

Oracle® Fusion Middleware
Data Modeling Guide for Oracle Business Intelligence Publisher

11g Release 1 (11.1.1)

E22258-02

April 2012

Explains how to retrieve and structure data from a variety of
sources to use as input to Oracle Business Intelligence
Publisher reports.

Oracle Fusion Middleware Data Modeling Guide for Oracle Business Intelligence Publisher, 11g Release 1
(11.1.1)

E22258-02

Copyright © 2010, 2012, Oracle and/or its affiliates. All rights reserved.

Primary Author: Leslie Grumbach Studdard

Contributor: Oracle Business Intelligence Publisher development, quality assurance, and product
management teams.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the
restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable
by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA
94065.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Contents

Preface .. vii

Intended Audience... vii
Documentation Accessibility .. vii
Related Documentation and Other Resources .. viii
Conventions ... viii

New Features for Data Model Designers .. ix

New Features for Oracle BI Publisher 11g Release 1 (11.1.1.6) ... ix
New Features for Oracle BI Publisher 11g Release 1 (11.1.1.5) .. x
New Features for Oracle BI Publisher 11g Release 1 (11.1.1.3) ... xi

1 Using the Data Model Editor

1.1 What Is a Data Model? ... 1-1
1.2 Components of a Data Model ... 1-1
1.3 Features of the Data Model Editor ... 1-2
1.4 About the Data Source Options .. 1-2
1.5 Process Overview for Creating a Data Model .. 1-3
1.6 Launching the Data Model Editor.. 1-4
1.7 About the Data Model Editor Interface ... 1-4
1.8 Setting Data Model Properties .. 1-5
1.8.1 XML Output Options .. 1-6
1.8.2 Attachments to the Data Model .. 1-7
1.8.2.1 Attaching Sample Data .. 1-7
1.8.2.2 Attaching Schema... 1-7
1.8.2.3 Data Files ... 1-7

2 Creating Data Sets

2.1 Overview of Creating Data Sets.. 2-1
2.2 Editing an Existing Data Set .. 2-3
2.3 Creating a Data Set Using a SQL Query.. 2-3
2.4 Using the Query Builder .. 2-4
2.4.1 Understanding the Query Builder Process .. 2-5
2.4.2 Using the Object Selection Pane .. 2-5
2.4.3 Selecting a Schema... 2-5
2.4.4 Searching and Filtering Objects ... 2-5

iv

2.4.5 Selecting Objects .. 2-5
2.4.6 Supported Column Types .. 2-5
2.4.7 Adding Objects to the Design Pane .. 2-6
2.4.8 Resizing the Design and Results Pane.. 2-6
2.4.9 Removing or Hiding Objects in the Design Pane ... 2-6
2.4.10 Specifying Query Conditions... 2-6
2.4.11 Creating Relationships Between Objects.. 2-8
2.4.11.1 About Join Conditions ... 2-8
2.4.11.2 Joining Objects Manually .. 2-8
2.4.12 Saving a Query... 2-9
2.4.13 Adding a Bind Variable to a Query ... 2-10
2.4.14 Editing a Saved Query ... 2-12
2.5 Creating a Data Set Using an MDX Query Against an OLAP Data Source 2-12
2.6 Creating a Data Set Using an LDAP Query ... 2-13
2.7 Creating a Data Set Using a Microsoft Excel File .. 2-14
2.7.1 About Supported Excel Files... 2-14
2.7.2 Guidelines for Accessing Multiple Tables per Sheet ... 2-15
2.7.3 Using a Microsoft Excel File Stored in a File Directory Data Source 2-16
2.7.4 Uploading a Microsoft Excel File Stored Locally ... 2-17
2.7.4.1 Refreshing and Deleting an Uploaded Excel File ... 2-18
2.8 Creating a Data Set Using an Oracle BI Analysis.. 2-19
2.8.1 Additional Notes on Oracle BI Analysis Data Sets.. 2-20
2.9 Creating a Data Set Using a View Object ... 2-20
2.9.1 Additional Notes on View Object Data Sets ... 2-21
2.10 Creating a Data Set Using a Web Service ... 2-21
2.10.1 Adding a Simple Web Service: Example... 2-22
2.10.2 Adding a Complex Web Service... 2-24
2.10.3 Additional Information on Web Service Data Sets .. 2-26
2.11 Creating a Data Set Using a Stored XML File .. 2-26
2.11.1 Additional Information on File Data Sets ... 2-27
2.12 Using Data Stored as a Character Large Object (CLOB) in a Data Model....................... 2-27
2.12.1 How the Data Is Returned... 2-28
2.12.1.1 Additional Notes on Data Sets Using CLOB Column Data 2-29
2.12.2 Handling XHTML Data Stored in a CLOB Column.. 2-29
2.12.2.1 Retrieving XHTML Data Wrapped in CDATA... 2-30
2.12.2.2 Wrapping the XHTML Data in CDATA in the Query... 2-30
2.13 Creating a Data Set from an HTTP XML Feed .. 2-31
2.13.1 Additional Information on Data Sets Created from HTTP XML Feed 2-32
2.14 Testing Data Models and Generating Sample Data.. 2-32
2.15 Including User Information Stored in System Variables in Your Report Data 2-33
2.15.1 Adding the User System Variables as Elements .. 2-34
2.15.2 Sample Use Case: Limit the Returned Data Set by User ID 2-34
2.15.2.1 Creating Bind Variables from LDAP User Attribute Values 2-34
2.15.2.1.1 Prerequisite.. 2-34
2.15.2.1.2 How BI Publisher Constructs the Bind Variable ... 2-35

v

3 Structuring Data

3.1 Working with Data Models ... 3-1
3.1.1 About Multipart Unrelated Data Sets... 3-1
3.1.2 About Multipart Related Data Sets ... 3-3
3.1.3 Guidelines for Working with Data Sets.. 3-4
3.2 Features of the Data Model Editor ... 3-4
3.3 About the Interface ... 3-5
3.4 Creating Links Between Data Sets.. 3-7
3.4.1 About Element-Level Links.. 3-7
3.4.2 About Group-Level Links... 3-7
3.5 Creating Element-Level Links... 3-8
3.5.1 Deleting Element-Level Links.. 3-9
3.6 Creating Group-Level Links... 3-10
3.6.1 Deleting Group-Level Links.. 3-11
3.7 Creating Subgroups... 3-11
3.8 Moving an Element Between a Parent Group and a Child Group................................... 3-12
3.9 Creating Group-Level Aggregate Elements... 3-13
3.10 Creating Group Filters .. 3-16
3.11 Performing Element-Level Functions ... 3-18
3.12 Setting Element Properties ... 3-18
3.13 Sorting Data .. 3-19
3.14 Performing Group-Level Functions .. 3-20
3.14.1 The Group Action Menu.. 3-20
3.14.2 Editing the Data Set .. 3-21
3.14.3 Removing Elements from the Group... 3-21
3.14.4 Editing the Group Properties.. 3-21
3.15 Performing Global-Level Functions .. 3-22
3.15.1 Adding a Global-Level Aggregate Function... 3-22
3.15.2 Adding a Group-Level or Global-Level Element by Expression............................... 3-24
3.15.3 Adding a Global-Level Element by PL/SQL.. 3-25
3.16 Using the Structure View to Edit Your Data Structure .. 3-26
3.16.1 Renaming Elements.. 3-26
3.16.2 Adding Value for Null Elements.. 3-27
3.17 Function Reference .. 3-27

4 Adding Parameters and Lists of Values

4.1 About Parameters ... 4-1
4.2 Adding a New Parameter .. 4-2
4.2.1 Defining a Text Parameter.. 4-4
4.2.2 Defining a Menu Parameter ... 4-5
4.2.2.1 Customizing the Display of Menu Parameters .. 4-7
4.2.3 Defining a Date Parameter ... 4-7
4.3 About Lists of Values ... 4-9
4.4 Adding Lists of Values... 4-9
4.4.1 Creating a List from a SQL Query.. 4-10
4.4.2 Creating a List from a Fixed Data Set .. 4-12

vi

5 Adding Event Triggers

5.1 About Triggers .. 5-1
5.2 Adding Before Data and After Data Triggers... 5-1
5.2.1 Order of Execution .. 5-2
5.3 Creating Schedule Triggers ... 5-2

6 Adding Flexfields

6.1 About Flexfields .. 6-1
6.2 Adding Flexfields.. 6-2
6.2.1 Entering Flexfield Details ... 6-2

7 Adding Bursting Definitions

7.1 About Bursting .. 7-1
7.2 What is the Bursting Definition?... 7-2
7.3 Adding a Bursting Definition to Your Data Model ... 7-2
7.4 Defining the Query for the Delivery XML .. 7-4
7.5 Passing a Parameter to the Bursting Query .. 7-7
7.6 Defining the Split By and Deliver By Elements for a CLOB/XML Data Set...................... 7-9
7.7 Configuring a Report to Use a Bursting Definition .. 7-11
7.8 Sample Bursting Query... 7-11
7.9 Creating a Table to Use as a Delivery Data Source... 7-11

Index

vii

Preface

Welcome to Release 11g (11.1.1) of the Oracle Fusion Middleware Data Modeling Guide for
Oracle Business Intelligence Publisher. Oracle BI Publisher is an enterprise reporting
solution for authoring, managing, and delivering all your highly formatted
documents, such as operational reports, electronic funds transfer documents,
government PDF forms, shipping labels, checks, sales and marketing letters, and much
more.

Intended Audience
The Oracle Fusion Middleware Data Modeling Guide for Oracle Business Intelligence
Publisher (this guide) describes how report developers use BI Publisher's data model
editor to fetch and structure the data for use in the many different types of report
layouts that BI Publisher supports. The following table provides more information
about using the product for other business roles.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Role Sample Tasks Guide

Administrator Configuring Security

Configuring System Settings

Diagnosing and Monitoring System
Processes

Oracle Fusion Middleware Administrator's
Guide for Oracle Business Intelligence
Publisher

Application developer or
integrator

Integrating BI Publisher into existing
applications using the application
programming interfaces

Oracle Fusion Middleware Developer's Guide
for Oracle Business Intelligence Publisher

Report consumer Viewing reports

Scheduling report jobs

Managing report jobs

Oracle Fusion Middleware User's Guide for
Oracle Business Intelligence Publisher

Report designer Creating report definitions

Designing layouts

Oracle Fusion Middleware Report Designer's
Guide for Oracle Business Intelligence
Publisher

viii

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Related Documentation and Other Resources
See the Oracle Business Intelligence documentation library for a list of related Oracle
Business Intelligence documents.

In addition, go to the Oracle Learning Library for Oracle Business Intelligence-related
online training resources.

System Requirements and Certification
Refer to the system requirements and certification documentation for information
about hardware and software requirements, platforms, databases, and other
information. Both of these documents are available on Oracle Technology Network
(OTN).

The system requirements document covers information such as hardware and
software requirements, minimum disk space and memory requirements, and required
system libraries, packages, or patches:

http://www.oracle.com/technetwork/software/products/ias/files/fu
sion_requirements.htm

The certification document covers supported installation types, platforms, operating
systems, databases, JDKs, and third-party products:

http://www.oracle.com/technetwork/software/products/ias/files/fu
sion_certification.html

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

http://www.oracle.com/technetwork/software/products/ias/files/fusion_requirements.htm
http://www.oracle.com/technetwork/software/products/ias/files/fusion_requirements.htm
http://www.oracle.com/technetwork/software/products/ias/files/fusion_certification.html
http://www.oracle.com/technetwork/software/products/ias/files/fusion_certification.html

ix

New Features for Data Model Designers

This preface describes changes to Oracle BI Publisher data modeling features for
Oracle Business Intelligence Publisher 11g Release 1 (11.1.1).

This preface contains the following topics:

■ New Features for Oracle BI Publisher 11g Release 1 (11.1.1.6)

■ New Features for Oracle BI Publisher 11g Release 1 (11.1.1.5)

■ New Features for Oracle BI Publisher 11g Release 1 (11.1.1.3)

New Features for Oracle BI Publisher 11g Release 1 (11.1.1.6)
New features for report data model developers in Oracle BI Publisher 11g Release 1
(11.1.1.6) include:

■ Schedule Triggers for Event-Driven Schedules

■ Enhancements to Parameter Display Options

■ Support for HTML Formatting in Data

Schedule Triggers for Event-Driven Schedules
The execution of a scheduled report job can now be conditionalized based on an event.
A report data model supports a new type of trigger called a Schedule Trigger. The
schedule trigger that you create in the data model can then be enabled in the report job
schedule. When the report job is scheduled to run, the trigger is executed. If no data is
returned from the trigger, the job instance is skipped. If data is returned, the job
instance runs as scheduled. See Section 5.3, "Creating Schedule Triggers" for more
information.

Enhancements to Parameter Display Options
Enhancements to parameter display options include:

■ Support for radio button and check box display of values

Parameters that are defined as a menu in the data model can now be configured to
display the menu options as a list of radio buttons or check boxes. Parameters
configured to support one value support the option to display as radio buttons.
Parameters configured to support multiple values support the option to display as
check boxes.

■ New options for placement of parameters in the report viewer

x

Previously the report viewer always displayed the parameters in a horizontal
region across the top of the viewer. In this release. the display of the parameter
region can also be configured in one of the following ways:

– In a vertical region along the right side of the viewer

– As a dialog

– As a separate full page

■ New report viewer toolbar button to show or hide parameters

This release adds a toolbar button to the report viewer to enable users to hide or
show the parameter region. This enhancement complements the new parameter
display options. When report parameters are configured to display as a dialog or
in a separate full page, the parameter display region is dismissed when the viewer
displays the report. Use the Parameters button to redisplay the parameter region
to make new selections.

■ Search added to menus

All parameter menus having more than a specified number of options provide a
Search option.

■ Option to remove the Apply button

Reports can now be configured to remove the parameter Apply button. In these
reports the action of selecting a new parameter value automatically reruns the
report.

Support for HTML Formatting in Data
You can now convert stored XHTML to XSL-FO to display the HTML formatting from
your data in your generated report. The XHTML data must be extracted wrapped in a
CDATA section. Specific syntax must also be used in the RTF template to render it. See
Section 2.12.2, "Handling XHTML Data Stored in a CLOB Column" for more
information.

New Features for Oracle BI Publisher 11g Release 1 (11.1.1.5)
New features in Oracle BI Publisher 11g Release 1 (11.1.1.5) include:

■ Support for CLOB as XML

■ Upload Local Microsoft Excel File as Data Source

■ Use LDAP Attributes as Bind Variables in Data Queries

Support for CLOB as XML
The data engine can now extract well-formed XML data stored in a database column
as a character large object (CLOB) data type and maintain its structure. This feature
enables you to use XML data generated by a separate process and stored in your
database as input to a BI Publisher data model. For more information, see Section 2.12,
"Using Data Stored as a Character Large Object (CLOB) in a Data Model."

Upload Local Microsoft Excel File as Data Source
You can now upload a locally stored Excel file directly to a data model definition. This
file can then be refreshed on demand from the data model definition. For more
information, see Section 2.7, "Creating a Data Set Using a Microsoft Excel File."

xi

Use LDAP Attributes as Bind Variables in Data Queries
LDAP attributes defined in the LDAP Security Model definition can be used as bind
variables in data queries. For more information, see Section 2.15.2.1, "Creating Bind
Variables from LDAP User Attribute Values."

New Features for Oracle BI Publisher 11g Release 1 (11.1.1.3)
New features in Oracle BI Publisher 11g Release 1 (11.1.1.3) include:

■ Major User Interface Improvements

■ Shared BI Presentation Catalog

■ Data Model Editor

■ Data Model as a Sharable Object

■ Support for Microsoft Excel File as a Data Source

■ Support for View Object as a Data Source

Major User Interface Improvements
The user interface has undergone major improvements in several areas, including a
new Home page and redesigned editors and panes. These improvements are intended
to make working with Oracle BI Publisher easier and more consistent. For information
about working in the new interface, see Oracle Fusion Middleware User's Guide for Oracle
Business Intelligence Publisher.

Shared BI Presentation Catalog
For installations of BI Publisher with the Oracle BI Enterprise Edition, BI Publisher
now shares the same catalog with Oracle BI Presentation services. For information
about the improved catalog, see Oracle Fusion Middleware User's Guide for Oracle
Business Intelligence Publisher.

Data Model Editor
This release introduces the data model editor to create your report data models. The
data model editor enables you to combine data from multiple data sets from different
data sources, such as SQL, Excel files, Web services, HTTP feeds, and other
applications into a single XML data structure. Data sets can either be unrelated or a
relationship can be established between them using a data link. This guide describes in
detail how to use the data model editor.

Data Model as a Sharable Object
The data model is saved as a distinct catalog object. This means that a single data
model can now be used for multiple reports.

Support for Microsoft Excel File as a Data Source
A Microsoft Excel file can now be used to create a data set in a BI Publisher data
model. For more information, see Section 2.7, "Creating a Data Set Using a Microsoft
Excel File."

Support for View Object as a Data Source
BI Publisher enables you to connect to your custom applications built with Oracle
Application Development Framework and use view objects in your applications as

xii

data sources for reports. For more information, see Section 2.9, "Creating a Data Set
Using a View Object."

1

Using the Data Model Editor 1-1

1Using the Data Model Editor

This chapter describes the components and features supported by BI Publisher's data
model editor.

This chapter includes the following sections:

■ Section 1.1, "What Is a Data Model?"

■ Section 1.2, "Components of a Data Model"

■ Section 1.3, "Features of the Data Model Editor"

■ Section 1.4, "About the Data Source Options"

■ Section 1.5, "Process Overview for Creating a Data Model"

■ Section 1.6, "Launching the Data Model Editor"

■ Section 1.7, "About the Data Model Editor Interface"

■ Section 1.8, "Setting Data Model Properties"

1.1 What Is a Data Model?
A data model is an object that contains a set of instructions for BI Publisher to retrieve
and structure data for a report. Data models reside as separate objects in the catalog.

At the very simplest, a data model can be one data set retrieved from a single data
source (for example, the data returned from the columns in the employees table). A
data model can also be complex, including parameters, triggers, and bursting
definitions as well as multiple data sets.

To build a data model, you use the data model editor.

1.2 Components of a Data Model
A data model supports the following components:

■ Data set

A data set contains the logic to retrieve data from a single data source. A data set
can retrieve data from a variety of data sources (for example, a database, an
existing data file, a Web service call to another application, or a URL/URI to an
external data provider). A data model can have multiple data sets from multiple
sources.

■ Event triggers

Features of the Data Model Editor

1-2 Data Modeling Guide for Oracle Business Intelligence Publisher

A trigger checks for an event. When the event occurs the trigger runs the PL/SQL
code associated with it. The data model editor supports before data and after data
triggers. Event triggers consist of a call to execute a set of functions defined in a
PL/SQL package stored in an Oracle database.

■ Flexfields

A flexfield is a structure specific to Oracle Applications. The data model editor
supports retrieving data from flexfield structures defined in your Oracle
Application database tables.

■ Lists of values

A list of values is a menu of values from which report consumers can select
parameter values to pass to the report.

■ Parameters

A parameter is a variable whose value can be set at runtime. The data model
editor supports several parameter types.

■ Bursting Definitions

Bursting is a process of splitting data into blocks, generating documents for each
data block, and delivering the documents to one or more destinations. A single
bursting definition provides the instructions for splitting the report data,
generating the document, and delivering the output to its specified destinations.

1.3 Features of the Data Model Editor
Use the data model editor to combine data from multiple data sets from different data
sources, such as SQL, Excel files, Web services, HTTP feeds, and other applications
into a single XML data structure. Data sets can either be unrelated or a relationship
can be established between them using a data link.

The data model editor enables you to perform the following tasks:

■ Link data — Define master-detail links between data sets to build a hierarchical
data model.

■ Aggregate data — Create group level totals and subtotals.

