

Oracle® DARB XML Templates
Book Title, Volume 1

Release 5.1 for Adobe FrameMaker 7.2 on Windows

A12345-01

August 2008

Beta Draft

Product Title/BookTitle as a Variable, Volume 1, Release 5.1 for Adobe FrameMaker 7.2 on Windows

A12345-01

Copyright © xxxx, 2008, Oracle and/or its affiliates. All rights reserved.

Primary Author:

Contributing Author:

Contributor:

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

This documentation is in prerelease status and is intended for demonstration and preliminary use only. It
may not be specific to the hardware on which you are using the software. Oracle Corporation and its
affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to this
documentation and will not be responsible for any loss, costs, or damages incurred due to the use of this
documentation.

Beta Draft iii

Contents

Preface ... xi

Audience... xi
Documentation Accessibility ... xi
Related Documents .. xii
Conventions .. xii

1 Introducing TxRPC

1.1 What Is TxRPC?... 1-1

2 Using the Interface Definition Language (IDL)

2.1 References .. 2-1
2.2 Using uuidgen to Create an IDL Template ... 2-2
2.3 Changes in the Language... 2-3
2.4 Changes Based on the TxRPC Specification.. 2-3
2.5 Enhancements to the Language .. 2-3
2.5.1 Enhancements that May Limit Portability ... 2-4
2.6 Unsupported Features.. 2-5
2.7 Using tidl, the IDL Compiler... 2-5

3 Writing RPC Client and Server Programs

3.1 Handling Remoteness .. 3-1
3.2 Handling Status and Exception Returns ... 3-2
3.3 Using Stub Support Functions .. 3-2
3.4 Using RPC Header Files... 3-4
3.5 Portability of Code.. 3-4
3.6 Interacting with ATMI ... 3-7
3.7 Interacting with TX... 3-8

4 Building RPC Client and Server Programs

4.1 Prerequisite Knowledge... 4-1
4.2 Building an RPC Server.. 4-1
4.3 Building an RPC Client .. 4-2
4.4 Building a Windows Workstation RPC Client ... 4-2
4.5 Using C++ .. 4-3

iv Beta Draft

4.6 Interoperating with DCE/RPC ... 4-3
4.6.1 Oracle Tuxedo Requester to DCE Service via Oracle Tuxedo Gateway...................... 4-4
4.6.1.1 Setting the DCE Login Context... 4-5
4.6.1.2 Using DCE Binding Handles .. 4-5
4.6.1.3 Authenticated RPC... 4-6
4.6.1.4 Transactions... 4-6
4.6.2 DCE Requester to Oracle Tuxedo Service Using Oracle Tuxedo Gateway................. 4-6
4.6.3 Oracle Tuxedo Requester to DCE Service Using DCE-only.. 4-8
4.6.4 DCE Requester to Oracle Tuxedo Service Using Oracle Tuxedo-only 4-8
4.6.5 Building Mixed DCE/RPC and Oracle Tuxedo TxRPC Clients and Servers 4-9

5 Running the Application

5.1 Prerequisite Knowledge... 5-1
5.2 Configuring the Application ... 5-1
5.3 Booting and Shutting Down the Application ... 5-2
5.4 Administering the Application ... 5-2
5.5 Using Dynamic Service Advertisement... 5-2

A A Sample Application

A.1 Appendix Contents.. A-1
A.2 Prerequisites ... A-1
A.3 Building the rpcsimp Application ... A-1
A.3.1 Step 1: Create an Application Directory.. A-1
A.3.2 Step 2: Set Environment Variables ... A-2
A.3.3 Step 3: Copy files... A-2
A.3.4 Step 4: List the Files .. A-2
A.3.4.1 IDL Input File—simp.idl .. A-3
A.3.4.2 The Client Source Code—client.c .. A-3
A.3.4.3 The Server Source Code—server.c .. A-4
A.3.4.4 Makefile—rpcsimp.mk ... A-5
A.3.4.5 The Configuration File—ubbconfig .. A-5
A.3.5 Step 5: Modify the Configuration... A-6
A.3.6 Step 6: Build the Application .. A-7
A.3.7 Step 7: Load the Configuration... A-7
A.3.8 Step 8: Boot the Configuration.. A-7
A.3.9 Step 9: Run the Client... A-7
A.3.10 Step 10: Monitor the RPC Server .. A-7
A.3.11 Step 11: Shut Down the Configuration.. A-8
A.3.12 Step 12: Clean Up the Created Files ... A-8

B A DCE-Gateway Application

B.1 Appendix Contents.. B-1
B.2 Prerequisites ... B-1
B.3 What Is the DCE-Gateway Application? .. B-1
B.4 Installing, Configuring, and Running the rpcsimp Application... B-2
B.4.1 Step 1: Create an Application Directory.. B-2

Beta Draft v

B.4.2 Step 2: Set Your Environment ... B-2
B.4.3 Step 3: Copy the Files ... B-2
B.4.4 Step 4: List the Files .. B-2
B.4.4.1 IDL ACF File—simpdce.acf ... B-3
B.4.4.2 Binding Function—dcebind.c .. B-3
B.4.4.3 Entry Point Vector—dceepv.c.. B-4
B.4.4.4 DCE Manager—dcemgr.c... B-5
B.4.4.5 DCE Server - dceserver.c .. B-6
B.4.4.6 Makefile—rpcsimp.mk ... B-7
B.4.5 Step 5: Modify the Configuration... B-9
B.4.6 Step 6: Build the Application .. B-9
B.4.7 Step 7: Load the Configuration... B-9
B.4.8 Step 8: Configuring DCE ... B-9
B.4.9 Step 9: Boot the Configuration.. B-10
B.4.10 Step 10: Run the Client... B-10
B.4.11 Step 11: Shut Down the Configuration.. B-10
B.4.12 Step 12: Clean Up the Created Files ... B-10

Index

vi Beta Draft

 Beta Draft vii

List of Examples

A–1 simp.idl .. A-3
A–2 client.c .. A-3
A–3 server.c... A-4
A–4 rpcsimp.mk ... A-5
A–5 ubbconfig... A-6
A–6 tmadmin psr and psc Output... A-7
B–1 simpdce.acf ... B-3
B–2 dceepv.c ... B-4
B–3 dcemgr.c .. B-5
B–4 rpcsimp.mk ... B-7
B–5 DCE Configuration .. B-9

viii Beta Draft

List of Figures

1–1 RPC Communication.. 1-2
1–2 Building an RPC Server.. 1-4
1–3 Building an RPC Client .. 1-5
4–1 Oracle Tuxedo Requester to DCE Service via Oracle Tuxedo Gateway............................. 4-4
4–2 DCE Requester to Oracle Tuxedo Service Using Oracle Tuxedo Gateway........................ 4-6
4–3 Oracle Tuxedo Requester to DCE Service Using DCE-only ... 4-8
4–4 DCE Requester to Oracle Tuxedo Service Using Oracle Tuxedo-only 4-8

 Beta Draft ix

List of Tables

3–1 Generated Data Types... 3-6

x Beta Draft

Beta Draft xi

Preface

Some intro text...

Audience
This document is intended for . . .

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services
To reach AT&T Customer Assistants, dial 711 or 1.800.855.2880. An AT&T Customer
Assistant will relay information between the customer and Oracle Support Services at
1.800.223.1711. Complete instructions for using the AT&T relay services are available at
http://www.consumer.att.com/relay/tty/standard2.html. After the
AT&T Customer Assistant contacts Oracle Support Services, an Oracle Support
Services engineer will handle technical issues and provide customer support according
to the Oracle service request process.

xii Beta Draft

Related Documents
For more information, see the following documents in the Oracle Other Product One
Release 7.0 documentation set or in the Oracle Other Product Two Release 6.1
documentation set:

■ Oracle Other Product One Release Notes

■ Oracle Other Product One Configuration Guide

■ Oracle Other Product Two Getting Started Guide

■ Oracle Other Product Two Reference Guide

■ Oracle Other Product Two Tuning and Performance Guide

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

1

Beta Draft Introducing TxRPC 1-1

1Introducing TxRPC

[oc--the first image has a GraphicDesc element added to it. you need to add it to
the rest of the images in this chapter.]

This topic includes the following section:

■ Section 1.1, "What Is TxRPC?"

1.1 What Is TxRPC?
The TxRPC feature allows programmers to use a remote procedure call (RPC)
interface, such that a client process can call a remote function (that is, a remote service)
in another process using a local function call. The application writer must specify the
operations (that is, procedures) and data types that are used as parameters to those
operations via an Interface Definition Language (IDL). Operations are grouped together
in an interface. An IDL compiler is used to generate substitute procedures called stubs
which allow the operation to be remote. An important concept to understand from the
beginning is that there are two fundamental levels of naming: the interface has a name
and within an interface, one or more operations are named. At run time, the interface
is made available, which means that any of the operations in the interface can be
called; an individual operation within an interface cannot be made available (if you
need this, define the operation in its own interface).

The following illustrates how an RPC is made to look like a local procedure call.

What Is TxRPC?

1-2 Product Title/BookTitle as a Variable Beta Draft

Figure 1–1 RPC Communication

Replace this text with an adequate description of the above image.

The client application code calls one of the operations (functions) defined in the IDL
file. Instead of calling the actual function, which resides on the server side, the client
stub is called. The client stub is generated by the IDL compiler based on the IDL input
file, which defines the data types and operations. For each operation, the input
parameters, return type, and output parameters are defined. The client stub takes the
input parameters and converts them into a single buffer of data, sends the data to the
server and waits for a response, and unpacks the buffer of data sent back from the
server (the return value and output parameters). The communication between the
client and server processes, whether intra-machine or inter-machine is handled by the
Oracle Tuxedo ATMI run time.

On the server side, the run time calls the server stub for the interface, also generated
by the IDL compiler. This stub unpacks the data buffer that contains the input
parameters, in some cases it allocates space needed for output parameters of the
operation, calls the operation and waits for it to return, packs the return value and
output parameters into a buffer and sends the response back to the client.

From the application perspective, it appears that a simple local procedure call is done.
The stubs and the run time hide the calling of a remote procedure in a non-local
address space (process).

The steps for building an application using remote procedure calls is very similar to
building one without these calls. Most of the time will be spent writing the application
code for the client and the server (where the real application work is done). The Oracle
Tuxedo ATMI run time frees the application programmer from worrying about
communications, translation of the data from the format used on the client machine to
the format used on the server machine, and so forth. TxRPC may also be used to
communicate between servers.

In addition to the steps needed for building a monolithic application, it is necessary to
completely define the interface between the client and server. As stated earlier, the
interface contains the definition of data types and operations used for the remote

What Is TxRPC?

Beta Draft Introducing TxRPC 1-3

procedure calls. Normally, the name of the file containing the definition has an ".idl"
suffix; using this convention makes the file type self-documenting.

Every interface must have its own unique identifier. This Universal Unique Identifier
(UUID) consists of 128-bits that uniquely identify the interface among all interfaces.
The job of generating a UUID is done for the application programmer by the uuidgen
program. By running the uuidgen program with the -i option, it generates an
interface template that contains a new UUID. Refer to Appendix A, "A Sample
Application," for a complete example (including code) for the development of a simple
RPC application; the first step illustrates how to run the uuidgen command and the
resulting output. More information about other options of this command are given in
the uuidgen(1) manual page.

The UUID is used at run time to ensure that the client stub matches the server stub on
the receiving side. That is, the UUID is sent from the client to the server for validation
by the Oracle Tuxedo ATMI run time, transparent to the application programmer.

Besides matching on the UUID, each interface also has a version number associated
with it. The version consists of a major and minor number. If a version number is not
specified as part of the interface definition, it defaults to 0.0. Thus, there may be
multiple versions of the same interface available. The client requests a particular
version of an interface by invoking the RPC in the stub generated from a particular
interface version. Different versions imply that data types or operation parameters or
returns have changed, or operations have been added to or deleted from the interface.
Thus, the client and server UUID's and versions must match for a successful RPC. The
application programmer must ensure that versions of the interface that have the same
version numbers do provide the same (or a compatible) interface.

Once the template IDL is generated by uuidgen, the application program must
provide a definition of all data types and operations in the interface. The language
looks very much like the declarative parts of C or C++ (without the procedural
statements). Data types are declared via typedef statements, and the operations are
declared via function prototypes. Additional information is provided via IDL
attributes. Attributes appear in the language within square brackets, for example, [in].
These provide information about such things as pointer types (for example, whether or
not a pointer can be NULL at run time), about parameters (for example, whether a
parameter is for input, output, or both), and much more. The IDL language and the
associated compiler are discussed further in Chapter 2, "Using the Interface Definition
Language (IDL)."

In addition to the IDL file, an optional Attribute Configuration File (ACF) may also be
provided to give additional attributes of the interface. Most important is the definition
of status variables in the operations for returning the status of each RPC operation.
The use of status variables will be discussed further in Chapter 3, "Writing RPC Client
and Server Programs." Attributes in the ACF file do not affect the communications
between the client and server (as do attributes in the IDL file), but generally have an
impact on the interface between the application code and the generated stubs.

When using the Oracle Tuxedo ATMI run time, the management of the binding
(connection) between the client and server is done transparently. There is no
information provided by the client or server application code to manage the
client/server binding. (In contrast, when using the OSF DCE run time, considerable
effort by the programmer must be given to binding management. Oracle Tuxedo ATMI
runtime does not support the OSF DCE run time functions and ignores binding
attributes in IDL and ACF files.)

The IDL and optional ACF files are compiled using the IDL compiler. The compiler
first generates a header file that contains all of the type definitions and function
prototypes for the operations defined in the IDL file. This header file can be included

What Is TxRPC?

1-4 Product Title/BookTitle as a Variable Beta Draft

in application code that makes RPC calls defined in the interface. If the input files are
file.idl and file.acf, then the default header file name is file.h. The compiler
generates stub code for both the client and server (for example, file_cstub.c and
file_sstub.c). These stub files were described earlier and contain the data
packaging and communications for the RPC. By default, the IDL compiler invokes the
C compiler to generate client and server stub object files (for example, file_cstub.o
and file_sstub.o) and the stub source files are removed. There are various IDL
compiler options to request, limit generation of, and keep source and object files, and
change the output filenames and directories. See the tidl(1) reference page for
further details.

