

[image: Oracle Corporation]

Oracle® Fusion Middleware

Getting Started Guide for Oracle Complex Event Processing

11g Release 1 (11.1.1.6.3)

E14476-10

August 2012

Documentation for administrators and developers that describes how to get started with Oracle Complex Event Processing (Oracle CEP), a Java server for developing high-performance event-driven applications. It includes an overview of features and concepts, sample applications, and installation guidelines.

Oracle Fusion Middleware Getting Started Guide for Oracle Complex Event Processing 11g Release 1 (11.1.1.6.3)

E14476-10

Copyright © 2007, 2012, Oracle and/or its affiliates. All rights reserved.

Primary Author: Steve Traut, Peter Purich

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Contents

List of Examples

List of Figures

List of Tables

Preface

	Audience
	Documentation Accessibility
	Related Documents
	Conventions

What's New in This Guide for Release 11.1.1.6.x

1 Overview of Oracle CEP

	1.1 Introduction to Oracle Complex Event Processing
	1.2 Conceptual Overview of Oracle CEP
	1.3 Event Processing Networks
	1.4 Use Cases
	1.5 Summary of Oracle CEP Features
	1.6 Supported Platforms
	1.7 Oracle CEP IDE for Eclipse
	1.8 Oracle CEP Visualizer
	1.9 Next Steps

2 Oracle CEP Samples

	2.1 Overview of the Samples Provided in the Distribution Kit
	2.1.1 Ready-to-Run Samples
	2.1.2 Sample Source

	2.2 Installing the Default ocep_domain and Samples
	2.3 Using Oracle CEP Visualizer With the Samples
	2.4 Increasing the Performance of the Samples
	2.5 Setting Your Development Environment
	2.5.1 How to Set Your Development Environment on Windows
	2.5.2 How to Set Your Development Environment on UNIX

	2.6 HelloWorld Example
	2.6.1 Running the HelloWorld Example from the helloworld Domain
	2.6.2 Building and Deploying the HelloWorld Example from the Source Directory
	2.6.3 Description of the Ant Targets to Build Hello World
	2.6.4 Implementation of the HelloWorld Example
	2.6.5 The HelloWorld EPN Assembly File
	2.6.6 The HelloWorld Component Configuration File

	2.7 Oracle Continuous Query Language (CQL) Example
	2.7.1 Running the CQL Example
	2.7.2 Building and Deploying the CQL Example
	2.7.3 Description of the Ant Targets to Build the CQL Example
	2.7.4 Implementation of the CQL Example
	2.7.4.1 Creating the Missing Event Query
	2.7.4.2 Creating the Moving Average Query

	2.8 Oracle Spatial Example
	2.8.1 Running the Oracle Spatial Example
	2.8.2 Building and Deploying the Oracle Spatial Example
	2.8.3 Description of the Ant Targets to Build the Oracle Spatial Example
	2.8.4 Implementation of the Oracle Spatial Example
	2.8.5 Oracle Spatial Example EPN Assembly File
	2.8.6 Oracle Spatial Example Component Configuration File

	2.9 Foreign Exchange (FX) Example
	2.9.1 Running the Foreign Exchange Example
	2.9.2 Building and Deploying the Foreign Exchange Example from the Source Directory
	2.9.3 Description of the Ant Targets to Build FX
	2.9.4 Implementation of the FX Example
	2.9.5 The FX EPN Assembly File
	2.9.6 The FX Processor Component Configuration Files
	2.9.6.1 FX Processor Component Configuration File: spreader.xml
	2.9.6.2 FX Processor Component Configuration File: SummarizeResults.xml

	2.10 Signal Generation Example
	2.10.1 Running the Signal Generation Example
	2.10.2 Building and Deploying the Signal Generation Example from the Source Directory
	2.10.3 Description of the Ant Targets to Build Signal Generation
	2.10.4 Implementation of the Signal Generation Example
	2.10.5 The Signal Generation EPN Assembly File
	2.10.6 The Signal Generation Component Configuration Files

	2.11 Event Record and Playback Example
	2.11.1 Running the Event Record/Playback Example
	2.11.2 Building and Deploying the Event Record/Playback Example from the Source Directory
	2.11.3 Description of the Ant Targets to Build the Record and Playback Example
	2.11.4 Implementation of the Record and Playback Example

3 Installing Oracle CEP

	3.1 Installation Overview
	3.1.1 Before You Start the Installation Program
	3.1.2 Choosing Your JVM
	3.1.2.1 Oracle JRockit Real Time
	3.1.2.2 Sun JVM
	3.1.2.3 Other Platform-Specific JVMs

	3.1.3 Default Oracle CEP Domain ocep_domain and Samples
	3.1.4 Oracle Fusion Middleware Directory Structure and Concepts
	3.1.4.1 Oracle CEP-Specific Middleware Home
	3.1.4.2 Existing Oracle Fusion Middleware Home

	3.1.5 Installation Mode
	3.1.5.1 Graphical Mode
	3.1.5.2 Console Mode
	3.1.5.3 Silent Mode

	3.2 Installing Oracle CEP in Graphical Mode
	3.3 Installing Oracle CEP in Console Mode
	3.4 Installing Oracle CEP in Silent Mode
	3.4.1 Creating a silent.xml File for Silent-Mode Installation
	3.4.2 Guidelines for Component Selection
	3.4.3 Returning Exit Codes to the Command Window

	3.5 Installing an Oracle CEP Patch
	3.6 Post-Installation Steps
	3.6.1 Configuring Oracle CEP for the IBM JDK
	3.6.1.1 How to Configure Oracle CEP for the IBM JVM on IBM AIX (64-bit)

	3.7 Installing the Oracle CEP IDE for Eclipse
	3.8 Upgrading to Oracle CEP 11g Release 1 (11.1.1.6.3)
	3.8.1 Upgrading a WebLogic Event Server 2.0 Domain to Oracle CEP 10.3
	3.8.2 Upgrading an Oracle CEP 10.3 Domain to Oracle CEP 11g Release 1 (11.1.1.6.3)
	3.8.3 Upgrading a WebLogic Event Server 2.0 Application to Run on Oracle CEP 10.3
	3.8.4 Upgrading an Oracle CEP 10.3 Application to Run on Oracle CEP 11g Release 1 (11.1.1.6.3)
	3.8.5 Backward Compatibility Issues

Glossary

Index

List of Examples

	2-1 HelloWorld EPN Assembly File
	2-2 HelloWorld Component Configuration File
	2-3 Oracle Spatial Example EPN Assembly File
	2-4 Oracle Spatial Example Component Configuration File
	2-5 FX EPN Assembly File
	2-6 Nested Component Definition
	2-7 FX Processor Component Configuration File: spreader.xml
	2-8 FX Processor Component Configuration File: SummarizeResults.xml
	2-9 Signal Generation EPN Assembly File
	2-10 Signal Generation Component Configuration File
	2-11 recplay Application Configuration File config.xml: adapter Element
	3-1 Sample silent.xml File for Silent-Mode Installation
	3-2 Sample Windows Command File Displaying Silent-Mode Exit Codes
	3-3 Adapter Using loadgen Provider
	3-4 Registering a StockTick Event
	3-5 Spring-DM Declared Adapter Factory
	3-6 wlevs:factory

List of Figures

	1-1 Example Event -Driven System
	1-2 Oracle CEP Application
	1-3 Oracle CEP IDE for Eclipse
	1-4 Oracle CEP Visualizer
	2-1 The HelloWorld Example Event Processing Network
	2-2 The CQL Example Event Processing Network
	2-3 Oracle CEP Visualizer Logon Screen
	2-4 Oracle CEP Visualizer Dashboard
	2-5 CQL Application Screen: General Tab
	2-6 CQL Application: Event Processing Network Tab
	2-7 Oracle CQL Processor: General Tab
	2-8 Oracle CQL Processor: Query Wizard Tab
	2-9 Template Tab
	2-10 SSource Configuration Dialog
	2-11 Pattern Configuration Dialog: Pattern Tab
	2-12 Pattern Configuration Dialog: Define Tab
	2-13 Expression Builder: CustOrder
	2-14 Pattern Configuration Dialog: Define Tab With CustOrder Condition
	2-15 Expression Builder: NoApproval
	2-16 Expression Builder: Shipment
	2-17 Pattern Configuration Dialog: Define Tab Complete
	2-18 Measure Tab
	2-19 Expression Builder: orderid
	2-20 Expression Builder: amount
	2-21 Measure Tab: Complete
	2-22 Select Configuration Dialog: Project Tab
	2-23 Select Configuration Dialog: Project Tab Complete
	2-24 Output Configuration Dialog
	2-25 Inject Rule Confirmation Dialog
	2-26 CQL Rules Tab With Tracking Query
	2-27 Stream Visualizer: Showing Missing Events
	2-28 Oracle CEP Visualizer Logon Screen
	2-29 Oracle CEP Visualizer Dashboard
	2-30 CQL Application Screen: General Tab
	2-31 CQL Application: Event Processing Network Tab
	2-32 Oracle CQL Processor: General Tab
	2-33 Oracle CQL Processor: Query Wizard Tab
	2-34 Query Wizard: SSource
	2-35 SSource Configuration Dialog
	2-36 Query Wizard: Filter
	2-37 Connecting the SSource and Filter Icons
	2-38 Filter Configuration Dialog
	2-39 Filter Expression Builder
	2-40 Filter Configuration Dialog: After Adding the Filter
	2-41 Query Wizard: Select
	2-42 Select Configuration Dialog: Properties Selected
	2-43 Query Wizard: Output
	2-44 Output Configuration Dialog
	2-45 Inject Rule Confirmation Dialog
	2-46 CQL Rules Tab With View StockVolGt1000
	2-47 Oracle CEP Visualizer Logon Screen
	2-48 Oracle CEP Visualizer Dashboard
	2-49 CQL Application Screen: General Tab
	2-50 CQL Application: Event Processing Network Tab
	2-51 Oracle CQL Processor: General Tab
	2-52 Oracle CQL Processor: Query Wizard Tab
	2-53 Query Wizard: SSource for Moving Average Query
	2-54 SSource Configuration Dialog: Moving Average Query
	2-55 Query Wizard: Window for Moving Average Query
	2-56 Window Configuration Dialog: After Adding Window
	2-57 Query Wizard: Select for Moving Average Query
	2-58 Select Configuration Dialog: Source Property symbol Selected
	2-59 Select Configuration Dialog: Source Property symbol Mapped to Output Event Property
	2-60 Select Configuration Dialog: Source Property price Selected
	2-61 Expression Builder: Applying the AVG Function
	2-62 Select Configuration Dialog: With Expression
	2-63 Select Configuration Dialog: Source Property price Mapped to Output Event Property
	2-64 Validation Error: GROUP BY
	2-65 Group Tab: With symbol Grouping Property
	2-66 Query Wizard: Output
	2-67 Output Configuration Dialog
	2-68 Inject Rule Confirmation Dialog
	2-69 CQL Rules Tab With View MovingAverage
	2-70 Stream Visualizer: Showing Moving Average Query Output
	2-71 Oracle Spatial Example Event Processing Network
	2-72 Oracle Spatial Web Page
	2-73 Oracle Spatial Web Page: Bus Stop Arrivals Tab
	2-74 Oracle Spatial Web Page: Bus Tracking
	2-75 FX Example Event Processing Network
	2-76 The Signal Generation Example Event Processing Network
	2-77 Signal Generation Dashboard
	2-78 The Event Record and Playback Example Event Processing Network
	2-79 Oracle CEP Visualizer Logon Screen
	2-80 Oracle CEP Visualizer Dashboard
	2-81 Event Record Tab
	2-82 Start Recording Alert Dialog
	2-83 Event Playback Tab
	2-84 Start Playback Alert Dialog
	2-85 Stream Visualizer
	3-1 Oracle CEP-Specific Middleware Home
	3-2 Oracle CEP in an Existing Oracle Fusion Middleware Home

List of Tables

	2-1 Valid Order Workflow
	2-2 Invalid Order Workflow
	2-3 MATCH_RECOGNIZE Pattern Quantifiers
	2-4 Condition Definitions
	3-1 Home Directories and Oracle CEP-Specific Middleware Home
	3-2 Home Directories and Existing Middleware Home
	3-3 Values for the silent.xml File
	3-4 Exit Codes
	3-5 Upgrade Paths

Preface

This document provides general background information and detailed code samples to help you learn about Oracle Complex Event Processing (Oracle CEP) and the Oracle Continuous Query Language (Oracle CQL).

Audience

This document is intended for users interested in learning about Oracle CEP and Oracle CQL. Readers should be familiar with basic Java development. Some knowledge of SQL would be helpful.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Documents

For more information, see the following:

	
Oracle Fusion Middleware Administrator's Guide for Oracle Complex Event Processing

	
Oracle Fusion Middleware Developer's Guide for Oracle Complex Event Processing for Eclipse

	
Oracle Fusion Middleware Visualizer User's Guide for Oracle Complex Event Processing

	
Oracle Fusion Middleware Java API Reference for Oracle Complex Event Processing

	
Oracle Fusion Middleware CQL Language Reference for Oracle Complex Event Processing

	
Oracle Fusion Middleware EPL Language Reference for Oracle Complex Event Processing

	
Oracle Database SQL Language Reference at http://download.oracle.com/docs/cd/B28359_01/server.111/b28286/toc.htm

	
SQL99 Specifications (ISO/IEC 9075-1:1999, ISO/IEC 9075-2:1999, ISO/IEC 9075-3:1999, and ISO/IEC 9075-4:1999)

	
Oracle CEP Forum: http://forums.oracle.com/forums/forum.jspa?forumID=820

	
Oracle CEP Samples: http://www.oracle.com/technologies/soa/complex-event-processing.html

	
Oracle Event Driven Architecture Suite sample code: http://www.oracle.com/technology/sample_code/products/event-driven-architecture

Conventions

The following text conventions are used in this document:

	Convention	Meaning
	
boldface

	
Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.

	
italic

	
Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.

	
monospace

	
Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.

What's New in This Guide for Release 11.1.1.6.x

For Release 11.1.1.6.x, this guide has been updated in several ways. The following table lists the sections that have been added or changed. If a feature was not available in the first release of 11.1.1.6.x, the last columns denote which documentation release contains the update.

For a list of known issues (release notes), see the "Known Issues for for Oracle SOA Products and Oracle AIA Foundation Pack" at http://www.oracle.com/technetwork/middleware/docs/soa-aiafp-knownissuesindex-364630.html.

	Sections	Changes Made	11.1.1.6.0	11.1.1.6.1	11.1.1.6.2	11.1.1.6.3
	
None

	
	
	
	
	

1 Overview of Oracle CEP

This chapter provides an overview of Oracle Complex Event Processing (Oracle CEP). It describes key concepts, features, and use cases, including event processing networks, developing with the Eclipse IDE, and managing applications with Oracle CEP Visualizer.

	
Section 1.1, "Introduction to Oracle Complex Event Processing"

	
Section 1.2, "Conceptual Overview of Oracle CEP"

	
Section 1.3, "Event Processing Networks"

	
Section 1.4, "Use Cases"

	
Section 1.5, "Summary of Oracle CEP Features"

	
Section 1.6, "Supported Platforms"

	
Section 1.7, "Oracle CEP IDE for Eclipse"

	
Section 1.8, "Oracle CEP Visualizer"

	
Section 1.9, "Next Steps"

1.1 Introduction to Oracle Complex Event Processing

Oracle CEP (formally known as the WebLogic Event Server) is a Java server for the development and deployment of high-performance event driven applications. It is a lightweight Java application container based on Equinox OSGi, with shared services, including the Oracle CEP Service Engine, which provides a rich, declarative environment based on Oracle Continuous Query Language (Oracle CQL) - a query language based on SQL with added constructs that support streaming data - to improve the efficiency and effectiveness of managing business operations. Oracle CEP supports ultra-high throughput and microsecond latency using JRockit Real Time and provides Oracle CEP Visualizer and Oracle CEP IDE for Eclipse developer tooling for a complete real time end-to-end Java Event-Driven Architecture (EDA) development platform.

Oracle CEP has the capability of deploying user Java code (POJOs) which contain the business logic. Running the business logic within Oracle CEP provides a highly tuned framework for time and event driven applications.

1.2 Conceptual Overview of Oracle CEP

Figure 1-1 provides a high level view of an event-driven system.

Figure 1-1 Example Event -Driven System

[image: Description of Figure 1-1 follows]

An event-driven system is generally comprised of several event sources, the real-time event-driven applications, and event sinks. Oracle CEP server and the Oracle CEP applications you deploy to it comprises the event-driven applications. The event sources generate streams of ordinary event data. The Oracle CEP applications listen to the event streams, process these events, and generate notable events. Event sinks receive the notable events.

Event sources, event-driven applications, and event sinks are decoupled from each other; one can add or remove any of these components without causing changes to the other components. This is a key attribute of event-driven architectures.

Event-driven applications are rule-driven. In Oracle CEP, rules are expressed as queries using the Oracle Continuous Query Language (Oracle CQL). These queries are persisted to a data store and are used for processing the inbound stream of events and generating the outbound stream of events. Queries typically perform filtering and aggregation functions to discover and extract notable events from the inbound event streams. As a result, the number of outbound events is generally much lower than that of the inbound events.

Oracle CEP is a middleware for the development of event-driven applications. An Oracle CEP application is essentially an event-driven application.

Next, consider the application itself, which is hosted by the Oracle CEP server, a light-weight container as shown in Figure 1-2.

Figure 1-2 Oracle CEP Application

[image: Description of Figure 1-2 follows]

An Oracle CEP application is typically composed of the following main component types:

	
Adapters interface directly to the inbound and outbound stream and relation sources and sinks. Adapters understand the inbound and outbound protocol, and are responsible for converting the event data into a normalized form that can be queried by a processor. Adapters forward the normalized event data into channels or outbound stream and relation sinks.

	
Channels are event processing endpoints. Among other things, streams are responsible for queuing event data until the event processing agent can act upon it.

	
Processors (or event processing agents) consume normalized event data from a channel, process it using queries, and may generate new events to an output channel.

	
Beans register to listen to the output channel, and are triggered by the insertion of a new event into the output channel. This user code is generally a plain-old-Java-object (POJO). The user application makes use of a set of external services, such as JMS, Web services, and file writers, to forward the generated events to external event sinks.

	
Event Beans register to listen to the output channel, and is triggered by the insertion of a new event into the output channel. This user code uses the Oracle CEP event bean API so that the bean can be managed by Oracle CEP.

1.3 Event Processing Networks

Adapters, channels, processors, and business logic POJOs can be connected arbitrarily to each other, forming event processing networks (EPN). Examples of topologies of EPNs are:

	
Adapter - Channel - Business Logic POJO

Scenario: no processing is needed; only adaptation from proprietary protocol to some normalized model.

	
Adapter - Channel - Processor - Channel - Business Logic POJO

Scenario: straight through processing to user code.

	
Adapter - Channel - Processor - Channel - Business Logic POJO - Channel - Processor - Channel - Business Logic POJO

Scenario: two layers of event processing; the first processor creates causality between events and the second processor aggregates events into complex (notable) events.

EPNs have two important attributes:

	
Event processing networks can be used to create a hierarchy of processing agents, and thus achieve very complex processing of events. Each layer of the EPN aggregates events of its layer into complex events that become simple events in the layer above it.

	
Event processing networks improve integrability, that is, the quality of having separately developed components work correctly together. For example, one can add user code and reference to external services at several places in the network.

1.4 Use Cases

The use cases for Oracle CEP span a variety of businesses and applications. Just a few of these diverse use cases include:

	
Financial: Algorithmic Trading

Automate stock trading based on market movement. Sample query: if, within any 20 second window, StockB rises by more than 2% and StockA does not, then automatically buy StockA.

For an example, see Section 2.10, "Signal Generation Example".

	
Transportation: Security and Fraud Detection

Discover fraudulent activity by detecting patterns among events. Sample query: if a single ID card is used twice in less than 5 seconds to gain access to a city's subway system, alert security for piggybacking.

	
Energy and Telecommunications: Alarm Correlation

Reduce false positive alarms. Sample query: When 15 alarms are received within any 5 second window, but less than 5 similar alarms detected within 30 seconds, then do nothing.

	
Health Care: Patient Monitoring

Monitor the vital signs of a patient and perform some task if a particular event happens. Sample query: When a change in medication is followed by a rise in blood pressure within 20% of maximum allowable for this patient within any 10 second window, alert nearest nurse.

1.5 Summary of Oracle CEP Features

The following list summarizes the main features of Oracle CEP:

	
New in 11g Release 1 (11.1.1): Oracle Continuous Query Language (Oracle CQL) is a query language based on SQL with added constructs that support streaming data. Using Oracle CQL, you can express queries on data streams to perform complex event processing (CEP) using Oracle CEP. Oracle CQL is scalable and comprehensive. It provides a wide range of operators (including extensive window operators), functions (including built-in, Colt, and java.lang.Math functions), and statements. Oracle CQL supersedes EPL.

	
New in 11g Release 1 (11.1.1): Support for Coherence clustering and distributed cache.

	
New in 11g Release 1 (11.1.1): Oracle CEP Visualizer query constructor, query plan generator, and support for Coherence clustering and distributed cache.

	
Event Caching—Applications can optionally publish or consume events to and from a cache to increase the availability of the events and increase the performance of their applications.

	
Event Record and Playback—The event repository feature of Oracle CEP allows you to record events flowing through an EPN and store them so you can later play back the events.

	
Built-in HTTP Publish-Subscribe Adapters—The three built-in HTTP publish-subscribe adapters allow an application to easily to publish (locally and remotely) and subscribe to an HTTP publish-subscribe server channel.

	
Built-in JMS Adapters—The two JMS adapters (inbound and outbound) allow you to send and receive messages to and from a JMS queue, respectively, from your application without writing any Java code

	
Oracle CEP Visualizer—A Web 2.0 application that consumes data Oracle CEP, displays it in a useful and intuitive way to system administrators and operators, and, for specified tasks, accepts data that is then passed back to Oracle CEP so as to change it configuration

	
Multi-server domains (sometimes referred to as clustering)—Oracle CEP now allows multiple servers to be logically connected together for the purposes of management, and physically connected using a shared User Datagram Protocol (UDP) multicast address and port.

	
An application server that supports deployment of Plain Old Java applications (POJOs), or Spring applications, for handling large volumes of streaming data with low latency requirements.

	
Oracle CEP applications are developed and deployed as event driven applications, that is, a set of custom Spring tags is used to define the event processing network in the EPN assembly file, which extends the standard Spring context file, of your application.

	
The application server contains a set of real time services that include a complex event processor (CEP), adapters, and streams. The server is highly tuned for high message throughput and low latency and deterministic behavior.

	
The complex event processor is a high performance, continuous query engine for processing high volumes of streaming data. It has full support for filtering, correlation, and aggregation of streaming data from one or more streams.

	
The Event Processing Language (EPL), an SQL-like language that allows event data from streams to be declaratively filtered, correlated, aggregated, and merged, with the ability to insert results into other streams for further downstream processing. You define the EPL rules either in an XML file that configures the complex event processor or programmatically using APIs. Oracle CQL supersedes EPL.

	
An Adapter SDK that provides all the tools you need to create adapters that listen to incoming data feeds.

	
A set of product samples that show both a simple Hello World scenario to get you started and more complex foreign exchange and algorithmic trading scenarios to showcase additional features of Oracle CEP.

	
A load generator utility that simulates a data feed, useful for testing your application without needing to connect to a live data feed.

	
A monitoring service that includes pre-built instrumentation for measuring throughput and latency at the component level.

	
A static and dynamic configuration framework. Static configuration is performed using XML files; dynamic configuration is performed by accessing configuration and runtime MBeans using JMX and with the command-line utility wlevs.Admin.

	
Oracle CEP is built on the Oracle microServices Architecture (mSA) which uses an OSGi-based framework to manage services provided by modules or feature sets. Oracle mSA provides the following services:

	
Jetty, an HTTP container for running servlets.

	
javax.sql.DataSource implementation and thin JDBC drivers for accessing a relational database.

	
Logging and debugging.

	
Authentication and authorization security.

1.6 Supported Platforms

For detailed information on the platforms that Oracle CEP supports, see: http://www.oracle.com/technology/software/products/ias/files/oracle%20fusion%20middleware%2011gR1%20(11.1.1.x)%20certification%20matrix.xls.

You can find the installation program appropriate for your platform here: http://www.oracle.com/technology/software/products/middleware/htdocs/111110_fmw.html. For more information, see Section 3.1, "Installation Overview".

1.7 Oracle CEP IDE for Eclipse

Oracle CEP IDE for Eclipse is targeted specifically to programmers that want to develop Oracle CEP applications as Figure 1-3 shows.

Figure 1-3 Oracle CEP IDE for Eclipse

[image: Description of Figure 1-3 follows]

The Oracle CEP IDE for Eclipse is a set of plugins for the Eclipse IDE designed to help develop, deploy, and debug Oracle CEP applications.

The key features of Oracle CEP IDE for Eclipse are:

	
Project creation wizards and templates to quickly get started building event driven applications.

	
Advanced editors for source files including Java and XML files common to Oracle CEP applications.

	
Integrated server management to seamlessly start, stop, and deploy to Oracle CEP server instances all from within the IDE.

	
Integrated debugging.

	
Event Processing Network (EPN) visual design views for orienting and navigating in event processing applications.

	
Integrated support for the Oracle CEP Visualizer so you can use the Oracle CEP Visualizer from within the IDE (see Section 1.8, "Oracle CEP Visualizer").

For more information, see:

	
Section 3.7, "Installing the Oracle CEP IDE for Eclipse"

	
Oracle Fusion Middleware Developer's Guide for Oracle Complex Event Processing for Eclipse

	
http://www.oracle.com/technology/products/event-driven-architecture/cep-ide/11/index.html

1.8 Oracle CEP Visualizer

Oracle CEP provides an advanced run-time administration console called the Oracle CEP Visualizer as Figure 1-4 shows.

Figure 1-4 Oracle CEP Visualizer

[image: Description of Figure 1-4 follows]

Using Oracle CEP Visualizer, you can manage, tune, and monitor Oracle CEP server domains and the Oracle CEP applications you deploy to them all from a browser. Oracle CEP Visualizer provides a variety of sophisticated run-time administration tools, including support for Oracle CQL and EPL rule maintenance and creation.

Oracle CEP Visualizer is pre-installed in every Oracle CEP server.

For more information, see Oracle Fusion Middleware Visualizer User's Guide for Oracle Complex Event Processing

1.9 Next Steps

	
Install Oracle CEP 11g Release 1 (11.1.1).

See Chapter 3, "Installing Oracle CEP."

	
Run the samples from their respective domains.

See:

	
Section 2.1, "Overview of the Samples Provided in the Distribution Kit"

	
Section 2.6.1, "Running the HelloWorld Example from the helloworld Domain"

	
Section 2.9.1, "Running the Foreign Exchange Example"

	
Section 2.10.1, "Running the Signal Generation Example"

	
Section 2.11.1, "Running the Event Record/Playback Example"

	
Section 2.7.1, "Running the CQL Example"

	
Understand how the sample applications have been programmed by viewing the source and configuration files and then building them from their respective source directories.

See:

	
Section 2.6.2, "Building and Deploying the HelloWorld Example from the Source Directory"

	
Section 2.9.2, "Building and Deploying the Foreign Exchange Example from the Source Directory"

	
Section 2.10.2, "Building and Deploying the Signal Generation Example from the Source Directory"

	
Create your own Oracle CEP domain.

See:

	
"Creating an Oracle CEP Standalone-Server Domain" in the Oracle Fusion Middleware Administrator's Guide for Oracle Complex Event Processing

	
"Creating an Oracle CEP Multi-Server Domain" in the Oracle Fusion Middleware Administrator's Guide for Oracle Complex Event Processing

	
Create a new Oracle CEP application and deploy it to your new domain.

See "Overview of Creating Oracle CEP Applications" in the Oracle Fusion Middleware Developer's Guide for Oracle Complex Event Processing for Eclipse.

	
Pose questions and find solutions using the Oracle CEP forum: http://forums.oracle.com/forums/forum.jspa?forumID=820

2 Oracle CEP Samples

This chapter introduces sample code provided with Oracle Complex Event Processing (Oracle CEP), describing how to set up and use code ranging from simple "Hello World" to applications of Oracle Continuous Query Language (CQL), as well as for spatial and industry-focused scenarios.

	
Section 2.1, "Overview of the Samples Provided in the Distribution Kit"

	
Section 2.2, "Installing the Default ocep_domain and Samples"

	
Section 2.3, "Using Oracle CEP Visualizer With the Samples"

	
Section 2.4, "Increasing the Performance of the Samples"

	
Section 2.5, "Setting Your Development Environment"

	
Section 2.6, "HelloWorld Example"

	
Section 2.7, "Oracle Continuous Query Language (CQL) Example"

	
Section 2.8, "Oracle Spatial Example"

	
Section 2.9, "Foreign Exchange (FX) Example"

	
Section 2.10, "Signal Generation Example"

	
Section 2.11, "Event Record and Playback Example"

2.1 Overview of the Samples Provided in the Distribution Kit

Oracle CEP includes the following samples:

	
HelloWorld: a basic skeleton of a typical Oracle CEP application.

	
Oracle Continuous Query Language (CQL): an example that shows how to use the Oracle CEP Visualizer Query Wizard to construct various Oracle CQL queries to process event streams.

	
Oracle Spatial: an example that shows how to use Oracle Spatial with Oracle CQL queries to process a stream of Global Positioning System (GPS) events to track the GPS location of buses and generate alerts when a bus arrives at its pre-determined bus stop positions.

	
Foreign Exchange (FX): a complete example that includes multiple components.

	
Signal Generation: an example that simulates market trading and trend detection.

	
Event record and playback: an example that shows how to configure event record and playback using a persistent event store.

These samples are provided in two forms, as follows:

	
Section 2.1.1, "Ready-to-Run Samples"

	
Section 2.1.2, "Sample Source"

The samples use Ant as their development tool; for details about Ant and installing it on your computer, see http://ant.apache.org/.

	
Note:

"Additional Oracle CEP sample code can be found at http://www.oracle.com/technology/sample_code/products/event-driven-architecture".

2.1.1 Ready-to-Run Samples

Out-of-the-box sample domains pre-configured to deploy an assembled application; each sample has its own domain for simplicity. Each domain is a standalone server domain; the server files are located in the defaultserver subdirectory of the domain directory. To deploy the application you simply start the default server in the domain.

	
The sample HelloWorld domain is located in \MIDDLEWARE_HOME\ocep_11.1\samples\domains\helloworld_domain, where MIDDLEWARE_HOME refers to the Middleware directory you specified when you installed Oracle CEP, such as d:\Oracle\Middleware.

See Section 2.6.1, "Running the HelloWorld Example from the helloworld Domain" for details.

	
The sample CQL domain is located in MIDDLEWARE_HOME\ocep_11.1\samples\domains\cql_domain.

See Section 2.7.1, "Running the CQL Example" for details.

	
The sample Oracle Spatial domain is located in MIDDLEWARE_HOME\ocep_11.1\samples\domains\spatial_domain.

See Section 2.8.1, "Running the Oracle Spatial Example" for details.

	
The sample Foreign Exchange domain is located in MIDDLEWARE_HOME\ocep_11.1\samples\domains\fx_domain.

See Section 2.9.1, "Running the Foreign Exchange Example" for details.

	
The sample Signal Generation domain is located in MIDDLEWARE_HOME\ocep_11.1\samples\domains\signalgeneration_domain.

See Section 2.10.1, "Running the Signal Generation Example" for details.

	
The sample Record and Playback domain is located in MIDDLEWARE_HOME\ocep_11.1\samples\domains\recplay_domain.

See Section 2.11.1, "Running the Event Record/Playback Example" for details.

2.1.2 Sample Source

The Java and configuration XML source for each sample is provided in a separate source directory that describes a sample development environment.

	
The HelloWorld source directory is located in MIDDLEWARE_HOME\ocep_11.1\samples\source\applications\helloworld, where MIDDLEWARE_HOME refers to the Middleware directory you specified when you installed Oracle CEP, such as d:\Oracle\Middleware.

See Section 2.6.4, "Implementation of the HelloWorld Example" for details.

	
The CQL source directory is located in MIDDLEWARE_HOME\ocep_11.1\\samples\source\applications\cql.

See Section 2.7.4, "Implementation of the CQL Example" for details.

	
The Oracle Spatial source directory is located in MIDDLEWARE_HOME\ocep_11.1\\samples\source\applications\spatial.

See Section 2.8.4, "Implementation of the Oracle Spatial Example" for details.

	
The Foreign Exchange source directory is located in MIDDLEWARE_HOME\ocep_11.1\samples\source\applications\fx.

See Section 2.9.4, "Implementation of the FX Example" for details.

	
The Signal Generation source directory is located in MIDDLEWARE_HOME\ocep_11.1\samples\source\applications\signalgeneration.

See Section 2.10.4, "Implementation of the Signal Generation Example" for details.

	
The Record and Playback source directory is located in MIDDLEWARE_HOME\ocep_11.1\\samples\source\applications\recplay.

See Section 2.11.4, "Implementation of the Record and Playback Example" for details.

2.2 Installing the Default ocep_domain and Samples

To install all Oracle CEP components including the default ocep_domain domain (with default passwords) and the samples, you must chose the Custom option to also install the samples. The Typical option does not include the default ocep_domain and samples.

If you previously installed Oracle CEP using the Typical option, and you now want to also install the samples, re-run the Oracle CEP installation process and specify the same Oracle CEP home directory; a later step in the installation process allows you to then install just the samples.

2.3 Using Oracle CEP Visualizer With the Samples

The Oracle CEP Visualizer is a Web 2.0 application that consumes data from Oracle CEP, displays it in a useful and intuitive way to system administrators and operators, and, for specified tasks, accepts data that is then passed back to Oracle CEP so as to change it configuration.

Visualizer is itself an Oracle CEP application and is automatically deployed in each server instance. To use it with the samples, be sure you have started the server (instructions provided for each sample below) and then invoke the following URL in your browser:

 http://host:9002/wlevs

where host refers to the name of the computer hosting Oracle CEP; if it is the same as the computer on which the browser is running you can use localhost.

