement *ber_alloc_t(int options);
struct berval *ber bvdup(const struct berval *by);
void ber_ free(BerElement *ber, int freebuf);
BerElement *ber init(const struct berval *by);
int ber flatten(BerElement *ber, struct berval **bvPtr);
ber tag t ber get next(Sockbuf *sb, ber len t *len, BerElement *ber);
ber tag t ber skip tag(BerElement *ber, ber len t *len);
ber tag t ber peek tag(BerElement *ber, ber len t *len);
ber tag t ber get int(BerElement *ber, ber int t *num);

ber_tag_t ber_get_stringb(BerElement *ber, char *buf,
ber len t *len);

ber_tag_t ber_get stringa(BerElement *ber, char **buf);

ber tag t ber get stringal(BerElement *ber, struct berval **bv);
ber tag t ber get null(BerElement *ber);

ber tag t ber get boolean(BerElement *ber, int *boolval);

ber_tag_t ber_get_bitstringa(BerElement *ber, char **buf,
ber len t *len);

ber tag t ber first element(BerElement *ber, ber len t *len,
char **last);

ber tag t ber next element(BerElement *ber, ber len t *len,
char *last);

ber_tag_t ber_scanf(BerElement *ber, const char *fmt [, arg...1);
void ber bvfree(struct berval *bv);

void ber bvecfree(struct berval **bvec);
Description These functions provide a subfunction interface to a simplified implementation of the Basic
Encoding Rules of ASN.1. The version of BER these functions support is the one defined for

the LDAP protocol. The encoding rules are the same as BER, except that only definite form
lengths are used, and bitstrings and octet strings are always encoded in primitive form. In

24 man pages section 3: Networking Library Functions « Last Revised 23 Aug 2011

ber_decode(3LDAP)

addition, these lightweight BER functions restrict tags and class to fit in a single octet (this
means the actual tag must be less than 31). When a “tag”is specified in the descriptions below,
it refers to the tag, class, and primitive or constructed bit in the first octet of the encoding. This
man page describes the decoding functions in the Iber library. See ber_encode(3LDAP) for
details on the corresponding encoding functions.

Normally, the only functions that need be called by an application are ber_get_next() to get
the next BER element and ber_scanf () to do the actual decoding. In some cases,
ber_peek_tag() may also need to be called in normal usage. The other functions are provided
for those applications that need more control than ber_scanf () provides. In general, these
functions return the tag of the element decoded, or —1 if an error occurred.

The ber_get_next () function is used to read the next BER element from the given Sockbuf,
sb. A Sockbuf consists of the descriptor (usually socket, but a file descriptor works just as well)
from which to read, and a BerElement structure used to maintain a buffer. On the first call, the
sb_ber struct should be zeroed. It strips off and returns the leading tag byte, strips off and
returns the length of the entire element in len, and sets up ber for subsequent calls to
ber_scanf(),and all to decode the element.

The ber_peek_tag() function returns the tag of the next element to be parsed in the
BerElement argument. The length of this element is stored in the *lenPtr argument.
LBER_DEFAULT is returned if there is no further data to be read. The decoding position within
the ber argument is unchanged by this call; that is, the fact that ber_peek_tag() has been
called does not affect future use of ber.

Theber skip tag() function is similar to ber peek tag(), except that the state pointer in
the BerElement argument is advanced past the first tag and length, and is pointed to the value
part of the next element. This function should only be used with constructed types and
situations when a BER encoding is used as the value of an OCTET STRING. The length of the
value is stored in *lenPtr.

The ber_scanf () function is used to decode a BER element in much the same way that
scanf(3C) works. It reads from ber, a pointer to a BerElement such as returned by
ber_get_next (), interprets the bytes according to the format string fmt, and stores the results
in its additional arguments. The format string contains conversion specifications which are
used to direct the interpretation of the BER element. The format string can contain the
following characters.

a Octetstring. A char ** should be supplied. Memory is allocated, filled with the contents
of the octet string, null-terminated, and returned in the parameter.

s Octetstring. A char * buffer should be supplied, followed by a pointer to an integer
initialized to the size of the buffer. Upon return, the null-terminated octet string is put
into the buffer, and the integer is set to the actual size of the octet string.

0 Octetstring. A struct ber_val ** should be supplied, which upon return points to a
memory allocated struct berval containing the octet string and its length. ber_bvfree()
can be called to free the allocated memory.

Networking Library Functions 25

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scanf-3c

ber_decode(3LDAP)

b Boolean. A pointer to an integer should be supplied.
i Integer. A pointer to an integer should be supplied.

B Bitstring. A char ** should be supplied which will point to the memory allocated bits,
followed by an unsigned long *, which will point to the length (in bits) of the bitstring
returned.

n Null. No parameter is required. The element is simply skipped if it is recognized.

v Sequence of octet strings. A char *** should be supplied, which upon return points to a
memory allocated null-terminated array of char *'s containing the octet strings. NULL is
returned if the sequence is empty.

V Sequence of octet strings with lengths. A struct berval *** should be supplied, which
upon return points to a memory allocated, null-terminated array of struct berval *'s
containing the octet strings and their lengths. NULL is returned if the sequence is empty.
ber_bvecfree() can be called to free the allocated memory.

x Skip element. The next element is skipped.

{ Beginsequence. No parameter is required. The initial sequence tag and length are
skipped.

} End sequence. No parameter is required and no action is taken.
[Begin set. No parameter is required. The initial set tag and length are skipped.

] End set. No parameter is required and no action is taken.

The ber_get_int() function tries to interpret the next element as an integer, returning the
result in num. The tag of whatever it finds is returned on success, —1 on failure.

Theber_get_stringb() function is used to read an octet string into a pre-allocated bufter.
The len parameter should be initialized to the size of the buffer, and will contain the length of
the octet string read upon return. The buffer should be big enough to take the octet string
value plus a terminating NULL byte.

The ber_get_stringa() function is used to allocate memory space into which an octet string
isread.

Theber_get_stringal() function is used to allocate memory space into which an octet
string and its length are read. It takes a struct berval **, and returns the result in this
parameter.

The ber_get_null() function is used to read a NULL element. It returns the tag of the element
it skips over.

The ber_get_boolean() function is used to read a boolean value. It is called the same way that
ber get int() iscalled.

26 man pages section 3: Networking Library Functions « Last Revised 23 Aug 2011

ber_decode(3LDAP)

The ber_get_bitstringa() function is used to read a bitstring value. It takes a char ** which
will hold the allocated memory bits, followed by an unsigned long *, which will point to the
length (in bits) of the bitstring returned.

Theber_first_element () function is used to return the tag and length of the first element in
a set or sequence. It also returns in last a magic cookie parameter that should be passed to
subsequent calls to ber_next_element (), which returns similar information.

The ber_alloc_t() function constructs and returns BerElement. A null pointer is returned
on error. The options field contains a bitwise-OR of options which are to be used when
generating the encoding of this BerElement. One option is defined and must always be
supplied:

#define LBER USE DER 0x01

When this option is present, lengths will always be encoded in the minimum number of octets.
Note that this option does not cause values of sets and sequences to be rearranged in tag and
byte order, so these functions are not suitable for generating DER output as defined in X.509
and X.680

The ber_init function constructs a BerElement and returns a new BerElement containing a
copy of the data in the bv argument. The ber_init function returns the null pointer on error.

The ber_free() function frees a BerElement which is returned from the API calls
ber_alloc_t() orber_init().EachBerElement must be freed by the caller. The second
argument freebuf should always be set to 1 to ensure that the internal buffer used by the BER
functions is freed as well as the BerElement container itself.

The ber_bvdup() function returns a copy of a berval. The bv_val field in the returned berval
points to a different area of memory as the bv_val field in the argument berval. The null
pointer is returned on error (that s, is out of memory).

The ber_flatten() function allocates a struct berval whose contents are BER encoding
taken from the ber argument. The bvPtr pointer points to the returned berval, which must be
freed using ber_bvfree(). This function returns @ on success and —1 on error.

Examples EXAMPLE1 Assume the variable ber contains a lightweight BER encoding of the following ASN.1 object:
AlmostASearchRequest := SEQUENCE {

baseObject DistinguishedName,

scope ENUMERATED {
baseObject (0),
singleLevel (1),
wholeSubtree (2)

+

derefAliases ENUMERATED {

neverDerefaliases (0),

Networking Library Functions 27

ber_decode(3LDAP)

EXAMPLE1 Assume the variable ber contains a lightweight BER encoding of the following ASN.1
object: (Continued)

derefInSearching (1),
derefFindingBaseObj (2),
alwaysDerefAliases (3N)

I

sizelimit INTEGER (0 .. 65535),
timelimit INTEGER (@ .. 65535),
attrsOnly BOOLEAN,

attributes SEQUENCE OF AttributeType

EXAMPLE2 The element can be decoded using ber_scanf () as follows.

int scope, ali, size, time, attrsonly;
char *dn, **attrs;
if (ber_scanf(ber, "{aiiiib{v}}", &dn, &scope, &ali,
&size, &time, &attrsonly, &attrs) == -1)
/* error */
else
/* success */

Errors Ifan error occurs during decoding, generally these functions return —1.

Notes The return values for all of these functions are declared in the <1lber. h>header. Some
functions may allocate memory which must be freed by the calling application.

Attributes See attributes(5) for a description of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

Availability system/library

Interface Stability Committed

SeeAlso ber encode(3LDAP), attributes(5)

Yeong, W., Howes, T., and Hardcastle-Kille, S., “Lightweight Directory Access Protocol”,
OSI-DS-26, April 1992.

Information Processing - Open Systems Interconnection - Model and Notation - Service
Definition - Specification of Basic Encoding Rules for Abstract Syntax Notation One,
International Organization for Standardization, International Standard 8825.

28 man pages section 3: Networking Library Functions « Last Revised 23 Aug 2011

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ber_encode(3LDAP)

Name

Synopsis

Description

ber_encode, ber_alloc, ber_printf, ber_put_int, ber_put_ostring, ber_put_string,
ber_put_null, ber_put_boolean, ber_put_bitstring, ber_start_seq, ber_start_set, ber_put_seq,
ber_put_set - simplified Basic Encoding Rules library encoding functions

ccl flag... 1 file... -Wldap[library...]

#include <lber.h>

BerElement *ber alloc();

ber_printf(BerElement *ber, char **fmt[, arg... 1);
ber_put_int(BerElement *ber, long num, char tag);

ber put ostring(BerElement *ber, char **str, unsigned long len,
char tag);

ber put string(BerElement *ber, char **str, char tag) ;

ber put null(BerElement *ber, char tag) ;
ber_put_boolean(BerElement *ber, int bool, char tag);
ber_put_bitstring(BerElement *ber, char *str, int blen, char tag);
ber start seq(BerElement *ber, char tag) ;

ber start set(BerElement *ber, char tag) ;

ber put seq(BerElement *ber) ;

ber put set(BerElement *ber);

These functions provide a subfunction interface to a simplified implementation of the Basic
Encoding Rules of ASN.1. The version of BER these functions support is the one defined for
the LDAP protocol. The encoding rules are the same as BER, except that only definite form
lengths are used, and bitstrings and octet strings are always encoded in primitive form. In
addition, these lightweight BER functions restrict tags and class to fit in a single octet (this
means the actual tag must be less than 31). When a “tag”is specified in the descriptions below,
it refers to the tag, class, and primitive or constructed bit in the first octet of the encoding. This
man page describes the encoding functions in the lber library. See ber_decode(3LDAP) for
details on the corresponding decoding functions.

Normally, the only functions that need be called by an application are ber_alloc(), to
allocate a BER element, and ber_printf() to do the actual encoding. The other functions are
provided for those applications that need more control than ber_printf() provides. In
general, these functions return the length of the element encoded, or —1 if an error occurred.

The ber_alloc() function is used to allocate a new BER element.

The ber_printf() function is used to encode a BER element in much the same way that
sprintf(3S) works. One important difference, though, is that some state information is kept
with the ber parameter so that multiple calls can be made to ber_printf () to append things to
the end of the BER element. Ber_printf () writes to ber, a pointer to a BerElement such as

Networking Library Functions 29

ber_encode(3LDAP)

30

returned by ber_alloc(). It interprets and formats its arguments according to the format
string fmt. The format string can contain the following characters:

b Boolean. An integer parameter should be supplied. A boolean element is output.

B Bitstring. A char * pointer to the start of the bitstring is supplied, followed by the
number of bits in the bitstring. A bitstring element is output.

i Integer. An integer parameter should be supplied. An integer element is output.
n Null. No parameter is required. A null element is output.

o Octetstring. A char * is supplied, followed by the length of the string pointed to. An
octet string element is output.

0 Octet string. A struct berval * is supplied. An octet string element is output.

s Octetstring. A null-terminated string is supplied. An octet string element is output, not
including the trailing null octet.

t Tag. Anintspecifying the tag to give the next element is provided. This works across
calls.

v Several octet strings. A null-terminated array of char * is supplied. Note that a construct
like '{v}'is required to get an actual sequence of octet strings.

{ Begin sequence. No parameter is required.
} End sequence. No parameter is required.
[Begin set. No parameter is required.

] End set. No parameter is required.
The ber_put_int () function writes the integer element #num to the BER element ber.
The ber_put_boolean() function writes the boolean value given by bool to the BER element.

The ber_put_bitstring() function writes blen bits starting at str as a bitstring value to the
given BER element. Note that blen is the length in bits of the bitstring.

The ber_put_ostring() function writes len bytes starting at str to the BER element as an octet
string.

The ber_put_string() function writes the null-terminated string (minus the terminating ")
to the BER element as an octet string.

The ber_put_null() function writes a NULL element to the BER element.

Theber start seq() function is used to start a sequence in the BER element. The
ber_start_set() function works similarly. The end of the sequence or set is marked by the
nearest matching call to ber_put_seq() orber_put_set (), respectively.

man pages section 3: Networking Library Functions « Last Revised 23 Aug 2011

ber_encode(3LDAP)

Theber_first_element () function is used to return the tag and length of the first element in
a set or sequence. It also returns in cookie a magic cookie parameter that should be passed to
subsequent calls to ber_next_element (), which returns similar information.

Examples ExamPLE1 Assuming the following variable declarations, and that the variables have been assigned
appropriately, an BER encoding of the following ASN.1 object:

AlmostASearchRequest := SEQUENCE {
baseObject DistinguishedName,
scope ENUMERATED {
baseObject (0),
singlelLevel (1),
wholeSubtree (2)

+

derefAliases ENUMERATED {
neverDerefaliases (0),
derefInSearching (1),
derefFindingBaseObj (2),
alwaysDerefAliases (3N)

I

sizelimit INTEGER (0 .. 65535),
timelimit INTEGER (@ .. 65535),
attrsOnly BOOLEAN,

attributes SEQUENCE OF AttributeType

can be achieved like so:

int scope, ali, size, time, attrsonly;
char *dn, **attrs;

/* ... fill in values ... */
if ((ber = ber_alloc()) == NULLBER)
/* error */

if (ber printf(ber, "{siiiib{v}}", dn, scope, ali,
size, time, attrsonly, attrs) == -1)
/* error */
else
/* success */

ReturnValues Ifan error occurs during encoding, ber_alloc() returns NULL; other functions generally
return —1.

Attributes See attributes(5) for a description of the following attributes:

Networking Library Functions 31

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ber_encode(3LDAP)

ATTRIBUTETYPE ATTRIBUTE VALUE

Availability system/library

Interface Stability Committed

SeeAlso ber decode(3LDAP), attributes(5)

Yeong, W., Howes, T., and Hardcastle-Kille, S., “Lightweight Directory Access Protocol”,
OSI-DS-26, April 1992.

Information Processing - Open Systems Interconnection - Model and Notation - Service
Definition - Specification of Basic Encoding Rules for Abstract Syntax Notation One,
International Organization for Standardization, International Standard 8825.

Notes The return values for all of these functions are declared in <lber.h>.

32 man pages section 3: Networking Library Functions « Last Revised 23 Aug 2011

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

bind(3SOCKET)

Name

Synopsis

Description

ReturnValues

Errors

bind - bind a name to a socket

cc [flag ... 1 file ... -lsocket -lnsl [library ...]
#include <sys/socket.h>

int bind(int s, const struct sockaddr *name, socklen t namelen) ;

The bind () function assigns a name to an unnamed socket. When a socket is created with
socket(3SOCKET), it exists in a name space (address family) but has no name assigned. The
bind() function requests that the name pointed to by name be assigned to the socket.

Upon successful completion 0 is returned. Otherwise, —1 is returned and errno is set to
indicate the error.

The bind () function will fail if:

EACCES The requested address is protected, and {PRIV_NET_PRIVADDR} is not
asserted in the effective set of the current process.

EADDRINUSE The specified address is already in use.
EADDRNOTAVAIL The specified address is not available on the local machine.
EBADF sis nota valid descriptor.

EINVAL namelen is not the size of a valid address for the specified address family.
The socket is already bound to an address.

Socket options are inconsistent with port attributes.

ENOSR There were insufficient STREAMS resources for the operation to
complete.
ENOTSOCK sis a descriptor for a file, not a socket.

The following errors are specific to binding names in the UNIX domain:

EACCES Search permission is denied for a component of the path prefix of the pathname
in name.
EIO An1/O error occurred while making the directory entry or allocating the inode.

EISDIR A null pathname was specified.

ELOOP Too many symbolic links were encountered in translating the pathname in
name.

ENOENT A component of the path prefix of the pathname in name does not exist.
ENOTDIR A component of the path prefix of the pathname in name is not a directory.

EROFS The inode would reside on a read-only file system.

Networking Library Functions 33

bind(3SOCKET)

34

Attributes

See Also

Notes

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE

ATTRIBUTE VALUE

MT-Level Safe

unlink(2), socket(3SOCKET), attributes(5), privileges(5), socket.h(3HEAD)

Binding a name in the UNIX domain creates a socket in the file system that must be deleted by

the caller when it is no longer needed by using unlink(2).

The rules used in name binding vary between communication domains.

man pages section 3: Networking Library Functions « Last Revised 24 Mar 2011

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1unlink-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1privileges-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1socket.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1unlink-2

bind(3XNET)

Name

Synopsis

Description

Usage

Return Values

Errors

bind - bind a name to a socket

cc [flag ... 1 file ... -xnet [library ...]
#include <sys/socket.h>

int bind(int socket, const struct sockaddr *address,
socklen_t address_len) ;

The bind () function assigns an address to an unnamed socket. Sockets created with
socket(3XNET) function are initially unnamed. They are identified only by their address
family.

The function takes the following arguments:

socket Specifies the file descriptor of the socket to be bound.

address Points to a sockaddr structure containing the address to be bound to the
socket. The length and format of the address depend on the address family of
the socket.

address_len Specifies the length of the sockaddr structure pointed to by the address
argument.

The socket in use may require the process to have appropriate privileges to use the bind ()
function.

An application program can retrieve the assigned socket name with the
getsockname(3XNET) function.

Upon successful completion, bind () returns 0. Otherwise, —1 is returned and errno is set to
indicate the error.

The bind() function will fail if:
EADDRINUSE The specified address is already in use.
EADDRNOTAVAIL The specified address is not available from the local machine.

EAFNOSUPPORT The specified address is not a valid address for the address family of the

specified socket.

EBADF The socket argument is not a valid file descriptor.

EFAULT The address argument can not be accessed.

EINVAL The socket is already bound to an address, and the protocol does not
support binding to a new address; or the socket has been shut down.

ENOTSOCK The socket argument does not refer to a socket.

EOPNOTSUPP The socket type of the specified socket does not support binding to an
address.

Networking Library Functions 35

bind(3XNET)

If the address family of the socket is AF_UNIX, then bind () will fail if:

EACCES

EDESTADDRREQ
EISDIR

EIO
ELOOP

ENAMETOOLONG

ENOENT

ENOTDIR

EROFS

A component of the path prefix denies search permission, or the requested
name requires writing in a directory with a mode that denies write
permission.

The address argument is a null pointer.
An /O error occurred.

Too many symbolic links were encountered in translating the pathname in
address.

A component of a pathname exceeded NAME_MAX characters, or an entire
pathname exceeded PATH_MAX characters.

A component of the pathname does not name an existing file or the
pathname is an empty string.

A component of the path prefix of the pathname in address is not a
directory.

The name would reside on a read-only filesystem.

The bind() function may fail if:

EACCES

EINVAL
EISCONN

ENAMETOOLONG

ENOBUFS
ENOSR

The specified address is protected, and {PRIV_NET_PRIVADOR} is not
asserted in the effective set of the current process.

The address_len argument is not a valid length for the address family.
The socket is already connected.

Pathname resolution of a symbolic link produced an intermediate result
whose length exceeds PATH_MAX.

Insufficient resources were available to complete the call.

There were insufficient STREAMS resources for the operation to complete.

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level MT-Safe
Standard See standards(5).

36 man pages section 3: Networking Library Functions « Last Revised 20 Feb 2003

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

bind(3XNET)

SeeAlso connect(3XNET), getsockname(3XNET), listen(3XNET), socket(3XNET),
attributes(5), privileges(5), standards(5)

Networking Library Functions 37

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1privileges-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

byteorder(3SOCKET)

Name byteorder, htonl, htonll, htons, ntohl, ntohll, ntohs — convert values between host and network
byte order

Synopsis cc [flag...] file... -lsocket -lnsl [library...]

#include <sys/types.h>
#include <netinet/in.h>
#include <inttypes.h>
uint32_t htonl(uint32_t hostlong);
uint64_t htonll(uint64_t hostlonglong);
uintl6 t htons(uintl6 t hostshort);
uint32_t ntohl(uint32_t netlong);
uint64_t ntonll(uint64_t hostlonglong);
uintlé t ntohs(uintl6 t netshort);

Description These functions convert 16-bit, 32-bit, and 64-bit quantities between network byte order and
host byte order. On some architectures these routines are defined as NULL macros in the

include file <netinet/in.h>. On other architectures, the routines are functional when the
host byte order is different from network byte order.

These functions are most often used in conjunction with Internet addresses and ports as
returned by gethostent () and getservent(). See gethostbyname(3NSL) and
getservbyname(3SOCKET).

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

MT-Level Safe

SeeAlso gethostbyname(3NSL), getservbyname(3SOCKET), inet.h(3HEAD), attributes(5)

38 man pages section 3: Networking Library Functions « Last Revised 10 Sep 2008

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1inet.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

cldap_close(3LDAP)

Name

Synopsis

Description

Parameters

Attributes

See Also

cldap_close - dispose of connectionless LDAP pointer

ccl flag... 1 file... -Wdap[library...]
#include <lber.h>
#include <ldap.h>

void cldap close(LDAP *Id);

The cldap_close() function disposes of memory allocated by cldap_open(3LDAP). It should
be called when all CLDAP communication is complete.

Id The LDAP pointer returned by a previous call to cldap_open(3LDAP).

See attributes(5) for a description of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

Availability system/library

Interface Stability Committed

1dap(3LDAP), cldap_open(3LDAP), cldap_search s(3LDAP),
cldap_setretryinfo(3LDAP)

Networking Library Functions 39

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

cldap_open(3LDAP)

Name cldap_open - LDAP connectionless communication preparation

Synopsis cc[flag... 1 file... -1ldap[library...]
#include <lber.h>
#include <ldap.h>

LDAP *cldap_open(char *host, int port);
Parameters host The name of the host on which the LDAP server is running.

port The port number to connect.

Description The cldap_open() function is called to prepare for connectionless LDAP communication
(over udp(7P)). It allocates an LDAP structure which is passed to future search requests.

If the default IANA-assigned port of 389 is desired, LDAP_PORT should be specified for port.
host can contain a space-separated list of hosts or addresses to try. cldap_open() returns a
pointer to an LDAP structure, which should be passed to subsequent calls to

cldap_search s(3LDAP), cldap_setretryinfo(3LDAP),and cldap_close(3LDAP).
Certain fields in the LDAP structure can be set to indicate size limit, time limit, and how
aliases are handled during operations. See 1dap_open(3LDAP) and <ldap . h> for more details.

Errors Ifanerroroccurs, cldap_open() will return NULL and errno will be set appropriately.

Attributes See attributes(5) for a description of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

Availability system/library

Interface Stability Committed

SeeAlso 1dap(3LDAP) cldap_search s(3LDAP), cldap_setretryinfo(3LDAP),
cldap_close(3LDAP), attributes(5), udp(7P)

40 man pages section 3: Networking Library Functions « Last Revised 23 Aug 2011

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1udp-7p
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1udp-7p

cldap_search_s(3LDAP)

Name

Synopsis

Description

Retransmission
Algorithm

Examples

cldap_search_s - connectionless LDAP search

ccl flag... 1 file... -Wdap[library...]
#include <lber.h>
#include <ldap.h>

int cldap_search_s(LDAP *ld, char *base, int scope, char *filter
char *attrs, int attrsonly, LDAPMessage **res, char *logdn);

The cldap_search_s() function performs an LDAP search using the Connectionless LDAP
(CLDAP) protocol.

cldap_search_s() has parameters and behavior identical to that of ldap_search_s(3LDAP),
except for the addition of the logdn parameter. logdn should contain a distinguished name to
be used only for logging purposed by the LDAP server. It should be in the text format
described by RFC 1779, A String Representation of Distinguished Names.

cldap_search_s() operates using the CLDAP protocol over udp(7P). Since UDP is a
non-reliable protocol, a retry mechanism is used to increase reliability. The
cldap_setretryinfo(3LDAP) function can be used to set two retry parameters: tries, a count
of the number of times to send a search request and timeout, an initial timeout that determines
how long to wait for a response before re-trying. timeout is specified seconds. These values are
stored in the 1d_cldaptries and ld cldaptimeout members of the 1d LDAP structure, and
the default values set in 1dap_open(3LDAP) are 4 and 3 respectively. The retransmission
algorithm used is:

Step 1 Set the current timeout to 1d_cldaptimeout seconds, and the current LDAP server
address to the first LDAP server found during the ldap_open(3LDAP) call.

Step2 Send the search request to the current LDAP server address.

Step3 Setthe wait timeout to the current timeout divided by the number of server
addresses found during ldap_open(3LDAP) or to one second, whichever is larger.
Wait at most that long for a response; if a response is received, STOP. Note that the
wait timeout is always rounded down to the next lowest second.

Step4 Repeat steps 2 and 3 for each LDAP server address.

Step5 Setthe current timeout to twice its previous value and repeat Steps 2 through 5 a
maximum of tries times.

Assume that the default values for tries and timeout of 4 tries and 3 seconds are used. Further,
assume that a space-separated list of two hosts, each with one address, was passed to
cldap_open(3LDAP). The pattern of requests sent will be (stopping as soon as a response is
received):

Time Search Request Sent To:
+0 Host A try 1
+1 (0+3/2) Host B try 1
+2 (1+3/2) Host A try 2

Networking Library Functions 41

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1udp-7p

cldap_search_s(3LDAP)

42

Errors

Attributes

See Also

+5 (2+6/2) Host B try 2

+8 (5+6/2) Host A try 3

+14 (8+12/2) Host B try 3

+20 (14+12/2) Host A try 4

+32 (20+24/2) Host B try 4

+44 (20+24/2) (give up - no response)

cldap_search s() returns LDAP_SUCCESS if a search was successful and the appropriate
LDAP error code otherwise. See 1dap_error(3LDAP) for more information.

See attributes(5) for a description of the following attributes:

ATTRIBUTETYPE

ATTRIBUTE VALUE

Availability system/library

Interface Stability Committed

ldap(3LDAP), ldap_error(3LDAP), ldap_search_s(3LDAP), cldap_open(3LDAP),
cldap_setretryinfo(3LDAP), cldap_close(3LDAP), attributes(5), udp(7P)

man pages section 3: Networking Library Functions « Last Revised 23 Aug 2011

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1udp-7p

cldap_setretryinfo(3LDAP)

Name

Synopsis

Parameters

Description

Attributes

See Also

cldap_setretryinfo — set connectionless LDAP request retransmission parameters

ccl flag... 1 file... -Wdap[library...]
#include <lber.h>
#include <ldap.h>

void cldap setretryinfo(LDAP *ld, int tries, int timeout);

Id LDAP pointer returned from a previous call to cldap_open(3LDAP).
tries Maximum number of times to send a request.
timeout Initial time, in seconds, to wait before re-sending a request.

The cldap_setretryinfo() function is used to set the CLDAP request retransmission
behavior for future cldap_search_s(3LDAP) calls. The default values (set by

cldap open(3LDAP)) are 4 tries and 3 seconds between tries. See cldap search s(3LDAP)
for a complete description of the retransmission algorithm used.

See attributes(5) for a description of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

Availability system/library

Interface Stability Committed

1dap(3LDAP), cldap_open(3LDAP), cldap search s(3LDAP), cldap_close(3LDAP),
attributes(5)

Networking Library Functions 43

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

connect(3SOCKET)

Name

Synopsis

Description

Return Values

Errors

44

connect — connect a socket

cc [flag ... 1 file ... -lsocket -lnsl [library ...]
#include <sys/socket.h>

int connect(int s, const struct sockaddr *name, socklen t namelen) ;

The parameter s is a socket. If it is of type SOCK_DGRAM, connect () specifies the peer with
which the socket is to be associated. This address is the address to which datagrams are to be
sent if a receiver is not explicitly designated. This address is the only address from which
datagrams are to be received. If the socket s is of type SOCK_STREAM, connect () attempts to
make a connection to another socket. This behavior can be modified by the
SO_PASSIVE_CONNECT socket option provided by setsockopt(3SOCKET). The other socket is
specified by name, which is an address in the communication space of the socket. Each
communication space interprets the name parameter in its own way. If s is not bound, then s
will be bound to an address selected by the underlying transport provider. Generally, stream
sockets can successfully connect () only once. Datagram sockets can use connect () multiple
times to change their association. Datagram sockets can dissolve the association by
connecting to a null address.

If the connection or binding succeeds, 0 is returned. Otherwise, —1 is returned, errno is set to
indicate the error, and state of the socket is unspecified. Applications should close the file
descriptor and create a new socket before attempting to reconnect.

The call fails if:

EACCES Search permission is denied for a component of the path prefix of the
pathname in name.

EADDRINUSE The address is already in use.

EADDRNOTAVAIL The specified address is not available.

EAFNOSUPPORT Addresses in the specified address family cannot be used with this socket.

EALREADY The socket is non-blocking, and a previous connection attempt has not
yet been completed.
EBADF sis not a valid descriptor.

ECONNREFUSED The attempt to connect was forcefully rejected.

EINPROGRESS The socket is non-blocking, and the connection cannot be completed
immediately. You can use select(3C) to complete the connection by
selecting the socket for writing.

EINTR The connection attempt was interrupted before any data arrived by the
delivery of a signal. The connection, however, will be established
asynchronously.

EINVAL namelen is not the size of a valid address for the specified address family.

man pages section 3: Networking Library Functions « Last Revised 31May 2011

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1select-3c

connect(3SOCKET)

Attributes

See Also

EIO
EISCONN

ELOOP

ENETUNREACH
EHOSTUNREACH
ENOENT
ENOENT

ENOSR

ENXIO
ETIMEDOUT
EWOULDBLOCK

AnT/O error occurred while reading from or writing to the file system.
The socket is already connected.

Too many symbolic links were encountered in translating the pathname
in name.

The network is not reachable from this host.

The remote host is not reachable from this host.

A component of the path prefix of the pathname in name does not exist.
The socket referred to by the pathname in name does not exist.

There were insufficient STREAMS resources available to complete the
operation.

The server exited before the connection was complete.
Connection establishment timed out without establishing a connection.

The socket is marked as non-blocking, and the requested operation
would block.

The following errors are specific to connecting names in the UNIX domain. These errors
might not apply in future versions of the UNIX IPC domain.

ENOTDIR

ENOTSOCK sisnot a socket.
ENOTSOCK name is not a socket.
EPROTOTYPE

A component of the path prefix of the pathname in name is not a directory.

The file that is referred to by name is a socket of a type other than type s. For

example, s is a SOCK_DGRAM socket, while name refers to a SOCK_STREAM

socket.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE

ATTRIBUTE VALUE

MT-Level

Safe

close(2), accept(3SOCKET), getsockname(3SOCKET), select(3C),
setsockopt(3SOCKET), socket(3SOCKET), socket.h(3HEAD), attributes(5)

Networking Library Functions

45

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1close-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1select-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1socket.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

connect(3XNET)

Name

Synopsis

Description

46

connect — connect a socket

cc [flag ... 1 file ... -lxnet [library ...]
#include <sys/socket.h>

int connect(int socket, const struct sockaddr *address,
socklen t address_len) ;

The connect () function requests a connection to be made on a socket. The function takes the
following arguments:

socket Specifies the file descriptor associated with the socket.

address Points to a sockaddr structure containing the peer address. The length and
format of the address depend on the address family of the socket.

address_len Specifies the length of the sockaddr structure pointed to by the address
argument.

If the socket has not already been bound to a local address, connect () will bind it to an
address which, unless the socket's address family is AF_UNIX, is an unused local address.

If the initiating socket is not connection-mode, then connect () sets the socket's peer address,
but no connection is made. For SOCK_DGRAM sockets, the peer address identifies where all
datagrams are sent on subsequent send(3XNET) calls, and limits the remote sender for
subsequent recv(3XNET) calls. If address is a null address for the protocol, the socket's peer
address will be reset.

If the initiating socket is connection-mode, then connect () attempts to establish a connection
to the address specified by the address argument.

If the connection cannot be established immediately and O_NONBLOCK is not set for the file
descriptor for the socket, connect () will block for up to an unspecified timeout interval until
the connection is established. If the timeout interval expires before the connection is
established, connect () will fail and the connection attempt will be aborted. If connect () is
interrupted by a signal that is caught while blocked waiting to establish a connection,

connect () will fail and set errno to EINTR, but the connection request will not be aborted, and
the connection will be established asynchronously.

If the connection cannot be established immediately and O_NONBLOCK is set for the file
descriptor for the socket, connect () will fail and set errno to EINPROGRESS, but the
connection request will not be aborted, and the connection will be established
asynchronously. Subsequent calls to connect () for the same socket, before the connection is
established, will fail and set errno to EALREADY.

When the connection has been established asynchronously, select(3C) and pol1(2) will
indicate that the file descriptor for the socket is ready for writing.

man pages section 3: Networking Library Functions « Last Revised 10 Jun 2002

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1select-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1poll-2

connect(3XNET)

Usage

Return Values

Errors

The socket in use may require the process to have appropriate privileges to use the connect ()
function.

If connect () fails, the state of the socket is unspecified. Portable applications should close the
file descriptor and create a new socket before attempting to reconnect.

Upon successful completion, connect () returns 0. Otherwise, —1 is returned and errno is set
to indicate the error.

The connect () function will fail if:
EADDRNOTAVAIL The specified address is not available from the local machine.

EAFNOSUPPORT The specified address is not a valid address for the address family of the

specified socket.
EALREADY A connection request is already in progress for the specified socket.
EBADF The socket argument is not a valid file descriptor.
ECONNREFUSED The target address was not listening for connections or refused the
connection request.
EFAULT The address parameter can not be accessed.
EINPROGRESS O_NONBLOCK is set for the file descriptor for the socket and the

connection cannot be immediately established; the connection will be
established asynchronously.

EINTR The attempt to establish a connection was interrupted by delivery of a
signal that was caught; the connection will be established asynchronously.

EISCONN The specified socket is connection-mode and is already connected.

ENETUNREACH No route to the network is present.

ENOTSOCK The socket argument does not refer to a socket.

EPROTOTYPE The specified address has a different type than the socket bound to the
specified peer address.

ETIMEDOUT The attempt to connect timed out before a connection was made.

If the address family of the socket is AF_UNIX, then connect () will fail if:

EIO AnT/O error occurred while reading from or writing to the file system.
ELOOP Too many symbolic links were encountered in translating the pathname in
address.

ENAMETOOLONG A component of a pathname exceeded NAME_MAX characters, or an entire
pathname exceeded PATH_MAX characters.

Networking Library Functions 47

connect(3XNET)

ENOENT A component of the pathname does not name an existing file or the
pathname is an empty string.

ENOTDIR A component of the path prefix of the pathname in address is not a
directory.

The connect () function may fail if:

EACCES Search permission is denied for a component of the path prefix; or write
access to the named socket is denied.

EADDRINUSE Attempt to establish a connection that uses addresses that are already in
use.
ECONNRESET Remote host reset the connection request.

EHOSTUNREACH The destination host cannot be reached (probably because the host is down
or aremote router cannot reach it).

EINVAL The address_len argument is not a valid length for the address family; or
invalid address family in sockaddr structure.

ENAMETOOLONG ~ Pathname resolution of a symbolic link produced an intermediate result
whose length exceeds PATH_MAX.

ENETDOWN The local interface used to reach the destination is down.

ENOBUFS No buffer space is available.

ENOSR There were insufficient STREAMS resources available to complete the
operation.

EOPNOTSUPP The socket is listening and can not be connected.

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level MT-Safe
Standard See standards(5).

SeeAlso close(2), poll(2), accept(3XNET), bind(3XNET), getsockname(3XNET), select(3C),
send(3XNET), shutdown(3XNET), socket(3XNET), attributes(5), standards(5)

48 man pages section 3: Networking Library Functions « Last Revised 10 Jun 2002

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1close-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1poll-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1select-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

dial(3NSL)

Name

Synopsis

Description

dial, undial - establish an outgoing terminal line connection

cc [flag... 1 file... -lnsl [library...]
#include <dial.h>

int dial(CALL call);
void undial(int fd);

The dial() function returns a file-descriptor for a terminal line open for read/write. The
argument to dial() is a CALL structure (defined in the header <dial.h>).

When finished with the terminal line, the calling program must invoke undial() to release the
semaphore that has been set during the allocation of the terminal device.

CALL is defined in the header <dial.h> and has the following members:

struct termio *attr; /* pointer to termio attribute struct */

int baud; /* transmission data rate */

int speed; /* 212A modem: low=300, high=1200 */

char *line; /* device name for out-going line */

char *telno; /* pointer to tel-no digits string */

int modem; /* specify modem control for direct lines */
char *device; /* unused */

int dev_len; /* unused */

The CALL element speed is intended only for use with an outgoing dialed call, in which case its
value should be the desired transmission baud rate. The CALL element baud is no longer used.

If the desired terminal line is a direct line, a string pointer to its device-name should be placed
in the line element in the CALL structure. Legal values for such terminal device names are kept
in the Devices file. In this case, the value of the baud element should be set to -1. This value
will cause dial to determine the correct value from the <Devices> file.

The telno element is for a pointer to a character string representing the telephone number to
be dialed. Such numbers may consist only of these characters:

0-9 dial 0-9
* dail *
dail

= wait for secondary dial tone

- delay for approximately 4 seconds

The CALL element modem is used to specify modem control for direct lines. This element should
be non-zero if modem control is required. The CALL element attr is a pointer to a termio
structure, as defined in the header <termio. h>. A NULL value for this pointer element may be

Networking Library Functions 49

dial(3NSL)

50

Return Values

Files

Attributes

See Also

Notes

passed to the dial function, but if such a structure is included, the elements specified in it will
be set for the outgoing terminal line before the connection is established. This setting is often
important for certain attributes such as parity and baud-rate.

The CALL elements device and dev_len are no longer used. They are retained in the CALL
structure for compatibility reasons.

On failure, a negative value indicating the reason for the failure will be returned. Mnemonics
for these negative indices as listed here are defined in the header <dial. h>.

INTRPT -1 /* interrupt occurred */

D HUNG -2 /* dialer hung (no return from write) */
NO_ANS -3 /* no answer within 10 seconds */

ILL BD -4 /* illegal baud-rate */

A PROB -5 /* acu problem (open() failure) */

L PROB -6 /* line problem (open() failure) */

NO Ldv -7 /* can’t open Devices file */

DV NT A -8 /* requested device not available */

DV _NT K —9 /* requested device not known */

NO BD A —-10 /* no device available at requested baud */
NO BD K —11 /* no device known at requested baud */
DV NT E —12 /* requested speed does not match */

BAD SYS -13 /* system not in Systems file*/
/etc/uucp/Devices

/etc/uucp/Systems

/var/spool/uucp/LCK. . tty-device

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

MT-Level Unsafe

uucp(1C), alarm(2), read(2),write(2), attributes(5), termio(7I)

Including the header <dial.h> automatically includes the header <termio.h>. Analarm(2)
system call for 3600 seconds is made (and caught) within the dial module for the purpose of
“touching” the LCK. . file and constitutes the device allocation semaphore for the terminal
device. Otherwise, uucp(1C) may simply delete the LCK. . entry on its 90-minute clean-up
rounds. The alarm may go off while the user program is in a read(2) or write(2) function,
causing an apparent error return. If the user program expects to be around for an hour or
more, error returns from read()s should be checked for (errno==EINTR), and the read()
possibly reissued.

This interface is unsafe in multithreaded applications. Unsafe interfaces should be called only
from the main thread.

man pages section 3: Networking Library Functions « Last Revised 30 Dec 1996

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1uucp-1c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1alarm-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1write-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1termio-7i
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1alarm-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1uucp-1c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1write-2

dlpi_arptype(3DLPI)

Name

Synopsis

Description

Return Values

Attributes

See Also

dlpi_arptype - converta DLPI MAC type to an ARP hardware type

cc [flag... 1 file... -ldlpi [library...]
#include <libdlpi.h>
uint_t dlpi_arptype(uint_t dlpitype);

The dlpi_arptype() function convertsa DLPI MAC type to an ARP hardware type defined in
<netinet/arp.h>

Upon success, the corresponding ARP hardware type is returned. Otherwise, zero is returned.

See attributes(5) for description of the following attributes:

ATTRIBUTETYPE ATTRIBUTEVALUE
Interface Stability Committed
MT-Level Safe

libdlpi(3LIB), attributes(5)

Networking Library Functions 51

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libdlpi-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

dipi_bind(3DLPI)

52

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

dlpi_bind - bind DLPI handle

cc [flag ... 1 file ... -ldlpi [library ...]
#include <libdlpi.h>

int dlpi_bind(dlpi_handle_t dh, uint_t sap, uint_t *boundsap);

The dlpi_bind() function attempts to bind the DLPI handle dh to the SAP sap. The handle
must be in the DL_UNBOUND DLPI state and will transition to the DL_IDLE DLPI state upon
success. Some DLPI MAC types can bind to a different SAP than the SAP requested, in which
case boundsap returns the actual bound SAP. If boundsap is set to NULL, dlpi_bind () fails if
the bound SAP does not match the requested SAP. If the caller does not care which SAP is
chosen, DLPI_ANY_SAP can be specified for sap. This is primarily useful in conjunction with
dlpi_promiscon() and DL_PROMISC SAP to receive traffic from all SAPs. If DLPI_ANY SAP is
specified, any transmitted messages must explicitly specify a SAP using d1pi_send(3DLPI).

Upon success, the caller can use dlpi_recv(3DLPI) to receive data matching the bound SAP
that is sent to the DLPI link associated with dh. In addition, the caller can use
dlpi_send(3DLPI) to send data over the bound SAP address associated with DLPI handle dh.
The physical address of the bound handle can be retrieved with dlpi_info(3DLPI).

Upon success, DLPI_SUCCESS is returned. If DL_SYSERR is returned, errno contains the specific
UNIX system error value. Otherwise, a DLPI error value defined in <sys/dlpi.h> oran error
value listed in the following section is returned.

DLPI_EBADMSG Bad DLPI message
DLPI EINHANDLE Invalid DLPI handle
DLPI_ETIMEDOUT DLPI operation timed out

DLPI EUNAVAILSAP Unavailable DLPI SAP

See attributes(5) for description of the following attributes:
ATTRIBUTETYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level Safe

dlpi_info(3DLPI),dlpi recv(3DLPI),dlpi send(3DLPI),dlpi unbind(3DLPI),
1ibd1pi(3LIB), attributes(5)

man pages section 3: Networking Library Functions « Last Revised 22 Aug 2007

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libdlpi-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

dlpi_close(3DLPI)

Name

Synopsis

Description

Attributes

See Also

dlpi_close - close DLPI link

cc [flag ... 1 file ... -Wdlpi [library ...]
#include <libdlpi.h>

void dlpi_close(dlpi_handle_t dh);

The dlpi_close() function closes the open DLPI link instance associated with dh and
destroys dh after closing the DLPI link instance.

See attributes(5) for description of the following attributes:
ATTRIBUTE TYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level Safe

dlpi_open(3DLPI), libd1pi(3LIB), attributes(5)

Networking Library Functions 53

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libdlpi-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

dlpi_disabnotify(3DLPI)

54

Name dlpi_disabnotify — disable DLPI notification

Synopsis cc [flag... 1 file... -ldlpi [library...]
#include <libdlpi.h>

int dlpi disabnotify(dlpi handle t dh, dlpi notifyid t id,
void **argp);

Description Thedlpi_disabnotify() function disables the notification registration associated with
identifier id. If argp is not NULL, the argument arg that was passed to
dlpi_enabnotify(3DLPI) during registration is also returned. This operation can be
performed in any DLPI state of a handle.

Closing the DLPT handle dh will also remove all associated callback functions.

ReturnValues Upon success, DLPI_SUCCESS is returned. If DL_SYSERR is returned, errno contains the specific
UNIX system error value. Otherwise, a DLPI error value defined in <sys/d1lpi.h>oran error
value listed in the following section is returned.

Errors DLPI EINHANDLE A DLPI handle is invalid.
DLPI_EINVAL An argument is invalid.
DLPI ENOTEIDINVAL The DLPI notification ID is invalid.

DLPI_FAILURE The DLPI operation failed.

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

SeeAlso dlpi_enabnotify(3DLPI), libd1pi(3LIB), attributes(5)

man pages section 3: Networking Library Functions « Last Revised 21 Sep 2007

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libdlpi-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

dlpi_enabmulti(3DLPI)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

dlpi_enabmulti, dlpi_disabmulti — enable or disable DLPI multicast messages for an address
cc [flag... 1 file... -ldlpi [library...]

#include <libdlpi.h>

int dlpi_enabmulti(dlpi_handle_t dh, const void *addrp,

size t addrlen);

int dlpi_disabmulti(dlpi_handle_t dh, const void *addrp,
size t addrlen);

The dlpi_enabmulti() function enables reception of messages destined to the multicast
address pointed to by addrp on the DLPI link instance associated with DLPI handle dh. The
DLPI link instance will pass up only those messages destined for enabled multicast addresses.
This operation can be performed in any DLPI state of a handle.

The dlpi_disabmulti() function disables a specified multicast address pointed to by addrp
on the DLPI link instance associated with DLPI handle dh. This operation can be performed in
any DLPI state of a handle.

Upon success, DLPT_SUCCESS is returned. If DL_SYSERR is returned, errno contains the specific
UNIX system error value. Otherwise, a DLPI error value defined in <sys/d1lpi.h>or
DLPI EINHANDLE is returned.

DLPI_EBADMSG Bad DLPI message
DLPI EINHANDLE Invalid DLPI handle
DLPI_EINVAL Invalid argument

DLPI_ETIMEDOUT DLPI operation timed out

See attributes(5) for description of the following attributes:

ATTRIBUTETYPE ATTRIBUTEVALUE
Interface Stability Committed
MT-Level Safe

libdlpi(3LIB), attributes(5)

Networking Library Functions 55

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libdlpi-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

dlpi_enabnotify(3DLPI)

Name

Synopsis

Description

56

dlpi_enabnotify — enable DLPI notification

cc [flag... 1 file... -ldlpi [library...]
#include <libdlpi.h>

int dlpi enabnotify(dlpi handle t dh, uint t notes,
dlpi_notifyfunc_t *funcp, void *arg, dlpi_notifyid t *id);

typedef void dlpi notifyfunc_t(dlpi_handle_t,
dlpi notifyinfo t *, void *);

The dlpi enabnotify() function enables a notification callback for the set of events specified
in notes, which must be one or more (by a logical OR operation) of the DLPI notifications
documented in d1pi(7P). The callback function funcp is registered with the DLPI handle dh
and is invoked when dh receives notification for any of the specified event types. Upon
success, id contains the identifier associated with the registration.

Multiple event types can be registered for a callback function on the DLPI handle dh.
Similarly, the same event type can be registered multiple times on the same handle.

Once a callback has been registered, 1ibd1pi will check for notification events on the DLPI
handle dh, when exchanging DLPI messages with the underlying DLPI link instance. The
dlpi_recv(3DLPI) function will always check for notification events, but other 1ibdlpi
operations may also lead to an event callback being invoked. Although there may be no
expected data messages to be received, dlpi_recv() can be called, as shown below, with a null
buffer to force a check for pending events on the underlying DLPI link instance.

dlpi recv(dh, NULL, NULL, NULL, NULL, @, NULL);
When a notification event of interest occurs, the callback function is invoked with the

arguments arg, originally passed to dlpi_disabnotify(3DLPI), and infop, whose members
are described below.

uint_tdni_note Notification event type.

uint_t dni_speed Current speed, in kilobits per second, of the DLPI link. Valid
only for DL_NOTE_SPEED.

uint_t dni_size Current maximum message size, in bytes, that the DLPI link is
able to accept for transmission. Valid only for
DL _NOTE SDU SIZE

uchar_t dni_physaddrlen ~ Link-layer physical address length, in bytes. Valid only for
DL_NOTE_PHYS ADDR.

uchar_t dni_physaddr|] Link-layer physical address of DLPI link. Valid only for
DL_NOTE_PHYS_ADDR.

The 1ibdlpi library will allocate and free the dlpi_notifyinfo_t structure and the caller
must not allocate the structure or perform any operations that require its size to be known.

man pages section 3: Networking Library Functions « Last Revised 10 Mar 2009

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN7dlpi-7p

dlpi_enabnotify(3DLPI)

The callback is not allowed to block. This precludes calling dlpi_enabnotify() froma
callback, but non-blocking 1ibd1pi functions, including dlpi_disabnotify(), can be called.

ReturnValues Upon success, DLPI_SUCCESS is returned. If DL_SYSERR is returned, errno contains the specific
UNIX system error value. Otherwise, a DLPI error value defined in <sys/d1lpi.h>oran error
value listed in the following section is returned.

Errors DLPI EINHANDLE A DLPI handle is invalid.
DLPI_EINVAL An argument is invalid.
DLPI_ENOTEIDINVAL The DLPI notification ID is invalid.
DLPI_ENOTENOTSUP The DLPI notification is not supported by the link.
DLPI_ETIMEDOUT The DLPI operation timed out.
DLPI_FAILURE The DLPI operation failed.

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

SeeAlso dlpi disabnotify(3DLPI),dlpi_recv(3DLPI), libdlpi(3LIB), attributes(5), d1pi(7P)

Networking Library Functions 57

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libdlpi-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN7dlpi-7p

dipi_fd(3DLPI)

58

Name

Synopsis

Description

ReturnValues

Attributes

See Also

dlpi_fd - get DLPI file descriptor

cc [flag ... 1 file ... -ldlpi [library ...]
#include <libdlpi.h>

int dlpi_fd(dlpi_handle_t dh);

The dlpi_fd() function returns the integer file descriptor that can be used to directly operate
on the open DLPI stream associated with the DLPI handle dh. This file descriptor can be used
to perform non-DLPI operations that do not alter the state of the DLPI stream, such as waiting
for an event using pol1(2), or pushing and configuring additional STREAMS modules, such as
pfmod(7M). If DLPI operations are directly performed on the file descriptor, or a STREAMS
module is pushed that alters the message-passing interface such that DLPI operations can no
longer be issued, future operations on dh might not behave as documented.

The returned file descriptor is managed by 1ibd1pi(3LIB) and the descriptor must not be
closed.

The function returns the integer file descriptor associated with the DLPI handle dh. If dh is
invalid, -1 is returned.

See attributes(5) for description of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level Safe

poll(2), libdlpi(3LIB), attributes(5),d1lpi(7P), pfmod(7M)

man pages section 3: Networking Library Functions « Last Revised 15 Jun 2007

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1poll-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1pfmod-7m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libdlpi-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1poll-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libdlpi-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1dlpi-7p
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1pfmod-7m

dlpi_get_physaddr(3DLPI)

Name

Synopsis

Description

ReturnValues

Errors

Attributes

See Also

dlpi_get_physaddr - get physical address using DLPI

cc [flag... 1 file... -ldlpi [library...]
#include <libdlpi.h>

int dlpi_get_physaddr(dlpi_handle_t dh, uint_t type,
void *addrp,size_t *addrlenp);

The dlpi_get_physaddr() function gets a physical address from the DLPIlink instance
associated with DLPI handle dh. The retrieved address depends upon type, which can be:

DL _FACT_PHYS ADDR Factory physical address

DL_CURR_PHYS_ADDR Current physical address
The operation can be performed in any DLPI state of dh.

The caller must ensure that addrp is at least DLPI_PHYSADDR_MAX bytes in size and addrlenp
must contain the length of addrp. Upon success, addrp contains the specified physical address,
and addrlenp contains the physical address length. If a physical address is not available, addrp
is not filled in and addrlenp is set to zero.

Upon success, DLPI_SUCCESS is returned. If DL_SYSERR is returned, errno contains the specific
UNIX system error value. Otherwise, a DLPI error value defined in <sys/d1pi.h>or an error
value listed in the following section is returned.

DLPI_EBADMSG Bad DLPI message
DLPI_EINHANDLE Invalid DLPT handle
DLPI_EINVAL Invalid argument

DLPI_ETIMEDOUT DLPI operation timed out

See attributes(5) for description of the following attributes:

ATTRIBUTETYPE ATTRIBUTEVALUE
Interface Stability Committed
MT-Level Safe

dlpi_set physaddr(3DLPI), libd1lpi(3LIB), attributes(5)

Networking Library Functions 59

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libdlpi-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

dlpi_iftype(3DLPI)

Name dlpi_iftype — convert a DLPI MAC type to a BSD socket interface type

Synopsis cc [flag... 1 file... -ldlpi [library...]
#include <libdlpi.h>

uint_t dlpi_iftype(uint_t dlpitype);

Description Thedlpi_iftype() function convertsa DLPI MAC type to a BSD socket interface type
defined in <net/if types.h>.

ReturnValues Upon success, the corresponding BSD socket interface type is returned. Otherwise, zero is
returned.

Attributes See attributes(5) for description of the following attributes:

ATTRIBUTETYPE ATTRIBUTEVALUE
Interface Stability Committed
MT-Level Safe

SeeAlso 1ibdlpi(3LIB),attributes(5)

60 man pages section 3: Networking Library Functions - Last Revised 8 Feb 2008

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libdlpi-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

dlpi_info(3DLPI)

Name dlpi_info - get DLPI information

Synopsis cc [flag ... 1 file ... -ldlpi [library ...]
#include <libdlpi.h>

int dlpi_info(dlpi_handle_t dh, dlpi_info_t *infop,
uint t version);

Description Thedlpi_info() function provides DLPI information about the open DLPI link instance
associated with DLPI handle dh. DLPI information can be retrieved in any state of dh, but
some of the information might not be available if dh is in the DL_UNBOUND DLPI state. The
DLPI information received is copied into infop, which must pointtoa dlpi_info_t allocated
by the caller. The version argument specifies the version of the dlpi_info_t structure
expected by the caller. Callers can use the macro DLPI_INFO_VERSION to specify the default
version, which is currently 0. Callers can request version 1 of the dlpi_info_t structure by
defining DLPI_INFO_VERSION to 1 before including <libdlpi.h>and passing the defined
DLPI_INFO_VERSION value of 1 as the version argument. See the description of di_linkname
below for the difference between version 0 and 1.

Thedlpi info_tisastructure defined in <libdlpi.h> as follows:

typedef struct {

uint_t di_opts;

uint t di max_sdu;

uint_t di min_sdu;

uint_t di_state;

uchar t di mactype;

char di linkname[DLPI LINKNAME MAX];
uchar_t di physaddr[DLPI_PHYSADDR MAX];
uchar t di physaddrlen;

uchar_t di bcastaddr[DLPI_PHYSADDR MAX];
uchar_t di bcastaddrlen;

uint_t di sap;

int di_timeout;

dl qos cl sell t di qos sel;

dl qos cl rangel t di gos range;

} dlpi_info t;

di_opts

Reserved for future dlpi_info_t expansion.

di_max_sdu
Maximum message size, in bytes, that the DLPI link is able to accept for transmission. The
value is guaranteed to be greater than or equal to di_min_sdu.

di_min_sdu
Minimum message size, in bytes, that the DLPI link is able to accept for transmission. The
value is guaranteed to be greater than or equal to one.

Networking Library Functions 61

dlpi_info(3DLPI)

ReturnValues

62

di_state
Current DLPI state of dh; either DL UNBOUND or DL_IDLE.

di_mactype
MAC type supported by the DLPI link associated with dh. See <sys/d1pi.h> for the list of
possible MAC types.

di_linkname
Link name associated with DLPI handle dh. If the caller specifies the default version
argument value of 0, the size of this field is DLPI_LINKNAME_MAX. If the caller defines
DLPI_INFO_VERSION to value 1 before including <libdlpi.h>, the size of this field is
MAXLINKNAMESPECIFIER. See d1pi(7P) for information on link names and the
supported maximum length of DLPI link names.

di_physaddr
Link-layer physical address of bound dh. If dh is in the DL_UNBOUND DLPI state, the contents
of di_physaddr are unspecified.

di_physaddrlen
Physical address length, in bytes. If dh is in the DL_UNBOUND DLPI state, di_physaddrlen is
set to zero.

di_bcastaddr
Link-layer broadcast address. If the di_mactype of the DLPI link does not support
broadcast, the contents of di_bcastaddr are unspecified.

di_bcastaddrlen
Link-layer broadcast address length, in bytes. If the di_mactype of the DLPI link does not
support broadcast, di_bcastaddrlen is set to zero.

di_sap
SAP currently bound to handle. If dh is in the DL_UNBOUND DLPI state, di_sap is set to zero.

di_timeout
Current timeout value, in seconds, set on the dlpi handle.

di_qos_sel
Current QOS parameters supported by the DLPI link instance associated with dh.
Unsupported QOS parameters are set to DL_UNKNOWN.

di_qos_range
Available range of QOS parameters supported by a DLPI link instance associated with the
DLPI handle dh. Unsupported QOS range values are set to DL_UNKNOWN.

Upon success, DLPI_SUCCESS is returned. If DL_SYSERR is returned, errno contains the specific
UNIX system error value. Otherwise, a DLPI error value defined in <sys/d1lpi.h>oran error
value listed in the following section is returned.

man pages section 3: Networking Library Functions « Last Revised 15 Apr2011

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN7dlpi-7p

dlpi_info(3DLPI)

Errors DLPI_EBADMSG Bad DLPI message
DLPI EINHANDLE Invalid DLPI handle
DLPI_EINVAL Invalid argument

DLPI_EMODENOTSUP Unsupported DLPI connection mode
DLPI_ETIMEDOUT DLPI operation timed out
DLPI_EVERNOTSUP Unsupported DLPI Version
DLPI_FAILURE DLPI operation failed

Examples ExampLE1 Getlink-layer broadcastaddress
The following example shows how d1pi_info() canbe used.

#include <libdlpi.h>

uchar t *
get bcastaddr(const char *linkname, uchar t *baddrlenp)
{

dlpi handle t dh;

dlpi info t dlinfo;

uchar_t *baddr;

if (dlpi open(linkname, &dh, @) != DLPI SUCCESS)
return (NULL);

if (dlpi info(dh, &dlinfo, @) !'= DLPI SUCCESS) {
dlpi close(dh);
return (NULL);

}

dlpi close(dh);

*baddrlenp dlinfo.di bcastaddrlen;
if ((baddr = malloc(*baddrlenp)) == NULL)
return (NULL);

return (memcpy(baddr, dlinfo.di bcastaddr, *baddrlenp));
}

Attributes See attributes(5) for description of the following attributes:

ATTRIBUTETYPE ATTRIBUTEVALUE
Interface Stability Committed
MT-Level Safe

Networking Library Functions

63

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

dlpi_info(3DLPI)

SeeAlso dlpi_bind(3DLPI), libdlpi(3LIB), attributes(5), dlpi(7P)

64 man pages section 3: Networking Library Functions « Last Revised 15 Apr2011

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libdlpi-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN7dlpi-7p

dlpi_linkname(3DLPI)

Name

Synopsis

Description

Return Values

Attributes

See Also

dlpi_linkname - get DLPI link name

cc [flag ... 1 file ... -Wdlpi [library ...]
#include <libdlpi.h>

const char *dlpi_linkname(dlpi_handle_t dh);

The dlpi_linkname() function returns a pointer to the link name of the DLPI link instance
associated with the DLPI handle dh.

The returned string is managed by 1ibd1pi and must not be modified or freed by the caller.

Upon success, the function returns a pointer to the link name associated with the DLPI
handle.

See attributes(5) for description of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level Safe

1ibd1pi(3LIB), attributes(5)

Networking Library Functions 65

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libdlpi-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

dlpi_mactype(3DLPI)

Name

Synopsis

Description

ReturnValues

Attributes

See Also

66

dlpi_mactype - convert a DLPI MAC type to a string

cc [flag ... 1 file ... -ldlpi [library ...]
#include <libdlpi.h>

const char *dlpi_mactype(uint_t mactype) ;

The dlpi_mactype() function returns a pointer to a string that describes the specified
mactype. Possible MAC types are defined in <sys/dlpi.h>. The string is not dynamically
allocated and must not be freed by the caller.

Upon success, the function returns a pointer string that describes the MAC type. If mactype is
unknown, the string “Unknown MAC Type” is returned.

See attributes(5) for description of the following attributes:

ATTRIBUTETYPE ATTRIBUTEVALUE
Interface Stability Committed
MT-Level Safe

1ibd1pi(3LIB), attributes(5)

man pages section 3: Networking Library Functions « Last Revised 15 Jun 2007

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libdlpi-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

dlpi_open(3DLPI)

Name

Synopsis

Description

dlpi_open - open DLPI link

cc [flag ... 1 file ... -Wdlpi [library ...]
#include <libdlpi.h>

int dlpi_open(const char *linkname, dlpi_handle_t *dhp,
uint_t flags);

The dlpi_open() function creates an open instance of the DLPI Version 2 link named by
linkname and associates it with a dynamically-allocated d1pi_handle_t, which is returned to
the caller in dhp upon success. The DLPI handle is left in the DL_UNBOUND DLPI state after a
successful open of the DLPI link. The DLPI handles can only be used by one thread at a time,
but multiple handles can be used by multiple threads. This function can open both DL_STYLE1
and DL_STYLE2 DLPI links.

By default (if DLPI_DEVIPNET is not set in flags), the dlpi_open() function scans the /dev/net
and /dev directories for DLPI links, in order. Within each scanned directory, dlpi_open()
firstlooks for a matching DL_STYLE1 link, then for a matching DL_STYLE?2 link. If provider is
considered the linkname with its trailing digits removed, a matching DL_STYLE1 link has a
filename of linkname, and a matching DL_STYLE?2 link has a filename of provider. If a
DL_STYLE2 link is opened, dlpi_open() automatically performs the necessary DLPI
operations to place the DLPI link instance and the associated DLPI handle in the DL_UNBOUND
state. See d1pi(7P) for the definition of linkname and the maximum supported length of the
Solaris DLPI linkname.

IfDLPI_DEVIPNET is set in flags, dlpi_open() opens the file linkname in /dev/ipnet asa
DL_STYLE1 DLPI device and does not look in any other directories.

The value of flags is constructed by a bitwise-inclusive-OR of the flags listed below, defined in
<libdlpi.h>.

DLPI_DEVIPNET Specify that the named DLPI device is an IP observability device (see
ipnet(7D)), and d1_open() will open the device from the /dev/ipnet/
directory.

DLPI_IPNETINFO This flagis applicable only when opening IP Observability devices (with
DLPI_DEVIPNET or by opening the /dev/100 device). This flag causes the
ipnet driver to prepend an ipnet header to each received IP packet. See
ipnet(7D) for the contents of this header.

DLPI NATIVE Enable DLPI native mode (see DLIOCNATIVE in d1pi(7P)) on a DLPI link
instance. Native mode persists until the DLPI handle is closed by
dlpi_close(3DLPI).

