Oracle® Fusion Middleware
Enterprise Deployment Guide for Oracle Business Intelligence
11g Release 1 (11.1.1)
E15722-05

April 2012
Describes how to install and configure Oracle Business Intelligence components in an enterprise deployment.
Contents

Preface

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>xi</td>
</tr>
</tbody>
</table>

Audience xi

Documentation Accessibility xi

Related Documents xi

Conventions xi

1 Enterprise Deployment Overview

1.1 About the Enterprise Deployment Guide 1-1

1.2 Enterprise Deployment Terminology 1-2

1.3 Benefits of Oracle Recommendations 1-5

1.3.1 Built-in Security 1-5

1.3.2 High Availability 1-6

2 Introduction to the Enterprise Deployment Reference Topology

2.1 Overview of Enterprise Deployment Reference Topologies 2-1

2.1.1 Reference Topologies Documented in the Guide 2-1

2.1.2 About Oracle Identity Management Integration 2-2

2.1.3 About the Web Tier Nodes 2-3

2.1.3.1 Load Balancer Requirements 2-4

2.1.4 About the Application Tier 2-4

2.1.5 About the Data Tier 2-5

2.1.6 About the Unicast Requirement for Communication 2-5

2.2 Hardware Requirements for an Enterprise Deployment on Linux 2-6

2.3 Identifying the Software Components to Install 2-6

2.4 Clock Synchronization 2-7

2.5 Road Map for the Reference Topology Installation and Configuration 2-7

3 Preparing the Network for an Enterprise Deployment

3.1 Overview of Preparing the Network for an Enterprise Deployment 3-1

3.2 About Virtual Server Names Used by the Topology 3-1

3.2.1 bi.mycompany.com 3-2

3.2.2 admin.mycompany.com 3-2

3.2.3 biinternal.mycompany.com 3-2

3.3 Configuring the Load Balancer 3-2

3.4 About IPs and Virtual IPs 3-4
8 Creating a Domain with the Administration Server and First Managed Server

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1 Overview of Creating a Domain</td>
<td>8-1</td>
</tr>
<tr>
<td>8.2 Creating a Domain and the bi_server1 Managed Server on APPHOST1</td>
<td>8-2</td>
</tr>
<tr>
<td>8.3 Post-Configuration and Verification Tasks</td>
<td>8-4</td>
</tr>
<tr>
<td>8.3.1 Configuring JMS for Oracle BI Publisher</td>
<td>8-4</td>
</tr>
<tr>
<td>8.3.2 Creating boot.properties for the Administration Server on APPHOST1</td>
<td>8-4</td>
</tr>
<tr>
<td>8.3.3 Starting the Administration Server on APPHOST1</td>
<td>8-5</td>
</tr>
<tr>
<td>8.3.4 Enabling Administration Server High Availability</td>
<td>8-6</td>
</tr>
<tr>
<td>8.3.4.1 Enabling ADMINVHN on APPHOST1</td>
<td>8-7</td>
</tr>
<tr>
<td>8.3.4.2 Create a Machine for the Administration Server</td>
<td>8-8</td>
</tr>
<tr>
<td>8.3.4.3 Enabling the Administration Server to Listen on the Virtual IP Address</td>
<td>8-8</td>
</tr>
<tr>
<td>8.3.4.4 Creating a Separate Domain Directory for the bi_server1 Managed Server</td>
<td>8-9</td>
</tr>
<tr>
<td>8.3.4.5 Enabling Fusion Middleware Control Failover</td>
<td>8-10</td>
</tr>
<tr>
<td>8.3.5 Validating the Administration Server</td>
<td>8-10</td>
</tr>
<tr>
<td>8.3.6 Setting the Listen Address for bi_server1 Managed Server</td>
<td>8-10</td>
</tr>
<tr>
<td>8.3.7 Updating the Oracle BI Publisher Scheduler Configuration</td>
<td>8-11</td>
</tr>
<tr>
<td>8.3.8 Disabling Host Name Verification for the bi_server1 Managed Server</td>
<td>8-11</td>
</tr>
<tr>
<td>8.3.9 Configuring Oracle BI Composer</td>
<td>8-12</td>
</tr>
<tr>
<td>8.3.10 Validating Oracle Business Intelligence on APPHOST1</td>
<td>8-13</td>
</tr>
<tr>
<td>8.4 Configuring Oracle HTTP Server for the WebLogic Domain</td>
<td>8-14</td>
</tr>
<tr>
<td>8.4.1 Configuring Oracle HTTP Server for the Administration Server</td>
<td>8-14</td>
</tr>
<tr>
<td>8.4.2 Configuring Oracle HTTP Server for the bi_server1 Managed Servers</td>
<td>8-15</td>
</tr>
<tr>
<td>8.4.3 Turning On the WebLogic Plug-In Enabled Flag</td>
<td>8-18</td>
</tr>
<tr>
<td>8.4.4 Registering Oracle HTTP Server with Oracle WebLogic Server</td>
<td>8-18</td>
</tr>
<tr>
<td>8.4.5 Setting the Frontend URL for the Administration Console</td>
<td>8-19</td>
</tr>
<tr>
<td>8.4.6 Validating Access Through Oracle HTTP Server</td>
<td>8-19</td>
</tr>
<tr>
<td>8.4.6.1 Validating the Administration Console and Fusion Middleware Control</td>
<td>8-19</td>
</tr>
<tr>
<td>8.4.6.2 Validating bi_cluster</td>
<td>8-20</td>
</tr>
<tr>
<td>8.5 Manually Failing Over the Administration Server to APPHOST2</td>
<td>8-20</td>
</tr>
<tr>
<td>8.5.1 Assumptions and Procedure</td>
<td>8-20</td>
</tr>
<tr>
<td>8.5.2 Validating Access to APPHOST2 Through Oracle HTTP Server</td>
<td>8-21</td>
</tr>
<tr>
<td>8.5.3 Failing the Administration Server Back to APPHOST1</td>
<td>8-22</td>
</tr>
<tr>
<td>8.6 Backing Up the Installation</td>
<td>8-22</td>
</tr>
</tbody>
</table>