After completing the interface definition, the major portion of work is writing the
application code. The client code will call the operations defined in the interface, and
the server code must implement the operations (note that a server can also act as a
client by calling an RPC). Further considerations regarding writing the application are
discussed in Chapter 2, "Using the Interface Definition Language (IDL)."

When the application code is completed, it's time to compile and link it together with
the Oracle Tuxedo ATMI run time. Two programs are provided to simplify this
process: buildserver for the server, and buildclient for the client. These
programs compile any source files and link the object and library files with the Oracle
Tuxedo ATMI run time to produce the executable files. These programs allow for
alternate compilers and compilation options to be specified. See the buildserver(1)
and buildclient(1) reference pages for further details.

The complete process for building a server and client are shown in Figure 1–2 and
Figure 1–3. More details about building client and server programs on different
platforms are provided in Chapter 4, "Building RPC Client and Server Programs."

Figure 1–2 Building an RPC Server

Figure 1–2 illustrates the following steps in the process for building a server:

1. Run uuidgen to generate a skeleton IDL file (simp.idl) with a UUID. Edit the
template IDL file to define the interface between the client and server using the
interface definition language.

2. Run the IDL compiler (tidl) using simp.idl and optional simp.acf to
generate the interface header file and the server stub object file.

3. After writing the server application code (server.c), run buildserver to
compile it and link it with the server stub, Oracle Tuxedo ATMI run time, and
TxRPC run time to generate an executable server.

What Is TxRPC?

Beta Draft Introducing TxRPC 1-5

Figure 1–3 Building an RPC Client

The preceding figure illustrates the process for building a client.

1. Using the IDL file created in Step 1, run the IDL compiler (tidl) to generate the
interface header file and the client stub object file.

2. After writing the client application code (client.c), run buildclient to
compile it and link it with the client stub, Oracle Tuxedo ATMI run time, and
TxRPC run time to generate an executable client.

After building the application client and server, the application can be configured and
booted, and the client run. This is discussed in Chapter 5, "Running the Application."

What Is TxRPC?

1-6 Product Title/BookTitle as a Variable Beta Draft

2

Beta Draft Using the Interface Definition Language (IDL) 2-1

2Using the Interface Definition Language (IDL)

This topic includes the following sections:

■ Section 2.1, "References"

■ Section 2.2, "Using uuidgen to Create an IDL Template"

■ Section 2.3, "Changes in the Language"

■ Section 2.4, "Changes Based on the TxRPC Specification"

■ Section 2.5, "Enhancements to the Language"

■ Section 2.6, "Unsupported Features"

■ Section 2.7, "Using tidl, the IDL Compiler"

2.1 References
Oracle Tuxedo TxRPC supports the IDL grammar and associated functionality as
described in Chapter 3 ("Interface Definition Language") of DCE: REMOTE
PROCEDURE CALL (Doc Code: P312 ISBN 1-872630-95-2). This book is available from
the following.

X/OPEN Company Ltd (Publications)

P O Box 109

Penn

High Wycombe

Bucks HP10 8NP

United Kingdom

Tel: +44 (0) 494 813844

Fax: +44 (0) 494 814989

The X/OPEN document is the ultimate authority on the language and rules adhered to
for the Oracle Tuxedo product in an ATMI environment. Note that the X/OPEN
TxRPC IDL-only interface is supported (parts of the document concerning the DCE
binding and run time do not apply). The X/OPEN document is based on the OSF DCE
AES/RPC document. There are several books containing tutorials and programmer's
guides that can be used, although most will not contain the latest features. The
programmer's guide available from OSF is OSF DCE Application Development Guide,
published by Prentice-Hall (Englewood Cliffs, New Jersey, 07632).

Using uuidgen to Create an IDL Template

2-2 Product Title/BookTitle as a Variable Beta Draft

The X/OPEN Preliminary Specification for TxRPC Communication Application
Programming Interface is also available from X/OPEN (see above). TxRPC adds
transaction support for RPCs to the original X/OPEN RPC interface.

2.2 Using uuidgen to Create an IDL Template
A Universal Unique Identifier (UUID) is used to uniquely identify an interface. The
uuidgen command is used to generate UUIDs. The output might look something like
the following:

$ uuidgen -i > simp.idl
$ cat simp.idl
[uuid(816A4780-A76B-110F-9B3F-930269220000)]
interface INTERFACE
{
}

This template is then used to create the IDL input file for the application (adding type
definitions, constants, and operations).

If both the ATMI and DCE uuidgen(1) commands are available, the DCE command
can and should be used to generate the template (the DCE version will most likely
have a machine-specific approach to getting the node address, as described below).

The ATMI uuidgen command is similar to the DCE command with the exception that
the -s option (which generates a UUID string as an initialized C structure), and the -t
option (which translates an old style UUID string to the new format) are not
supported. See the uuidgen(1) reference page for details of the interface.

The uuidgen command requires a 48-bit node address as described in ISO/IEC 8802-3
(ANSI/IEEE 802.3). There is no platform-independent way to determine this value,
and it may not be available at all on some machines (a workstation, for example). The
following approach is used for the ATMI uuidgen command:

■ If the NADDR environment variable is set to a value of the form
num.num.num.num.num.num where num is between 0 and 255, inclusive, it is
taken to be an Internet-style address and converted to a 48-bit node address. This
allows conformance with the use of the 8802-3 node address. It also allows users
who do not have access to this address to use another value, most likely the
Internet address (which is not the same as the 8802-3 address). If the Internet
address is used, the last num.num should be 0.0 (because Internet addresses are
only 32-bit addresses).

■ If the NADDR environment variable is not set and if the WSNADDR environment
variable is set to a value of the form 0xnnnnnnnnnnnnnnnn it is taken to be a
hexadecimal network address, as used in Workstation. Again note that this is not
the 8802-3 address, and the last 16 bits will be treated as zeros.

■ If neither the NADDR nor the WSNADDR environment variable is set (and if not
Windows), the uname for the machine is used to look up the machine entry in
/etc/hosts to get the Internet-style address.

■ If the first three choices are not available, a warning is printed and
00.00.00.00.00.00 is used. This is not desirable because it reduces the chance of
generating a unique UUID.

Enhancements to the Language

Beta Draft Using the Interface Definition Language (IDL) 2-3

2.3 Changes in the Language
The IDL compiler recognizes the IDL grammar and generates stub functions based on
the input. The grammar and its semantics are fully described in both the X/OPEN and
OSF/DCE references listed earlier in this chapter. The grammar will be recognized in
its entirety with some changes as described in the following sections.

2.4 Changes Based on the TxRPC Specification
The following are changes to the base X/OPEN RPC specification that are defined by
the X/OPEN TxRPC specification:

■ The most important enhancement from the TxRPC specification is the addition of
the [transaction_optional] and [transaction_mandatory] attributes in
the interface and operation attributes in the IDL file. [transaction_optional]
indicates that if the RPC is done while in a transaction, the remote service is done
as part of the transaction. The [transaction_mandatory] attribute requires
that the RPC be done within a transaction. Without these attributes, the remote
service is not part of any transaction of which the client may be part.

■ Binding types and attributes are not required by X/OPEN TxRPC IDL-only. The
binding attributes are [handle], [endpoint], [auto_handle], [implicit_
handle], and [explicit_handle]. They are recognized by tidl(1) but not
supported (these attributes are ignored). Also the handle_t type is not treated
specially (it is transmitted as any other defined type is transmitted, without
treatment as a handle).

■ Pipes are not required by X/OPEN TxRPC IDL-only. tidl supports pipes only in
[local] mode; that is, they can be specified for header file, but not stub,
generation.

■ The [idempotent], [maybe], and [broadcast] attributes are not required by
X/OPEN TxRPC IDL-only. They are ignored by tidl(1).

2.5 Enhancements to the Language
The following are enhancements to the X/OPEN RPC specification. In most cases, the
language has been enhanced to more closely follow the C language, simplifying the
porting of existing interfaces (converting from ANSI C to IDL prototypes).

■ In the X/OPEN specification, character constants and character strings are limited
to the portable set, that is space (0x20) through tilde (0x7e). Other characters in
the character set (0x01 through 0xff) are allowed, as in OSF DCE RPC.

■ As in C, the following operators are treated as punctuators.

|| && ? | & _ == != = << >> <= >= < > + - % ! ~

This means that white space need not follow or precede identifiers or numbers if
preceded or followed by one of these tokens. (The IDL specification requires white
space, as in a = b + 3, instead of allowing a=b+3.) This also seems to be the
behavior of the OSF DCE IDL compiler.

■ The published X/OPEN specification restricts field and parameter names from
matching type names. This restriction effectively puts all names in a single name
space. This restriction does not match C, C++, or the OSF IDL compiler, and is not
enforced.

Enhancements to the Language

2-4 Product Title/BookTitle as a Variable Beta Draft

■ The X/OPEN specification does not allow anonymous enumerations as parameter
or function results and does not allow anonymous structures or unions as the
targets of pointers. Each of these is allowed by the OSF DCE IDL compiler. These
restrictions are not enforced; in each case, a name, based on the interface name and
version, is generated for use during marshalling.

■ Enumeration values (constants) may be used in integer constant expressions (as in
C). This also seems to be the behavior of the DCE IDL compiler.

■ As currently defined in the X/OPEN RPC specification, the grammar does not
allow for a pointer in front of an operation declaration, for example:

long *op(void);

nor does it allow for structure or union returns. While this could be considered
correct (everything could be hidden in a defined type), the DCE IDL compiler and,
of course, C compiler allow a much richer operation return. The supported
grammar will be the following:

[operation_attributes] <type_spec> <declarator>

where <declarator> must contain a <function_declarator>. (If a
<function_declarator> does not exist, then a variable is declared, which
results in an error.) Declaring an array of operations or an operation returning an
array (both allowed by this grammar) will be detected and flagged as an error.

■ The <ACS_type_declaration> takes <ACS_named_type> values, just as the
IDL <type_declaration> takes a list of declarators. This seems to be the
behavior of the DCE IDL compiler.

■ Fielded buffers created and manipulated with the Field Manipulation Language
(FML) are an integral part of many Oracle Tuxedo ATMI applications. Fielded
buffers are supported as a new base type in the IDL. They are indicated by the
keywords FBFR for 16-bit buffers and FBFR32 for 32-bit buffers and must always
be defined as a pointer (for example, FBFR * or FBFR32 *). A fielded buffer
cannot be defined as the base type in a typedef. They can be used in structure
fields and as parameters. They can be used as the base type in an array or pointer
(either full or reference pointer). However, conformant and varying arrays of
fielded buffers are not supported.

■ There are several restrictions in the OSF IDL compiler that are not documented in
the AES or X/OPEN RPC specification. These are enforced in the Oracle Tuxedo
IDL compiler:

– A transmitted type used in [transmit_as()] cannot have the [represent_
as] attribute.

– A union arm may not be or contain a [ref] pointer.

– If a conformant and/or varying array appears in a structure, the array size
attribute variable may not be a pointer (that is, it must be a non-pointer,
integer element within the structure).

2.5.1 Enhancements that May Limit Portability
There are four additional Oracle Tuxedo ATMI enhancements to the X/OPEN RPC
specification that, while making the specification more C-like, are not supported in the
OSF DCE IDL compiler and thus have the effect of limiting portability of the IDL file:

■ String concatenation is supported (as in ANSI C). That is:

const char *str = "abc" "def";

Using tidl, the IDL Compiler

Beta Draft Using the Interface Definition Language (IDL) 2-5

is treated the same as

const char *str = "abcdef";

■ Escaped newlines are allowed in string constants. That is:

const char *str = "abc\
 def";

is treated the same as

const char *str = "abcdef";

■ Enumeration values may also be used in union cases and are treated as integers
(that is, automatic conversion is provided as in C).

■ The restriction that the type of each <union_case_label> must be that
specified by the <switch_type_spec> will not be enforced. Instead, the type
will be coerced as is done with case statements in a C switch statement.

2.6 Unsupported Features
The following seven features are not supported in the tidl compiler:

■ The migration attributes [v1_struct], [v1_enum], [v1_string], and [v1_
array] are recognized but not supported (these appear in the OSF IDL
specification but not the X/OPEN specification).

■ Function pointers (defined in the OSF/DCE document) are supported only in
[local] mode (as in OSF/DCE).

■ An exact match is required on interface version minor between the client and the
server (the X/OPEN RPC specification allows for the server version minor to be
greater than or equal to the version minor specified by the client).

■ On machines with 32-bit longs, integer literal values are limited to -2**31 to 2**31.
This means that unsigned long integer values in the range 2**31+1 to 2**32-1 are
not supported. This also seems to be the behavior of the DCE IDL compiler.

■ Context handles are supported only in [local] mode. Interfaces cannot be
written that use context handles to maintain state across operations.

■ The [out-of-line] ACS attribute is ignored. This feature is not defined in a
way that will support interoperation between different implementations (e.g., with
the OSF IDL compiler).

■ The [heap] ACS attribute is ignored.

2.7 Using tidl, the IDL Compiler
The interface for the IDL compiler is not specified in any X/OPEN specification.

For DCE application portability, the Oracle Tuxedo ATMI IDL compiler has a similar
interface to the DCE IDL compiler, with the following exceptions:

■ The command name is tidl instead of idl so an application can easily reference
either when both appear in the same environment.

■ The -bug option, which generates buggy behavior for interoperability with earlier
versions of the software, has no effect. The -no_bug option also has no effect.

Using tidl, the IDL Compiler

2-6 Product Title/BookTitle as a Variable Beta Draft

■ The -space_opt option, which optimizes the code for space, is ignored. Space is
always optimized.

■ A new option, -use_const, is supported. -use_const generates ANSI C const
statements instead of #define statements for constant definitions. This gets
around an annoying problem where a constant defined in the IDL file collides
with another name in the file using a C-preprocessor definition, but is properly in
another name space when defined as a C constant. Use of this feature will limit
portability of the IDL file.

