
Oracle® Tuxedo
Creating CORBA Server Applications

11g Release 1 (11.1.1.1.0)

March 2010

Tuxedo Creating CORBA Server Applications, 11g Release 1 (11.1.1.1.0)

Copyright © 1996, 2010, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S.
Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal
Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification,
and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the
extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or intended
for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use
this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective
owners.

This software and documentation may provide access to or information on content, products and services from third parties.
Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to
third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.

Creating CORBA Server Applications iii

Contents

1. CORBA Server Application Concepts
The Entities You Create to Build a CORBA Server Application 1-1

The Implementation of the CORBA Objects for Your Server Application 1-2

How Interface Definitions Establish the Operations on a CORBA Object . . . 1-2

How You Implement the Operations on a CORBA Object 1-3

How Client Applications Access and Manipulate Your Application’s CORBA
Objects . 1-4

How You Instantiate a CORBA Object at Run Time . 1-6

The Server Object . 1-7

Process for Developing CORBA Server Applications . 1-8

Generating Object References . 1-8

How Client Applications Find Your Server Application’s Factories 1-9

Creating an Active Object Reference . 1-9

Managing Object State. 1-9

About Object State . 1-10

Object Activation Policies . 1-11

Application-controlled Deactivation. 1-13

Reading and Writing an Object’s Data. 1-14

Available Mechanisms for Reading and Writing an Object’s Durable State . 1-15

Reading State at Object Activation. 1-18

Reading State Within Individual Operations on an Object. 1-18

Stateless Objects and Durable State . 1-19

iv Creating CORBA Server Applications

Stateful Objects and Durable State . 1-20

Your Responsibilities for Object Deactivation . 1-20

Avoiding Unnecessary I/O. 1-20

Sample Activation Walkthrough . 1-21

Using Design Patterns . 1-21

Process-Entity Design Pattern . 1-22

List-Enumerator Design Pattern . 1-22

2. Steps for Creating an Oracle Tuxedo CORBA Server
Application

Summary of the CORBA Server Application Development Process 2-2

Step 1: Compile the OMG IDL File for the Server Application 2-2

Using the IDL Compiler . 2-4

Generating the Skeleton and Implementation Files . 2-5

Generating Tie Classes . 2-5

Step 2: Write the Methods That Implement Each Interface’s Operations 2-5

The Implementation File Generated by the IDL Compiler. 2-6

Implementing a Factory . 2-6

Step 3: Create the Server Object . 2-7

Initializing the Server Application . 2-8

Writing the Code That Creates and Registers a Factory . 2-9

Creating Servants . 2-10

Releasing the Server Application . 2-11

Step 4: Define the In-memory Behavior of Objects. 2-13

Specifying Object Activation and Transaction Policies in the ICF File 2-13

Step 5: Compile and Link the Server Application . 2-16

Step 6: Deploy the Server Application. 2-16

Development and Debugging Tips. 2-17

Creating CORBA Server Applications v

Use of CORBA Exceptions and the User Log . 2-17

Client Application View of Exceptions . 2-18

Server Application View of Exceptions . 2-18

Detecting Error Conditions in the Callback Methods . 2-22

Common Pitfalls of OMG IDL Interface Versioning and Modification 2-23

Caveat for State Handling in Tobj_ServantBase::deactivate_object() 2-24

Servant Pooling. 2-25

How Servant Pooling Works . 2-25

How You Implement Servant Pooling. 2-26

Delegation-based Interface Implementation. 2-26

About Tie Classes in the Oracle Tuxedo System . 2-27

When to Use Tie Classes . 2-29

How to Create Tie Classes in a CORBA Application . 2-29

3. Designing and Implementing a Basic CORBA Server
Application

How the Basic University Sample Application Works . 3-2

The Basic University Sample Application OMG IDL . 3-2

Application Startup . 3-3

Browsing Course Synopses . 3-4

Browsing Course Details . 3-6

Design Considerations for the University Server Application . 3-6

Design Considerations for Generating Object References 3-7

Design Considerations for Managing Object State . 3-9

The RegistrarFactory Object . 3-9

The Registrar Object . 3-9

The CourseSynopsisEnumerator Object . 3-9

Basic University Sample Application ICF File . 3-10

vi Creating CORBA Server Applications

Design Considerations for Handling Durable State Information 3-11

The Registrar Object . 3-11

The CourseSynopsisEnumerator Object . 3-12

Using the University Database. 3-12

How the Basic Sample Application Applies Design Patterns. 3-13

Process-Entity Design Pattern . 3-13

List-Enumerator Design Pattern . 3-14

Additional Performance Efficiencies Built into the Oracle Tuxedo System. 3-15

Preactivating an Object with State . 3-15

How You Preactivate an Object with State . 3-16

Usage Notes for Preactivated Objects . 3-16

4. Creating Multithreaded CORBA Server Applications
Overview . 4-2

Introduction . 4-2

Requirements, Goals, and Concepts . 4-3

Threading Models . 4-5

Reentrant Servants . 4-7

The Current Object . 4-7

Mechanisms for Supporting Multithreaded CORBA Servers. 4-8

Context Services . 4-8

Classes and Methods in the TP Framework. 4-9

Capabilities in the Build Commands . 4-10

Tools for Administration . 4-10

Running Single-threaded Server Applications in a Multithreaded System 4-11

Developing and Building Multithreaded CORBA Server Applications 4-12

Using the buildobjserver Command . 4-12

Platform-specific Thread Libraries . 4-12

Creating CORBA Server Applications vii

Specifying Multithreaded Support . 4-12

Specifying an Alternate Server Class. 4-13

Using the buildobjclient Command. 4-14

Creating Non-reentrant Servants . 4-14

Creating Reentrant Servants . 4-15

Considerations for Client Applications . 4-15

Building and Running the Multithreaded Simpapp Sample Application 4-16

About the Simpapp Multithreaded Sample . 4-16

How the Sample Application Works . 4-16

OMG IDL Code for the Simpapp Multithreaded Sample Application 4-18

How to Build and Run the Sample Application . 4-19

Setting the TUXDIR Environment Variable . 4-20

Verifying the TUXDIR Environment Variable. 4-20

Changing the Setting of the Environment Variable . 4-20

Creating a Working Directory for the Sample Application 4-21

Checking Permissions on All the Files. 4-24

Executing the runme Command . 4-25

Running the Sample Application Step-by-Step . 4-29

Shutting Down the Sample Application . 4-32

Multithreaded CORBA Server Application Administration . 4-33

Specifying Thread Pool Size . 4-33

MAXDISPATCHTHREADS . 4-33

MINDISPATCHTHREADS . 4-34

Specifying a Threading Model . 4-35

Specifying the Number of Active Objects. 4-35

Sample UBBCONFIG File . 4-36

viii Creating CORBA Server Applications

5. Security and CORBA Server Applications
Overview of Security and CORBA Server Applications . 5-1

Design Considerations for the University Server Application. 5-2

How the Security University Sample Application Works. 5-2

Design Considerations for Returning Student Details to the Client Application . . 5-5

6. Integrating Transactions into a CORBA Server Application
Overview of Transactions in the Oracle Tuxedo System. 6-2

Designing and Implementing Transactions in a CORBA Server Application. 6-3

How the Transactions University Sample Application Works 6-5

Transactional Model Used by the Transactions University Sample Application . . 6-6

Object State Considerations for the University Server Application 6-7

Object Policies Defined for the Registrar Object . 6-7

Object Policies Defined for the RegistrarFactory Object 6-7

Using an XA Resource Manager in the Transactions Sample Application . . . 6-8

Configuration Requirements for the Transactions Sample Application 6-8

Integrating Transactions in a CORBA Client and Server Application 6-9

Making an Object Automatically Transactional . 6-10

Enabling an Object to Participate in a Transaction . 6-10

Preventing an Object from Being Invoked While a Transaction Is Scoped 6-11

Excluding an Object from an Ongoing Transaction . 6-12

Assigning Policies. 6-12

Opening an XA Resource Manager . 6-13

Closing an XA Resource Manager . 6-13

Transactions and Object State Management . 6-13

Delegating Object State Management to an XA Resource Manager 6-13

Waiting Until Transaction Work Is Complete Before Writing to the Database . . 6-14

Notes on Using Transactions in the Oracle Tuxedo System . 6-15

Creating CORBA Server Applications ix

User-defined Exceptions. 6-17

Defining the Exception . 6-17

Throwing the Exception . 6-18

7. Wrapping an Oracle Tuxedo Service in a CORBA Object
Overview of Wrapping an Oracle Tuxedo Service. 7-2

Designing the Object That Wraps the Oracle Tuxedo Service 7-3

Creating the Buffer in Which to Encapsulate Oracle Tuxedo Service Calls 7-4

Implementing the Operations That Send Messages to and from the Oracle Tuxedo
Service . 7-5

Restrictions . 7-7

Design Considerations for the Wrapper Sample Application. 7-7

How the Wrapper University Sample Application Works 7-8

Interface Definitions for the Billing Server Application 7-9

Additional Design Considerations for the Wrapper Sample Application . . . 7-10

8. Scaling an Oracle Tuxedo CORBA Server Application
Overview of the Scalability Features Available in the Oracle Tuxedo System 8-2

Scaling an Oracle Tuxedo Server Application . 8-2

OMG IDL Changes for the Production Sample Application 8-3

Replicating Server Processes and Server Groups . 8-4

Replicated Server Processes. 8-4

Replicated Server Groups. 8-6

Configuring Replicated Server Processes and Groups. 8-7

Scaling the Application Via Object State Management . 8-9

Factory-based Routing. 8-11

How Factory-based Routing Works . 8-12

Configuring for Factory-based Routing in the UBBCONFIG file. 8-12

Implementing Factory-based Routing in a Factory . 8-15

x Creating CORBA Server Applications

What Happens at Run Time . 8-16

Additional Design Considerations for the Registrar and Teller Objects. 8-17

Instantiating the Registrar and Teller Objects . 8-17

Ensuring That Student Registration Occurs in the Correct Server Group . . . 8-18

Ensuring That the Teller Object Is Instantiated in the Correct Server Group 8-20

How the Production Server Application Can Be Scaled Further 8-20

Choosing Between Stateless and Stateful Objects . 8-21

When You Want Stateless Objects . 8-22

When You Want Stateful Objects . 8-23

Creating CORBA Server Applications 1-1

C H A P T E R 1Or

acl
e

CORBA Server Application Concepts

This topic includes the following sections:

The Entities You Create to Build a CORBA Server Application:

– The Implementation of the CORBA Objects for Your Server Application

– The Server Object

Process for Developing CORBA Server Applications:

– Generating Object References

– Managing Object State

– Reading and Writing an Object’s Data

– Using Design Patterns

Each of the chapters in this book gives procedures for and examples of building CORBA server
applications that take advantage of various Oracle Tuxedo software features. For background
information about Oracle Tuxedo CORBA server applications and how they work, see Getting
Started with Oracle Tuxedo CORBA Applications.

The Entities You Create to Build a CORBA Server
Application

To build a CORBA server application, you create the following two entities:

1-2 Creating CORBA Server Applications

The implementation of the CORBA objects that execute your server application’s business
logic.

The Server object, which implements the operations that initialize and release the server
application and instantiate the CORBA objects needed to satisfy client requests.

There are also a number of files that you work with that are generated by the IDL compiler and
that you build into a CORBA server application. These files are listed and described in Chapter 2,
“Steps for Creating an Oracle Tuxedo CORBA Server Application.”

The sections that follow provide introductory information about these entities. For complete
details about how to generate these components, see Chapter 2, “Steps for Creating an Oracle
Tuxedo CORBA Server Application.”

The Implementation of the CORBA Objects for Your Server
Application
Having a clear understanding of what CORBA objects are, and how they are defined,
implemented, instantiated, and managed is critical for the person who is designing or creating a
CORBA server application.

The CORBA objects for which you have defined interfaces in the Object Management Group
Interface Definition Language (OMG IDL) contain the business logic and data for your CORBA
server applications. All client application requests involve invoking an operation on a CORBA
object. The code you write that implements the operations defined for an interface is called an
object implementation. For example, in C++, the object implementation is a C++ class.

This topic includes the following sections:

How OMG IDL interface definitions establish the operations that can be invoked on a
CORBA object

How you implement the operations on a CORBA object

How client applications access and manipulate your application’s CORBA objects

How you instantiate a CORBA object with code and data at run time in response to a client
request

How Interface Definitions Establish the Operations on a CORBA Object
A CORBA object’s interface identifies the operations that can be performed on it. A
distinguishing characteristic of CORBA objects is that an object’s interface definition is separate

The Ent i t i es You Crea te to Bu i ld a CORBA Serve r App l i cat ion

Creating CORBA Server Applications 1-3

from its implementation. The definition for the interface establishes how the operations on the
interface must be implemented, including what the valid parameters are that can be passed to and
returned from an operation.

An interface definition, which is expressed in OMG IDL, establishes the client/server contract for
an application. That is, for a given interface, the server application is bound to do the following:

Implement the operations defined for that interface

Always use the parameters defined with each operation

How the server application implements the operations may change over time. This is acceptable
behavior as long as the server application continues to meet the requirement of implementing the
defined interface and using the defined parameters. In this way, the client stub is always a reliable
proxy for the object implementation on the server machine. This underscores one of the key
architectural strengths of CORBA—that you can change how a server application implements an
object over time without requiring the client application to be modified or even to be aware that
the object implementation has changed.

The interface definition also determines the content of both the client stub and the skeleton in the
server application; these two entities, in combination with the ORB and the Portable Object
Adapter (POA), ensure that a client request for an operation on an object can be routed to the code
in the server application that can satisfy the request.

Once the system designer has specified the interfaces of the business objects in the application,
the programmer’s job is to implement those interfaces. This book explains how.

For more information about OMG IDL, see Creating CORBA Client Applications.

How You Implement the Operations on a CORBA Object
As stated earlier, the code that implements the operations defined for a CORBA object’s interface
is called an object implementation. For C++, this code consists of a set of methods, one for each
of the operations defined for the interfaces in your application’s OMG IDL file. The file
containing the set of object implementations for your application is known as an implementation
file. The Oracle Tuxedo system provides an IDL compiler, which compiles your application’s
OMG IDL file to produce several files, one being an implementation file, shown in the following
figure.

1-4 Creating CORBA Server Applications

The generated implementation file contains method templates, method declarations, object
constructors and destructors, and other data that you can use as a starting place for writing your
application’s object implementations. For example, in C++, the generated implementation file
contains signatures for each interface’s methods. You enter the business logic for each method in
this file, and then provide this file as input to the command that builds the executable server
application file.

How Client Applications Access and Manipulate Your Application’s CORBA
Objects
Client applications access and manipulate the CORBA objects managed by the server application
via object references to those objects. Client applications invoke operations (that is, requests) on
an object reference. These requests are sent as messages to the server application, which invokes
the appropriate operations on CORBA objects. The fact that these requests are sent to the server
application and invoked in the server application is completely transparent to the client; client
applications appear simply to be making invocations on the client stub.

Client applications may manipulate a CORBA object only by means of an object reference. One
primary design consideration is how to create object references and return them to the client
applications that need them in a way that is appropriate for your application.

Typically, object references to CORBA objects are created in the Oracle Tuxedo system by
factories. A factory is any CORBA object that returns, as one of its operations, a reference to
another CORBA object. You implement your application’s factories the same way that you
implement other CORBA objects defined for your application. You can make your factories
widely known to the Oracle Tuxedo domain, and to clients connected to the Oracle Tuxedo
domain, by registering them with the FactoryFinder. Registering a factory is an operation
typically performed by the Server object, which is described in the section “The Server Object”
on page 1-7. For more information about designing factories, see the section “Generating Object
References” on page 1-8.

IDL CompilerOMG IDL File Implementation
File

The Ent i t i es You Crea te to Bu i ld a CORBA Serve r App l i cat ion

Creating CORBA Server Applications 1-5

The Content of an Object Reference
From the client application’s perspective, an object reference is opaque; it is like a black box that
client applications use without having to know what is inside. However, object references contain
all the information needed for the Oracle Tuxedo system to locate a specific object instance and
to locate any state data that is associated with that object.

An object reference contains the following information:

The interface name

This is the Interface Repository ID of the object’s OMG IDL interface.

The object ID (OID)

The OID uniquely identifies the instance of the object to which the reference applies. If the
object has data in external storage, the OID also typically includes a key that the server
machine can use to locate the object’s data.

Group ID

The group ID identifies the server group to which the object reference is routed when a
client application makes a request using that object reference. Generating a nondefault
group ID is part of a key Oracle Tuxedo feature called factory-based routing, which is
described in the section “Factory-based Routing” on page 8-11.

Note: The combination of the three items in the preceding list uniquely identifies the CORBA
object. It is possible for an object with a given interface and OID to be simultaneously
active in two different groups, if those two groups both contain the same object
implementation. If you need to guarantee that only one object instance of a given
interface name and OID is available at any one time in your domain, either: use
factory-based routing to ensure that objects with a particular OID are always routed to
the same group, or configure your domain so that a given object implementation is in
only one group. This assures that if multiple clients have an object reference containing
a given interface name and OID, the reference is always routed to the same object
instance.

For more information about factory-based routing, see the section “Factory-based
Routing” on page -11.

The Lifetime of an Object Reference
Object references created by server applications running in an Oracle Tuxedo domain typically
have a usable lifespan that extends beyond the life of the server process that creates them. Oracle
Tuxedo object references can be used by client applications regardless of whether the server

1-6 Creating CORBA Server Applications

processes that originally created them are still running. In this way, object references are not tied
to a specific server process.

An object reference created with the TP::create_active_object_reference() operation is
valid only for the lifetime of the server process in which it was created. For more information,
see the section “Preactivating an Object with State” on page 3-15.

Passing Object Instances
The ORB cannot marshal an object instance as an object reference. For example, passing a
factory reference in the following code fragment generates a CORBA marshal exception in the
Oracle Tuxedo system:

connection::setFactory(this);

To pass an object instance, you should create a proxy object reference and pass the proxy instead,
as in the following example:

CORBA::Object myRef = TP::get_object_reference();
ResultSetFactory factoryRef = ResultSetFactoryHelper::_narrow(myRef);
connection::setFactoryRef(factoryRef);

How You Instantiate a CORBA Object at Run Time
When a server application receives a request for an object that is not mapped in the server
machine’s memory (that is, the object is not active), the TP Framework invokes the
Server::create_servant()operation. The Server::create_servant()operation is
implemented in the Server object, which, as mentioned in the section “The Implementation of the
CORBA Objects for Your Server Application” on page 1-2, is a component of a CORBA server
application that you create.

The Server::create_servant()operation causes an instance of the CORBA object
implementation to be mapped into the server machine’s memory. This instance of the object’s
implementation is called the object’s servant. Formally speaking, a servant is an instance of the
C++ class that implements an interface defined in the application’s OMG IDL file. The servant
is generated via the C++ new statement that you write in the
Server::create_servant()operation.

After the object’s servant has been created, the TP Framework invokes the
Tobj_ServantBase::activate_object() operation on the servant. The
Tobj_ServantBase::activate_object() operation is a virtual operation that is defined on
the Tobj_ServantBase base class, from which all object implementation classes inherit. The TP
Framework invokes the Tobj_ServantBase::activate_object() operation to tie the servant

The Ent i t i es You Crea te to Bu i ld a CORBA Serve r App l i cat ion

Creating CORBA Server Applications 1-7

to an object ID (OID). (Conversely, when the TP Framework invokes the
Tobj_ServantBase::deactivate_object() operation on an object, the servant’s association
with the OID is broken.)

If your object has data on disk that you want to read into memory when the CORBA object is
activated, you can have that data read by defining and implementing the
Tobj_ServantBase::activate_object() operation on the object. The
Tobj_ServantBase::activate_object() operation can contain the specific read operations
required to bring an object’s durable state into memory. (There are circumstances in which you
may prefer instead to have an object’s disk data read into memory by one or more separate
operations on the object that you may have coded in the implementation file. For more
information, see the section “Reading and Writing an Object’s Data” on page 1-14.) After the
invocation of the Tobj_ServantBase::activate_object() operation is complete, the object
is said to be active.

This collection of the object’s implementation and data compose the run-time, active instance of
the CORBA object.

Servant Pooling
Servant pooling provides your CORBA server application the opportunity to keep a servant in
memory after the servant’s association with a specific OID has been broken. When a client
request that can be satisfied with a pooled servant arrives, the TP Framework bypasses the
TP::create_servant operation and creates a link between the pooled servant and the OID
provided in the client request.

Servant pooling thus provides the CORBA server application with a means to minimize the costs
of reinstantiating a servant each time a request arrives for an object that can be satisfied by that
servant. For more information about servant pooling and how to use it, see the section “Servant
Pooling” on page 2-25.

Note: Servant pooling was first introduced in release 4.2 of the WebLogic Enterprise product.

The Server Object
The Server object is the other programming code entity that you create for a CORBA server
application. The Server object implements operations that execute the following tasks:

Performing basic server application initialization operations, which may include registering
factories managed by the server application and allocating resources needed by the server
application. If the server application is transactional, the Server object also implements the
code that opens an XA resource manager.

1-8 Creating CORBA Server Applications

Instantiating the CORBA objects needed to satisfy client requests.

Performing server process shutdown and cleanup procedures when the server application
has finished servicing requests. For example, if the server application is transactional, the
Server object also implements the code that closes the XA resource manager.

You create the Server object from scratch, using a common text editor. You then provide the
Server object as input into the server application build command, buildobjserver. For more
information about creating the Server object, see Chapter 2, “Steps for Creating an Oracle
Tuxedo CORBA Server Application.”

Process for Developing CORBA Server Applications
This section presents important background information about the following topics, which have
a major influence on how you design and implement CORBA server applications:

Generating Object References

Managing Object State

Reading and Writing an Object’s Data

Using Design Patterns

It is not essential that you read these topics before proceeding to the next chapter; however, this
information is located here because it applies broadly to fundamental design and implementation
issues for all CORBA server applications.

Generating Object References
One of the most basic functions of a CORBA server application is providing client applications
with object references to the objects they need to execute their business logic. CORBA client
applications typically get object references to the initial CORBA objects they use from the
following two sources:

The Bootstrap object

Factories managed in the Oracle Tuxedo domain

Client applications use the Bootstrap object to resolve initial references to a specific set of objects
in the Oracle Tuxedo domain, such as the FactoryFinder and the SecurityCurrent objects. The
Bootstrap object is described in Getting Started with Oracle Tuxedo CORBA Applications and
Creating CORBA Client Applications.

Process fo r Deve lop ing CORBA Serve r App l i cat ions

Creating CORBA Server Applications 1-9

Factories, however, are designed, implemented and registered by you, and they provide the
means by which client applications get references to objects in the CORBA server application,
particularly the initial server application object. At its simplest, a factory is a CORBA object that
returns an object reference to another CORBA object. The client application typically invokes an
operation on a factory to obtain an object reference to a CORBA object of a specific type.
Planning and implementing your factories carefully is an important task when developing
CORBA server applications.

How Client Applications Find Your Server Application’s Factories
Client applications are able to locate via the FactoryFinder the factories managed by your server
application. When you develop the Server object, you typically include code that registers with
the FactoryFinder any factories managed by the server application. It is via this registration
operation that the FactoryFinder keeps track of your server application’s factories and can
provide object references to them to the client applications that request them. We recommend that
you use factories and register them with the FactoryFinder; this model makes it simple for client
applications to find the objects in your CORBA server application.

Creating an Active Object Reference
An active object reference is a feature that gives an alternate means through which your server
application can generate object references. Active object references are not typically created by
factories as described in the previous section, and active object references are meant for
preactivating objects with state. The next section discusses object state in more detail.

While an object associated with a conventional object reference is not instantiated until a client
application makes an invocation on the object, the object associated with an active object
reference is created and activated at the time the active object reference is created. Active object
references are especially convenient for specific purposes, such as iterator objects. The section
“Preactivating an Object with State” on page 3-15 provides more information about active object
references.

Note: The active object reference feature was first introduced in WebLogic Enterprise version
4.2.

Managing Object State
Object state management is a fundamentally important concern of large-scale client/server
systems, because it is critical that such systems optimize throughput and response time. The
majority of high-throughput applications, such as applications you run in an Oracle Tuxedo

1-10 Creating CORBA Server Applications

domain, tend to be stateless, meaning that the system flushes state information from memory after
a service or an operation has been fulfilled.

Managing state is an integral part of writing CORBA-based server applications. Typically, it is
difficult to manage state in these server applications in a way that scales and performs well. The
Oracle Tuxedo software provides an easy way to manage state and simultaneously ensure
scalability and high performance.

The scalability qualities that you can build into a CORBA server application help the server
application function well in an environment that includes hundreds or thousands of client
applications, multiple machines, replicated server processes, and a proportionately greater
number of objects and client invocations on those objects.

About Object State
In an Oracle Tuxedo domain, object state refers specifically to the process state of an object
across client invocations on it. The Oracle Tuxedo software uses the following definitions of
stateless and stateful objects shown in Table 1-1:

Both stateless and stateful objects have data; however, stateful objects may have nonpersistent
data in memory that is required to maintain context (state) between operation invocations on
those objects. Thus, subsequent invocations on such a stateful object always go to the same
servant. Conversely, invocations on a stateless object can be directed by the Oracle Tuxedo
system to any available server process that can activate the object.

Table 1-1 About Object State

Object Behavior Characteristics

Stateless The object is mapped into memory only for the duration of an invocation on one of the
object’s operations, and is deactivated and has its process state flushed from memory
after the invocation is complete; that is, the object’s state is not maintained in memory
after the invocation is complete.

Stateful The object remains activated between invocations on it, and its state is maintained in
memory across those invocations. The state remains in memory until a specific event
occurs, such as:
• The server process in which the object exists is stopped or is shut down
• The transaction in which the object is participating is either committed or rolled back
• The object invokes the TP::deactivateEnable() operation on itself.

Each of these events is discussed in more detail in this section.

Process fo r Deve lop ing CORBA Serve r App l i cat ions

Creating CORBA Server Applications 1-11

State management also involves how long an object remains active, which has important
implications on server performance and the use of machine resources. The duration of an active
object is determined by object activation policies that you assign to an object’s interface,
described in the section that follows.

Object state is transparent to the client application. Client applications implement a
conversational model of interaction with distributed objects. As long as a client application has
an object reference, it assumes that the object is always available for additional requests, and the
object appears to be maintained continuously in memory for the duration of the client application
interaction with it.

To achieve optimal application performance, you need to carefully plan how your application’s
objects manage state. Objects are required to save their state to durable storage, if applicable,
before they are deactivated. Objects must also restore their state from durable storage, if
applicable, when they are activated. For more information about reading and writing object state
information, see the section “Reading and Writing an Object’s Data” on page 1-14.

Note: Oracle Tuxedo Release 8.0 or later provides support for parallel objects, as a performance
enhancement. This feature allows you to designate all business objects in a particular
application as stateless objects. For complete information, see Chapter 3, “TP
Framework,” in the CORBA Programming Reference.

Object Activation Policies
The Oracle Tuxedo software provides three object activation policies that you can assign to an
object’s interface to determine how long an object remains in memory after it has been invoked
by a client request. These policies determine whether the object to which they apply is generally
stateless or stateful.

The three policies are listed and described in Table 1-2.

1-12 Creating CORBA Server Applications

Table 1-2 Object Activation Policies

Policy Description

Method Causes the object to be active only for the duration of the
invocation on one of the object’s operations; that is, the object
is activated at the beginning of the invocation, and is
deactivated at the end of the invocation. An object with this
activation policy is called a method-bound object.

The method activation policy is associated with stateless
objects. This activation policy is the default.

Transaction Causes the object to be activated when an operation is invoked
on it. If the object is activated within the scope of a transaction,
the object remains active until the transaction is either
committed or rolled back. If the object is activated outside the
scope of a transaction, its behavior is the same as that of a
method-bound object. An object with this activation policy is
called a transaction-bound object.

For more information about object behavior within the scope of
a transaction, and general guidelines about using this policy,
see Chapter 6, “Integrating Transactions into a CORBA Server
Application.”

The transaction activation policy is associated with
stateful objects for a limited time and under specific
circumstances.

Process Causes the object to be activated when an operation is invoked
on it, and to be deactivated only under the following
circumstances:
• The server process that manages this object is shut down.
• An operation on this object invokes the

TP::deactivateEnable() operation, which causes
this object to be deactivated. (This is part of a key Oracle
Tuxedo feature called application-controlled deactivation,
which is described in the section “Application-controlled
Deactivation” on page -13.

An object with this activation policy is called a process-bound
object. The process activation policy is associated with
stateful objects.

Process fo r Deve lop ing CORBA Serve r App l i cat ions

Creating CORBA Server Applications 1-13

You determine what events cause an object to be deactivated by assigning object activation
policies. For more information about how you assign object activation policies to an object’s
interface, see the section “Step 4: Define the In-memory Behavior of Objects” on page 2-13.

Application-controlled Deactivation
The Oracle Tuxedo software also provides a feature called application-controlled deactivation,
which provides a means for an application to deactivate an object during run time. The Oracle
Tuxedo software provides the TP::deactivateEnable() operation, which a process-bound
object can invoke on itself. When invoked, the TP::deactivateEnable() operation causes the
object in which it exists to be deactivated upon completion of the current client invocation on that
object. An object can invoke this operation only on itself; you cannot invoke this operation on
any object but the object in which the invocation is made.

The application-controlled deactivation feature is particularly useful when you want an object to
remain in memory for the duration of a limited number of client invocations on it, and you want
the client application to be able to tell the object that the client is finished with the object. At this
point, the object takes itself out of memory.

Application-controlled deactivation, therefore, allows an object to remain in memory in much the
same way that a process-bound object can: the object is activated as a result of a client invocation
on it, and it remains in memory after the initial client invocation on it is completed. You can then
deactivate the object without having to shut down the server process in which the object exists.

An alternative to application-controlled deactivation is to scope a transaction to maintain a
conversation between a client application and an object; however, transactions are inherently
more costly, and transactions are generally inappropriate in situations where the duration of the
transaction may be indefinite.

A good rule of thumb to use when choosing between application-controlled deactivation and
transactions for a conversation is whether there are any disk writing operations involved. If the
conversation involves read-only operations, or involves maintaining state only in memory, then
application-controlled deactivation is appropriate. If the conversation involves writing data to
disk during or at the end of the conversation, transactions may be more appropriate.

Note: If you use application-controlled deactivation to implement a conversational model
between a client application and an object managed by the server application, make sure
that the object eventually invokes the TP::deactivateEnable() operation. Otherwise,
the object remains idle in memory indefinitely. (Note that this can be a risk if the client
application crashes before the TP::deactivateEnable() operation is invoked.
Transactions, on the other hand, implement a timeout mechanism to prevent the situation

1-14 Creating CORBA Server Applications

in which the object remains idle for an indefinite period. This may be another
consideration when choosing between the two conversational models.)