DLPI PASSIVE Enable DLPI passive mode (see DL_PASSIVE_REQin dlpi(7P)) ona DLPI
link instance. Passive mode persists until the DLPI handle is closed by
dlpi_close(3DLPI).

Networking Library Functions 67

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1dlpi-7p
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ipnet-7d
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ipnet-7d
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1dlpi-7p
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1dlpi-7p

dlpi_open(3DLPI)

ReturnValues

Errors

Attributes

See Also

68

DLPI_RAW Enable DLPI raw mode (see DLIOCRAW in d1pi(7P)) on a DLPI link
instance. Raw mode persists until the DLPI handle is closed by
dlpi_close(3DLPI).

Each DLPI handle has an associated timeout value that is used as a timeout interval for certain
libdlpi operations. The default timeout value ensures that DLPI_ETIMEDOUT is returned from
a libd1pi operation only in the event that the DLPI link becomes unresponsive. The timeout
value can be changed with d1pi_set_timeout(3DLPI), although this should seldom be
necessary.

Upon success, DLPI_SUCCESS is returned. If DL_SYSERR is returned, errno contains the specific
UNIX system error value. Otherwise, a DLPI error value defined in <sys/d1pi.h> or listed in
the following section is returned.

The dlpi_open() function will fail if:
DLPI EBADLINK Bad DLPI link

DLPI EIPNETINFONOTSUP The DLPI_IPNETINFO flag was set but the device opened does
not support the DLIOCIPNETINFO ioctl.

DLPI ELINKNAMEINVAL Invalid DLPI linkname

DLPI ENOLINK DLPI link does not exist
DLPI_ERAWNOTSUP DLPI raw mode not supported
DLPI_ETIMEDOUT DLPI operation timed out
DLPI_FAILURE DLPI operation failed

See attributes(5) for description of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level Safe

dlpi close(3DLPI),dlpi set timeout(3DLPI), libdlpi(3LIB), attributes(5),dlpi(7P),
ipnet(7D)

man pages section 3: Networking Library Functions « Last Revised 7 Apr2011

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1dlpi-7p
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libdlpi-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1dlpi-7p
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ipnet-7d

dlpi_promiscon(3DLPI)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

dlpi_promiscon, dlpi_promiscoff — enable or disable DLPI promiscuous mode

cc [flag... 1 file... -ldlpi [library...]
#include <libdlpi.h>

int dlpi promiscon(dlpi handle t dh, uint t level);

int dlpi promiscoff(dlpi handle t dh, uint t level);

The dlpi promiscon() function enables promiscuous mode on a DLPI link instance
associated with DLPI handle dh, at the specified level. After enabling promiscuous mode, the
caller will be able to receive all messages destined for the DLPI link instance at the specified
level. This operation can be performed in any DLPI state of a handle.

The dlpi promiscoff() function disables promiscuous mode on a DLPI link instance
associated with DLPI handle dh, at the specified level. This operation can be performed in any
DLPI state of a handle in which promiscuous mode is enabled at the specified level.

The level modes are:
DL _PROMISC PHYS Promiscuous mode at the physical level
DL _PROMISC SAP Promiscuous mode at the SAP level

DL_PROMISC MULTI Promiscuous mode for all multicast addresses

Upon success, DLPI_SUCCESS is returned. If DL_SYSERR is returned, errno contains the specific
UNIX system error value. Otherwise, a DLPI error value defined in <sys/d1pi.h>or an error
value listed in the following section is returned.

DLPI_EBADMSG Bad DLPI message
DLPI EINHANDLE Invalid DLPI handle
DLPI_EINVAL Invalid argument

DLPI_ETIMEDOUT DLPI operation timed out

See attributes(5) for description of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level Safe

1ibdlpi(3LIB), attributes(5)

Networking Library Functions 69

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libdlpi-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

dlpi_recv(3DLPI)

Name

Synopsis

Description

70

dlpi_recv - receive a data message using DLPI

cc [flag ... 1 file ... -ldlpi [library ...]
#include <libdlpi.h>

int dlpi_recv(dlpi_handle_t dh, void *saddrp,
size_t * saddrlenp, void *msgbuf, size_ t *msglenp,
int msec, dlpi_recvinfo_t *recvp);

The dlpi_recv() function attempts to receive data messages over the DLPI link instance
associated with the DLPT handle dh. If dh is not in the DL_IDLE DLPI state, the attempt fails.
The caller must ensure that msgbufis at least msglenp bytes in size. Upon success, msgbuf
contains the data message received, msglenp contains the number of bytes placed in msgbuf.

The caller must ensure that saddrp is at least DLPI_PHYSADDR_MAX bytes in size and saddrlenp
must contain the length of saddrp. Upon success, saddrp contains the address of the source
sending the data message and saddrlenp contains the source address length. If the caller is not
interested in the source address, both saddrp and saddrlenp can be left as NULL. If the source
address is not available, saddrp is not filled in and saddrlenp is set to zero.

The dlpi_recvinfo_t is a structure defined in <libd1pi.h> as follows:

typedef struct {

uchar_t dri destaddr[DLPI_PHYSADDR MAX];
uchar t dri destaddrlen;

dlpi addrtype t dri destaddrtype;

size t dri totmsglen;

} dlpi recvinfo t;

Upon success, if recvp is not set to NULL, dri_destaddr contains the destination address,
dri_destaddrlen contains the destination address length, and dri_totmsglen contains the total
length of the message received. If the destination address is unicast, dri_destaddrtype is set to
DLPI ADDRTYPE UNICAST.Otherwise, it is setto DLPI ADDRTYPE GROUP

The values of msglenp and dri_totmsglen might vary when a message larger than the size of
msgbufis received. In that case, the caller can use dri_totmsglen to determine the original total
length of the message.

If the handle is in raw mode, as described in d1pi_open(3DLPI), msgbuf starts with the
link-layer header. See dlpi(7P). The values of saddrp, saddrlenp, and all the members of
dlpi_recvinfo_t except dri_totmsglen are invalid because the address information is already
included in the link-layer header returned by msgbuf.

If no message is received within msec milliseconds, dlpi_recv () returns DLPI_ETIMEDOUT. If
msecis 0,dlpi_recv() does notblock. If msecis -1,d1pi_recv() does block until a data
message is received.

man pages section 3: Networking Library Functions « Last Revised 22 Aug 2007

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1dlpi-7p

dlpi_recv(3DLPI)

ReturnValues Upon success, DLPI_SUCCESS is returned. If DL_SYSERR is returned, errno contains the specific
UNIX system error value. Otherwise, a DLPI error value defined in <sys/d1pi.h> or an error
value listed in the following section is returned.

Errors DLPI_EBADMSG
DLPI EINHANDLE
DLPI EINVAL
DLPI ETIMEDOUT
DLPI EUNAVAILSAP

DLPI_ FAILURE

Bad DLPI message
Invalid DLPI handle
Invalid argument

DLPI operation timed out
Unavailable DLPI SAP
DLPI operation failed

Attributes See attributes(5) for description of the following attributes:

ATTRIBUTETYPE ATTRIBUTEVALUE
Interface Stability Committed
MT-Level Safe

SeeAlso dlpi bind(3DLPI),dlpi open(3DLPI), libd1pi(3LIB), attributes(5),dlpi(7P)

Networking Library Functions

71

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libdlpi-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1dlpi-7p

dlpi_send(3DLPI)

72

Name

Synopsis

Description

ReturnValues

Errors

dlpi_send - send a data message using DLPI

cc [flag... 1 file... -ldlpi [library...]
#include <libdlpi.h>

int dlpi_send(dlpi_handle_t dh, const void *daddrp,
size_t daddrlen, const void *msgbuf, size_t msglen,
const dlpi sendinfo t *sendp);

The dlpi_send() function attempts to send the contents of msgbuf over the DLPI link
instance associated with the DLPT handle dh to the destination address specified by daddrp.
The size of msgbufand daddrp are provided by the msglen and daddrlen arguments,
respectively. The attempt will fail if dh is not in the DL_IDLE DLPI state, the address named by
daddrp is invalid, daddrlen is larger than DLPI_PHYSADDR_MAX, or msglen is outside the range
reported by dlpi_info(3DLPI).

If the sendp argument is NULL, data is sent using the bound SAP associated with dh (see
dlpi_bind(3DLPI)) and with default priority. Otherwise, sendp must point to a
dlpi sendinfo t structure defined in <libd1lpi.h> as follows:

typedef struct {
uint t dsi sap;
dl priority t dsi prio;
} dlpi_sendinfo t;

The dsi_sap value indicates the SAP to use for the message and the dsi_prio argument
indicates the priority. The priority range spans from 0 to 100, with 0 being the highest priority.
If one wishes to only alter the SAP or priority (but not both), the current SAP can be retrieved
using dlpi_info(3DLPI), and the default priority can be specified by using the

DL QOS DONT_CARE constant.

If the handle is in raw mode (see DLPI_RAWin dlpi_open(3DLPI)), msgbuf must start with the
link-layer header (see dlpi(7P)). In raw mode, the contents of daddrp and sendp are ignored,
as they are already specified by the link-layer header in msgbuf.

If msgbufis accepted for delivery, no error is returned. However, because only
unacknowledged connectionless service (DL_CLDLS) is currently supported, a successful
return does not guarantee that the data will be successtully delivered to daddrp.

Upon success, DLPI_SUCCESS is returned. If DL_SYSERR is returned, errno contains the specific
UNIX system error value. Otherwise, a DLPI error value defined in <sys/d1lpi.h>oran error
value listed in the following section is returned.

DLPI_EINHANDLE Invalid DLPI handle

DLPI_EINVAL Invalid argument

man pages section 3: Networking Library Functions « Last Revised 15 Jul 2008

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1dlpi-7p

dlpi_send(3DLPI)

Attributes See attributes(5) for description of the following attributes:

ATTRIBUTETYPE ATTRIBUTEVALUE
Interface Stability Committed
MT-Level Safe

SeeAlso dlpi bind(3DLPI),dlpi_info(3DLPI),dlpi open(3DLPI), libd1pi(3LIB), attributes(5),

dlpi(7P)

Networking Library Functions

73

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libdlpi-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1dlpi-7p

dlpi_set_physaddr(3DLPI)

Name dlpi_set_physaddr - set physical address using DLPI

Synopsis cc [flag... 1 file... -ldlpi [library...]
#include <libdlpi.h>

int dlpi_set_physaddr(dlpi_handle_t dh, uint_t type,
const void *addrp, size t *addrlen);

Description Thedlpi_set_physaddr() function sets the physical address via DLPI handle dh associated
with the DLPI link instance. Upon success, the physical address is set to addrp with a length of
addrlen bytes.

In this release, type must be set to DL_CURR_PHYS_ADDR, which sets the current physical
address.

ReturnValues Upon success, DLPI_SUCCESS is returned. If DL_SYSERR is returned, errno contains the specific
UNIX system error value. Otherwise, a DLPI error value defined in <sys/d1lpi.h>oran error
value listed in the following section is returned.

Errors DLPI_EBADMSG Bad DLPI message
DLPI_EINHANDLE Invalid DLPI handle
DLPI_EINVAL Invalid argument

DLPI_ETIMEDOUT DLPI operation timed out

Attributes See attributes(5) for description of the following attributes:

ATTRIBUTETYPE ATTRIBUTEVALUE
Interface Stability Committed
MT-Level Safe

SeeAlso dlpi_get physaddr(3DLPI), libdlpi(3LIB), attributes(5)

74 man pages section 3: Networking Library Functions « Last Revised 22 Aug 2007

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libdlpi-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

dlpi_set_timeout(3DLPI)

Name

Synopsis

Description

ReturnValues

Errors

Attributes

See Also

dlpi_set_timeout — set DLPI handle timeout interval

cc [flag ... 1 file ... -Wdlpi [library ...]
#include <libdlpi.h>

int dlpi_set_timeout(dlpi_handle_t dh, int sec);

The dlpi set timeout() function sets the timeout interval to sec seconds on DLPI handle
dh. This timeout is used by 1ibd1pi(3LIB) functions that require explicit acknowledgment
from the associated DLPI link, and bounds the number of seconds that a function will wait for
an acknowledgment before returning DLPI_ETIMEDOUT. Except for dlpi_recv(3DLPI), which
has a timeout argument, any function that is documented to return DLPI_ETIMEDOUT can take
up to the timeout interval to complete.

Callers that do not require an upper bound on timeouts are strongly encouraged to never call
dlpi set timeout(),and allow libdlpi to use its default timeout value. The default timeout
value is intended to ensure that DLPI_ETIMEDOUT will only be returned if the DLPI link has
truly become unresponsive. The default timeout value is intended to ensure that
DLPI_ETIMEDOUT will be returned only if the DLPI link has truly become unresponsive.

Callers that do require an explicit upper bound can specify that value at any time by calling
dlpi_set_timeout().However, note that values less than 5 seconds may trigger spurious
failures on certain DLPI links and systems under high load, and thus are discouraged.
Attempts to set the timeout value to less than 1 second will fail.

If secis set toDLPI DEF TIMEOUT, the default timeout value is restored.

Upon success, DLPI_SUCCESS is returned. Otherwise, a DLPI error value is returned.

DLPI EINHANDLE Invalid DLPI handle

See attributes(5) for description of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level Safe

1ibd1pi(3LIB), attributes(5)

Networking Library Functions 75

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libdlpi-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libdlpi-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

dlpi_strerror(3DLPI)

76

Name

Synopsis

Description

Return Values

Attributes

See Also

dlpi_strerror — get DLPI error message

cc [flag... 1 file... -ldlpi [library...]
#include <libdlpi.h>

const char *dlpi_strerror(int err);

The dlpi_strerror() function maps the error code in err into an error message string and
returns a pointer to that string.

If err is DL_SYSERR, a string that describes the current value of errno is returned. Otherwise, if
err corresponds to an error code listed in <libdlpi.h>or<sys/d1lpi.h>,a string which
describes that error is returned.

The string is not dynamically allocated and must not be freed by the caller.

Upon success, the function returns a pointer to the error message string. If the error code is
unknown, the string “Unknown DLPI error” is returned.

See attributes(5) for description of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level Safe

libdlpi(3LIB), attributes(5)

man pages section 3: Networking Library Functions « Last Revised 22 Aug 2007

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libdlpi-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

dlpi_unbind(3DLPI)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

dlpi_unbind - unbind DLPI handle

cc [flag ... 1 file ... -Wdlpi [library ...]
#include <libdlpi.h>

int dlpi unbind(dlpi handle t dh);

The dlpi unbind() function unbinds to bind the DLPI handle dh from the bound SAP. The
handle must be in the DL_IDLE DLPI state and upon success, the handle transitions to the
DL_UNBOUND state.

Upon success, the caller will no longer be able to send or receive data using the DLPI link
associated with dh.

Upon success, DLPI_SUCCESS is returned. If DL_SYSERR is returned, errno contains the specific
UNIX system error value. Otherwise, a DLPI error value defined in <sys/dlpi.h> oran error
value DLPI_ETIMEDOUT will be returned.

DLPI_EBADMSG Bad DLPI message
DLPI EINHANDLE Invalid DLPI handle

DLPI_ETIMEDOUT DLPI operation timed out

See attributes(5) for description of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level Safe

dlpi bind(3DLPI), libdlpi(3LIB), attributes(5)

Networking Library Functions 77

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libdlpi-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

dlpi_walk(3DLPI)

78

Name dlpi_walk - traverse DLPI links

Synopsis cc [flag... 1 file... -ldlpi [library...]
#include <libdlpi.h>

void dlpi_walk(dlpi_walkfunc_t *fu, void *arg, uint_t flags);
typedef boolean_t dlpi_walkfunc_t(const char *name, void *arg);
Parameters fn Function to invoke for each link. Arguments are:

name The name of the DLPI interface.

arg The arg parameter passed in to dlpi_walk().

arg An opaque argument that is passed transparently to the user-supplied fn()
function.

flags This parameter is reserved for future use. The caller should pass in 0.

Description The dlpi walk() function visits all DLPI links in the current zone. The walk does not visit
DLPI links in the non-global zones when called from the global zone. For each link visited, the
user-supplied fn() function is invoked. The walk terminates either when all links have been
visited or when fn() returns B_TRUE.

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

SeeAlso 1ibd1lpi(3LIB),attributes(5)

man pages section 3: Networking Library Functions « Last Revised 7 Apr2011

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN7libdlpi-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

DNSServiceBrowse(3DNS_SD)

Name

Synopsis

Description

DNSServiceBrowse — browse service instances with DNS

cc [flag ... 1 file ... -ldns_sd [library ...]
#include <dns_sd.h>

DNSServiceErrorType DNSServiceBrowse(DNSServiceRef *sdRef,
DNSServiceFlags flags, uint32_t interfacelndex,
const char *regtype, const char *domain,
DNSServiceServiceBrowseReply callBack, void *context);

typedef void(*DNSServiceBrowseReply) (DNSServiceRef sdRef,
DNSServiceFlags flags, uint32_t interfacelndex,
DNSServiceErrorType errorCode, const char *serviceName,
const char *regtype, const char *replyDomain,
void *context);

The DNSServiceBrowse () function is used to browse for service instances of a particular
service and protocol type. The sdRef argument points to an uninitialized DNSServiceRef. If the
call to DNSServiceBrowse succeeds sdRefis initialized. The flags argument to
DNSServiceBrowse () is currently unused and reserved for future use. A nonzero value to
interfacelndex indicates DNSServiceBrowse () should do a browse on all interfaces. Most
applications will use an interfacelndex value of @ to perform a browse on all interfaces. See the
section “Constants for specifying an interface index” in <dns_sd. h> for more details.

The callback function is invoked for every service instance found matching the service type
and protocol. The callback argument points to a function of type DNSServiceBrowseReply
listed above. The DNSServiceBrowse() call returns browse results asynchronously. The
service browse call can be terminated by applications with a call to
DNSServiceRefDeallocate().

The regtype parameter is used to specify the service type and protocol (e.g. _ftp._tcp). The
protocol type must be TCP or UDP. The domain argument to DNSServiceBrowse() specifies the
domain on which to browse for services. Most applications will not specify a domain and will
perform a browse on the default domain(s). The context argument can be NULL and points to a
value passed to the callback function.

The sdRef argument passed to the callback function is initialized by DNSServiceBrowse () call.
The possible values passed to flags in the callback function are:
kDNSServiceFlagsMoreComing and kDNSServiceFlagsAdd. The
kDNSServiceFlagsMoreComing value indicates to a callback that at least one more result is
immediately available. The kDNSServiceFlagsAdd value indicates that a service instance was
found. The errorCode argument will be kDNSServiceErr_NoError on success. Otherwise,
failure is indicated. The discovered service name is returned to the callback via the
serviceName argument. The regtype argument in the callback holds the service type of the
found service instance. The discovered service type can be different from the requested service
type in the browse request when the discovered service type has subtypes. The domain
argument to the callback holds the domain name of the discovered service instance. The

Networking Library Functions 79

DNSServiceBrowse(3DNS_SD)

80

service type and the domain name must be stored and passed along with the service name to
resolve a service instance using DNSServiceResolve().

ReturnValues TheDNSServiceBrowse function returns kDNSServiceErr NoError on success. Otherwise, an
error code defined in <dns_sd. h>is returned to indicate an error has occurred. When an error
is returned by DNSServiceBrowse, the callback function is not invoked and the DNSServiceRef
argument is not initialized.

Attributes See attributes(5) for description of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level Safe

SeeAlso DNSServiceRefDeallocate(3DNS_SD),DNSServiceResolve(3DNS_SD), attributes(5)

man pages section 3: Networking Library Functions « Last Revised 20 Aug 2007

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

DNSServiceConstructFullName(3DNS_SD)

Name

Synopsis

Description

Attributes

See Also

DNSServiceConstructFullName - construct full name

cc [flag ... 1 file ... -ldns_sd [library ...]
#include <dns sd.h>

int DNSServiceConstructFullName (char *fullname,
const char *service, const char *regtype, const char *domain);

The DNSServiceConstructFullName() concatenates a three-part domain name that consists
of a service name, service type, and domain name into a fully escaped full domain name.

See attributes(5) for description of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe
attributes(5)

Networking Library Functions 81

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

DNSServiceCreateConnection(3DNS_SD)

Name DNSServiceCreateConnection, DNSServiceRegisterRecord, DNSServiceAddRecord,
DNSServiceUpdateRecord, DNSServiceRemoveRecord - registering multiple records

Synopsis cc [flag ... 1 file ... -ldns_sd [library ...]
#include <dns sd.h>

DNSServiceErrorType DNSServiceCreateConnection (DNSServiceRef *sdRef) ;

DNSServiceErrorType DNSServiceRegisterRecord(DNSServiceRef sdRef,
DNSRecordRef *RecordRef, DNSServiceFlags flags,
uint32_t interfacelndex, const char *fullname,
uintl6_t rrtype, uintl6_t rrclass, uintl6_t rdlen,
const void *rdata, uint32 t ttl,
DNSServiceServiceRegisterRecordReply callBack,
void *context);

typedef void(*DNSServiceRegisterRecordReply) (DNSServiceRef sdRef,
DNSServiceRecordRef RecordRef, DNSServiceFlags flags,
DNSServiceErrorType errorCode, void *context);

DNSServiceErrorType DNSServiceAddRecord(DNSServiceRef sdRef,
DNSRecordRef *RecordRef, DNSServiceFlags flags,
uintl6_t rrtype, uintl6_t rdlen, const void *rdata,
uint32 t ttl);

DNSServiceErrorType DNSServiceUpdateRecord (DNSServiceRef sdRef,
DNSRecordRef RecordRef, DNSServiceFlags flags,
uintl6 t rdlen, const void *rdata,
uint32 t ttl);

DNSServiceErrorType DNSServiceRemoveRecord(DNSServiceRef sdRef,
DNSRecordRef RecordRef, DNSServiceFlags flags);

Description The DNSServiceCreateConnection() function allows the creation of a connection to the
mDNS daemon in order to register multiple individual records.

The DNSServiceRegisterRecord() function uses the connection created by
DNSServiceCreateConnection() to register a record. Name conflicts that occur from this
function should be handled by the client in the callback.

The DNSServiceAddRecord() call adds a DNS record to a registered service. The name of the
record is the same as registered service name. The RecordRefargument to
DNSServiceAddRecord () points to an uninitialized DNSRecordRef. After successful
completion of DNSServiceAddRecord (), the DNS record can be updated or deregistered by
passing the DNSRecordRef initialized by DNSServiceAddRecord() to
DNSServiceUpdateRecord() or to DNSServiceRemoveRecord().

The DNSServiceUpdateRecords () call updates the DNS record of the registered service. The
DNS record must be the primary resource record registered using DNSServiceRegister() ora
record added to a registered service using DNSServiceAddRecord() or an individual record
added via DNSServiceRegisterRecord().

82 man pages section 3: Networking Library Functions « Last Revised 20 Aug 2007

DNSServiceCreateConnection(3DNS_SD)

Return Values

Attributes

See Also

The DNSServiceRemoveRecord() call removes a record that was added using
DNSServiceAddRecord() or DNSServiceRegisterRecord().

The sdRef argument points to DNSServiceRef initialized from a call to
DNSServiceRegister().Ifthe sdRefargument is passed to DNSServiceRefDeallocate() and
the service is deregistered DNS records added via DNSServiceAddRecord() are invalidated and
cannot be further used. The flags argument is currently ignored and reserved for future use.
The rrtype parameter value indicates the type of the DNS record. Suitable values for the rrtype
parameter are defined in <dns_sd. h>: kDNSServiceType TXT, for example. The rdata
argument points to the raw rdata to be contained in the resource record. The ¢t/ value indicates
the time to live of the resource record in seconds. A ttl value of @ should be passed to use a
default value.

The DNSServiceCreateConnection function returns kDNSServiceErr NoError on success.
Otherwise, an error code defined in <dns_sd. h> is returned to indicate the specific failure that
occurred.

See attributes(5) for description of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level Safe

DNSServiceRefDeallocate(3DNS_SD), DNSServiceRegister(3DNS_SD), attributes(5)

Networking Library Functions 83

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

DNSServiceEnumerateDomains(3DNS_SD)

Name

Synopsis

Description

ReturnValues

84

DNSServiceEnumerateDomains — enumerate recommended domains

cc [flag ... 1 file ... -ldns_sd [library ... 1]
#include <dns sd.h>

DNSServiceErrorType DNSServiceEnumerateDomains(DNSServiceRef *sdRef,
DNSServiceFlags flags, uint32_t interfacelndex,
DNSServiceDomainEnumReply callBack, void *context);

typedef void(*DNSServiceDomainEnumReply) (DNSServiceRef sdRef,
DNSServiceFlags flags, uint31_t interfacelndex,
DNSServiceErrorType errorCode, const char *replyDomain,
void *context);

The DNSServiceEnumerateDomains () function allows applications to determine
recommended browsing and registration domains for performing service discovery DNS
queries. The callback argument points to a function to be called to return results or if the
asynchronous call to DNSServiceEnumerateDomains () fails. The callback function should
point to a function of type DNSServiceDomainEnumReply listed above.

A pointer to an uninitialized DNSServiceRef, sdRef must be passed to
DNSServiceEnumerateDomains (). If the call succeeds, sdRef is initialized and
kDNSServiceErr_NoError is returned. The enumeration call runs indefinitely until the client
terminates the call. The enumeration call must be terminated by passing the DNSServiceRef
initialized by the enumeration call to DNSServiceRefDeallocate () when no more domains
are to be found.

The value of flags is constructed by a bitwise-inclusive-OR of the flags used in DNSService
functions and defined in <dns_sd. h>. Possible values for flags to the
DNSServiceEnumerateDomains () call are: kDNSServiceFlagsBrowseDomains and
kDNSServiceFlagsRegistrationDomains. The kDNSServiceFlagsBrowseDomains value is
passed to enumerate domains recommended for browsing. The
kDNSServiceFlagsRegistrationDomains value is passed to enumerate domains
recommended for registration. Possible values of flags returned in the callback function are:
kDNSServiceFlagsMoreComing, kDNSServiceFlagsAdd, and kDNSServiceFlagsDefault.

The interfacelndex parameter to the enumeration call specifies the interface index searched for
domains. Most applications pass 0 to enumerate domains on all interfaces. See the section
“Constants for specifying an interface index” in <dns_sd. h> for more details. The context
parameter can be NULL and is passed to the enumeration callback function. The interfaceIndex
value passed to the callback specifies the interface on which the domain exists.

The DNSServiceEnumerateDomains () function returns kDNSServiceErr NoError on
success. Otherwise, the function returns an error code defined in <dns_sd. h>. The callback is
not invoked on error and the DNSServiceRef that is passed is not initialized. Upon a successful
call to DNSServiceEnumerateDomains (), subsequent asynchronous errors are delivered to the
callback.

man pages section 3: Networking Library Functions « Last Revised 20 Aug 2007

DNSServiceEnumerateDomains(3DNS_SD)

Attributes See attributes(5) for description of the following attributes:

ATTRIBUTETYPE ATTRIBUTEVALUE
Interface Stability Committed
MT-Level Safe

See Also DNSServiceRefDeallocate(3DNS_SD), attributes(5)

Networking Library Functions

85

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

DNSServiceProcessResult(3DNS_SD)

86

Name

Synopsis

Description

Return Values

Attributes

See Also

DNSServiceProcessResult — process results and invoke callback

cc [flag ... 1 file ... -ldns_sd [library ... 1]
#include <dns sd.h>

DNSServiceErrorType DNSServiceProcessResult (DNSServiceRef sdRef);

The DNSServiceProcessResult() call reads the returned results from the mDNS daemon and
invokes the specified application callback. The sdRef points to a DNSServiceRef initialized by
any of the DNSService calls that take a callback parameter. The DNSServiceProcessResult()
call blocks until data is received from the mDNS daemon. The application is responsible for
ensuring that DNSServiceProcessResult () is called whenever there is a reply from the
daemon. The daemon may terminate its connection with a client that does not process the
daemon's responses.

The DNSServiceProcessResult () call returns kDNSServiceErr NoError on success.
Otherwise, an error code defined in <dns_sd. h> is returned to indicate the specific failure that
has occurred.

See attributes(5) for description of the following attributes:
ATTRIBUTETYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level Safe

DNSServiceBrowse(3DNS_SD), DNSServiceRegister(3DNS_SD), attributes(5)

man pages section 3: Networking Library Functions « Last Revised 20 Aug 2007

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

DNSServiceQueryRecord(3DNS_SD)

Name

Synopsis

Description

DNSServiceQueryRecord - query records from DNS

cc [flag ... 1 file ... -ldns_sd [library ...]
#include <dns_sd.h>

DNSServiceErrorType DNSServiceQueryRecord(DNSServiceRef *sdRef,
DNSServiceFlags flags, uint32_t interfacelndex, const char *fullname,
uintl6_t rrtype, uintl6_t rrclass,
DNSServiceServiceQueryRecordReply callBack, void *context);

typedef void(*DNSServiceQueryRecordReply) (DNSServiceRef DNSServiceRef,
DNSServiceFlags flags, uint32_t interfacelndex,
DNSServiceErrorType errorCode, const char *fullname,
uintl6_t rrtype, uintl6_t rrclass, uintl6_t rdlen,
const void *rdata, uint32 t ftl, void *context);

The DNSServiceQueryRecord() function is used to query the daemon for any DNS resource
record type. The callback argument to DNSServiceQueryRecord () points to a function of type
DNSServiceQueryRecordReply () listed above. The sdRef parameter in
DNSServiceQueryRecord() points to an uninitialized DNSServiceRef. The
DNSServiceQueryRecord () function returns kDNSServiceErr_NoError and initializes sdRef
on success. The query runs indefinitely until the client terminates by passing the initialized
sdRef from the query call to DNSServiceRefDeallocate().

The flag kDNSServiceFlagsLongLivedQuery should be passed in the flags argument of
DNSServiceQueryRecord () to create a “long-lived” unicast query in a non-local domain. This
flag has no effect on link local multicast queries. Without this flag, unicast queries will be
one-shot and only the results that are available at the time of the query will be returned. With
long-lived queries, add or remove events that are available after the first call generate
callbacks. The interfacelndex argument specifies the interface on which to issue the query.
Most applications will pass a @ as the interfacelndex to make the query on all interfaces. See the
section “Constants for specifying an interface index” in <dns_sd. h>. The fullname argument
indicates the full domain name of the resource record to be queried. The rrtype argument
indicates the resource record type: kDNSServiceType_PTR, for example. The rrclass argument
holds the class of the resource record to be queried (kDNSServiceClass IN). The context
argument can be NULL and points to a value passed to the callback function.

The sdRef argument passed to the callback function is initialized by the call to
DNSServiceQueryRecord (). Possible values for the flags parameter to the callback function
are kDNSServiceFlagsMoreComing and kDNSServiceFlagsAdd. The
kDNSServiceFlagsMoreComing value is set to indicate that additional results are immediately
available. The kDNSServiceFlagsAdd value indicates that the results returned to the callback
function are for a valid DNS record. If kDNSServiceFlagsAdd is not set, the results returned are
for a delete event. The errorCode passed to the callback is kDNSServiceErr_NoError on
success. Otherwise, failure is indicated and other parameter values are undefined. The
fullname parameter indicates the full domain name of the resource record . The rrtype
indicates the resource record type. The rrclass indicates the class of the DNS resource record.

Networking Library Functions 87

DNSServiceQueryRecord(3DNS_SD)

88

ReturnValues

Attributes

See Also

The rdlen parameter indicates the length of the resource record rdata in bytes. The rdata
parameter points to raw rdata of the resource record. The t#/ parameter indicates the time to
live of the resource record in seconds. The context parameter points to the value passed by the
application in the context argument to the DNSServiceQueryRecord () call.

The DNSServiceQueryRecord function returns kbDNSServiceErr NoError on success.
Otherwise, an error code defined in <dns_sd. h> is returned to indicate the specific failure that

occurred.

See attributes(5) for description of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level Safe

DNSServiceBrowse(3DNS_SD), DNSServiceRegister(3DNS_SD),
DNSServiceResolve(3DNS_SD), attributes(5)

man pages section 3: Networking Library Functions « Last Revised 20 Aug 2007

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

DNSServiceReconfirmRecord(3DNS_SD)

Name DNSServiceReconfirmRecord - verify DNS record

Synopsis cc [flag ... 1 file ... -ldns_sd [library ...]
#include <dns sd.h>

void DNSServiceRefSockFD (DNSServiceFlags flags, uint32_t interfacelndex,
const char *fullname, uintl6_t rrtype, uintl6_t rrclass,
uintl6_t rrlen const void *rdata);

Description TheDNSServiceReconfirmRecord() function allows callers to verify whether a DNS record is
valid. If an invalid record is found in the cache, the daemon flushes the record from the cache
and from the cache of other daemons on the network.

ReturnValues TheDNSServiceReconfirmRecord() function returns kDNSServiceErr NoError on success.
Otherwise, an error code defined in <dns_sd. h> is returned to indicate the specific failure that
occurred.

Attributes See attributes(5) for description of the following attributes:

ATTRIBUTETYPE ATTRIBUTEVALUE
Interface Stability Committed
MT-Level Safe

See Also DNSServiceBrowse(3DNS_SD), DNSServiceQueryRecord(3DNS_SD),
DNSServiceRegister(3DNS_SD), DNSServiceResolve(3DNS_SD), attributes(5)

Networking Library Functions 89

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

DNSServiceRefDeallocate(3DNS_SD)

Name DNSServiceRefDeallocate - close connection

Synopsis cc [flag ... 1 file ... -ldns_sd [library ...]
#include <dns sd.h>

void DNSServiceRefDeallocate (DNSServiceRef sdRef);

Description TheDNSServiceRefDeallocate() call terminates connection to the mDNS daemon. Any
services and resource records registered with the DNSServiceRef are de-registered. Any
browse or resolve queries initiated using the DNSServiceRef are also terminated.

Attributes See attributes(5) for description of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level Safe

SeeAlso DNSServiceBrowse(3DNS_SD), DNSServiceRegister(3DNS_SD), attributes(5)

90 man pages section 3: Networking Library Functions « Last Revised 20 Aug 2007

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

DNSServiceRefSockFD(3DNS_SD)

Name

Synopsis

Description

ReturnValues

Attributes

See Also

DNSServiceRefSockFD - access underlying UNIX domain socket descriptor

cc [flag ... 1 file ... -ldns_sd [library ...]
#include <dns sd.h>

DNSServiceRefSockFD(DNSServiceRef *sdRef);

Access the underlying UNIX domain socket from the initialized DNSServiceRef returned
from DNS Service calls. Applications should only access the underlying UNIX domain socket
to poll for results from the mDNS daemon. Applications should not directly read or write to the
socket. When results are available, applications should call DNSServiceProcessResult ().
The application is responsible for processing the data on the socket in a timely fashion. The
daemon can terminate its connection with a client that does not clear its socket buffer.

The underlying UNIX domain socket descriptor of the DNSServiceRef or -1is returned in
case of error.

See attributes(5) for description of the following attributes:

ATTRIBUTETYPE ATTRIBUTEVALUE
Interface Stability Committed
MT-Level Safe

DNSServiceBrowse(3DNS_SD), DNSServiceRegister(3DNS_SD), attributes(5)

Networking Library Functions 91

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

DNSServiceRegister(3DNS_SD)

Name

Synopsis

Description

92

DNSServiceRegister — register service with DNS

cc [flag ... 1 file ... -ldns_sd [library ...]
#include <dns_sd.h>

DNSServiceErrorType DNSServiceRegister (DNSServiceRef *sdRef,
DNSServiceFlags flags, uint32_t interfacelndex,
const char *name, const char *regtype,
const char *domain, const char *host,
uintl6_t port, uintl6_t *txtLen, const void *txtRecord
DNSServiceServiceRegisterReply callBack
void *context);

typedef void(*DNSServiceRegisterReply) (DNSServiceRef sdRef,
DNSServiceFlags flags, DNSServiceErrorType errorCode,
const char *name, const char *regtype,
const char *domain, void *context);

The DNSServiceRegister function is used by clients to advertise a service that uses DNS. The
service is registered with multicast DNS if the domain name is . local or the interface
requested is local only. Otherwise, the service registration is attempted with the unicast DNS
server. The callback argument should point to a function of type DNSServiceRegisterReply
listed above.

The sdRef parameter points to an uninitialized DNSServiceRef instance. If the
DNSServiceRegister() call succeeds, sdRefis initialized and kDNSServiceErr_NoError is
returned. The service registration remains active until the client terminates the registration by
passing the initialized sdRefto DNSServiceRefDeallocate(). The interfacelndex when
non-zero specifies the interface on which the service should be registered. Most applications
pass 0 to register the service on all interfaces. See the section “Constants for specifying an
interface index” in <dns_sd. h> for more details. The flags parameter determines the renaming
behavior on a service name conflict. Most applications pass 0 to allow auto-rename of the
service name in case of a name conflict. Applications can pass the flag
kDNSServiceFlagsNoAutoRename defined in <dns_sd. h> to disable auto-rename.

The regtype indicates the service type followed by the protocol, separated by a dot, for example
“ ftp._tcp.”. The service type must be an underscore that is followed by 1 to 14 characters
that can be letters, digits, or hyphens. The transport protocol must be _tcp or _udp. New
service types should be registered at http://www.dns-sd.org/ServiceTypes.html. The
domain parameter specifies the domain on which a service is advertised. Most applications
leave the domain parameter NULL to register the service in default domains. The host
parameter specifies the SRV target host name. Most applications do not specify the host
parameter value. Instead, the default host name of the machine is used. The port value on
which the service accepts connections must be passed in network byte order. A value of 0 for a
port is passed to register placeholder services. Placeholder services are not found when
browsing, but other clients cannot register with the same name as the placeholder service.

man pages section 3: Networking Library Functions « Last Revised 20 Aug 2007

http://www.dns-sd.org/ServiceTypes.html

DNSServiceRegister(3DNS_SD)

ReturnValues

Attributes

See Also

The txtLen parameter specifies the length of the passed txtRecord in bytes. The value must be
zero if the txtRecord passed is NULL. The txtRecord points to the TXT record rdata. A non-NULL
txtRecord must be a properly formatted DNSTXT record. For more details see the
DNSServiceRegister call defined in <dns_sd. h>. The callback argument points to a function
to be called when registration completes or when the call asynchronously fails. The client can
pass NULL for the callback and not be notified of the registration results or asynchronous
errors. The client may not pass the NoAutoRename flag if the callback is NULL. The client can
unregister the service at any time via DNSServiceRefDeallocate().

The callback function argument sdRefis initialized by DNSServiceRegister(). The flags
argument in the callback function is currently unused and reserved for future use. The error
code returned to the callback is kDNSServiceErr NoError on success. Otherwise, an error
code defined in <dns_sd. h> is returned to indicate an error condition such as a name conflict
in kDNSServiceFlagsNoAutoRename mode. The name argument holds the registered service
name and the regtype argument is the registered service type passed to
DNSServiceRegister(). The domain argument returned in the callback indicates the domain
on which the service was registered.

The DNSServiceRegister function returns kbNSServiceErr NoError on success. Otherwise,
an error code defined in <dns_sd. h> is returned. Upon registration, any subsequent
asynchronous errors are delivered to the callback.

See attributes(5) for description of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level Safe

DNSServiceRefDeallocate(3DNS_SD), attributes(5)

Networking Library Functions 93

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

DNSServiceResolve(3DNS_SD)

Name

Synopsis

Description

94

DNSServiceResolve — resolve service instances with DNS

cc [flag ... 1 file ... -ldns_sd [library ...]
#include <dns_sd.h>

DNSServiceErrorType DNSServiceResolve(DNSServiceRef *sdRef,
DNSServiceFlags flags, uint32_t interfacelndex, const char *name,
const char *regtype, const char *domain,
DNSServiceServiceResolveReply callBack, void *context);

typedef void(*DNSServiceResolveReply) (DNSServiceRef sdRef,
DNSServiceFlags flags, uint32_t interfacelndex,
DNSServiceErrorType errorCode, const char *fullname,
const char *hosttarget, uintl6_t port, uintl6_t txtLen,
const char *txtRecord, void *context);

The DNSServiceResolve() function is used to resolve a service name returned by
DNSServiceBrowse () to host IP address, port number, and TXT record. The
DNSServiceResolve() function returns results asynchronously. A DNSServiceResolve() call
to resolve service name can be ended by calling DNSServiceRefDeallocate(). The callback
argument points to a function of type DNSServiceResolveReply as listed above. The callback
function is invoked on finding a result or when the asynch resolve call fails. The sdRef
argument to DNSServiceResolve () points to an uninitialized DNSServiceRef. If the call to
DNSServiceResolve() succeeds, sdRefis initialized and kDNSServiceErr_NoError is
returned.

The flags argument to DNSServiceResolve() is currently unused and reserved for future use.
The interfacelndex argument indicates the interface on which to resolve the service. If the
DNSServiceResolve() callis the result of an earlier DNSServiceBrowse () operation, pass the
interfacelndex to perform a resolve on all interfaces. See the section “Constants for specifying
an interface index” in <dns_sd. h> for more details. The name parameter is the service
instance name to be resolved, as returned from a DNSServiceBrowse() call. The regtype holds
the service type and the domain parameter indicates the domain in which the service instance
was found. The context parameter points to a value that is passed to the callback function.

The sdRefargument passed to the callback function is initialized by DNSServiceResolve()
call. The flags parameter in the callback function is currently unused and reserved for future
use. The errorCode parameter is kDNSServiceErr_NoError on success. Otherwise, it will hold
the error defined in <dns_sd. h>and other parameters are undefined when errorCode is
nonzero. The fullname parameter in the callback holds the full service domain name in the
format <servicename>.<protocol>.<domain>. The full service domain name is escaped to
follow standard DNS rules. The hosttarget parameter holds the target hostname of the machine
providing the service. The port parameter indicates the port in network byte order on which
the service accepts connections. The txtLen and txtRecord parameters hold the length and the
TXT record of the service's primary TXT record. The context parameter points to the value that
was passed as context to the DNSServiceResolve() call.

man pages section 3: Networking Library Functions « Last Revised 20 Aug 2007

DNSServiceResolve(3DNS_SD)

ReturnValues

Attributes

See Also

The DNSServiceResolve function returns kDNSServiceErr NoError on success. Otherwise,
an error code defined in <dns_sd. h> is returned to indicate an error has occurred. When an
error is returned by DNSServiceResolve, the callback function is not invoked and the
DNSServiceRef argument is not initialized.

See attributes(5) for description of the following attributes:
ATTRIBUTETYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level Safe

DNSServiceBrowse(3DNS_SD), DNSServiceRefDeallocate(3DNS_SD), attributes(5)

Networking Library Functions 95

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

endhostent(3XNET

Name

Synopsis

Description

Usage

96

endhostent, gethostbyaddr, gethostbyname, gethostent, sethostent — network host database
functions

cc [flag ... 1 file ... -lxnet [library ...]
#include <netdb.h>
extern int h_errno;

void endhostent(void)

struct hostent *gethostbyaddr(const void *addr, socklen_t len, int type);
struct hostent *gethostbyname(const char *name);

struct hostent *gethostent(void)

void sethostent(int stayopen);

The gethostent (), gethostbyaddr (), and gethostbyname () functions each return a pointer
to a hostent structure, the members of which contain the fields of an entry in the network
host database.

The gethostent () function reads the next entry of the database, opening a connection to the
database if necessary.

The gethostbyaddr () function searches the database and finds an entry which matches the
address family specified by the type argument and which matches the address pointed to by
the addr argument, opening a connection to the database if necessary. The addr argument is a
pointer to the binary-format (that is, not null-terminated) address in network byte order,
whose length is specified by the len argument. The datatype of the address depends on the
address family. For an address of type AF_INET, thisisan in_addr structure, defined in
<netinet/in.h>. For an address of type AF_INETS, there isan in6_addr structure defined in
<netinet/in.h>.

The gethostbyname () function searches the database and finds an entry which matches the
host name specified by the name argument, opening a connection to the database if necessary.
If name is an alias for a valid host name, the function returns information about the host name
to which the alias refers, and name is included in the list of aliases returned.

The sethostent () function opens a connection to the network host database, and sets the
position of the next entry to the first entry. If the stayopen argument is non-zero, the
connection to the host database will not be closed after each call to gethostent () (either
directly, or indirectly through one of the other gethost*() functions).

The endhostent () function closes the connection to the database.

The gethostent(), gethostbyaddr (), and gethostbyname () functions may return pointers
to static data, which may be overwritten by subsequent calls to any of these functions.

These functions are generally used with the Internet address family.

man pages section 3: Networking Library Functions « Last Revised 1 Nov 2003

endhostent(3XNET)

ReturnValues On successful completion, gethostbyaddr (), gethostbyname () and gethostent() returna
pointer to a hostent structure if the requested entry was found, and a null pointer if the end of
the database was reached or the requested entry was not found. Otherwise, a null pointer is
returned.

On unsuccessful completion, gethostbyaddr () and gethostbyname () functions set h_errno
to indicate the error.

Errors No errors are defined for endhostent (), gethostent () and sethostent().

The gethostbyaddr () and gethostbyname () functions will fail in the following cases, setting
h_errno to the value shown in the list below. Any changes to errno are unspecified.

HOST NOT_FOUND No such host is known.

NO_DATA The server recognised the request and the name but no address is
available. Another type of request to the name server for the domain
might return an answer.

NO_RECOVERY An unexpected server failure occurred which can not be recovered.

TRY_AGAIN A temporary and possibly transient error occurred, such as a failure of a
server to respond.

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level MT-Safe
Standard See standards(5).

SeeAlso endservent(3XNET), htonl(3XNET), inet_addr(3XNET), attributes(5), standards(5)

Networking Library Functions 97

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

endnetent(3XNET)

Name endnetent, getnetbyaddr, getnetbyname, getnetent, setnetent — network database functions
Synopsis cc [flag ... 1 file ... -lxnet [library ...]
#include <netdb.h>
void endnetent(void);struct netent *getnetbyaddr(in_addr_t net, int type);
struct netent *getnetbyname(const char *name);
struct netent *getnetent(void)
void setnetent(int stayopen);

Description The getnetbyaddr(), getnetbyname() and getnetent (), functions each return a pointer to a
netent structure, the members of which contain the fields of an entry in the network database.

The getnetent () function reads the next entry of the database, opening a connection to the
database if necessary.

The getnetbyaddr () function searches the database from the beginning, and finds the first
entry for which the address family specified by type matches the n_addrtype member and the
network number net matches the n_net member, opening a connection to the database if
necessary. The net argument is the network number in host byte order.

The getnetbyname () function searches the database from the beginning and finds the first
entry for which the network name specified by name matches the n_name member, opening a
connection to the database if necessary.

The setnetent () function opens and rewinds the database. If the stayopen argument is
non-zero, the connection to the net database will not be closed after each call to getnetent ()
(either directly, or indirectly through one of the other getnet*() functions).

The endnetent () function closes the database.

Usage Thegetnetbyaddr(), getnetbyname() and getnetent(), functions may return pointers to
static data, which may be overwritten by subsequent calls to any of these functions.

These functions are generally used with the Internet address family.

ReturnValues On successful completion, getnetbyaddr(), getnetbyname() and getnetent(), returna
pointer to a netent structure if the requested entry was found, and a null pointer if the end of
the database was reached or the requested entry was not found. Otherwise, a null pointer is
returned.

Errors No errors are defined.

Attributes See attributes(5) for descriptions of the following attributes:

98 man pages section 3: Networking Library Functions « Last Revised 10 Jun 2002

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

endnetent(3XNET)

ATTRIBUTETYPE

ATTRIBUTE VALUE

Interface Stability

Standard

MT-Level

MT-Safe

SeeAlso attributes(5), standards(5)

Networking Library Functions

99

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

endprotoent(3XNET)

100

Name

Synopsis

Description

Usage

ReturnValues

endprotoent, getprotobynumber, getprotobyname, getprotoent, setprotoent — network
protocol database functions

cc [flag ... 1 file ... -lxnet [library ...]

#include <netdb.h>

void endprotoent(void)

struct protoent *getprotobyname(const char *name);

struct protoent *getprotobynumber(int proto);

struct protoent *getprotoent(void)

void setprotoent(int stayopen);

The getprotobyname(), getprotobynumber() and getprotoent (), functions each return a

pointer to a protoent structure, the members of which contain the fields of an entry in the
network protocol database.

The getprotoent () function reads the next entry of the database, opening a connection to the
database if necessary.

The getprotobyname () function searches the database from the beginning and finds the first
entry for which the protocol name specified by name matches the p_name member, opening a
connection to the database if necessary.

The getprotobynumber () function searches the database from the beginning and finds the
first entry for which the protocol number specified by number matches the p_proto member,
opening a connection to the database if necessary.

The setprotoent () function opens a connection to the database, and sets the next entry to
the first entry. If the stayopen argument is non-zero, the connection to the network protocol
database will not be closed after each call to getprotoent () (either directly, or indirectly
through one of the other getproto*() functions).

The endprotoent () function closes the connection to the database.

The getprotobyname(), getprotobynumber() and getprotoent() functions may return
pointers to static data, which may be overwritten by subsequent calls to any of these functions.

These functions are generally used with the Internet address family.

On successful completion, getprotobyname(), getprotobynumber() and getprotoent()
functions return a pointer to a protoent structure if the requested entry was found, and a null
pointer if the end of the database was reached or the requested entry was not found.
Otherwise, a null pointer is returned.

man pages section 3: Networking Library Functions « Last Revised 10 Jun 2002

endprotoent(3XNET)

Errors No errors are defined.

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level MT-Safe
Standard See standards(5).

SeeAlso attributes(5), standards(5)

Networking Library Functions

101

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

endservent(3XNET)

Name

Synopsis

Description

Usage

102

endservent, getservbyport, getservbyname, getservent, setservent — network services database
functions

cc [flag ... 1 file ... -lxnet [library ...]
#include <netdb.h>

void endservent(void)

struct servent *getservbyname(const char *name, const char *proto);
struct servent *getservbyport(int port, const char *proto);

struct servent *getservent(void)

void setservent(int stayopen);

The getservbyname(), getservbyport() and getservent() functions each return a pointer
to a servent structure, the members of which contain the fields of an entry in the network
services database.

The getservent() function reads the next entry of the database, opening a connection to the
database if necessary.

The getservbyname () function searches the database from the beginning and finds the first
entry for which the service name specified by name matches the s_name member and the
protocol name specified by proto matches the s_proto member, opening a connection to the
database if necessary. If proto is a null pointer, any value of the s_proto member will be
matched.

The getservbyport () function searches the database from the beginning and finds the first
entry for which the port specified by port matches the s_port member and the protocol name
specified by proto matches the s_proto member, opening a connection to the database if
necessary. If proto is a null pointer, any value of the s_proto member will be matched. The
port argument must be in network byte order.

The setservent () function opens a connection to the database, and sets the next entry to the
first entry. If the stayopen argument is non-zero, the net database will not be closed after each
call to the getservent () function, either directly, or indirectly through one of the other
getserv* () functions.

The endservent () function closes the database.

The port argument of getservbyport () need not be compatible with the port values of all
address families.

The getservent(), getservbyname() and getservbyport() functions may return pointers
to static data, which may be overwritten by subsequent calls to any of these functions.

These functions are generally used with the Internet address family.

man pages section 3: Networking Library Functions « Last Revised 14 Jun 2002

endservent(3XNET)

ReturnValues

Errors

Attributes

See Also

On successful completion, getservbyname(), getservbyport() and getservent() returna
pointer to a servent structure if the requested entry was found, and a null pointer if the end of
the database was reached or the requested entry was not found. Otherwise, a null pointer is
returned.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

endhostent(3XNET), endprotoent(3XNET), htonl(3XNET), inet_addr(3XNET),
attributes(5), standards(5)

Networking Library Functions 103

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

ethers(3SOCKET)

104

Name

Synopsis

Description

Files

Attributes

ethers, ether_ntoa, ether_aton, ether_ntohost, ether_hostton, ether_line — Ethernet address
mapping operations

cc [flag ... 1 file ... -lsocket -lnsl [library ...]
#include <sys/types.h>
#include <sys/ethernet.h>

char *ether ntoa(const struct ether_addr *e);
struct ether addr *ether aton(const char *s);
int ether ntohost(char *hostname, const struct ether _addr *e);
int ether_hostton(const char *hostname, struct ether_addr *e);

int ether line(const char *I, struct ether addr *e, char *hostname);

These routines are useful for mapping 48 bit Ethernet numbers to their ASCII representations
or their corresponding host names, and vice versa.

The function ether_ntoa() converts a 48 bit Ethernet number pointed to by e to its standard
ASCII representation; it returns a pointer to the ASCII string. The representation is of the
formx:x:x: x:x:xwherexisahexadecimal number between @ and ff. The function
ether_aton() converts an ASCII string in the standard representation back to a 48 bit
Ethernet number; the function returns NULL if the string cannot be scanned successfully.

The function ether_ntohost () maps an Ethernet number (pointed to by e) to its associated
hostname. The string pointed to by hostname must be long enough to hold the hostname and
aNULL character. The function returns zero upon success and non-zero upon failure.
Inversely, the function ether_hostton() maps a hostname string to its corresponding
Ethernet number; the function modifies the Ethernet number pointed to by e. The function
also returns zero upon success and non-zero upon failure. In order to do the mapping, both
these functions may lookup one or more of the following sources: the ethers file, and the NIS
maps ethers.byname and ethers.byaddr. The sources and their lookup order are specified in
the /etc/nsswitch.conf file. See nsswitch.conf(4) for details.

The function ether_line() scansaline, pointed to by [, and sets the hostname and the
Ethernet number, pointed to by e. The string pointed to by hostname must be long enough to
hold the hostname and a NULL character. The function returns zero upon success and
non-zero upon failure. The format of the scanned line is described by ethers(4).

/etc/ethers Ethernet address to hostname database or domain

/etc/nsswitch.conf configuration file for the name service switch

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

MT-Level MT-Safe

man pages section 3: Networking Library Functions « Last Revised 10 Dec 2009

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nsswitch.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ethers-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ethers(3SOCKET)

SeeAlso ethers(4),nsswitch.conf(4),attributes(5)

Networking Library Functions 105

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ethers-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nsswitch.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

freeaddrinfo(3XNET)

Name

Synopsis

Description

106

freeaddrinfo, getaddrinfo — get address information

cc [flag ... 1 file ... -xnet [library ...]
#include <sys/socket.h>
#include <netdb.h>

void freeaddrinfo(struct addrinfo *ai);

int getaddrinfo(const char *restrict nodename,
const char *restrict servmame, const struct addrinfo *restrict hints,
struct addrinfo **restrict res);

The freeaddrinfo() function frees one or more addrinfo structures returned by
getaddrinfo(), along with any additional storage associated with those structures. If the
ai_next member of the structure is not null, the entire list of structures is freed. The
freeaddrinfo() function supports the freeing of arbitrary sublists of an addrinfo list
originally returned by getaddrinfo().

The getaddrinfo() function translates the name of a service location (for example, a host
name) and/or a service name and returns a set of socket addresses and associated information
to be used in creating a socket with which to address the specified service.

The nodename and servname arguments are either null pointers or pointers to
null-terminated strings. One or both of these two arguments are supplied by the application as
anon-null pointer.

The format of a valid name depends on the address family or families. If a specific family is not
given and the name could be interpreted as valid within multiple supported families, the
implementation attempts to resolve the name in all supported families and, in absence of
errors, one or more results are returned.

If the nodename argument is not null, it can be a descriptive name or can be an address string.
If the specified address family is AF_INET, AF_INET6, or AF_UNSPEC, valid descriptive names
include host names. If the specified address family is AF_INET or AF_UNSPEC, address strings
using Internet standard dot notation as specified in inet_addr(3XNET) are valid.

If the specified address family is AF_INET6 or AF_UNSPEC, standard IPv6 text forms described
ininet ntop(3XNET) are valid.

If nodename is not null, the requested service location is named by nodename; otherwise, the
requested service location is local to the caller.

If servname is null, the call returns network-level addresses for the specified nodename. If
servname is not null, it is a null-terminated character string identifying the requested service.
This string can be either a descriptive name or a numeric representation suitable for use with
the address family or families. If the specified address family is AF_INET, AF_INET6, or
AF_UNSPEC, the service can be specified as a string specifying a decimal port number.

man pages section 3: Networking Library Functions « Last Revised 10 Dec 2009

freeaddrinfo(3XNET)

If the hints argument is not null, it refers to a structure containing input values that can direct
the operation by providing options and by limiting the returned information to a specific
socket type, address family and/or protocol. In this hints structure every member other than
ai_flags,ai family,ai_socktype,andai protocolissetto 0 or anull pointer. A value of
AF_UNSPEC for ai_family means that the caller accepts any address family. A value of 0 for
ai_socktype means that the caller accepts any socket type. A value of 0 for ai_protocol
means that the caller accepts any protocol. If hints is a null pointer, the behavior is as if it
referred to a structure containing the value 0 for the ai_flags, ai_socktype, and

ai protocol members, and AF_UNSPEC for the ai family member.

The ai_flags member to which the hints parameter points is set to 0 or be the
bitwise-inclusive OR of one or more of the values AI_PASSIVE, AT CANONNAME,
AI NUMERICHOST,and AI_NUMERICSERV.

If the AI_PASSIVE flag is specified, the returned address information is suitable for use in
binding a socket for accepting incoming connections for the specified service. In this case, if
the nodename argument is null, then the IP address portion of the socket address structure is
set to INADDR ANY for an IPv4 address or INGADDR ANY INIT for an IPv6 address. If the
AI_PASSIVE flag is not specified, the returned address information is suitable for a call to
connect(3XNET) (for a connection-mode protocol) or for a call to connect (),
sendto(3XNET), or sendmsg(3XNET) (for a connectionless protocol). In this case, if the
nodename argument is null, then the IP address portion of the socket address structure is set
to the loopback address.

If the AT_CANONNAME flag is specified and the nodename argument is not null, the function
attempts to determine the canonical name corresponding to nodename (for example, if
nodename is an alias or shorthand notation for a complete name).

If the AT_NUMERICHOST flag is specified, then a non-null nodename string supplied is a numeric
host address string. Otherwise, an EAI_NONAME error is returned. This flag prevents any type of
name resolution service (for example, the DNS) from being invoked.

If the AT_NUMERICSERV flag is specified, then a non-null servname string supplied is a numeric
port string. Otherwise, an EAI_NONAME error is returned. This flag prevents any type of name
resolution service (for example, NIS) from being invoked.

If the AI_VAMAPPED flag is specified along with an ai_family of AF_INET6, then
getaddrinfo() returns IPv4-mapped IPv6 addresses on finding no matching IPv6 addresses
(ai_addrlenis 16). The AI_V4MAPPED flag is ignored unless ai_family equals AF_INET6. If the
AI_ALL flagis used with the AI_V4MAPPED flag, then getaddrinfo () returns all matching IPv6
and IPv4 addresses. The AI_ALL flag without the AI_V4MAPPED flag is ignored.

The ai_socktype member to which argument hints points specifies the socket type for the
service, as defined in socket(3XNET). If a specific socket type is not given (for example, a
value of 0) and the service name could be interpreted as valid with multiple supported socket
types, the implementation attempts to resolve the service name for all supported socket types

Networking Library Functions 107

freeaddrinfo(3XNET)

ReturnValues

Errors

108

and, in the absence of errors, all possible results are returned. A non-zero socket type value
limits the returned information to values with the specified socket type.

Iftheai family member to which hints points has the value AF_UNSPEC, addresses are
returned for use with any address family that can be used with the specified nodename and/or
servname. Otherwise, addresses are returned for use only with the specified address family. If
ai_familyisnot AF_UNSPECand ai protocol isnot0, then addresses are returned for use
only with the specified address family and protocol; the value of ai_protocolisinterpreted as
ina call to the socket () function with the corresponding values of ai_family and

ai protocol.

A O return value for getaddrinfo () indicates successful completion; a non-zero return value
indicates failure. The possible values for the failures are listed in the ERRORS section.

Upon successful return of getaddrinfo (), the location to which res points refers to a linked
list of addrinfo structures, each of which specifies a socket address and information for use in
creating a socket with which to use that socket address. The list includes at least one addrinfo
structure. The ai_next member of each structure contains a pointer to the next structure on
the list, or a null pointer if it is the last structure on the list. Each structure on the list includes
values for use with a call to the socket function, and a socket address for use with the connect
function or, if the AI_PASSIVE flag was specified, for use with the bind(3XNET) function. The
ai_family,ai_socktype,andai_protocol members are usable as the arguments to the
socket () function to create a socket suitable for use with the returned address. The ai_addr
and ai_addrlen members are usable as the arguments to the connect () or bind() functions
with such a socket, according to the AI_PASSIVE flag.

If nodename is not null, and if requested by the AI_ CANONNAME flag, the ai canonname member
of the first returned addrinfo structure points to a null-terminated string containing the
canonical name corresponding to the input nodename. If the canonical name is not available,
then ai_canonname refers to the nodename argument or a string with the same contents. The
contents of the ai flags member of the returned structures are undefined.

All members in socket address structures returned by getaddrinfo () thatare not filled in
through an explicit argument (for example, sin6_flowinfo) are set to 0, making it easier to
compare socket address structures.

The getaddrinfo() function will fail if:
EAI_AGAIN The name could not be resolved at this time. Future attempts might
succeed.

EAI BADFLAGS The ai flags member of the addrinfo structure had an invalid value.

EAI_FAIL A non-recoverable error occurred when attempting to resolve the name.
EAI_FAMILY The address family was not recognized.
EAI_MEMORY There was a memory allocation failure when trying to allocate storage for

the return value.

man pages section 3: Networking Library Functions « Last Revised 10 Dec 2009

freeaddrinfo(3XNET)

EAI_NONAME he name does not resolve for the supplied parameters. Neither nodename
nor servname were supplied. At least one of these must be supplied.

EAI_SERVICE The service passed was not recognized for the specified socket type.
EAI_SOCKTYPE Theintended socket type was not recognized.
EAI_SYSTEM A system error occurred. The error code can be found in errno.

EAI_OVERFLOW Anargument buffer overflowed.

Usage Ifthe caller handles only TCP and not UDP, for example, then the ai_protocol member of
the hints structure should be set to IPPROTO_TCP when getaddrinfo() is called.

If the caller handles only IPv4 and not IPv6, then the ai_family member of the hints structure
should be set to AF_ INET when getaddrinfo() is called.

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level MT-Safe
Standard See standards(5).

SeeAlso connect(3XNET), gai_strerror(3XNET), gethostbyname(3XNET), getnameinfo(3XNET),
getservbyname(3XNET), inet_addr(3XNET), inet _ntop(3XNET), socket(3XNET),
attributes(5), standards(5)

Networking Library Functions 109

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

gai_strerror(3XNET)

Name

Synopsis

Description

ReturnValues

Errors

Attributes

See Also

110

gai_strerror — address and name information error description

cc [flag ... 1 file ... -xnet [library ...]
#include <netdb.h>

const char *gai_strerror(int ecode) ;

The gai_strerror() function returns a text string describing an error value for the
getaddrinfo(3XNET) and getnameinfo(3XNET) functions listed in the <netdb.h> header.

When the ecode argument is one of the following values listed in the <netdb . h> header:
EAI_AGAIN

EAI_BADFLAGS

EAI FAIL

EAI_FAMILY

EAI_MEMORY

EAI_NONAME

EAI_SERVICE

EAI_SOCKTYPE

EAI SYSTEM

the function return value points to a string describing the error. If the argument is not one of
those values, the function returns a pointer to a string whose contents indicate an unknown
error.

Upon successful completion, gai_strerror() returnsa pointer to a string describing the
error value.

No errors are defined.
See attributes(5) for descriptions of the following attributes:
ATTRIBUTE TYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level MT-Safe
Standard See standards(5).

getaddrinfo(3XNET), getnameinfo(3XNET), attributes(5), standards(5)

man pages section 3: Networking Library Functions « LastRevised 1 Dec 2003

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

getaddrinfo(3SOCKET)

Name

Synopsis

Description

getaddrinfo, getnameinfo, freeaddrinfo, gai_strerror - translate between node name and
address

cc [flag... 1 file ... -lsocket -lnsl [library ...]
#include <sys/socket.h>
#include <netdb.h>

int getaddrinfo(const char *nodename, const char *servname,
const struct addrinfo *hints, struct addrinfo **res)

int getnameinfo(const struct sockaddr *sa, socklen t salen,
char *host, socklen t hostlen, char *serv, socklen t servien,

int flags);
void freeaddrinfo(struct addrinfo *ai);

const char *gai strerror(int errcode)

These functions perform translations from node name to address and from address to node
name in a protocol-independent manner.