■ By default, /lib/cpp, /usr/ccs/lib/cpp, or /usr/lib/cpp (whichever is
found first) is the command used to preprocess the input IDL and ACF files.

By default, the IDL compiler takes an input IDL file and generates the client and server
stub object files. The -keep c_source option generates only the C source files, and
the -keep all option keeps both the C source and object files. The sample RPC
application, listed in Appendix A, "A Sample Application," uses the -keep object
option to generate the object files.

By default, at most 50 errors are printed by tidl. If you want to see them all (and
have more than 50 errors), use the -error all option. The error output is printed to
the stderr.

See tidl(1) in the BEA Tuxedo Command Reference for details on the many other
options that are available.

3

Beta Draft Writing RPC Client and Server Programs 3-1

3Writing RPC Client and Server Programs

This topic includes the following sections:

■ Section 3.1, "Handling Remoteness"

■ Section 3.2, "Handling Status and Exception Returns"

■ Section 3.3, "Using Stub Support Functions"

■ Section 3.4, "Using RPC Header Files"

■ Section 3.5, "Portability of Code"

■ Section 3.6, "Interacting with ATMI"

■ Section 3.7, "Interacting with TX"

3.1 Handling Remoteness
The goal of TxRPC is to provide procedure calls transparently between a client in one
address space and a server in another address space, potentially on different machines.
However, because the client and server are not in the same address space, there are
some things to remember:

■ Because the client and server are in different address spaces, potentially on
different machines, memory is not assumed to be shared. Program state (for
example, open file descriptors) and global variables are not shared between the
client and server. Any state information required must be passed from the client to
the server and then back to the client for subsequent calls.

■ The division of labor between the client and server has some advantages, such as
providing more modularity of the software and the ability to do the work near the
resources required to do the work. However, it may also mean more complexity in
dealing with issues related to distributed processing, such as communication
problems, independent unavailability of either the client or server, and so forth.
Errors resulting from the increased complexity may require different handling
from those in an interface designed for local procedure calls. The handling of
errors involved in communications and/or the remote process is covered in the
next topic.

Note: Sample client and server source files are provided in
Appendix A, "A Sample Application."

Handling Status and Exception Returns

3-2 Product Title/BookTitle as a Variable Beta Draft

3.2 Handling Status and Exception Returns
In the X/OPEN RPC specification, non-application errors are returned via status
parameters or a status return. A fault_status value is returned if there is an RPC
server failure and a comm_status value is returned if there is a communications
failure. Status returns are specified by defining an operation return value or an [out]
parameter of type error_status_t in the IDL file, and declaring the same operation
or parameter to have the [fault_status] and/or [comm_status] attribute in the
ACF file.

For example, an operation defined in an IDL file as:

error_status_t op([in,out]long *parm1, [out]error_status_t *commstat);

with a definition in the corresponding ACF file as:

[fault_status]op([comm_status]commstat);

returns an error from the server via the operation return, and an error in
communications via the second parameter. Its use in the client code could be as
follows:

if (op(&parm1, &commstat) != 0 || commstat != 0) /* handle error */

The advantage of using status returns is that the error can be handled immediately at
the point of failure for fine-grained error recovery.

The disadvantage of using status returns is that the remote function has additional
parameters that the local version of the function does not have. Additionally,
fine-grained error recovery can be tedious and error prone (for example, some cases
may be missing).

DCE defines a second mechanism called exception handling. It is similar to C++
exception handling.

The application delimits a block of C or C++ code in which an exception may be raised
with the TRY, CATCH, CATCH_ALL, and ENDTRY statements. TRY indicates the
beginning of the block. CATCH is used to indicate an exception-handling block for a
specific exception, and CATCH_ALL is used to handle any exceptions for which there is
not a CATCH statement. ENDTRY ends the block. TRY blocks are nested such that if an
exception cannot be handled at a lower level, the exception can be raised to a higher
level block using the RERAISE statement. If an exception is raised out of any exception
handling block, the program writes a message to the log and exits. Details of the
exception handling macros and an example are described in TRY(3c) in the BEA
Tuxedo C Function Reference.

In addition to exceptions generated by the communications and server for an RPC call,
exceptions are also generated for lower level exceptions, specifically operating system
signals. These exceptions are documented within TRY(3c) in the BEA Tuxedo C
Function Reference.

3.3 Using Stub Support Functions
There are a large number of run-time support functions (over 100) defined in the
X/OPEN RPC specification. These functions need not all be supported in an X/OPEN
TxRPC IDL-only environment. Most of these functions relate to binding and
management which are done transparently for ATMI clients and servers.

One area that affects application portability is the management of memory allocated
for stub input and output parameters and return values. The Stub Memory

Using Stub Support Functions

Beta Draft Writing RPC Client and Server Programs 3-3

Management routines are supported in TxRPC run time with the exception of the two
routines to handle threads. The status-returning functions include:

■ rpc_sm_allocate

■ rpc_sm_client_free

■ rpc_sm_disable_allocate

■ rpc_sm_enable_allocate

■ rpc_sm_free

■ rpc_sm_set_client_alloc_free

■ rpc_sm_set_server_alloc_free

■ rpc_sm_swap_client_alloc_free

The equivalent exception-returning functions include:

■ rpc_ss_allocate

■ rpc_ss_client_free

■ rpc_ss_disable_allocate

■ rpc_ss_enable_allocate

■ rpc_ss_free

■ rpc_ss_set_client_alloc_free

■ rpc_ss_set_server_alloc_free

■ rpc_ss_swap_client_alloc_free

Refer to BEA Tuxedo C Function Reference for more information on these functions.

The run-time functions are contained in libtrpc; building RPC clients and servers is
discussed in the next topic.

The following are a few tips regarding memory management:

■ When an ATMI client calls a client stub, it uses malloc and free by default. All
space will be freed on return from the client stub except space allocated for [out]
pointers (including implicit [out] pointers in the return value of the operation).
To make freeing of [out] pointers easier, call rpc_ss_enable_allocate(), and
set alloc/ free to rpc_ss_alloc()/ rpc_ss_free() before calling the RPC by
calling rpc_ss_set_client_alloc_free(). Then rpc_ss_disable_
allocate() can be used to free all of the allocated memory. For example, to
simplify freeing space returned from a client stub the following could be used:

rpc_ss_set_client_alloc_free(rpc_ss_allocate, rpc_ss_free);
ptr = remote_call_returns_pointer();
/* use returned pointer here */
...
rpc_ss_disable_allocate(); /* this frees ptr */

■ When an ATMI server stub is executed that calls an application operation, memory
allocation using rpc_ss_allocate is always enabled in the server stub. The
[enable_allocate] attribute in the ACF file has no effect. All memory will be
freed in the server before returning the response to the client. (In DCE, memory
allocation is enabled only if [ptr] fields or parameters exist, or the programmer
explicitly specifies [enable_allocate].)

Using RPC Header Files

3-4 Product Title/BookTitle as a Variable Beta Draft

■ When a server stub calls an application operation which in turn calls a client stub
(that is, when a server acts as a client by calling an RPC), the rpc_ss_set_
client_alloc_free() function must be called to set up allocation such that any
space allocated will be freed when the operation returns. This is done by calling:

rpc_ss_set_client_alloc_free(rpc_ss_allocate, rpc_ss_free);

■ When calling rpc_ss_allocate() or rpc_sm_allocate(), remember to cast the
output to match the data type of the pointer being set. For example:

long *ptr;
ptr = (long *)rpc_ss_allocate(sizeof(long));

3.4 Using RPC Header Files
To ensure that stubs from both DCE/RPC and TxRPC can be compiled in the same
environment, different header filenames are used in the TxRPC implementation. This
should not affect the application programmer since these header files are automatically
included in the interface header file generated by the IDL compiler. However, an
application program may wish to view these headers to see how a type or function is
defined. The new header filenames are listed here:

■ dce/nbase.h, dce/nbase.idl—renamed rpc/tbase.h and
rpc/tbase.idl. Contain the declarations for pre-declared types error_
status_t, ISO_LATIN_1, ISO_MULTI_LINGUAL, and ISO_UCS.

■ dce/idlbase.h—renamed rpc/tidlbase.h. Contains the IDL base types, as
defined in the specification (for example, idl_boolean, idl_long_int), and
the function prototypes for the stub functions.

■ dce/pthread_exc.h—renamed rpc/texc.h. Contains the TRY/ CATCH
exception handling macros.

■ dce/rpcsts.h—renamed rpc/trpcsts.h. Contains the exception and status
value definitions for the RPC interface.

These header files are located in $TUXDIR/include/rpc. The TxRPC IDL compiler
will look in $TUXDIR/include by default as the "system IDL directory."

3.5 Portability of Code
The output from the IDL compiler is generated in a way to allow it to be compiled in a
large number of environments (see the next chapter for a discussion of compilation).
However, there are some constructs that don't work in various environments. The
following are a few known problems:

When compiling with Classic (non-ANSI) C, "pointers to arrays" are not allowed. For
example:

typedef long array[10][10];
func()
 {
 array t1;
 array *t2;
 t2 = &t1; /* & ignored, invalid assignment */
 func2(&t1); /* & ignored */
 }

Portability of Code

Beta Draft Writing RPC Client and Server Programs 3-5

This will make it difficult to pass "pointers to arrays" to operations as parameters in a
portable fashion.

When using an array of strings where the string attribute is applied to a multi-byte
structure, the results will not be as desired if the compiler pads the structure. This is
not the normal case (most compilers do not pad a structure that contains only
character fields), but at least one occurrence is known to exist.

Constant values are, by default, implemented by generating a #define for each
constant. This means that names used for constants should not be used for any other
names in the IDL file or any imported IDL files. A TxRPC-specific option on the tidl
compiler, -use_const, may be used to get around this problem in an ANSI C
environment. This option will cause const declarations instead of #define
definitions to be generated. The constant values will be declared in the client and
server stubs, and any other source file including the header file will simply get
extern const declarations. Note that this has the restriction that the client and
server stubs may not be compiled into the same executable file (or duplicate definition
errors will occur).

There are several restrictions in the C++ environment:

■ Do not use the same name for a typedef and a structure or union tag, unless the
typedef name matches the struct or union name.

struct t1 {
 long s1;
};
typedef struct t1 t1; /* ok */
typedef long t1; /* error */

■ Do not hide a structure or union tag declaration inside another structure or union
declaration and then reference it outside.

struct t1 {
 struct t2 {
 long s2;
} s1;
} t1;
typedef struct t3 {
struct t2 s3; /* t2 undefined error */
} t3;

■ Some compiler warnings may be generated. These include the following:

– Warnings that automatic variables are declared but not used.

– Warnings that a variable is used before being set when referenced in
sizeof() as in the following case:

long *ptr;
ptr = (long *)malloc(sizeof(*ptr) * 4);

When coding the client and server application software, you should use the data types
generated by the IDL compiler, as defined in rpc/tidlbase.h (listed as Emitted
Macro in the following table). For instance, if you use a long instead of idl_long_
int, then the data type may be 32 bits on some platforms and 64 bits on others; idl_
long_int will be 32 bits on all platforms. Table 3–1 lists the generated data types.

Portability of Code

3-6 Product Title/BookTitle as a Variable Beta Draft

Table 3–1 Generated Data Types

IDL Type Size Emitted Macro C Type

boolean 8 bits idl_boolean unsigned char

char 8 bits idl_char unsigned char

byte 8 bits idl_byte unsigned char

small 8 bits idl_small_int char

short 16 bits idl_short_int short

long 32 bits idl_long_int Machines with 32-bit long: long
Machines with 64-bit long: int

hyper 64 bits idl_hyper_int Machines with 32-bit long:

Big Endian

struct
{
 long high;
 unsigned long low;
}

Little Endian

struct
 {
 unsigned long low;
 long high;
 }

Machines with 64-bit long:

long

unsigned
small

8 bits idl_usmall_int unsigned char

unsigned
short

16 bits idl_ushort_int short

unsigned
long

32 bits idl_ulong_int Machines with 32-bit long: long
Machines with 64-bit long: int

unsigned
hyper

64 bits idl_uhyper_int Machines with 32-bit long:

Big Endian

struct
{
 unsigned long high;
 unsigned long low;
}

Little Endian

struct
 {
 unsigned long low;
 unsigned long high;
 }

Machines with 64-bit long:

unsigned long

Interacting with ATMI

Beta Draft Writing RPC Client and Server Programs 3-7

As in C, there are several classes of identifiers in the IDL. Names within each class
(that is, scope or name space) must be unique:

■ Constant, typedef, operation, and enumeration member names are in one name
space.

■ Structure, union, and enumeration tags are in another name space.

■ Structure and union member names at the same level must be unique within the
structure or union in which they are defined.

■ Parameter names within the operation prototype in which they are defined must
be unique.

Note that an anonymous structure or union (without a tag and not defined as part of a
typedef) cannot be used for an operation return or a parameter.

3.6 Interacting with ATMI
The TxRPC executables use the Oracle Tuxedo system to do the RPC communications.
Other Oracle Tuxedo interfaces and communications mechanisms can be used within
the same clients and servers that are using the RPC calls. Thus, it is possible to have a
single client making Request/Response calls (for example tpcall(3c),
tpacall(3c), and tpgetrply(3c)), making conversational calls
(tpconnect(3c), tpsend(3c), tprecv(3c), and tpdiscon(3c)), and accessing
the stable queue (tpenqueue(3c) and tpdequeue(3c)). When a client makes the
first call to the Oracle Tuxedo software, either an RPC call, any of these other
communications calls, or any other ATMI call (such as a call for buffer allocation or
unsolicited notification), the client automatically joins the application. However, if the
application is running with security turned on or if the client must run as part of a
particular resource manager group, then tpinit(3c) must be called explicitly to join
the application. Refer to tpinit(3c) in the BEA Tuxedo C Function Reference for
further details, and a list of options that can be explicitly set. When an application
completes work using the Oracle Tuxedo system, tpterm(3c) should be called
explicitly to leave the application and free up any associated resources. If this is not
done for native (non-Workstation) clients, the monitor detects this, prints a warning in
the userlog(3c), and frees up the resources. In the case of Workstation clients, the
resources may not be freed up and eventually the Workstation Listener or Handler will
run out of resources to accept new clients.