■ Transform data — Modify source data to conform to business terms and reporting
requirements.

■ Create calculations — Compute data values that are required for your report that
are not available in the underlying data sources.

1.4 About the Data Source Options
BI Publisher supports a variety of data source types for creating data sets. These can be
categorized into three general types:

The first type are data sets for which BI Publisher can retrieve metadata information
from the source. For these data set types, the full range of data model editor functions
is supported. These data set types are:

■ SQL queries submitted against Oracle BI Server, an Oracle database, or other
supported databases

See Section 2.3, "Creating a Data Set Using a SQL Query."

Process Overview for Creating a Data Model

Using the Data Model Editor 1-3

For information on supported databases, see System Requirements and
Certification.

■ Microsoft Excel spreadsheet data sources

The Excel spreadsheet can be either stored in a file directory set up as a data
source by your administrator; or you can upload it directly from a local source to
the data model. See Section 2.7, "Creating a Data Set Using a Microsoft Excel File."

■ Queries against your LDAP repository to retrieve user data

You can report on this data directly, or join this to data retrieved from other
sources. See Section 2.6, "Creating a Data Set Using an LDAP Query."

■ Multidimensional (MDX) queries against an OLAP data source

See Section 2.5, "Creating a Data Set Using an MDX Query Against an OLAP Data
Source."

For the second type, BI Publisher can retrieve column names and data type
information from the data source but it cannot process or structure the data. For these
data set types, only a subset of the full range of data model editor functions is
supported. These data set types are:

■ Oracle BI Analyses

See Section 2.8, "Creating a Data Set Using an Oracle BI Analysis."

■ View objects created using Oracle Application Development Framework (ADF)

See Section 2.9, "Creating a Data Set Using a View Object."

For the third type, BI Publisher retrieves data that has been generated and structured
at the source and no additional modifications can be applied by the data model editor.
These data set types are:

■ HTTP XML feeds off the Web

See Section 2.13, "Creating a Data Set from an HTTP XML Feed."

■ Web services

See Section 2.10, "Creating a Data Set Using a Web Service."

Supply the Web service WSDL to BI Publisher and then define the parameters in
BI Publisher to use a Web service to return data for the report.

■ Existing XML data files

See Section 2.11, "Creating a Data Set Using a Stored XML File."

1.5 Process Overview for Creating a Data Model
Table 1–1 lists the process overview for creating a data model.

Table 1–1 Process of Creating a Data Model

Step Reference

Launch the Data Model Editor. Section 1.6, "Launching the Data Model Editor"

Set properties for the data model.
(Optional)

Section 1.8, "Setting Data Model Properties"

Create the data sets for the data model. Chapter 2, "Creating Data Sets"

Launching the Data Model Editor

1-4 Data Modeling Guide for Oracle Business Intelligence Publisher

1.6 Launching the Data Model Editor
Launch the Data Model Editor from the Home page or from the global header in one
of the following ways:

To launch the Data Model Editor from the global header:

1. Click New and then click Data Model to open the Data Model Editor.

To launch the Data Model Editor from the Home page:

1. Under the Create region, click Data Model.

1.7 About the Data Model Editor Interface
Figure 1–1 shows the Properties pane of the data model editor interface.

Define the data output structure.
(Optional)

Chapter 3, "Structuring Data"

Define the parameters to pass to the
query, and define lists of values for users
to select parameter values. (Optional)

Section 4, "Adding Parameters and Lists of
Values"

Define Event Triggers. (Optional) Section 5.1, "About Triggers"

(Oracle Applications Only) Define
Flexfields. (Optional)

Chapter 6, "Adding Flexfields"

Test your data model and add sample
data.

Section 2.14, "Testing Data Models and
Generating Sample Data"

Add a bursting definition. (Optional) Chapter 7, "Adding Bursting Definitions"

Table 1–1 (Cont.) Process of Creating a Data Model

Step Reference

Setting Data Model Properties

Using the Data Model Editor 1-5

Figure 1–1 Data Model Editor Interface

The Data Model Editor is designed with a component pane on the left and work pane
on the right. Selecting a component on the left pane launches the appropriate fields for
the component in the work area.

The toolbar, shown in Figure 1–2, provides the following functions:

Figure 1–2 Toolbar of Data Model Editor

■ Get XML Output

Launches the XML output page to run the data model definition and view or save
the XML output.

■ Save / Save As

Select Save to save your work in progress to the existing data model object or
select Save As to save the data model as a new object in the catalog.

■ Help

View online help for the data model editor.

1.8 Setting Data Model Properties
Enter the following properties for the data model:

Setting Data Model Properties

1-6 Data Modeling Guide for Oracle Business Intelligence Publisher

Description — (Optional) The description that you enter here displays in the catalog.
This description is translatable.

Default Data Source — Select the data source from the list. Data models can include
multiple data sets from one or more data sources. The default data source you select
here is presented as the default for each new data set you define. Select Refresh Data
Source List to see any new data sources added since your session was initiated.

Oracle DB Default Package — If you define a query against an Oracle database, then
you can include before or after data triggers (event triggers) in your data model. Event
triggers make use of PL/SQL packages to execute RDBMS level functions. For data
models that include event triggers or a PL/SQL group filter, you must enter a default
PL/SQL package here. The package must exist on the default data source.

Database Fetch Size — Sets the number of rows fetched at a time through the JDBC
connection. This value overrides the value set in the system properties. See "Setting
Server Configuration Properties" in Oracle Fusion Middleware Administrator's Guide for
Oracle Business Intelligence Publisher. If neither this value nor the server setting is
defined, then a default value of 300 is used.

Enable Scalable Mode — Processing large data sets requires the use of large amounts
of RAM. To prevent running out of memory, activate scalable mode for the data
engine. In scalable mode, the data engine takes advantage of disk space when it
processes the data.

Backup Data Source — If you have set up a backup database for this data source,
select Enable Backup Connection to enable the option; then select when you want BI
Publisher to use the backup.

■ To use the backup data source only when the primary is down, select Switch to
Backup Data Source when Primary Data Source is unavailable. Note that when
the primary data source is down, the data engine must wait for a response before
switching to the backup.

■ To always use the backup data source when executing this data model, select Use
Backup Data Source Only. Using the backup database may enhance performance.

1.8.1 XML Output Options
These options define characteristics of the XML data structure. Note that any changes
to these options can impact layouts that are built on the data model.

■ Include Parameter Tags — If you define parameters for your data model, select
this box to include the parameter values in the XML output file. See Section 4,
"Adding Parameters and Lists of Values" for information on adding parameters to
your data model. Enable this option when you want to use the parameter value in
the report.

■ Include Empty Tags for Null Elements — Select this box to include elements with
null values in your output XML data. When you include a null element, then a
requested element that contains no data in your data source is included in your
XML output as an empty XML tag as follows: <ELEMENT_ID\>. For example, if
the element MANAGER_ID contained no data and you chose to include null

Note: This feature requires that a backup data source has been
enabled for the selected data source. For more information see "About
Backup Data Sources" in Oracle Fusion Middleware Administrator's
Guide for Oracle Business Intelligence Publisher.

Setting Data Model Properties

Using the Data Model Editor 1-7

elements, it would appear in your data as follows: <MANAGER_ID />. If you do
not select this option, no entry appears for MANAGER_ID.

■ Include Group List Tag — (This property is for 10g backward compatibility and
Oracle Report migration.) Select this box to include the rowset tags in your output
XML data. If you include the group list tags, then the group list appears as another
hierarchy within your data.

■ XML Tag Display — Select whether to generate the XML data tags in upper case,
in lower case, or to preserve the definition you supplied in the data structure.

1.8.2 Attachments to the Data Model
The Attachment region of the page displays data files that you have uploaded or
attached to the data model.

1.8.2.1 Attaching Sample Data
After you build your data model, it is required that you attach a small, but
representative set of sample data generated from your data model. The sample data is
used by BI Publisher's layout editing tools. Using a small sample file helps improve
performance during the layout design phase.

The Data Model Editor provides an option to generate and attach the sample data. See
Section 2.14, "Testing Data Models and Generating Sample Data."

1.8.2.2 Attaching Schema
The Data Model Editor enables you to attach sample schema to the data model
definition. The schema file is not used by BI Publisher, but can be attached for
developer reference. The Data Model Editor does not support schema generation.

1.8.2.3 Data Files
If you have uploaded a local Microsoft Excel file as a data source for this report, the
file displays here. Use the refresh button to refresh this file from the local source. For
information on uploading an Excel file to use as a data source, see Section 2.7,
"Creating a Data Set Using a Microsoft Excel File."

Figure 1–3 shows the Attachments region with sample data and data files attached:

Figure 1–3 Attachments Region with Attached Sample Data and Files

Setting Data Model Properties

1-8 Data Modeling Guide for Oracle Business Intelligence Publisher

2

Creating Data Sets 2-1

2Creating Data Sets

This chapter describes creating data sets in BI Publisher. Data sets can be created from
a variety of sources including SQL queries, MDX queries, LDAP queries, Microsoft
Excel worksheets, Web services, and XML files. This chapter also describes how to test
your data models and save sample data.

This chapter includes the following sections:

■ Section 2.1, "Overview of Creating Data Sets"

■ Section 2.2, "Editing an Existing Data Set"

■ Section 2.3, "Creating a Data Set Using a SQL Query"

■ Section 2.4, "Using the Query Builder"

■ Section 2.5, "Creating a Data Set Using an MDX Query Against an OLAP Data
Source"

■ Section 2.6, "Creating a Data Set Using an LDAP Query"

■ Section 2.7, "Creating a Data Set Using a Microsoft Excel File"

■ Section 2.8, "Creating a Data Set Using an Oracle BI Analysis"

■ Section 2.9, "Creating a Data Set Using a View Object"

■ Section 2.10, "Creating a Data Set Using a Web Service"

■ Section 2.11, "Creating a Data Set Using a Stored XML File"

■ Section 2.12, "Using Data Stored as a Character Large Object (CLOB) in a Data
Model"

■ Section 2.13, "Creating a Data Set from an HTTP XML Feed"

■ Section 2.14, "Testing Data Models and Generating Sample Data"

■ Section 2.15, "Including User Information Stored in System Variables in Your
Report Data"

2.1 Overview of Creating Data Sets
Oracle BI Publisher can retrieve data from multiple types of data sources.

to create a data set:

1. On the component pane of the data model editor click Data Sets.

2. Click New Data Set as shown in Figure 2–1.

Overview of Creating Data Sets

2-2 Data Modeling Guide for Oracle Business Intelligence Publisher

Figure 2–1 Creating a Data Set

3. Select the data set type from the list to launch the appropriate dialog, as shown in
Figure 2–2.

Figure 2–2 Selecting the Data Set Type

4. Complete the required fields to create the data set. See the corresponding section
in this chapter for information on creating each data set type.

■ Section 2.3, "Creating a Data Set Using a SQL Query"

■ Section 2.5, "Creating a Data Set Using an MDX Query Against an OLAP Data
Source"

■ Section 2.6, "Creating a Data Set Using an LDAP Query"

■ Section 2.7, "Creating a Data Set Using a Microsoft Excel File"

■ Section 2.8, "Creating a Data Set Using an Oracle BI Analysis"

■ Section 2.9, "Creating a Data Set Using a View Object"

■ Section 2.10, "Creating a Data Set Using a Web Service"

■ Section 2.11, "Creating a Data Set Using a Stored XML File"

■ Section 2.12, "Using Data Stored as a Character Large Object (CLOB) in a Data
Model"

■ Section 2.13, "Creating a Data Set from an HTTP XML Feed"

Creating a Data Set Using a SQL Query

Creating Data Sets 2-3

2.2 Editing an Existing Data Set
To edit an existing data set:

1. On the component pane of the data model editor click Data Sets. All data sets for
this data model display in the working pane.

2. Click the data set to edit.

3. Click the Edit toolbar button. The dialog for the data set opens. For information
about each type of data set, see the corresponding section in this chapter.

4. Make changes to the data set and click OK.

5. Save the data model.

6. Test your edited data model and add new sample data. See Section 2.14, "Testing
Data Models and Generating Sample Data."

2.3 Creating a Data Set Using a SQL Query
To create a data set using a SQL query:

1. Click the New Data Set icon and then click SQL Query. The Create Data Set - SQL
dialog launches, as shown in Figure 2–3.

Figure 2–3 Create Data Set - SQL Dialog

2. Enter a name for this data set.

3. The Data Source defaults to the Default Data Source you selected on the
Properties page. If you are not using the default data source for this data set, select
the Data Source from the list.

4. Enter the SQL query or select Query Builder. See Section 2.4, "Using the Query
Builder" for information about the Query Builder utility.

5. If you are using Flexfields, bind variables, or other special processing in your
query, edit the SQL returned by the Query Builder to include the required
statements.

Using the Query Builder

2-4 Data Modeling Guide for Oracle Business Intelligence Publisher

6. After entering the query, click OK to save. The data model editor validates the
query.

If your query includes a bind variable, you are prompted to create the bind
parameter. Click OK to have the data model editor create the bind parameter. To
edit the parameter, see Chapter 4, "Adding Parameters and Lists of Values."

2.4 Using the Query Builder
Use the Query Builder to build SQL queries without coding. The Query Builder
enables you to search and filter database objects, select objects and columns, create
relationships between objects, and view formatted query results with minimal SQL
knowledge.

The Query Builder page is divided into two sections:

■ Object Selection pane contains a list of objects from which you can build queries.
Only objects in the current schema display.

■ Design and output pane consists of four tabs:

■ Model — Displays selected objects from the Object Selection pane.

■ Conditions — Enables you to apply conditions to your selected columns.

■ SQL — Displays the query.

■ Results — Displays the results of the query.

Figure 2–4 Design and Output Pane

Note: If you include lexical references for text that you embed in a
SELECT statement, then you must substitute values to get a valid SQL
statement.

Using the Query Builder

Creating Data Sets 2-5

2.4.1 Understanding the Query Builder Process
To build a query, perform the following steps:

1. Select objects from the Object Selection pane.

2. Add objects to the Design pane and select columns.

3. Optional: Establish relationships between objects.

4. Add a unique alias name for any duplicate column.

5. Optional: Create query conditions.

6. Execute the query and view results.

2.4.2 Using the Object Selection Pane
In the Object Selection pane you can select a schema and search and filter objects.

To hide the Object Selection pane, select the control bar located between it and the
Design pane. Select it again to unhide it.

2.4.3 Selecting a Schema
The Schema list contains all the available schemas in the data source. Note that you
may not have access to all that are listed.

2.4.4 Searching and Filtering Objects
Use the Search field to enter a search string. Note that if more than 100 tables are
present in the data source, you must use the Search feature to locate and select the
desired objects.

2.4.5 Selecting Objects
The Object Selection pane lists the tables, views, and materialized views from the
selected schema (for Oracle databases, synonyms are also listed). Select the object from
the list and it displays on the Design pane. Use the Design pane to identify how the
selected objects are used in the query.

2.4.6 Supported Column Types
Columns of all types display as objects in the Design pane. Note the following column
restrictions:

■ You can select no more than 60 columns for each query.

■ Only the following column types are selectable:

■ VARCHAR2, CHAR

■ NUMBER

■ DATE, TIMESTAMP

■ Binary Large Object (BLOB)

Note: The data type TIMESTAMP WITH LOCAL TIMEZONE is not
supported.

Using the Query Builder

2-6 Data Modeling Guide for Oracle Business Intelligence Publisher

■ Character Large Object (CLOB)

For more information about working with CLOB data in the data model, see
Section 2.12, "Using Data Stored as a Character Large Object (CLOB) in a Data
Model."

2.4.7 Adding Objects to the Design Pane
To add objects to the design pane:

1. Select an object.

The selected object displays in the Design pane. An icon representing the data type
displays next to each column name.

2. Select the check box for each column to include in your query.

When you select a column, it appears on the Conditions tab. Note that the Show
check box on the Conditions tab controls whether a column is included in query
results. Be default, this check box is selected.

To select the first twenty columns, click the small icon in the upper left corner of
the object and then select Check All.

3. To execute the query and view results, select Results.

2.4.8 Resizing the Design and Results Pane
As you select objects, you can resize the Design and Results panes by selecting and
dragging the gray horizontal rule dividing the page.

2.4.9 Removing or Hiding Objects in the Design Pane
To remove an object:

1. Select the Remove icon in the upper right corner of the object.

To temporarily hide the columns within an object:

1. Click the Show/Hide Columns icon.

2.4.10 Specifying Query Conditions
Conditions enable you to filter and identify the data you want to work with. As you
select columns within an object, you can specify conditions on the Conditions tab. You
can use these attributes to modify the column alias, apply column conditions, sort
columns, or apply functions. Figure 2–5 shows the Conditions tab.

Note: The BLOB must be an image. When you execute the query in
the Query Builder, the BLOB does not display in the Results pane;
however, the query is constructed correctly when saved to the data
model editor.

Tip: You can also execute a query using the key strokes CTRL +
ENTER.

Using the Query Builder

Creating Data Sets 2-7

Figure 2–5 Conditions Tab

Table 2–1 describes the attributes available on the Conditions tab.

Table 2–1 Attributes Available on the Conditions Tab

Condition Attribute Description

Up and Down
Arrows

Controls the display order of the columns in the resulting query.

Column Displays the column name.

Alias Specify an optional column alias. An alias is an alternative column
name. Aliases are used to make a column name more descriptive, to
shorten the column name, or prevent possible ambiguous references.
Note that multibyte characters are not supported in the alias name.

Condition The condition modifies the query's WHERE clause. When specifying a
column condition, you must include the appropriate operator and
operand. All standard SQL conditions are supported. For example:

 >=10

='VA'

IN (SELECT dept_no FROM dept)

BETWEEN SYSDATE AND SYSDATE + 15

Sort Type Select ASC (Ascending) or DESC (Descending).

Sort Order Enter a number (1, 2, 3, and so on) to specify the order in which
selected columns should display.

Using the Query Builder

2-8 Data Modeling Guide for Oracle Business Intelligence Publisher

As you select columns and define conditions, Query Builder writes the SQL for you.

To view the underlying SQL:

1. Click the SQL tab.

2.4.11 Creating Relationships Between Objects
You can create relationships between objects by creating a join. A join identifies a
relationship between two or more tables, views, or materialized views.

2.4.11.1 About Join Conditions
When you write a join query, you specify a condition that conveys a relationship
between two objects. This condition is called a join condition. A join condition
determines how the rows from one object combine with the rows from another object.

Query Builder supports inner, outer, left, and right joins. An inner join (also called a
simple join) returns the rows that satisfy the join condition. An outer join extends the
result of a simple join. An outer join returns all rows that satisfy the join condition and
returns some or all of those rows from one table for which no rows from the other
satisfy the join condition.

2.4.11.2 Joining Objects Manually
Create a join manually by selecting the Join column in the Design pane.

To join objects manually:

1. From the Object Selection pane, select the objects you want to join.

2. Identify the columns you want to join.

Show Select this check box to include the column in your query results. You
do not need to select Show to add a column to the query for filtering
only. For example, to create following query:

SELECT ename FROM emp WHERE deptno = 10

To create this query in Query Builder:

1. From the Object list, select EMP.

2. In the Design Pane, select ename and deptno.

3. For the deptno column, in Condition enter =10 and clear the
Show check box.

Function Available argument functions include:

■ Number columns — COUNT, COUNT DISTINCT, AVG,
MAXIMUM,. MINIMUM, SUM

■ VARCHAR2, CHAR columns — COUNT, COUNT DISTINCT,
INITCAP, LENGTH, LOWER, LTRIM, RTRIM, TRIM, UPPER

■ DATE, TIMESTAMP columns- COUNT, COUNT DISTINCT

Group By Specify columns to be used for grouping when an aggregate function
is used. Only applicable for columns included in output.