You implement application-controlled deactivation in an object using the following procedure:

1. In the implementation file, insert an invocation to the TP::deactivateEnable() operation
at the appropriate location within the operation of the interface that uses
application-controlled deactivation.

2. In the Implementation Configuration File (ICF file), assign the process activation policy to
the interface that contains the operation that invokes the TP::deactivateEnable()
operation.

3. Build and deploy your application as described in the sections “Step 5: Compile and Link the
Server Application” on page 2-16 and “Step 6: Deploy the Server Application” on page 2-16.

Reading and Writing an Object’s Data
Many of the CORBA objects managed by the server application may have data that is in external
storage. This externally stored data may be regarded as the persistent or durable state of the
object. You must address durable state handling at appropriate points in the object
implementation for object state management to work correctly.

Because of the wide variety of requirements you may have for your client/server application with
regards to reading and writing an object’s durable state, the TP Framework cannot automatically
handle durable object state on disk. In general, if an object’s durable state is modified as a result
of one or more client invocations, you must make sure that durable state is saved before the object
is deactivated, and you should plan carefully how the object’s data is stored or initialized while
the object is active.

The sections that follow describe the mechanisms available to you to handle an object’s durable
state, and give some general advice how to read and write object state under specific
circumstances. The specific topics presented include:

The available mechanisms for reading and writing an object’s durable state

Reading state at object activation

Reading state within individual operations on an object

Stateless objects and durable state

Stateful objects and durable state

Process fo r Deve lop ing CORBA Serve r App l i cat ions

Creating CORBA Server Applications 1-15

Your responsibilities for object deactivation

Avoiding unnecessary I/O

How you choose to read and write durable state invariably depends on the specific requirements
of your client/server application, especially with regard to how the data is structured. In general,
your priority should be to minimize the number of disk operations, especially where a database
controlled by an XA resource manager is involved.

Available Mechanisms for Reading and Writing an Object’s Durable State
Table 1-3 and Table 1-4 describe the available mechanisms for reading and writing an object’s
durable state.

1-16 Creating CORBA Server Applications

Table 1-3 Available Mechanisms for Reading an Object’s Durable State

Mechanism Description

Tobj_ServantBase::
activate_object()

After the TP Framework creates the servant for an object, the
TP Framework invokes the
Tobj_ServantBase::activate_object() operation
on that servant. As mentioned in the section “How You
Instantiate a CORBA Object at Run Time” on page 1-6, this
operation is defined on the Tobj_ServantBase base class,
from which all the CORBA objects you define for your
client/server application inherit.

You may choose not to define and implement the
Tobj_ServantBase::activate_object() operation
on your object, in which case nothing happens regarding
specific object state handling when the TP Framework
activates your object. However, if you define and implement
this operation, you can choose to include code in this operation
that reads some or all of an object’s durable state into memory.
Therefore, the
Tobj_ServantBase::activate_object() operation
provides your server application with its first opportunity to
read an object’s durable state into memory.

Note that if an object’s OID contains a database key, the
Tobj_ServantBase::activate_object() operation
provides the only means the object has to extract that key from
the OID.

For more information about implementing the
Tobj_ServantBase::activate_object() operation,
see “Step 2: Write the Methods That Implement Each
Interface’s Operations” on page 2-5. For an example of
implementing the
Tobj_ServantBase::activate_object() operation,
see Chapter 3, “Designing and Implementing a Basic CORBA
Server Application.”

Operations on the object You can include inside the individual operations that you
define on the object the code that reads an object’s durable
state.

Process fo r Deve lop ing CORBA Serve r App l i cat ions

Creating CORBA Server Applications 1-17

Note: If you use the Tobj_ServantBase::deactivate_object() operation to write any
durable state to disk, any errors that occur while writing to disk are not reported to the
client application. Therefore, the only circumstances under which you should write data

Table 1-4 Available Mechanisms for Writing an Object’s Durable State

Mechanism Description

Tobj_ServantBase::
deactivate_object()

When an object is being deactivated by the TP Framework, the
TP Framework invokes this operation on the object as the final
step of object deactivation. As with the
Tobj_ServantBase::activate_object() operation,
the Tobj_ServantBase::deactivate_object()
operation is defined on the Tobj_ServantBase class. You
implement the deactivate_object() operation on your
object optionally if you have specific object state that you want
flushed from memory or written to a database.

The Tobj_ServantBase::deactivate_object()
operation provides the final opportunity your server application
has to write durable state to disk before the object is
deactivated.

If your object keeps any data in memory, or allocates memory
for any purpose, you implement the
Tobj_ServantBase::deactivate_object()
operation so your object has a final opportunity to flush that
data from memory. Flushing any state from memory before an
object is deactivated is critical in avoiding memory leaks.

Operations on the object As you may have individual operations on the objects that read
durable state from disk, you may also have individual
operations on the object that write durable state back to disk.

For method-bound and process-bound objects in general, you
typically perform database write operations within these
operations and not in the
Tobj_ServantBase::deactivate_object()
operation.

For transaction-bound objects, however, writing durable state
in the Tobj_ServantBase::deactivate_object()
operation provides a number of object management
efficiencies that may make sense for your transactional server
applications.

1-18 Creating CORBA Server Applications

to disk in this operation is when: the object is transaction-bound (that is, it has the
transaction activation policy assigned to it), or you scope the disk write operations
within a transaction by invoking the TransactionCurrent object. Any errors encountered
while writing to disk during a transaction can be reported back to the client application.
For more information about using the Tobj_ServantBase::deactivate_object()
operation to write object state to disk, see the section “Caveat for State Handling in
Tobj_ServantBase::deactivate_object()” on page 2-24.

Reading State at Object Activation
Using the Tobj_ServantBase::activate_object() operation on an object to read durable
state may be appropriate when either of the following conditions exist:

Object data is always used or updated in all the object’s operations.

All the object’s data is capable of being read in one operation.

The advantages of using the Tobj_ServantBase::activate_object() operation to read
durable state include:

You write code to read data only once, instead of duplicating the code in each of the
operations that use that data.

None of the operations that use an object’s data need to perform any reading of that data.
In this sense, you can write the operations in a way that is independent of state
initialization.

Reading State Within Individual Operations on an Object
With all objects, regardless of activation policy, you can read durable state in each operation that
needs that data. That is, you handle the reading of durable state outside the
Tobj_ServantBase::activate_object()operation. Cases where this approach may be
appropriate include the following:

Object state is made up of discrete data elements that require multiple operations to read or
write.

Objects do not always use or update state data at object activation.

For example, consider an object that represents a customer’s investment portfolio. The object
contains several discrete records for each investment. If a given operation affects only one
investment in the portfolio, it may be more efficient to allow that operation to read the one record
than to have a general-purpose Tobj_ServantBase::activate_object() operation that
automatically reads in the entire investment portfolio each time the object is invoked.

Process fo r Deve lop ing CORBA Serve r App l i cat ions

Creating CORBA Server Applications 1-19

Stateless Objects and Durable State
In the case of stateless objects—that is, objects defined with the method activation policy—you
must ensure the following:

That any durable state needed by the request is brought into memory by the time the
operation’s business logic starts executing.

That any changes to the durable state are written out by the end of the invocation.

The TP Framework invokes the Tobj_ServantBase::activate_object() operation on an
object at activation. If an object has an OID that contains a key to the object’s durable state on
disk, the Tobj_ServantBase::activate_object() operation provides the only opportunity
the object has to retrieve that key from the OID.

If you have a stateless object that you want to be able to participate in a transaction, we generally
recommend that if the object writes any durable state to disk that it be done within individual
methods on the object. However, if you have a stateless object that is always transactional—that
is, a transaction is always scoped when this object is invoked—you have the option to handle the
database write operations in the Tobj_ServantBase::deactivate_object() operation,
because you have a reliable mechanism in the XA resource manager to commit or roll back
database write operations accurately.

Note: Even if your object is method-bound, you may have to take into account the possibility
that two server processes are accessing the same disk data at the same time. In this case,
you may want to consider a concurrency management technique, the easiest of which is
transactions. For more information about transactions and transactional objects, see
Chapter 6, “Integrating Transactions into a CORBA Server Application.”

Servant Pooling and Stateless Objects
Servant pooling is a particularly useful feature for stateless objects. When your CORBA server
application pools servants, you can significantly reduce the costs of instantiating an object each
time a client invokes it. As mentioned in the section “Servant Pooling” on page -7, a pooled
servant remains in memory after a client invocation on it is complete. If you have an application
in which a given object is likely to be invoked repeatedly, pooling the servant means that only the
object’s data, and not its methods, needs to be read into and out of memory for each client
invocation. If the cost associated with reading an object’s methods into memory is high, servant
pooling can reduce that cost.

For information about how to implement servant pooling, see the section “Servant Pooling” on
page 2-25.

1-20 Creating CORBA Server Applications

Stateful Objects and Durable State
For stateful objects, you should read and write durable state only at the point where it is needed.
This may introduce the following optimizations:

In the case of process-bound objects, you avoid the situation in which an object allocates a
large amount of memory over a long period.

In the case of transaction-bound objects, you can postpone writing durable state until the
Tobj_ServantBase::deactivate_object() operation is invoked, when the transaction
outcome is known.

In general, transaction-bound objects must depend on the XA resource manager to handle all
database write or rollback operations automatically.

Note: For objects that are involved in a transaction, we do not support having those objects
write data to external storage that is not managed by an XA resource manager.

For more information about objects and transactions, see Chapter 6, “Integrating Transactions
into a CORBA Server Application.”

Servant Pooling and Stateful Objects
Servant pooling does not make sense in the case of process-bound objects; however, depending
on your application design, servant pooling may provide a performance improvement for
transaction-bound objects.

Your Responsibilities for Object Deactivation
As mentioned in the preceding sections, you implement the
Tobj_ServantBase::deactivate_object() operation as a means to write an object’s
durable state to disk. You should also implement this operation on an object as a means to flush
any remaining object data from memory so that the object’s servant can be used to activate
another instance of that object. You should not assume that an invocation to an object’s
Tobj_ServantBase::deactivate_object() operation also results in an invocation of that
object’s destructor.

Avoiding Unnecessary I/O
Be careful not to introduce inefficiencies into the application by doing unnecessary I/O in objects.
Situations to be aware of include the following:

If many operations in an object do not use or affect object state, it may be inefficient to
read and write state each time these operations are invoked. Design these objects so that

Process fo r Deve lop ing CORBA Serve r App l i cat ions

Creating CORBA Server Applications 1-21

they handle state only in the operations that need it; in such cases, you may not want to
have all of the object’s durable state read in at object activation.

If object state is made up of data that is read in multiple operations, try to do only the
necessary operations at object activation by doing one of the following:

– Reading only the state that is common to all the operations in the
Tobj_ServantBase::activate_object() operation. Defer the reading of additional
state to only the operations that require it.

– Writing out only the state that has changed. You can do this by managing flags that
indicate the data that was changed during an activation, or by comparing before and
after data images.

A general optimization is to initialize a dirtyState flag on activation and to write
data in the Tobj_ServantBase::deactivate_object() operation only if the flag
has been changed while the object was active. (Note that this works only if you can be
assured that the object is always activated in the same server process.)

Sample Activation Walkthrough
For examples of the sequence of activity that takes place when an object is activated, see Getting
Started with Oracle Tuxedo CORBA Applications.

Using Design Patterns
It is important to structure the business logic of your application around a well-formed design.
The Oracle Tuxedo software provides a set of design patterns to address this need. A design
pattern is simply a structured solution to a specific design problem. The value of a design pattern
lies in its ability to be expressed in a form you can reuse and apply to other design problems.

The Oracle Tuxedo design patterns are structured solutions to enterprise-class application design
problems. You can use them to design successful large-scale client/server applications.

The design patterns summarized here are a guide to using good design practices in CORBA client
and server applications. They are an important and integral part of designing CORBA client and
server applications, and the chapters in this book show examples of using these design patterns
to implement the University sample applications.

1-22 Creating CORBA Server Applications

Process-Entity Design Pattern
The Process-Entity design pattern applies to a large segment of enterprise-class client/server
applications. This design pattern is referred to as the flyweight pattern in Object-Oriented Design
Patterns, Gamma et al., and as the Model-View-Controller in other publications.

In this pattern, the client application creates a long-lived process object that the client application
interacts with to make requests. For example, in the University sample applications, this object
might be the registrar that handles course browsing operations on behalf of the client application.
The courses themselves are database entities and are not made visible to the client application.

The advantages of the Process-Entity design pattern include:

You can achieve the advantages of a fine-grained object model without implementing
fine-grained objects. Instead, you use CORBA struct datatypes to simulate objects.

Machine resource usage is optimized because there is only a single object mapped into
memory: the process object. By contrast, if each database entity were activated into
memory as a separate object instance, the number of objects that would need to be handled
could overwhelm the machine’s resources quickly in a large-scale deployment.

Because they are not exposed to the client application, database entities need not be
implemented as CORBA objects. Instead, entities can be implemented as local language
objects in the server process. This is a fundamental principle of three-tier designs, but it
also accurately models the way in which many businesses operate (for example, a registrar
at a real university). The individual who serves as the registrar at a university can handle a
large course database for multiple students; you do not need an individual registrar for each
individual student. Thus, the process object state is distinct from the entity object state.

An example of applying the Process-Entity design pattern is described in Chapter 3, “Designing
and Implementing a Basic CORBA Server Application.” For complete details on the
Process-Entity design pattern, see Technical Articles.

List-Enumerator Design Pattern
The List-Enumerator design pattern also applies to a large segment of enterprise-class
client/server applications. The List-Enumerator design pattern leverages a key Oracle Tuxedo
feature, application-controlled object deactivation, to handle a cache of data that is stored and
tracked in memory during several client invocations, and then to flush the data from memory
when the data is no longer needed.

An example of applying the List-Enumerator design pattern is described in Chapter 3,
“Designing and Implementing a Basic CORBA Server Application.”

Process fo r Deve lop ing CORBA Serve r App l i cat ions

Creating CORBA Server Applications 1-23

Object preactivation, which is an especially useful tool for implementing the List-Enumerator
design, is described in the section “Preactivating an Object with State” on page 3-15.

1-24 Creating CORBA Server Applications

Creating CORBA Server Applications 2-1

C H A P T E R 2

Steps for Creating an Oracle Tuxedo
CORBA Server Application

This chapter describes the basic steps involved in creating a CORBA server application. The
steps shown in this chapter are not definitive; there may be other steps you may need to take for
your particular server application, and you may want to change the order in which you follow
some of these steps. However, the development process for every CORBA server application has
each of these steps in common.

This topic includes the following sections:

Summary of the CORBA Server Application Development Process

Development and Debugging Tips

Servant Pooling

Delegation-based Interface Implementation

This chapter begins with a summary of the steps, and also lists the development tools and
commands used throughout this book. Your particular deployment environment might use
additional software development tools, so the tools and commands listed and described in this
chapter are also not definitive.

The chapter uses examples from the Basic University sample application, which is provided with
the Oracle Tuxedo software. For complete details about the Basic University sample application,
see the Guide to the CORBA University Sample Applications. For complete information about the
tools and commands used throughout this book, see the CORBA Programming Reference.

For information about creating multithreaded CORBA server applications, see Chapter 4,
“Creating Multithreaded CORBA Server Applications.”

2-2 Creating CORBA Server Applications

Summary of the CORBA Server Application Development
Process

The basic steps to create a server application are:

Step 1: Compile the OMG IDL File for the Server Application
Step 2: Write the Methods That Implement Each Interface’s Operations
Step 3: Create the Server Object
Step 4: Define the In-memory Behavior of Objects
Step 5: Compile and Link the Server Application
Step 6: Deploy the Server Application

The Oracle Tuxedo software also provides the following development tools and commands
shown in Table 2-1:

Step 1: Compile the OMG IDL File for the Server
Application

The basic structure of the client and server portions of the application that runs in the Oracle
Tuxedo domain are determined by statements in the application’s OMG IDL file. When you
compile your application’s OMG IDL file, the IDL compiler generates some or all of the files

Table 2-1 Development Tools and Commands

Tool Description

IDL compiler Compiles your application’s OMG IDL file.

genicf Generates an Implementation Configuration File (ICF file),
which you can revise to specify nondefault object activation
and transaction policies.

buildobjserver Creates the executable image of your CORBA server
application.

tmloadcf Creates the TUXCONFIG file, a binary file for the CORBA
domain that specifies the configuration of your server
application.

tmadmin Among other things, creates a log of transactional activities,
which is used in some of the sample applications.

Step 1 : Compi le the OMG IDL F i l e f o r the Serve r Appl i cat i on

Creating CORBA Server Applications 2-3

shown in the following diagram, depending upon which options you specify in the idl command.
The shaded components are the generated files that you modify to create a server application.

The files produced by the IDL compiler are described in Table 2-2

IDL Compiler

Implementation
File

Skeleton File

Client Stub
Header File

Skeleton
Header File

Implementation
Header File

Client Stub File

Table 2-2 Files Produced by the IDL Compiler

File Default Name Description

Client stub file application_c.cpp Contains generated code for sending a request.

Client stub header file application_c.h Contains class definitions for each interface and type
specified in the OMG IDL file.

Skeleton file application_s.cpp Contains skeletons for each interface specified in the OMG
IDL file. The skeleton maps client requests to the appropriate
operation in the server application during run time.

2-4 Creating CORBA Server Applications

Using the IDL Compiler
To generate the files listed in Table 2-1, enter the following command:

idl [options] idl-filename [icf-filename]

In the idl command syntax:

options represents one or more command-line options to the IDL compiler. The
command-line options are described in the CORBA Programming Reference. If you want
to generate implementation files, you need to specify the -i option.

idl-filename represents the name of your application’s OMG IDL file.

icf-filename is an optional parameter that represents the name of your application’s
Implementation Configuration File (ICF file), which you use to specify object activation
policies or to limit the number of interfaces for which you want skeleton and
implementation files generated. Using the ICF file is described in the section “Step 4:
Define the In-memory Behavior of Objects” on page 2-14.

Note: The C++ IDL compiler implementation of pragmas changed in WebLogic Enterprise 5.1
to support CORBA 2.3 functionality and may affect your IDL files. The CORBA 2.3
functionality changes the scope that the pragma prefix definitions can affect. Pragmas do
not affect definitions contained within included IDL files, nor do pragma prefix
definitions made within included IDL files affect objects outside the included file.

The C++ IDL compiler has been modified to correct the handling of pragma prefixes. This change
can effect the repository ID of objects, resulting in failures for some operations, such as a
_narrow.

To prevent such failures:

Skeleton header file application_s.h Contains the skeleton class definitions.

Implementation file application_i.cpp Contains signatures for the methods that implement the
operations on the interfaces specified in the OMG IDL file.

Implementation
header file

application_i.h Contains the initial class definitions for each interface
specified in the OMG IDL file.

Table 2-2 Files Produced by the IDL Compiler

File Default Name Description

Step 2 : Wr i te the Methods That Implement Each In te r face ’s Operat ions

Creating CORBA Server Applications 2-5

If you reload your IDL into the repository, you must also regenerate the client stubs and
server skeletons of the application.

If you regenerate any client stub or server skeleton, you must regenerate all stubs and
skeletons of the application, and you must reload the IDL into the Interface Repository.

For more information about the IDL compiler, including details on the idl command, see the
CORBA Programming Reference.

Generating the Skeleton and Implementation Files
The following command line generates client stub, skeleton, and initial implementation files,
along with skeleton and implementation header files, for the OMG IDL file univb.idl:

idl -i univb.idl

For more information about the idl command, see the CORBA Programming Reference. For
more information about generating these files for the Oracle Tuxedo University sample
applications, see the Guide to the CORBA University Sample Applications.

Note: If you plan to specify nondefault object activation or transaction policies, or if you plan
to limit the number of interfaces for which you want skeleton and implementation files
generated, you need to generate and modify an Implementation Configuration File (ICF)
and pass the ICF file to the IDL compiler. For more information, see “Specifying Object
Activation and Transaction Policies in the ICF File” on page 2-14.

Generating Tie Classes
The IDL compiler also provides the -T command-line option, which you can use for generating
tie class templates for your interfaces. For more information about implementing tie classes in a
CORBA application, see the section “Delegation-based Interface Implementation” on page 2-29.

Step 2: Write the Methods That Implement Each
Interface’s Operations

As the server application programmer, your task is to write the methods that implement the
operations for each interface you have defined in your application’s OMG IDL file.

The implementation file contains:

Method declarations for each operation specified in the OMG IDL file.

2-6 Creating CORBA Server Applications

Your application’s business logic, include files, and other data you want the application to
use.

Constructors and destructors for each interface implementation (implementing these is
optional).

Optionally, the Tobj_ServantBase::activate_object() and
Tobj_ServantBase::deactivate_object() operations.

Within the Tobj_ServantBase::activate_object() and
Tobj_ServantBase::deactivate_object()operations, you write code that performs
any particular steps related to activating or deactivating an object. This includes reading
and writing the object’s durable state from and to disk, respectively. If you implement these
operations in your object, you must also edit the implementation header file and add the
definitions for these operations in each implementation that uses them.

The Implementation File Generated by the IDL Compiler
Although you can create your server application’s implementation file entirely by hand, the IDL
compiler generates an implementation file that you can use as a starting place for writing your
implementation file. The implementation file generated by the IDL compiler contains signatures
for the methods that implement each of the operations defined for your application’s interfaces.

You typically generate this implementation file only once, using the -i option with the command
that invokes the IDL compiler. As you iteratively refine your application’s interfaces, and modify
the operations for those interfaces, including operation signatures, you add all the required
changes to the implementation file to reflect those changes.

Implementing a Factory
As mentioned in the section “How Client Applications Access and Manipulate Your
Application’s CORBA Objects” on page 1-4, you need to create factories so that client
applications can easily locate the objects managed by your server application. A factory is like
any other CORBA object that you implement, with the exception that you register it with the
FactoryFinder object. Registering a factory is described in the section “Writing the Code That
Creates and Registers a Factory” on page 2-10.

The primary function of a factory is to create object references, which it does by invoking the
TP::create_object_reference() operation. The TP::create_object_reference()
operation requires the following input parameters:

The Interface Repository ID of the object’s OMG IDL interface

Step 3 : C reate the Se rve r Ob jec t

Creating CORBA Server Applications 2-7

The object ID (OID) in string format

Optionally, routing criteria

For example, in the Basic University sample application, the RegistrarFactory interface
specifies only one operation, as follows:

University::Registrar_ptr RegistrarFactory_i::find_registrar()

The find_registrar() operation on the RegistrarFactory object contains the following
invocation to the TP::create_object_reference() operation to create a reference to a
Registrar object:

CORBA::Object_var v_reg_oref =

 TP::create_object_reference(

 University::_tc_Registrar->id(),

 object_id,

 CORBA::NVlist::_nil()

);

In the previous code example, notice the following:

The following parameter specifies the Registrar object’s Interface Repository ID by
extracting it from its typecode:

University::_tc_Registrar->id()

The following parameter specifies that no routing criteria are used, with the result that an
object reference created for the Registrar object is routed to the same group as the
RegistrarFactory object that created the object reference:

CORBA::NVlist::_nil()

For information about specifying routing criteria that affect the group to which object
references are routed, see Chapter 8, “Scaling an Oracle Tuxedo CORBA Server
Application.”

Step 3: Create the Server Object
Implementing the Server object is not like implementing other language objects. The header class
for the Server object has already been created, and the Server object class has already been
instantiated for you. Creating the Server object involves implementing a specific set of methods
in the prepackaged Server object class. The methods you implement are described in this section.

2-8 Creating CORBA Server Applications

To create the Server object, create a new file using a common text editor and implement the
following operations shown in Table 2-3:

There is only one instance of the Server object in any server application. If your server application
is managing multiple CORBA object implementations, the Server::initialize(),
Server::create_servant(), and Server::release() operations you write must include
code that applies to all those implementations.

The code that you write for most of these tasks involves interaction with the TP Framework. The
sections that follow explain the code required for each of these Server object operations and
shows sample code from the Basic University sample application.

Initializing the Server Application
The first operation that you implement in your Server object is the operation that initializes the
server application. This operation is invoked when the Oracle Tuxedo system starts the server
application. The TP Framework invokes the following operation in the Server object during the
startup sequence of the server application:

Table 2-3 Create the Server Object

Operation Description

Server::initialize(); After the server application is booted, the TP Framework invokes this
operation as the last step in the server application initialization process.
Within this operation, you perform a number of initialization tasks
needed for your particular server application. What you provide within
this operation is described in the section “Initializing the Server
Application” on page 2-9.

Server::create_servant(); When a client request arrives that cannot be serviced by an existing
servant, the TP Framework invokes this operation, passing the Interface
Repository ID of the OMG IDL interface for the CORBA object to be
activated. What you provide within this operation is described in the
section “Creating Servants” on page 2-11.

Server::release(); The TP Framework invokes this operation when the server application is
being shut down. This operation includes code to unregister any object
factories managed by the server application and to perform other
shutdown tasks. What you provide within this operation is described in
the section “Releasing the Server Application” on page 2-13.

Step 3 : C reate the Se rve r Ob jec t

Creating CORBA Server Applications 2-9

CORBA::Boolean Server::initialize(int argc, char** argv)

Any command-line options specified in the CLOPT parameter for your specific server application
in the SERVERS section of the Oracle Tuxedo domain’s UBBCONFIG file are passed to the
Server::initialize() operation as argc and argv. For more information about passing
arguments to the server application, see Administering an Oracle Tuxedo Application at Run
Time. For examples of passing arguments to the server application, see the Guide to the CORBA
University Sample Applications.

Within the Server::initialize() operation, you include code that does the following, if
applicable:

Creates and registers factories

Allocates any machine resources

Initializes any global variables needed by the server application

Opens the databases used by the server application

Opens the XA resource manager

Writing the Code That Creates and Registers a Factory
If your server application manages a factory that you want client applications to be able to locate
easily, you need to write the code that registers that factory with the FactoryFinder object, which
is invoked typically as the final step of the server application initialization process.

To write the code that registers a factory managed by your server application, you do the
following:

1. Create an object reference to the factory.

This step involves creating an object reference as described in the section “Implementing a
Factory” on page 2-7. In this step, you include an invocation to the
TP::create_object_reference() operation, specifying the Interface Repository ID of
the factory’s OMG IDL interface.The following example creates an object reference,
represented by the variable s_v_fact_ref, to the RegistrarFactory factory:

University::RegistrarFactory s_v_fact_ref =
 TP::create_object_reference(
 University::_tc_RegistrarFactory->id(),
 object_id,
 CORBA::NVList::_nil()
);

2-10 Creating CORBA Server Applications

2. Register the factory with the Oracle Tuxedo domain.

This step involves invoking the following operation for each of the factories managed by
the server application:

TP::register_factory (CORBA::Object_ptr factory_or,
 const char* factory_id);

The TP::register_factory() operation registers the server application’s factories with
the FactoryFinder object. This operation requires the following input parameters:

– The object reference for the factory, created in step 1 above.

– A string identifier, based on the factory object’s interface typecode, used to identify the
Interface Repository ID of the factory’s OMG IDL interface.

The following example registers the RegistrarFactory factory with the Oracle Tuxedo
domain:

TP::register_factory(s_v_fact_ref.in(),
 University::_tc_RegistrarFactory->id());

Notice the parameter University::_tc_RegistrarFactory->id(). This is the same
parameter specified in the TP::create_object_reference() operation. This parameter
extracts the Interface Repository ID of the object’s OMG IDL interface from its typecode.

Creating Servants
After the server application initialization process is complete, the server application is ready to
begin processing client requests. If a request arrives for an operation on a CORBA object for
which there is no servant available in memory, the TP Framework invokes the following
operation in the Server object:

Tobj_Servant Server::create_servant(const char* interfaceName)

The Server::create_servant() operation contains code that instantiates a servant for the
object required by the client request. For example, in C++, this code includes a new statement on
the interface class for the object.

The Server::create_servant() operation does not associate the servant with an OID. The
association of a servant with an OID takes place when the TP Framework invokes the
Tobj_ServantBase::activate_object() operation on the servant, which completes the
instantiation of the object. (You cannot associate an OID with an object in the object’s
constructor.) Likewise, the disassociation of a servant with an OID takes place when the TP
Framework invokes the deactivate_object() operation on the servant.

Step 3 : C reate the Se rve r Ob jec t

Creating CORBA Server Applications 2-11

This behavior of a servant in the Oracle Tuxedo system makes it possible, after an object has been
deactivated, for the TP Framework to make a servant available for another object instantiation.
Therefore, do not assume that an invocation of an object’s
Tobj_ServantBase::deactivate_object() operation results in an invocation of that
object’s destructor. If you use the servant pooling feature in your server application, you can
implement the TP::application_responsibility() operation in an object’s
Tobj_ServantBase::deactivate_object() operation to pass a pointer to the servant to a
servant pool for later reuse. Servant pooling is discussed in the section “Servant Pooling” on
page 2-28.

The Server::create_servant() operation requires a single input argument. The argument
specifies a character string containing the Interface Repository ID of the OMG IDL interface of
the object for which you are creating a servant.

In the code you write for this operation, you specify the Interface Repository IDs of the OMG
IDL interfaces for the objects managed by your server application. During run time, the
Server::create_servant()operation returns the servant needed for the object specified by
the request.

The following code implements the Server::create_servant() operation in the University
server application from the Basic University sample application:

Tobj_Servant Server::create_servant(const char* intf_repos_id)
{
 if (!strcmp(intf_repos_id, University::_tc_RegistrarFactory->id())) {
 return new RegistrarFactory_i();
 }
 if (!strcmp(intf_repos_id, University::_tc_Registrar->id())) {
 return new Registrar_i();
 }
 if (!strcmp(intf_repos_id, University::_tc_CourseSynopsisEnumerator->id())) {
 return new CourseSynopsisEnumerator_i();
 }
 return 0; // unknown interface
}

Releasing the Server Application
When the Oracle Tuxedo system administrator enters the tmshutdown command, the TP
Framework invokes the following operation in the Server object of each running server
application in the Oracle Tuxedo domain:

void Server::release()

2-12 Creating CORBA Server Applications

Within the Server::release() operation, you may perform any application-specific cleanup
tasks that are specific to the server application, such as:

Unregistering object factories managed by the server application

Deallocating resources

Closing any databases

Closing an XA resource manager

Once a server application receives a request to shut down, the server application can no longer
receive requests from other remote objects. This has implications on the order in which server
applications should be shut down, which is an administrative task. For example, do not shut down
one server process if a second server process contains an invocation in its Server::release()
operation to the first server process.