Security is disabled for the HelloWorld application, so you can click Logon at the login screen without entering a username and password. For the FX and signal generation samples, however, security is enabled, so use the following to logon:

 User Id: wlevs
 Password: wlevs

For more information about Visualizer, see Section 1.8, "Oracle CEP Visualizer".

2.4 Increasing the Performance of the Samples

To increase the throughput and latency when running the samples, and Oracle CEP applications in general, Oracle recommends the following:

	
Use the JRockit JDK included in Oracle JRockit Real Time and enable the deterministic garbage collector by passing the -dgc parameter to the command that starts the Oracle CEP instance for the appropriate domain:

prompt> startwlevs.cmd -dgc

By default the deterministic garbage collector is disabled for the samples.

For more information on Oracle JRockit Real Time, see http://www.oracle.com/technology/products/jrockit/jrrt/index.html.

	
When running Oracle CEP on a computer with a larger amount of memory, you should set the load generator and server heap sizes appropriately for the size of the computer. On computers with sufficient memory, Oracle recommend a heap size of 1 GB for the server and between 512MB - 1GB for the load generator.

2.5 Setting Your Development Environment

You must set your development environment before you can start Oracle CEP instances and run the samples. In particular, you must set the PATH and JAVA_HOME environment variables so that you are using the correct version of the JRockit JDK.

There are two ways in which JRockit might have been installed on your computer:

	
As part of the Oracle JRockit Real Time installation. This version of the JRockit JDK includes the deterministic garbage collector.

	
As part of the Oracle CEP 11g Release 1 (11.1.1) installation. This version of the JRockit JDK does not include the deterministic garbage collector, and is provided for testing purposes only.

Although not required, Oracle recommends that you run Oracle CEP using the JRockit JDK version included in Oracle JRockit Real Time for best results; however, the following procedures describe how to set your environment for either case.

For more information about JRockit, see Section 2.4, "Increasing the Performance of the Samples".

This section describes:

	
Section 2.5.1, "How to Set Your Development Environment on Windows"

	
Section 2.5.2, "How to Set Your Development Environment on UNIX"

2.5.1 How to Set Your Development Environment on Windows

This procedure describes how to set your development environment on Windows.

To make it easier to reset your development environment after logging out of a session, you can create a command file, such as setEnv.cmd, that contains the set commands this section describes.

You can also set the required environment variables permanently on your Windows computer by invoking the Control Panel > System window, clicking the Advanced tab, and then clicking the Environment Variables button. You can set the environment variables for the current user or for the entire system.

To set your development environment on Windows:

	
Update your PATH environment variable to include the bin directory of the JRockit JDK. Also, be sure that your PATH environment variable includes the bin directory of your Ant installation:

	
If using the JRockit JDK installed with Oracle JRockit Real Time:

If you installed Oracle JRockit Real Time in the d:\jrockit directory and Ant is installed in the d:\ant directory, set your PATH environment variable as shown:

prompt> set PATH=d:\jrockit\[JRRT_HOME]\bin;d:\ant\bin;%PATH%

where JRRT_HOME is the JRockit Real Time directory.

	
If using the JRockit JDK installed with Oracle CEP:

If you installed Oracle CEP in the d:\Oracle\Middleware directory and Ant is installed in the d:\ant directory, set your PATH environment variable as shown:

prompt> set PATH=d:\Oracle\Middleware\jrockit_160_20\bin;d:\ant\bin;%PATH%

	
Ensure that the JAVA_HOME variable in the setDomainEnv.cmd script points to the correct JRockit JDK. If it does not, edit the script.

The setDomainEnv.cmd script is located in the defaultserver subdirectory of the main domain directory; the defaultserver subdirectory contains the files for the standalone server of each domain. For example, the HelloWorld domain is located in MIDDLEWARE_HOME\ocep_11.1\samples\domains\helloworld_domain, where MIDDLEWARE_HOME refers to the Middleware home directory you specified when you installed Oracle CEP, such as d:\Oracle\Middleware.

	
If using the JRockit JDK installed with Oracle JRockit Real Time:

The set command should be as follows:

set JAVA_HOME=d:\jrockit\[JRRT_HOME]

where JRRT_HOME is the JRockit Real Time directory.

	
If using the JRockit JDK installed with Oracle CEP:

The set command should be as follows:

set JAVA_HOME=d:\Oracle\Middleware\jrockit_160_20

	
Set the JAVA_HOME variable in your own development environment to point to the JRockit JDK.

	
If using the JRockit JDK installed with Oracle JRockit Real Time:

The set command should be as follows:

prompt> set JAVA_HOME=d:\jrockit\[JRRT_HOME]

where JRRT_HOME is the JRockit Real Time directory.

	
If using the JRockit JDK installed with Oracle CEP:

The set command should be as follows:

prompt> set JAVA_HOME=d:\Oracle\Middleware\jrockit_160_20

2.5.2 How to Set Your Development Environment on UNIX

This procedure describes how to set your development environment on UNIX.

To make it easier to reset your development environment after logging out of a session, you can create a command file, such as setEnv.sh, that contains the set commands this section describes.

To set your development environment on UNIX:

	
Update your PATH environment variable to include the bin directory of the JRockit JDK. Also, be sure that your PATH environment variable includes the bin directory of your Ant installation.

	
If using the JRockit JDK installed with Oracle JRockit Real Time:

If you installed Oracle JRockit Real Time in the /jrockit directory and Ant is installed in the /ant directory, set your PATH environment variable as follows:

prompt> PATH=/jrockit/j[JRRT_HOME]/bin:/ant/bin:$PATH

where JRRT_HOME is the JRockit Real Time directory.

	
If using the JRockit JDK installed with Oracle CEP:

If you installed Oracle CEP in the /Oracle/Middleware directory and Ant is installed in the /ant directory, set your PATH environment variable as shown:

prompt> PATH=/Oracle/Middleware/jrockit_160_20/bin:/ant/bin:$PATH

	
Ensure that the JAVA_HOME variable in the setDomainEnv.sh script points to the correct JRockit JDK. If it does not, edit the script.

The setDomainEnv.sh script is located in the defaultserver subdirectory of the main domain directory; the defaultserver subdirectory contains the files for the standalone server of each domain. For example, the HelloWorld domain is located in MIDDLEWARE_HOME/ocep_11.1/samples/domains/helloworld_domain, where MIDDLEWARE_HOME refers to the Middleware home directory you specified when you installed Oracle CEP, such as /Oracle/Middleware.

	
If using the JRockit JDK installed with Oracle JRockit Real Time:

The JAVA_HOME variable should be set as follows:

JAVA_HOME=/jrockit/[JRRT_HOME]

where JRRT_HOME is the JRockit Real Time directory.

	
If using the JRockit JDK installed with Oracle CEP:

The JAVA_HOME variable should be set as follows:

JAVA_HOME=/Oracle/Middleware/jrockit_160_20

	
Set the JAVA_HOME variable in your development environment to point to the JRockit JDK.

	
If using the JRockit JDK installed with Oracle JRockit Real Time:

The JAVA_HOME variable should be set as follows:

prompt> JAVA_HOME=/jrockit/[JRRT_HOME]

where JRRT_HOME is the JRockit Real Time directory.

	
If using the JRockit JDK installed with Oracle CEP:

The JAVA_HOME variable should be set as follows:

prompt> JAVA_HOME=/Oracle/Middleware/jrockit_160_20

2.6 HelloWorld Example

The first example that shows how to create an Oracle CEP application is the ubiquitous HelloWorld.

Figure 2-1 shows the HelloWorld example Event Processing Network (EPN). The EPN contains the components that make up the application and how they fit together.

Figure 2-1 The HelloWorld Example Event Processing Network

[image: Description of Figure 2-1 follows]

The example includes the following components:

	
helloworldAdapter—Component that generates Hello World messages every second. In a real-world scenario, this component would typically read a stream of data from a source, such as a data feed from a financial institution, and convert it into a stream of events that the complex event processor can understand. The HelloWorld application also includes a HelloWorldAdapterFactory that creates instances of HelloWorldAdapter.

	
helloworldInputChannel—Component that streams the events generated by the adapter (in this case Hello World messages) to the complex event processor.

	
helloworldProcessor—Component that simply forwards the messages from the helloworldAdapter component to the POJO that contains the business logic. In a real-world scenario, this component would typically execute additional and possibly much more complex processing of the events from the stream, such as selecting a subset of events based on a property value, grouping events, and so on using Oracle CQL.

	
helloworldOutputChannel—Component that streams the events processed by the complex event processor to the POJO that contains the user-defined business logic.

	
helloworldBean—POJO component that simply prints out a message every time it receives a batch of messages from the processor via the output channel. In a real-world scenario, this component would contain the business logic of the application, such as running reports on the set of events from the processor, sending appropriate emails or alerts, and so on.

2.6.1 Running the HelloWorld Example from the helloworld Domain

The HelloWorld application is pre-deployed to the helloworld domain. To run the application, you simply start an instance of Oracle CEP server.

To run the HelloWorld example from the helloworld domain:

	
Open a command window and change to the default server directory of the helloworld domain directory, located in MIDDLEWARE_HOME\ocep_11.1\samples\domains\helloworld_domain\defaultserver, where MIDDLEWARE_HOME refers to the Middleware home directory you specified when you installed Oracle CEP, such as d:\Oracle\Middleware.

prompt> cd d:\Oracle\Middleware\ocep_11.1\samples\domains\helloworld_domain\defaultserver

	
Ensure the environment is set correctly in the server startup script.

For more information, see Section 2.5, "Setting Your Development Environment."

	
Start Oracle CEP by executing the appropriate script with the correct command line arguments:

	
On Windows:

	
If you are using the JRockit JDK included in Oracle JRockit Real Time, enable the deterministic garbage collector by passing the -dgc parameter to the command:

prompt> startwlevs.cmd -dgc

	
If you are not using the JRockit JDK included in Oracle JRockit Real Time:

prompt> startwlevs.cmd

	
On UNIX:

	
If you are using the JRockit JDK included in Oracle JRockit Real Time, enable the deterministic garbage collector by passing the -dgc parameter to the command:

prompt> startwlevs.sh -dgc

	
If you are not using the JRockit JDK included in Oracle JRockit Real Time:

prompt> startwlevs.sh

After server status messages scroll by, you should see the following message printed to the output about every second:

Message: HelloWorld - the current time is: 3:56:57 PM

This message indicates that the HelloWorld example is running correctly.

2.6.2 Building and Deploying the HelloWorld Example from the Source Directory

The HelloWorld sample source directory contains the Java source, along with other required resources such as configuration XML files, that make up the HelloWorld application. The build.xml Ant file contains targets to build and deploy the application to the helloworld domain.

For more information, see Section 2.6.3, "Description of the Ant Targets to Build Hello World".

To build and deploy the HelloWorld example from the source directory:

	
If the helloworld Oracle CEP instance is not already running, follow the procedure in Section 2.6.1, "Running the HelloWorld Example from the helloworld Domain" to start the server.

You must have a running server to successfully deploy the rebuilt application.

	
Open a new command window and change to the HelloWorld source directory, located in MIDDLEWARE_HOME\ocep_11.1\samples\source\applications\helloworld where MIDDLEWARE_HOME is the Middleware home directory you specified when you installed Oracle CEP.

For example:

prompt> cd d:\Oracle\Middleware\ocep_11.1\samples\source\applications\helloworld

	
Set your development environment.

For more information, see Section 2.5, "Setting Your Development Environment."

	
Execute the all Ant target to compile and create the application JAR file:

prompt> ant all

	
Execute the deploy Ant target to deploy the application JAR file to Oracle CEP:

prompt> ant -Daction=update deploy

	
Caution:

This target overwrites the existing helloworld application JAR file in the domain directory.

You should see the following message printed to the output about every second:

 Message: HelloWorld - the current time is: 3:56:57 PM

This message indicates that the HelloWorld example has been redeployed and is running correctly.

2.6.3 Description of the Ant Targets to Build Hello World

The build.xml file, located in the top level of the HelloWorld source directory, contains the following targets to build and deploy the application:

	
clean—This target removes the dist and output working directories under the current directory.

	
all—This target cleans, compiles, and JARs up the application into a file called com.bea.wlevs.example.helloworld_11.1.1.4_0.jar, and places the generated JAR file into a dist directory below the current directory.

	
deploy—This target deploys the JAR file to Oracle CEP using the Deployer utility.

For more information, see "Deployer Command-Line Reference" in the Oracle Fusion Middleware Administrator's Guide for Oracle Complex Event Processing.

2.6.4 Implementation of the HelloWorld Example

The implementation of the HelloWorld example generally follows "Creating Oracle CEP Applications: Typical Steps" in the Oracle Fusion Middleware Developer's Guide for Oracle Complex Event Processing for Eclipse.

Refer to that section for a task-oriented procedure that describes the typical development process.

The HelloWorld example, because it is relatively simple, does not use all the components and configuration files described in the general procedure for creating an Oracle CEP application.

All the example files are located relative to the MIDDLEWARE_HOME\ocep_11.1\samples\source\applications\helloworld directory, where MIDDLEWARE_HOME refers to the Middleware directory you specified when you installed Oracle CEP c:\Oracle\Middleware. Oracle recommends that you use this example directory setup in your own environment, although it is obviously not required.

The files used by the HelloWorld example include:

	
An EPN assembly file that describes each component in the application and how all the components are connected together. The EPN assembly file extends the standard Spring context file. The file also registers the event types used in the application. You are required to include this XML file in your Oracle CEP application.

In the example, the file is called com.bea.wlevs.example.helloworld-context.xml and is located in the META-INF/spring directory.

For details, see Section 2.6.5, "The HelloWorld EPN Assembly File."

	
Java source file for the helloworldAdapter component.

In the example, the file is called HelloWorldAdapter.java and is located in the src/com/bea/wlevs/adapter/example/helloworld directory.

For a detailed description of this file and how to program the adapter Java files in general, see "Extending the Oracle CEP Event Processing Network" in the Oracle Fusion Middleware Developer's Guide for Oracle Complex Event Processing for Eclipse.

	
Java source file that describes the HelloWorldEvent event type.

In the example, the file is called HelloWorldEvent.java and is located in the src/com/bea/wlevs/event/example/helloworld directory.

For a detailed description of this file, as well as general information about programming event types, see "Creating the Event Types" in the Oracle Fusion Middleware Developer's Guide for Oracle Complex Event Processing for Eclipse.

	
An XML file that configures the helloworldProcessor and helloworldOutputChannel components. An important part of this file is the set of EPL rules that select the set of events that the HelloWorld application processes. You are required to include a processor configuration file in your Oracle CEP application, although the adapter and channel configuration is optional.

In the example, the file is called config.xml and is located in the META-INF/wlevs directory.

For details, see Section 2.6.6, "The HelloWorld Component Configuration File."

	
A Java file that implements the helloworldBean component of the application, a POJO that contains the business logic.

In the example, the file is called HelloWorldBean.java and is located in the src/com/bea/wlevs/example/helloworld directory.

For a detailed description of this file, as well as general information about programming event sinks, see "Extending the Oracle CEP Event Processing Network" in the Oracle Fusion Middleware Developer's Guide for Oracle Complex Event Processing for Eclipse.

	
A MANIFEST.MF file that describes the contents of the OSGi bundle that will be deployed to Oracle CEP.

In the example, the MANIFEST.MF file is located in the META-INF directory.

For more information about creating this file, as well as a description of creating the OSGi bundle that you deploy to Oracle CEP, see "Overview of Application Assembly and Deployment" in the Oracle Fusion Middleware Developer's Guide for Oracle Complex Event Processing for Eclipse.

The HelloWorld example uses a build.xml Ant file to compile, assemble, and deploy the OSGi bundle; see Section 2.6.2, "Building and Deploying the HelloWorld Example from the Source Directory" for a description of this build.xml file if you also use Ant in your development environment.

2.6.5 The HelloWorld EPN Assembly File

One of the main purposes of the EPN assembly file is to define the event processing network by declaring the components of the application and how they are all connected, or in other word, which components listen to which other components. Oracle CEP provides a set of custom Spring tags used to declare the network. You also use the EPN assembly file to register the event types used by your application and its EPL rules.

You use the EPN assembly file in the typical way to define the application component beans in the Spring application context; the application components beans are those implemented with Java classes, such as adapters and the POJO that contains the business logic.

For more information, see:

	
"Schema Reference: EPN Assembly spring-wlevs-v11_1_1_6.xsd" in the Oracle Fusion Middleware Developer's Guide for Oracle Complex Event Processing for Eclipse

	
"Oracle CEP Schemas" in the Oracle Fusion Middleware Developer's Guide for Oracle Complex Event Processing for Eclipse

Example 2-1 shows the EPN assembly file used in the HelloWorld sample application; see the explanation after the example for details about the entries in bold.

Example 2-1 HelloWorld EPN Assembly File

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:osgi="http://www.springframework.org/schema/osgi"
 xmlns:wlevs="http://www.bea.com/ns/wlevs/spring"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/osgi
 http://www.springframework.org/schema/osgi/spring-osgi.xsd
 http://www.bea.com/ns/wlevs/spring
 http://www.bea.com/ns/wlevs/spring/spring-wlevs-v11_1_1_6.xsd">
 <wlevs:event-type-repository>
 <wlevs:event-type type-name="HelloWorldEvent">
 <wlevs:class>com.bea.wlevs.event.example.helloworld.HelloWorldEvent</wlevs:class>
 </wlevs:event-type>
 </wlevs:event-type-repository>
 <wlevs:adapter id="helloworldAdapter" class="com.bea.wlevs.adapter.example.helloworld.HelloWorldAdapter" >
 <wlevs:instance-property name="message" value="HelloWorld - the currenttime is:"/>
 </wlevs:adapter>
 <wlevs:processor id="helloworldProcessor" />
 <wlevs:channel id="helloworldInstream" >
 <wlevs:listener ref="helloworldProcessor"/>
 <wlevs:source ref="helloworldAdapter"/>
 </wlevs:channel>
 <wlevs:channel id="helloworldOutstream" manageable="true">
 <wlevs:listener>
 <bean class="com.bea.wlevs.example.helloworld.HelloWorldBean"/>
 </wlevs:listener>
 <wlevs:source ref="helloworldProcessor"/>
 </wlevs:channel>
</beans>

In the preceding example:

	
The wlevs:event-type-repository element registers the event types that are used throughout the application; in the HelloWorld application, there is just a single event type: HelloWorldEvent, implemented with the com.bea.wlevs.event.example.helloworld.HelloWorldEvent class. Oracle CEP automatically creates instances of this data type when needed. You can also reference this data type in the EPL rules of the application.

	
The wlevs:adapter, wlevs:processor, and wlevs:channel elements together define the event processor network by declaring each component in the network:

	
The wlevs:adapter element defines the adapter component of the HelloWorld application:

<wlevs:adapter id="helloworldAdapter"
 class="com.bea.wlevs.adapter.example.helloworld.HelloWorldAdapter" >
 <wlevs:instance-property name="message" value="HelloWorld - the currenttime is:"/>
</wlevs:adapter>

The id attribute specifies a unique identifier for this component; the id will be referenced later by other components. The class attribute specifies the class that implements the adapter; in this case it is com.bea.wlevs.adapter.example.helloworld.HelloWorldAdapter.

The wlevs:instance-property child element passes an instance variable to the adapter instance; the name of the variable is message and the value is HelloWorld - the current time is: .

	
The wlevs:processor element defines the processor component of the application:

<wlevs:processor id="helloworldProcessor" />

The id attribute functions the same as that of wlevs:adapter element.

	
The wlevs:channel elements define the two channel components of the application:

<wlevs:channel id="helloworldInstream" >
 <wlevs:listener ref="helloworldProcessor"/>
 <wlevs:source ref="helloworldAdapter"/>
</wlevs:channel>
<wlevs:channel id="helloworldOutstream" manageable="true">
 <wlevs:listener>
 <bean class="com.bea.wlevs.example.helloworld.HelloWorldBean"/>
 </wlevs:listener>
 <wlevs:source ref="helloworldProcessor"/>
</wlevs:channel>

The id attribute for streams functions the same as that of wlevs:adapter. The manageable attribute enables monitoring of the channel; by default the manageability of components is disabled.

The wlevs:channel element with id="helloworldInstream" uses the wlevs:listener child element to specify that the helloworldProcessor listens to the channel, and the wlevs:source child element to specify that the channel gets its events from the helloworldAdapter component.

The wlevs:channel element with id="helloworldOutstream" also uses these listener and source tags. One difference, however, is that it directly nests the definition of the business logic POJO in the wlevs:listener element rather than reference a unique identifier. In this case, the nested tag is a standard Spring bean element that specifies that the POJO is implemented with the com.bea.wlevs.example.helloworld.HelloWorldBean class.

2.6.6 The HelloWorld Component Configuration File

The HelloWorld application configures the processor in the component configuration file that Example 2-2 shows.

Example 2-2 HelloWorld Component Configuration File

<?xml version="1.0" encoding="UTF-8"?>
<n1:config xmlns:n1="http://www.bea.com/ns/wlevs/config/application"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <processor>
 <name>helloworldProcessor</name>
 <rules>
 <query id="helloworldRule">
 <![CDATA[select * from helloworldInputChannel]]>
 </query>
 </rules>
 </processor>
</n1:config>

If your application contains multiple processors, adapters or streams, you can either declare them all in a single configuration file, or create separate configuration files for each component; the method you chose depends on which you find easier to manage.

For each component you configure, you must add the name child element to explicitly declare the specific component to which you are referring. The value of the name element must correspond to the component's unique identifier of its declaration in the EPN assembly file.

For example, assume a processor is declared in the EPN assembly file as follows:

<wlevs:processor id="helloworldProcessor" ...>

Then its corresponding XML configuration would be as follows:

<processor>
 <name>helloworldProcessor</name>
 ...
</processor>

The HelloWorld example uses a single configuration file for one processor with the name helloworldProcessor. This name corresponds with the declaration of the components in the EPN assembly file.

The processor element configures the processor component. The most important part of the processor configuration is the declaration of the set of Oracle Continuous Query Language (Oracle CQL) rules that this processor executes; these rules select the set of events that are eventually passed to the application business object. Each rule is declared with a query or relation element using an XML <![CDATA[...]]> section; all query and relation elements are grouped together within a single rules element. You can define as many rules as you want for a particular processor.

The HelloWorld application has a single, very simple rule:

select * from helloworldInputChannel

The purpose of this query is to show how to pass input data through as is (without manipulation) and output this data as a stream (not a relation). That is why this query does not use a window operator (such as [now] or [range 1]). With a window operator, the output is a relation and not a stream. Consider the downstream HelloWorldBean POJO: it only implements StreamSink (and not RelationSink) because the output of this query is a stream (not a relation generated by a window operator). Consequently, the HelloWorldBean POJO prints only the insert events. It will not print the delete events since it does not implement RelationSink.Typically, you create queries (and views) that output relations (using a window operator) for consumption by subsequent queries or views that produce streams.

For additional information and samples about using Oracle CEP query languages, see:

	
Oracle Fusion Middleware CQL Language Reference for Oracle Complex Event Processing.

	
Oracle Fusion Middleware EPL Language Reference for Oracle Complex Event Processing.

	
Note:

Oracle EPL is superseded by Oracle CQL.

2.7 Oracle Continuous Query Language (CQL) Example

The CQL example shows how to use the Oracle CEP Visualizer Query Wizard to construct various types of Oracle CQL queries.

Figure 2-2 shows the CQL example Event Processing Network (EPN). The EPN contains the components that make up the application and how they fit together.

Figure 2-2 The CQL Example Event Processing Network

[image: Description of Figure 2-2 follows]

The application contains three separate event paths in its EPN:

	
Missing events: this event path consists of an adapter orderCVSAdapter connected to a channel orderChannel. The orderChannel is connected to processor orderProcessor which is connected to channel alertChannel which is connected to adapter alertOutput.

This event path is used to detect missing events in a customer order workflow.

For more information on how to construct the query that the cqlProc processor executes, see Section 2.7.4.1, "Creating the Missing Event Query".

	
Moving average: this event path consists of channel stockChannel connected to processor stockProcessor which is connected to channel movingAvgChannel which is connected to adapter movingOutput.

This event path is used to compute a moving average on stock whose volume is greater than 1000.

For more information on how to construct the query that the cqlProc processor executes, see Section 2.7.4.2, "Creating the Moving Average Query".

	
Cache: this event path consists of adapter adapter connected to channel S1 connected to Oracle CQL processor cacheProcessor connected to channel S2 connected to bean Bean. There is a cache stockCache also connected to the Oracle CQL processor cacheProcessor. There is also a bean Loader.

This event path is used to access information from a cache in an Oracle CQL query.

	
Note:

For more information about the various components in the EPN, see the other samples in this book.

2.7.1 Running the CQL Example

For optimal demonstration purposes, Oracle recommends that you run this example on a powerful computer, such as one with multiple CPUs or a 3 GHz dual-core Intel, with a minimum of 2 GB of RAM.

The CQL application is pre-deployed to the cql_domain domain. To run the application, you simply start an instance of Oracle CEP server.

To run the CQL example:

	
Open a command window and change to the default server directory of the CQL domain directory, located in MIDDLEWARE_HOME\ocep_11.1\samples\domains\cql_domain\defaultserver, where MIDDLEWARE_HOME refers to the Middleware directory you specified when you installed Oracle CEP, such as d:\Oracle\Middleware.

prompt> cd d:\Oracle\Middleware\ocep_11.1\samples\domains\cql_domain\defaultserver

	
Set your development environment, as described in Section 2.5, "Setting Your Development Environment."

	
Start Oracle CEP by executing the appropriate script with the correct command line arguments:

	
On Windows:

	
If you are using the JRockit JDK included in Oracle JRockit Real Time, enable the deterministic garbage collector by passing the -dgc parameter to the command:

prompt> startwlevs.cmd -dgc

	
If you are not using the JRockit JDK included in Oracle JRockit Real Time:

prompt> startwlevs.cmd

	
On UNIX:

	
If you are using the JRockit JDK included in Oracle JRockit Real Time, enable the deterministic garbage collector by passing the -dgc parameter to the command:

prompt> startwlevs.sh -dgc

	
If you are not using the JRockit JDK included in Oracle JRockit Real Time:

prompt> startwlevs.sh

The CQL application is now ready to receive data from the data feeds.

	
To simulate the data feed for the missing event query, open a new command window and set your environment as described in Section 2.5, "Setting Your Development Environment."

	
Change to the MIDDLEWARE_HOME\ocep_11.1\utils\load-generator directory, where MIDDLEWARE_HOME refers to the Middleware directory you specified when you installed Oracle CEP, such as d:\Oracle\Middleware.

	
Run the load generator using the orderData.prop properties file:

	
On Windows:

prompt> runloadgen.cmd orderData.prop

	
On UNIX:

prompt> runloadgen.sh orderData.prop

	
To simulate the data feed for the moving average query, open a new command window and set your environment as described in Section 2.5, "Setting Your Development Environment."

	
Change to the MIDDLEWARE_HOME\ocep_11.1\utils\load-generator directory, where MIDDLEWARE_HOME refers to the Middleware directory you specified when you installed Oracle CEP, such as d:\Oracle\Middleware.

	
Run the load generator using the stockData.prop properties file:

	
On Windows:

prompt> runloadgen.cmd stockData.prop

	
On UNIX:

prompt> runloadgen.sh stockData.prop

	
To simulate the data feed for the cache query, you only need to run the example.

The load data is generated by Adaptor.java and the cache data is generated by Loader.java. You can verify that data is flowing through by turning on statistics in the Oracle CEP Visualizer Query Plan.

2.7.2 Building and Deploying the CQL Example

The CQL sample source directory contains the Java source, along with other required resources such as configuration XML files, that make up the CQL application. The build.xml Ant file contains targets to build and deploy the application to the cql_domain domain, as described in Section 2.7.3, "Description of the Ant Targets to Build the CQL Example."

To build and deploy the CQL example from the source directory:

	
If the CQL Oracle CEP instance is not already running, follow the procedure in Section 2.7.1, "Running the CQL Example" to start the server.

You must have a running server to successfully deploy the rebuilt application.

	
Open a new command window and change to the CQL source directory, located in MIDDLEWARE_HOME\ocep_11.1\samples\source\applications\cql, where MIDDLEWARE_HOME refers to the Middleware directory you specified when you installed Oracle CEP, such as d:\Oracle\Middleware.

prompt> cd d:\Oracle\Middleware\ocep_11.1\samples\source\applications\cql

	
Set your development environment, as described in Section 2.5, "Setting Your Development Environment."

	
Execute the all Ant target to compile and create the application JAR file:

prompt> ant all

	
Execute the deploy Ant target to deploy the application JAR file to Oracle CEP:

prompt> ant -Dusername=wlevs -Dpassword=wlevs -Daction=update deploy

	
Caution:

This target overwrites the existing CQL application JAR file in the domain directory.

	
If the load generators required by the CQL application are not running, start them as described in Section 2.7.1, "Running the CQL Example."

2.7.3 Description of the Ant Targets to Build the CQL Example

The build.xml file, located in the top-level directory of the CQL source, contains the following targets to build and deploy the application:

	
clean—This target removes the dist and output working directories under the current directory.

	
all—This target cleans, compiles, and jars up the application into a file called com.bea.wlevs.example.cql_11.1.1.4_0.jar, and places the generated JAR file into a dist directory below the current directory.

	
deploy—This target deploys the JAR file to Oracle CEP using the Deployer utility.

For more information, see "Deployer Command-Line Reference" in the Oracle Fusion Middleware Administrator's Guide for Oracle Complex Event Processing.

2.7.4 Implementation of the CQL Example

This section describes how to create the queries that the CQL example uses, including:

	
Section 2.7.4.1, "Creating the Missing Event Query"

	
Section 2.7.4.2, "Creating the Moving Average Query"

2.7.4.1 Creating the Missing Event Query

This section describes how to use the Oracle CEP Visualizer Query Wizard to create the Oracle CQL pattern matching query that the cqlProc processor executes to detect missing events.

Consider a customer order workflow in which you have customer order workflow events flowing into the Oracle CEP system.

In a valid scenario, you see events in the order that Table 2-1 lists:

Table 2-1 Valid Order Workflow

	Event Type	Description
	
C

	
Customer order

	
A

	
Approval

	
S

	
Shipment

However, it is an error if an order is shipped without an approval event as Table 2-2 lists:

Table 2-2 Invalid Order Workflow

	Event Type	Description
	
C

	
Customer order

	
S

	
Shipment

You will create and test a query that detects the missing approval event and generates an alert event:

	
"To create the missing event query:"

	
"To test the missing event query:"

To create the missing event query:

	
If the CQL Oracle CEP instance is not already running, follow the procedure in Section 2.7.1, "Running the CQL Example" to start the server.

You must have a running server to use the Oracle CEP Visualizer.

	
Invoke the following URL in your browser:

http://host:port/wlevs

where host refers to the name of the computer on which Oracle CEP is running and port refers to the Jetty NetIO port configured for the server (default value 9002).

The Logon screen appears as Figure 2-3 shows.

Figure 2-3 Oracle CEP Visualizer Logon Screen

[image: Description of Figure 2-3 follows]

	
In the Logon screen, enter the User Id wlevs and Password wlevs, and click Log In.

The Oracle CEP Visualizer dashboard appears as Figure 2-4 shows.

Figure 2-4 Oracle CEP Visualizer Dashboard

[image: Description of Figure 2-4 follows]

For more information about the Oracle CEP Visualizer user interface, see "Understanding the Oracle CEP Visualizer User Interface" in the Oracle Fusion Middleware Visualizer User's Guide for Oracle Complex Event Processing.

	
In the right-hand pane, expand WLEventServerDomain > NonClusteredServer > Applications.

	
Select the cql node.

The CQL application screen appears as Figure 2-5 shows.

Figure 2-5 CQL Application Screen: General Tab

[image: Description of Figure 2-5 follows]

	
Select the Event Processing Network tab.

The Event Processing Network screen appears as Figure 2-6 shows.

Figure 2-6 CQL Application: Event Processing Network Tab

[image: Description of Figure 2-6 follows]

	
Double-click the orderProcessor Oracle CQL processor icon.

The Oracle CQL processor screen appears as Figure 2-7 shows.

Figure 2-7 Oracle CQL Processor: General Tab

[image: Description of Figure 2-7 follows]

	
Select the Query Wizard tab.

The Query Wizard screen appears as Figure 2-8 shows.

Figure 2-8 Oracle CQL Processor: Query Wizard Tab

[image: Description of Figure 2-8 follows]

You can use the Oracle CQL Query Wizard to construct an Oracle CQL query from a template or from individual Oracle CQL constructs.

In this procedure, you are going to create an Oracle CQL query from a template.

For more information, see "Creating a Rule in an Oracle CQL Processor Using the Query Wizard" in the Oracle Fusion Middleware Visualizer User's Guide for Oracle Complex Event Processing.

	
Click the Templates tab.

The Templates tab appears as Figure 2-9 shows.

Figure 2-9 Template Tab

[image: Description of Figure 2-9 follows]

	
Click and drag the Pattern Match Template from the Templates palette and drop it anywhere in the Query Wizard canvas as shown in Figure 2-9.

	
Double-click the SSource icon.

The SSource configuration screen appears as Figure 2-10 shows.

Figure 2-10 SSource Configuration Dialog

[image: Description of Figure 2-10 follows]

The source of your query will be the orderChannel stream.

	
Configure the SSource as follows:

	
Select Stream as the Type.

	
Select orderChannel from the Select a source pull-down menu.

	
Click Save.

	
Click Save Query.

	
Double-click the Pattern icon.

The Pattern configuration screen appears as Figure 2-11 shows.

Figure 2-11 Pattern Configuration Dialog: Pattern Tab

[image: Description of Figure 2-11 follows]

Using the Pattern tab, you will define the pattern expression that matches when missed events occur. The expression is made in terms of named conditions that you will specify on the Define tab in a later step.

	
Enter the following expression in the Pattern Expression field:

CustOrder NoApproval*? Shipment

This pattern uses the Oracle CQL pattern quantifiers that Table 2-3 lists. Use the pattern quantifiers to specify the allowed range of pattern matches. The one-character pattern quantifiers are maximal or "greedy"; they will attempt to match the biggest quantity first. The two-character pattern quantifiers are minimal or "reluctant"; they will attempt to match the smallest quantity first.