As with clients, servers can use any of the communication paradigms in the role of
client. However, a server cannot provide (advertise) both conversational services and
RPC services within the same server; as described later, an RPC server must be marked
as non-conversational. Although it is possible to mix ATMI request/response and RPC
services within the same server, this is not recommended. One further restriction is
that RPC operations cannot call tpreturn(3c) or tpforward(3c). Instead, RPC
operations must return as they would if called locally. Any attempt to call
tpreturn(3c) or tpforward(3c) from an RPC operation will be intercepted and

float 32 bits idl_short_float float

double 64 bits idl_long_float double

void * pointer idl_void_p_t void *

handle_t pointer handle_t handle_t

Table 3–1 (Cont.) Generated Data Types

IDL Type Size Emitted Macro C Type

Interacting with TX

3-8 Product Title/BookTitle as a Variable Beta Draft

an error will be returned to the client (exception rpc_x_fault_unspec or status
rpc_s_fault_unspec).

Two functions available to servers but not to clients are tpsvrinit(3c) and
tpsvrdone(3c), which are called when the server starts up and when it is shut
down. Since the server must call tx_open(3c) before receiving any TxRPC
operation requests, tpsvrinit() is a good place to call it. The default tpsvrinit()
function already calls tx_open().

3.7 Interacting with TX
The TX functions provide an interface for transaction demarcation. tx_begin(3c)
and tx_commit(3c) or tx_rollback(3c) encapsulate any work, including
communications, within a transaction. Other primitives are provided to set transaction
timeout, declare the transaction as chained or unchained, and retrieve transaction
information. These are discussed in detail in the X/OPEN TX Specification, and
reviewed in the X/OPEN TxRPC Specification. The X/OPEN TxRPC Specification
indicates the interactions between TX and RPC. These are summarized as follows:

■ An interface or an operation can have the [transaction_optional] attribute
which indicates that if the RPC is called within a transaction, the work done in the
called operation will be part of the transaction.

■ An interface or an operation can have the [transaction_mandatory] attribute
which indicates that the RPC must be called within a transaction or the txrpc_x_
not_in_transaction exception is returned.

■ If neither of these attributes is specified, then the work in the called operation is
not part of any transaction that may be active in the caller.

■ If a TxRPC operation is called in the server and tx_open(3c) has not been
called, a txrpc_x_no_tx_open_done exception is returned to the caller.

■ TxRPC allows tx_rollback(3c) to be called from an operation to mark the
transaction as rollback-only, such that any work performed on behalf of the
transaction will be ultimately rolled back. It is recommended in this case that the
application also return an application-level error to the caller indicating that the
transaction will be rolled back.

Other changes or restrictions for the IDL defined by the TxRPC specification have been
described earlier in the discussion about the IDL itself.

4

Beta Draft Building RPC Client and Server Programs 4-1

4Building RPC Client and Server Programs

[oc--the first image has a GraphicDesc element added to it. you need to add it to
the rest of the images in this chapter.]

This topic includes the following sections:

■ Section 4.1, "Prerequisite Knowledge"

■ Section 4.2, "Building an RPC Server"

■ Section 4.3, "Building an RPC Client"

■ Section 4.4, "Building a Windows Workstation RPC Client"

■ Section 4.5, "Using C++"

■ Section 4.6, "Interoperating with DCE/RPC"

4.1 Prerequisite Knowledge
The TxRPC programmer should be familiar with the C compilation system and
building Oracle Tuxedo ATMI clients and servers. Information on building Oracle
Tuxedo ATMI clients and servers is provided in the Programming a BEA Tuxedo
Application Using C, Programming a BEA Tuxedo Application Using C, and
Programming a BEA Tuxedo Application Using FML. Building Workstation clients is
provided in Using the BEA Tuxedo Workstation Component.

4.2 Building an RPC Server
RPC servers are built and configured in much that same way that ATMI
Request/Response servers are. In fact, the service name space for RPC and
Request/Response servers is the same. However, the names advertised for RPC
services are different. For Request/Response servers, a service name is mapped to a
procedure. For RPC servers, a service name is mapped to an IDL interface name. The
RPC service advertised will be <interface>v<major>_<minor>, where
<interface> is the interface name, and <major> and <minor> are the major and
minor numbers of the version, as specified (or defaulted to 0.0) in the interface
definition. Because the service name is limited to 15 characters, this limits the length of
the interface name to 13 characters minus the number of digits in the major and minor
version numbers. This also implies that an exact match is used on major AND minor
version numbers because of the way name serving is done in the Oracle Tuxedo
system. Note that the interface, and not individual operations, are advertised (similar
to DCE/RPC). The server stub automatically takes care of calling the correct operation
within the interface.

Building an RPC Client

4-2 Product Title/BookTitle as a Variable Beta Draft

RPC servers are built using the buildserver(1) command. We recommend using
the -s option to specify the service (interface) names at compilation time. The server
can then be booted using the -A option to get the services automatically advertised.
This approach is used in the sample application, as shown in Appendix A, "A Sample
Application."

The buildserver(1) command automatically links in the Oracle Tuxedo libraries.
However, the RPC run time must be linked in explicitly. This is done by specifying the
-f -ltrpc option after any application files on the buildserver line. Normally, the
output of the tidl(1) command is a server stub object file. This can be passed
directly to the buildserver command. Note that the server stub and the application
source, object, and library files implementing the operations should be specified ahead
of the run-time library, also using the -f option. See the makefile rpcsimp.mk, in
Appendix A, "A Sample Application," for an example.

4.3 Building an RPC Client
A native RPC client is built using the buildclient(1) command. This command
automatically links in the Oracle Tuxedo libraries. However, the RPC run time must be
linked in explicitly. This is done by specifying the -f -ltrpc option after any
application files on the buildclient command line. Generally, the output of the
tidl(1) command is a client stub object file. This can be passed directly to the
buildclient command. Note that the client stub and the application source, object,
and library files executing the remote procedure calls should be specified ahead of the
run-time library, also using the -f option. For an example, see the makefile
rpcsimp.mk in Appendix A, "A Sample Application."

To build a UNIX Workstation client, simply add the -w option to the
buildclient(1) command line so that the Workstation libraries are linked in
instead of the native libraries.

4.4 Building a Windows Workstation RPC Client
Compilation of the client stub for Windows requires the -D_TM_WIN definition as a
compilation option. This ensures that the correct function prototypes for the TxRPC
and Oracle Tuxedo ATMI run time functions are used. While the client stub source is
the same, it must be compiled specially to handle the fact that the text and data
segments for the DLL will be different from the code calling it. The header file and
stub are automatically generated to allow for the declarations to be changed easily,
using C preprocessor definitions. The definition _TMF (for "far") appears before all
pointers in the header file and _TMF is automatically defined as "_far" if _TM_WIN is
defined.

In most cases, using standard libraries, the buildclient(1) command can be used
to link the client. The library to be used is wtrpc.lib.

The sample also shows how to create a Dynamic Link Library (DLL) using the client
stub. This usage will be very popular when used with a visual application builder that
requires DLL use (where the application code cannot be statically linked in). Windows
functions are traditionally declared to have the _pascal calling convention. The
header file and stub are automatically generated to allow for the declarations to be
changed easily, using C preprocessor definitions. _TMX (for "eXport") appears before
all declared functions. By default, this definition is defined to nothing. When
compiling a stub for inclusion in a DLL, _TMX should be defined to _far _pascal.
Also, the files to be included in the DLL must be compiled with the large memory
model. Because using _pascal automatically converts the function names to

Interoperating with DCE/RPC

Beta Draft Building RPC Client and Server Programs 4-3

uppercase in the library, it is a good idea to run with the -port case option turned
on, which does additional validation to see if two declared names differ only in case.

A complete example of building a Windows DLL is shown in Appendix A, "A Sample
Application."

4.5 Using C++
Clients and servers can be built using C or C++, interchangeably. The header files and
generated stub source files are defined in such a way that all Stub Support functions
and generated operations allow for complete interoperability between C++ and C.
They are declared with C linkage, that is, as extern "C," so that name mangling is
turned off.

The stub object files can be built using C++ by specifying CC -c for the -cc_cmd
option of tidl(1). The CC command can be used to compile and link client and
server programs by setting and exporting the CC environment variable before running
buildclient(1) and buildserver(1). For example:

tidl -cc_cmd "CC -c" -keep all t.idl
CC=CC buildserver -o server -s tv1_0 -f "-I. t_sstub.o server.c -ltrpc"

In the Windows environment, C++ compilation is normally accomplished via a flag on
the compilation command line or a configuration option rather than a different
command name. Use the appropriate options to get C++ compilation.

4.6 Interoperating with DCE/RPC
The Oracle Tuxedo TxRPC compiler uses the same IDL interface as OSF/DCE but the
generated stubs do not use the same protocol. Thus, an Oracle Tuxedo TxRPC stub
cannot directly communicate with a stub generated by the DCE IDL compiler.

However, it is possible to have the following interoperations between DCE/RPC and
Oracle Tuxedo TxRPC:

■ Client side stubs from both DCE and Oracle Tuxedo TxRPC can be called from the
same program (either client or server).

■ An Oracle Tuxedo ATMI server stub can call application code that calls a DCE
client stub (as well as an Oracle Tuxedo TxRPC client stub).

■ A DCE server (manager) can call application code that calls an Oracle Tuxedo
TxRPC client stub.

The following sections show possible interactions between Oracle Tuxedo TxRPC and
OSF/DCE. In each case, the originator of the request is called the requester. This term
is used instead of "client" because the requester could, in fact, be a DCE or Oracle
Tuxedo ATMI service making a request of another service. The terms "client" and
"server" refer to the client and server stubs generated by the IDL compilers (either
DCE idl(1) or Oracle Tuxedo tidl(1)); these terms are used for consistency with the
DCE and TxRPC terminology. Finally, the term "application service" is used for the
application code that implements the procedure that is being called remotely (it is

Note: A compilation error may occur if a TxRPC client includes
windows.h, due to a duplicate uuid_t definition. It will be
necessary for the application to either not include windows.h
(because it is included already) or to include it within a different file in
the application.

Interoperating with DCE/RPC

4-4 Product Title/BookTitle as a Variable Beta Draft

generally transparent whether the invoking software is the server stub generated by
DCE or Oracle Tuxedo).

4.6.1 Oracle Tuxedo Requester to DCE Service via Oracle Tuxedo Gateway

Figure 4–1 Oracle Tuxedo Requester to DCE Service via Oracle Tuxedo Gateway

Replace this text with an adequate description of the above image.

The first approach uses a "gateway" such that the Oracle Tuxedo ATMI client stub
invokes an Oracle Tuxedo ATMI server stub, via TxRPC, that has a DCE client stub
linked in (instead of the application services) that invokes the DCE services, via DCE
RPC. The advantage to this approach is that it is not necessary to have DCE on the
client platform. In fact, the set of machines running Oracle Tuxedo and the set of
machines running DCE could be disjoint except for one machine where all such
gateways are running. This also provides a migration path with the ability to move
services between Oracle Tuxedo and DCE. A sample application that implements this
approach is described in Appendix B, "A DCE-Gateway Application."

In this configuration, the requester is built as a normal Oracle Tuxedo ATMI client or
server. Similarly, the server is built as a normal DCE server. The additional step is to
build the gateway process which acts as an Oracle Tuxedo ATMI server using a TxRPC
server stub and a DCE client using a DCE/RPC client stub.

The process of running the two IDL compilers and linking the resultant files is
simplified with the use of the blds_dce(1) command, which builds an Oracle
Tuxedo ATMI server with DCE linked in.

The usage for blds_dce is as follows:

blds_dce [-o output_file] [-i idl_options] [-f firstfiles] [-l lastfile] \
 [idl_file . . .]

The command takes as input one or more IDL files so that the gateway can handle one
or more interfaces. For each one of these files, tidl is run to generate a server stub
and idl is run to generate a client stub.

This command knows about various DCE environments and provides the necessary
compilation flags and DCE libraries for compilation and linking. If you are developing
in a new environment, it may be necessary to modify the command to add the options
and libraries for your environment.

This command compiles the source files in such a way (with -DTMDCEGW defined) that
memory allocation is always done using rpc_ss_allocate(3c) and rpc_ss_
free(3c), as described in the BEA Tuxedo C Function Reference. This ensures that
memory is freed on return from the Oracle Tuxedo ATMI server. The use of
-DTMDCEGW also includes DCE header files instead of Oracle Tuxedo TxRPC header
files.

The IDL output object files are compiled, optionally with specified application files
(using the -f and -l options), to generate an Oracle Tuxedo ATMI server using
buildserver(1). The name of the executable server can be specified with the -o
option.

Interoperating with DCE/RPC

Beta Draft Building RPC Client and Server Programs 4-5

When running this configuration, the DCE server would be started first in the
background, then the Oracle Tuxedo configuration including the DCE gateway would
be booted, and then the requester would be run. Note that the DCE gateway is
single-threaded so you will need to configure and boot as many gateway servers as
you want concurrently executing services.

There are several optional things to consider when building this gateway.

4.6.1.1 Setting the DCE Login Context
First, as a DCE client, it is normal that the process runs as some DCE principal. There
are two approaches to getting a login context. One approach is to "log in" to DCE. In
some environments, this occurs simply by virtue of logging into the operating system.
In many environments, it requires running dce_login. If the Oracle Tuxedo ATMI
server is booted on the local machine, then it is possible to run dce_login, then run
tmboot(1) and the booted server will inherit the login context. If the server is to be
booted on a remote machine which is done indirectly via tlisten(1), it is necessary
to run dce_login before starting tlisten. In each of these cases, all servers booted
in the session will be run by the same principal. The other drawback to this approach
is that the credentials will eventually expire.