9 Scaling Out the Oracle Business Intelligence System

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1 Overview of Scaling Out the Oracle Business Intelligence System</td>
<td>9-1</td>
</tr>
<tr>
<td>9.2 Setting Up Shared File Locations</td>
<td>9-2</td>
</tr>
<tr>
<td>9.2.1 Setting Up Oracle BI Enterprise Edition Shared Files</td>
<td>9-2</td>
</tr>
<tr>
<td>9.2.1.1 Setting the Location of the Shared Oracle BI Repository</td>
<td>9-2</td>
</tr>
<tr>
<td>9.2.1.2 Setting the Location of the Shared Oracle BI Presentation Catalog</td>
<td>9-3</td>
</tr>
<tr>
<td>9.2.1.3 Setting the Location of the Global Cache</td>
<td>9-3</td>
</tr>
<tr>
<td>9.2.2 Setting the Location of the Shared Oracle BI Publisher Configuration Folder</td>
<td>9-4</td>
</tr>
<tr>
<td>9.3 Scaling Out the Oracle Business Intelligence System on APPHOST2</td>
<td>9-5</td>
</tr>
<tr>
<td>9.3.1 Using the Configuration Assistant to Scale Out the BI System</td>
<td>9-5</td>
</tr>
<tr>
<td>9.3.2 Scaling Out the System Components</td>
<td>9-6</td>
</tr>
<tr>
<td>9.3.3 Configuring Secondary Instances of Singleton System Components</td>
<td>9-7</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>9.4 Configuring the bi_server2 Managed Server</td>
<td>9-7</td>
</tr>
<tr>
<td>9.4.1 Setting the Listen Address for the bi_server2 Managed Server</td>
<td>9-7</td>
</tr>
<tr>
<td>9.4.2 Disabling Host Name Verification for the bi_server2 Managed Server</td>
<td>9-8</td>
</tr>
<tr>
<td>9.5 Performing Additional Configuration for Oracle Business Intelligence Availability</td>
<td>9-8</td>
</tr>
<tr>
<td>9.5.1 Additional Configuration Tasks for Oracle BI Scheduler</td>
<td>9-9</td>
</tr>
<tr>
<td>9.5.2 Additional Configuration Tasks for Oracle Real-Time Decisions</td>
<td>9-9</td>
</tr>
<tr>
<td>9.5.2.1 Configuring Oracle Real-Time Decisions Clustering Properties</td>
<td>9-9</td>
</tr>
<tr>
<td>9.5.2.2 Adding System Properties to the Server Start Tab</td>
<td>9-10</td>
</tr>
<tr>
<td>9.5.3 Additional Configuration Tasks for Oracle BI Publisher</td>
<td>9-11</td>
</tr>
<tr>
<td>9.5.3.1 Setting Scheduler Configuration Options</td>
<td>9-12</td>
</tr>
<tr>
<td>9.5.3.2 Configuring Integration with Oracle BI Presentation Services</td>
<td>9-12</td>
</tr>
<tr>
<td>9.5.3.3 Setting the Oracle BI EE Data Source</td>
<td>9-12</td>
</tr>
<tr>
<td>9.5.3.4 Configuring JMS for Oracle BI Publisher</td>
<td>9-13</td>
</tr>
<tr>
<td>9.5.3.5 Updating the Oracle BI Publisher Scheduler Configuration</td>
<td>9-14</td>
</tr>
<tr>
<td>9.5.4 Additional Configuration Tasks for Oracle BI for Microsoft Office</td>
<td>9-14</td>
</tr>
<tr>
<td>9.5.4.1 Configuring Oracle BI for Microsoft Office Properties</td>
<td>9-14</td>
</tr>
<tr>
<td>9.5.4.2 Validating Oracle BI for Microsoft Office Configuration</td>
<td>9-16</td>
</tr>
<tr>
<td>9.6 Other Post-Configuration and Verification Tasks</td>
<td>9-18</td>
</tr>
<tr>
<td>9.6.1 Configuring a Default Persistence Store for Transaction Recovery</td>
<td>9-18</td>
</tr>
<tr>
<td>9.6.2 Starting and Validating Oracle Business Intelligence on APPHOST2</td>
<td>9-19</td>
</tr>
<tr>
<td>9.6.2.1 Starting the bi_server2 Managed Server</td>
<td>9-19</td>
</tr>
<tr>
<td>9.6.2.2 Starting the Oracle Business Intelligence System Components</td>
<td>9-19</td>
</tr>
<tr>
<td>9.6.2.3 Validating Oracle Business Intelligence URLs</td>
<td>9-19</td>
</tr>
<tr>
<td>9.6.2.4 Validating Access Through Oracle HTTP Server</td>
<td>9-20</td>
</tr>
<tr>
<td>9.6.3 Configuring Node Manager for the Managed Servers</td>
<td>9-20</td>
</tr>
<tr>
<td>9.6.4 Configuring Server Migration for the Managed Servers</td>
<td>9-21</td>
</tr>
<tr>
<td>9.7 Backing Up the Installation</td>
<td>9-21</td>
</tr>
</tbody>
</table>