Table 2-3 MATCH_RECOGNIZE Pattern Quantifiers

	Maximal	Minimal	Description
	
*

	
*?

	
0 or more times

	
+

	
+?

	
1 or more times.

	
?

	
??

	
0 or 1 time.

For more information, see:

	
"PATTERN Condition" in the Oracle Fusion Middleware CQL Language Reference for Oracle Complex Event Processing

	
"MATCH_RECOGNIZE Condition" in the Oracle Fusion Middleware CQL Language Reference for Oracle Complex Event Processing

	
Select orderid from the Partition By pull-down menu and click the Plus Sign button to add this property to the PARTITION BY clause.

This ensures that Oracle CEP evaluates the missing event query on each order.

	
Enter Orders in the Alias field.

This assigns an alias (Orders) for the pattern to simplify its use later in the query.

	
Click the Define tab.

The Define tab appears as Figure 2-12 shows.

Figure 2-12 Pattern Configuration Dialog: Define Tab

[image: Description of Figure 2-12 follows]

You will now define each of the conditions named in the pattern clause as Table 2-4 lists:

Table 2-4 Condition Definitions

	Condition Name	Definition
	
CustOrder

	
orderChannel.eventType = 'C'

	
NoApproval

	
NOT(orderChannel.eventType = 'A')

	
Shipment

	
orderChannel.eventType = 'C'

	
Enter CustOrder in the Object Name field.

	
Click the Expression Builder button and configure the Expression Builder as follows (see Figure 2-13):

	
In the Variables list, double-click eventType.

	
In the Operands list, double-click =.

	
After the = operand, enter the value 'C'.

Figure 2-13 Expression Builder: CustOrder

[image: Description of Figure 2-13 follows]

	
Click Save.

	
Click the Plus Sign button.

The condition definition is added to the Object List as Figure 2-14 shows.

Figure 2-14 Pattern Configuration Dialog: Define Tab With CustOrder Condition

[image: Description of Figure 2-14 follows]

	
Enter NoApproval in the Object Name field.

	
Click the Expression Builder button and configure the Expression Builder as follows (see Figure 2-15):

	
In the Variables list, double-click eventType.

	
In the Operands list, double-click =.

	
After the = operand, enter the value 'A'.

	
Place parenthesis around the expression.

	
Place the insertion bar at the beginning of the expression, outside the open parenthesis.

	
In the Operands list, double-click NOT.

Figure 2-15 Expression Builder: NoApproval

[image: Description of Figure 2-15 follows]

	
Click Save.

	
Click the Plus Sign button.

The condition definition is added to the Object List.

	
Enter Shipment in the Object Name field.

	
Click the Expression Builder button and configure the Expression Builder as follows (see Figure 2-16):

	
In the Variables list, double-click eventType.

	
In the Operands list, double-click =.

	
After the = operand, enter the value 'S'.

Figure 2-16 Expression Builder: Shipment

[image: Description of Figure 2-16 follows]

	
Click Save.

	
Click the Plus Sign button.

The Define tab appears as Figure 2-17 shows.

Figure 2-17 Pattern Configuration Dialog: Define Tab Complete

[image: Description of Figure 2-17 follows]

	
Click the Measure tab.

The Measure tab appears as Figure 2-18 shows.

Figure 2-18 Measure Tab

[image: Description of Figure 2-18 follows]

Use the Measure tab to define expressions in a MATCH_RECOGNIZE condition and to bind stream elements that match conditions in the DEFINE clause to arguments that you can include in the select statement of a query.

Use the Measure tab to specify the following:

	
CustOrder.orderid AS orderid

	
CustOrder.amount AS amount

For more information, see:

	
"MEASURES Clause" in the Oracle Fusion Middleware CQL Language Reference for Oracle Complex Event Processing

	
"MATCH_RECOGNIZE Condition" in the Oracle Fusion Middleware CQL Language Reference for Oracle Complex Event Processing

	
Enter orderid in the Object Name field.

	
Click the Expression Builder button and configure the Expression Builder as follows (see Figure 2-19):

	
In the Variables list, double-click CustOrder.orderid.

Figure 2-19 Expression Builder: orderid

[image: Description of Figure 2-19 follows]

	
Click Save.

	
Click the Plus Sign button.

	
Enter amount in the Object Name field.

	
Click the Expression Builder button and configure the Expression Builder as follows (see Figure 2-20):

	
In the Variables list, double-click CustOrder.amount.

Figure 2-20 Expression Builder: amount

[image: Description of Figure 2-20 follows]

	
Click Save.

	
Click the Plus Sign button.

The Measure tab appears as Figure 2-21 shows.

Figure 2-21 Measure Tab: Complete

[image: Description of Figure 2-21 follows]

	
Click Save.

	
Double-click the Select icon.

The Select configuration screen appears as Figure 2-22 shows.

Figure 2-22 Select Configuration Dialog: Project Tab

[image: Description of Figure 2-22 follows]

	
Configure the Project tab as follows:

	
Select AlertEvent from the Select or Input Event Type pull-down menu.

	
Select Orders from the Select a source pull-down menu.

	
Double-click orderid in the Properties list and select orderid from the Select or Input Alias pull-down menu.

	
Click the Plus Sign button to add the property to the Generated CQL Statement.

	
Double-click amount in the Properties list and select amount from the Select or Input Alias pull-down menu.

	
Click the Plus Sign button to add the property to the Generated CQL Statement.

	
Click in the Project Expression field and enter the value "Error - Missing Approval" and select alertType from the Select or Input Alias pull-down menu.

	
Click the Plus Sign button to add the property to the Generated CQL Statement.

The Project tab appears as Figure 2-23 shows.

Figure 2-23 Select Configuration Dialog: Project Tab Complete

[image: Description of Figure 2-23 follows]

	
Click Save.

	
Click Save Query.

	
Double-click the Output icon.

The Output configuration screen appears as Figure 2-24 shows.

Figure 2-24 Output Configuration Dialog

[image: Description of Figure 2-24 follows]

	
Configure the Output as follows:

	
Select Query.

	
Enter Tracking as the Query Name.

	
Click Inject Rule.

The Inject Rule Confirmation dialog appears as Figure 2-25 shows.

Figure 2-25 Inject Rule Confirmation Dialog

[image: Description of Figure 2-25 follows]

	
Click OK.

The Query Wizard adds the rule to the cqlProc processor.

	
Click Save.

	
Click on the CQL Rules tab.

The CQL Rules tab appears as Figure 2-26 shows.

	
Click on the Query radio button.

Confirm that your Tracking query is present.

Figure 2-26 CQL Rules Tab With Tracking Query

[image: Description of Figure 2-26 follows]

To test the missing event query:

	
To simulate the data feed for the missing event query, open a new command window and set your environment as described in Section 2.5, "Setting Your Development Environment."

	
Change to the MIDDLEWARE_HOME\ocep_11.1\utils\load-generator directory, where MIDDLEWARE_HOME refers to the Middleware directory created when you installed Oracle CEP, such as d:\Oracle\Middleware.

	
Run the load generator using the orderData.prop properties file:

	
On Windows:

prompt> runloadgen.cmd orderData.prop

	
On UNIX:

prompt> runloadgen.sh orderData.prop

	
In the Oracle CEP Visualizer, click the ViewStream button in the top pane.

The Stream Visualizer screen appears as Figure 2-27 shows.

Figure 2-27 Stream Visualizer: Showing Missing Events

[image: Description of Figure 2-27 follows]

	
Click Initialize Client.

	
Click the Subscribe tab.

	
Select the orderalert radio button.

	
Click Subscribe.

As missing events are detected, the Oracle CEP updates the Received Messages area showing the AlertEvents generated.

2.7.4.2 Creating the Moving Average Query

This section describes how to use the Oracle CEP Visualizer Query Wizard to create the Oracle CQL moving average query that the stockProc processor executes.

You do this in two steps:

	
First, you create a view (the Oracle CQL equivalent of a subquery) that serves as the source of the moving average query.

See "To create a view source for the moving average query:".

	
Second, you create the moving average query using the source view.

See "To create the moving average query using the view source:".

	
Finally, you test the moving average query.

See "To test the moving average query:".

To create a view source for the moving average query:

	
If the CQL Oracle CEP instance is not already running, follow the procedure in Section 2.7.1, "Running the CQL Example" to start the server.

You must have a running server to use the Oracle CEP Visualizer.

	
Invoke the following URL in your browser:

http://host:port/wlevs

where host refers to the name of the computer on which Oracle CEP is running and port refers to the Jetty NetIO port configured for the server (default value 9002).

The Logon screen appears as Figure 2-28 shows.

Figure 2-28 Oracle CEP Visualizer Logon Screen

[image: Description of Figure 2-28 follows]

	
In the Logon screen, enter the User Id wlevs and Password wlevs, and click Log In.

The Oracle CEP Visualizer dashboard appears as Figure 2-29 shows.

Figure 2-29 Oracle CEP Visualizer Dashboard

[image: Description of Figure 2-29 follows]

For more information about the Oracle CEP Visualizer user interface, see "Understanding the Oracle CEP Visualizer User Interface" in the Oracle Fusion Middleware Visualizer User's Guide for Oracle Complex Event Processing.

	
In the right-hand pane, expand WLEventServerDomain > NonClusteredServer > Applications.

	
Select the cql node.

The CQL application screen appears as Figure 2-30 shows.

Figure 2-30 CQL Application Screen: General Tab

[image: Description of Figure 2-30 follows]

	
Select the Event Processing Network tab.

The Event Processing Network screen appears as Figure 2-31 shows.

Figure 2-31 CQL Application: Event Processing Network Tab

[image: Description of Figure 2-31 follows]

	
Double-click the stockProcessor Oracle CQL processor icon.

The Oracle CQL processor screen appears as Figure 2-32 shows.

Figure 2-32 Oracle CQL Processor: General Tab

[image: Description of Figure 2-32 follows]

	
Select the Query Wizard tab.

The Query Wizard screen appears as Figure 2-33 shows.

Figure 2-33 Oracle CQL Processor: Query Wizard Tab

[image: Description of Figure 2-33 follows]

You can use the Oracle CQL Query Wizard to construct an Oracle CQL query from a template or from individual Oracle CQL constructs.

In this procedure, you are going to create an Oracle CQL view and query from individual Oracle CQL constructs.

For more information, see "Creating a Rule in an Oracle CQL Processor Using the Query Wizard" in the Oracle Fusion Middleware Visualizer User's Guide for Oracle Complex Event Processing.

	
Click and drag an SSource icon (Stream Source) from the CQL Constructs palette and drop it anywhere in the Query Wizard canvas as Figure 2-34 shows.

Figure 2-34 Query Wizard: SSource

[image: Description of Figure 2-34 follows]

	
Double-click the SSource icon.

The SSource configuration screen appears.

The source of your view will be the stockChannel stream. You want to select stock events from this stream where the volume is greater than 1000. This will be the source for your moving average query.

	
Configure the SSource as follows (as shown in Figure 2-35):

	
Select Stream as the Type.

The source of your view is the stockChannel stream.

	
Select stockChannel from the Select a source pull-down menu.

	
Enter the alias StockVolGt1000 in the AS field.

Figure 2-35 SSource Configuration Dialog

[image: Description of Figure 2-35 follows]

	
Click Save.

	
Click Save Query.

	
When prompted, enter StockVolGt1000 in the Query Id field.

	
Click Save.

Next, you will add an Oracle CQL filter.

	
Click and drag a Filter icon from the CQL Constructs palette and drop it anywhere in the Query Wizard canvas as Figure 2-36 shows.

Figure 2-36 Query Wizard: Filter

[image: Description of Figure 2-36 follows]

	
Click on the SSource icon and drag to the Window icon to connect the Oracle CQL constructs as Figure 2-37 shows.

Figure 2-37 Connecting the SSource and Filter Icons

[image: Description of Figure 2-37 follows]

	
Double-click the Filter icon.

The Filter configuration screen appears as Figure 2-38 shows.

Figure 2-38 Filter Configuration Dialog

[image: Description of Figure 2-38 follows]

	
Click the Expression Builder button.

The Expression Builder dialog appears.

	
Configure the Expression Builder as follows (as shown in Figure 2-39):

	
Select StockVolGt100 from the Select an Event Type pull-down menu to define the variables you can use in this expression.

	
Double-click the volume variable to add it to the Expression Builder field.

	
Double-click > in the Operands list to add it to the Expression Builder field.

	
Enter the value 1000 after the > operand.

Figure 2-39 Filter Expression Builder

[image: Description of Figure 2-39 follows]

	
Click Save.

	
Click Add Filter.

The Query Wizard adds the expression to the Generated CQL Statement as Figure 2-40 shows.

Figure 2-40 Filter Configuration Dialog: After Adding the Filter

[image: Description of Figure 2-40 follows]

	
Click Save.

	
Click Save Query.

Next you want to add a select statement.

	
Click and drag a Select icon from the CQL Constructs palette and drop it anywhere in the Query Wizard canvas as Figure 2-41 shows.

Figure 2-41 Query Wizard: Select

[image: Description of Figure 2-41 follows]

	
Click on the Filter icon and drag to the Select icon to connect the Oracle CQL constructs.

	
Double-click the Select icon.

The Select configuration screen appears.

You want to select price, symbol, and volume from your StockVolGt1000 stream.

	
Configure the Select as follows:

	
Select StockVolGt1000 from the Select a source pull-down menu.

	
Select the price property and click the Plus Sign button.

The Query Wizard adds the property to Generated CQL Statement

	
Repeat for the symbol and volume properties.

The Select configuration dialog appears as Figure 2-42 shows.

Figure 2-42 Select Configuration Dialog: Properties Selected

[image: Description of Figure 2-42 follows]

	
Click Save.

	
Click Save Query.

Finally, you will add an Output.

	
Click and drag an Output icon from the CQL Constructs palette and drop it anywhere in the Query Wizard canvas as Figure 2-43 shows.

Figure 2-43 Query Wizard: Output

[image: Description of Figure 2-43 follows]

	
Click on the Select icon and drag to the Output icon to connect the Oracle CQL constructs.

	
Double-click the Output icon.

The Output configuration screen appears.

	
Configure the Output as follows (as shown in Figure 2-44):

	
Select View.

	
Configure View Name as StockVolGt1000.

	
Delete the contents of the View Schema field.

You can let the Oracle CEP server define the view schema for you.

Figure 2-44 Output Configuration Dialog

[image: Description of Figure 2-44 follows]

	
Click Inject Rule.

The Inject Rule Confirmation dialog appears as Figure 2-45 shows.

Figure 2-45 Inject Rule Confirmation Dialog

[image: Description of Figure 2-45 follows]

	
Click OK.

The Query Wizard adds the rule to the cqlProc processor.

	
Click Save.

	
Click on the CQL Rules tab.

The CQL Rules tab appears as Figure 2-46 shows.

	
Click on the View radio button.

Confirm that your StockVolGt1000 view is present.

Figure 2-46 CQL Rules Tab With View StockVolGt1000

[image: Description of Figure 2-46 follows]

To create the moving average query using the view source:

	
If the CQL Oracle CEP instance is not already running, follow the procedure in Section 2.7.1, "Running the CQL Example" to start the server.

You must have a running server to use the Oracle CEP Visualizer.

	
Invoke the following URL in your browser:

http://host:port/wlevs

where host refers to the name of the computer on which Oracle CEP is running and port refers to the Jetty NetIO port configured for the server (default value 9002).

The Logon screen appears as Figure 2-47 shows.

Figure 2-47 Oracle CEP Visualizer Logon Screen

[image: Description of Figure 2-47 follows]

	
In the Logon screen, enter the User Id wlevs and Password wlevs, and click Log In.

The Oracle CEP Visualizer dashboard appears as Figure 2-48 shows.

Figure 2-48 Oracle CEP Visualizer Dashboard

[image: Description of Figure 2-48 follows]

For more information about the Oracle CEP Visualizer user interface, see "Understanding the Oracle CEP Visualizer User Interface" in the Oracle Fusion Middleware Visualizer User's Guide for Oracle Complex Event Processing.

	
In the left-hand pane, expand WLEventServerDomain > NonClusteredServer > Applications.

	
Select the cql node.

The CQL application screen appears as Figure 2-49 shows.

Figure 2-49 CQL Application Screen: General Tab

[image: Description of Figure 2-49 follows]

	
Select the Event Processing Network tab.

The Event Processing Network screen appears as Figure 2-50 shows.

Figure 2-50 CQL Application: Event Processing Network Tab

[image: Description of Figure 2-50 follows]

	
Double-click the stockProcessor Oracle CQL processor icon.

The Oracle CQL processor screen appears as Figure 2-51 shows.

Figure 2-51 Oracle CQL Processor: General Tab

[image: Description of Figure 2-51 follows]

	
Select the Query Wizard tab.

The Query Wizard screen appears as Figure 2-52 shows. If you have been recently creating or editing queries for this processor, you might see those queries on the Query Wizard canvas. Otherwise, the canvas will be blank.

Figure 2-52 Oracle CQL Processor: Query Wizard Tab

[image: Description of Figure 2-52 follows]

You can use the Oracle CQL Query Wizard to construct an Oracle CQL query from a template or from individual Oracle CQL constructs.

In this procedure, you are going to create an Oracle CQL view and query from individual Oracle CQL constructs.

For more information, see "Creating a Rule in an Oracle CQL Processor Using the Query Wizard" in the Oracle Fusion Middleware Visualizer User's Guide for Oracle Complex Event Processing.

	
Click and drag an SSource icon (Stream Source) from the CQL Constructs palette and drop it anywhere in the Query Wizard canvas as Figure 2-53 shows.

Figure 2-53 Query Wizard: SSource for Moving Average Query

[image: Description of Figure 2-53 follows]

	
Double-click the SSource icon.

The SSource configuration screen appears.

	
Configure the SSource dialog as follows (as shown in Figure 2-54):

	
Select View as the Type.

	
Select the StockVolGt1000 view from the Select a source pull-down menu.

Figure 2-54 SSource Configuration Dialog: Moving Average Query

[image: Description of Figure 2-54 follows]

	
Click Save.

	
Click Save Query.

	
Click and drag a Window icon from the CQL Constructs palette and drop it anywhere in the Query Wizard canvas as Figure 2-55 shows.

Figure 2-55 Query Wizard: Window for Moving Average Query

[image: Description of Figure 2-55 follows]

	
Click on the SSource icon and drag to the Window icon to connect the Oracle CQL constructs.

	
Double-click the Window icon.

The SSource configuration screen appears.

You want to create a sliding window over the last 2 events, partitioned by symbol.

	
Configure the Window dialog as follows (as shown in Figure 2-56):

	
Select symbol in the Source Property List to add it to the Partition List.

	
Select Partition as the Type.

	
Select Row Based and enter 2 in the Row Based field.

	
Click Add Window.

The Query Wizard adds the sliding window to the Generated CQL Statement as Figure 2-56 shows.

Figure 2-56 Window Configuration Dialog: After Adding Window

[image: Description of Figure 2-56 follows]

	
Click Save.

	
Click Save Query.

	
Click and drag a Select icon from the CQL Constructs palette and drop it anywhere in the Query Wizard canvas as Figure 2-57 shows.

Figure 2-57 Query Wizard: Select for Moving Average Query

[image: Description of Figure 2-57 follows]

	
Click on the Window icon and drag to the Select icon to connect the Oracle CQL constructs.

	
Double-click the Select icon.

The Select configuration screen appears.

	
Select StockVolGt1000 from the Select a source pull-down menu.

This is the source of moving average query: the view you created earlier (see "To create a view source for the moving average query:").

	
Select MovingAvgEvent from the Target Event Type pull-down menu.

This is the output event your moving average query will produced. You will map properties from the source events to this output event.

	
In the Source Properties list, select symbol.

The selected source property is added to the Project Expression as Figure 2-58 shows.

Figure 2-58 Select Configuration Dialog: Source Property symbol Selected

[image: Description of Figure 2-58 follows]

In this case, you just want to map the source property symbol to output event property symbol as is.

	
Click on the pull-down menu next to the AS field and select symbol.

	
Click the Plus Sign button.

The source property is added to the project expression of the Generated CQL Statement as Figure 2-59 shows.

Figure 2-59 Select Configuration Dialog: Source Property symbol Mapped to Output Event Property

[image: Description of Figure 2-59 follows]

	
In the Source Properties list, select price.

The selected source property is added to the Project Expression as Figure 2-60 shows.

Figure 2-60 Select Configuration Dialog: Source Property price Selected

[image: Description of Figure 2-60 follows]

In this case, you want to process the source property price before you map it to the output event.

	
Click the Expression Builder button.

The Expression Builder dialog appears.

	
Select Aggregate Function from the Select a function type pull-down menu.

A list of the aggregate functions that Oracle CQL provides is displayed. You are going to use the AVG function.

	
Select the StockVolGt1000.price in the Expression Builder field.

	
Double-click the AVG function.

The AVG() function is wrapped around your selection in the Expression Builder field as Figure 2-61 shows.

Figure 2-61 Expression Builder: Applying the AVG Function

[image: Description of Figure 2-61 follows]

	
Click Save.

The expression is added to the Project Expression field as Figure 2-62 shows.

Figure 2-62 Select Configuration Dialog: With Expression

[image: Description of Figure 2-62 follows]

	
Click on the pull-down menu next to the AS field and select movingAvgPrice.

	
Click the plus Sign button.

The source property is added to the project expression of the Generated CQL Statement as Figure 2-63 shows.

Figure 2-63 Select Configuration Dialog: Source Property price Mapped to Output Event Property

[image: Description of Figure 2-63 follows]

	
Click Validate.

A validation error dialog is shown as Figure 2-64 shows.

Figure 2-64 Validation Error: GROUP BY

[image: Description of Figure 2-64 follows]

Because you are partitioning, you must specify a GROUP BY clause.

	
Select the Group tab.

The Group tab appears.

	
Configure the Group tab as follows (as shown in Figure 2-65):

	
Select StockVolGt1000 from the Select a source pull-down menu.

	
Select symbol from the Properties list.

	
Click the Plus Sign button.

The symbol property is added to GROUP BY clause as Figure 2-65 shows.

Figure 2-65 Group Tab: With symbol Grouping Property

[image: Description of Figure 2-65 follows]

	
Click Save.

	
Click Save Query.

Next, you want to connect the query to an output.

	
Click and drag an Output icon from the CQL Constructs palette and drop it anywhere in the Query Wizard canvas as Figure 2-66 shows.

Figure 2-66 Query Wizard: Output

[image: Description of Figure 2-66 follows]

	
Click on the Select icon and drag to the Output icon to connect the Oracle CQL constructs.

	
Double-click the Output icon.

The Output configuration screen appears.

	
Configure the Output as follows (as shown in Figure 2-67):

	
Select Query.

	
Enter MovingAverage as the Query Name.

Figure 2-67 Output Configuration Dialog

[image: Description of Figure 2-67 follows]

	
Click Inject Rule.

The Inject Rule Confirmation dialog appears as Figure 2-68 shows.

Figure 2-68 Inject Rule Confirmation Dialog

[image: Description of Figure 2-68 follows]

	
Click OK.

The Query Wizard adds the rule to the cqlProc processor.

	
Click Save.

	
Click on the CQL Rules tab.

The CQL Rules tab appears as Figure 2-69 shows.

	
Click on the Query radio button.

Confirm that your MovingAverage query is present.

Figure 2-69 CQL Rules Tab With View MovingAverage

[image: Description of Figure 2-69 follows]

To test the moving average query:

	
To simulate the data feed for the moving average query, open a new command window and set your environment as described in Section 2.5, "Setting Your Development Environment."

	
Change to the MIDDLEWARE_HOME\ocep_11.1\utils\load-generator directory, where MIDDLEWARE_HOME refers to the Middleware directory you specified when you installed Oracle CEP, such as d:\Oracle\Middleware.

	
Run the load generator using the stockData.prop properties file:

	
On Windows:

prompt> runloadgen.cmd stockData.prop

	
On UNIX:

prompt> runloadgen.sh stockData.prop

	
In the Oracle CEP Visualizer, click the ViewStream button in the top pane.

The Stream Visualizer screen appears as Figure 2-70 shows.

Figure 2-70 Stream Visualizer: Showing Moving Average Query Output

[image: Description of Figure 2-70 follows]

	
Click Initialize Client.

	
Enter /stockmoving in the Initialize client field.

	
Click Subscribe.

As the moving average query outputs events, the Oracle CEP updates the Received Messages area showing the events generated.

2.8 Oracle Spatial Example

This example shows how to use Oracle Spatial with Oracle CQL queries to process a stream of Global Positioning System (GPS) events to track the GPS location of buses and generate alerts when a bus arrives at its pre-determined bus stop positions.

Figure 2-71 shows Oracle Spatial example Event Processing Network (EPN). The EPN contains the components that make up the application and how they fit together.

Figure 2-71 Oracle Spatial Example Event Processing Network

[image: Surrounding text describes Figure 2-71 .]

The example includes the following components:

	
BusPositionGen—Component that simulates an input stream of bus position GPS events. It uses the Oracle CEP loadgen utility and csvgen adapter provider to read in comma separated values (CSV) and deliver them to the EPN as BusPos events.

	
BusStopAdapter—Custom adapter component that generates bus stop positions based on MIDDLEWARE_HOME\ocep_11.1\samples\domains\spatial_domain\defaultserver\applications\spatial_sample\bus_stops.csv, where MIDDLEWARE_HOME refers to the Middleware directory you specified when you installed Oracle CEP, such as d:\Oracle\Middleware.

	
BusPosStream—Component that transmits BusPos events to the Processor as a stream.

	
BusStopRelation—Component that transmits BusPos events to the Processor as a relation.

	
Processor—Component that executes Oracle CQL queries on the incoming BusPos events.

	
BusStopChannel, BusPosChannel, and BusStopArrivalChannel—Components that each specify a different selector to transmit the results of a different query from the Processor component to the appropriate outbound adapter or output bean.

	
BusStopPub, BusPosPub, and BusStopArrivalPub—Components that publish the results of the Processor component's queries.

	
BusStopArrivalOutputBean—POJO event bean component that logs a message for each insert, delete, and update event to help visualize the relation offered by the BusStopArrivalChannel.

	
Note:

For more information about data cartridges, see:

	
"Introduction to Data Cartridges" in the Oracle Fusion Middleware CQL Language Reference for Oracle Complex Event Processing

	
"Oracle Spatial" in the Oracle Fusion Middleware CQL Language Reference for Oracle Complex Event Processing

2.8.1 Running the Oracle Spatial Example

The Oracle Spatial application is pre-deployed to the spatial_domain domain. To run the application, you simply start an instance of Oracle CEP server.

To run the Oracle Spatial example from the spatial_domain domain:

	
Open a command window and change to the default server directory of the Oracle Spatial example domain directory, located in MIDDLEWARE_HOME\ocep_11.1\samples\domains\spatial_domain\defaultserver, where MIDDLEWARE_HOME refers to the Middleware directory you specified when you installed Oracle CEP, such as d:\Oracle\Middleware.

prompt> cd d:\Oracle iddleware\ocep_11.1\samples\domains\spatial_domain\defaultserver

	
Ensure the environment is set correctly in the server startup script.

For more information, see Section 2.5, "Setting Your Development Environment."

	
Start Oracle CEP by executing the appropriate script with the correct command line arguments:

	
On Windows:

	
If you are using the JRockit JDK included in Oracle JRockit Real Time, enable the deterministic garbage collector by passing the -dgc parameter to the command:

prompt> startwlevs.cmd -dgc

	
If you are not using the JRockit JDK included in Oracle JRockit Real Time:

prompt> startwlevs.cmd

	
On UNIX:

	
If you are using the JRockit JDK included in Oracle JRockit Real Time, enable the deterministic garbage collector by passing the -dgc parameter to the command:

prompt> startwlevs.sh -dgc

	
If you are not using the JRockit JDK included in Oracle JRockit Real Time:

prompt> startwlevs.sh

Wait for the console log to show:

<Mar 4, 2010 2:13:15 PM EST> <Notice> <Spring> <BEA-2047000> <The application context for "spatial_sample" was started successfully>
<Mar 4, 2010 2:13:15 PM EST> <Notice> <Server> <BEA-2046000> <Server STARTED>

This message indicates that the Oracle Spatial example is running correctly.

	
On the same host as the Oracle Spatial example is running, launch a browser and navigate to http://localhost:9002/bus/main.html.

	
Note:

You cannot run this example on one host and browse to it from another host. This is a limitation of the Google API Key that the example uses and is not a limitation of Oracle CEP.

The Oracle Spatial example Web page appears as Figure 2-72 shows.

Figure 2-72 Oracle Spatial Web Page

[image: Description of Figure 2-72 follows]

Click the Bus Top Arrivals tab to view bus stop arrivals as Figure 2-73 shows.

Figure 2-73 Oracle Spatial Web Page: Bus Stop Arrivals Tab

[image: Description of Figure 2-73 follows]

	
Execute the Oracle CEP load generator to generate sample data:

	
On Windows:

	
Open a command prompt and navigate to MIDDLEWARE_HOME/ocep_11.1/utils/load-generator

	
runloadgen.cmd bus_positions.prop

	
On UNIX:

	
Open a terminal window and navigate to MIDDLEWARE_HOME/ocep_11.1/utils/load-generator

	
runloadgen.sh bus_positions.prop

	
Observe the bus movements and alerts in the browser as Figure 2-74 shows.

Figure 2-74 Oracle Spatial Web Page: Bus Tracking

[image: Description of Figure 2-74 follows]

2.8.2 Building and Deploying the Oracle Spatial Example

The Oracle Spatial sample source directory contains the Java source, along with other required resources such as configuration XML files, that make up the Oracle Spatial application. The build.xml Ant file contains targets to build and deploy the application to the spatial_domain domain.

For more information, see Section 2.8.3, "Description of the Ant Targets to Build the Oracle Spatial Example".

To build and deploy the Oracle Spatial example from the source directory:

	
If the spatial_domain Oracle CEP instance is not already running, follow the procedure in Section 2.8.1, "Running the Oracle Spatial Example" to start the server.

You must have a running server to successfully deploy the rebuilt application.

	
Open a new command window and change to the Oracle Spatial source directory, located in MIDDLEWARE_HOME\ocep_11.1\samples\source\applications\spatial where MIDDLEWARE_HOME is the Middleware directory you specified when you installed Oracle CEP.

For example:

prompt> cd d:\Oracle\Middleware\ocep_11.1\samples\source\applications\spatial

	
Set your development environment.

For more information, see Section 2.5, "Setting Your Development Environment."

	
Execute the all Ant target to compile and create the application JAR file:

prompt> ant all

	
Execute the deploy Ant target to deploy the application JAR file to Oracle CEP:

prompt> ant -Daction=update deploy

	
Caution:

This target overwrites the existing Oracle Spatial application JAR file in the domain directory.

2.8.3 Description of the Ant Targets to Build the Oracle Spatial Example

The build.xml file, located in the top level of the Oracle Spatial source directory, contains the following targets to build and deploy the application:

	
clean—This target removes the dist and output working directories under the current directory.

	
all—This target cleans, compiles, and JARs up the application into a file called com.bea.wlevs.example.helloworld_11.1.1.4_0.jar, and places the generated JAR file into a dist directory below the current directory.

	
deploy—This target deploys the JAR file to Oracle CEP using the Deployer utility.

For more information, see "Deployer Command-Line Reference" in the Oracle Fusion Middleware Administrator's Guide for Oracle Complex Event Processing.

2.8.4 Implementation of the Oracle Spatial Example

The implementation of the Oracle Spatial example generally follows "Creating Oracle CEP Applications: Typical Steps" in the Oracle Fusion Middleware Developer's Guide for Oracle Complex Event Processing for Eclipse.

Refer to that section for a task-oriented procedure that describes the typical development process.

All the files of the Oracle Spatial example are located relative to the MIDDLEWARE_HOME\ocep_11.1\samples\source\applications\spatial directory, where MIDDLEWARE_HOME refers to the Middleware directory you specified when you installed Oracle CEP, such as c:\Oracle\Middleware. Oracle recommends that you use this example directory setup in your own environment, although it is obviously not required.

The files used by the Oracle Spatial example include:

	
An EPN assembly file that describes each component in the application and how all the components are connected together. You are required to include this XML file in your Oracle CEP application.

In the example, the file is called context.xml and is located in the META-INF/spring directory.

For details, see Section 2.8.5, "Oracle Spatial Example EPN Assembly File."

	
A component configuration file that configures the various components on the EPN including the processor component of the application:

In the example, this file is called config.xml and is located in the META-INF/wlevs directory.

For details, see Section 2.8.6, "Oracle Spatial Example Component Configuration File."

	
Java files that implement:

	
BusStopAdapter: Custom adapter component that generates bus stop positions based on MIDDLEWARE_HOME\ocep_11.1\samples\domains\spatial_domain\defaultserver\applications\spatial_sample\bus_stops.csv, where MIDDLEWARE_HOME refers to the Middleware directory you specified when you installed Oracle CEP, such as d:\Oracle\Middleware.

	
OutputBean: POJO event bean component that logs a message for each insert, delete, and update event to help visualize the relation offered by the BusStopArrivalChannel

	
OrdsHelper: Helper class that provides method getOrds to return the ordinates from a JGeometry as a List of Double values.

These Java files are located in the source\applications\spatial\src\com\oracle\cep\sample\spatial directory.

For additional information about the Oracle CEP APIs referenced in this POJO, see Oracle Fusion Middleware Java API Reference for Oracle Complex Event Processing.

	
A MANIFEST.MF file that describes the contents of the OSGi bundle that will be deployed to Oracle CEP.

In the example, the MANIFEST.MF file is located in the META-INF directory.

For more information about creating this file, as well as a description of creating the OSGi bundle that you deploy to Oracle CEP, see "Overview of Application Assembly and Deployment" in the Oracle Fusion Middleware Developer's Guide for Oracle Complex Event Processing for Eclipse.