Delete Deselect the column, excluding it from the query.

Table 2–1 (Cont.) Attributes Available on the Conditions Tab

Condition Attribute Description

Using the Query Builder

Creating Data Sets 2-9

You create a join by selecting the Join column adjacent to the column name. The
Join column displays to the right of the data type. When your cursor is in the
appropriate position, the following help tip displays:

Click here to select column for join

3. Select the appropriate Join column for the first object.

When selected, the Join column is darkened. To deselect a Join column, simply
select it again or press ESC.

4. Select the appropriate Join column for the second object.

When joined, line connects the two columns. An example is shown in Figure 2–6.

Figure 2–6 Joined Columns

5. Select the columns to be included in your query. You can view the SQL statement
resulting from the join by positioning the cursor over the join line.

6. Click Results to execute the query.

2.4.12 Saving a Query
Once you have built the query, click Save to return to the data model editor. The
query appears in the SQL Query box. Click OK to save the data set.

To link the data from this query to the data from other queries or modify the output
structure, see Chapter 3, "Structuring Data."

Using the Query Builder

2-10 Data Modeling Guide for Oracle Business Intelligence Publisher

Figure 2–7 Query Displayed in SQL Query Box

2.4.13 Adding a Bind Variable to a Query
Now you have a basic query, but in the report you want users to be able to pass a
parameter to the query to limit the results. For example, in the employee listing, you
want users to be able to choose a specific department.

You can add the variable using either of the following methods:

■ Add the bind variable using the Query Builder Conditions tab

To add the bind variable in the Query Builder Conditions tab:

1. Add the following Condition for the column:

in (:P_DEPTNAME)

where P_DEPTNAME is the name you choose for the parameter. This is
shown in Figure 2–8.

Figure 2–8 Adding the Bind Variable Using the Query Builder Conditions Tab

■ Update the SQL query directly in the text box.

Using the Query Builder

Creating Data Sets 2-11

To update the SQL query directly in the text box:

1. Add the following after the where clause in your query:

and "COLUMN_NAME" in (:PARAMETER_NAME)

for example:

and "DEPARTMENT_NAME" in (:P_DEPTNAME)

where P_DEPTNAME is the name you choose for the parameter. This is
shown in Figure 2–9.

Figure 2–9 Editing the Generated SQL Query

2. When you select Save, the data model editor asks whether to create the
parameter that you entered with the bind variable syntax, as shown in
Figure 2–10.

Figure 2–10 Create a Bind Parameter Dialog

3. Click OK to have the data model editor create the parameter entry for you.

To define the parameter properties, see Chapter 4, "Adding Parameters and Lists of
Values."

Important: After manually editing the query, the Query Builder can
no longer parse it. Any further edits must also be made manually.

Creating a Data Set Using an MDX Query Against an OLAP Data Source

2-12 Data Modeling Guide for Oracle Business Intelligence Publisher

2.4.14 Editing a Saved Query
When you have saved the query from the Query Builder to the data model editor, you
can also use the Query Builder to edit the query.

To use the Query Builder to edit the query:

1. Select the SQL data set.

2. Click the Edit Selected Data Set toolbar button.

3. This launches the Edit Data Set dialog. Click Query Builder to load the query to
the Query Builder.

4. Edit the query and click Save.

2.5 Creating a Data Set Using an MDX Query Against an OLAP Data
Source

BI Publisher supports Multidimensional Expressions (MDX) queries against your
OLAP data sources. MDX lets you query multidimensional objects, such as cubes, and
return multidimensional cellsets that contain the cube's data. See your OLAP database
documentation for information about the MDX syntax and functions it supports.
Figure 2–11 shows a sample MDX query.

Figure 2–11 Sample MDX Query

To create a data set using an MDX query against an OLAP data source:

1. Click the New Data Set toolbar button and select OLAP. The Create Data Set -
OLAP dialog launches.

2. Enter a name for this data set.

Note: If you have made modifications to the query, or did not use
the Query Builder to construct it, you may receive an error when
launching the Query Builder to edit it. If the Query Builder cannot
parse the query, you can edit the statements directly in the text box.

Creating a Data Set Using an LDAP Query

Creating Data Sets 2-13

3. Select the Data Source for this data set. Only data sources defined as OLAP
connections display in the list.

4. Enter the MDX query by direct entry or by copying and pasting from a third-party
MDX editor.

5. Click OK.

6. To link the data from this query to the data from other queries or modify the
output structure, see Chapter 3, "Structuring Data."

2.6 Creating a Data Set Using an LDAP Query
BI Publisher supports queries against Lightweight Directory Access protocol (LDAP)
data sources. You can query user information stored in LDAP directories and then use
the data model editor to link the user information with data retrieved from other data
sources.

For example, to generate a report that lists employee salary information that is stored
in the database application and include on the report employee e-mail addresses that
are stored in the LDAP directory. You can create a query against each and then link the
two in the data model editor to display the information in a single report. Figure 2–12
shows a sample LDAP query.

Figure 2–12 Sample LDAP Query

To create a data set using an LDAP query:

1. Click the New Data Set toolbar button and select LDAP. The Create Data Set -
LDAP dialog launches.

2. Enter a name for this data set.

Note: Ensure that in your OLAP data source that you do not use
Unicode characters from the range U+F900 to U+FFFE to define any
metadata attributes such as column names or table names. This
Unicode range includes half-width Japanese Katakana and full-width
ASCII variants. Using these characters results in errors when
generating the XML data for a BI Publisher report.

Creating a Data Set Using a Microsoft Excel File

2-14 Data Modeling Guide for Oracle Business Intelligence Publisher

3. Select the Data Source for this data set. Only data sources defined as LDAP
connections display in the list.

4. In the Attributes entry box, enter the attributes whose values you want to fetch
from the LDAP data source.

For example:

mail,cn,givenName

5. To filter the query, enter the appropriate syntax in the Filter entry box. The syntax
is as follows:

(Operator (Filter)through(Filter))

For example:

(objectclass=person)

LDAP search filters are defined in the Internet Engineering Task Force (IETF)
Request for Comments document 2254, "The String Representation of LDAP
Search Filters," (RFC 2254). This document is available from the IETF Web site at
http://www.ietf.org/rfc/rfc2254.txt

6. To link the data from this query to the data from other queries or modify the
output structure, see Chapter 3, "Structuring Data."

2.7 Creating a Data Set Using a Microsoft Excel File
To use a Microsoft Excel file as a data source, you can either:

■ Place the file in a directory that your administrator has set up as a data source. See
the section "Setting Up a Connection to a File Data Source" in Oracle Fusion
Middleware Administrator's Guide for Oracle Business Intelligence Publisher).

■ Upload the file to the data model from a local directory.

2.7.1 About Supported Excel Files
Following are guidelines for the support of Microsoft Excel files as a data set type in BI
Publisher:

■ The Microsoft Excel files must be saved in the Excel 97-2003 Workbook (*.xls)
format by Microsoft Excel. Files created by a third party application or library are
not supported.

■ The source Excel file might contain a single sheet or multiple sheets.

■ Each worksheet may contain one or multiple tables. A table is a block of data that
is located in the continuous rows and columns of a sheet.

In each table, BI Publisher always considers the first row to be a heading row for
the table.

■ The data type of the data in the table may be number, text, or date/time.

■ If multiple tables exist in a single worksheet, the tables must be identified with a
name for BI Publisher to recognize each one. See Section 2.7.2, "Guidelines for
Accessing Multiple Tables per Sheet."

■ If all tables in the Excel file are not named, only the data in the first table (the table
located in the upper most left corner) is recognized and fetched.

Creating a Data Set Using a Microsoft Excel File

Creating Data Sets 2-15

■ When the data set is created, BI Publisher truncates all trailing zeros after the
decimal point for numbers in all cases. To preserve the trailing zeros in your final
report, you must apply a format mask in your template to display the zeroes. For
more information about format masks, see the section "Number, Date, and
Currency Formatting" in Oracle Fusion Middleware Report Designer's Guide for Oracle
Business Intelligence Publisher.

2.7.2 Guidelines for Accessing Multiple Tables per Sheet
If the Excel worksheet contains multiple tables that you want to include as data
sources, then you must define a name for each table in Excel.

To define a name for the table in Excel:

1. Insert the table in Excel.

2. Define a name for the table as follows:

Using Excel 2003: Select the table. On the Insert menu, click Name and then
Define. Enter a name that is prefixed with "BIP_".

Using Excel 2007: Select the table. On the Formulas tab, in the Defined Names
group, click Define Name, then enter the name in the Name field. The name you
enter appears on the Formula bar.

Figure 2–13 shows how to use the Define Name command in Microsoft Excel 2007 to
name a table "BIP_Salaries".

Important: The name that you define must begin with the prefix:
"BIP_", for example, "BIP_SALARIES".

Tip: You can learn more about defined names and their usage in the
Microsoft Excel 2007 document "Define and use names in formulas."
at the following URL:

http://office.microsoft.com/en-us/excel/HA1014712010
33.aspx

Creating a Data Set Using a Microsoft Excel File

2-16 Data Modeling Guide for Oracle Business Intelligence Publisher

Figure 2–13 Using the Define Name Command in MIcrosoft Excel

2.7.3 Using a Microsoft Excel File Stored in a File Directory Data Source
Note that to include parameters for your data set, you must define the parameters
first, so that they are available for selection when defining the data set. See Chapter 4,
"Adding Parameters and Lists of Values."

To create a data set using a Microsoft Excel file from a file directory data source:

1. Click the New Data Set toolbar button and select Microsoft Excel File. The Create
Data Set - Excel dialog launches.

2. Enter a name for this data set.

3. Click Shared to enable the Data Source list.

4. Select the Data Source where the Excel File resides.

5. Click the browse icon to browse for the Microsoft Excel file in the data source
directories. Select the file.

6. If the Excel file contains multiple sheets or tables, select the appropriate Sheet
Name and Table Name for this data set, as shown in Figure 2–14.

Important: The Excel data set type supports one value per
parameter. It does not support multiple selection for parameters.

Creating a Data Set Using a Microsoft Excel File

Creating Data Sets 2-17

Figure 2–14 Selecting the Sheet Name

7. If you added parameters for this data set, click Add Parameter. Enter the Name
and select the Value. The Value list is populated by the parameter Name defined
in the Parameters section. See Chapter 4, "Adding Parameters and Lists of Values."

8. Click OK.

To link the data from this query to the data from other queries or modify the output
structure, see Chapter 3, "Structuring Data."

2.7.4 Uploading a Microsoft Excel File Stored Locally
Note that to include parameters for the data set, you must define the parameters first,
so that they are available for selection when defining the data set. See Chapter 4,
"Adding Parameters and Lists of Values."

To create a data set using a Microsoft Excel file stored locally:

1. Click the New Data Set toolbar button and select Microsoft Excel File. The Create
Data Set - Excel dialog launches.

2. Enter a name for this data set.

3. Select Local to enable the upload button.

4. Click the Upload icon to browse for and upload the Microsoft Excel file from a
local directory. If the file has been uploaded to the data model, then it is available
for selection in the File Name list.

5. If the Excel file contains multiple sheets or tables, select the appropriate Sheet
Name and Table Name for this data set, as shown in Figure 2–15.

Important: The Excel data set type supports one value per
parameter. It does not support multiple selection for parameters.

Creating a Data Set Using a Microsoft Excel File

2-18 Data Modeling Guide for Oracle Business Intelligence Publisher

Figure 2–15 Defining Excel Spreadsheet for Data Set

6. If you added parameters for this data set, click Add Parameter. Enter the Name
and select the Value. The Value list is populated by the parameter Name defined
in the Parameters section. See Chapter 4, "Adding Parameters and Lists of Values."

7. Click OK.

To link the data from this query to the data from other queries or modify the output
structure, see Chapter 3, "Structuring Data."

2.7.4.1 Refreshing and Deleting an Uploaded Excel File
After uploading the file, it displays on the Properties pane of the data model under the
Attachments region, as shown in Figure 2–16.

Figure 2–16 Attachments Region of the Properties Pane

See Section 1.8, "Setting Data Model Properties" for information about the Properties
pane.

To refresh the local file in the data model:

1. Click Data Model in the component pane to view the Properties page.

2. In the Attachment region of the page, locate the file in the Data Files list.

3. Click Refresh.

Creating a Data Set Using an Oracle BI Analysis

Creating Data Sets 2-19

4. In the Upload dialog, browse for and upload the latest version of the file. The file
must have the same name or it will not replace the older version.

5. Save the data model.

To delete the local file:

1. Click Data Model in the component pane to view the Properties page.

2. In the Attachment region of the page, locate the file in the Data Files list.

3. Click Delete.

4. Click OK to confirm.

5. Save the data model.

2.8 Creating a Data Set Using an Oracle BI Analysis
If you have enabled integration with Oracle Business Intelligence, then you can access
the Oracle Business Intelligence Presentation catalog to select an Oracle BI analysis as
a data source. An analysis is a query against an organization's data that provides
answers to business questions. A query contains the underlying SQL statements that
are issued to the Oracle BI Server.

For more information on creating analyses, see Oracle Fusion Middleware User's Guide
for Oracle Business Intelligence Publisher.

To create a data set using an Oracle BI analysis:

1. Click the New Data Set toolbar button and select Oracle BI Analysis. The Create
Data Set - Oracle BI Analysis dialog launches.

2. Enter a name for this data set.

3. Click the browse icon to connect to the Oracle BI Presentation catalog, as shown in
Figure 2–17.

Figure 2–17 Connecting to the Oracle BI Presentation Catalog

4. When the catalog connection dialog launches, navigate through the folders to
select the Oracle BI analysis to use as the data set for the report.

Important: Hierarchical columns are not supported in BI Publisher
data models.

Creating a Data Set Using a View Object

2-20 Data Modeling Guide for Oracle Business Intelligence Publisher

5. Enter a Time Out value in seconds, as shown in Figure 2–18. If BI Publisher has
not received the analysis data after the time specified in the time out value has
elapsed, then BI Publisher stops attempting to retrieve the analysis data.

Figure 2–18 Creating a BI Analysis Data Set

6. Click OK.

2.8.1 Additional Notes on Oracle BI Analysis Data Sets
Parameters and list of values are inherited from the BI analysis and they display at run
time.

The BI Analysis must have default values defined for filter variables. If the analysis
contains presentation variables with no default values, it is not supported as a data
source by BI Publisher.

If you want to structure the data based on Oracle BI Analysis Data Sets, the group
breaks, data links and group-level functions are not supported.

The following are supported:

■ Global level functions

■ Setting the value for elements if null

■ Group Filters

For more information about the above supported features, see Chapter 3, "Structuring
Data."

2.9 Creating a Data Set Using a View Object
BI Publisher enables you to connect to your custom applications built with Oracle
Application Development Framework and use view objects in your applications as
data sources for reports.

This procedure assumes that you have created a view object in your application. For
more information, see Section 2.9, "Creating a Data Set Using a View Object."

To create a data set using a view object:

1. Click the New Data Set toolbar button and select View Object. The Create Data
Set - View Object dialog launches.

2. Enter a name for this data set.

3. Select the Data Source from the list. The data sources that you defined in the
providers.xml file display.

4. Enter the fully qualified name of the application module (for example:
example.apps.pa.entity.applicationModule.AppModuleAM).

5. Click Load View Objects.

Creating a Data Set Using a Web Service

Creating Data Sets 2-21

BI Publisher calls the application module to load the view object list.

6. Select the View Object.

7. Any bind variables defined are retrieved. Create a parameter to map to this bind
variable See Chapter 4, "Adding Parameters and Lists of Values."

8. Click OK to save your data set.

2.9.1 Additional Notes on View Object Data Sets
To structure data based on view object data sets, the group breaks, data links and
group-level functions are not supported.

The following is supported: Setting the value for elements if null.

For more information about this supported feature, see Chapter 3, "Structuring Data."

2.10 Creating a Data Set Using a Web Service
BI Publisher supports Web service data sources that return valid XML data.

If the Web service is protected by Secure Sockets Layer (SSL), then see the section
"Configuring BI Publisher for Secure Socket Layer Communication" in Oracle Fusion
Middleware Administrator's Guide for Oracle Business Intelligence Publisher.

BI Publisher supports Web services that return both simple data types and complex
data types. You must make the distinction between simple and complex when you
define the Web service data model. See Section 2.10.1, "Adding a Simple Web Service:
Example" and Section 2.10.2, "Adding a Complex Web Service" for descriptions of
setting up each type.

Note that to include parameters for the Web service method, you must define the
parameters first, so that they are available for selection when setting up the data
source. See Chapter 4, "Adding Parameters and Lists of Values."

Multiple parameters are supported. Ensure the method name is correct and the order
of the parameters matches the order in the method. To call a method in the Web
service that accepts two parameters, you must map two parameters defined in the
report to those two. Note that only parameters of simple type are supported, for
example, string and integer.

■ Enter the WSDL URL and the Web Service Method.

■ To specify a parameter, select the Add link. Select the parameter from the list.

Important: Additional configuration may be required to access
external Web services depending on your system's security. If the
WSDL URL is outside the company firewall, then see the section
"Configuring Proxy Settings" in Oracle Fusion Middleware
Administrator's Guide for Oracle Business Intelligence Publisher.

Important: Only document/literal Web services are supported.

Creating a Data Set Using a Web Service

2-22 Data Modeling Guide for Oracle Business Intelligence Publisher

2.10.1 Adding a Simple Web Service: Example
This example shows how to add a Web service to BI Publisher as a data source. The
Web service returns stock quote information. The Web service passes one parameter:
the quote symbol for a stock.

The WSDL URL is:

http://www.webservicex.net/stockquote.asmx?WSDL

If you are not familiar with the available methods and parameters in the Web service
to call, you can open the URL in a browser to view them. This Web service includes a
method called GetQuote. It takes one parameter, which is the stock quote symbol.

To add the Web service as a data source:

1. Click the New Data Set toolbar button and select Web Services. The Create Data
Set - Web Service dialog launches, as shown in Figure 2–19.

Figure 2–19 Creating a Simple Web Service Data Set

2. Enter a name for this data set.

3. Enter the Data Set information:

■ Select False for Complex Type.

■ Enter the WSDL URL: http://www.webservicex.net/stockquote.asmx?WSDL

■ Enter the Method: GetQuote

■ If desired, enter a Time Out period in seconds. If the BI Publisher server
cannot establish a connection to the Web service, the connection attempt times
out after the specified time out period has elapsed.

4. Define the parameter to make it available to the Web service data set.

Select Parameters on the Data Model pane and click the Create New Parameter
button. Enter the following:

Note: The parameters must be set up in the Parameters section of the
report definition See Chapter 4, "Adding Parameters and Lists of
Values."

Creating a Data Set Using a Web Service

Creating Data Sets 2-23

■ Identifier — Enter an internal identifier for the parameter (for example,
Quote).

■ Data Type — Select String.

■ Default Value — If desired, enter a default for the parameter (for example,
ORCL).

■ Parameter Type — Select Text

5. In the Text Setting region, enter the following:

■ Display label — Enter the label you want displayed for your parameter (for
example: Stock Symbol).

■ Text Field Size — Enter the size for the text entry field in characters.

Figure 2–20 Creating the Parameter

6. Select the options you want to apply:

■ Text field contains comma-separated values — Select this option to enable
the user to enter multiple comma-delimited values for this parameter.

■ Refresh other parameters on change — Performs a partial page refresh to
refresh any other parameters whose values are dependent on the value of this
one.

7. Return to your Web service data set and add the parameter.

■ Click the data set name Stock Quote. Click Add Parameter. The Quote
parameter you specified is now available from the list.

■ Click the Edit Selected Data Set button.

■ In the Edit Data Set dialog, click Add Parameter. The Quote parameter
displays, as shown in Figure 2–21.