The getaddrinfo() function performs the node name to address translation. The nodename
and servname arguments are pointers to null-terminated strings or NULL. One or both of these
arguments must be a non-null pointer. In the normal client scenario, both the nodename and
servname are specified. In the normal server scenario, only the servname is specified.

A non-null nodename string can be a node name or a numeric host address string. The
nodename can also be an IPv6 zone-id in the form:

<address>%<zone-id>

The address is the literal IPv6 link-local address or host name of the destination. The zone-id
is the interface ID of the IPv6 link used to send the packet. The zone-id can either be a numeric
value, indicating a literal zone value, or an interface name such as hme@.

A non-null servname string can be either a service name or a decimal port number.

The caller can optionally pass an addrinfo structure, pointed to by the hints argument, to
provide hints concerning the type of socket that the caller supports.

The addrinfo structure is defined as:

struct addrinfo {

int ai flags; /* AI PASSIVE, AI CANONNAME,
AI NUMERICHOST, AI NUMERICSERV
AI VAMAPPED, AI ALL,
AI ADDRCONFIG */

int ai_family; /* PF_xxx */

int ai_socktype; /* SOCK_xxx */

int ai protocol; /* @ or IPPROTO xxx for IPv4 & IPv6 */
socklen t ai addrlen; /* length of ai addr */

Networking Library Functions m

getaddrinfo(3SOCKET)

112

char *al canonname; /* canonical name for nodename */
struct sockaddr *ai addr; /* binary address */

struct addrinfo *ai next; /* next structure in linked list */
+

In this hints structure, all members other than ai_flags,ai_family,ai_ socktype, and
ai_protocol mustbe 0 or anull pointer. A value of PF_UNSPEC for ai_family indicates that
the caller will accept any protocol family. A value of 0 for ai_socktype indicates that the caller
will accept any socket type. A value of 0 for ai_protocol indicates that the caller will accept
any protocol. For example, if the caller handles only TCP and not UDP, then the ai_socktype
member of the hints structure should be set to SOCK_STREAM when getaddrinfo() is called. If
the caller handles only IPv4 and not IPv6, then the ai_family member of the hints structure
should be set to PF_INET when getaddrinfo() is called. If the third argument to
getaddrinfo() is a null pointer, it is as if the caller had filled in an addrinfo structure
initialized to O with ai_family set to PF_UNSPEC.

Upon success, a pointer to a linked list of one or more addrinfo structures is returned
through the final argument. The caller can process each addrinfo structure in this list by
following the ai_next pointer, until a null pointer is encountered. In each returned addrinfo
structure the three membersai_family, ai_socktype,and ai _protocol are the
corresponding arguments for a call to the socket(3SOCKET) function. In each addrinfo
structure the ai_addr member points to a filled-in socket address structure whose length is
specified by the ai_addrlen member.

If the AT PASSIVE bitissetintheai flags member of the hints structure, the caller plans to
use the returned socket address structure in a call to bind(3SOCKET). In this case, if the
nodename argument is a null pointer, the IP address portion of the socket address structure
will be set to INADDR ANY for an IPv4 address or INGADDR ANY INIT for an IPv6 address.

Ifthe AT_PASSIVE bit is not set in the ai_flags member of the hints structure, then the
returned socket address structure will be ready for a call to connect(3SOCKET) (for a
connection-oriented protocol) or either connect(3SOCKET), sendto(3SOCKET), or
sendmsg(3SOCKET) (for a connectionless protocol). If the nodename argument is a null
pointer, the IP address portion of the socket address structure will be set to the loopback
address.

If the AT_CANONNAME bit is set in the ai_flags member of the hints structure, then upon
successful return the ai_canonname member of the first addrinfo structure in the linked list
will point to a null-terminated string containing the canonical name of the specified
nodename. A numeric host address string is not a name, and thus does not have a canonical
name form; no address to host name translation is performed.

If the AI NUMERICHOST bit is set in the ai_flags member of the hints structure, then a
non-null nodename string must be a numeric host address string. Otherwise an error of
EAI_NONAME is returned. This flag prevents any type of name resolution service (such as DNS)
from being called.

man pages section 3: Networking Library Functions « Last Revised 24 Mar 2011

getaddrinfo(3SOCKET)

If the AT_NUMERICSERV flag is specified, then a non-null servname string supplied will be a
numeric port string. Otherwise, an [EAI_NONAME] error is returned. This flag prevents any type
of name resolution service (for example, NIS) from being invoked.

If the AT_V4MAPPED flag is specified along with an ai_family of AF_INET6, then
getaddrinfo() returns IPv4-mapped IPv6 addresses on finding no matching IPv6 addresses
(ai_addrlen shall be 16). For example, if no AAAA records are found when using DNS, a
query is made for A records. Any found records are returned as IPv4-mapped IPv6 addresses.

The AI_V4MAPPED flag is ignored unless ai_family equals AF_INET6.

If the AI_ALL flagis used with the AI_V4AMAPPED flag, then getaddrinfo() returns all
matching IPv6 and IPv4 addresses. For example, when using the DNS, queries are made for
both AAAA records and A records, and getaddrinfo () returns the combined results of both
queries. Any IPv4 addresses found are returned as IPv4-mapped IPv6 addresses.

The AI_ALL flag without the AI_V4MAPPED flag is ignored.

When ai_family is not specified (AF_UNSPEC), AI_V4MAPPED and AI_ALL flags are used only if
AF_INET6 is supported.

If the AT_ADDRCONFIG flag is specified, IPv4 addresses are returned only if an IPv4 address is
configured on the local system, and IPv6 addresses are returned only if an IPv6 address is
configured on the local system. For this case, the loopback address is not considered to be as
valid as a configured address. For example, when using the DNS, a query for AAAA records
should occur only if the node has at least one IPv6 address configured (other than IPv6
loopback) and a query for A records should occur only if the node has at least one IPv4
address configured (other than the IPv4 loopback).

All of the information returned by getaddrinfo () is dynamically allocated: the addrinfo
structures as well as the socket address structures and canonical node name strings pointed to
by the addrinfo structures. The freeaddrinfo() function is called to return this information
to the system. For freeaddrinfo (), the addrinfo structure pointed to by the ai argument is
freed, along with any dynamic storage pointed to by the structure. This operation is repeated
untilanull ai_next pointer is encountered.

To aid applications in printing error messages based on the EAI_* codes returned by
getaddrinfo(),thegai_strerror() is defined. The argument is one of the EAI_* values
defined below and the return value points to a string describing the error. If the argument is
not one of the EAI_* values, the function still returns a pointer to a string whose contents
indicate an unknown error.

The getnameinfo () function looks up an IP address and port number provided by the caller
in the name service database and system-specific database, and returns text strings for both in
buffers provided by the caller. The function indicates successful completion by a 0 return
value; a non-zero return value indicates failure.

Networking Library Functions 113

getaddrinfo(3SOCKET)

114

The first argument, sa, points to either a sockaddr_in structure (for IPv4) or a sockaddr_in6
structure (for IPv6) that holds the IP address and port number. The salen argument gives the
length of the sockaddr_in or sockaddr_1in6 structure.

The function returns the node name associated with the IP address in the buffer pointed to by
the host argument.

The function can also return the IPv6 zone-id in the form:

<address>%<zone-id>

The caller provides the size of this buffer with the hostlen argument. The service name
associated with the port number is returned in the buffer pointed to by serv, and the servien
argument gives the length of this buffer. The caller specifies not to return either string by
providing a 0 value for the hostlen or servlen arguments. Otherwise, the caller must provide
buffers large enough to hold the node name and the service name, including the terminating
null characters.

To aid the application in allocating buffers for these two returned strings, the following
constants are defined in <netdb. h>:

#define NI_MAXHOST 1025
#define NI_MAXSERV 32

The final argument is a flag that changes the default actions of this function. By default, the
fully-qualified domain name (FQDN) for the host is looked up in the name service database and
returned. If the flag bit NI_NOFQDN is set, only the node name portion of the FQDN is returned
for local hosts.

If the flag bit NI_NUMERICHOST is set, or if the host's name cannot be located in the name
service, the numeric form of the host's address is returned instead of its name, for example, by
calling inet_ntop() (see inet(3SOCKET)) instead of getipnodebyname(3SOCKET). If the
flag bit NI_NAMEREQD is set, an error is returned if the host's name cannot be located in the
name service database.

If the flag bit NI_NUMERICSERV is set, the numeric form of the service address is returned (for
example, its port number) instead of its name. The two NI_NUMERIC* flags are required to
support the -n flag that many commands provide.

A fifth flag bit, NI_DGRAM, specifies that the service is a datagram service, and causes
getservbyport(3SOCKET) to be called with a second argument of udp instead of the default
tcp. This is required for the few ports (for example, 512-514) that have different services for
UDP and TCP.

These NI_* flags are defined in <netdb.h> along with the AI_* flags already defined for
getaddrinfo().

man pages section 3: Networking Library Functions « Last Revised 24 Mar 2011

getaddrinfo(3SOCKET)

ReturnValues For getaddrinfo(), if the query is successful, a pointer to a linked list of one or more
addrinfo structures is returned by the fourth argument and the function returns 0. The order
of the addresses returned i nthe fourth argument is discussed in the ADDRESS ORDERING
section. If the query fails, a non-zero error code will be returned. For getnameinfo(), if
successful, the strings hostname and service are copied into host and serv, respectively. If
unsuccessful, zero values for either hostlen or servien will suppress the associated lookup; in
this case no data is copied into the applicable buffer. If gai strerror() is successful, a pointer
to a string containing an error message appropriate for the EAI_* errors is returned. If errcode
is not one of the EAI_* values, a pointer to a string indicating an unknown error is returned.

Address Ordering

AF_INET6 addresses returned by the fourth argument of getaddrinfo() are ordered
according to the algorithm described in RFC 3484, Default Address Selection for Internet
Protocol version 6 (IPv6). The addresses are ordered using a list of pair-wise comparison rules
which are applied in order. If a rule determines that one address is better than another, the
remaining rules are irrelevant to the comparison of those two addresses. If two addresses are
equivalent according to one rule, the remaining rules act as a tie-breaker. The address
ordering list of pair-wise comparison rules follow below:

Avoid unusable destinations.

Prefer a destination that is reachable through the IP
routing table.

Prefer matching scope.

Prefer a destination whose scope is equal to the scope
of its source address. See inet6(7P) for the definition
of scope used by this rule.

Avoid link-local source.

Avoid selecting a link-local source address when the
destination address is not a link-local address.

Avoid deprecated addresses.

Prefer a destination that is not deprecated
(IFF_DEPRECATED).

Prefer matching label. This rule uses labels that are
obtained through the IPv6 default address selection
policy table. See ipaddrsel(1M) for a description of
the default contents of the table and how the table is
configured.

Prefer a destination whose label is equal to the label
of its source address.

Prefer higher precedence. This rule uses precedence
values that are obtained through the IPv6 default
address selection policy table. See ipaddrsel(1M)
for a description of the default contents of the table
and how the table is configured.

Prefer the destination whose precedence is higher
than the other destination.

Prefer native transport.

Prefer a destination if the interface that is used for
sending packets to that destination is not an IP over
IP tunnel.

Prefer smaller scope. See inet6(7P) for the definition
of this rule.

Prefer the destination whose scope is smaller than the
other destination.

Networking Library Functions

115

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1inet6-7p
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ipaddrsel-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ipaddrsel-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1inet6-7p

getaddrinfo(3SOCKET)

Use longest matching prefix. When the two destinations belong to the same
address family, prefer the destination that has the
longer matching prefix with its source address.

Errors The following names are the error values returned by getaddrinfo() and are defined in
<netdb.h>:

EAI_ADDRFAMILY Address family for nodename is not supported.

EAI_AGAIN Temporary failure in name resolution has occurred .
EAI BADFLAGS Invalid value specified for ai_flags.
EAI FAIL Non-recoverable failure in name resolution has occurred.
EAI FAMILY Theai family is not supported.
EAI_MEMORY Memory allocation failure has occurred.
EAI_NODATA No address is associated with nodename.
EAI_NONAME Neither nodename nor servname is provided or known.
EAI SERVICE The servname is not supported for ai_socktype.
EAI_SOCKTYPE The ai socktype is not supported.
EAI_OVERFLOW Argument buffer has overflowed.
EAI_SYSTEM System error was returned in errno.

Files /etc/inet/hosts local database that associates names of nodes with IP addresses
/etc/netconfig network configuration database

/etc/nsswitch.conf configuration file for the name service switch

Attributes See attributes(5) for description of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level MT-Safe
Standard See standards(5).

SeeAlso ipaddrsel(1M), gethostbyname(3NSL), getipnodebyname(3SOCKET), htonl(3SOCKET),
inet(3SOCKET), netdb.h(3HEAD), socket(3SOCKET), hosts(4), nsswitch.conf(4),
attributes(5), standards(5), inet6(7P)

Draves, R. RFC 3484, Default Address Selection for Internet Protocol version 6 (IPv6). Network
Working Group. February 2003.

116 man pages section 3: Networking Library Functions - Last Revised 24 Mar 2011

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ipaddrsel-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1netdb.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1hosts-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nsswitch.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1inet6-7p

getaddrinfo(3SOCKET)

Notes IPv4-mapped addresses are not recommended.

Networking Library Functions 117

gethostbyname(3NSL)

Name

Synopsis

Description

118

gethostbyname, gethostbyname_r, gethostbyaddr, gethostbyaddr_r, gethostent, gethostent_r,
sethostent, endhostent - get network host entry

cc [flag... 1 file... -1nsl [library...]
#include <netdb.h>

struct hostent *gethostbyname(const char *name);

struct hostent *gethostbyname r(const char *name,
struct hostent *result, char *buffer, int buflen,
int *h_errnop);

struct hostent *gethostbyaddr(const char *addr, int len,
int type);
struct hostent *gethostbyaddr_r(const char *addr, int length,

int type, struct hostent *result, char *buffer,
int buflen, int *h_errnop);

struct hostent *gethostent(void);

struct hostent *gethostent r(struct hostent *result,
char *buffer, int buflen, int *h_errnop);

int sethostent(int stayopen);

int endhostent(void);

These functions are used to obtain entries describing hosts. An entry can come from any of the
sources for hosts specified in the /etc/nsswitch. conf file. See nsswitch.conf(4). These
functions have been superseded by getipnodebyname(3SOCKET),
getipnodebyaddr(3SOCKET), and getaddrinfo(3SOCKET), which provide greater
portability to applications when multithreading is performed or technologies such as IPv6 are
used. For example, the functions described in the following cannot be used with applications
targeted to work with IPvé.

The gethostbyname () function searches for information for a host with the hostname
specified by the character-string parameter name.

The gethostbyaddr () function searches for information for a host with a given host address.
The parameter type specifies the family of the address. This should be one of the address
families defined in <sys/socket . h>. See the NOTES section for more information. Also see the
EXAMPLES section for information on how to convert an Internet IP address notation that is
separated by periods (.) into an addr parameter. The parameter len specifies the length of the
buffer indicated by addr.

All addresses are returned in network order. In order to interpret the addresses,
byteorder(3SOCKET) must be used for byte order conversion.

The sethostent (), gethostent(),and endhostent () functions are used to enumerate host
entries from the database.

man pages section 3: Networking Library Functions « Last Revised 14 Mar 2011

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nsswitch.conf-4

gethostbyname(3NSL)

Reentrant Interfaces

The sethostent () function sets or resets the enumeration to the beginning of the set of host
entries. This function should be called before the first call to gethostent (). Calls to
gethostbyname () and gethostbyaddr () leave the enumeration position in an indeterminate
state. If the stayopen flag is non-zero, the system can keep allocated resources such as open file
descriptors until a subsequent call to endhostent ().

Successive calls to the gethostent () function return either successive entries or NULL,
indicating the end of the enumeration.

The endhostent () function can be called to indicate that the caller expects to do no further
host entry retrieval operations; the system can then deallocate resources it was using. It is still
allowed, but possibly less efficient, for the process to call more host retrieval functions after
calling endhostent().

The gethostbyname(), gethostbyaddr (), and gethostent () functions use static storage that
is reused in each call, making these functions unsafe for use in multithreaded applications.

The gethostbyname_r (), gethostbyaddr_r(),and gethostent_r() functions provide
reentrant interfaces for these operations.

Each reentrant interface performs the same operation as its non-reentrant counterpart,
named by removing the _r suffix. The reentrant interfaces, however, use buffers supplied by
the caller to store returned results and the interfaces are safe for use in both single-threaded
and multithreaded applications.

Each reentrant interface takes the same parameters as its non-reentrant counterpart, as well as
the following additional parameters. The parameter result must be a pointer toa struct
hostent structure allocated by the caller. On successful completion, the function returns the
host entry in this structure. The parameter buffer must be a pointer to a buffer supplied by the
caller. This buffer is used as storage space for the host data. All of the pointers within the
returned struct hostent result point to data stored within this buffer. See the RETURN VALUES
section for more information. The buffer must be large enough to hold all of the data
associated with the host entry. The parameter buflen should give the size in bytes of the bufter
indicated by buffer. The parameter h_errnop should be a pointer to an integer. An integer
error status value is stored there on certain error conditions. See the ERRORS section for more
information.

For enumeration in multithreaded applications, the position within the enumeration is a
process-wide property shared by all threads. The sethostent () function can be used in a
multithreaded application but resets the enumeration position for all threads. If multiple
threads interleave calls to gethostent_r(), the threads will enumerate disjoint subsets of the
host database.

Like their non-reentrant counterparts, gethostbyname_r() and gethostbyaddr r() leave
the enumeration position in an indeterminate state.

Networking Library Functions 119

gethostbyname(3NSL)

ReturnValues

Errors

120

Host entries are represented by the struct hostent structure defined in <netdb. h>:

struct hostent {

char *h name; /* canonical name of host */
char **h aliases; /* alias list */

int h_addrtype; /* host address type */

int h_length; /* length of address */

char **h addr list; /* list of addresses */

+

«on

See the EXAMPLES section for information about how to retrieve a “." separated Internet IP

address string from the h_addr_list field of struct hostent.

The gethostbyname (), gethostbyname r(), gethostbyaddr(),and gethostbyaddr_r()
functions each return a pointer to a struct hostent if they successfully locate the requested
entry; otherwise they return NULL.

The gethostent () and gethostent_r() functions each return a pointer toa struct hostent
if they successfully enumerate an entry; otherwise they return NULL, indicating the end of the
enumeration.

The gethostbyname (), gethostbyaddr (), and gethostent () functions use static storage, so
returned data must be copied before a subsequent call to any of these functions if the data is to
be saved.

When the pointer returned by the reentrant functions gethostbyname_r(),
gethostbyaddr_r(),and gethostent_r() is not NULL, it is always equal to the result pointer
that was supplied by the caller.

The sethostent () and endhostent () functions return @ on success.

The reentrant functions gethostbyname_r(),gethostbyaddr r(),and gethostent r() will
return NULL and set errno to ERANGE if the length of the buffer supplied by caller is not large
enough to store the result. See Intro(2) for the proper usage and interpretation of errno in
multithreaded applications.

The reentrant functions gethostbyname_r() and gethostbyaddr_r() set the integer pointed
to by h_errnop to one of these values in case of error.

On failures, the non-reentrant functions gethostbyname () and gethostbyaddr() set a global
integer h_errno to indicate one of these error codes (defined in <netdb . h>): HOST_NOT_FOUND,
TRY AGAIN,NO RECOVERY,NO DATA,and NO ADDRESS.

If aresolver is provided with a malformed address, or if any other error occurs before
gethostbyname () is resolved, then gethostbyname () returns an internal error with a value of
—1.

The gethostbyname () function will set i_errno to NETDB_INTERNAL when it returns a NULL
value.

man pages section 3: Networking Library Functions « Last Revised 14 Mar 2011

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-2

gethostbyname(3NSL)

Examples ExampLE1 Using gethostbyaddr ()

Here is a sample program that gets the canonical name, aliases, and “." separated Internet IP
addresses for a given “." separated IP address:

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <arpa/inet.h>

#include <netdb.h>

int main(int argc, const char **argv)

{

in_addr_t addr;

struct hostent *hp;

char **p;

if (argc !'= 2) {
(void) printf("usage: %s IP-address\n", argv[0]);
exit (1);

}

if ((int)(addr = inet addr(argv[1l])) == -1) {
(void) printf("IP-address must be of the form a.b.c.d\n");
exit (2);

}

hp = gethostbyaddr((char *)&addr, 4, AF_INET);

if (hp == NULL) {
(void) printf("host information for %s not found\n", argv[1]);
exit (3);

}

for (p = hp->h_addr list; *p != 0; p++) {
struct in addr in;
char **q;
(void) memcpy(&in.s addr, *p, sizeof (in.s addr));

(void) printf("ss %s", inet ntoa(in), hp—>h name);
for (q = hp->h aliases; *q != 0; q++)
(void) printf(" %s", *q);

(void) putchar(’\n’");

}

exit (0);

}

Note that the preceding sample program is unsafe for use in multithreaded applications.

Files /etc/hosts hosts file that associates the names of hosts with their Internet
Protocol (IP) addresses

/etc/netconfig network configuration database

/etc/nsswitch.conf configuration file for the name service switch

Networking Library Functions 121

gethostbyname(3NSL)

Attributes

See Also

Warnings

Notes

122

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

MT-Level See Reentrant Interfaces in the DESCRIPTION
section.

Intro(2), Intro(3), byteorder(3SOCKET), inet(3SOCKET), netdb.h(3HEAD),
netdir(3NSL), hosts(4), netconfig(4), nss(4), nsswitch.conf(4), attributes(5)

The reentrant interfaces gethostbyname r(), gethostbyaddr r(),and gethostent r() are
included in this release on an uncommitted basis only and are subject to change or removal in
future minor releases.

To ensure that they all return consistent results, gethostbyname (), gethostbyname_r (), and
netdir_getbyname() are implemented in terms of the same internal library function. This
function obtains the system-wide source lookup policy based on the inet family entries in
netconfig(4) and the hosts: entryin nsswitch.conf(4). Similarly, gethostbyaddr(),
gethostbyaddr_r(),and netdir_getbyaddr() are implemented in terms of the same
internal library function. If the inet family entries in netconfig(4) have a “-" in the last
column for nametoaddr libraries, then the entry for hosts in nsswitch. conf will be used;
nametoaddr libraries in that column will be used, and nsswitch. conf will not be consulted.

There is no analogue of gethostent () and gethostent_r() in the netdir functions, so these
enumeration functions go straight to the hosts entry in nsswitch. conf. Thus enumeration
can return results from a different source than that used by gethostbyname(),
gethostbyname r(),gethostbyaddr(),and gethostbyaddr r().

All the functions that return a struct hostent must always return the canonical name in the
h_name field. This name, by definition, is the well-known and official hostname shared
between all aliases and all addresses. The underlying source that satisfies the request
determines the mapping of the input name or address into the set of names and addresses in
hostent. Different sources might do that in different ways. If there is more than one alias and
more than one address in hostent, no pairing is implied between them.

The system attempts to put those addresses that are on the same subnet as the caller before
addresses that are on different subnets. However, if address sorting is disabled by setting
SORT_ADDRS to FALSE in the /etc/default/nss file, the system does not put the local subnet
addresses first. See nss(4) for more information.

When compiling multithreaded applications, see Intro(3), MULTITHREADED APPLICATIONS,
for information about the use of the _REENTRANT flag.

Use of the enumeration interfaces gethostent () and gethostent_r() is discouraged;
enumeration might not be supported for all database sources. The semantics of enumeration
are discussed further in nsswitch.conf(4).

man pages section 3: Networking Library Functions « Last Revised 14 Mar 2011

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-3
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1netdb.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1hosts-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1netconfig-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nss-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nsswitch.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1netconfig-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nsswitch.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1netconfig-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nss-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-3
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nsswitch.conf-4

gethostbyname(3NSL)

The current implementations of these functions only return or accept addresses for the
Internet address family (type AF_INET).

The form for an address of type AF_INET isa struct in_addr defined in <netinet/in.h>.
The functions described in inet(3SOCKET), and illustrated in the EXAMPLES section, are
helpful in constructing and manipulating addresses in this form.

When the caller provides the IP address (the addr argument of gethostbyaddr() and
gethostbyaddr_r()), the addr argument should be aligned on a word boundary or the code
must be changed to memcpy(3C) the argument to an aligned area; otherwise an error such asa
SIGBUS may result.

Networking Library Functions 123

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN7memcpy-3c

gethostname(3XNET)

Name

Synopsis

Description

ReturnValues
Errors

Attributes

See Also

124

gethostname - get name of current host

cc [flag ... 1 file ... -xnet [library ...]
#include <unistd.h>

int gethostname(char *name, size t namelen);

The gethostname () function returns the standard host name for the current machine. The
namelen argument specifies the size of the array pointed to by the name argument. The
returned name is null-terminated, except that if namelen is an insufficient length to hold the
host name, then the returned name is truncated and it is unspecified whether the returned

name is null-terminated.

Host names are limited to 255 bytes.

On successful completion, 0 is returned. Otherwise, -1 is returned.

No errors are defined.
See attributes(5) for descriptions of the following attributes:
ATTRIBUTETYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level MT-Safe
Standard See standards(5).
uname(1), gethostid(3C), attributes(5), standards(5)

man pages section 3: Networking Library Functions « Last Revised 10 Jun 2002

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1uname-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1gethostid-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

getifaddrs(3SOCKET)

Name

Synopsis

Description

getifaddrs, freeifaddrs — get interface addresses

cc [flag... 1 file ... -lsocket -lnsl [library ...]
#include <sys/types.h>

#include <sys/socket.h>

#include <ifaddrs.h>

int getifaddrs(struct ifaddrs **yhp);

void freeifaddrs(struct ifaddrs *ifp);

The getifaddrs () function stores a reference to a linked list of network interface addresses
on the local machine in the memory referenced by ifap. The list consists of i faddrs structures,
as defined in the include file <ifaddrs . h>. Each element of the list describes one network

interface address. The caller can process each ifaddrs structure in this list by following the
ifa_next pointer, until a null pointer is encountered.

struct ifaddrs {

struct ifaddrs *ifa next; /* next structure in linked list*/
char *ifa name; /* Interface name */
uint64 t ifa flags; /* Interface flags (if tcp(7P)) */
struct sockaddr *ifa addr; /* Interface address */
struct sockaddr *ifa netmask; /* Interface netmask */
union {
/* Interface broadcast address */
struct sockaddr *ifa dstaddr;
/* P2P interface destination */
struct sockaddr *ifa broadaddr;
} ifa_ifu;
void *ifa data; /* Address specific data (unused) */
+

#ifndef ifa_broadaddr

#define ifa broadaddr ifa ifu.ifu broadaddr
#endif

#ifndef ifa_dstaddr

#define ifa_dstaddr ifa ifu.ifu_dstaddr
#endif

The ifa_name member contains the interface name.
The ifa_flags member contains the interface flags.

The ifa_addr member references the address of the interface. (The sa_family member of the
ifa_addr member should be consulted to determine the format of the ifa_addr address.)

The ifa_netmask member references the netmask associated with ifa_addr, if one is set,
otherwise it is NULL.

The ifa_broadaddr member, which should only be referenced for non-P2P interfaces,
references the broadcast address associated with ifa_addr, if one exists, otherwise it is NULL.

Networking Library Functions 125

getifaddrs(3SOCKET)

The ifa_dstaddr member references the destination address on a P2P inter face, if one exists,
otherwise it is NULL.

The ifa_data member is currently unused.

The data returned by getifaddrs () is dynamically allocated and should be freed using
freeifaddrs() when no longer needed.

ReturnValues Thegetifaddrs() function returns the value 0 if successful; otherwise -1 is returned and
errno is set to indicate the error.

Errors The getifaddrs() function may fail and set errno for any of the errors specified for ioct1(2),
socket(3SOCKET), and malloc(3C).

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

SeeAlso ipadm(1M), ifconfig(1M), ioct1(2), malloc(3C), socket(3SOCKET), if tcp(7P),
attributes(5)

126 man pages section 3: Networking Library Functions « Last Revised 10 May 2010

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN7ioctl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN7socket-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN7malloc-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ipadm-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN7ifconfig-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN7ioctl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN7malloc-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN7socket-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN7if-tcp-7p
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

getipnodebyname(3SOCKET)

Name

Synopsis

Parameters

Description

getipnodebyname, getipnodebyaddr, freehostent — get IP node entry

cc [flag... 1 file... -lsocket -lnsl [library...]
#include <sys/socket.h>
#include <netdb.h>

struct hostent *getipnodebyname(const char *name, int af,
int ﬂags, int *error_num);

struct hostent *getipnodebyaddr(const void *src, size t len,
int af, int *error_num);

void freehostent(struct hostent *pir);

af Address family
flags Various flags
name Name of host

error_num Error storage

sre Address for lookup
len Length of address
ptr Pointer to hostent structure

The getipnodebyname () function searches the ipnodes database from the beginning. The
function finds the first h_name member that matches the hostname specified by name. The
function takes an af argument that specifies the address family. The address family can be
AF_INET for IPv4 addresses or AF_INET6 for IPv6 addresses. The flags argument determines
what results are returned based on the value of flags. If the flags argument is set to @ (zero), the
default operation of the function is specified as follows:

= Ifthe afargument is AF_INET, a query is made for an IPv4 address. If successful, IPv4
addresses are returned and the h_length member of the hostent structure is 4. Otherwise,
the function returns a NULL pointer.

= Ifthe afargumentis AF_INET6, a query is made for an IPv6 address. If successful, IPv6
addresses are returned and the h_length member of the hostent structure is 16.
Otherwise, the function returns a NULL pointer.

The flags argument changes the default actions of the function. Set the flags argument with a
logical OR operation on any of combination of the following values:

AI VAMAPPED
AI ALL
AI ADDRCONFIG

The special flags value, AT_DEFAULT, should handle most applications. Porting simple
applications to use IPv6 replaces the call

Networking Library Functions 127

getipnodebyname(3SOCKET

128

hptr = gethostbyname(name);
with
hptr = getipnodebyname(name, AF_INET6, AI DEFAULT, &error_num);

The flags value 0 (zero) implies a strict interpretation of the af argument:

= Ifflagsis @ and afis AF_INET, the caller wants only IPv4 addresses. A query is made for A
records. If successful, IPv4 addresses are returned and the h_length member of the
hostent structure is 4. Otherwise, the function returns a NULL pointer.

= Ifflagsis @ and afis AF_INETS6, the caller wants only IPv6 addresses. A query is made for
AAAA records. If successful, IPv6 addresses are returned and the h_length member of the
hostent structure is 16. Otherwise, the function returns a NULL pointer.

Logically OR other constants into the flags argument to modify the behavior of the
getipnodebyname () function.

= Ifthe AI_V4MAPPED flag is specified with af set to AF_INETS6, the caller can accept
IPv4-mapped IPv6 addresses. If no AAAA records are found, a query is made for A records.
Any Arecords found are returned as IPv4-mapped IPv6 addresses and the h_length is 16.
The AI_V4MAPPED flag is ignored unless af equals AF_INET6.

= TheAI ALL flagis used in conjunction with the AI_V4MAPPED flag, exclusively with the
IPv6 address family. When AI_ALL is logically ORed with AI_V4MAPPED flag, the caller wants
all addresses: IPv6 and IPv4-mapped IPv6 addresses. A query is first made for AAAA records
and, if successful, IPv6 addresses are returned. Another query is then made for A records.
Any Arecords found are returned as IPv4-mapped IPv6 addresses and the h_length is 16.
Only when both queries fail does the function return a NULL pointer. The AI_ALL flag is
ignored unless afis set to AF_INET6.

= The AI_ADDRCONFIG flag specifies that a query for AAAA records should occur only when the
node is configured with at least one IPv6 source address. A query for A records should
occur only when the node is configured with at least one IPv4 source address. For example,
ifanode is configured with no IPv6 source addresses, af equals AF_INET6, and the node
name queried has both AAAA and A records, then:

® A NULL pointer is returned when only the AT ADDRCONFIG value is specified.
® TheArecords are returned as IPv4-mapped IPv6 addresses when the AT ADDRCONFIG
and AI_V4MAPPED values are specified.
The special flags value, AL DEFAULT, is defined as
#define AI DEFAULT (AI V4AMAPPED | AI ADDRCONFIG)
The getipnodebyname () function allows the name argument to be a node name or a literal

address string: a dotted-decimal IPv4 address or an IPv6 hex address. Applications do not
have to call inet_pton(3SOCKET) to handle literal address strings.

man pages section 3: Networking Library Functions « Last Revised 22 Aug 2007

getipnodebyname(3SOCKET)

ReturnValues

Four scenarios arise based on the type of literal address string and the value of the af
argument. The two simple cases occur when name is a dotted-decimal IPv4 address and af
equals AF_INET and when name is an IPv6 hex address and af equals AF_INET6. The members
of the returned hostent structure are:

h_name Pointer to a copy of the name argument
h_aliases NULL pointer.

h_addrtype Copy of the af argument.

h_length 4 for AF_INET or 16 for AF_INET6.

h_addr_list Array of pointers to 4-byte or 16-byte binary addresses. The array is
terminated by a NULL pointer.

Upon successful completion, getipnodebyname () and getipnodebyaddr() return ahostent
structure. Otherwise they return NULL.

The hostent structure does not change from the existing definition when used with
gethostbyname(3NSL). For example, host entries are represented by the struct hostent
structure defined in <netdb.h>:

struct hostent {

char *h name; /* canonical name of host */
char **h aliases; /* alias list */

int h_addrtype; /* host address type */

int h_length; /* length of address */

char **h addr list; /* list of addresses */

+

An error occurs when name is an IPv6 hex address and af equals AF_INET. The return value of
the function is a NULL pointer and error_num equals HOST_NOT_FOUND.

The getipnodebyaddr () function has the same arguments as the existing
gethostbyaddr(3NSL) function, but adds an error number. As with getipnodebyname(),
getipnodebyaddr() is thread-safe. The error_num value is returned to the caller with the
appropriate error code to support thread-safe error code returns. The following error
conditions can be returned for error_num:

HOST_NOT_FOUND Host is unknown.

NO DATA No address is available for the name specified in the server request. This
error is not a soft error. Another type of name server request might be
successful.

NO_RECOVERY An unexpected server failure occurred, which is a non-recoverable error.

TRY_AGAIN This error is a soft error that indicates that the local server did not

receive a response from an authoritative server. A retry at some later

Networking Library Functions 129

getipnodebyname(3SOCKET

130

Examples

time might be successful.

One possible source of confusion is the handling of IPv4-mapped IPv6 addresses and
IPv4-compatible IPv6 addresses, but the following logic should apply:

1. Ifafis AF_INET6, and if len equals 16, and if the IPv6 address is an IPv4-mapped IPv6
address or an IPv4-compatible IPv6 address, then skip over the first 12 bytes of the IPv6
address, set afto AF_INET, and set len to 4.

2. Ifafis AF_INET, lookup the name for the given IPv4 address.
If afis AF_INET6, lookup the name for the given IPv6 address.

4. Ifthe function is returning success, then the single address that is returned in the hostent
structure is a copy of the first argument to the function with the same address family that
was passed as an argument to this function.

All four steps listed are performed in order.

This structure, and the information pointed to by this structure, are dynamically allocated by
getipnodebyname () and getipnodebyaddr(). The freehostent () function frees this
memory.

EXAMPLE1 Getting the Canonical Name, Aliases, and Internet IP Addresses for a Given Hostname

The following is a sample program that retrieves the canonical name, aliases, and all Internet
IP addresses, both version 6 and version 4, for a given hostname.

#include <stdio.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netdb.h>

main(int argc, const char **argv)
{

char abuf[INET6 ADDRSTRLEN];

int error num;

struct hostent *hp;

char **p;

if (argc !'= 2) {
(void) printf("usage: %s hostname\
, argv([0]);
exit (1);

/* argv[l] can be a pointer to a hostname or literal IP address */

man pages section 3: Networking Library Functions « Last Revised 22 Aug 2007

getipnodebyname(3SOCKET

EXAMPLE 1 Getting the Canonical Name, Aliases, and Internet IP Addresses for a Given Hostname
(Continued)

hp = getipnodebyname(argv[1l], AF_INET6, AI ALL | AI ADDRCONFIG |
AI V4AMAPPED, &error_num);
if (hp == NULL) {
if (error_num == TRY_AGAIN) {
printf("ss: unknown host or invalid literal address "
"(try again later)\
", argv[1]);
} else {
printf("ss: unknown host or invalid literal address\

argv[1l]);
}
exit (1);
}
for (p = hp->h addr list; *p != 0; p++) {
struct in6_addr in6;
char **q;

bcopy (*p, (caddr t)&in6, hp->h length);
(void) printf("ss\\t%s", inet ntop(AF _INET6, (void *)&iné,
abuf, sizeof(abuf)), hp->h name);
for (q = hp->h aliases; *q != 0; q++)
(void) printf(" %s", *q);
(void) putchar(’\
");

}

freehostent(hp);

exit (0);

}

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

SeeAlso getaddrinfo(3SOCKET), gethostbyname(3NSL), htonl1(3SOCKET), inet(3SOCKET),
netdb.h(3HEAD), hosts(4), nsswitch.conf(4), attributes(5)

Notes No enumeration functions are provided for IPv6. Existing enumeration functions such as

sethostent(3NSL) do not work in combination with the getipnodebyname () and
getipnodebyaddr() functions.

Networking Library Functions 131

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1netdb.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1hosts-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nsswitch.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

getipnodebyname(3SOCKET)

132

All the functions that return a struct hostent must always return the canonical in the
h_name field. This name, by definition, is the well-known and official hostname shared
between all aliases and all addresses. The underlying source that satisfies the request
determines the mapping of the input name or address into the set of names and addresses in
hostent. Different sources might make such as determination in different ways. If more than
one alias and more than one address in hostent exist, no pairing is implied between the alias
and address.

The current implementations of these functions return or accept only addresses for the
Internet address family (type AF_INET) or the Internet address family Version 6 (type
AF_INET6).

IPv4-mapped addresses are not recommended. The getaddrinfo(3SOCKET) function is
preferred over getipnodebyaddr() because it allows applications to lookup IPv4 and IPv6
addresses without relying on IPv4-mapped addresses.

The form for an address of type AF_INET isa struct in_addr defined in <netinet/in.h>.
The form for an address of type AF_INET6 isa struct in6_addr, also defined in
<netinet/in.h>. The functions described in inet ntop(3SOCKET) and
inet_pton(3SOCKET) that are illustrated in the EXAMPLES section are helpful in
constructing and manipulating addresses in either of these forms.

man pages section 3: Networking Library Functions « Last Revised 22 Aug 2007

getipsecalgbyname(3NSL)

Name

Synopsis

Description

Parameters

ReturnValues

getipsecalgbyname, getipsecalgbynum, freeipsecalgent — query algorithm mapping entries
cc [flag... 1 file... -lnsl [library...]
#include <netdb.h>
struct ipsecalgent *getipsecalgbyname
(const char *alg_name, int protocol_num, int *errnop);

struct ipsecalgent *getipsecalgbynum(int alg num,
int protocoL_nun1, int *errnop);

void freeipsecalgent(struct ipsecalgent *pir);

Use the getipsecalgbyname(), getipsecalgbynum(), freeipsecalgent () functions to
obtain the IPsec algorithm mappings that are defined by ipsecalgs(1M). The IPsec
algorithms and associated protocol name spaces are defined by RFC 2407.

getipsecalgbyname() and getipsecalgbynum() return a structure that describes the
algorithm entry found. This structure is described in the RETURN VALUES section below.

freeipsecalgent () must be used by the caller to free the structures returned by
getipsecalgbyname() and getipsecalgbynum() when they are no longer needed.

Both getipsecalgbyname() and getipsecalgbynum() take as parameter the protocol
identifier in which the algorithm is defined. See getipsecprotobyname(3NSL) and
getipsecprotobyname(3NSL).

The following protocol numbers are pre-defined:

IPSEC_PROTO_ESP Defines the encryption algorithms (transforms) that can be used by
IPsec to provide data confidentiality.

IPSEC_PROTO_AH Defines the authentication algorithms (transforms) that can be used by
IPsec to provide authentication.

getipsecalgbyname () looks up the algorithm by its name, while getipsecalgbynum() looks
up the algorithm by its assigned number.

errnop A pointer to an integer used to return an error status value on certain error
conditions. See ERRORS.

The getipsecalgbyname() and getipsecalgbynum() functions return a pointer to the
structure ipsecalgent_t, defined in <netdb. h>. If the requested algorithm cannot be found,
these functions return NULL.

The structure ipsecalgent_t is defined as follows:

typedef struct ipsecalgent {

char **a names; /* algorithm names */
int a proto num; /* protocol number */
int a alg num; /* algorithm number */

Networking Library Functions 133

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ipsecalgs-1m

getipsecalgbyname(3NSL)

Errors

Attributes

char *a_mech_name; /* mechanism name */
int *a block sizes; /* supported block sizes */
int *a key sizes; /* supported key sizes */

int a_key increment; /* key size increment */
int *a mech params; /* mechanism specific parameters */
int a_alg_ flags; /* algorithm flags */

} ipsecalgent t;

Ifa_key_increment is non-zero,a_key_sizes[@] contains the default key size for the
algorithm. a_key_sizes[1] anda_key_sizes[2] specify the smallest and biggest key sizes
support by the algorithm, and a_key_increment specifies the valid key size increments in that
range.

Ifa_key_increment is zero, the array a_key_sizes contains the set of key sizes, in bits,
supported by the algorithm. The last key length in the array is followed by an element of value
0. The first element of this array is used as the default key size for the algorithm.

a_name is an array of algorithm names, terminated by an element containing a NULL pointer.
a_name[0] is the primary name for the algorithm.

a_proto_numis the protocol identifer of this algorithm. a_alg_numis the algorithm number.
a_mech_name contains the mechanism name associated with the algorithm.

a_block_sizes isanarray containing the supported block lengths or MAC lengths, in bytes,
supported by the algorithm. The last valid value in the array is followed by an element
containing the value 0.

a_block_sizes isan array containing the supported block lengths or MAC lengths, in bytes,
supported by the algorithm. The last valid value in the array is followed by an element
containing the value 0.

When the specified algorithm cannot be returned to the caller, getipsecalgbyname () and
getipsecalgbynum() return a value of NULL and set the integer pointed to by the errnop
parameter to one of the following values:

ENOMEM Notenough memory
ENOENT Specified algorithm not found

EINVAL Specified protocol number not found

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

Availability system/library (32 bit)

134 man pages section 3: Networking Library Functions « Last Revised 11 May 2011

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

getipsecalgbyname(3NSL)

ATTRIBUTETYPE ATTRIBUTE VALUE
SUNWGslx (64 bit)
MT-Level MT-Safe
Interface Stability Committed

SeeAlso cryptoadm(1M), ipsecalgs(1M), getipsecprotobyname(3NSL),
getipsecprotobyname(3NSL), attributes(5)

Piper, D. RFC 2407, The Internet IP Security Domain of Interpretation for ISAKMP. Network
Working Group. November, 1998.

Networking Library Functions

135

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1cryptoadm-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ipsecalgs-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

getipsecprotobyname(3NSL)

136

Name

Synopsis

Description

Parameters

ReturnValues

Attributes

getipsecprotobyname, getipsecprotobynum - query IPsec protocols entries

cc -flag ... file...-lnsl [-library ...]
#include <netdb.h>

int getipsecprotobyname(const char *proto_name

char *getipsecprotobynum(int proto_nump

Use the getipsecprotobyname() and getipsecprotobynum() functions to obtain the IPsec
algorithm mappings that are defined by ipsecalgs(1M). You can also use the
getipsecprotobyname() and getipsecprotobynum() functions in conjunction with
getipsecalgbyname(3NSL) and getipsecalgbynum(3NSL) to obtain information about the
supported IPsec algorithms. The IPsec algorithms and associated protocol name spaces are
defined by RFC 2407.

getipsecprotobyname() takes as an argument the name of an IPsec protocol and returns its
assigned protocol number. The character string returned by the getipsecprotobyname ()
function must be freed by the called when it is no longer needed.

getipsecprotobynum() takesasan argumenta protocol number and returns the
corresponding protocol name.

The following protocol numbers are pre-defined:

IPSEC_PROTO_ESP Defines the encryption algorithms (transforms) that can be used by
IPsec to provide data confidentiality.

IPSEC_PROTO_AH Defines the authentication algorithms (transforms) that can be used by
IPsec to provide authentication.

proto_name A pointer to the name of an IPsec protocol.

proto_num A pointer to a protocol number. conditions.

The getipsecprotobyname() function returns a protocol number upon success, or -1 if the
protocol specified does not exist.

The getipsecprotobynum() function returns a protocol name upon success, or the NULL
value if the protocol number specified does not exist.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

Availability system/library (32 bit)

SUNWGslx (64 bit)

man pages section 3: Networking Library Functions « Last Revised 13 Aug 2003

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ipsecalgs-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

getipsecprotobyname(3NSL)

ATTRIBUTETYPE

ATTRIBUTE VALUE

MT Level

MT Safe

Interface Stability

Committed

SeeAlso ipsecalgs(1M), getipsecalgbyname(3NSL), getipsecalgbyname(3NSL), attributes(5)

Piper, D. RFC 2407, The Internet IP Security Domain of Interpretation for ISAKMP. Network

Working Group. November, 1998.

Networking Library Functions

137

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ipsecalgs-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

getnameinfo(3XNET)

Name

Synopsis

Description

138

getnameinfo - get name information

cc [flag ... 1 file ... -xnet [library ...]
#include <sys/socket.h>
#include <netdb.h>

int getnameinfo(const struct sockaddr *restrict sa, socklen t salen,
char *restrict node, socklen t nodelen, char *restrict service,
socklen_t servicelen, unsigned flags);

The getnameinfo() function translates a socket address to a node name and service location,
all of which are defined as in getaddrinfo(3XNET).

The sa argument points to a socket address structure to be translated. If the socket address
structure contains an IPv4-mapped IPv6 address or an IPv4-compatible IPv6 address, the
implementation extracts the embedded IPv4 address and lookup the node name for that IPv4
address.

If the node argument is non-NULL and the nodelen argument is non-zero, then the node
argument points to a buffer able to contain up to nodelen characters that receives the node
name as a null-terminated string. If the node argument is NULL or the nodelen argument is
zero, the node name is not returned. If the node's name cannot be located, the numeric form of
the node's address is returned instead of its name.

If the service argument is non-NULL and the servicelen argument is non-zero, then the service
argument points to a buffer able to contain up to servicelen bytes that receives the service name
as a null-terminated string. If the service argument is NULL or the servicelen argument is zero,
the service name is not returned. If the service's name cannot be located, the numeric form of
the service address (for example, its port number) is returned instead of its name.

The flags argument is a flag that changes the default actions of the function. By default the
fully-qualified domain name (FQDN) for the host is returned, but:

= Ifthe flag bit NI_NOFQDN is set, only the node name portion of the FQDN is returned for
local hosts.

= Ifthe flag bit NI_NUMERICHOST is set, the numeric form of the host's address is returned
instead of its name, under all circumstances.

= Jfthe flag bit NI_NAMEREQD is set, an error is returned if the host's name cannot be located.

= Ifthe flag bit NI_NUMERICSERVY is set, the numeric form of the service address is returned
(for example, its port number) instead of its name, under all circumstances.

= Jfthe flagbit NI_DGRAMis set, this indicates that the service is a datagram service
(SOCK_DGRAM). The default behavior assumes that the service is a stream service
(SOCK_STREAM).

man pages section 3: Networking Library Functions « Last Revised 1 Nov 2003

getnameinfo(3XNET)

ReturnValues

Errors

Usage

Attributes

See Also

Notes

A 0O return value for getnameinfo () indicates successful completion; a non-zero return value
indicates failure. The possible values for the failures are listed in the ERRORS section.

Upon successful completion, getnameinfo() returns the node and service names, if
requested, in the buffers provided. The returned names are always null-terminated strings.
The getnameinfo () function will fail if:

EAI_AGAIN The name could not be resolved at this time. Future attempts might
succeed.

EAI_BADFLAGS The flags argument had an invalid value.

EAI FAIL A non-recoverable error occurred.

EAI_FAMILY The address family was not recognized or the address length was invalid
for the specified family.

EAI_MEMORY There was a memory allocation failure.

EAI NONAME The name does not resolve for the supplied parameters. NI NAMEREQD is set
and the host's name cannot be located, or both nodename and servname
were NULL.

EAI_SYSTEM A system error occurred. The error code can be found in errno.

If the returned values are to be used as part of any further name resolution (for example,
passed to getaddrinfo()), applications should provide buffers large enough to store any
result possible on the system.

Given the IPv4-mapped IPv6 address “:ffff:1.2.3.4”, the implementation performs a lookup as
if the socket address structure contains the IPv4 address “1.2.3.4”.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level MT-Safe
Standard See standards(5).

gai_strerror(3XNET), getaddrinfo(3XNET), getservbyname(3XNET), socket(3XNET),
attributes(5), standards(5)

The IPv6 unspecified address (“::”) and the IPv6 loopback address (“::17) are not

IPv4-compatible addresses. If the address is the IPv6 unspecified address (“::”), alookup is not
performed, and the EAI_NONAME error is returned.

Networking Library Functions 139

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

getnameinfo(3XNET)

The two NI_NUMERICxxx flags are required to support the - n flag that many commands
provide.

The NI_DGRAM flag is required for the few AF_INET and AF_INET6 port numbers (for example,
[512,514]) that represent different services for UDP and TCP.

140 man pages section 3: Networking Library Functions « Last Revised 1 Nov 2003

getnetbyname(3SOCKET)

Name getnetbyname, getnetbyname_r, getnetbyaddr, getnetbyaddr_r, getnetent, getnetent_r,
setnetent, endnetent — get network entry

Synopsis cc [flag ... 1 file ... -lsocket -lnsl [library ...]
#include <netdb.h>
struct netent *getnetbyname(const char *name);

struct netent *getnetbyname r(const char *name, struct netent *result,
char *buffer, int buflen);

struct netent *getnetbyaddr(long net, int type);

struct netent *getnetbyaddr r(long net, int type, struct netent *result,
char *buffer, int buflen);

struct netent *getnetent(void);

struct netent *getnetent_r(struct netent *result, char *buffer,
int buflen);

int setnetent(int stayopen);
int endnetent(void);

Description These functions are used to obtain entries for networks. An entry may come from any of the
sources for networks specified in the /etc/nsswitch. conf file. See nsswitch. conf(4).

getnetbyname () searches for a network entry with the network name specified by the
character string parameter name.

getnetbyaddr() searches for a network entry with the network address specified by net. The
parameter type specifies the family of the address. This should be one of the address families
defined in <sys/socket.h>. See the NOTES section below for more information.

Network numbers and local address parts are returned as machine format integer values, that
is, in host byte order. See also inet(3SOCKET).

The netent.n_net member in the netent structure pointed to by the return value of the
above functions is calculated by inet_network(). The inet_network() function returns a
value in host byte order that is aligned based upon the input string. For example:

Text Value

“10” 0x0000000a
“10.0" 0x00000a00
“10.0.1" 0a000a0001
“10.0.1.28” 0x0a000180

Networking Library Functions 141

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nsswitch.conf-4

getnetbyname(3SOCKET)

Reentrant Interfaces

142

Commonly, the alignment of the returned value is used as a crude approximate of pre-CIDR
(Classless Inter-Domain Routing) subnet mask. For example:

in_addr_t addr, mask;

addr = inet network(net name);

mask= ~(in_addr t)0;

if ((addr & IN CLASSA NET) == 0)
addr <<= 8, mask <<= 8;

if ((addr & IN CLASSA NET) == 0)
addr <<= 8, mask <<= 8;

if ((addr & IN CLASSA NET) == 0)
addr <<= 8, mask <<= 8;

This usage is deprecated by the CIDR requirements. See Fuller, V., Li, T., Yu, J., and Varadhan,
K. RFC 1519, Classless Inter-Domain Routing (CIDR): an Address Assignment and Aggregation
Strategy. Network Working Group. September 1993.

The functions setnetent (), getnetent (), and endnetent () are used to enumerate network
entries from the database.

setnetent () sets (or resets) the enumeration to the beginning of the set of network entries.
This function should be called before the first call to getnetent (). Calls to getnetbyname ()
and getnetbyaddr () leave the enumeration position in an indeterminate state. If the stayopen
flag is non-zero, the system may keep allocated resources such as open file descriptors until a
subsequent call to endnetent ().

Successive calls to getnetent () return either successive entries or NULL, indicating the end of
the enumeration.

endnetent () may be called to indicate that the caller expects to do no further network entry
retrieval operations; the system may then deallocate resources it was using. It is still allowed,
but possibly less efficient, for the process to call more network entry retrieval functions after
calling endnetent ().

The functions getnetbyname (), getnetbyaddr(), and getnetent () use static storage thatis
reused in each call, making these routines unsafe for use in multi-threaded applications.

The functions getnetbyname_r(),getnetbyaddr_r(),and getnetent_r() provide reentrant
interfaces for these operations.

Each reentrant interface performs the same operation as its non-reentrant counterpart,
named by removing the “_r" suffix. The reentrant interfaces, however, use buffers supplied by
the caller to store returned results, and are safe for use in both single-threaded and
multi-threaded applications.

Each reentrant interface takes the same parameters as its non-reentrant counterpart, as well as
the following additional parameters. The parameter result must be a pointer toa struct
netent structure allocated by the caller. On successful completion, the function returns the

man pages section 3: Networking Library Functions « Last Revised 4 Nov 2004

getnetbyname(3SOCKET)

ReturnValues

Errors

Files

Attributes

network entry in this structure. The parameter buffer must be a pointer to a buffer supplied by
the caller. This buffer is used as storage space for the network entry data. All of the pointers
within the returned struct netent result point to data stored within this buffer. See RETURN
VALUES. The buffer must be large enough to hold all of the data associated with the network
entry. The parameter buflen should give the size in bytes of the buffer indicated by buffer.

For enumeration in multi-threaded applications, the position within the enumeration is a
process-wide property shared by all threads. setnetent () may be used in a multi-threaded
application but resets the enumeration position for all threads. If multiple threads interleave
calls to getnetent_r(), the threads will enumerate disjointed subsets of the network database.

Like their non-reentrant counterparts, getnetbyname r() and getnetbyaddr r() leave the
enumeration position in an indeterminate state.

Network entries are represented by the struct netent structure defined in <netdb. h>.

The functions getnetbyname (), getnetbyname_r, getnetbyaddr, and getnetbyaddr r()
each return a pointer to a struct netent if they successfully locate the requested entry;
otherwise they return NULL.

The functions getnetent () and getnetent r() eachreturna pointer to a struct netent if
they successfully enumerate an entry; otherwise they return NULL, indicating the end of the
enumeration.

The functions getnetbyname (), getnetbyaddr(), and getnetent () use static storage, so
returned data must be copied before a subsequent call to any of these functions if the data is to
be saved.

When the pointer returned by the reentrant functions getnetbyname_r(),
getnetbyaddr_r(),and getnetent_r() is non-NULL, it is always equal to the result pointer
that was supplied by the caller.

The functions setnetent () and endnetent () return @ on success.

The reentrant functions getnetbyname r(), getnetbyaddr rand getnetent r() will return
NULL and set errno to ERANGE if the length of the buffer supplied by caller is not large enough
to store the result. See Intro(2) for the proper usage and interpretation of errno in
multi-threaded applications.

/etc/networks network name database

/etc/nsswitch.conf configuration file for the name service switch

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Networking Library Functions 143

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

getnetbyname(3SOCKET)

SeeAlso Intro(2),Intro(3),byteorder(3SOCKET), inet(3SOCKET), netdb.h(3HEAD),
networks(4), nsswitch.conf(4), attributes(5)

Fuller, V., Li, T., Yu, J., and Varadhan, K. RFC 1519, Classless Inter-Domain Routing (CIDR):
an Address Assignment and Aggregation Strategy. Network Working Group. September 1993.

Warnings The reentrant interfaces getnetbyname r(),getnetbyaddr r(),and getnetent r() are
included in this release on an uncommitted basis only, and are subject to change or removal in
future minor releases.

Notes The current implementation of these functions only return or accept network numbers for the
Internet address family (type AF_INET). The functions described in inet(3SOCKET) may be
helpful in constructing and manipulating addresses and network numbers in this form.

When compiling multi-threaded applications, see Intro(3), Notes On Multithread
Applications, for information about the use of the REENTRANT flag.

Use of the enumeration interfaces getnetent () and getnetent_r() is discouraged;
enumeration may not be supported for all database sources. The semantics of enumeration are
discussed further in nsswitch.conf(4).

144 man pages section 3: Networking Library Functions « Last Revised 4 Nov 2004

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-3
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1netdb.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1networks-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nsswitch.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-3
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nsswitch.conf-4

getnetconfig(3NSL)

Name

Synopsis

Description

getnetconfig, setnetconfig, endnetconfig, getnetconfigent, freenetconfigent, nc_perror,
nc_sperror — get network configuration database entry

#include <netconfig.h>

struct netconfig *getnetconfig(void *handlep);

void *setnetconfig(void);

int endnetconfig(void *handlep);

struct netconfig *getnetconfigent(const char *netid);
void freenetconfigent(struct netconfig *netconfigp);
void nc_perror(const char *msg);

char *nc_sperror(void);

The library routines described on this page are part of the Network Selection component.
They provide the application access to the system network configuration database,
/etc/netconfig. In addition to the routines for accessing the netconfig database, Network
Selection includes the environment variable NETPATH (see environ(5)) and the NETPATH access
routines described in getnetpath(3NSL).

getnetconfig() returnsa pointer to the current entry in the netconfig database, formatted
asa struct netconfig. Successive calls will return successive netconfig entries in the
netconfig database. getnetconfig() can be used to search the entire netconfig file.
getnetconfig() returns NULL at the end of the file. handlep is the handle obtained through
setnetconfig().

A callto setnetconfig() has the effect of “binding" to or “rewinding" the netconfig
database. setnetconfig() must be called before the first call to getnetconfig() and may be
called at any other time. setnetconfig() need not be called before a call to
getnetconfigent().setnetconfig() returns a unique handle to be used by
getnetconfig().

endnetconfig() should be called when processing is complete to release resources for reuse.
handlep is the handle obtained through setnetconfig(). Programmers should be aware,
however, that the last call to endnetconfig () frees all memory allocated by getnetconfig()
for the struct netconfig data structure. endnetconfig() may not be called before
setnetconfig().

getnetconfigent() returns a pointer to the struct netconfig structure corresponding to
netid. It returns NULL if netid is invalid (that is, does not name an entry in the netconfig
database).

Networking Library Functions 145

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1environ-5

getnetconfig(3NSL)

freenetconfigent() frees the netconfig structure pointed to by netconfigp (previously
returned by getnetconfigent()).

nc_perror() prints a message to the standard error indicating why any of the above routines
failed. The message is prepended with the string msgand a colon. A NEWLINE is appended at
the end of the message.

nc_sperror() issimilar tonc_perror() butinstead of sending the message to the standard
error, will return a pointer to a string that contains the error message.

nc_perror() and nc_sperror() can also be used with the NETPATH access routines defined in
getnetpath(3NSL).

ReturnValues setnetconfig() returnsaunique handle to be used by getnetconfig().In the case of an
error, setnetconfig() returns NULL and nc_perror() ornc_sperror() can be used to print
the reason for failure.

getnetconfig() returnsa pointer to the current entry in the netconfig() database,
formatted as a struct netconfig. getnetconfig() returns NULL at the end of the file, or
upon failure.

endnetconfig() returns @ on success and —1 on failure (for example, if setnetconfig() was
not called previously).

On success, getnetconfigent () returns a pointer to the struct netconfig structure
corresponding to netid; otherwise it returns NULL.

nc_sperror () returns a pointer to a buftfer which contains the error message string. This
buffer is overwritten on each call. In multithreaded applications, this buffer is implemented as
thread-specific data.

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

MT-Level MT-Safe

SeeAlso getnetpath(3NSL), netconfig(4),attributes(5), environ(5)

146 man pages section 3: Networking Library Functions « Last Revised 30 Dec 1996

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1netconfig-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1environ-5

getnetpath(3NSL)

Name

Synopsis

Description

ReturnValues

getnetpath, setnetpath, endnetpath — get /etc/netconfig entry corresponding to NETPATH
component

#include <netconfig.h>

struct netconfig *getnetpath(void *handlep);
void *setnetpath(void);

int endnetpath(void *handlep);

The routines described on this page are part of the Network Selection component. They
provide the application access to the system network configuration database,
/etc/netconfig, asit is "filtered" by the NETPATH environment variable. See environ(5). See
getnetconfig(3NSL) for other routines that also access the network configuration database
directly. The NETPATH variable is a list of colon-separated network identifiers.

getnetpath () returns a pointer to the netconfig database entry corresponding to the first
valid NETPATH component. The netconfig entry is formatted as a struct netconfig. On each
subsequent call, getnetpath() returns a pointer to the netconfig entry that corresponds to
the next valid NETPATH component. getnetpath () can thus be used to search the netconfig
database for all networks included in the NETPATH variable. When NETPATH has been
exhausted, getnetpath() returns NULL.

A call to setnetpath() "binds" to or "rewinds" NETPATH. setnetpath () must be called before
the first call to getnetpath () and may be called at any other time. It returns a handle that is
used by getnetpath().

getnetpath() silently ignores invalid NETPATH components. A NETPATH component is invalid
if there is no corresponding entry in the netconfig database.

If the NETPATH variable is unset, getnetpath () behaves as if NETPATH were set to the sequence
of "default" or "visible" networks in the netconfig database, in the order in which they are
listed.

endnetpath () may be called to "unbind" from NETPATH when processing is complete,
releasing resources for reuse. Programmers should be aware, however, that endnetpath ()
frees all memory allocated by getnetpath () for the struct netconfig data structure.
endnetpath () returns @ on success and -1 on failure (for example, if setnetpath () was not
called previously).

setnetpath() returns a handle that is used by getnetpath(). In case of an error,
setnetpath() returns NULL. nc_perror() or nc_sperror() can be used to print out the
reason for failure. See getnetconfig(3NSL).

When first called, getnetpath () returns a pointer to the netconfig database entry
corresponding to the first valid NETPATH component. When NETPATH has been exhausted,
getnetpath() returns NULL.

Networking Library Functions 147

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1environ-5

getnetpath(3NSL)

148

Attributes

See Also

endnetpath () returns @ on success and -1 on failure (for example, if setnetpath() was not

called previously).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE

ATTRIBUTE VALUE

MT-Level MT-Safe

getnetconfig(3NSL), netconfig(4), attributes(5), environ(5)

man pages section 3: Networking Library Functions « Last Revised 30 Dec 1996

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1netconfig-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1environ-5

getpeername(3SOCKET)

Name

Synopsis

Description

ReturnValues

Errors

Attributes

See Also

getpeername — get name of connected peer

cc [flag ... 1 file ... -lsocket -lnsl [library ...]
#include <sys/socket.h>

int getpeername(int s, struct sockaddr *name, socklen t *namelen);

getpeername () returns the name of the peer connected to socket s. The int pointed to by the
namelen parameter should be initialized to indicate the amount of space pointed to by name.
On return it contains the actual size of the name returned (in bytes), prior to any truncation.
The name is truncated if the buffer provided is too small.

If successful, getpeername () returns 0; otherwise it returns —1 and sets errno to indicate the
error.

The call succeeds unless:

EBADF The argument s is not a valid descriptor.

ENOMEM There was insufficient user memory for the operation to complete.

ENOSR There were insufficient STREAMS resources available for the operation to
complete.

ENOTCONN The socket is not connected.