The Oracle Spatial example uses a build.xml Ant file to compile, assemble, and deploy the OSGi bundle; see Section 2.8.2, "Building and Deploying the Oracle Spatial Example" for a description of this build.xml file if you also use Ant in your development environment.

2.8.5 Oracle Spatial Example EPN Assembly File

One of the main purposes of the EPN assembly file is to define the event processing network by declaring the components of the application and how they are all connected, or in other word, which components listen to which other components. Oracle CEP provides a set of custom Spring tags used to declare the network. You also use the EPN assembly file to register the event types used by your application and its Oracle CQL or EPL rules.

You use the EPN assembly file in the typical way to define the application component beans in the Spring application context; the application components beans are those implemented with Java classes, such as adapters and the POJO that contains the business logic.

For more information, see:

	
"Schema Reference: EPN Assembly spring-wlevs-v11_1_1_6.xsd" in the Oracle Fusion Middleware Developer's Guide for Oracle Complex Event Processing for Eclipse

	
"Oracle CEP Schemas" in the Oracle Fusion Middleware Developer's Guide for Oracle Complex Event Processing for Eclipse

Example 2-3 shows the EPN assembly file used in the Oracle Spatial sample application.

Example 2-3 Oracle Spatial Example EPN Assembly File

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:osgi="http://www.springframework.org/schema/osgi"
 xmlns:wlevs="http://www.bea.com/ns/wlevs/spring"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/osgi
 http://www.springframework.org/schema/osgi/spring-osgi.xsd
 http://www.bea.com/ns/wlevs/spring
 http://www.bea.com/ns/wlevs/spring/spring-wlevs-v11_1_1_6.xsd">

 <wlevs:event-type-repository>
 <wlevs:event-type type-name="BusPos">
 <wlevs:properties type="tuple">
 <wlevs:property name="busId" type="int"/>
 <wlevs:property name="seq" type="int"/>
 <wlevs:property name="longitude" type="double"/>
 <wlevs:property name="latitude" type="double"/>
 </wlevs:properties>
 </wlevs:event-type>

 <wlevs:event-type type-name="BusStop">
 <wlevs:properties type="tuple">
 <wlevs:property name="busId" type="int"/>
 <wlevs:property name="seq" type="int"/>
 <wlevs:property name="geom" type="com.oracle.cep.cartridge.spatial.Geometry"/>
 </wlevs:properties>
 </wlevs:event-type>

 <wlevs:event-type type-name="BusPosEvent">
 <wlevs:properties type="tuple">
 <wlevs:property name="busId" type="int"/>
 <wlevs:property name="seq" type="int"/>
 <wlevs:property name="geom" type="com.oracle.cep.cartridge.spatial.Geometry"/>
 </wlevs:properties>
 </wlevs:event-type>

 <wlevs:event-type type-name="BusStopArrivalEvent">
 <wlevs:properties type="tuple">
 <wlevs:property name="incidentTime" type="int"/>
 <wlevs:property name="busId" type="int"/>
 <wlevs:property name="stopSeq" type="int"/>
 </wlevs:properties>
 </wlevs:event-type>

 <wlevs:event-type type-name="BusPosPubEvent">
 <wlevs:properties type="tuple">
 <wlevs:property name="lastTime" type="int"/>
 <wlevs:property name="busId" type="int"/>
 <wlevs:property name="longitude" type="double"/>
 <wlevs:property name="latitude" type="double"/>
 </wlevs:properties>
 </wlevs:event-type>

 <wlevs:event-type type-name="BusStopPubEvent">
 <wlevs:properties type="tuple">
 <wlevs:property name="busId" type="int"/>
 <wlevs:property name="id" type="int"/>
 <wlevs:property name="coords" type="java.util.List"/>
 </wlevs:properties>
 </wlevs:event-type>

 </wlevs:event-type-repository>

 <!-- Assemble EPN (event processing network) -->

 <wlevs:adapter id="BusPositionGen" provider="csvgen">
 <wlevs:instance-property name="port" value="9020"/>
 <wlevs:instance-property name="eventTypeName" value="BusPos"/>
 <wlevs:instance-property
 name="eventPropertyNames"
 value="busId,seq,longitude,latitude"/>
 <wlevs:listener ref="BusPosStream"/>
 <wlevs:listener ref="BusStopAdapter"/>
 </wlevs:adapter>

 <wlevs:adapter id="BusStopAdapter" class="com.oracle.cep.sample.spatial.BusStopAdapter" >
 <wlevs:instance-property name="path" value="bus_stops.csv"/>
 <wlevs:instance-property name="eventType" value="BusStop"/>

 <wlevs:instance-property name="buffer" value="30.0"/>
 </wlevs:adapter>

 <wlevs:channel id="BusPosStream" event-type="BusPos"
 max-size="0" max-threads="0">
 <wlevs:listener ref="Processor"/>
 </wlevs:channel>

 <wlevs:channel id="BusStopRelation" event-type="BusStop" is-relation="true" >
 <wlevs:listener ref="Processor"/>
 <wlevs:source ref="BusStopAdapter"/>
 </wlevs:channel>

 <wlevs:processor id="Processor" >
 </wlevs:processor>

<!-- bus stops -->
 <wlevs:channel id="BusStopChannel" event-type="BusStopPubEvent">
 <wlevs:listener ref="BusStopPub" />
 <wlevs:source ref="Processor"/>
 </wlevs:channel>

 <wlevs:adapter id="BusStopPub" provider="httppub" />

<!-- bus position -->
 <wlevs:channel id="BusPosChannel" event-type="BusPosPubEvent">
 <wlevs:listener ref="BusPosPub" />
 <wlevs:source ref="Processor"/>
 </wlevs:channel>

 <wlevs:adapter id="BusPosPub" provider="httppub" />

<!-- bus stop arrival -->
 <wlevs:channel id="BusStopArrivalChannel" event-type="BusStopArrivalEvent">
 <wlevs:listener ref="BusStopArrivalPub" />
 <wlevs:listener ref="BusStopArrivalOutputBean" />
 <wlevs:source ref="Processor"/>
 </wlevs:channel>

 <wlevs:event-bean id="BusStopArrivalOutputBean" class="com.oracle.cep.sample.spatial.OutputBean">
 </wlevs:event-bean>

 <wlevs:adapter id="BusStopArrivalPub" provider="httppub" />

</beans>

2.8.6 Oracle Spatial Example Component Configuration File

The Oracle Spatial application uses five processors: three to handle the three data feeds, one that joins the resulting events, and one that generates summarized results.

These XML files contain the Oracle CEP queries executed against input events. This sample uses the Oracle CQL language. For additional information and samples about using Oracle CEP query languages, see:

	
Oracle Fusion Middleware CQL Language Reference for Oracle Complex Event Processing.

	
Oracle Fusion Middleware EPL Language Reference for Oracle Complex Event Processing.

	
Note:

Oracle EPL is superseded by Oracle CQL.

Example 2-4 shows the component configuration file used in the Oracle Spatial sample application.

The processor element contains the Oracle CQL views and queries that use the Oracle Spatial to process geometric data using Oracle CEP.

	
Note:

For more information about data cartridges, see:

	
"Introduction to Data Cartridges" in the Oracle Fusion Middleware CQL Language Reference for Oracle Complex Event Processing

	
"Oracle Spatial" in the Oracle Fusion Middleware CQL Language Reference for Oracle Complex Event Processing

Example 2-4 Oracle Spatial Example Component Configuration File

<?xml version="1.0" encoding="UTF-8"?>
<n1:config
 xsi:schemaLocation="http://www.bea.com/ns/wlevs/config/application wlevs_application_config.xsd"
 xmlns:n1="http://www.bea.com/ns/wlevs/config/application"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <http-pub-sub-adapter>
 <name>BusPosPub</name>
 <server-url>http://localhost:9002/pubsub</server-url>
 <channel>/bus/buspos</channel>
 <event-type>BusPosPubEvent</event-type>
 </http-pub-sub-adapter>

 <http-pub-sub-adapter>
 <name>BusStopPub</name>
 <server-url>http://localhost:9002/pubsub</server-url>
 <channel>/bus/busstop</channel>
 <event-type>BusStopPubEvent</event-type>
 </http-pub-sub-adapter>

 <http-pub-sub-adapter>
 <name>BusStopArrivalPub</name>
 <server-url>http://localhost:9002/pubsub</server-url>
 <channel>/bus/busstoparrival</channel>
 <event-type>BusStopArrivalEvent</event-type>
 </http-pub-sub-adapter>

 <processor>
 <name>Processor</name>
 <rules>

 <view id="BusPosGeomStream" >
 select bus.busId as busId, bus.seq as seq,
 com.oracle.cep.cartridge.spatial.Geometry.createPoint(8307, bus.longitude, bus.latitude) as geom
 from BusPosStream as bus
 </view>

 <query id="BusArrival">
 ISTREAM(
 select systimestamp() as incidentTime, bus.busId as busId, busstop.seq as stopSeq
 from BusPosGeomStream[NOW] as bus, BusStopRelation as busstop
 where CONTAIN@spatial(busstop.geom, bus.geom, 0.0d) = true and
 bus.busId = busstop.busId
)
 </query>

 <query id="BusStopOut">
 select busId, seq as id, com.oracle.cep.sample.spatial.OrdsHelper.getOrds(geom) as coords from BusStopRelation
 </query>

 <query id="BusPosOut">
 select systimestamp() as lastTime, busId, longitude, latitude from BusPosStream
 </query>
 </rules>
 </processor>

 <channel>
 <name>BusStopArrivalChannel</name>
 <selector>BusArrival</selector>
 </channel>

 <channel>
 <name>BusPosChannel</name>
 <selector>BusPosOut</selector>
 </channel>

 <channel>
 <name>BusStopChannel</name>
 <selector>BusStopOut</selector>
 </channel>

</n1:config>

2.9 Foreign Exchange (FX) Example

The foreign exchange example, called FX for simplicity, is a more complex example than the HelloWorld example because it includes multiple processors that handle information from multiple data feeds. In the example, the data feeds are simulated using the Oracle CEP load generator utility.

Figure 2-75 shows the FX example Event Processing Network (EPN). The EPN contains the components that make up the application and how they fit together.

Figure 2-75 FX Example Event Processing Network

[image: Description of Figure 2-75 follows]

In this scenario, three data feeds, simulated using the load generator, send a constant pair of values from different parts of the world; the value pairs consist of a currency pair, such as USDEUR for US dollar - European euro, and an exchange rate between the two currencies. The fxMarketAmer, fxMarketAsia, and fxMarketEuro adapters receive the data from the feeds, convert them into events, and pass them to the corresponding FilterAmer, FilterAsia, and FilterEuro processors. Each processor performs an initial stale check to ensure that no event is more than 1 second old and then a boundary check to ensure that the exchange rate between the two currencies is within a current boundary. The processor also only selects a specific currency pair from a particular channel; for example, the server selects USDEUR from the simulated American data feed, but rejects all other pairs, such as USDAUD (Australian dollar).

After the data from each data feed provider passes this initial preparation phase, a different processor, called FindCrossRate, joins all events across all providers, calculates the mid-point between the maximum and minimum rate, and then applies a trader-specified spread. Finally, the processor forwards the rate to the POJO that contains the business code; in this example, the POJO simply publishes the rate to clients.

The Oracle CEP monitor is configured to watch if the event latency in the last step exceeds some threshold, such as no updated rates in a 30 second time-span, and if there is too much variance between two consecutive rates for the same currency pair. Finally, the last rate of each currency pair is forwarded to the Oracle CEP http pub-sub server.

2.9.1 Running the Foreign Exchange Example

For optimal demonstration purposes, Oracle recommends that you run this example on a powerful computer, such as one with multiple CPUs or a 3 GHz dual-core Intel, with a minimum of 2 GB of RAM.

The Foreign Exchange (FX) application is pre-deployed to the fx_domain domain. To run the application, you simply start an instance of Oracle CEP server.

To run the foreign exchange example:

	
Open a command window and change to the default server directory of the FX domain directory, located in MIDDLEWARE_HOME\ocep_11.1\samples\domains\fx_domain\defaultserver, where MIDDLEWARE_HOME refers to the Middleware directory you specified when you installed Oracle CEP, such as d:\Oracle\Middleware.

prompt> cd d:\Oracle iddleware\ocep_11.1\samples\domains\fx_domain\defaultserver

	
Set your development environment, as described in Section 2.5, "Setting Your Development Environment."

	
Start Oracle CEP by executing the appropriate script with the correct command line arguments:

	
On Windows:

	
If you are using the JRockit JDK included in Oracle JRockit Real Time, enable the deterministic garbage collector by passing the -dgc parameter to the command:

prompt> startwlevs.cmd -dgc

	
If you are not using the JRockit JDK included in Oracle JRockit Real Time:

prompt> startwlevs.cmd

	
On UNIX:

	
If you are using the JRockit JDK included in Oracle JRockit Real Time, enable the deterministic garbage collector by passing the -dgc parameter to the command:

prompt> startwlevs.sh -dgc

	
If you are not using the JRockit JDK included in Oracle JRockit Real Time:

prompt> startwlevs.sh

The FX application is now ready to receive data from the data feeds.

	
To simulate an American data feed, open a new command window and set your environment as described in Section 2.5, "Setting Your Development Environment."

	
Change to the MIDDLEWARE_HOME\ocep_11.1\utils\load-generator directory, where MIDDLEWARE_HOME refers to the Middleware directory you specified when you installed Oracle CEP, such as d:\Oracle\Middleware.

	
Run the load generator using the fxAmer.prop properties file:

	
On Windows:

prompt> runloadgen.cmd fxAmer.prop

	
On UNIX:

prompt> runloadgen.sh fxAmer.prop

	
Repeat steps 4 - 6 to simulate an Asian data feed, using the fxAsia.prop properties file:

	
On Windows:

prompt> runloadgen.cmd fxAsia.prop

	
On UNIX:

prompt> runloadgen.sh fxAsia.prop

	
Repeat steps 4 - 6 to simulate an European data feed, using the fxEuro.prop properties file:

	
On Windows:

prompt> runloadgen.cmd fxEuro.prop

	
On UNIX:

prompt> runloadgen.sh fxEuro.prop

After the server status messages scroll by in the command window from which you started the server, and the three load generators start, you should see messages similar to the following being printed to the server command window (the message will likely be on one line):

OutputBean:onEvent() +
 <TupleValue>
 <EventType>SpreaderOuputEvent</EventType>
 <ObjectName>FindCrossRatesRule</ObjectName>
 <Timestamp>1843704855846</Timestamp>
 <TupleKind>null</TupleKind>
 <DoubleAttribute>
 <Value>90.08350000074516</Value>
 </DoubleAttribute>
 <CharAttribute>
 <Value>USD</Value>
 <Length>3</Length>
 </CharAttribute>
 <CharAttribute>
 <Value>JPY</Value>
 <Length>3</Length>
 </CharAttribute>
 <IsTotalOrderGuarantee>false</IsTotalOrderGuarantee>
</TupleValue>

These messages indicate that the Foreign Exchange example is running correctly. The output shows the cross rates of US dollars to Japanese yen and US dollars to UK pounds sterling.

2.9.2 Building and Deploying the Foreign Exchange Example from the Source Directory

The Foreign Exchange (FX) sample source directory contains the Java source, along with other required resources such as configuration XML files, that make up the FX application. The build.xml Ant file contains targets to build and deploy the application to the fx_domain domain, as described in Section 2.9.3, "Description of the Ant Targets to Build FX."

To build and deploy the foreign exchange example from the source directory:

	
If the FX Oracle CEP instance is not already running, follow the procedure in Section 2.9.1, "Running the Foreign Exchange Example" to start the server.

You must have a running server to successfully deploy the rebuilt application.

	
Open a new command window and change to the FX source directory, located in MIDDLEWARE_HOME\ocep_11.1\samples\source\applications\fx, where MIDDLEWARE_HOME refers to the Middleware directory you specified when you installed Oracle CEP installation directory, such as d:\Oracle\Middleware.

prompt> cd d:\Oracle\Middleware\ocep_11.1\samples\source\applications\fx

	
Set your development environment, as described in Section 2.5, "Setting Your Development Environment."

	
Execute the all Ant target to compile and create the application JAR file:

prompt> ant all

	
Execute the deploy Ant target to deploy the application JAR file to Oracle CEP:

prompt> ant -Dusername=wlevs -Dpassword=wlevs -Daction=update deploy

	
Caution:

This target overwrites the existing FX application JAR file in the domain directory.

	
If the load generators required by the FX application are not running, start them as described in Section 2.9.1, "Running the Foreign Exchange Example."

After server status messages scroll by, you should see the following message printed to the output:

{crossRate=USDJPY, internalPrice=119.09934499999781}, {crossRate=USDGBP, internalPrice=0.5031949999999915}, {crossRate=USDJPY, internalPrice=117.73945624999783}

This message indicates that the FX example has been redeployed and is running correctly.

2.9.3 Description of the Ant Targets to Build FX

The build.xml file, located in the top-level directory of the FX source, contains the following targets to build and deploy the application:

	
clean—This target removes the dist and output working directories under the current directory.

	
all—This target cleans, compiles, and jars up the application into a file called com.bea.wlevs.example.fx_11.1.1.4_0.jar, and places the generated JAR file into a dist directory below the current directory.

	
deploy—This target deploys the JAR file to Oracle CEP using the Deployer utility.

For more information, see "Deployer Command-Line Reference" in the Oracle Fusion Middleware Administrator's Guide for Oracle Complex Event Processing.

2.9.4 Implementation of the FX Example

The implementation of the foreign exchange (FX) example generally follows "Creating Oracle CEP Applications: Typical Steps" in the Oracle Fusion Middleware Developer's Guide for Oracle Complex Event Processing for Eclipse.

Refer to that section for a task-oriented procedure that describes the typical development process.

All the files of the FX example are located relative to the MIDDLEWARE_HOME\ocep_11.1\samples\source\applications\fx directory, where MIDDLEWARE_HOME is the Middleware home directory you specified when you installed Oracle CEP c:\Oracle\Middleware. Oracle recommends that you use this example directory setup in your own environment, although it is obviously not required.

The files used by the FX example include:

	
An EPN assembly file that describes each component in the application and how all the components are connected together. You are required to include this XML file in your Oracle CEP application.

In the example, the file is called com.oracle.cep.sample.fx.context.xml and is located in the META-INF/spring directory.

For details, see Section 2.9.5, "The FX EPN Assembly File."

	
Two XML files that configure the processor components of the application:

The first XML file configures the filterAmer, filterAsia, filterEuro, and FindCrossRates processors, all in a single file. This XML file includes the Oracle CQL rules that select particular currency pairs from particular simulated market feeds and joins together all the events that were selected by the pre-processors, calculates an internal price for the particular currency pair, and then calculates the cross rate. In the example, this file is called spreader.xml and is located in the META-INF/wlevs directory.

The second XML file configures the summarizeResults processor and includes the Oracle CQL rule that summarizes the results of the FindCrossRates processor. In the example, this file is called SummarizeResults.xml and is located in the META-INF/wlevs directory.

For details, see Section 2.9.6, "The FX Processor Component Configuration Files."

	
An XML file that configures the PublishSummaryResults http pub-sub adapter. In the example, this file is called PubSubAdapterConfiguration.xml and is located in the META-INF/wlevs directory.

	
A Java file that implements the OutputBean component of the application, a POJO that contains the business logic. This POJO prints out to the screen the events that it receives, programmed in the onEvent method. The POJO also registers into the event type repository the ForeignExchangeEvent event type.

In the example, the file is called OutputBean.java and is located in the src/com/oracle/cep/sample/fx directory.

For additional information about the Oracle CEP APIs referenced in this POJO, see Oracle Fusion Middleware Java API Reference for Oracle Complex Event Processing.

	
A MANIFEST.MF file that describes the contents of the OSGi bundle that will be deployed to Oracle CEP.

In the example, the MANIFEST.MF file is located in the META-INF directory.

For more information about creating this file, as well as a description of creating the OSGi bundle that you deploy to Oracle CEP, see "Overview of Application Assembly and Deployment" in the Oracle Fusion Middleware Developer's Guide for Oracle Complex Event Processing for Eclipse.

The FX example uses a build.xml Ant file to compile, assemble, and deploy the OSGi bundle; see Section 2.9.2, "Building and Deploying the Foreign Exchange Example from the Source Directory" for a description of this build.xml file if you also use Ant in your development environment.

2.9.5 The FX EPN Assembly File

One of the main purposes of the EPN assembly file is to define the event processing network by declaring the components of the application and how they are all connected, or in other word, which components listen to which other components. Oracle CEP provides a set of custom Spring tags used to declare the network. You also use the EPN assembly file to register the event types used by your application and its Oracle CQL or EPL rules.

You use the EPN assembly file in the typical way to define the application component beans in the Spring application context; the application components beans are those implemented with Java classes, such as adapters and the POJO that contains the business logic.

For more information, see:

	
"Schema Reference: EPN Assembly spring-wlevs-v11_1_1_6.xsd" in the Oracle Fusion Middleware Developer's Guide for Oracle Complex Event Processing for Eclipse

	
"Oracle CEP Schemas" in the Oracle Fusion Middleware Developer's Guide for Oracle Complex Event Processing for Eclipse

Example 2-5 shows the EPN assembly file used in the FX sample application; see the explanation after the example for details about the entries in bold.

Example 2-5 FX EPN Assembly File

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:osgi="http://www.springframework.org/schema/osgi"
 xmlns:wlevs="http://www.bea.com/ns/wlevs/spring"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/osgi
 http://www.springframework.org/schema/osgi/spring-osgi.xsd
 http://www.bea.com/ns/wlevs/spring
 http://www.bea.com/ns/wlevs/spring/spring-wlevs-v11_1_1_6.xsd">

 <wlevs:event-type-repository>
 <wlevs:event-type type-name="StockTick">
 <wlevs:properties>
 <wlevs:property name="lastPrice" type="double"/>
 <wlevs:property name="symbol" type="char"/>
 </wlevs:properties>
 </wlevs:event-type>
 <wlevs:event-type type-name="CrossRateEvent">
 <wlevs:properties>
 <wlevs:property name="price" type="double"/>
 <wlevs:property name="fromRate" type="char"/>
 <wlevs:property name="toRate" type="char"/>
 </wlevs:properties>
 </wlevs:event-type>
 <wlevs:event-type type-name="SpreaderOuputEvent">
 <wlevs:properties type="tuple">
 <wlevs:property name="internalPrice" type="double"/>
 <wlevs:property name="crossRate1" type="char"/>
 <wlevs:property name="crossRate2" type="char"/>
 </wlevs:properties>
 </wlevs:event-type>
 <wlevs:event-type type-name="CrossrateSummaryEvent">
 <wlevs:properties>
 <wlevs:property name="averageInternalPrice" type="double"/>
 <wlevs:property name="crossRatePair" type="char"/>
 <wlevs:property name="totalCount" type="int"/>
 </wlevs:properties>
 </wlevs:event-type>
 </wlevs:event-type-repository>

 <!-- Assemble EPN (event processing network) -->
 <wlevs:adapter id="fxMarketAmer" provider="loadgen">
 <wlevs:instance-property name="port" value="9011"/>
 <wlevs:listener ref="FilterAmerStream"/>
 </wlevs:adapter>

 <!-- This processor is simply here to filter the inbound event data
 to make it appear more realistic. It would not normally be required
 in a real application -->
 <wlevs:channel id="FilterAmerStream" event-type="StockTick">
 <wlevs:listener ref="FilterAmer"/>
 </wlevs:channel>
 <wlevs:processor id="FilterAmer" provider="cql">
 <wlevs:listener ref="FxQuoteStream"/>
 </wlevs:processor>

 <wlevs:adapter id="fxMarketAsia" provider="loadgen">
 <wlevs:instance-property name="port" value="9012"/>
 <wlevs:listener ref="FilterAsiaStream"/>
 </wlevs:adapter>

 <!-- This processor is simply here to filter the inbound event data
 to make it appear more realistic. It would not normally be required
 in a real application -->
 <wlevs:channel id="FilterAsiaStream" event-type="StockTick">
 <wlevs:listener ref="FilterAsia"/>
 </wlevs:channel>
 <wlevs:processor id="FilterAsia" provider="cql">
 <wlevs:listener ref="FxQuoteStream"/>
 </wlevs:processor>

 <wlevs:adapter id="fxMarketEuro" provider="loadgen">
 <wlevs:instance-property name="port" value="9013"/>
 <wlevs:listener ref="FilterEuroStream"/>
 </wlevs:adapter>

 <!-- This processor is simply here to filter the inbound event data
 to make it appear more realistic. It would not normally be required
 in a real application -->
 <wlevs:channel id="FilterEuroStream" event-type="StockTick">
 <wlevs:listener ref="FilterEuro"/>
 </wlevs:channel>
 <wlevs:processor id="FilterEuro" provider="cql">
 <wlevs:listener ref="FxQuoteStream"/>
 </wlevs:processor>

 <!-- this it to allow delivery of specifc values for testing -->
 <wlevs:adapter id="csvTestData" provider="csvgen">
 <wlevs:instance-property name="port" value="9014"/>
 <wlevs:instance-property name="eventTypeName" value="StockTick"/>
 <wlevs:instance-property
 name="eventPropertyNames"
 value="symbol,lastPrice"/>
 <wlevs:listener ref="FxQuoteStream"/>
 </wlevs:adapter>

 <wlevs:channel id="FxQuoteStream" event-type="CrossRateEvent">
 <wlevs:listener ref="FindCrossRates"/>
 </wlevs:channel>

 <wlevs:processor id="FindCrossRates" provider="cql">
 <wlevs:listener ref="CrossRateStream"/>
 </wlevs:processor>

 <wlevs:channel id="CrossRateStream" event-type="SpreaderOuputEvent" advertise="true">
 <wlevs:listener ref="summarizeResults"/>
 <wlevs:listener>
 <bean class="com.oracle.cep.sample.fx.OutputBean" autowire="byName"/>
 </wlevs:listener>
 </wlevs:channel>

 <wlevs:processor id="summarizeResults" provider="cql">
 <wlevs:listener ref="SummaryResultsStream"/>
 </wlevs:processor>

 <wlevs:adapter id="PublishSummaryResults" provider="httppub"></wlevs:adapter>
 <wlevs:channel id="SummaryResultsStream"
 event-type="CrossrateSummaryEvent">
 <wlevs:listener>
 <bean class="com.oracle.cep.sample.fx.OutputBean" autowire="byName"/>
 </wlevs:listener>

 <wlevs:listener ref="PublishSummaryResults"/>

 </wlevs:channel>
</beans>

In the preceding example:

	
The wlevs:event-type-repository element registers the event types that are used throughout the application. These events are all of type tuple and include:

	
StockTick: input events.

	
CrossRateEvent: event type output by the FilterAmer, FilterAsia, and FilterEuro processors.

	
SpreaderOutputEvent: event type output by the FindCrossRates processor.

	
CrossrateSummaryEvent: event type output by the summarizeResults processor.

Oracle CEP automatically creates instances of these event types when needed. You can then reference this data in the Oracle CQL rules of the application, the adapter Java class, and the POJO.

For more information, see "Event Types" in the Oracle Fusion Middleware Developer's Guide for Oracle Complex Event Processing for Eclipse .

	
The set of wlevs:adapter, wlevs:processor, and wlevs:channel elements set up the event processor network by declaring each component in the network. The network consists of three adapters, four processors, and five streams, as described in Figure 2-75.

Each component is given a unique ID which can be referenced by other components when they declare their listeners and sources.

	
The wlevs:adapter elements specify adapter components, for example:

<wlevs:adapter id="fxMarketAmer" provider="loadgen">
 <wlevs:instance-property name="port" value="9011"/>
</wlevs:adapter>

The fxMarketAmer, fxMarketAsia, and fxMarketEuro adapters provide the principle input data sources. These adapters use the provider="loadgen" attribute of each wlevs:adapter element to specify that the adapters get their data from the Oracle CEP load generator utility. The wlevs:instance-property child element specifies the port number to which the adapter should listen.

The csvTestData adapter is an optional adapter you can use to feed test data into the application. This adapter uses the provider="csvgen" attribute to specify that this adapter gets its data from a comma separated value (CSV) file. For more information, see "Testing Applications With the Load Generator and csvgen Adapter" in the Oracle Fusion Middleware Developer's Guide for Oracle Complex Event Processing for Eclipse

The PublishSummaryResults adapter outputs events to the Oracle CEP http pub-sub server.

	
The wlevs:processor elements specify the complex event processors, for example:

<wlevs:processor id="FilterAmer" provider="cql">
 <wlevs:listener ref="FxQuoteStream"/>
</wlevs:processor>

You can use the listeners attribute, common to all component elements, or a wlevs:listener child element to specify the components that listen to the processor; in this case, it is a channel called FxQuoteStream.

	
The wlevs:channel elements specify the event streams between components, for example:

<wlevs:channel id="FxQuoteStream" event-type="CrossRateEvent"> <wlevs:listener ref="FindCrossRates"/></wlevs:channel>

As with all components, you can use the wlevs:listener and wlevs:source child elements to specify the other components that act as listeners and sources for this component.

In the example, the FindCrossRates processor listens to the FxQuoteStream channel.

Example 2-6 shows how you can nest the definition of a component inside a wlevs:listener element:

Example 2-6 Nested Component Definition

<wlevs:channel id="CrossRateStream" event-type="SpreaderOuputEvent" advertise="true">
 <wlevs:listener ref="summarizeResults"/>
 <wlevs:listener>
 <bean class="com.oracle.cep.sample.fx.OutputBean" autowire="byName"/>
 </wlevs:listener>
</wlevs:channel>

In Example 2-6, the OutputBean POJO, declared as a standard Spring bean using the <bean> tag, listens to the CrossRateStream channel.

2.9.6 The FX Processor Component Configuration Files

The FX application uses five processors: three to handle the three data feeds, one that joins the resulting events, and one that generates summarized results.

The first four processors are configured in a single XML file, called spreader.xml. For more information, see Section 2.9.6.1, "FX Processor Component Configuration File: spreader.xml."

The fifth processor is configured in the XML file called SummarizeResults.xml. For more information, see Section 2.9.6.2, "FX Processor Component Configuration File: SummarizeResults.xml."

These XML files contain the Oracle CEP queries executed against input events. This sample uses the Oracle CQL language. For additional information and samples about using Oracle CEP query languages, see:

	
Oracle Fusion Middleware CQL Language Reference for Oracle Complex Event Processing.

	
Oracle Fusion Middleware EPL Language Reference for Oracle Complex Event Processing.

	
Note:

Oracle EPL is superseded by Oracle CQL.

2.9.6.1 FX Processor Component Configuration File: spreader.xml

The first four processors are configured in a single XML file, called spreader.xml, as Example 2-7 shows.

Example 2-7 FX Processor Component Configuration File: spreader.xml

<?xml version="1.0" encoding="UTF-8"?>
<n1:config xsi:schemaLocation="http://www.bea.com/ns/wlevs/config/application wlevs_application_config.xsd"
 xmlns:n1="http://www.bea.com/ns/wlevs/config/application"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <processor>
 <name>FilterAmer</name>
 <rules>
 <view id="UsdToEur" schema="lastPrice symbol"><![CDATA[
 select lastPrice, symbol from FilterAmerStream [range 1] where symbol="USDEUR"
]]></view>
 <view id="UsdToEurPre" schema="price fromRate toRate"><![CDATA[
 select avg(lastPrice) as price, "USD" as fromRate, "EUR" as toRate
 from UsdToEur
 where lastPrice < 3.0 and lastPrice > 0.25
]]></view>
 <query id="AmerFilterCrossRates"><![CDATA[select * from UsdToEurPre]]></query>
 </rules>
 </processor>
 <processor>
 <name>FilterAsia</name>
 <rules>
 <view id="EurToJpy" schema="lastPrice symbol"><![CDATA[
 select lastPrice, symbol from FilterAsiaStream [range 1] where symbol="EURJPY"
]]></view>
 <view id="EurToJpyPre" schema="price fromRate toRate"><![CDATA[
 select avg(lastPrice) as price, "EUR" as fromRate, "JPY" as toRate
 from EurToJpy
 where lastPrice < 200.0 and lastPrice > 100.0
]]></view>
 <query id="AsiaFilterCrossRates"><![CDATA[select * from EurToJpyPre]]></query>
 </rules>
 </processor>
 <processor>
 <name>FilterEuro</name>
 <rules>
 <view id="EurToGbp" schema="lastPrice symbol"><![CDATA[
 select lastPrice, symbol from FilterEuroStream [range 1] where symbol="EURGBP"
]]></view>
 <view id="EurToGbpPre" schema="price fromRate toRate"><![CDATA[
 select avg(lastPrice) as price, "EUR" as fromRate, "GBP" as toRate
 from EurToGbp
 where lastPrice < 1.5 and lastPrice > 0.5
]]></view>
 <query id="EuroFilterCrossRates"><![CDATA[select * from EurToGbpPre]]></query>
 </rules>
 </processor>

 <processor>
 <name>FindCrossRates</name>
 <rules>
 <query id="FindCrossRatesRule"><![CDATA[
 select ((a.price * b.price) + 0.05) as internalPrice,
 a.fromRate as crossRate1,
 b.toRate as crossRate2
 from FxQuoteStream [range 1] as a, FxQuoteStream [range 1] as b
 where
 NOT (a.price IS NULL)
 and
 NOT (b.price IS NULL)
 and
 a.toRate = b.fromRate
]]></query>
 </rules>
 </processor>
</n1:config>

The FilterAmer, FilterAsia, and FilterEuro processors in this file are all essentially the same; the differences lie only in the values used in the Oracle CQL queries for querying different items from the data feeds and applying different boundary conditions. For this reason, this section will discuss just the FilterAmer processor.

The Oracle CQL rules executed by the FilterAmer processor are:

 <processor>
 <name>FilterAmer</name>
 <rules>
 <view id="UsdToEur" schema="lastPrice symbol"><![CDATA[
 select lastPrice, symbol from FilterAmerStream [range 1] where symbol="USDEUR"
]]></view>
 <view id="UsdToEurPre" schema="price fromRate toRate"><![CDATA[
 select avg(lastPrice) as price, "USD" as fromRate, "EUR" as toRate
 from UsdToEur
 where lastPrice < 3.0 and lastPrice > 0.25
]]></view>
 <query id="AmerFilterCrossRates"><![CDATA[select * from UsdToEurPre]]></query>
 </rules>
 </processor>

To understand the query, one must look at the various clauses, as follows:

	
The UsdToEur view serves as a subquery that selects only those items from the StockTick data feed in which the symbol value is USDEUR (US dollar - European euro exchange) and should reject all other items. The from clause specifies also specifies that the window of time for which this Oracle CQL query executes is 1 second.