The other alternative is to have the process set up and maintain its own login context.
The tpsvrinit(3c) function provided for the server can set up the context and then
start a thread that will refresh the login context before it expires. Sample code to do
this is provided in $TUXDIR/lib/dceserver.c; it must be compiled with the
-DTPSVRINIT option to generate a simple tpsvrinit() function. (It can also be used
as the main() for a DCE server, as described in the following section.) This code is
described in further detail in Appendix B, "A DCE-Gateway Application."

4.6.1.2 Using DCE Binding Handles
Oracle Tuxedo TxRPC does not support binding handles. When sending an RPC from
the requester's client stub to the server stub within the gateway, the Oracle Tuxedo
system handles all of the name resolution and choosing the server, doing load
balancing between available servers. However, when going from the gateway to the
DCE server, it is possible to use DCE binding. If this is done, it is recommended that
two versions of the IDL file be used in the same directory or that two different
directories be used to build the requester, and the gateway and server. The former
approach of using two different filenames is shown in the example with the IDL file
linked to a second name. In the initial IDL file, no binding handles or binding
attributes are specified. With the second IDL file, which is used to generate the
gateway and DCE server, there is an associated ACF file that specifies [explicit_
handle] such that a binding handle is inserted as the first parameter of the operation.
From the Oracle Tuxedo server stub in the gateway, a NULL handle will be generated
(because handles aren't supported). That means that somewhere between the Oracle
Tuxedo ATMI server stub and the DCE client stub in the gateway, a valid binding
handle must be generated.

This can be done by making use of the manager entry point vector. By default, the IDL
compiler defines a structure with a function pointer prototype for each operation in
the interface, and defines and initializes a structure variable with default function
names based on the operation names. The structure is defined as:

<INTERF>_v<major>_<minor>_epv_t<INTERF>_v<major>_<minor>_s_epv

where <INTERF> is the interface name and <major>_<minor> is the interface
version. This variable is dereferenced when calling the server stub functions. The IDL
compiler option, -no_mepv, inhibits the definition and initialization of this variable,

Interoperating with DCE/RPC

4-6 Product Title/BookTitle as a Variable Beta Draft

allowing the application to provide it in cases where there is a conflict or difference in
function names and operation names. In the case where an application wants to
provide explicit or implicit binding instead of automatic binding, the -no_mepv
option can be specified, and the application can provide a structure definition that
points to functions taking the same parameters as the operations but different (or
static) names. The functions can then create a valid binding handle that is passed,
either explicitly or implicitly, to the DCE/RPC client stub functions (using the actual
operation names).

This is shown in the example in Appendix B, "A DCE-Gateway Application." The file
dcebind.c generates the binding handle, and the entry point vector and associated
functions are shown in dceepv.c.

Note that to specify the -no_mepv option when using the blds_dce, the -i -no_
mepv option must be specified so that the option is passed through to the IDL
compiler. This is shown in the makefile, rpcsimp.mk, in Appendix B, "A
DCE-Gateway Application."

4.6.1.3 Authenticated RPC
Now that we have a login context and a handle, it is possible to use authenticated RPC
calls. As part of setting up the binding handle, it is also possible to annotate the
binding handle for authentication by calling rpc_binding_set_auth_info(), as
described in the BEA Tuxedo C Function Reference. This is shown as part of
generating the binding handle in dcebind.c in Appendix B, "A DCE-Gateway
Application." This sets up the authentication (and potentially encryption) between the
gateway and the DCE server. If the requester is an Oracle Tuxedo ATMI server, then it
is guaranteed to be running as the Oracle Tuxedo administrator. For more information
about authentication for Oracle Tuxedo clients, see Administering the Oracle Tuxedo
System.

4.6.1.4 Transactions
OSF/DCE does not support transactions. That means that if the gateway is running in
a group with a resource manager and the RPC comes into the Oracle Tuxedo ATMI
client stub in transaction mode, the transaction will not carray to the DCE server.
There is not much you can do to solve this; just be aware of it.

4.6.2 DCE Requester to Oracle Tuxedo Service Using Oracle Tuxedo Gateway

Figure 4–2 DCE Requester to Oracle Tuxedo Service Using Oracle Tuxedo Gateway

In the preceding figure, the DCE requester uses a DCE client stub to invoke a DCE
service which calls the Oracle Tuxedo ATMI client stub (instead of the application
services), which invokes the Oracle Tuxedo ATMI service (via TxRPC). Note that in
this configuration, the client has complete control over the DCE binding and
authentication. The fact that the application programmer builds the middle server
means that the application also controls the binding of the DCE server to Oracle
Tuxedo ATMI service. This approach would be used in the case where the DCE
requester does not want to directly link in and call the Oracle Tuxedo system.

The main() for the DCE server should be based on the code provided in
$TUXDIR/lib/dceserver.c. If you already have your own template for the

Interoperating with DCE/RPC

Beta Draft Building RPC Client and Server Programs 4-7

main() of a DCE server, there are a few things that may need to be added or
modified.

First, tpinit(3c) should be called to join the ATMI application. If application
security is configured, then additional information may be needed in the TPINIT
buffer such as the username and application password. Prior to exiting, tpterm(3c)
should be called to cleanly terminate participation in the ATMI application. If you look
at dceserver.c, you will see that by compiling it with -DTCLIENT, code is included
that calls tpinit and tpterm. The code that sets up the TPINIT buffer must be
modified appropriately for your application. To provide more information with
respect to administration, it might be helpful to indicate that the client is a DCE client
in either the user or client name (the example sets the client name to DCECLIENT). This
information shows up when printing client information from the administration
interface.

Second, since the Oracle Tuxedo ATMI system software is not thread-safe, the
threading level passed to rpc_server_listen must be set to 1. In the sample
dceserver.c, the threading level is set to 1 if compiled with -DTCLIENT and to the
default, rpc_c_listen_max_calls_default, otherwise. (For more information,
refer to the BEA Tuxedo C Function Reference.)

In this configuration, the requester is built as a normal DCE client or server. Similarly,
the server is built as a normal Oracle Tuxedo ATMI server. The additional step is to
build the gateway process, which acts as an Oracle Tuxedo ATMI client using a TxRPC
client stub, and a DCE server, using a DCE/RPC server stub.

The process of running the two IDL compilers and linking the resultant files is
simplified with the use of the bldc_dce(1) command which builds an Oracle
Tuxedo ATMI client with DCE linked in.

The usage for bldc_dce is as follows:

bldc_dce [-o output_file] [-w] [-i idl_options] [-f firstfiles] \
 [-l lastfiles] [idl_file . . .]

The command takes as input one or more IDL files so that the gateway can handle one
or more interfaces. For each one of these files, tidl is run to generate a client stub and
idl is run to generate a server stub.

This command knows about various DCE environments and provides the necessary
compilation flags and DCE libraries. If you are developing in a new environment, it
may be necessary to modify the command to add the options and libraries for your
environment. The source is compiled in such a way (with -DTMDCEGW defined) that
memory allocation is always done using rpc_ss_allocate and rpc_ss_free
(described in the BEA Tuxedo C Function Reference) to ensure that memory is freed on
return. The use of -DTMDCEGW also includes DCE header files instead of Oracle Tuxedo
TxRPC header files.

The IDL output object files are compiled, optionally with specified application files
(using the -f and -l options), to generate an Oracle Tuxedo ATMI client using
buildclient(1). Note that one of the files included should be the equivalent of the
dceserver.o, compiled with the -DTCLIENT option.

The name of the executable client can be specified with the -o option.

When running this configuration, the Oracle Tuxedo ATMI configuration must be
booted before starting the DCE server so that it can join the Oracle Tuxedo ATMI
application before listening for DCE requests.

Interoperating with DCE/RPC

4-8 Product Title/BookTitle as a Variable Beta Draft

4.6.3 Oracle Tuxedo Requester to DCE Service Using DCE-only

Figure 4–3 Oracle Tuxedo Requester to DCE Service Using DCE-only

This approach assumes that the DCE environment is directly available to the client
(this can be a restriction or disadvantage in some configurations). The client program
has direct control over the DCE binding and authentication. Note that this is
presumably a mixed environment in which the requester is either an Oracle Tuxedo
ATMI service that calls DCE services, or an Oracle Tuxedo client (or server) that calls
both Oracle Tuxedo and DCE services.

When compiling Oracle Tuxedo TxRPC code that will be used mixed with DCE code,
the code must be compiled such that DCE header files are used instead of the TxRPC
header files. This is done by defining -DTMDCE at compilation time, both for client and
server stub files and for your application code. If you are generating object files from
tidl(1), you must add the -cc_opt -DTMDCE option to the command line. The
alternative is to generate c_source from the IDL compiler and pass this C source (not
object files) to bldc_dce or blds_dce as in the following examples:

tidl -keep c_source -server none t.idl
idl -keep c_source -server none dce.idl
bldc_dce -o output_file -f client.c -f t_cstub.c -f dce_cstub.c

or

blds_dce -o output_file -s service -f server.c -f t_cstub.c -f dce_cstub.c

In this example, we are not building a gateway process so .idl files cannot be
specified to the build commands. Also note that the blds_dce command cannot
figure out the service name associated with the server so it must be supplied on the
command line using the -s option.

4.6.4 DCE Requester to Oracle Tuxedo Service Using Oracle Tuxedo-only

Figure 4–4 DCE Requester to Oracle Tuxedo Service Using Oracle Tuxedo-only

In this final case, the DCE requester calls the Oracle Tuxedo client stub directly.

Again, -DTMDCE must be used at compilation time, both for client and server stub files
and for your application code. In this case the requester must be an Oracle Tuxedo
ATMI client:

tidl -keep c_source -client none t.idl
bldc_dce -o output_file -f -DTCLIENT -f dceserver.c -f t_cstub.c

Note that dceserver.c should call tpinit(3c) to join the application and
tpterm(3c) to leave the application, as was discussed earlier.

Interoperating with DCE/RPC

Beta Draft Building RPC Client and Server Programs 4-9

4.6.5 Building Mixed DCE/RPC and Oracle Tuxedo TxRPC Clients and Servers
This section summarizes the rules to follow if you are compiling a mixed client or
server without using the bldc_dce(1) or blds_dce(1) commands:

■ When compiling the generated client and server stubs, and compiling the client
and server application software that includes the header file generated by
tidl(1), TMDCE must be defined (for example, -DTMDCE=1). This causes some
DCE header files to be used instead of the Oracle Tuxedo TxRPC header files.
Also, some versions of DCE have a DCE compilation shell that adds the proper
directories for the DCE header files and ensures the proper DCE definitions for the
local environment. This shell should be used instead of directly using the C
compiler. The DCE/RPC compiler and TMDCE definition can be specified using
the -cc_cmd option on tidl. For example:

tidl -cc_cmd "/opt/dce/bin/cc -c -DTMDCE=1" simp.idl

or

tidl -keep c_source simp.idl
 /opt/dce/bin/cc -DTMDCE=1 -c -I. -I$TUXDIR/include simp_cstub.c
 /opt/dce/bin/cc -DTMDCE=1 -c -I. -I$TUXDIR/include client.c

On a system without such a compiler shell, it might look like the following:

cc <DCE options> -DTMDCE=1 -c -I. -I$(TUXDIR)/include \
 -I/usr/include/dce simp_cstub.c

Refer to the DCE/RPC documentation for your environment.

■ If the server makes an RPC call, then set_client_alloc_free() should be
called to set the use of rpc_ss_allocate() and rpc_ss_free(), as described
earlier. (For more information, refer to the BEA Tuxedo C Function Reference.)

■ When linking the executable, use -ldrpc instead of -ltrpc to get a version of
the Oracle Tuxedo TxRPC runtime that is compatible with DCE/RPC. For
example:

buildclient -o client -f client.o -f simp_cstub.o -f dce_cstub.o \
 -f-ldrpc -f-ldce -f-lpthreads -f-lc_r

or

CC=/opt/dce/bin/cc buildclient -d " " -f client.o -f simp_cstub.o \
 -f dce_cstub.o -f -ldrpc -o client

Assume that simp_cstub.o was generated by tidl(1) and dce_cstub.o was
generated by idl. The first example shows building the client without a DCE
compiler shell; in this case, the DCE library (-ldce), threads library (-lpthreads),
and re-entrant C library (-lc_r) must be explicitly specified. The second example
shows the use of a DCE compiler shell which transparently includes the necessary
libraries. In some environments, the libraries included by buildserver and
buildclient for networking and XDR will conflict with the libraries included by the
DCE compiler shell (there may be re-entrant versions of these libraries). In this case,
the buildserver(1) and buildclient(1) libraries may be modified using the -d
option. If a link problem occurs, trying using -d " " to leave out the networking and
XDR libraries, as shown in the example above. If the link still fails, try running the
command without the -d option and with the -v option to determine the libraries that
are used by default; then use the -d option to specify a subset of the libraries if there is
more than one. The correct combination of libraries is environment-dependent because
the networking, XDR, and DCE libraries vary from one environment to another.

Interoperating with DCE/RPC

4-10 Product Title/BookTitle as a Variable Beta Draft

Note: Mixing DCE and Oracle Tuxedo TxRPC stubs is not currently
supported on Windows.

5

Beta Draft Running the Application 5-1

5Running the Application

This topic includes the following sections:

■ Prerequisite Knowledge

■ Configuring the Application

■ Booting and Shutting Down the Application

■ Administering the Application

■ Using Dynamic Service Advertisement

5.1 Prerequisite Knowledge
The Oracle Tuxedo ATMI system administrator modifying the configuration to add
RPC servers should be familiar with creating an ASCII configuration file (the format is
described in UBBCONFIG(5)), and loading the binary configuration using
tmloadcf(1). These activities are described in Administering the Oracle Tuxedo System.

5.2 Configuring the Application
When configuring an RPC server, it is configured the same as a Request/Response
server. One entry is needed in the SERVERS page for each RPC server or group of RPC
servers. (MAX can be set to a value greater than one to configure multiple RPC servers
with one entry.) An RQADDR can optionally be specified so that multiple instances of
an RPC server share the same request queue (multiple servers, single queue
configuration). The CONV parameter must be not specified or must be set to N (for
example, CONV=N). See the sample configuration file in Appendix A, "A Sample
Application."