During server shutdown, you may want to include the following invocation to unregister each of
the server application’s factories:

TP::unregister_factory (CORBA::Object_ptr factory_or,

const char* factory_id)

The invocation of the TP::unregister_factory() operation should be one of the first actions
in the Server::release() implementation. The TP::unregister_factory() operation
unregisters the server application’s factories. This operation requires the following input
arguments:

The object reference for the factory.

A string identifier, based on the factory object’s interface typecode, used to identify
Interface Repository ID of the object’s OMG IDL interface.

The following example unregisters the RegistrarFactory factory used in the Basic sample
application:

TP::unregister_factory(s_v_fact_ref.in(), UnivB::_tc_RegistrarFactory->id());

In the preceding code example, notice the use of the global variable s_v_fact_ref. This variable
was set in the Server::initialize() operation that registered the RegistrarFactory object,
which is used again here.

Notice also the parameter UnivB::_tc_RegistrarFactory->id(). This is also the same as the
interface name used to register the factory.

Step 4 : De f ine the In-memory Behav io r o f Ob jec ts

Creating CORBA Server Applications 2-13

Step 4: Define the In-memory Behavior of Objects
As stated in the section “Managing Object State” on page 1-11, you determine what events cause
an object to be deactivated by assigning object activation policies, transaction policies, and,
optionally, using the application-controlled deactivation feature.

You specify object activation and transaction policies in the ICF file, and you implement
application-controlled deactivation via the TP::deactivateEnable() operation. This section
explains how you implement both mechanisms, using the Basic University sample application as
an example.

The sections that follow describe the following:

How to specify object activation and transaction policies in the ICF file

How to implement application-controlled deactivation

Specifying Object Activation and Transaction Policies in the
ICF File
The Oracle Tuxedo software supports the following activation policies shown in Table 2-4,
described in “Object Activation Policies” on page 1-11:

Table 2-4 Activation Policies

Activation Policy Description

method Causes the object to be active only for the duration of the
invocation on one of the object’s operations.

transaction Causes the object to be activated when an operation is invoked on
it. If the object is activated within the scope of a transaction, the
object remains active until the transaction is either committed or
rolled back.

process Causes the object to be activated when an operation is invoked on
it, and to be deactivated only when one of the following occurs:
• The process in which the server application exists is shut

down.
• The object has invoked the TP::deactivateEnable()

operation on itself.

2-14 Creating CORBA Server Applications

The Oracle Tuxedo software also supports the following transaction policies, described in
Chapter 6, “Integrating Transactions into a CORBA Server Application”:

To assign these policies to the objects in your application:

1. Generate the ICF file by entering the genicf command, specifying your application’s OMG
IDL file as input, as in the following example:

genicf university.idl

The preceding command generates the file university.icf.

2. Edit the ICF file and specify the activation policies for each of your application’s interfaces.
The following example shows the ICF file generated for the Basic University sample
application. Notice that the default object activation policy is method, and that the default
transaction activation policy is optional.

module POA_UniversityB

 {

Transaction Policy Description

always When an operation on this object is invoked, this policy causes the
TP Framework to begin a transaction for this object, if there is not
already an active transaction. If the TP Framework starts the
transaction, the TP Framework commits the transaction if the
operation completes successfully, or rolls back the transaction if
the operation raises an exception.

optional When an operation on this object is invoked, this policy causes the
TP Framework to include this object in a transaction if a
transaction is active. If no transaction is active, the invocation on
this object proceeds according to the activation policy defined for
this object.

This is the default transaction policy.

never Causes the TP Framework to generate an error condition if this
object is invoked during a transaction.

ignore If a transaction is currently active when an operation on this
object is invoked, the transaction is suspended until the operation
invocation is complete. This transaction policy prevents any
transaction from being propagated to the object to which this
transaction policy has been assigned.

Step 4 : De f ine the In-memory Behav io r o f Ob jec ts

Creating CORBA Server Applications 2-15

 implementation CourseSynopsisEnumerator_i

 {

 activation_policy (method);

 transaction_policy (optional);

 implements (UniversityB::CourseSynopsisEnumerator);

 };

 };

module POA_UniversityB

 {

 implementation Registrar_i

 {

 activation_policy (method);

 transaction_policy (optional);

 implements (UniversityB::Registrar);

 };

 };

module POA_UniversityB

 {

 implementation RegistrarFactory_i

 {

 activation_policy (method);

 transaction_policy (optional);

 implements (UniversityB::RegistrarFactory);

 };

 };

3. If you want to limit the number of interfaces for which you want skeleton and implementation
files generated, you can remove from the ICF file the implementation blocks that implement
those interfaces. Using the preceding ICF code as an example, to prevent skeleton and
implementation files from being generated for the RegistrarFactory interface, remove the
following lines:

implementation RegistrarFactory_i
 {
 activation_policy (method);
 transaction_policy (optional);
 implements (UniversityB::RegistrarFactory);
 };

2-16 Creating CORBA Server Applications

4. Pass the ICF file to the IDL compiler to generate the skeleton and implementation files that
correspond to the specified policies. For more information, see the section “Generating the
Skeleton and Implementation Files” on page 2-5.

Step 5: Compile and Link the Server Application
After you have finished writing the code for the Server object and the object implementations,
you compile and link the server application.

You use the buildobjserver command to compile and link CORBA server applications. The
buildobjserver command has the following format:

buildobjserver [-o servername] [options]

In the buildobjserver command syntax:

-o servername represents the name of the server application to be generated by this
command.

options represents the command-line options to the buildobjserver command.

For complete information about compiling and linking the University sample applications, see
the Guide to the CORBA University Sample Applications. For complete details about the
buildobjserver command, see the Oracle Tuxedo Command Reference.

There are special considerations for designing and building multithreaded CORBA server
applications. See “Using the buildobjserver Command” on page 4-13.

Note: If you are running the Oracle Tuxedo software on IBM AIX 4.3.3 systems, you need to
recompile your CORBA applications using the -brtl compiler option.

Step 6: Deploy the Server Application
You or the system administrator deploy the CORBA server application by using the procedure
summarized in this section. For complete details on building and deploying the University sample
applications, see the Guide to the CORBA University Sample Applications.

To deploy the server application:

1. Place the server application executable file in an appropriate directory on a machine that is
part of the intended Oracle Tuxedo domain.

2. Create the application’s configuration file, also known as the UBBCONFIG file, in a common
text editor.

Deve lopment and Debugging T ips

Creating CORBA Server Applications 2-17

3. Set the following environment variables on the machine from which you are booting the
CORBA server application:

– TUXCONFIG, which needs to match exactly the TUXCONFIG entry in the UBBCONFIG file.
This variable represents the location or path of the application’s UBBCONFIG file.

– APPDIR, which represents the directory in which the application’s executable file exists.

4. Set the TUXDIR environment variable on all machines that are running in the Oracle Tuxedo
domain or that are connected to the Oracle Tuxedo domain. This environment variable points
to the location where the Oracle Tuxedo software is installed.

5. Enter the following command to create the TUXCONFIG file:

tmloadcf -y application-ubbconfig-file

The command-line argument application-ubbconfig-file represents the name of your
application’s UBBCONFIG file. Note that you may need to remove any old TUXCONFIG files
to execute this command.

6. Enter the following command to start the CORBA server application:

tmboot -y

You can reboot a server application without reloading the UBBCONFIG file.

For complete details about configuring the University sample applications, see the Guide to the
CORBA University Sample Applications. For complete details on creating the UBBCONFIG file for
CORBA applications, see Setting Up an Oracle Tuxedo Application.

Development and Debugging Tips
This topic includes the following sections:

Use of CORBA exceptions and the user log

Detecting error conditions in the callback methods

Common pitfalls of OMG IDL interface versioning and modification

Caveat for state handling in the Tobj_ServantBase::deactivate_object() operation

Use of CORBA Exceptions and the User Log
This topic includes the following sections:

The client application view of exceptions

2-18 Creating CORBA Server Applications

The server application view of exceptions

Client Application View of Exceptions
When a client application invokes an operation on a CORBA object, an exception may be
returned as a result of the invocation. The only valid exceptions that can be returned to a client
application are the following:

Standard CORBA-defined exceptions that are known to every CORBA-compliant ORB

Exceptions that are defined in OMG IDL and known to the client application via either its
stub or the Interface Repository

The Oracle Tuxedo system works to ensure that these CORBA-defined restrictions are not
violated, which is described in the section “Server Application View of Exceptions” on
page 2-20.

Because the set of exceptions exposed to the client application is limited, client applications may
occasionally catch exceptions for which the cause is ambiguous. Whenever possible, the Oracle
Tuxedo system supplements such exceptions with descriptive messages in the user log, which
serves as an aid in detecting and debugging error conditions. These cases are described in the
following section.

Server Application View of Exceptions
This topic includes the following sections:

Exceptions raised by the Oracle Tuxedo system that can be caught by application code

The Oracle Tuxedo system’s handling of exceptions raised by application code during the
invocation of operations on CORBA objects

Exceptions Raised by the Oracle Tuxedo System That Can Be Caught by Application Code
The Oracle Tuxedo system may return the following types of exceptions to an application when
operations on the TP object are invoked:

CORBA-defined system exceptions

CORBA UserExceptions defined in the file TobjS_c.h. The OMG IDL for the
exceptions defined in this file is the following:

interface TobjS {
 exception AlreadyRegistered { };
 exception ActivateObjectFailed { string reason; };

Deve lopment and Debugging T ips

Creating CORBA Server Applications 2-19

 exception ApplicationProblem { };
 exception CannotProceed { };
 exception CreateServantFailed { string reason; };
 exception DeactivateObjectFailed { string reason; };
 exception IllegalInterface { };
 exception IllegalOperation { };
 exception InitializeFailed { string reason; };
 exception InvalidDomain { };
 exception InvalidInterface { };
 exception InvalidName { };
 exception InvalidObject { };
 exception InvalidObjectId { };
 exception InvalidServant { };
 exception NilObject { string reason; };
 exception NoSuchElement { };
 exception NotFound { };
 exception OrbProblem { };
 exception OutOfMemory { };
 exception OverFlow { };
 exception RegistrarNotAvailable { };
 exception ReleaseFailed { string reason; };
 exception TpfProblem { };
 exception UnknownInterface { };
}

The Oracle Tuxedo System’s Handling of Exceptions Raised by Application Code During
the Invocation of Operations on CORBA Objects
A server application can raise exceptions in the following places in the course of servicing a client
invocation:

In the Server::create_servant, Tobj_ServantBase::activate_object(), and
Tobj_ServantBase::deactivate_object() callback methods.

In the implementation code for the invoked operation.

It is possible for the server application to raise any of the following types of exceptions:

A CORBA-defined system exception.

A CORBA user-defined exception defined in OMG IDL

A CORBA user-defined exception defined in the file TobjS_c.h. The following
exceptions are intended to be used in server applications to help the Oracle Tuxedo system
send messages to the user log, which can help with troubleshooting:

interface TobjS {
 exception ActivateObjectFailed { string reason; };

2-20 Creating CORBA Server Applications

 exception CreateServantFailed { string reason; };
 exception DeactivateObjectFailed { string reason; };
 exception InitializeFailed { string reason; };
 exception ReleaseFailed { string reason; };
}

Any other C++ exception type

All exceptions raised by server application code that are not caught by the server application are
caught by the Oracle Tuxedo system. When these exceptions are caught, one of the following
occurs:

The exception is returned to the client application without alteration.

The exception is converted to a standard CORBA exception, which is then returned to the
client application.

The exception is converted to a standard CORBA exception, and the following actions
occur:

– The exception is returned to the client application

– One or more messages containing descriptive information about the error are sent to the
user log. The descriptive information may originate from either the server application
code or from the Oracle Tuxedo system.

The following sections show how the Oracle Tuxedo system handles exceptions raised by the
server application during the course of a client invocation on a CORBA object.

Exceptions Raised in the Server::create_servant() Operation

If any exception is raised in the Server::create_servant() operation, then:

The CORBA::OBJECT_NOT_EXIST exception is returned to the client application.

If the exception raised is TobjS::CreateServantFailed, then a message is sent to the
user log. If a reason string is supplied in the constructor for the exception, then the reason
string is also written as part of the message.

Neither the Tobj_ServantBase::activate_object() or
Tobj_ServantBase::deactivate_object() operations are invoked. The operation
requested by the client is not invoked.

Exceptions Raised in the Tobj_ServantBase::activate_object() Operation

If any exception is raised in the Tobj_ServantBase::activate_object() operation, then:

The CORBA::OBJECT_NOT_EXIST exception is returned to the client application.

Deve lopment and Debugging T ips

Creating CORBA Server Applications 2-21

If the exception raised is TobjS::ActivateObjectFailed, a message is sent to the user
log. If a reason string is supplied in the constructor for the exception, the reason string is
also written as part of the message.

Neither the operation requested by the client nor the
Tobj_ServantBase::deactivate_object() operation is invoked.

Exceptions Raised in Operation Implementations

The Oracle Tuxedo system requires operation implementations to throw either CORBA system
exceptions, or user-defined exceptions defined in OMG IDL that are known to the client
application. If these types of exceptions are thrown by operation implementations, then the
Oracle Tuxedo system returns them to the client application, unless one of the following
conditions exists:

The object has the always transaction policy, and the Oracle Tuxedo system automatically
started a transaction when the object was invoked. In this case, the transaction is
automatically rolled back by the Oracle Tuxedo system. Because the client application is
unaware of the transaction, the Oracle Tuxedo system then raises the
CORBA::OBJ_ADAPTER CORBA system exception, and not the CORBA::
TRANSACTION_ROLLEDBACK exception, which would have been the case had the client
initiated the transaction.

The exception is defined in the file TobjS_c.h. In this case, the exception is converted to
the CORBA::BAD_OPERATION exception and is returned to the client application. In
addition, the following message is sent to the user log:

"WARN: Application didn't catch TobjS exception. TP Framework throwing
CORBA::BAD_OPERATION."

If the exception is TobjS::IllegalOperation, the following supplementary message is
written to warn the developer of a possible coding error in the application:

"WARN: Application called TP::deactivateEnable() illegally and didn't
catch TobjS exception."

This can occur if the TP::deactivateEnable() operation is invoked inside an object that
has the transaction activation policy. (Application-controlled deactivation is not
supported for transaction-bound objects.)

The Oracle Tuxedo system raised an internal system exception following the client
invocation. In this case, the CORBA::INTERNAL exception is returned to the client. This
usually indicates serious system problems with the process in which the object is active.

As defined by the CORBA standard, a reply sent back to the client can either contain result values
from the operation implementation, or an exception thrown in the operation implementation, but

2-22 Creating CORBA Server Applications

not both. In the first case—that is, if the reply status value is NO_EXCEPTION—the reply contains
the operation's return value and any inout or out argument values. Otherwise—that is, if the
reply status value is USER_EXCEPTION or SYSTEM_EXCEPTION—all the reply contains is the
encoding of the exception.

Exceptions Raised in the Tobj_ServantBase::deactivate_object() Operation

If any exception is raised in the Tobj_ServantBase::deactivate_object() operation, the
following occurs:

The exception is not returned to the client application.

If the exception raised is TobjS::DectivateObjectFailed, a message is sent to the user
log. If a reason string is supplied in the constructor for the exception, the reason string is
also written as part of the message.

A message is sent to the user log for exceptions other than the
TobjS::DeactivateObjectFailed exception, indicating the type of exception caught by
the Oracle Tuxedo system.

CORBA Marshal Exception Raised When Passing Object Instances

The ORB cannot marshal an object instance as an object reference. For example, passing a
factory reference in the following code fragment generates a CORBA marshal exception in the
Oracle Tuxedo system:

connection::setFactory(this);

To pass an object instance, you should create a proxy object reference and pass the proxy instead,
as in the following example:

CORBA::Object myRef = TP::get_object_reference();
ResultSetFactory factoryRef = ResultSetFactoryHelper::_narrow(myRef);
connection::setFactoryRef(factoryRef);

Detecting Error Conditions in the Callback Methods
The Oracle Tuxedo system provides a set of predefined exceptions that allow you to specify
message strings that the TP Framework writes to the user log if application code gets an error in
any of the following callback methods:

Tobj_ServantBase::activate_object()

Tobj_ServantBase::deactivate_object()

Server::create_servant()

Deve lopment and Debugging T ips

Creating CORBA Server Applications 2-23

Server::initialize()

Server::release()

You can use these exceptions as a useful debugging aid that allows you to send unambiguous
information about why an exception is being raised. Note that the TP Framework writes these
messages to the user log only. They are not returned to the client application.

You specify these messages with the following exceptions shown in Table 2-5, which have an
optional reason string:

To send a message string to the user log, specify the string in the exception, as in the following
example:

throw CreateServantFailed("Unknown interface");

Note that when you throw these exceptions, the reason string parameter is required. If you do not
want to specify a string with one of these exceptions, you must use the double quote characters,
as in the following example:

throw ActivateObjectFailed("");

Common Pitfalls of OMG IDL Interface Versioning and
Modification
The Server object's implementation of the Server::create_servant() operation instantiates
an object based on its interface ID. It is crucial that this interface ID is the same as the one
supplied in the factory when the factory invokes the TP::create_object_reference()
operation. If the interface IDs do not match, the Server::create_servant() operation usually
raises an exception or returns a NULL servant. The Oracle Tuxedo system then returns a

Table 2-5 Exceptions

Exception Callback Methods That Can Raise This Exception

ActivateObjectFailed Tobj_ServantBase::activate_object()

DeactivateObjectFailed Tobj_ServantBase::deactivate_object()

CreateServantFailed Server::create_servant()

InitializeFailed Server::initialize()

ReleaseFailed Server::release()

2-24 Creating CORBA Server Applications

CORBA::OBJECT_NOT_EXIST exception to the client application. The Oracle Tuxedo system
does not perform any validation of interface IDs in the TP::create_object_reference()
operation.

It is possible for this condition to arise if, during the course of development, different versions of
the interface are being developed or many modifications are being made to IDL file. Even if you
typically specify string constants for interface IDs in OMG IDL and use these in the factory and
the Server::create_servant() operation, it is possible for a mismatch to occur if the object
implementation and factory are in different executables. This potential problem may be difficult
to diagnose.

You may want to consider the following defensive programming strategies during development
to avoid this potential problem. This code should be included only in debugging versions of your
application, because it introduces performance inefficiencies that may be unacceptable in the
production versions of your software.

Immediately before factory invokes the TP::create_object_reference() operation,
include code that checks the Interface Repository to see if the required interface exists.
Make sure that all the application OMG IDL is up-to-date and loaded into the Interface
Repository. Should this check fail to find the interface ID, you can assume that there is a
mismatch.

Following the invocation of the TP::create_object_reference() operation in your
factories, include code that “pings” the object. That is, the code invokes any operation on
the object (typically an operation that does not do anything). If this invocation raises the
CORBA::OBJECT_NOT_EXIST exception, an interface ID mismatch exists. Note that
“pinging” an object causes the object to be activated, with the overhead associated with the
activation.

Caveat for State Handling in
Tobj_ServantBase::deactivate_object()
The Tobj_ServantBase::deactivate_object() operation is invoked when the activation
boundary for an object is reached. You may, optionally, write durable state to disk in the
implementation of this operation. It is important to understand that exceptions raised in this
operation are not returned to the client application. The client application will be unaware of any
error conditions raised in this operation unless the object is participating in a transaction.
Therefore, in cases where it is important that the client application know whether the writing of
state via this operation is successful, we recommend that transactions be used.

Se rvant Poo l ing

Creating CORBA Server Applications 2-25

If you decide to use the Tobj_ServantBase::deactivate_object() operation for writing
state, and the client application needs to know the outcome of the write operations, we
recommend that you do the following:

Ensure that each operation that affects object state is invoked within a transaction, and that
deactivation occurs within the transaction boundaries. This can be done by using either the
method or transaction activation policies, and is possible with the process activation
policy if the TP::deactivateEnable() operation is invoked within the transaction
boundary.

If an error occurs during the writing of object state, invoke the
COSTransactions::Current::rollback_only() operation to ensure that the
transaction is rolled back. This ensures that the client application receives one of the
following exceptions:

– If the client application initiated the transaction, the client application receives the
CORBA::TRANSACTION_ROLLEDBACK exception.

– If the Oracle Tuxedo system initiated the transaction, the client application receives the
CORBA::OBJ_ADAPTER exception.

If transactions are not used, we recommend that you write object state within the scope of
individual operations on the object, rather than via the
Tobj_ServantBase::deactivate_object() operation. This way, if an error occurs, the
operation can raise an exception that is returned to the client application.

Servant Pooling
As mentioned in the section “Servant Pooling and Stateless Objects” on page 1-21, servant
pooling provides a means to reduce the cost of object instantiation for method-bound or
transaction-bound objects.

How Servant Pooling Works
Normally, during object deactivation (that is, when the TP Framework invokes the
Tobj_ServantBase::deactivate_object() operation), the TP Framework deletes the
object’s servant; however, when servant pooling is used, the TP Framework does not delete the
servant at object deactivation. Instead, the server application maintains a pointer to the servant
in a pool. When a subsequent client request arrives that can be satisfied by a servant in that pool,
the server application reuses the servant and assigns a new object ID. When a servant is reused
from a pool, the TP Framework does not create a new servant.

2-26 Creating CORBA Server Applications

How You Implement Servant Pooling
You implement servant pooling by doing the following:

1. In the Server::initialize() operation on the Server object, write the code that sets up the
servant pool. The pool consists of a set of pointers to one or more servants, and the code for
the pool specifies how many servants for a given class are to be maintained in the pool.

2. In the pooled servant’s Tobj_ServantBase::deactive_object() operation, you
implement the TP::application_responsibility() operation. In the implementation of
the TP::application_responsibility() operation, you provide code that places a
pointer to the servant into the servant pool at the time that the TP Framework invokes the
Tobj_ServantBase::deactivate_object() operation.

3. In the Server object’s implementation of the Server::create_servant() operation, write
code that does the following when a client request arrives:

a. Checks the pool to see if there is a servant that can satisfy the request.

b. If a servant does not exist, create a servant and invoke the
Tobj_ServantBase::activate_object() operation on it.

c. If a servant exists, invoke the Tobj_ServantBase::activate_object() operation on
it, assigning the object ID contained in the client request.

Note: Support for the TP::application_responsibility() operation has changed in this
release. For complete information, see the CORBA Programming Reference.

Delegation-based Interface Implementation
There are two primary ways in which an object can be implemented in an Oracle Tuxedo CORBA
application: by inheritance, or by delegation. When an object inherits from the POA skeleton
class, and is thus a CORBA object, that object is said to be implemented by inheritance.

However, there may be instances in which you want to use a C++ object in a CORBA application
in which inheriting from the POA skeleton class is difficult or impractical. For example, you
might have a C++ object that would require a major rewrite to inherit from the POA skeleton
class. You can bring this non-CORBA object into a CORBA application by creating a tie class
for the object. The tie class inherits from the POA skeleton class, and the tie class contains one
or more operations that delegate to the legacy class for the implementation of those operations.
The legacy class is thereby implemented in the CORBA application by delegation.

De legat ion-based In te r face Implementat ion

Creating CORBA Server Applications 2-27

About Tie Classes in the Oracle Tuxedo System
To create a delegation-based interface implementation, use the -T command-line option of the
IDL compiler to generate tie class templates for each interface defined in the OMG IDL file.

Using tie classes in a CORBA application also affects how you implement the
Server::create_servant() operation in the Server object. The following sections explain the
use of tie classes in the Oracle Tuxedo product in more detail, and also explains how to implement
the Server::create_servant() operation to instantiate those classes.

In Oracle Tuxedo CORBA, the tie class is the servant, and, therefore, serves basically as a
wrapper object for the legacy class.

Table 2-1 shows the inheritance characteristics of the interface Account, which serves as a
wrapper for a legacy object. The legacy object contains the implementation of the operation op1.
The tie class delegates op1 to the legacy class.

2-28 Creating CORBA Server Applications

Figure 2-1 Inheritance Characteristics of the Interface Account

Tie classes are transparent to the client application. To the client application, the tie class appears
to be a complete implementation of the object that the client application invokes. The tie class
delegates all operations to the legacy class, which you provide. In addition, the tie class contains
the following:

Constructor and destructor code, which handles startup and shutdown procedures for the tie
class and the legacy class

OMG IDL
Interface
Account

IDL Compiler

Skeleton for
Account

Skeleton Header for
Account

C++ Template Class
Account_tie

(Generated Using -T)

Implementation of Account_tie:
op1(_ptr val);

Delegates op1 to
legacy class,
passing val.

De legat ion-based In te r face Implementat ion

Creating CORBA Server Applications 2-29

Housekeeping code, which implements operations such as accessors

When to Use Tie Classes
Tie classes are not unique to Oracle Tuxedo CORBA, and they are not the only way to implement
delegation in a CORBA application. However, the Oracle Tuxedo CORBA convenience features
for tie classes can greatly reduce the amount of coding you need to do for the basic constructor,
destructor, and housekeeping operations for those tie classes.

Using tie classes might be recommended in one of the following situations:

You want to implement an object in a CORBA application in which inheriting from the
POA skeleton class is difficult or impractical.

All the invocations on a legacy class instance can be accomplished from a single servant.

You are using a legacy class in your CORBA application, and you want to tie the lifetime
of an instance of that legacy class to a servant class.

Delegation is the only purpose of a particular servant; therefore, nearly all the code in that
servant is dedicated to legacy object startup, shutdown, access, and delegation.

Tie classes are not recommended when:

The operations on an object instance delegate to more than one legacy object instance.

Delegation is only a part of the purpose of an object.

How to Create Tie Classes in a CORBA Application
To create tie classes in an application in an Oracle Tuxedo domain:

1. Create the interface definition for the tie class in an OMG IDL file, as you would for any
object in your application.

2. Compile the OMG IDL file using the -T option.

The IDL compiler generates a C++ template class, which takes the name of the skeleton,
with the string _tie appended to it. The IDL compiler adds this template class to the
skeleton header file.

Note that the IDL compiler does not generate the implementation file for the tie class; you
need to create this file by hand, as described in the next step.

2-30 Creating CORBA Server Applications

3. Create an implementation file for the tie class. The implementation file contains the code that
delegates its operations to the legacy class.

4. In the Server object’s Server::create_servant() operation, write the code that
instantiates the legacy object.

In the following example, the servant for tie class POA_Account_tie is created, and the
legacy class LegacyAccount is instantiated.

Account * Account_ptr = new LegacyAccount();
AccountFactoryServant = new POA_Account_tie<LegacyAccount> (Account_ptr)

Note: When compiling tie classes with the Compaq C++ Tru64 compiler for UNIX, you must
include the -noimplicit_include option in the definition of the CFLAGS or CPPFLAGS
environment variables used by the buildobjserver command. This option prevents the
C++ compiler from automatically including the server skeleton definition file (_s.cpp)
everywhere the server skeleton header file (_s.h) is included, which is necessary to
avoid multiply-defined symbol errors. See Compaq publications for additional
information about using class templates, such as the tie classes, with Tru64 C++.

Creating CORBA Server Applications 3-1

C H A P T E R 3

Designing and Implementing a Basic
CORBA Server Application

This chapter describes how to design and implement a CORBA server application, using the
Basic University sample application as an example. The content of this chapter assumes that the
design of the application to be implemented is complete and is expressed in OMG IDL. This
chapter focuses on design and implementation choices that are oriented to the server application.

This topic includes the following sections:

How the Basic University Sample Application Works, which helps provide context to the
design and implementation considerations

Design Considerations for the University Server Application, which includes
comprehensive discussions about the following topics:

– Design Considerations for Generating Object References

– Design Considerations for Managing Object State

– Design Considerations for Handling Durable State Information

– How the Basic Sample Application Applies Design Patterns

– Additional Performance Efficiencies Built into the Oracle Tuxedo System

– Preactivating an Object with State

3-2 Creating CORBA Server Applications

How the Basic University Sample Application Works
The Basic University sample application provides the student with the ability to browse course
information from a central University database. Using the Basic sample application, the student
can do the following:

Browse course synopses from the database by specifying a search string. The server
application then returns synopses for all courses that have a title, professor, or description
containing the search string. (A course synopsis returned to the client application includes
only the course number and title.)

View detailed information about specific courses. The detailed information available for a
specified course includes the following, in addition to synopsis information:

– Cost

– Number of credits

– Class schedule

– Number of seats

– Number of registered students

– Professor

– Description

The Basic University Sample Application OMG IDL
In its OMG IDL file, the Basic University sample application defines the following interfaces:

Interface Description Operations

RegistrarFactory Creates object references to the
Registrar object

find_registrar()

Registrar Obtains course information from the
database

get_courses_synopsis()

get_courses_details()

CourseSynopsisEnumerator Fetches synopses of courses that match
the search criteria from the database and
reads them into memory

get_next_n()

destroy()

How the Bas ic Un ive rs i t y Sample App l i cat ion Works

Creating CORBA Server Applications 3-3

The Basic University sample application is shown in Figure 3-1.

Figure 3-1 Basic University Sample Application

For the purposes of explaining what happens when the Basic University sample application runs,
the following separate groups of events are described:

Application startup—when the server application is booted and the client application gets
an object reference to the Registrar object

Browsing course synopses—when the client application sends a request to view course
synopses

Browsing course details—when the client application sends a request to view details on a
specific list of courses

Application Startup
The following sequence shows a typical set of events that take place when the Basic client and
server applications are started and the client application obtains an object reference to the
Registrar object:

Client
Application

RegistrarFactory Registrar

CourseSynopsis
Enumerator

Course
Database

University Server Application

3-4 Creating CORBA Server Applications

1. The Basic client and server applications are started, and the client application obtains a
reference to the RegistrarFactory object from the FactoryFinder.

2. Using the reference to the RegistrarFactory object, the client application invokes the
find_registrar() operation on the RegistrarFactory object.

3. The RegistrarFactory object is not in memory (because no previous request for that object
has arrived in the server process), so the TP Framework invokes the
Server::create_servant() operation in the Server object to instantiate it.

4. Once instantiated, the RegistrarFactory object’s find_registrar() operation is
invoked. The RegistrarFactory object creates the Registrar object reference and returns
it to the client application.

Browsing Course Synopses
The following sequence traces the events that may occur when the student browses a list of course
synopses:

1. Using the object reference to the Registrar object, the client application invokes the
get_courses_synopsis() operation, specifying:

– A search string to be used for retrieving course synopses from the database.

– An integer, represented by the variable number_to_get, which specifies the size of the
synopsis list to be returned.

2. The Registrar object is not in memory (because no previous request for that object has
arrived in the server process), so the TP Framework invokes the
Server::create_servant() operation, which is implemented in the Server object. This
causes the Registrar object to be instantiated in the server machine’s memory.