ENOTSOCK ~ Theargument sis nota socket.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

MT-Level Safe

accept(3SOCKET), bind(3SOCKET), getsockname(3SOCKET), socket(3SOCKET),
attributes(5), socket.h(3HEAD)

Networking Library Functions 149

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1socket.h-3head

getpeername(3XNET)

150

Name

Synopsis

Description

ReturnValues

Errors

Attributes

getpeername — get the name of the peer socket

cc [flag ... 1 file ... -xnet [library ...]
#include <sys/socket.h>

int getpeername(int socket, struct sockaddr *restrict address,
socklen t *restrict address_len);

The getpeername () function retrieves the peer address of the specified socket, stores this
address in the sockaddr structure pointed to by the address argument, and stores the length of
this address in the object pointed to by the address_len argument.

If the actual length of the address is greater than the length of the supplied sockaddr structure,
the stored address will be truncated.

If the protocol permits connections by unbound clients, and the peer is not bound, then the
value stored in the object pointed to by address is unspecified.

Upon successful completion, 0 is returned. Otherwise, —1 is returned and errno is set to
indicate the error.

The getpeername () function will fail if:

EBADF The socket argument is not a valid file descriptor.

EFAULT The address or address_len parameter can not be accessed or written.
EINVAL The socket has been shut down.

ENOTCONN The socket is not connected or otherwise has not had the peer prespecified.
ENOTSOCK The socket argument does not refer to a socket.

EOPNOTSUPP The operation is not supported for the socket protocol.

The getpeername () function may fail if:
ENOBUFS Insufficient resources were available in the system to complete the call.

ENOSR There were insufficient STREAMS resources available for the operation to
complete.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level MT-Safe
Standard See standards(5).

man pages section 3: Networking Library Functions « Last Revised 10 Jun 2002

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

getpeername(3XNET)

SeeAlso accept(3XNET), bind(3XNET), getsockname(3XNET), socket(3XNET), attributes(5),
standards(5)

Networking Library Functions 151

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

getprotobyname(3SOCKET)

152

Name

Synopsis

Description

getprotobyname, getprotobyname_r, getprotobynumber, getprotobynumber_r, getprotoent,
getprotoent_r, setprotoent, endprotoent — get protocol entry

cc [flag ... 1 file ... -lsocket -lnsl [library ...]
#include <netdb.h>

struct protoent *getprotobyname(const char *name);

struct protoent *getprotobyname r(const char *name,
struct protoent *result, char *buffer,
int buflen);

struct protoent *getprotobynumber(int proto);

struct protoent *getprotobynumber_r(int proto, struct protoent *result,
char *buffer, int buflen);

struct protoent *getprotoent(void);

struct protoent *getprotoent_r(struct protoent *result, char *buffer
int buflen);

int setprotoent(int stayopen);

int endprotoent(void);

These functions return a protocol entry. Two types of interfaces are supported: reentrant
(getprotobyname r(),getprotobynumber r(),andgetprotoent r())andnon-reentrant
(getprotobyname(), getprotobynumber(),and getprotoent()). The reentrant functions
can be used in single-threaded applications and are safe for multithreaded applications,
making them the preferred interfaces.

The reentrant routines require additional parameters which are used to return results data.
result is a pointer to a struct protoent structure and will be where the returned results will
be stored. buffer is used as storage space for elements of the returned results. buflen is the size
of buffer and should be large enough to contain all returned data. buflen must be at least 1024
bytes.

getprotobyname_r(), getprotobynumber_r(),and getprotoent_r() each return a protocol
entry.

The entry may come from one of the following sources: the protocols file (see protocols(4)),
and the NIS maps “protocols.byname" and “protocols.bynumber". The sources and their
lookup order are specified in the /etc/nsswitch. conf file (see nsswitch.conf(4) for details).
Some name services such as NIS will return only one name for a host, whereas others such as
DNS will return all aliases.

The getprotobyname_r() and getprotobynumber_r() functions sequentially search from the
beginning of the file until a matching protocol name or protocol number is found, or until an
EOF is encountered.

man pages section 3: Networking Library Functions « Last Revised 10 Dec 2009

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1protocols-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nsswitch.conf-4

getprotobyname(3SOCKET)

ReturnValues

Errors

getprotobyname () and getprotobynumber () have the same functionality as
getprotobyname r() and getprotobynumber r() except thata static buffer is used to store
returned results. These functions are Unsafe in a multithreaded application.

getprotoent_r() enumerates protocol entries: successive calls to getprotoent_r() will
return either successive protocol entries or NULL. Enumeration might not be supported by
some sources. If multiple threads call getprotoent r(), each will retrieve a subset of the
protocol database.

getprotent () has the same functionality as getprotent_r() except that a static buffer is used
to store returned results. This routine is unsafe in a multithreaded application.

setprotoent() “rewinds” to the beginning of the enumeration of protocol entries. If the
stayopen flag is non-zero, resources such as open file descriptors are not deallocated after each
call to getprotobynumber r() and getprotobyname_r(). Calls to getprotobyname r() ,
The getprotobyname(), getprotobynumber_r(),and getprotobynumber () functions might
leave the enumeration in an indeterminate state, so setprotoent () should be called before
the first call to getprotoent r() orgetprotoent(). The setprotoent () function has
process-wide scope, and “rewinds" the protocol entries for all threads calling
getprotoent_r() aswell as main-thread calls to getprotoent ().

The endprotoent () function can be called to indicate that protocol processing is complete;
the system may then close any open protocols file, deallocate storage, and so forth. It is
legitimate, but possibly less efficient, to call more protocol functions after endprotoent().

The internal representation of a protocol entry is a protoent structure defined in <netdb. h>
with the following members:

char *p name;
char **p aliases;
int p_proto;

The getprotobyname r(), getprotobyname(), getprotobynumber r(),and
getprotobynumber() functions return a pointer to a struct protoent if they successtully
locate the requested entry; otherwise they return NULL.

The getprotoent_r() and getprotoent () functions return a pointer toa struct protoent
if they successfully enumerate an entry; otherwise they return NULL, indicating the end of the
enumeration.

The getprotobyname r(), getprotobynumber r(),andgetprotoent r() functions will fail
if:

ERANGE Thelength of the buffer supplied by the caller is not large enough to store the
result.

Networking Library Functions 153

getprotobyname(3SOCKET)

154

Files

Attributes

See Also

Notes

Bugs

/etc/protocols
/etc/nsswitch.conf

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

MT-Level See NOTES below.

Intro(3), nsswitch.conf(4), protocols(4), attributes(5), netdb.h(3HEAD)

Although getprotobyname_r(), getprotobynumber_r(),and getprotoent_r() are not
mentioned by POSIX 1003.1:2001, they were added to complete the functionality provided by
similar thread-safe functions.

When compiling multithreaded applications, see Intro(3), Notes On Multithread
Applications, for information about the use of the _REENTRANT flag.

The getprotobyname_r(), getprotobynumber r(),andgetprotoent r() functions are
reentrant and multithread safe. The reentrant interfaces can be used in single-threaded as well
as multithreaded applications and are therefore the preferred interfaces.

The getprotobyname(), getprotobyaddr(), and getprotoent () functions use static storage,
so returned data must be copied if it is to be saved. Because of their use of static storage for
returned data, these functions are not safe for multithreaded applications.

The setprotoent() and endprotoent() functions have process-wide scope, and are therefore
not safe in multi-threaded applications.

Use of getprotoent_r() and getprotoent () is discouraged; enumeration is well-defined for
the protocols file and is supported (albeit inefficiently) for NIS, but in general may not be
well-defined. The semantics of enumeration are discussed in nsswitch.conf(4).

Only the Internet protocols are currently understood.

man pages section 3: Networking Library Functions « Last Revised 10 Dec 2009

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-3
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nsswitch.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1protocols-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1netdb.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-3
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nsswitch.conf-4

getpublickey(3NSL)

Name

Synopsis

Description

ReturnValues

Attributes

See Also

getpublickey, getsecretkey, publickey - retrieve public or secret key
#include <rpc/rpc.h>
#include <rpc/key prot.h>
int getpublickey(const char netname/MAXNETNAMELEN],
char publickey[HEXKEYBYTES+1]) ;
int getsecretkey(const char netname[MAXNETNAMELEN],
char secretkey[HEXKEYBYTES+1], const char *passwd) ;

The getpublickey () and getsecretkey () functions get public and secret keys for netname.
The key may come from one of the following sources:

m /etc/publickey file. See publickey(4).

= NIS map “publickey.byname". The sources and their lookup order are specified in the
/etc/nsswitch. conf file. See nsswitch.conf(4).

getsecretkey () hasan extra argument, passwd, which is used to decrypt the encrypted secret
key stored in the database.

Both routines return 1 if they are successful in finding the key. Otherwise, the routines return
0. The keys are returned as null-terminated, hexadecimal strings. If the password supplied to
getsecretkey () fails to decrypt the secret key, the routine will return 1 but the secretkey [0]
will be set to NULL.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

MT-Level Safe

secure_rpc(3NSL), nsswitch.conf(4), publickey(4), attributes(5)

Networking Library Functions 155

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1publickey-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nsswitch.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nsswitch.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1publickey-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

getrpcbyname(3NSL)

Name getrpcbyname, getrpcbyname_r, getrpcbynumber, getrpcbynumber_r, getrpcent,
getrpcent_r, setrpcent, endrpcent — get RPC entry

Synopsis cc [flag ... 1 file ... -lnsl [library ...]
#include <rpc/rpcent.h>

struct rpcent *getrpcbyname(const char *name);

struct rpcent *getrpcbyname r(const char *name, struct rpcent *result,
char *buffer, int buflen);

struct rpcent *getrpcbynumber(const int number);

struct rpcent *getrpcbynumber r(const int number, struct rpcent *result,
char *buffer, int buflen);

struct rpcent *getrpcent(void);

struct rpcent *getrpcent_r(struct rpcent *result, char *buffer,
int buflen);

void setrpcent(const int stayopen);

void endrpcent(void);

Description These functions are used to obtain entries for RPC (Remote Procedure Call) services. An entry
may come from any of the sources for rpc specified in the /etc/nsswitch. conf file (see
nsswitch.conf(4)).

getrpcbyname () searches for an entry with the RPC service name specified by the parameter
name.

getrpcbynumber() searches for an entry with the RPC program number number.

The functions setrpcent (), getrpcent(),and endrpcent() are used to enumerate RPC
entries from the database.

setrpcent() sets (or resets) the enumeration to the beginning of the set of RPC entries. This
function should be called before the first call to getrpcent (). Calls to getrpcbyname () and
getrpcbynumber () leave the enumeration position in an indeterminate state. If the stayopen
flag is non-zero, the system may keep allocated resources such as open file descriptors until a
subsequent call to endrpcent ().

Successive calls to getrpcent () return either successive entries or NULL, indicating the end
of the enumeration.

endrpcent () may be called to indicate that the caller expects to do no further RPC entry
retrieval operations; the system may then deallocate resources it was using. It is still allowed,
but possibly less efficient, for the process to call more RPC entry retrieval functions after
calling endrpcent ().

156 man pages section 3: Networking Library Functions « Last Revised 20 Feb 1998

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nsswitch.conf-4

getrpcbyname(3NSL)

Reentrant Interfaces

ReturnValues

The functions getrpcbyname (), getrpcbynumber(), and getrpcent () use static storage that
is re-used in each call, making these routines unsafe for use in multithreaded applications.

The functions getrpcbyname_r (), getrpcbynumber_r(),and getrpcent_r() provide
reentrant interfaces for these operations.

Each reentrant interface performs the same operation as its non-reentrant counterpart,
named by removing the “_r" suffix. The reentrant interfaces, however, use bufters supplied by
the caller to store returned results, and are safe for use in both single-threaded and
multithreaded applications.

Each reentrant interface takes the same parameters as its non-reentrant counterpart, as well as
the following additional parameters. The parameter result must be a pointer toa struct
rpcent structure allocated by the caller. On successful completion, the function returns the
RPC entry in this structure. The parameter buffer must be a pointer to a buffer supplied by the
caller. This buffer is used as storage space for the RPC entry data. All of the pointers within the
returned struct rpcent result point to data stored within this buffer (see RETURN VALUES).
The buffer must be large enough to hold all of the data associated with the RPC entry. The
parameter buflen should give the size in bytes of the buffer indicated by buffer.

For enumeration in multithreaded applications, the position within the enumerationis a
process-wide property shared by all threads. setrpcent () may be used in a multithreaded
application but resets the enumeration position for all threads. If multiple threads interleave
callsto getrpcent_r(), the threads will enumerate disjoint subsets of the RPC entry database.

Like their non-reentrant counterparts, getrpcbyname_r() and getrpcbynumber_r() leave
the enumeration position in an indeterminate state.

RPC entries are represented by the struct rpcent structure defined in <rpc/rpcent.h>:

struct rpcent {

char *r name; /* name of this rpc service
char **r aliases; /* zero-terminated list of alternate names */
int r_number; /* rpc program number */

+

The functions getrpcbyname (), getrpcbyname _r(), getrpcbynumber(),and
getrpcbynumber_r() each return a pointer to a struct rpcent if they successfully locate the
requested entry; otherwise they return NULL.

The functions getrpcent() and getrpcent_r() each return a pointer to a struct rpcent if
they successfully enumerate an entry; otherwise they return NULL, indicating the end of the
enumeration.

The functions getrpcbyname (), getrpcbynumber(), and getrpcent () use static storage, so
returned data must be copied before a subsequent call to any of these functions if the data is to
be saved.

Networking Library Functions 157

getrpcbyname(3NSL)

158

Errors

Files

Attributes

See Also

Warnings

Notes

When the pointer returned by the reentrant functions getrpcbyname_r(),
getrpcbynumber_r(),and getrpcent_r() isnon-NULL, it is always equal to the result
pointer that was supplied by the caller.

The reentrant functions getrpcyname_r(), getrpcbynumber r() andgetrpcent r() will
return NULL and set errno to ERANGE if the length of the buffer supplied by caller is not large
enough to store the result. See Intro(2) for the proper usage and interpretation of errno in
multithreaded applications.

/etc/rpc
/etc/nsswitch.conf

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

MT-Level See “Reentrant Interfaces” in DESCRIPTION.

rpcinfo(IM), rpc(3NSL), nsswitch.conf(4), rpc(4), attributes(5)

The reentrant interfaces getrpcbyname_r(), getrpcbynumber r(),and getrpcent r() are
included in this release on an uncommitted basis only, and are subject to change or removal in
future minor releases.

When compiling multithreaded applications, see Intro(3), Notes On Multithreaded
Applications, for information about the use of the _REENTRANT flag.

Use of the enumeration interfaces getrpcent () and getrpcent_r() is discouraged;
enumeration may not be supported for all database sources. The semantics of enumeration are
discussed further in nsswitch.conf(4).

man pages section 3: Networking Library Functions « Last Revised 20 Feb 1998

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1rpcinfo-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nsswitch.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1rpc-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-3
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nsswitch.conf-4

getservbyname(3SOCKET)

Name

Synopsis

Description

getservbyname, getservbyname_r, getservbyport, getservbyport_r, getservent, getservent_r,
setservent, endservent — get service entry

cc [flag ... 1 file ... -lsocket -lnsl [library ...]
#include <netdb.h>
struct servent *getservbyname(const char *name, const char *proto);

struct servent *getservbyname r(const char *name, const char *proto,
struct servent *result, char *buffer, int buflen);

struct servent *getservbyport(int port, const char *proto);

struct servent *getservbyport_r(int port, const char *proto,
struct servent *result, char *buffer, int buflen);

struct servent *getservent(void);

struct servent *getservent r(struct servent *result, char *buﬁer,
int buflen);

int setservent(int stayopen);

int endservent(void);

These functions are used to obtain entries for Internet services. An entry may come from any
of the sources for services specified in the /etc/nsswitch. conf file. See nsswitch.conf(4).

The getservbyname () and getservbyport () functions sequentially search from the
beginning of the file until a matching protocol name or port number is found, or until
end-of-file is encountered. If a protocol name is also supplied (non-null), searches must also
match the protocol.

The getservbyname () function searches for an entry with the Internet service name specified
by the name parameter.

The getservbyport () function searches for an entry with the Internet port number port.

All addresses are returned in network order. In order to interpret the addresses,
byteorder(3SOCKET) must be used for byte order conversion. The string proto is used by
both getservbyname () and getservbyport () to restrict the search to entries with the
specified protocol. If proto is NULL, entries with any protocol can be returned.

The functions setservent(), getservent(),and endservent () are used to enumerate
entries from the services database.

The setservent () function sets (or resets) the enumeration to the beginning of the set of
service entries. This function should be called before the first call to getservent (). Calls to
the functions getservbyname () and getservbyport () leave the enumeration position in an
indeterminate state. If the stayopen flag is non-zero, the system may keep allocated resources
such as open file descriptors until a subsequent call to endservent ().

Networking Library Functions 159

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nsswitch.conf-4

getservbyname(3SOCKET)

Reentrant Interfaces

160

ReturnValues

The getservent () function reads the next line of the file, opening the file if necessary.
getservent () opens and rewinds the file. If the stayopen flag is non-zero, the net data base
will not be closed after each call to getservent () (either directly, or indirectly through one of
the other “getserv”calls).

Successive calls to getservent () return either successive entries or NULL, indicating the end of
the enumeration.

The endservent () function closes the file. The endservent () function can be called to
indicate that the caller expects to do no further service entry retrieval operations; the system
can then deallocate resources it was using. It is still allowed, but possibly less efficient, for the
process to call more service entry retrieval functions after calling endservent ().

The functions getservbyname(), getservbyport(),and getservent() use static storage that
is re-used in each call, making these functions unsafe for use in multithreaded applications.

The functions getservbyname_r(),getservbyport r(),and getservent_r() provide
reentrant interfaces for these operations.

Each reentrant interface performs the same operation as its non-reentrant counterpart,
named by removing the “_r” suffix. The reentrant interfaces, however, use buffers supplied by
the caller to store returned results, and are safe for use in both single-threaded and
multithreaded applications.

Each reentrant interface takes the same parameters as its non-reentrant counterpart, as well as
the following additional parameters. The parameter result must be a pointer toa struct
servent structure allocated by the caller. On successful completion, the function returns the
service entry in this structure. The parameter buffer must be a pointer to a buffer supplied by
the caller. This buffer is used as storage space for the service entry data. All of the pointers
within the returned struct servent result point to data stored within this buffer. See the
RETURN VALUES section of this manual page. The buffer must be large enough to hold all of
the data associated with the service entry. The parameter buflen should give the size in bytes of
the buffer indicated by buffer.

For enumeration in multithreaded applications, the position within the enumeration is a
process-wide property shared by all threads. The setservent () function can be used in a
multithreaded application but resets the enumeration position for all threads. If multiple
threads interleave calls to getservent_r(), the threads will enumerate disjoint subsets of the
service database.

Like their non-reentrant counterparts, getservbyname_r() and getservbyport_r() leave
the enumeration position in an indeterminate state.

Service entries are represented by the struct servent structure defined in <netdb.h>:

struct servent {
char *s name; /* official name of service */
char **s aliases; /* alias list */

man pages section 3: Networking Library Functions « Last Revised 31 Jan 2007

getservbyname(3SOCKET)

int s_port; /* port service resides at */
char *s proto; /* protocol to use */
+

The members of this structure are:
S_name The official name of the service.
s _aliases A zero terminated list of alternate names for the service.

s_port The port number at which the service resides. Port numbers are returned in
network byte order.

s_proto The name of the protocol to use when contacting the service

The functions getservbyname(), getservbyname r(),getservbyport(),and
getservbyport_r() each return a pointer to a struct servent if they successfully locate the
requested entry; otherwise they return NULL.

The functions getservent () and getservent r() each returna pointer toa struct servent
if they successfully enumerate an entry; otherwise they return NULL, indicating the end of the
enumeration.

The functions getservbyname(), getservbyport(),and getservent () use static storage, so
returned data must be copied before a subsequent call to any of these functions if the data is to
be saved.

When the pointer returned by the reentrant functions getservbyname_r(),
getservbyport_r(),and getservent_r() is non-null, it is always equal to the result pointer
that was supplied by the caller.

Errors The reentrant functions getservbyname r(), getservbyport r(),and getservent r()
return NULL and set errno to ERANGE if the length of the buffer supplied by caller is not large
enough to store the result. See Intro(2) for the proper usage and interpretation of errno in
multithreaded applications.

Files /etc/services Internet network services
/etc/netconfig network configuration file

/etc/nsswitch.conf configuration file for the name-service switch

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTEVALUE

MT-Level See “Reentrant Interfaces” in DESCRIPTION.

Networking Library Functions 161

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

getservbyname(3SOCKET)

162

See Also

Warnings

Notes

Intro(2), Intro(3), byteorder(3SOCKET), netdir(3NSL), netconfig(4),
nsswitch.conf(4), services(4), attributes(5), netdb.h(3HEAD)

The reentrant interfaces getservbyname r(),getservbyport r(),andgetservent r() are
included in this release on an uncommitted basis only, and are subject to change or removal in
future minor releases.

The functions that return struct servent return the least significant 16-bits of the s_port
field in network byte order. getservbyport () and getservbyport_r() also expect the input
parameter port in the network byte order. See htons(3SOCKET) for more details on
converting between host and network byte orders.

To ensure that they all return consistent results, getservbyname(), getservbyname_r(), and
netdir_getbyname() are implemented in terms of the same internal library function. This
function obtains the system-wide source lookup policy based on the inet family entries in
netconfig(4) and the services: entryin nsswitch.conf(4). Similarly, getservbyport(),
getservbyport r(),and netdir getbyaddr() are implemented in terms of the same
internal library function. If the inet family entries in netconfig(4) have a “-" in the last
column for nametoaddr libraries, then the entry for services in nsswitch. conf will be used;
otherwise the nametoaddr libraries in that column will be used, and nsswitch. conf will not
be consulted.

There is no analogue of getservent () and getservent_r() in the netdir functions, so these
enumeration functions go straight to the services entry in nsswitch.conf. Thus
enumeration may return results from a different source than that used by getservbyname (),
getservbyname r(),getservbyport(),and getservbyport r().

When compiling multithreaded applications, see Intro(3), Notes On Multithread
Applications, for information about the use of the REENTRANT flag.

Use of the enumeration interfaces getservent () and getservent_r() is discouraged;
enumeration may not be supported for all database sources. The semantics of enumeration are
discussed further in nsswitch.conf(4).

man pages section 3: Networking Library Functions « Last Revised 31 Jan 2007

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-3
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1netconfig-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nsswitch.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1services-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1netdb.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1netconfig-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nsswitch.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1netconfig-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-3
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nsswitch.conf-4

getsockname(3SOCKET)

Name

Synopsis

Description

ReturnValues

Errors

Attributes

See Also

getsockname - get socket name

cc [flag ... 1 file ... -lsocket -lnsl [library ...]
#include <sys/socket.h>

int getsockname(int s, struct sockaddr *name, socklen_ t *namelen) ;

getsockname () returns the current name for socket s. The namelen parameter should be
initialized to indicate the amount of space pointed to by name. On return it contains the actual
size in bytes of the name returned.

If successful, getsockname () returns 0; otherwise it returns —1 and sets errno to indicate the
error.

The call succeeds unless:

EBADF The argument s is not a valid file descriptor.

ENOMEM There was insufficient memory available for the operation to complete.

ENOSR There were insufficient STREAMS resources available for the operation to
complete.

ENOTSOCK Theargumentsis nota socket.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

MT-Level Safe

bind(3SOCKET), getpeername(3SOCKET), socket(3SOCKET), attributes(5)

Networking Library Functions 163

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

getsockname(3XNET)

Name getsockname - get the socket name

Synopsis cc [flag ... 1 file ... -lxnet [library ...]
#include <sys/socket.h>

int getsockname(int socket, struct sockaddr *restrict address,
socklen t *restrict address_len);

Description The getsockname () function retrieves the locally-bound name of the specified socket, stores
this address in the sockaddr structure pointed to by the address argument, and stores the
length of this address in the object pointed to by the address_len argument.

If the actual length of the address is greater than the length of the supplied sockaddr structure,
the stored address will be truncated.

If the socket has not been bound to alocal name, the value stored in the object pointed to by
address is unspecified.

ReturnValues Upon successful completion, 0 is returned, the address argument points to the address of the
socket, and the address_len argument points to the length of the address. Otherwise, —1 is
returned and errno is set to indicate the error.

Errors The getsockname () function will fail:

EBADF The socket argument is not a valid file descriptor.
EFAULT The address or address_len parameter can not be accessed or written.
ENOTSOCK The socket argument does not refer to a socket.

EOPNOTSUPP The operation is not supported for this socket's protocol.

The getsockname () function may fail if:
EINVAL The socket has been shut down.
ENOBUFS Insufficient resources were available in the system to complete the call.

ENOSR There were insufficient STREAMS resources available for the operation to
complete.

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level MT-Safe
Standard See standards(5).

164 man pages section 3: Networking Library Functions « Last Revised 10 Jun 2002

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

getsockname(3XNET)

SeeAlso accept(3XNET), bind(3XNET), getpeername(3XNET), socket(3XNET) attributes(5),
standards(5)

Networking Library Functions 165

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

getsockopt(3SOCKET)

Name

Synopsis

Description

166

getsockopt, setsockopt — get and set options on sockets

cc [flag ... 1 file ... -lsocket -lnsl [library ...]
#include <sys/socket.h>

int getsockopt(int s, int level, int optname, void *optval,
socklen_t *optlen) ;

int setsockopt(int s, int level, int optname, const void *optval,
socklen_t optlen);

The getsockopt () and setsockopt () functions manipulate options associated with a socket.
Options may exist at multiple protocol levels; they are always present at the uppermost
“socket” level.

The level argument specifies the protocol level at which the option resides. To manipulate
options at the socket level, specify the level argument as SOL_SOCKET. To manipulate options at
the protocol level, supply the appropriate protocol number for the protocol controlling the
option. For example, to indicate that an option will be interpreted by the TCDP, set level to the
protocol number of TCP, as defined in the <netinet/in.h>header, or as determined by using
getprotobyname(3SOCKET). Some socket protocol families may also define additional levels,
such as SOL_ROUTE. Only socket-level options are described here.

The parameters optval and optlen are used to access option values for setsockopt (). For
getsockopt (), they identify a buffer in which the value(s) for the requested option(s) are to be
returned. For getsockopt (), optlen is a value-result parameter, initially containing the size of
the buffer pointed to by optval, and modified on return to indicate the actual size of the value
returned. Use a 0 optval if no option value is to be supplied or returned.

The optname and any specified options are passed uninterpreted to the appropriate protocol
module for interpretation. The include file <sys/socket . h> contains definitions for the
socket-level options described below. Options at other protocol levels vary in format and
name.

Most socket-level options take an int for optval. For setsockopt (), the optval parameter
should be non-zero to enable a boolean option, or zero if the option is to be disabled.
SO_LINGERusesa struct linger parameter that specifies the desired state of the option and
the linger interval. struct linger is defined in <sys/socket.h>. struct linger contains the
following members:

1 onoff on=1/off=0

1 linger linger time, in seconds

The following options are recognized at the socket level. Except as noted, each may be
examined with getsockopt () and set with setsockopt ().

SO_DEBUG enable/disable recording of debugging information

SO REUSEADDR enable/disable local address reuse

man pages section 3: Networking Library Functions « Last Revised 7 Jul 2011

getsockopt(3SOCKET)

SO REUSEPORT
SO _KEEPALIVE
SO_DONTROUTE
SO _LINGER

SO _BROADCAST
SO OOBINLINE
SO SNDBUF

SO RCVBUF
SO_DGRAM_ERRIND
SO TIMESTAMP
SO EXCLBIND
SO TYPE

SO ERROR

SO MAC_EXEMPT

SO_ALLZONES
SO DOMAIN

SO_PROTOTYPE

SO _PASSIVE CONNECT

enable/disable local port reuse for PF_INET/PF_INET6 socket
enable/disable keep connections alive

enable/disable routing bypass for outgoing messages
linger on close if data is present

enable/disable permission to transmit broadcast messages
enable/disable reception of out-of-band data in band

set buffer size for output

set buffer size for input

application wants delayed error

enable/disable reception of timestamp with datagrams
enable/disable exclusive binding of the socket

get the type of the socket (get only)

get and clear error on the socket (get only)

get or set mandatory access control on the socket. This option is
available only when the system is configured with Trusted
Extensions.

bypass zone boundaries (privileged).
get the domain used in the socket (get only)

for socket in domains PF_INET and PF_INET6, get the underlying
protocol number used in the socket. For socket in domain
PF_ROUTE, get the address family used in the socket.

modify connect(3SOCKET) to wait for connection request from a
peer instead of initiating a connection request to it. It is applicable
to TCP/SCTP PF_INET/PF_INET6 socket.

The SO_DEBUG option enables debugging in the underlying protocol modules. The
SO_REUSEADDR/SO_REUSEPORT options indicate that the rules used in validating addresses and
ports supplied in a bind(3SOCKET) call should allow reuse of local addresses or ports. The
SO_KEEPALIVE option enables the periodic transmission of messages on a connected socket. If
the connected party fails to respond to these messages, the connection is considered broken
and threads using the socket are notified using a SIGPIPE signal. The SO_DONTROUTE option
indicates that outgoing messages should bypass the standard routing facilities. Instead,
messages are directed to the appropriate network interface according to the network portion

of the destination address.

Networking Library Functions

167

getsockopt(3SOCKET)

168

The SO_LINGER option controls the action taken when unsent messages are queued on a socket
and a close(2) is performed. If the socket promises reliable delivery of data and SO_LINGER is
set, the system will block the thread on the close () attempt until it is able to transmit the data
or until it decides it is unable to deliver the information (a timeout period, termed the linger
interval, is specified in the setsockopt () call when SO_LINGER is requested). If SO LINGER is
disabled and a close () isissued, the system will process the close () in a manner that allows
the thread to continue as quickly as possible.

The option SO_BROADCAST requests permission to send broadcast datagrams on the socket.
With protocols that support out-of-band data, the SO_00BINLINE option requests that
out-of-band data be placed in the normal data input queue as received; it will then be
accessible with recv() or read() calls without the MSG_00B flag.

The SO_SNDBUF and SO_RCVBUF options adjust the normal buffer sizes allocated for output and
input buffers, respectively. The buffer size may be increased for high-volume connections or
may be decreased to limit the possible backlog of incoming data. The maximum buffer size for
UDP/TCP is determined by the value of the ipadm variable max_buffor that particular
protocol. Use the ipadm(1M) utility to determine the current default values. See the Solaris
Tunable Parameters Reference Manual for information on setting the values of max_buf for
either TCP, UDP or both. At present, lowering SO_RCVBUF on a TCP connection after it has
been established has no effect.

By default, delayed errors (such as ICMP port unreachable packets) are returned only for
connected datagram sockets. The SO_DGRAM_ERRIND option makes it possible to receive errors
for datagram sockets that are not connected. When this option is set, certain delayed errors
received after completion of a sendto() or sendmsg() operation will cause a subsequent
sendto() or sendmsg () operation using the same destination address (to parameter) to fail
with the appropriate error. See send(3SOCKET).

If the SO TIMESTAMP option is enabled on a SO DGRAM or a SO RAW socket, the
recvmsg(3XNET) call will return a timestamp in the native data format, corresponding to
when the datagram was received.

The SO_EXCLBIND option is used to enable or disable the exclusive binding of a socket. It
overrides the use of the SO REUSEADDR option to reuse an address on bind(3SOCKET). The
actual semantics of the SO_EXCLBIND option depend on the underlying protocol. See tcp(7P)
or udp(7P) for more information.

The SO_TYPE and SO_ERROR options are used only with getsockopt (). The SO_TYPE option
returns the type of the socket, for example, SOCK_STREAM. It is useful for servers that inherit
sockets on startup. The SO_ERROR option returns any pending error on the socket and clears
the error status. It may be used to check for asynchronous errors on connected datagram
sockets or for other asynchronous errors.

man pages section 3: Networking Library Functions « Last Revised 7 Jul 2011

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1close-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ipadm-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1tcp-7p
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1udp-7p

getsockopt(3SOCKET)

Return Values

Errors

The SO_MAC_EXEMPT option is used to toggle socket behavior with unlabeled peers. A socket
that has this option enabled can communicate with an unlabeled peer if it is in the global zone
or has a label that dominates the default label of the peer. Otherwise, the socket must have a
label that is equal to the default label of the unlabeled peer. Calling setsockopt () with this
option returns an EACCES error if the process lacks the NET_MAC_AWARE privilege or if the
socket is bound. The SO_MAC_EXEMPT option is available only when the system is configured
with Trusted Extensions.

The SO_ALLZONES option can be used to bypass zone boundaries between shared-IP zones.
Normally, the system prevents a socket from being bound to an address that is not assigned to
the current zone. It also prevents a socket that is bound to a wildcard address from receiving
traffic for other zones. However, some daemons which run in the global zone might need to
send and receive traffic using addresses that belong to other shared-IP zones. If set before a
socket is bound, SO_ALLZONES causes the socket to ignore zone boundaries between shared-IP
zones and permits the socket to be bound to any address assigned to the shared-IP zones. If the
socket is bound to a wildcard address, it receives traffic intended for all shared-IP zones and
behaves as if an equivalent socket were bound in each active shared-IP zone. Applications that
use the SO_ALLZONES option to initiate connections or send datagram traffic should specify the
source address for outbound traffic by binding to a specific address. There is no effect from
setting this option in an exclusive-IP zone. Setting this option requires the sys_net_config
privilege. See zones(5).

The SO_PASSIVE_CONNECT option can be used to modify connect () semantics for TCP and
SCTP socket. After this option is set, calling connect () on the socket will not initiate a
connection setup sequence. Instead, the transport end point is in listen state waiting for a
connection request from the remote peer specified in connect (). After the expected
connection is established, connect () returns.

If successful, getsockopt () and setsockopt () return 0. Otherwise, the functions return —1
and set errno to indicate the error.

The getsockopt () and setsockopt () calls succeed unless:

EBADF The argument s is not a valid file descriptor.
EACCES Permission denied.
EADDRINUSE Address already joined for IP_ADD_MEMBERSHIP.

EADDRNOTAVAIL Bad interface address for IP_ADD MEMBERSHIP and IP_DROP_MEMBERSHIP.
EHOSTUNREACH Invalid address for IP_ MULTICAST IF.

EINVAL Invalid length for IP_OPTIONS.

Not a multicast address for IP_ADD MEMBERSHIP and
IP DROP_MEMBERSHIP.

Networking Library Functions 169

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1zones-5

getsockopt(3SOCKET)

170

Attributes

See Also

The specified option is invalid at the specified socket level, or the socket

has been shut down.

ENOBUFS SO_SNDBUF or SO_RCVBUF exceeds a system limit.

ENOENT Address not joined for IP_DROP_MEMBERSHIP.

ENOMEM There was insufficient memory available for the operation to complete.

ENOPROTOOPT The option is unknown at the level indicated.

ENOSR There were insufficient STREAMS resources available for the operation
to complete.

ENOTSOCK The argument s is not a socket.

EPERM No permissions.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE

ATTRIBUTE VALUE

MT-Level Safe

ipadm(1M), close(2), ioct1(2), read(2), bind(3SOCKET), connect(3SOCKET),
getprotobyname(3SOCKET), recv(3SOCKET), recvmsg(3XNET), send(3SOCKET),
socket(3SOCKET), socket.h(3HEAD), attributes(5), zones(5), tcp(7P), udp(7P)

Solaris Tunable Parameters Reference Manual

man pages section 3: Networking Library Functions « Last Revised 7 Jul 2011

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ipadm-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1close-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ioctl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1socket.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1zones-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1tcp-7p
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1udp-7p

getsockopt(3XNET)

Name

Synopsis

Description

getsockopt — get the socket options

cc [flag... 1 file... -lxnet [library...]
#include <sys/socket.h>

int getsockopt(int socket, int level, int option_name,
void *restrict option_value, socklen t *restrict option_len);

The getsockopt () function retrieves the value for the option specified by the option_name
argument for the socket specified by the socket argument. If the size of the option value is
greater than option_len, the value stored in the object pointed to by the option_value
argument will be silently truncated. Otherwise, the object pointed to by the option_len
argument will be modified to indicate the actual length of the value.

The level argument specifies the protocol level at which the option resides. To retrieve options
at the socket level, specify the level argument as SOL_SOCKET. To retrieve options at other
levels, supply the appropriate protocol number for the protocol controlling the option. For
example, to indicate that an option will be interpreted by the TCP (Transport Control
Protocol), set level to the protocol number of TCP, as defined in the <netinet/in.h> header,
or as determined by using getprotobyname(3XNET) function.

The socket in use might require the process to have appropriate privileges to use the
getsockopt () function.

The option_name argument specifies a single option to be retrieved. It can be one of the
following values defined in <sys/socket. h>:

SO_DEBUG Reports whether debugging information is being recorded. This option
stores an int value. This is a boolean option.

SO_ACCEPTCONN Reports whether socket listening is enabled. This option stores an int
value.

SO_BROADCAST Reports whether transmission of broadcast messages is supported, if this
is supported by the protocol. This option stores an int value. Thisisa
boolean option.

SO_REUSEADDR Reports whether the rules used in validating addresses supplied to
bind(3XNET) should allow reuse of local addresses, if this is supported by
the protocol. This option stores an int value. This is a boolean option.

SO KEEPALIVE Reports whether connections are kept active with periodic transmission
of messages, if this is supported by the protocol.

If the connected socket fails to respond to these messages, the connection
is broken and threads writing to that socket are notified with a SIGPIPE
signal. This option stores an int value.

This is a boolean option.

Networking Library Functions 171

getsockopt(3XNET)

SO_LINGER

SO_OOBINLINE

SO_SNDBUF
SO _RCVBUF

SO _ERROR

SO TYPE
SO_DONTROUTE

SO MAC EXEMPT

SO ALLZONES

Reports whether the socket lingers on close(2) if data is present. If
SO_LINGER is set, the system blocks the process during close(2) until it
can transmit the data or until the end of the interval indicated by the
1_linger member, whichever comes first. If SO_LINGER is not specified,
and close(2) is issued, the system handles the call in a way that allows the
process to continue as quickly as possible. This option stores a Linger
structure.

Reports whether the socket leaves received out-of-band data (data
marked urgent) in line. This option stores an int value. This is a boolean
option.

Reports send buffer size information. This option stores an int value.
Reports receive buffer size information. This option stores an int value.

Reports information about error status and clears it. This option stores an
int value.

Reports the socket type. This option stores an int value.

Reports whether outgoing messages bypass the standard routing facilities.
The destination must be on a directly-connected network, and messages
are directed to the appropriate network interface according to the
destination address. The effect, if any, of this option depends on what
protocol is in use. This option stores an int value. This is a boolean
option.

Gets the mandatory access control status of the socket. A socket that has
this option enabled can communicate with an unlabeled peer if the socket
is in the global zone or has a label that dominates the default label of the
peer. Otherwise, the socket must have a label that is equal to the default
label of the unlabeled peer. SO MAC EXEMPT is a boolean option that is
available only when the system is configured with Trusted Extensions.

Bypasses zone boundaries (privileged). This option stores an int value.
This is a boolean option.

The SO_ALLZONES option can be used to bypass zone boundaries between
shared-IP zones. Normally, the system prevents a socket from being
bound to an address that is not assigned to the current zone. It also
prevents a socket that is bound to a wildcard address from receiving
traffic for other zones. However, some daemons which run in the global
zone might need to send and receive traffic using addresses that belong to
other shared-IP zones. If set before a socket is bound, SO_ALLZONES causes
the socket to ignore zone boundaries between shared-IP zones and
permits the socket to be bound to any address assigned to the shared-IP
zones. If the socket is bound to a wildcard address, it receives traffic

172 man pages section 3: Networking Library Functions - Last Revised 21 Jan 2007

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1close-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1close-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1close-2

getsockopt(3XNET)

Return Values

Errors

SO_DOMAIN

SO_PROTOTYPE

intended for all shared-IP zones and behaves as if an equivalent socket
were bound in each active shared-IP zone. Applications that use the
SO_ALLZONES option to initiate connections or send datagram traffic
should specify the source address for outbound traffic by binding to a
specific address. There is no effect from setting this option in an
exclusive-IP zone. Setting this option requires the sys_net_config
privilege. See zones(5).

get the domain used in the socket (get only)

for socket in domains AF_INET and AF_INETS, get the underlying protocol
number used in the socket. For socket in domain AF_ROUTE, get the
address family used in the socket.

For boolean options, a zero value indicates that the option is disabled and a non-zero value
indicates that the option is enabled.

Options at other protocol levels vary in format and name.

The socket in use may require the process to have appropriate privileges to use the
getsockopt () function.

Upon successful completion, getsockopt () returns 0. Otherwise, —1 is returned and errno is
set to indicate the error.

The getsockopt () function will fail if:

EBADF
EFAULT
EINVAL
ENOPROTOOPT
ENOTSOCK

The socket argument is not a valid file descriptor.

The option_value or option_len parameter can not be accessed or written.
The specified option is invalid at the specified socket level.

The option is not supported by the protocol.

The socket argument does not refer to a socket.

The getsockopt () function may fail if:

EACCES The calling process does not have the appropriate privileges.

EINVAL The socket has been shut down.

ENOBUFS Insufficient resources are available in the system to complete the call.

ENOSR There were insufficient STREAMS resources available for the operation to
complete.

Attributes See attributes(5) for descriptions of the following attributes:

Networking Library Functions 173

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1zones-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

getsockopt(3XNET)

ATTRIBUTETYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level MT-Safe
Standard See standards(5).

SeeAlso close(2), bind(3XNET), endprotoent(3XNET), setsockopt(3XNET), socket(3XNET),
attributes, standards(5)

174 man pages section 3: Networking Library Functions - Last Revised 21 Jan 2007

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1close-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

getsourcefilter(3SOCKET)

Name getsourcefilter, setsourcefilter, getipv4sourcefilter, setipv4sourcefilter — retrieve and set a
socket's multicast filter

Synopsis cc [flag... 1 file... -lsocket [library...]
#include <netinet/in.h>

int getsourcefilter(int s, uint32_t interface,
struct sockaddr *group, socklen_t grouplen, uint32_t *fmode,
uint t *numsrc, struct sockaddr storage *slist);

int setsourcefilter(int s, uint32_t interface,
struct sockaddr *group, socklen_t grouplen, uint32_t fmode,
uint_t numsrc, struct sockaddr_storage *slist) ;

int getipv4sourcefilter(int s, struct in_addr interface,
struct in_addr group, uint32_t *fmode, uint32_t *numsrc,
struct in_addr *slist);

int setipv4sourcefilter(int s, struct in addr interface,
struct in_addr group,uint32_t fmode, uint32_t numsrc,
struct in_addr *slist);

Description These functions allow applications to retrieve and modify the multicast filtering state for a
tuple consisting of socket, interface, and multicast group values.

A multicast filter is described by a filter mode, which is MODE_INCLUDE or MODE_EXCLUDE, and a
list of source addresses which are filtered. If a group is simply joined with no source address
restrictions, the filter mode is MODE_EXCLUDE and the source list is empty.

The getsourcefilter() and setsourcefilter() functions are protocol-independent. They
can be used on either PF_INET or PF_INET6 sockets. The getipv4sourcefilter() and
setipv4sourcefilter () functions are IPv4-specific. They must be used only on PF_INET
sockets.

For the protocol-independent functions, the first four arguments identify the socket, interface,
multicast group tuple values. The argument s is an open socket of type SOCK_DGRAM or
SOCK_RAW. The interface argument is the interface index. The interface name can be mapped to
theindex using if nametoindex(3SOCKET). The group points to either a sockaddr_in
containing an IPv4 multicast address if the socket is PF_INET or a sockaddr_in6 containing an
IPv6 multicast address if the socket is PF_INET6. The grouplen is the size of the structure
pointed to by group.

For the IPv4-specific functions, the first three arguments identify the same socket, interface,
multicast group tuple values. The argument s is an open socket of type SOCK_DGRAM or
SOCK_RAW and protocol family PF_INET. The interface argument is the IPv4 address assigned to
the local interface. The group argument is the IPv4 multicast address.

The getsourcefilter() and getipv4sourcefilter() functions retrieve the current filter for
the given tuple consisting of socket, interface, and multicast group values. On successful
return, fmode contains either MODE_INCLUDE or MODE_EXCLUDE, indicating the filter mode. On

Networking Library Functions 175

getsourcefilter(3SOCKET)

ReturnValues

Errors

Attributes

176

input, the numsrc argument holds the number of addresses that can fit in the slist array. On
return, slist contains as many addresses as fit, while numsrc contains the total number of
source addresses in the filter. It is possible that numsrc can contain a number larger than the
number of addresses in the slist array. An application might determine the required buffer size
by calling getsourcefilter() with numsrc containing @ and slist a NULL pointer. On return,
numsrc contains the number of elements that the slist buffer must be able to hold.
Alternatively, the maximum number of source addresses allowed by this implementation is
defined in <netinet/in.h>:

#define MAX_SRC_FILTER_SIZE 64

The setsourcefilter() and setipv4sourcefilter functions replace the current filter with
the filter specified in the arguments finode, numsrc, and slist. The fmode argument must be set
to either MODE_INCLUDE or MODE_EXCLUDE. The numsrc argument is the number of addresses in
the slist array. The slist argument points to the array of source addresses to be included or
excluded, depending on the finode value.

If successful, all four functions return 0. Otherwise, they return —1 and set errno to indicate
the error.

These functions will fail if:
EBADF The s argument is not a valid descriptor.
EAFNOSUPPORT The address family of the passed-in sockaddr is not AF_INET or AF_INET6.

ENOPROTOOPT The socket s is not of type SOCK_DGRAM or SOCK_RAW.

ENOPROTOOPT The address family of the group parameter does not match the protocol
family of the socket.

ENOSR Insufficient STREAMS resources available for the operation to complete.

ENXIO The interface argument, either an index or an IPv4 address, does not

identify a valid interface.

The getsourcefilter() and getipvé4sourcefilter () functions will fail if:

EADDRNOTAVAIL The tuple consisting of socket, interface, and multicast group values does
not exist; group is not being listened to on interface by socket.

The functions setsourcefilter()and setipv4sourcefilter() can fail in the following
additional case:

ENOBUFS The source filter list is larger than that allowed by the implementation.

See attributes(5) for descriptions of the following attributes:

man pages section 3: Networking Library Functions « Last Revised 20 Aug 2007

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

getsourcefilter(3SOCKET)

ATTRIBUTETYPE

ATTRIBUTE VALUE

Interface Stability

Committed

MT-Level

Safe

SeeAlso if nametoindex(3SOCKET), socket(3SOCKET), attributes(5)

RFC 3678

Networking Library Functions

177

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

gss_accept_sec_context(3GSS)

Name gss_accept_sec_context — accept a security context initiated by a peer application

Synopsis cc [flag... 1 file... -lgss [library...]
#include <gssapi/gssapi.h>

OM uint32 gss accept sec context(OM uint32 *minor_status,
gss_ctx _id t *context_handle,
const gss_cred_id_t acceptor_cred_handle,
const gss buffer t inputjoken,
const gss_channel_bindings_t input_chan_bindings,
const gss name_ t * src_name, gss_OID * rnech_{ype,
gss_buffer_t output_token, OM_uint32 *ret_flags,
OM_uint32 * time_rec, gss_cred_id_t *delegated_cred_handle) ;

Parameters The parameter descriptions for gss_accept_sec_context() follow:

minor_status
The status code returned by the underlying mechanism.

context_handle
The context handle to return to the initiator. This should be set to GSS C NO CONTEXT
before the loop begins.

acceptor_cred_handle
The handle for the credentials acquired by the acceptor, typically through
gss_acquire_cred().It may be initialized to GSS_C_NO_CREDENTIAL to indicate a default
credential to use. If no default credential is defined, the function returns GSS C_NO_CRED.

input_token_buffer
Token received from the context initiative.

input_chan_bindings
Optional application-specified bindings. Allows application to securely bind channel
identification information to the security context. Set to GSS_C_NO_CHANNEL_BINDINGS if
you do not want to use channel bindings.

src_name
The authenticated name of the context initiator. After use, this name should be deallocated
by passingitto gss_release_name().See gss_release_name(3GSS). If not required,
specify NULL.

mech_type
The security mechanism used. Set to NULL if it does not matter which mechanism is used.

output_token
The token to send to the acceptor. Initialize it to GSS_C _NO BUFFER before the function is
called (or its length field set to zero). If the length is zero, no token need be sent.

ret_flags

Contains various independent flags, each of which indicates that the context supports a
specific service option. If not needed, specify NULL. Test the returned bit-mask ret_flags

178 man pages section 3: Networking Library Functions « Last Revised 22 May 2006

gss_accept_sec_context(3GSS)

value against its symbolic name to determine if the given option is supported by the
context. ret_flags may contain one of the following values:

GSS_C_DELEG FLAG
If true, delegated credentials are available by means of the delegated_cred_handle
parameter. If false, no credentials were delegated.

GSS C _MUTUAL FLAG
If true, a remote peer asked for mutual authentication. If false, no remote peer asked for
mutual authentication.

GSS_C_REPLAY FLAG
If true, replay of protected messages will be detected. If false, replayed messages will not
be detected.

GSS_C_SEQUENCE_FLAG
If true, out of sequence protected messages will be detected. If false, they will not be
detected.

GSS_C_CONF_FLAG
If true, confidentiality service may be invoked by calling the gss_wrap () routine. If false,
no confidentiality service is available by means of gss_wrap().gss_wrap () will provide
message encapsulation, data-origin authentication and integrity services only.

GSS_C_INTEG FLAG
If true, integrity service may be invoked by calling either the gss_get_mic(3GSS) or the
gss_wrap(3GSS) routine. If false, per-message integrity service is not available.

GSS_C_ANON_FLAG
If true, the initiator does not wish to be authenticated. The src_name parameter, if
requested, contains an anonymous internal name. If false, the initiator has been
authenticated normally.

GSS_C_PROT_READY FLAG
If true, the protection services specified by the states of GSS_C_CONF_FLAG and
GSS_C_INTEG_FLAG are available if the accompanying major status return value is either
GSS_S_COMPLETE or GSS_S_CONTINUE_NEEDED. If false, the protection services are
available only if the accompanying major status return value is GSS_S_COMPLETE.

GSS_C_TRANS_ FLAG
If true, the resultant security context may be transferred to other processes by means of a
callto gss_export_sec_context(3GSS). If false, the security context cannot be
transferred.

time_rec

The number of sections for which the context will remain value Specify NULL if not
required.

Networking Library Functions 179

gss_accept_sec_context(3GSS)

180

delegated_cred_handle
The credential value for credentials received from the context's initiator. It is valid only if
the initiator has requested that the acceptor act as a proxy: that is, if the ret_flag argument
resolves to GSS_C_DELEG_FLAG.

Description Thegss_accept_sec_context() function allows a remotely initiated security context

between the application and a remote peer to be established. The routine may return an
output_token, which should be transferred to the peer application, where the peer application
will presentitto gss_init_sec_context().Seegss_init sec_context(3GSS). If no token
need be sent, gss_accept_sec_context () will indicate this by setting the length field of the
output_token argument to zero. To complete the context establishment, one or more reply
tokens may be required from the peer application; if so, gss_accept_sec_context() will
return a status flag of GSS_S_CONTINUE_NEEDED, in which case it should be called again when
the reply token is received from the peer application, passing the token to
gss_accept_sec_context () by means of the input_token parameters.

Portable applications should be constructed to use the token length and return status to
determine whether to send or to wait for a token.

Whenever gss_accept_sec_context () returns a major status that includes the value
GSS_S_CONTINUE_NEEDED, the context is not fully established, and the following restrictions
apply to the output parameters:

= The value returned by means of the time_rec parameter is undefined.

= Unless the accompanying ret_flags parameter contains the bit GS5_C_PROT_READY_FLAG,
which indicates that per-message services may be applied in advance of a successful
completion status, the value returned by the mech_type parameter may be undefined until
gss_accept_sec_context () returns a major status value of GSS_S_COMPLETE.

The values of the 6GSS_C_DELEG_FLAG, GSS_C_MUTUAL FLAG,GSS C_REPLAY FLAG,
GSS_C_SEQUENCE_FLAG,GSS C_CONF_FLAG,GSS C_INTEG FLAGandGSS C ANON FLAG bits
returned by means of the ret_flags parameter are values that would be valid if context
establishment were to succeed.

The values of the GSS_C_PROT_READY_FLAG and GSS_C_TRANS_FLAG bits within ret_flags
indicate the actual state at the time gss_accept_sec_context () returns, whether or not the
context is fully established. However, applications should not rely on this behavior, as
GSS_C_PROT_READY_FLAG was not defined in Version 1 of the GSS-API. Instead, applications
should be prepared to use per-message services after a successful context establishment, based
upon the GSS_C_INTEG_FLAG and GSS_C_CONF_FLAG values.

All other bits within the ret_flags argument are set to zero.

While gss_accept_sec_context () returns GSS_S_CONTINUE_NEEDED, the values returned by
means of the the ret_flags argument indicate the services available from the established
context. If the initial call of gss_accept_sec_context() fails, no context object is created, and

man pages section 3: Networking Library Functions - Last Revised 22 May 2006

gss_accept_sec_context(3GSS)

Errors

the value of the context_handle parameter is set to GSS_C_NO_CONTEXT. In the event of a failure
on a subsequent call, the security context and the context_handle parameter are left untouched
for the application to delete using gss_delete_sec_context(3GSS). During context
establishment, the informational status bits GSS S OLD TOKEN and GSS S DUPLICATE TOKEN
indicate fatal errors; GSS-API mechanisms always return them in association with a routine
error of GSS_S_FAILURE. This pairing requirement did not exist in version 1 of the GSS-API
specification, so applications that wish to run over version 1 implementations must

special-case these codes.

gss_accept_sec_context () may return the following status codes:

GSS_S_COMPLETE

GSS S CONTINUE NEEDED

GSS S DEFECTIVE TOKEN
GSS S DEFECTIVE CREDENTIAL

GSS_S_NO_CRED

GSS_S CREDENTIALS EXPIRED

GSS S BAD BINDINGS

GSS_S NO_CONTEXT

GSS_S_BAD_SIG
GSS_S_OLD_TOKEN

GSS S DUPLICATE TOKEN

GSS_S_BAD_MECH

GSS S FAILURE

Networking Library Functions

Successful completion.

A token from the peer application is required to complete
the context, and that gss_accept_sec_context() must
be called again with that token.

Consistency checks performed on the input_token failed.
Consistency checks performed on the credential failed.

The supplied credentials were not valid for context
acceptance, or the credential handle did not reference any
credentials.

The referenced credentials have expired.

The input_token contains different channel bindings than
those specified by means of the input_chan_bindings
parameter.

The supplied context handle did not refer to a valid
context.

The input_token contains an invalid MIC.

The input_token was too old. This is a fatal error while
establishing context.

The input_token is valid, but it is duplicate of a token
already processed. This is a fatal error while establishing
context.

The token received specified a mechanism that is not
supported by the implementation or the provided
credential.

The underlying mechanism detected an error for which
no specific GSS status code is defined. The
mechanism-specific status code reported by means of the
minor_status parameter details the error condition.

181

gss_accept_sec_context(3GSS)

Examples ExampLE1 Invokinggss accept_sec_context() WithinaLoop

A typical portable caller should always invoke gss_accept_sec_context () within aloop:

gss _ctx id t context hdl = GSS_C NO CONTEXT;

do {

receive token from peer(input token);

maj stat = gss accept sec_context(&min_stat,
&context_hdl,
cred hdl,
input token,
input_bindings,
&client name,
&mech type,
output token,
&ret flags,
&time rec,
&deleg cred);

if (GSS_ERROR(maj stat)) {

report_error(maj_stat, min_stat);

if (output token->length !'= 0) {
send_token to peer(output token);
gss release buffer(&min stat, output token);

if (GSS ERROR(maj stat)) {
if (context hdl != GSS C NO CONTEXT)
gss delete sec context(&min stat,
&context_hdl,
GSS_C_NO_BUFFER);
break;
+
} while (maj_stat & GSS_S CONTINUE_NEEDED);

/* Check client name authorization */

(void) gss release name(&min_stat, &client name);

/* Use and/or store delegated credential */

(void) gss release cred(&min stat, &deleg cred);

Attributes See attributes(5) for descriptions of the following attributes:

182 man pages section 3: Networking Library Functions « Last Revised 22 May 2006

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

gss_accept_sec_context(3GSS)

ATTRIBUTETYPE ATTRIBUTE VALUE

MT-Level Safe

SeeAlso gss delete sec_context(3GSS),gss _export _sec_context(3GSS),gss _get mic(3GSS),
gss_init sec_context(3GSS), gss release cred(3GSS),gss release name(3GSS),
gss_store cred(3GSS), gss wrap(3GSS), attributes(5)

Developer’s Guide to Oracle Solaris 11 Security

Networking Library Functions 183

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=GSSAPIPG

gss_acquire_cred(3GSS)

184

Name

Synopsis

Description

Parameters

gss_acquire_cred — acquire a handle for a pre-existing credential by name

cc [flag... 1 file... -lgss [library...]
#include <gssapi/gssapi.h>

OM uint32 gss acquire cred(OM uint32 *minor_status,
const gss_name_t desired_name, OM_uint32 time_req,
const gss_OID_set desired_mech, gss_cred_usage_t cred_usage,
gss_cred_id_t *output_cred_handle, gss_OID_set *actual mechs,
OM uint32 *time_rec);

The gss_acquire_cred() function allows an application to acquire a handle for a pre-existing
credential by name. This routine is not intended as a function to login to the network; a
function for login to the network would involve creating new credentials rather than merely
acquiring a handle to existing credentials.

If desired_name is GSS_C_NO_NAME, the call is interpreted as a request for a credential handle
that will invoke default behavior when passed to gss_init_sec_context(3GSS) (if
cred_usage is GSS_C_INITIATE or GSS_C_BOTH) or gss_accept_sec_context(3GSS) (if
cred_usage is GSS_C_ACCEPT or GSS_C_BOTH).

Normally gss_acquire_cred() returns a credential that is valid only for the mechanisms
requested by the desired_mechs argument. However, if multiple mechanisms can share a
single credential element, the function returns all the mechanisms for which the credential is
valid in the actual_mechs argument.

gss_acquire_cred() is intended to be used primarily by context acceptors, since the
GSS-API routines obtain initiator credentials through the system login process. Accordingly,
you may not acquire GSS_C_INITIATE or GSS_C_BOTH credentials by means of
gss_acquire_cred() for any name other than GSS_C_NO_NAME. Alternatively, you may
acquire GSS_C_INITIATE or GSS_C BOTH credentials for a name produced when
gss_inquire_cred(3GSS) isapplied to a valid credential, or when

gss_inquire context(3GSS) isapplied to an active context.

If credential acquisition is time-consuming for a mechanism, the mechanism may choose to
delay the actual acquisition until the credential is required, for example, by
gss_init_sec_context(3GSS) orbygss_accept_sec_context(3GSS). Such
mechanism-specific implementations are, however, invisible to the calling application; thus a
callofgss_inquire_cred(3GSS) immediately following the call of gss_acquire_cred() will
return valid credential data and incur the overhead of a deferred credential acquisition.

The parameter descriptions for gss_acquire cred() follow:

desired_name The name of the principal for which a credential should be acquired.

time_req The number of seconds that credentials remain valid. Specify
GSS_C_INDEFINITE to request that the credentials have the maximum
permitted lifetime

man pages section 3: Networking Library Functions « Last Revised 22 Aug 2011

gss_acquire_cred(3GSS)

desired_mechs

cred_usage

output_cred_handle

actual_mechs

time_rec

minor_status

The set of underlying security mechanisms that may be used.
GSS_C_NO_OID_SET may be used to obtain a default.

A flag that indicates how this credential should be used. If the flag is
GSS_C_ACCEPT, then credentials will be used only to accept security
credentials. GSS_C_INITIATE indicates that credentials will be used
only to initiate security credentials. If the flag is GSS_C_BOTH, then
credentials may be used either to initiate or accept security contexts.

The returned credential handle. Resources associated with this
credential handle must be released by the application after use with a
callto gss_release cred(3GSS)

The set of mechanisms for which the credential is valid. Storage
associated with the returned OID-set must be released by the
application after use with a call to gss_release oid_set(3GSS).
Specify NULL if not required.

Actual number of seconds for which the returned credentials will
remain valid. Specify NULL if not required.

Mechanism specific status code.

Errors gss_acquire_cred() may return the following status code:

GSS S COMPLETE

GSS_S_BAD_MECH

GSS_S_BAD NAMETYPE

GSS_S BAD NAME

Successful completion.
An unavailable mechanism has been requested.

The type contained within the desired_name parameter is
not supported.

The value supplied for desired_name parameter is ill
formed.

GSS S CREDENTIALS EXPIRED The credentials could not be acquired because they have

GSS_S_NO_CRED

GSS S FAILURE

expired.
No credentials were found for the specified name.

The underlying mechanism detected an error for which no
specific GSS status code is defined. The
mechanism-specific status code reported by means of the
minor_status parameter details the error condition.

Attributes See attributes(5) for descriptions of the following attributes:

Networking Library Functions

185

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

gss_acquire_cred(3GSS)

186

ATTRIBUTETYPE ATTRIBUTE VALUE

MT-Level Safe

SeeAlso gss _accept sec_context(3GSS),gss_init sec_context(3GSS),
gss_inquire_context(3GSS),gss_inquire cred(3GSS), gss _release cred(3GSS),
gss_release oid set(3GSS),attributes(5)

Developer’s Guide to Oracle Solaris 11 Security

man pages section 3: Networking Library Functions « Last Revised 22 Aug 2011

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=GSSAPIPG

gss_add_cred(3GSS)

Name gss_add_cred - add a credential-element to a credential

Synopsis

Parameters

cc [flag... 1 file... -lgss [library...]
#include <gssapi/gssapi.h>

OM uint32 gss_add cred(OM uint32 *minor_status,
const gss_cred_id_t input_cred_handle,
const gss name t desired_name,

const gss_0ID desired_mech,
gss_cred_usage_t cred_usage,
OM_uint32 initiator_time_req,
OM_uint32 acceptor_time_req,
gss_cred_id_t *output_cred_handle,
gss_0ID set *actual_mechs,

OM uint32 *initiator_time_rec,

OM_uint32 *acceptor_time_rec);

The parameter descriptions for gss_add_cred() follow:

minor_status

input_cred_handle

desired_name

desired_mech

cred_usage

initiator_time_req

acceptor_time_req

Networking Library Functions

Mechanism specific status code.

Credential to which the credential-element is added. If
GSS_C_NO_CREDENTIAL is specified, the function composes the new
credential based on default behavior. While the credential-handle is
not modified by gss_add_cred(), the underlying credential is
modified if output_credential_handle is NULL.

Name of the principal for which a credential should be acquired.

Underlying security mechanism with which the credential can be used.
GSS_C_NULL_OID can be used to obtain a default.

Flag that indicates how a credential is used to initiate or accept security
credentials. If the flag is GSS_C_ACCEPT, the credentials are used only to
accept security credentials. If the flag is GSS_C_INITIATE, the
credentials are used only to initiate security credentials. If the flag is
GSS_C_BOTH, the credentials can be used to either initiate or accept
security contexts.

Number of seconds that the credential may remain valid for initiating
security contexts. This argument is ignored if the composed credentials
are of the GSS_C_ACCEPT type. Specify GSS_C_INDEFINITE to request
that the credentials have the maximum permitted initiator lifetime.

Number of seconds that the credential may remain valid for accepting
security contexts. This argument is ignored if the composed credentials
are of the GSS_C_INITIATE type. Specify GSS_C_INDEFINITE to request
that the credentials have the maximum permitted initiator lifetime.

187

gss_add_cred(3GSS)

Description

188

output_cred_handle Returned credential handle that contains the new credential-element
and all the credential-elements from input_cred_handle. If a valid
pointertoagss _cred id tissupplied for this parameter,
gss_add_cred() creates a new credential handle that contains all
credential-elements from input_cred_handle and the newly acquired
credential-element. If NULL is specified for this parameter, the newly
acquired credential-element is added to the credential identified by
input_cred_handle.