Creating a Data Set Using a Web Service

2-24 Data Modeling Guide for Oracle Business Intelligence Publisher

Figure 2–21 Adding the Parameter to Web Service Data Set

■ Click OK to close the data set.

8. Click Save.

9. To view the results XML, select Get XML Output.

10. Enter a valid value for your Stock Symbol parameter, select the number of rows to
return, and click the Run button. Figure 2–22 shows the data returned from the
example.

Figure 2–22 Data Returned from Stock Quote Example

2.10.2 Adding a Complex Web Service
A complex Web service type internally uses soapRequest / soapEnvelope to pass the
parameter values to the destination host.

To use a complex Web service as a data source, select Complex Type equal True, then
enter the WSDL URL. After loading and analyzing the WSDL URL, the Data Model
Editor displays the available Web services and operations. For each selected operation,

Creating a Data Set Using a Web Service

Creating Data Sets 2-25

the Data Model Editor displays the structure of the required input parameters. By
choosing Show Optional Parameters, you can see all optional parameters as well.

If you are not familiar with the available methods and parameters in the Web service,
open the WSDL URL in a browser to view them.

To add a complex Web service as a data source:

1. Enter the Data Set information:

■ Enter a Name for the Data Set and select Web Service as the Type.

■ Select True for Complex Type.

■ Select a security header:

– Disabled — Does not insert a security header.

– 2002 — Enables the "WS-Security" Username Token with the 2002
namespace:

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecu-
rity-secext-1.0.xsd

– 2004 — Enables the "WS-Security" Username Token with the 2004
namespace:

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-user-
name-token-profile-1.0#PasswordText

■ Username and Password — Enter the username and password for the Web
service, if required.

■ If desired, enter a Time Out period in seconds. If the BI Publisher server
cannot establish a connection to the Web service, then connection attempt
times out after the specified time out period has elapsed.

■ Enter a WSDL URL. When you enter the WSDL, the Web Service list
populates with the available Web services from the WSDL.

■ Choose a Web Service from the list. When you choose a Web service from the
list, the Method list populates with the available methods.

■ Select the Method. When you select the method, the Parameters display. If
you want to see optional parameters as well, then select Show Optional
Parameters.

■ Response Data XPath — If the start of the XML data for the report is deeply
embedded in the response XML generated by the Web service request, then
use this field to specify the path to the data to use in the BI Publisher report.

2. Define the parameter to make it available to the Web service data set.

Select Parameters on the Report definition pane and click New to create a
parameter. Enter the following:

■ Name — Enter an internal identifier for the parameter.

■ Data Type — Select the appropriate data type for the parameter.

■ Default Value — If desired, enter a default value for the parameter.

■ Parameter Type — Select the appropriate parameter type.

■ Display label — Enter the label you want displayed for your parameter.

■ Text Field Size — Enter the size for the text entry field in characters.

Creating a Data Set Using a Stored XML File

2-26 Data Modeling Guide for Oracle Business Intelligence Publisher

3. Return to the Web service data set and add the parameter.

■ Select the Web service data set and then click

Edit Selected Data Set to launch the Edit Data Set dialog.

■ In the entry field for the Parameter, enter the following syntax: ${Parameter_
Name} where Parameter_Name is the value you entered for Name when you
defined the parameter to BI Publisher. Figure 2–23 shows an example of
entering the parameters.

Figure 2–23 Entering Parameters for Complex Web Service

4. To test the Web service, see Section 2.14, "Testing Data Models and Generating
Sample Data."

2.10.3 Additional Information on Web Service Data Sets
There is no metadata available from Web service data sets, therefore grouping and
linking are not supported.

2.11 Creating a Data Set Using a Stored XML File
When you set up data sources, you can define a file directory as a data source. For
information, see the section "Setting Up a Connection to a File Data Source" in Oracle
Fusion Middleware Administrator's Guide for Oracle Business Intelligence Publisher. You
can then place XML documents in the file directory to access directly as data sources
for the reports.

To create a data set using a stored XML file:

1. Click the Create new toolbar button and select XML. The Create Data Set - File
dialog launches, as shown in Figure 2–24.

Using Data Stored as a Character Large Object (CLOB) in a Data Model

Creating Data Sets 2-27

Figure 2–24 Create Data Set - File Dialog

2. Enter a name for this data set.

3. Select the Data Source where the XML file resides. The list is populated from the
configured File Data Source connections.

4. Click Browse to connect to the data source and browse the available directories.
Select the file to use for this report.

5. Click OK.

2.11.1 Additional Information on File Data Sets
There is no metadata available from XML file data sets, therefore grouping and linking
are not supported.

2.12 Using Data Stored as a Character Large Object (CLOB) in a Data
Model

BI Publisher supports using data stored as a character large object (CLOB) data type in
your data models. This feature enables you to use XML data generated by a separate
process and stored in your database as input to a BI Publisher data model.

Use the Query Builder to retrieve the column in your SQL query, then use the data
model editor to specify how you want the data structured. When the data model is
executed, the data engine can structure the data either as:

■ A plain character set within an XML tag name that can be displayed in a report
(for example, an Item Description)

■ Structured XML

To create a data set from data stored as a CLOB:

1. Click the New Data Set icon and then click SQL Query. The Create Data Set - SQL
dialog launches.

2. Enter a name for this data set.

3. If you are not using the default data source for this data set, select the Data Source
from the list.

4. Enter the SQL query or use the Query Builder to construct your query to retrieve
the CLOB data column. See Section 2.4, "Using the Query Builder" for information
on the Query Builder utility. Figure 2–25 shows an example query in which the
CLOB data is stored in a column named "DESCRIPTION".

Using Data Stored as a Character Large Object (CLOB) in a Data Model

2-28 Data Modeling Guide for Oracle Business Intelligence Publisher

Figure 2–25 Sample Query

5. After entering the query, click OK to save. BI Publisher validates the query.

6. By default, the data model editor assigns the CLOB column the "CLOB" data type.
To change the data type to XML, click the data type icon and select XML, as shown
in Figure 2–26.

Figure 2–26 Changing the Data Type to XML

2.12.1 How the Data Is Returned
When you execute the query, if the CLOB column contains well-formed XML, and you
select the XML data type, the data engine returns the XML data, structured within the
CLOB column tag name.

Example output when data type is XML

Note the <DESCRIPTION> element contains the XML data stored in the CLOB
column, as shown in Figure 2–27.

Using Data Stored as a Character Large Object (CLOB) in a Data Model

Creating Data Sets 2-29

Figure 2–27 Example Data Structure When the Data Type is XML

Example output when data type is CLOB

If you select to return the data as the CLOB data type, the returned data is structured
as shown in Figure 2–28.

Figure 2–28 Example Data Structure When Data Type Is CLOB

2.12.1.1 Additional Notes on Data Sets Using CLOB Column Data
For specific notes on using CLOB column data in a bursting query, see Section 7.3,
"Adding a Bursting Definition to Your Data Model."

2.12.2 Handling XHTML Data Stored in a CLOB Column
BI Publisher can retrieve data stored in the form of XHTML documents stored in a
database CLOB column and render the markup in the generated report. To enable the
BI Publisher report rendering engine to handle the markup tags, you must wrap the
XHTML data in a CDATA section within the XML report data that is passed by the
data engine.

Using Data Stored as a Character Large Object (CLOB) in a Data Model

2-30 Data Modeling Guide for Oracle Business Intelligence Publisher

It is recommended that you store the data in the database wrapped with the CDATA
section. You can then use a simple select statement to extract the data. If the data is not
wrapped in the CDATA section, then you must include in your SQL statement
instructions to wrap it.

The following sections describe how to extract XHTML data in each case:

■ Retrieving XHTML Data Wrapped in CDATA

■ Wrapping the XHTML Data in CDATA in the Query

To display the markup in a report, you must use the syntax described in "Rendering
HTML Formatted Data in a Report" in the Oracle Fusion Middleware Report Designer's
Guide for Oracle Business Intelligence Publisher. This section also describes the supported
HTML formats. Rendering the HTML markup in a report is supported for RTF
templates only.

2.12.2.1 Retrieving XHTML Data Wrapped in CDATA
Assume you have the following data stored in a database column called "CLOB_
DATA":

<![CDATA[
<p>
oracle </p>
<p>Oracle Documentation
</p>
]]>
Retrieve the column data using a simple SQL statement, for example:

select CLOB_DATA as "RTECODE"
 from MYTABLE
In the data model editor, set the data type of the RTECODE column to XML, as shown
in Figure 2–29.

Figure 2–29 Set Data Type to XML

2.12.2.2 Wrapping the XHTML Data in CDATA in the Query
Assume you have the following data stored in a database column called "CLOB_
DATA":

<p>
oracle </p>
<p>Oracle Documentation
</p>
Use the following syntax in your SQL query to retrieve it and wrap it in the CDATA
section:

select '<![CDATA' || '['|| CLOB_DATA || ']' || ']>' as "RTECODE"
from MYTABLE
In the data model editor, set the data type of the RTECODE column to XML, as shown
in Figure 2–29.

Creating a Data Set from an HTTP XML Feed

Creating Data Sets 2-31

2.13 Creating a Data Set from an HTTP XML Feed
Using the HTTP (XML Feed) data set type you can create data models from RSS and
XML feeds over the Web by retrieving data through the HTTP GET method.

Note that to include parameters for the data set, you must define the parameters first,
so that they are available for selection when defining the data set. See Chapter 4,
"Adding Parameters and Lists of Values."

To create a data set from an HTTP XML feed:

1. Click the New Data Set toolbar button and select HTTP (XML Feed). The Create
Data Set - HTTP dialog launches, as shown in Figure 2–30.

Figure 2–30 Create Data Set - HTTP Dialog

2. Enter a name for this data set.

3. Enter the URL for the source of the RSS or XML feed.

4. Select the Method: Get.

5. Enter the Username, Password, and Realm for the URL, if required.

6. To add a parameter, click Add Parameter. Enter the Name and select the Value.
The Value list is populated by the parameter Name defined in the Parameters
section. See Chapter 4, "Adding Parameters and Lists of Values."

7. Click OK to close the data set dialog.

Important: Additional configuration might be required to access
external data source feeds depending on your system's security. If the
RSS feed is protected by Secure Sockets Layer (SSL) then see the
section "Configuring BI Publisher for Secure Sockets Layer
Communication" in Oracle Fusion Middleware Administrator's Guide for
Oracle Business Intelligence Publisher.

Testing Data Models and Generating Sample Data

2-32 Data Modeling Guide for Oracle Business Intelligence Publisher

2.13.1 Additional Information on Data Sets Created from HTTP XML Feed
There is no metadata available from HTTP XML feed data sets, therefore grouping and
linking are not supported.

2.14 Testing Data Models and Generating Sample Data
The Data Model Editor enables you to test your data model and view the output to
ensure your results are as expected. After running a successful test, you can choose to
save the test output as sample data for your data model, or export the file to an
external location. If your data model fails to run, you can view the data engine log.

To test your data model:

1. Click the Get XML Output toolbar button, as shown in Figure 2–31.

Figure 2–31 Get XML Output Button

This launches the XML Output page.

2. Select the number of rows to return. If you included parameters, enter the desired
values for the test.

Figure 2–32 Select the Number of Rows to Return

3. Click Run to display the XML that is returned by the data model.

To save the test data set as sample data for the data model:

1. After the data model has successfully run, click the Options toolbar button and
then click Save as Sample Data, as shown in Figure 2–33. This sample data is
saved to the data model. See Section 1.8.2, "Attachments to the Data Model" for
more information.

Important: For Safari browser users: The Safari browser renders
XML as text. To view the XML generated by the data engine as XML,
right-click inside the frame displaying the data and then click View
Frame Source. This is a display issue only. The data is saved properly
when you click Save as Sample Data.

Including User Information Stored in System Variables in Your Report Data

Creating Data Sets 2-33

Figure 2–33 Save as Sample Data

To export the test data:

1. After the data model has successfully run, select the Options toolbar button and
then select Export XML. You are prompted to save the file.

To view the data engine log:

1. Select the Options toolbar button and then select Get Data Engine Log. You are
prompted to open or save the file. The data engine log file is an XML file.

2.15 Including User Information Stored in System Variables in Your
Report Data

BI Publisher stores information about the current user that can be accessed by your
report data model. The user information is stored in system variables as described in
Table 2–2.

Table 2–2 User Information Stored in Variables

System Variable Description

xdo_user_name User ID of the user submitting the report. For example:
Administrator

xdo_user_roles Roles assigned to the user submitting the report. For
example: XMLP_ADMIN, XMLP_SCHEDULER

xdo_user_report_oracle_lang Report language from the user's account preferences. For
example: ZHS

xdo_user_report_locale Report locale from the user's account preferences. For
example: en-US

xdo_user_ui_oracle_lang User interface language from the user's account
preferences. For example: US

xdo_user_ui_locale User interface locale from the user's account preferences.
For example: en-US

Including User Information Stored in System Variables in Your Report Data

2-34 Data Modeling Guide for Oracle Business Intelligence Publisher

2.15.1 Adding the User System Variables as Elements
To add the user information to the data model, you can define the variables as
parameters and then define the parameter value as an element in your data model. Or,
you can simply add the variables as parameters then reference the parameter values in
your report.

The following query:

select
:xdo_user_name as USER_ID,
:xdo_user_roles as USER_ROLES,
:xdo_user_report_oracle_lang as REPORT_LANGUAGE,
:xdo_user_report_locale as REPORT_LOCALE,
:xdo_user_ui_oracle_lang as UI_LANGUAGE,
:xdo_user_ui_locale as UI_LOCALE
from dual

returns the following results:

<?xml version="1.0" encoding="UTF-8"?>
<! - Generated by Oracle BI Publisher - >
<DATA_DS>
<G_1>
<USER_ROLES>XMLP_TEMPLATE_DESIGNER, XMLP_DEVELOPER, XMLP_ANALYZER_EXCEL, XMLP_
ADMIN, XMLP_ANALYZER_ONLINE, XMLP_SCHEDULER </USER_ROLES>
<REPORT_LANGUAGE>US</REPORT_LANGUAGE>
<REPORT_LOCALE>en_US</REPORT_LOCALE>
<UI_LANGUAGE>US</UI_LANGUAGE>
<UI_LOCALE>en_US</UI_LOCALE>
<USER_ID>administrator</USER_ID>
</G_1>
</DATA_DS>

2.15.2 Sample Use Case: Limit the Returned Data Set by User ID
The following example limits the data returned by the user ID:

selectthroughEMPLOYEES.LAST_NAME as LAST_NAME,
 EMPLOYEES.PHONE_NUMBER as PHONE_NUMBER,
 EMPLOYEES.HIRE_DATE as HIRE_DATE,
 :xdo_user_name as USERID
from HR.EMPLOYEES EMPLOYEES
where lower(EMPLOYEES.LAST_NAME) = :xdo_user_name

Notice the use of the lower() function, the xdo_user_name is always be in lowercase
format. BI Publisher does not have a USERID so you must use the user name and
either use it directly in the query; or alternatively you could query against a lookup
table to find a user id.

2.15.2.1 Creating Bind Variables from LDAP User Attribute Values
To bind user attribute values stored in your LDAP directory to a data query you can
define the attribute names to BI Publisher to create the bind variables required.

2.15.2.1.1 Prerequisite The attributes that can be used to create bind variables must be
defined in the Security Configuration page by an administrator. The attributes are
defined in the Attribute Names for Data Query Bind Variables field of the LDAP
Security Model definition. See the section "Configuring BI Publisher to Recognize the
LDAP Server" in Oracle Fusion Middleware Administrator's Guide for Oracle Business

Including User Information Stored in System Variables in Your Report Data

Creating Data Sets 2-35

Intelligence Publisher for information about this field. Any attribute defined for users
can be used (for example: memberOf, sAMAccountName, primaryGroupID, mail).

2.15.2.1.2 How BI Publisher Constructs the Bind Variable

You can reference the attribute names that you enter in the Attribute Names for Data
Query Bind Variables field of the LDAP Security Model definition in the query as
follows:

xdo_<attribute name>

Assume that you have entered the sample attributes: memberOf, sAMAccountName,
primaryGroupID, mail. These can then be used in a query as the following bind
variables:

xdo_memberof
xdo_SAMACCOUNTNAME
xdo_primaryGroupID
xdo_mail

Note that the case of the attribute is ignored; however, the "xdo_" prefix must be
lowercase.

Use these in a data model as follows:

SELECT
:xdo_user_name AS USER_NAME ,
:xdo_user_roles AS USER_ROLES,
:xdo_user_ui_oracle_lang AS USER_UI_LANG,
:xdo_user_report_oracle_lang AS USER_REPORT_LANG,
:xdo_user_ui_locale AS USER_UI_LOCALE,
:xdo_user_report_locale AS USER_REPORT_LOCALE,
:xdo_SAMACCOUNTNAME AS SAMACCOUNTNAME,
:xdo_memberof as MEMBER_OF,
:xdo_primaryGroupID as PRIMARY_GROUP_ID,
:xdo_mail as MAIL
FROM DUAL

The LDAP bind variables return the values stored in the LDAP directory for the user
that is logged in.

Including User Information Stored in System Variables in Your Report Data

2-36 Data Modeling Guide for Oracle Business Intelligence Publisher

3

Structuring Data 3-1

3Structuring Data

This chapter describes techniques for structuring the data that is returned by BI
Publisher's data engine, including grouping, linking, group filters, and group-level
and global-level functions.

This chapter includes the following sections:

■ Section 3.1, "Working with Data Models"

■ Section 3.2, "Features of the Data Model Editor"

■ Section 3.3, "About the Interface"

■ Section 3.4, "Creating Links Between Data Sets"

■ Section 3.5, "Creating Element-Level Links"

■ Section 3.6, "Creating Group-Level Links"

■ Section 3.7, "Creating Subgroups"

■ Section 3.8, "Moving an Element Between a Parent Group and a Child Group"

■ Section 3.9, "Creating Group-Level Aggregate Elements"

■ Section 3.10, "Creating Group Filters"

■ Section 3.11, "Performing Element-Level Functions"

■ Section 3.12, "Setting Element Properties"

■ Section 3.13, "Sorting Data"

■ Section 3.14, "Performing Group-Level Functions"

■ Section 3.15, "Performing Global-Level Functions"

■ Section 3.16, "Using the Structure View to Edit Your Data Structure"

■ Section 3.17, "Function Reference"

3.1 Working with Data Models
The Data Model diagram helps you to quickly and easily define data sets, break
groups, and totals for a report based on multiple data sets.

3.1.1 About Multipart Unrelated Data Sets
If you do not link the data sets (or queries) the data engine produces a multipart
unrelated query data set.

Working with Data Models

3-2 Data Modeling Guide for Oracle Business Intelligence Publisher

For example, in the data model shown in Figure 3–1, one query selects products and
another selects customers. Notice that there is no relationship between the products
and customers.

Figure 3–1 Multipart Unrelated Data Set

This results in the data structure shown in Figure 3–2.

Figure 3–2 Data Structure of Multipart Unrelated Data Set

Working with Data Models

Structuring Data 3-3

3.1.2 About Multipart Related Data Sets
In many cases, the data fetched for one part of the data set (or query) is determined by
the data fetched for another part. This is often called a "master/detail," or
"parent/child," relationship, and is defined with a data link between two data sets (or
queries). When you run a master/detail data model, each row of the master (or parent)
query causes the detail (or child) query to be executed, retrieving only matching rows.

In the example shown in Figure 3–3, two data sets are linked by the element Customer
ID. The Orders data set a child of the Customers data set.

Figure 3–3 Multipart Related Data Sets

This produces the data structure shown in Figure 3–4.