3. The Registrar object receives the client request and creates an object reference to the
CourseSynopsisEnumerator object. The CourseSynopsisEnumerator object is invoked
by the Registrar object to fetch the course synopses from the database.

To create the object reference CourseSynopsisEnumerator object, the Registrar object
does the following:

a. Generates a unique ID for the CourseSynopsisEnumerator object.

b. Generates an object ID for the CourseSynopsisEnumerator object that is a
concatenation of the unique ID generated in the preceding step and the search string
specified by the client.

How the Bas ic Un ive rs i t y Sample App l i cat ion Works

Creating CORBA Server Applications 3-5

c. Gets the CourseSynopsisEnumerator object’s Interface Repository ID from the
interface typecode.

d. Invokes the TP::create_object_reference() operation. This operation creates an
object reference to the CourseSynopsisEnumerator object needed for the initial client
request.

4. Using the object reference created in the preceding step, the Registrar object invokes the
get_next_n() operation on the CourseSynopsisEnumerator object, passing the list size.
The list size is represented by the parameter number_to_get, described in step 1.

5. The TP Framework invokes the Server::create_servant() operation on the Server
object to instantiate the CourseSynopsisEnumerator object.

6. The TP Framework invokes the activate_object() operation on the
CourseSynopsisEnumerator object. This operation does the following two things:

– Extracts the search criteria from its OID.

– Using the search criteria, fetches matching course synopses from the database and reads
them into the server machine’s memory.

7. The CourseSynopsisEnumerator object returns the following information to the
Registrar object:

– A course synopsis list, specified in the return value CourseSynopsisList, which is a
sequence containing the first list of course synopses.

– The number of matching course synopses that have not yet been returned, specified by
the parameter number_remaining.

8. The Registrar object returns the CourseSynopsisEnumerator object reference to the
client application, and also returns the following information obtained from that object:

– The initial course synopsis list

– The number_remaining variable

(If the number_remaining variable is 0, the Registrar object invokes the destroy()
operation on the CourseSynopsisEnumerator object and returns a nil reference to the
client application.)

9. The client application sends directly to the CourseSynopsisEnumerator object its next
request to get the next batch of matching synopses.

10. The CourseSynopsisEnumerator object satisfies the client request, also returning the
updated number_remaining variable.

3-6 Creating CORBA Server Applications

11. When the client application is done with the CourseSynopsisEnumerator object, the client
application invokes the destroy() operation on the CourseSynopsisEnumerator object.
This causes the CourseSynopsisEnumerator object to invoke the
TP::deactivateEnable() operation.

12. The TP Framework invokes the deactivate_object() operation on the
CourseSynopsisEnumerator object. This causes the list of course synopses maintained by
the CourseSynopsisEnumerator object to be erased from the server computer’s memory so
that the CourseSynopsisEnumerator object’s servant can be reused for another client
request.

Browsing Course Details
The following sequence shows a typical set of events that take place when the client application
browses course details:

1. The student enters the course numbers for the courses about which he or she is interested in
viewing details.

2. The client application invokes the get_course_details() operation on the Registrar
object, passing the list of course numbers.

3. The Registrar object searches the database for matches on the course numbers, and then
returns a list containing full details for each of the specified courses. The list is contained in
the CourseDetailsList variable, which is a sequence of structs containing full course
details.

Design Considerations for the University Server
Application

The Basic University sample application contains the University server application, which deals
with several fundamental CORBA server application design issues. This section addresses the
following topics:

Design Considerations for Generating Object References

Design Considerations for Managing Object State

Design Considerations for Handling Durable State Information

How the Basic Sample Application Applies Design Patterns

This section also addresses the following two topics:

Des ign Cons ide ra t i ons fo r the Un ive rs i t y Serve r Appl i cat ion

Creating CORBA Server Applications 3-7

Additional Performance Efficiencies Built into the Oracle Tuxedo System

Preactivating an Object with State

Design Considerations for Generating Object References
The Basic client application needs references to the following objects, which are managed by the
University server application:

The RegistrarFactory object

The Registrar object

The CourseSynopsisEnumerator object

The following table shows how these references are generated and returned.

Object How the Object Reference Is
Generated and Returned

RegistrarFactory The object reference for the RegistrarFactory
object is generated in the Server object, which registers
the RegistrarFactory object with the
FactoryFinder. The client application then obtains a
reference to the RegistrarFactory object from the
FactoryFinder.

There is only one RegistrarFactory object in the
Basic University server application process.

3-8 Creating CORBA Server Applications

Note the following about how the University server application generates object references:

The Server object registers the RegistrarFactory object with the FactoryFinder. This is
the recommended way to ensure that client applications can locate the factories they need
to obtain references to the basic objects in the application.

The object reference to the Registrar object is created by the RegistrarFactory object.
This shows a very common and basic way to return object references to the client
application; namely, that there is a factory dedicated to creating and returning references to
the primary object that is required by the client application to execute business logic.

The object reference to the CourseSynopsisEnumerator object is created outside a
registered factory. In the University sample applications, this is a good design because of
the way the CourseSynopsisEnumerator object is meant to be used; namely, its
existence is specific to a particular client application operation. The
CourseSynopsisEnumerator object returns a specific list and results that are not related
to the results from other queries.

Registrar The object reference for the Registrar object is
generated by the RegistrarFactory object and is
returned when the client application invokes the
find_registrar() operation. The object reference
created for the Registrar object is always the same;
this object reference does not contain a unique OID.

There is only one Registrar object in the Basic
University server application process.

CourseSynopsisEnumerator The object reference for the
CourseSynopsisEnumerator object is generated
by the Registrar object when the client application
invokes the get_courses_synopsis() operation.
In this way, the Registrar object is the factory for
the CourseSynopsisEnumerator object. The
design and use of the
CourseSynopsisEnumerator object is described
later in this chapter.

There can be any number of
CourseSynopsisEnumerator objects in the Basic
University server application process.

Object How the Object Reference Is
Generated and Returned

Des ign Cons ide ra t i ons fo r the Un ive rs i t y Serve r Appl i cat ion

Creating CORBA Server Applications 3-9

Because the Registrar object creates, in one of its operations, an object reference to
another object, the Registrar object is a factory. However, the Registrar object is not
registered as a factory with the FactoryFinder; therefore, client applications cannot get a
reference to the Registrar object from the FactoryFinder.

Design Considerations for Managing Object State
Each of the three objects in the Basic sample application has its own state management
requirements. This section discusses the object state management requirements for each.

The RegistrarFactory Object
The RegistrarFactory object does not need to be unique for any particular client request. It
makes sense to keep this object in memory and avoid the expense of activating and deactivating
this object for each client invocation on it. Therefore, the RegistrarFactory object has the
process activation policy.

The Registrar Object
The Basic sample application is meant to be deployed in a small-scale environment. The
Registrar object has many qualities similar to the RegistrarFactory object; namely, this
object does not need to be unique for any particular client request. Also, it makes sense to avoid
the expense of continually activating and deactivating this object for each invocation on it.
Therefore, in the Basic sample application, the Registrar object has the process activation
policy.

The CourseSynopsisEnumerator Object
The fundamental design problem for the University server application is how to handle a list of
course synopses that is potentially too big to be returned to the client application in a single
response. Therefore, the solution centers on the following:

To begin a conversation between the client application and an object that can fetch the
course synopses from the University database.

To have the object return an initial batch of synopses to the client application.

To keep the remainder of the course synopses in memory so that the client application can
retrieve them one batch at a time.

To have the client application terminate the conversation when finished, thus freeing
machine resources.

3-10 Creating CORBA Server Applications

The University server application has the CourseSynopsisEnumerator object, which
implements this solution. Although this object returns an initial batch of synopses when it is first
invoked, this object retains an in-memory context so that the client application can get the
remainder of the synopses in subsequent requests. To retain an in-memory context, the
CourseSynopsisEnumerator object must be stateful; that is, this object stays in memory between
client invocations on it.

When the client is finished with the CourseSynopsisEnumerator object, this object needs a
way to be flushed from memory. Therefore, the appropriate state management decision for the
CourseSynopsisEnumerator object is to assign it the process activation policy and to
implement the CORBA application-controlled deactivation feature.

Application-controlled deactivation is implemented in the destroy() operation on that object.

The following code example shows the destroy() operation on the
CourseSynopsisEnumerator object:

void CourseSynopsisEnumerator_i::destroy()

{

 // When the client calls "destroy" on the enumerator,

 // then this object needs to be "destructed".

 // Do this by telling the TP framework that we're

 // done with this object.

 TP::deactivateEnable();

}

Basic University Sample Application ICF File
The following code example shows the ICF file for the Basic sample application:

module POA_UniversityB
{
 implementation CourseSynopsisEnumerator_i
 {
 activation_policy (process);
 transaction_policy (optional);
 implements (UniversityB::CourseSynopsisEnumerator);
 };
 implementation Registrar_i
 {
 activation_policy (process);
 transaction_policy (optional);
 implements (UniversityB::Registrar);

Des ign Cons ide ra t i ons fo r the Un ive rs i t y Serve r Appl i cat ion

Creating CORBA Server Applications 3-11

 };
 implementation RegistrarFactory_i
 {
 activation_policy (process);
 transaction_policy (optional);
 implements (UniversityB::RegistrarFactory);
 };
};

Design Considerations for Handling Durable State
Information
Handling durable state information refers specifically to reading durable state information from
disk at some point during or after the object activation, and writing it, if necessary, at some point
before or during deactivation. The following two objects in the Basic sample application handle
durable state information:

The Registrar object

The CourseSynopsisEnumerator object

The following two sections describe the design considerations for how these two objects handle
durable state information.

The Registrar Object
One of the operations on the Registrar object returns detailed course information to the client
application. In a typical scenario, a student who has browsed dozens of course synopses may be
interested in viewing detailed information on perhaps as few as two or three courses at one time.

To implement this usage scenario efficiently, the Registrar object is defined to have the
get_course_details() operation. This operation accepts an input parameter that specifies a
list of course numbers. This operation then retrieves full course details from the database and
returns the details to the client application. Because the object in which this operation is
implemented is process-bound, this operation should avoid keeping any state data in memory
after an invocation on that operation is complete.

The Registrar object does not keep any durable state in memory. When the client application
invokes the get_course_details() operation, this object simply fetches the relevant course
information from the University database and sends it to the client. This object does not keep any
course data in memory. No durable state handling is done via the activate_object() or
deactivate_object() operations on this object.

3-12 Creating CORBA Server Applications

The CourseSynopsisEnumerator Object
The CourseSynopsisEnumerator object handles course synopses, which this object retrieves
from the University database. The design considerations, with regard to handling state, involve
how to read state from disk. This object does not write any state to disk.

There are three important aspects of how the CourseSynopsisEnumerator object works that
influence the design choices for how this object reads its durable state:

The OID for this object contains the search criteria provided in the initial client request for
synopses. The search criteria work as a key to the database: this object extracts information
from the database based on search criteria stored in the OID.

All the operations on this object use the course synopses that this object reads into
memory.

This object must flush course synopses from memory when it is deactivated.

Given these three aspects, it makes sense for this object to:

Read its durable state information when activated; namely, via the activate_object()
operation on this object.

Flush the course synopses from memory when deactivated; namely, via the
deactivate_object() operation.

Therefore, when the CourseSynopsisEnumerator object is activated, the
activate_object() operation on this object does the following:

1. Extracts the search criteria from its OID.

2. Retrieves from the database course synopses that match the search criteria.

Note: If you implement the Tobj_ServantBase::activate_object() or
Tobj_ServantBase::deactivate_object()operations on an object, remember to
edit the implementation header file (that is, the application_i.h file) and add the
definitions for those operations to the class definition template for the object’s interface.

Using the University Database
Note the following about the way in which the University sample applications use the University
database:

All of the University sample applications access the University database to manipulate
course and student information. Typically this is a large part of the code you write in the
implementation files. To make the University sample implementation files simpler, and to

Des ign Cons ide ra t i ons fo r the Un ive rs i t y Serve r Appl i cat ion

Creating CORBA Server Applications 3-13

help you focus on CORBA features instead of database code, the samples have wrapped all
the code that reads and writes to the database within a set of classes. The file
samplesdb.h in the utils directory contains the definitions of these classes. These
classes make all the necessary SQL calls to read and write the course and student records
in the University database.

Note: The Oracle Tuxedo Teller Application in the Wrapper and Production sample
applications accesses the account information in the University database directly and
does not use the samplesdb.h file.

For more information on the files you build into the Basic server application, see the Guide
to the CORBA University Sample Applications.

The CourseSynopsisEnumerator object uses a database cursor to find matching course
synopses from the University database. Because database cursors cannot span transactions,
the activate_object() operation on the CourseSynopsisEnumerator object reads all
matching course synopses into memory. Note that the cursor is managed by an iterator
class and is thus not visible to the CourseSynopsisEnumerator object. For more
information about how the University sample applications use transactions, see Chapter 6,
“Integrating Transactions into a CORBA Server Application.”

How the Basic Sample Application Applies Design Patterns
The Basic sample application uses the following design patterns:

Process-Entity

List-Enumerator

This section describes why these two patterns are appropriate for the Basic sample application
and how this application implements them.

Process-Entity Design Pattern
As mentioned in the section “Process-Entity Design Pattern” on page 1-22, this design pattern is
appropriate in situations where you can have one process object that handles data entities needed
by the client application. The data entities are encapsulated as CORBA structs that are
manipulated by the process object and not by the client application.

Adapting the Process-Entity design pattern to the Basic sample application allows the application
to avoid implementing fine-grained objects. For example, the Registrar object is an efficient
alternative to a similarly numerous set of course objects. The processing burden of managing a

3-14 Creating CORBA Server Applications

single, coarse-grained Registrar object is small relative to the potential overhead of managing
hundreds or thousands of fine-grained course objects.

For complete details about the Process-Entity design pattern, see the Design Patterns technical
article.

List-Enumerator Design Pattern
This design pattern is appropriate in situations where an object has generated an internal list of
data that is potentially too large to return to the client application in a single response. Therefore,
the object must return an initial batch of data to the client application in one response, and have
the ability to return the remainder of the data in subsequent responses.

A list-enumerator object must also simultaneously keep track of how much of the data has already
been returned so that the object can return the correct subsequent batch. List-enumerator objects
are always stateful (that is, they remain active and in memory between client invocations on
them) and the server application has the ability to deactivate them when they are no longer
needed.

The list-enumerator design pattern is an excellent choice for the CourseSynopsisEnumerator
object, and implementing this design pattern provides the following benefits:

The University server application has a means to return potentially large lists of course
synopses in a way that client applications can handle; namely, in manageable chunks.

Each CourseSynopsisEnumerator object is unique, and its content is determined by the
request that caused this object to be created. (In addition, each
CourseSynopsisEnumerator object ID is also unique.) When the client invokes the
get_courses_synopsis() operation on the Registrar object, the Registrar object
returns the following:

– An initial list of synopses.

– An object reference to a CourseSynopsisEnumerator object that can return the
remainder of the synopses.

Therefore, all subsequent invocations go to the correct CourseSynopsisEnumerator
object. This is critical in the situation where the server process has multiple active
instances of the CourseSynopsisEnumerator class.

Because the get_courses_synopsis() operation returns a unique
CourseSynopsisEnumerator object reference, client requests never collide; that is, a
client request never mistakenly goes to the wrong CourseSynopsisEnumerator object.

Des ign Cons ide ra t i ons fo r the Un ive rs i t y Serve r Appl i cat ion

Creating CORBA Server Applications 3-15

Although the Registrar object has the get_courses_synopsis() operation on it, the
knowledge of the database query and the synopsis list is embedded entirely in the
CourseSynopsisEnumerator object. In this situation, the Registrar object serves only as a
means for the client to get the following:

The initial list of synopses.

A reference to a CourseSynopsisEnumerator object that can return the remainder of the
synopses.

Additional Performance Efficiencies Built into the Oracle
Tuxedo System
The Oracle Tuxedo system implements a performance efficiency in which data marshaling
between two objects in the same server process is automatically disabled. This efficiency exists
if the following circumstances exist:

An object reference routes to the same group as the one containing the server process in
which the object reference was created.

An object in that server process invokes an operation using that object reference that
causes an object to be instantiated in the same process.

An example of this is when the Registrar object creates an object reference to the
CourseSynopsisEnumerator object and causes that object to be instantiated. No data
marshaling takes place in the requests and responses between those two objects.

Preactivating an Object with State
The preactivate object with state feature allows you to preactivate an object before a client
application invokes that object. This feature can be particularly useful for creating iterator
objects, such as the CourseSynopsisEnumerator object in the University samples.

Preactivating an object with state centers around using the
TP::create_active_object_reference() operation. Typically, objects are not created in a
CORBA server application until a client issues an invocation on that object. However, by
preactivating an object and using the TP::create_active_object_reference() operation to
pass a reference to that object back to the client, your client application can invoke an object that
is already active and populated with state.

Note: The preactivate object with state feature was first introduced in WebLogic Enterprise
version 4.2.

3-16 Creating CORBA Server Applications

How You Preactivate an Object with State
The process for using the preactivation feature is to write code in the server application that:

1. Includes an invocation of the C++ new statement to create an object.

2. Sets the object’s state.

3. Invokes the TP::create_active_object_reference() operation to obtain a reference for
the newly created object. This object reference can then be returned to the client application.

Thus, the preactivated object is created in such a way that the TP Framework invokes neither the
Server::create_servant() nor the Tobj_ServantBase::activate_object() operations
for that object.

Usage Notes for Preactivated Objects
Note the following when using the preactivation feature:

Preactivated objects must have the process activation policy. Therefore, these objects can
be deactivated only at the end of the process or by an invocation to the
TP::deactivateEnable() operation on those objects.

The object reference created by the TP::create_active_object_reference()
operation is transient. This is because a preactivated object should exist only for the
lifetime of the process in which it was created, and this object should not be reactivated
again in another server process.

If a client application invokes on a transient object reference after the process in which the
object reference was created is shut down, the TP Framework returns the following
exception:

CORBA::OBJECT_NOT_EXIST

For objects that are preactivated, the state usually cannot be recovered if a crash occurs.
However, this is acceptable because such objects are typically meant to be used within the
context of a specific series of operations, and then deleted. Its state has no meaning outside
that specific series.

To prevent the situation in which a server has crashed, and a client application
subsequently attempts to invoke the now-deleted object, add the
TobjS::ActivateObjectFailed exception to the implementation of the
Tobj_ServantBase::activate_object() operation to the object meant for
preactivation. Then, if a client attempts to invoke such an object after a server crash, in
which case the TP Framework invokes the Tobj_ServantBase::activate_object()

Des ign Cons ide ra t i ons fo r the Un ive rs i t y Serve r Appl i cat ion

Creating CORBA Server Applications 3-17

operation on that object, the TP Framework returns the following exception to the client
application:

CORBA::OBJECT_NOT_EXIST

Use preactivation sparingly because, as with all process-bound objects, preactivation
preallocates scarce resources.

3-18 Creating CORBA Server Applications

Creating CORBA Server Applications 4-1

C H A P T E R 4

Creating Multithreaded CORBA Server
Applications

This topic includes the following sections:

Overview

Developing and Building Multithreaded CORBA Server Applications

Building and Running the Multithreaded Simpapp Sample Application

Multithreaded CORBA Server Application Administration

4-2 Creating CORBA Server Applications

Overview
This topic includes the following sections:

Introduction

Mechanisms for Supporting Multithreaded CORBA Servers

Running Single-threaded Server Applications in a Multithreaded System

Introduction
Designing an application to use multiple, independent threads provides concurrency within an
application and can improve overall throughput. Using multiple threads enables applications to
be structured efficiently with threads servicing several independent tasks in parallel.
Multithreading is particularly useful when:

There is a set of lengthy operations that do not necessarily depend on other processing.

The amount of data to be shared is small and identifiable.

You can break the task into various activities that can be executed in parallel.

There are occasions where objects must be reentrant.

Historically, industry-wide, multithreaded applications have been complicated to design and
implement. The support provided by Oracle Tuxedo simplifies this complexity by managing
threads within a CORBA server environment.

The Oracle Tuxedo software supports server applications that have the following multithreading
characteristics (see Figure 4-1):

Instances of server objects can handle multiple client requests simultaneously.

A server object can make recursive invocations on itself.

Server objects can create and monitor their own threads to implement parallelism within a
servant method.

Overv i ew

Creating CORBA Server Applications 4-3

Figure 4-1 Multithreaded CORBA Server Application

Generally, the Oracle Tuxedo software creates and manages threads on behalf of a server
application. Building multithreaded server applications affects how you use the TP Framework,
implement servants, and design objects that create their own threads.

The Oracle Tuxedo software allows you to implement either the thread-per-request model or a
thread-per-object model. Each model is explained in “Threading Models” on page 4-5.

Requirements, Goals, and Concepts
Some computer operations take a substantial amount of time to complete. A multithreaded design
can significantly reduce the wait time between the request and completion of operations. This is
true in situations when operations perform a large number of I/O operations such as when
accessing a database, invoking operations on remote objects, or are CPU-bound on a

4-4 Creating CORBA Server Applications

multiprocessor machine. Implementing multithreading in a server process can increase the
number of requests a server processes in a fixed amount of time.

The primary requirement for multithreaded server applications is the simultaneous handling of
multiple client requests. The motivations for developing this type of server are to:

Simplify program design

This is achieved by allowing multiple server tasks to proceed independently using
conventional programming abstractions.

Improve throughput

This is achieved by taking advantage of the parallel processing capabilities of
multiprocessor hardware platforms and overlapping computation with communication.

Improve perceived response time

By associating separate threads with different server tasks, clients do not block each other
for an extended period of time.

Simplify coding of remote procedure calls and conversations

Some applications are easier to code when you use separate threads to interact with
different remote procedure calls (RPCs) and conversations.

Provide simultaneous access to multiple applications

When wrapping legacy applications or databases in a CORBA server, implementations can
interact with more than one legacy application at a time.

Reduce the number of servers required

Because one server can dispatch multiple service threads, the number of servers your
application requires can be reduced.

However, a multithreaded design is not without cost. In general, multithreaded server
applications require more complicated synchronization strategies than single-threaded servers.
An application developer must write thread-safe code. Additionally, the overhead of creating a
thread to handle a request might be greater than the potential benefit of parallelism. The actual
performance of a particular concurrency model depends on the following factors:

Characteristics of requests from the client

Are the requests of long or short duration?

How threads are implemented

Overv i ew

Creating CORBA Server Applications 4-5

Are the threads managed in the operating system kernel, in a library in user space, or some
combination of both?

Operating system and network overhead

How much additional overhead is introduced by repeatedly setting up and tearing down
connections?

Higher-level system configuration factors

Do replication, dynamic load balancing, or other factors affect performance?

While threading libraries provide the mechanisms for creating concurrency models, developers
are ultimately responsible for knowing how to use the mechanisms successfully. By studying
design patterns, application developers can master the subtle differences and make better design
choices for different situations.

Threading Models
There are a number of different models you can use for designing concurrency in servers. The
following sections describe the thread-per-request model, the thread-per-object model, the thread
pool, and how the Oracle Tuxedo software implements each model. A specific server is designed
for either the thread-per-request model or the thread-per-object model.

Thread-Per-Request Model
In this model, each request from a client is processed in a different thread of control. This model
is useful when a server typically receives requests of long duration from multiple clients. It is less
useful for requests of short duration due to the overhead of creating a new thread for each request.
Each time a new request arrives, Oracle Tuxedo associates that request with a thread and executes
it. Because a multithreaded application server process can host more than one thread at a time, it
can simultaneously execute more than one client request at a time. Oracle Tuxedo controls the
association of a request to a thread, therefore, applications do not need to explicitly create threads
unless the applications require a greater degree of control than that provided by Oracle Tuxedo.

The thread-per-request model requires that you design your application servers to be thread-safe,
which means that you must implement concurrency mechanisms to control access to data that
might be shared among multiple server objects. The need to use concurrency control mechanisms
increases the complexity of the applications development process. Additionally, if many clients
make requests simultaneously, this design can consume a large number of operating system
resources.

4-6 Creating CORBA Server Applications

Thread-Per-Object Model
The thread-per-object model associates each active object in the server process with a single
thread at any one time. Each request for an object establishes an association between a dispatch
thread and the object. Serial requests for the same object can be serviced by different threads. A
specific thread can be shared by multiple objects.

The Thread Pool
Thread pools are a means to reduce the cost of managing threads. At startup and as needed,
threads are created, assigned, and released to a pool of available threads where the thread waits
until it is needed again to process future requests. Thread pools can be used to support any of the
threading models previously described. For example, a thread may be allocated for a request in a
thread-per-request model, used for the method execution, and released back to the pool.

Allocating and deallocating threads can be time-consuming and expensive, especially for
short-lived requests and objects. Thread pools provide a means of reducing the cost of managing
threads. During startup, or as needed, threads are created, assigned, and released by the Oracle
Tuxedo software to a pool of available threads. A thread exists in the pool and waits until it is
needed to process future requests.

The initial and ultimate size of the Oracle Tuxedo thread pool for an application server process
is controlled through settings in the server configuration file. At startup, the minimum pool size
is pre-allocated. As requests arrive to be serviced, the Oracle Tuxedo software assigns a thread
from the pool to handle the request. If the pool does not contain an available thread to process the
request and the pool has not been filled, the Oracle Tuxedo software creates a new thread to
handle the request. If a request arrives when there are no threads available in the pool, and no new
threads can be created, the request will be queued until a thread is available.

Thread pools are appropriate for situations in which you want to limit the amount of system
resources that can be consumed for server threading. When a thread pool is used, client requests
are executed concurrently until the number of simultaneous requests exceeds the number of
threads in the pool.

The Oracle Tuxedo thread pool has the following characteristics and behavior:

You can set the maximum size of the pool as an Oracle Tuxedo administration function.
You can adjust the size of this pool without making changes to the application itself.

The Oracle Tuxedo software allocates threads from the pool as necessary. The threads are
used during the processing of a request, and are then released back to the pool.

Threads can be serially reused for servicing multiple requests and multiple objects.

Overv i ew

Creating CORBA Server Applications 4-7

Reentrant Servants
The Oracle Tuxedo software provides the capability for an object to invoke operations on itself
recursively. Using this capability requires a great deal of care in how you implement an object,
because the application code must employ the operating system concurrency mechanisms needed
to control access to shared state data. In some cases, such as with objects that implement the
Process or Distribution Adapter design patterns, there is little or no shared state for an object, and
it is relatively easy to support reentrancy.

Oracle Tuxedo software also allows you to enable or prohibit reentrant method invocations on an
active object. Reentrancy is disabled by default. If a request for an active object is received while
the object is currently executing another request in a different thread, the following rules apply:

If the _is_reentrant method returns TRUE, a new thread is allocated from the pool and
the request is dispatched to the appropriate method using the same servant instance. It is
the responsibility of the servant implementation code to ensure the integrity of the state of
the object when multiple threads interact with it.

If the _is_reentrant method returns FALSE, a new instance of the servant is created and
the method is dispatched to the new instance. This instance is not automatically deleted.
Future reentrant requests may be dispatched to either instance.

Note: The reentrant servant mechanism is available only when a server is started with the
PER_REQUEST concurrency strategy specified.

For information about using this method, see the CORBA Programming Reference.

The Current Object
One of the most important attributes of a multithreaded CORBA server application environment
is ensuring that the Current object is used and managed correctly. This ensures behavior such as
the following:

Individual threads function within the correct transaction and security contexts.

The Current object behaves correctly when accessed from different threads.

The Oracle Tuxedo product conforms to the multithreading model defined by the ORB
Portability Specification, published by the OMG, which has been incorporated into the OMG
CORBA specification. In the Oracle Tuxedo product, operations on interfaces derived from
CORBA::Current have access to the state associated with the thread in which operations are
invoked, not to the state associated with the thread from which the Current object was obtained.
The reason for this behavior is twofold:

4-8 Creating CORBA Server Applications

Prevents one thread from manipulating the state of another thread

Avoids the need to obtain and narrow a new Current object in the thread context for each
method

When used in a multithreaded environments, the behaviors of the following objects are consistent
with the ORB Portability Specification:

CosTransactions::Current

SecurityLevel1::Current

SecurityLevel2::Current

PortableServer::Current

For example, when an application passes a transaction from one thread to another, the application
should not use the CosTransactions::Current object. Instead, the application passes the
CosTransactions::Control object to the other thread. To pass the
CosTransctions::Current object would only allow the receiving thread to gain access to the
transaction state associated with that thread.

Mechanisms for Supporting Multithreaded CORBA Servers
This section provides an overview of the following tools, APIs, and administrative capabilities in
Oracle Tuxedo CORBA that support multithreaded server applications:

Context Services

Classes and Methods in the TP Framework

Capabilities in the Build Commands

Tools for Administration

Context Services
You can choose to create and manage your own threads in your object implementations. Other
threads are managed automatically by the Oracle Tuxedo CORBA software. The Oracle Tuxedo
CORBA software maintains context information internally for each thread that it creates and
maintains. This required context information is used during the processing of CORBA requests.
Since Oracle Tuxedo CORBA has no knowledge of when an application creates and deletes its
own threads, the context services mechanism allows programmers to initialize their own threads
correctly, prior to calling Oracle Tuxedo services, and to release any context resources that are
no longer needed when a thread is deleted.

Overv i ew

Creating CORBA Server Applications 4-9

The following set of ORB methods satisfies the thread management requirements. Together these
are called context services:

ORB::get_ctx()

When an object creates a thread, the object invokes this operation on the ORB to obtain
system context information that the object can pass onto the thread. This operation must be
called from a thread that already has a context. For example, the thread in which a method
was dispatched will already have a context. For information about using this operation, see
ORB::get_ctx() in the CORBA Programming Reference.

ORB::set_ctx()

When an object spawns a thread, the spawned thread typically retrieves the context
information from the thread that invoked the get_ctx method. The spawned thread then
uses the retrieved context information when invoking ORB::set_ctx to set the system
context in which the spawned thread should execute. For information about using this
operation, see ORB::set_ctx() in the CORBA Programming Reference.

ORB::clear_ctx()

When a spawned thread has completed its work, the thread invokes this method to
dissociate itself from the system context. For information about using this operation, see
ORB::clear_ctx() in the CORBA Programming Reference.

ORB::inform_thread_exit()

When a thread has completed its work, the thread invokes this method to inform the Oracle
Tuxedo system that resources associated with an application-managed thread can be
released. For information about using this operation, see ORB::inform_thread_exit()
in the CORBA Programming Reference.