If a server will be part of a transaction, then it must be in a group on a machine that
has a TLOGDEVICE. The GROUPS entry must be configured with a TMSNAME and an
OPENINFO string that are used to access the associated resource manager.

It is optional to specify SERVICES entries. If specified, the service name must be the
name described in the previous chapter, based on the interface name and version
number. This entry is needed only if you want to give a specific load, priority, or
transaction time that is different than the defaults. It can also be used to turn on the
AUTOTRAN feature, which ensures that a transaction is automatically started for the
service if the incoming request is not in transaction mode. Do not use the service entry
to specify buffer types BUFTYPE since the only buffer type handled is CARRAY. Also,
do not specify ROUTING because routing is not supported for RPC requests.

The tmloadcf(1) command is used to load the ASCII configuration file into a
binary TUXCONFIG file before the application is booted.

Booting and Shutting Down the Application

5-2 Product Title/BookTitle as a Variable Beta Draft

Note that entries for RPC servers can be added to a booted application using the
tmconfig command, as described in tmconfig, wtmconfig(1) in the BEA Tuxedo
Command Reference.

5.3 Booting and Shutting Down the Application
When the configuration has been modified, boot the application using tmboot(1).
The application is shut down using tmshutdown(1). See the example in
Appendix A, "A Sample Application."

The RPC servers are booted and shut down in the same way that Request/Response
servers are. They can be booted or shut down as part of the entire configuration with
the -y option, as part of a group with the -g option, as part of a logical machine with
the -l option, or by server name with the -s option.

5.4 Administering the Application
RPC servers appear as Request/Response servers in the administration interfaces. As
mentioned above, tmconfig can be used for dynamic reconfiguration of RPC servers
and services, as described in tmconfig, wtmconfig(1) in the BEA Tuxedo
Command Reference. The tmadmin(1) command can be used to monitor RPC
servers. The RPC server name and associated run-time information (for example,
services or operations run, load, and so forth) can be printed using the tmadmin
printserver command. The RPC services (interfaces) that are available can be
printed using printservice. For samples of the output, see the example in
Appendix A, "A Sample Application."

5.5 Using Dynamic Service Advertisement
RPC services can be dynamically controlled in the same way that Request/Response
services can be controlled. Remember that the service name is not the operation name,
but the interface name and version number, as described earlier. Generally, the service
name is specified at the time that buildserver(1) is run using the -s option and
automatically advertised when the server is booted with the -A option. Service
(interface) names can be dynamically advertised either from tmadmin using the adv
command or from within the server using the tpadvertise(3c) function. Service
(interface) names can be dynamically unadvertised either from tmadmin using the
unadv command or from within the server using the tpunadvertise(3c) function.
Service names can also be temporarily suspended and unsuspended (resumed) from
tmadmin(1). Note that unadvertising or suspending a service name makes all
operations defined in the associated interface unavailable.

A

Beta Draft A Sample Application A-1

AA Sample Application

This topic includes the following sections:

■ Section A.1, "Appendix Contents"

■ Section A.2, "Prerequisites"

■ Section A.3, "Building the rpcsimp Application"

A.1 Appendix Contents
This appendix contains a description of a one-client, one-server application called
rpcsimp that uses TxRPC. The source files for this interactive application are
distributed with the Oracle Tuxedo ATMI software, except they are not included in the
RTK binary delivery.

A.2 Prerequisites
Before you can run this sample application, the Oracle Tuxedo software must be
installed so that the files and commands referred to in this chapter are available.

A.3 Building the rpcsimp Application
rpcsimp is a very basic Oracle Tuxedo ATMI application that uses TxRPC. It has one
application client and one server. The client calls the remote procedure calls
(operations) to_upper() and to_lower(), which are implemented in the server.
The operation to_upper() converts a string from lowercase to uppercase and returns
it to the client, while to_lower() converts a string from uppercase to lowercase and
returns it to the client. When each procedure call returns, the client displays the string
output on the user's screen.

What follows is a procedure to build and run the example.

A.3.1 Step 1: Create an Application Directory
Make a directory for rpcsimp and cd to it:

mkdir rpcsimpdir
cd rpcsimpdir

Building the rpcsimp Application

A-2 Product Title/BookTitle as a Variable Beta Draft

A.3.2 Step 2: Set Environment Variables
Set and export the necessary environment variables:

TUXDIR=<pathname of the Oracle Tuxedo System root directory>
TUXCONFIG=<pathname of your present working directory>/TUXCONFIG
PATH=$PATH:$TUXDIR/bin
SVR4, Unixware
LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$TUXDIR/lib
HPUX
SHLIB_PATH=$LD_LIBRARY_PATH:$TUXDIR/lib
RS6000
LIBPATH=$LD_LIBRARY_PATH:$TUXDIR/lib
export TUXDIR TUXCONFIG PATH LD_LIBRARY_PATH SHLIB_PATH LIBPATH

A.3.3 Step 3: Copy files
Copy the rpcsimp files to the application directory:

cp $TUXDIR/apps/rpcsimp/* .

You will be editing some of the files and making them executable, so it is best to begin
with a copy of the files rather than the originals delivered with the software.

A.3.4 Step 4: List the Files
List the files:

$ ls
client.c
rpcsimp.mk
server.c
simp.idl
ubbconfig
wclient.def
wsimpdll.def
$

Note: This is suggested so you will be able to see clearly the
rpcsimp files you have at the start and the additional files you create
along the way. Use the standard shell (/bin/sh) or the Korn shell; do
not use the C shell (csh).

Note: You need TUXDIR and PATH to be able to access files in the
Oracle Tuxedo ATMI directory structure and to execute Oracle Tuxedo
ATMI commands. You need to set TUXCONFIG to be able to load the
configuration file. It may also be necessary to set an environment
variable (for example, LD_LIBRARY_PATH) if shared objects are being
used.

Note: This list does not include files that are used in the
DCE-Gateway example described in Appendix B, "A DCE-Gateway
Application."

Building the rpcsimp Application

Beta Draft A Sample Application A-3

The files that make up the application are described in the following sections.

A.3.4.1 IDL Input File—simp.idl

Example A–1 simp.idl

[uuid(C996A680-9FC2-110F-9AEF-930269370000), version(1.0)]
interface changecase
{
/* change a string to upper case */
void to_upper([in, out, string] char *str);
/* change a string to lower case */
void to_lower([in, out, string] char *str);
}

This file defines a single interface, changecase version 1.0, with two operations, to_
upper and to_lower. Each of the operations takes a NULL-terminated character
string, that is both an input and output parameter. Because no ACF file is provided,
status variables are not used and the client program must be able to handle exceptions.
Each operation has a void return indicating that no return value is generated.
simp.idl is used to generate the stub functions (see below).

A.3.4.2 The Client Source Code—client.c

Example A–2 client.c

#include <stdio.h>
#include "simp.h"
#include "atmi.h"
main(argc, argv)
int argc;
char **argv;
{
 idl_char str[100];
 unsigned char error_text[100];
 int status;
 if (argc > 1) {/* use command line argument if it exists */
 (void) strncpy(str, argv[1], 100);
 str[99] = '\0';
 }
 else
 (void) strcpy(str, "Hello, world");
 TRY
 to_upper(str);
 (void) fprintf(stdout, "to_upper returns: %s\n", str);
 to_lower(str);
 (void) fprintf(stdout, "to_lower returns: %s\n", str);
 /* control flow continues after ENDTRY */
 CATCH_ALL
 exc_report(THIS_CATCH); /* print to stderr */
 (void) tpterm();
 exit(1);
 ENDTRY
 (void) tpterm();
 exit(0);
}

The header, simp.h, which is generated by the IDL compiler based on simp.idl, has
the function prototypes for the two operations. The simp.h header also includes the

Building the rpcsimp Application

A-4 Product Title/BookTitle as a Variable Beta Draft

header files for the RPC run-time functions (none appear in this example) and
exception handling. The atmi.h header file is included because tpterm(3c) is
called. If an argument is provided on the command line, then it is used for the
conversion to uppercase and lowercase (the default being "hello world"). Exception
handling is used to catch any errors. For example, exceptions are generated for
unavailable servers, memory allocation failures, communication failures, and so forth.
The TRY block encapsulates the two remote procedure calls. If an error occurs, the
execution will jump to the CATCH_ALL block which converts the exception (THIS_
CATCH) into a string, prints it to the standard error output using exc_report, and
exits. Note that in both the abnormal and normal execution, tidl(1) is called to
leave the application gracefully. If this is not done, a warning is printed in the
userlog(3c) for non-Workstation clients, and resources are tied up (until the
connection times out, for Workstation clients).

A.3.4.3 The Server Source Code—server.c

Example A–3 server.c

#include <stdio.h>
#include <ctype.h>
#include "tx.h"
#include "simp.h"
int
tpsvrinit(argc, argv)
int argc;
char **argv;
{
 if (tx_open() != TX_OK) {
 (void) userlog("tx_open failed");
 return(-1);
 }
 (void) userlog("tpsvrinit() succeeds.");
 return(1);
}
void
to_upper(str)
idl_char *str;
{
 idl_char *p;
 for (p=str; *p != '\0'; p++)
 *p = toupper((int)*p);
 return;
}
void
to_lower(str)
idl_char *str;
{
 idl_char *p;
 for (p=str; *p != '\0'; p++)
 *p = tolower((int)*p);
 return;
}

As with client.c, this file includes simp.h.

It also includes tx.h because tx_open(3c) is called (as required by the X/OPEN
TxRPC specification, even if no resource manager is accessed). A tpsvrinit(3c)
function is provided to ensure that tx_open() is called once at boot time. On failure,

Building the rpcsimp Application

Beta Draft A Sample Application A-5

-1 is returned and the server fails to boot. This is done automatically, so you may not
need to supply it.

The two operation functions are provided to do the application work, in this case,
converting to upper and lower case.

A.3.4.4 Makefile—rpcsimp.mk

Example A–4 rpcsimp.mk

CC=cc
CFLAGS=
TIDL=$(TUXDIR)/bin/tidl
LIBTRPC=-ltrpc
all: client server
Tuxedo client
client: simp.h simp_cstub.o
 CC=$(CC) CFLAGS=$(CFLAGS) $(TUXDIR)/bin/buildclient \
 -oclient -fclient.c -fsimp_cstub.o -f$(LIBTRPC)
Tuxedo server
server: simp.h simp_sstub.o
 CC=$(CC) CFLAGS=$(CFLAGS) $(TUXDIR)/bin/buildserver \
 -oserver -s changecasev1_0 -fserver.c -fsimp_sstub.o \
 -f$(LIBTRPC)
simp_cstub.o simp_sstub.o simp.h: simp.idl
 $(TIDL) -cc_cmd "$(CC) $(CFLAGS) -c" simp.idl
#
THIS PART OF THE FILE DEALING WITH THE DCE GATEWAY IS OMMITTED
#

Cleanup
clean::
 rm -f *.o server $(ALL2) ULOG.* TUXCONFIG
 rm -f stderr stdout *stub.c *.h simpdce.idl gwinit.c
clobber: clean

The makefile builds the executable client and server programs.

The part of the makefile dealing with the DCE Gateway (described in Appendix B,
"A DCE-Gateway Application," is omitted from the figure.

The client is dependent on the simp.h header file and the client stub object file.
buildclient is executed to create the output client executable, using the client.c
source file, the client stub object file, and the -ltrpc RPC run-time library.

The server is dependent on the simp.h header file and the server stub object file.
buildserver is an output server executable, using the server.c source file, the
server stub object file, and the -ltrpc RPC run-time library.

The client and server stub object files and the simp.h header file are all created by
running the tidl compiler on the IDL input file.

The clean target removes any files that are created while building or running the
application.

A.3.4.5 The Configuration File—ubbconfig
The following is a sample ASCII configuration file. The machine name, TUXCONFIG,
TUXDIR, and APPDIR must be set based on your configuration.

Building the rpcsimp Application

A-6 Product Title/BookTitle as a Variable Beta Draft

Example A–5 ubbconfig

*RESOURCES
IPCKEY 187345
MODEL SHM
MASTER SITE1
PERM 0660
*MACHINES
<UNAME> LMID=SITE1
 TUXCONFIG="<TUXCONFIG>"
 TUXDIR="<TUXDIR>"
 APPDIR="<APPDIR>"
MAXWSCLIENTS=10
*GROUPS
GROUP1 LMID=SITE1 GRPNO=1
*SERVERS
server SRVGRP=GROUP1 SRVID=1
#WSL SRVGRP=GROUP1 SRVID=2 RESTART=Y GRACE=0
CLOPT="-A -- -n <address> -x 10 -m 1 -M 10 -d <device>"
#
Tuxedo-to-DCE Gateway
#simpgw SRVGRP=GROUP1 SRVID=2
*SERVICES
*ROUTING

The lines for MAXWSCLIENTS and WSL would be uncommented and are used for a
Workstation configuration. The literal netaddr for the Workstation listener must be
set as described in WSL(5) in the BEA Tuxedo File Formats and Data Descriptions
Reference.

A.3.5 Step 5: Modify the Configuration
Edit the ASCII ubbconfig configuration file to provide location-specific information
(for example, your own directory pathnames and machine name), as described in the
next step. The text to be replaced is enclosed in angle brackets. You need to substitute
the full pathname for TUXDIR, TUXCONFIG, and APPDIR, and the name of the
machine on which you are running. The following is a summary of the required
values.

TUXDIR

The full pathname of the root directory of the Oracle Tuxedo software, as set above.

TUXCONFIG

The full pathname of the binary configuration file, as set above.

APPDIR

The full pathname of the directory in which your application will run.

UNAME

The machine name of the machine on which your application will run; this is the
output of the UNIX command uname -n.

For a Workstation configuration, the MAXWSCLIENTS and WSL lines must be
uncommented and the <address> must be set for the Workstation Listener. (See
WSL(5) for further details.)