10 Setting Up Node Manager for an Enterprise Deployment

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1 About Setting Up Node Manager</td>
<td>10-1</td>
</tr>
<tr>
<td>10.2 Changing the Location of the Node Manager Log</td>
<td>10-2</td>
</tr>
<tr>
<td>10.3 Enabling Host Name Verification Certificates for Node Manager</td>
<td>10-2</td>
</tr>
<tr>
<td>10.3.1 Generating Self-Signed Certificates Using the utils.CertGen Utility</td>
<td>10-2</td>
</tr>
<tr>
<td>10.3.2 Creating an Identity Keystore Using the utils.ImportPrivateKey Utility</td>
<td>10-3</td>
</tr>
<tr>
<td>10.3.3 Creating a Trust Keystore Using the Keytool Utility</td>
<td>10-4</td>
</tr>
<tr>
<td>10.3.4 Configuring Node Manager to Use the Custom Keystores</td>
<td>10-5</td>
</tr>
<tr>
<td>10.3.5 Configuring Managed Servers to Use the Custom Keystores</td>
<td>10-5</td>
</tr>
<tr>
<td>10.3.6 Changing the Host Name Verification Setting for the Managed Servers</td>
<td>10-7</td>
</tr>
<tr>
<td>10.4 Starting Node Manager</td>
<td>10-7</td>
</tr>
</tbody>
</table>

11 Configuring Server Migration for an Enterprise Deployment

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1 Overview of Server Migration for an Enterprise Deployment</td>
<td>11-1</td>
</tr>
<tr>
<td>11.2 Setting Up a User and Tablespace for the Server Migration Leasing Table</td>
<td>11-2</td>
</tr>
<tr>
<td>11.3 Creating a Multi-Data Source Using the Administration Console</td>
<td>11-2</td>
</tr>
<tr>
<td>11.4 Enabling Host Name Verification Certificates</td>
<td>11-4</td>
</tr>
<tr>
<td>11.5 Editing the Node Manager Properties File</td>
<td>11-4</td>
</tr>
<tr>
<td>11.6 Setting Environment and Superuser Privileges for the wlsifconfig.sh Script</td>
<td>11-5</td>
</tr>
</tbody>
</table>
12 Integrating an Enterprise Deployment with Oracle Identity Management