	
The UsdToEurPre view serves as a subquery that selects from the UsdToEur view. Its where clause specifies the boundary condition to ensure that the rates for a particular item from the feed fall within an accepted range; in this case, the lastPrice for a particular item from the feed must be between $3.00 and $0.25.

	
The AmerFilterCrossRates query selects everything from the UsdToEurPre view. Only the results of a query are output to the down-stream channels that listen to a processor.

The Oracle CQL rule executed by the FindCrossRates processor are:

 <processor>
 <name>FindCrossRates</name>
 <rules>
 <query id="FindCrossRatesRule"><![CDATA[
 select ((a.price * b.price) + 0.05) as internalPrice,
 a.fromRate as crossRate1,
 b.toRate as crossRate2
 from FxQuoteStream [range 1] as a, FxQuoteStream [range 1] as b
 where
 NOT (a.price IS NULL)
 and
 NOT (b.price IS NULL)
 and
 a.toRate = b.fromRate
]]></query>
 </rules>
 </processor>

To understand the query, one must look at the various clauses, as follows:

	
The from and where clauses join two events from the CrossRateEvent object (which contains events selected by the FilterAmer, FilterAsia, and FilterEuro processors) where the value of the toRate and fromRate are the same. The from clause also sets the processing window, again of 1 second.

	
The select clause calculates an internal price of a particular currency, which averages the to and from rate of a the currency plus a fee of $.05, and also calculates a cross rate, which is defined as the price of one currency in terms of another currency in the market of a third country.

The result of this query is then sent to the business object POJO and the summarizeResults processor.

2.9.6.2 FX Processor Component Configuration File: SummarizeResults.xml

The fifth processor is configured in the XML file called SummarizeResults.xml as Example 2-8 shows.

Example 2-8 FX Processor Component Configuration File: SummarizeResults.xml

<?xml version="1.0" encoding="UTF-8"?>
<wlevs:config xmlns:wlevs="http://www.bea.com/ns/wlevs/config/application">
 <processor>
 <name>summarizeResults</name>
 <rules>
 <query id="Rule"><![CDATA[
 select
 crossRate1 || crossRate2 as crossRatePair,
 count(*) as totalCount,
 avg(internalPrice) as averageInternalPrice
 from CrossRateStream [RANGE 1 SLIDE 1]
 group by crossRate1,crossRate2
 having count(*) > 0
]]></query>
 </rules>
 </processor>
</wlevs:config>

The result of this query is then sent to the business object POJO and the PublishSummaryResults adapter.

2.10 Signal Generation Example

The signal generation sample application receives simulated market data and verifies if the price of a security has fluctuated more than two percent. The application also detects if there is a trend occurring by keeping track of successive stock prices for a particular symbol; if more than three successive prices fluctuate more than two percent, this is considered a trend.

Figure 2-76 shows the signal generation example Event Processing Network (EPN). The EPN contains the components that make up the application and how they fit together.

Figure 2-76 The Signal Generation Example Event Processing Network

[image: Description of Figure 2-76 follows]

The application simulates a market data feed using the Oracle CEP load generator utility; in this example, the load generator generates up to 10,000 messages per second. The example includes an HTML dashboard which displays the matched events along with the latencies; events consist of a stock symbol, a timestamp, and the price.

The example demonstrates very low latencies, with minimum latency jitter under high throughputs. Once the application starts running, the processor matches an average of 800 messages per second. If the application is run on the minimum configured system, the example shows very low average latencies (30-300 microsecond, on average) with minimal latency spikes (low milliseconds).

The example computes and displays latency values based on the difference between a timestamp generated on the load generator and timestamp on Oracle CEP. Computing valid latencies requires very tight clock synchronization, such as 1 millisecond, between the computer running the load generator and the computer running Oracle CEP. For this reason, Oracle recommends running both the load generator and Oracle CEP on a single multi-CPU computer where they will share a common clock.

The example also shows how to use the Oracle CEP event caching feature. In particular the single processor in the EPN sends events to both an event bean and a cache.

The example also demonstrates how to use Oracle CQL queries.

2.10.1 Running the Signal Generation Example

For optimal demonstration purposes, Oracle recommends that you run this example on a powerful computer, such as one with multiple CPUs or a 3 GHz dual-core Intel, with a minimum of 2 GB of RAM.

The signalgeneration_domain domain contains a single application: the signal generation sample application. To run the signal generation application, you simply start an instance of Oracle CEP in that domain.

To run the signal generation example:

	
Open a command window and change to the default server directory of the signalgeneration_domain domain directory, located in MIDDLEWARE_HOME\ocep_11.1\samples\domains\signalgeneration_domain\defaultserver, where MIDDLEWARE_HOME refers to the Middleware home directory you specified when you installed Oracle CEP, such as d:\Oracle\Middleware.

prompt> cd d:\Oracle\Middleware\ocep_11.1\samples\domains\signalgeneration_domain\defaultserver

	
Set your development environment, as described in Section 2.5, "Setting Your Development Environment."

	
Start Oracle CEP by executing the appropriate script with the correct command line arguments:

	
On Windows:

	
If you are using the JRockit JDK included in Oracle JRockit Real Time, enable the deterministic garbage collector by passing the -dgc parameter to the command:

prompt> startwlevs.cmd -dgc

	
If you are not using the JRockit JDK included in Oracle JRockit Real Time:

prompt> startwlevs.cmd

	
On UNIX:

	
If you are using the JRockit JDK included in Oracle JRockit Real Time, enable the deterministic garbage collector by passing the -dgc parameter to the command:

prompt> startwlevs.sh -dgc

	
If you are not using the JRockit JDK included in Oracle JRockit Real Time:

prompt> startwlevs.sh

	
Wait until you see console messages like this:

<Apr 24, 2009 11:40:37 AM EDT> <Notice> <Server> <BEA-2046000> <Server STARTED>
Throughput (msg per second): 0. Average latency (microseconds): 0
Throughput (msg per second): 0. Average latency (microseconds): 0
Throughput (msg per second): 0. Average latency (microseconds): 0
Throughput (msg per second): 0. Average latency (microseconds): 0
...

The signal generation application is now ready to receive data from the data feeds.

Next, to simulate a data feed, you use a load generator programmed specifically for the example.

	
0pen a new command window.

	
Change to the MIDDLEWARE_HOME\ocep_11.1\samples\domains\signalgeneration_domain\defaultserver\utils directory, where MIDDLEWARE_HOME refers to the Middleware home directory you specified when you installed Oracle CEP, such as d:Oracle\Middleware.

	
Run the startDataFeed command:

	
On Windows:

prompt> startDataFeed.cmd

	
On UNIX:

prompt> startDataFeed.sh

	
Invoke the example dashboard by starting a browser and opening the following HTML page:

 http://host:9002/signalgeneration/dashboard.html

Replace host with the name of the computer on which Oracle CEP is running; if it is the same computer as your browser, you can use localhost.

	
In the browser, click Start on the HTML page.

You should start seeing the events that match the Oracle CQL rules configured for this example as Figure 2-77 shows.

Figure 2-77 Signal Generation Dashboard

[image: Description of Figure 2-77 follows]

2.10.2 Building and Deploying the Signal Generation Example from the Source Directory

The signal generation sample source directory contains the Java source, along with other required resources, such as configuration XML files, EPN assembly file, and DOJO client JavaScript libraries, that make up the signal generation application. The build.xml Ant file contains targets to build and deploy the application to the signalgeneration_domain domain, as described in Section 2.10.3, "Description of the Ant Targets to Build Signal Generation."

To build and deploy the signal generation example from the source directory:

	
If the signal generation Oracle CEP instance is not already running, follow the procedure in Section 2.10.1, "Running the Signal Generation Example" to start the server. You must have a running server to successfully deploy the rebuilt application.

	
Open a new command window and change to the signal generation source directory, located in MIDDLEWARE_HOME\ocep_11.1\samples\source\applications\signalgeneration, where MIDDLEWARE_HOME refers to the Middleware home directory you specified when you installed Oracle CEP, such as d:\Oracle\Middleware.

prompt> cd d:\Oracle\Middleware\ocep_11.1\samples\source\applications\signalgeneration

	
Set your development environment, as described in Section 2.5, "Setting Your Development Environment."

	
Execute the all Ant target to compile and create the application JAR file:

prompt> ant all

	
Execute the deploy Ant target to deploy the application JAR file to the MIDDLEWARE_HOME\ocep_11.1\samples\domains\signalgeneration_domain\defaultserver\applications\signalgeneration directory:

prompt> ant deploy

	
Caution:

This target overwrites the existing signal generation application JAR file in the domain directory.

	
If the load generator required by the signal generation application is not running, start it as described in Section 2.10.1, "Running the Signal Generation Example."

	
Invoke the example dashboard as described in Section 2.10.1, "Running the Signal Generation Example."

2.10.3 Description of the Ant Targets to Build Signal Generation

The build.xml file, located in the top-level directory of the signal generation example source, contains the following targets to build and deploy the application:

	
clean—This target removes the dist and output working directories under the current directory.

	
all—This target cleans, compiles, and jars up the application into a file called com.bea.wlevs.example.signalgen_11.1.1.4_0.jar, and places the generated JAR file into a dist directory below the current directory.

	
deploy—This target deploys the JAR file to Oracle CEP using the Deployer utility.

For more information, see "Deployer Command-Line Reference" in the Oracle Fusion Middleware Administrator's Guide for Oracle Complex Event Processing.

2.10.4 Implementation of the Signal Generation Example

The implementation of the signal generation example generally follows "Creating Oracle CEP Applications: Typical Steps" in the Oracle Fusion Middleware Developer's Guide for Oracle Complex Event Processing for Eclipse.

Refer to that section for a task-oriented procedure that describes the typical development process.

All the files of the signal generation are located relative to the MIDDLEWARE_HOME\ocep_11.1\samples\source\applications\signalgeneration directory, where MIDDLEWARE_HOME refers to the Middleware home directory you specified when you installed Oracle CEP, such as c:\Oracle\Middleware. Oracle recommends that you use this example directory setup in your own environment, although it is obviously not required.

The files used by the signal generation example include:

	
A EPN assembly file that describes each component in the application and how all the components are connected together.

In the example, the file is called epn_assembly.xml and is located in the META-INF/spring directory.

For details, see Section 2.10.5, "The Signal Generation EPN Assembly File."

	
An XML file that configures the processor component of the application; this file is called config.xml and is located in the META-INF/wlevs directory

The config.xml file configures the processor1 Oracle CQL processor, in particular the Oracle CQL rules that verify whether the price of a security has fluctuated more than two percent and whether a trend has occurred in its price.

For details, see Section 2.10.6, "The Signal Generation Component Configuration Files."

	
A Java file that implements the SignalgenOutputBean component of the application, a POJO that contains the business logic. This POJO is an HttpServlet and an EventSink. Its onEvent method consumes PercentTick and TrendTick event instances, computes latency, and displays dashboard information.

In the example, the file is called SignalgenOutputBean.java and is located in the src/oracle/cep/example/signalgen directory.

For a detailed description of this file, as well as general information about programming event sinks, see "Stream Sources and Stream Sinks and Relation Sources and Relation Sinks" in the Oracle Fusion Middleware Developer's Guide for Oracle Complex Event Processing for Eclipse.

	
A MANIFEST.MF file that describes the contents of the OSGi bundle that will be deployed to Oracle CEP.

In the example, the MANIFEST.MF file is located in the META-INF directory

For more information about creating this file, as well as a description of creating the OSGi bundle that you deploy to Oracle CEP, see "Overview of Application Assembly and Deployment" in the Oracle Fusion Middleware Developer's Guide for Oracle Complex Event Processing for Eclipse.

	
A dashboard.html file in the main example directory; this HTML file is the example dashboard that displays events and latencies of the running signal generation application. The HTML file uses Dojo JavaScript libraries from http://dojotoolkit.org/, located in the dojo directory.

For additional information about the Oracle CEP APIs referenced in ForeignExchangeBuilderFactory, see Oracle Fusion Middleware Java API Reference for Oracle Complex Event Processing.

The signal generation example uses a build.xml Ant file to compile, assemble, and deploy the OSGi bundle; see Section 2.10.2, "Building and Deploying the Signal Generation Example from the Source Directory" for a description of this build.xml file if you also use Ant in your development environment.

2.10.5 The Signal Generation EPN Assembly File

One of the main purposes of the EPN assembly file is to define the event processing network by declaring the components of the application and how they are all connected, or in other word, which components listen to which other components. Oracle CEP provides a set of custom Spring tags used to declare the network. You also use the EPN assembly file to register the event types used by your application and its Oracle CQL rules.

You use the EPN assembly file in the typical way to define the application component beans in the Spring application context; the application components beans are those implemented with Java classes, such as adapters and the POJO that contains the business logic.

For more information, see:

	
"Schema Reference: EPN Assembly spring-wlevs-v11_1_1_6.xsd" in the Oracle Fusion Middleware Developer's Guide for Oracle Complex Event Processing for Eclipse

	
"Oracle CEP Schemas" in the Oracle Fusion Middleware Developer's Guide for Oracle Complex Event Processing for Eclipse

Example 2-9 shows the EPN assembly file used in the signal generation sample application; see the explanation after the example for details about the entries in bold.

Example 2-9 Signal Generation EPN Assembly File

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:osgi="http://www.springframework.org/schema/osgi"
 xmlns:wlevs="http://www.bea.com/ns/wlevs/spring"
 xmlns:cqlx="http://www.oracle.com/schema/cqlx"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/osgi
 http://www.springframework.org/schema/osgi/spring-osgi.xsd
 http://www.bea.com/ns/wlevs/spring
 http://www.bea.com/ns/wlevs/spring/spring-wlevs-v11_1_1_6.xsd">

 <wlevs:event-type-repository>
 <wlevs:event-type type-name="TrendTick">
 <wlevs:properties>
 <wlevs:property name="symbol" type="char"/>
 <wlevs:property name="lastPrice" type="double"/>
 <wlevs:property name="trendLastPrice" type="bigint"/>
 <wlevs:property name="startTimestamp" type="bigint"/>
 </wlevs:properties>
 </wlevs:event-type>
 <wlevs:event-type type-name="PercentTick">
 <wlevs:properties>
 <wlevs:property name="symbol" type="char"/>
 <wlevs:property name="lastPrice" type="double"/>
 <wlevs:property name="percentLastPrice" type="double"/>
 <wlevs:property name="startTimestamp" type="bigint"/>
 </wlevs:properties>
 </wlevs:event-type>
 <wlevs:event-type type-name="Symbols">
 <wlevs:properties>
 <wlevs:property name="symbol" type="char" length="10"/>
 </wlevs:properties>
 </wlevs:event-type>
 </wlevs:event-type-repository>

 <wlevs:adapter id="loadgenAdapter" provider="loadgen">
 <wlevs:instance-property name="port" value="9001"/>
 <wlevs:instance-property name="threadContextTimestamp" value="true"/>
 </wlevs:adapter>

 <!-- definition for cache that holds the symbols -->
 <wlevs:caching-system id="signalgenCachingSystem"/>
 <wlevs:cache id="symbolsCache" key-properties="symbol" value-type="Symbols">
 <wlevs:caching-system ref="signalgenCachingSystem"/>
 <wlevs:cache-loader ref="symbolsCacheLoader"/>
 </wlevs:cache>

 <wlevs:processor id="processor1">
 <wlevs:cache-source ref="symbolsCache"/>
 </wlevs:processor>

 <!-- Streams are just place-holders in this scenario, they just pass-through -->
 <wlevs:channel id="StockTickStream" max-threads="0" max-size="0" event-type="OracleStockTick">
 <wlevs:listener ref="processor1"/>
 <wlevs:source ref="loadgenAdapter"/>
 </wlevs:channel>

 <!-- advertise for monitoring -->
 <wlevs:channel id="TrendStream" max-threads="0" max-size="0" advertise="true" event-type="TrendTick">

 <wlevs:listener ref="outputbean"/>
 <wlevs:source ref="processor1"/>
 </wlevs:channel>

 <wlevs:channel id="PercentStream" max-threads="0" max-size="0" advertise="true" event-type="PercentTick">

 <wlevs:listener ref="outputbean"/>
 <wlevs:source ref="processor1"/>
 </wlevs:channel>

 <bean id="outputbean" class="oracle.cep.example.signalgen.SignalgenOutputBean">
 <property name="timestampProperty" value="startTimestamp"/>
 </bean>

 <bean id="symbolsCacheLoader" class="oracle.cep.example.signalgen.SymbolsCacheLoader">
 <property name="symbolsFileName" value="applications/MySigGen/symbols.txt"/>
 <property name="eventTypeName" value="Symbols"/>
 </bean>

</beans>

In the preceding example:

	
The wlevs:event-type-repository element creates the event types that are used throughout the application as tuples; in the signal generation application, there are the following events:

	
TrendTick: defined in the EPN assembly file.

	
PercentTick: defined in the EPN assembly file.

	
Symbols: defined in the EPN assembly file.

	
The set of wlevs:adapter, wlevs:processor, wlevs:channel, and wlevs:caching-system entries set up the event processor network by declaring each component in the network as described in Figure 2-76.

Each component is given a unique ID which can be referenced by other components when they declare their listeners and sources.

	
The wlevs:adapter element specifies the adapter, for example:

<wlevs:adapter id="loadgenAdapter" provider="loadgen">
 <wlevs:instance-property name="port" value="9001"/>
 <wlevs:instance-property name="threadContextTimestamp" value="true"/>
</wlevs:adapter>

The wlevs:adapter element provider="loadgen" attribute specifies that the adapter gets its data from the Oracle CEP load generator utility. The wlevs:instance-property child element specifies the port number to which the adapter should listen.

	
The wlevs:processor element specifies the Oracle CQL processor, for example:

<wlevs:processor id="processor1">
 <wlevs:cache-source ref="symbolsCache"/>
</wlevs:processor>

The listener attribute, common to all component tags, specifies the component that listens to the processor; in this case, the listener is symbolsCache.

	
The wlevs:caching-system element specifies the Oracle CEP local event cache the application uses to improve performance, for example:

<wlevs:caching-system id="signalgenCachingSystem"/>
<wlevs:cache id="symbolsCache" key-properties="symbol" value-type="Symbols">
 <wlevs:caching-system ref="signalgenCachingSystem"/>
 <wlevs:cache-loader ref="symbolsCacheLoader"/>
</wlevs:cache>

For more information on caches, see "Configuring Oracle CEP Caching" in the Oracle Fusion Middleware Developer's Guide for Oracle Complex Event Processing for Eclipse.

2.10.6 The Signal Generation Component Configuration Files

The Signal Generation application configures its processor and cache in a component configuration file that Example 2-10 shows.

Example 2-10 Signal Generation Component Configuration File

<?xml version="1.0" encoding="UTF-8"?>
<!-- this is here to test that you ignore this file -->
<n1:config xsi:schemaLocation="http://www.bea.com/ns/wlevs/config/application wlevs_application_config.xsd"
 xmlns:n1="http://www.bea.com/ns/wlevs/config/application"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" >
 <processor>
 <name>processor1</name>
 <rules>
 <view id="S" schema="symbol price">
 <![CDATA[
 RStream(select T.symbol, T.lastPrice from StockTickStream[now] as T, symbolsCache as R where T.symbol = R.symbol)
]]>
 </view>
 <query id="percent">
 <![CDATA[
 select symbol, lastPrice, percentLastPrice, startTimestamp
 from S MATCH_RECOGNIZE (
 PARTITION BY symbol
 MEASURES
 B.symbol as symbol,
 B.price as lastPrice,
 100*(B.price - A.price)/A.price as percentLastPrice,
 B.ELEMENT_TIME as startTimestamp
 ALL MATCHES
 PATTERN (A B)
 DEFINE
 B AS (100*(B.price - A.price)/A.price > 2.0
 or 100*(B.price - A.price)/A.price < -2.0
)
) as T
]]>
 </query>
 <view id="vTrend">
 <![CDATA[
 select symbol, lastPrice, trendLastPrice, startTimestamp
 from S MATCH_RECOGNIZE (
 PARTITION BY symbol
 MEASURES
 C.symbol as symbol,
 C.lastPrice as lastPrice
 Z.ELEMEMT_TIME as startTimestamp,
 count(C.*) as trendLastPrice
 ALL MATCHES
 PATTERN (A B C+)
 DEFINE
 A AS ((A.lastPrice > PREV(A.lastPrice, 1)) AND
 (NOT(PREV(A.lastPrice, 1) > PREV(A.lastPrice, 2)))
),
 B AS (B.lastPrice > PREV(B.lastPrice, 1)),
 C AS (C.lastPrice > PREV(C.lastPrice, 1))
) as T
]]>
 </view>
 <query id="trend">
 <![CDATA[
 select symbol, lastPrice, trendLastPrice, ELEMENT_TIME as startTimestamp from vTrend where trendLastPrice > 2
]]>
 </query>
 </rules>
 </processor>
 <channel>
 <name>TrendStream</name>
 <selector>trend</selector>
 </channel>
 <channel>
 <name>PercentStream</name>
 <selector>percent</selector>
 </channel>
</n1:config>

If your application contains multiple processors, adapters or channels, you can either declare them all in a single configuration file, or create separate configuration files for each component; the method you chose depends on which you find easier to manage.

For each component you configure, you must add the name child element to explicitly declare the specific component to which you are referring. The value of the name element must correspond to the component's unique identifier of its declaration in the EPN assembly file.

For example, assume a processor is declared in the EPN assembly file as follows:

<wlevs:processor id="processor1" ...>

Then its corresponding XML configuration would be as follows:

<processor>
 <name>processor1</name>
 ...
</processor>

The Signal Generation example uses a single configuration file for one processor with the name processor1 and one cache with the name symbolsCache. These names correspond with the declaration of the components in the EPN assembly file.

The processor element configures the processor component. The most important part of the processor configuration is the declaration of the set of Oracle Continuous Query Language (Oracle CQL) rules that this processor executes; these rules select the set of events that are eventually passed to the application business object. Each rule is declared with a query or relation element using an XML <![CDATA[...]]> section; all query and relation elements are grouped together within a single rules element. You can define as many rules as you want for a particular processor.

The Signal Generation application has the following rules:

 <rules>
 <view id="S" schema="symbol price">
 <![CDATA[
 RStream(select T.symbol, T.lastPrice from StockTickStream[now] as T, symbolsCache as R where T.symbol = R.symbol)
]]>
 </view>
 <query id="percent">
 <![CDATA[
 select symbol, lastPrice, percentLastPrice, startTimestamp
 from S MATCH_RECOGNIZE (
 PARTITION BY symbol
 MEASURES
 B.symbol as symbol,
 B.price as lastPrice,
 100*(B.price - A.price)/A.price as percentLastPrice,
 B.ELEMENT_TIME as startTimestamp
 ALL MATCHES
 PATTERN (A B)
 DEFINE
 B AS (100*(B.price - A.price)/A.price > 2.0
 or 100*(B.price - A.price)/A.price < -2.0
)
) as T
]]>
 </query>
 <view id="vTrend" schema="symbol lastPrice trendLastPrice">
 <![CDATA[
 select symbol, lastPrice, trendLastPrice
 from S MATCH_RECOGNIZE (
 PARTITION BY symbol
 MEASURES
 Z.symbol as symbol,
 Z.price as lastPrice,
 count(A.*)-count(B.*) as trendLastPrice
 ALL MATCHES
 PATTERN (X (A|B|C) (A|B|C) (A|B|C) (A|B|C))
 SUBSET Z = (A, B, C)
 DEFINE
 A AS (A.price > PREV(A.price)),
 B AS (B.price < PREV(B.price)),
 C AS (C.price = PREV(C.price))
) as T
]]>
 </view>
 <query id="trend">
 <![CDATA[
 select symbol, lastPrice, trendLastPrice, ELEMENT_TIME as startTimestamp from vTrend where trendLastPrice > 2
]]>
 </query>
 </rules>

For more information, see Oracle Fusion Middleware CQL Language Reference for Oracle Complex Event Processing.

2.11 Event Record and Playback Example

The record and playback example shows how to configure a component to record events to an event store and then configure another component in the network to playback events from the store. The example uses the Oracle CEP-provided default Berkeley database to store the events. The example also shows how to configure a publishing HTTP pub-sub adapter as a node in the event processing network.

Figure 2-78 shows the event record and playback example Event Processing Network (EPN). The EPN contains the components that make up the application and how they fit together.

Figure 2-78 The Event Record and Playback Example Event Processing Network

[image: Description of Figure 2-78 follows]

The application contains four components in its event processing network:

	
simpleEventSource: an adapter that generates simple events for purposes of the example. This component has been configured to record events, as shown in the graphic.

The configuration source for this adapter is:

<adapter>
 <name>simpleEventSource</name>
 <record-parameters>
 ...
 </record-parameters>
</adapter>

	
eventStream: a channel that connects the simpleEventSource adapter and recplayEventSink event bean. This component has been configured to playback events.

The configuration source for this channel is:

<channel>
 <name>eventStream</name>
 <playback-parameters>
 ...
 </playback-parameters>
 ...
</channel>

	
recplayEventSink: an event bean that acts as a sink for the events generated by the adapter.

	
playbackHttpPublisher: a publishing HTTP pub-sub adapter that listens to the recplayEventSink event bean and publishes to a channel called /playbackchannel of the Oracle CEP HTTP Pub-Sub server.

2.11.1 Running the Event Record/Playback Example

The recplay_domain domain contains a single application: the record and playback sample application. To run this application, you first start an instance of Oracle CEP in the domain, as described in the following procedure.

The procedure then shows you how to use Oracle CEP Visualizer to start the recording and playback of events at the simpleEventSource and eventStream components, respectively. Finally, the procedure shows you how to use Oracle CEP Visualizer to view the stream of events being published to a channel by the playbackHttpPublisher adapter.

To run the event record/playback example:

	
Open a command window and change to the default server directory of the recplay_domain domain directory, located in MIDDLEWARE_HOME\ocep_11.1\samples\domains\recplay_domain\defaultserver, where MIDDLEWARE_HOME refers to the Middleware directory you specified when you installed Oracle CEP, such as d:\Oracle\Middleware.

prompt> cd d:\Oracle\Middleware\ocep_11.1\samples\domains\recplay_domain\defaultserver

	
Set your development environment, as described in Section 2.5, "Setting Your Development Environment."

	
Start Oracle CEP by executing the appropriate script with the correct command line arguments:

	
On Windows:

	
If you are using the JRockit JDK included in Oracle JRockit Real Time, enable the deterministic garbage collector by passing the -dgc parameter to the command:

prompt> startwlevs.cmd -dgc

	
If you are not using the JRockit JDK included in Oracle JRockit Real Time:

prompt> startwlevs.cmd

	
On UNIX:

	
If you are using the JRockit JDK included in Oracle JRockit Real Time, enable the deterministic garbage collector by passing the -dgc parameter to the command:

prompt> startwlevs.sh -dgc

	
If you are not using the JRockit JDK included in Oracle JRockit Real Time:

prompt> startwlevs.sh

After server status messages scroll by, you should see the following message printed to the output:

 SimpleEvent created at: 14:33:40.441

This message indicates that the Oracle CEP server started correctly and that the simpleEventSource component is creating events.

	
Invoke the following URL in your browser:

http://host:port/wlevs

where host refers to the name of the computer on which Oracle CEP is running and port refers to the Jetty NetIO port configured for the server (default value 9002).

The Logon screen appears as Figure 2-79 shows.

Figure 2-79 Oracle CEP Visualizer Logon Screen

[image: Description of Figure 2-79 follows]

	
In the Logon screen, enter the User Id wlevs and Password wlevs, and click Log In.

The Oracle CEP Visualizer dashboard appears as Figure 2-80 shows.

Figure 2-80 Oracle CEP Visualizer Dashboard

[image: Description of Figure 2-80 follows]

For more information about the Oracle CEP Visualizer user interface, see "Understanding the Oracle CEP Visualizer User Interface" in the Oracle Fusion Middleware Visualizer User's Guide for Oracle Complex Event Processing.

	
In the left pane, select WLEventServerDomain > NonClusteredServer > Applications > recplay > Stages > simpleEventSource.

	
In the right pane, select the Record tab as shown in Figure 2-81.

Figure 2-81 Event Record Tab

[image: Description of Figure 2-81 follows]

The DataSet Name field contains the value of the record-parameters child element dataset-name element from the simpleEventSource adapter application configuration file ORACLE-CEP-HOME\ocep_11.1\samples\domains\recplay_domain\defaultserver\applications\recplay\config.xml as Example 2-11 shows.

Example 2-11 recplay Application Configuration File config.xml: adapter Element

<adapter>
 <name>simpleEventSource</name>
 <record-parameters>
 <dataset-name>recplay_sample</dataset-name>
 <event-type-list>
 <event-type>SimpleEvent</event-type>
 </event-type-list>
 <batch-size>1</batch-size>
 <batch-time-out>10</batch-time-out>
 </record-parameters>
</adapter>

	
At the bottom of the Record tab, click Start.

An Alert dialog appears as shown in Figure 2-82.

Figure 2-82 Start Recording Alert Dialog

[image: Description of Figure 2-82 follows]

	
Click OK.

The Current Status field reads Recording....

As soon as you click OK, events start to flow out of the simpleEventSource component and are stored in the configured database.

You can further configure when events are recorded using the Start Recording and Stop Recording fields.

	
In the left pane, select eventStream.

	
In the right pane, select the Playback tab as shown in Figure 2-83.

Figure 2-83 Event Playback Tab

[image: Description of Figure 2-83 follows]

	
At the bottom of the tab, click Start.

An Alert dialog appears as shown in Figure 2-84.

Figure 2-84 Start Playback Alert Dialog

[image: Description of Figure 2-84 follows]

	
Click OK.

The Current Status field reads Playing....

As soon as you click OK, events that had been recorded by the simpleEventSource component are now played back to the simpleStream component.

You should see the following messages being printed to the command window from which you started Oracle CEP server to indicate that both original events and playback events are streaming through the EPN:

SimpleEvent created at: 14:33:11.501
Played back: Original time=14:15:23.141 Playback time=14:33:11.657

You can further configure the playback parameters, such as the recorded time period for which you want playback events and the speed that they are played back, by updating the appropriate field and clicking Change Parameters. You must restart the playback after changing any playback parameters.

	
To view the events that the playbackHttpPublisher adapter is publishing to a channel, follow these steps:

	
In the top pane, select Viewstream.

The Viewstream window appears as shown in Figure 2-85.

Figure 2-85 Stream Visualizer

[image: Description of Figure 2-85 follows]

	
In the right pane, click Initialize Client.

	
In the Subscribe Channel text box, enter /playbackchannel.

	
Click Subscribe.

The Received Messages text box displays the played back event details. The played back events show the time at which the event was created and the time at which it was played back.

2.11.2 Building and Deploying the Event Record/Playback Example from the Source Directory

The record and playback sample source directory contains the Java source, along with other required resources, such as configuration XML file and EPN assembly file that make up the application. The build.xml Ant file contains targets to build and deploy the application to the signalgeneration_domain domain, as described in Section 2.11.3, "Description of the Ant Targets to Build the Record and Playback Example."

To build and deploy the event record/playback example from the source directory:

	
If the record/playback Oracle CEP instance is not already running, follow the procedure in Section 2.11.1, "Running the Event Record/Playback Example" to start the server. You must have a running server to successfully deploy the rebuilt application.

	
Open a new command window and change to the record/playback source directory, located in MIDDLEWARE_HOME\ocep_11.1\samples\source\applications\recplay, where MIDDLEWARE_HOME refers to the Middleware home directory you specified when you installed Oracle CEP, such as d:\Oracle\Middleware.

prompt> cd d:\Oracle\Middleware\ocep_11.1\samples\source\applications\recplay

	
Set your development environment, as described in Section 2.5, "Setting Your Development Environment."

	
Execute the all Ant target to compile and create the application JAR file:

prompt> ant all

	
Execute the deploy Ant target to deploy the application JAR file to the MIDDLEWARE_HOME\ocep_11.1\samples\domains\recplay_domain\defaultserver\applications\recplay directory:

prompt> ant -Dusername=wlevs -Dpassword=wlevs -Daction=update deploy

	
Caution:

This target overwrites the existing event record/playback application JAR file in the domain directory.

After an application redeploy message, you should see the following message printed to the output about every second:

 SimpleEvent created at: 14:33:40.441

This message indicates that the record and playback example has been redeployed and is running correctly.

	
Follow the instructions in Section 2.11.1, "Running the Event Record/Playback Example," starting at step 4, to invoke Oracle CEP Visualizer and start recording and playing back events.

2.11.3 Description of the Ant Targets to Build the Record and Playback Example

The build.xml file, located in the top-level directory of the record/playback source, contains the following targets to build and deploy the application:

	
clean—This target removes the dist and output working directories under the current directory.

	
all—This target cleans, compiles, and jars up the application into a file called com.bea.wlevs.example.recplay_11.1.1.4_0.jar, and places the generated JAR file into a dist directory below the current directory.

	
deploy—This target deploys the JAR file to Oracle CEP using the Deployer utility.

For more information, see "Deployer Command-Line Reference" in the Oracle Fusion Middleware Administrator's Guide for Oracle Complex Event Processing.

2.11.4 Implementation of the Record and Playback Example

The implementation of the signal generation example generally follows "Creating Oracle CEP Applications: Typical Steps" in the Oracle Fusion Middleware Developer's Guide for Oracle Complex Event Processing for Eclipse.

Refer to that section for a task-oriented procedure that describes the typical development process.

All the files of the example are located relative to the MIDDLEWARE_HOME\ocep_11.1\samples\source\applications\recplay directory, where MIDDLEWARE_HOME refers to the Middleware home directory you specified when you installed Oracle CEP, such as c:\Oracle\Middleware. Oracle recommends that you use this example directory setup in your own environment, although it is obviously not required.