Classes and Methods in the TP Framework
These classes and methods in the Oracle Tuxedo TP Framework support multithreaded server
applications:

ServerBase class

To override the default implementations of the ServerBase class, an application developer
can create a class that derives from ServerBase. In addition to ServerBase methods
already supported, these methods are provided to support the implementation of
multithreaded server applications:
– create_servant_with_id()

– thread_initialize()

4-10 Creating CORBA Server Applications

– thread_release()

These methods allow you to obtain a high-degree of granularity of control over the
multithreading characteristics of your application. For information on how to use these
methods see ServerBase Class in the CORBA Programming Reference.

Tobj_ServantBase class

This class provides these methods to support multithreaded server applications:
– Tobj_ServantBase::_is_reentrant()

– Tobj_ServantBase::_add_ref()

– Tobj_ServantBase::_remove_ref()

For information about using these methods, see Tobj_ServantBase Class in the CORBA
Programming Reference.

Capabilities in the Build Commands
The buildobjserver and buildobjclient commands include the following
thread-management capabilities.

The buildobjserver command includes platform-specific thread library support so that
server applications are compatible with the multithreading support in the Oracle Tuxedo
software.

The buildobjserver command includes command-line options for building
multithreaded or single-threaded server applications.

The buildobjclient command includes platform-specific thread library support so that
client applications can be compatible with the multithreading support provided in the
Oracle Tuxedo software.

Tools for Administration
The Oracle Tuxedo system employs configuration files to assemble and run applications.
Typically, the application developer creates these files, and Oracle Tuxedo system administrators
modify the contents of the file as necessary to satisfy application and system requirements.

The control parameters associated with the support of threads specify the following:

Whether a server should be single-threaded or multithreaded

The size of the thread pool available for dispatching methods on objects

Overv i ew

Creating CORBA Server Applications 4-11

For more information about threads parameters in the UBBCONFIG file, see “Sample
UBBCONFIG File” on page 4-36.

Running Single-threaded Server Applications in a
Multithreaded System
The default behavior of the threading support provided in Oracle Tuxedo CORBA is to emulate
a single-threaded server support environment. To run a single-threaded CORBA application in a
multithreaded environment, you do not need to change the server application code or the
configuration files. However, before you run an existing single-threaded application, you must
rebuild it using the buildobjserver and buildobjclient commands. If you do not
specifically enable multithreading for a server application, the application runs as a
single-threaded server.

4-12 Creating CORBA Server Applications

Developing and Building Multithreaded CORBA Server
Applications

This topic includes the following sections:

Using the buildobjserver Command

Using the buildobjclient Command

Creating Non-reentrant Servants

Creating Reentrant Servants

Building and Running the Multithreaded Simpapp Sample Application

Using the buildobjserver Command
The buildobjserver command supports multithreaded CORBA server applications through
the following capabilities:

Platform-specific Thread Libraries

Specifying Multithreaded Support

Specifying an Alternate Server Class

Platform-specific Thread Libraries
Server applications generated by the buildobjserver command are compiled using the correct
platform-specific compiler settings, and are linked using the correct platform-specific thread
support libraries. This ensures compatibility with the shared libraries provided by the Oracle
Tuxedo software.

Specifying Multithreaded Support
When you create a CORBA server application to support multithreading, you must specify the
-t option on the buildobjserver command when you build the application. At run time, the
Oracle Tuxedo system verifies compatibility between the executable program and the threading
model selected in the CORBA server application configuration file UBBCONFIG. For information
on how to set the threading model in the UBBCONFIG file, see “Sample UBBCONFIG File” on
page 4-36.

Deve lop ing and Bu i ld ing Mul t i th readed CORBA Serve r App l i ca t ions

Creating CORBA Server Applications 4-13

Note: When you specify -t in your build of a CORBA server application, you should set the
MAXDISPATCHTHREADS parameter in the UBBCONFIG file to a value greater than 1;
otherwise, the CORBA server application will run as a single-threaded server.

Note: Multithreaded joint client/server implementations are not supported.

If you attempt to start a single-threaded executable with an incompatible threading model
specification in the configuration file, these events occur:

The Oracle Tuxedo software records a warning in the log file.

The server executable program is started as a single-threaded server.

Specifying an Alternate Server Class
If you implement your own Server class, inheriting from the ServerBase class, you must
specify your alternate Server class in the buildobjserver command using the -b option. The
buildobjserver command provides the following syntax to support the -b option:

buildobjserver [-v] [-o outfile] [-f {firstfiles|@def-file}]

[-l {lastfiles|@def-file}] [-r rmname] [-b bootserverclass] [-t]

In the preceding syntax, the value for bootserverclass specifies the C++ class to be used when
the CORBA server application is booted. If you do not specify the -b option, the Oracle Tuxedo
system creates an instance of the class named Server.

When you specify the -b option, the Tuxedo system creates a main function for the alternate
server class, and your project must supply a header file with the name you specified for
bootserverclass on the -b option. The header file contains the definition of the alternate C++
class. This alternate Server class must inherit from the ServerBase class.

For example, if the command line specifies -b AslanServer, the application project must
supply an AslanServer.h file. The AslanServer.h file is an example of a
bootserverclass.h file. A bootserverclass file provides logic similar to this code sample:

Listing 4-1 Example of a bootserverclass.h File

// File name: AslanServer.h

#include <Server.h>

class AslanServer : public ServerBase {

 public:

 CORBA::Boolean initialize(int argc, char** argv);

 void release();

4-14 Creating CORBA Server Applications

 Tobj_Servant create_servant(const char* interfaceName);

 Tobj_Servant create_servant_with_id(const char* interfaceName,

 const char* stroid);

 CORBA::Boolean thread_initialize(int argc, char** argv);

 void thread_release();

};

Using the buildobjclient Command
When you use the buildobjclient command to create a client application executable program,
the application is compiled using the correct platform-specific compiler settings and linked using
the correct thread support libraries for your operating system. This ensures that clients are
compatible with the shared libraries provided by the Oracle Tuxedo software.

Creating Non-reentrant Servants
Before you can run any CORBA server application in the Oracle Tuxedo CORBA environment,
you must build it using the buildobjserver command.

Use the buildobjserver -t option to inform the Oracle Tuxedo system that the CORBA server
application is thread safe. The -t option indicates that the application does not employ shared
context data or other programming constructs that are not thread safe. If you run single-threaded
applications that are not thread safe in a multithreaded environment, you risk data corruption.

If you update configuration files for an application to enable multithreading support, but the
application code has not been updated to indicate that the servant implementation can support
reentrancy, note the following:

Methods are executed in arbitrary threads assigned by the Oracle Tuxedo system.

Servant implementation code does not necessarily protect an object from concurrent access
to its state. However, active servants are limited to a single thread of execution at a time.

You cannot assume that a method is executed in a specific thread. Do not use storage that
depends on or is tied to a specific thread.

Do not assume that the servant’s activate_object or deactivate_object methods are
executed in the same thread as the request in which they were originally invoked.

Deve lop ing and Bu i ld ing Mul t i th readed CORBA Serve r App l i ca t ions

Creating CORBA Server Applications 4-15

Additional application-managed threads can be created within a servant method. Your
object implementations must ensure that threads are created, handled, and destroyed
properly.

An application-managed thread can include invocations on other objects.

Do not use signals for synchronization; the mixing of signals and threads is not supported.

Note: The SIGKILL signal to terminate a process is supported. The use of SIGIO is not
supported in Oracle Tuxedo CORBA for single or multithreaded applications.

Request-level interceptors are invoked by Oracle Tuxedo CORBA through the same thread
used by the method.

Creating Reentrant Servants
To create a multithreaded reentrant servant:

Build the CORBA server application using the buildobjserver command with the -t
option, and modify the UBBCONFIG server configuration file for the application.

Update the CORBA server application code to enable reentrancy using the
TobjServantBase::_is_reentrant method.

Start the server using the thread-per-request threading model, by specifying
CONCURR_STRATEGY = PER_REQUEST in the UBBCONFIG file.

If you do create a multithreaded, reentrant servant, the implementation code for that object must
protect the state of the object, in order to ensure its integrity while multiple threads interact with it.

Considerations for Client Applications
There are considerations for CORBA client applications running in the Oracle Tuxedo
environment:

Multithreaded CORBA clients using IIOP are supported.

Multithreaded native CORBA clients are not supported.

A multithreaded CORBA client is limited to a single bootstrap object.

A multithreaded CORBA client is limited to a single logon.

CORBA clients using stub-based invocation are supported.

CORBA clients using the Dynamic Invocation Interface (DII) are not supported.

4-16 Creating CORBA Server Applications

Building and Running the Multithreaded Simpapp Sample
Application

This topic includes the following sections:

About the Simpapp Multithreaded Sample

How the Sample Application Works

How to Build and Run the Sample Application

Shutting Down the Sample Application

About the Simpapp Multithreaded Sample
The Oracle Tuxedo software provides a multithreaded CORBA sample application, consisting of
a client program and a CORBA server program. The server receives an alphabetic string from the
client and returns the string in uppercase and lowercase letters. The multithreading capability of
simpapp_mt provides parallel processing. Through this parallelism, a single server process can
handle concurrent requests from multiple clients for multiple objects or for a single object.

Note: The client application in the simpapp_mt sample is not a multithreaded client application.

How the Sample Application Works
The purpose of a multithreaded server is to handle multiple requests from one or more clients in
a parallel manner. The simpapp_mt sample application is a CORBA application that
demonstrates multithreading functionality, by using the buildobjserver -t command-line
option and using the UBBCONFIG file to specify concurrency strategy.

The simpapp_mt sample first creates a server process named SimplePerObject and secondly a
server process named SimplePerRequest. The client communicates first with the
SimplePerRequest server and then with the SimplePerObject server.

The thread-per-request server implementation for SimplePerRequest demonstrates the use of a
user-defined server class that implements thread initialization methods. The SimplePerRequest
server process handles each request from a client in a separate thread of control. Each time a new
request arrives, a thread is allocated from the thread pool to handle the request. Once the request
has been processed and the reply sent, the thread is released back to the pool. This model is useful
for servers that handle long-duration requests from multiple clients.

Bui ld ing and Runn ing the Mul t i th readed S impapp Sample App l i cat ion

Creating CORBA Server Applications 4-17

The simpapp_mt sample application provides an implementation of a CORBA object that has the
following methods:

The to_upper method accepts a string from the client application and converts it to
uppercase letters.

The to_lower method accepts a string from the client application and converts it to
lowercase letters.

The forward_upper method creates an application-managed thread to another instance of
the server and forwards the request received from the client to the new server instance to
convert the string to uppercase letters.

The forward_lower method creates another instance of the Simple object and forwards
the request received from the client to the new instance to convert the string to lowercase
letters.

Figure 4-2 shows the operation of the simpapp_mt sample application, employing both the
thread-per-object and thread-per-request threading models.

Figure 4-2 simpapp_mt Sample Application

4-18 Creating CORBA Server Applications

OMG IDL Code for the Simpapp Multithreaded Sample Application
The simpapp multithreaded sample application described in this chapter implements the CORBA
interfaces listed in the following table.

Listing 4-2 shows the content of the simple.idl file, describing the CORBA interface in the
simpapp_mt sample application.

Listing 4-2 OMG IDL Code for the simpapp_mt Sample Application

#pragma prefix "beasys.com"

interface Simple

{

 //Convert a string to lower case (return a new string)

 string to_lower(in string val);

 //Convert a string to upper case (in place)

 string to_upper(in string val);

 //Use other server to convert string to lower case

 string forward_lower(in string val);

 //Use other server to convert string to upper case

 string forward_upper(in string val);

};

interface SimplePerRequestFactory

{

 Simple find_simple();

Interface Description Action

SimplePerRequestFactory Creates object references to the Simple object find_simple()

SimplePerObjectFactory Creates object references to the Simple object find_simple()

Simple Converts the case of a string to_upper()

to_lower()

forward_upper()

forward_lower()

Bui ld ing and Runn ing the Mul t i th readed S impapp Sample App l i cat ion

Creating CORBA Server Applications 4-19

};

interface SimplePerObjectFactory

{

 Simple find_simple();

};

How to Build and Run the Sample Application
This section leads you, step-by-step, through the process of building and running the simpapp_mt
sample application. The Figure 4-3 summarizes the process and following sections explain how
to perform the tasks.

Figure 4-3 Process for Building and Running simpapp_mt

4-20 Creating CORBA Server Applications

Setting the TUXDIR Environment Variable
Before building and running the simpapp_mt sample application, ensure that the TUXDIR
environment variable is set on your system. Typically, the environment variable is set during the
installation process. You should confirm that the environment variable defines the correct
directory location.

The TUXDIR environment variable must be set to the directory path where you installed the Oracle
Tuxedo software. For example:

Windows

TUXDIR=D:\TUXDIR

UNIX

TUXDIR=/usr/local/TUXDIR

Verifying the TUXDIR Environment Variable
Before you run the application, perform the following procedure to ensure that the environment
variable contains the correct information.

Windows

Execute the echo command to show the setting of TUXDIR:

prompt> echo %TUXDIR%

UNIX

1. Execute the ksh command at the prompt to launch the Korn shell.

2. Execute the printenv command to show the setting of TUXDIR:

ksh prompt> printenv TUXDIR

Changing the Setting of the Environment Variable
To change the value of the environment variable:

Windows

Execute the set command to set a new value for TUXDIR:

prompt> set TUXDIR=directorypath

Bui ld ing and Runn ing the Mul t i th readed S impapp Sample App l i cat ion

Creating CORBA Server Applications 4-21

UNIX

1. At the system prompt, execute the ksh command to launch the Korn shell.

2. At the ksh prompt, enter the export command to set the value for the TUXDIR environment
variable:

 ksh prompt> export TUXDIR=directorypath

Creating a Working Directory for the Sample Application
Note: The technique of using a work directory is recommended so that you can see what

additional files are created when you run the simpapp multithreaded sample. After you
execute the runme command, compare the set of files in the installation directory to the
set of files in your work directory.

The files required for the simpapp multithreaded sample application are in the following
directories:

Windows

%TUXDIR%\samples\corba\simpapp_mt

UNIX

$TUXDIR/samples/corba/simpapp_mt

Create a working directory containing all of the simpapp multithreaded files.

Windows

You can use Windows Explorer to create a copy of the simpapp_mt directory, or you can use the
command prompt as follows:

1. Create a target working directory for a copy of the simpapp_mt files.

> mkdir work_directory

2. Copy the simpapp_mt files to the working directory.

> copy %TUXDIR%\samples\corba\simpapp_mt* work_directory

3. Change to the working directory.

cd work_directory

4-22 Creating CORBA Server Applications

4. List all the files in the working directory.

prompt> dir

makefile.mk simple_per_object_i.h
makefile.nt simple_per_object_server.cpp
Readme.txt simple_per_request_i.cpp
runme.cmd simple_per_request_i.h
runme.ksh simple_per_request_server.cpp
simple.idl simple_per_request_server.h
simple_client.cpp thread_macros.cpp
simple_per_object_i.cpp thread_macros.h

UNIX

You can use your user interface tool to create a copy of the simpapp_mt directory, or you can use
the command prompt as follows:

1. Create a target working directory for a copy of the simpapp_mt files.

> mkdir work_directory

2. Copy all simpapp_mt files to the working directory.

> cp $TUXDIR/samples/corba/simpapp_mt/* work_directory

3. Change to the working directory.

cd work_directory

4. List all the files in the working directory.

$ ls

makefile.mk simple_per_object_i.h
makefile.nt simple_per_object_server.cpp
Readme.txt simple_per_request_i.cpp
runme.cmd simple_per_request_i.h
runme.ksh simple_per_request_server.cpp
simple.idl simple_per_request_server.h
simple_client.cpp thread_macros.cpp
simple_per_object_i.cpp thread_macros.h

Table 4-1 lists and describes the simpapp_mt files used to build and run the application.

Bui ld ing and Runn ing the Mul t i th readed S impapp Sample App l i cat ion

Creating CORBA Server Applications 4-23

Table 4-1 simpapp_mt Files

File Description

makefile.mk (UNIX) Makefile for the simpapp_mt sample
application. Use this file to build the
application.

makefile.nt (Windows) Makefile for the simpapp_mt
sample application. Use this file to build the
application.

Readme.txt Readme file that provides information about
building and running the simpapp_mt sample
application.

runme.cmd (Windows) Command file for building and
running the simpapp_mt sample application.

runme.ksh (UNIX) Korn shell script for building and
running the simpapp_mt sample application.

simple.idl Object Management Group (OMG) Interface
Definition Language (IDL) code that declares
the SimplePerRequestFactory,
SimplePerObjectFactory, and Simple
interfaces.

simple_client.cpp CORBA client program source code for the
simpapp_mt sample application.

simple_per_object_i.cpp Source code that includes implementations for
Simple and SimplePerObjectFactory
servants that are to be included in a server. The
CORBA server is started using a
thread-per-object concurrency strategy.

simple_per_object_i.h Source code file for declaring Simple and
SimplePerObjectFactory servants to be
included in a server.

4-24 Creating CORBA Server Applications

Checking Permissions on All the Files
To build and run the simpapp_mt sample application, you must have user and read permissions
on all the files you copied into your working directory. Check the permissions, and change the
permissions if required.

simple_per_object_server.cpp CORBA server program source code for the
simpapp_mt sample application,
thread-per-object concurrency strategy. Set
CONCURR_STRATEGY = PER_OBJECT in
the UBBCONFIG file.

simple_per_request_i.cpp Source code that includes implementations for
Simple and SimplePerRequestFactory
servants that are to be included in a reentrant
server. The reentrant CORBA server is started
using a thread-per-request concurrency
strategy.

simple_per_request_i.h Source code file for declaring Simple and
SimplePerRequestFactory servants to be
included in a reentrant server.

simple_per_request_server.cpp CORBA server program source code for the
simpapp_mt sample application,
thread-per-request concurrency strategy. Set
CONCURR_STRATEGY = PER_REQUEST in
the UBBCONFIG file.

simple_per_request_server.h An example of a bootserverclass.h file,
containing the declarations required for the
user-defined Server class in the simpapp_mt
sample application.

thread_macros.cpp Platform-independent thread convenience
macros that support the simpapp_mt sample
application.

thread_macros.h Source code file for declaring all the classes and
variables for thread convenience macros.

Table 4-1 simpapp_mt Files (Continued)

File Description

Bui ld ing and Runn ing the Mul t i th readed S impapp Sample App l i cat ion

Creating CORBA Server Applications 4-25

Note: Ensure that the make utility is in your path.

Windows

> attrib -R /S *.*

UNIX

> /bin/ksh

> chmod u+r work_directory/*.*

Executing the runme Command
This section describes the steps required to execute the application end-to-end. Enter the runme
command as follows:

Windows

> cd work_directory

> ./runme

UNIX

> /bin/ksh

> cd work_directory

> ./runme.ksh

The runme command automates the following steps:

1. Checks the TUXDIR environment variable.

2. Sets the environment variables that are used by this application.

3. Ensures that the proper bin directories are in the PATH.

4. If this is not the first time this script has been run, removes unneeded files from the directory.

5. Creates a directory to capture the results from running this script.

6. Creates a setenv.ksh file (UNIX) or setenv.bat file (Windows) so that you can build and
run this sample step-by-step.

7. Creates the ubb configuration file for this sample.

8. Creates a file containing the user input for the client.

4-26 Creating CORBA Server Applications

9. Creates a file with the expected output from the client.

10. Builds the sample.

11. Loads the configuration file.

12. Starts the thread-per-object server.

13. Starts the thread-per-request server.

14. Runs the client and captures the output.

15. Compares the output with the expected output.

16. Shuts down the server application.

17. Captures logs that are generated when you run the sample.

18. Saves the results.

19. Informs the user whether the sample ran successfully.

The simpapp_mt sample application prints the following messages while executing the runme
command:

Testing simpapp_mt

 cleaned up

 prepared

 built

 loaded ubb

 booted

 ran

 shutdown

 saved results

 PASSED

The entire run-time output for the simpapp_mt sample application is stored in the results directory
in your working directory. To see the output created at run time, examine the following files:

– log—compile, server boot, or server shutdown errors

– output—client application output and exceptions

– ULOG.date—server application errors and exceptions

Table 4-2 and Table 4-3 identify and describe the files created by executing the runme command.

Bui ld ing and Runn ing the Mul t i th readed S impapp Sample App l i cat ion

Creating CORBA Server Applications 4-27

Table 4-2 Files Created in the Working Directory

File Description

simple_c.cpp Created by the idl command for the
simple.idl file. This module contains the
client stub function for the Simple and
SimplePerRequestFactory interface.

simple_c.h Created by the idl command for the
simple.idl file. This module contains
definitions and prototypes for the Simple and
SimplePerRequestFactory interfaces.

simple_s.cpp Created by the idl command for the
simple.idl file. This module contains the
skeleton functions for the Simple_i and
SimplePerRequestFactory_i
implementations.

simple_s.h Created by the idl command for the
simple.idl file. This module contains
definitions and prototypes for the skeleton
classes for the Simple_i and
SimplePerRequestFactory_i interfaces.

simple_client Created by the buildobjclient command
for the simple_c.cpp and
simple_client.cpp files.

simple_per_object_server Created by the buildobjserver command
for the simple_c.cpp, simple_s.cpp,
simple_per_object_i.cpp,
simple_per_object_server.cpp, and
thread_macros.cpp files.

simple_per_request_server Created by the buildobjserver command
for the simple_c.cpp, simple_s.cpp,
simple_per_request_i.cpp,
simple_per_request_server.cpp, and
thread_macros.cpp files.

4-28 Creating CORBA Server Applications

results directory Created by the runme command to capture the
results from running this script.

adm directory Created by the runme command to contain the
security encryption key database file.

Table 4-3 Files Created in the Results Directory

Files Description

input Created by the runme command to store the input that
the runme command provides to the C++ client
application.

output Created by the runme command to contain the output
when the runme command executes the C++ client
application.

expected_output Created by the runme command to contain the expected
output when the runme command is executed. The
output file is compared to determine whether the test
passed or failed.

log Created by the runme command to contain the output
generated by the runme command. If the command fails,
check this file and the ULOG file for errors.

setenv.cmd (Windows) Command file to set up environment
variables required to build and run the simpapp_mt
sample application step-by-step.

setenv.ksh (UNIX) Command file to set up environment variables
required to build and run the simpapp_mt sample
application step-by-step.

stderr Contains messages generated by tmboot. If the
-noredirect server option is specified in the
UBBCONFIG file, the fprintf method sends the output
to this file.

Table 4-2 Files Created in the Working Directory (Continued)

File Description

Bui ld ing and Runn ing the Mul t i th readed S impapp Sample App l i cat ion

Creating CORBA Server Applications 4-29

Running the Sample Application Step-by-Step
This section explains how to run the simpapp_mt sample application in step-by-step mode. You
must execute the runme command before running simpapp_mt in step-by-step mode.

Follow the numbered steps to run the simpapp_mt application:

1. Set the environment variables.

Windows

> ..\results\setenv

UNIX

> ../results/setenv.ksh

2. Execute tmboot -y to launch the application. Information similar to the following is
displayed:

>tmboot -y
Booting all admin and server processes in /work_directory/results/tuxconfig

Booting admin processes ...

exec BBL -A : process id=212 ... Started.

Booting server processes ...

stdout Contains messages generated by tmboot. If the
-noredirect server option is specified in the
UBBCONFIG file, the fprintf method sends the output
to this file.

tmsysevt.dat Generated by the tmboot command in the runme
command. It contains filtering and notification rules used
by the TMSYSEVT process.

tuxconfig A binary version of the configuration file.

ubb UBBCONFIG file for the simpapp_mt sample application.

ULOG.date ULOG file for storing run-time errors.

Table 4-3 Files Created in the Results Directory (Continued)

Files Description

4-30 Creating CORBA Server Applications

exec TMSYSEVT -A : process id=289 ... Started.
exec TMFFNAME -A -- -N -M : process id=297 ... Started.
exec TMFFNAME -A -- -N : process id=233 ... Started.
exec TMFFNAME -A -- -F : process id=265 ... Started.
exec simple_per_object_server -A : process id=116 ... Started.
exec simple_per_request_server -A : process id=127 ... Started.
exec ISL -A -- -n //MrBeaver:2468 : process id=270 ... Started.
7 processes started.
>

Table 4-4 describes the server processes started by tmboot.

3. Execute the client application.

Windows

> .\simple_client

UNIX

> ./simple_client

When you execute the client application, messages similar to the following in Listing 4-3 are
displayed:

Table 4-4 Server Processes Started by tmboot

Process Description

TMSYSEVT System EventBroker.

TMFFNAME TMFFNAME server processes:
• Master NameManager—TMFFNAME server

process started when you specify both the -N
option and the -M option.

• SLAVE NameManager—TMFFNAME server
process started when you specify only the -N
option.

• FactoryFinder object—a TMFFNAME
server process started with the -F option
contains this object.

simple_per_object_server Started as a thread-per-object server.

simple_per_request_server Started as a reentrant thread-per-request server.

ISL IIOP listener process.

Bui ld ing and Runn ing the Mul t i th readed S impapp Sample App l i cat ion

Creating CORBA Server Applications 4-31

Listing 4-3 Messages Displayed When simpapp_mt Client Is Executed

Number of simultaneous requests to post (1-50)?
String to convert using thread-per-request server?
Sending 4 deferred forward_lower requests
forward_lower request #0
returned:aabbccddeeffgghhiijjkkllmmnnooppqqrrssttuuvvwwxxyyzz
forward_lower request #1
returned:aabbccddeeffgghhiijjkkllmmnnooppqqrrssttuuvvwwxxyyzz
forward_lower request #2
returned:aabbccddeeffgghhiijjkkllmmnnooppqqrrssttuuvvwwxxyyzz
forward_lower request #3
returned:aabbccddeeffgghhiijjkkllmmnnooppqqrrssttuuvvwwxxyyzz
Sending 4 deferred forward_upper requests
forward_upper request #0 returned:
AABBCCDDEEFFGGHHIIJJKKLLMMNNOOPPQQRRSSTTUUVVWWXXYYZZ
forward_upper request #1 returned:
AABBCCDDEEFFGGHHIIJJKKLLMMNNOOPPQQRRSSTTUUVVWWXXYYZZ
forward_upper request #2 returned:
AABBCCDDEEFFGGHHIIJJKKLLMMNNOOPPQQRRSSTTUUVVWWXXYYZZ
forward_upper request #3 returned:
AABBCCDDEEFFGGHHIIJJKKLLMMNNOOPPQQRRSSTTUUVVWWXXYYZZ
String to convert using thread-per-object server?
Sending 4 deferred forward_lower requests
forward_lower request #0
returned:aabbccddeeffgghhiijjkkllmmnnooppqqrrssttuuvvwwxxyyzz
forward_lower request #1
returned:aabbccddeeffgghhiijjkkllmmnnooppqqrrssttuuvvwwxxyyzz
forward_lower request #2
returned:aabbccddeeffgghhiijjkkllmmnnooppqqrrssttuuvvwwxxyyzz
forward_lower request #3
returned:aabbccddeeffgghhiijjkkllmmnnooppqqrrssttuuvvwwxxyyzz
Sending 4 deferred forward_upper requests
forward_upper request #0 returned:
AABBCCDDEEFFGGHHIIJJKKLLMMNNOOPPQQRRSSTTUUVVWWXXYYZZ
forward_upper request #1 returned:
AABBCCDDEEFFGGHHIIJJKKLLMMNNOOPPQQRRSSTTUUVVWWXXYYZZ
forward_upper request #2 returned:
AABBCCDDEEFFGGHHIIJJKKLLMMNNOOPPQQRRSSTTUUVVWWXXYYZZ

forward_upper request #3 returned:
AABBCCDDEEFFGGHHIIJJKKLLMMNNOOPPQQRRSSTTUUVVWWXXYYZZ

4-32 Creating CORBA Server Applications

Shutting Down the Sample Application
Before running another sample application, you should shut down the simpapp_mt sample
application and eliminate all unwanted files from the working directory.

1. To end the application, run the tmshutdown -y command. Information similar to the
following is displayed:

>tmshutdown -y
Shutting down all admin and server processes in
/work_directory/results/tuxconfig

Shutting down server processes ...

Server Id = 5 Group Id = SYS_GRP Machine = SITE1: shutdown succeeded.
Server Id = 2 Group Id = APP_GRP2 Machine = SITE1: shutdown succeeded.
Server Id = 4 Group Id = SYS_GRP Machine = SITE1: shutdown succeeded.
Server Id = 3 Group Id = SYS_GRP Machine = SITE1: shutdown succeeded.
Server Id = 2 Group Id = SYS_GRP Machine = SITE1: shutdown succeeded.
Server Id = 1 Group Id = SYS_GRP Machine = SITE1: shutdown succeeded.

Shutting down admin processes ...

Server Id = 0 Group Id = SITE1 Machine = SITE1: shutdown succeeded.
7 processes stopped.

2. Restore the working directory to its original state.

Windows

> ..\results\setenv
> make -f clean

UNIX

> ../results/setenv.ksh
> make -f makefile.mk clean

Mul t i th readed CORBA Serve r App l i cat ion Admin is t ra t i on

Creating CORBA Server Applications 4-33

Multithreaded CORBA Server Application Administration
This topic includes the following sections:

Specifying Thread Pool Size

Specifying a Threading Model

Specifying the Number of Active Objects

Sample UBBCONFIG File

Specifying Thread Pool Size
The MAXDISPATCHTHREADS and MINDISPATCHTHREADS parameters for specifying the
maximum and minimum sizes of the thread pool are in the SERVERS section of the UBBCONFIG
file. For examples of how to specify these parameters, see Listing 4-4. A multithreaded CORBA
application uses these values to create and manage the thread pool.

MAXDISPATCHTHREADS
The MAXDISPATCHTHREADS parameter determines the maximum number of concurrently
dispatched threads that each server process can spawn. When specifying this parameter, consider
the following:

The value for MAXDISPATCHTHREADS determines the maximum size the thread pool can
grow to be, as it increases in size to accommodate incoming requests.

The default value for MAXDISPATCHTHREADS is 1. If you specify a value greater than 1, the
system creates and uses a special dispatcher thread. This dispatcher thread is not included
in the number of threads determining the maximum size of the thread pool.

Note: If you specify a value greater than 1 for MAXDISPATCHTHREADS and do not supply a
value for the CONCURR_STRATEGY threading model parameter, the threading model
for the application defaults to thread-per-object. For a discussion of the
CONCURR_STRATEGY threading model parameter, see “Specifying a Threading
Model” on page 4-35.

Specifying a value of 1 for the MAXDISPATCHTHREADS parameter indicates that the
CORBA server application should be configured as a single-threaded server.

Note: When you build a multithreaded CORBA server application specifying
buildobjserver -t, that server is capable of running in multithreaded mode. To run
as a multithreaded CORBA server application, the MAXDISPATCHTHREADS parameter

4-34 Creating CORBA Server Applications

in the UBBCONFIG file must be set to a value greater than 1; if it is not, the server
application will run in single-threaded mode.