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1</td>
<td>Configuring the Credential and Policy Store</td>
<td>12-1</td>
</tr>
<tr>
<td>12.1.1</td>
<td>Overview of Credential and Policy Store Configuration</td>
<td>12-1</td>
</tr>
<tr>
<td>12.1.2</td>
<td>Configuring the Credential Store</td>
<td>12-2</td>
</tr>
<tr>
<td>12.1.2.1</td>
<td>Creating Users and Groups</td>
<td>12-2</td>
</tr>
<tr>
<td>12.1.2.2</td>
<td>Backing Up Configuration Files</td>
<td>12-2</td>
</tr>
<tr>
<td>12.1.2.3</td>
<td>Configuring the Identity Store to Use LDAP</td>
<td>12-2</td>
</tr>
<tr>
<td>12.1.2.4</td>
<td>Setting the Order of Providers</td>
<td>12-4</td>
</tr>
<tr>
<td>12.1.2.5</td>
<td>Moving the WebLogic Administrator to LDAP</td>
<td>12-4</td>
</tr>
<tr>
<td>12.1.2.5.1</td>
<td>Updating the boot.properties File and Restarting the System</td>
<td>12-4</td>
</tr>
<tr>
<td>12.1.3</td>
<td>Configuring the Policy Store</td>
<td>12-5</td>
</tr>
<tr>
<td>12.1.4</td>
<td>Reassociating Credentials and Policies</td>
<td>12-5</td>
</tr>
<tr>
<td>12.1.5</td>
<td>Refreshing User GUIDs After Identity Store Reassociation</td>
<td>12-6</td>
</tr>
<tr>
<td>12.1.5.1</td>
<td>About User GUIDs</td>
<td>12-6</td>
</tr>
<tr>
<td>12.1.5.2</td>
<td>About Refreshing GUIDs</td>
<td>12-6</td>
</tr>
<tr>
<td>12.1.5.3</td>
<td>Refreshing User GUIDs</td>
<td>12-7</td>
</tr>
<tr>
<td>12.2</td>
<td>Oracle Access Manager 10g Integration</td>
<td>12-8</td>
</tr>
<tr>
<td>12.2.1</td>
<td>About Oracle Access Manager Integration</td>
<td>12-8</td>
</tr>
<tr>
<td>12.2.2</td>
<td>Using the Oracle Access Manager Configuration Tool</td>
<td>12-9</td>
</tr>
<tr>
<td>12.2.2.1</td>
<td>About the Oracle Access Manager Configuration Tool</td>
<td>12-9</td>
</tr>
<tr>
<td>12.2.2.2</td>
<td>Collecting Information for the Oracle Access Manager Configuration Tool</td>
<td>12-9</td>
</tr>
<tr>
<td>12.2.2.3</td>
<td>Running the Oracle Access Manager Configuration Tool</td>
<td>12-9</td>
</tr>
<tr>
<td>12.2.2.4</td>
<td>Verifying Successful Creation of the Policy Domain and AccessGate</td>
<td>12-10</td>
</tr>
<tr>
<td>12.2.3</td>
<td>Updating the Host Identifier</td>
<td>12-11</td>
</tr>
<tr>
<td>12.2.4</td>
<td>Updating the WebGate Profile</td>
<td>12-12</td>
</tr>
<tr>
<td>12.2.5</td>
<td>Installing and Configuring WebGate</td>
<td>12-12</td>
</tr>
<tr>
<td>12.2.6</td>
<td>Configuring IP Validation for WebGate</td>
<td>12-14</td>
</tr>
<tr>
<td>12.2.7</td>
<td>Setting Up WebLogic Authenticators</td>
<td>12-14</td>
</tr>
<tr>
<td>12.2.7.1</td>
<td>Setting Up the Oracle Access Manager ID Asserter</td>
<td>12-14</td>
</tr>
<tr>
<td>12.2.7.2</td>
<td>Setting the Order of Providers</td>
<td>12-15</td>
</tr>
<tr>
<td>12.2.8</td>
<td>Configuring Applications</td>
<td>12-15</td>
</tr>
<tr>
<td>12.2.8.1</td>
<td>Enabling SSO/Oracle Access Manager for Oracle BI Enterprise Edition</td>
<td>12-15</td>
</tr>
<tr>
<td>12.2.8.2</td>
<td>Enabling SSO/Oracle Access Manager for Oracle BI Publisher</td>
<td>12-16</td>
</tr>
<tr>
<td>12.2.8.3</td>
<td>Enabling SSO/Oracle Access Manager for Oracle BI for Microsoft Office</td>
<td>12-16</td>
</tr>
<tr>
<td>12.2.8.4</td>
<td>Enabling SSO/Oracle Access Manager for Oracle BI Search</td>
<td>12-16</td>
</tr>
<tr>
<td>12.2.8.5</td>
<td>Enabling SSO/Oracle Access Manager for Oracle Real-Time Decisions</td>
<td>12-16</td>
</tr>
<tr>
<td>12.2.8.5.1</td>
<td>Oracle RTD and Oracle Access Manager Logout Guidelines</td>
<td>12-17</td>
</tr>
<tr>
<td>12.2.8.5.2</td>
<td>Avoiding Problems with Decision Center Logout Redirection</td>
<td>12-17</td>
</tr>
<tr>
<td>12.3</td>
<td>Oracle Access Manager 11g Integration</td>
<td>12-17</td>
</tr>
<tr>
<td>12.3.1</td>
<td>Overview of Oracle Access Manager Integration</td>
<td>12-17</td>
</tr>
<tr>
<td>12.3.2</td>
<td>Prerequisites for Oracle Access Manager</td>
<td>12-18</td>
</tr>
<tr>
<td>12.3.3</td>
<td>Install WebGate</td>
<td>12-18</td>
</tr>
<tr>
<td>12.3.3.1</td>
<td>Installing GCC Libraries</td>
<td>12-18</td>
</tr>
<tr>
<td>12.3.3.2</td>
<td>Installing WebGate</td>
<td>12-19</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>12.3.3.3 Post-Installation Steps</td>
<td>12-19</td>
<td></td>
</tr>
<tr>
<td>12.3.4 Register the WebGate Agent</td>
<td>12-21</td>
<td></td>
</tr>
<tr>
<td>12.3.4.1 The RREG Tool</td>
<td>12-21</td>
<td></td>
</tr>
<tr>
<td>12.3.4.2 Updating the OAM11gRequest File</td>
<td>12-22</td>
<td></td>
</tr>
<tr>
<td>12.3.4.3 Running the oamreg Tool</td>
<td>12-23</td>
<td></td>
</tr>
<tr>
<td>12.3.4.4 Copying Access Files to WEBHOSTs</td>
<td>12-24</td>
<td></td>
</tr>
<tr>
<td>12.3.5 Configuring IP Validation for WebGate</td>
<td>12-24</td>
<td></td>
</tr>
<tr>
<td>12.3.6 Setting Up the WebLogic Authenticators</td>
<td>12-25</td>
<td></td>
</tr>
<tr>
<td>12.3.6.1 Back Up Configuration Files</td>
<td>12-25</td>
<td></td>
</tr>
<tr>
<td>12.3.6.2 Setting Up the OAM ID Asserter</td>
<td>12-25</td>
<td></td>
</tr>
<tr>
<td>12.3.6.3 Setting the Order of Providers</td>
<td>12-26</td>
<td></td>
</tr>
<tr>
<td>12.3.7 Configuring Applications</td>
<td>12-26</td>
<td></td>
</tr>
<tr>
<td>12.3.7.1 Enabling SSO/Oracle Access Manager for Oracle BI Enterprise Edition</td>
<td>12-26</td>
<td></td>
</tr>
<tr>
<td>12.3.7.2 Enabling SSO/Oracle Access Manager for Oracle BI Publisher</td>
<td>12-27</td>
<td></td>
</tr>
<tr>
<td>12.3.7.3 Enabling SSO/Oracle Access Manager for Oracle BI for Microsoft Office</td>
<td>12-27</td>
<td></td>
</tr>
<tr>
<td>12.3.7.4 Enabling SSO/Oracle Access Manager for Oracle BI Search</td>
<td>12-27</td>
<td></td>
</tr>
<tr>
<td>12.3.7.5 Enabling SSO/Oracle Access Manager for Oracle Real-Time Decisions</td>
<td>12-27</td>
<td></td>
</tr>
<tr>
<td>12.3.7.5.1 Oracle RTD and Oracle Access Manager Logout Guideline</td>
<td>12-27</td>
<td></td>
</tr>
<tr>
<td>12.3.7.5.2 Avoiding Problems with Decision Center Logout Redirection</td>
<td>12-28</td>
<td></td>
</tr>
<tr>
<td>12.4 Backing Up the Identity Management Configuration</td>
<td>12-28</td>
<td></td>
</tr>
</tbody>
</table>