Figure 3–4 Data Structure of Multipart Related Data Set

Features of the Data Model Editor

3-4 Data Modeling Guide for Oracle Business Intelligence Publisher

3.1.3 Guidelines for Working with Data Sets
Following are recommended guidelines for building data models:

■ Reduce the number of data sets or queries in your data model as much as possible.
In general, the fewer data sets and queries you have, the faster your data model
will run. While multiquery data models are often easier to understand,
single-query data models tend to execute more quickly. It is important to
understand that in parent-child queries, for every parent, the child query is
executed.

■ You should only use multiquery data models in the following scenarios:

■ To perform functions that the query type, such as a SQL query, does not
support directly.

■ To support complex views (for example, distributed queries or GROUP BY
queries).

■ To simulate a view when you do not have or want to use a view.

3.2 Features of the Data Model Editor
The data model editor enables you to combine data from multiple data sets into a
single XML data structure. Data sets from multiple data sources can be merged either
as sequential XML or at line-level to create a single combined hierarchical XML. Using
the data model editor you can easily combine data from the following data set types:
SQL query, OLAP (MDX query), LDAP, and Microsoft Excel.

The data model editor supports the following

■ Group data

Groups are created to organize the columns in your report. Groups can do two
things: separate a query's data into sets, and filter a query's data. When you create
a query, the data engine creates a group that contains the columns selected by the
query; you can create groups to modify the hierarchy of the data appearing in a
data model. Groups are used primarily when you want to treat some columns
differently than others. For example, you create groups to produce subtotals or
create breaks.

■ Link data — Define master-detail links between data sets to group data at
multiple levels.

■ Aggregate data — Create group level totals and subtotals.

■ Transform data — Modify source data to conform to business terms and reporting
requirements.

■ Create calculations — Compute data values that are required for your report that
are not available in the underlying data sources.

The data model editor provides functions at the element level, the group level, and the
global level. Note that not all data set types support all functions. See the Important
Notes section that accompanies your data set type for limitations. Figure 3–5
highlights some of the features and actions available in the data model editor.

About the Interface

Structuring Data 3-5

Figure 3–5 Features of Data Model Editor

3.3 About the Interface
By default, the data sets that you created are shown in the Diagram View as separate
objects, as seen in Figure 3–6.

Figure 3–6 Diagram View

The data set structure builder has three views:

■ Diagram View — (Shown in Figure 3–6) This view displays your data sets and
enables you to graphically create links and filters, add elements based on
expressions, add aggregate functions and global-level functions, edit element
properties, and delete elements. The Diagram View is typically the view you use
to build your data structure.

About the Interface

3-6 Data Modeling Guide for Oracle Business Intelligence Publisher

■ Structure View — This view has two modes:

Table View and Output

The table view displays element properties in a table and enables you to update
XML element alias names, presentation names of the elements, sorting, null
values, and reset options. Figure 3–7 shows the structure Table View.

Figure 3–7 Structure Table View

The Output view provides a clear view of the XML structure that is generated.
The Output view is not updatable. Figure 3–8 shows the Output view.

Figure 3–8 Output View

■ Code View — This view displays the data structure code created by the data
structure builder that is read by the data engine. The code view is not updatable.
Figure 3–9 shows the code view.

Creating Links Between Data Sets

Structuring Data 3-7

Figure 3–9 Code View

3.4 Creating Links Between Data Sets
Joining and structuring data at the source into one combined data set is sometimes not
possible. For example, you cannot join data at the source when data resides in
disparate sources such as Microsoft SQL Server and an Oracle database. You can use
the BI Publisher data engine to combine and structure data after you extract it from the
data source. Even if your data is coming from the same source, if you are creating
large reports or documents with potentially hundreds of thousands of rows or pages,
structuring your data so that it matches the intended layout optimizes document
generation.

Create a link to define a master-detail (or parent-child) relationship between two data
sets. You can create links as element-level links or group-level links. The resulting,
hierarchical XML data is the same. Creating links as element-level links is the
preferred method. Group-level links are provided for backward compatibility with
data templates from earlier versions of BI Publisher.

A data link (or parent-child relationship) relates the results of multiple queries. A data
link can establish these relationships:

■ Between one query's column and another query's column

■ Between one query's group and another query's group (this is useful when you
want the child query to know about its parent's data)

3.4.1 About Element-Level Links
Element-level links create a bind (join) between two data sets and define a
master-detail (parent-child) relationship between them. This is the preferred method
of defining master detail relationships between data sets. The simplest way to link
data sets is by creating element-level links because they do not require you to code a
join between the two data sets through a bind variable.

3.4.2 About Group-Level Links
Group-level links also determine the way data sets are structured as hierarchical XML,
but lack the join information that the data engine needs to execute the master and

Creating Element-Level Links

3-8 Data Modeling Guide for Oracle Business Intelligence Publisher

detail queries. When you define a group-level link, you must also update your query
with a link between the two data sets through a unique bind variable.

3.5 Creating Element-Level Links
Link data sets to define a master-detail (or parent-child) relationship between two data
sets. Defining an element-level link enables you to establish the binding between the
elements of the master and detail data sets.

To define an element-level link, do one of the following:

■ Open the element action menu and click Create Link.

Figure 3–10 Creating a Link Using the Element Action Menu

The Create Link dialog launches and displays the elements from the other data
sets. Choose the element and click OK to create the link. The Create Link dialog is
shown in Figure 3–11.

Figure 3–11 Create Link Dialog

■ Alternatively, from the parent group, click and drag the element you want to bind
to the matching element in the child group, as shown in Figure 3–12.

Creating Element-Level Links

Structuring Data 3-9

Figure 3–12 Creating a Link by Dragging and Dropping the Bind Element

■ After dropping the element from the parent data set to the matching element on
the child data set, a connector displays between the data sets. Pause your cursor
over the connector to display the link (as shown in Figure 3–13).

Figure 3–13 Displaying the Link

3.5.1 Deleting Element-Level Links
To delete an element link:

1. Pause your cursor over the element connector to display the linked element names
and the delete button.

2. Click the delete button.

Creating Group-Level Links

3-10 Data Modeling Guide for Oracle Business Intelligence Publisher

Or, alternatively:

1. Open the element action menu for either element and click Delete Link.

3.6 Creating Group-Level Links
A group-level link defines a master-detail relationship between two data sets. The
following figure shows two data sets with a group-level link defined. Next to the data
sets the resulting XML data structure is shown, as in Figure 3–14.

Figure 3–14 Resulting XML Data Structure

To define a group-level link:

1. In the parent group, click the View Actions menu (in the upper right corner of the
object).

2. Click Create Group Link as shown in Figure 3–15.

Figure 3–15 Creating a Group Link

3. In the Create Group Link dialog, select the Child Group from the list and click
OK. The Create Group Link dialog is shown in Figure 3–16.

Creating Subgroups

Structuring Data 3-11

Figure 3–16 Create Group Link Dialog

4. Click the View Actions menu and then click Edit Data Set to add the bind
variables to your query.

An example is shown in Table 3–1.

3.6.1 Deleting Group-Level Links
To delete a group link:

1. In the parent group, click the View Actions menu (in the upper right corner of the
object).

2. Click Delete Group Link.

3. In the Delete Group Link dialog, select the Child Group from the list and click
OK.

3.7 Creating Subgroups
In addition to creating parent-child structures by linking two data sets, you can also
group elements in the same data set by other elements. This might be helpful if your
query returns data that has header data repeated for each detail row. By creating a
subgroup you can shape the XML data for better more efficient document generation.

To create a subgroup:

1. Select the element by which you want to group the other elements in the data set.

2. Click the element action menu icon to open the menu and select Group by as
shown in Figure 3–17.

Table 3–1 Example: Edit Data Set

Data Set: DEPT Data Set: EMP

Select DEPT.DEPTNO as DEPTID,
 DEPT.DNAME as DNAME,
 DEPT.LOC as LOC
from OE.DEPT DEPT

Select EMP.EMPNO as EMPNO,
 EMP.ENAME as ENAME,
 EMP.JOB as JOB,
 EMP.MGR as MGR,
 EMP.HIREDATE as HIREDATE,
 EMP.SAL as SAL,
 EMP.COMM as COMM,
 EMP.DEPTNO as DEPTNO
from OE.EMP EMP
where DEPTNO=:DEPTID

Important: A unique bind variable must be defined in the child
query.

Moving an Element Between a Parent Group and a Child Group

3-12 Data Modeling Guide for Oracle Business Intelligence Publisher

Figure 3–17 Creating a Subgroup

This creates a new group within the displayed data set. The following figure
shows the G_3 data set grouped by the element COMPANY. This creates a new
group called G_4, that contains the other four elements in the data set. Figure 3–18
shows how the grouped data set is displayed in the Diagram View along with the
structure.

Figure 3–18 Subgroup Data Structure

You can perform any of the group actions on the new group you have created.

To remove a subgroup:

1. On the group's title bar, click View Actions and then click Ungroup.

3.8 Moving an Element Between a Parent Group and a Child Group
Once you have created a group within your data set, two new options display on the
element action menu that enable you to move elements between the parent and child
groups.

For the element that you want to move, click the element action icon to open the
menu. If the element is in the parent group and you want to move it to the child group
select Move this element to Child Group.

If the element is in the child group and you want to move it to the parent group select
Move this element to Parent Group. In Figure 3–19, the element action menu for
OFFICE_DSC displays the option to move the element to the parent group.

Creating Group-Level Aggregate Elements

Structuring Data 3-13

Figure 3–19 Moving Element from Child Group to Parent Group

3.9 Creating Group-Level Aggregate Elements
You can use the data model editor to aggregate data at the group or report level. For
example, if you group sales data by Customer Name, you can aggregate sales to get a
subtotal for each customer's sales. Note that you can only aggregate data for at the
parent level for a child element.

The aggregate functions are:

■ Average — Calculates the average of all the occurrences of an element.

■ Count — Counts the number of occurrences of an element.

■ First — Displays the value of the first occurrence of an element in the group.

■ Last — Displays the value of the last occurrence of an element in the group.

■ Maximum — Displays the highest value of all occurrences of an element in the
group.

■ Minimum — Displays the lowest value of all occurrences of an element in a
group.

■ Summary — Sums the value of all occurrences of an element in the group.

To create group-level aggregate elements:

1. Drag the element to the Drop here for aggregate function field in the parent
group.

Figure 3–20 shows creating a group-level aggregate function in the G_DEPT based
on the SALARY element.

Important: Before moving an element be aware of any dependencies
on other elements.

Creating Group-Level Aggregate Elements

3-14 Data Modeling Guide for Oracle Business Intelligence Publisher

Figure 3–20 Creating a Group-Level Aggregate Function

Once you drop the element, a new element is created in the parent group. By
default, the Count function is applied. The icon next to the name of the new
aggregate element indicates the function. Pause your cursor over the icon to
display the function.

Figure 3–21 shows the new aggregate element, CS_1. with the default Count
function defined.

Figure 3–21 New Element Created by Group-Level Aggregate Function

2. To change the function: Click the function icon to view a list of available functions
and choose from the list, as shown in Figure 3–22.

Creating Group-Level Aggregate Elements

Structuring Data 3-15

Figure 3–22 Choosing a Function

3. To rename the element or update other properties, click the element's Action menu
icon. On the menu, click Properties. The Properties dialog is shown in
Figure 3–23.

Figure 3–23 Properties Dialog

Set the properties described in Table 3–2 as needed.

Important: Be careful when renaming an element as it can have
dependency on other elements.

Table 3–2 Element Properties

Property Description

Column Name The internal name assigned to the element by the BI Publisher data
model editor. This name cannot be updated.

Creating Group Filters

3-16 Data Modeling Guide for Oracle Business Intelligence Publisher

3.10 Creating Group Filters
Filters enable you to conditionally remove records selected by your queries. Groups
can have two types of filters:

■ Expression — Create an expression using predefined functions and operators

■ PL/SQL Function — Create a custom filter

To create a group filter:

1. Click the View Actions menu and select Create Group Filter.

2. This displays the Edit Group Filter dialog, as shown in Figure 3–24.

Alias (XML Tag
Name)

BI Publisher assigns a default tag name for the element in the XML
data file. You can update this tag name to assign a more user-friendly
name within the data file.

Display Name The Display Name appears in the report design tools. Update this
name to be meaningful to your business users.

Function If you have not already selected the desired function, then you can
select it from the list here.

Data Type BI Publisher assigns a default data type of Integer or Double
depending on the function. Some functions also provide the option of
Float.

Value if Null If the value returned from the function is null, you can supply a
default value here to prevent having a null in your data.

Do Not Reset By default, the function resets at the group level. For example, if your
data set is grouped by DEPARTMENT_ID, and you have defined a
sum function for SALARY, then the sum is reset for each group of
DEPARTMENT_ID data, giving you the sum of SALARY for that
department only. If instead you want the function to reset only at the
global level, and not at the group level, select Do Not Reset. This
creates a running total of SALARY for all departments. Note that this
property is for group level functions only.

Table 3–2 (Cont.) Element Properties

Property Description

Creating Group Filters

Structuring Data 3-17

Figure 3–24 Edit Group Filter Dialog

3. Choose the Group Filter Type: Expression or PL/SQL.

4. Enter the Filter:

■ To enter an expression, select the elements and click the shuttle button to
move the element to the Group Filter definition box. Click the predefined
functions and operators to insert them in the Group Filter box.

Refer to Section 3.17, "Function Reference" for a description of the available
functions.

Click Validate Expression to ensure that the entry is valid.

■ To enter a PL/SQL function, select the PL/SQL package from the Available
box and click the shuttle button to move the function to the Group Filter box.

Your PL/SQL function in the default package must return a Boolean type.

After you have added the group filter, the data set object displays the filter indicator,
as shown in Figure 3–25.

Note: For PL/SQL filters, you must first specify the PL/SQL
Package as the Oracle DB Default Package in the data model
properties. See Section 1.8, "Setting Data Model Properties."

Performing Element-Level Functions

3-18 Data Modeling Guide for Oracle Business Intelligence Publisher

Figure 3–25 Filter Indicator

To edit or delete a group filter:

1. Click the data set View Actions menu.

2. Choose the appropriate action:

■ To edit the group filter, choose Edit Group Filter to launch the Group Filter
dialog for editing.

■ To delete the group filter, choose Delete Group Filter.

3.11 Performing Element-Level Functions
You can perform the following functions at the element level:

■ Group by an element to create a subgroup, as described in Section 3.7, "Creating
Subgroups"

■ Create element-level links between data sets, as described in Section 3.5, "Creating
Element-Level Links"

■ Set element properties, as described in Section 3.12, "Setting Element Properties"

3.12 Setting Element Properties
You can set properties for individual elements. Note that these properties are also
updatable from the Structure View. If you need to update multiple element properties,
it may be more efficient to use the Structure View. See Section 3.16, "Using the
Structure View to Edit Your Data Structure."

To set element-level properties using the element dialog:

1. Click the element's action menu icon. From the menu, select Properties. The
Properties dialog is shown in Figure 3–26.

Sorting Data

Structuring Data 3-19

Figure 3–26 Properties Dialog

2. Set the properties as needed, as described in Table 3–3.

3.13 Sorting Data
Sorting is supported for parent group break columns only. For example, if a data set of
employees is grouped by department and manager, you can sort the XML data by
department. Within each department you can group and sort data by manager. If you
know how the data should be sorted in the final report, you specify sorting at data
generation time to optimize document generation.

To apply a sort order to a group:

1. Click the action menu icon of the element you want to sort by. From the menu,
select Properties.

2. Select the Sort Order.

Figure 3–27 shows the Properties dialog for the DEPARTMENT_ID element with
the Sort Order list displayed.

Table 3–3 Element Properties

Property Description

Alias BI Publisher assigns a default tag name to the element in the XML
data file. You can update this tag name to assign a more user-friendly
name within the data file.

Display Name The Display Name appears in the report design tools. Update this
name to be meaningful to your business users.

Data Type BI Publisher assigns a default data type of Integer or Double
depending on the function. Some functions also provide the option of
Float.

Sort Order You can sort XML data in a group by one or more elements. For
example, if in a data set employees are grouped by department and
manager, you can sort the XML data by department. Within each
department you can group and sort data by manager, and within each
manager subgroup, employees can be sorted by salary. If the element
is not in a parent group, the Sort Order property is not available.

Value if Null If the value returned from the function is null, you can supply a
default value here to prevent having a null in your data.

Performing Group-Level Functions

3-20 Data Modeling Guide for Oracle Business Intelligence Publisher

Figure 3–27 Properties Dialog Showing Sort Order List

3.14 Performing Group-Level Functions
This section describes how to perform group-functions. It includes the following
topics:

■ Section 3.14.1, "The Group Action Menu"

■ Section 3.14.2, "Editing the Data Set"

■ Section 3.14.3, "Removing Elements from the Group"

■ Section 3.14.4, "Editing the Group Properties"

3.14.1 The Group Action Menu
The View Actions menu available at the group level enables you to perform the
following:

■ Create and delete group links, as described in Section 3.6, "Creating Group-Level
Links"

■ Create, edit, and delete group filters, as described in Section 3.10, "Creating Group
Filters"

■ Add an element to the group based on an expression, as described in
Section 3.15.2, "Adding a Group-Level or Global-Level Element by Expression"

■ Edit the data set, as described in Section 3.14.2, "Editing the Data Set"

■ Remove elements from the group, as described in Section 3.14.3, "Removing
Elements from the Group"

■ Edit group properties, as described in Section 3.14.4, "Editing the Group
Properties"

The group-level Actions menu is shown in Figure 3–28.

Performing Group-Level Functions

Structuring Data 3-21

Figure 3–28 Group-Level Actions Menu

3.14.2 Editing the Data Set
To edit the underlying data set:

1. Click Edit Data Set to launch the data set editor.

See the appropriate section for the data set type in Chapter 2, "Creating Data Sets" for
more information.

3.14.3 Removing Elements from the Group
To remove an element from the group:

1. On the element row, click the menu and then click Remove Element. An example
is shown in Figure 3–29.

Figure 3–29 Removing an Element

3.14.4 Editing the Group Properties
To edit the group properties:

1. Click the View Actions menu and select Properties.

2. Edit the Group Name and click OK, as shown in Figure 3–30.

Note: You can only remove elements added as a group function
(sum, count, and so on) or added as an expression.

Performing Global-Level Functions

3-22 Data Modeling Guide for Oracle Business Intelligence Publisher

Figure 3–30 Edit the Group Name

3.15 Performing Global-Level Functions
The Global Level Functions object enables you to add elements to your report data set
at the top report level. You can add the following types of elements as top-level data:

■ Elements based on aggregate functions

■ Elements based on expressions

■ Elements based on PL/SQL statements (for Oracle Database data sources)

The Global Level Functions object is shown in Figure 3–31. To add elements based on
aggregate functions, drag the element to the "Drop here for aggregate function" space
of the object. To add an element based on an expression or PL/SQL, choose the
appropriate action from the View Actions menu.

Figure 3–31 Global Level Functions Object

3.15.1 Adding a Global-Level Aggregate Function
To add a global aggregate function:

1. Drag and drop the data element from the data set to the "Drop here for aggregate
function" area of the Global Level Functions object.

For example, Figure 3–32 shows creating a global level aggregate function based
on the Salary element.

Important: If you select a data type of Integer for any calculated
element and the expression returns a fraction, the data is not
truncated.

Performing Global-Level Functions

Structuring Data 3-23

Figure 3–32 Creating Global-Level Aggregate Function

2. When you release the mouse, the data model editor assigns a default name to the
aggregate element and assigns Count as the default function. Available functions
are:

■ Count

■ Average

■ First

■ Last

■ Maximum

■ Minimum

■ Summary

To change the function, click the function icon to the left of the new element name
and choose the function from the list.

Figure 3–33 shows the function for the new global level element CS_1 being
modified from Count to Average.

Figure 3–33 Applying a Function

Performing Global-Level Functions

3-24 Data Modeling Guide for Oracle Business Intelligence Publisher

3. To change the default name, click the actions icon to the right of the element name
and click Properties to launch the Edit Properties dialog, See Section 3.12, "Setting
Element Properties." for more about the properties available on this dialog.