The files used by the record and playback example include:

	
An EPN assembly file that describes each component in the application and how all the components are connected together as shown in Figure 2-78.

In the example, the file is called com.bea.wlevs.example.recplay-context.xml and is located in the META-INF/spring directory.

	
Java source file for the simpleEventSource adapter.

In the example, the file is called SimpleEventSource.java and is located in the src/com/bea/wlevs/adapter/example/recplay directory.

For a detailed description of this file and how to program the adapter Java files in general, see "Creating Custom Adapters and Event Beans" in the Oracle Fusion Middleware Developer's Guide for Oracle Complex Event Processing for Eclipse.

	
Java source file that describes the PlayedBackEvent and SimpleEvent event types. The SimpleEvent event type is the one originally generated by the adapter, but the PlayedBackEvent event type is used for the events that are played back after having been recorded. The PlayedBackEvents look almost exactly the same as SimpleEvent except they have an extra field, the time the event was recorded.

In the example, the two events are called SimpleEvent.java and PlayedBackEvent.java and are located in the src/com/bea/wlevs/event/example/recplay directory.

For a detailed description of this file, as well as general information about programming event types, see "Creating the Event Types" in the Oracle Fusion Middleware Developer's Guide for Oracle Complex Event Processing for Eclipse.

	
A Java file that implements the recplayEventSink event bean of the application, which is an event sink that receives both realtime events from the simpleEventSource adapter as well as playback events.

In the example, the file is called RecplayEventSink.java and is located in the src/com/bea/wlevs/example/recplay directory.

For a detailed description of this file and how to program the adapter Java files in general, see "Creating Custom Adapters and Event Beans" in the Oracle Fusion Middleware Developer's Guide for Oracle Complex Event Processing for Eclipse.

	
An XML file that configures the simpleEventSource adapter and eventStream channel components. The adapter includes a <record-parameters> element that specifies that the component will record events to the event store; similarly, the channel includes a <playback-parameters> element that specifies that it receives playback events.

In the example, the file is called config.xml and is located in the META-INF/wlevs directory.

	
A MANIFEST.MF file that describes the contents of the OSGi bundle that will be deployed to Oracle CEP.

In the example, the MANIFEST.MF file is located in the META-INF directory

For more information about creating this file, as well as a description of creating the OSGi bundle that you deploy to Oracle CEP, see "Overview of Application Assembly and Deployment" in the Oracle Fusion Middleware Developer's Guide for Oracle Complex Event Processing for Eclipse.

The record/playback example uses a build.xml Ant file to compile, assemble, and deploy the OSGi bundle; see Section 2.11.2, "Building and Deploying the Event Record/Playback Example from the Source Directory" for a description of this build.xml file if you also use Ant in your development environment.

3 Installing Oracle CEP

This chapter describes how to install and upgrade Oracle Complex Event Processing (Oracle CEP), including development tools for use with the Eclipse IDE.

	
Section 3.1, "Installation Overview"

	
Section 3.2, "Installing Oracle CEP in Graphical Mode"

	
Section 3.3, "Installing Oracle CEP in Console Mode"

	
Section 3.4, "Installing Oracle CEP in Silent Mode"

	
Section 3.5, "Installing an Oracle CEP Patch"

	
Section 3.7, "Installing the Oracle CEP IDE for Eclipse"

	
Section 3.6, "Post-Installation Steps"

	
Section 3.8, "Upgrading to Oracle CEP 11g Release 1 (11.1.1.6.3)"

3.1 Installation Overview

To install Oracle CEP 11g Release 1 (11.1.1.6.3):

	
Download the Oracle CEP installer appropriate for your platform.

See Section 1.6, "Supported Platforms".

	
Choose the JVM you will use.

See Section 3.1.2, "Choosing Your JVM"

	
Decide if you are installing in a production environment or development environment.

See Section 3.1.3, "Default Oracle CEP Domain ocep_domain and Samples".

	
Familiarize yourself with Oracle Fusion Middleware directory structure and concepts.

See Section 3.1.4, "Oracle Fusion Middleware Directory Structure and Concepts".

	
Install Oracle CEP using the installer mode of your choice.

See Section 3.1.5, "Installation Mode".

	
Install Oracle CEP patches, if required.

See Section 3.5, "Installing an Oracle CEP Patch".

	
Perform post-installation tasks, if applicable.

See Section 3.6, "Post-Installation Steps".

	
Decide whether or not you need to upgrade Oracle CEP and Oracle CEP applications to the current release.

See Section 3.8, "Upgrading to Oracle CEP 11g Release 1 (11.1.1.6.3)".

	
Install Apache Ant, a Java-based build tool.

See the Apache Ant Project at http://ant.apache.org/.

3.1.1 Before You Start the Installation Program

Before you start the installation program, review the following information:

	
If you are using the Generic Package installer or the Linux 64-bit installer to install Oracle CEP on a UNIX or Linux system, Oracle recommends that you set the umask to 027 on your system prior to installation. This ensures that WebLogic Server file permissions will be set properly during installation. Use the following command:

umask 027

You must enter this command in the same terminal window from which you plan to run the Oracle CEP installer.

3.1.2 Choosing Your JVM

Oracle CEP supports the following Java Virtual Machines (JVM):

	
Section 3.1.2.1, "Oracle JRockit Real Time"

	
Section 3.1.2.2, "Sun JVM"

	
Section 3.1.2.3, "Other Platform-Specific JVMs"

3.1.2.1 Oracle JRockit Real Time

By default, Oracle CEP includes its own version of JRockit (in MIDDLEWARE_HOME/jrockit_JAVA-VERSION_RJROCKIT-VERSION), but it does not include the deterministic garbage collector.

	
Note:

The Oracle CEP installer for the Sun JVM does not include a version of JRockit.

Oracle CEP performs optimally when it can access certain features from Oracle JRockit Real Time, in particular the JRockit deterministic garbage collector.

If your application requires low latency, optionally install Oracle JRockit Real Time.

	
Caution:

Be sure you install the version of Oracle JRockit Real Time for Java version 5.0 or 6.0. Oracle JRockit Real Time for Java version 1.4.2 is not compatible with this version of Oracle CEP.

For more information on Oracle JRockit Real Time, see http://www.oracle.com/technology/products/jrockit/jrrt/index.html.

3.1.2.2 Sun JVM

The Sun JVM is the default JVM on Solaris SPARC and is included in the Solaris SPARC installer. If you want to use the Sun JVM (instead of JRockit) on platforms other than Solaris, download the JVM from the Oracle Java SE download site.

For more information, see:

	
Section 1.6, "Supported Platforms"

	
http://www.oracle.com/technetwork/java/javase/downloads/index.html

3.1.2.3 Other Platform-Specific JVMs

For other platforms (such as HP or IBM/AIX), ensure that you have the appropriate platform-specific JVM installed.

For more information, see:

	
Section 1.6, "Supported Platforms"

	
Section 3.6.1, "Configuring Oracle CEP for the IBM JDK"

3.1.3 Default Oracle CEP Domain ocep_domain and Samples

When you choose a Typical install, the installation does not include the default ocep_domain domain (with default passwords) and the product samples.

If you want to install the default ocep_domain and samples (recommended), choose the Custom option.

The Typical install is appropriate for a production environment while the Custom install is appropriate for a development environment.

3.1.4 Oracle Fusion Middleware Directory Structure and Concepts

When you install Oracle CEP, consider the following scenarios:

	
Section 3.1.4.1, "Oracle CEP-Specific Middleware Home"

	
Section 3.1.4.2, "Existing Oracle Fusion Middleware Home"

For more information, see "Oracle Fusion Middleware Directory Structure and Concepts" in the Oracle Fusion Middleware Installation Planning Guide.

3.1.4.1 Oracle CEP-Specific Middleware Home

In this scenario, you install Oracle CEP in a stand-alone configuration, in its own Middleware Home directory as Figure 3-1 shows.

Figure 3-1 Oracle CEP-Specific Middleware Home

[image: Description of Figure 3-1 follows]

Table 3-1 lists the various home directories applicable to Oracle CEP in this scenario.

Table 3-1 Home Directories and Oracle CEP-Specific Middleware Home

	Home Directory Type	Home Directory
	
Middleware Home

	
As selected by the user at Oracle CEP install time.

	
WebLogic Server Home

	
N/A

	
Oracle Product HomeFoot 1

	
ocep_11.1

	
Oracle Common Home

	
N/A

	
Domain

	
MIDDLEWARE_HOME/user_projects/domains/ocep_domain

Footnote 1 Also known as simply the Oracle Home.

3.1.4.2 Existing Oracle Fusion Middleware Home

In this scenario, you install Oracle CEP into an existing Oracle Fusion Middleware home as Figure 3-2 shows.

In this scenario, you install Oracle CEP into its own Product Oracle Home but you create Oracle CEP domains in the existing ORACLE_FUSION_MIDDLEWARE_HOME/user_projects/domains directory as Figure 3-2 shows.

Figure 3-2 Oracle CEP in an Existing Oracle Fusion Middleware Home

[image: Description of Figure 3-2 follows]

In this example topology, there are two Oracle products installed in the same Middleware Home:

	
Oracle CEP

	
Oracle SOA Suite

Table 3-2 lists the various home directories applicable to Oracle CEP in this scenario.

Table 3-2 Home Directories and Existing Middleware Home

	Home Directory Type	Home Directory
	
Middleware Home

	
As selected by the user at Oracle Fusion Middleware install time.

	
WebLogic Server Home

	
As determined by Oracle Fusion Middleware installer.

	
Oracle Product HomeFoot 1

	
ocep_11.1

	
Oracle Common Home

	
As determined by Oracle Fusion Middleware installer.

	
Domain

	
MIDDLEWARE_HOME/user_projects/domains/ocep_domain

Footnote 1 Also known as simply the Oracle Home.

3.1.5 Installation Mode

You use the Oracle CEP installer in the following modes:

	
Section 3.1.5.1, "Graphical Mode"

	
Section 3.1.5.2, "Console Mode"

	
Section 3.1.5.3, "Silent Mode"

3.1.5.1 Graphical Mode

Graphical-mode installation is an interactive, GUI-based method for installing your software. It can be run on both Windows and UNIX systems. See Section 3.2, "Installing Oracle CEP in Graphical Mode."

	
Caution:

If you want to run graphical-mode installation, the console attached to the machine on which you are installing the software must support a Java-based GUI. All consoles for Windows systems support Java-based GUIs, but not all consoles for UNIX systems do. If you attempt to start the installation program in graphical mode on a system that cannot support a graphical display, the installation program automatically starts console-mode installation.

3.1.5.2 Console Mode

Console-mode installation is an interactive, text-based method for installing your software from the command line, on either a UNIX system or a Windows system. See Section 3.3, "Installing Oracle CEP in Console Mode."

3.1.5.3 Silent Mode

Silent-mode installation is a non-interactive method of installing your software that requires the use of an XML properties file for selecting installation options. You can run silent-mode installation in either of two ways: as part of a script or from the command line. Silent-mode installation is a way of setting installation configurations only once and then using those configurations to duplicate the installation on many machines. See Section 3.4, "Installing Oracle CEP in Silent Mode."

3.2 Installing Oracle CEP in Graphical Mode

This section describes how to install using the Oracle CEP installer in graphical mode.

For more information, see Section 3.1, "Installation Overview".

To install Oracle CEP in graphical mode:

	
Log in to the Windows or UNIX computer on which you want to install Oracle CEP.

Be sure you log in to the computer as the user that will be the main administrator of the Oracle CEP installation.

	
Download the product distribution file for the platform on which you want to install Oracle CEP.

	
Launch the installation program in graphical mode using the commands listed in the following table appropriate for your platform.

	Platform	Instructions
	
Windows

	
Using Windows Explorer, double-click the appropriate installation program file from its download directory.

	
Linux or Solaris

	
Open a command window, change to the download directory, and enter these commands:

prompt> chmod a+x filename
prompt> ./filename

In the preceding commands, filename is the name of the installation program specific to your platform (for more information, see http://www.oracle.com/technology/software/products/middleware/htdocs/111110_fmw.html.)

If you want to create an installation log, use the -log=full_path_to_log_file option; for example:

prompt> ./filename -log=C:\logs\server_install.log

After the installation program has finished loading, you will see the standard Welcome window.

	
Click Next.

	
In the Choose Middleware Home Directory window, you can specify either an existing Oracle Middleware Home directory or create a new one:

	
To install into an existing Oracle Middleware Home directory:

	
Select Use an Existing Middleware Home.

	
Select an existing Oracle Middleware Home directory from the list on the right.

	
To install into a new Oracle Middleware Home directory:

	
Select Create a New Middleware Home.

	
Click the Browse button to browse your computer to select an existing directory or click Reset to reset the directory to the default, C:\Oracle\Middleware.

	
Click Open.

The Oracle Middleware Home directory is the main installation directory for Oracle CEP, such as c:\oracle_cep. You can have one or many Oracle Middleware Home directories on your computer, whichever suits your development and production environments best.

For more information, see Section 3.1.4, "Oracle Fusion Middleware Directory Structure and Concepts".

	
Click Next.

	
In the Choose Install Type window, you can choose one of the following options:

	
To install all Oracle CEP components except the samples and use the Oracle JRockit JVM included with Oracle CEP:

	
Select Typical.

	
Click Next.

	
Proceed to step 10.

The installer program checks to see if the Oracle Middleware Home directory contains the version of JRockit required by this release of Oracle CEP:

	
If it finds the required JRockit installation, it does not install a new one.

	
If it does not find an appropriate JRockit installation, then the installer installs its own version in the Oracle Middleware Home directory.

	
To install all Oracle CEP components including the default ocep_domain domain (with default passwords) and the samples and select a previously installed Sun or platform-specific JVM (or use the Oracle JRockit JVM included with Oracle CEP):

	
Select Custom.

	
In the Choose Products and Components window, check the components you want to install, such as the product samples.

	
Click Next.

	
Note:

By default, the complete installation does not include the default ocep_domain domain (with default passwords) and the product samples. If you want to install the samples (recommended), choose the Custom option.

If you want to use a Sun or platform-specific JVM, you must choose the Custom option.

The installer program allows you to choose the JDK to use and to decide whether or not to install the Oracle JRockit JVM included with Oracle CEP.

	
In the JDK Selection window, you can choose the JDK for the Oracle CEP server.

Use the Browse button to select the Sun or platform-specific JDK you installed previously.

If you do not want the installer to install the Oracle JRockit JVM included with Oracle CEP, uncheck this item.

	
Click Next.

	
In the Choose Product Installation Directories window, you can change the default name of the Oracle Product Home directory for Oracle CEP, ocep_11.1.

Although you can name this directory anything you want, Oracle recommends that you use the default name for clarity and standardization. For example, the documentation assumes that the Oracle Product Home directory is ocep_11.1.

For more information, see Section 3.1.4, "Oracle Fusion Middleware Directory Structure and Concepts".

	
Click Next.

	
If you are installing on Windows, and you logged in as a user with Administrator privileges, then you will see the Choose Shortcut Location window where you can choose where you want the Start Menu folder to appear. The following table describes the options available:

	If you select . . .	The following occurs . . .
	
All Users

	
Recommended. All users registered on the machine are provided with access to the installed software. Subsequently, if users without Administrator privileges use the Configuration Wizard from this installation to create domains, Start menu shortcuts to the domains are not created. In this case, users can manually create shortcuts in their local Start menu folders, if desired.

	
Local user

	
Other users registered on this machine will not have access to the Start menu entries for this installation.

If you logged in as a user without Administrator privileges, the Start menu entries are created in your user's local Start menu folder.

	
Click Next.

	
The Installation Summary window shows the products and components you are about to install, along with the approximate size in MB. This window is for your information only; to change the components to be installed, use the Previous button to return to the appropriate window.

	
Click Next.

The installer program installs Oracle CEP. The Installation Complete window indicates that the product was installed successfully.

	
Click Done to exit the program.

	
Review the post-installation steps that Section 3.6, "Post-Installation Steps" describes.

3.3 Installing Oracle CEP in Console Mode

This section describes how to install using the Oracle CEP installer in console mode.

Console-mode installation is an interactive, text-based method for installing your software from the command line, on either a UNIX or Windows system.

When installing in console-mode, respond to the prompts in each section by entering the number associated with your choice or by pressing Enter to accept the default. To exit the installation process, enter exit (or x, for short) in response to any prompt. To review or change your selection, enter previous (or p, for short) at the prompt. To proceed to the following window, enter next (or n, for short).

	
Note:

In the following procedure, Windows conventions (such as back-slashes in pathnames) are used, for example, C:\oracle_cep\ocep_11.1. When entering pathnames on a UNIX system, be sure to use UNIX conventions, instead. For example, use forward slashes in pathnames, such as /oracle_cep/ocep_11.1.

For more information, see Section 3.1, "Installation Overview".

To install Oracle CEP in graphical mode:

	
Log in to the Windows or Linux computer on which you want to install Oracle CEP.

Be sure you log in to the computer as the user that will be the main administrator of the Oracle CEP installation.

	
Download the product distribution file for the platform on which you want to install Oracle CEP.

	
Launch the installation program in console mode using the commands listed in the following table appropriate for your platform.

	Platform	Instructions
	
Windows

	
Open a command window, change to the download directory, and enter the following command:

prompt> filename -mode=console

In the preceding command, filename is the name of the installation program specific to your platform (for more information, see http://www.oracle.com/technology/software/products/middleware/htdocs/111110_fmw.html).

If you want to create an installation log, use the -log=full_path_to_log_file option; for example:

prompt> filename -mode=console -log=C:\logs\server_install.log

	
Linux

	
Open a command window, change to the download directory, and enter these commands:

prompt> chmod a+x filename
prompt> ./filename -mode=console

In the preceding commands, filename is the name of the installation program specific to your platform (for more information, see http://www.oracle.com/technology/software/products/middleware/htdocs/111110_fmw.html).

If you want to create an installation log, use the -log=full_path_to_log_file option; for example:

prompt> ./filename -mode=console -log=C:\logs\server_install.log

	
At the Welcome prompt, type next (or n for short) or press Enter to continue with the installation process.

	
In the Choose Middleware Home Directory window, you can specify either an existing Oracle Middleware Home directory or create a new one:

	
To install into an existing Oracle Middleware Home directory:

	
Type the number of the existing Oracle Middleware Home directory.

	
To install into a new Oracle Middleware Home directory:

	
Type 1 to create a new Oracle Middleware Home directory.

	
The installation program guides you through the required steps to create the new Oracle Middleware Home.

Be sure to enter the full path of the Oracle Middleware Home directory, for example C:\oracle_cep2.

	
Note:

Do not terminate the path with a file separator character. That is, enter C:\mydir and not C:\mydir\.

If you specify a directory that does not exist, the installation program creates it for you.

The Oracle Middleware Home directory is the main installation directory for Oracle CEP, such as c:\oracle_cep. You can have one or many Oracle Middleware Home directories on your computer, whichever suits your development and production environments best.

For more information, see Section 3.1.4, "Oracle Fusion Middleware Directory Structure and Concepts".

	
Confirm your choice for Oracle Middleware Home directory and enter next (or n).

	
In the Choose Install Type window, you can choose one of the following options:

	
To install all Oracle CEP components except the samples and use the Oracle JRockit JVM included with Oracle CEP:

	
Type 1 to choose a Typical install.

	
Proceed to step 9.

The installer program checks to see if the Oracle Middleware Home directory contains the version of JRockit required by this release of Oracle CEP:

	
If it finds the required JRockit installation, it does not install a new one.

	
If it does not find an appropriate JRockit installation, then the installer installs its own version in the Oracle Middleware Home directory.

	
To install all Oracle CEP components including the default ocep_domain domain (with default passwords) and the samples and select a previously installed Sun or platform-specific JVM (or use the Oracle JRockit JVM included with Oracle CEP):

	
Type 2 to choose a Custom install.

	
In the Choose Components to Install window, enter the numbers in brackets to toggle the components you want to install, such as the samples. To toggle a selection in the list, types its number. When a check mark appears next to the option, the option is selected. To unselect the option, enter its number again to remove the check mark

	
Enter next (or n) when you have chosen the components.

	
Note:

By default, the complete installation does not include the default ocep_domain domain (with default passwords) and the product samples. If you want to install the samples (recommended), choose the Custom option.

If you want to use a Sun or platform-specific JVM, you must choose the Custom option.

The installer program allows you to choose the JDK to use and to decide whether or not to install the Oracle JRockit JVM included with Oracle CEP.

	
In the JDK Selection window, you can choose the JDK for the Oracle CEP server:

	
To add a local JDK, select the Add Local JDK option (1).

The installation program guides you through the required steps to add a local JDK.

Be sure to enter the full path to the JDK directory, for example:

C:\Program Files\Java\jdk1.6.0_14

To add additional JDKs, select 1 again.

	
In the JDK Selection window, enter the numbers in brackets to toggle the JDKs you want. To toggle a selection in the list, types its number. When a check mark appears next to the option, the option is selected. To unselect the option, enter its number again to remove the check mark.

If you do not want the installer to install the Oracle JRockit JVM included with Oracle CEP, uncheck this item.

	
Enter next (or n) when you have selected the local JDK.

	
In the Choose Product Installation Directories window, you can change the default name of the Oracle Product Home directory for Oracle CEP, ocep_11.1.

Although you can name this directory anything you want, Oracle recommends that you use the default name for clarity and standardization. For example, the documentation assumes that the Oracle Product Home directory is ocep_11.1.

For more information, see Section 3.1.4, "Oracle Fusion Middleware Directory Structure and Concepts".

Enter next (or n) when you are done.

	
If you are installing on Windows, and you logged in as a user with Administrator privileges, then you will see the Choose Shortcut Location window where you can choose where you want the Start Menu folder to appear. The following table describes the options available:

	If you select . . .	The following occurs . . .
	
1 "All Users"

	
Recommended. All users registered on the machine are provided with access to the installed software. Subsequently, if users without Administrator privileges use the Configuration Wizard from this installation to create domains, Start menu shortcuts to the domains are not created. In this case, users can manually create shortcuts in their local Start menu folders, if desired.

	
2 "Local user"

	
Other users registered on this machine will not have access to the Start menu entries for this installation.

If you logged in as a user without Administrator privileges, the Start menu entries are created in your user's local Start menu folder.

Enter the appropriate number.

	
Enter next (or n) when you are done.

	
The Installation Summary window shows the products and components you are about to install, along with the approximate size in MB. This window is for your information only; to change the components to be installed, type Previous to return to the appropriate window.

	
Enter next (or n).

The installer program installs Oracle CEP. The Installation Complete window indicates that the product was installed successfully.

	
Type exit to exit the program.

	
Review the post-installation steps that Section 3.6, "Post-Installation Steps" describes.

3.4 Installing Oracle CEP in Silent Mode

This section describes how to install using the Oracle CEP installer in silent mode.

Silent-mode installation is a non-interactive method of installing your software that requires the use of an XML properties file for selecting installation options.

For more information, see Section 3.1, "Installation Overview".

To install Oracle CEP in silent mode:

	
Log in to the Windows or UNIX computer on which you want to install Oracle CEP.

Be sure you log in to the computer as the user that will be the main administrator of the Oracle CEP installation.

	
Download the product distribution file for the platform on which you want to install Oracle CEP.

	
Create a silent.xml file that defines the configuration settings normally entered by a user during an interactive installation process.

See Section 3.4.1, "Creating a silent.xml File for Silent-Mode Installation."

	
Note:

Incorrect entries in the silent.xml file can cause installation failures. To help you determine the cause of a failure, we recommend that you create a log file when you launch the installation program.

	
Launch the installation program in silent mode using the commands in the following table appropriate for your platform.

	Platform	Instructions
	
Windows

	
Open a command window, change to the download directory, and enter the following command:

prompt> filename -mode=silent -silent_xml=path_to_xml_file

In the preceding command, filename is the name of the installation program specific to your platform (for more information, see http://www.oracle.com/technology/software/products/middleware/htdocs/111110_fmw.html) and path_to_xml_file is the full pathname of the silent.xml template file you created in the preceding step.

If you want to create an installation log, use the -log=full_path_to_log_file option; for example:

prompt> filename -mode=silent -silent_xml=path_to_xml_file -log=C:\logs\server_install.log

	
Linux or Solaris

	
Open a command window, change to the download directory, and enter these commands:

prompt> chmod a+x filename
prompt> ./filename -mode=silent -silent_xml=path_to_xml_file

In the preceding commands, filename is the name of the installation program specific to your platform (for more information, see http://www.oracle.com/technology/software/products/middleware/htdocs/111110_fmw.html) and path_to_xml_file is the full pathname of the silent.xml template file you created in the preceding step.

If you want to create an installation log, use the -log=full_path_to_log_file option; for example:

prompt> ./filename -mode=silent -silent_xml=path_to_xml_file -log=C:\logs\server_install.log

An Oracle Installer window is displayed, indicating that the files are being extracted. No other prompt or text is displayed.

The installation is complete when the Oracle Installer window disappears.

See Section 3.4.3, "Returning Exit Codes to the Command Window" for getting information about the success or failure of the silent installation.

	
Review the post-installation steps that Section 3.6, "Post-Installation Steps" describes.

3.4.1 Creating a silent.xml File for Silent-Mode Installation

When you install Oracle CEP in silent mode, the installation program uses an XML file (silent.xml) to determine which installation options should be implemented.

To create a silent.xml file for silent-mode installation:

	
Using your favorite text editor, create an empty file called silent.xml on the computer on which you want to install Oracle CEP in silent mode.

	
Copy the contents of the sample XML file, shown in Example 3-1, into your own silent.xml file.

Example 3-1 Sample silent.xml File for Silent-Mode Installation

<?xml version="1.0" encoding="UTF-8"?>
<!-- Silent installer option: -mode=silent -silent_xml=C:\oracle\silent.xml -->
<bea-installer>
 <input-fields>
 <data-value name="BEAHOME" value="C:\oracle_cep" />
 <data-value name="USER_INSTALL_DIR" value="C:\oracle_cep\ocep_11.1" />
 <data-value name="INSTALL_SHORTCUT_IN_ALL_USERS_FOLDER" value="yes"/>
 <data-value name="COMPONENT_PATHS" value="Oracle Complex Event Processing" />
 </input-fields>
</bea-installer>

	
In the silent.xml file you just created, edit the values for the keywords shown in Table 3-3 to reflect your configuration.

For example, if you want to install into the ORACLE_CEP_HOME directory e:\oracle_cep, update the corresponding <data-value> element as follows

<data-value name="BEAHOME" value="e:\oracle_cep" />

Table 3-3 Values for the silent.xml File

	For this data-value name...	Enter the following value...
	
BEAHOMEFoot 1

	
The full pathname for the Oracle Middleware Home directory of your choice.

For more information, see Section 3.1.4, "Oracle Fusion Middleware Directory Structure and Concepts".

	
USER_INSTALL_DIR

	
The full pathname for the Oracle Product Home directory for Oracle CEP of your choice.

For more information, see Section 3.1.4, "Oracle Fusion Middleware Directory Structure and Concepts".

	
INSTALL_SHORTCUT_IN_ALL_USERS_FOLDER

	
Windows only. Specify:

	
true, or yes, to create the shortcuts in the All Users folder.

	
false, or no, to create the shortcuts in the local users folder.

The user performing the installation must have Administrator privileges to install the Start menu shortcuts in the All Users folder.

The default value for this parameter, if you do not specify it, is true.

	
COMPONENT_PATHS

	
Specify the components and subcomponents of Oracle CEP you want to install on your system. Use the following values:

	
Oracle Complex Event Processing

	
Oracle Complex Event Processing/Event Server

	
Oracle Complex Event Processing/Event Server Samples

For additional information about entering these values, see Section 3.4.2, "Guidelines for Component Selection."

If you do not include the COMPONENT_PATHS data-value name in the silent.xml file, the complete Oracle CEP product is installed.

	
LOCAL_JVMS

	
Option to select supported JVM, which is already installed.

Note: The presence of the LOCAL_JVMS token negates any default selection and only sets the values assigned for the token as user selection. The value of the token can be a pipe (|) separated JavaHomes.

Footnote 1 Do not terminate the pathname with a file separator. That is, enter this C:\mydirectory and not C:\mydirectory\.

	
Note:

Silent install does not support the LOCAL_JVMS data-value. To define a local JVM, you must use graphical mode installation as Section 3.2, "Installing Oracle CEP in Graphical Mode" describes.

	
Save the file in the directory of your choice.

3.4.2 Guidelines for Component Selection

Use the following guidelines when you specify values for the COMPONENT_PATHS data-value name:

	
When you specify a product component to be installed, all subcomponents that are installed by default in a complete installation are also installed. For example, the following entry installs both Oracle CEP and the samples:

<data-value name="COMPONENT_PATHS"
 value="Oracle Complex Event Processing" />

	
To install multiple components or subcomponents, separate the components with a bar (|). Do not leave a space before or after the bar.

	
To specify subcomponents, you must specify a component/subcomponent combination for each entry. For example, to explicitly install Oracle CEP and the samples, enter the following line in the file:

<data-value name="COMPONENT_PATHS" value="Oracle Complex Event Processing/Event Server|Oracle Complex Event Processing/Event Server Samples" />

	
Note:

Because this release of Oracle CEP includes only the server itself and samples, the preceding example is equivalent to the example in the first bullet.

3.4.3 Returning Exit Codes to the Command Window

When run in silent mode, the installation program generates exit codes that indicate the success or failure of the installation. These exit codes are shown in Table 3-4.

Table 3-4 Exit Codes

	Code	Description
	
0

	
Installation completed successfully

	
-1

	
Installation failed due to a fatal error

	
-2

	
Installation failed due to an internal XML parsing error

Example 3-2 provides a sample Windows command file that invokes the installation program in silent mode and echoes the exit codes to the command window from which the script is executed.

Example 3-2 Sample Windows Command File Displaying Silent-Mode Exit Codes

rem Execute the installer in silent mode
@echo off
ofm_ocep_generic_11.1.1.1.0_32_disk1_1of1.exe -mode=silent -silent_xml=C:\downloads\silent.xml -log=C:\logs\products_silent.log

@rem Return an exit code to indicate success or failure of installation
set exit_code=%ERRORLEVEL%

@echo.
@echo Exitcode=%exit_code%
@echo.
@echo Exit Code Key
@echo ---------------
@echo 0=Installation completed successfully
@echo -1=Installation failed due to a fatal error
@echo -2=Installation failed due to an internal XML parsing error
@echo.

3.5 Installing an Oracle CEP Patch

You can download maintenance and security updates for Oracle CEP from My Oracle Support. For more information, see Oracle Smart Update Applying Patches to Oracle WebLogic Server.

3.6 Post-Installation Steps

After installing Oracle CEP:

	
If you installed Oracle CEP for use with the IBM JVM on IBM AIX (64-bit), then in each Oracle CEP domain directory, make the changes that Section 3.6.1, "Configuring Oracle CEP for the IBM JDK" describes.

	
Try out the product examples. For information about the examples and how to run them, see Chapter 2, "Oracle CEP Samples."

	
Install the Oracle CEP IDE for Eclipse as Section 3.7, "Installing the Oracle CEP IDE for Eclipse" describes.

	
Optionally, create your own Oracle CEP domain:

See:

	
"Creating an Oracle CEP Standalone-Server Domain" in the Oracle Fusion Middleware Administrator's Guide for Oracle Complex Event Processing

	
"Creating an Oracle CEP Multi-Server Domain" in the Oracle Fusion Middleware Administrator's Guide for Oracle Complex Event Processing

	
Note:

If you installed Oracle CEP using the default option, you must create your own Oracle CEP domain. For more information, see Section 3.1.3, "Default Oracle CEP Domain ocep_domain and Samples".

	
Create an Oracle CEP application and deploy it to your domain.

For a description of the programming model, details about the various components that make up an application, and how they all fit together, see "Overview of Creating Oracle CEP Applications" in the Oracle Fusion Middleware Developer's Guide for Oracle Complex Event Processing for Eclipse.

3.6.1 Configuring Oracle CEP for the IBM JDK

If you installed Oracle CEP for use with the IBM JDK, depending on your operating system and processor architecture, you must make changes to the IBM AIX network options and the setDomainEnv script in each Oracle CEP domain directory. This section describes:

	
Section 3.6.1.1, "How to Configure Oracle CEP for the IBM JVM on IBM AIX (64-bit)"

3.6.1.1 How to Configure Oracle CEP for the IBM JVM on IBM AIX (64-bit)

If you installed Oracle CEP for use with the IBM JDK on IBM AIX (64-bit), you must make changes to the IBM AIX network options and the setDomainEnv script in each Oracle CEP domain directory.

To configure Oracle CEP for the IBM JVM on IBM AIX (64-bit):

	
Execute the following commands (using super user privileges or sudo) to modify the AIX network options:

no -o rfc1323=1
no -o sb_max=4194304

	
Go to the domain directory.

For example, MIDDLEWARE_HOME/user_projects/domains/ocep_domain/defaultserver

	
Edit the setDomainEnv.sh script and add the following line:

export IBM_JAVA_OPTIONS="-Djava.net.preferIPv4Stack=true -Djava.net.preferIPv6Addresses=false"

3.7 Installing the Oracle CEP IDE for Eclipse

Oracle CEP IDE for Eclipse is a set of plugins for the Eclipse IDE designed to help develop, deploy, and debug applications for Oracle CEP.

For more information, see:

	
"Installing the Latest Oracle CEP IDE for Eclipse" in the Oracle Fusion Middleware Developer's Guide for Oracle Complex Event Processing for Eclipse

	
"Installing the Oracle CEP IDE for Eclipse Distributed With Oracle CEP" in the Oracle Fusion Middleware Developer's Guide for Oracle Complex Event Processing for Eclipse

3.8 Upgrading to Oracle CEP 11g Release 1 (11.1.1.6.3)

Upgrading to Oracle CEP 11g Release 1 (11.1.1.6.3) is a two-step process: first you must upgrade your applications and then you must upgrade the domain to which the applications are deployed.