13 Managing Enterprise Deployments

13.1 About Managing Enterprise Deployments ... 13-1
13.2 Starting and Stopping Oracle Business Intelligence 13-1
13.2.1 Starting and Stopping Oracle Business Intelligence Managed Servers 13-2
13.2.2 Starting and Stopping Oracle Business Intelligence System Components 13-2
13.3 Monitoring Enterprise Deployments ... 13-2
13.4 Scaling Enterprise Deployments 13-2
13.4.1 Scaling Up the Oracle Business Intelligence Topology 13-3
13.4.2 Scaling Out the Oracle Business Intelligence Topology 13-3
13.4.2.1 Scale-out Procedure for Oracle Business Intelligence 13-4
13.5 Performing Backups and Recoveries for Enterprise Deployments 13-5
13.6 Patching Enterprise Deployments 13-6
13.7 Preventing Timeouts for SQLNet Connections 13-6
13.8 Troubleshooting Enterprise Deployments 13-6
13.8.1 Page Not Found When Accessing BI Applications Through Load Balancer 13-6
13.8.2 Administration Server Fails to Start After a Manual Failover 13-7
13.8.3 Error While Activating Changes in Administration Console 13-7
13.8.4 bi_server Managed Server Not Failed Over After Server Migration 13-7
13.8.5 bi_server Managed Server Not Reachable From Browser After Server Migration 13-8
13.8.6 OAM Configuration Tool Does Not Remove URLs 13-8
13.8.7 Users Redirected to Login Screen After Activating Changes 13-8
13.8.8 Users Redirected to Home Page After Activating Changes 13-8
13.8.9 Configured JOC Port Already in Use 13-9
13.8.10 Out-of-Memory Issues on Managed Servers 13-9
13.8.11 Missing JMS Instances on Oracle BI Publisher Scheduler Diagnostics Page 13-9
13.8.12 Oracle BI Publisher Jobs in Inconsistent State After Managed Server Shutdown 13-9
13.8.13 JMS Instance Fails In an Oracle BI Publisher Cluster .. 13-10
13.8.14 Configuring MapViewer When the Administrator Belongs to a Custom Group . 13-10

Index
This preface describes the audience, contents, and conventions used in the Oracle Fusion Middleware Enterprise Deployment Guide for Oracle Business Intelligence.

Audience

This document is intended for system administrators who are responsible for installing and configuring Oracle Business Intelligence enterprise deployments.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Documents

See the Oracle Business Intelligence documentation library for a list of related Oracle Business Intelligence documents.

See also the following related documents:

- Oracle Fusion Middleware Release Notes for your platform
- Oracle Fusion Middleware High Availability Guide
- Oracle Fusion Middleware Administrator’s Guide
- Oracle Fusion Middleware Repository Creation Utility User’s Guide
- Oracle Fusion Middleware Administrator’s Guide for Oracle Internet Directory

In addition, go to the Oracle Learning Library for Oracle Business Intelligence-related online training resources.

Conventions

The following text conventions are used in this document:
<table>
<thead>
<tr>
<th>Convention</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>boldface</td>
<td>Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.</td>
</tr>
<tr>
<td>italic</td>
<td>Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.</td>
</tr>
<tr>
<td><code>monospace</code></td>
<td>Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.</td>
</tr>
</tbody>
</table>
This chapter provides an overview of the enterprise topology for Oracle Business Intelligence.

Important: Oracle strongly recommends that you read the *Oracle Fusion Middleware Release Notes* for any additional installation and deployment considerations before starting the setup process.