The value you specify for the MAXDISPATCHTHREADS parameter must not be less than the
value you specify for the MINDISPATCHTHREADS parameter.

The operating system resources limit the maximum number of threads that can be created
in a process. MAXDISPATCHTHREADS should be less than that limit, minus the number of
application managed threads that your application requires.

The value of the MAXDISPATCHTHREADS parameter affects other parameters. For example, the
MAXACCESSORS parameter controls the number of simultaneous accesses to the Oracle Tuxedo
system, and each thread counts as one accessor. For a multithreaded server application, you must
account for the number of system-managed threads that each server is configured to run. A
system-managed thread is a thread that is started and managed by the Oracle Tuxedo software, as
opposed to threads started and managed by an application. Internally, Oracle Tuxedo manages a
pool of available system-managed threads. When a client request is received, an available
system-managed thread from the thread pool is scheduled to execute the request. When the
request is completed, the system-managed thread is returned to the pool of available threads.

For example, if that you have 4 multithreaded servers in your system and each server is
configured to run 50 system-managed threads, the accessor requirement for these servers is the
sum total of the accessors, calculated as follows:

50 + 50 + 50 + 50 = 200 accessors

MINDISPATCHTHREADS
Use the MINDISPATCHTHREADS parameter to specify the number of server dispatch threads
that are started when the server is initially booted. When you specify this parameter,
consider the following:

– The value for MINDISPATCHTHREADS determines the initial allocation of threads in the
thread pool.

– The separate dispatcher thread that is created when MAXDISPATCHTHREADS is greater
than 1 is not counted as part of the MINDISPATCHTHREADS limit.

– The value you specify for MINDISPATCHTHREADS must not be greater than the value
you specify for MAXDISPATCHTHREADS.

– The default value for MINDISPATCHTHREADS is 0.

Mul t i th readed CORBA Serve r App l i cat ion Admin is t ra t i on

Creating CORBA Server Applications 4-35

Specifying a Threading Model
To specify a threading model, you set the CONCURR_STRATEGY parameter which is defined in the
SERVERS section of the UBBCONFIG file.

Use the CONCURR_STRATEGY parameter to specify the threading model a multithreaded CORBA
server application is to use. The CONCURR_STRATEGY parameter accepts either of these values:

CONCURR_STRATEGY = PER_REQUEST

CONCURR_STRATEGY = PER_OBJECT

When you specify CONCURR_STRATEGY = PER_REQUEST to employ the thread-per-request
model, each invocation on the CORBA server application is assigned to an arbitrary thread from
the threads pool.

When you specify CONCURR_STRATEGY = PER_OBJECT to employ the thread-per-object model,
each active object is associated with a single thread at any one time. Each request for an object
establishes an association between a dispatch thread and the object.

If the value for MAXDISPATCHTHREADS is greater than one and you do not specify a value for
CONCURR_STRATEGY, the threading model is set to PER_OBJECT.

For more information on the characteristics of threading models, see “Threading Models” on
page 4-5.

Specifying the Number of Active Objects
Use the MAXOBJECTS parameter to specify the maximum number of objects per machine to be
accommodated in the Active Object Map tables in the bulletin board. You can set this value in
either the RESOURCES section or the MACHINES section of the configuration file. The MAXOBJECTS
number in the RESOURCES section is a system-wide setting. Use the MAXOBJECTS number in the
MACHINES section to override the system-wide setting on a per-machine basis.

For a system-wide setting, specify:

*RESOURCES
 MAXOBJECTS number

To override a system-wide setting for a specific machine, specify:

*MACHINES
 MAXOBJECTS = number

The value for number is limited only by the resources of your operating system.

4-36 Creating CORBA Server Applications

Sample UBBCONFIG File
Listing 4-4 shows a the UBBCONFIG file for the Oracle Tuxedo Threads sample application. The
threads-related parameters are presented in boldface text.

Note: The value for the MAXOBJECTS parameter affects the operation of a multithreaded server.
However, this parameter is not specific to multithreaded servers, since it also affects the
operation of single-threaded servers. Increasing the value for MAXOBJECTS results in the
consumption of additional system resources for any server.

Listing 4-4 Threads Sample Application UBBCONFIG File

*RESOURCES
 IPCKEY 55432
 DOMAINID simpapp
 MAXOBJECTS 100
 MASTER SITE1
 MODEL SHM
 LDBAL N

*MACHINES
 "sunstar"
 LMID = SITE1
 APPDIR = "/rusers1/lyon/samples/corba/simpapp_mt"
 TUXCONFIG = "/rusers1/lyon/samples/corba/simpapp_mt/results/tuxconfig"
 TUXDIR = "/usr/local/TUXDIR"
 MAXWSCLIENTS = 10
 MAXACCESSERS = 200

*GROUPS
 SYS_GRP
 LMID = SITE1
 GRPNO = 1
 APP_GRP1
 LMID = SITE1
 GRPNO = 2
 APP_GRP2
 LMID = SITE1
 GRPNO = 3

*SERVERS
 DEFAULT:
 RESTART = Y
 MAXGEN = 5
 TMSYSEVT
 SRVGRP = SYS_GRP

Mul t i th readed CORBA Serve r App l i cat ion Admin is t ra t i on

Creating CORBA Server Applications 4-37

 SRVID = 1
 TMFFNAME
 SRVGRP = SYS_GRP
 SRVID = 2
 CLOPT = "-A -- -N -M"
 TMFFNAME
 SRVGRP = SYS_GRP
 SRVID = 3
 CLOPT = "-A -- -N"
 TMFFNAME
 SRVGRP = SYS_GRP
 SRVID = 4
 CLOPT = "-A -- -F"
 simple_per_object_server
 SRVGRP = APP_GRP1
 SRVID = 1
 MINDISPATCHTHREADS = 10
 MAXDISPATCHTHREADS = 100
 CONCURR_STRATEGY = PER_OBJECT
 RESTART = N
 simple_per_request_server
 SRVGRP = APP_GRP2
 SRVID = 2
 MINDISPATCHTHREADS = 10
 MAXDISPATCHTHREADS = 100
 CONCURR_STRATEGY = PER_REQUEST
 RESTART = N
 ISL
 SRVGRP = SYS_GRP
 SRVID = 5
 CLOPT = "-A -- -n //sunbstar:2468 -d /dev/tcp"

*SERVICES

4-38 Creating CORBA Server Applications

Creating CORBA Server Applications 5-1

C H A P T E R 5

Security and CORBA Server
Applications

This chapter discusses security and CORBA server applications, using the Security University
sample application as an example. The Security sample application implements a security model
that requires student users of the University sample application to be authenticated as part of the
application login process.

This topic includes the following sections:

Overview of Security and CORBA Server Applications

Design Considerations for the University Server Application

Overview of Security and CORBA Server Applications
Generally, CORBA server applications have little to do with security. Security in the Oracle
Tuxedo domain is specified by the system administrator in the UBBCONFIG file, and client
applications are responsible for logging on, or authenticating, to the domain. None of the security
models supported in the Oracle Tuxedo system make any requirements on server applications
running in the Oracle Tuxedo domain.

However, there may be occasions when implementing or enhancing a security model in your
CORBA application involves adding objects, or adding operations to existing objects, that are
managed by the server application.

This chapter shows how the University server application is enhanced to add the notion of a
student, which is incorporated into the client application as a means to identify, and log in, users
of the client application.

5-2 Creating CORBA Server Applications

For information about how client applications are authenticated into the Oracle Tuxedo domain,
see Creating CORBA Client Applications. For information about implementing a security model
in the Oracle Tuxedo domain, see Setting Up an Oracle Tuxedo Application.

Design Considerations for the University Server
Application

The design rationale for the Security University sample application is to require users of the client
application to log on before they can do anything. The Security sample application, therefore,
needs to define the notion of a user.

To log on to the application, the client application needs to provide the following to the security
service in the Oracle Tuxedo domain (note that the student user of the application provides only
the username and application password):

Client name

Username

An application password

The Security sample application adds an operation, get_student_details(), to the
Registrar object. This operation enables the client application to obtain information about each
student user from the University database after the client application is logged on to the Oracle
Tuxedo domain.

Note: The get_student_details() operation has nothing to do with implementing a
security model in the Oracle Tuxedo domain. The addition of this operation is only a
supplemental feature added to the Security sample application. For details about the
security model added to the Security sample application, and how client applications log
on to the Security server application, see Creating CORBA Client Applications.

The sections that follow explain:

How the Security University sample application works

Design considerations for returning student details to the client application

How the Security University Sample Application Works
To implement the Security sample application, the client application adds a logon dialog with the
student end user. This dialog uses the local SecurityCurrent object on the client machine to invoke
operations on the PrincipalAuthenticator object, which is part of logging on to access the Oracle

Des ign Cons ide ra t i ons fo r the Un ive rs i t y Serve r Appl i cat ion

Creating CORBA Server Applications 5-3

Tuxedo domain. After the user authentication process, the client application invokes the
get_student_details() operation on the Registrar object to obtain information about each
student user.

The University database used in the Security sample application is updated to contain student
information in addition to course information, and is shown in Figure 5-1.

Figure 5-1 University Database

The get_student_details() operation accesses the student information portion of the
database to obtain student information needed by the client logon operation. Figure 5-2 shows the
primary objects involved in the Security sample application:

Course
Information

Student
Information

University Database

5-4 Creating CORBA Server Applications

Figure 5-2 Primary Objects Involved in the Security Sample Application

A typical usage scenario of the Security sample application may include the following sequence
of events:

1. The client application obtains a reference to the SecurityCurrent object from the Bootstrap
object.

2. The client application invokes the SecurityCurrent object to determine the level of security
that is required by the Oracle Tuxedo domain.

3. The client application queries the student user for a student ID and the required passwords.

4. The client application authenticates the student by obtaining information about the student
from the Authentication Service.

5. If the authentication process is successful, the client application logs on to the Oracle Tuxedo
domain.

6. The client application invokes the get_student_details() operation on the Registrar
object, passing a student ID, to obtain information about the student.

7. The Registrar object scans the database for student information that matches the student ID
in the client request.

Client
Application

RegistrarFactory

Registrar

get_student_details()

Database

University Server Application

Student Info
Course Info

SecurityCurrent
Object

Des ign Cons ide ra t i ons fo r the Un ive rs i t y Serve r Appl i cat ion

Creating CORBA Server Applications 5-5

8. If there is a match between the student ID provided in the client application request and the
student information in the database, the Registrar object returns the struct
StudentDetails to the client application. (If the student enters an ID that does not match the
information in the database, the Registrar object returns a CORBA exception to the client
application.)

9. If the Registrar object returns StudentDetails to the client application, the client
application displays a personalized welcome message to the student user.

Design Considerations for Returning Student Details to the
Client Application
The client application needs to provide a means by which to log a user on to the Oracle Tuxedo
system so that the user can continue to use the University application. To do this, the client
application needs an identity for the user. In the Security sample application, this identity is the
student ID.

All that is required of the University server application is to return data about a student, based on
the student ID, so that the client application can complete the user authentication process.
Therefore, the OMG IDL for the Security sample application adds the definition of the
get_student_details() operation to the Registrar object. The primary design
consideration for the University server application is based on the operational scenario described
earlier; namely, that one student interacts with one client application at one time, so there is no
need for the server application to deal with a sizable batch of data to implement the
get_student_details() operation.

The get_student_details() operation has the following OMG IDL definition:

struct StudentDetails

 {

 StudentId student_id;

 string name;

 CourseDetailsList registered_courses;

 };

5-6 Creating CORBA Server Applications

Creating CORBA Server Applications 6-1

C H A P T E R 6

Integrating Transactions into a CORBA
Server Application

This chapter describes how to integrate transactions into a CORBA server application, using the
Transactions University sample application as an example. The Transactions sample application
encapsulates the process of a student registering for a set of courses. The Transactions sample
application does not show all the possible ways to integrate transactions into a CORBA server
application, but it does show two models of transactional behavior, showing the impact of
transactional behavior on the application in general and on the durable state of objects in
particular.

This topic includes the following sections:

Overview of Transactions in the Oracle Tuxedo System

Designing and Implementing Transactions in a CORBA Server Application

Integrating Transactions in a CORBA Client and Server Application. This section
describes:

– Making an Object Automatically Transactional

– Enabling an Object to Participate in a Transaction

– Preventing an Object from Being Invoked While a Transaction Is Scoped

– Excluding an Object from an Ongoing Transaction

– Assigning Policies

– Opening an XA Resource Manager

– Closing an XA Resource Manager

6-2 Creating CORBA Server Applications

Transactions and Object State Management

Notes on Using Transactions in the Oracle Tuxedo System

User-defined Exceptions

This chapter also presents a section on user-defined exceptions. The Transactions sample
application introduces a user-defined exception, which can be returned to the client application
and that potentially causes a client-initiated transaction to be rolled back.

Overview of Transactions in the Oracle Tuxedo System
The Oracle Tuxedo system provides transactions as a means to guarantee that database
transactions are completed accurately and that they take on all the ACID properties (atomicity,
consistency, isolation, and durability) of a high-performance transaction. That is, you have a
requirement to perform multiple write operations on durable storage, and you must be guaranteed
that the operations succeed; if any one of the operations fails, the entire set of operations is rolled
back.

Transactions typically are appropriate in the situations described in the following list. Each
situation encapsulates a transactional model supported by the Oracle Tuxedo system.

The client application needs to make invocations on several different objects, which may
involve write operations to one or more databases. If any one invocation is unsuccessful,
any state that is written (either in memory or, more typically, to a database) must be rolled
back.

For example, consider a travel agent application. The client application needs to arrange
for a journey to a distant location; for example, from Strasbourg, France, to Alice Springs,
Australia. Such a journey would inevitably require multiple individual flight reservations.
The client application works by reserving each individual segment of the journey in
sequential order; for example, Strasbourg to Paris, Paris to New York, New York to Los
Angeles. However, if any individual flight reservation cannot be made, the client
application needs a way to cancel all the flight reservations made so far. For example, if
the client application cannot book a flight from Los Angeles to Honolulu on a given date,
the client application needs to cancel the flight reservations made up to that point.

The client needs a conversation with an object managed by the server application, and the
client needs to make multiple invocations on a specific object instance. The conversation
may be characterized by one or more of the following:

– Data is cached in memory or written to a database during or after each successive
invocation.

Des ign ing and Implement ing T ransact ions in a CORBA Serve r App l i cat ion

Creating CORBA Server Applications 6-3

– Data is written to a database at the end of the conversation.

– The client needs the object to maintain an in-memory context between each invocation;
that is, each successive invocation uses the data that is being maintained in memory
across the conversation.

– At the end of the conversation, the client needs the ability to cancel all database write
operations that may have occurred during or at the end of the conversation.

For example, consider an Internet-based online shopping application. The user of the client
application browses through an online catalog and makes multiple purchase selections.
When the user is done choosing all the items he or she wants to buy, the user clicks on a
button to make the purchase, where the user may enter credit card information. If the credit
card check fails (for example, the user cannot provide valid credit card information), the
shopping application needs a way to cancel all the pending purchase selections or roll back
any purchase transactions made during the conversation.

Within the scope of a single client invocation on an object, the object performs multiple
edits to data in a database. If one of the edits fails, the object needs a mechanism to roll
back all the edits. (And in this situation, the individual database edits are not necessarily
CORBA invocations.)

For example, consider a banking application. The client invokes the transfer operation on a
teller object. The transfer operation requires the teller object to make the following
invocations on the bank database:

– Invoking the debit method on one account

– Invoking the credit method on another account

If the credit invocation on the bank database fails, the banking application needs a way to
roll back the previous debit invocation.

Designing and Implementing Transactions in a CORBA
Server Application

This section explains how to design and implement transactions in a CORBA server application
using the Transactions University sample application as an example. This section also describes
how the Transactions sample application works, and discusses the design considerations for
implementing transactions in it. For additional general information about transactions, see the
section “Integrating Transactions in a CORBA Client and Server Application” on page -9.

The Transactions sample application uses transactions to encapsulate the task of a student
registering for a set of courses. The transactional model used in this application is a combination

6-4 Creating CORBA Server Applications

of the conversational model and the model in which a single invocation makes multiple individual
operations on a database, as described in the preceding section.

The Transactions sample application builds on the Security sample application by adding the
following capabilities:

Students can submit a list of courses for which they want to register. (Each course is
represented by a number.)

For each course in the list, the University server application checks the following:

– Whether the course is in the University database

– Whether the student is already registered for the course

– Whether the student exceeds the maximum number of credits he or she can take

If the course passes the checks in the preceding list, the University server application
registers the student for the course.

If the server application cannot register the student for a course because the course does
not exist in the database or because the student is already registered for the course, the
server application returns to the client application a list of courses for which the
registration process failed. The client application can then choose whether to commit the
transaction to register the student for the courses for which the registration process
succeeds, or to roll back the entire transaction.

If a course registration fails because the student exceeds the maximum number of credits
he or she can take, the server application returns a CORBA exception to the client
application that provides a brief message explaining why the registration for the course was
not successful. (The server application does not mark the transaction for rollback only.)

The Transactions sample application shows two ways in which a transaction can be rolled back:

Nonfatal. If the registration for a course fails because the course is not in the database, or
because the student is already registered for the course, the server application returns the
numbers of those courses to the client application. The decision to roll back the transaction
lies with the user of the client application (and the Transaction client application code rolls
back the transaction automatically in this case).

Fatal. If the registration for a course fails because the student exceeds the maximum
number of credits he or she can take, the server application generates a CORBA exception
and returns it to the client. The decision to roll back the transaction also lies with the client
application.

Des ign ing and Implement ing T ransact ions in a CORBA Serve r App l i cat ion

Creating CORBA Server Applications 6-5

Thus, the Transactions sample application also shows how to implement user-defined
CORBA exceptions. For example, if the student tries to register for a course that would
exceed the maximum number of courses for which the student can register, the server
application returns the TooManyCredits exception. When the client application receives
this exception, the client application rolls back the transaction automatically.

The sections that follow explain:

How the Transactions University Sample Application Works

Transactional Model Used by the Transactions University Sample Application

Object State Considerations for the University Server Application

Configuration Requirements for the Transactions Sample Application

How the Transactions University Sample Application Works
To implement the student registration process, the Transactions sample application does the
following:

The client application obtains a reference to the TransactionCurrent object from the
Bootstrap object.

When the student submits the list of courses for which he or she wants to register, the
client application:

a. Begins a transaction by invoking the Current::begin() operation on the
TransactionCurrent object

b. Invokes the register_for_courses() operation on the Registrar object, passing a
list of courses

The register_for_courses() operation on the Registrar object processes the
registration request by executing a loop that does the following iteratively for each course
in the list:

a. Checks to see how many credits the student is already registered for

b. Adds the course to the list of courses for which the student is registered

The Registrar object checks for the following potential problems, which prevent the
transaction from being committed:

– The student is already registered for the course.

6-6 Creating CORBA Server Applications

– A course in the list does not exist.

– The student exceeds the maximum credits allowed.

As defined in the application’s OMG IDL, the register_for_courses() operation
returns a parameter to the client application, NotRegisteredList, which contains a list of
the courses for which the registration failed.

If the NotRegisteredList value is empty, the client application commits the transaction.

If the NotRegisteredList value contains any courses, the client application queries the
student to indicate whether he or she wants to complete the registration process for the
courses for which the registration succeeded. If the user chooses to complete the
registration, the client application commits the transaction. If the user chooses to cancel the
registration, the client application rolls back the transaction.

If the registration for a course has failed because the student exceeds the maximum number
of credits he or she can take, the Registrar object returns a TooManyCredits exception
to the client application, and the client application rolls back the entire transaction.

Transactional Model Used by the Transactions University
Sample Application
The basic design rationale for the Transactions sample application is to handle course
registrations in groups, as opposed to one at a time. This design helps to minimize the number of
remote invocations on the Registrar object.

In implementing this design, the Transactions sample application shows one model of the use of
transactions, which were described in the section “Overview of Transactions in the Oracle
Tuxedo System” on page 6-2. The model is as follows:

The client begins a transaction by invoking the begin() operation on the
TransactionCurrent object, followed by making an invocation to the
register_for_courses() operation on the Registrar object.

The Registrar object registers the student for the courses for which it can, and then
returns a list of courses for which the registration process was unsuccessful. The client
application can choose to commit the transaction or roll it back. The transaction
encapsulates this conversation between the client and the server application.

The register_for_courses() operation performs multiple checks of the University
database. If any one of those checks fail, the transaction can be rolled back.

Des ign ing and Implement ing T ransact ions in a CORBA Serve r App l i cat ion

Creating CORBA Server Applications 6-7

Object State Considerations for the University Server
Application
Because the Transactions University sample application is transactional, the University server
application generally needs to consider the implications on object state, particularly in the event
of a rollback. In cases where there is a rollback, the server application must ensure that all affected
objects have their durable state restored to the proper state.

Because the Registrar object is being used for database transactions, a good design choice for
this object is to make it transactional; that is, assign the always transaction policy to this object’s
interface. If a transaction has not already been scoped when this object is invoked, the Oracle
Tuxedo system will start a transaction automatically.

By making the Registrar object automatically transactional, all database write operations
performed by this object will always be done within the scope of a transaction, regardless of
whether the client application starts one. Since the server application uses an XA resource
manager, and since the object is guaranteed to be in a transaction when the object writes to a
database, the object does not have any rollback or commit responsibilities because the XA
resource manager takes responsibility for these database operations on behalf of the object.

The RegistrarFactory object, however, can be excluded from transactions because this object
does not manage data that is used during the course of a transaction. By excluding this object from
transactions, you minimize the processing overhead implied by transactions.

Object Policies Defined for the Registrar Object
To make the Registrar object transactional, the ICF file specifies the always transaction policy
for the Registrar interface. Therefore, in the Transaction sample application, the ICF file
specifies the following object policies for the Registrar interface:

Object Policies Defined for the RegistrarFactory Object
To exclude the RegistrarFactory object from transactions, the ICF file specifies the ignore
transaction policy for the Registrar interface. Therefore, in the Transaction sample application,
the ICF file specifies the following object policies for the RegistrarFactory interface:

Activation Policy Transaction Policy

process always

6-8 Creating CORBA Server Applications

Using an XA Resource Manager in the Transactions Sample Application
The Transactions sample application uses the Oracle Transaction Manager Server (TMS), which
handles object state data automatically. Using any XA resource manager imposes specific
requirements on how different objects managed by the server application may read and write data
to that database, including the following:

Some XA resource managers (for example, Oracle) require that all database operations be
scoped within a transaction. This means that the CourseSynopsisEnumerator object
needs to be scoped within a transaction because this object reads from a database.

When a transaction is committed or rolled back, the XA resource manager automatically
handles the durable state implied by the commit or rollback. That is, if the transaction is
committed, the XA resource manager ensures that all database updates are made
permanent. Likewise, if there is a rollback, the XA resource manager automatically
restores the database to its state prior to the beginning of the transaction.

This characteristic of XA resource managers actually makes the design problems
associated with handling object state data in the event of a rollback much simpler.
Transactional objects can always delegate the commit and rollback responsibilities to the
XA resource manager, which greatly simplifies the task of implementing a server
application.

Configuration Requirements for the Transactions Sample
Application
The University sample applications use an Oracle transaction manager server (TMS). To use an
Oracle database, you must include specific Oracle-provided files in the server application build
process.

For details about building, configuring, and running the Transactions sample application, see the
Guide to the CORBA University Sample Applications. This online document also contains the
UBBCONFIG files for each sample application and explains the entries in that file.

Activation Policy Transaction Policy

process ignore

In tegrat ing T ransact ions in a CORBA C l i ent and Serve r App l i cat ion

Creating CORBA Server Applications 6-9

Integrating Transactions in a CORBA Client and Server
Application

The Oracle Tuxedo system supports transactions in the following ways:

The client or the server application can begin and end transactions explicitly by using calls
on the TransactionCurrent object. For information about the TransactionCurrent object, see
Creating CORBA Client Applications and Using CORBA Transactions.

You can assign transactional policies to an object’s interface so that when the object is
invoked, the Oracle Tuxedo system can start a transaction automatically for that object, if a
transaction has not already been started, and commit or roll back the transaction when the
method invocation is complete. You use transactional policies on objects in conjunction
with an XA resource manager and database when you want to delegate all the transaction
commit and rollback responsibilities to that resource manager.

Objects involved in a transaction can force a transaction to be rolled back. That is, after an
object has been invoked within the scope of a transaction, the object can invoke the
rollback_only() operation on the TransactionCurrent object to mark the transaction for
rollback only. This prevents the current transaction from being committed. An object may
need to mark a transaction for rollback if an entity, typically a database, is otherwise at risk
of being updated with corrupt or inaccurate data.

Objects involved in a transaction can be kept in memory from the time they are first
invoked until the moment when the transaction is ready to be committed or rolled back. In
the case of a transaction that is about to be committed, these objects are polled by the
Oracle Tuxedo system immediately before the resource managers prepare to commit the
transaction. (In this sense, polling means invoking the object’s
Tobj_ServantBase::deactivate_object() operation and passing a reason value.)

When an object is polled, the object may veto the current transaction by invoking the
rollback_only() operation on the TransactionCurrent object. In addition, if the current
transaction is to be rolled back, objects have an opportunity to skip any writes to a
database. If no object vetos the current transaction, the transaction is committed.

The following sections explain how you can use object activation policies and transaction
policies to get the transactional behavior you want in your objects. Note that these policies apply
to an interface and, therefore, to all operations on all objects implementing that interface.

Note: If a server application manages an object that you want to be able to participate in a
transaction, the Server object for that application must invoke the TP::open_xa_rm()
and TP::close_xa_rm() operations. For more information about database connections,
see “Opening an XA Resource Manager” on page 6-13.

6-10 Creating CORBA Server Applications

Making an Object Automatically Transactional
The Oracle Tuxedo system provides the always transactional policy, which you can define on an
object’s interface to have the Oracle Tuxedo system start a transaction automatically when that
object is invoked and a transaction has not already been scoped. When an invocation on that
object is completed, the Oracle Tuxedo system commits or rolls back the transaction
automatically. Neither the server application, nor the object implementation, needs to invoke the
TransactionCurrent object in this situation; the Oracle Tuxedo system automatically invokes the
TransactionCurrent object on behalf of the server application.

Assigning the always transactional policy to an object’s interface is appropriate when:

The object writes to a database and you want all the database commit or rollback
responsibilities delegated to an XA resource manager whenever this object is invoked.

You want to give the client application the opportunity to include the object in a larger
transaction that encompasses invocations on multiple objects, and the invocations must all
succeed or be rolled back if any one invocation fails.

If you want an object to be automatically transactional, assign the following policies to that
object’s interface in the Implementation Configuration File (ICF file):

Note: Database cursors cannot span transactions. The CourseSynopsisEnumerator object in
the CORBA University sample applications uses a database cursor to find matching
course synopses from the University database. Because database cursors cannot span
transactions, the activate_object() operation on the CourseSynopsisEnumerator
object reads all matching course synopses into memory. Note that the cursor is managed
by an iterator class and is thus not visible to the CourseSynopsisEnumerator object.

Enabling an Object to Participate in a Transaction
If you want an object to be able to be invoked within the scope of a transaction, you can assign
the optional transaction policies to that object’s interface. The optional transaction policy
may be appropriate for an object that does not perform any database write operations, but that you
want to have the ability to be invoked during a transaction.

Activation Policy Transaction Policy

process, method, or
transaction

always

In tegrat ing T ransact ions in a CORBA C l i ent and Serve r App l i cat ion

Creating CORBA Server Applications 6-11

You can use the following policies, when specified in the ICF file for that object’s interface, to
make an object optionally transactional:

If the object does perform database write operations, and you want the object to be able to
participate in a transaction, assigning the always transactional policy is generally a better choice.
However, if you prefer, you can use the optional policy and encapsulate any write operations
within invocations on the TransactionCurrent object. That is, within your operations that write
data, scope a transaction around the write statements by invoking the TransactionCurrent object
to, respectively, begin and commit or roll back the transaction, if the object is not already scoped
within a transaction. This ensures that any database write operations are handled transactionally.
This also introduces a performance efficiency: if the object is not invoked within the scope of a
transaction, all the database read operations are nontransactional, and therefore more streamlined.

Note: Some XA resource managers used in the Oracle Tuxedo system require that any object
participating in a transaction scope their database read operations, in addition to write
operations, within a transaction. (However, you can still scope your own transactions.)
For example, using an Oracle TMS with the Oracle Tuxedo system has this requirement.
When choosing the transaction policies to assign to your objects, make sure you are
familiar with the requirements of the XA resource manager you are using.

Preventing an Object from Being Invoked While a
Transaction Is Scoped
In many cases, it may be critical to exclude an object from a transaction. If such an object is
invoked during a transaction, the object returns an exception, which may cause the transaction to
be rolled back. The Oracle Tuxedo system provides the never transaction policy, which you can
assign to an object’s interface to specifically prevent that object from being invoked within the
course of a transaction, even if the current transaction is suspended.

This transaction policy is appropriate for objects that write durable state to disk that cannot be
rolled back; for example, for an object that writes data to a disk that is not managed by an XA
resource manager. Having this capability in your client/server application is crucial if the client
application does not or cannot know if some of its invocations are causing a transaction to be

Activation Policy Transaction Policy

process, method, or
transaction

optional

6-12 Creating CORBA Server Applications

scoped. Therefore, if a transaction is scoped, and an object with this policy is invoked, the
transaction can be rolled back.

To prevent an object from being invoked while a transaction is scoped, assign the following
policies to that object’s interface in the ICF file:

Excluding an Object from an Ongoing Transaction
In some cases, it may be appropriate to permit an object to be invoked during the course of a
transaction but also keep that object from being a part of the transaction. If such an object is
invoked during a transaction, the transaction is automatically suspended. After the invocation on
the object is completed, the transaction is automatically resumed. The Oracle Tuxedo system
provides the ignore transaction policy for this purpose.

The ignore transaction policy may be appropriate for an object such as a factory that typically
does not write data to disk. By excluding the factory from the transaction, the factory can be
available to other client invocations during the course of a transaction. In addition, using this
policy can introduce an efficiency into your server application because it minimizes the overhead
of invoking objects transactionally.

To prevent any transaction from being propagated to an object, assign the following policies to
that object’s interface in the ICF file:

Assigning Policies
For information about how to create an ICF file and specify policies on objects, see the section
“Step 4: Define the In-memory Behavior of Objects” on page 2-13.

Activation Policy Transaction Policy

process or method never

Activation Policy Transaction Policy

process or method ignore

T ransact i ons and Objec t S ta te Management

Creating CORBA Server Applications 6-13

Opening an XA Resource Manager
If an object’s interface has the always or optional transaction policy, you must invoke the
TP::open_xa_rm() operation in the Server::initialize() operation in the Server object.
The resource manager is opened using the information provided in the OPENINFO parameter,
which is in the GROUPS section of the UBBCONFIG file. Note that the default version of the
Server::initialize() operation automatically opens the resource manager.