The resources associated with any credential handle returned by means
of this parameter must be released by the application after use by a call
togss_release cred(3GSS).

actual_mechs Complete set of mechanisms for which the new credential is valid.
Storage for the returned OID-set must be freed by the application after
usebyacalltogss_release_oid_set(3GSS). Specify NULL if this
parameter is not required.

initiator_time_rec Actual number of seconds for which the returned credentials remain
valid for initiating contexts using the specified mechanism. Ifa
mechanism does not support expiration of credentials, the value
GSS_C_INDEFINITE is returned. Specify NULL if this parameter is not
required.

acceptor_time_rec Actual number of seconds for which the returned credentials remain
valid for accepting security contexts using the specified mechanism. If
amechanism does not support expiration of credentials, the value
GSS_C_INDEFINITE is returned. Specify NULL if this parameter is not
required.

The gss_add_cred() function adds a credential-element to a credential. The
credential-element is identified by the name of the principal to which it refers. This function is
not intended as a function to login to the network. A function for login to the network would
involve creating new mechanism-specific authentication data, rather than acquiring a handle
to existing data.

If the value of desired_name is GSS_C_NO_NAME, the call is interpreted as a request to add a
credential-element to invoke default behavior when passed to gss _init sec context(3GSS)
if the value of cred_usage is GSS_C_INITIATE or GSS_C_BOTH. The call is also interpreted as a
request to add a credential-element to the invoke default behavior when passed to
gss_accept_sec_context(3GSS) if the value of cred_usage is GSS_C_ACCEPT or GSS_C_BOTH.

The gss_add_cred() function is expected to be used primarily by context acceptors. The
GSS-API provides mechanism-specific ways to obtain GSS-API initiator credentials through

man pages section 3: Networking Library Functions « Last Revised 30 Jun 2005

gss_add_cred(3GSS)

ReturnValues

the system login process. Consequently, the GSS-API does not support acquiring
GSS_C_INITIATE or GSS_C_BOTH credentials by means of gss_acquire_cred(3GSS) for any
name other than the following:

= GSS_C_NO_NAME
= Name produced by gss_inquire_cred(3GSS) applied to a valid credential
= Name produced by gss_inquire_context(3GSS) applied to an active context

If credential acquisition is time consuming for a mechanism, the mechanism can choose to
delay the actual acquisition until the credential is required by gss_init_sec_context(3GSS),
for example, or by gss_accept_sec_context(3GSS). Such mechanism-specific
implementation decisions are invisible to the calling application. A call to
gss_inquire_cred(3GSS) immediately following the call gss_add_cred () returns valid
credential data as well as incurring the overhead of deferred credential acquisition.

The gss_add_cred() function can be used either to compose a new credential that contains all
credential-elements of the original in addition to the newly-acquired credential-element. The
function can also be used to add the new credential-element to an existing credential. If the
value of the output_cred_handle parameter is NULL, the new credential-element is added to the
credential identified by input_cred_handle. If a valid pointer is specified for the
output_cred_handle parameter, a new credential handle is created.

If the value of input_cred_handle is GSS_C_NO_CREDENTIAL, the gss_add_cred() function
composes a credential and sets the output_cred_handle parameter based on the default
behavior. The call has the same effect as a call first made by the application to
gss_acquire_cred(3GSS) to specify the same usage and to pass GSS_C_NO_NAME as the
desired_name parameter. Such an application call obtains an explicit credential handle that
incorporates the default behaviors, then passes the credential handle to gss_add cred(),and
finally calls gss_release_cred(3GSS) on the first credential handle.

If the value of the input_cred_handle parameter is GSS_C_NO_CREDENTIAL, a non-NULL value
must be supplied for the output_cred_handle parameter.

The gss_add_cred() function can return the following status codes:

GSS_ S COMPLETE Successful completion.

GSS_S BAD_MECH An unavailable mechanism has been requested.

GSS_S_BAD_NAMETYPE The type contained within the desired_name parameter is
not supported.

GSS_S_BAD_NAME The value supplied for desired_name parameter is ill
formed.

GSS_S DUPLICATE ELEMENT The credential already contains an element for the
requested mechanism that has overlapping usage and
validity period.

Networking Library Functions 189

gss_add_cred(3GSS)

190

Attributes

See Also

GSS S _CREDENTIALS EXPIRED The credentials could not be added because they have

expired.
GSS_S_NO_CRED No credentials were found for the specified name.
GSS_S_FAILURE The underlying mechanism detected an error for which no

specific GSS status code is defined. The
mechanism-specific status code reported by means of the
minor_status parameter details the error condition.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE

ATTRIBUTE VALUE

MT-Level Safe

gss_accept_sec_context(3GSS), gss_acquire cred(3GSS),

gss_init sec_context(3GSS),gss_inquire context(3GSS), gss _inquire cred(3GSS),
gss_release _cred(3GSS), gss_release oid_set(3GSS), libgss(3LIB), attributes(5)

Developer’s Guide to Oracle Solaris 11 Security

man pages section 3: Networking Library Functions « Last Revised 30 Jun 2005

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libgss-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=GSSAPIPG

gss_add_oid_set_member(3GSS)

Name gss_add_oid_set_member - add an object identifier to an object identifier set

Synopsis cc [flag... | file... -lgss [library...]
#include <gssapi/gssapi.h>

OM uint32 gss add oid set member(OM uint32 *minor_status,
const gss 0ID member_oid, gss OID set *oid_set);

Parameters The parameter descriptions for gss add oid set member () follow:
minor_status A mechanism specific status code.
member_oid Object identifier to be copied into the set.

oid_set Set in which the object identifier should be inserted.

Description Thegss_add_oid_set_member() function adds an object identifier to an object identifier set.
You should use this function in conjunction with gss_create_empty_oid_set(3GSS) when
constructing a set of mechanism OIDs for input to gss_acquire_cred(3GSS). The oid_set
parameter must refer to an OID-set created by GSS-AP], that is, a set returned by
gss_create empty oid set(3GSS).

The GSS-API creates a copy of the member_oid and inserts this copy into the set, expanding
the storage allocated to the OID-set elements array, if necessary. New members are always
added to the end of the OID set's elements. If the member_oid is already present, the oid_set
should remain unchanged.

Errors Thegss_add_oid_set_member () function can return the following status codes:

GSS S COMPLETE
Successful completion.

GSS_S_FAILURE
The underlying mechanism detected an error for which no specific GSS status code is
defined. The mechanism-specific status code reported by means of the minor_status
parameter details the error condition.

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

MT-Level Safe

SeeAlso gss acquire cred(3GSS),gss create empty oid set(3GSS),attributes(5)

Developer’s Guide to Oracle Solaris 11 Security

Networking Library Functions 191

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=GSSAPIPG

gss_canonicalize_name(3GSS)

192

Name

Synopsis

Description

Parameters

Errors

Attributes

gss_canonicalize_name — convert an internal name to a mechanism name

cc [flag..]1 file... -lgss [library...]
#include <gssapi/gssapi.h>

OM uint32 gss_canonicalize name(OM_uint32 *minor_status,
const gss_name_t input_name,const gss_OID mech_type,
gss_name_t *output_name);

The gss_canonicalize_name() function generates a canonical mechanism name from an
arbitrary internal name. The mechanism name is the name that would be returned to a
context acceptor on successful authentication of a context where the initiator used the
input_name in a successful call to gss_acquire_cred(3GSS), specifying an OID set
containing mech_type as its only member, followed by a call to
gss_init_sec_context(3GSS), specifying mech_type as the authentication mechanism.

The parameter descriptions for gss_canonicalize_name() follow:

minor_status Mechanism-specific status code.

input_name The name for which a canonical form is desired.

mech_type The authentication mechanism for which the canonical form of the name is
desired. The desired mechanism must be specified explicitly; no default is
provided.

output_name The resultant canonical name. Storage associated with this name must be
freed by the application after use with a call to gss_release_name(3GSS).

The gss_canonicalize_name() function may return the status codes:
GSS S COMPLETE Successful completion.
GSS S BAD MECH The identified mechanism is not supported.

GSS_S_BAD NAMETYPE The provided internal name contains no elements that could be
processed by the specified mechanism.

GSS S BAD NAME The provided internal name was ill-formed.

GSS_S_FAILURE The underlying mechanism detected an error for which no specific
GSS status code is defined. The mechanism-specific status code
reported by means of the minor_status parameter details the error

condition.
See attributes(5) for descriptions of the following attributes:
ATTRIBUTETYPE ATTRIBUTE VALUE
MT-Level Safe

man pages section 3: Networking Library Functions « Last Revised 22 Aug 2011

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

gss_canonicalize_name(3GSS)

SeeAlso gss acquire cred(3GSS),gss _init sec context(3GSS),gss release name(3GSS),
attributes(5)

Developer’s Guide to Oracle Solaris 11 Security

Networking Library Functions 193

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=GSSAPIPG

gss_compare_name(3GSS)

Name

Synopsis

Description

Parameters

Errors

Attributes

See Also

194

gss_compare_name — compare two internal-form names

cc [flag..1 file... -lgss [library...]
#include <gssapi/gssapi.h>

OM uint32 gss_compare name(OM uint32 *minor_status,
const gss_name_t namel,const gss name_t name2,
int *name_equal) ;

The gss_compare_name() function allows an application to compare two internal-form
names to determine whether they refer to the same entity.

If either name presented to gss_compare_name () denotes an anonymous principal, the
routines indicate that the two names do not refer to the same identity.

The parameter descriptions for gss_compare_name() follow:

minor_status Mechanism-specific status code.

namel Internal-form name.
name2 Internal-form name.
name_equal If non-zero, the names refer to same entity. If 0, the names refer to different

entities. Strictly, the names are not known to refer to the same identity.

The gss_compare_name() function may return the following status codes:
GSS S COMPLETE Successful completion.
GSS_S BAD NAMETYPE The two names were of incomparable types.

GSS_S_BAD NAME One or both of namel or name2 was ill-formed.

GSS_S_FAILURE The underlying mechanism detected an error for which no specific

GSS status code is defined. The mechanism-specific status code

reported by means of the minor_status parameter details the error

condition.
See attributes(5) for descriptions of the following attributes:
ATTRIBUTETYPE ATTRIBUTE VALUE
MT-Level Safe

attributes(5)

Developer’s Guide to Oracle Solaris 11 Security

man pages section 3: Networking Library Functions « Last Revised 22 Aug 2011

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=GSSAPIPG

gss_context_time(3GSS)

Name gss_context_time — determine how long a context will remain valid

Synopsis cc [flag... | file... -lgss [library...]
#include <gssapi/gssapi.h>

OM_uint32 gss_context_time(OM_uint32 *minor_status,
gss_ctx_id t *context_handle,OM uint32 *time_rec);

Description Thegss context time() function determines the number of seconds for which the specified
context will remain valid.

Parameters The parameter descriptions for gss_context_time() are as follows:
minor_status A mechanism-specific status code.
context_handle A read-only value. Identifies the context to be interrogated.

time_rec Modifies the number of seconds that the context remains valid. If the
context has already expired, returns zero.

Errors Thegss_context_time() function returns one of the following status codes:
GSS_S_COMPLETE Successful completion.
GSS_S_CONTEXT_EXPIRED The context has already expired.
GSS S NO_CONTEXT The context_handle parameter did not identify a valid context.

GSS_S_FAILURE The underlying mechanism detected an error for which no
specific GSS status code is defined. The mechanism-specific
status code reported by means of the minor_status parameter
details the error condition.

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

MT Level Safe

SeeAlso gss init sec context(3GSS),gss accept sec context(3GSS),
gss_delete sec context(3GSS),gss process context token(3GSS),
gss_inquire context(3GSS),gss wrap size 1imit(3GSS),
gss_export_sec_context(3GSS),gss_import sec context(3GSS), attributes(5)

Developer’s Guide to Oracle Solaris 11 Security

Networking Library Functions 195

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=GSSAPIPG

gss_create_empty_oid_set(3GSS)

Name

Synopsis

Description

Parameters

Errors

Attributes

See Also

196

gss_create_empty_oid_set — create an object-identifier set containing no object identifiers

cc [flag... 1 file... -lgss [library...]
#include <gssapi/gssapi.h>

OM uint32 gss create empty oid set(OM uint32 *minor_status,
gss_0ID set *oid_set);

The gss_create_empty_oid_set() function creates an object-identifier set containing no
object identifiers to which members may be subsequently added using the
gss_add_oid set member(3GSS) function. These functions can be used to construct sets of
mechanism object identifiers for input to gss_acquire_cred(3GSS).

The parameter descriptions for gss create empty oid set() follow:
minor_status ~ Mechanism-specific status code

oid_set Empty object identifier set. The function will allocate the
gss_0ID_set_desc object, which the application must free after use with a
calltogss release oid set(3GSS).

The gss_create_empty_oid_set() function may return the following status codes:
GSS_S_COMPLETE Successful completion

GSS_S_FAILURE The underlying mechanism detected an error for which no specific GSS
status code is defined. The mechanism-specific status code reported by
means of the minor_status parameter details the error condition.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

MT-Level Safe

gss_acquire_cred(3GSS), gss_add _oid_set member(3GSS),gss_release oid set(3GSS),
attributes(5)

Developer’s Guide to Oracle Solaris 11 Security

man pages section 3: Networking Library Functions « Last Revised 22 Aug 2011

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=GSSAPIPG

gss_delete_sec_context(3GSS)

Name

Synopsis

Description

Parameters

Errors

Attributes

gss_delete_sec_context — delete a GSS-API security context

cc [flag... 1 file... -lgss [library...]
#include <gssapi/gssapi.h>

OM uint32 gss delete sec context(OM uint32 *minor_status,
gss_ctx_id_t *context_handle,gss_buffer_t output_token);

Use the gss_delete_sec_context () function to delete a security context. The

gss_delete sec_context() function will delete the local data structures associated with the
specified security context. You may not obtain further security services that use the context
specified by context_handle.

In addition to deleting established security contexts, gss_delete_sec_context () will delete
any half-built security contexts that result from incomplete sequences of calls to
gss_init_sec_context(3GSS)and gss_accept sec_ context(3GSS).

The Solaris implementation of the GSS-API retains the output_token parameter for
compatibility with version 1 of the GSS-API. Both peer applications should invoke
gss_delete_sec_context(), passing the value GSS_C_NO_BUFFER to the output_token
parameter; this indicates that no token is required. If the application passes a valid buffer to
gss_delete_sec_context(), it will return a zero-length token, indicating that no token
should be transferred by the application.

The parameter descriptions for gss_delete_sec_context() follow:

minor_status A mechanism specific status code.

context_handle ~ Context handle identifying specific context to delete. After deleting the
context, the GSS-API will set context_handle to GSS_C_NO_CONTEXT.

output_token A token to be sent to remote applications that instructs them to delete the
context.

gss_delete_sec_context () may return the following status codes:
GSS_S_COMPLETE Successful completion.
GSS_S_NO_CONTEXT No valid context was supplied.

GSS_S_FAILURE The underlying mechanism detected an error for which no specific
GSS status code is defined. The mechanism-specific status code
reported by means of the minor_status parameter details the error
condition.

See attributes(5) for descriptions of the following attributes:

Networking Library Functions 197

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

gss_delete_sec_context(3GSS)

ATTRIBUTETYPE ATTRIBUTE VALUE

MT-Level Safe

SeeAlso gss _accept sec_context(3GSS),gss_init sec_context(3GSS), attributes(5)

Developer’s Guide to Oracle Solaris 11 Security

198 man pages section 3: Networking Library Functions - Last Revised 22 Aug 2011

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=GSSAPIPG

gss_display_name(3GSS)

Name

Synopsis

Description

Parameters

Errors

Attributes

gss_display_name - convert internal-form name to text

cc [flag..1 file... -lgss [library...]
#include <gssapi/gssapi.h>

OM uint32 gss display name(OM uint32 *minor_status,
const gss_name_t input_name, gss_buffer_t output_name_buffer,
gss_OID *output_name_type);

The gss_display_name() function allows an application to obtain a textual representation of
an opaque internal-form name for display purposes.

If input_name denotes an anonymous principal, the GSS-API returns the gss_0ID value
GSS_C_NT_ANONYMOUS as the output_name_type, and a textual name that is syntactically
distinct from all valid supported printable names in output_name_buffer.

If input_name was created by a call to gss_import_name(3GSS), specifying GSS_C_NO_O0ID as
the name-type, the GSS-API returns GSS_C_NO_0ID by means of the output_name_type

parameter.

The parameter descriptions for gss_display name() follow:

minor_status
input_name

output_name_buffer

output_name_type

The gss_display na
GSS S COMPLETE
GSS_S_BAD NAME

GSS S FAILURE

Mechanism-specific status code.
Name in internal form.

Buffer to receive textual name string. The application must free
storage associated with this name after use with a call to
gss_release buffer(3GSS).

The type of the returned name. The returned gss_0ID willbe a
pointer into static storage and should be treated as read-only by the
caller. In particular, the application should not attempt to free it.
Specify NULL if this parameter is not required.

me () function may return the following status codes:
Successful completion.
The input_name was ill-formed.

The underlying mechanism detected an error for which no specific GSS
status code is defined. The mechanism-specific status code reported by
means of the minor_status parameter details the error condition.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

MT-Level

Safe

Networking Library Functions

199

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

gss_display_name(3GSS)

SeeAlso gss_import name(3GSS),gss release buffer(3GSS), attributes(5)

Developer’s Guide to Oracle Solaris 11 Security

200 man pages section 3: Networking Library Functions - Last Revised 22 Aug 2011

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=GSSAPIPG

gss_display_status(3GSS)

Name

Synopsis

Description

Parameters

gss_display_status — convert a GSS-API status code to text

cc [flag... 1 file... -lgss [library...]
#include <gssapi/gssapi.h>

OM uint32 gss_display status(OM uint32 *minor_status,
OM_uint32 status value,int status type,
const gss OID mech_type, OM uint32 *message_context,
gss_buffer_t status string);

The gss_display_status() function enables an application to obtain a textual
representation of a GSS-API status code for display to the user or for logging purposes.
Because some status values may indicate multiple conditions, applications may need to call
gss_display_status() multiple times, with each call generating a single text string.

The message_context parameter is used by gss_acquire_cred() to store state information on
error messages that are extracted from a given status_value. The message_context parameter
must be initialized to 0 by the application prior to the first call, and gss_display_status()
will return a non-zero value in this parameter if there are further messages to extract.

The message_context parameter contains all state information required by
gss_display_status() to extract further messages from the status_value. If a non-zero value
is returned in this parameter, the application is not required to call gss_display_status()
again unless subsequent messages are desired.

The parameter descriptions for gss_display_status() follow:

minor_status Status code returned by the underlying mechanism.

status_value Status value to be converted.

status_type If the value is GSS_C_GSS_CODE, status_value is a GSS-API status code. If
the value is GSS_C_MECH_CODE, then status_value is a mechanism status
code.

mech_type Underlying mechanism that is used to interpret a minor status value.

Supply GSS_C_NO_0ID to obtain the system default.

message_context Should be initialized to zero prior to the first call. On return from
gss_display_status(),anon-zero status_value parameter indicates
that additional messages may be extracted from the status code by means
of subsequent calls to gss_display_status(), passing the same
status_value, status_type, mech_type, and message_contextparameters.

status_string Textual representation of the status_value. Storage associated with this
parameter must be freed by the application after use with a call to
gss_release buffer(3GSS).

Networking Library Functions 201

gss_display_status(3GSS)

Errors Thegss_display_status() function may return the following status codes:
GSS S _COMPLETE Successful completion.

GSS_S_BAD MECH Indicates that translation in accordance with an unsupported
mechanism type was requested.

GSS_S BAD_STATUS The status value was not recognized, or the status type was neither
GSS C_GSS CODE nor GSS_C_MECH CODE.

GSS_S_FAILURE The underlying mechanism detected an error for which no specific
GSS status code is defined. The mechanism-specific status code
reported by means of the minor_status parameter details the error
condition.

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

MT-Level Safe

SeeAlso gss acquire cred(3GSS), gss release buffer(3GSS), attributes(5)

Developer’s Guide to Oracle Solaris 11 Security

202 man pages section 3: Networking Library Functions - Last Revised 22 Aug 2011

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=GSSAPIPG

gss_duplicate_name(3GSS)

Name

Synopsis

Description

Parameters

Errors

Attributes

See Also

gss_duplicate_name - create a copy of an internal name

cc [flag..1 file..

. -lgss [library...]

#include <gssapi/gssapi.h>

OM uint32 gss duplicate name(OM uint32 *minor_status,
const gss_name_t src_name,gss_name_t *dest_name) ;

The gss_duplicate_name() function creates an exact duplicate of the existing internal name
src_name. The new dest_name will be independent of the src_name. The src_name and
dest_name must both be released, and the release of one does not affect the validity of the

other.

The parameter descriptions for gss_duplicate name() follow:

minor_status
src_name

dest_name

A mechanism-specific status code.

Internal name to be duplicated.

The resultant copy of src_name. Storage associated with this name must be
freed by the application after use with a call to gss_release_name(3GSS).

The gss_duplicate_name() function may return the following status codes:

GSS S _COMPLETE
GSS S _BAD NAME

GSS S FAILURE

See attributes(5) for descriptions of the following attributes:

Successful completion.

The src_name parameter was ill-formed.

The underlying mechanism detected an error for which no specific GSS
status code is defined. The mechanism-specific status code reported by
means of the minor_status parameter details the error condition.

ATTRIBUTETYPE

ATTRIBUTE VALUE

MT-Level

Safe

gss_release name(3GSS), attributes(5)

Developer’s Guide to Oracle Solaris 11 Security

Networking Library Functions

203

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=GSSAPIPG

gss_export_name(3GSS)

Name

Synopsis

Description

Parameters

Errors

Attributes

See Also

204

gss_export_name - convert a mechanism name to export form

cc [flag..1 file... -lgss [library..]
#include <gssapi/gssapi.h>

OM_uint32 gss_export_name(OM_uint32 *minor_status,
const gss_name_t input_name,gss_buffer_t exported_name) ;

The gss_export name() function allows a GSS-API internal name to be converted into a
mechanism-specific name. The function produces a canonical contiguous string
representation of a mechanism name, suitable for direct comparison, with memory(3C), or for
use in authorization functions, matching entries in an access-control list. The input_name
parameter must specify a valid mechanism name, that is, an internal name generated by
gss_accept_sec_context(3GSS) or by gss_canonicalize_name(3GSS).

The parameter descriptions for gss_export_name() follow:
minor_status A mechanism-specific status code.
input_name The mechanism name to be exported.

exported_name The canonical contiguous string form of input_name. Storage associated
with this string must freed by the application after use with
gss_release buffer(3GSS).

The gss_export_name() function may return the following status codes:
GSS_S COMPLETE Successful completion.
GSS_S_NAME_NOT_MN The provided internal name was not a mechanism name.

GSS_S_FAILURE The underlying mechanism detected an error for which no specific
GSS status code is defined. The mechanism-specific status code
reported by means of the minor_status parameter details the error
condition.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

MT-Level Safe

gss_accept_sec_context(3GSS), gss_canonicalize name(3GSS),
gss_release buffer(3GSS)memory(3C), attributes(5)

Developer’s Guide to Oracle Solaris 11 Security

man pages section 3: Networking Library Functions « Last Revised 22 Aug 2011

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1memory-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1memory-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=GSSAPIPG

gss_export_sec_context(3GSS)

Name gss_export_sec_context — transfer a security context to another process

Synopsis cc [flag... 1 file... -lgss [library...]

Description

Parameters

#include <gssapi/gssapi.h>

OM uint32 gss export sec context(OM uint32 *minor_status,
gss_ctx_id_t *context_handle,gss_buffer t interprocess_token);

The gss_export_sec_context () function generates an interprocess token for transfer to
another process within an end system. gss_export_sec_context() and
gss_import_sec_context () allow a security context to be transferred between processes on a
single machine.

The gss_export_sec_context () function supports the sharing of work between multiple
processes. This routine is typically used by the context-acceptor, in an application where a
single process receives incoming connection requests and accepts security contexts over them,
then passes the established context to one or more other processes for message exchange.
gss_export_sec_context () deactivates the security context for the calling process and
creates an interprocess token which, when passed to gss_import sec_context() in another
process, reactivates the context in the second process. Only a single instantiation of a given
context can be active at any one time; a subsequent attempt by a context exporter to access the
exported security context will fail.

The interprocess token may contain security-sensitive information, for example
cryptographic keys. While mechanisms are encouraged to either avoid placing such sensitive
information within interprocess tokens or to encrypt the token before returning it to the
application, in a typical object-library GSS-API implementation, this might not be possible.
Thus, the application must take care to protect the interprocess token and ensure that any
process to which the token is transferred is trustworthy. If creation of the interprocess token is
successful, the GSS-API deallocates all process-wide resources associated with the security
context and sets the context_handle to GSS_C_NO_CONTEXT. In the event of an error that makes
itimpossible to complete the export of the security context, the function does not return an
interprocess token and leaves the security context referenced by the context_handle parameter
untouched.

Sun's implementation of gss_export_sec_context () does not encrypt the interprocess
token. The interprocess token is serialized before it is transferred to another process.

The parameter descriptions for gss_export_sec_context() are as follows:
minor_status A mechanism-specific status code.
context_handle Context handle identifying the context to transfer.

interprocess_token Token to be transferred to target process. Storage associated with this
token must be freed by the application after use with a call to
gss_release buffer(3GSS).

Networking Library Functions 205

gss_export_sec_context(3GSS)

206

Errors gss_export_sec_context () returns one of the following status codes:

Attributes

See Also

GSS S _COMPLETE Successful completion.

GSS_S_CONTEXT_EXPIRED The context has expired.

GSS_S_NO_CONTEXT The context was invalid.
GSS_S_UNAVAILABLE The operation is not supported.
GSS_S_FAILURE The underlying mechanism detected an error for which no

specific GSS status code is defined. The mechanism-specific
status code reported by means of the minor_status parameter

details the error condition.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE

ATTRIBUTE VALUE

MT Level Safe

gss_accept_sec_context(3GSS),gss_import sec context(3GSS),
gss_init sec context(3GSS), gss release buffer(3GSS),attributes(5)

Developer’s Guide to Oracle Solaris 11 Security

man pages section 3: Networking Library Functions « Last Revised 22 Aug 2011

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=GSSAPIPG

gss_get_mic(3GSS)

Name

Synopsis

Description

Parameters

Errors

gss_get_mic — calculate a cryptographic message
cc [flag... 1 file... -lgss [library...]

#include <gssapi/gssapi.h>

OM uint32 gss_get mic(OM uint32 *minor_status,
const gss_ctx_id_t context_handle, gss_qop_t qop_req,
const gss_buffer_t message_buffer, gss_buffer_t msg_token);

The gss_get_mic() function generates a cryptographic MIC for the supplied message, and
places the MIC in a token for transfer to the peer application. The qop_req parameter allows a
choice between several cryptographic algorithms, if supported by the chosen mechanism.

Since some application-level protocols may wish to use tokens emitted by gss_wrap(3GSS) to
provide secure framing, the GSS-API allows MICs to be derived from zero-length messages.

The parameter descriptions for gss_get mic() follow:
minor_status The status code returned by the underlying mechanism.
context_handle Identifies the context on which the message will be sent.

qop_req Specifies the requested quality of protection. Callers are encouraged, on
portability grounds, to accept the default quality of protection offered by
the chosen mechanism, which may be requested by specifying
GSS_C_QOP_DEFAULT for this parameter. If an unsupported protection
strength is requested, gss_get_mic () will return a major_status of
GSS S BAD_QOP.

message_buffer ~ The message to be protected.

msg_token The buffer to receive the token. Storage associated with this message must
be freed by the application after use with a call to
gss_release buffer(3GSS).

gss_get_mic() mayreturn the following status codes:
GSS S COMPLETE Successful completion.

GSS S CONTEXT EXPIRED The context has already expired.

GSS S NO CONTEXT The context_handle parameter did not identify a valid context.
GSS_S_BAD_QOP The specified QOP is not supported by the mechanism.
GSS_S_FAILURE The underlying mechanism detected an error for which no

specific GSS status code is defined. The mechanism-specific
status code reported by means of the minor_status parameter
details the error condition.

Networking Library Functions 207

gss_get_mic(3GSS)

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

MT-Level Safe

SeeAlso gss release buffer(3GSS),gss wrap(3GSS),attributes(5)

Developer’s Guide to Oracle Solaris 11 Security

208 man pages section 3: Networking Library Functions - Last Revised 22 Aug 2011

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=GSSAPIPG

gss_import_name(3GSS)

Name

Synopsis

Description

Parameters

Errors

Attributes

gss_import_name - convert a contiguous string name to GSS_API internal format

cc [flag..1 file... -lgss [library...]

#include <gssapi/gssapi.h>

OM_uint32 gss_import_name(OM uint32 * minor_status,

const gss_buffer_t input_name_buffer, const gss_OID input_name_type,

gss_name_t *output_name) ;

The gss_import_name() function converts a contiguous string name to internal form. In
general, the internal name returned by means of the output_name parameter will not be a
mechanism name; the exception to this is if the input_name_type indicates that the
contiguous string provided by means of the input_name_buffer parameter is of type
GSS_C_NT_EXPORT_NAME, in which case, the returned internal name will be a mechanism name

for the mechanism that exported the name.

The parameter descriptions for gss_import_name() follow:

minor_status Status code returned by the underlying mechanism.

input_name_buffer ~ Thegss_buffer_desc structure containing the name to be imported.

input_name_type A gss_0ID that specifies the format that the input_name_buffer is in.

output_name The gss_name_t structure to receive the returned name in internal
form. Storage associated with this name must be freed by the
application after use with a callto gss_release_name().

The gss_import_name() function may return the following status codes:

GSS_S_COMPLETE The gss_import_name () function completed successfully.

GSS_S_BAD_NAMETYPE The input_name_type was unrecognized.

GSS_S_BAD_NAME The input_name parameter could not be interpreted as a name of
the specified type.
GSS_ S BAD MECH The input_name_type was GSS_C_NT_EXPORT_NAME, but the

mechanism contained within the input_name is not supported.

GSS_S_FAILURE The underlying mechanism detected an error for which no specific
GSS status code is defined. The mechanism-specific status code
reported by means of the minor_status parameter details the error

condition.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE

ATTRIBUTE VALUE

MT-Level

Safe

Networking Library Functions

209

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

gss_import_name(3GSS)

SeeAlso gss release buffer(3GSS), attributes(5)

Developer’s Guide to Oracle Solaris 11 Security

210 man pages section 3: Networking Library Functions - Last Revised 22 Aug 2011

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=GSSAPIPG

gss_import_sec_context(3GSS)

Name gss_import_sec_context — import security context established by another process

Synopsis cc [flag... 1 file... -lgss [library...]
#include <gssapi/gssapi.h>

OM uint32 gss import sec context(OM uint32 *minor_status,
const gss_buffer_t interprocess_token,gss_ctx_id_t *context_handle);

Description Thegss_import_sec_context() function allows a process to import a security context
established by another process. A given interprocess token can be imported only once. See
gss_export_sec_context(3GSS).

Parameters The parameter descriptions for gss_import_sec context() are as follows:
minor_status A mechanism-specific status code.
interprocess_token ~ Token received from exporting process.

context_handle Context handle of newly reactivated context. Resources associated
with this context handle must be released by the application after use
witha call to gss delete sec context(3GSS).

Errors gss_import_sec_context() returns one of the following status codes:
GSS S _COMPLETE Successful completion.
GSS_S NO_CONTEXT The token did not contain a valid context reference.
GSS_S DEFECTIVE TOKEN The token was invalid.

GSS_S_UNAVAILABLE The operation is unavailable.

GSS_S_UNAUTHORIZED Local policy prevents the import of this context by the current
process.

GSS_S_FAILURE The underlying mechanism detected an error for which no

specific GSS status code is defined. The mechanism-specific
status code reported by means of the minor_status parameter
details the error condition.

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

MT Level Safe

SeeAlso gss accept sec_context(3GSS),gss context time(3GSS),
gss_delete sec context(3GSS), gss export sec context(3GSS),
gss_init_sec_context(3GSS),gss_inquire_context(3GSS),
gss_process_context token(3GSS),gss wrap_size 1imit(3GSS), attributes(5)

Networking Library Functions 211

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

gss_import_sec_context(3GSS)

Developer’s Guide to Oracle Solaris 11 Security

212 man pages section 3: Networking Library Functions « Last Revised 22 Aug 2011

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=GSSAPIPG

gss_indicate_mechs(3GSS)

Name gss_indicate_mechs - determine available security mechanisms

Synopsis cc [flag... | file... -lgss [library...]
#include <gssapi/gssapi.h>

OM uint32 gss_indicate mechs(OM uint32 *minor_status,
gss_0ID set *mech_set);

Description Thegss indicate mechs() function enables an application to determine available
underlying security mechanisms.

Parameters The parameter descriptions for gss_indicate_mechs () follow:
minor_status A mechanism-specific status code.

mech_set Set of supported mechanisms. The returned gss 0ID set value will be a
dynamically-allocated OID set that should be released by the caller after use
with a call to gss_release oid_set(3GSS).

Errors Thegss_indicate_mechs() function may return the following status codes:
GSS_S_COMPLETE Successful completion.

GSS_S_FAILURE The underlying mechanism detected an error for which no specific GSS
status code is defined. The mechanism-specific status code reported by
means of the minor_status parameter details the error condition.

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

MT-Level Safe

SeeAlso gss release oid set(3GSS),attributes(5)

Developer’s Guide to Oracle Solaris 11 Security

Networking Library Functions 213

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=GSSAPIPG

gss_init_sec_context(3GSS)

214

Name

Synopsis

Parameters

gss_init_sec_context — initiate a GSS-API security context with a peer application

cc [flag... 1 file... -lgss [library...]
#include <gssapi/gssapi.h>

OM uint32 gss init sec context(OM uint32 *minor_status,
const gss cred id t initiator_cred_handle,
gss_ctx_id_t *context_handle, const gss_name_t *target_name,
const gss_OID mech_type, OM_uint32 req_flags,
OM_uint32 time_req, const gss_channel_bindings_t input_chan_bindings,
const gss_buffer_t input_token, gss_OID *actual_mech_type,
gss_buffer_t output_token, OM_uint32 *ret_flags,
OM uint32 *time_rec);

The parameter descriptions for gss_init sec_context () follow:

minor_status
A mechanism specific status code.

initiator_cred_handle
The handle for the credentials claimed. Supply GSS_C_NO_CREDENTIAL to act as a default
initiator principal. If no default initiator is defined, the function returns GSS_S_NO_CRED.

context_handle
The context handle for a new context. Supply the value GSS_C_NO_CONTEXT for the first call,
and use the value returned in any continuation calls. The resources associated with
context_handle must be released by the application after use by a call to
gss_delete sec context(3GSS).

target_name
The name of the context acceptor.

mech_type
The object ID of the desired mechanism. To obtain a specific default, supply the value
GSS C NO 0ID

req_flags
Contains independent flags, each of which will request that the context support a specific
service option. A symbolic name is provided for each flag. Logically-OR the symbolic name
to the corresponding required flag to form the bit-mask value. req_flags may contain one of
the following values:

GSS_C_DELEG FLAG
If true, delegate credentials to a remote peer. Do not delegate the credentials if the value
is false.

GSS C _MUTUAL FLAG
If true, request that the peer authenticate itself. If false, authenticate to the remote peer
only.

man pages section 3: Networking Library Functions « Last Revised 6 Nov 2009

gss_init_sec_context(3GSS)

GSS_C_REPLAY FLAG
If true, enable replay detection for messages protected with gss_wrap(3GSS) or
gss_get_mic(3GSS). Do not attempt to detect replayed messages if false.

GSS_C_SEQUENCE FLAG
If true, enable detection of out-of-sequence protected messages. Do not attempt to
detect out-of-sequence messages if false.

GSS_C CONF FLAG
If true, request that confidential service be made available by means of gss_wrap(3GSS).
If false, no per-message confidential service is required.

GSS C INTEG FLAG
If true, request that integrity service be made available by means of gss_wrap(3GSS) or
gss_get_mic(3GSS). If false, no per-message integrity service is required.

GSS C_ANON FLAG
If true, do not reveal the initiator's identify to the acceptor. If false, authenticate
normally.

time_req
The number of seconds for which the context will remain valid. Supply a zero value to
time_req to request a default validity period.

input_chan_bindings
Optional application-specified bindings. Allows application to securely bind channel
identification information to the security context. Set to GSS_C_NO_CHANNEL_BINDINGS if
you do not want to use channel bindings.

input_token
Token received from the peer application. On the initial call, supply GSS_C_NO_BUFFER or a
pointer to a buffer containing the value GSS_C_EMPTY_BUFFER.

actual_mech_type
The actual mechanism used. The OID returned by means of this parameter will be pointer
to static storage that should be treated as read-only. The application should not attempt to
free it. To obtain a specific default, supply the value GSS_C_NO_0ID. Specify NULL if the
parameter is not required.

output_token
The token to send to the peer application. If the length field of the returned buffer is zero,
no token need be sent to the peer application. After use storage associated with this buffer
must be freed by the application by a call to gss_release_buffer(3GSS).

ret_flags
Contains various independent flags, each of which indicates that the context supports a
specific service option. If not needed, specify NULL. Test the returned bit-mask ret_flags
value against its symbolic name to determine if the given option is supported by the
context. ret_flags may contain one of the following values:

Networking Library Functions 215

gss_init_sec_context(3GSS)

GSS_C DELEG FLAG
If true, credentials were delegated to the remote peer. If false, no credentials were
delegated.

GSS_C_MUTUAL FLAG
If true, the remote peer authenticated itself. If false, the remote peer did not authenticate
itself.

GSS_C_REPLAY FLAG
If true, replay of protected messages will be detected. If false, replayed messages will not
be detected.

GSS C_SEQUENCE_FLAG
If true, out of sequence protected messages will be detected. If false, they will not be
detected.

GSS C_CONF_FLAG
If true, confidential service may be invoked by calling the gss_wrap () routine. If false,
no confidentiality service is available by means of gss_wrap(3GSS). gss_wrap () will
provide message encapsulation, data-origin authentication and integrity services only.

GSS C_INTEG FLAG
If true, integrity service may be invoked by calling either the gss_wrap(3GSS) or
gss_get_mic(3GSS) routine. If false, per-message integrity service is not available.

GSS_C_ANON_FLAG
If true, the initiator's identity has not been revealed; it will not be revealed if any emitted
token is passed to the acceptor. If false, the initiator has been or will be authenticated
normally.

GSS_C_PROT READY FLAG
If true, the protection services specified by the states of GSS_C_CONF_FLAG and
GSS_C_INTEG_FLAG are available if the accompanying major status return value is either
GSS_S_COMPLETE or GSS_S_CONTINUE NEEDED. If false, the protection services are
available only if the accompanying major status return value is GSS_S_COMPLETE.

GSS_C TRANS FLAG
If true, the resultant security context may be transferred to other processes by means of a
callto gss_export_sec_context(3GSS). If false, the security context cannot be
transferred.

time_rec

The number of seconds for which the context will remain valid. Specify NULL if the
parameter is not required.

Description Thegss_init_sec_context() function initiates the establishment of a security context
between the application and a remote peer. Initially, the input_token parameter should be
specified either as GSS_C_NO_BUFFER, or as a pointer to a gss_buffer_desc object with a
length field that contains a zero value. The routine may return a output_token, which should

216 man pages section 3: Networking Library Functions « Last Revised 6 Nov 2009

gss_init_sec_context(3GSS)

be transferred to the peer application, which will present it to

gss_accept sec_context(3GSS). If no token need be sent, gss_init sec_context() will
indicate this by setting the length field of the output_token argument to zero. To complete
context establishment, one or more reply tokens may be required from the peer application; if
80,9ss_1init_sec_context() will return a status code that contains the supplementary
information bit GSS_S CONTINUE_NEEDED. In this case, make another call to
gss_init_sec_context () when the reply token is received from the peer application and pass
the reply token to gss_init_sec_context() by means of the input_token parameter.

Construct portable applications to use the token length and return status to determine
whether to send or wait for a token.

Whenever the routine returns a major status that includes the value GSS_S_CONTINUE_NEEDED,
the context is not fully established, and the following restrictions apply to the output
parameters:

= The value returned by means of the time_rec parameter is undefined. Unless the
accompanying ret_flags parameter contains the bit GSS_C_PROT_READY_FLAG, which
indicates that per-message services may be applied in advance of a successful completion
status, the value returned by means of the actual_mech_type parameter is undefined until
the routine returns a major status value of GSS_S_COMPLETE.

= The values of the 65S_C_DELEG_FLAG, GSS_C_MUTUAL_FLAG,GSS_C_REPLAY FLAG,
GSS C_SEQUENCE FLAG,GSS C_CONF FLAG,GSS C INTEG FLAGand GSS C ANON FLAG bits
returned by the ret_flags parameter contain values that will be valid if context
establishment succeeds. For example, if the application requests a service such as
delegation or anonymous authentication by means of the req_flags argument, and the
service is unavailable from the underlying mechanism, gss_init_sec_context()
generates a token that will not provide the service, and it indicate by means of the ret_flags
argument that the service will not be supported. The application may choose to abort
context establishment by calling gss_delete_sec_context(3GSS) if it cannot continue
without the service, or if the service was merely desired but not mandatory, it may transmit
the token and continue context establishment.

= The values of the GSS_C_PROT_READY_FLAG and GSS_C_TRANS_FLAG bits within ret_flags
indicate the actual state at the time gss_init_sec_context() returns, whether or not the
context is fully established.

= The GSS-API sets the GSS_C_PROT_READY_FLAG in the final ret_flags returned to a caller,
for example, when accompanied by a GSS_S_COMPLETE status code. However, applications
should not rely on this behavior, as the flag was not defined in Version 1 of the GSS-API.
Instead, applications should determine what per-message services are available after a
successful context establishment according to the GSS_C_INTEG_FLAG and
GSS_C_CONF_FLAG values.

= All other bits within the ret_flags argument are set to zero.

If the initial call of gss_init sec context() fails, the GSS-API does not create a context
object; it leaves the value of the context_handle parameter set to GSS_C_NO_CONTEXT to indicate

Networking Library Functions 217

gss_init_sec_context(3GSS)

Errors

218

this. In the event of failure on a subsequent call, the GSS-API leaves the security context
untouched for the application to delete using gss_delete_sec_context(3GSS).

During context establishment, the informational status bits GSS_S_OLD_TOKEN and
GSS_S_DUPLICATE_TOKEN indicate fatal errors, and GSS-API mechanisms should always
return them in association with a status code of 6GSS_S_FAILURE. This pairing requirement was
not part of Version 1 of the GSS-API specification, so applications that wish to run on Version
1 implementations must special-case these codes.

gss_init_sec_context() may return the following status codes:

GSS_S_COMPLETE
Successful completion.

GSS S CONTINUE NEEDED
A token from the peer application is required to complete the context, and
gss_init_sec_context() must be called again with that token.

GSS_S DEFECTIVE_ TOKEN
Consistency checks performed on the input_token failed.

GSS S DEFECTIVE CREDENTIAL
Consistency checks performed on the credential failed.

GSS S NO_CRED
The supplied credentials are not valid for context acceptance, or the credential handle does
not reference any credentials.

GSS S CREDENTIALS EXPIRED
The referenced credentials have expired.

GSS S BAD BINDINGS
The input_token contains different channel bindings than those specified by means of the
input_chan_bindings parameter.

GSS S BAD SIG
The input_token contains an invalid MIC or a MIC that cannot be verified.

GSS S OLD TOKEN
The input_token is too old. This is a fatal error while establishing context.

GSS_S DUPLICATE TOKEN
The input_token is valid, but it is a duplicate of a token already processed. This is a fatal
error while establishing context.

GSS S NO CONTEXT
The supplied context handle does not refer to a valid context.

GSS_S BAD NAMETYPE
The provided target_name parameter contains an invalid or unsupported name type.

man pages section 3: Networking Library Functions « Last Revised 6 Nov 2009

gss_init_sec_context(3GSS)

Examples

GSS S BAD NAME
The supplied target_name parameter is ill-formed.

GSS_S BAD MECH
The token received specifies a mechanism that is not supported by the implementation or
the provided credential.

GSS S FAILURE
The underlying mechanism detected an error for which no specific GSS status code is
defined. The mechanism-specific status code reported by means of the minor_status
parameter details the error condition.

EXAMPLE1 Invokinggss_init_sec_context() WithinaLoop
A typical portable caller should always invoke gss_init_sec_context() within aloop:

int context established = 0;
gss_ctx id t context hdl = GSS C NO CONTEXT;

input token->length = 0;

while (!context established) {

maj stat = gss init sec context(&min stat,
cred hdl,
&context_hdl,
target name,
desired mech,
desired services,
desired time,
input bindings,
input_token,
&actual mech,
output_token,
&actual services,
&actual_time);

if (GSS ERROR(maj stat)) {

report _error(maj _stat, min stat);

};

if (output token->length != 0) {
send_token to peer(output token);
gss_release buffer(&min stat, output token)

}

if (GSS ERROR(maj stat)) {

if (context hdl != GSS C NO CONTEXT)
gss delete sec context(&min stat,
&context hdl,
GSS_C_NO_BUFFER);

Networking Library Functions 219

gss_init_sec_context(3GSS)

EXAMPLE1 Invokinggss_init_sec_context() Withina Loop (Continued)

break;

+

if (maj_stat & GSS_S CONTINUE_NEEDED) {
receive token_ from peer(input_token);

} else {
context established = 1;

}i

}i

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

MT-Level Safe

SeeAlso gss delete sec context(3GSS),gss export sec context(3GSS),gss get mic(3GSS),
gss wrap(3GSS), attributes(5)

Developer’s Guide to Oracle Solaris 11 Security

220 man pages section 3: Networking Library Functions « Last Revised 6 Nov 2009

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=GSSAPIPG

gss_inquire_context(3GSS)

Name gss_inquire_context — obtain information about a security context

Synopsis

Description

Parameters

cc [flag... 1 file...

-lgss [library...]

#include <gssapi/gssapi.h>

OM uint32 gss_inquire context(OM uint32 *minor_status,
const gss ctx id t context_handle,gss name t *src_name,
gss_name_t *targ_name, OM_uint32 *lifetime_rec,
gss_OID *mech_type, OM_uint32 *ctx_flags,
int *locally_initiated, int *open);

The gss_inquire_context() function obtains information about a security context. The
caller must already have obtained a handle that refers to the context, although the context
need not be fully established.

The parameter descriptions for gss_inquire_context() are as follows:

minor_status
context_handle

src_name

targ _name

lifetime_rec

mech_type

ctx_flags

A mechanism-specific status code.
A handle that refers to the security context.

The name of the context initiator. If the context was established using
anonymous authentication, and if the application invoking
gss_inquire_context() is the context acceptor, an anonymous name is
returned. Storage associated with this name must be freed by the
application after use with a call to gss_release_name (). Specify NULL if
the parameter is not required.

The name of the context acceptor. Storage associated with this name
must be freed by the application after use with a call to

gss_release name().If the context acceptor did not authenticate itself,
and if the initiator did not specify a target name in its call to
gss_init_sec_context(), the value GSS_C_NO_NAME is returned. Specify
NULL if the parameter is not required.

The number of seconds for which the context will remain valid. If the
context has expired, this parameter will be set to zero. Specify NULL if the
parameter is not required.

The security mechanism providing the context. The returned OID is a
pointer to static storage that should be treated as read-only by the
application; in particular, the application should not attempt to free it.
Specify NULL if the parameter is not required.

Contains various independent flags, each of which indicates that the

context supports (or is expected to support, if ctx_open is false) a specific
service option. If not needed, specify NULL. Symbolic names are provided
for each flag, and the symbolic names corresponding to the required flags

Networking Library Functions 221

gss_inquire_context(3GSS)

should be logically ANDed with the ret_flags value to test whether a
given option is supported by the context. The flags are:

GSS_C_DELEG_FLAG

GSS C MUTUAL FLAG

GSS_C_REPLAY FLAG

GSS_C_SEQUENCE FLAG

GSS_C_CONF_FLAG

GSS_C_INTEG FLAG

GSS_C_ANON_FLAG

GSS_C_PROT READY FLAG

GSS_C_TRANS FLAG

If true, credentials were delegated from the
initiator to the acceptor. If false, no
credentials were delegated.

If true, the acceptor was authenticated to
the initiator. If false, the acceptor did not
authenticate itself.

If true, the replay of protected messages
will be detected. If false, replayed messages
will not be detected.

If true, out-of-sequence protected
messages will be detected. If false,
out-of-sequence messages will not be
detected.

If true, confidential service may be invoked
by calling the gss_wrap(3GSS) routine. If
false, no confidential service is available
through gss_wrap().gss_wrap() provides
message encapsulation, data-origin
authentication, and integrity services only.

If true, integrity service can be invoked by
calling either the gss_get_mic() or the
gss_wrap () routine. If false, per-message
integrity service is unavailable.

If true, the initiator's identity is not
revealed to the acceptor. The src_name
parameter, if requested, contains an
anonymous internal name. If false, the
initiator has been authenticated normally.

If true, the protection services, as specified
by the states of the GSS_C_CONF_FLAG and
GSS_C_INTEG_FLAG, are available for use. If
false, they are available only if the context
is fully established, that is, if the open

parameter is non-zero.

If true, resultant security context can be
transferred to other processes through a
call to gss_export sec_context().If

222 man pages section 3: Networking Library Functions « Last Revised 22 Aug 2011

gss_inquire_context(3GSS)

Errors

Attributes

See Also

false, the security context is not
transferable.

locally_initiated ~ Non-zero if the invoking application is the context initiator. Specify NULL
if the parameter is not required.

open Non-zero if the context is fully established; zero ifa
context-establishment token is expected from the peer application.
Specify NULL if the parameter is not required.

gss_inquire_context () returns one of the following status codes:
GSS S COMPLETE Successful completion.
GSS S NO CONTEXT The referenced context could not be accessed.

GSS_S_FAILURE The underlying mechanism detected an error for which no specific
GSS status code is defined. The mechanism-specific status code
reported by means of the minor_status parameter details the error
condition.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

MT-Level Safe

gss_accept sec_context(3GSS),gss context time(3GSS),

gss delete sec context(3GSS),gss export sec context(3GSS),

gss_import_sec context(3GSS),gss init sec_context(3GSS),
gss_process_context token(3GSS), gss_wrap(3GSS), gss wrap _size 1imit(3GSS),
attributes(5)

Developer’s Guide to Oracle Solaris 11 Security

Networking Library Functions 223

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=GSSAPIPG

gss_inquire_cred(3GSS)

Name gss_inquire_cred - obtain information about a credential

Synopsis

Parameters

Description

Return Values

224

cc [flag... 1 file... -lgss [library...]
#include <gssapi/gssapi.h>

OM uint32 gss_inquire cred(OM uint32 *minor_status,
const gss cred id t cred_handle,gss name t *name,
OM_uint32 *lifetime, gss_cred_usage_t *cred_usage,
gss_OID set *mechanisms) ;

The parameter descriptions for gss_inquire_cred() follow:

minor_status

cred_handle

name

lifetime

cred_usage

mechanisms

Mechanism specific status code.

Handle that refers to the target credential. Specify GSS_C_NO_CREDENTIAL to
inquire about the default initiator principal.

Name of the identity asserted by the credential. Any storage associated with
this name should be freed by the application after use by a call to
gss_release_name(3GSS).

Number of seconds for which the credential remains valid. If the credential
has expired, this parameter will be set to zero. Specify NULL if the parameter
is not required.

Flag that indicates how a credential is used. The cred_usage parameter may
contain one of the following values: GSS_C_INITIATE, GSS_C_ACCEPT, or
GSS_C_BOTH. Specify NULL if this parameter is not required.

Set of mechanisms supported by the credential. Storage for the returned
OID-set must be freed by the application after use by a call to
gss_release_oid_set(3GSS). Specify NULL if this parameter is not
required.

Use the gss_inquire_cred() function to obtain information about a credential.

The gss_inquire_cred() function can return the following status codes:

GSS_S_COMPLETE
GSS S NO_CRED

Successful completion.

The referenced credentials could not be accessed.

GSS_S DEFECTIVE CREDENTIAL The referenced credentials were invalid.

GSS_S CREDENTIALS EXPIRED The referenced credentials have expired. If the lifetime

GSS S FAILURE

parameter was not passed as NULL, it will be set to 0.

The underlying mechanism detected an error for which
no specific GSS status code is defined. The
mechanism-specific status code reported by means of the
minor_status parameter details the error condition.

man pages section 3: Networking Library Functions - Last Revised 30 Jan 2004

gss_inquire_cred(3GSS)

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE

ATTRIBUTE VALUE

MT-Level

Safe

SeeAlso gss release name(3GSS), gss release oid set(3GSS), libgss(3LIB), attributes(5)

Developer’s Guide to Oracle Solaris 11 Security

Networking Library Functions

225

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libgss-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=GSSAPIPG

gss_inquire_cred_by_mech(3GSS)

Name gss_inquire_cred_by_mech - obtain per-mechanism information about a credential

Synopsis cc [flag... | file... -lgss [library...]
#include <gssapi/gssapi.h>

OM uint32 gss inquire cred by mech(OM uint32 *minor_status,
const gss_cred_id_t cred_handle,const gss_OID mech_type,
gss_name_t *name, OM_uint32 *initiator_lifetime,

OM_uint32 *acceptor_lifetime, gss_cred_usage_t *cred_usage) ;

Parameters acceptor_lifetime

cred_handle

cred_usage

initiator_lifetime

mech_type
minor_status

name

The number of seconds that the credential is capable of accepting
security contexts under the specified mechanism. If the credential can
no longer be used to accept contexts, or if the credential usage for this
mechanism is GSS_C_INITIATE, this parameter will be set to @. Specify
NULL if this parameter is not required.

A handle that refers to the target credential. Specify
GSS_C_NO_CREDENTIAL to inquire about the default initiator principal.

How the credential may be used with the specified mechanism. The
cred_usage parameter may contain one of the following values:

GSS C INITIATE,GSS C ACCEPT,orGSS C BOTH. Specify NULL if this
parameter is not required.

The number of seconds that the credential is capable of initiating
security contexts under the specified mechanism. If the credential can
no longer be used to initiate contexts, or if the credential usage for this
mechanism is GSS_C_ACCEPT, this parameter will be set to 0. Specify
NULL if this parameter is not required.

The mechanism for which the information should be returned.
A mechanism specific status code.

The name whose identity the credential asserts. Any storage associated
with this name must be freed by the application after use by a call to
gss_release_name(3GSS).

Description Thegss_inquire_cred_by_mech() function obtains per-mechanism information about a

credential.

Errors Thegss_inquire_cred_by mech() function can return the following status codes:

GSS S COMPLETE

Successful completion.

GSS S _CREDENTIALS EXPIRED The credentials cannot be added because they have

expired.

GSS S DEFECTIVE CREDENTIAL The referenced credentials are invalid.

226 man pages section 3: Networking Library Functions - Last Revised 22 Aug 2011

gss_inquire_cred_by_mech(3GSS)

GSS_S_FAILURE The underlying mechanism detected an error for which
no specific GSS status code is defined. The
mechanism-specific status code reported by means of the
minor_status parameter details the error condition.

GSS_S _NO_CRED The referenced credentials cannot be accessed.

GSS_S_UNAVAILABLE The gss_inquire cred by mech() function is not
available for the specified mechanism type.

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

MT-Level Safe

SeeAlso gss release name(3GSS), attributes(5)

Developer’s Guide to Oracle Solaris 11 Security

Networking Library Functions 227

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=GSSAPIPG

gss_inquire_mechs_for_name(3GSS)

Name gss_inquire_mechs_for_name - list mechanisms that support the specified name-type

Synopsis cc [flag...] file... -lgss [library...]
#include <gssapi/gssapi.h>

OM uint32 gss inquire mechs for name(OM uint32 *minor_status,
const gss_name_t input_name,gss_OID_set *mech_types);

Description Thegss_inquire_mechs_for_name() function returns the set of mechanisms supported by
the GSS-API that may be able to process the specified name. Each mechanism returned will
recognize at least one element within the internal name.

Some implementations of the GSS-API may perform this test by checking nametype
information contained within the passed name and registration information provided by
individual mechanisms. This means that the mech_types set returned by the function may
indicate that a particular mechanism will understand the name, when in fact the mechanism
would refuse to accept the name as input to gss_canonicalize name(3GSS),

gss_init sec_context(3GSS), gss acquire cred(3GSS),orgss add cred(3GSS), due to
some property of the name itself rather than the name-type. Therefore, this function should be
used only as a pre-filter for a call to a subsequent mechanism-specific function.

Parameters The parameter descriptions for gss_inquire_mechs_for_name() follow in alphabetical
order:

minor_status Mechanism-specific status code.
input_name The name to which the inquiry relates.

mech_types Set of mechanisms that may support the specified name. The returned OID
set must be freed by the caller after use with a call to
gss_release oid set(3GSS).

Errors Thegss_inquire_mechs_for_name() function may return the following status codes:
GSS S COMPLETE Successful completion.
GSS_S BAD NAME The input_name parameter was ill-formed.

GSS_S_BAD_NAMETYPE The input_name parameter contained an invalid or unsupported
type of name.

GSS_S_FAILURE The underlying mechanism detected an error for which no specific
GSS status code is defined. The mechanism-specific status code
reported by means of the minor_status parameter details the error
condition.

Attributes See attributes(5) for descriptions of the following attributes:

228 man pages section 3: Networking Library Functions - Last Revised 22 Aug 2011

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

gss_inquire_mechs_for_name(3GSS)

ATTRIBUTETYPE

ATTRIBUTE VALUE

MT-Level

Safe

SeeAlso gss _acquire cred(3GSS), gss_add cred(3GSS), gss_canonicalize name(3GSS),

gss_init sec_context(3GSS),gss release oid set(3GSS),attributes(5)

Developer’s Guide to Oracle Solaris 11 Security

Networking Library Functions

229

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=GSSAPIPG

gss_inquire_names_for_mech(3GSS)

230

Name

Synopsis

Description

Parameters

Errors

Attributes

See Also

gss_inquire_names_for_mech - list the name-types supported by the specified mechanism

cc [flag..1 file... -lgss [library..]
#include <gssapi/gssapi.h>

OM_uint32 gss_inquire_names_for_mech(OM_uint32 *minor_status,
const gss_OID mechanism,gss_OID_set *name_types) ;

The gss_inquire_names_for_mech() function returns the set of name-types supported by

the specified mechanism.

The parameter descriptions for gss_inquire_names_for_mech() follow:

minor_status A mechanism-specific status code.

mechanism The mechanism to be interrogated.

name_types Set of name-types supported by the specified mechanism. The returned OID
set must be freed by the application after use with a call to
gss_release oid set(3GSS).

The gss_inquire_names_for_mech() function may return the following values:

GSS_S_COMPLETE Successful completion.

GSS_S_FAILURE The underlying mechanism detected an error for which no specific GSS
status code is defined. The mechanism-specific status code reported by
means of the minor_status parameter details the error condition.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE

ATTRIBUTE VALUE

MT-Level

Safe

gss_release oid set(3GSS), attributes(5)

Developer’s Guide to Oracle Solaris 11 Security

man pages section 3: Networking Library Functions «

Last Revised 22 Aug 2011

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=GSSAPIPG

gss_oid_to_str(3GSS)

Name

Synopsis

Parameters

Description

Errors

Attributes

See Also

gss_oid_to_str — convert an OID to a string
cc [flag... 1 file... -lgss [library...]
#include <gssapi/gssapi.h>
gss_oid_to_str(OM_uint32 *minor_status, const gss_OID oid,
gss_buffer toid_str);
minor_status ~ Status code returned by underlying mechanism.
oid GSS-API OID structure to convert.
oid_str String to receive converted OID.
The gss_oid_to_str() function converts a GSS-API OID structure to a string. You can use

the function to convert the name of a mechanism from an OID to a simple string. This
function is a convenience function, as is its complementary function, gss_str_to_0id(3GSS).

If an OID must be created, use gss_create _empty oid set(3GSS)and
gss_add_oid_set_member(3GSS) to create it. OIDs created in this way must be released with
gss_release_oid_set(3GSS). However, it is strongly suggested that applications use the
default GSS-API mechanism instead of creating an OID for a specific mechanism.

The gss_oid_to_str() function returns one of the following status codes:

GSS S CALL INACCESSIBLE READ
A required input parameter could not be read.

GSS S CALL INACCESSIBLE WRITE
A required output parameter could not be written.

GSS S _COMPLETE
Successful completion.

GSS S FAILURE
The underlying mechanism detected an error for which no specific GSS status code is
defined. The mechanism-specific status code reported by means of the minor_status
parameter details the error condition.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTEVALUE

MT-Level Safe

gss_add_oid_set member(3GSS), gss_create _empty oid set(3GSS),
gss_release oid set(3GSS),gss_str to 0id(3GSS),attributes(5)

Developer’s Guide to Oracle Solaris 11 Security

Networking Library Functions 231

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=GSSAPIPG

gss_oid_to_str(3GSS)

Warnings This function is included for compatibility only with programs using earlier versions of the
GSS-API and should not be used for new programs. Other implementations of the GSS-API
might not support this function, so portable programs should not rely on it. Sun might not
continue to support this function.

232 man pages section 3: Networking Library Functions - Last Revised 22 Aug 2011

gss_process_context_token(3GSS)

Name gss_process_context_token — pass asynchronous token to security service

Synopsis cc [flag... 1 file... -lgss [library...]
#include <gssapi/gssapi.h>

OM uint32 gss process context token(OM uint32 *minor_status,
const gss_ctx_id_t context_handle,const gss_buffer_t token_buffer);

Description Thegss_process_context_token() function provides a way to pass an asynchronous token
to the security service. Most context-level tokens are emitted and processed synchronously by
gss_init sec_context() and gss_accept sec_context(), and the application is informed
as to whether further tokens are expected by the GSS_C_CONTINUE_NEEDED major status bit.
Occasionally, a mechanism might need to emit a context-level token at a point when the peer
entity is not expecting a token. For example, the initiator's final call to
gss_init_sec_context() may emit a token and return a status of GSS_S_COMPLETE, but the
acceptor's call to gss_accept_sec_context () might fail. The acceptor's mechanism might
want to send a token containing an error indication to the initiator, but the initiator is not
expecting a token at this point, believing that the context is fully established.
gss_process_context_token() providesa way to pass such a token to the mechanism at any
time.

This function is provided for compatibility with the GSS-API version 1. Because
gss_delete_sec_context () nolonger returns a valid output_token to be sent to
gss_process_context_token(), applications using a newer version of the GSS-API do not
need to rely on this function.

Parameters The parameter descriptions for gss_process_context_token() are as follows:
minor_status A mechanism-specific status code.
context_handle ~ Context handle of context on which token is to be processed.

token_buffer Token to process.

Errors gss_process_context_token() returns one of the following status codes:
GSS_S_COMPLETE Successful completion.
GSS S DEFECTIVE TOKEN Indicates that consistency checks performed on the token failed.
GSS S _NO_CONTEXT The context_handle did not refer to a valid context.

GSS_S_FAILURE The underlying mechanism detected an error for which no
specific GSS status code is defined. The mechanism-specific
status code reported by means of the minor_status parameter
details the error condition.

Networking Library Functions 233

gss_process_context_token(3GSS)

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

MT Level Safe

SeeAlso gss accept sec context(3GSS),gss delete sec context(3GSS),
gss_init sec context(3GSS), attributes(5)

Developer’s Guide to Oracle Solaris 11 Security

234 man pages section 3: Networking Library Functions « Last Revised 22 Aug 2011

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=GSSAPIPG

gss_release_buffer(3GSS)

Name

Synopsis

Description

Parameters

Errors

Attributes

See Also

gss_release_buffer — free buffer storage allocated by a GSS-API function
cc [flag... 1 file... -lgss [library...]
#include <gssapi/gssapi.h>

OM_uint32 gss_release_buffer(OM_uint32 *minor_status, gss_buffer_tbuffer);

The gss_release_buffer() function frees buffer storage allocated by a GSS-API function.
The gss_release_buffer() function also zeros the length field in the descriptor to which the
buffer parameter refers, while the GSS-API function sets the pointer field in the descriptor to
NULL. Any buffer object returned by a GSS-API function may be passed to
gss_release_buffer(), evenif no storage is associated with the buffer.