This chapter contains the following sections:

- Section 1.1, “About the Enterprise Deployment Guide”
- Section 1.2, “Enterprise Deployment Terminology”
- Section 1.3, “Benefits of Oracle Recommendations”

1.1 About the Enterprise Deployment Guide

The Enterprise Deployment Guide defines an architectural blueprint that captures Oracle’s recommended best practices for a highly available and secure Oracle Business Intelligence deployment. The best practices described in this blueprint use Oracle products from across the technology stack, including Oracle Database, Oracle Fusion Middleware, and Oracle Enterprise Manager Fusion Middleware Control. The resulting enterprise deployment can be readily scaled out to support increasing capacity requirements.

In particular, an Oracle Business Intelligence enterprise deployment:

- Considers various business service level agreements (SLAs) to make high-availability best practices as widely applicable as possible
- Leverages database grid servers and storage grids with low-cost storage to provide highly resilient, lower-cost infrastructure
- Uses results from extensive performance impact studies for different configurations to ensure that the high-availability architecture is optimally configured to perform and scale to business needs
- Enables control over the length of time to recover from an outage and the amount of acceptable data loss from a natural disaster
- Uses Oracle best practices and recommended architecture that are independent of hardware and operating systems

For more information on high availability practices, see the Oracle Maximum Availability Architecture page on the Oracle Technology Network at:
1.2 Enterprise Deployment Terminology

This section identifies enterprise deployment terminology used in this guide.

- **Oracle home**: Contains installed files necessary to host a specific product. For example, the Oracle Business Intelligence Oracle home contains a directory that contains binary and library files for Oracle Business Intelligence. An Oracle home resides within the directory structure of the Middleware home. Each Oracle home can be associated with multiple Oracle instances or Oracle WebLogic Server domains.

- **WebLogic Server home**: Contains installed files necessary to host an Oracle WebLogic Server. The WebLogic Server home directory is a peer of the Oracle home directories and resides within the directory structure of the Middleware home.

- **Middleware home**: Consists of the WebLogic Server home, and, optionally, one or more Oracle homes. A Middleware home can reside on a local file system or on a remote shared disk that is accessible through NFS.

- **Oracle instance**: Contains one or more active middleware system components, such as Oracle BI Server, Oracle BI Presentation Services, Oracle HTTP Server, or Oracle Internet Directory. You determine which components are part of an instance, either at install time or by creating and configuring an instance at a later time. An Oracle instance contains files that can be updated, such as configuration files, log files, and temporary files.

- **failover**: The process that occurs when a member of a high availability system fails unexpectedly (unplanned downtime), so that the system can continue offering services to its consumers. If the system is an active-passive system, the passive member is activated during the failover operation and consumers are directed to it instead of the failed member. The failover process can be performed manually, or it can be automated by setting up hardware cluster services to detect failures and move cluster resources from the failed node to the standby node. If the system is an active-active system, the failover is performed by the load balancer entity serving requests to the active members. If an active member fails, the load balancer detects the failure and automatically redirects requests for the failed member to the surviving active members. See the Oracle Fusion Middleware High Availability Guide for information on active-active and active-passive systems.

- **failback**: The process that occurs after a system undergoes a successful failover operation. In the failback process, the original failed member is repaired over time and is then reintroduced into the system as a standby member. Optionally, a failback process can be initiated to activate this member and deactivate the other. This process reverts the system back to its pre-failure configuration.

- **hardware cluster**: A collection of computers that provides a single view of network services (for example, an IP address) or application services (for example, databases and Web servers) to clients of these services. Each node in a hardware cluster is a standalone server that runs its own processes. These processes can...
communicate with one another to form what looks like a single system that cooperatively provides applications, system resources, and data to users.

A hardware cluster achieves high availability and scalability with specialized hardware (cluster interconnect, shared storage) and software (health monitors, resource monitors). (The cluster interconnect is a private link used by the hardware cluster for heartbeat information to detect node death.) Due to the need for specialized hardware and software, hardware clusters are commonly provided by hardware vendors such as Sun, HP, IBM, and Dell. While the number of nodes that can be configured in a hardware cluster is vendor dependent, for the purpose of Oracle Fusion Middleware high availability, only two nodes are required. Hence, this document assumes a two-node hardware cluster for high availability solutions employing a hardware cluster.

- **cluster agent:** The software that runs on a node member of a hardware cluster that coordinates availability and performance operations with other nodes. Clusterware provides resource grouping, monitoring, and the ability to move services. A cluster agent can automate the service failover.

- **clusterware:** Software that manages the operations of the members of a cluster as a system. It enables you to define a set of resources and services to monitor through a heartbeat mechanism between cluster members and to move these resources and services to a different member in the cluster as efficiently and transparently as possible.

- **shared storage:** The storage subsystem that is accessible by all the computers in the enterprise deployment. Among other things, the following is located on the shared disk:
 - Middleware home software
 - Administration Server domain home
 - JMS
 - Tlogs (where applicable)

Managed Server homes can also be optionally located in the shared disk. The shared storage can be a Network Attached Storage (NAS), a Storage Area Network (SAN), or any other storage system that multiple nodes can access simultaneously and can read/write.

- **primary node:** The node that is actively running an Oracle Fusion Middleware instance at any given time and has been configured to have a backup/secondary node. If the primary node fails, the applicable Oracle Fusion Middleware components are failed over to the secondary node. This failover can be manual, or automated using the Clusterware for Administration Server. For a server migration-based scenario, WebLogic Whole Server Migration is used for automated failover.