3.15.2 Adding a Group-Level or Global-Level Element by Expression
To add a group-level or global-level element by expression:

1. To add a group-level element: On the Group object, click the View Actions menu
and select Add Element by Expression.

To add a global level element: On the Global Level Functions object, click the
View Actions menu and select Add Element: by Expression, as shown in
Figure 3–34.

Figure 3–34 Add Element: by Expression

2. In the Add Element by Expression dialog, enter the fields, as shown in
Figure 3–35.

Figure 3–35 Add Element by Expression Dialog

Table 3–4 Add Element by Expression Dialog Fields

Field Description

Name Enter a name for this element.

Alias Enter the tag name that the element has in the XML data file.

Performing Global-Level Functions

Structuring Data 3-25

3. Enter the expression.

Use the shuttle arrow to move the data elements required for the expression from
the Available box to the Expression box.

Click an operator to insert it in the Expression box, or choose from the function
list.

Refer to Section 3.17, "Function Reference" for a description of the available
functions.

4. Click Validate Expression to validate.

3.15.3 Adding a Global-Level Element by PL/SQL
The PL/SQL function must return a VARCHAR data type.

To add a global-level element by PL/SQL:

1. On the Global Level Functions object, click the View Actions menu and then click
Add Element by PL/SQL.

2. In the Add Element by PL/SQL dialog, enter the fields, as shown in Figure 3–36
and as described in Table 3–5.

Figure 3–36 Add Element by PL/SQL Dialog

Display Name The Display Name appears in the report design tools. Enter a name that is
meaningful to your business users.

Data Type Select from the list of data types: String, Integer, Double, Float, or Date.

Table 3–5 Add Element by PL/SQL Dialog Fields

Field Description

Name Enter a name for this element.

Table 3–4 (Cont.) Add Element by Expression Dialog Fields

Field Description

Using the Structure View to Edit Your Data Structure

3-26 Data Modeling Guide for Oracle Business Intelligence Publisher

3. Select the PL/SQL package from the Available box and click the shuttle button to
move the function to the Group Filter box.

3.16 Using the Structure View to Edit Your Data Structure
The Structure view enables you to preview the structure of your data model. The Data
Source column displays the date elements in a hierarchical tree that you can collapse
and expand. Use this view to verify the accuracy of the data model structure. The
Structure view is shown in Figure 3–37.

Figure 3–37 Structure View

3.16.1 Renaming Elements
Use the Structure page to define user-friendly names for elements in the data model.
You can rename both the XML element tag name (XML View) and the name that
displays in the report layout tools (Business Name). Figure 3–38 shows renaming the
DEPARTMENT_ID element to display as Department Number.

Alias Enter the tag name that the element has in the XML data file.

Display Name The Display Name appears in the report design tools. Enter a name that is
meaningful to your business users.

Data Type Must select String.

Sort Order Select a sort order.

Value if Null Enter a value to return if the value returned from the PL/SQL function is
null.

Table 3–5 (Cont.) Add Element by PL/SQL Dialog Fields

Field Description

Function Reference

Structuring Data 3-27

Figure 3–38 Editing the Display Name of an Element

3.16.2 Adding Value for Null Elements
The Structure also enables you to enter a value to use for an element if the data model
returns a null value for the element.

Enter the value to use in the Value if Null field for the element.

3.17 Function Reference
Table 3–6 describes the usage of supported functions available from the Add Element
by Expression dialog and the Edit Group Filter dialog.

Table 3–6 Supported Functions from the Add Element by Expression Dialog

Function Description

IF operator

NOT operator

AND operator

OR operator

MAX Returns the maximum value of the element in the set.

MIN Returns the minimum value of the element in the set.

ROUND ROUND (number [, integer]) returns number rounded to integer places
right of the decimal point. If integer is omitted, then number is rounded
to 0 places. integer can be negative to round off digits left of the
decimal point. integer must be an integer.

Example:

round (2.777)

returns

3

Example:

round (2.777, 2)

returns

2.78

FLOOR FLOOR(n) returns largest integer equal to or less than n.

CEILING CEILING(n) returns smallest integer greater than or equal to n.

ABS ABS(n) returns the absolute value of n.

AVG AVG(expr) returns average value of expr.

Function Reference

3-28 Data Modeling Guide for Oracle Business Intelligence Publisher

LENGTH The LENGTH(char) function returns the length of char. The LENGTH
function calculates the length using characters as defined by the input
character set. If char is null, the function returns null. If char is an
array, it returns the length of the array.

Example to return length of an array: length({1, 2, 4, 4}) returns 4.

Example to return length of a string: length('countries') returns 9.

SUM SUM(expr) returns the sum of value of expr.

NVL NVL(expr1, expr2) lets you replace null (returned as a blank) with a
string in the results of a query. If expr1 is null, then NVL returns
expr2. If expr1 is not null, then NVL returns expr1.

CONCAT CONCAT(char1, char2) returns char1 concatenated with char2.

STRING STRING(number) returns the number as a string data type.

SUBSTRING The substring function allows you to extract a substring from a string.
The syntax for the substring function is:

substring(string, start_position, end_position)

string is the source string.

start_position is the position to start the extraction.

end_position is the end position of the string to extract (optional).

Examples:

substring('this is a test', 5, 7)

returns "is"

substring('this is a test', 5)

returns "is a test"

INSTR The instr function returns the location of a substring in a string. The
syntax for the instr function is:

instr(string1,string2)

string1 is the string to search

string2 is the substring to search for in string1.

Example: instr('this is a test', 'is a')

returns 5.

DATE DATE(date_str,format_str) Converts char to date data type. The
format string must be a valid Java date format string.

Example: DATE('01-01-2011','MM-dd-yyyy')

FORMAT_DATE The FORMAT_DATE function takes a date argument in Java date
format and converts it to a to formatted string.

For example:

FORMAT_DATE(HIRE_DATE, 'MM-DD-YYYY') where the value of
HIRE_DATE is 1987-09-17T00:00:00.000+00:00 would return
17-Sep-1987.

FORMAT_NUMBER The FORMAT_NUMBER function takes a number argument and
converts it to a string in the format specified. For example, FORMAT_
NUMBER (SALES_UNITS,'9G990D000')

NUMBER NUMBER(char) converts char to a number data type.

Table 3–6 (Cont.) Supported Functions from the Add Element by Expression Dialog

Function Description

4

Adding Parameters and Lists of Values 4-1

4Adding Parameters and Lists of Values

This chapter describes how to add parameters and lists of values to a BI Publisher data
model.

This chapter includes the following sections:

■ Section 4.1, "About Parameters"

■ Section 4.2, "Adding a New Parameter"

■ Section 4.3, "About Lists of Values"

■ Section 4.4, "Adding Lists of Values"

4.1 About Parameters
Adding parameters to a data model enables users to interact with data when they
view reports.

BI Publisher supports the following parameter types:

■ Text — the user enters a text string to pass as the parameter.

■ Menu — the user makes selections from a list of values. A list of values can
contain fixed data that you specify or the list can be created using a SQL query
that is executed against any of the defined data sources. This option supports
multiple selections, a "Select All" option, and partial page refresh for cascading
parameters.

To create a menu type parameter, define the list of values first; then define the
parameter and associate it to the list of values. See Section 4.4, "Adding Lists of
Values."

■ Date — the user selects a date as a parameter. Note that the data type must also be
"Date" and the format must be Java date format.

Once you have defined the parameters in the data model, you can further configure
how the parameters are displayed in the report as a report-level setting. For more
information about the report-level settings, see the section "Configuring Parameter
Settings for the Report" in Oracle Fusion Middleware Report Designer's Guide for Oracle
Business Intelligence Publisher.

Support for parameters varies based on the data set type. SQL Query data sets support
the full set of available parameter features. Other types of data sets may support all,
none, or a subset of these features. Table 4–1 summarizes what is supported for each
data set type.

Adding a New Parameter

4-2 Data Modeling Guide for Oracle Business Intelligence Publisher

4.2 Adding a New Parameter
To add a new parameter:

1. On the Data Model components pane, click Parameters and then click Create new
Parameter, as shown in Figure 4–1.

Figure 4–1 Create New Parameter

2. Enter a Name for the parameter. The name must match any references to this
parameter in the data set.

Table 4–1 Parameter Support by Data Set Type

Data Set Type
Parameter
Support

Multiple
Selection Can Select All

Refresh Other
Parameters on
Change

SQL Query Yes Yes Yes Yes

MDX Query No No No No

Oracle BI Analysis Inherited from
Oracle BI
Analysis

Yes (via Oracle
BI Dashboards)

Yes (via Oracle
BI Dashboards)

Yes (via Oracle BI
Dashboards)

View Object Yes, provided
that the view
object supports
and is
designed for it

Yes, using the
proper syntax
in the view
object

Yes, using the
proper syntax
in the view
object

Yes (view object
parameters only)

Web Services Yes No No No

LDAP Query Yes No No No

XML File Not applicable Not applicable Not applicable Not applicable

Microsoft Excel File Yes No No No

HTTP (XML Feed) Yes No No No

Adding a New Parameter

Adding Parameters and Lists of Values 4-3

3. Select the Data Type from the list. A Date data type only support a Date
Parameter Type. The other data types support a Parameter Type of either Text or
Menu:

■ String

■ Integer

■ Boolean

■ Date

■ Float

4. Enter a Default Value for the parameter. This is recommended to prevent long
running queries. Default parameter values are also used to preview the report
output when you design report layouts using BI Publisher Layout Editor.

5. Select the Parameter Type. Supported types are:

■ Text — Allows the user to enter a text entry to pass as the parameter. See
Section 4.2.1, "Defining a Text Parameter."

■ Menu — Presents a list of values to the user. See Section 4.2.2, "Defining a
Menu Parameter."

■ Date — Passes a date parameter. The Data Type must also be Date. See
Section 4.2.3, "Defining a Date Parameter."

6. Row Placement - this setting configures the number of rows for displaying the
parameters and in which row to place each parameter. For example, if your report
has six parameters, you can assign each parameter to a separate row, 1 - 6, with
one being the top row; or, you can assign two parameters each to rows 1, 2, 3. By
default, all parameters are assigned to row 1.

Row placement can also be configured at the report level. The report definition
supports additional display options for parameters. For more information, see
"Configuring Parameter Settings for the Report" in the Oracle Fusion Middleware
Report Designer's Guide for Oracle Business Intelligence Publisher.

Note: The parameter name you choose must not exceed the
maximum length allowed for an identifier by your database. Refer to
your database documentation for identifier length limitations.

Note: The Integer data type for parameters is a 64-bit sign integer. It
has a value range of -9,223,372,036,854,775,808 to a maximum value of
9,223,372,036,854,775,807 (inclusive).

Note: BI Publisher supports parameters that are of type text entry or
menu (list of values) but not both. That is, you cannot define a
"combination" parameter that enables a user to either enter a text
value or choose from a menu list of values.

Adding a New Parameter

4-4 Data Modeling Guide for Oracle Business Intelligence Publisher

4.2.1 Defining a Text Parameter
The Text type parameter provides a text box to prompt the user to enter a text entry to
pass as the parameter to the data source. Figure 4–2 shows a text parameter definition.

Figure 4–2 Text Parameter Definition

To define a Text type parameter:

1. Select Text from the Parameter Type list. The lower pane displays the appropriate
fields for the selection.

2. Enter the Display Label. The display label is the label that displays to users when
they view the report. For example: Department.

3. Enter the Text Field Size as an integer. This field determines the number of
characters that the user can enter into the text box. For example: 25.

4. Enable the following Options if required:

■ Text field contains comma-separated values — Select this option to enable
the user to enter multiple comma-delimited values for this parameter. The
parameter in your data source must be defined to support multiple values.

■ Refresh other parameters on change — Performs a partial page refresh to
refresh any other parameters whose values are dependent on the value of this
one.

Figure 4–3 shows how the Department parameter displays to the report consumer.

Adding a New Parameter

Adding Parameters and Lists of Values 4-5

Figure 4–3 Text Type Parameter as Displayed in the Report

4.2.2 Defining a Menu Parameter
A Menu type parameter presents a list of values to the user. You must define the list of
values first. See Section 4.4, "Adding Lists of Values." The Menu type parameter
supports the data types of String and Integer only.

The Menu parameter definition includes the options:

Figure 4–4 shows the menu parameter definition.

Figure 4–4 Menu Type Parameter Definition

To define a Menu type parameter:

1. Select Menu from the Parameter Type list. The lower pane displays the
appropriate fields. Choose the Data Type (must be String or Integer).

2. Enter the Display Label. The display label is the label that displays to users when
they view the report. For example: Department.

Adding a New Parameter

4-6 Data Modeling Guide for Oracle Business Intelligence Publisher

3. Enter the Number of Values to Display in List. If the number of values in the list
exceeds the entry in this field, the user must click Search to find a value not
displayed, as shown in Figure 4–5. This field defaults to 100.

Figure 4–5 Search Feature Enabled When Number of Values Exceeds Setting

4. Select the List of Values that you defined for this parameter.

5. Enable the following Options if required:

■ Multiple Selection — Allows the user to select multiple entries from the list.
Your data source must be able to support multiple values for the parameter.
The display of a menu parameter that supports multiple selection differs. See
Figure 4–6 and Figure 4–7.

■ Can select all — Inserts an "All" option in the list. When the user selects "All"
from the list of values, you have the option of passing a null value for the
parameter or all list values. Choose NULL Value Passed or All Values
Passed.

■ Refresh other parameters on change — Performs a partial page refresh to
refresh any other parameters whose values are dependent on the value of this
one.

Figure 4–6 shows how the Department menu type parameter displays to the report
consumer when multiple selection is not enabled.

Note: Using * passes a null, so you must handle the null in your data
source. A method to handle the null would be the standard Oracle
NVL command, for example:

where customer_id = nvl(:cstid, customer_id)

where cstid is a value passed from the LOV and when the user selects
All it passes a null value.

Adding a New Parameter

Adding Parameters and Lists of Values 4-7

Figure 4–6 Department Menu Type Parameter with Multiple Selection Disabled

Figure 4–7 shows how the Department menu type parameter displays to the report
consumer when multiple selection is enabled.

Figure 4–7 Department Menu Type Parameter with Multiple Selection Enabled

4.2.2.1 Customizing the Display of Menu Parameters
The display of menu parameters in the report can be further customized in the report
definition. Menu type parameters support the additional display option as a static list
of checkboxes or radio buttons. For more information, see "Configuring Parameter
Settings for the Report" in the Oracle Fusion Middleware Report Designer's Guide for
Oracle Business Intelligence Publisher.

4.2.3 Defining a Date Parameter
The Date type parameter provides a date picker to prompt the user to enter a date to
pass as the parameter to the data source. Figure 4–8 shows the date parameter
definition.

Adding a New Parameter

4-8 Data Modeling Guide for Oracle Business Intelligence Publisher

Figure 4–8 Date Parameter Definition

To define a Date type parameter:

1. Select Date from the Parameter Type list. The lower pane displays the appropriate
fields for your selection.

2. Enter the Display Label. The display label is the label that displays to users when
they view the report. For example: Hire Date.

3. Enter the Text Field Size as an integer. This field determines the number of
characters that the user can enter into the text box for the date entry. For example:
10.

4. Enter the Date Format String. The format must be a Java date format (for example,
MM-dd-yyyy).

5. Optionally, enter a Date From and Date To. The dates entered here define the date
range that are presented to the user by the date picker. For example if you enter
the Date From as 01-01-1990, the date picker does not allow the user to select a
date before 01-01-1990. Leave the Date To blank to enable all future dates.

Figure 4–9 shows how the Hire Date parameter displays to the report consumer.

Adding Lists of Values

Adding Parameters and Lists of Values 4-9

Figure 4–9 Hire Date Parameter

4.3 About Lists of Values
A list of values is a defined set of values that a report consumer can select from to pass
a parameter value to your data source. If you define a menu type parameter, the list of
values that you define here provides the menu of choices. You must define the list of
values before you define the menu parameter.

Populate the list using one of the following methods:

■ Fixed Data — Manually enter the list of values.

■ SQL Query — Retrieve the values from a database using a SQL query.

4.4 Adding Lists of Values
To add a List of Values:

1. On the Data Model components pane, click List of Values and then click Create
new List of Values, as shown in Figure 4–10.

Adding Lists of Values

4-10 Data Modeling Guide for Oracle Business Intelligence Publisher

Figure 4–10 Create New List of Values

2. Enter a Name for the list and select a Type: SQL Query or Fixed Data.

4.4.1 Creating a List from a SQL Query
The data engine expects a (display) name-value pair from the list of values query. In
the list of values select statement, the column listed first is used as the display name
(what is shown to the user) and the second is used for the value that is passed to the
parameter in the data set query by the data engine.

If the query returns only one column, then the same column value is used both as the
list of values display name shown to the user and as the value that is passed to the
parameter.

To create a list from a SQL query:

1. Select a Data Source from the list.

2. In the lower pane, select Cache Result (recommended) if you want the results of
the query cached for the report session.

3. Enter the SQL query or use the Query Builder. See Section 2.4, "Using the Query
Builder" for information on the Query Builder utility. Figure 4–11 shows a SQL
query type list of values.

Adding Lists of Values

Adding Parameters and Lists of Values 4-11

Figure 4–11 SQL Query Type List of Values

The SQL query shown in Figure 4–11 selects only the DEPARTMENT_NAME column
from the DEPARTMENTS table. In this case the list of values both displays the results
of the query in the list and passes the same value to the parameter in the data set.
Figure 4–12 shows the list of values display entries and the values passed to the data
set. Note that the menu items and the values shown for P_DEPT are the
DEPARTMENT_NAME values.

Figure 4–12 Sample Data Showing the Same LOV Display Names and Values

Adding Lists of Values

4-12 Data Modeling Guide for Oracle Business Intelligence Publisher

If instead you wanted to pass the DEPARTMENT_ID to the parameter in the data set
yet still display the DEPARTMENT_NAME in the list, construct your SQL query as
follows:

select "DEPARTMENTS"."DEPARTMENT_NAME" as "DEPARTMENT_NAME",
 "DEPARTMENTS"."DEPARTMENT_ID" as "DEPARTMENT_ID"
 from "DEMO"."DEPARTMENTS" "DEPARTMENTS
Figure 4–13 shows the list of values display entries and the values passed to the data
set. Note that the menu lists the DEPARTMENT_NAME while the values shown for P_
DEPT are the DEPARTMENT_ID values.

Figure 4–13 LOV Display Names and Values

4.4.2 Creating a List from a Fixed Data Set
To create a list from a fixed data set:

1. In the lower pane, click the Create new List of Values icon to add a Label and
Value pair. The label is displayed to the user in the list. The value is passed to the
data engine.

2. Repeat for each label-value pair required.

Figure 4–14 shows fixed data type list of values.

Adding Lists of Values

Adding Parameters and Lists of Values 4-13

Figure 4–14 Fixed Data Type List of Values

Adding Lists of Values

4-14 Data Modeling Guide for Oracle Business Intelligence Publisher

5

Adding Event Triggers 5-1

5Adding Event Triggers

BI Publisher data models support before data and after data event triggers and
schedule triggers. This chapter describes how to define triggers in your data model.

This chapter includes the following sections:

■ Section 5.1, "About Triggers"

■ Section 5.2, "Adding Before Data and After Data Triggers"

■ Section 5.3, "Creating Schedule Triggers"

5.1 About Triggers
The BI Publisher data model supports the following types of triggers:

■ Before Data — fires before the data set is executed.

■ After Data — fires after the data engine executes all data sets and generates the
XML.

■ Schedule Trigger - Fires when a report job is scheduled to run.