The parameter descriptions for gss_release_buffer() follow:
minor_status Mechanism-specific status code.

buffer The storage associated with the buffer will be deleted. The
gss_buffer_desc() object will not be freed; however, its length field will be
zeroed.

The gss_release_buffer() function may return the following status codes:
GSS_S_COMPLETE Successful completion

GSS_S_FAILURE The underlying mechanism detected an error for which no specific GSS
status code is defined. The mechanism-specific status code reported by
means of the minor_status parameter details the error condition.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

MT-Level Safe

attributes(5)

Developer’s Guide to Oracle Solaris 11 Security

Networking Library Functions 235

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=GSSAPIPG

gss_release_cred(3GSS)

Name gss_release_cred — discard a credential handle

Synopsis cc [flag... 1 file... -lgss [library...]
#include <gssapi/gssapi.h>

OM uint32 gss release cred(OM uint32 *minor_status,
gss_cred_id t *cred_handle);

Description Thegss release cred() function informs the GSS-API that the specified credential handle
is no longer required by the application and frees the associated resources. The cred_handle
parameter is set to GSS_C_NO_CREDENTIAL when this call completes successfully.

Parameters The parameter descriptions for gss_release_cred() follow:
minor_status A mechanism specific status code.

cred_handle An opaque handle that identifies the credential to be released. If
GSS_C_NO_CREDENTIAL is specified, the gss_release cred() function will
complete successfully, but it will do nothing.

Errors gss_release_cred() may return the following status codes:
GSS_S_COMPLETE Successful completion.
GSS_S_NO_CRED The referenced credentials cannot be accessed.

GSS_S_FAILURE The underlying mechanism detected an error for which no specific GSS
status code is defined. The mechanism-specific status code reported by
means of the minor_status parameter details the error condition.

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

MT-Level Safe

SeeAlso attributes(5)

Developer’s Guide to Oracle Solaris 11 Security

236 man pages section 3: Networking Library Functions - Last Revised 22 Aug 2011

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=GSSAPIPG

gss_release_name(3GSS)

Name

Synopsis

Description

Parameters

Errors

Attributes

See Also

gss_release_name - discard an internal-form name

cc [flag..1 file... -lgss [library...]
#include <gssapi/gssapi.h

OM uint32 gss release name(OM uint32 *minor_status, gss name_t *name);

The gss_release_name() function frees GSS-API-allocated storage associated with an
internal-form name. The name is set to GSS_C_NO_NAME on successful completion of this call.

The parameter descriptions for gss_release_name() follow:
minor_status A mechanism-specific status code.

name The name to be deleted.

The gss_release_name() function may return the following status codes:
GSS S COMPLETE Successful completion.
GSS_ S BAD_NAME The name parameter did not contain a valid name.

GSS_S_FAILURE The underlying mechanism detected an error for which no specific GSS
status code is defined. The mechanism-specific status code reported by
means of the minor_status parameter details the error condition.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

MT-Level Safe

attributes(5)

Developer’s Guide to Oracle Solaris 11 Security

Networking Library Functions 237

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=GSSAPIPG

gss_release_oid(3GSS)

238

Name

Synopsis

Description

Parameters

Errors

Attributes

See Also

Warnings

gss_release_oid - release an object identifier

cc [flag... 1 file... -lgss [library...]
#include <gssapi/gssapi.h>

gss_release 0id(OM uint32 *minor_status, const gss 0ID *oid);

The gss_release_oid() function deletes an OID. Such an OID might have been created with
gss _str to oid().

Since creating and deleting individual OIDs is discouraged, it is preferable to use
gss_release_oid_set() ifitis necessary to deallocate a set of OIDs.

The parameter descriptions for gss_release o0id() are as follows:
minor_status A mechanism-specific status code.

oid The object identifier of the mechanism to be deleted.
gss_release_oid() returns one of the following status codes:

GSS S COMPLETE Successful completion.

GSS_S_FAILURE The underlying mechanism detected an error for which no specific GSS
status code is defined. The mechanism-specific status code reported by
means of the minor_status parameter details the error condition.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

MT Level Safe

gss_release_oid set(3GSS),gss_str to 0id(3GSS),attributes(5)
Developer’s Guide to Oracle Solaris 11 Security

This function is included for compatibility only with programs using earlier versions of the
GSS-API and should not be used for new programs. Other implementations of the GSS-API
might not support this function, so portable programs should not rely on it. Sun might not
continue to support this function.

man pages section 3: Networking Library Functions « Last Revised 22 Aug 2011

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=GSSAPIPG

gss_release_oid_set(3GSS)

Name

Synopsis

Description

Parameters

Errors

Attributes

See Also

gss_release_oid_set - free storage associated with a GSS-API-generated gss_OID_set object

cc [flag... 1 file... -lgss [library...]
#include <gssapi/gssapi.h>

OM uint32 gss release oid set(OM uint32 *minor_status, gss OID set *set);

The gss_release_oid_set() function frees storage associated with a GSS-API-generated
gss_OID_set object. The set parameter must refer to an OID-set that was returned from a
GSS-API function. The gss_release_oid_set() function will free the storage associated with
each individual member OID, the OID set's elements array, and gss_0ID_set_desc.

gss_OID_setissettoGSS_C_NO_OID_SET on successful completion of this function.

The parameter descriptions for gss_release oid_set() follow:

minor_status A mechanism-specific status code

set Storage associated with the gss_0ID_set will be deleted

The gss_release_oid_set() function may return the following status codes:

GSS S COMPLETE Successful completion

GSS_S_FAILURE The underlying mechanism detected an error for which no specific GSS
status code is defined. The mechanism-specific status code reported by
means of the minor_status parameter details the error condition.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE

ATTRIBUTEVALUE

MT-Level

Safe

attributes(5)

Developer’s Guide to Oracle Solaris 11 Security

Networking Library Functions

239

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=GSSAPIPG

gss_store_cred(3GSS)

Name gss_store_cred - store a credential in the current credential store

Synopsis cc [flag...] file...

-lgss [library...]

#include <gssapi/gssapi.h>

OM uint32 gss store cred(OM uint32 *minor_status,
const gss_cred_id_t input_cred, const gss_cred_usage_t cred_usage,
const gss OID desired_mech, OM uint32 overwrite_cred,
OM_uint32 default_cred, gss_OID_set *elements_stored,
gss_cred_usage_t *cred_usage_stored) ;

Parameters The parameter descriptions for gss_store_cred() follow:

input_cred

cred_usage

desired_mech

overwrite_cred

default_cred

elements_stored

cred_usage_stored

minor_status

The credential to be stored.

This parameter specifies whether to store an initiator, an acceptor, or
both usage components of a credential.

The mechanism-specific component of a credential to be stored. If
GSS_C_NULL_OIDis specified, the gss_store cred() function attempts
to store all the elements of the given input_cred_handle.

The gss_store_cred() function is not atomic when storing multiple
elements of a credential. All delegated credentials, however, contain a
single element.

A boolean that indicates whether to overwrite existing credentials in
the current store for the same principal as that of the
input_cred_handle. A non-zero value indicates that credentials are
overwritten. A zero value indicates that credentials are not overwritten.

A boolean that indicates whether to set the principal name of the
input_cred_handle parameter as the default of the current credential
store. A non-zero value indicates that the principal name is set as the
default. A zero value indicates that the principal name is not set as the
default. The default principal of a credential store matches
GSS_C_NO_NAME as the desired_name input parameter for
gss_store cred(3GSS).

The set of mechanism 0IDs for which input_cred_handle elements have
been stored.

The stored input_cred_handle usage elements: initiator, acceptor, or
both.

Minor status code that is specific to one of the following: the
mechanism identified by the desired_mech_element parameter, or the
element of a single mechanism in the input_cred_handle. In all other
cases, minor_status has an undefined value on return.

240 man pages section 3: Networking Library Functions « Last Revised 30 Jun 2005

gss_store_cred(3GSS)

Description

Return Values

Attributes

The gss_store cred() function stores a credential in the the current GSS-API credential
store for the calling process. Input credentials can be re-acquired through
gss_add_cred(3GSS) and gss_acquire_cred(3GSS).

The gss_store_cred() function is specifically intended to make delegated credentials
available to a user's login session.

The gss_accept_sec_context () function can return a delegated GSS-API credential to its
caller. The function does not store delegated credentials to be acquired through
gss_add_cred(3GSS). Delegated credentials can be used only by a receiving process unless
they are made available for acquisition by calling the gss_store_cred() function.

The Solaris Operating System supports a single GSS-API credential store per user. The current
GSS-API credential store of a process is determined by its effective UID.

In general, acceptor applications should switch the current credential store by changing the
effective UID before storing a delegated credential.

The gss_store_cred() can return the following status codes:

GSS_S_COMPLETE Successful completion.
GSS S CREDENTIALS EXPIRED The credentials could not be stored because they have
expired.

GSS S CALL INACCESSIBLE_ READ No input credentials were given.
GSS_S_UNAVAILABLE The credential store is unavailable.

GSS_S DUPLICATE_ELEMENT The credentials could not be stored because the
overwrite_cred input parameter was set to false (0) and
the input_cred parameter conflicts with a credential in
the current credential store.

GSS_S_FAILURE The underlying mechanism detected an error for which
no specific GSS status code is defined. The
mechanism-specific status code reported by means of
the minor_status parameter details the error condition.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTEVALUE

Interface Stability Uncommitted

MT-Level Safe

Networking Library Functions 241

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

gss_store_cred(3GSS)

SeeAlso gss accept sec_context(3GSS),gss acquire cred(3GSS), gss_add cred(3GSS),
gss_init sec context(3GSS),gss inquire cred(3GSS),gss release cred(3GSS),
gss_release oid set(3GSS), attributes(5)

Developer’s Guide to Oracle Solaris 11 Security

242 man pages section 3: Networking Library Functions « Last Revised 30 Jun 2005

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=GSSAPIPG

gss_str_to_oid(3GSS)

Name

Synopsis

Description

Parameters

Errors

Attributes

See Also

gss_str_to_oid - convert a string to an OID

cc [flag... 1 file... -lgss [library...]
#include <gssapi/gssapi.h>

OM uint32 gss str to 0id(OM uint32 *minor_status,
const gss_buffer t oid_str,gss 0ID *oid);

The gss_str_to_oid() function converts a string to a GSS-API OID structure. You can use
the function to convert a simple string to an OID to . This function is a convenience function,
as is its complementary function, gss_oid_to_str(3GSS).

OIDs created with gss_str_to_oid() must be deallocated through gss_release_o0id(3GSS),
if available. If an OID must be created, use gss_create empty oid set(3GSS)and
gss_add_oid_set_member(3GSS) to create it. OIDs created in this way must be released with
gss_release_oid_set(3GSS). However, it is strongly suggested that applications use the
default GSS-API mechanism instead of creating an OID for a specific mechanism.

The parameter descriptions for gss_str_to_oid() are as follows:
minor_status ~ Status code returned by underlying mechanism.
oid GSS-API OID structure to receive converted string.

oid_str String to convert.

gss_str_to_oid() returns one of the following status codes:

GSS_ S CALL INACCESSIBLE_READ A required input parameter could not be read.
GSS S CALL INACCESSIBLE WRITE A required output parameter could not be written.
GSS_S_COMPLETE Successful completion.

GSS_S_FAILURE The underlying mechanism detected an error for
which no specific GSS status code is defined. The
mechanism-specific status code reported by means of
the minor_status parameter details the error
condition.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

MT Level Safe

gss add oid set member(3GSS),gss create empty oid set(3GSS),
gss_oid to str(3GSS),gss release oid set(3GSS),attributes(5)

Developer’s Guide to Oracle Solaris 11 Security

Networking Library Functions 243

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=GSSAPIPG

gss_str_to_oid(3GSS)

Warnings This function is included for compatibility only with programs using earlier versions of the
GSS-API and should not be used for new programs. Other implementations of the GSS-API
might not support this function, so portable programs should not rely on it. Sun might not
continue to support this function.

244 man pages section 3: Networking Library Functions « Last Revised 22 Aug 2011

gss_test_oid_set_member(3GSS)

Name

Synopsis

Description

Parameters

Errors

Attributes

See Also

gss_test_oid_set_member - interrogate an object identifier set

cc [flag... 1 file... -lgss [library...]
#include <gssapi/gssapi.h>

OM uint32 gss test oid set member(OM uint32 *minor_status,
const gss 0ID member,const gss OID set set,
int *present);

The gss_test_oid_set_member () function interrogates an object identifier set to determine
if a specified object identifier is a member. This function should be used with OID sets
returned by gss_indicate_mechs(3GSS), gss_acquire_cred(3GSS), and
gss_inquire_cred(3GSS), but it will also work with user-generated sets.

The parameter descriptions for gss_test_oid_set_member() follow:

minor_status A mechanism-specific status code

member An object identifier whose presence is to be tested
set An object identifier set.
present The value of present is non-zero if the specified OID is a member of the set; if

not, the value of present is zero.

The gss_test_oid_set_member () function may return the following status codes:
GSS_ S COMPLETE Successful completion

GSS_S_FAILURE The underlying mechanism detected an error for which no specific GSS
status code is defined. The mechanism-specific status code reported by
means of the minor_status parameter details the error condition.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

MT-Level Safe

gss_acquire cred(3GSS), gss indicate mechs(3GSS), gss inquire cred(3GSS),
attributes(5)

Developer’s Guide to Oracle Solaris 11 Security

Networking Library Functions 245

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=GSSAPIPG

gss_unwrap(3GSS)

Name gss_unwrap - verify a message with attached cryptographic message

Synopsis cc [flag... 1 file... -lgss [library...]
#include <gssapi/gssapi.h>

OM uint32 gss unwrap(OM uint32 *minor_status,
const gss_ctx id t context_handle,
const gss_buffer_t input_message_buffer,
gss_buffer_t output_message_buffer, int *conf_state,
gss_qop_t *qop_state) ;

Description The gss_unwrap() function converts a message previously protected by gss_wrap(3GSS)
back to a usable form, verifying the embedded MIC. The conf_state parameter indicates
whether the message was encrypted; the gop_state parameter indicates the strength of
protection that was used to provide the confidentiality and integrity services.

Since some application-level protocols may wish to use tokens emitted by gss_wrap(3GSS) to
provide secure framing, the GSS-API supports the wrapping and unwrapping of zero-length
messages.

Parameters The parameter descriptions for gss_unwrap () follow:

minor_status The status code returned by the underlying mechanism.
context_handle Identifies the context on which the message arrived.
input_message_buffer The message to be protected.

output_message_buffer ~ The buffer to receive the unwrapped message. Storage associated
with this buffer must be freed by the application after use with a
callto gss_release buffer(3GSS).

conf_state If the value of conf_state is non-zero, then confidentiality and
integrity protection were used. If the value is zero, only integrity
service was used. Specify NULL if this parameter is not required.

qop_state Specifies the quality of protection provided. Specify NULL if this
parameter is not required.

Errors gss_unwrap() may return the following status codes:
GSS_S COMPLETE Successful completion.
GSS_S _DEFECTIVE_TOKEN The token failed consistency checks.
GSS S BAD SIG The MIC was incorrect.

GSS_S_DUPLICATE_TOKEN The token was valid, and contained a correct MIC for the
message, but it had already been processed.

GSS_S_OLD_TOKEN The token was valid, and contained a correct MIC for the
message, but it is too old to check for duplication.

246 man pages section 3: Networking Library Functions « Last Revised 22 Aug 2011

gss_unwrap(3GSS)

Attributes

See Also

GSS_S_UNSEQ_TOKEN

GSS_S_GAP_TOKEN

GSS S CONTEXT EXPIRED
GSS S NO CONTEXT

GSS S FAILURE

The token was valid, and contained a correct MIC for the
message, but has been verified out of sequence; a later token has
already been received.

The token was valid, and contained a correct MIC for the
message, but has been verified out of sequence; an earlier
expected token has not yet been received.

The context has already expired.
The context_handle parameter did not identify a valid context.

The underlying mechanism detected an error for which no
specific GSS status code is defined. The mechanism-specific
status code reported by means of the minor_status parameter
details the error condition.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE

ATTRIBUTE VALUE

MT-Level

Safe

gss_release buffer(3GSS),

gss wrap(3GSS), attributes(5)

Developer’s Guide to Oracle Solaris 11 Security

Networking Library Functions

247

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=GSSAPIPG

gss_verify_mic(3GSS)

Name

Synopsis

Description

Parameters

Errors

248

gss_verify_mic - verify integrity of a received message

cc [flag... 1 file... -lgss [library...]
#include <gssapi/gssapi.h>

OM_uint32 gss_verify mic(OM uint32 *minor_status,
const gss_ctx_id_t context_handle, const gss_buffer_ t message_buffer,
const gss_buffer_t token_buffer, gss_qop_t *qop_state) ;

The gss_verify_mic() function verifies that a cryptographic MIC, contained in the token
parameter, fits the supplied message. The gop_state parameter allows a message recipient to
determine the strength of protection that was applied to the message.

Since some application-level protocols may wish to use tokens emitted by gss_wrap(3GSS) to
provide secure framing, the GSS-API supports the calculation and verification of MICs over
zero-length messages.

The parameter descriptions for gss_verify mic() follow:

minor_status The status code returned by the underlying mechanism.

context_handle Identifies the context on which the message arrived.

message_buffer ~ The message to be verified.

token_buffer The token associated with the message.

qop_state Specifies the quality of protection gained from the MIC. Specify NULL if
this parameter is not required.

gss_verify _mic() may return the following status codes:

GSS S _COMPLETE Successful completion.

GSS S _DEFECTIVE_ TOKEN The token failed consistency checks.

GSS_S _BAD SIG The MIC was incorrect.

GSS S DUPLICATE TOKEN The token was valid and contained a correct MIC for the
message, but it had already been processed.

GSS S OLD TOKEN The token was valid and contained a correct MIC for the
message, but it is too old to check for duplication.

GSS S _UNSEQ TOKEN The token was valid and contained a correct MIC for the
message, but it has been verified out of sequence; a later token
has already been received.

GSS_S_GAP_TOKEN The token was valid and contained a correct MIC for the
message, but it has been verified out of sequence; an earlier
expected token has not yet been received.

GSS_S CONTEXT EXPIRED The context has already expired.

man pages section 3: Networking Library Functions « Last Revised 22 Aug 2011

gss_verify_mic(3GSS)

GSS_S_NO_CONTEXT

GSS S FAILURE

The context_handle parameter did not identify a valid context.

The underlying mechanism detected an error for which no
specific GSS status code is defined. The mechanism-specific
status code reported by means of the minor_status parameter
details the error condition.

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE

ATTRIBUTE VALUE

MT-Level

Safe

SeeAlso gss wrap(3GSS), attributes(5)

Developer’s Guide to Oracle Solaris 11 Security

Networking Library Functions

249

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=GSSAPIPG

gss_wrap(3GSS)

Name

Synopsis

Description

Parameters

Errors

250

gss_wrap — attach a cryptographic message

cc [flag... 1 file... -lgss [library...]
#include <gssapi/gssapi.h>

OM uint32 gss wrap(OM uint32 *minor_status,
const gss_ctx_id_t context_handle, int conf_req_flag,
gss_qop_t qop_req, const gss_buffer_ t input_message_buffer,
int *conf_state, gss_buffer_t output_message_buffer) ;

The gss_wrap () function attaches a cryptographic MIC and optionally encrypts the specified
input_message. The output_message contains both the MIC and the message. The gqop_req
parameter allows a choice between several cryptographic algorithms, if supported by the
chosen mechanism.

Since some application-level protocols may wish to use tokens emitted by gss_wrap() to
provide secure framing, the GSS-API supports the wrapping of zero-length messages.

The parameter descriptions for gss_wrap () follow:

minor_status The status code returned by the underlying mechanism.
context_handle Identifies the context on which the message will be sent.
conf_req_flag If the value of conf_req_flagis non-zero, both confidentiality and

integrity services are requested. If the value is zero, then only
integrity service is requested.

qop_req Specifies the required quality of protection. A mechanism-specific
default may be requested by setting qop_req to
GSS_C_QOP_DEFAULT. Ifan unsupported protection strength is
requested, gss_wrap () will return a major_status of
GSS_S_BAD_QOP.

input_message_buffer The message to be protected.

conf_state If the value of conf_state is non-zero, confidentiality, data origin
authentication, and integrity services have been applied. If the
value is zero, then integrity services have been applied. Specify
NULL if this parameter is not required.

output_message_buffer ~ The buffer to receive the protected message. Storage associated
with this message must be freed by the application after use with a
callto gss_release buffer(3GSS).

gss_wrap() may return the following status codes:
GSS_S COMPLETE Successful completion.

GSS_S CONTEXT EXPIRED The context has already expired.

man pages section 3: Networking Library Functions « Last Revised 22 Aug 2011

gss_wrap(3GSS)

Attributes

See Also

GSS_S NO_CONTEXT The context_handle parameter did not identify a valid context.
GSS_S BAD QOP The specified QOP is not supported by the mechanism.
GSS_S_FAILURE The underlying mechanism detected an error for which no

specific GSS status code is defined. The mechanism-specific
status code reported by means of the minor_status parameter
details the error condition.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

MT-Level Safe

gss_release buffer(3GSS),attributes(5)

Developer’s Guide to Oracle Solaris 11 Security

Networking Library Functions 251

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=GSSAPIPG

gss_wrap_size_limit(3GSS)

Name gss_wrap_size_limit - allow application to determine maximum message size with resulting
output token of a specified maximum size

Synopsis cc [flag... 1 file... -1gss [library...]
#include <gssapi/gssapi.h>

OM uint32 gss process context token(OM uint32 *minor_status,
const gss_ctx_id_t context_handle, int conf_req_flag,
gss_qop_t qop_req, OM uint32 req_output_size,

OM_uint32 *max_input_size) ;

Description Thegss_wrap_size_limit() function allows an application to determine the maximum
message size that, if presented to gss_wrap () with the same conf_req_flagand qop_req
parameters, results in an output token containing no more than req_output_size bytes. This
call is intended for use by applications that communicate over protocols that impose a
maximum message size. It enables the application to fragment messages prior to applying
protection. The GSS-API detects invalid QOP values when gss_wrap_size limit() is called.
This routine guarantees only a maximum message size, not the availability of specific QOP
values for message protection.

Successful completion of gss_wrap_size limit() doesnot guarantee that gss_wrap() will
be able to protect a message of length max_input_size bytes, since this ability might depend on
the availability of system resources at the time that gss_wrap () is called.

Parameters The parameter descriptions for gss wrap size limit() areas follows:

minor_status A mechanism-specific status code.
context_handle A handle that refers to the security over which the messages will be sent.
conf_req_flag Indicates whether gss_wrap () will be asked to apply confidential

protection in addition to integrity protection. See gss_wrap(3GSS) for
more details.

qop_req Indicates the level of protection that gss_wrap () will be asked to provide.
See gss_wrap(3GSS) for more details.

req_output_size The desired maximum size for tokens emitted by gss_wrap().

max_input_size The maximum input message size that can be presented to gss_wrap() to
guarantee that the emitted token will be no larger than req_output_size

bytes.
Errors gss_wrap_size_limit() returns one of the following status codes:
GSS S COMPLETE Successful completion.
GSS_S NO_CONTEXT The referenced context could not be accessed.

GSS_S CONTEXT EXPIRED The context has expired.

252 man pages section 3: Networking Library Functions - Last Revised 22 Aug 2011

gss_wrap_size_limit(3GSS)

GSS_S_BAD QOP
GSS S FAILURE

The specified QOP is not supported by the mechanism.

The underlying mechanism detected an error for which no
specific GSS status code is defined. The mechanism-specific
status code reported by means of the minor_status parameter
details the error condition.

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE

ATTRIBUTE VALUE

MT Level

Safe

SeeAlso gss wrap(3GSS), attributes(5)

Developer’s Guide to Oracle Solaris 11 Security

Networking Library Functions

253

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=GSSAPIPG

htonl(3XNET)

Name

Synopsis

Description

Usage

ReturnValues

Errors

Attributes

See Also

254

htonl, htons, ntohl, ntohs — convert values between host and network byte order

cc [flag ... 1 file ... -xnet [library ...]
#include <arpa/inet.h>

uint32_t htonl(uint32_t hostlong);
uintl6 t htons(uintl6 t hostshort);
uint32_t ntohl(uint32_t netlong);

uintle t ntohs(uintl6 t netshort);

These functions convert 16-bit and 32-bit quantities between network byte order and host
byte order.

The uint32_t and uint16_t types are made available by inclusion of <inttypes.h>.

These functions are most often used in conjunction with Internet addresses and ports as
returned by gethostent(3XNET) and getservent(3XNET).

On some architectures these functions are defined as macros that expand to the value of their
argument.

The htonl() and htons () functions return the argument value converted from host to
network byte order.

The ntohl() and ntohs () functions return the argument value converted from network to
host byte order.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level MT-Safe
Standard See standards(5).

endhostent(3XNET), endservent(3XNET), attributes(5), standards(5)

man pages section 3: Networking Library Functions « Last Revised 10 Jun 2002

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

icmp6_filter(3SOCKET)

Name

Synopsis

Description

Attributes

icmp6_filter — Variable allocation datatype

void ICMP6 FILTER SETPASSALL (struct icmp6 filter *);
void ICMP6 FILTER SETBLOCKALL (struct icmp6 filter *);
void ICMP6_FILTER_SETPASS (int, structicmpé6_filter *);

void ICMP6 FILTER SETBLOCK (int, struct icmp6_ﬁlter)

int ICMP6_FILTER WILLPASS (int, const struct icmp6_filter *);

int ICMP6_FILTER WILLBLOCK (int, const struct icmp6_filter *);

The icmp6_filter structure is similar to the fd_set datatype used with the select()
function in the sockets API. The icmp6_filter structure is an opaque datatype and the
application should not care how it is implemented. The application allocates a variable of this
type, then passes a pointer to it. Next it passes a pointer to a variable of this type to
getsockopt () and setsockopt () and operates on a variable of this type using the six macros
defined below.

The SETPASSALL and SETBLOCKALL functions enable you to specify that all ICMPv6 messages
are passed to the application or that all ICMPv6 messages are blocked from being passed.

The SETPASS and SETBLOCKALL functions enable you to specify that messages of a given
ICMPv6 type should be passed to the application or not passed to the application (blocked).

The WILLPASS and WILLBLOCK return true or false depending whether the specified message
type is passed to the application or blocked from being passed to the application by the filter
pointed to by the second argument.

The pointer argument to all six icmp6_filter macros is a pointer to a filter that is modified by
the first four macros and is examined by ICMP6_FILTER_SETBLOCK and
ICMP6_FILTER_WILLBLOCK. The first argument, (an integer), to the ICMP6_FILTER BLOCKALL,
ICMP6 FILTER SETPASS,ICMP6 FILTER SETBLOCK,and ICMP6 FILTER WILLBLOCK macros is
an ICMPv6 message type, between 0 and 255.

The current filter is fetched and stored using getsockopt () and setsockopt () with alevel of
I[PPROTO_ICMPV6 and an option name of ICMP6_FILTER.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE
MT-Level Safe
Interface Stability Committed
Standard See standards(5).

Networking Library Functions 255

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

if_nametoindex(3SOCKET)

256

Name if nametoindex, if indextoname, if nameindex, if freenameindex - routines to map Internet
Protocol network interface names and interface indexes

Synopsis

Parameters

Description

cc [flag... 1 file... -lsocket [library...]

#include <net/if.h>

unsigned int if nametoindex(const char *z'fname);

char *if_indextoname(unsigned int ifindex, char *ifname);

struct if nameindex *if nameindex(void)

void if_freenameindex(struct if_nameindex *ptr);

ifname interface name

ifindex interfaceindex

ptr pointer returned by if_nameindex()

This API defines two functions that map between an Internet Protocol network interface
name and index, a third function that returns all the interface names and indexes, and a fourth
function to return the dynamic memory allocated by the previous function.

Network interfaces are normally known by names such as eri@, s11, ppp2, and the like. The
ifname argument must point to a buffer of at least IF_NAMESIZE bytes into which the interface
name corresponding to the specified index is returned. IF_NAMESIZE is defined in <net/if.h>
and its value includes a terminating null byte at the end of the interface name.

if_nametoindex()

if indextoname()

if nameindex()

The if nametoindex() function returns the interface index
corresponding to the interface name pointed to by the ifname
pointer. If the specified interface name does not exist, the return
value is 0, and errno is set to ENXIO. If there was a system error,
such as running out of memory, the return value is @ and errno is
set to the proper value, for example, ENOMEM.

The if indextoname() function maps an interface index into its
corresponding name. This pointer is also the return value of the
function. If there is no interface corresponding to the specified
index, NULL is returned, and errno is set to ENXIO, if there was a
system error, such as running out of memory, if_indextoname()
returns NULL and errno would be set to the proper value, for
example, ENOMEM.

The if_nameindex() function returns an array of if_nameindex
structures, one structure per interface. The if nameindex structure
holds the information about a single interface and is defined when
the <net/if.h> headerisincluded:

man pages section 3: Networking Library Functions « Last Revised 23 Aug 2011

if_nametoindex(3SOCKET)

if freenameindex()

struct if nameindex
unsigned int if index; /* 1, 2, ... */
char *if name; /* "net@", ... */

}

While any IPMP IP interfaces are returned by if nameindex(), the
underlying IP interfaces that comprise each IPMP group are not
returned.

The end of the array of structures is indicated by a structure with an
if indexofOandan if name of NULL. The function returnsa null
pointer upon an error and sets errno to the appropriate value. The
memory used for this array of structures along with the interface
names pointed to by the if_name members is obtained
dynamically. This memory is freed by the if_freenameindex()
function.

The if_freenameindex() function frees the dynamic memory that
was allocated by if_nameindex (). The argument to this function
must be a pointer that was returned by 1f_nameindex().

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTEVALUE

MT-Level

MT-Safe

SeeAlso ifconfig(1M), if nametoindex(3XNET), attributes(5), if(7P)

Networking Library Functions

257

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ifconfig-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1if-7p

if_nametoindex(3XNET)

258

Name

Synopsis

Parameters

Description

if nametoindex, if_indextoname, if nameindex, if_freenameindex - functions to map
Internet Protocol network interface names and interface indexes

cc [flag... 1 file... -lxnet [library...]

#include <net/if.h>

unsigned int if nametoindex(const char *yhanw);

char *if_indextoname(unsigned int ifindex, char *ifname)

struct if nameindex *if nameindex(void)

void if_freenameindex(struct if_nameindex *ptr);

These functions support the following parameters:

ifname interface name

ifindex interfaceindex

ptr pointer returned by if_nameindex ()

This API defines two functions that map between an Internet Protocol network interface
name and index, a third function that returns all the interface names and indexes, and a fourth
function to return the dynamic memory allocated by the previous function.

Network interfaces are normally known by names such as eri@, s11, ppp2, and the like. The
ifname argument must point to a buffer of at least IF_NAMESIZE bytes into which the interface
name corresponding to the specified index is returned. IF_NAMESIZE is defined in <net/if.h>
and its value includes a terminating null byte at the end of the interface name.

if nametoindex()

if indextoname()

*if nameindex()

The if nametoindex() function returns the interface index
corresponding to the interface name pointed to by the ifname
pointer. If the specified interface name does not exist, the return
value is 0, and errno is set to ENXIO. If there was a system error,
such as running out of memory, the return value is @ and errno is
set to the proper value, for example, ENOMEM.

The if_indextoname() function maps an interface index into its
corresponding name. This pointer is also the return value of the
function. If there is no interface corresponding to the specified
index, NULL is returned, and errno is set to ENXIO, if there was a
system error, such as running out of memory, if_indextoname()
returns NULL and errno would be set to the proper value, for
example, ENOMEM.

The if_nameindex () function returnsan array of if_nameindex
structures, one structure per interface. The if_nameindex structure
holds the information about a single interface and is defined when
the <net/if.h> header is included:

man pages section 3: Networking Library Functions - Last Revised 14 Dec 2003

if_nametoindex(3XNET)

struct if_nameindex {
unsigned int if index; /* 1, 2, ... */
char *if name; /* null terminated name: "eri@", ... */

+

The end of the array of structures is indicated by a structure with an
if indexofOandanif name of NULL. The function returnsa null
pointer upon an error and sets errno to the appropriate value. The
memory used for this array of structures along with the interface
names pointed to by the 1f_name members is obtained
dynamically. This memory is freed by the if_freenameindex()
function.

if_freenameindex () The if_freenameindex() function frees the dynamic memory that
was allocated by if_nameindex (). The argument to this function
must be a pointer that was returned by if_nameindex ().

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

Availability system/library (32-bit)

SUNWeslx (64-bit)

Interface Stability Committed
MT-Level MT-Safe
Standard See standards(5).

SeeAlso ifconfig(1M), if nametoindex(3SOCKET), attributes(5), standards(5), if(7P)

Networking Library Functions 259

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ifconfig-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1if-7p

inet(3SOCKET)

Name

Synopsis

Description

260

inet, inet6, inet_ntop, inet_pton, inet_aton, inet_addr, inet_network, inet_makeaddr,
inet_Inaof, inet_netof, inet_ntoa — Internet address manipulation

cc [flag... 1 file... -lsocket -lnsl [library...]
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

const char *inet_ntop(int af, const void *addr, char *cp,
socklen_t size);

int inet_pton(int af, const char *cp, void *addr);

int inet_aton(const char *cp, struct in_addr *addr);
in_addr_t inet_addr(const char *cp);

in_addr_t inet_network(const char *cp);

struct in addr inet makeaddr(const int mnef, in addr_t Ina);
in addr t inet lnaof(struct in_addr in);

in addr t inet netof(struct in addr in);

char *inet ntoa(struct in addr in);

The inet_ntop() and inet_pton() functions can manipulate both IPv4 and IPv6 addresses.
The inet_aton(),inet addr(), inet network(), inet makeaddr(),inet lnaof(),
inet_netof(),and inet_ntoa() functions can only manipulate IPv4 addresses.

The inet_ntop() function converts a numeric address into a string suitable for presentation.
The af argument specifies the family of the address which can be AF_INET or AF_INET6. The
addr argument points to a buffer that holds an IPv4 address if the af argument is AF_INET. The
addr argument points to a buffer that holds an IPv6 address if the af argument is AF_INET6.
The address must be in network byte order. The cp argument points to a bufter where the
function stores the resulting string. The application must specify a non-NULL cp argument.
The size argument specifies the size of this buffer. For IPv6 addresses, the buffer must be at
least 46-octets. For IPv4 addresses, the buffer must be at least 16-octets. To allow applications
to easily declare buffers of the proper size to store IPv4 and IPv6 addresses in string form, the
following two constants are defined in <netinet/in.h>:

#define INET_ADDRSTRLEN 16
#define INET6_ADDRSTRLEN 46

The inet_pton() function converts the standard text presentation form of a function to the
numeric binary form. The af argument specifies the family of the address. Currently, the
AF_INET and AF_INET6 address families are supported. The cp argument points to the string
being passed in. The addr argument points to a buffer where the function stores the numeric
address. The calling application must ensure that the buffer referred to by addr is large enough
to hold the numeric address, at least 4 bytes for AF_INET or 16 bytes for AF_INET6.

man pages section 3: Networking Library Functions « Last Revised 24 Mar 2011

inet(3SOCKET)

The inet_aton(), inet_addr(),and inet_network() functions interpret character strings
that represent numbers expressed in the IPv4 standard '.' notation, returning numbers
suitable for use as IPv4 addresses and IPv4 network numbers, respectively. The

inet makeaddr() function uses an IPv4 network number and a local network address to
construct an IPv4 address. The inet_netof () and inet_lnaof () functions break apart IPv4
host addresses, then return the network number and local network address, respectively.

The inet_ntoa() function returns a pointer to a string in the base 256 notationd.d.d.d. See
the following section on IPv4 addresses.

Internet addresses are returned in network order, bytes ordered from left to right. Network
numbers and local address parts are returned as machine format integer values.

IPv6 Addresses There are three conventional forms for representing IPv6 addresses as strings:

1. The preferred formis x:x:x:x:x:x:x:x, where the 'x's are the hexadecimal values of the
eight 16-bit pieces of the address. For example:

1080:0:0:0:8:800:200C:417A

It is not necessary to write the leading zeros in an individual field. There must be at least
one numeral in every field, except when the special syntax described in the following is
used.

2. Itis common for addresses to contain long strings of zero bits in some methods used to
allocate certain IPv6 address styles. A special syntax is available to compress the zeros. The
use of “: :” indicates multiple groups of 16 bits of zeros. The : : may only appear once in an
address. The : : can also be used to compress the leading and trailing zeros in an address.
For example:

1080::8:800:200C:417A

3. Thealternative form x:x:x:x:x:x:d.d.d.d is sometimes more convenient when dealing
with a mixed environment of IPv4 and IPv6 nodes. The x's in this form represent the
hexadecimal values of the six high-order 16-bit pieces of the address. The d's represent the
decimal values of the four low-order 8-bit pieces of the standard IPv4 address. For
example:

::FFFF:129.144.52.38
1:129.144.52.38

The : :FFFF:d.d.d.dand : :d.d.d.d pieces are the general forms of an IPv4-mapped
IPv6 address and an IPv4-compatible IPv6 address.

The IPv4 portion must be in the d.d.d.d form. The following forms are invalid:

::FFFF:d.d.d
::FFFF:d.d
1:d.d.d
1:d.d

Networking Library Functions 261

inet(3SOCKET)

IPv4 Addresses

Return Values

262

The : : FFFF:d form is a valid but unconventional representation of the IPv4-compatible
IPv6 address : :255.255.0.d.

The : :d form corresponds to the general IPv6 address 0:0:0:0:0:0:0:d.
Values specified using ‘." notation take one of the following forms:

.d.d
.d

o O QO Q
o o o

When four parts are specified, each part is interpreted as a byte of data and assigned from left
to right to the four bytes of an IPv4 address.

When a three-part address is specified, the last part is interpreted as a 16-bit quantity and
placed in the right most two bytes of the network address. The three part address format is
convenient for specifying Class B network addresses such as 128.net . host.

When a two-part address is supplied, the last part is interpreted as a 24-bit quantity and placed
in the right most three bytes of the network address. The two part address format is
convenient for specifying Class A network addresses such as net. host.

When only one part is given, the value is stored directly in the network address without any
byte rearrangement.

With the exception of inet_pton(), numbers supplied as partsin . ' notation may be decimal,
octal, or hexadecimal, as specified in C language. For example, a leading 0x or 0X implies
hexadecimal. A leading @ implies octal. Otherwise, the number is interpreted as decimal.

For IPv4 addresses, inet_pton() accepts only a string in standard IPv4 dot notation:

d.d.d.d

Each number has one to three digits with a decimal value between 0 and 255.

The inet_addr () function has been obsoleted by inet_aton().

The inet aton() function returns nonzero if the address is valid, 0 if the address is invalid.

The inet_ntop() function returns a pointer to the buffer that contains a string if the
conversion succeeds. Otherwise, NULL is returned. Upon failure, errno is set to EAFNOSUPPORT
if the af argument is invalid or ENOSPC if the size of the result buffer is inadequate.

The inet_pton() function returns 1 if the conversion succeeds, 0 if the input is not a valid
IPv4 dotted-decimal string or a valid IPv6 address string. The function returns —1 with errno
set to EAFNOSUPPORT if the af argument is unknown.

The value INADDR_NONE, which is equivalent to (in_addr_t) (-1),is returned by inet_addr()
and inet_network() for malformed requests.

man pages section 3: Networking Library Functions « Last Revised 24 Mar 2011

inet(3SOCKET)

Attributes

See Also

Notes

Bugs

The functions inet_netof () and inet_lnaof() break apart IPv4 host addresses, returning
the network number and local network address part, respectively.

The function inet_ntoa() returns a pointer to a string in the base 256 notationd.d.d.d,
described in the section on IPv4 addresses.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

Interface Stability See below.

MT-Level Safe

The inet_ntop(), inet pton(),inet aton(),inet addr(),and inet network() functions
are Committed. The inet_1naof(), inet_makeaddr(), inet netof(),and inet network()
functions are Committed (Obsolete).

gethostbyname(3NSL), getipnodebyname(3SOCKET), getnetbyname(3SOCKET),
inet.h(3HEAD), hosts(4), networks(4), attributes(5)

The return value from inet_ntoa() points to a buffer which is overwritten on each call. This
buffer is implemented as thread-specific data in multithreaded applications.

[Pv4-mapped addresses are not recommended.

The problem of host byte ordering versus network byte ordering is confusing. A simple way to
specify Class C network addresses in a manner similar to that for Class B and Class A is
needed.

Networking Library Functions 263

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1inet.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1hosts-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1networks-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

inet6_opt(3SOCKET)

Name

Synopsis

Description

264

inet6_opt, inet6_opt_init, inet6_opt_append, inet6_opt_finish, inet6_opt_set_val,
inet6_opt_next, inet6_opt_find, inet6_opt_get_val - Option manipulation mechanism

cc [flag ... 1 file ... -lsocket [library...]
#include <netinet/in.h>

int inet6 opt_init(void *extbuf, socklen_t extlen);

int inet6_opt_append(void *extbuf, socklen_t extlen,
int offset, uint8_t type, socklen_t len, uint_t align,
void **databufp);

int inet6_opt_finish(void *extbuf, socklen_t extlen,
int offset);

int inet6_opt_set_val(void *databuf, int offset,
void *val, socklen t vallen);

int inet6_opt_next(void *extbuf, socklen_t extlen,
int offset, uint8_t *typep, socklen_t *lenp,
void **databufp);

int inet6_opt_find(void *extbuf, socklen_t extlen, int offset,
uint8_t type, socklen_t *lenp, void **databufp);

intinet6_opt_get_val(void *databuf, int offset,
void *val, socklen t *vallen);

The inet6_opt functions enable users to manipulate options without having to know the
structure of the option header.

The inet6_opt_init() function returns the number of bytes needed for the empty extension
header, that is, without any options. If extbufis not NULL, it also initializes the extension header
to the correct length field. If the extlen value is not a positive non-zero multiple of 8, the
function fails and returns —1.

The inet6_opt_append() function returns the updated total length while adding an option
with length len and alignment align. If extbufis not NULL, then, in addition to returning the
length, the function inserts any needed Pad option, initializes the option setting the type and
length fields, and returns a pointer to the location for the option content in databufp. If the
option does not fit in the extension header buffer, the function returns —1. The type is the 8-bit
option type. The len is the length of the option data, excluding the option type and option
length fields. Once inet6_opt_append() is called, the application can use the databuf directly,
orinet6_opt_set_val() canbe used to specify the content of the option. The option type
must have a value from 2 to 255, inclusive. The values 0 and 1 are reserved for the Padl and
PadN options, respectively. The option data length must have a value between 0 and 255,
inclusive, and it is the length of the option data that follows. The align parameter must have a
value of 1, 2, 4, or 8. The align value cannot exceed the value of len.

The inet6_opt_finish() function returns the updated total length the takes into account the
final padding of the extension header to make it a multiple of 8 bytes. If extbufis not NULL, the

man pages section 3: Networking Library Functions « Last Revised 15 Feb 2007

inet6_opt(3SOCKET)

Return Values

function also initializes the option by inserting a Pad1 or PadN option of the proper length. If
the necessary pad does not fit in the extension header buffer, the function returns —1.

The inet6_opt_set_val() function inserts data items of various sizes in the data portion of
the option. The val parameter should point to the data to be inserted. The offset specifies the
data portion of the option in which the value should be inserted. The first byte after the option
type and length is accessed by specifying an offset of zero.

The inet6_opt_next () function parses the received option extension headers which return
the next option. The extbufand extlen parameters specify the extension header. The offset
should be zero for the first option or the length returned by a previous call to either
inet6_opt_next() or inet6_opt_find(). The offset specifies where to continue scanning the
extension buffer. The subsequent option is returned by updating typep, lenp, and databufp.
The typep argument stores the option type. The lenp argument stores the length of the option
data, excluding the option type and option length fields. The databufp argument points to the
data field of the option.

The inet6_opt find() function is similar to the inet6_opt next () function. Unlike
inet6_opt_next(),the inet6_opt_find() function enables the caller to specify the option
type to be searched for, rather than returning the next option in the extension header.

The inet6 opt get val() function extracts data items of various sizes in the portion of the
option. The val argument should point to the destination for the extracted data. The offset
specifies at which point in the option's data portion the value should be extracted. The first
byte following the option type and length is accessed by specifying an offset of zero.

The inet6_opt_init() function returns the number of bytes needed for the empty extension
header. If the extlen value is not a positive non-zero multiple of 8, the function fails and
returns —1.

The inet6_opt_append() function returns the updated total length.
The inet6_opt_finish() function returns the updated total length.
The inet6_opt_set_val() function returns the offset for the subsequent field.

The inet6_opt_next () function returns the updated “previous” length computed by
advancing past the option that was returned. When there are no additional options or if the
option extension header is malformed, the return value is —1.

The inet6_opt_find() function returns the updated “previous” total length. If an option of
the specified type is not located, the return value is —1. If the option extension header is
malformed, the return value is 1.

The inet6_opt_get_val() function returns the offset for the next field (that is, offset + vallen)
which can be used when extracting option content with multiple fields.

Networking Library Functions 265

inet6_opt(3SOCKET)

266

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level Safe
Standard See standards(5).

SeeAlso RFC 3542 - Advanced Sockets Application Programming Interface (API) for IPv6, The Internet
Society. May 2003

man pages section 3: Networking Library Functions « Last Revised 15 Feb 2007

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

inet6_rth(3SOCKET)

Name

Synopsis

Description

Routing Headers

inet6_rth, inet6_rth_space, inet6_rth_init, inet6_rth_add, inet6_rth_reverse,
inet6_rth_segments, inet6_rth_getaddr - Routing header manipulation

cc [flag ... 1 file ... -lsocket [library]

#include <netinet/in.h>

socklen_t inet6_rth_space(int fype, int segments);

void *inet6_rth_init(void *bp, socklen_t bp_len, int type, int segments);
int inet6_rth_add(void *bp, const struct, in6_addr *addr);

int inet6 rth reverse(const void *in, void *out);

int inet6_rth_segments(const void *bp);

struct in6_addr *inet6_rth_getaddr(const void *bp, int index);

The inet6_rth functions enable users to manipulate routing headers without having
knowledge of their structure.

The iet6_rth_init() function initializes the buffer pointed to by bp to contain a routing
header of the specified type and sets ip6r_1len based on the segments parameter. The bp_len
argument is used only to verify that the buffer is large enough. The ip6r_segleft field is set to
zero and inet6 rth_add() increments it. The caller allocates the buffer and its size can be
determined by calling inet6_rth_space().

The inet6_rth_add() function adds the IPv6 address pointed to by addr to the end of the
routing header that is being constructed.

The inet6_rth_reverse() function takes a routing header extension header pointed to by
the first argument and writes a new routing header that sends datagrams along the reverse of
the route. The function reverses the order of the addresses and sets the segleft member in the
new routing header to the number of segments. Both arguments can point to the same buffer
(thatis, the reversal can occur in place).

The inet6_rth_segments () function returns the number of segments (addresses) contained
in the routing header described by bp.

The inet6_rth_getaddr() function returns a pointer to the IPv6 address specified by index,
which must have a value between 0 and one less than the value returned by
inet6_rth_segments () in the routing header described by bp. Applications should first call
inet6_rth_segments () to obtain the number of segments in the routing header.

The inet6_rth_space() function returns the size, but the function does not allocate the space
required for the ancillary data routing header.

To receive a routing header, the application must enable the IPV6_RECVRTHDR socket option:

int on = 1;
setsockopt (fd, IPPROTO IPV6, IPV6 RECVRTHDR, &on, sizeof(on));

Networking Library Functions 267

inet6_rth(3SOCKET)

268

ROUTING HEADER
OPTION

ReturnValues

Attributes

Each received routing header is returned as one ancillary data object described by a cmsghdr
structure with cmsg_type set to IPV6_RTHDR.

To send a routing header, the application specifies it either as ancillary data in a call to
sendmsg () or by using setsockopt (). For the sending side, this API assumes the number of
occurrences of the routing header as described in RFC-2460. Applications can specify no more
than one outgoing routing header.

The application can remove any sticky routing header by calling setsockopt () for
IPV6_RTHDR with a zero option length.

When using ancillary data, a routing header is passed between the application and the kernel
as follows: The cmsg_level member has a value of IPPROTO_IPV6 and the cmsg type member
has a value of IPV6_RTHDR. The contents of the cmsg_data member is
implementation-dependent and should not be accessed directly by the application, but should
be accessed using the inet6_rth functions.

The following constant is defined as a result of including the <netinet/in.h>:

#define IPV6 RTHDR TYPE @ @ /* IPv6 Routing header type 0 */

Source routing in IPv6 is accomplished by specifying a routing header as an extension header.
There are a number of different routing headers, but IPv6 currently defines only the Type 0
header. See RFC-2460. The Type 0 header supports up to 127 intermediate nodes, limited by
the length field in the extension header. With this maximum number of intermediate nodes, a
source, and a destination, there are 128 hops.

The inet6_rth_init() function returns a pointer to the buffer (bp) upon success.

Forthe inet6_rth_add() function, the segleft member of the routing header is updated to
account for the new address in the routing header. The function returns @ upon success and -1
upon failure.

The inet6_rth_reverse() function returns @ upon success or —1 upon an error.

The inet6 rth_segments () function returns 0 or greater upon success and —1 upon an error.
The inet6_rth_getaddr() function returns NULL upon an error.

The inet6_rth_space() function returns the size of the buffer needed for the routing header.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

man pages section 3: Networking Library Functions « Last Revised 15 Feb 2007

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

inet6_rth(3SOCKET)

ATTRIBUTETYPE

ATTRIBUTE VALUE

Standard

See standards(5).

SeeAlso RFC 3542- Advanced Sockets Application Programming Interface (API) for IPv6, The Internet
Society. May 2003

Networking Library Functions

269

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

inet_addr(3XNET)

Name

Synopsis

Description

270

inet_addr, inet_network, inet_makeaddpr, inet_lnaof, inet_netof, inet_ntoa — Internet address
manipulation

cc [flag ... 1 file ... -lxnet [library ...]

#include <arpa/inet.h>

in_addr_t inet_addr(const char *cp);

in_addr_t inet lnaof(struct in_addr in);

struct in addr inet makeaddr(in addr t met, in addr t Ina);
in_addr t inet netof(struct in_addr in);

in_addr_t inet_network(const char *cp);

char *inet ntoa(struct in addr in);

The inet_addr() function converts the string pointed to by ¢p, in the Internet standard dot
notation, to an integer value suitable for use as an Internet address.

The inet_lnaof () function takes an Internet host address specified by in and extracts the
local network address part, in host byte order.

The inet_makeaddr () function takes the Internet network number specified by net and the
local network address specified by Ina, both in host byte order, and constructs an Internet
address from them.

The inet_netof () function takes an Internet host address specified by in and extracts the
network number part, in host byte order.

The inet_network() function converts the string pointed to by ¢p, in the Internet standard
dot notation, to an integer value suitable for use as an Internet network number.

The inet_ntoa() function converts the Internet host address specified by in to a string in the
Internet standard dot notation.

All Internet addresses are returned in network order (bytes ordered from left to right).

Values specified using dot notation take one of the following forms:

a.b.c.d When four parts are specified, each is interpreted as a byte of data and assigned,
from left to right, to the four bytes of an Internet address.

a.b.c When a three-part address is specified, the last part is interpreted as a 16-bit
quantity and placed in the rightmost two bytes of the network address. This
makes the three-part address format convenient for specifying Class B network
addresses as 128. net.host.

man pages section 3: Networking Library Functions « Last Revised 10 Jun 2002

inet_addr(3XNET)

Usage

ReturnValues

Errors

Attributes

See Also

a.b When a two-part address is supplied, the last part is interpreted as a 24-bit
quantity and placed in the rightmost three bytes of the network address. This
makes the two-part address format convenient for specifying Class A network
addresses as net. host.

a When only one part is given, the value is stored directly in the network address
without any byte rearrangement.

All numbers supplied as parts in dot notation may be decimal, octal, or hexadecimal, that is, a
leading Ox or 0X implies hexadecimal, as specified in the ISO C standard; otherwise, a leading
0 implies octal; otherwise, the number is interpreted as decimal.

The return value of inet_ntoa() may point to static data that may be overwritten by
subsequent calls to inet_ntoa().

Upon successful completion, inet_addr () returns the Internet address. Otherwise, it returns
(in_addr_t)(-1).

Upon successful completion, inet_network() returns the converted Internet network
number. Otherwise, it returns (in_addr_t)(-1).

The inet_makeaddr () function returns the constructed Internet address.
The inet_lnaof () function returns the local network address part.
The inet_netof () function returns the network number.

The inet_ntoa() function returns a pointer to the network address in Internet-standard dot
notation.

No errors are defined.
See attributes(5) for descriptions of the following attributes:
ATTRIBUTE TYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level MT-Safe
Standard See standards(5).

endhostent(3XNET), endnetent(3XNET), attributes(5), standards(5)

Networking Library Functions 271

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

inet_cidr_ntop(3RESOLV)

Name

Synopsis

Description

Attributes

272

inet_cidr_ntop, inet_cidr_pton — network translation routines

cc [flag... 1 file... -lresolv -lsocket -lnsl [library...]
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

char *inet cidr ntop(int Qﬂ const void *src, int bits, char *dst,
size t size);

int inet_cidr_pton(int af, const char *src, void *dst, int *bits);

These routines are used for converting addresses to and from network and presentation forms
with CIDR (Classless Inter-Domain Routing) representation, embedded net mask.

The inet_cidr_ntop() function converts an address from network to presentation format.

The af parameter describes the type of address that is being passed in src. Currently only
AF_INET is supported.

The src parameter is an address in network byte order, its length is determined from af.

The bits parameter specifies the number of bits in the netmask unless it is -1 in which case the
CIDR representation is omitted.

The dst parameter is a caller supplied buffer of at least size bytes.
The inet cidr ntop() function returns dst on success or NULL. Check errno for reason.

The inet_cidr_pton() function converts and address from presentation format, with
optional CIDR representation, to network format. The resulting address is zero filled if there
were insufficient bits in src.

The af parameter describes the type of address that is being passed in via src and determines
the size of dst.

The src parameter is an address in presentation format.

The bits parameter returns the number of bits in the netmask or -1 if a CIDR representation
was not supplied.

The inet cidr pton() function returns 0 on success or -1 on error. Check errno for reason.
ENOENT indicates an invalid netmask.

See attributes(5) for descriptions of the following attributes:

man pages section 3: Networking Library Functions « Last Revised 11 Nov 2009

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

inet_cidr_ntop(3RESOLV)

ATTRIBUTETYPE

ATTRIBUTE VALUE

Interface Stability

Committed

MT-Level

MT-Safe

SeeAlso Intro(2),attributes(5)

Networking Library Functions

273

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN7intro-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

inet_ntop(3XNET)

Name inet_ntop, inet_pton - convert IPv4 and IPv6 addresses between binary and text form

Synopsis cc [flag ... 1 file ... -lxnet [library ...]
#include <arpa/inet.h>

const char *inet ntop(int af, const void *restrict src,
char *restrict dst, socklen t size);

int inet_pton(int af, const char *restrict src, dst);

Description The inet_ntop() function converts a numeric address into a text string suitable for
presentation. The af argument specifies the family of the address. This can be AF_INET or
AF_INET6. The src argument points to a buffer holding an IPv4 address if the af argument is
AF_INET, or an IPv6 address if the afargument is AF_INET6. The dst argument points to a
buffer where the function stores the resulting text string; it cannot be NULL. The size argument
specifies the size of this buffer, which must be large enough to hold the text string
(INET_ADDRSTRLEN characters for IPv4, INET6 ADDRSTRLEN characters for IPv6).

The inet_pton() function converts an address in its standard text presentation form into its
numeric binary form. The af argument specifies the family of the address. The AF_INET and
AF_INET6 address families are supported. The src argument points to the string being passed
in. The dst argument points to a buffer into which the function stores the numeric address;
this must be large enough to hold the numeric address (32 bits for AF_INET, 128 bits for
AF_INET6).

If the afargument of inet_pton() is AF_INET, the srcstringis in the standard IPv4
dotted-decimal form:

ddd.ddd.ddd.ddd

where “ddd”is a one to three digit decimal number between 0 and 255 (see

inet addr(3XNET)). The inet pton() function does not accept other formats (such as the
octal numbers, hexadecimal numbers, and fewer than four numbers that inet_addr()
accepts).

If the afargument of inet_pton() is AF_INETS, the src string is in one of the following
standard IPv6 text forms:

1. The preferred formis “x:x:x:x:x:x:x:x”, where the 'x's are the hexadecimal values of the
eight 16-bit pieces of the address. Leading zeros in individual fields can be omitted, but
there must be at least one numeral in every field.

2. A string of contiguous zero fields in the preferred form can be shown as “: :”. The “: :” can
only appear once in an address. Unspecified addresses (“0:0:0:0:0:0:0:0”) can be
represented simply as “: :”.

3. A third form that is sometimes more convenient when dealing with a mixed environment
of IPv4 and IPv6 nodes is “x:x:x:x:x:x:d.d.d.d”, where the 'x's are the hexadecimal
values of the six high-order 16-bit pieces of the address, and the 'd's are the decimal values
of the four low-order 8-bit pieces of the address (standard IPv4 representation).

274 man pages section 3: Networking Library Functions « Last Revised 1 Nov 2003

inet_ntop(3XNET)

A more extensive description of the standard representations of IPv6 addresses can be found
in RFC 2373.

ReturnValues The inet_ntop() function returns a pointer to the buffer containing the text string if the
conversion succeeds. Otherwise it returns NULL and sets errno to indicate the error.

The inet_pton() function returns 1 if the conversion succeeds, with the address pointed to by
dst in network byte order. It returns 0 if the input is not a valid IPv4 dotted-decimal string or a
valid IPv6 address string. It returns —1 and sets errno to EAFNOSUPPORT if the af argument is
unknown.

Errors Theinet ntop() and inet pton() functions will fail if:
EAFNOSUPPORT ~ The afargument is invalid.

ENOSPC The size of the inet_ntop () result buffer is inadequate.

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE
Interface Stability Committed
MT-Level MT-Safe
Standard See standards(5).

SeeAlso inet addr(3XNET), attributes(5)

Networking Library Functions 275

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

Idap(3LDAP)

Name ldap - Lightweight Directory Access Protocol package

Synopsis cc[flag... 1 file... -1ldap[library...]
#include <lber.h>
#include <ldap.h>

Description The Lightweight Directory Access Protocol (“LDAP”) package (SUNWIldap) includes various
command line LDAP clients and a LDAP client library to provide programmatic access to the
LDAP protocol. This man page gives an overview of the LDAP client library functions.

An application might use the LDAP client library functions as follows. The application would
initialize a LDAP session with a LDAP server by calling 1dap_init(3LDAP). Next, it
authenticates to the LDAP server by calling ldap_sas1_bind(3LDAP) and friends. It may
perform some LDAP operations and obtain results by calling ldap_search(3LDAP) and
friends. To parse the results returned from these functions, it calls
ldap_parse_result(3LDAP),ldap_next_entry(3LDAP),and ldap first entry(3LDAP)
and others. It closes the LDAP session by calling 1dap_unbind(3LDAP).

LDAP operations can be either synchronous or asynchronous. By convention, the names of
the sychronous functions end with “_s” For example, a synchronous binding to the LDAP
server can be performed by calling ldap_sasl_bind_s(3LDAP). Complete an asynchronous
binding with ldap_sasl_bind(3LDAP). All synchronous functions return the actual outcome
of the operation, either LDAP_SUCCESS or an error code. Asynchronous routines provide an
invocation identifier which can be used to obtain the result of a specific operation by passing it
to theldap_result(3LDAP) function.

Initializinga LDAP Initializing a LDAP session involves calling the 1dap_init(3LDAP) function. However, the
session call does not actually open a connection to the LDAP server. It merely initializes a LDAP
structure that represents the session. The connection is opened when the first operation is
attempted. Unlike ldap_init(), ldap_open(3LDAP) attempts to open a connection with the
LDAP server. However, the use of ldap_open() is deprecated.

Authenticatingtoa The ldap_sasl_bind(3LDAP) and ldap_sasl_bind_s(3LDAP) functions provide general
LDAPserver - and extensible authenticaton for an LDAP client to a LDAP server. Both use the Simple
Authentication Security Layer (SASL). Simplified routines ldap_simple_bind(3LDAP) and
ldap_simple_bind_s(3LDAP) use cleartext passwords to bind to the LDAP server. Use of
ldap_bind(3LDAP) and ldap_bind_s(3LDAP)(3LDAP) is deprecated.

SearchingaLDAP Search for an entry in a LDAP directory by calling the ldap_search_ext(3LDAP) or the
directory 14ap search ext s(3LDAP) functions. These functions support LDAPv3 server controls,
client controls and variable size and time limits as arguments for each search operation.
ldap_search(3LDAP) and ldap _search s(3LDAP) are identical functions but do not
support the controls and limits as arguments to the call.

276 man pages section 3: Networking Library Functions « Last Revised 23 Aug 2011

Idap(3LDAP)

Adding or Deleting an
entry

Modifying Entries

Obtaining Results

Handling Errors and
Parsing Results

Uniform Resource
Locators (URLS)

Use ldap_add_ext(3LDAP) and ldap_delete ext(3LDAP) to add or delete entries in a
LDAP directory server. The synchronous counterparts to these functions are

ldap_add_ext s(3LDAP)and ldap_delete ext s(3LDAP). The ldap_add(3LDAP),
ldap_add_s(3LDAP), ldap_delete(3LDAP),and ldap delete s(3LDAP) provide identical
functionality to add and to delete entries, but they do not support LDAP v3 server and client
controls.

Use ldap_modify_ext(3LDAP)and ldap_modify_ext_s(3LDAP) to modify an existing entry
in a LDAP server that supports for LDAPv3 server and client controls. Similarly, use
ldap_rename(3LDAP) and ldap_rename_s(3LDAP) to change the name of an LDAP entry.
The ldap_modrdn(3LDAP), 1dap_modrdn_s(3LDAP), ldap_modrdn2(3LDAP) and
ldap_modrdn2_s(3LDAP) interfaces are deprecated.

Use ldap_result(3LDAP) to obtain the results of a previous asynchronous operation. For all
LDAP operations other than search, only one message is returned. For the search operation, a
list of result messages can be returned.

Use the ldap_parse_result(3LDAP), ldap_parse_sasl bind result(3LDAP), and the
ldap_parse_extended result(3LDAP) functions to extract required information from
results and and to handle the returned errors. To covert a numeric error code into a
null-terminated character string message describing the error, use

ldap _err2string(3LDAP). The ldap_result2error(3LDAP) and ldap perror(3LDAP)
functions are deprecated. To step through the list of messages in a result returned by
ldap_result(),use ldap first message(3LDAP)and ldap next message(3LDAP).
ldap_count_messages(3LDAP) returns the number of messages contained in the list.

Youcanuse ldap_first_entry(3LDAP) and ldap_next_entry(3LDAP) to step through and
obtain a list of entries from a list of messages returned by a search result.
ldap_count_entries(3LDAP) returns the number of entries contained in a list of messages.
Call either ldap first attribute(3LDAP)and ldap next attribute(3LDAP) to step
through a list of attributes associated with an entry. Retrieve the values of a given attribute by
calling ldap_get_values(3LDAP) and ldap_get_values_len(3LDAP). Count the number of
values returned by using ldap_count_values(3LDAP) and

ldap_count_values len(3LDAP).

Use the ldap_get lang values(3LDAP)and ldap get lang values len(3LDAP) to
return an attribute's values that matches a specified language subtype. The
ldap_get_lang_values () function returns an array of an attribute's string values that
matches a specified language subtype. To retrieve the binary data from an attribute, call the
ldap get lang values len() function instead.