- **secondary node:** The node that is the backup node for an Oracle Fusion Middleware instance. This is where the active instance fails over when the primary node is no longer available. See the definition for primary node in this section.

- **network host name:** A name assigned to an IP address either through the `/etc/hosts` file or through DNS resolution. This name is visible in the network where the computer to which it refers is connected. Often, the network host name and physical host name are identical. However, each computer has only one physical host name, but may have multiple network host names. Thus, a computer’s network host name may not always be its physical host name.
Enterprise Deployment Terminology

- **physical host name**: The "internal name" of the current computer. On UNIX, this is the name returned by the hostname command. Note that this document differentiates between the terms physical host name and network host name.

 Oracle Fusion Middleware uses the physical host name to reference the local host. During installation, the installer automatically retrieves the physical host name from the current computer and stores it in the Oracle Fusion Middleware configuration metadata on disk.

- **physical IP**: The IP address of a computer on the network. In most cases, it is normally associated with the physical host name of the computer (see the definition for physical host name). In contrast to a virtual IP, it is always associated with the same computer when on a network.

- **switchover**: A process that occurs during normal operation when active members of a system might require maintenance or upgrading. A switchover process can be initiated to enable a substitute member to take over the workload performed by the member that requires maintenance or upgrading, which undergoes planned downtime. The switchover operation ensures continued service to consumers of the system.

- **switchback**: The process that occurs after a system undergoes a successful switchover operation, in which a member of the system is deactivated for maintenance or upgrading. When the maintenance or upgrade is completed, the system can undergo a switchback operation to activate the upgraded member and bring the system back to the pre-switchover configuration.

- **virtual host name**: A network addressable host name that maps to one or more physical computers through a load balancer or a hardware cluster. For load balancers, the name "virtual server name" is used interchangeably with virtual host name in this document. A load balancer can hold a virtual host name on behalf of a set of servers, and clients communicate indirectly with the computers using the virtual host name. A virtual host name in a hardware cluster is a network host name assigned to a cluster virtual IP. Because the cluster virtual IP is not permanently attached to any particular node of a cluster, the virtual host name is not permanently attached to any particular node either.

 Note: Whenever the term "virtual host name" is used in this document, it is assumed to be associated with a virtual IP address. In cases where just the IP address is needed or used, it is explicitly stated.

- **virtual IP**: A virtual IP address that can be assigned to a hardware cluster or load balancer. To present a single system view of a cluster to network clients, a virtual IP serves as an entry point IP address to the group of servers which are members of the cluster. A virtual IP can be assigned to a server load balancer or a hardware cluster. Virtual IP is also called cluster virtual IP and load balancer virtual IP.

 A hardware cluster uses a cluster virtual IP to present to the outside world the entry point into the cluster (it can also be set up on a standalone computer). The hardware cluster’s software manages the movement of this IP address between the two physical nodes of the cluster while clients connect to this IP address without the need to know which physical node this IP address is currently active on. In a typical two-node hardware cluster configuration, each computer has its own physical IP address and physical host name, while there could be several cluster IP addresses. These cluster IP addresses float or migrate between the two nodes. The node with current ownership of a cluster IP address is active for that address.
A load balancer also uses a virtual IP as the entry point to a set of servers. These servers tend to be active at the same time. This virtual IP address is not assigned to any individual server but to the load balancer which acts as a proxy between servers and their clients.

In addition to the terms defined in this section, this Enterprise Deployment Guide assumes knowledge of general Oracle Fusion Middleware and Oracle WebLogic Server concepts and architecture. See the Oracle Fusion Middleware Administrator’s Guide for more information.

1.3 Benefits of Oracle Recommendations

The Oracle Fusion Middleware configurations discussed in this guide are designed to ensure security of all invocations, maximize hardware resources, and provide a reliable, standards-compliant system for Oracle Business Intelligence.

The security and high availability benefits of the Oracle Fusion Middleware configurations are realized through isolation in firewall zones and replication of software components.

This section contains the following topics:

- Section 1.3.1, "Built-in Security"
- Section 1.3.2, "High Availability"

1.3.1 Built-in Security

The Enterprise Deployment architectures are secure because every functional group of software components is isolated in its own demilitarized zone (DMZ), and all traffic is restricted by protocol and port. A DMZ is a perimeter network that exposes external services to a larger untrusted network.

The following characteristics ensure security at all needed levels and a high level of standards compliance:

- External load balancers are configured to redirect all external communication received on port 80 to port 443.

 Note: You can find a list of validated load balancers and their configuration on the Oracle Technology Network at:

- Communication from external clients does not go beyond the Load Balancing Router level.
- No direct communication from the Load Balancing Router to the data tier is allowed.
- Components are separated in different protection zones: the Web tier, application tier, and the data tier.
- Direct communication between two firewalls at any one time is prohibited.
- If a communication begins in one firewall zone, it must end in the next firewall zone.
- Oracle Internet Directory is isolated in the data tier.
Benefits of Oracle Recommendations

- Identity Management components are in a separate subnet.
- All communication between components across protection zones is restricted by port and protocol, according to firewall rules.