Table 3-5 lists the steps you must take for each supported upgrade path:

Table 3-5 Upgrade Paths

	From Release	To Release 10.3	To Release 11gR1 (11.1.1)
	
2.0

	
	
Section 3.8.1, "Upgrading a WebLogic Event Server 2.0 Domain to Oracle CEP 10.3"

	
Section 3.8.3, "Upgrading a WebLogic Event Server 2.0 Application to Run on Oracle CEP 10.3"

	
	
Section 3.8.1, "Upgrading a WebLogic Event Server 2.0 Domain to Oracle CEP 10.3"

	
Section 3.8.2, "Upgrading an Oracle CEP 10.3 Domain to Oracle CEP 11g Release 1 (11.1.1.6.3)"

	
Section 3.8.3, "Upgrading a WebLogic Event Server 2.0 Application to Run on Oracle CEP 10.3"

	
Section 3.8.4, "Upgrading an Oracle CEP 10.3 Application to Run on Oracle CEP 11g Release 1 (11.1.1.6.3)"

	
10.3

	
Not Applicable.

	
	
Section 3.8.2, "Upgrading an Oracle CEP 10.3 Domain to Oracle CEP 11g Release 1 (11.1.1.6.3)"

	
Section 3.8.4, "Upgrading an Oracle CEP 10.3 Application to Run on Oracle CEP 11g Release 1 (11.1.1.6.3)"

For more information, see Section 3.8.5, "Backward Compatibility Issues".

3.8.1 Upgrading a WebLogic Event Server 2.0 Domain to Oracle CEP 10.3

This section describes the steps you must take to upgrade a WebLogic Event Server 2.0 domain so that it runs correctly in Oracle CEP 10.3. For clarity, it is assumed that the existing WebLogic Event Server 2.0 domain is located in the /bea/user_projects/domains/mydomain20 directory.

To upgrade a WebLogic Event Server 2.0 domain to Oracle CEP 10.3:

	
Using the Configuration Wizard, create a temporary Oracle CEP 10.3 domain. Later steps in this procedure require you to use or refer to files in a new Oracle CEP 10.3 domain, and it is best to use a new domain. You can later delete this domain if you want.

For the purposes of this procedure, it is assumed that the new Oracle CEP 10.3 domain is called mydomain30, it contains a single server called defaultserver, and the server files are located in the /oracle_cep/user_projects/domains/mydomain30/defaultserver directory.

See "Creating an Oracle CEP Standalone-Server Domain" in the Oracle Fusion Middleware Administrator's Guide for Oracle Complex Event Processing.

	
If the WebLogic Event Server 2.0 server is currently running, stop it.

	
Make a backup copy of your WebLogic Event Server 2.0 domain in case you need to revert back.

	
Replace the following two files in the WebLogic Event Server 2.0 domain with the equivalent files from the Oracle CEP 10.3 domain.

	
lib/XACMLAuthorizerInit.ldift

	
lib/XACMLRoleMapperInit.ldift

The WebLogic Event Server 2.0 files are located relative to the domain directory (/bea/user_projects/domains/mydomain20 in our example) and the Oracle CEP 10.3 files are located relative to the server directory under the domain directory (/oracle_cep/user_projects/domains/mydomain30/defaultserver in our example).

	
Using your favorite text editor, open the atnstore.txt file in the WebLogic Event Server 2.0 domain, located in the config sub-directory of the main domain directory, and add the new Oracle 10.3 groups:

group: wlevsDeployers
description:
group: wlevsApplicationAdmins
description:
group: wlevsBusinessUsers
description:
group: wlevsOperators
description:

	
Remove the following files and directories (if they exist) in the WebLogic Event Server 2.0 domain:

	
FileBasedDefaultCredentialMappermy-realmInit.initialized

	
FileBasedXACMLAuthorizermy-realmInit.initialized

	
FileBasedXACMLRoleMappermy-realmInit.initialized

	
rm

	
cm

	
atz

	
Update the startwlevs.cmd (Windows) or startwlevs.sh (Unix) command scripts in the WebLogic Event Server 2.0 domain to point to the new Oracle 10.3 binaries.

	
Update the stopwlevs.cmd (Windows) or stopwlevs.sh (Unix) command scripts in the WebLogic Event Server 2.0 domain to point to the new Oracle 10.3 binaries.

	
Start the server in the 2.0 domain using the Oracle 10.3 binaries.

"Starting and Stopping an Oracle CEP Server in a Standalone-Server Domain" in the Oracle Fusion Middleware Administrator's Guide for Oracle Complex Event Processing.

	
This upgrade procedure might have changed the security configuration of your 2.0 domain, especially if you created new users and assigned them to groups. If this is the case, use Visualizer to reconfigure the security.

See:

	
"Security Tasks" in the Oracle Fusion Middleware Visualizer User's Guide for Oracle Complex Event Processing

	
"Configuring Security for Oracle CEP" in the Oracle Fusion Middleware Administrator's Guide for Oracle Complex Event Processing

3.8.2 Upgrading an Oracle CEP 10.3 Domain to Oracle CEP 11g Release 1 (11.1.1.6.3)

This section describes the steps you must take to upgrade an Oracle CEP 10.3 domain so that it runs correctly in Oracle CEP 11g Release 1 (11.1.1). For clarity, it is assumed that the existing Oracle CEP 10.3 domain is located in the /bea/user_projects/domains/mydomain103 directory.

To upgrade an Oracle CEP 10.3 domain to Oracle CEP release 11g Release 1 (11.1.1.6.3):

	
Using the Configuration Wizard, create a temporary Oracle CEP 11g Release 1 (11.1.1.6.3) domain. Later steps in this procedure require you to use or refer to files in a new Oracle CEP 11g Release 1 (11.1.1.6.3) domain, and it is best to use a new domain. You can later delete this domain if you want.

For the purposes of this procedure, it is assumed that the new Oracle CEP 11g Release 1 (11.1.1) domain is called mydomain11, it contains a single server called defaultserver, and the server files are located in the /oracle_cep/user_projects/domains/mydomain11/defaultserver directory.

See "Creating an Oracle CEP Standalone-Server Domain" in the Oracle Fusion Middleware Administrator's Guide for Oracle Complex Event Processing.

	
If the WebLogic Event Server 10.3 server is currently running, stop it.

	
Make a backup copy of your WebLogic Event Server 10.3 domain in case you need to revert back.

	
Replace the following two files in the WebLogic Event Server 10.3 domain with the equivalent files from the Oracle CEP 11g Release 1 (11.1.1) domain.

	
lib/XACMLAuthorizerInit.ldift

	
lib/XACMLRoleMapperInit.ldift

The WebLogic Event Server 10.3 files are located relative to the domain directory (/bea/user_projects/domains/mydomain30 in our example) and the Oracle CEP 11g Release 1 (11.1.1) files are located relative to the server directory under the domain directory (/oracle_cep/user_projects/domains/mydomain11/defaultserver in our example).

	
Using your favorite text editor, open the atnstore.txt file in the WebLogic Event Server 10.3 domain, located in the config sub-directory of the main domain directory, and add the new Oracle 11g Release 1 (11.1.1.6.3) groups:

group: wlevsDeployers
description:
group: wlevsApplicationAdmins
description:
group: wlevsBusinessUsers
description:
group: wlevsOperators
description:

	
Remove the following files and directories (if they exist) in the WebLogic Event Server 10.3 domain:

	
FileBasedDefaultCredentialMappermy-realmInit.initialized

	
FileBasedXACMLAuthorizermy-realmInit.initialized

	
FileBasedXACMLRoleMappermy-realmInit.initialized

	
rm

	
cm

	
atz

	
Update the startwlevs.cmd (Windows) or startwlevs.sh (Unix) command scripts in the WebLogic Event Server 10.3 domain to point to the new Oracle 11g Release 1 (11.1.1.6.3) binaries.

	
Update the stopwlevs.cmd (Windows) or stopwlevs.sh (Unix) command scripts in the WebLogic Event Server 10.3 domain to point to the new Oracle 11g Release 1 (11.1.1.6.3) binaries.

	
Start the server in the 10.3 domain using the Oracle 11g Release 1 (11.1.1.6.3) binaries.

"Starting and Stopping an Oracle CEP Server in a Standalone-Server Domain" in the Oracle Fusion Middleware Administrator's Guide for Oracle Complex Event Processing.

	
This upgrade procedure might have changed the security configuration of your 10.3 domain, especially if you created new users and assigned them to groups. If this is the case, use Visualizer to reconfigure the security.

See:

	
"Security Tasks" in the Oracle Fusion Middleware Visualizer User's Guide for Oracle Complex Event Processing

	
"Configuring Security for Oracle CEP" in the Oracle Fusion Middleware Administrator's Guide for Oracle Complex Event Processing

3.8.3 Upgrading a WebLogic Event Server 2.0 Application to Run on Oracle CEP 10.3

This section describes the steps you must take to upgrade an application that you developed in Version 2.0 of WebLogic Event Server so that it runs on Oracle CEP 10.3.

To upgrade a WebLogic Event Server 2.0 application to run on Oracle CEP 10.3:

	
Update the MANIFEST.MF file to import new versions of Spring framework and Oracle CEP packages, as well as new required packages. In particular:

	
Update the version of all imported Spring framework packages to 2.5.5. For example:

Import-Package:
 org.springframework.aop.framework;version="2.5.5",
 org.springframework.aop;version="2.5.5",
 ...

	
Update the version of any imported Oracle CEP packages to 3.0.0.0. For example:

Import-Package:
 com.bea.wlevs.ede;version="3.0.0.0",
 com.bea.wlevs.ede.api;version="3.0.0.0",
 ...

	
Add the following packages to the Import-Package header if they are not already included:

Import-Package:
 com.bea.wlevs.management.configuration.spi;version="3.0.0.0",
 com.bea.wlevs.management.spi;version="3.0.0.0",
 com.bea.wlevs.monitor;version="3.0.0.0",
 com.bea.wlevs.spi;version="3.0.0.0",
 com.bea.wlevs.spring.support;version="3.0.0.0",
 commonj.work;version="1.4.0.0",
 org.springframework.osgi.extensions.annotation;version="1.1.0",
 com.bea.wlevs.ede.spi;version="3.0.0.0",
 com.bea.wlevs.configuration.internal;version="3.0.0.0",
 ...

	
If you use Spring or Spring Dynamic Modules for OSGI (Spring DM) features in your application, it is possible that the declaration of the features in the Spring application context file has changed. If this is the case, you must update these declarations in the EPN assembly file of your Oracle CEP application.

	
Note:

This change is a result of the upgrade of the Spring framework (from 2.0 to 2.5) that occurred between WebLogic Event Server 2.0 and Oracle CEP 10.3, not as a direct result of the Oracle CEP upgrade

Refer to the appropriate 2.5 XSD Schemas for any changes:

	
Spring: http://www.springframework.org/schema/beans/spring-beans.xsd

	
Spring DM: http://www.springframework.org/schema/osgi/spring-osgi.xsd

The following bullets list some of the typical changes you might have to make; the following list is not complete:

	
When specifying a property to the <osgi:service-property> tag, use the <entry> tag with the key and value attributes, rather than the old <prop> tag.

For example, change the following 2.0 tag from:

<osgi:service-properties>
 <prop key="type">SocketAdapterType</prop>
</osgi:service-properties>

To:

<osgi:service-properties>
 <entry key="type" value="SocketAdapterType"/>
</osgi:service-properties>

	
The value or ref attribute of an instance-property must always be set to an explicit value; it can no longer be an empty string to indicate an implicit use of a default value.

For example, change the following 2.0 tag from:

<wlevs:adapter id="fileAdapter" provider="FileAdapterType">
 <!-- file: empty value uses default
 <wlevs:instance-property name="file" value="" />
 <wlevs:listener ref="algoTradingProcessor"/>
</wlevs:adapter>

To:

<wlevs:adapter id="fileAdapter" provider="FileAdapterType">
 <wlevs:instance-property name="file" value="test.file" />
 <wlevs:listener ref="algoTradingProcessor"/>
</wlevs:adapter>

	
Recompile the Java code of your 2.0 adapter and business POJO implementations using your IDE. If you get compile-time errors, check the latest 10.3 Javadoc (http://download.oracle.com/docs/cd/E13157_01/wlevs/docs30/javadocs/wlevs/index.html) that describe the new Oracle CEP APIs and make the appropriate source code changes.

	
If your 2.0 application has an adapter that uses the loadgen provider as Example 3-3 shows, then you must register a StockTick event type in your EPN assembly file as Example 3-4 shows.

Example 3-3 Adapter Using loadgen Provider

<wlevs:adapter id="fxMarketAmer" provider="loadgen">
 <wlevs:instance-property name="port" value="9011"/>
</wlevs:adapter>

Example 3-4 Registering a StockTick Event

<wlevs:event-type-repository>
 <wlevs:event-type type-name="StockTick">
 <wlevs:class>com.bea.wlevs.adapter.defaultprovider.StockTickEvent</wlevs:class>
 </wlevs:event-type>
</wlevs:event-type-repository>

	
After you have made the preceding changes, reassemble the application and deploy it to Oracle CEP 10.3.

See "Assembling and Deploying Oracle CEP Applications" in the Oracle Fusion Middleware Developer's Guide for Oracle Complex Event Processing for Eclipse.

If, during deployment, you get an exception that indicates that a package is invisible, add this package to the Import-Package header of the MANIFEST.MF file, then reassemble and redeploy the application. Keep adding packages in this manner until the application deploys successfully.

3.8.4 Upgrading an Oracle CEP 10.3 Application to Run on Oracle CEP 11g Release 1 (11.1.1.6.3)

This section describes the steps you must take to upgrade an application that you developed in Oracle CEP 10.3 so that it runs on Oracle CEP 11g Release 1 (11.1.1.6.3).

To upgrade an Oracle CEP 10.3 application to run on Oracle CEP release 1111g Release 1 (11.1.1.6.3):

	
Update the MANIFEST.MF file to import new versions of Spring framework and Oracle CEP packages, as well as new required packages.

Note that alternatively you can specify unversioned packages which will not require updating and also that you can specify larger versions in order to avoid minor version updates, that is, use "2.5" instead of "2.5.6".

In particular:

	
Update the version of all imported Spring framework packages to 2.5.6. For example:

Import-Package:
 org.springframework.aop.framework;version="2.5.6",
 org.springframework.aop;version="2.5.6",
 ...

	
Update the version of all imported Spring-DM framework packages to 1.2.0. For example:

Import-Package:
 org.springframework.osgi.context="1.2.0",
 ...

	
Update the version of any imported Oracle CEP packages to 11.1.1.4_0. For example:

Import-Package:
 com.bea.wlevs.ede;version="11.1.1.4_0",
 com.bea.wlevs.ede.api;version="11.1.1.4_0",
 ...

	
Add the following packages to the Import-Package header if they are not already included (see the sample source for a complete list of headers that may be required):

Import-Package:
 com.bea.wlevs.management.spi;version="11.1.1.4_0",
 com.bea.wlevs.spring.support;version="11.1.1.4_0",
 com.bea.wlevs.ede.spi;version="11.1.1.4_0",
 org.springframework.osgi.extensions.annotation;version="1.2.0",
 ...

	
If you use Spring or Spring Dynamic Modules for OSGI (Spring DM) features in your application, it is possible that the declaration of the features in the Spring application context file has changed. If this is the case, you must update these declarations in the EPN assembly file of your Oracle CEP application.

	
Note:

This change is a result of the upgrade of the Spring-DM framework (from 1.1 to 1.2) that occurred between Oracle CEP 10.3 and Oracle CEP 11.1, not as a direct result of the Oracle CEP upgrade.

Refer to the appropriate 2.5 XSD Schemas for any changes:

	
Spring: http://www.springframework.org/schema/beans/spring-beans.xsd

	
Spring DM: http://www.springframework.org/schema/osgi/spring-osgi.xsd

In particular convert any Spring-DM declared adapter factories to use the <wlevs:factory/> tag instead. For example, if your 10.3 EPN assembly file contains the service that Example 3-5 shows, then you must replace this service with the wlevs:factory that Example 3-6 shows.

Example 3-5 Spring-DM Declared Adapter Factory

<osgi:service interface="com.bea.wlevs.ede.api.AdapterFactory">
 <osgi:service-properties>
 <entry key="type" value="SocketAdapterType"/>
 </osgi:service-properties>
 <bean class="com.bea.wlevs.example.algotrading.adapter.SocketAdapterFactory" />
</osgi:service>

Example 3-6 wlevs:factory

<wlevs:factory provider-name="SocketAdapterType" class="com.bea.wlevs.example.algotrading.adapter.SocketAdapterFactory"/>

	
Recompile the Java code of your 10.3 adapter and business POJO implementations using your IDE. If you get compile-time errors, check the latest 11g Release 1 (11.1.1) Javadoc (see Oracle Fusion Middleware Java API Reference for Oracle Complex Event Processing) that describe the new Oracle CEP APIs and make the appropriate source code changes.

Consider changing deprecated Java API and Oracle CEP schema:

	
"Deprecated API and Schemas" in the Oracle Fusion Middleware Release Notes

	
"Adapter Changes" in the Oracle Fusion Middleware Release Notes

	
After you have made the preceding changes, reassemble the application and deploy it to Oracle CEP 11g Release 1 (11.1.1).

See "Assembling and Deploying Oracle CEP Applications" in the Oracle Fusion Middleware Developer's Guide for Oracle Complex Event Processing for Eclipse.

If, during deployment, you get an exception that indicates that a package is invisible, add this package to the Import-Package header of the MANIFEST.MF file, then reassemble and redeploy the application. Keep adding packages in this manner until the application deploys successfully.

3.8.5 Backward Compatibility Issues

The following are non-backward compatible changes in the management framework:

	
The following classes have been deprecated and removed from all operation signatures:

	
com.bea.wlevs.management.ManagementException

	
com.bea.wlevs.management.ManagementRuntimeException

	
com.bea.wlevs.management.MbeanOperationsException

	
The following methods have been removed from all MBeans: isRegistered(), preRegister(), postRegister(), getMBeanInfo().

	
The monitoring-related methods have been removed from StageMBean and replaced by com.bea.wlevs.monitor.management.MonitorRuntimeMBean.

	
The com.bea.wlevs.management.boot.BootMBean has been removed.

	
The com.bea.wlevs.management.configuration.ConfigSessionBean has been removed.

	
The ObjectName for the AppDeploymentMBean has been changed to include the DomainMBean as a parent.

	
The class com.bea.wlevs.server.management.mbean.ServerRuntimeMBean has been changed to com.bea.wlevs.management.runtime.ServerRuntimeMBean.

	
Two additional modules have been added: com.bea.wlevs.management.api_* and com.bea.wlevs.management.spi_*, in addition to the existing com.bea.wlevs.management_*.

	
The service com.bea.wlevs.spi.ManagementService has been moved from bundle com.bea.wlevs.spi_* to com.bea.wlevs.management.spi_*.

Glossary

Adapter

An element of the EPN that interfaces directly to an inbound event source. Adapters understand the inbound protocol, and are responsible for converting the event data into a normalized form that can be queried by a POJO. Adapters forward the normalized event data into a Stream.

Aggregate Function

Aggregate functions return a single aggregate result based on group of tuples, rather than on a single tuple.

See also Function and Single-Row Function.

CEP

Complex Event Processing.

Channel

A channel represents the physical conduit through which events flow between other types of components, such as between an Adapter and a Processor, and between a Processor and an Event Bean. A channel can model a Stream or Relation.

Condition

An Oracle CQL condition specifies a combination of one or more expressions and logical (Boolean) operators and returns a value of TRUE, FALSE, or UNKNOWN.

Constant value

A fixed data value. Synonymous with Literal.

CQL

Oracle Continuous Query Language. Supersedes EPL.

Data Feed

A synonym for Event Source.

Destination

An Oracle CQL destination identifies a consumer of query results such as the Enterprise Link BAM Adapter, JMS queue or topic, or file.

Deterministic Garbage Collection

Short, predictable pause times for memory heap garbage collection, which is the process of clearing dead objects from the heap, thus releasing that space for new objects.

DStream

A relation-to-stream operator that represents deleted tuples.

EDA

Event-Driven Architecture.

EPL

Oracle Event Processing Language. Superseded by CQL.

EPN

Oracle Event Processing Network. An EPN is the arbitrary interconnection of Adapter, Stream, POJO, and business logic POJOs used by Oracle CEP to process events.

Event Bean

A POJO to that contains the business logic executed when a notable event is detected. An event bean is an Event Sink.

Event Rule

A query, expressed in CQL or EPL, executed by a POJO to filter and aggregate events.

Event Sink

A component that consumes events, such as a Processor.

See also Event Source.

Event Source

A component that provides events, such as a sensor, wire service, or stock ticker.

See also Data Feed and Event Sink.

Expressions

An Oracle CQL expression is a combination of one or more values, operators, and Oracle CQL functions that evaluates to a value. An expression generally assumes the datatype of its components.

See also Condition and Function.

Format model

A character literal that describes the format of datetime or numeric data stored in a character string.

Function

Oracle CQL functions are similar to operators in that they manipulate data items and return a result. Functions differ from operators in the format of their arguments. This format enables them to operate on zero, one, two, or more arguments.

See also Condition, Aggregate Function, and Single-Row Function.

Incremental Processing

A user-defined aggregate function design pattern that improves scalability and performance by ensuring that the cost of (re)computation on arrival of new events will be proportional to the number of new events as opposed to the total number of events seen thus far.

If your user-defined aggregate function supports incremental processing, you specify the supports incremental processing clause in the register function statement to instruct the Oracle CEP Service Engine to supply only the new event data as opposed to performing a rescan over already processed event data.

IStream

A relation-to-stream operator that represents inserted tuples.

Join

A query that combines rows from two or more streams, views, or relations.

Latency

An expression of how much time it takes for data to get from one designated point to another.

Literal

A fixed data value. Synonymous with Constant value.

Monotonic

A sequence of values that are consistently increasing and never decreasing or consistently decreasing and never increasing. The sequence may contain multiple consecutive occurrences of the same value.

Now window

A special case of the time-based sliding window on a stream S that takes a time-interval T as a parameter and is specified by: S [Range T]. A Now window is defined as: S [Now] (short for S [Range 0]). When T = 0, the relation at time t consists of tuples obtained from elements of S with timestamp t.

See also Sliding window.

Operators

Oracle CQL operators manipulate data items and return a result. Syntactically, an operator appears before or after an operand or between two operands.

OSGi

A dynamic module system for Java that provides a service-oriented, component-based environment and standardized software lifecycle management. Oracle CEP applications are packaged and deployed as OSGi bundles. For more information, see http://www.osgi.org/.

Partitioned window

A partitioned sliding window on a stream S takes a positive integer number of tuples N and a subset {A1,... Ak} of the stream's attributes as parameters and is specified by: S[Partition By A1 ... Ak Rows N] or, optionally, S[Partition By A1 ... Ak Rows N Range T].

See also Sliding window.

POJO

A Plain Old Java Object. A Java class that is not required to implement a third-party interface or extend a third-party class. In Oracle CEP, you can express your business logic using POJOs.

Processor

An element of the EPN that consumes normalized event data from a stream, processes it using queries (expressed in CQL or EPL), and may generate new events to an output stream.

Query

A query is an operation that retrieves data from one or more streams or views. In this reference, a top-level SELECT statement is called a query.

Real-time

A level of computer responsiveness that a user senses as sufficiently immediate or that enables the computer to keep up with some external process (for example, to present visualizations of the weather as it constantly changes).

Relation

A relation is time-varying bag of tuples. Here "time" refers to an instant in the time domain. At every instant of time, a relation is a bounded set. It can also be represented as a sequence of timestamped tuples that includes insertions, deletions, and updates to capture the changing state of the relation. The updates are required to arrive at the system in the order of increasing timestamps. Like streams, relations have a fixed schema to which all tuples conform.

RStream

A relation-to-stream operator that maintains the entire current state of its input relation and outputs all of the tuples as insertions at each time step.

Single-Row Function

Single-row functions return a single result row for every row of a queried stream or view.

See also Function and Aggregate Function.

Sliding window

A stream-to-relation operator based on the window specification derived from SQL99.

See also: Now window, Partitioned window, Unbounded window, tuple-based, and Unbounded window, time-based.

Source

An Oracle CQL source identifies a producer of data that a Oracle CQL query operates on such as the Enterprise Link BAM Adapter, JMS queue or topic, or file.

Spring Framework

A light-weight, open source application framework for Java. Oracle CEP server uses the Spring Framework to host Oracle CEP applications. For more information, see http://www.springframework.org/.

Stream

A stream is a sequence of timestamped tuples. There could be more than one tuple with the same timestamp. The tuples of an input stream are required to arrive at the system in the order of increasing timestamps. A stream has an associated schema consisting of a set of named attributes, and all tuples of the stream conform to the schema.

A stream is a bag (or multi-set) of tuple-timestamp pairs, which can be represented as a sequence of timestamped tuple "insertions".

In Oracle CEP, a stream is modeled as a channel component.

See also Tuple and Channel.

Throughput

An Oracle CQL source identifies a producer of data that a Oracle CQL query operates on such as the Enterprise Link BAM Adapter, JMS queue or topic, or file.

Tuple

The term "tuple of a stream" denotes the ordered list of data (excluding timestamp data) portion of a stream element (the s of <s,t>). For example, a stock ticker data stream might appear like this where each stream element is made up of <timestamp value>, <stock symbol>, and <stock price>:

...
<timestampN> NVDA,4
<timestampN+1> ORCL,62
<timestampN+2> PCAR,38
<timestampN+3> SPOT,53
<timestampN+4> PDCO,44
<timestampN+5> PTEN,50
...

In the stream element <timestampN+1> ORCL,62, the tuple is ORCL,62.

See also Stream.

Unbounded window, time-based

A special case of the time-based sliding window on a stream S that takes a time-interval T as a parameter and is specified by: S [Range T]. An Unbounded window is defined as: S [Range Unbounded] (short for S [Range infinity]). When T = infinity, the relation at time t consists of tuples obtained from all elements of S up to t.

See also Sliding window.

Unbounded window, tuple-based

A special case of the tuple-based sliding window on a stream S that takes a number of tuples N as a parameter and is specified by: S [Rows N]. An Unbounded window is defined as: S [Rows Unbounded] (short for S [Rows infinity] and equivalent to S [Range Unbounded]). When T = infinity, the relation at time t consists of tuples obtained from all elements of S up to t.

See also Sliding window.

View

An Oracle CQL view represents an alternative selection on a stream or relation. In Oracle CQL, you use a view instead of a subquery.

Index

A B C D E F H I J M O P S T U

Symbols

	*
	
	maximal pattern quantifier (0 or more times), 2.7.4.1

	*?
	
	minimal pattern quantifier (0 or more times), 2.7.4.1

	+
	
	maximal pattern quantifier (1 or more times), 2.7.4.1

	+?
	
	minimal pattern quantifier (1 or more times), 2.7.4.1

	?
	
	maximal pattern quantifier (0 or 1 time), 2.7.4.1

	??
	
	minimal pattern quantifier (0 or 1 time), 2.7.4.1

A

	adapters, 1.2
	Ant
	
	CQL sample targets, 2.7.3
	Event Record and Playback sample targets, 2.11.3
	FX sample targets, 2.9.3
	HelloWorld sample targets, 2.6.3
	installing, 3.1
	Oracle Spatial sample targets, 2.8.3
	Signal Generation sample targets, 2.10.3

B

	beans, 1.2

C

	channels, 1.2
	CQL sample
	
	about, 2.7
	Ant targets, 2.7.3
	building, 2.7.2
	deploying, 2.7.2
	running, 2.7.1

D

	data cartridge samples
	
	Oracle Spatial
	
	about, 2.8
	Ant targets, 2.8.3
	building, 2.8.2
	component configuration file, 2.8.6
	deploying, 2.8.2
	EPN assembly file, 2.8.5
	implementation, 2.8.4
	running, 2.8.1

	development environment, 2.5

E

	EDA
	
	decoupled components, 1.2
	event sinks, 1.2
	event sources, 1.2
	event streams, 1.2
	example, 1.2
	rule driven, 1.2

	environment, 2.5
	EPN
	
	about, 1.3
	FX sample assembly file, 2.9.5
	HelloWorld sample assembly file, 2.6.5
	Oracle Spatial sample assembly file, 2.8.5
	Signal Generation sample assembly file, 2.10.5
	topologies, 1.3

	event beans, 1.2
	Event Processing Network. See EPN
	Event Record and Playback sample
	
	about, 2.11
	Ant targets, 2.11.3
	building, 2.11.2
	deploying, 2.11.2
	implementation, 2.11.4
	running, 2.11.1

	event sinks, 1.2
	event sources, 1.2
	event streams, 1.2
	Event-Driven Architecture. See EDA

F

	FX sample
	
	about, 2.9
	Ant targets, 2.9.3
	building, 2.9.2
	component configuration file, 2.9.6
	deploying, 2.9.2
	EPN assembly file, 2.9.5
	implementation, 2.9.4
	running, 2.9.1

H

	HelloWorld sample
	
	about, 2.6
	Ant targets, 2.6.3
	building, 2.6.2
	component configuration file, 2.6.6
	deploying, 2.6.2
	EPN assembly file, 2.6.5
	implementation, 2.6.4
	running, 2.6.1

I

	installation
	
	Ant, 3.1
	default domain, 3.1.3
	file name, 1.6
	installation programs, 1.6
	installers, 1.6
	JRockit, 3.1
	JVM, 3.1.2
	middleware home, 3.1.4
	mode
	
	console, 3.1.5.2
	graphical, 3.1.5.1
	silent, 3.1.5.3

	Oracle CEP IDE for Eclipse, 3.7
	Oracle Fusion Middleware directory, 3.1.4
	patches, 3.5
	post-installation tasks, 3.6
	pre-installation tasks, 3.1
	samples, 2.2, 3.1.3

J

	JRockit
	
	installing, 3.1

	JVM
	
	about, 3.1.2
	HP, 3.1.2.3
	IBM/AIX, 3.1.2.3
	Oracle JRockit Real Time, 3.1.2.1
	Sun JVM, 3.1.2.2

M

	MATCH_RECOGNIZE clause, 2.7.4.1
	MEASURES clause, 2.7.4.1
	middleware home, 3.1.4

O

	Oracle CEP IDE for Eclipse
	
	about, 3.7
	installing, 3.7

	Oracle CEP Visualizer, 2.3
	Oracle Spatial sample
	
	about, 2.8
	Ant targets, 2.8.3
	building, 2.8.2
	component configuration file, 2.8.6
	deploying, 2.8.2
	EPN assembly file, 2.8.5
	implementation, 2.8.4
	running, 2.8.1

P

	patches, 3.5
	platforms, 1.6
	processors, 1.2

S

	samples
	
	about, 2.1
	Ant targets
	
	CQL, 2.7.3
	Event Record and Playback, 2.11.3
	FX, 2.9.3
	HelloWorld, 2.6.3
	Oracle Spatial, 2.8.3
	Signal Generation, 2.10.3

	building
	
	CQL, 2.7.2
	Event Record and Playback, 2.11.2
	FX, 2.9.2
	HelloWorld, 2.6.2
	Oracle Spatial, 2.8.2
	Signal Generation, 2.10.2

	component configuration file
	
	FX, 2.9.6
	HelloWorld, 2.6.6
	Oracle Spatial, 2.8.6
	Signal Generation, 2.10.6

	deploying
	
	CQL, 2.7.2
	Event Record and Playback, 2.11.2
	FX, 2.9.2
	HelloWorld, 2.6.2
	Oracle Spatial, 2.8.2
	Signal Generation, 2.10.2

	development environment, 2.5
	EPN assembly file
	
	FX, 2.9.5
	HelloWorld, 2.6.5
	Oracle Spatial, 2.8.5
	Signal Generation, 2.10.5

	implementation
	
	Event Record and Playback, 2.11.4
	FX, 2.9.4
	HelloWorld, 2.6.4
	Oracle Spatial, 2.8.4
	Signal Generation, 2.10.4

	installing, 2.2
	Oracle CEP Visualizer, 2.3
	performance, 2.4
	ready-to-run, 2.1.1
	running
	
	CQL, 2.7.1
	Event Record and Playback, 2.11.1
	FX, 2.9.1
	HelloWorld, 2.6.1
	Oracle Spatial, 2.8.1
	Signal Generation, 2.10.1

	source, 2.1.2

	Signal Generation sample
	
	about, 2.10
	Ant targets, 2.10.3
	building, 2.10.2
	component configuration file, 2.10.6
	deploying, 2.10.2
	EPN assembly file, 2.10.5
	implementation, 2.10.4
	running, 2.10.1

	supported platforms, 1.6

T

	tools
	
	Oracle CEP IDE for Eclipse
	
	about, 1.7
	installing, 3.7

	Oracle CEP Visualizer
	
	about, 1.8

	topologies, 1.3

U

	user code, 1.2, 1.2

Oracle Legal Notices

Copyright Notice

Copyright © 1994-2014, Oracle and/or its affiliates. All rights reserved.

Trademark Notice

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

License Restrictions Warranty/Consequential Damages Disclaimer

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

Restricted Rights Notice

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

Hazardous Applications Notice

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Third-Party Content, Products, and Services Disclaimer

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Alpha and Beta Draft Documentation Notice

If this document is in preproduction status:

This documentation is in preproduction status and is intended for demonstration and preliminary use only. It may not be specific to the hardware on which you are using the software. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to this documentation and will not be responsible for any loss, costs, or damages incurred due to the use of this documentation.