Building the rpcsimp Application

Beta Draft A Sample Application A-7

A.3.6 Step 6: Build the Application
Build the client and server programs by running the following:

make -f rpcsimp.mk TUXDIR=$TUXDIR

A.3.7 Step 7: Load the Configuration
Load the binary TUXCONFIG configuration file by running the following:

tmloadcf -y ubbconfig

A.3.8 Step 8: Boot the Configuration
Boot the application by running the following:

tmboot -y

A.3.9 Step 9: Run the Client
1. The native client program can be run by optionally specifying a string to be

converted first to uppercase, and then to lowercase, as shown in the following:

$ client HeLlO
to_upper returns: HELLO
to_lower returns: hello
$

2. When running on a Workstation, set the WSNADDR environment variable to match
the address specified for the WSL program. The Windows client can be run by
executing:

>win wclient

A.3.10 Step 10: Monitor the RPC Server
You can monitor the RPC server using tmadmin(1). In the following example, psr and
psc are used to view the information for the server program. Note that the length of
the RPC service name causes it to be truncated in terse mode (indicated by the "+");
verbose mode can be used to get the full name.

Example A–6 tmadmin psr and psc Output

$ tmadmin
> psr
a.out Name Queue Name Grp Name ID RqDone Load Done Current Service
---------- ---------- -------- -- ------ --------- ---------------
BBL 587345 SITE1 0 0 0 (IDLE)
server 00001.00001 GROUP1 1 2 100 (IDLE)
> psc
Service Name Routine Name a.out Name Grp Name ID Machine # Done Status
------------ ------------ ---------- -------- -- ------- ------ ------
ADJUNCTBB ADJUNCTBB BBL SITE1 0 SITE1 0 AVAIL

Note: The dynamic link library may be used in a separately
developed application such as a visual builder.

Building the rpcsimp Application

A-8 Product Title/BookTitle as a Variable Beta Draft

ADJUNCTADMIN ADJUNCTADMIN BBL SITE1 0 SITE1 0 AVAIL
changecasev+ changecasev+ server GROUP1 1 SITE1 2 AVAIL
> verbose
Verbose now on.
> psc -g GROUP1
 Service Name: changecasev1_0
 Service Type: USER
 Routine Name: changecasev1_0
 a.out Name: /home/sdf/trpc/rpcsimp/server
 Queue Name: 00001.00001
 Process ID: 8602, Machine ID: SITE1
 Group ID: GROUP1, Server ID: 1
 Current Load: 50
Current Priority: 50
Current Trantime: 30
 Requests Done: 2
 Current status: AVAILABLE
> quit

A.3.11 Step 11: Shut Down the Configuration
Shut down the application by running the following:

tmshutdown -y

A.3.12 Step 12: Clean Up the Created Files
Clean up the created files by running the following:

make -f rpcsimp.mk clean

B

Beta Draft A DCE-Gateway Application B-1

BA DCE-Gateway Application

This topic includes the following sections:

■ Section B.1, "Appendix Contents"

■ Section B.2, "Prerequisites"

■ Section B.3, "What Is the DCE-Gateway Application?"

■ Section B.4, "Installing, Configuring, and Running the rpcsimp Application"

B.1 Appendix Contents
This appendix builds on the rcpsimp application described in Appendix A, "A
Sample Application." The server is changed to be an OSF/DCE server and a gateway
is used so that the Oracle Tuxedo ATMI client can communicate with the server using
explicit binding and authenticated RPCs. The source files for this interactive
application are distributed with the Oracle Tuxedo ATMI software development kit.

B.2 Prerequisites
This topic requires knowledge about DCE, and a DCE tutorial is beyond the scope of
this document. For further reading, try Guide to Writing DCE Applications by John
Shirley, et. al., published by O'Reilly and Associates, Inc.

B.3 What Is the DCE-Gateway Application?
This application is an extension to the rpcsimp application. As before, the client calls
the remote procedure calls (operations) to_upper() and to_lower().

In this case, the RPC goes from the Oracle Tuxedo ATMI client to the DCE Gateway
process that forwards the request to a DCE server. To make this example more realistic,
the communications from the Gateway process to the DCE server use explicit binding
instead of automatic binding and an authenticated RPC.

What follows is a procedure to build and run the example. The client can run on any
platform described in Appendix A, "A Sample Application." There is no difference in
building or running the client and it will not be described further in this chapter. The
gateway and DCE server must run on a POSIX platform that also has DCE software
installed on it. This chapter will not discuss installation or compilation of the clients on
the Workstation platforms.

The sample programs work on platforms that conform to OSF/DCE software
standards.

Installing, Configuring, and Running the rpcsimp Application

B-2 Product Title/BookTitle as a Variable Beta Draft

B.4 Installing, Configuring, and Running the rpcsimp Application
The following steps provide you with the instructions for installing, configuring, and
running the sample application.

B.4.1 Step 1: Create an Application Directory
Make a directory for rpcsimp and cd to it:

mkdir rpcsampdir
cd rpcsampdir

B.4.2 Step 2: Set Your Environment
Set and export the necessary environment variables:

TUXDIR=<pathname of the Oracle Tuxedo root directory>
TUXCONFIG=<pathname of your present working directory>/tuxconfig
PATH=$PATH:$TUXDIR/bin
SVR4, Unixware
LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$TUXDIR/lib
HPUX
SHLIB_PATH=$LD_LIBRARY_PATH:$TUXDIR/lib
RS6000
LIBPATH=$LD_LIBRARY_PATH:$TUXDIR/lib
export TUXDIR TUXCONFIG PATH LD_LIBRARY_PATH SHLIB_PATH LIBPATH

You need TUXDIR and PATH to be able to access files in the Oracle Tuxedo ATMI
directory structure and to execute Oracle Tuxedo ATMI commands. You need to set
TUXCONFIG to be able to load the configuration file. It may also be necessary to set an
environment variable (for example, LD_LIBRARY_PATH) if shared objects are being
used.

B.4.3 Step 3: Copy the Files
Copy the rpcsimp files to the application directory:

cp $TUXDIR/apps/rpcsimp/* .

You will be editing some of the files and making them executable, so it is best to begin
with a copy of the files rather than with the originals delivered with the software.

B.4.4 Step 4: List the Files
List the files:

$ ls
client.c
dcebind.c
dceepv.c
dcemgr.c
dceserver.c
rpcsimp.mk

Note: This is suggested so you will be able to see clearly the
rpcsimp files you have at the start and the additional files you create
along the way. Use the standard shell (/bin/sh) or the Korn shell; do
not use the C shell (csh).

Installing, Configuring, and Running the rpcsimp Application

Beta Draft A DCE-Gateway Application B-3

simp.idl
simpdce.acf
ubbconfig
$

(Some files that are not referenced in this section are omitted.)

The files that make up the application are described in the following sections. The
client.c, simp.idl, and ubbconfig files described in Appendix A, "A Sample
Application," are not discussed further.

B.4.4.1 IDL ACF File—simpdce.acf

Example B–1 simpdce.acf

[explicit_handle]interface changecase
{
}

The simp.idl file used in the earlier example will be used to build the gateway and
the DCE server. However, since it is being compiled by both the DCE and Oracle
Tuxedo IDL compilers, two different versions of the simp.h header file are being
generated with the same name. Additionally, we wish to use an ACF file in this
example so that we can specify explicit binding for the server, but not for the client.
The recommended approach is to link the IDL file to a second filename within the
same directory, using one for TxRPC without binding and one for DCE/RPC with an
explicit handle. In this case, simp.idl is renamed simpdce.idl and the associated
ACF file is simpdce.acf. The makefile creates simpdce.idl and when the IDL
compiler is executed, it also will find simpdce.acf. Note that the ACF file is used
simply to indicate that all operations in the interface will use explicit handles. Because
the operations are defined in the IDL file without [handle] parameters as the first
parameter, one will be added automatically to the function prototype and to the stub
function calls.

B.4.4.2 Binding Function—dcebind.c
In the interest of space, the source code for dcebind.c is not included here but can be
found in $TUXDIR/apps/rpcsimp.

This file has a function, dobind(), that does the following three things:

■ It gets a binding handle for the DCE server with the desired interface specification
and gets the associated endpoint for a fully resolved handle.

■ It does some authentication of the server by getting the principal name for the
server and checking the Security registry to see if the principal is a member of a
specified group.

■ It also annotates the binding handle so that an authenticated RPC is done. The
protection level is packet level integrity (mutual authentication on every call with
a packet checksum) using DCE private key authentication and DCE PAC-based
authorization.

The following things need to be modified in dcebind.c:

■ <HOST> needs to be changed to the name of the host machine where the DCE
server will be run. This is part of the service name that is put into the directory and
follows the convention that the service name ends with _host. You may choose to
get rid of the suffix entirely (if you do, the same change needs to be made in
dceserver.c).

Installing, Configuring, and Running the rpcsimp Application

B-4 Product Title/BookTitle as a Variable Beta Draft

■ <SERVER_PRINCIPAL_GROUP> must be changed to the group associated with the
DCE principal running the server. It is used as part of the mutual authentication.

■ The server principal group must be created by running rgy_edit as cell_
admin, the server principal must be created, an account must be added for the
principal with the group, and a key table must be created for the server. You must
also create a principal and account for yourself to run the client. An example script
to create these DCE entities is shown in Step 8: Configuring DCE.

B.4.4.3 Entry Point Vector—dceepv.c

Example B–2 dceepv.c

#include <simpdce.h> /* header generated by IDL compiler */
#include <dce/rpcexc.h> /* RAISE macro */
static void myto_upper(rpc_binding_handle_t hdl, idl_char *str);
static void myto_lower(rpc_binding_handle_t hdl, idl_char *str);
/*
 * A manager entry point vector is defined so that we can generate
 * a valid DCE binding handle to go to the DCE server.
 * Note that the input handle to entry point functions will always
 * be NULL since Tuxedo TxRPC doesn't support handles.
 */
 /* Manager entry point vector with two operations */
changecase_v1_0_epv_t changecase_v1_0_s_epv = {
 myto_upper,
 myto_lower
};
int dobind(rpc_binding_handle_t *hdl);

void
myto_upper(rpc_binding_handle_t hdl, idl_char *str)
{
 rpc_binding_handle_t handle;
 if (dobind(&handle) 0) { /* get binding handle for server */
 userlog("binding failed");
 RAISE(rpc_x_invalid_binding);
 }
 to_upper(handle, str); /* call DCE client stub */
}

void
myto_lower(rpc_binding_handle_t hdl, idl_char *str)
{
 rpc_binding_handle_t handle;
 if (dobind(&handle) 0) { /* get binding handle for server */
 userlog("binding failed");
 RAISE(rpc_x_invalid_binding);
 }
 to_lower(handle, str); /* call DCE client stub */
}

dceepv.c contains the manager entry point vector used in the gateway. It is called by
the Oracle Tuxedo ATMI server stub and calls the DCE client stub. The data type for
the structure is defined in simpdce.h, which is included in dceepv.c, and it is
initialized with the local functions myto_upper() and myto_lower(). Each of these
functions simply calls dobind() to get the binding handle that has been annotated for
authenticated RPC and calls the associated client stub function.

Installing, Configuring, and Running the rpcsimp Application

Beta Draft A DCE-Gateway Application B-5

B.4.4.4 DCE Manager—dcemgr.c

Example B–3 dcemgr.c

#include <stdio.h>
#include <ctype.h>
#include "simpdce.h" /* header generated by IDL compiler */
#include <dce/rpcexc.h> /* RAISE macro */
#include <dce/dce_error.h> /* required to call dce_error_inq_text */
#include <dce/binding.h> /* binding to registry */
#include <dce/pgo.h> /* registry i/f */
#include <dce/secidmap.h> /* translate global name -> princ name */
void
checkauth(rpc_binding_handle_t handle)
{
 int error_stat;
 static unsigned char error_string[dce_c_error_string_len];
 sec_id_pac_t *pac; /* client pac */
 unsigned_char_t *server_principal_name; /* requested server principal */
 unsigned32 protection_level; /* protection level */
 unsigned32 authn_svc; /* authentication service */
 unsigned32 authz_svc; /* authorization service */
 sec_rgy_handle_t rgy_handle;
 error_status_t status;
 /*
 * Check the authentication parameters that the client
 * selected for this call.
 */
 rpc_binding_inq_auth_client(
 handle, /* input handle */
 (rpc_authz_handle_t *)&pac, /* returned client pac */
 &server_principal_name, /* returned requested server princ */
 &protection_level, /* returned protection level */
 &authn_svc, /* returned authentication service */
 &authz_svc, /* returned authorization service */
 &status);
 if (status != rpc_s_ok) {
 dce_error_inq_text(status, error_string, &error_stat);
 fprintf(stderr, "%s %s\n", "inq_auth_client failed",
 error_string);
 RAISE(rpc_x_invalid_binding);
 return;
 }
 /*
 * Make sure that the caller has specified the required
 * level of protection, authentication, and authorization.
 */
 if (protection_level != rpc_c_protect_level_pkt_integ ||
 authn_svc != rpc_c_authn_dce_secret ||
 authz_svc != rpc_c_authz_dce) {
 fprintf(stderr, "not authorized");
 RAISE(rpc_x_invalid_binding);
 return;
 }
 return;
}
void
to_upper(rpc_binding_handle_t handle, idl_char *str)
{
 idl_char *p;

Installing, Configuring, and Running the rpcsimp Application

B-6 Product Title/BookTitle as a Variable Beta Draft

 checkauth(handle);
 /* Any ACL or reference monitor checking could be done here */

 /* Convert to upper case */
 for (p=str; *p != '\0 '; p++)
 *p = toupper((int)*p);
 return;
}
void
to_lower(rpc_binding_handle_t handle, idl_char *str)
{
 idl_char *p;
 checkauth(handle);
 /* Any ACL or reference monitor checking could be done here */
 /* Convert to lower case */
 for (p=str; *p != '\0 '; p++)
 *p = tolower((int)*p);
 return;
}

dcemgr.c has the manager code for the DCE server. The checkauth() function is a
utility function to check the authentication of the client (level of protection,
authentication, and authorization). Each of the operations, to_upper and to_lower,
calls this function to validate the client and then does the operation itself. In an
application using access control lists, the ACL checking would be done after the
authentication checking and before the work of the operation.