If you have an object that does not write data to disk and that participates in a transaction—the
object typically has the optional transaction policy—you still need to include an invocation to
the TP::open_xa_rm() operation. In that invocation, specify the NULL resource manager.

Closing an XA Resource Manager
If your Server object’s Server::initialize() operation opens an XA resource manager, you
must include the following invocation in the Server::release() operation:

TP::close_xa_rm();

Transactions and Object State Management
If you need transactions in your CORBA client and server application, you can integrate
transactions with object state management in a few different ways. In general, the Oracle Tuxedo
system can automatically scope the transaction for the duration of an operation invocation
without requiring you to make any changes to your application’s logic or the way in which the
object writes durable state to disk.

The following sections address some key points regarding transactions an object state
management.

Delegating Object State Management to an XA Resource
Manager
Using an XA resource manager, such as Oracle which is used in the CORBA University sample
applications, generally simplifies the design problems associated with handling object state data
in the event of a rollback. Transactional objects can always delegate the commit and rollback
responsibilities to the XA resource manager, which greatly eases the task of implementing a
server application. This means that process- or method-bound objects involved in a transaction
can write to a database during transactions, and can depend on the resource manager to undo any
data written to the database in the event of a transaction rollback.

6-14 Creating CORBA Server Applications

Waiting Until Transaction Work Is Complete Before Writing
to the Database
The transaction activation policy is a good choice for objects that maintain state in memory
that you do not want written, or that cannot be written, to disk until the transaction work is
complete. When you assign the transaction activation policy to an object, the object:

Is brought into memory when it is first invoked within the scope of a transaction

Remains in memory until the transaction is either committed or rolled back

When the transaction work is complete, the Oracle Tuxedo system invokes each
transaction-bound object’s Tobj_ServantBase::deactivate_object() operation, passing a
reason code that can be either DR_TRANS_COMMITTING or DR_TRANS_ABORT. If the variable is
DR_TRANS_COMMITTING, the object can invoke its database write operations. If the variable is
DR_TRANS_ABORT, the object skips its write operations.

Assigning the transaction activation policy to an object may be appropriate in the following
situations:

You want the object to write its durable state to disk at the time that the transaction work is
complete.

This introduces a performance efficiency because it reduces the number of database write
operations that may need to be rolled back.

You want to provide the object with the ability to veto a transaction that is about to be
committed.

If the Oracle Tuxedo system passes the reason DR_TRANS_COMMITTING, the object can, if
necessary, invoke the rollback_only() operation on the TransactionCurrent object. Note
that if you do make an invocation to the rollback_only() operation from within the
Tobj_ServantBase::deactivate_object() operation, the
Tobj_ServantBase::deactivate_object() operation is not invoked again.

You have an object that is likely to be invoked multiple times during the course of a single
transaction, and you want to avoid the overhead of continually activating and deactivating
the object during that transaction.

To give an object the ability to wait until the transaction is committing before writing to a
database, assign the following policies to that object’s interface in the ICF file:

Notes on Us ing T ransac t i ons in the Orac le Tuxedo Sys tem

Creating CORBA Server Applications 6-15

Note: Transaction-bound objects cannot start a transaction or invoke other objects from inside
the Tobj_ServantBase::deactivate_object() operation. The only valid
invocations transaction-bound objects can make inside the
Tobj_ServantBase::deactivate_object() operation are write operations to the
database.

Also, if you have an object that is involved in a transaction, the Server object that
manages that object must include invocations to open and close, respectively, the XA
resource manager, even if the object does not write any data to disk. (If you have a
transactional object that does not write data to disk, you specify the NULL resource
manager.) For more information about opening and closing an XA resource manager, see
the sections “Opening an XA Resource Manager” on page 6-13 and “Closing an XA
Resource Manager” on page 6-13.

Notes on Using Transactions in the Oracle Tuxedo System
Note the following about integrating transactions into your CORBA client/server applications:

The following transactions are not permitted in the Oracle Tuxedo system:

– Nested transactions

You cannot start a new transaction if an existing transaction is already active. You may
start a new transaction if you first suspend the existing one; however, the object that
suspends the transaction is the only object that can subsequently resume the transaction.

– Recursive transactions

A transactional object cannot call a second object, which in turn calls the first object.

The object that starts a transaction is the only entity that can end the transaction. (In a strict
sense, the object can be the client application, the TP Framework, or an object managed by
the server application.) An object that is invoked within the scope of a transaction may
suspend and resume the transaction. While the transaction is suspended, the object can start
and end other transactions. However, you cannot end a transaction in an object unless you
began the transaction there.

Activation Policy Transaction Policy

transaction always or optional

6-16 Creating CORBA Server Applications

Objects can be involved with only one transaction at one time. The Oracle Tuxedo system
does not support concurrent transactions.

The Oracle Tuxedo system does not queue requests to objects that are currently involved in
a transaction. If a nontransactional client application attempts to invoke an operation on an
object that is currently in a transaction, the client application receives the following error
message:

CORBA::OBJ_ADAPTER

If a client that is in a transaction attempts to invoke an operation on an object that is
currently in a different transaction, the client application receives the following error
message:

CORBA::INVALID_TRANSACTION

For transaction-bound objects, you might consider doing all state handling in the
Tobj_ServantBase::deactivate_object() operation. This makes it easier for the
object to handle its state properly, since the outcome of the transaction is known at the time
that the Tobj_ServantBase::deactivate_object() operation is invoked.

For method-bound objects that have several operations, but only a few that affect the
object’s durable state, you may want to consider the following:

– Assign the optional transaction policy.

– Scope any write operations within a transaction, by making invocations on the
TransactionCurrent object.

If the object is invoked outside a transaction, the object does not incur the overhead of
scoping a transaction for reading data. This way, regardless of whether the object is
invoked within a transaction, all the object’s write operations are handled transactionally.

Transaction rollbacks are asynchronous. Therefore, it is possible for an object to be
invoked while its transactional context is still active. If you try to invoke such an object,
you receive an exception.

If an object with the always transaction policy is involved in a transaction that is started
by the Oracle Tuxedo system, and not the client application, note the following:

If an exception is raised inside an operation on that object, the client application receives
an OBJ_ADAPTER exception. In this situation, the Oracle Tuxedo system automatically
rolls back the transaction. However, the client application is completely unaware that a
transaction has been scoped in the Oracle Tuxedo domain.

User-def ined Except ions

Creating CORBA Server Applications 6-17

If the client application initiates a transaction, and the server application marks the
transaction for a rollback and returns a CORBA exception, the client application receives
only a transaction rollback exception but not the CORBA exception.

Note: In the WebLogic Enterprise version 4.2 software, no workaround exists for this situation.
We recommend that applications perform as much data validation as possible before
starting a transaction.

Note the following restriction on a transactional object that has the
TP::deactivateEnable method:

If the TP::deactivateEnable method is invoked during a transaction, the object is
deactivated when the transaction ends. However, if any methods are invoked on the object
between the time that the TP::deactivateEnable method is called and the time that the
transaction is committed, the object is never deactivated.

User-defined Exceptions
The Transactions sample application includes an instance of a user-defined exception,
TooManyCredits. This exception is thrown by the server application when the client application
tries to register a student for a course, and the student has exceeded the maximum number of
courses for which he or she can register. When the client application catches this exception, the
client application rolls back the transaction that registers a student for a course. This section
explains how you can define and implement user-defined exceptions in your CORBA
client/server application, using the TooManyCredits exception as an example.

Including a user-defined exception in a CORBA client/server application involves the following
steps:

1. In your OMG IDL file, define the exception and specify the operations that can use it.

2. In the implementation file, include code that throws the exception.

3. In the client application source file, include code that catches and handles the exception.

The sections that follow explain and give examples of the first two steps.

Defining the Exception
In the OMG IDL file for your client/server application:

1. Define the exception and define the data sent with the exception. For example, the
TooManyCredits exception is defined to pass a short integer representing the maximum

6-18 Creating CORBA Server Applications

number of credits for which a student can register. Therefore, the definition for the
TooManyCredits exception contains the following OMG IDL statements:

exception TooManyCredits
{
 unsigned short maximum_credits;
};

2. In the definition of the operations that throw the exception, include the exception. The
following example shows the OMG IDL statements for the register_for_courses()
operation on the Registrar interface:

NotRegisteredList register_for_courses(
 in StudentId student,
 in CourseNumberList courses)
 raises (TooManyCredits);

Throwing the Exception
In the implementation of the operation that uses the exception, write the code that throws the
exception, as in the following example.

if (...) {

 UniversityZ::TooManyCredits e;

 e.maximum_credits = 18;

 throw e;

 }

Creating CORBA Server Applications 7-1

C H A P T E R 7

Wrapping an Oracle Tuxedo Service in a
CORBA Object

This chapter presents an overview of one way in which you can call an Oracle Tuxedo service
from within an object managed by a CORBA server application, using the Wrapper sample
application as an example.

This topic includes the following sections:

Overview of Wrapping an Oracle Tuxedo Service

This section describes:

– Designing the Object That Wraps the Oracle Tuxedo Service

– Creating the Buffer in Which to Encapsulate Oracle Tuxedo Service Calls

– Implementing the Operations That Send Messages to and from the Oracle Tuxedo
Service

Design Considerations for the Wrapper Sample Application

The Wrapper sample application delegates a set of billing operations to an Oracle Tuxedo ATMI
teller application, which contains a set of services that perform basic billing procedures. The
approach in this chapter shows one technique for incorporating an Oracle Tuxedo application into
an Oracle Tuxedo domain.

The examples shown in this chapter demonstrate a one-to-one relationship between operations on
a CORBA object and calls to specific services within an application. In a sense, the calls to the
Oracle Tuxedo services are wrapped as operations on a CORBA object; thus, the object delegates
its work to the Oracle Tuxedo application. If you have a set of Oracle Tuxedo services that you

7-2 Creating CORBA Server Applications

want to use in a CORBA server application, the technique shown in this chapter may work for
you.

This chapter does not provide any details about Oracle Tuxedo ATMI applications. For
information about how to build and configure Oracle Tuxedo ATMI applications, and for
information about how they work, see the Oracle Tuxedo ATMI information set, which is
included in the Oracle Tuxedo online documentation.

Overview of Wrapping an Oracle Tuxedo Service
The process described in this chapter for wrapping a set of Oracle Tuxedo services encompasses
the following steps:

1. Designing the object that structures a set of tasks that are oriented to the Oracle Tuxedo
system as operations on that object.

2. Creating the message buffer used by the Oracle Tuxedo services. You use this message buffer
to send and receive messages to and from the Oracle Tuxedo services. You can allocate the
buffer in the object’s constructor in the application’s implementation file.

3. Implementing on the object the operations that send and receive messages to and from the
Oracle Tuxedo services. This step also includes choosing the implementation for how the
Oracle Tuxedo services are called.

The following figure shows a high-level view of the relationship among the client application, the
CORBA object managed by the CORBA server application, and the Oracle Tuxedo ATMI
application that implements the services called from the CORBA object.

Client Application

operation1();
operation1();
operation3();

M3 Server Ap

CORBA O

operation1()
 {
 tpcall (op1()
 }
operation2()
 {

Overv iew o f Wrapp ing an Orac le Tuxedo Serv i ce

Creating CORBA Server Applications 7-3

Designing the Object That Wraps the Oracle Tuxedo Service
The first step described in this chapter is designing the object that wraps the calls to the Oracle
Tuxedo ATMI application. For example, the goal for the Wrapper sample application is to add
billing capability to the student registration process, which can be done by delegating a set of
billing operations to an existing Oracle Tuxedo ATMI teller application.

The Oracle Tuxedo ATMI teller application used by the Wrapper sample application contains the
following services:

CURRBALANCE—obtains the current balance of a given account
CREDIT—credits an account by a given dollar amount
DEBIT—debits an account by a given dollar amount

To wrap these services, the Wrapper sample application includes a separate OMG IDL file that
defines a new interface, Teller, which has the following operations:

get_balance()

credit()

debit()

Each of these operations on the Teller object maps one-to-one to calls on the services in the
Oracle Tuxedo ATMI teller application.

A typical usage scenario of the Teller object may be the following:

1. The client application invokes the register_for_courses() operation on the Registrar
object, which requires a student ID.

2. As part of the registration process, the Registrar object invokes the get_balance()
operation on the Teller object, passing an account number.

3. The get_balance() operation on the Teller object puts the account number into a message
buffer and sends the buffer to the Oracle Tuxedo ATMI teller application’s CURRBALANCE
service.

4. The Oracle Tuxedo ATMI teller application receives the message buffer, extracts its contents,
and makes the appropriate call to the CURRBALANCE service.

5. The CURRBALANCE service obtains from the University database the current balance of the
account and gives it to the Oracle Tuxedo ATMI teller application.

6. The Oracle Tuxedo ATMI teller application inserts the current balance into a message buffer
and returns it to the Teller object.

7-4 Creating CORBA Server Applications

7. The Teller object extracts the current balance amount from the message buffer and returns
the current balance to the Registrar object.

For more design information about the Teller object and the Wrapper sample application, see
the section “Design Considerations for the Wrapper Sample Application” on page -7.

Creating the Buffer in Which to Encapsulate Oracle Tuxedo
Service Calls
The next step described in this chapter is creating the buffer within which messages are sent
between the object and the Oracle Tuxedo service. There are a number of buffer types that may
be used by various Oracle Tuxedo ATMI applications, and the examples used in this chapter are
based on the FML buffer type. For more information about buffer types in the Oracle Tuxedo
system, see the Oracle Tuxedo information set.

In your application implementation file, you need to allocate the chosen buffer type. You can
allocate the buffer in the object’s constructor, because the buffer you allocate does not need to be
unique to any particular Teller object instance. This allocation operation typically includes
specifying the buffer type, passing any flags appropriate for the procedure call to the Oracle
Tuxedo service, and specifying a buffer size.

You also need to add to your implementation’s header file the definition of the variable that
represents the buffer.

The following code example shows the constructor for the Wrapper application’s Teller object
that allocates the Oracle Tuxedo buffer, m_tuxbuf:

Teller_i::Teller_i() :

 m_tuxbuf((FBFR32*)tpalloc("FML32", "", 1000))

{

 if (m_tuxbuf == 0) {

 throw CORBA::INTERNAL();

 }

}

Note the following about the line that allocates the FML buffer:

Overv iew o f Wrapp ing an Orac le Tuxedo Serv i ce

Creating CORBA Server Applications 7-5

The object’s implementation file should also deallocate the buffer in the destructor, as in the
following statement from the Wrapper application implementation file:

tpfree((char*)m_tuxbuf);

Implementing the Operations That Send Messages to and
from the Oracle Tuxedo Service
The next step is implementing the operations on the object that wraps calls to the Oracle Tuxedo
ATMI application. In this step, you choose the implementation of how the Oracle Tuxedo
services are called from the object. The Wrapper sample application uses the tpcall
implementation.

An operation on an object that wraps an Oracle Tuxedo service typically includes statements that
do the following:

Fill the message buffer with the data that you want to send to the Oracle Tuxedo service.

Call the Oracle Tuxedo service. The following arguments are included in the call:

a. The Oracle Tuxedo service that you want to invoke.

b. The message buffer to be sent to the Oracle Tuxedo service.

c. The message buffer to be returned from the Oracle Tuxedo service.

d. The size of the buffer in which the Oracle Tuxedo service response is to be placed.

Extract the response from the Oracle Tuxedo service.

Return the results to the client application.

Code Description

tpalloc Allocates the buffer.

"FML32" Specifies the FML buffer type.

"" Typically enclose any flags passed to the Oracle Tuxedo service.
In this example, no flags are passed.

1000 Specifies the buffer size in bytes.

7-6 Creating CORBA Server Applications

The following example shows the implementation of the get_balance() operation in the
Wrapper application Teller object. This operation retrieves the balance of a specific account,
and the Oracle Tuxedo service being called is CURRBALANCE.

CORBA::Double Teller_i::get_balance(BillingW::AccountNumber account)
{
 // "marshal" the "in" parameters (account number)
 Fchg32(m_tuxbuf, ACCOUNT_NO, 0, (char*)&account, 0);
 long size = Fsizeof32(tuxbuf);
 // Call the CURRBALANCE Tuxedo service
 if (tpcall("CURRBALANCE", (char*)tuxbuf, 0,
 (char**)&tuxbuf, &size, 0)) {
 throw CORBA::PERSIST_STORE();
 }
 // "unmarshal" the "out" parameters (current balance)
 CORBA::Double currbal;
 Fget32(m_tuxbuf, CURR_BALANCE, 0, (char*)&currbal, 0);
 return currbal;
}

The statement in the following code example fills the message buffer, m_tuxbuf, with the student
account number. For information about FML, see the Oracle Tuxedo ATMI FML Function
Reference.

Fchg32(m_tuxbuf, ACCOUNT_NO, 0, (char*)&account, 0);

The following statement calls the CURRBALANCE Oracle Tuxedo service, via the tpcall
implementation, passing the message buffer. This statement also specifies where the Oracle
Tuxedo service response is to be placed, which in this example is also the same buffer as the one
in which the request was sent.

if (tpcall("CURRBALANCE", (char*)tuxbuf, 0,

 (char**)&tuxbuf, &size, 0)) {

 throw CORBA::PERSIST_STORE();

 }

The following statement extracts the balance from the returned Oracle Tuxedo message buffer:

Fget32(m_tuxbuf, CURR_BALANCE, 0, (char*)&currbal, 0);

The last line in the get_balance() operation returns the results to the client application:

return currbal;

Des ign Cons ide ra t i ons fo r the Wrapper Sample App l i cat ion

Creating CORBA Server Applications 7-7

Restrictions
Note the following restrictions regarding how you can incorporate Oracle Tuxedo services within
an Oracle Tuxedo domain:

You may not combine object implementations and Oracle Tuxedo services within the same
server application. The Oracle Tuxedo services may only exist within a separate Oracle
Tuxedo server application in the same domain as the CORBA server application.

You may not include the tpreturn() or tpforward() Oracle Tuxedo implementations
within an object that calls an Oracle Tuxedo service.

Design Considerations for the Wrapper Sample
Application

The basic design considerations for the Wrapper sample application are based on the scenario that
is described in this section. When a student registers for a course, the Registrar object performs,
as part of its registration process, invocations to the Teller object, which charges the student’s
account for the course.

This section describes the design for the Wrapper sample application, which incorporates an
additional server application, Billing, into the configuration. Therefore, the Wrapper sample
application consists of the following four server applications:

University, which has the RegistrarFactory, Registrar, and
CourseSynopsisEnumerator objects

Billing, which has the TellerFactory and Teller objects

Oracle Tuxedo ATMI Teller Application, which has the CURRBALANCE, CREDIT, and DEBIT
services

The Oracle Transaction Manager Server (TMS)

In addition, the UBBCONFIG file for the Wrapper sample application specifies the following
groups:

ORA_GRP, which contains the University server application, the Oracle Tuxedo ATMI
Teller application, and the Oracle TMS. Since these three processes are involved in
transactions on the University database, they must all be in the same group, along with the
database itself.

APP_GRP, which contains the Billing server application. This application does not need to
be in ORA_GRP, because this application does not interact with the University database.

7-8 Creating CORBA Server Applications

The configuration of the Oracle Tuxedo domain in the Wrapper sample application is shown in
the following figure.

Incorporating an Oracle Tuxedo ATMI application into the University sample applications makes
sense from the standpoint of using the Process-Entity design pattern. Oracle Tuxedo ATMI
applications generally implement the Process-Entity design pattern, which are also used in the
University sample applications.

The University database is updated to include a new table containing account information for
each student. Therefore, when services in the Oracle Tuxedo ATMI Teller Application process
billing data, they perform transactions using the University database.

How the Wrapper University Sample Application Works
A typical usage scenario in the Wrapper sample application encompasses the following sequence
of events:

1. After the student logon procedure, the client application invokes the
get_student_details() operation on the Registrar object. Included in the
implementation of the get_student_details() operation is code that retrieves:

– The student’s account number from the student table in the database

University Server BEA TUXED
Applica

CURRBAL
Servic

CREDIT S

DEBIT Se

CourseSynopsisEnumerator

Registrar Object

RegistrarFactory Object

ORA_GRP

Des ign Cons ide ra t i ons fo r the Wrapper Sample App l i cat ion

Creating CORBA Server Applications 7-9

– The student’s balance from the account table in the database, which is obtained by
invoking the get_balance() operation on the Teller object

2. The student browses courses, as with the Basic sample application, and identifies a list of
courses for which he or she wants to register.

3. The client application sends a request to the Registrar object, as with the Transactions
sample application scenario, to invoke the register_for_courses() operation. The
request continues to include only a list of course numbers and a student ID.

4. While registering the student for the list of courses, the register_for_courses()
operation invokes:

– The get_balance() operation on the Teller object, to make sure that the student
does not have a delinquent account

– The debit() operation on the Teller object, which is managed by the Billing server
application to bill for courses

5. The get_balance() and debit() operations on the Teller object each send a request to
the Oracle Tuxedo ATMI Teller application. Encapsulated in the request is an FML buffer
containing the appropriate calls, including the account number calls to, respectively, the
CURRBALANCE and DEBIT services in the Oracle Tuxedo ATMI Teller application.

6. The CURRBALANCE and DEBIT services perform the appropriate database calls to, respectively,
obtain the current balance and debit the student’s account to reflect the charges for the courses
for which he or she has registered.
If the student has a delinquent account, the Registrar object returns the
DelinquentAccount exception to the client application. The client application then rolls
back the transaction.
If the debit() operation fails, the Teller object invokes the rollback_only() operation
on the TransactionCurrent object. Because the Teller and Registrar objects are scoped
within the same transaction, this rollback affects the entire registration process and thus
prevents the situation where there is an inconsistent database (showing, for example, that
the student is registered for the course, but the student’s account balance has not been
debited for the course).

7. If no exceptions have been raised, the Registrar object registers the student for the desired
courses.

Interface Definitions for the Billing Server Application
The following interface definitions are defined for the Billing server application:

7-10 Creating CORBA Server Applications

The TellerFactory object, whose only operation is find_teller(). The
find_teller() operation works exactly the same as the find_registrar() operation
in the University server RegistrarFactory object.

The Teller object, which, as mentioned earlier, implements the following operations:
– debit()

– credit()

– current_balance()

Like the Registrar object, the Teller object has no state data and does not have a
unique object ID (OID).

Additional Design Considerations for the Wrapper Sample Application
The following additional considerations influence the design of the Wrapper sample application:

The Registrar object needs a way to send requests to the Teller object to handle billing
operations.

The University server application and the Oracle Tuxedo ATMI teller application need
access to the same database. Therefore, for course registration transactions to work
properly, both server applications need to be in the same server group as the Oracle TMS
and the University database.

Both of these considerations have implications on the UBBCONFIG file for the Wrapper sample
application. The following sections discuss these and other additional design considerations in
detail.

Sending Requests to the Teller Object
Up until now, all the objects in the University server application have been defined in the same
server process. Therefore, for one object to send a request to another object is fairly
straightforward, and is summarized in the following steps, using the Registrar and
CourseSynopsisEnumerator objects as an example:

1. The Registrar object creates an object reference to the CourseSynopsisEnumerator
object.

2. Using the newly created object reference, the Registrar object sends the request to the
CourseSynopsisEnumerator object.

Des ign Cons ide ra t i ons fo r the Wrapper Sample App l i cat ion

Creating CORBA Server Applications 7-11

3. If the CourseSynopsisEnumerator object is not in memory, the TP Framework invokes the
Server::create_servant() operation on the Server object to instantiate the
CourseSynopsisEnumerator object.

However, now that there are two server processes running, and an object in one process needs to
send a request to an object managed by the second process, the procedure is not quite so
straightforward. For example, the notion of getting an object reference to an object in another
server process has important implications. For one, the second server process has to be running
when the request is made. Also, the factory for the object in the other server process must be
available.

The Wrapper sample application addresses this by incorporating the following configuration and
design elements:

The University server application gets the object reference to the TellerFactory object in
the University Server object’s Server::initialize() operation. The University server
application then caches the TellerFactory object reference. This introduces a
performance optimization because, otherwise, the Registrar object would need to do the
following each time it needs a TellerFactory object:

– Invoke the resolve_initial_references() operation on the Bootstrap object to get
the FactoryFinder object.

– Invoke the find_one_factory_by_id() operation on the FactoryFinder object to
obtain a reference to a TellerFactory object.

The Billing server process is started before the University server process is started. When
the Registrar object subsequently invokes the TellerFactory object, the Registrar
object uses the object reference acquired by the Server::initialize() operation
(described in the preceding list item). You specify in the UBBCONFIG file the order in which
server processes are started.

To handle billing during the course registration process, the register_for_courses()
and get_student_details() operations on the Registrar object are modified to
include code that invokes operations on the Teller object.

Exception Handling
The Wrapper sample application is designed to handle the situation in which the amount owed by
the student exceeds the maximum allowed. If the student tries to register for a course when he or
she owes more than is permitted by University, the Registrar object generates a user-defined
DelinquentAccount exception. When this exception is returned to the client application, the

7-12 Creating CORBA Server Applications

client application rolls back the transaction. For information about how to implement
user-defined exceptions, see the section “User-defined Exceptions” on page -17.

Setting Transaction Policies on the Interfaces in the Wrapper Sample Application
Another consideration that affects the performance of the Wrapper sample application is setting
the appropriate transaction policies for the interfaces of the objects in that application. The
Registrar, CourseSynopsisEnumerator, and Teller objects are configured with the always
transaction policy. The RegistrarFactory and TellerFactory objects are configured with
the ignore transaction policy, which prevents the transactional context from being propagated
to these objects, which do not need to be included in transactions.

Configuring the University and Billing Server Applications
As mentioned earlier, the Billing server application is configured in a group separate from the
group containing the University database and the University application, Oracle Tuxedo ATMI
Teller application, and Oracle Transaction Manager Server (TMS) application.

However, since the Billing server application participates in the transactions that register students
for courses, the Billing server application must include invocations to the TP::open_xa_rm()
and TP::close_xa_rm() operations in the Server object. This is a requirement for any server
application that manages an object that is included in any transaction. If that object does not
perform any read or write operations on a database, you can specify the NULL resource manager
in the following locations:

In the appropriate group definition in the UBBCONFIG file

In an argument to the buildobjserver command when you build the server application

For information about building, configuring, and running the Wrapper sample application, see the
Guide to the CORBA University Sample Applications.

Creating CORBA Server Applications 8-1

C H A P T E R 8

Scaling an Oracle Tuxedo CORBA Server
Application

This chapter shows how you can take advantage of several key scalability features of the Oracle
Tuxedo system to make a CORBA server application highly scalable, using the Production
University sample application as an example. The Production sample application uses these
scalability features to achieve the following goals:

To add a parallel processing capability, enabling the Oracle Tuxedo domain to process
multiple client requests simultaneously

To spread the processing load on the server applications in the Production sample
application across multiple machines

This topic includes the following sections:

Overview of the Scalability Features Available in the Oracle Tuxedo System

Scaling an Oracle Tuxedo Server Application. This section describes:

– Replicating Server Processes and Server Groups

– Scaling the Application Via Object State Management

– Factory-based Routing

How the Production Server Application Can Be Scaled Further

Choosing Between Stateless and Stateful Objects

8-2 Creating CORBA Server Applications

Overview of the Scalability Features Available in the
Oracle Tuxedo System

Supporting highly scalable applications is one of the strengths of the Oracle Tuxedo system.
Many applications may perform well in an environment characterized by 1 to 10 server processes,
and 10 to 100 client applications. However, in an enterprise environment, applications need to
support:

Hundreds of server processes

Tens of thousands of client applications

Millions of objects

Deploying an application with such demands quickly reveals the resource shortcomings and
performance bottlenecks in your application. The Oracle Tuxedo system supports such
large-scale deployments in several ways, three of which are described in this chapter as follows:

Replicated server processes and server groups

Object state management

Factory-based routing

Other features provided in the Oracle Tuxedo system to make an application highly scalable
include the IIOP Listener/Handler, which is summarized in Getting Started with Oracle Tuxedo
CORBA Applications and fully described in Setting Up an Oracle Tuxedo Application. See also
Scaling, Distributing, and Tuning CORBA Applications.

Scaling an Oracle Tuxedo Server Application
This section explains how to scale an application to meet a significantly greater processing
capability, using the Production sample application as an example. The basic design goal for the
Production sample application is to greatly scale up the number of client applications it can
accommodate by doing the following:

Processing in parallel and on one machine client requests on multiple objects that
implement the same interface.

Directing requests on behalf of some students to one machine, and other students to other
machines.

Adding more machines across which to spread the processing load.

Sca l ing an Orac le Tuxedo Serve r App l i cat ion

Creating CORBA Server Applications 8-3

To accommodate these design goals, the Production sample application does the following:

Replicates the University, Billing, and Oracle Tuxedo Teller Application server processes
within the groups in which they are configured.

Replicates the groups described above on an additional machine.

Implements a stateless object model to scale up the number of client requests the server
process can manage simultaneously.

Assigns unique object IDs (OIDs) to the following objects so that they can be instantiated
multiple times simultaneously in their respective groups. This makes these objects
available on a per-client-application (and not per-process) basis, thereby accommodating a
parallel-processing capability:
– RegistrarFactory

– Registrar

– TellerFactory

– Teller

Implements factory-based routing to direct client requests on behalf of some students to
one machine, and other students to another machine.

Note: To make the Production sample application easy for you to use, this application is
configured on the Oracle Tuxedo software kit to run on one machine, using one database.
The examples shown in this chapter, however, show running this application on two
machines using two databases.

The design of the Production sample application is set up so that it can be configured to
run on several machines and to use multiple databases. Changing the configuration to
multiple machines and databases involves modifying the UBBCONFIG file and partitioning
the databases, and is described in “How the Production Server Application Can Be
Scaled Further” on page -20.

The sections that follow describe how the Production sample application uses replicated server
processes and server groups, object state management, and factory-based routing to meets its
scalability goals. The first section that follows provides a description of the OMG IDL changes
implemented in the Production sample application.

OMG IDL Changes for the Production Sample Application
The only OMG IDL changes for the Production sample application are limited to the
find_registrar() and find_teller() operations on, respectively, the RegistrarFactory

8-4 Creating CORBA Server Applications

and TellerFactory objects. These two operations are modified to require, respectively, a
student ID and account number, which is needed to implement factory-based routing. See the
section “Factory-based Routing” on page -11 to read about how the Production sample
application implements and uses factory-based routing.