An event trigger checks for an event and when the event occurs, it runs the code
associated with the trigger. The BI Publisher data model supports before data and
after data triggers that execute a PL/SQL function stored in a PL/SQL package in your
Oracle Database. The return data type for a PL/SQL function inside the package must
be a Boolean type and the function must explicitly return TRUE or FALSE.

A schedule trigger is associated with a schedule job. It is a SQL query that is executed
at the time a report job is scheduled to run. If the SQL returns any data, the report job
runs. If the SQL query returns no data, the job instance is skipped.

5.2 Adding Before Data and After Data Triggers
To add before data or after data event triggers:

1. On the data model Properties pane, enter the Oracle DB Default Package that
contains the PL/SQL function signature to execute when the trigger fires. See
Section 1.8, "Setting Data Model Properties."

2. From the task pane, click Event Triggers.

3. From the Event Triggers pane, click the Create New icon.

4. Enter the following for the trigger:

■ Name

Creating Schedule Triggers

5-2 Data Modeling Guide for Oracle Business Intelligence Publisher

■ Type — Select Before Data or After Data.

■ Language — Select PL/SQL.

The lower pane displays the available functions in the Oracle DB Default
Package that you entered in the data model Properties in Step 1.

Figure 5–1 shows an event trigger.

Figure 5–1 Event Trigger

5. Select the package from the Available Functions box and click the arrow to move
a function to the Event Trigger box. The name appears as PL/SQL <package
name>.<function name>.

5.2.1 Order of Execution
If you define multiple triggers of the same type, they fire in the order that they appear
in the table (from top to bottom).

To change the order of execution:

1. Use the Reorder arrows to place the triggers in the correct order.

5.3 Creating Schedule Triggers
A schedule trigger fires when a report job is scheduled to run. Schedule triggers are of
type SQL Query. When a report job is scheduled to run, the schedule trigger executes
the SQL statement defined for the trigger. If data is returned, then the report job is

Important: If you define a default package then you must define all
parameters as a global PL/SQL variable in the PL/SQL package. You
can then explicitly pass parameters to your PL/SQL function trigger
or all parameters are available as a global PL/SQL variable.

Creating Schedule Triggers

Adding Event Triggers 5-3

submitted. If data is not returned from the trigger SQL query, the report job is
skipped.

The schedule trigger that you associate with a report job can reside in any data model
in the catalog. You do not need to create the schedule trigger in the data model of the
report for which you which to execute it. You can therefore reuse schedule triggers
across multiple report jobs.

To add a Schedule Trigger:

1. In the data model editor task pane, click Event Triggers.

2. From the Event Triggers pane, click the Create New icon.

3. Enter the following for the trigger:

■ Name - enter a name for the trigger.

■ Type — select Schedule.

■ Language — defaults to SQL Query.

4. In the lower pane, enter the following:

■ Options - select this box to cache the results of the trigger query.

■ Data Source - select the data source for the trigger query.

■ SQL Query - enter the query in the text area, or click Query Builder to use the
utility to construct the SQL query. For information, see Section 2.4, "Using the
Query Builder."

It the SQL query returns any results, the scheduled report job executes. Figure 5–2
shows a schedule trigger to test for inventory levels.

Figure 5–2 Schedule Trigger

For information on implementing the schedule trigger in the report job, see
"Defining the Schedule for a Job" in the Oracle Fusion Middleware User's Guide for
Oracle Business Intelligence Publisher.

Creating Schedule Triggers

5-4 Data Modeling Guide for Oracle Business Intelligence Publisher

6

Adding Flexfields 6-1

6Adding Flexfields

This chapter describes support for flexfields in the BI Publisher data model.

This chapter includes the following sections:

■ Section 6.1, "About Flexfields"

■ Section 6.2, "Adding Flexfields"

6.1 About Flexfields
Flexfields are unique to Oracle Applications. If you are reporting on data from the
Oracle Applications, use this component of the data model to retrieve flexfield data.

To use a flexfield in your data model:

■ Define the SELECT statement to use for the report data.

■ Within the SELECT statement, define each flexfield as a lexical. Use the
&LEXICAL_TAG to embed flexfield related lexicals into the SELECT statement.

■ Add the flexfield to the data model.

You can use flexfield references to replace the clauses appearing after SELECT, FROM,
WHERE, ORDER BY, or HAVING. Use a flexfield reference when you want the
parameter to replace multiple values at runtime. The data model editor supports the
following flexfield types:

■ Where — This type of lexical is used in the WHERE section of the statement. It is
used to modify the WHERE clause such that the SELECT statement can filter
based on key flexfield segment data.

■ Order by — This type of lexical is used in the ORDER BY section of the statement.
It returns a list of column expressions so that the resulting output can be sorted by
the flex segment values.

■ Select — This type of lexical is used in the SELECT section of the statement. It is
used to retrieve and process key flexfield (kff) code combination related data
based on the lexical definition.

■ Filter — This type of lexical is used in the WHERE section of the statement. It is
used to modify the WHERE clause such that the SELECT statement can filter
based on Filter ID passed from Oracle Enterprise Scheduling Service.

■ Segment Metadata — Use this type of lexical to retrieve flexfield-related
metadata. Using this lexical, you are not required to write PL/SQL code to retrieve
this metadata. Instead, define a dummy SELECT statement, then use this lexical to
get the metadata. This lexical should return a constant string.

Adding Flexfields

6-2 Data Modeling Guide for Oracle Business Intelligence Publisher

After you set up the flexfield components of your data model, create a flexfield
reference in the SQL query using the following syntax:

&LEXICAL_TAG ALIAS_NAME

for example:

&FLEX_GL_BALANCING alias_gl_balancing

6.2 Adding Flexfields
To add a flexfield:

1. Enter the following:

■ Name — Enter a name for the flexfield component.

■ Type — Select the flexfield type from the list. The type you select here
determines the additional fields required. See Section 6.2.1, "Entering Flexfield
Details."

■ Application Short Name — Enter the short name of the Oracle Application
that owns this flexfield (for example, GL).

■ ID Flex Code — Enter the flexfield code defined for this flexfield in the
Register Key Flexfield form (for example, GL#).

■ ID Flex Number — Enter the name of the source column or parameter that
contains the flexfield structure information.

6.2.1 Entering Flexfield Details
Select Segment Metadata, Select, Where, Order By, Filter. Depending on the type you
select, the detail pane displays the appropriate fields, described in Table 6–1.

Table 6–2 shows the detail fields for the Select flexfield type.

Table 6–1 Detail Fields for Segment Metadata

Field Description

Segments (Optional) Identifies for which segments this data is requested.
Default value is "ALL". See Oracle E-Business Suite Developer's
Guide for syntax.

Show Parent Segments Select this box to automatically display the parent segments of
dependent segments even if it is specified as not displayed in
the segments attribute.

Metadata Type Select the type of metadata to return:

Above Prompt — Above prompt of segment(s).

Left Prompt — Left prompt of segment(s)

Table 6–2 Detail Fields for Select

Field Description

Multiple ID Flex Num Indicates whether this lexical supports multiple structures.
Checking this box indicates all structures are potentially used for
data reporting. The data engine uses <code_combination_table_
alias>.<set_def ining_column_name> to retrieve the structure
number.

Adding Flexfields

Adding Flexfields 6-3

Table 6–3 shows the detail fields for the Where flexfield type.

Table 6–4 shows the detail fields for the Order by flexfield type.

Code Combination Table
Alias

Specify the table alias to prefix to the column names. Use
TABLEALIAS if your SELECT joins to other flexfield tables or
uses a self-join.

Segments (Optional) Identifies for which segments this data is requested.
Default value is "ALL". See Oracle E-Business Suite Developer's
Guide for syntax.

Show Parent Segments Select this box to automatically display the parent segments of
dependent segments even if it is specified as not displayed in the
segments attribute.

Output Type Select from the following:

■ Value — Segment value as it is displayed to user.

■ Padded Value — Padded segment value as it is displayed to
user. Number type values are padded from the left. String
type values are padded on the right.

■ Description — Segment value's description up to the
description size defined in the segment definition.

■ Full Description — Segment value's description (full size).

■ Security — Returns Y if the current combination is secured
against the current user, N otherwise.

Table 6–3 Detail Fields for Where

Field Description

Code Combination
Table Alias

Specify the table alias to prefix to the column names. You use
TABLEALIAS if your SELECT joins to other flexfield tables or uses a
self-join.

Segments (Optional) Identifies for which segments this data is requested. Default
value is "ALL". See Oracle E-Business Suite Developer's Guide for syntax.

Operator Select the appropriate operator.

Operand1 Enter the value to use on the right side of the conditional operator.

Operand2 (Optional) High value for the BETWEEN operator.

Table 6–4 Detail Fields for Order By

Field Description

Multiple ID Flex Num Indicates whether this lexical supports multiple structures.
Selecting this box indicates all structures are potentially used for
data reporting. The data engine uses <code_combination_table_
alias>.<set_def ining_column_name> to retrieve the structure
number.

Code Combination Table
Alias

Specify the table alias to prefix to the column names. You use
TABLEALIAS if your SELECT joins to other flexfield tables or
uses a self-join.

Segments (Optional) Identifies for which segments this data is requested.
Default value is "ALL". See Oracle E-Business Suite Developer's
Guide for syntax.

Table 6–2 (Cont.) Detail Fields for Select

Field Description

Adding Flexfields

6-4 Data Modeling Guide for Oracle Business Intelligence Publisher

Table 6–5 shows the detail fields for the Filter flexfield type.

Show Parent Segments Select this box to automatically display the parent segments of
dependent segments even if it is specified as not displayed in the
segments attribute.

Table 6–5 Detail Fields for Filter

Field Description

Code Combination Table
Alias

Specify the table alias to prefix to the column names. You use
TABLEALIAS if your SELECT joins to other flexfield tables or
uses a self-join.

Flex Filter ID (Required) Enter the unique Key internal code of the key
flexfield.

Flex Filter Comment (Optional) Enter a comments or description.

Table 6–4 (Cont.) Detail Fields for Order By

Field Description

7

Adding Bursting Definitions 7-1

7Adding Bursting Definitions

This chapter describes BI Publisher's support for bursting reports and how to define a
bursting definition in the data model to split and deliver your report to multiple
recipients.

This chapter includes the following sections:

■ Section 7.1, "About Bursting"

■ Section 7.2, "What is the Bursting Definition?"

■ Section 7.3, "Adding a Bursting Definition to Your Data Model"

■ Section 7.4, "Defining the Query for the Delivery XML"

■ Section 7.5, "Passing a Parameter to the Bursting Query"

■ Section 7.6, "Defining the Split By and Deliver By Elements for a CLOB/XML Data
Set"

■ Section 7.7, "Configuring a Report to Use a Bursting Definition"

■ Section 7.8, "Sample Bursting Query"

■ Section 7.9, "Creating a Table to Use as a Delivery Data Source"

7.1 About Bursting
Bursting is a process of splitting data into blocks, generating documents for each
block, and delivering the documents to one or more destinations. The data for the
report is generated by executing a query once and then splitting the data based on a
"Key" value. For each block of the data, a separate document is generated and
delivered.

Using BI Publisher's bursting feature you can split a single report based on an element
in the data model and deliver the report based on a second element in the data model.
Driven by the delivery element, you can apply a different template, output format,
delivery method, and locale to each split segment of the report. Example
implementations include:

■ Invoice generation and delivery based on customer-specific layouts and delivery
preference

■ Financial reporting to generate a master report of all cost centers, splitting out
individual cost center reports to the appropriate manager

■ Generation of pay slips to all employees based on one extract and delivered
through e-mail

What is the Bursting Definition?

7-2 Data Modeling Guide for Oracle Business Intelligence Publisher

7.2 What is the Bursting Definition?
A bursting definition is a component of the data model. After you have defined the
data sets for the data model, you can set up one or more bursting definitions. When
you set up a bursting definition, you define the following:

■ The Split By element is an element from the data that governs how the data is
split. For example, to split a batch of invoices by each invoice, you may use an
element called CUSTOMER_ID. The data set must be sorted or grouped by this
element.

■ The Deliver By element is the element from the data that governs how formatting
and delivery options are applied. In the invoice example, it is likely that each
invoice has delivery criteria determined by customer; therefore, the Deliver By
element would also be CUSTOMER_ID.

■ The Delivery Query is a SQL query that you define for BI Publisher to construct
the delivery XML data file. The query must return the formatting and delivery
details.

7.3 Adding a Bursting Definition to Your Data Model
Prerequisites:

■ You have defined the data set for this data model

■ The data set is sorted or grouped by the element by which you want to split the
data in your bursting definition

■ The delivery and formatting information is available to BI Publisher. The
information can be provided at runtime to BI Publisher in one of the following
ways:

■ The information is stored in a database table available to BI Publisher (for a
dynamic delivery definition)

■ The information is hard coded in the delivery SQL (for a static delivery
definition)

■ The report definition for this data model has been created and includes the layouts
to be applied to the report data.

To add a bursting definition:

1. On the component pane of the data model editor, click Bursting.

2. On the Bursting definition table, click the Create new Bursting button.

3. Enter the following for this bursting definition:

Name — For example, "Burst to File"

Type — SQL Query is currently the only supported type

Data Source — Select the data source that contains the delivery information

Figure 7–1 shows a Bursting definition.

Adding a Bursting Definition to Your Data Model

Adding Bursting Definitions 7-3

Figure 7–1 Bursting Definition

4. In the lower region, enter the following for this bursting definition:

Split By — Select the element from the data set by which to split the data

Deliver By — Select the element from the data set by which to format and deliver
the data

SQL Query — Enter the query to construct the delivery XML. For information on
how to construct the bursting query, see Section 7.4, "Defining the Query for the
Delivery XML." Figure 7–2 shows a sample bursting query.

Note: If the Split By and Deliver By elements reside in an XML
document stored as a CLOB in your database, you must enter the full
XPATH in the Split By and Delivery By fields. For more information,
see Section 7.6, "Defining the Split By and Deliver By Elements for a
CLOB/XML Data Set."

Defining the Query for the Delivery XML

7-4 Data Modeling Guide for Oracle Business Intelligence Publisher

Figure 7–2 Sample Bursting Query

7.4 Defining the Query for the Delivery XML
The bursting query is a SQL query that you define to provide BI Publisher with the
required information to format and deliver the report. BI Publisher uses the results
from the bursting query to create the delivery XML.

The BI Publisher bursting engine uses the delivery XML as a mapping table for each
Deliver By element. The structure of the delivery XML required by BI Publisher is as
follows:

<ROWSET>
 <ROW>
 <KEY></KEY>
 <TEMPLATE></TEMPLATE>
 <LOCALE></LOCALE>
 <OUTPUT_FORMAT></OUTPUT_FORMAT>
 <DEL_CHANNEL></DEL_CHANNEL>
 <TIMEZONE></TIMEZONE>
 <CALENDAR></CALENDAR>
 <OUTPUT_NAME></OUTPUT_NAME>
 <SAVE_OUTPUT></SAVE_OUTPUT>
 <PARAMETER1></PARAMETER1>
 <PARAMETER2></PARAMETER2>
 <PARAMETER3></PARAMETER3>
 <PARAMETER4></PARAMETER4>
 <PARAMETER5></PARAMETER5>
 <PARAMETER6></PARAMETER6>
 <PARAMETER7></PARAMETER7>
 <PARAMETER8></PARAMETER8>
 <PARAMETER9></PARAMETER9>

Defining the Query for the Delivery XML

Adding Bursting Definitions 7-5

 <PARAMETER10></PARAMETER10>
 </ROW>
</ROWSET>
■ KEY — The Delivery key and must match the Deliver By element. The bursting

engine uses the key to link delivery criteria to a specific section of the burst data.
Ensure that you use double quotes around "KEY" in the select statement, for
example:

select d.department_name as "KEY",
■ TEMPLATE — The name of the Layout to apply. Note that the value is the Layout

name (for example, 'Customer Invoice'), not the template file name (for example,
invoice.rtf).

■ LOCALE — The template locale, for example, 'en-US'.

■ OUTPUT_FORMAT — The output format. For a description of each type, see the
section "Setting the Output Types" in Oracle Fusion Middleware Report Designer's
Guide for Oracle Business Intelligence Publisher. Table 7–1 shows the valid values to
enter for the bursting query.

■ SAVE_OUTPUT — Indicates whether to save the output documents to BI
Publisher history tables that the output can be viewed and downloaded from the
Report Job History page.

Table 7–1 Values to Enter for OUTPUT_FORMAT

Output Format
Value to Enter in
Bursting Query Template Types That Can Generate This Output Format

Interactive N/A Not supported for bursting

HTML html BI Publisher, RTF, XSL Stylesheet (FO)

PDF pdf BI Publisher, RTF, PDF, Flash, XSL Stylesheet (FO)

RTF rtf BI Publisher, RTF, XSL Stylesheet (FO)

Excel excel BI Publisher, RTF, Excel, XSL Stylesheet (FO)

Excel2000 excel2000 BI Publisher, RTF, Excel, XSL Stylesheet (FO)

Excel2007 xslx BI Publisher, RTF, XSL Stylesheet (FO)

PowerPoint ppt BI Publisher, RTF, XSL Stylesheet (FO)

PowerPoint 2007 pptx BI Publisher, RTF, XSL Stylesheet (FO)

MHTML mhtml BI Publisher, RTF, Flash, XSL Stylesheet (FO)

PDF/A pdfa BI Publisher, RTF, XSL Stylesheet (FO)

PDF/X pdfx BI Publisher, RTF, XSL Stylesheet (FO)

PDFZ pdfz BI Publisher, RTF, PDF, XSL Stylesheet (FO)

FO xslfo BI Publisher, RTF, XSL Stylesheet (FO)

Data xml BI Publisher, RTF, PDF, Excel, Flash, XSL Stylesheet (FO),
Etext, XSL Stylesheet (HTML XML/Text)

CSV csv BI Publisher, RTF, PDF, Excel, Flash, XSL Stylesheet (FO),
XSL Stylesheet (HTML XML/Text), Etext

XML txml XSL Stylesheet (HTML XML/Text)

Text text XSL Stylesheet (HTML XML/Text), Etext

Flash flash Flash

Defining the Query for the Delivery XML

7-6 Data Modeling Guide for Oracle Business Intelligence Publisher

Valid values are 'true' (default) and 'false'. If this property is not set, the output is
saved.

■ DEL_CHANNEL — The delivery method. Valid values are:

■ EMAIL

■ FAX

■ FILE

■ FTP

■ PRINT

■ WEBDAV

■ TIMEZONE — The time zone to use for the report. Values must be in the Java
format, for example: 'America/Los_Angeles'. If time zone is not provided, then the
system default time zone is used to generate the report.

■ CALENDAR — The calendar to use for the report. Valid values are:

■ GREGORIAN

■ ARABIC_HIJRAH

■ ENGLISH_HIJRAH

■ JAPANESE_IMPERIAL

■ THAI_BUDDHA

■ ROC_OFFICIAL (Taiwan)

If not provided, the value 'GREGORIAN' is used.

■ OUTPUT_NAME — The name to assign to the output file in the report job
history.

■ Delivery parameters by channel — The values required for the parameters
depend on the delivery method chosen. The parameter values mappings for each
method are shown in Table 7–2. Not all delivery channels use all the parameters.

Table 7–2 Parameter Values Mapping by Method

Delivery Channel PARAMETER Values

Email PARAMETER1: Email address

PARAMETER2: cc

PARAMETER3: From

PARAMETER4: Subject

PARAMETER5: Message body

PARAMETER6: Attachment value ('true' or 'false'). If your output
format is PDF, you must set this parameter to "true" to attach the PDF
to the e-mail.

PARAMETER7: Reply-To

PARAMETER8: Bcc (PARAMETER 9-10 are not used)

Passing a Parameter to the Bursting Query

Adding Bursting Definitions 7-7

7.5 Passing a Parameter to the Bursting Query
You can pass the value for an element of your bursting XML using a parameter
defined in the data model. For example, if you want to be able to select the template at
the time of submission, you can define a parameter in the data model and use the
:parameter_name syntax in your query. The following example demonstrates this
use case of a parameter in a bursting query.