[image: Oracle Logo]

OEBPS/img/siggenepn.png
SymbolsCacheloader

- -
B st

—
=
10080

OEBPS/img/selectconfigview.png
Step 1- Froject

O pistinet Results Target Event Type Select or Input Event Type u

Sours rapeties Gelctom hee) Selects Propetes %]
| Stockvorstionn o] [comae

symbol _java lang Sting

percChange javalang Dovble

® volume javalang Long

lastPrice_java ang Double

ELEMENT_TIME _timestamp

Froject Expression

Generated COL Statement

SELECT StockvolGt1 000 price StockVolGt 000 symbol StockolGH 000 volurne FROM stockChannel AS
StockvolGt 000 WHERE StockVolGt 000 volume = 1000

OEBPS/img/visprocqw2.png
.
& Processor: Filter Amer - fx@NonClusteredServer

Query Wizard

| choosetyout. v | [NNE] B | Ovover | & || & 2] Zoom:

SSouee RSowes CacheTable

ISteam DSteam RSteam

Tl rempiates

T e

OEBPS/img/visqwssource.png
-
4, Processor: stockProcessor - cal@NonClusteredServer

rd

Query

Q/[8][F] Dvover [& [&][@][Q] zom 023 oo

| choose et v |

RSourcs CacheTable

Paten ouput
LsSoure I Q
son Windaw
Unionntemsst Minus
lsteam Steam Rsteam
Tl Templates

[l User-defined templates

OEBPS/img/vismain.png
astibosrd 2 Vewstresm (@ Logot [FulScreen [Preference (@) Helo

ORACLE' CEP Visualizer ! Home [seaurty

1 Welcome : wlevs, Dashboard [EEEEE]
v @ WLEventServerDomain Management Events Clear.

eployment @ rtormation

v @ NonClusteredSener

v T Awplcations
om beawievs data

al
» £ Senvices _i\ Warning
) securiy Performance Monitoring (Drag a diagniostic profile into the table)
Average Throughput (Number of Events) Latency (Microseconds)
o £ rsshoit 120
) i
2
o 3w
w HE)
Pa fx
L] ¥ o
| 190000 | 190000

Open ttems.

Dashboard

Profile Name Application Stage Throughtput | [average Late MaxLatency | |op

OEBPS/img/selectconfig13.png
Step 1- Froject

[Distinct Results TargetEvent e merevent |v |
Source Propeties (select fom here) Source Properties

orders v | [soeaime

s [

Ordars.amount
onderidCostOndzcortens

“Enor- Missing Event:

amount_Cuttnaeramaunt

Generated CQL Statement

SELECT Orders.orderid AS orderid,Orders.amount AS amountError - Missing Event AS aleType FROM orderChannel
MATCH_RECOGNIZE (PARTITION BY orderid MEASURES CustOrder orderid AS orderid, CustOrder amount AS
amount PATTERN(CustOrder NoApproval™? Shipment) DEFINE CustOrder AS orderChannel sventType = €'
NoApproval AS NOT(orderChannel eventType = A), Shipment AS orderChanne| eventType = '5) AS Orders

@ tew & vaiivate | | @ save | [@ concel

OEBPS/img/cepapp.png
cross rate calculation
of clustered stock movement

queries

cata feeds

Reuters G

Bloomberg

/0 / ‘console
é notable events

ordinary events

N reatime
devices EventDriven
/(/' ‘ Appication \C\ event subscrivers
back-end
o

sensors.

~

analytic engines queries

OEBPS/img/selectconfig4.png
Step 1- Froject

[Distinct Results Target Event Type MovingAvgEvent I~
Soutce Propertes selct o here) Selects Propetes %]
| Stockvorstionn o] [cmatn

Stodkol6H1D0D symbolsymbol

Propettes (4)

price_doublc

D symbol jsvalang Sting

welumeans

ELEMENT_TIME _timestamp

Froject Expression

Generated COL Statement

SELECT StackvalGt 000.symbol AS symbol FROM Stockvaloti 000 [PARTITION BY symhal ROWS 2]

@ Heln & vaigate | | @ save | | @ Cancel

OEBPS/img/selectconfig3a.png
Step 1- Froject

[Distinct Results TargetEvent Tyne MovingAvaEvent I+
Source Propeties (select fom here) Selected Properies
| Stockvolstionn RliEEED

Propettes (4)

price_doublc

D symbol jsvalang Sting

welumeans

ELEMENT_TIME _timestamp

Project EXpression gy ekyalot 000.symbol

Generated COL Statement

SELECT * FROM StockvoIGH1000 [PARTITION BY symbol ROWS 2]

@ e & vaiivate | | @ save | [@ cancel

OEBPS/img/playtab.png
= strea

eventStream - recplay@NonClusteredServer LEEEE

Playback

Playback Current Status.

PlayBack Parameters. Event Type List

J— simpleEvent
DatagetName recplay_sample I

Provider Name | test-rdbms-provider v

Playback Fitter Entry

Filer Start Time Filter End Time.

Playback Schedule Entry

Schedule Start Time. Schedule End Time. Speed Repeat

1.0 false

Change Playback Filter Paramet

Change Playback Sch

Fitlr Start Time @ (0 00 00 = Schedule Stari Time 2 (o0 00: 00
Fittr End Time @ (0 00 00 = Schedule End Time 2 (o0 00: 00
Speed 10 Repeat [fase v

+ [/m”usm\ [=] a [x

OEBPS/img/visqwselect3.png
-
4, Processor: stockProcessor - cal@NonClusteredServer

Query Wizard

lomsne o] (@[B][E] Dww [&](a](@][a]zr o5, o=

SSouee RSowes CacheTable
Paten Dutput
Jein Window Fiter

D% 3%
T 55— (oo (Y 3500t Unn e s

Ol D324 D%

ISteam DSteam RSteam

Tl Templates
Tl User-defined templates

OEBPS/img/mw_home_cepalone.png
[}

Middleware Home

—

(] a

CEP Oracle Home User Projects

(ocep_11.1) (user_projects)
Domains
(domains)

!
(|

CEP Domain
(ocep_domain)

l_l_l

(o] (]

cepserver! cepserver2

OEBPS/dcommon/oracle-logo.jpg
ORACLE

Fusion Middleware Getting Started
Guide for Oracle Complex Event
Processing, 11g Release 1 (11.1.1.6.3)

OEBPS/img/selectconfig12.png
Step 1- Froject

[Distinct Results Target Eveni Type Select or nput Event Type | v |
Source Propeties (select fom here) Source Properties

Select a source v | [soeaime

Propeties ©

Generated CQL Statement

SELECT *FROM orderChannel MATCH_RECOGNIZE (PARTITION BY orderid MEASURES Custorder orderid AS
orderid, CustOrder amount AS amount PATTERN(CustOrder NoApproval*? Shipment) DEFINE CustOrder S
orderChannel eventType = ‘C', NoApproval AS NOT(orderChannel eventType = &), Shipment AS

orderChannel eventType = ') AS Orders

@ e & vaiivate | | @ save | [@ concel

OEBPS/img/cqlepn.png
ad—0%

Legend

B——=0 <=~
B——=0 ="

—

&

E
adapter —

. cacheprocessor

stockCache

- _..
s

Bean

OEBPS/img/connectssfilt.png
Y 1550mee @
. [@] 25w

OEBPS/img/visgen.png
cal @NonClusteredserver

General Information

Application Name cal

State RUNNING

OEBPS/img/selectconfig11.png
s .. consion [

Step 2- GROUP BY

[swockvaioron |+ [+]| oot Grounng roperas

SereatLit(t)

Propettes (4)

Stadkal6t1000 2ymbol

price_doublc

D symbol jsvalang Sting

welumeans

ELEMENT_TIME _timestamp

Generated COL Statement

SELECT StockvolGt1 000 symbol AS symbol AVG(StockyolGt 000 price) AS movingévgPiice from StockyolGt000

[pariition by symbol rows 2] GROUP BY Stockvalot1 000 symbol

@ Heln & Validate

B save

@ cancel

OEBPS/dcommon/oracle.gif

OEBPS/img/spatialweb3.png
%) Mozilla Firefox

Ele Edt View Hstory Bookmarks Ioos Help

- @ % @ ([hpfiocahostioonzibusimain hem

localhost:9002/bus/main.html

Bus Track

Bus Stop Arri

il
Terrain

Metro Mall ey

Gresriaun
cam®™ | (Conetery. Colma

S

Time

2010 Mar, 4 14123 P10

2010 Mar, 4 14124 P10

Bus stop 1d
1
2

& text 4 rrevious o Hghlght (] Metgh cese

OEBPS/img/rectab.png
3, Adapter: simpleEventSource - recplay@MonClusteredServer

Recor

ng Current Status
Recording Parameters Event Type List

[simpleEvent
DataSetName recplay_sample I

Provider Name | test-rdbms-provider

Recording Schedule Entry.

stat Time

End Time

Start Recording

& [o0: 00: 00

Stop Recording & [o0: 00: 00

2 eat | [@start

OEBPS/img/outputconfig2.png
() output [1D:4]

Tie O cuery

Query Narme

@ view

View Name | StockvolGt 00|

View Schema

Froject List

Propattes)

1 StodvolGHODD.price

2 Stodeoloti000 symbal

3 Stodwelotinmgvalume

Generated COL Statement

SELECT StockvalGt1 000 price StockVolGt1 000 symbol StockolGH 000 volume FROM stockChannel AS StockVolGH 000
WHERE StockvolGt 000 valume > 1000

@ Heln | @ nectigule | | £ Replace Rule | | o validate | | @ save | | @ cancel |

OEBPS/img/filtexpression.png
Expression Builder

StockvolG 000 valume > 1000

Operands

Variables Functions.
StockVolGt1000 v | | setectafunctiontype
Propeties @ Functions

price_java.lang Double

symbol _java lang Sting

percChange javalang Dovble

® volume javalang Long

lastPrice_java ang Double

ELEMENT_TIME _timestamp

Function Description

@ el

EE-E

OEBPS/img/rulesview2.png
& Processor: stockProcessor - cql@NonClusteredServer

O view @ Guery (O All Rules

Rule 1D Rule Type Ordering | Running

MovingAverage SELECT StockolG1 000.symbol AS symbol AVG(StockValGt1 000 price) AS movingavgPrice FROM | QUERY. =
StockValGt1 000 [PARTITION BY symbol ROWS 2] GROUP BY StackValGt1 000 symbol

Working Area - for Modify and Delste Operation, select a rule from the table

QueryID

Ordering Constraints v

Fartiion Expression

[
Query
Enable () o

G Acd Guery | [3 Delete All Queries

| 12 e = 8 e @ rele

OEBPS/img/ssourcecfg2.png
CLe. Sweam[:1]

T O Stream @ View

| Stockvolstono

Source Froperties [propettes (@)

price double

symbol java lang ting

walumeans

ELEMENT_TIME timestamp

Generated COL Statement

SELECT * FROM StockVoIGH1 000

@tew & vaiivate | | @ save | [@ cancel

OEBPS/img/confirminject.png
Rule has heen sucessfully added,

OEBPS/img/logon.png
Ele Edt View Hstory Bookmarks Ioos Help

G- ¢ X & (O mwiocabosssooziwievst

ORACLE CEP Visualizer

omplex Event Processing Visualizer - Mozilla Fir

Gongle 7

Welcome

Userlg

Password

e CO8 50 43115 81 e It T e T e 2 g onen

Dore

OEBPS/img/winconfig4.png
Q) Window [1D:2] x

Partiton Source Property List Partiion List (selectfom the lis)
price symbol
symbol

Twe - - @ Partition

[Row Based 2

[Time Based

sie [

Generated COL Statement

SELECT * FROM StockvoIGH1000 [PARTITION BY symbol ROWS 2]

@tew [Ase window | | & validete | | Eljseve | @ concel |

OEBPS/img/outputconfig3.png
(@) Output [10: 41 x
Twe @ Query
QueryName Tracking
Enable @ e O faise

O view

View Narme
View Schema

Froject List

Propettes 3)

1 Onesorangortena

2 Ousmamountamaunt

S "Ewor- Missing EventalerType

Generated CaL Statement

SELECT Orders.orderid AS orderid,Orders.amount AS amountError - Missing Event AS aleType
FROM ordsrChannel MATCH_RECOGNIZE (PARTITION BY orderid MEASURES
CustOrder.orderid AS orderid, CustOrder amaunt AS amount PATTERN(CustOrder NoApproval®?
Shipment) DEFINE CustOrder AS orderChannel.eventType = ‘C', NoApproval AS
NOT(orderChannel eventType = &), Shipment AS orderChannel eventType = '5) AS Orders

[@tep | [nect Rute | [£ Replace Fule | | o vaidate | [B save | | @ cancel |

OEBPS/img/recplayepn.png
B——=—8—0

snpeEentsource btk playbacstpPublsher
Tovond
% - i

OEBPS/img/visqwselect2.png
-
4, Processor: stockProcessor - cal@NonClusteredServer

Query Wizard

[t -] [©] (B [F] @rover

SSouee RSowes CacheTable
Paten Dutput

Q9 B
B33 3%

Unionntemsst Minus
lsteam Steam Rsteam
Tl Templates

[l User-defined templates

OEBPS/img/visqwwindow.png
& Processor: stockProcessor - cal@NonClusteredServer
Query Wizard
[ctoosetmet. || [@][@][E] Dre [&][&][@][EH 2 o=, o
soue Rooue CameTabe
Faen Ouput select
soin e
5] sssome Q2w Unn e s
wan osweam Asveam
[l Templates
[l user-defined templates

OEBPS/img/rulesview.png
-
4, Processor: stockProcessor - cal@NonClusteredServer

@® view O Guery (O All Rules

Rule 1D Rule Tye | [orderin

Running

StockvolGH 000 SELECT StackvalGt1 000.price,StockVolGt1 000.symbol StockVolGt 000 volume FROM IEW false
StockChannel A3 StockvolGH1 000 WHERE StockVoIGt! 000volume » 1000

Working Area - for Modify and Delste Operation, select a rule from the table

ViewID
View Schema
Ordering Constraints v

Fartiion Expression

View

Enable () o

[Ava view | [€ Detete il views

| 12 e = 8 e @ rele

OEBPS/img/rectabalert.png
You are aboutto start recording immediately

OEBPS/img/visprocgen.png
=
4, Processor: stockProcessor - cal@NonClusteredServer

Processor Properties

FrocessorType COLProcessor

) Create Diagnastics

OEBPS/img/outputconfig.png
(4] output [ID:6]

Tie @ cuery

QueryName | Movingaverage

Enable @ True (O False
O view

View Narme
View Schema

Froject List

Propettes 2)

1 Stodolctonn symbolsymbol

2 AVG(StodialoHD00 pice ymovingAvaPrice

Generated COL Statement

SELECT StockvolGt1 000 symbol AS symbol AVG(StockyolGt 000 price) AS movingévgPiice from StockyolGt000
[pariition by symbol rows 2] GROUP BY Stockvalot1 000 symbol

@ Heln | @ nectigule | | £ Replace Rule | | & validate | | @ save | | @ cancel |
1

OEBPS/img/measurecfg2.png
Measure

Step 4 - Create measure objscts

Onjctame 48 I

Measure List click fo select)

Propetties 2)

orderidCoonacortens

amount_Cutiaeramaunt

Generated Pattern Match Staterment

SELECT * FROM orderChannel MATCH_RECOGNIZE (PARTITION BY orderid MEASURES
CustOrder.orderid AS orderid, CustOrder amaunt AS amaunt PATTERN(Custorder NoApproval®?
Shipment) DEFINE CustOrder AS orderChannel.eventType = C', NoApproval AS
NOT(orderChannel eventType = &), Shipment AS orderChannel eventType = '5) AS Orders

@ e & vaiivate | | @ save | [@ concel

OEBPS/img/patterncfg3.png
[e [

Step 2- Define objects in the patier from step 1

Object Name a5

Object List (click o select)

Propettes)

CustOrder_orgerChannel eventType =

NoApproval NOT(orderChannel eventType

Shipmant _arerChannel eventType =5

Generated Pattern Match Statement
SELECT * FROM orderChannel MATCH_RECOGNIZE (PARTITION BY orderid PATTERN(Custorder
NoApproval®? Shipment) DEFINE CustOrder AS orderChannel eventType = C' NoApproval AS
NOT(orderChannel evenfType = &) , Shipment AS orderChannel.eventType = 'S AS Orders

@ e o vaiivate | | @ save | [@ concel

OEBPS/img/expessionbuilder4.png
Expression Builder 9] @&

CustOrder.orderid

Variables. Functions Operands
v | | Selectafunctiontype v o+
Praparies (12) Functions -

CustOrder amount _java lang L

CustOderts java lang Sting i

CustOrder ventType java ane|

© CumDrderortend jesiong o)

Shipment amount _java lang L

Shipmentss _java.lang Sting

ShipmenteventType _java lans| 7] -

Function Description

@ e & save | [@ cancel

OEBPS/img/selectconfig8.png
Step 1- Froject

[Distinct Results Target Event Type MovingAvgEvent I~
Soutce Propertes selct o here) Selects Propetes %]
| Stockvorstionn o] [cmatn

Stodkol6H1D0D symbolsymbol

Propettes (9)

D prce double

symbol _java lang ting

walumeans

ELEMENT_TIME _timestamp

Project BXpression sy stockvalGt 000 price)

Generated COL Statement

SELECT StockvolGt1 000 symbol AS symbol from StockVolGH 000 [parition by symbol rows 2]

@ cancel

@ Heln o vaidate | | B save

OEBPS/img/spatialweb.png
%) Mozilla Firefox
Ble Edt Vew

- ¢

| L) httpi//localhost:9002/bus/mainhtml |

Hstory Bookmarks Tooks

Bus Track

Help

@ (1) hepiffocahost:o002jbusjmain il

Cental
Richmond|

sozast

2oz

!

10 F Kernagy D

Goiden
Gate Park,
Mg O W

Laxe.
Metson Lake.

RO s

Loy Loke

o*Mv

EKGien
e 4

“seviine
ot
i W

5 e

Satelite

Terrain

vy

o uorsond
v

L Catfora:
e Young gy

depanesel Sifisum ;e

Tea Garden

v,

Son Francsco
Botanica Garden

e

Uiy pone
saOLE.

2 [Matgh case

OEBPS/img/cepappepn.png
B e
e

B

h_ , o eventoean Strsanorelationsinkl

Channelz
StreamOrRelationsourcezdapter

StreamOrRelationSinkz

OEBPS/img/filtexpression2.png
Filter Predicate - type directly nto the text area OR use Builder

StockvoIG 000valume > 1000

Generated Filter Staterent

SELECT * FROM stockChannel AS StockvalGt 000 WHERE StackvolGt 000 valume = 1000

@ Heln (G At fitter | |) Deete fitter

& et |

Q@ cancel |

Aspe

OEBPS/img/selectconfig9.png
Step 1- Froject

[Distinct Results Target Event Type MovingAvgEvent I~
Soutce Propertes selct o here) Selects Propetes %]
| Stockvorstionn o] [caw

Stodkol6H1D0D symbolsymbol

Propettes (9)
AVG(StodVoIGHODD price ymovingAvgPrios

D prce double

symbol _java lang ting

walumeans

ELEMENT_TIME _timestamp

Froject Expression

53]

Generated COL Statement

SELECT StockvalGt1 000 symbol AS symbol AVG(StockyalGt 000 price) AS movingévgPiice from StockyolGt000
Ipariiion by symbol rows 2]

@ Heln & vaigate | | @ save | | @ Cancel

OEBPS/img/visqwfilter.png
-
4, Processor: stockProcessor - cal@NonClusteredServer

Query Wizard

Q|8][F] OHover

| choose et v |

& |[&][@][O zm o= 900

SSouee RSowes CacheTable
Paten Duput Select

2Fiter Join Window ﬁ

D23 23

Y 1soume

Unionntemsst Minus
lsteam Steam Rsteam
T Templates

[User-defined templates

OEBPS/img/patterncfg2a.png
[o [

Step 2- Define objects in the patier from step 1

Object Name a5

Object List (click o select)

Propettes (1)

CustOnder_oraerChanneleventType =

Generated Pattern Match Staterment
SELECT * FROM orderChannel MATCH_RECOGNIZE (PARTITION BY orderid PATTERN(Custorder
Noapproval*? Shipment) DEFINE CustOrder AS orderChannel eventType = C) AS Orders

@ e o vaiivate | [@ save | [@ concel

OEBPS/img/expessionbuilder5.png
Expression Builder 9] @&

Custorder amound

Variables Functions Operands
v | | Selectafunctiontype v - =
Praparies (12) Functions -

© CutDrderamount s e

CustOrderts java.lang Sting i

CustOrdereventType java ane|

CustOrderorderid_java 0o 51|

NoApproval.amaunt _java.ang

Nopprovalts java.lang Sting =

Nospproval eventType java afx| - =

Function Description

@ tew B save | [@ cancel

OEBPS/img/siggenconsole.png
WLEVS Signal Generation Demo - Windows Internet Explorer

()~ [eepitpocatiost:soozjsignaigenerationjdashboard himl

Ele Edt View Favortes Toos Help

P & [@wievs sondl eneration pere

Page + () Tools -

Start | Stop | Latency Max Y

Percentage
Change
Time Symbol Price Change
07:53:15 $143.89 287
07:32:15 52032 -240
07:07:32 $59.44 243
06:42:24 $19.96 572
06:14:43 $50.08 307
05:51:16 2117 2n
05:45:16 S151.74 244
05:33:46 $104.11 211
05:14:05 $50.52
04:5026 $161.48

Trend
Time Price
23943 57838
200850 510139
151131 7564
132105 59775
104828 59318
01141 51371
024339 BIEF)
01:4034 §7353
0120 516387
003919 512236

T

 100%

OEBPS/img/visualizer.png
Oracle Complex Event Processing Visualizer - Windows Internet Explorer,

Go-

&) hetpiocahasts0nzjwies]

9 | @orade Conplex vt rocessing uslze

ORACLE’ CEP Visualizer

! Welcome : wlevs

Deployment

v @ NonClusteredSener
Leroozs ayut

bome

=

3 Secuty (] Dashboard 2 ViewsStream

& Processor: cachePracessor - cal@NonclusteredServer

[Fulsereen iy Preference

mle=lEE]

Query Wizard

o [01(81[E] Dwe [&][&] (8@ = o

v T Applcations

» % Cache Systems
v [5) Stages
=81
52
o, adapter
s alertChannel
%, aleroutout
@bean
S cacheProcese
s movingAvgChe
5 movingOutput
%, ordercvsAda

openttems
Dastivoard £
= ol @onclustereaserer

& Processor:casheProcessor-|[x)

3Cacke-Teble

5Select

Ssouee RSoue

Cacha-Tatle

output

Window

D23 23

Union et Minus

Gl Doy D25y

DStream

60utput

Istieam Rstream

Tl rempiates

Gl e

Qoo

OEBPS/img/expessionbuilder3.png
Expression Builder 9] @[

NOT(orderChannel evenfType = &)

Variables. Functions Operands

orderChannel v | | Selectafunctiontype v

Propetties ®) Functions

amount_javalang Long

& javalang.sting

D eventType java lang Sting

orderid_javalang Sting

Function Description

@ e B save | [@ concel

OEBPS/img/spatialepn.png
e

BusstopRelation

=8

BusstopChannel

% Busstopadapter susstopPub
sspostioncen — B .

e
sposstean P

Procesor st

\ogem S n
[IT——

e susstopaTaR

Bean

BusStopArrivaloutputBean

OEBPS/img/streamvis2.png
o

> Stream Visualizer

CEP Server Name

PublSUb Server URL hito/141.144.184.207:3002/pubsub

- scribe

NonClusteredServer . Pubsub Server Name

)

pubsub. v

bisconnect

_
HoE=E

Channel Name

Jevermonitor

Jevealert

Jevedomainchange

©|0|0| O

Jstackmoving

Output messages from subscription

Refresh

15.40000009999917)
15.400000000000055)
10.8)

10.8)
14.100000000000003)

ovingAvPric
ovingAvPric
ovingAvPric

o0gle" movingAvgPrice’: 30}
B "movingAvgPrice"15 49999999999991 7}
BN movingAvgPrice’”15.443993999999957)

=) subsorive | | T Clean Text

OEBPS/img/epn-overview.png
& Java - CQL Test - Eclipse Platform
Fle Edt Navigte Search Project Run Mindow Hep

i-EHGiIB-0-Q- (BEHG- I ODF D!

s

[8 packs 50 g Herar | 7 O[T EpN: COUTest £3 . [X) ciipoc.contest xml

| X] com.oracle.cep.sample.fx.context xml \

Bl Task it £

2 BES Fter: v FulEP
@ 5 colerest

@59 carx
=5 coures

8 src

B JRE System Library [jre1.6

Febtarketasia
& buid
& dst

- e

=2 spring Foo W e

X citpor.context sl
% FikerEurastream

B comorace.cep.sa
bt

Fiternsiastream
Fiterasia

8

FiterEura

- _,:}._,Q-,

/’

EH T a—]

go9=-|e~

EJD

FindCrassRat

12}

bhaProcess

) pPubsubidaptercor
B spresderm
0 summarzeResuts
) manteesr e
&) buid properties
) buidxnl
bunde propertes
@ 5 courenz
gy

B =0

) channelxm
pricsstream
PriceAdapter

%) citpocom

) processor
adapter

<

Sug s

fiteredstream

o)

analyticsproce:

& Uncategorizd

Pl oy ad

overien

B2 outine 33

0 MyCEPProj

& servers 2. problems | @ 3avadoc | Declaration | 4t Servers &2

server
5 orack CePYiL

state
o stopped

Status
Republsh

OEBPS/img/visepn.png
cal @NonClusteredServer

Event Processing Network

Event Processor Network Graphical View

S== Layout | mierarchic v| zoom
===}

[ERN

S T -

o st

[) = e

! stockChannel movingfvgChanel 4

i

B S » Vo D
B 52

” |

adspter

COLStockTick

OEBPS/img/patterncfg2.png
[o [

Step 2- Define objects in the patier from step 1

Object Name a5

Object List (click o select)

Propetties)

Generated Pattern Match Staterment

SELECT * FROM orderChannel MATCH_RECOGNIZE (PARTITION BY orderid PATTERN(Custorder

NoApproval*? Shipment) AS Orders

@ el

o validate

B save

@ cancel

OEBPS/img/patterncfg.png
Pattern

T A
PR EET T |

Step 1 - Create Pattern

Pattern Bxpression - custorger NoApproval®? Shipment
(e AB77C)

Duration

(e.0.1 minute)
Patitonsy |oweia v |[+ |[@
Paten Aias Orders

O anmatches

Generated Pattern Match Staterment

SELECT * FROM orderChannel MATCH_RECOGNIZE (PARTITION BY orderid PATTERN(Custorder
NoApproval*? Shipment) AS Orders

@ e o vaiivate | [@ save | [@ concel

OEBPS/img/ssourcecfg3.png
T g B g

Tie @ Stream O View

orderChannel a5

Source Froperties [propetties(e)

amount javalang Long

& javalang.Sting

eventType javalang Sting

orderidjava lang Sting

Generated CaL Statement

SELECT* FROM orderChannel

@ e o vaiivate | [@ save | [@ concel

OEBPS/img/selectconfig7.png
Expression Builder

AVG(StockvalG 000.price)|

Variables Functions. Operands
Selectasource v | | Agoregate Function B |
Fope®) o] -

Ve -
caunr ;
FiRsT |
st
MAX. N
i E
sum > =
Function Description
syntaxc
AVG(bigint expr), AVG(float expr), AVG(integer expr)
@ Heln B save | | @ cancel |

OEBPS/img/visqwoutput.png
-
4, Processor: stockProcessor - cal@NonClusteredServer

Query Wizard

[omezeroet. | (@][@[T

1:SSowre. 2Window

5Select

60utput

Dwover (& J[&J[@[O0 zoom 022 o2

Ssouse Roouce CaheTable
Patin

son Windaw
Unionntemsst Minus
lsteam Steam Rsteam
Tl Templates

[l User-defined templates

OEBPS/img/visqwoutput2.png
-
£ Processor: stockProcessor - cal@NonClusteredServer

Query Wizard

Lo o] (@][B][E] Do [&][](@][Q 2 o5, o=

SSouee RSowes CacheTable

b {2

® @

W%M_{W' st [] 4o o Windo
3y B33

Unionntemsst Minus
lsteam Steam Rsteam
Tl Templates

[l User-defined templates

OEBPS/img/validation1.png
Validate failed,
Ertor at 71083

Caused by: not a single-group group function

Include a GROUP BY clause containing the
attribute or remove the reference to the atrute in

the select list

OEBPS/img/visqwssource2.png
-
£ Processor: stockProcessor - cal@NonClusteredServer

o

[oroosermest. v| (@[B [E] Orover (& [& |[8|[Q] 2o 0 oo

1y Wizard

RSourcs CacheTable

Paten ouput
® @
son Windaw
% 2%
Unionntemsst Minus
DO D3 D%
lsteam Steam Rsteam
Tl Templates

[l User-defined templates

OEBPS/img/visprocqw.png
-
4, Processor: stockProcessor - cal@NonClusteredServer

Onery Wizara
[ommmes. o] [@ (B[] O [&][(&][@] G = o=
[Templates
Tl User-defined templates

OEBPS/img/playtabalert.png
You are aboutto start playback immediately.

OEBPS/img/fxepn.png
&B-

csvTestData

- —»<:>—»—»b—,

Fiteramerstream
Foarketamer Fikersmer

B ‘—-@-, e

Fikerpsiastream
Fiterasia

NS

FikerEurastream

Febtarketisia

[

PxMarketEuro

FiterEuro

- —-ﬁ— o

CrossRatestream
FindCrassRates

OutputBzan

o)

summarizeResuts

OutputBzan

———-C-—

SunmeryResultsstream h
PublihsummaryResuts
Legend
Adepter Channel Processor Business
Ofject
(POJO)

OEBPS/img/expessionbuilder2.png
Expression Builder

orderChannel sventType = 5|

Operands

Variables. Functions
orderChannel Select a function type v
Propetties) Functions

amount_javalang Long

& javalangsting

D eventType java lang Sting

orderid_javalang Sting

Function Description

@ el

B save | [@ cancel

OEBPS/img/filtconfig.png
Filter Predicate - type directly nto the text area OR use Builder

Generated Filter Staterment

SELECT * FROM stockChannel AS StockvolGt 000

@ el

(i Aua fiter

 validate

& save

@ cancel

OEBPS/img/measurecfg.png
m

Step 4 - Create measure objscts

Object Name a5

Measure List click fo select)

Propetties)

Generated Pattern Match Staterment
SELECT * FROM orderChannel MATCH_RECOGNIZE (PARTITION BY orderid PATTERN(Custorder
NoApproval®? Shipment) DEFINE CustOrder AS orderChannel eventType = C' NoApproval AS
NOT(orderChannel evenfType = &) , Shipment AS orderChannel.eventType = 'S AS Orders

@ e o vaiivate | | @ save | [@ concel

OEBPS/img/visprocgen2.png
& Processor: calProc - cql@NonClusteredServer

Processor Properties

FrocessorType COLProcessor

] Create Diagnastics

OEBPS/img/spatialweb2.png
%) Mozilla Firefox

Bus Stop Arrivals

Sateite | ybris

Terrain

Bus Stop 1d.

& tiext 4 Erevious 0 Hghlght 8l [Matgh cese

OEBPS/img/helloepn.png
) - . ~———%

heloworldinputChannel helonoridoutputchannel
helomoridadapter heloworldprocessor HelltaridBan

=
b—0%
Adapter Channel Processor Business.

OEBPS/img/visqwtemplate.png
-
&k Processor: calProc - cal@NonClusteredServer

|oreoseimon. v| (@ |[B [T Ower (& |[&][& Zoom: 028

Tl rempiates

a
s

Join Template

2paton et acusu
Lisouree
ISowse ZFeflem 3Seket 4Oupu [

Viewn Template

- OO O Cesswesess]

OEBPS/img/selectconfig5.png
Step 1- Froject

[Distinct Results Target Event Type MovingAvgEvent I~
Soutce Propertes selct o here) Selects Propetes %]
| Stockvorstionn o] [cmatn

Stodkol6H1D0D symbolsymbol

Propettes (9)

D prce double

symbol _java lang ting

walumeans

ELEMENT_TIME _timestamp

Project EXpression gyckyalot 000.price

Generated COL Statement

SELECT StackvalGt 000.symbol AS symbol FROM Stockvaloti 000 [PARTITION BY symhal ROWS 2]

@ Heln & vaigate | | @ save | | @ Cancel

OEBPS/img/streamvis.png
{ bome () Securty

ashbosrd 2 View Stream @ Logout [FulSoreen [Preference @) Help

= Stream Visualizer [FEEEE]

CEP ServerName | NonClusteredServer + Pubsub SenverName pubsub -
PuB/Sub Server URL itoii141.144.176.34:8002fpubsub B Discannect
[FBIEERY suvscrive

Channel Name

Jevermonitor

Jevealert

Jevedomainchange

©|0|0| O

Iplaybackshannel

Output messages from subscription Refresh
play

{'creationTime
{'creationTime
{'creationTime
{'creationTime 1:12:30.040
{'creationTime"*11:17:17 908" "playbackTime"*11:19:30.345"}
{ereationTime"11:17:18.221", playbackTim;
{ereationTime"11:17:18.512" playbackTim;
{ereationTime"11:17:18.815", playbackTime’
{ereationTime"11:17:19.112" playbackTim;
{ereationTime"11:17:19.424", playbackTim;
{ereationTime"11:17:19.721", playbackTime’
{ereationTime"11:17:20.012" playbackTim;

=) subsorive | | T Clean Text

19:20.143)
19:20.4407)
1:18:20.752')

19:32.158)
19:32.458) &

OEBPS/img/ssourcecfg.png
S Sweam[D:1] e

T @ Stream O View

| stockchamen

Source Froperties [propetties®)

price java.lang Double

symbol java lang ting

persChange javalang Double

volume java lang Long

lastPrioe java ang Double

ELEMENT_TIME timestamp

Generated COL Statement

SELECT* FROM stockChannel AS StackvolGt 000

Validate

OEBPS/img/expessionbuilder1.png
Expression Builder

orderChannel eventrype =

Variables. Functions Operands
orderChannel Select a function type v 3
Fropeties () Functions I
amount_javalang Long <
& javalangsting <

D eventType java lang Sting

orderid_java lang Sting

Function Description

@ el

B save | [@ cancel

OEBPS/img/oracle_instancecep.png
]

Middleware Home

f
]

Oracle Common Home

T
[} O

CEP Oracle Home
(ocep_11.1}

a

CEP Domain
tocep_donain)

SOA Oracle Home.

[} [}

UserProjects WebLogic Server Home

tuser_projects)

|
o]

Domains

(]

S0A Domain

|
f 1
(] |

cepserver] cepserver2

r 1
[am| (o]

Admin soa_server!
Server Server