Replicating Server Processes and Server Groups
The Oracle Tuxedo system offers a wide variety of choices for how you may configure your
server applications, such as:

One machine with one server process that implements one interface

One machine with multiple server processes implementing one interface

One machine with multiple server processes implementing multiple interfaces, with or
without factory-based routing

Multiple machines with multiple server processes and multiple interfaces, with or without
factory-based routing

In summary:

To add more parallel processing capability to your client/server application, replicate your
server processes.

To add more machines to your deployment environment, add more groups and implement
factory-based routing.

The following sections describe replicated server processes and groups, and also explain how you
can configure them in the Oracle Tuxedo system.

Replicated Server Processes
When you replicate the server processes in your application:

You obtain a means to balance the load of incoming requests on that server application. As
requests arrive in the Oracle Tuxedo domain for the server group, the Oracle Tuxedo
system routes the request to the least busy server process within that group.

You can improve the server application’s performance. Instead of having one server
process that can process one client request at one time, you can have multiple server
processes available that can process multiple client requests simultaneously. (Note that to
make this work, you need to make each object unique, which you can do by having your
server application’s factory assign unique OIDs.)

Sca l ing an Orac le Tuxedo Serve r App l i cat ion

Creating CORBA Server Applications 8-5

You obtain a useful failover protection in the event that one of the server images stops.

To achieve the full benefit of replicated server processes, make sure that the objects instantiated
by your server application generally have unique IDs. This way, a client invocation on an object
can cause the object to be instantiated on demand, within the bounds of the number of server
processes that are available, and not queued up for an already active object.

Figure 8-1 shows the following:

The University server application, Oracle Tuxedo Teller Application, and Oracle TMS
server processes are replicated within the ORA_GRP group.

The Billing server process is replicated within the APP_GRP group.

Both groups are shown in this figure as running on a single machine.

Figure 8-1 Replicated Server Groups in the Production Sample

University Server

Production
ORA_GRP

RegistrarFactory

Registrar

CourseSynopsis
Enumerator

University Server

8-6 Creating CORBA Server Applications

When a request arrives for either of these groups, the Oracle Tuxedo domain has several server
processes available that can process the request, and the Oracle Tuxedo domain can choose the
server process that is least busy.

In Figure 8-1, note the following:

At any time, there may be no more than one instance of the RegistrarFactory,
Registrar, TellerFactory, or Teller objects within a given server process.

There may be any number of CourseSynopsisEnumerator objects in any University
server process.

Replicated Server Groups
The notion of server groups is specific to the Oracle Tuxedo system and adds value to a CORBA
implementation; server groups are an important part of the scalability features of the Oracle
Tuxedo system. Basically, to add more machines to a deployment, you need to add more groups.

Figure 8-2 shows the Production sample application groups replicated on another machine, as
specified in the application’s UBBCONFIG file, as ORA_GRP2 and APP_GRP2.

Figure 8-2 Replicating Server Groups Across Machines

Production Machine 1

APP_GRP1ORA_GRP1

University
Server Billing Server

Database 1

Sca l ing an Orac le Tuxedo Serve r App l i cat ion

Creating CORBA Server Applications 8-7

In Figure 8-2, the only difference between the content of the groups on Production Machines 1
and 2 is the database. The database for Production Machine 1 contains student and account
information for a subset of students. The database for Production Machine 2 contains student and
account information for a different subset of students. (The course information table in both
databases is identical.) Note that the student information in a given database may be completely
unrelated to the account information in the same database.

The way in which server groups are configured, where they run, and the ways in which they are
replicated is specified in the UBBCONFIG file. When you replicate a server group, you can do the
following:

Have a means to spread processing load for a given application or set of applications
across additional machines.

Use factory-based routing to send one set of requests on a given interface to one machine,
and another set of requests on the same interface to another machine.

The effect of having multiple server groups includes the following:

When a client request arrives in the Oracle Tuxedo domain, the Oracle Tuxedo system
checks the group ID specified in the object reference.

The Oracle Tuxedo domain sends the request to the least busy server process within the
group to which the request is routed that can process the request.

The section “Factory-based Routing” on page -11 shows how the Production sample application
uses factory-based routing to spread the application’s processing load across multiple machines.

Configuring Replicated Server Processes and Groups
To configure replicated server processes and groups in your Oracle Tuxedo domain:

1. Bring your application’s UBBCONFIG file into a text editor, such as WordPad.

2. In the GROUPS section, specify the names of the groups you want to configure.

3. In the SERVERS section, enter the following information for the server process you want to
replicate:

– A server application name.

– The GROUP parameter, which specifies the name of the group to which the server
process belongs. If you are replicating a server process across multiple groups, specify
the server process once for each group.

8-8 Creating CORBA Server Applications

– The SRVID parameter, which specifies a numeric identifier, giving the server process a
unique identity.

– The MIN parameter, which specifies the number of instances of the server process to
start when the application is booted.

– The MAX parameter, which specifies the maximum number of server processes that can
be running at any one time.

Thus the MIN and MAX parameters determine the degree to which a given server application
can process requests on a given object in parallel. During run time, the system
administrator can examine resource bottlenecks and start additional server processes, if
necessary. In this sense, the application is designed so that the system administrator can
scale it.

The following example shows lines from the GROUPS and SERVERS sections of the UBBCONFIG
file for the Production sample application.

*GROUPS

 APP_GRP1

 LMID = SITE1

 GRPNO = 2

 TMSNAME = TMS

 APP_GRP2

 LMID = SITE1

 GRPNO = 3

 TMSNAME = TMS

 ORA_GRP1

 LMID = SITE1

 GRPNO = 4

 OPENINFO = "BEA_XA:BEA_XA+Acc=P/scott/..."

 CLOSEINFO = ""

 TMSNAME = "TMS_ORA"

 ORA_GRP2

 LMID = SITE1

 GRPNO = 5

 OPENINFO = "BEA_XA:BEA_XA+Acc=P/scott/..."

 CLOSEINFO = ""

 TMSNAME = "TMS_ORA"

Sca l ing an Orac le Tuxedo Serve r App l i cat ion

Creating CORBA Server Applications 8-9

*SERVERS

 # By default, activate 2 instances of each server

 # and allow the administrator to activate up to 5

 # instances of each server

 DEFAULT:

 MIN = 2

 MAX = 5

 tellp_server

 SRVGRP = ORA_GRP1

 SRVID = 10

 RESTART = N

 tellp_server

 SRVGRP = ORA_GRP2

 SRVID = 10

 RESTART = N

 billp_server

 SRVGRP = APP_GRP1

 SRVID = 10

 RESTART = N

 billp_server

 SRVGRP = APP_GRP2

 SRVID = 10

 RESTART = N

 univp_server

 SRVGRP = ORA_GRP1

 SRVID = 20

 RESTART = N

univp_server

 SRVGRP = ORA_GRP2

 SRVID = 20

 RESTART = N

Scaling the Application Via Object State Management
As stated in Chapter 1, “CORBA Server Application Concepts,” object state management is a
fundamentally important concern of large-scale client/server systems because it is critically
important that such systems achieve optimized throughput and response time. This section
explains how you can use object state management to increase the scalability of the objects

8-10 Creating CORBA Server Applications

managed by an Oracle Tuxedo server application, using the Registrar and Teller objects in
the Production sample applications as an example.

The following table summarizes how you can use the object state management models supported
in the Oracle Tuxedo system to achieve major gains in scalability in your Oracle Tuxedo
applications.

To achieve scalability gains, the Registrar and Teller objects are configured in the Production
server application to have the method activation policy. The method activation policy assigned
to these two objects results in the following behavior changes:

State Model How You Can Use It to Achieve Scalability

Method-bound Method-bound objects are brought into the machine’s memory only
for the duration of the client invocation on them. When the
invocation is complete, the object is deactivated and any state data
for that object is flushed from memory.

You can use method-bound objects to create a stateless server model
in your application, in which thousands of objects are managed by
your application. From the client application view, all the objects are
available to service requests. However, because the server
application is mapping objects into memory only for the duration of
client invocations on them, only comparatively few of the objects
managed by the server application are in memory at any given
moment.

A method-bound object is said in this document to be a stateless
object.

Process-bound Process-bound objects remain in memory from the time they are first
invoked until the server process in which they are running is shut
down. If appropriate for your application, process-bound objects
with a large amount of state data can remain in memory to service
multiple client invocations, and the system’s resources need not be
tied up reading and writing the object’s state data on each client
invocation.

A process-bound object is said in this document to be a stateful
object. (Note that transaction-bound objects can also be considered
stateful, since they can remain in memory between invocations on
them within the scope of a transaction.)

Sca l ing an Orac le Tuxedo Serve r App l i cat ion

Creating CORBA Server Applications 8-11

Whenever these objects are invoked, they are instantiated by the Oracle Tuxedo domain in
the appropriate server group.

After the invocation is complete, the Oracle Tuxedo domain deactivates these objects.

With the Basic through the Wrapper sample applications, the Registrar object was
process-bound. All client requests on that object invariably went to the same object instance in
the machine’s memory. The Basic sample application design may be adequate for a small-scale
deployment. However, as client application demands increase, client requests on the Registrar
object eventually become queued, and response time drops.

However, when the Registrar and Teller objects are stateless, and the server processes that
manage these objects are replicated, these objects can be made available to process client requests
on them in parallel. The only constraint on the number of simultaneous client requests that these
objects can handle is the number of server processes that are available that can instantiate these
objects. These stateless objects, thereby, make for more efficient use of machine resources and
reduced client response time.

Most importantly, so that the Oracle Tuxedo system can instantiate copies of the Registrar and
Teller objects in each of the replicated server processes, each copy of these objects must be
unique. To make each instance of these objects unique, the factories for those objects must assign
unique object IDs to them. This, and other design considerations on these two objects, are
described in the section “Additional Design Considerations for the Registrar and Teller Objects”
on page -17.

Factory-based Routing
Factory-based routing is a powerful feature that provides a means to send a client request to a
specific server group. Using factory-based routing, you can spread that processing load for a
given application across multiple machines, because you can determine the group, and thus the
machine, in which a given object is instantiated.

You can use factory-based routing to expand upon the variety of load-balancing and scalability
capabilities in the Oracle Tuxedo system. In the case of the Production sample application, you
can use factory-based routing to send requests to register one subset of students to one machine,
and requests for another subset of students to another machine. As you add machines to ramp up
your application’s processing capability, the Oracle Tuxedo system makes it easy to modify the
factory-based routing in your application to add more machines.

The chief benefit of factory-based routing is that it provides a simple means to scale up an
application, and invocations on a given interface in particular, across a growing deployment

8-12 Creating CORBA Server Applications

environment. Spreading the deployment of an application across additional machines is strictly
an administrative function that does not require any recoding or rebuilding of the application.

The chief design consideration regarding implementing factory-based routing in your
client/server application is in choosing the value on which routing is based. The sections that
follow describe how factory-based routing works, using the Production sample application,
which uses factory-based routing in the following way:

Client application requests to the Registrar object are routed based on the student ID.
That is, requests on behalf of one subset of students go to one group; and requests on
behalf of another subset of students go to another group.

Requests to the Teller object are routed based on the account number. That is, billing
requests on behalf of one subset of accounts go to one group; and requests on behalf of
another subset of accounts go to another group.

How Factory-based Routing Works
Your factories implement factory-based routing by changing the way they create object
references. All object references contain a group ID, and by default the group ID is the same as
the factory that creates the object reference. However, using factory-based routing, the factory
creates an object reference that includes routing criteria that determines the group ID. Then when
client applications send an invocation using such an object reference, the Oracle Tuxedo system
routes the request to the group ID specified in the object reference. This section focuses on how
the group ID is generated for an object reference.

To implement factory-based routing, you need to coordinate the following:

Data in the INTERFACES and ROUTING sections of the UBBCONFIG file.

Groups, machines, and databases configured in the UBBCONFIG file.

How the factory specifies routing criteria. The interface definition for the factory needs to
specify the parameter that represents the routing criteria used to determine the group ID.

To describe the data that needs to be coordinated, the following two sections discuss configuring
for factory-based routing in the UBBCONFIG file, and implementing factory-based routing in the
factory.

Configuring for Factory-based Routing in the UBBCONFIG file
For each interface for which requests are routed, you need to establish the following information
in the UBBCONFIG file:

Sca l ing an Orac le Tuxedo Serve r App l i cat ion

Creating CORBA Server Applications 8-13

Details about the data in the routing criteria

For each kind of criteria, the values that route to specific server groups

To configure for factory-based routing, the UBBCONFIG file needs to specify the following data in
the INTERFACES and ROUTING sections, and also in how groups and machines are identified:

1. The INTERFACES section lists the names of the interfaces for which you want to enable
factory-based routing. For each interface, this section specifies what kinds of criteria the
interface routes on. This section specifies the routing criteria via an identifier,
FACTORYROUTING, as in the following example:

INTERFACES
 "IDL:beasys.com/UniversityP/Registrar:1.0"
 FACTORYROUTING = STU_ID
 "IDL:beasys.com/BillingP/Teller:1.0"
 FACTORYROUTING = ACT_NUM

The preceding example shows the fully qualified interface names for the two interfaces in
the Production sample in which factory-based routing is used. The FACTORYROUTING
identifier specifies the names of the routing values, which are STU_ID and ACT_NUM,
respectively.

2. The ROUTING section specifies the following data for each routing value:

– The TYPE parameter, which specifies the type of routing. In the Production sample, the
type of routing is factory-based routing. Therefore, this parameter is defined to
FACTORY.

– The FIELD parameter, which specifies the name that the factory inserts in the routing
value. In the Production sample, the field parameters are student_id and
account_number, respectively.

– The FIELDTYPE parameter, which specifies the data type of the routing value. In the
Production sample, the field types for student_id and account_number are long.

– The RANGES parameter, which specifies the values that are routed to each group.

The following example shows the ROUTING section of the UBBCONFIG file used in the
Production sample application:

ROUTING
 STU_ID
 FIELD = "student_id"
 TYPE = FACTORY
 FIELDTYPE = LONG
 RANGES = "100001-100005:ORA_GRP1,100006-100010:ORA_GRP2"
 ACT_NUM

8-14 Creating CORBA Server Applications

 FIELD = "account_number"
 TYPE = FACTORY
 FIELDTYPE = LONG
 RANGES = "200010-200014:APP_GRP1,200015-200019:APP_GRP2"

The preceding example shows that Registrar object references for students with IDs in
one range are routed to one server group, and Registrar object references for students
with IDs in another range are routed to another group. Likewise, Teller object references
for accounts in one range are routed to one server group, and Teller object references for
accounts in another range are routed to another group.

3. The groups specified by the RANGES identifier in the ROUTING section of the UBBCONFIG file
need to be identified and configured. For example, the Production sample specifies four
groups: APP_GRP1, APP_GRP2, ORA_GRP1, and ORA_GRP2. These groups need to be
configured, and the machines on which they run need to be identified.

The following example shows the GROUPS section of the Production sample UBBCONFIG
file, in which the ORA_GRP1 and ORA_GRP2 groups are configured. Notice how the
names in the GROUPS section match the group names specified in the ROUTING section; this
is critical for factory-based routing to work correctly. Furthermore, any change in the way
groups are configured in an application must be reflected in the ROUTING section. (Note
that the Production sample packaged with the Oracle Tuxedo software is configured to run
entirely on one machine. However, you can easily configure this application to run on
multiple machines.)

*GROUPS

 APP_GRP1

 LMID = SITE1

 GRPNO = 2

 TMSNAME = TMS

 APP_GRP2

 LMID = SITE1

 GRPNO = 3

 TMSNAME = TMS

 ORA_GRP1

 LMID = SITE1

 GRPNO = 4

 OPENINFO = "BEA_XA:BEA_XA+Acc=P/scott/..."

 CLOSEINFO = ""

 TMSNAME = "TMS_ORA"

 ORA_GRP2

 LMID = SITE1

Sca l ing an Orac le Tuxedo Serve r App l i cat ion

Creating CORBA Server Applications 8-15

 GRPNO = 5

 OPENINFO = "BEA_XA:BEA_XA+Acc=P/scott/..."

 CLOSEINFO = ""

 TMSNAME = "TMS_ORA"

Implementing Factory-based Routing in a Factory
Factories implement factory-based routing by the way the invocation to the
TP::create_object_reference() operation is implemented. This operation has the
following C++ binding:

CORBA::Object_ptr TP::create_object_reference (

 const char* interfaceName,

 const PortableServer::oid &stroid,

 CORBA::NVlist_ptr criteria);

The third parameter to this operation, criteria, specifies a list of named values to be used for
factory-based routing. Therefore, the work of implementing factory-based routing in a factory is
in building the NVlist.

As stated previously, the RegistrarFactory object in the Production sample application
specifies the value STU_ID. This value must match exactly the following in the UBBCONFIG file:

The routing name, type, and allowable values specified by the FACTORYROUTING identifier
in the INTERFACES section.

The routing criteria name, field, and field type specified in the ROUTING section.

The RegistrarFactory object inserts the student ID into the NVlist using the following code:

// put the student id (which is the routing criteria)

// into a CORBA NVList:

CORBA::NVList_var v_criteria;

TP::orb()->create_list(1, v_criteria.out());

CORBA::Any any;

any <<= (CORBA::Long)student;

v_criteria->add_value("student_id", any, 0);

The RegistrarFactory object has the following invocation to the
TP::create_object_reference() operation, passing the NVlist created in the preceding
code example:

// create the registrar object reference using

// the routing criteria :

8-16 Creating CORBA Server Applications

CORBA::Object_var v_reg_oref =

 TP::create_object_reference(

 UniversityP::_tc_Registrar->id(),

 object_id,

 v_criteria.in()

);

The Production sample application also uses factory-based routing in the TellerFactory object
to determine the group in which Teller objects should be instantiated based on an account
number.

Note: It is possible for an object with a given interface and OID to be simultaneously active in
two different groups, if those two groups both contain the same object implementation.
(However, if your factories generate unique OIDs, this situation is very unlikely.) If you
need to guarantee that only one object instance of a given interface name and OID is
available at any one time in your domain, either: use factory-based routing to ensure that
objects with a particular OID are always routed to the same group, or configure your
domain so that a given object implementation is in only one group. This assures that if
multiple clients have an object reference containing a given interface name and OID, the
reference is always routed to the same object instance.

To enable routing on an object’s OID, specify the OID as the routing criterion in the
TP::create_object_reference() operation, and set up the UBBCONFIG file
appropriately.

What Happens at Run Time
When you implement factory-based routing in a factory, the Oracle Tuxedo system generates an
object reference. The following example shows how the client application gets an object
reference to a Registrar object when factory-based routing is implemented:

1. The client application invokes the RegistrarFactory object, requesting a reference to a
Registrar object. Included in the request is a student ID.

2. The RegistrarFactory inserts the student ID into an NVlist, which is used as the routing
criteria.

3. The RegistrarFactory invokes the TP::create_object_reference() operation,
passing the Registrar interface name, a unique OID, and the NVlist.

4. The Oracle Tuxedo system compares the contents of the routing tables with the value in the
NVlist to determine a group ID.

Sca l ing an Orac le Tuxedo Serve r App l i cat ion

Creating CORBA Server Applications 8-17

5. The Oracle Tuxedo system inserts the group ID into the object reference.

When the client application subsequently does an invocation on an object using the object
reference, the Oracle Tuxedo system routes the request to the group specified in the object
reference.

Note: Be careful how you implement factory-based routing if you use the Process-Entity design
pattern. The object can service only those entities that are contained in the group’s
database.

Additional Design Considerations for the Registrar and
Teller Objects
The principal considerations that influence the design of the Registrar and Teller objects
include:

How to ensure that the Registrar and Teller objects work properly for the Production
deployment environment; namely, across multiple replicated server processes and multiple
groups. Given that the University and Billing server processes are replicated, the design
must consider how these two objects should be instantiated.

How to ensure that client requests for registration and billing operations for a given student
go to the correct server group, given that the two server groups in the Production Oracle
Tuxedo domain each deal with different databases.

The primary implications of these considerations are that these objects must:

Have unique object IDs (OIDs)

Be method-bound; that is, have the method activation policy assigned to them

The remainder of this section discusses these considerations and implications in detail.

Instantiating the Registrar and Teller Objects
In University server applications prior to the Production sample application, the run-time
behavior of the Registrar and Teller objects was fairly simple:

Each object was process-bound, meaning that each was activated the first time it was
invoked, and it stayed in memory until the server process in which it ran was shut down.

Since there was only one server group running in the Oracle Tuxedo domain, and only one
University and Billing server process in the group, all client requests were directed to the

8-18 Creating CORBA Server Applications

same objects. As multiple client requests arrived in the Oracle Tuxedo domain, these
objects each processed one client request at one time.

Because there was only one instance of each object in the server processes in which they
ran, neither object needed a unique OID. The OID for each object specified only the
Interface Repository ID.

However, since the University and Billing server processes are now replicated, the Oracle
Tuxedo domain must have a means to differentiate between multiple instances of the Registrar
and Teller objects. That is, if there are two University server processes running in a group, the
Oracle Tuxedo domain must have a means to distinguish between, say, the Registrar object
running in the first University server process and the Registrar object running in the second
University server process.

The way to provide the Oracle Tuxedo domain with the ability to distinguish among multiple
instances of these objects is to make each object instance unique.

To make each Registrar and Teller object unique, the factories for those objects must change
the way in which they make object references to them. For example, when the
RegistrarFactory object in the Basic sample application created an object reference to the
Registrar object, the TP::create_object_reference() operation specified an OID that
consisted only of the string registrar. However, in the Production sample application, the same
TP::create_object_reference() operation uses a generated unique OID instead.

A consequence of giving each Registrar and Teller object a unique OID is that there may be
multiple instances of these objects running simultaneously in the Oracle Tuxedo domain. This
characteristic is typical of the stateless object model, and is an example of how the Oracle Tuxedo
domain can be highly scalable and at the same time offer high performance.

And last, since unique Registrar and Teller objects need to be brought into memory for each
client request on them, it is critical that these objects be deactivated when the invocations on them
are completed so that any object state associated with them does not remain idle in memory. The
Production server application addresses this issue by assigning the method activation policy to
these two objects in the ICF file.

Ensuring That Student Registration Occurs in the Correct Server Group
The chief scalability advantage of having replicated server groups is to be able to distribute
processing across multiple machines. However, if your application interacts with a database,
which is the case with the University sample applications, it is critical that you consider the
impact of these multiple server groups on the database interactions.

Sca l ing an Orac le Tuxedo Serve r App l i cat ion

Creating CORBA Server Applications 8-19

In many cases, you may have one database associated with each machine in your deployment. If
your server application is distributed across multiple machines, you must consider how you set
up your databases.

The Production sample application, as described in this chapter, uses two databases. However,
this application can easily be configured to accommodate more. The system administrator can
decide how many.

In the Production sample application, the student and account information is partitioned across
the two databases, but course information is identical. Having identical course information in
both databases is not a problem because the course information is read-only for the purposes of
course registration. However, the student and account information is read-write. If multiple
databases were also to contain identical data for students and accounts (that is, the database is not
partitioned), the application would need to deal with the overhead of synchronizing the updates
to student and account information across all the databases each time any student or account
information were to change.

The Production sample application uses factory-based routing to send one set of requests to one
machine, and another set to the other machine. As mentioned earlier, factory-based routing is
implemented in the RegistrarFactory object by the way in which references to Registrar
objects are created.

For example, when the client application sends a request to the RegistrarFactory object to get
an object reference to a Registrar object, the client application includes a student ID in that
request. The client application must use the object reference that the RegistrarFactory object
returns to make all subsequent invocations on a Registrar object on a particular student’s
behalf, because the object reference returned by the factory is group-specific. Therefore, for
example, when the client application subsequently invokes the get_student_details()
operation on the Registrar object, the client application can be assured that the Registrar
object is active in the server group associated with the database containing data for that student.
To show how this works, consider the following execution scenario, which is implemented in the
Production sample application:

1. The client application invokes the find_registrar() operation on the RegistrarFactory
object. Included in this invocation is the student ID 1000003.

2. The Oracle Tuxedo domain routes the client request to any RegistrarFactory object.

3. The RegistrarFactory object uses the student ID to create an object reference to a
Registrar object in ORA_GRP1, based on the routing information in the UBBCONFIG file,
and returns that object reference to the client application.

8-20 Creating CORBA Server Applications

4. The client application invokes the register_for_courses() operation on the Registrar
object.

5. The Oracle Tuxedo domain receives the client request and routes it to the server group
specified in the object reference. In this case, the client request goes to the University server
process in ORA_GRP1, which is on Production Machine 1.

6. The University server process instantiates a Registrar object and sends the client invocation
to it.

The RegistrarFactory object from the preceding scenario returns to the client application a
unique reference to a Registrar object that can be instantiated only in ORA_GRP1, which runs
on Production Machine 1 and has a database containing student data for students with IDs in the
range 100001 to 100005. Therefore, when the client application sends subsequent requests to this
Registrar object on behalf of a given student, the Registrar object interacts with the correct
database.

Ensuring That the Teller Object Is Instantiated in the Correct Server Group
When the Registrar object needs a Teller object, the Registrar object invokes the
TellerFactory object, using the TellerFactory object reference cached in the University
Server object, as described in “Sending Requests to the Teller Object” on page -10.

However, because factory-based routing is used in the TellerFactory object, the Registrar
object passes the student’s account number when the Registrar object requests a reference to a
Teller object. This way, the TellerFactory object creates a reference to a Teller object in
the group that has the correct database.

Note: For the Production sample application to work properly, it is essential that the system
administrator configures the server groups and the databases properly. In particular, the
system administrator must make sure that a match exists between the routing criteria
specified in the routing tables and the databases to which requests using those criteria are
routed. Using the Production sample as an example, the database in a given group must
contain the correct student and account information for the requests that are routed to that
group.

How the Production Server Application Can Be Scaled
Further

In the future, the system administrator of the Production sample application may want to add
capacity to the Oracle Tuxedo domain. For example, the University may eventually have a large

Choos ing Between State less and State fu l Ob jects

Creating CORBA Server Applications 8-21

increase in the student population, or the Production application may be scaled up to
accommodate the course registration process for an entire state university system encompassing
several campuses. This can be done without modifying or rebuilding the application.

The system administrator has the following tools available to continually add capacity:

Replicating the Production sample application server groups across additional machines.

Doing this requires modifying the UBBCONFIG file to specify the additional groups, what
server processes run in those groups, and what machines they run on.

Changing the factory-based routing tables

For example, instead of routing to the two groups shown earlier in this chapter, the system
administrator can modify the routing rules in the UBBCONFIG file to partition the
application further among the new groups added to the Oracle Tuxedo domain. Any
modification to the routing tables must be consistent with any changes or additions made to
the server groups and machines configured in the UBBCONFIG file.

Note: If you add capacity to an application that uses a database, you must also consider the
impact on how the database is set up, particularly when you are using factory-based
routing. For example, if the Production sample application is spread across six machines,
the database on each machine must be set up appropriately and in accordance with the
routing tables in the UBBCONFIG file.

Choosing Between Stateless and Stateful Objects
In general, you need to balance the costs of implementing stateless objects against the costs of
implementing stateful objects.

In the case where the cost to initialize an object with its durable state is expensive— because, for
example, the object’s data takes up a great deal of space, or the durable state is located on a disk
very remote to the servant that activates it—it may make sense to keep the object stateful, even
if the object is idle during a conversation. In the case where the cost to keep an object active is
expensive in terms of machine resource usage, it may make sense to make such an object
stateless.

By managing object state in a way that’s efficient and appropriate for your application, you can
maximize your application’s ability to support large numbers of simultaneous client applications
that use large numbers of objects. You generally do this by assigning the method activation
policy to these objects, which has the effect of deactivating idle object instances so that machine
resources can be allocated to other object instances. However, your specific application
characteristics and needs may vary.

8-22 Creating CORBA Server Applications

Note: Oracle Tuxedo Release 8.0 or later provides support for parallel objects, as a performance
enhancement. This feature allows you to designate all business objects in a particular
application as stateless objects. For complete information, see Chapter 3, “TP
Framework,” in the CORBA Programming Reference.

When You Want Stateless Objects
Stateless objects generally provide good performance and optimal usage of server resources,
because server resources are never used when objects are idle. Stateless objects are generally a
good approach to implementing server applications. Stateless objects are particularly appropriate
in the following situations:

The client application typically waits for user input between invocations on the object.

The client request typically contains all the data needed by the server application, and the
server can process the client request using only that data.

The object has very high access rates, but low access rates from any one particular client
application.

By making an object stateless, you can generally assure that server application resources are not
being tied up for an arbitrarily long time waiting for input from the client application.

Note the following characteristics about an application that employs a stateless object model:

Information about and associated with an invocation is not maintained after the server
application has finished executing a client request.

An incoming client request is sent to the first available server process: after the request has
been satisfied, the application state vanishes and the server application is available for
another client application request.

Durable state information for the object exists outside the server process. With each
invocation on this object, the durable state is read into memory.

The Oracle Tuxedo domain may direct successive requests on an object from a given client
application to a different server process.

The overall system performance of a machine that is running stateless objects is usually
enhanced.

Choos ing Between State less and State fu l Ob jects

Creating CORBA Server Applications 8-23

When You Want Stateful Objects
A stateful object, once activated, remains in memory until a specific event occurs, such as the
process in which the object exists is shut down, or the transaction in which the object is activated
is completed.

Stateful objects are typically appropriate in the following situations:

When an object is used very frequently by a large number of client applications. This is the
case for long-lived, well-known objects like factories. When the server application keeps
these objects active, the client application typically experiences minimal response time in
accessing them. Since these active objects are shared by many client applications, there are
relatively few objects of this type in memory.

Note: Plan carefully how process objects are potentially involved in a transaction. Any object
that is involved in a transaction cannot be invoked by another client application or object.
Process objects meant to be used by a large number of client applications can create
problems if they are involved in transactions frequently or for long durations.

When a client application must invoke successive operations on an object to complete a
transaction, and the client application is not idle while waiting for user input between those
invocations. In this case, if the object were deactivated between invocations, there would
be a degradation of response time because state would be written and read between each
invocation; such behavior may not be appropriate for transactions. You can trade holding
server resources for better response time.

Note the following behavior with stateful objects:

State information is maintained between server invocations, and the servant typically
remains dedicated to a given client application for a specified duration.

Even though data is sent and received between the client and server applications, the server
process maintains additional context or application state information in memory.

In cases where one or more stateful objects are using a lot of machine resources, server
performance for tasks and processes not associated with the stateful object may be worse
than with a stateless server model.

For example, if an object has a lock on a database and is caching a lot of data in memory,
that database and the memory used by that stateful object are unavailable to other objects,
potentially for the entire duration of a transaction.

8-24 Creating CORBA Server Applications