You can use the ldap_url(3LDAP)functions to test a URL to verify that it isan LDAP URL, to
parse LDAP URLs into their component pieces, to initiate searches directly using an LDAP
URL, and to retrieve the URL associated with a DNS domain name or a distinguished name.

Networking Library Functions 277

Idap(3LDAP)

User Friendly Naming The ldap_ufn(3LDAP) functions implement a user friendly naming scheme by means of
LDAP. This scheme allows you to look up entries using fuzzy, untyped names like “mark
smith, umich, us”.

Caching The ldap_memcache(3LDAP) functions provide an in-memory client side cache to store
search requests. Caching improves performance and reduces network bandwidth when a
client makes repeated requests.

Utility Functions There are also various utility functions. You can use the ldap_sort(3LDAP) functions are
used to sort the entries and values returned by means of the Idap search functions. The
ldap_friendly(3LDAP) functions will map from short two letter country codes or other
strings to longer “friendlier” names. Use the ldap_charset(3LDAP) functions to translate to
and from the T.61 character set that is used for many character strings in the LDAP protocol.

Generating Filters Make calls to ldap_init_getfilter(3LDAP) and ldap_search(3LDAP) to generate filters to
beused in ldap_search(3LDAP) and ldap_search_s(3LDAP).ldap_init getfilter()
reads ldapfilter.conf(4), the LDAP configuration file, while ldap_init_getfilter_buf()
reads the configuration information from buf of length buflen.
ldap_getfilter_free(3LDAP) frees memory that has been allocated by means of
ldap_init getfilter().

BERLibrary The LDAP package includes a set of lightweight Basic Encoding Rules (“BER)” functions. The
LDAP library functions use the BER functions to encode and decode LDAP protocol elements
through the slightly simplified BER defined by LDAP. They are not normally used directly by
an LDAP application program will not normally use the BER functions directly. Instead, these
functions provide a printf () and scanf ()-like interface, as well as lower-level access.

List Of Interfaces 1dap_open(3LDAP) Deprecated. Use ldap _init(3LDAP).

ldap_init(3LDAP) Initialize a session with a LDAP server without
opening a connection to a server.

ldap_result(3LDAP) Obtain the result from a previous
asynchronous operation.

ldap_abandon(3LDAP) Abandon or abort an asynchronous operation.

ldap_add(3LDAP) Asynchronously add an entry

ldap_add_s(3LDAP) Synchronously add an entry.

ldap_add_ext(3LDAP) Asynchronously add an entry with support for
LDAPV3 controls.

ldap_add_ext_s(3LDAP) Synchronously add an entry with support for
LDAPv3 controls.

ldap_bind(3LDAP) Deprecated. Use ldap_sasl_bind(3LDAP) or

ldap simple bind(3LDAP).

278 man pages section 3: Networking Library Functions « Last Revised 23 Aug 2011

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ldapfilter.conf-4

Idap(3LDAP)

ldap_sasl bind(3LDAP)

ldap_sasl bind s(3LDAP)

ldap_bind s(3LDAP)

ldap simple bind(3LDAP)

ldap_simple _bind_ s(3LDAP)

ldap_unbind(3LDAP)

ldap_unbind ext(3LDAP)

ldap_set rebind proc(3LDAP)

ldap_memcache_init(3LDAP)
ldap_memcache set(3LDAP)

ldap_memcache get(3LDAP)

ldap_memcache flush(3LDAP)
ldap_memcache destroy(3LDAP)

ldap_memcache update(3LDAP)

ldap_compare(3LDAP)
ldap_compare_s(3LDAP)
ldap_compare_ext(3LDAP)

Networking Library Functions

Asynchronously bind to the directory using
SASL authentication

Synchronously bind to the directory using
SASL authentication

Deprecated. Use ldap _sasl_bind s(3LDAP)
or ldap_simple bind s(3LDAP).
Asynchronously bind to the directory using
simple authentication.

Synchronously bind to the directory using
simple authentication.

Synchronously unbind from the LDAP server,
close the connection, and dispose the session
handle.

Synchronously unbind from the LDAP server
and close the connection. ldap_unbind_ext()
allows you to explicitly include both server and
client controls in the unbind request.

Set callback function for obtaining credentials
from a referral.

Create the in-memory client side cache.

Associate an in-memory cache that has been
already created by calling the

ldap _memcache init(3LDAP) function with
an LDAP connection handle.

Get the cache associated with the specified
LDAP structure.

Flushes search requests from the cache.

Frees the specified LDAPMemCache structure
pointed to by cache from memory.

Checks the cache for items that have expired
and removes them.

Asynchronous compare with a directory entry.
Synchronous compare with a directory entry.

Asynchronous compare with a directory entry,
with support for LDAPv3 controls.

279

Idap(3LDAP)

280

ldap_compare_ext s(3LDAP)

ldap_control free(3LDAP)
ldap_controls_free(3LDAP)
ldap_delete(3LDAP)
ldap_delete s(3LDAP)
ldap_delete ext(3LDAP)

ldap delete ext s(3LDAP)

ldap_init templates(3LDAP)

ldap_init templates buf(3LDAP)

ldap free templates(3LDAP)
ldap _first reference(3LDAP)

ldap_next_reference(3LDAP)

ldap_count_references(3LDAP)

ldap first message(3LDAP)

ldap_count_messages(3LDAP)

ldap_next_message(3LDAP)

ldap _msgtype(3LDAP)

ldap _first disptmpl(3LDAP)
ldap_next_disptmpl(3LDAP)
ldap_oc2template(3LDAP)

ldap_name2template(3LDAP)
ldap_tmplattrs(3LDAP)

Synchronous compare with a directory entry,
with support for LDAPv3 controls.

Dispose of an LDAP control.

Dispose of an array of LDAP controls.
Asynchronously delete an entry.
Synchronously delete an entry.

Asynchronously delete an entry, with support
for LDAPv3 controls.

Synchronously delete an entry, with support
for LDAPv3 controls.

Read a sequence of templates from a LDAP
template configuration file.

Read a sequence of templates from a buffer.
Dispose of the templates allocated.

Step through a list of continuation references
from a search result.

Step through a list of continuation references
from a search result.

Count the number of messages in a search
result.

Step through a list of messages in a search
result.

Count the messages in a list of messages in a
search result.

Step through a list of messages in a search
result.

Return the type of LDAP message.
Get first display template in a list.
Get next display template in a list.

Return template appropriate for the
objectclass.

Return named template

Return attributes needed by the template.

man pages section 3: Networking Library Functions « Last Revised 23 Aug 2011

Idap(3LDAP)

ldap first tmplrow(3LDAP)

ldap_next_tmplrow(3LDAP)

ldap first tmplcol(3LDAP)

ldap next tmplcol(3LDAP)

ldap_entry2text(3LDAP)

ldap_entry2text_search(3LDAP)

ldap_vals2text(3LDAP)
ldap_entry2html(3LDAP)

ldap_entry2html search(3LDAP)

ldap_vals2html(3LDAP)
ldap_perror(3LDAP)

ldap result2error(3LDAP)

ldap_err2string(3LDAP)
ldap_first attribute(3LDAP)
ldap_next _attribute(3LDAP)
ldap_first entry(3LDAP)
ldap_next _entry(3LDAP)
ldap_count_entries(3LDAP)
ldap_friendly name(3LDAP)
ldap_free friendlymap(3LDAP)

ldap_get_dn(3LDAP)
ldap_explode dn(3LDAP)

Networking Library Functions

Return first row of displayable items in a
template.

Return next row of displayable items in a
template.

Return first column of displayable items in a
template.

Return next column of displayable items in a
template.

Display an entry as text by using a display
template.

Search for and display an entry as text by using
a display template.

Display values as text.

Display an entry as HTML (HyperText Markup
Language) by using a display template.

Search for and display an entry as HTML by
using a display template.

Display values as HTML.

Deprecated. Use
ldap_parse_result(3LDAP).

Deprecated. Use
ldap_parse result(3LDAP).

Convert LDAP error indication to a string.
Return first attribute name in an entry.
Return next attribute name in an entry.
Return first entry in a chain of search results.
Return next entry in a chain of search results.
Return number of entries in a search result.
Map from unfriendly to friendly names.

Free resources used by
ldap_friendly(3LDAP).

Extract the DN from an entry.

Convert a DN into its component parts.

281

Idap(3LDAP)

282

ldap_explode_dns(3LDAP)

ldap_is dns dn(3LDAP)

ldap_dns_to_dn(3LDAP)

ldap _dn2ufn(3LDAP)
ldap_get values(3LDAP)
ldap_get values len(3LDAP)
ldap_value free(3LDAP)

ldap _value free len(3LDAP)

ldap_count values(3LDAP)
ldap_count_values len(3LDAP)
ldap_init getfilter(3LDAP)
ldap_init_getfilter buf(3LDAP)
ldap_getfilter_ free(3LDAP)

ldap getfirstfilter(3LDAP)
ldap_getnextfilter(3LDAP)
ldap_build filter(3LDAP)

ldap_setfilteraffixes(3LDAP)
ldap_modify(3LDAP)

ldap _modify s(3LDAP)
ldap_modify ext(3LDAP)

ldap_modify ext s(3LDAP)

ldap_mods_free(3LDAP)

Convert a DNS-style DN into its component
parts (experimental).

Check to see ifa DN is a DNS-style DN
(experimental).

Convert a DNS domain name into an X.500
distinguished name.

Convert a DN into user friendly form.
Return an attribute's values.
Return an attribute's values with lengths.

Free memory allocated by
ldap get values(3LDAP).

Free memory allocated by
ldap get values len(3LDAP).

Return number of values.

Return number of values.

Initialize getfilter functions from a file.
Initialize getfilter functions from a buffer.

Free resources allocated by
ldap_init getfilter(3LDAP).

Return first search filter.
Return next search filter.

Construct an LDAP search filter from a
pattern.

Set prefix and suffix for search filters.
Asynchronously modify an entry.
Synchronously modify an entry.

Asynchronously modify an entry, return value,
and place message.

Synchronously modify an entry, return value,
and place message.

Free array of pointers to mod structures used
by ldap_modify(3LDAP).

man pages section 3: Networking Library Functions « Last Revised 23 Aug 2011

Idap(3LDAP)

ldap_modrdn2(3LDAP)

ldap_modrdn2_s(3LDAP)

ldap_modrdn(3LDAP)

ldap _modrdn s(3LDAP)

ldap_rename(3LDAP)

ldap_rename_s(3LDAP)

ldap_msgfree(3LDAP)

ldap parse result(3LDAP)
ldap_parse_extended result(3LDAP)
ldap_parse sasl bind result(3LDAP)
ldap_search(3LDAP)
ldap_search_s(3LDAP)
ldap_search_ext(3LDAP)

ldap_search_ext s(3LDAP)

ldap_search st(3LDAP)

ldap ufn search s(3LDAP)
ldap_ufn_search c(3LDAP)
ldap ufn search ct(3LDAP)

ldap_ufn_setfilter(3LDAP)

ldap_ufn_setprefix(3LDAP)

Networking Library Functions

Deprecated. Use ldap_rename(3LDAP)
instead.

Deprecated. Use 1dap _rename_s(3LDAP)
instead.

Deprecated. Use ldap_rename(3LDAP)
instead.

Depreciated. Use ldap_rename_s(3LDAP)
instead.

Asynchronously modify the name of an LDAP
entry.

Synchronously modify the name of an LDAP
entry.

Free result messages.

Search for a message to parse.

Search for a message to parse.

Search for a message to parse.
Asynchronously search the directory.

Synchronously search the directory.

Asynchronously search the directory with
support for LDAPv3 controls.

Synchronously search the directory with
support for LDAPv3 controls.

Synchronously search the directory with
support for a local timeout value.

User friendly search the directory.
User friendly search the directory with cancel.

User friendly search the directory with cancel
and timeout.

Set filter file used by ldap_ufn(3LDAP)
functions.

Set prefix used by ldap_ufn(3LDAP)
functions.

283

Idap(3LDAP)

284

ldap_ufn_timeout(3LDAP)

ldap_is_ldap_url(3LDAP)
ldap_url_parse(3LDAP)

ldap free urldesc(3LDAP)
ldap_url search(3LDAP)

ldap_url_search s(3LDAP)
ldap_url_search st(3LDAP)

ldap_dns_to_url(3LDAP)

ldap_dn_to url(3LDAP)

ldap_init_searchprefs(3LDAP)
ldap_init_searchprefs buf(3LDAP)
ldap_free_searchprefs(3LDAP)

ldap first searchobj(3LDAP)
ldap_next searchobj(3LDAP)
ldap_sort_entries(3LDAP)
ldap_sort_values(3LDAP)
ldap_sort_strcasecmp(3LDAP)

ldap_set string translators(3LDAP)

ldap translate from t61(3LDAP)

ldap translate to t61(3LDAP)

ldap_enable_translation(3LDAP)

Set timeout used by ldap_ufn(3LDAP)
functions.

Check a URL string to see if it is an LDAP URL.

Break up an LDAP URL string into its
components.

Free an LDAP URL structure.

Asynchronously search by using an LDAP
URL.

Synchronously search by using an LDAP URL.

Asynchronously search by using an LDAP
URL, with support for a local timeout value.

Locate the LDAP URL associated with a DNS
domain name.

Locate the LDAP URL associated with a
distinguished name.

Initialize searchprefs functions from a file.
Initialize searchprefs functions from a buffer.

Free memory allocated by searchprefs
functions.

Return first searchpref object.
Return next searchpref object.

Sort alist of search results.

Sort alist of attribute values.

Case insensitive string comparison.

Set character set translation functions used by
LDAP library.

Translate from the T.61 character set to
another character set.

Translate to the T.61 character set from
another character set.

Enable or disable character translation for an
LDAP entry result.

man pages section 3: Networking Library Functions « Last Revised 23 Aug 2011

Idap(3LDAP)

ldap_version(3LDAP)

ldap_get lang_values(3LDAP)

ldap_get lang values len(3LDAP)

ldap get entry controls(3LDAP)

ldap_get option(3LDAP)
ldap_set option(3LDAP)
ldap_memfree(3LDAP)

Get version information about the LDAP SDK
for C.

Return an attribute's value that matches a
specified language subtype.

Return an attribute's value that matches a
specified language subtype along with lengths.

Get the LDAP controls included with a
directory entry in a set of search results.

Get session preferences in an LDAP structure.
Set session preferences in an LDAP structure.

Free memory allocated by LDAP API
functions.

Attributes See attributes(5) for a description of the following attributes:

ATTRIBUTETYPE

ATTRIBUTE VALUE

Availability

system/library

Interface Stability

Committed

SeeAlso attributes(5)

Networking Library Functions

285

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

Idap_abandon(3LDAP)

286

Name

Synopsis

Description

Errors

Attributes

See Also

ldap_abandon - abandon an LDAP operation in progress

ccl flag... 1 file... -\dap[library...]
#include <lber.h>
#include <ldap.h>

int ldap_abandon(LDAP *Id, int msgid) ;

The ldap_abandon () function is used to abandon or cancel an LDAP operation in progress.
The msgid passed should be the message id of an outstanding LDAP operation, as returned by
ldap_search(3LDAP), ldap_modify(3LDAP), etc.

ldap_abandon() checks to see if the result of the operation has already come in. If it has, it
deletes it from the queue of pending messages. If not, it sends an LDAP abandon operation to
the the LDAP server.

The caller can expect that the result of an abandoned operation will not be returned from a
future call to 1dap_result(3LDAP).

ldap_abandon () returns 0 if successful or —lotherwise and setting Id_errno appropriately. See
ldap_error(3LDAP) for details.

See attributes(5) for a description of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

Availability system/library

Interface Stability Committed

ldap(3LDAP), ldap_result(3LDAP), ldap_error(3LDAP), attributes(5)

man pages section 3: Networking Library Functions « Last Revised 23 Aug 2011

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

Idap_add(3LDAP)

Name

Synopsis

Description

Errors

Attributes

ldap_add, ldap_add_s, Idap_add_ext, ldap_add_ext_s — perform an LDAP add operation

cc [flag... 1 file... -1ldap [library...]
#include <lber.h>
#include <ldap.h>

int ldap_add(LDAP *Id, char *dn, LDAPMod *attrs[1);
int ldap add s(LDAP *ld, char *dn, LDAPMod *attrs[1);

int ldap_add ext(LDAP *ld, char *dn, LDAPMod **attrs,
LDAPControl **serverctrls, int *msgidp);

int ldap add ext s(LDAP *ld, char *dn, LDAPMod **attrs,
LDAPControl **serverctrls, LDAPControl **clientctrls);

The ldap_add_s () function is used to perform an LDAP add operation. It takes dn, the DN of
the entry to add, and attrs, a null-terminated array of the entry's attributes. The LDAPMod
structure is used to represent attributes, with the mod_type and mod_values fields being used
as described under ldap_modify(3LDAP), and the Idap_op field being used only if you need to
specify the LDAP_MOD_BVALUES option. Otherwise, it should be set to zero.

Note that all entries except that specified by the last component in the given DN must already
exist. Lldap_add_s () returns an LDAP error code indicating success or failure of the operation.
See ldap_error(3LDAP) for more details.

The ldap_add () function works just like 1dap_add_s (), but it is asynchronous. It returns the
message id of the request it initiated. The result of this operation can be obtained by calling
ldap_result(3LDAP).

The ldap_add_ext () function initiates an asynchronous add operation and returns
LDAP_SUCCESS if the request was successfully sent to the server, or else it returns a LDAP error
code if not (see ldap _error(3LDAP)). If successful, 1dap_add ext() places the message id
of *msgidp. A subsequent call to ldap_result (), can be used to obtain the result of the add
request.

The ldap_add_ext_s () function initiates a synchronous add operation and returns the result
of the operation itself.

ldap_add () returns —1 in case of error initiating the request, and will set the Id_errno field in
the Id parameter to indicate the error. ldap_add_s () will return an LDAP error code directly.

See attributes(5) for a description of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

Availability system/library

Interface Stability Committed

Networking Library Functions 287

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

Idap_add(3LDAP)

SeeAlso 1dap(3LDAP), ldap_error(3LDAP), ldap_modify(3LDAP), attributes(5)

288 man pages section 3: Networking Library Functions « Last Revised 23 Aug 2011

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

Idap_ber_free(3LDAP)

Name

Synopsis

Description

Attributes

See Also

ldap_ber_free — free a BerElement structure from memory

cc flag... file... -1ldap [library...]
#include <ldap.h>

void ldap_ber_free(BerElement *ber, int freebuf);

You can make a call to the ldap_ber free() function to free BerElement structures allocated
by ldap_first_attribute() and by ldap_next_attribute() function calls. When freeing
structures allocated by these functions, specify 0 for the freebufargument. The
ldap_first_attribute() and by ldap_next_attribute() functions do not allocate the
extra buffer in the BerElement structure.

For example, to retrieve attributes from a search result entry, you need to call the

ldap_first attribute() function. A call to this function allocates a BerElement structure,
which is used to help track the current attribute. When you are done working with the
attributes, this structure should be freed from memory, if it still exists.

This function is deprecated . Use the ber_free() function instead.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

Availability system/library

Interface Stability Committed

ber free(3LDAP), ldap_first attribute(3LDAP), ldap next_attribute(3LDAP),
attributes(5)

Networking Library Functions 289

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

Idap_bind(3LDAP)

Name Idap_bind, Idap_bind_s, ldap_sasl_bind, ldap_sasl_bind_s, ldap_simple_bind,
ldap_simple_bind_s, Idap_unbind, ldap_unbind_s, Idap_unbind_ext, 1dap_set_rebind_proc,
ldap_sasl_interactive_bind_s - LDAP bind functions

Synopsis cc [flag... 1 file... -1ldap [library...]

#include <lber.h>
#include <ldap.h>

int ldap_bind(LDAP *Id, char *who, char *cred, int method);
int ldap bind s(LDAP *Id, char *who, char *cred, int method) ;
int ldap_simple_bind(LDAP *Ild, char *who, char *passwd);

int ldap_simple_bind_s(LDAP *Ild, char *who, char *passwd);
int ldap_unbind(LDAP *Id);

int ldap unbind s(LDAP *Id);

int ldap_unbind ext(LDAP *ld, LDAPControl **serverctrls,
LDAPControl **clientctrls);

void ldap_set_rebind_proc(LDAP *id, int (*rebindproc));

int ldap_sasl bind(LDAP *Id, char *dn, char *mechanism,
struct berval **serverctrls, LDAPControl **clientctrls,
int *msgidp) ;

int ldap sasl bind s(LDAP *Id, char *dn, char *mechanism,

struct berval *cred, LDAPControl **serverctrls,
LDAPControl **clientctrls);

int ldap sasl interactive bind s(LDAP *Id, char *dn,
char *sasIMechanism, LDAPControl **sctrl,
LDAPControl **cctrl, unsigned flags,
LDAP_SASL_INTERACT PROC *callback, void *defaults);

Description These functions provide various interfaces to the LDAP bind operation. After a connection is
made to an LDAP server, the 1dap_bind () function returns the message ID of the request
initiated. The 1dap _bind s() function returns an LDAP error code.

Simple Authentication 'The simplest form of the bind call is ldap_simple_bind_s (). The function takes the DN
(Distinguished Name) of the dn parameter and the userPassword associated with the entry in
passwd to return an LDAP error code. See ldap_error(3LDAP).

The ldap_simple_bind() call is asynchronous. The function takes the same parameters as
ldap_simple_bind_s () butinitiates the bind operation and returns the message ID of the
request sent. The result of the operation can be obtained by a subsequent call to

ldap result(3LDAP).

290 man pages section 3: Networking Library Functions « Last Revised 1 Nov2010

Idap_bind(3LDAP)

General Authentication

SASL Authentication

Unbinding

The ldap_bind() and ldap_bind_s() functions are used to select the authentication method
at runtime. Both functions take an extra method parameter to set the authentication method.
For simple authentication, the method parameter is set to LDAP_AUTH_SIMPLE. The
ldap_bind() function returns the message id of the request initiated. The ldap_bind_s()
function returns an LDAP error code.

The ldap_sasl_bind() and ldap_sasl_bind_s() functions are used for general and
extensible authentication over LDAP through the use of the Simple Authentication Security
Layer. The routines both take the DN to bind as the authentication method. A dotted-string
representation of an OID identifies the method, and the berval structure holds the
credentials. The special constant value LDAP_SASL_SIMPLE (“”) can be passed to request
simple authentication. Otherwise, the ldap_simple_bind() function or the

ldap simple bind s() function can be used.

The ldap_sasl interactive bind s () helper function takes its data and performs the
necessary ldap_sasl_bind() and associated SASL library authentication sequencing with the
LDAP server that uses the provided connection (Id).

Upon a successful bind, the ldap_sasl_bind() function will, if negotiated by the SASL
interface, install the necessary internal libldap plumbing to enable SASL integrity and
privacy (over the wire encryption) with the LDAP server.

The LDAP_SASL_INTERACTIVE option flagis passed to the libldap API through the flags
argument of the API. The flag tells the API to use the SASL interactive mode and to have the
APIrequest SASL authentication data through the LDAP_SASL_INTERACTIVE_PROC callback as
needed. The callback provided is in the form:

typedef int (LDAP_SASL_INTERACT PROC)
(LDAP *1d, unsigned flags, void* defaults, void *interact);

The user-provided SASL callback is passed to the current LDAP connection pointer, the
current flags field, an optional pointer to user-defined data, and the list of sas1_interact_t
authentication values requested by libsas1(3LIB) to complete authentication.

The user-defined callback collects and returns the authentication information in the
sasl_interact_tarrayaccording to libsas1 rules. The authentication information can
include user IDs, passwords, realms, or other information defined by SASL. The SASL library
uses this date during sequencing to complete authentication.

The ldap_unbind() callis used to unbind from a directory, to terminate the current
association, and to free the resources contained in the Id structure. Once the function is called,
the connection to the LDAP server is closed and the Id structure is invalid. The
ldap_unbind_s() and ldap_unbind() calls are identical and synchronous in nature.

The ldap_unbind_ext () function is used to unbind from a directory, to terminate the current
association, and to free the resources contained in the LDAP structure. Unlike ldap_unbind()
and ldap_unbind_s (), both server and client controls can be explicitly included with

Networking Library Functions 291

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libsasl-3lib

Idap_bind(3LDAP)

ldap_unbind_ext () requests. No server response is made to an unbind request and responses
should not be expected from server controls included with unbind requests.

RebindingWhile The ldap set rebind proc() call is used to set a function called back to obtain bind
FollowingReferral - .redentials. The credentials are used when a new server is contacted after an LDAP referral. If
ldap_set_rebind_proc() is never called, or if it is called with a NULL rebindproc parameter,
an unauthenticated simple LDAP bind is always done when chasing referrals.

The rebindproc() function is declared as shown below:

int rebindproc(LDAP *1d, char **whop, char **credp,
int *methodp, int freeit);

The LDAP library first calls the rebindproc() to obtain the referral bind credentials. The
freeit parameter is zero. The whop, credp, and methodp parameters should be set as
appropriate. If rebindproc () returns LDAP_SUCCESS, referral processing continues. The
rebindproc() is called a second time with a non-zero freeit value to give the application a
chance to free any memory allocated in the previous call.

If anything but LDAP_SUCCESS is returned by the first call to rebindproc (), referral processing
is stopped and the error code is returned for the original LDAP operation.

ReturnValues Make a call to ldap_result(3LDAP) to obtain the result of a bind operation.

Errors Asynchronous functions will return —1 in case of error. See ldap_error(3LDAP) for more
information on error codes returned. If no credentials are returned, the result parameter is set
to NULL.

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

SeeAlso 1dap(3LDAP), ldap_error(3LDAP), ldap_open(3LDAP), ldap_result(3LDAP),
libsas1(3LIB), attributes(5)

292 man pages section 3: Networking Library Functions « Last Revised 1 Nov 2010

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libsasl-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

Idap_charset(3LDAP)

Name

Synopsis

Description

ldap_charset, [dap_set_string_translators, ldap_t61_to_8859, 1dap_8859_to_t61,
Idap_translate_from_t61, ldap_translate_to_t61,1dap_enable_translation - LDAP character
set translation functions

ccl flag... 1 file... -Wdap[library...]
#include <lber.h>
#include <ldap.h>

void ldap set string translators(LDAP *id,
BERTranslateProc encode_proc, BERTranslateProc decodeproc);

typedef int(*BERTranslateProc)(char **bufp, unsigned long *buflenp,
int free_input);

int ldap_t61 to_8859(char **bufp, unsigned long *buflenp,
int free_input);

int ldap_8859_to_t6l(char **bufp, unsigned long *buflenp,
int free_input);

int ldap_translate_from_t61(LDAP *ld, char **bufp,
unsigned long *lenp, int free_input);

int ldap_translate_to t61(LDAP *ld, char **bufp, unsigned long *lenp,
int free_input);

void ldap_enable translation(LDAP *ld, LDAPMessage *entry, int enable);

These functions are used to used to enable translation of character strings used in the LDAP
library to and from the T.61 character set used in the LDAP protocol. These functions are only
available if the LDAP and LBER libraries are compiled with STR_TRANSLATION defined. Itis
also possible to turn on character translation by default so that all LDAP library callers will
experience translation; see the LDAP Make-common source file for details.

ldap_set_string_translators() sets the translation functions that will be used by the
LDAP library. They are not actually used until the ld_[beroptions field of the LDAP structure is
set to include the LBER_TRANSLATE_STRINGS option.

ldap_t61_to_8859() and ldap_8859_to_t61() are translation functions for converting
between T.61 characters and ISO-8859 characters. The specific 8859 character set used is
determined at compile time.

ldap_translate_from_t61() is used to translate a string of characters from the T.61
character set to a different character set. The actual translation is done using the decode_proc
that was passed to a previous call to ldap_set_string_translators().On entry, *bufp
should point to the start of the T.61 characters to be translated and *lenp should contain the
number of bytes to translate. If free_input is non-zero, the input buffer will be freed if
translation is a success. If the translation is a success, LDAP_SUCCESS will be returned, *bufp
will point to a newly malloc'd buffer that contains the translated characters, and *lenp will
contain the length of the result. If translation fails, an LDAP error code will be returned.

Networking Library Functions 293

Idap_charset(3LDAP)

294

ldap_translate_to_t61() is used to translate a string of characters to the T.61 character set
from a different character set. The actual translation is done using the encode_proc that was
passed to a previous call to ldap_set_string_translators(). This function is called just like
ldap translate from t61().

ldap_enable_translation() is used to turn on or off string translation for the LDAP entry
entry (typically obtained by calling ldap_first_entry() or ldap_next_entry() aftera
successful LDAP search operation). If enable is zero, translation is disabled; if non-zero,
translation is enabled. This function is useful if you need to ensure that a particular attribute is
not translated when it is extracted using ldap_get_values() or ldap_get_values_len().For
example, you would not want to translate a binary attributes such as jpegPhoto.

Attributes See attributes(5) for a description of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

Availability system/library

Interface Stability Committed

SeeAlso 1dap(3LDAP), attributes(5)

man pages section 3: Networking Library Functions « Last Revised 23 Aug 2011

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

Idap_compare(3LDAP)

Name

Synopsis

Description

Errors

Attributes

ldap_compare, ldap_compare_s, ldap_compare_ext, ldap_compare_ext_s - LDAP compare
operation

ccl flag... 1 file... -Wdap[library...]
#include <lber.h>
#include <ldap.h>

int ldap compare(LDAP *ld, char *dn, char *attr, char *value);
int ldap compare s(LDAP *ld, char *dn, char *attr, char *value);

int ldap_compare ext(LDAP *Id, char *dn, char *attr,
struct berval *bvalue, LDAPControl **serverctrls,
LDAPControl **clientctrls,int *msgidp);

int ldap compare ext s(LDAP *id, char *dn, char *attr,
struct berval *bvalue, LDAPControl **serverctrls,
LDAPControl **clientctrls);

The ldap_compare s() function is used to perform an LDAP compare operation
synchronously. It takes dn, the DN of the entry upon which to perform the compare, and attr
and value, the attribute type and value to compare to those found in the entry. It returns an
LDAP error code, which will be LDAP_COMPARE_TRUE if the entry contains the attribute value
and LDAP_COMPARE_FALSE if it does not. Otherwise, some error code is returned.

The ldap_compare() function is used to perform an LDAP compare operation
asynchronously. It takes the same parameters as ldap_compare_s (), but returns the message
id of the request it initiated. The result of the compare can be obtained by a subsequent call to
ldap_result(3LDAP).

The ldap_compare_ext () function initiates an asynchronous compare operation and returns
LDAP_SUCCESS if the request was successfully sent to the server, or else it returns a LDAP error
code if not (see Ldap_error(3LDAP). If successful, ldap_compare_ext () places the message
id of the request in *msgidp. A subsequent call to ldap_result (), can be used to obtain the
result of the add request.

The ldap_compare_ext_s () function initiates a synchronous compare operation and as such
returns the result of the operation itself.

ldap_compare_s () returns an LDAP error code which can be interpreted by calling one of
ldap_perror(3LDAP) and friends. ldap_compare () returns —1 if something went wrong
initiating the request. It returns the non-negative message id of the request if it was successful.

See attributes(5) for a description of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

Availability system/library

Networking Library Functions 295

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

Idap_compare(3LDAP)

296

ATTRIBUTETYPE

ATTRIBUTE VALUE

Interface Stability

Committed

SeeAlso 1dap(3LDAP), ldap_error(3LDAP), attributes(5)

Bugs There is no way to compare binary values using ldap_compare().

man pages section 3: Networking Library Functions « Last Revised 23 Aug 2011

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

Idap_control_free(3LDAP)

Name

Synopsis

Description

Return Values
Errors

Attributes

See Also

ldap_control_free,ldap_controls_free - LDAP control disposal

ccl flag... 1 file... -Wdap[library...]
#include <lber.h>
#include <ldap.h>

void ldap control free(LDAPControl *ctrl);

void ldap controls free(LDAPControl *ctrls) ;

ldap_controls_free() and ldap_control_free() are routines which can be used to dispose
of a single control or an array of controls allocated by other LDAP APIs.

None.
No errors are defined for these functions.

See attributes(5) for a description of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

Availability system/library

Interface Stability Committed

ldap_error(3LDAP), ldap_result(3LDAP), attributes(5)

Networking Library Functions 297

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

Idap_delete(3LDAP)

Name Idap_delete, Idap_delete_s, ldap_delete_ext, Idap_delete_ext_s - LDAP delete operation

Synopsis cc[flag... 1 file... -1ldap[library...]
#include <lber.h>
#include <ldap.h>

int ldap delete(LDAP *id, char *dn);
int ldap delete s(LDAP *ld, char *dn);

int ldap delete ext(LDAP *Id, char *dn, LDAPControl **serverctrls,
LDAPControl **clientctrls, int *msgidp);

int ldap_delete ext s(LDAP *id, char *dn, LDAPControl *'serverctrls,
LDAPControl **clientctrls);

Description The ldap_delete_s() function is used to perform an LDAP delete operation synchronously.
It takes dn, the DN of the entry to be deleted. It returns an LDAP error code, indicating the
success or failure of the operation.

The ldap_delete() function is used to perform an LDAP delete operation asynchronously. It
takes the same parameters as ldap_delete_s(), but returns the message id of the request it
initiated. The result of the delete can be obtained by a subsequent call to

ldap result(3LDAP).

The ldap_delete_ext () function initiates an asynchronous delete operation and returns
LDAP_SUCCESS if the request was successfully sent to the server, or else it returns a LDAP error
codeif not (see Ldap_error(3LDAP)). If successful, ldap_delete_ext () places the message
id of the request in *msgidp. A subsequent call to ldap_result(), can be used to obtain the
result of the add request.

The ldap_delete_ext_s() function initiates a synchronous delete operation and as such
returns the result of the operation itself.

Errors 1ldap_delete_s() returns an LDAP error code which can be interpreted by calling one of
ldap_perror(3LDAP) functions. ldap_delete() returns —1 if something went wrong
initiating the request. It returns the non-negative message id of the request if things were
successful.

Attributes See attributes(5) for a description of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

Availability system/library

Interface Stability Committed

298 man pages section 3: Networking Library Functions « Last Revised 23 Aug 2011

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

Idap_delete(3LDAP)

SeeAlso 1dap(3LDAP), ldap_error(3LDAP), attributes(5)

Networking Library Functions 299

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

Idap_disptmpl(3LDAP)

Name Idap_disptmpl, Idap_init_templates, ldap_init_templates_buf, ldap_free_templates,
ldap_first_disptmpl, ldap_next_disptmpl, Idap_oc2template, ldap_name2template,
ldap_tmplattrs, Idap_first_tmplrow, ldap_next_tmplrow, ldap_first_tmplcol,
ldap_next_tmplcol - LDAP display template functions

Synopsis cc [flag... 1 file... -1ldap [library...]
#include <lber.h>
#include <ldap.h>

int ldap_init_templates(char *file, struct ldap_disptmpl **tmpllistp);

int ldap_init_templates_buf(char *buf, unsigned long len,
struct ldap_disptmpl *tmpllistp);

void ldap_free_templates(struct ldap_disptmpl *tmpllist)

struct ldap_disptmpl *ldap_first disptmpl
(struct ldap_disptmpl *tmpllist)

struct ldap_disptmpl *ldap_next disptmpl
(struct ldap_disptmpl *tmpllist,struct ldap_disptmpl *tmpl);

struct ldap disptmpl *1ldap oc2template (char **oclist,
struct ldap_disptmpl *tmpllist)

struct ldap disptmpl *1ldap name2template (char *name,
struct ldap_disptmpl *tmpllist)

char **ldap_tmplattrs(struct ldap_disptmpl *tmpl, char **includeattrs
int exclude, unsigned long syntaxmask);

struct ldap_tmplitem *ldap_first_tmplrow(struct ldap_disptmpl *tmpl);

struct ldap_tmplitem *ldap_next_tmplrow(struct ldap_disptmpl *tmpl,
struct ldap tmplitem *row);

struct ldap_tmplitem *ldap_first_tmplcol(struct ldap_disptmpl *tmpl,
struct ldap_tmplitem *row, struct ldap tmplitem *col);

struct ldap_tmplitem *ldap_next_tmplcol(struct ldap_disptmpl *tmpl,
struct ldap tmplitem *row, struct ldap tmplitem *col);

Description These functions provide a standard way to access LDAP entry display templates. Entry display
templates provide a standard way for LDAP applications to display directory entries. The
general idea is that it is possible to map the list of object class values present in an entry to an
appropriate display template. Display templates are defined in a configuration file. See
ldaptemplates.conf(4). Each display template contains a pre-determined list of items, where
each item generally corresponds to an attribute to be displayed. The items contain
information and flags that the caller can use to display the attribute and values in a reasonable
fashion. Each item has a syntaxid, which are described in the SYNTAX IDS section below. The
ldap_entry2text(3LDAP) functions use the display template functions and produce text
output.

300 man pages section 3: Networking Library Functions « Last Revised 23 Aug 2011

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ldaptemplates.conf-4

Idap_disptmpl(3LDAP)

ldap_init_templates() readsa sequence of templates from a valid LDAP template
configuration file (see ldaptemplates.conf(4)). Upon success, @ is returned, and tmpllistp is
set to point to a list of templates. Each member of the list is an 1dap_disptmpl structure
(defined below in the DISPTMPL Structure Elements section).

ldap_init_templates_buf() readsa sequence of templates from buf (whose size is buflen).
buf should point to the data in the format defined for an LDAP template configuration file (see
ldaptemplates.conf(4)). Upon success, @ is returned, and tmpllistp is set to point to a list of
templates.

The LDAP_SET DISPTMPL_APPDATA() macro is used to set the value of the dt_appdata field in
an ldap_disptmpl structure. This field is reserved for the calling application to use; it is not
used internally.

The LDAP_GET DISPTMPL_APPDATA() macro is used to retrieve the value in the dt_appdata
field.

The LDAP IS DISPTMPL OPTION SET() macro is used totesta ldap disptmpl structure for
the existence of a template option. The options currently defined are:
LDAP_DTMPL_OPT_ADDABLE (it is appropriate to allow entries of this type to be added),
LDAP_DTMPL_OPT_ALLOWMODRDN (it is appropriate to offer the “modify rdn”operation),
LDAP_DTMPL_OPT_ALTVIEW (this template is merely an alternate view of another template,
typically used for templates pointed to be an LDAP_SYN_LINKACTION item).

ldap_free_templates() disposes of the templates allocated by ldap_init_templates().

ldap_first_disptmpl() returns the first template in the list tmpllist. The tmpllist is typically
obtained by calling 1dap_init_templates() .

ldap_next_disptmpl() returns the template after tmplin the template list tmpllist. A NULL
pointer is returned if tmpl is the last template in the list.

ldap_oc2template() searches tmpllist for the best template to use to display an entry that has
aspecific set of objectClass values. oclist should be a null-terminated array of strings that
contains the values of the objectClass attribute of the entry. A pointer to the first template
where all of the object classes listed in one of the template's dt_oclist elements are contained
in oclist is returned. A NULL pointer is returned if no appropriate template is found.

ldap_tmplattrs() returns a null-terminated array that contains the names of attributes that
need to be retrieved if the template tmpl is to be used to display an entry. The attribute list
should be freed using ldap_value_free(). The includeattrs parameter contains a
null-terminated array of attributes that should always be included (it may be NULL if no extra
attributes are required). If syntaxmask is non-zero, it is used to restrict the attribute set
returned. If exclude is zero, only attributes where the logical AND of the template item syntax id
and the syntaxmask is non-zero are included. If exclude is non-zero, attributes where the
logical AND of the template item syntax id and the syntaxmask is non-zero are excluded.

ldap_first_tmplrow() returns a pointer to the first row of items in template tmpl.

Networking Library Functions 301

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ldaptemplates.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ldaptemplates.conf-4

Idap_disptmpl(3LDAP)

ldap_next_tmplrow() returns a pointer to the row that follows row in template tmpl.

ldap_first tmplcol() returnsa pointer to the first item (in the first column) of row row
within template tmpl. A pointer to an ldap_tmplitem structure (defined below in the
TMPLITEM Structure Elements section) is returned.

The LDAP_SET TMPLITEM APPDATA() macro is used to set the value of the ti_appdata field in
a ldap_tmplitem structure. This field is reserved for the calling application to use; it is not
used internally.

The LDAP_GET TMPLITEM APPDATA() macro is used to retrieve the value of the ti appdata
field.

The LDAP IS TMPLITEM OPTION SET() macro isused totesta ldap tmplitem structure for
the existence of an item option. The options currently defined are:

LDAP DITEM OPT READONLY (this attribute should not be modified),

LDAP_DITEM OPT_ SORTVALUES (it makes sense to sort the values),
LDAP_DITEM_OPT_SINGLEVALUED (this attribute can only hold a single value),
LDAP_DITEM OPT VALUEREQUIRED (this attribute must contain at least one value),
LDAP_DITEM OPT_HIDEIFEMPTY (do not show thisitem if there are no values), and
LDAP_DITEM_OPT_HIDEIFFALSE (for boolean attributes only: hide this item if the value is
FALSE).

ldap_next_tmplcol() returnsa pointer to the item (column) that follows column col within
row row of template tmpl.

DISPTMPL Structure The ldap_disptmpl structure is defined as:
Elements
struct ldap disptmpl {
char *dt name;
char *dt pluralname;
char *dt_iconname;
unsigned long dt_options;
char *dt_authattrname;
char *dt defrdnattrname;
char *dt defaddlocation;
struct ldap_oclist *dt_oclist;
struct ldap adddeflist *dt adddeflist;
struct ldap tmplitem *dt items;
void *dt_appdata;
struct ldap_disptmpl *dt_next;
}i
The dt_name member is the singular name of the template. The dt_pluralname is the plural
name. The dt_iconname member will contain the name of an icon or other graphical element
that can be used to depict entries that correspond to this display template. The dt_options
contains options which may be tested using the LDAP_IS_TMPLITEM_OPTION_SET() macro.
302 man pages section 3: Networking Library Functions « Last Revised 23 Aug 2011

Idap_disptmpl(3LDAP)

TMPLITEM Structure
Elements

Syntax IDs

The dt_authattrname contains the name of the DN-syntax attribute whose value(s) should be
used to authenticate to make changes to an entry. If dt_authattrname is NULL, then
authenticating as the entry itself is appropriate. The dt_def rdnattrname is the name of the
attribute that is normally used to name entries of this type, for example, “cn”for person
entries. The dt_defaddlocation is the distinguished name of an entry below which new
entries of this type are typically created (its value is site-dependent).

dt_oclistisapointer to alinked list of object class arrays, defined as:

struct ldap_oclist {

char **oc_objclasses;
struct ldap oclist *oc next;
}

These are used by the ldap_oc2template() function.

dt_adddeflistisa pointer to a linked list of rules for defaulting the values of attributes when
new entries are created. The ldap_adddeflist structure is defined as:

struct ldap_adddeflist {

int ad_source;
char *ad attrname;
char *ad value;
struct ldap_adddeflist *ad next;

+

The ad_attrname member contains the name of the attribute whose value this rule sets. If
ad_source is LDAP_ADSRC_CONSTANTVALUE then the ad_value member contains the
(constant) value to use. If ad_source is LDAP_ADSRC_ADDERSDN then ad_value is ignored and
the distinguished name of the person who is adding the new entry is used as the default value
forad attrname.

The ldap_tmplitem structure is defined as:
struct ldap tmplitem {

unsigned long ti syntaxid;
unsigned long ti options;

char *ti attrname;

char *ti label;

char **ti args;

struct ldap tmplitem *ti next in row;
struct ldap tmplitem *ti next in col;
void *ti appdata;

+

Syntax ids are found in the 1dap_tmplitem structure element ti_syntaxid, and they can be
used to determine how to display the values for the attribute associated with an item. The
LDAP_GET_SYN_TYPE () macro can be used to return a general type from a syntax id. The five
general types currently defined are: LDAP_SYN_TYPE_TEXT (for attributes that are most

Networking Library Functions 303

Idap_disptmpl(3LDAP)

304

appropriately shown as text), LDAP_SYN_TYPE_IMAGE (for JPEG or FAX format images),
LDAP_SYN_TYPE_BOOLEAN (for boolean attributes), LDAP_SYN_TYPE_BUTTON (for attributes
whose values are to be retrieved and display only upon request, for example, in response to the
press of a button, a JPEG image is retrieved, decoded, and displayed), and
LDAP_SYN_TYPE_ACTION (for special purpose actions such as “search for the entries where this
entry is listed in the seeAlso attribute”).

The LDAP_GET_SYN_OPTIONS macro can be used to retrieve an unsigned long bitmap that
defines options. The only currently defined option is LDAP_SYN_OPT_DEFER, which (if set)
implies that the values for the attribute should not be retrieved until requested.

There are sixteen distinct syntax ids currently defined. These generally correspond to one or
more X.500 syntaxes.

LDAP_SYN_CASEIGNORESTR is used for text attributes which are simple strings whose case is
ignored for comparison purposes.

LDAP_SYN_MULTILINESTRis used for text attributes which consist of multiple lines, for
example, postalAddress, homePostalAddress, multilineDescription, or any attributes of
syntax caseIgnorelist.

LDAP_SYN_RFC822ADDR is used for case ignore string attributes that are RFC-822 conformant
mail addresses, for example, mail.

LDAP_SYN_DN is used for attributes with a Distinguished Name syntax, for example, seeAlso.
LDAP_SYN_BOOLEAN is used for attributes with a boolean syntax.
LDAP_SYN_JPEGIMAGE is used for attributes with a jpeg syntax, for example, jpegPhoto.

LDAP_SYN_JPEGBUTTON is used to provide a button (or equivalent interface element) that can
be used to retrieve, decode, and display an attribute of jpeg syntax.

LDAP_SYN_FAXIMAGE is used for attributes with a photo syntax, for example, Photo. These are
actually Group 3 Fax (T.4) format images.

LDAP_SYN_FAXBUTTON is used to provide a button (or equivalent interface element) that can be
used to retrieve, decode, and display an attribute of photo syntax.

LDAP_SYN_AUDIOBUTTON is used to provide a button (or equivalent interface element) that can
be used to retrieve and play an attribute of audio syntax. Audio values are in the “mu law”
format, also known as “au” format.

LDAP_SYN_TIME is used for attributes with the UTCTime syntax, for example,
lastModifiedTime. The value(s) should be displayed in complete date and time fashion.

LDAP_SYN_DATE is used for attributes with the UTCTime syntax, for example,
lastModifiedTime. Only the date portion of the value(s) should be displayed.

man pages section 3: Networking Library Functions « Last Revised 23 Aug 2011

Idap_disptmpl(3LDAP)

LDAP_SYN_LABELEDURL is used for labeledURL attributes.

LDAP_SYN SEARCHACTION is used to define a search that is used to retrieve related information.
Ifti attrname is not NULL, it is assumed to be a boolean attribute which will cause no search
to be performed if its value is FALSE. The ti_args structure member will have four strings in
it: ti_args[0] should be the name of an attribute whose values are used to help construct a
search filter or “-dn” is the distinguished name of the entry being displayed should be used,
ti_args[1] should be a filter pattern where any occurrences of “%v” are replaced with the
value derived from ti_args[0], ti_args[2] should be the name of an additional attribute
to retrieve when performing the search, and ti_args[3] should be a human-consumable
name for that attribute. The ti_args[2] attribute is typically displayed along with a list of
distinguished names when multiple entries are returned by the search.

LDAP_SYN_LINKACTION is used to define a link to another template by name. ti_args[0] will
contain the name of the display template to use. The ldap_name2template () function can be
used to obtain a pointer to the correct ldap_disptmpl structure.

LDAP_SYN_ADDDNACTION and LDAP_SYN_VERIFYDNACTION are reserved as actions but currently
undefined.

Errors The init template functions return LDAP_TMPL_ERR_VERSION if buf points to data that is newer
than can be handled, LDAP_TMPL_ERR_MEM if there is a memory allocation problem,
LDAP_TMPL_ERR SYNTAX if there is a problem with the format of the templates buffer or file.
LDAP_TMPL_ERR_FILE isreturned by ldap_init_templates if the file cannot be read. Other
functions generally return NULL upon error.

Attributes See attributes(5) for a description of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

Availability system/library

Interface Stability Committed

SeeAlso 1dap(3LDAP), ldap_entry2text(3LDAP), ldaptemplates.conf(4),attributes(5)

Networking Library Functions 305

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ldaptemplates.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

Idap_entry2text(3LDAP)

Name ldap_entry2text, Idap_entry2text_search, Idap_entry2html, ldap_entry2html_search,
ldap_vals2html, ldap_vals2text - LDAP entry display functions

Synopsis cc[flag... 1 file... -1ldapl library...]
#include <lber.h>
#include <ldap.h>

int ldap_entry2text(LDAP *Id, char *buf, LDAPMessage *entry,
struct ldap_disptmpl *tmpl, char **defattrs, char ***defvals,
int (*writeproc) (), void *writeparm, char *eol, int rdncount,
unsigned long opts);

int ldap entry2text search(LDAP *ld, char *dn, char *base,
LDAPMessage *entry, struct ldap_disptmpl *tmpllist
char **defattrs, char ***defvals, int (*writeproc) (),
void *writeparm, char *eol,int rdncount,
unsigned long opts);

int ldap_vals2text(LDAP *Id, char *buf, char **vals, char *label,
int labelwidth, unsigned longsyntaxid, int (*writeproc)(),
void *writeparm, char *eol, int rdncount);

int ldap_entry2html(LDAP *Id, char *buf, LDAPMessage *entry,
struct ldap_disptmpl *tmpl, char **defattrs, char ***defvals,
int (*writeproc) (),void *writeparm, char *eol, int rdncount,
unsigned long opts, char *urlprefix, char *base);

int ldap_entry2html_search(LDAP *ld, char *dn, LDAPMessage *entry,
struct ldap_disptmpl *tmpllist, char **defattrs, char ***defvals,
int (*writeproc) (), void *writeparm, char *eol, int rdncount,
unsigned long opts, char *urlprefix);

int ldap_vals2html(LDAP *Id, char *buf, char **vals,
char *label, int labelwidth, unsigned long syntaxid,
int (*writeproc) (), void *writeparm, char *eol, int rdncount
char *urlprefix) ;

#define LDAP_DISP_OPT_AUTOLABELWIDTH 0x00000001
#define LDAP_DISP_OPT_HTMLBODYONLY 0x00000002

#define LDAP_DTMPL_BUFSIZ 2048

Description These functions use the LDAP display template functions (see ldap_disptmpl(3LDAP) and
ldap_templates.conf(4)) to produce a plain text or an HyperText Markup Language
(HTML) display of an entry or a set of values. Typical plain text output produced for an entry
might look like:

"Barbara J Jensen, Information Technology Division"
Also Known As:

Babs Jensen

Barbara Jensen

Barbara J Jensen

306 man pages section 3: Networking Library Functions « Last Revised 23 Aug 2011

Idap_entry2text(3LDAP)

E-Mail Address:
bjensen@terminator.rs.itd.umich.edu
Work Address:

535 W. William

Ann Arbor, MI 48103

Title:

Mythical Manager, Research Systems

The exact output produced will depend on the display template configuration. HTML output
is similar to the plain text output, but more richly formatted.

ldap_entry2text () produces a text representation of entry and writes the text by calling the
writeproc function. All of the attributes values to be displayed must be present in entry; no
interaction with the LDAP server will be performed within 1dap_entry2text. 1d is the LDAP
pointer obtained by a previous call to ldap_open. writeproc should be declared as:

int writeproc(writeparm, p, len)
void “*writeparm;

char *p;

int 1len;

where p is a pointer to text to be written and len is the length of the text. p is guaranteed to be
zero-terminated. Lines of text are terminated with the string eol. bufis a pointer to a buffer of
size LDAP_DTMPL_BUFSIZ or larger. If buf is NULL then a buffer is allocated and freed internally.
tmplis a pointer to the display template to be used (usually obtained by calling
ldap_oc2template). If tmpl is NULL, no template is used and a generic display is produced.
defattrs is a NULL-terminated array of LDAP attribute names which you wish to provide
default values for (only used if entry contains no values for the attribute). An array of
NULL-terminated arrays of default values corresponding to the attributes should be passed in
defvals. The rdncount parameter is used to limit the number of Distinguished Name (DN)
components that are actually displayed for DN attributes. If rdncount is zero, all components
are shown. opts is used to specify output options. The only values currently allowed are zero
(default output), LDAP_DISP_OPT AUTOLABELWIDTH which causes the width for labels to be
determined based on the longest label in tmpl, and LDAP_DISP_OPT_HTMLBODYONLY. The
LDAP_DISP_OPT_HTMLBODYONLY option instructs the library not to include <HTML>,
<HEAD>, <TITLE>, and <BODY> tags. In other words, an HTML fragment is generated, and
the caller is responsible for prepending and appending the appropriate HTML tags to
construct a correct HTML document.

ldap entry2text search() issimilarto ldap entry2text, and all of the like-named
parameters have the same meaning except as noted below. If base is not NULL, it is the search
base to use when executing search actions. If it is NULL, search action template items are
ignored. If entry is not NULL, it should contain the objectClass attribute values for the entry to
be displayed. If entry is NULL, dn must not be NULL, and ldap_entry2text_search will retrieve
the objectClass values itself by calling ldap_search_s. ldap_entry2text_search will
determine the appropriate display template to use by calling 1dap_oc2template, and will call

Networking Library Functions 307

Idap_entry2text(3LDAP)

Errors

Files

Attributes

See Also

308

ldap_search_s to retrieve any attribute values to be displayed. The tmpllist parameter is a
pointer to the entire list of templates available (usually obtained by calling
ldap_init_templatesor ldap_init_templates_buf). If tmpllist is NULL,
ldap_entry2text_search will attempt to read a load templates from the default template
configuration file ETCDIR/ldaptemplates.conf

ldap_vals2text produces a text representation of a single set of LDAP attribute values. The
Id, buf, writeproc, writeparm, eol, and rdncount parameters are the same as the like-named
parameters for ldap_entry2text. vals is a NULL-terminated list of values, usually obtained
by a call to ldap_get_values. label is a string shown next to the values (usually a friendly form
of an LDAP attribute name). labelwidth specifies the label margin, which is the number of
blank spaces displayed to the left of the values. If zero is passed, a default label width is used.
syntaxid is a display template attribute syntax identifier (see Ldap_disptmpl(3LDAP) for a list
of the pre-defined LDAP_SYN_. .. values).

ldap_entry2html produces an HTML representation of entry. It behaves exactly like
ldap_entry2text(3LDAP), except for the formatted output and the addition of two
parameters. urlprefix is the starting text to use when constructing an LDAP URL. The default
is the string Idap:/// The second additional parameter, base, the search base to use when
executing search actions. If it is NULL, search action template items are ignored.

ldap_entry2html_search behaves exactly like ldap_entry2text_search(3LDAP), except
HTML output is produced and one additional parameter is required. urlprefix is the starting
text to use when constructing an LDAP URL. The default is the string Idap:///

ldap_vals2html behaves exactly like l1dap_vals2text,exceptHTMLoutputis and one
additional parameter is required. urlprefix is the starting text to use when constructing an
LDAP URL. The default is the string ldap:///

These functions all return an LDAP error code. LDAP_SUCCESS is returned if no error occurs.
See ldap_error(3LDAP) for details. The Id_errno field of the Id parameter is also set to
indicate the error.

ETCDIR/ldaptemplates.conf

See attributes(5) for a description of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

Availability system/library

Interface Stability Committed

ldap(3LDAP), ldap_disptmpl(3LDAP), ldaptemplates.conf(4),attributes(5)

man pages section 3: Networking Library Functions « Last Revised 23 Aug 2011

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ldaptemplates.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

Idap_error(3LDAP)

Name

Synopsis

Description

Errors

ldap_error, ldap_err2string, Idap_perror, ldap_result2error - LDAP protocol error handling
functions

ccl flag... 1 file... -Wldap[library...]
#include <lber.h>
#include <ldap.h>

char *ldap_err2string(int err);
void ldap perror(LDAP *Id, const char *s);

int ldap_result2error(LDAP *Ild, LDAPMessage *res, int freeit);

These functions interpret the error codes that are returned by the LDAP API routines. The
ldap_perror() and ldap_result2error() functions are deprecated for all new development.
Use ldap_err2string() instead.

You can also use ldap_parse sasl bind result(3LDAP),
ldap_parse_extended_result(3LDAP),and ldap_parse_result(3LDAP) to provide error
handling and interpret error codes returned by LDAP API functions.

The ldap_err2string() function takes err, a numeric LDAP error code, returned either by
ldap_parse_result(3LDAP) or another LDAP API call. It returns an informative,
null-terminated, character string that describes the error.

The ldap_result2error() function takes res, a result produced by ldap_result(3LDAP) or
other synchronous LDAP calls, and returns the corresponding error code. If the freeit
parameter is non-zero, it indicates that the res parameter should be freed by a call to

ldap result(3LDAP) after the error code has been extracted.

Similar to the way perror(3C) works, the 1dap_perror() function can be called to print an
indication of the error to standard error.

The possible values for an LDAP error code are:

LDAP_SUCCESS The request was successful.

LDAP_OPERATIONS_ ERROR An operations error occurred.

LDAP_PROTOCOL ERROR A protocol violation was detected.

LDAP_TIMELIMIT EXCEEDED An LDAP time limit was exceeded.

LDAP_SIZELIMIT EXCEEDED An LDAP size limit was exceeded.

LDAP_COMPARE FALSE A compare operation returned false.

LDAP_COMPARE_TRUE A compare operation returned true.

LDAP_STRONG_AUTH_NOT_SUPPORTED The LDAP server does not support strong
authentication.

LDAP_STRONG AUTH REQUIRED Strong authentication is required for the operation.

Networking Library Functions 309

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1perror-3c

Idap_error(3LDAP)

LDAP_PARTIAL_RESULTS
LDAP_NO SUCH ATTRIBUTE

LDAP_UNDEFINED_TYPE
LDAP_INAPPROPRIATE_MATCHING

LDAP_CONSTRAINT_VIOLATION

LDAP_TYPE OR VALUE EXISTS

LDAP INVALID SYNTAX
LDAP NO SUCH OBJECT

LDAP_ALIAS_PROBLEM

LDAP_INVALID DN SYNTAX
LDAP IS LEAF

LDAP_ALIAS DEREF PROBLEM

LDAP_INAPPROPRIATE_AUTH

LDAP_INVALID CREDENTIALS

LDAP_INSUFFICIENT_ ACCESS

LDAP_BUSY
LDAP_UNAVAILABLE
LDAP_UNWILLING_TO_PERFORM
LDAP_LOOP_DETECT
LDAP_NAMING VIOLATION

LDAP_OBJECT CLASS VIOLATION

310 man pages section 3: Networking Library Functions «

Only partial results are returned.

The attribute type specified does not exist in the
entry.

The attribute type specified is invalid.

The filter type is not supported for the specified
attribute.

An attribute value specified violates some constraint.
For example, a postalAddress has too many lines,
or aline that is too long.

An attribute type or attribute value specified already
exists in the entry.

An invalid attribute value was specified.
The specified object does not exist in the directory.

An alias in the directory points to a nonexistent
entry.

A syntactically invalid DN was specified.
The object specified is a leaf.

A problem was encountered when dereferencing an
alias.

Inappropriate authentication was specified. For
example, LDAP_AUTH_SIMPLE was specified and the
entry does not have a userPassword attribute.

Invalid credentials were presented, for example, the
wrong password.

The user has insufficient access to perform the
operation.

The DSA is busy.

The DSA is unavailable.

The DSA is unwilling to perform the operation.
Aloop was detected.

A naming violation occurred.

An object class violation occurred. For example, a
must attribute was missing from the entry.

Last Revised 23 Aug 2011

Idap_error(3LDAP)

LDAP_NOT ALLOWED ON NONLEAF
LDAP_NOT ALLOWED ON_RDN
LDAP_ALREADY EXISTS
LDAP_NO OBJECT CLASS MODS
LDAP_OTHER

LDAP_SERVER DOWN

LDAP_LOCAL_ERROR

LDAP_ENCODING_ERROR

LDAP_DECODING_ERROR

LDAP_TIMEOUT

LDAP_AUTH_UNKNOWN

LDAP_FILTER ERROR

LDAP_PARAM_ERROR

LDAP_NO_MEMORY

LDAP_CONNECT ERROR

LDAP_NOT_SUPPORTED

LDAP_CONTROL_NOT_FOUND

LDAP_NO RESULTS RETURNED

LDAP_MORE RESULTS TO RETURN

Networking Library Functions

The operation is not allowed on a nonleaf object.
The operation is not allowed on an RDN.

The entry already exists.

Object class modifications are not allowed.

An unknown error occurred.

The LDAP library cannot contact the LDAP server.

Some local error occurred. This is usually the result
of a failed malloc(3C) call or a failure to fflush(3C)
the stdio stream to files, even when the LDAP
requests were processed successfully by the remote
server.

An error was encountered encoding parameters to
send to the LDAP server.

An error was encountered decoding a result from the
LDAP server.

A time limit was exceeded while waiting for a result.

The authentication method specified to
ldap_bind(3LDAP) is not known.

An invalid filter was supplied to
ldap_search(3LDAP), for example, unbalanced
parentheses.

An LDAP function was called with a bad parameter,
for example, a NULL Id pointer, and the like.

A memory allocation call failed in an LDAP library
function, for example, malloc(3C).

The LDAP client has either lost its connetion to an
LDAP server or it cannot establish a connection.

The requested functionality is not supported., for
example, when an LDAPv2 client requests some
LDAPv3 functionality.

An LDAP client requested a control not found in the
list of supported controls sent by the server.

The LDAP server sent no results.

More results are chained in the message chain.

311

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN7malloc-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN7fflush-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1malloc-3c

Idap_error(3LDAP)

LDAP_CLIENT_LOOP A loop has been detected, for example, when
following referrals.
LDAP_REFERRAL LIMIT EXCEEDED The referral exceeds the hop limit. The hop limit

determines the number of servers that the client can
hop through to retrieve data.

Attributes See attributes(5) for a description of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

Availability system/library

Interface Stability Committed

SeeAlso fflush(3C), ldap(3LDAP), ldap_bind(3LDAP), ldap_result(3LDAP),
ldap_parse_extended result(3LDAP), ldap _parse_result(3LDAP),
ldap_parse_sasl bind_result(3LDAP), ldap_search(3LDAP),malloc(3C), perror(3C),
attributes(5)

312 man pages section 3: Networking Library Functions « Last Revised 23 Aug 2011

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN7fflush-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1malloc-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1perror-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

Idap_first_attribute(3LDAP)

Name

Synopsis

Description

Errors

Attributes

See Also

Notes

ldap_first_attribute, ldap_next_attribute — step through LDAP entry attributes

cc [flag...1 file... -Wldap[library...]
#include <lber.h>
#include <ldap.h>

char *ldap_first_attribute(LDAP *Id, LDAPMessage *entry,
BerElement **berptr);

char *ldap_next_attribute(LDAP *Id, LDAPMessage *entry,
BerElement *ber);

The ldap_first_attribute() function gets the value of the first attribute in an entry.

The ldap_first_attribute() function returns the name of the first attribute in the entry. To
get the value of the first attribute, pass the attribute name to the ldap_get_values() function
or to the ldap get values len() function.

The ldap_next_attribute() function gets the value of the next attribute in an entry.

After stepping through the attributes, the application should call ber_free() to free the
BerElement structure allocated by the ldap_first_attribute() function if the structure is
other than NULL.

Ifan error occurs, NULL is returned and the 1d_errno field in the Id parameter is set to indicate
the error. See ldap_error(3LDAP) for a description of possible error codes.

See attributes(5) for a description of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

Availability system/library

Interface Stability Committed

1dap(3LDAP), ldap first entry(3LDAP), ldap get values(3LDAP),
ldap_error(3LDAP), attributes(5)

The ldap_first_attribute() function alllocates memory that might need to be freed by the
caller by means of ber_free(3LDAP).