Printer PARAMETER1: Printer group

PARAMETER2: Printer name or for a printer on CUPS, the printer
URI, for example:
ipp://myserver.com:631/printers/printer1

PARAMETER3: Number of Copies

PARAMETER4: Sides. Valid values are:

■ "d_single_sided" for single-sided

■ "d_double_sided_l" for duplex/long edge

■ "d_double_sided_s" for tumble/short edge

If the parameter is not specified, single-sided is used.

PARAMETER5: Tray. Valid values are:

■ "t1" for "Tray 1"

■ "t2" for "Tray 2"

■ "t3" for "Tray 3"

If not specified, the printer default is used.

PARAMETER6: Print range. For example "3" prints page 3 only, "2-5"
prints pages 2-5, "1,3-5" prints pages 1 and 3-5

(PARAMETER 7-10 are not used)

Fax PARAMETER1: Fax server name

PARAMETER2: Fax number

(PARAMETER 3-10 are not used)

WebDAV PARAMETER1: Server Name PARAMETER2: Username

PARAMETER3: Password PARAMETER4: Remote Directory

PARAMETER5: Remote File Name

PARAMETER6: Authorization type, values are 'basic' or 'digest'

(PARAMETER 7-10 are not used)

File PARAMETER1: Directory

PARAMETER2: File Name

(PARAMETER 3-10 are not used)

FTP and SFTP PARAMETER1: Server name PARAMETER2: Username

PARAMETER3: Password

PARAMETER4: Remote Directory

PARAMETER5: Remote File Name

PARAMETER6: Secure (set this value to 'true' to enable Secure FTP)

(PARAMETER 7-10 are not used)

Table 7–2 (Cont.) Parameter Values Mapping by Method

Delivery Channel PARAMETER Values

Passing a Parameter to the Bursting Query

7-8 Data Modeling Guide for Oracle Business Intelligence Publisher

Assume your report definition includes three layouts: layout1, layout2, and layout3.
At submission time you want to select the layout (or TEMPLATE, as defined in the
bursting query) to use. In your data model, define a list of values with the layout
names. The following figure shows a data model with the layout list of values:

Figure 7–3 Defining the List of Values

Next create a menu type parameter, here named P1:

Figure 7–4 Defining a Parameter

In the bursting query, pass the parameter value to the TEMPLATE field using :P1 as
shown in the following figure:

Defining the Split By and Deliver By Elements for a CLOB/XML Data Set

Adding Bursting Definitions 7-9

Figure 7–5 Updating the Bursting Query to Accept the P1 Parameter

7.6 Defining the Split By and Deliver By Elements for a CLOB/XML Data
Set

If the split-by and deliver-by elements required for your bursting definition reside in a
data set retrieved from a CLOB column in a database, BI Publisher cannot parse the
XML to present the elements in the Split By and Deliver By lists. You therefore must
manually enter the XPath to locate each element in the retrieved XML data set. To
ensure that you enter the path correctly, use the data model editor's Get XML Output
feature to view the XML that is generated by the data engine.

For example, the sample XML code, shown in Figure 7–6, was stored in a CLOB
column in the database called "XMLTEXT", and extracted as an XML data set:

Defining the Split By and Deliver By Elements for a CLOB/XML Data Set

7-10 Data Modeling Guide for Oracle Business Intelligence Publisher

Figure 7–6 Sample Data Extract of Data Stored as CLOB

For this example, you want to add a bursting definition with split by and deliver by
element based on the DEPARTMENT_ID, which is an element within the CLOB/XML
data set.

When you add the bursting definition, the Split By and Deliver By lists cannot parse
the structure beneath the XMLTEXT element. Therefore, the list does not display the
elements available beneath the XMLTEXT node, as shown in Figure 7–7.

Figure 7–7 Split By List Presents Only Top-Level Nodes

To use the DEPARTMENT_ID element as the Split By element, manually type the
XPath into the field as shown in Figure 7–8.

Figure 7–8 Manually Entering the XPath into the Split By Field

Creating a Table to Use as a Delivery Data Source

Adding Bursting Definitions 7-11

7.7 Configuring a Report to Use a Bursting Definition
Although you can define multiple bursting definitions for a single data model, you can
enable only one for a report.

Enable a report to use a bursting definition on the Report Properties dialog of the
report editor. For more information see the section "Configuring Report Properties" in
Oracle Fusion Middleware Report Designer's Guide for Oracle Business Intelligence
Publisher.

After you configure the report to use the bursting definition, when you schedule a job
for this report you can choose to use the bursting definition to format and deliver the
report. For more information see the section "Creating a Bursting Job" in Oracle Fusion
Middleware User's Guide for Oracle Business Intelligence Publisher.

You can also opt not to use the bursting definition and choose your own output and
destination as a regular scheduled report.

7.8 Sample Bursting Query
The following example is based on an invoice report. This report is to be delivered by
CUSTOMER_ID to each customer's individual e-mail address.

This example assumes that the delivery and formatting preferences for each customer
are contained in a database table named "CUSTOMERS". The CUSTOMERS table
includes the following columns that will be retrieved to create the delivery XML
dynamically at runtime:

■ CST_TEMPLATE

■ CST_LOCALE

■ CST_FORMAT

■ CST_EMAIL_ADDRESS

The SQL code to generate the delivery data set for this example is as follows:

select distinct
CUSTOMER_ID as "KEY",
CST_TEMPLATE TEMPLATE,
CST_LOCALE LOCALE,
CST_FORMAT OUTPUT_FORMAT,
'EMAIL' DEL_CHANNEL,
CST_EMAIL_ADDRESS PARAMETER1,
'accounts.receivable@oracle.com' PARAMETER2,
'bip-collections@oracle.com' PARAMETER3,
'Your Invoices' PARAMETER4,
'Hi'||CUST_FIRST_NAME||chr(13)|| 'Please find attached your
invoices.' PARAMETER5,
'true' PARAMETER6,
'donotreply@mycompany.com' PARAMETER7
from CUSTOMERS

7.9 Creating a Table to Use as a Delivery Data Source
If the delivery information is not easily available in the existing data sources, then you
can consider creating a table to use for the query to create the delivery XML. Following
is a sample:

Creating a Table to Use as a Delivery Data Source

7-12 Data Modeling Guide for Oracle Business Intelligence Publisher

CREATE TABLE "XXX"."DELIVERY_CONTROL"
 ("KEY" NUMBER,
 "TEMPLATE" VARCHAR2(20 BYTE),
 "LOCALE" VARCHAR2(20 BYTE),
 "OUTPUT_FORMAT" VARCHAR2(20 BYTE),
 "DEL_CHANNEL" VARCHAR2(20 BYTE),
 "PARAMETER1" VARCHAR2(100 BYTE),
 "PARAMETER2" VARCHAR2(100 BYTE),
 "PARAMETER3" VARCHAR2(100 BYTE),
 "PARAMETER4" VARCHAR2(100 BYTE),
 "PARAMETER5" VARCHAR2(100 BYTE),
 "PARAMETER6" VARCHAR2(100 BYTE),
 "PARAMETER7" VARCHAR2(100 BYTE),
 "PARAMETER8" VARCHAR2(100 BYTE),
 "PARAMETER9" VARCHAR2(100 BYTE),
 "PARAMETER10" VARCHAR2(100 BYTE),
 "OUTPUT_NAME" VARCHAR2(100 BYTE),
 "SAVE_OUTPUT" VARCHAR2(4 BYTE),
 "TIMEZONE" VARCHAR2(300 BYTE),
 "CALENDAR" VARCHAR2(300 BYTE)
) PCTFREE 10 PCTUSED 40 INITRANS 1 MAXTRANS 255 NOCOMPRESS LOGGING
 STORAGE(INITIAL 65536 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS 2147483645
 PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT)
 TABLESPACE "EXAMPLES";

Tips for creating a creating bursting delivery table:

■ If the split data set does not contain a DELIVERY_KEY value, then the document
is neither delivered nor generated. For example, using the preceding example, if
customer with ID 123 is not defined in the bursting delivery table, this customer's
document is not generated.

■ To enable a split data set to generate more than one document or deliver to more
than one destination, duplicate the DELIVERY_KEY value and provide different
sets of OUTPUT_FORMAT, DEL_CHANNEL, or other parameters. For example,
customer with ID 456 wants his document delivered to two e-mail addresses. To
achieve this, insert two rows in the table, both with 456 as the DELIVERY_KEY
and each with its own e-mail address.

Important: If the JDBC driver that you use does not support column
alias, when you define the bursting control table, the columns must
match exactly the control XML tag name. For example, the KEY
column must be named "KEY", upper case is required. PARAMETER1
must be named "PARAMETER1", not "parameter1" nor "param1", and
so on.

Index-1

Index

A
ABS, 3-27
Actions menu

group, 3-10
aggregate elements

group level, 3-13
setting properties, 3-15

analysis
See Oracle BI analysis, 1-3

AVG, 3-27

B
backup data source

using for data model, 1-6
bind variables

adding, 2-4, 2-10
bursting

setting up, 7-2
bursting definition

defining for CLOB data set, 7-9

C
CEILING, 3-27
CLOB

adding bursting definitions for, 7-9
using as a data source, 2-27

code view, 3-6
CONCAT, 3-28

D
data model

component definitions, 1-1
data model editor

interface overview, 1-4
launching, 1-4

data sets
creating, 2-1
editing, 2-3
guidelines for multiquery data models, 3-4
linking, 3-7
supported types, 2-2
what is supported for each type, 1-2

data sources

supported types, 1-2
Database Fetch Size property, 1-6
DATE, 3-28
default data source property, 1-6
diagram view, 3-5

E
element properties

setting, 3-18
element-level links, 3-7

deleting, 3-9
elements

renaming, 3-26
Excel data source files

refreshing local files, 1-7

F
filters

creating for groups, 3-16
deleting, 3-18
editing, 3-18

find variables
user information, 2-33

FLOOR, 3-27
FORMAT_DATE, 3-28
FORMAT_NUMBER, 3-28
functions

element level, 3-18
global level, 3-22
reference, 3-27

G
global-level functions, 3-22
group filters

creating, 3-16
deleting, 3-18
editing, 3-18

group link
Actions menu, 3-10

group-level links, 3-7
creating, 3-10
deleting, 3-11

Index-2

H
HTTP XML feed

creating data set from, 2-31
HTTP XML feed data sets

limitations on structuring, 2-32

I
INSTR, 3-28

L
LDAP

creating bind variables from user attributes, 2-34
using as data source, 2-13

LENGTH, 3-28
links

creating between data sets, 3-7
element-level, 3-7
group-level, 3-7

list of values
adding to data model, 4-9

M
master-detail links, 3-7
MAX, 3-27
MDX query

defining as a data set type, 2-12
Microsoft Excel

creating a data set based on, 2-14
data source from system directory, 2-16
deleting an uploaded data source file, 2-18
refreshing an uploaded data source file, 2-18
uploading a local file to use as a data source, 2-17

MIN, 3-27
multiquery data models

when to use, 3-4

N
null elements

setting value for, 3-27
NUMBER, 3-28
NVL, 3-28

O
OLAP data sources

limitations, 2-13
querying, 2-12

Oracle BI analysis
creating a data set, 2-19
limitations as data set, 2-20

Oracle DB Default Package property, 1-6
output view, 3-6

P
parameters

adding to data model, 4-1
date, 4-7
menu, 4-5
text, 4-4

parent-child groups
moving element between, 3-12

parent-child links, 3-7
PL/SQL

add element, 3-22
PL/SQL filters, 3-17
properties

aggregate elements, 3-15
setting, 1-5

properties pane, 1-5

Q
Query Builder

join conditions, 2-8
joining objects, 2-8
supported column types, 2-5
using, 2-4

R
renaming elements, 3-26
ROUND, 3-27
RSS feed

creating data set from, 2-31

S
Safari browser

limitations when viewing XML, 2-32
sample data

attaching to data model, 1-7
exporting, 2-33
generating and saving for a data model, 2-32

sorting
apply to group, 3-19
support, 3-19

SQL query
defining as data set, 2-3
editing, 2-12

STRING, 3-28
Structure view, 3-6, 3-26
subgroups

creating in data models, 3-11
removing, 3-12

SUBSTRING, 3-28
SUM, 3-28
system variables

including in a data model, 2-33

T
toolbar, 1-5

U
user ID

Index-3

including in data model, 2-33
user information

including in data model, 2-33
user preferences

including in data model, 2-33
user roles

including in data model, 2-33

V
value if null, 3-27
view object

creating a data set from, 2-20
limitations as data set, 2-21

W
Web service

defining as data source, 2-21
limitations on structuring, 2-26
supported formats, 2-21

X
XML feed

creating data set from over HTTP, 2-31
XML file

using as a data source, 2-26
XML file data sets

limitations on structuring, 2-27
XML output

viewing from data model editor, 1-5
XML output options

setting, 1-6
XML tag display

setting upper or lower case, 1-7

Index-4

	Contents
	Preface
	Intended Audience
	Documentation Accessibility
	Related Documentation and Other Resources
	Conventions

	New Features for Data Model Designers
	New Features for Oracle BI Publisher 11g Release 1 (11.1.1.6)
	New Features for Oracle BI Publisher 11g Release 1 (11.1.1.5)
	New Features for Oracle BI Publisher 11g Release 1 (11.1.1.3)

	1 Using the Data Model Editor
	1.1 What Is a Data Model?
	1.2 Components of a Data Model
	1.3 Features of the Data Model Editor
	1.4 About the Data Source Options
	1.5 Process Overview for Creating a Data Model
	1.6 Launching the Data Model Editor
	1.7 About the Data Model Editor Interface
	1.8 Setting Data Model Properties
	1.8.1 XML Output Options
	1.8.2 Attachments to the Data Model
	1.8.2.1 Attaching Sample Data
	1.8.2.2 Attaching Schema
	1.8.2.3 Data Files

	2 Creating Data Sets
	2.1 Overview of Creating Data Sets
	2.2 Editing an Existing Data Set
	2.3 Creating a Data Set Using a SQL Query
	2.4 Using the Query Builder
	2.4.1 Understanding the Query Builder Process
	2.4.2 Using the Object Selection Pane
	2.4.3 Selecting a Schema
	2.4.4 Searching and Filtering Objects
	2.4.5 Selecting Objects
	2.4.6 Supported Column Types
	2.4.7 Adding Objects to the Design Pane
	2.4.8 Resizing the Design and Results Pane
	2.4.9 Removing or Hiding Objects in the Design Pane
	2.4.10 Specifying Query Conditions
	2.4.11 Creating Relationships Between Objects
	2.4.11.1 About Join Conditions
	2.4.11.2 Joining Objects Manually

	2.4.12 Saving a Query
	2.4.13 Adding a Bind Variable to a Query
	2.4.14 Editing a Saved Query

	2.5 Creating a Data Set Using an MDX Query Against an OLAP Data Source
	2.6 Creating a Data Set Using an LDAP Query
	2.7 Creating a Data Set Using a Microsoft Excel File
	2.7.1 About Supported Excel Files
	2.7.2 Guidelines for Accessing Multiple Tables per Sheet
	2.7.3 Using a Microsoft Excel File Stored in a File Directory Data Source
	2.7.4 Uploading a Microsoft Excel File Stored Locally
	2.7.4.1 Refreshing and Deleting an Uploaded Excel File

	2.8 Creating a Data Set Using an Oracle BI Analysis
	2.8.1 Additional Notes on Oracle BI Analysis Data Sets

	2.9 Creating a Data Set Using a View Object
	2.9.1 Additional Notes on View Object Data Sets

	2.10 Creating a Data Set Using a Web Service
	2.10.1 Adding a Simple Web Service: Example
	2.10.2 Adding a Complex Web Service
	2.10.3 Additional Information on Web Service Data Sets

	2.11 Creating a Data Set Using a Stored XML File
	2.11.1 Additional Information on File Data Sets

	2.12 Using Data Stored as a Character Large Object (CLOB) in a Data Model
	2.12.1 How the Data Is Returned
	2.12.1.1 Additional Notes on Data Sets Using CLOB Column Data

	2.12.2 Handling XHTML Data Stored in a CLOB Column
	2.12.2.1 Retrieving XHTML Data Wrapped in CDATA
	2.12.2.2 Wrapping the XHTML Data in CDATA in the Query

	2.13 Creating a Data Set from an HTTP XML Feed
	2.13.1 Additional Information on Data Sets Created from HTTP XML Feed

	2.14 Testing Data Models and Generating Sample Data
	2.15 Including User Information Stored in System Variables in Your Report Data
	2.15.1 Adding the User System Variables as Elements
	2.15.2 Sample Use Case: Limit the Returned Data Set by User ID
	2.15.2.1 Creating Bind Variables from LDAP User Attribute Values
	2.15.2.1.1 Prerequisite
	2.15.2.1.2 How BI Publisher Constructs the Bind Variable

	3 Structuring Data
	3.1 Working with Data Models
	3.1.1 About Multipart Unrelated Data Sets
	3.1.2 About Multipart Related Data Sets
	3.1.3 Guidelines for Working with Data Sets

	3.2 Features of the Data Model Editor
	3.3 About the Interface
	3.4 Creating Links Between Data Sets
	3.4.1 About Element-Level Links
	3.4.2 About Group-Level Links

	3.5 Creating Element-Level Links
	3.5.1 Deleting Element-Level Links

	3.6 Creating Group-Level Links
	3.6.1 Deleting Group-Level Links

	3.7 Creating Subgroups
	3.8 Moving an Element Between a Parent Group and a Child Group
	3.9 Creating Group-Level Aggregate Elements
	3.10 Creating Group Filters
	3.11 Performing Element-Level Functions
	3.12 Setting Element Properties
	3.13 Sorting Data
	3.14 Performing Group-Level Functions
	3.14.1 The Group Action Menu
	3.14.2 Editing the Data Set
	3.14.3 Removing Elements from the Group
	3.14.4 Editing the Group Properties

	3.15 Performing Global-Level Functions
	3.15.1 Adding a Global-Level Aggregate Function
	3.15.2 Adding a Group-Level or Global-Level Element by Expression
	3.15.3 Adding a Global-Level Element by PL/SQL

	3.16 Using the Structure View to Edit Your Data Structure
	3.16.1 Renaming Elements
	3.16.2 Adding Value for Null Elements

	3.17 Function Reference

	4 Adding Parameters and Lists of Values
	4.1 About Parameters
	4.2 Adding a New Parameter
	4.2.1 Defining a Text Parameter
	4.2.2 Defining a Menu Parameter
	4.2.2.1 Customizing the Display of Menu Parameters

	4.2.3 Defining a Date Parameter

	4.3 About Lists of Values
	4.4 Adding Lists of Values
	4.4.1 Creating a List from a SQL Query
	4.4.2 Creating a List from a Fixed Data Set

	5 Adding Event Triggers
	5.1 About Triggers
	5.2 Adding Before Data and After Data Triggers
	5.2.1 Order of Execution

	5.3 Creating Schedule Triggers

	6 Adding Flexfields
	6.1 About Flexfields
	6.2 Adding Flexfields
	6.2.1 Entering Flexfield Details

	7 Adding Bursting Definitions
	7.1 About Bursting
	7.2 What is the Bursting Definition?
	7.3 Adding a Bursting Definition to Your Data Model
	7.4 Defining the Query for the Delivery XML
	7.5 Passing a Parameter to the Bursting Query
	7.6 Defining the Split By and Deliver By Elements for a CLOB/XML Data Set
	7.7 Configuring a Report to Use a Bursting Definition
	7.8 Sample Bursting Query
	7.9 Creating a Table to Use as a Delivery Data Source

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