B.4.4.5 DCE Server - dceserver.c
In the interest of space, the source code for dceserver.c is not included here. There
are several modifications needed for this file based on your environment:

■ <HOST> needs to be changed to the name of the host machine where the DCE
server will be run. This is part of the service name that is put into the directory and
follows the convention that the service names ends with _host. You may choose
to get rid of the suffix entirely (if you do, the same change needs to be made in
dcebind.c).

■ <DIRECTORY> needs to be set to the full pathname of the directory where you will
create the server key table. The key table is created by executing the following:

rgy_edit
ktadd -p SERVER_PRINCIPAL -pw PASSWORD -f SERVER_KEYTAB
q

where SERVER_PRINCIPAL is the DCE principal under which the server will be run,
PASSWORD is the password associated with the principal, and SERVER_KEYTAB is the
name of the server key table.

<PRINCIPAL> must be changed to the name of the DCE principal under which the
server will be run.

The ANNOTATION can be changed to an annotation to be stored in the directory entry
for the server.

dceserver.c is actually used twice in the application: once as the main() for the
DCE server and again (linked to gwinit.c and compiled with -DTPSVRINIT in the
makefile) as the tpsvrinit() for the DCE gateway.

When compiled without extra macro definitions, this file generates a main() (with
argc and argv command-line options) for a DCE server that does the following:

Installing, Configuring, and Running the rpcsimp Application

Beta Draft A DCE-Gateway Application B-7

■ Registers its interfaces

■ Creates its server binding information and endpoints

■ Establishes its DCE login context for the server principal using information in the
server key table

■ Registers its authentication information

■ Gets its bindings and registers the information in the endpoint map

■ Exports the binding information to the directory name space

■ Optionally, adds its name to a group in the name space

■ Listens for requests

■ Cleans up after rpc_server_listen returns

The program could be modified to look at and use its command_line options.

When compiled with -DTCLIENT, this file generates a main() as above but calls
tpinit() to join the Oracle Tuxedo ATMI application as a client, and calls tpterm()
before exiting. This would be used for a DCE gateway for calls coming from DCE to
Oracle Tuxedo (such that the process is a DCE server and an Oracle Tuxedo ATMI
client).

When compiled with -DTPSVRINIT, this file generates a tpsvrinit() (with argc and
argv server command-line options) for an Oracle Tuxedo server that does the
following:

■ Establishes its DCE login for the principal using the information in the server key
table

■ Registers its authentication information

■ Calls tx_open to open any resource managers associated with the server

The program could be modified to look at and use its command-line options.

In each of these cases, the login context is established by calling establish_
identity, which gets the network identity for the server, uses the server's secret key
from the key table file to unseal the identity, and sets the login context for the process.
Two threads are started: one to refresh the login context just before it expires, and a
second thread to periodically change the server's secret key.

B.4.4.6 Makefile—rpcsimp.mk

Example B–4 rpcsimp.mk

CC=cc
CFLAGS=
TIDL=$(TUXDIR)/bin/tidl
LIBTRPC=-ltrpc
all: client server
Tuxedo client
client: simp.h simp_cstub.o
 CC=$(CC) CFLAGS=$(CFLAGS) $(TUXDIR)/bin/buildclient -oclient \
 -fclient.c -fsimp_cstub.o -f$(LIBTRPC)
#
OMIT Tuxedo server
#
Tuxedo Gateway example
Uses Tuxedo client above plus a gateway server and a DCE server

Installing, Configuring, and Running the rpcsimp Application

B-8 Product Title/BookTitle as a Variable Beta Draft

#
#
Alpha FLAGS/LIBS
#DCECFLAGS=-D_SHARED_LIBRARIES -Dalpha -D_REENTRANT -w -I. \
 -I/usr/include/dce -I$(TUXDIR)/include
#DCELIBS=-ldce -lpthreads -lc_r -lmach -lm
#
#
HPUX FLAGS/LIBS
#DCECFLAGS=-Aa -D_HPUX_SOURCE -D_REENTRANT -I. \
 -I/usr/include/reentrant -I${TUXDIR}/include
#DCELIBS=-Wl,-Bimmediate -Wl,-Bnonfatal -ldce -lc_r -lm
#
IDL=idl
ALL2=client simpgw dceserver
all2: $(ALL2)
TUXEDO-to-DCE Gateway
simpdce.idl: simp.idl
 rm -f simpdce.idl
 ln simp.idl simpdce.idl
gwinit.c: dceserver.c
 rm -f gwinit.c
 ln dceserver.c gwinit.c
gwinit.o: gwinit.c
 $(CC) -c $(DCECFLAGS) -DTPSVRINIT gwinit.c
dceepv.o: dceepv.c simpdce.h
 $(CC) -c $(DCECFLAGS) dceepv.c
dcebind.o: dcebind.c simpdce.h
 $(CC) -c $(DCECFLAGS) dcebind.c
simpgw: simpdce.idl gwinit.o dcebind.o dceepv.o
 blds_dce -i -no_mepv -o simpgw -f -g -f gwinit.o -f \
 dcebind.o -f dceepv.o simpdce.idl
DCE server
simpdce_sstub.o simpdce.h: simpdce.idl
 $(IDL) -client none -keep object simpdce.idl
dceserver.o: dceserver.c simpdce.h
 $(CC) -c $(DCECFLAGS) dceserver.c
dcemgr.o: dcemgr.c simpdce.h
 $(CC) -c $(DCECFLAGS) dcemgr.c
dceserver: simpdce_sstub.o dceserver.o dcemgr.o
 $(CC) dceserver.o simpdce_sstub.o dcemgr.o -o dceserver \
 $(DCELIBS)
Cleanup
clean::
 rm -f *.o server $(ALL2) ULOG.* TUXCONFIG
 rm -f stderr stdout *stub.c *.h simpdce.idl gwinit.c
clobber: clean

The makefile builds the executable client, gateway, and DCE server programs.

Before building the software, rpcsimp.mk must be modified to set the correct options
and libraries for building the DCE server. As sent out, the makefile contains the proper
settings for several platforms. Based on the platform that you are using, uncomment
(delete the pound sign) in front of the correct pair of DCECFLAGS and DCELIBS
variables, or add your own definitions for a different platform.

Briefly reviewing the makefile, the client is built in the same fashion as in Appendix A,
"A Sample Application." The DCE gateway is built by passing simpdce.idl to
blds_dce, which builds an Oracle Tuxedo ATMI server that acts as a gateway to
DCE. Also included are gwinit.o (a version of dceserver.c compiled with

Installing, Configuring, and Running the rpcsimp Application

Beta Draft A DCE-Gateway Application B-9

-DTPSVRINIT), dobind.o (to get the binding handle for the DCE server), and
dceepv.o (the manager entry point vector). Note that -i -no_mepv is specified so
that the IDL compiler does not generate its own manager entry point vector. The DCE
server is built compiling simpdce.idl with the DCE IDL compiler, and including
dceserver.o and dcemgr.o.

B.4.5 Step 5: Modify the Configuration
1. Modify the ASCII ubbconfig configuration file as described in Appendix A, "A

Sample Application." (This step is mandatory.)

2. In the SERVERS section, comment out the server line by putting a pound sign (#)
at the beginning of the line. (Do not comment out the dceserver line.)

B.4.6 Step 6: Build the Application
1. Before building the software, you must modify rpcsimp.mk to set the correct

options and libraries for building the DCE server, as described above.

2. Build the client and server programs by running the following:

make -f rpcsimp.mk TUXDIR=$TUXDIR all2

B.4.7 Step 7: Load the Configuration
Load the binary TUXCONFIG configuration file by running the following:

tmloadcf -y ubbconfig

B.4.8 Step 8: Configuring DCE
To set up DCE entities for running this example, as described earlier, you must
customize (for your environment) identifiers in all capital letters.

■ If you already have a DCE principal for yourself, you do not need to create
MYGROUP, MYPRINCIPAL, or the associated account.

■ This example assumes that the cell_admin password is the default -dce. (You
can change this password as necessary.)

■ The SERVER_PRINCIPAL must be the same as the Oracle Tuxedo administrator
identifier, because the server must be booted as the Oracle Tuxedo administrator
and the server must be able to read the server key table.

Example B–5 DCE Configuration

$ dce_login cell_admin -dce-
$ rgy_edit
> domain group
> add SERVER_PRINCIPAL_GROUP
> add MYGROUP
> domain principal
> add SERVER_PRINCIPAL
> add MYPRINCIPAL
> domain account
> add SERVER_PRINCIPAL -g SERVER_PRINCIPAL_GROUP -o none -pw \
 SERVERPASSWORD -mp -dce-
> add MYPRINCIPAL -g MYGROUP -o none -pw MYPASSWORD -mp -dce-
> ktadd -p SERVER_PRINCIPAL -pw SERVERPASSWORD -f SERVER_KEYTAB

Installing, Configuring, and Running the rpcsimp Application

B-10 Product Title/BookTitle as a Variable Beta Draft

> q
$ chown SERVER_PRINCIPAL SERVER_KEYTAB
$ chmod 0600 SERVER_KEYTAB

B.4.9 Step 9: Boot the Configuration
1. Log in as SERVER_PRINCIPAL (the owner of the server key table).

2. Start the DCE server by running the following:

dceserver &

The message Server ready is displayed just before the DCE server starts
listening for requests.

3. Boot the Oracle Tuxedo ATMI application by running the following:

tmboot -y

B.4.10 Step 10: Run the Client
The client program can be run by optionally specifying a string to be converted, first to
uppercase, and then to lowercase:

$ client HeLlO
to_upper returns: HELLO
to_lower returns: hello
$

B.4.11 Step 11: Shut Down the Configuration
1. Shut down the application by running the following:

tmshutdown -y

2. Stop the DCE server.

B.4.12 Step 12: Clean Up the Created Files
Clean up the created files by running the following:

make -f rpcsimp.mk clean

Beta Draft Index-1

Index

Index-2 Beta Draft

	List of Examples
	List of Figures
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Introducing TxRPC
	1.1 What Is TxRPC?

	2 Using the Interface Definition Language (IDL)
	2.1 References
	2.2 Using uuidgen to Create an IDL Template
	2.3 Changes in the Language
	2.4 Changes Based on the TxRPC Specification
	2.5 Enhancements to the Language
	2.5.1 Enhancements that May Limit Portability

	2.6 Unsupported Features
	2.7 Using tidl, the IDL Compiler

	3 Writing RPC Client and Server Programs
	3.1 Handling Remoteness
	3.2 Handling Status and Exception Returns
	3.3 Using Stub Support Functions
	3.4 Using RPC Header Files
	3.5 Portability of Code
	3.6 Interacting with ATMI
	3.7 Interacting with TX

	4 Building RPC Client and Server Programs
	4.1 Prerequisite Knowledge
	4.2 Building an RPC Server
	4.3 Building an RPC Client
	4.4 Building a Windows Workstation RPC Client
	4.5 Using C++
	4.6 Interoperating with DCE/RPC
	4.6.1 Oracle Tuxedo Requester to DCE Service via Oracle Tuxedo Gateway
	4.6.1.1 Setting the DCE Login Context
	4.6.1.2 Using DCE Binding Handles
	4.6.1.3 Authenticated RPC
	4.6.1.4 Transactions

	4.6.2 DCE Requester to Oracle Tuxedo Service Using Oracle Tuxedo Gateway
	4.6.3 Oracle Tuxedo Requester to DCE Service Using DCE-only
	4.6.4 DCE Requester to Oracle Tuxedo Service Using Oracle Tuxedo-only
	4.6.5 Building Mixed DCE/RPC and Oracle Tuxedo TxRPC Clients and Servers

	5 Running the Application
	5.1 Prerequisite Knowledge
	5.2 Configuring the Application
	5.3 Booting and Shutting Down the Application
	5.4 Administering the Application
	5.5 Using Dynamic Service Advertisement

	A A Sample Application
	A.1 Appendix Contents
	A.2 Prerequisites
	A.3 Building the rpcsimp Application
	A.3.1 Step 1: Create an Application Directory
	A.3.2 Step 2: Set Environment Variables
	A.3.3 Step 3: Copy files
	A.3.4 Step 4: List the Files
	A.3.4.1 IDL Input File-simp.idl
	A.3.4.2 The Client Source Code-client.c
	A.3.4.3 The Server Source Code-server.c
	A.3.4.4 Makefile-rpcsimp.mk
	A.3.4.5 The Configuration File-ubbconfig

	A.3.5 Step 5: Modify the Configuration
	A.3.6 Step 6: Build the Application
	A.3.7 Step 7: Load the Configuration
	A.3.8 Step 8: Boot the Configuration
	A.3.9 Step 9: Run the Client
	A.3.10 Step 10: Monitor the RPC Server
	A.3.11 Step 11: Shut Down the Configuration
	A.3.12 Step 12: Clean Up the Created Files

	B A DCE-Gateway Application
	B.1 Appendix Contents
	B.2 Prerequisites
	B.3 What Is the DCE-Gateway Application?
	B.4 Installing, Configuring, and Running the rpcsimp Application
	B.4.1 Step 1: Create an Application Directory
	B.4.2 Step 2: Set Your Environment
	B.4.3 Step 3: Copy the Files
	B.4.4 Step 4: List the Files
	B.4.4.1 IDL ACF File-simpdce.acf
	B.4.4.2 Binding Function-dcebind.c
	B.4.4.3 Entry Point Vector-dceepv.c
	B.4.4.4 DCE Manager-dcemgr.c
	B.4.4.5 DCE Server - dceserver.c
	B.4.4.6 Makefile-rpcsimp.mk

	B.4.5 Step 5: Modify the Configuration
	B.4.6 Step 6: Build the Application
	B.4.7 Step 7: Load the Configuration
	B.4.8 Step 8: Configuring DCE
	B.4.9 Step 9: Boot the Configuration
	B.4.10 Step 10: Run the Client
	B.4.11 Step 11: Shut Down the Configuration
	B.4.12 Step 12: Clean Up the Created Files

	Index