Networking Library Functions 313

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

Idap_first_entry(3LDAP)

314

Name

Synopsis

Description

Errors

ldap_first_entry, ldap_next_entry, ldap_count_entries, ldap_count_references,
ldap_first_reference, ldap_next_reference - LDAP entry parsing and counting functions

cc [flag... 1 file... -1dap [library...]
#include <lber.h>
#include <ldap.h>

LDAPMessage *ldap first entry(LDAP*ld, LDAPMessage *result);
LDAPMessage *ldap_next_entry(LDAP *Id, LDAPMessage *entry);
int ldap_count_entries(LDAP *Id, LDAPMessage *result);
LDAPMessage *ldap first reference(LDAP *Id, LDAPMessage *res);
LDAPMessage *1ldap next reference(LDAP *Id, LDAPMessage *res);

int ldap_count_references(LDAP *Id, LDAPMessage *res);

These functions are used to parse results received from ldap_result(3LDAP) or the
synchronous LDAP search operation functions ldap_search_s(3LDAP) and
ldap_search_st(3LDAP).

The ldap_first_entry() function is used to retrieve the first entry in a chain of search
results. It takes the result as returned by a call to ldap_result(3LDAP) or
ldap_search_s(3LDAP) or ldap_search_st(3LDAP) and returns a pointer to the first entry
in the result.

This pointer should be supplied on a subsequent call to 1dap_next_entry() to get the next
entry, the result of which should be supplied to the next call to ldap_next_entry(), etc.
ldap_next_entry() will return NULL when there are no more entries. The entries returned
from these calls are used in calls to the functions described in 1dap get dn(3LDAP),

ldap _first attribute(3LDAP), ldap get values(3LDAP),etc.

A count of the number of entries in the search result can be obtained by calling
ldap_count entries().

ldap_first_reference() and ldap_next_reference() are used to step through and retrieve
the list of continuation references from a search result chain.

The ldap_count references() function is used to count the number of references that are
contained in and remain in a search result chain.

Ifan error occurs in ldap first entry() or ldap next entry(), NULL is returned and the
1d_errno field in the Id parameter is set to indicate the error. If an error occurs in
ldap_count_entries(),—1lisreturned, and ld_errno is set appropriately. See
ldap_error(3LDAP) for a description of possible error codes.

man pages section 3: Networking Library Functions « Last Revised 23 Aug 2011

Idap_first_entry(3LDAP)

Attributes See attributes(5) for a description of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

Availability system/library

Interface Stability Committed

SeeAlso 1dap(3LDAP), ldap_result(3LDAP), ldap_search(3LDAP),
ldap_first attribute(3LDAP), ldap get values(3LDAP), ldap_get dn(3LDAP),
attributes(5)

Networking Library Functions 315

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

Idap_first_message(3LDAP)

316

Name

Synopsis

Description

ReturnValues

Errors

Attributes

See Also

ldap_first_message, ldap_count_messages, ldap_next_message, ldap_msgtype - LDAP
message processing functions

ccl flag... 1 file... -1ldap[library...]

#include <lber.h>

#include <ldap.h>

int ldap count messages(LDAP */d, LDAPMessage *res);

LDAPMessage *1ldap_ first message(LDAP *ld, LDAPMessage *res);

LDAPMessage *ldap_next_message(LDAP *ld, LDAPMessage *msg);

int ldap msgtype(LDAPMessage *res);

ldap_count_messages () is used to count the number of messages that remain in a chain of
results if called with a message, entry, or reference returned by ldap_first_message(),

ldap_next message(),ldap first entry(), ldap next entry(),
ldap first reference(),and ldap next reference()

ldap_first_message() and ldap_next_message() functions are used to step through the list
of messages in a result chain returned by ldap_result().

ldap_msgtype () function returns the type of an LDAP message.

ldap first message() and ldap _next message() return LDAPMessage which can include
referral messages, entry messages and result messages.

ldap_count_messages () returns the number of messages contained in a chain of results.

ldap_first_message() and ldap_next_message() return NULL when no more messages
exist. NULL is also returned if an error occurs while stepping through the entries, in which case
the error parameters in the session handle Id will be set to indicate the error.

See attributes(5) for a description of the following attributes:
ATTRIBUTETYPE ATTRIBUTE VALUE
Availability system/library
Interface Stability Committed

ldap_error(3LDAP), ldap_result(3LDAP), attributes(5)

man pages section 3: Networking Library Functions « Last Revised 23 Aug 2011

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

Idap_friendly(3LDAP)

Name

Synopsis

Description

Errors

Files

Attributes

See Also

ldap_friendly, Idap_friendly_name, ldap_free_friendlymap — LDAP attribute remapping

functions

ccl flag... 1 file... -1ldap[library...]
#include <lber.h>
#include <ldap.h>

char *ldap friendly name(char *ﬁlename, char *name,
FriendlyMap **map);

void ldap_free friendlymap(FriendlyMap **map);

This function is used to map one set of strings to another. Typically, this is done for country
names, to map from the two-letter country codes to longer more readable names. The
mechanism is general enough to be used with other things, though.

filename is the name of a file containing the unfriendly to friendly mapping, name is the
unfriendly name to map to a friendly name, and map is a result-parameter that should be set
to NULL on the first call. It is then used to hold the mapping in core so that the file need not be
read on subsequent calls.

For example:

FriendlyMap *map = NULL;
printf("unfriendly %s => friendly %s\n", name,
ldap_friendly name("ETCDIR/ldapfriendly", name, &map));

The mapping file should contain lines like this: unfriendlyname\tfriendlyname. Lines that
begin with a '#' character are comments and are ignored.

The ldap_free_friendlymap() callis used to free structures allocated by
ldap_friendly name() when no more calls to ldap_friendly name() are to be made.

NULL is returned by ldap_friendly_name() if there is an error opening filename, or if the file
has a bad format, or if the map parameter is NULL.

ETCDIR/ldapfriendly.conf

See attributes(5) for a description of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

Availability system/library

Interface Stability Committed

1dap(3LDAP), attributes(5)

Networking Library Functions 317

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

Idap_get_dn(3LDAP)

Name Idap_get_dn,ldap_explode_dn,ldap_dn2ufn,ldap_is_dns_dn, ldap_explode_dns,
ldap_dns_to_dn - LDAP DN handling functions

Synopsis cc[flag... 1 file... -1ldap[library...]
#include <lber.h>
#include <ldap.h>

char *ldap_get_dn(LDAP *Id, LDAPMessage *entry);
char **1dap_explode_dn(char *dn, int notypes)
char *ldap dn2ufn(char *dn);

int ldap is dns_dn(char *dn);

char **1dap_explode dns(char *dn);

char *ldap_dns_to_dn(char *dns_name, int *nameparts);

Description These functions allow LDAP entry names (Distinguished Names, or DNs) to be obtained,
parsed, converted to a user-friendly form, and tested. A DN has the form described in REC
1779 A String Representation of Distinguished Names, unless it is an experimental DNS-style
DN which takes the form of an RFC 822 mail address.

The ldap_get_dn() function takes an entry as returned by ldap_first_entry(3LDAP) or
ldap_next_entry(3LDAP) and returns a copy of the entry's DN. Space for the DN will have
been obtained by means of malloc(3C), and should be freed by the caller by a call to free(3C).

The ldap_explode_dn() function takes a DN as returned by ldap_get_dn() and breaks it up
into its component parts. Each part is known as a Relative Distinguished Name, or RDN.
ldap_explode_dn() returns a null-terminated array, each component of which contains an
RDN from the DN. The notypes parameter is used to request that only the RDN values be
returned, not their types. For example, the DN "cn=Bob, ¢=US" would return as either {
"ecn=Bob", "c=US",NULL } or { "Bob", "US", NULL }, depending on whether notypes was 0 or
1, respectively. The result can be freed by calling 1dap_value_free(3LDAP).

ldap_dn2ufn() is used to turn a DN as returned by ldap_get_dn() into a more user-friendly
form, stripping off type names. See RFC 1781 "Using the Directory to Achieve User Friendly
Naming" for more details on the UFN format. The space for the UFN returned is obtained by a
call tomalloc(3C), and the user is responsible for freeing it by means of a call to free(3C).

ldap_is_dns_dn() returns non-zero if the dn string is an experimental DNS-style DN
(generally in the form of an RFC 822 e-mail address). It returns zero if the dn appears to be an
RFC 1779 format DN.

ldap_explode_dns () takes a DNS-style DN and breaks it up into its component parts.
ldap_explode_dns () returns a null-terminated array. For example, the DN "mcs.umich.edu"
will return { "mecs", "umich”, "edu", NULL }. The result can be freed by calling

ldap_value free(3LDAP).

318 man pages section 3: Networking Library Functions « Last Revised 23 Aug 2011

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1malloc-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1free-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1malloc-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1free-3c

Idap_get_dn(3LDAP)

Errors

Attributes

See Also

Notes

ldap_dns_to_dn() converts a DNS domain name into an X.500 distinguished name. A string
distinguished name and the number of nameparts is returned.

Ifan error occurs in ldap _get dn(),NULL is returned and the 1d_errno field in the Id
parameter is set to indicate the error. See ldap_error(3LDAP) for a description of possible
error codes. ldap_explode_dn(), ldap_explode dns() and ldap_dn2ufn() will return NULL
with errno(3C) set appropriately in case of trouble.

Ifan errorin ldap_dns_to dn() is encountered zero is returned. The caller should free the
returned string if it is non-zero.

See attributes(5) for a description of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

Availability system/library

Interface Stability Committed

1dap(3LDAP), ldap_first _entry(3LDAP), ldap_error(3LDAP),
ldap_value free(3LDAP)

These functions allocate memory that the caller must free.

Networking Library Functions 319

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1errno-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

Idap_get_entry_controls(3LDAP)

Name

Synopsis

Description

Errors

Attributes

See Also

320

ldap_get_entry_controls - get the LDAP controls included with a directory entry in a set of
search results

cc [flag..] file... -1ldap [library...]
#include <ldap.h>

int ldap_get_entry_controls(LDAP *Id, LDAPMessage *entry,
LDAPControl ***serverctrlsp);

The ldap get entry controls() function retrieves the LDAP v3 controls included in a
directory entry in a chain of search results. The LDAP controls are specified in an array of
LDAPControl structures. Each LDAPControl structure represents an LDAP control. The
function takes entry as a parameter, which points to an LDAPMessage structure that represents
an entry in a chain of search results.

The entry notification controls that are used with persistent search controls are the only
controls that are returned with individual entries. Other controls are returned with results
sent from the server. You can call ldap parse result() to retrieve those controls.

ldap_get_entry_controls() returns the following error codes.

LDAP_SUCCESS LDAP controls were successfully retrieved.
LDAP_DECODING_ERROR An error occurred when decoding the BER-encoded message.
LDAP_PARAM_ERROR An invalid parameter was passed to the function.

LDAP_NO_ MEMORY Memory cannot be allocated.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

Availability system/library

Interface Stability Committed

ldap_error(3LDAP), ldap_parse_result(3LDAP), attributes(5)

man pages section 3: Networking Library Functions « Last Revised 23 Aug 2011

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

Idap_getfilter(3LDAP)

Name

Synopsis

Description

ldap_getfilter, Idap_init_getfilter, ldap_init_getfilter_buf, Idap_getfilter_free,
ldap_getfirstfilter, Idap_getnextfilter, ldap_setfilteraffixes, Ildap_build_filter - LDAP filter
generating functions

cc [flag... 1 file... -\dap [library...]
#include <lber.h>

#include <ldap.h>

#define LDAP FILT MAXSIZ 1024

LDAPFiltDesc *ldap_init_getfilter(char *file);
LDAPFiltDesc *ldap_init_getfilter_buf(char *buf, long buflen);
void ldap_getfilter_ free(LDAPFiltDesc *Ifdp);

LDAPFiltInfo *ldap_getfirstfilter(LDAPFiltDesc *Ifdp, char *tagpat,
char *value);

LDAPFiltInfo *ldap_getnextfilter(LDAPFiltDesc *Ifdp);

void ldap_setfilteraffixes(LDAPFiltDesc *Ifdp, char *prefix,
char *suffix);

void ldap_build_filter(char *buf, unsigned long buflen, char *pattern,
char *prefix, char *suffix, char *attr, char *value,
char *valwords) ;

These functions are used to generate filters to be used in ldap_search(3LDAP) or
ldap search s(3LDAP). Either ldap init getfilterorldap init getfilter buf must
be called prior to calling any of the other functions except 1dap_build_filter.

ldap_init_getfilter() takesa file name as its only argument. The contents of the file must
be a valid LDAP filter configuration file (see ldapfilter.conf(4)). If the file is successfully
read, a pointer to an LDAPFiltDesc is returned. This is an opaque object that is passed in
subsequent get filter calls.

ldap_init_getfilter_buf() reads from buf, whose length is buflen, the LDAP filter
configuration information. buf must point to the contents of a valid LDAP filter configuration
file. See ldapfilter.conf(4). If the filter configuration information is successfully read, a
pointer to an LDAPFiltDesc is returned. This is an opaque object that is passed in subsequent
get filter calls.

ldap_getfilter_free() deallocates the memory consumed by ldap_init_getfilter.Once
itis called, the LDAPFiltDesc is no longer valid and cannot be used again.

ldap_getfirstfilter() retrieves the first filter that is appropriate for value. Only filter sets
that have tags that match the regular expession tagpat are considered. ldap_getfirstfilter
returns a pointer to an LDAPFiltInfo structure, which contains a filter with value inserted as
appropriatein 1fi_filter, atext match descriptionin 1fi_desc, 1fi_scope set to indicate
the search scope, and 1fi_isexact set to indicate the type of filter. NULL is returned if no
matching filters are found. 1fi_scope will be one of LDAP_SCOPE_BASE,

Networking Library Functions 321

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ldapfilter.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ldapfilter.conf-4

Idap_getfilter(3LDAP)

Errors

Files

Attributes

See Also

Notes

322

LDAP_SCOPE_ONELEVEL, or LDAP_SCOPE_SUBTREE. 1fi_isexact will be zero if the filter has
any '~'or ™' characters in it and non-zero otherwise.

ldap_getnextfilter() retrieves the next appropriate filter in the filter set that was
determined when ldap_getfirstfilter was called. It returns NULL when the list has been
exhausted.

ldap_setfilteraffixes() setsa prefix to be prepended and a suffix to be appended to all
filters returned in the future.

ldap_build_filter() constructsan LDAP search filter in buf. buflen is the size, in bytes, of
the largest filter buf can hold. A pattern for the desired filter is passed in pattern. Where the
string %a appears in the pattern it is replaced with attr. prefix is pre-pended to the resulting
filter, and suffix is appended. Either can be NULL , in which case they are not used. value and
valwords are used when the string %v appears in pattern. See ldapfilter.conf(4) fora
description of how %v is handled.

NULL is returned by ldap_init_getfilter if thereis an error reading file. NULL is returned
by ldap_getfirstfilter and ldap_getnextfilter when there are no more appropriate
filters to return.

ETCDIR/ldapfilter.conf LDAP filtering routine configuration file.

See attributes(5) for a description of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

Availability system/library

Interface Stability Committed

1dap(3LDAP), ldapfilter.conf(4), attributes(5)

The return values for all of these functions are declared in the <ldap.h> header file. Some
functions may allocate memory which must be freed by the calling application.

man pages section 3: Networking Library Functions « Last Revised 23 Aug 2011

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ldapfilter.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ldapfilter.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

Idap_get_lang_values(3LDAP)

Name

Synopsis

Description

ReturnValues

Attributes

ldap_get_lang values,ldap_get_lang values_len - return an attribute's values that matches a
specified language subtype

cc [flag... 1 file... -1ldap [library...]
#include <ldap.h>

char **ldap_get_lang_values(LDAP *Id, LDAPMessage *entry,
const char *target, char **fype);

struct berval **ldap_get_lang_values_len(LDAP *Ild, LDAPMessage *entry,
const char *target, char **type);

The ldap_get_lang_values () function returns an array of an attribute's string values that
matches a specified language subtype. To retrieve the binary data from an attribute, call the
ldap_get lang values len() function instead.

ldap_get_lang_values () should be called to retrieve a null-terminated array of an attribute's
string values that match a specified language subtype. The entry parameter is the entry
retrieved from the directory. The target parameter should contain the attribute type the values
that are required, including the optional language subtype. The type parameter points to a
buffer that returns the attribute type retrieved by this function. Unlike the
ldap_get_values() function, if a language subtype is specified, this function first attempts to
find and return values that match that subtype, for example, cn; lang-en.

ldap_get_lang_values_len() returns a null-terminated array of pointers to berval
structures, each containing the length and pointer to a binary value of an attribute for a given
entry. The entry parameter is the result returned by ldap_result() or ldap_search_s()
functions. The target parameter is the attribute returned by the call to
ldap_first_attribute() or ldap_next_attribute(), or the attribute as a literal string, such
as jpegPhoto or audio.

These functions are deprecated. Use ldap_get_values() or ldap_get_values_len()
instead.

If successful, ldap_get_lang_values () returns a null-terminated array of the attribute's
values. If the call is unsuccessful, or if no such attribute exists in the entry, it returns a NULL and
sets the appropriate error code in the LDAP structure.

The ldap_get_lang_values_len() function returns a null-terminated array of pointers to
berval structures, which in turn, if successful, contain pointers to the attribute's binary
values. If the call is unsuccessful, or if no such attribute exists in the entry, it returns a NULL and
sets the appropriate error code in the LDAP structure.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

Availability system/library

Networking Library Functions 323

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

Idap_get_lang_values(3LDAP)

ATTRIBUTETYPE ATTRIBUTE VALUE

Interface Stability Obsolete

SeeAlso ldap first attribute(3LDAP), ldap first attribute(3LDAP),
ldap_get values(3LDAP), ldap_result(3LDAP), ldap_search(3LDAP), attributes(5)

324 man pages section 3: Networking Library Functions « Last Revised 23 Aug 2011

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

Idap_get_option(3LDAP)

Name

Synopsis

Description

Parameters

ldap_get_option, ldap_set_option — get or set session preferences in the ldap structure.

cc [flag... 1 file... -ldap [library...]
#include <lber.h>
#include <ldap.h>

LDAP ldap_set_option(LDAP *Id, int option, void *optdatall);

LDAP ldap_get_option(LDAP *ld, int option, void optdatal]);

These functions provide an LDAP structure with access to session preferences. The
ldap_get option() function gets session preferences from the LDAP structure. The
ldap_set_option() function sets session preferences in the LDAP structure.

The Id parameter specifies the connection handle, a pointer to an LDAP structure that contains
information about the LDAP server connection. The option parameter specifies the name of
the option to be read or modified. The optdata parameter serves as a pointer to the value of the
option that you set or get.

The following values can be specified for the option parameter:

LDAP_OPT API INFO Retrieves basic information about the LDAP API
implementation at execution time. The data type for
the optdata parameter is (LDAPAPIInfo *). This
option is READ-ONLY and cannot be set.

LDAP_OPT_DEREF Determines how aliases are handled during a search.
The data type for the optdata parameter is (int *).
The following values can be specified for the optdata
parameter:

LDAP_DEREF NEVER Specifies that aliases are
never dereferenced.

LDAP_DEREF SEARCHING Specifies that aliases are
dereferenced when
searching under the base
object, but not when
finding the base object.

LDAP_DEREF_FINDING Specifies that aliases are
dereferenced when
finding the base object,
but not when searching
under the base object.

LDAP_DEREF_ALWAYS Specifies that aliases are
always dereferenced when
finding the base object

Networking Library Functions 325

Idap_get_option(3LDAP)

326

LDAP_OPT_SIZELIMIT

LDAP_OPT_TIMELIMIT

LDAP_OPT_REFERRALS

LDAP_OPT_RESTART

LDAP_OPT_PROTOCOL_VERSION

LDAP_OPT_SERVER_CONTROLS

man pages section 3: Networking Library Functions «

and searching under the
base object.

Specifies the maximum number of entries returned by
the server in search results. The data type for the
optdata parameter is (int *). Setting the optdata
parameter to LDAP_NO_LIMIT removes any size limit
enforced by the client.

Specifies the maximum number of seconds spent by the
server when answering a search request. The data type
for the optdata parameter is (int *). Setting the
optdata parameter to LDAP_NO_LIMIT removes any
time limit enforced by the client.

Determines whether the client should follow referrals.
The data type for the optdata parameter is (int *).
The following values can be specified for the optdata
parameter:

LDAP_OPT_ON Specifies that the client should
follow referrals.

LDAP_OPT OFF Specifies that the client should not
follow referrals.

By default, the client follows referrals.

Determines whether LDAP I/O operations are
automatically restarted if aborted prematurely. It can
be set to one of the constants LDAP_OPT ON or
LDAP_OPT OFF.

Specifies the version of the protocol supported by the
client. The data type for the optdata parameter is (int
*). The version LDAP_VERSION2 or LDAP_VERSION3 can
be specified. If no version is set, the default version
LDAP_VERSION?Z is set. To use LDAP v3 features, set the
protocol version to LDAP_VERSIONS.

Specifies a pointer to an array of LDAPControl
structures that represent the LDAP v3 server controls
sent by default with every request. The data type for the
optdata parameter for ldap_set_option() is
(LDAPControl **). For ldap _get option(), the data
type is (LDAPControl ***),

Last Revised 15 Jan 2004

Idap_get_option(3LDAP)

LDAP_OPT_CLIENT_CONTROLS

LDAP_OPT API FEATURE INFO

LDAP_OPT HOST NAME

LDAP OPT ERROR NUMBER

LDAP_OPT ERROR STRING

LDAP OPT MATCHED DN

LDAP_OPT REBIND ARG

LDAP OPT REBIND FN

Networking Library Functions

Specifies a pointer to an array of LDAPControl
structures that represent the LDAP v3 client controls
sent by default with every request. The data type for the
optdata parameter for ldap_set_option() is
(LDAPControl **). For ldap_get_option(), the data
type is (LDAPControl ***),

Retrieves version information at execution time about
extended features of the LDAP API. The data type for
the optdata parameter is (LDAPAPIFeatureInfo *).
This option is READ-ONLY and cannot be set.

Sets the host name or a list of hosts for the primary
LDAP server. The data type for the optdata parameter
for ldap_set _option() is (char *). For
ldap_get_option(), the data typeis (char **).

Specifies the code of the most recent LDAP error that
occurred for this session. The data type for the optdata
parameter is (int *).

Specifies the message returned with the most recent
LDAP error that occurred for this session. The data
type for the optdata parameter for ldap_set_option()
is (char *) and for ldap_get _option() is (char **).

Specifies the matched DN value returned with the most
recent LDAP error that occurred for this session. The
data type for the optdata parameter for

ldap_set option() is (char *) and for

ldap_get option() is (char **).

Sets the last argument passed to the routine specified by
LDAP_OPT_REBIND_FN. This option can also be set by
calling the ldap_set_rebind_proc() function. The
data type for the optdata parameter is (void *).

Sets the routine to be called to authenticate a
connection with another LDAP server. For example,
the option is used to set the routine called during the
course of a referral. This option can also be by calling
the ldap_set_rebind_proc() function. The data type
for the optdata parameter is

(LDAP_REBINDPROC CALLBACK *).

327

Idap_get_option(3LDAP)

328

LDAP_OPT_X_SASL_MECH

LDAP _OPT X SASL REALM

LDAP_OPT X _SASL_AUTHCID

LDAP OPT X SASL AUTHZID

LDAP_OPT X SASL SSF

LDAP OPT X SASL SSF EXTERNAL

LDAP OPT X SASL SECPROPS

man pages section 3: Networking Library Functions «

Sets the default SASL mechanism to call
ldap_interactive_bind_s(). The data type for the
optdata parameter is (char *).

Sets the default SASL_REALM. The default SASL_REALM
should be used during a SASL challenge in response to
a SASL_CB_GETREALM request when using the
ldap_interactive_bind_s() function. The data type
for the optdata parameter is (char *).

Sets the default SASL_AUTHNAME used during a SASL
challenge in response to a SASL_CB_AUTHNAME request
when using the ldap_interactive_bind_s()
function. The data type for the optdata parameter is
(char *).

Sets the default SASL_USER that should be used during a
SASL challenge in response to a SASL_CB_USER request
when using the ldap_interactive_bind_s function.
The data type for the optdata parameter is (char *).

A read-only option used exclusively with the
ldap_get option() function. The
ldap_get_option() function performsa
sasl_getprop() operation that gets the SASL_SSF
value for the current connection. The data type for the
optdata parameter is (sasl_ssf_t *).

A write-only option used exclusively with the
ldap_set option() function. The
ldap_set_option() function performsa

sasl setprop() operation to set the
SASL_SSF_EXTERNAL value for the current connection.
The data type for the optdata parameter is

(sasl ssf t *).

A write-only option used exclusively with the
ldap_set_option(). This function performs a
sasl_setprop(3SASL) operation for the
SASL_SEC_PROPS value for the current connection
during an ldap_interactive bind_s() operation.
The data type for the optdata parameter is (char *), a
comma delimited string containing text values for any
of the SASL_SEC_PROPS that should be set. The text
values are:

Last Revised 15 Jan 2004

Idap_get_option(3LDAP)

LDAP_OPT X SASL_SSF MIN

LDAP_OPT X SASL_SSF_MAX

LDAP_OPT X SASL MAXBUFSIZE

noanonymous

nodict

noplain

forwardsec

passcred

minssf=N
maxssf=N

maxbufsize=N

Sets the SASL_SEC_NOANONYMOUS
flag

Sets the SASL_SEC_NODICTIONARY
flag

Sets the SASL_SEC_NOPLAINTEXT
flag

Sets the
SASLisEciFORWARDisECRECYﬂag

Sets the
SASL SEC PASS CREDENTIALS flag

Setsminssf to the integer value N
Sets maxssf to the integer value N

Sets maxbufsize to the integer value
N

Sets the default SSF_MIN value used during a
ldap_interactive_bind_s() operation. The data type
for the optdata parameter is (char *) numeric string.

Sets the default SSF_MAX value used during a
ldap_interactive_bind_s() operation. The data type
for the optdata parameter is (char *) numeric string.

Sets the default SSF_MAXBUFSIZE value used during a
ldap_interactive_bind_s() operation. The data type
for the optdata parameter is (char *) numeric string.

ReturnValues The ldap set option() and ldap _get option() functions return:

LDAP_SUCCESS If successful

-1 If unsuccessful

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE

ATTRIBUTE VALUE

Interface Stability

Committed

MT-Level

Safe

SeeAlso ldap init(3LDAP), sasl setprop(3SASL), attributes(5)

Networking Library Functions

329

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

Idap_get_option(3LDAP)

Notes There are other elements in the LDAP structure that should not be changed. No assumptions
should be made about the order of elements in the LDAP structure.

330 man pages section 3: Networking Library Functions « Last Revised 15 Jan 2004

Idap_get_values(3LDAP)

Name

Synopsis

Description

Errors

Attributes

ldap_get_values, ldap_get_values_len, ldap_count_values, Idap_count_values_len,
Idap_value_free,ldap_value_free len —- LDAP attribute value handling functions

cc [flag... 1 file... -dap [library...]
#include <lber.h>
#include <ldap.h>

char **ldap_get_values(LDAP *Id, LDAPMessage *entry, char *attr);

struct berval **ldap_get_values_len(LDAP * Id, LDAPMessage *entry,
char *attr);

int ldap count values(char **vals);
int ldap_count_values_len(struct berval **vals);
void ldap value free(char **vals);

void ldap_value free len(struct berval vals) ;

These functions are used to retrieve and manipulate attribute values from an LDAP entry as
returned by ldap_first_entry(3LDAP) or ldap_next_entry(3LDAP). ldap_get_values()
takes the entry and the attribute attr whose values are desired and returns a null-terminated
array of the attribute's values. attr may be an attribute type as returned from
ldap_first_attribute(3LDAP) or ldap_next_attribute(3LDAP), or if the attribute type is
known it can simply be given.

The number of values in the array can be counted by calling ldap_count_values(). The array
of values returned can be freed by calling ldap_value_free().

If the attribute values are binary in nature, and thus not suitable to be returned as an array of
char *'s, the ldap_get values len() function can be used instead. It takes the same
parameters as ldap_get_values (), but returns a null-terminated array of pointers to berval
structures, each containing the length of and a pointer to a value.

The number of values in the array can be counted by calling ldap_count_values_len(). The
array of values returned can be freed by calling ldap_value_free_len().

Ifan error occurs in ldap get values() or ldap get values len(),NULL returned and the
1d_errno field in the 1d parameter is set to indicate the error. See 1dap_error(3LDAP) for a
description of possible error codes.

See attributes(5) for a description of the following attributes:

ATTRIBUTETYPE ATTRIBUTEVALUE

Availability system/library

Interface Stability Committed

Networking Library Functions 331

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

Idap_get_values(3LDAP)

SeeAlso 1dap(3LDAP), ldap_first entry(3LDAP), ldap first attribute(3LDAP),
ldap_error(3LDAP), attributes(5)

Notes These functions allocates memory that the caller must free.

332 man pages section 3: Networking Library Functions « Last Revised 23 Aug 2011

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

Idap_memcache(3LDAP)

Name

Synopsis

Description

ldap_memcache, Idap_memcache_init, Idap_memecache_set, Idap_memcache_get,
ldap_memcache_flush, ldap_memcache_destroy, ldap_memcache_update - LDAP client
caching functions

cc [flag.. 1 file... -dap [library...]
#include <ldap.h>

int ldap_memcache init(unsigned long ttl, unsigned long size,
char **baseDNs,struct ldap_thread_fns *thread_fns,
LDAPMemCache **cachep);

int ldap memcache set(LDAP *Id, LDAPMemCache **cache);

int ldap_memcache_get(LDAP *Id, LDAPMemCache **cachep);

void ldap_memcache_flush(LDAPMemCache *cache, char *dn, int scope
void ldap memcache destroy(LDAPMemCache *cache);

void ldap memcache update(LDAPMemCache *cache);

Use the 1dap_memcache functions to maintain an in-memory client side cache to store search
requests. Caching improves performance and reduces network bandwidth when a client
makes repeated requests. The cache uses search criteria as the key to the cached items. When
you send a search request, the cache checks the search criteria to determine if that request has
been previously stored . If the request was stored, the search results are read from the cache.

Make a call to ldap_memcache_init() to create the in-memory client side cache. The function
passes back a pointer to an LDAPMemCache structure, which represents the cache. Make a call to
the ldap _memcache_set () function to associate this cache with an LDAP connection handle,
an LDAP structure. ¢/ is the the maximum amount of time (in seconds) that an item can be
cached. If a ttl value of 0 is passed, there is no limit to the amount of time that an item can be
cached. size is the maximum amount of memory (in bytes) that the cache will consume. A zero
value of size means the cache has no size limit. baseDNS is an array of the base DN strings
representing the base DNs of the search requests you want cached. If baseDNS is not NULL,
only the search requests with the specified base DNs will be cached. If baseDNS is NULL, all
search requests are cached. The thread_fns parameter takes an ldap_thread_fns structure
specifying the functions that you want used to ensure that the cache is thread-safe. You should
specify this if you have multiple threads that are using the same connection handle and cache.
If you are not using multiple threads, pass NULL for this parameter.

ldap_memcache_set () associates an in-memory cache that you have already created by calling
the ldap_memcache_init() function with an LDAP connection handle. The Id parameter
should be the result of a successful call to ldap_open(3LDAP). The cache parameter should be
the result of a cache created by the ldap_memcache_init () call. After you call this function,
search requests made over the specified LDAP connection will use this cache. To disassociate
the cache from the LDAP connection handle, make a call to the 1dap_bind(3LDAP) or
ldap_bind(3LDAP) function. Make a call to 1dap_memcache_set () if you want to associate a

Networking Library Functions 333

Idap_memcache(3LDAP)

Parameters

Errors

334

cache with multiple LDAP connection handles. For example, call the 1dap_memcache_get ()
function to get the cache associated with one connection, then you can call this function and
associate the cache with another connection.

The ldap_memcache_get () function gets the cache associated with the specified connection
handle (LDAP structure). This cache is used by all search requests made through that
connection. When you call this function, the function sets the cachep parameter as a pointer to
the LDAPMemCache structure that is associated with the connection handle.

ldap_memcache_flush() flushes search requests from the cache. If the base DN of a search
request is within the scope specified by the dn and scope arguments, the search request is
flushed from the cache. If no DN is specified, the entire cache is flushed. The scope parameter,
along with the dn parameter, identifies the search requests that you want flushed from the
cache. This argument can have one of the following values:

LDAP_SCOPE_BASE
LDAP_SCOPE_ONELEVEL
LDAP_SCOPE_SUBTREE

ldap_memcache_destroy () frees the specified LDAPMemCache structure pointed to by cache
from memory. Call this function after you are done working with a cache.

ldap_memcache_update() checks the cache for items that have expired and removes them.
This check is typically done as part of the way the cache normally works. You do not need to
call this function unless you want to update the cache at this point in time. This function is
only useful in a multithreaded application, since it will not return until the cache is destroyed.

ttl The maximum amount of time (in seconds) that an item can be cached
size The maximum amount of memory (in bytes) that the cache will consume.

baseDNs An array of the base DN strings representing the base DNs of the search
requests you want cached

thread_fns A pointer to the ldap_thread_fns structure structure.

cachep A pointer to the LDAPMemCache structure

cache The result of a cache created by the 1dap_memcache_init() call
Id The result of a successful call to 1dap_open(3LDAP)

dn The search requests that you want flushed from the cache

scope The search requests that you want flushed from the cache

The functions that have int return values return LDAP_SUCCESS if the operation was
successful. Otherwise, they return another LDAP error code. See ldap_error(3LDAP) fora
list of the LDAP error codes.

man pages section 3: Networking Library Functions « Last Revised 23 Aug 2011

Idap_memcache(3LDAP)

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE

ATTRIBUTE VALUE

Availability

system/library

Interface Stability

Committed

SeeAlso 1ldap error(3LDAP), ldap_open(3LDAP), ldap_search(3LDAP), attributes(5)

Networking Library Functions

335

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

Idap_memfree(3LDAP)

Name Idap_memfree - free memory allocated by LDAP API functions

Synopsis cc [flag... | file... -1ldap [library...]
#include < lber.h>
#include < ldap.h>

void ldap_memfree(void *p);

Description The ldap_memfree() function frees the memory allocated by certain LDAP API functions
that do not have corresponding functions to free memory. These functions include
ldap_get_dn(3LDAP), ldap_first attribute(3LDAP), and
ldap next attribute(3LDAP).

The ldap_memfree() function takes one parameter, p, which is a pointer to the memory to be
freed.

Parameters p A pointer to the memory to be freed.
ReturnValues There are no return values for the 1dap_memfree () function.
Errors No errors are defined for the 1dap_memfree() function.

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

Availability system/library

Interface Stability Committed

SeeAlso 1dap(3LDAP), ldap _first attribute(3LDAP), ldap_get dn(3LDAP),
ldap_next_attribute(3LDAP),attributes(5)

336 man pages section 3: Networking Library Functions « Last Revised 23 Aug 2011

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

Idap_modify(3LDAP)

Name

Synopsis

Description

ldap_modify, ldap_modify_s,ldap_mods_free, Idap_modify_ext, ldap_modify_ext_s - LDAP
entry modification functions

ccl flag... 1 file... -Wdap[library...]
#include <lber.h>
#include <ldap.h>

int ldap modify(LDAP *id, char *dn, LDAPMod *mods[]);
int ldap modify s(LDAP *ld, char *dn, LDAPMod *mods[]);
void ldap_mods_free(LDAPMod **mods, int freemods);

int ldap modify ext(LDAP *Id, char *dn, LDAPMod **mods,
LDAPControl **serverctrls, LDAPControl **clientctrls, int *msgidp);

int ldap modify ext s(LDAP *ld, char *dn, LDAPMod **mods,
LDAPControl **serverctrls, LDAPControl **clientctrls) ;

The function ldap_modify_s() is used to perform an LDAP modify operation. dn is the DN
of the entry to modify, and mods is a null-terminated array of modifications to make to the
entry. Each element of the mods array is a pointer to an LDAPMod structure, which is defined
below.

typedef struct ldapmod {

int mod op;

char *mod_type;

union {

char **modv_strvals;

struct berval **modv bvals;

} mod vals;

} LDAPMod;
#define mod values mod vals.modv strvals
#define mod bvalues mod vals.modv_bvals

The mod_op field is used to specify the type of modification to perform and should be one of
LDAP_MOD_ADD, LDAP_MOD_DELETE, or LDAP_MOD_REPLACE. The mod_type and mod_values
fields specify the attribute type to modify and a null-terminated array of values to add, delete,
or replace respectively.

If you need to specify a non-string value (for example, to add a photo or audio attribute value),
you should set mod_op to the logical OR of the operation as above (for example,
LDAP_MOD_REPLACE) and the constant LDAP_MOD BVALUES. In this case, mod_bvalues should be
used instead of mod_values, and it should point to a null-terminated array of struct bervals, as
defined in <lber.h>.

For LDAP_MOD_ADD modifications, the given values are added to the entry, creating the
attribute if necessary. For LDAP_MOD_DELETE modifications, the given values are deleted from
the entry, removing the attribute if no values remain. If the entire attribute is to be deleted, the
mod_values field should be set to NULL. For LDAP_MOD REPLACE modifications, the attribute

Networking Library Functions 337

Idap_modify(3LDAP)

will have the listed values after the modification, having been created if necessary. All
modifications are performed in the order in which they are listed.

ldap_modify_s() returns the LDAP error code resulting from the modify operation.

The ldap_modify () operation works the same way as ldap_modify_s (), except thatitis
asynchronous, returning the message id of the request it initiates, or —1 on error. The result of
the operation can be obtained by calling 1dap_result(3LDAP).

ldap_mods_free() canbe used to free each element of a null-terminated array of mod
structures. If freemods is non-zero, the mods pointer itself is freed as well.

The ldap_modify_ext () function initiates an asynchronous modify operation and returns
LDAP_SUCCESS if the request was successfully sent to the server, or else it returns a LDAP error
code ifnot. See ldap_error(3LDAP). If successful, Ldap_modify_ext () places the message id
of the request in *msgidp. A subsequent call to 1dap_result(3LDAP), can be used to obtain
the result of the add request.

The ldap_modify_ext_s() function initiates a synchronous modify operation and returns
the result of the operation itself.

Errors 1dap modify s() returnsan LDAP error code, either LDAP_SUCCESS or an error. See
ldap_error(3LDAP).

ldap_modify () returns—1 in case of trouble, setting the error field of Id.

Attributes See attributes(5) for a description of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

Availability system/library

Interface Stability Committed

SeeAlso 1dap(3LDAP), ldap_add(3LDAP), ldap_error(3LDAP), ldap_get_option(3LDAP),
attributes(5)

338 man pages section 3: Networking Library Functions « Last Revised 23 Aug 2011

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

Idap_modrdn(3LDAP)

Name

Synopsis

Description

Errors

ldap_modrdn, ldap_modrdn_s, ldap_modrdn2, ldap_modrdn2_s, ldap_rename,
ldap_rename_s - modify LDAP entry RDN

ccl flag... 1 file...-1 ldap [library...]
#include <lber.h>
#include <ldap.h>

int ldap modrdn(LDAP *id, const char *dn, const char *newrdn);

int ldap modrdn_ s(LDAP *ld, const char *dn, const char *newrdn,
int deleteoldrdn);

int ldap modrdn2(LDAP *ld, const char *dn, const char *newrdn,
int deleteoldrdn) ;

int ldap modrdn2 s(LDAP *Id, const char *dn,
const char *newrdn, int deleteoldrdn);

int ldap rename(LDAP *id, const char *dn, const char *newrdn,
const char *newparent, int deleteoldrdn,
LDAPControl **serverctrls, LDAPControl **clientctrls,
int *msgidp);

int ldap rename s(LDAP *ld, const char *dn, const char *newrdn,

const char *newparent, const int deleteoldrdn,
LDAPControl **serverctrls, LDAPControl **clientctrls);

The ldap_modrdn() and ldap_modrdn_s () functions perform an LDAP modify RDN
(Relative Distinguished Name) operation. They both take dn, the DN (Distinguished Name)
of the entry whose RDN is to be changed, and newrdn, the new RDN, to give the entry. The old
RDN of the entry is never kept as an attribute of the entry. ldap_modrdn () is asynchronous. It
return the message id of the operation it initiates. ldap_modrdn_s () is synchronous. It returns
the LDAP error code that indicates the success or failure of the operation.

The ldap_modrdn2() and ldap_modrdn2_s() functions also perform an LDAP modify RDN
operation. They take the same parameters as above. In addition, they both take the
deleteoldrdn parameter ,which is used as a boolean value to indicate whether or not the old
RDN values should be deleted from the entry.

The ldap_rename(), ldap_rename_s () routines are used to change the name, that is, the
RDN of an entry. These routines deprecate the ldap_modrdn() and ldap_modrdn_s ()
routines, as well as ldap_modrdn2() and ldap_modrdn2 s().

The ldap_rename() and ldap_rename_s () functions both support LDAPv3 server controls
and client controls.

The synchronous (_s) versions of these functions return an LDAP error code, either
LDAP_SUCCESS or an error. See ldap_error(3LDAP).

The asynchronous versions return —1 in the event of an error, setting the 1d_errno field of Id.
See ldap _error(3LDAP) for more details. Use ldap result(3LDAP) to determine a

Networking Library Functions 339

Idap_modrdn(3LDAP)

particular unsuccessful result.

Attributes See attributes(5) for a description of the following attributes of the ldap_modrdn (),
ldap modrdn_s(), ldap_modrdn2() and ldap modrdn2 s() functions:

ATTRIBUTETYPE ATTRIBUTE VALUE

Availability system/library

Interface Stability Obsolete

The ldap_rename() and ldap_rename_s () functions have the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

Availability system/library

Interface Stability Committed

SeeAlso 1dap(3LDAP), ldap_error(3LDAP),attributes(5)

340 man pages section 3: Networking Library Functions « Last Revised 23 Aug 2011

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

Idap_open(3LDAP)

Name

Synopsis

Description

Parameters

Return Values

Examples

ldap_open, Idap_init - initialize an LDAP session

cc [flag... 1 file... -ldap [library...]
#include <lber.h>
#include <ldap.h>

LDAP *1dap_open(const char *host, int port);

LDAP *1dap init(const char *host, int port);

The ldap_open () function initializes an LDAP session and also opens a connection to an
LDAP server before it returns to the caller. Unlike ldap_open(), ldap_init() does notopena
connection to the LDAP server until an operation, such as a search request, is performed.

The ldap_open() function is deprecated and should no longer be used. Call ldap_init()
instead.

A list of LDAP hostnames or an IPv4 or IPv6 address can be specified with the 1dap_open ()
and ldap_init() functions. The hostname can include a port number, separated from the
hostname by a colon (:). A port number included as part of the hostname takes precedence
over the port parameter. The ldap_open() and ldap_init() functions attempt connections
with LDAP hosts in the order listed and return the first successful connection.

These functions support the following parameters.

host The hostname, IPv4 or IPv6 address of the host that runs the LDAP server. A
space-separated list of hostnames can also be used for this parameter.

port TCP port number of a connection. Supply the constant LDAP_PORT to obtain the
default LDAP port of 389. If a host includes a port number, the default parameter is
ignored.

The ldap_open() and ldap_init() functions return a handle to an LDAP session that
contains a pointer to an opaque structure. The structure must be passed to subsequent calls for
the session. If a session cannot be initialized, the functions return NULL and errno should be
set appropriately.

Various aspects of this opaque structure can be read or written to control the session-wide
parameters. Use the ldap_get_option(3LDAP) to access the current option values and the
ldap_set_option(3LDAP) to set values for these options.

EXAMPLE 1 Specifying IPv4 and IPv6 Addresses

LDAP sessions can be initialized with hostnames, IPv4 or IPv6 addresses, such as those shown
in the following examples.

ldap_init("hosta:636 hostb", 389)
ldap_init("192.168.82.110:389", 389)
ldap_init("[fec0::114:a00:20ff:ab3d:83ed]", 389)

Networking Library Functions 341

Idap_open(3LDAP)

Attributes See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE

ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

SeeAlso errno(3C), ldap(3LDAP), ldap_bind(3LDAP), ldap_get option(3LDAP),

ldap_set option(3LDAP), attributes(5)

342 man pages section 3: Networking Library Functions « Last Revised 15 Jan 2004

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1errno-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

Idap_parse_result(3LDAP)

Name

Synopsis

Description

ReturnValues

Attributes

See Also

ldap_parse_result, [dap_parse_extended_result, ldap_parse_sasl_bind_result - LDAP
message result parser

cc [flag... 1 file... -\ldap [library...]
#include <lber.h>
#include <ldap.h>

int ldap_parse_result(LDAP *Id, LDAPMessage *res, int *errcodep,
char **matcheddnp,char **errmsgp, char ***referralsp,
LDAPControl ***serverctrlsp, int freeit);

int ldap parse sasl bind result(LDAP *Id, LDAPMessage *res,
struct berval **servercredp,int freeit);

int ldap_parse_extended result(LDAP *Id, LDAPMessage *res,
char **resultoidp, struct berval **resultdata, int freeit);

The ldap_parse_extended result(), ldap parse result() and
ldap_parse_sasl_bind_result() routines search for a message to parse. These functions
skip messages of type LDAP_RES_SEARCH_ENTRY and LDAP_RES_SEARCH_REFERENCE.

They return LDAP_SUCCESS if the result was successfully parsed or an LDAP error code if not
(see ldap_error(3LDAP)).

See attributes(5) for a description of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

Availability system/library

Interface Stability Committed

ldap_error(3LDAP), ldap_result(3LDAP), attributes(5)

Networking Library Functions 343

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

Idap_result(3LDAP)

Name

Synopsis

Description

344

ldap_result, ldap_msgfree — wait for and return LDAP operation result

ccl flag... 1 file... -\dap[library...]
#include <lber.h>
#include <ldap.h>

int ldap_result(LDAP *Id, int msgid, int all,
struct timeval *timeout, LDAPMessage **result);

int ldap_msgfree(LDAPMessage *msg);

The ldap_result() function is used to wait for and return the result of an operation
previously initiated by one of the LDAP asynchronous operation functions, for example,
ldap_search(3LDAP), and ldap _modify(3LDAP). Those functions all return —1 in case of
error, and an invocation identifier upon successful initiation of the operation. The invocation
identifier is picked by the library and is guaranteed to be unique across the LDAP session. It
can be used to request the result of a specific operation from ldap_result() through the
msgid parameter.

The ldap_result () function will block or not, depending upon the setting of the timeout
parameter. If timeout is not a null pointer, it specifies a maximum interval to wait for the
selection to complete. If timeout is a null pointer, the select blocks indefinitely. To effect a poll,
the timeout argument should be a non-null pointer, pointing to a zero-valued timeval
structure. See select(3C) for further details.

If the result of a specific operation is required, msgid should be set to the invocation identifier
returned when the operation was initiated, otherwise LDAP_RES_ANY should be supplied. The
all parameter only has meaning for search responses and is used to select whether a single
entry of the search response should be returned, or all results of the search should be returned.

A search response is made up of zero or more search entries followed by a search result. If all is
set to 0, search entries will be returned one at a time as they come in, by means of separate calls
to ldap_result().Ifitis set to a non-zero value, the search response will only be returned in
its entirety, that is, after all entries and the final search result have been received.

Upon success, the type of the result received is returned and the result parameter will contain
the result of the operation. This result should be passed to the LDAP parsing functions, (see
ldap_first_entry(3LDAP)) for interpretation.

The possible result types returned are:

#define LDAP_RES_BIND 0x61L
#define LDAP_RES_SEARCH_ENTRY 0x64L
#define LDAP_RES SEARCH RESULT 0x65L

#define LDAP RES MODIFY Ox67L
#define LDAP_RES ADD Ox69L
#define LDAP_RES DELETE Ox6bL
#define LDAP_RES MODRDN Ox6dL
#define LDAP_RES COMPARE OX6FL

man pages section 3: Networking Library Functions « Last Revised 23 Aug 2011

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1select-3c

Idap_result(3LDAP)

Errors

Attributes

See Also

Notes

The ldap_msgfree() function is used to free the memory allocated for a result by
ldap_result() or ldap search s(3LDAP) functions. It takes a pointer to the result to be
freed and returns the type of the message it freed.

The ldap_result() function returns —1 on error and 0 if the specified timeout was exceeded.

See attributes(5) for a description of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

Availability system/library

Interface Stability Committed

select(1), ldap(3LDAP), ldap_search(3LDAP), attributes(5)

The ldap_result() function allocates memory for results that it receives. The memory can be
freed by calling ldap_msgfree(3LDAP).

Networking Library Functions 345

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1select-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

Idap_search(3LDAP)

Name

Synopsis

ldap_search, ldap_search_s, Idap_search_ext, ldap_search_ext_s,ldap_search_st - LDAP

search operations

cc [flag... 1 file... -\ldap[library...]

#include <sys/time.h> /* for struct timeval definition */
#include <lber.h>

#include <ldap.h>

int ldap_search(LDAP *Id, char *base, int scope, char *filter
char *attrs[1, int attrsonly);

int ldap_search_s(LDAP *ld, char *base, int scope, char *filter,
char *attrs[1,int attrsonly, LDAPMessage **res);

int ldap_search_st(LDAP *Id, char *base, int scope, char *filter,
char *attrs[]1, int attrsonly, struct timeval *timeout,
LDAPMessage **res);

int ldap_search_ext(LDAP *ld, char *base, int scope, char
*ilter, char **attrs, int attrsonly, LDAPControl **serverctrls,
LDAPControl **clientctrls, struct timeval *timeoutp,
int sizelimit, int *msgidp);

int ldap_search_ext_s(LDAP *ld,char *base, int scope, char *filter
char **attrs, int attrsonly, LDAPControl **serverctrls,
LDAPControl **clientctrls, struct timeval *timeoutp,
int sizelimit, LDAPMessage **res);

Description
does the search synchronously (that is, n

These functions are used to perform LDAP search operations. The 1dap _search s() function

ot returning until the operation completes). The

ldap_search_st() function does the same, but allows a timeout to be specified. The

ldap_search() function is the asynchro
message ID of the operation it initiated.

nous version, initiating the search and returning the

The base is the DN of the entry at which to start the search. The scope is the scope of the search

and should be one of LDAP_SCOPE_BASE,

to search the object itself, LDAP_SCOPE_ONELEVEL, to

search the object's immediate children, or LDAP_SCOPE_SUBTREE, to search the object and all

its descendents.

The filter is a string representation of the
specified as attributetype=attributevalue

filter to apply in the search. Simple filters can be
. More complex filters are specified using a prefix

notation according to the following BNF:

<filter> ::= '(’' <filtercomp>
<filtercomp> ::= <and> | <or>
<and> ::= '&' <filterlist>
<or> ::= "|' <filterlist>
<not> ::= '"!’" <filter>
<filterlist> ::= <filter> | <
<simple> ::= <attributetype>
<filtertype> ::= '=" | '~=" |

346

"y
| <not> | <simple>

filter> <filterlist>
<filtertype> <attributevalue>

rrlrr

<= >=

man pages section 3: Networking Library Functions « Last Revised 05 Dec 2003

Idap_search(3LDAP)

Errors

Attributes

See Also

The '~='construct is used to specify approximate matching. The representation for
<attributetype> and <attributevalue> are as described in RFC 1778. In addition,
<attributevalue> can be a single * to achieve an attribute existence test, or can contain text and
*'s interspersed to achieve substring matching.

For example, the filter mail=* finds entries that have a mail attribute. The filter
mail=*@terminator.rs.itd.umich.edu finds entries that have a mail attribute ending in the
specified string. Use a backslash (\\) to escape parentheses characters in a filter. See RFC 1588
for a more complete description of the filters that are allowed. See 1dap getfilter(3LDAP)
for functions to help construct search filters automatically.

The attrs is a null-terminated array of attribute types to return from entries that match filter. If
NULL is specified, all attributes are returned. The attrsonly is set to 1 when attribute types only
are wanted. The attrsonly is set to @ when both attributes types and attribute values are wanted.

The sizelimit argument returns the number of matched entries specified for a search
operation. When sizelimit is set to 50, for example, no more than 50 entries are returned.
When sizelimit is set to 0, all matched entries are returned. The LDAP server can be
configured to send a maximum number of entries, different from the size limit specified. If
5000 entries are matched in the database of a server configured to send a maximum number of
500 entries, no more than 500 entries are returned even when sizelimit is set to 0.

The ldap_search_ext () function initiates an asynchronous search operation and returns
LDAP_SUCCESS when the request is successfully sent to the server. Otherwise,

ldap search _ext() returns an LDAP error code. See ldap error(3LDAP). If successful,

ldap_search_ext () places the message ID of the request in *msgidp. A subsequent call to

ldap result(3LDAP) can be used to obtain the result of the add request.

The ldap_search_ext_s() function initiates a synchronous search operation and returns the
result of the operation itself.

The ldap search s() and ldap search st() functions return the LDAP error code that
results from a search operation. See ldap_error(3LDAP) for details.

The ldap_search() function returns —1 when the operation terminates unsuccessfully.

See attributes(5) for a description of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

Interface Stability Committed

1dap(3LDAP), ldap_result(3LDAP), ldap _getfilter(3LDAP), ldap_error(3LDAP),
attributes(5)

Howes, T., Kille, S., Yeong, W., Robbins, C., Wenn, J. RFC 1778, The String Representation of
Standard Attribute Syntaxes. Network Working Group. March 1995.

Networking Library Functions 347

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

Idap_search(3LDAP)

Postel, J., Anderson, C. RFC 1588, White Pages Meeting Report. Network Working Group.
February 1994.

Notes The read and list functionality are subsumed by ldap_search () functions, when a filter such
as objectclass=* is used with the scope LDAP_SCOPE_BASE to emulate read or the scope
LDAP_SCOPE_ONELEVEL to emulate list.

The ldap_search() functions may allocate memory which must be freed by the calling
application. Return values are contained in <ldap . h>.

348 man pages section 3: Networking Library Functions « Last Revised 05 Dec 2003

Idap_searchprefs(3LDAP)

Name

Synopsis

Description

Errors

ldap_searchprefs, Idap_init_searchprefs, ldap_init_searchprefs_buf, ldap_free_searchprefs,
Idap_first_searchobj, ldap_next_searchobj — LDAP search preference configuration routines

cc [flag... 1 file... -\dap [library...]
#include <lber.h>
#include <ldap.h>

int ldap_init_searchprefs(char **file,
struct ldap_searchobj ***solistp);

int ldap_init_searchprefs_buf(char **buf, unsigned longlen,
struct ldap_searchobj **solistp);

struct ldap searchobj **ldap free searchprefs
(struct ldap_searchobj **solist);

struct ldap_searchobj **ldap first searchobj
(struct ldap seachobj **solist);

struct ldap searchobj **ldap next searchobj
(struct ldap seachobj **solist, struct ldap seachobj **s0);

These functions provide a standard way to access LDAP search preference configuration data.
LDAP search preference configurations are typically used by LDAP client programs to specify
which attributes a user may search by, labels for the attributes, and LDAP filters and scopes
associated with those searches. Client software presents these choices to a user, who can then
specify the type of search to be performed.

ldap_init_searchprefs() readsa sequence of search preference configurations from a valid
LDAP searchpref configuration file. See 1dapsearchprefs.conf(4). Upon success, 0 is
returned and solistp is set to point to a list of search preference data structures.

ldap_init_searchprefs_buf() readsa sequence of search preference configurations from
buf, whose size is buflen. buf should point to the data in the format defined for an LDAP search
preference configuration file. See ldapsearchprefs.conf(4). Upon success, 0 is returned and
solistp is set to point to a list of search preference data structures.

ldap_free_searchprefs() disposes of the data structures allocated by
ldap init searchprefs().

ldap_first_searchpref () returns the first search preference data structure in the list solist.
The solist is typically obtained by calling 1dap_init_searchprefs().

ldap_next_searchpref () returns the search preference after so in the template list solist. A
NULL pointer is returned if so is the last entry in the list.

ldap_init _search_prefs() and ldap_init search_prefs_bufs() return:
LDAP_SEARCHPREF _ERR_VERSION **buf points to data that is newer than can be handled.

LDAP_SEARCHPREF _ERR MEM Memory allocation problem.

Networking Library Functions 349

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ldapsearchprefs.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ldapsearchprefs.conf-4

Idap_searchprefs(3LDAP)

350

Attributes See attributes(5) for a description of the following attributes:

ATTRIBUTETYPE

ATTRIBUTE VALUE

Availability system/library

Interface Stability Committed

SeeAlso 1dap(3LDAP), ldapsearchprefs.conf(4), attributes(5)

Yeong, W., Howes, T., and Hardcastle-Kille, S., “Lightweight Directory Access Protocol”,

OSI-DS-26, April 1992.

Howes, T., Hardcastle-Kille, S., Yeong, W., and Robbins, C., “Lightweight Directory Access

Protocol”, OSI-DS-26, April 1992.

Hardcastle-Kille, S., “A String Representation of Distinguished Names”, OSI-DS-23, April

1992.

Information Processing - Open Systems Interconnection - The Directory, International
Organization for Standardization. International Standard 9594, (1988).

man pages section 3: Networking Library Functions « Last Revised 23 Aug 2011

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ldapsearchprefs.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

Idap_sort(3LDAP)

Name

Synopsis

Description

Attributes

ldap_sort, Idap_sort_entries, ldap_sort_values, ldap_sort_strcasecmp — LDAP entry sorting
functions

cc [flag... 1 file... -dap [library...]
#include <lber.h>
#include <ldap.h>

int ldap sort entries(LDAP *ld, LDAPMessage **chain, char *attr,
int (Yemp)());

int ldap_sort_values(LDAP *Id, char **vals, int (*cmp)());

*

int ldap sort strcasecmp(char *a, char *b);

These functions are used to sort lists of entries and values retrieved from an LDAP server.
ldap_sort_entries() is used to sort a chain of entries retrieved from an LDAP search call
either by DN or by some arbitrary attribute in the entries. It takes /d, the LDAP structure,
which is only used for error reporting, chain, the list of entries as returned by
ldap_search_s(3LDAP) or ldap_result(3LDAP). attr is the attribute to use as a key in the
sort or NULL to sort by DN, and cmp is the comparison function to use when comparing
values (or individual DN components if sorting by DN). In this case, cmp should be a function
taking two single values of the attr to sort by, and returning a value less than zero, equal to
zero, or greater than zero, depending on whether the first argument is less than, equal to, or
greater than the second argument. The convention is the same as used by gsort(3C), which is
called to do the actual sorting.

ldap_sort_values() is used to sort an array of values from an entry, as returned by
ldap_get_values(3LDAP). It takes the LDAP connection structure /d, the array of values to
sort vals, and cmp, the comparison function to use during the sort. Note that crmp will be
passed a pointer to each element in the vals array, so if you pass the normal char ** for this
parameter, cmp should take two char **'s as arguments (that is, you cannot pass strcasecmp
or its friends for cmp). You can, however, pass the function ldap_sort_strcasecmp() for this
purpose.

For example:

LDAP *1d;
LDAPMessage *res;
/* ... call to ldap search s(), fill in res, retrieve sn attr ... */

/* now sort the entries on surname attribute */
if (ldap_sort entries(ld, &res, "sn", ldap sort strcasecmp) != 0)

ldap perror(ld, "ldap sort entries");

See attributes(5) for a description of the following attributes:

Networking Library Functions 351

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1qsort-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

Idap_sort(3LDAP)

352

ATTRIBUTETYPE

ATTRIBUTE VALUE

Availability system/library

Interface Stability Committed

SeeAlso 1dap(3LDAP), ldap _search(3LDAP), ldap_result(3LDAP), gsort(3C), attributes(5)

Notes Theldap _sort_entries() function applies the comparison function to each value of the
attribute in the array as returned by a call to l1dap_get_values(3LDAP), until a mismatch is
found. This works fine for single-valued attributes, but may produce unexpected results for
multi-valued attributes. When sorting by DN, the comparison function is applied to an
exploded version of the DN, without types. The return values for all of these functions are
declared in the <ldap.h> header file. Some functions may allocate memory which must be

freed by the calling application.

man pages section 3: Networking Library Functions « Last Revised 23 Aug 2011

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1qsort-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

Idap_ufn(3LDAP)

Name

Synopsis

Description

ldap_ufn, ldap_ufn_search_s, ldap_ufn_search_c,1dap_ufn_search_ct,ldap_ufn_setfilter,
Idap_ufn_setprefix, ldap_ufn_timeout - LDAP user friendly search functions

ccl flag... 1 file... -\ldap[library...]
#include <lber.h>
#include <ldap.h>

int ldap_ufn_search_c(LDAP *ld, char *ufn, char **attrs,
int attrsonly, LDAPMessage **res, int (*cancelproc) (),
void *cancelparm);

int ldap_ufn_search_ct(LDAP *ld, char *ufn, char **attrs,
int attrsonly, LDAPMessage **res,int (*cancelproc) (),
void *cancelparm,char *tagl, char *tag2,
char *tag3);

int ldap_ufn_search_s(LDAP *ld, char *ufn, char **attrs,
int attrsonly, LDAPMessage **res);

LDAPFiltDesc *ldap_ufn_setfilter(LDAP *ld, char *fname);
void ldap_ufn_setprefix(LDAP *Id, char *prefix);

int ldap_ufn_timeout(void *tvparam);

These functions are used to perform LDAP user friendly search operations.
ldap_ufn_search_s() is the simplest form. It does the search synchronously. It takes Id to
identify the the LDAP connection. The ufn parameter is the user friendly name for which to
search. The attrs, attrsonly and res parameters are the same as for ldap_search(3LDAP).

The ldap_ufn_search_c() function functions the same as ldap_ufn_search_s(), except that
it takes cancelproc, a function to call periodicly during the search. It should be a function
taking a single void * argument, given by calcelparm. If cancelproc returns a non-zero result,
the search will be abandoned and no results returned. The purpose of this function is to
provide a way for the search to be cancelled, for example, by a user or because some other
condition occurs.

The ldap_ufn_search_ct() function islike ldap_ufn_search_c(), except that it takes three
extra parameters. tagl is passed to the ldap_init_getfilter(3LDAP) function when
resolving the first component of the UFN. tag2 is used when resolving intermediate
components. tag3 is used when resolving the last component. By default, the tags used by the
other UFN search functions during these three phases of the search are “ufn first”, “ufn
intermediate”, and “ufn last”.

The ldap_ufn_setfilter() function is used to set the ldapfilter.conf(4) file for use with
the ldap_init_getfilter(3LDAP) function to fname.

The ldap_ufn_setprefix() function is used to set the default prefix (actually, it's a suffix)
appended to UFNs before searhing. UFNs with fewer than three components have the prefix
appended first, before searching. If that fails, the UFN is tried with progressively shorter

Networking Library Functions 353

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ldapfilter.conf-4

Idap_ufn(3LDAP)

versions of the prefix, stripping off components. If the UFN has three or more components, it
is tried by itself first. If that fails, a similar process is applied with the prefix appended.

The ldap_ufn_timeout () function is used to set the timeout associated with
ldap_ufn_search_s() searches. The timeout parameter should actually be a pointer to a
struct timeval. This is so ldap_ufn_timeout () can be used as a cancelproc in the above
functions.

Attributes See attributes(5) for a description of the following attributes:

ATTRIBUTETYPE ATTRIBUTE VALUE

Availability system/library

Interface Stability Committed

SeeAlso gettimeofday(3C), ldap(3LDAP), ldap search(3LDAP), ldap_getfilter(3LDAP),
ldapfilter.conf(4), ldap error(3LDAP), attributes(5)

Notes These functions may allocates memory. Return values are contained in <ldap. h>.

354 man pages section 3: Networking Library Functions « Last Revised 23 Aug 2011

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1gettimeofday-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ldapfilter.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

Idap_url(3LDAP)

Name

Synopsis

Description

ldap_url, Idap_is_ldap_url, Idap_url_parse, ldap_url_parse_nodn, Idap_free_urldesc,
Idap_url_search, ldap_url_search_s, Idap_url_search_st,1dap_dns_to_url,1dap_dn_to_url -
LDAP Uniform Resource Locator functions

cc [flag... 1 file... -Wdap [library...]

#include <lber.h>

#include <ldap.h>