1.3.2 High Availability

The enterprise deployment architectures are highly available, because each component or functional group of software components is replicated on a different computer, and configured for component-level high availability.

See also the Oracle Fusion Middleware High Availability Guide for more information about high availability in Oracle Fusion Middleware.
Introduction to the Enterprise Deployment Reference Topology

This chapter describes and illustrates the enterprise deployment reference topology described in this guide. Use this chapter to help you plan your Oracle Business Intelligence enterprise deployment.

This chapter includes the following topics:

- Section 2.1, "Overview of Enterprise Deployment Reference Topologies"
- Section 2.2, "Hardware Requirements for an Enterprise Deployment on Linux"
- Section 2.3, "Identifying the Software Components to Install"
- Section 2.4, "Clock Synchronization"
- Section 2.5, "Road Map for the Reference Topology Installation and Configuration"

2.1 Overview of Enterprise Deployment Reference Topologies

The instructions and diagrams in this document describe a reference topology, to which variations may be applied. Use this section to plan your enterprise deployment topology.

This section covers these topics:

- Section 2.1.1, "Reference Topologies Documented in the Guide"
- Section 2.1.2, "About Oracle Identity Management Integration"
- Section 2.1.3, "About the Web Tier Nodes"
- Section 2.1.4, "About the Application Tier"
- Section 2.1.5, "About the Data Tier"
- Section 2.1.6, "About the Unicast Requirement for Communication"

2.1.1 Reference Topologies Documented in the Guide

This document provides configuration instructions for a reference enterprise topology that uses Oracle Business Intelligence with Oracle Access Manager, as shown in Figure 2–1.
2.1.2 About Oracle Identity Management Integration

Integration with the Oracle Identity Management system is an important aspect of the enterprise deployment architecture. This integration provides features such as single sign-on, integration with Oracle Platform Security Services, centralized identity and credential store, and authentication for the WebLogic domain. The IDM (Identity Management) enterprise deployment is separate from this enterprise deployment and exists in a separate domain by itself. For more information on Oracle Identity Management in an enterprise deployment context, see the Oracle Fusion Middleware Enterprise Deployment Guide for Oracle Identity Management.
The primary interface to the Oracle Identity Management enterprise deployment is the LDAP traffic to the LDAP servers, the OAP (Oracle Access Protocol) to the OAM Access Servers, and the HTTP redirection of authentication requests.

2.1.3 About the Web Tier Nodes

Nodes in the Web tier are located in the DMZ public zone.

In this tier, two nodes, WEBHOST1 and WEBHOST2, run Oracle HTTP Server configured with WebGate and mod_wl_ohs.

The following is a list of benefits provided by using Oracle HTTP Server as an intermediate point between the load balancer and the different WebLogic Servers:

- It provides a sacrificial area/DMZ. This is a common requirement in security audits and is a major problem with load balancer/WebLogic systems. If a load balancer routes directly to the WebLogic Server, requests move from the load balancer to the application tier in one single HTTP jump, causing security concerns.

- It allows the WebLogic Server cluster membership to be reconfigured (new servers added, others removed) without having to change the Web server configuration (as long as at least some of the servers in the configured list remain alive). The plug-in learns about the cluster membership and directs work accordingly.

- Faster fail-over in the event of WebLogic Server instance failure. The plug-in actively learns about the failed WebLogic Server instance using information supplied by its peers. It avoids the failed server until the peers notify the plug-in that it is again available. Load balancers are typically more limited.

- Oracle HTTP Server delivers static content more efficiently and faster than WebLogic Server.

- HTTP redirection over and above what WebLogic Server provides. You can use Oracle HTTP Server as a front end against many different WebLogic Server clusters, and perhaps do content-based routing.

- If SSO is required, only Oracle HTTP Server (not WebLogic Server) supports Oracle Identity Management.

Through mod_wl_ohs, which allows requests to be proxied from Oracle HTTP Server to Oracle WebLogic Server, Oracle HTTP Server forwards the requests to Oracle WebLogic Server running in the application tier.

WebGate (which is an Oracle Access Manager component) in Oracle HTTP Server uses Oracle Access Protocol (OAP) to communicate with Oracle Access Manager running on OAMHOST2, in the Identity Management DMZ. WebGate and Oracle Access Manager are used to perform operations such as querying user groups.

The Web tier also includes a load balancer router to handle external requests. External requests are sent to the virtual host names configured on the load balancer. The load balancer then forwards the requests to Oracle HTTP Server.

On the firewall protecting the Web tier, only the HTTP ports are open: 443 for HTTPS, and 80 for HTTP.
2.1.3.1 Load Balancer Requirements

This enterprise topology uses an external load balancer. This external load balancer should have the following features:

- Ability to load-balance traffic to a pool of real servers through a virtual host name
 Clients access services using the virtual host name (instead of using actual host names). The load balancer can then load balance requests to the servers in the pool.

- Port translation configuration
 This feature is necessary so that incoming requests on the virtual host name and port are directed to a different port on the back-end servers.

- Monitoring of ports on the servers in the pool to determine the availability of a service

- Ability to configure virtual server names and ports
 Note the following requirements:
 - The load balancer should allow configuration of multiple virtual servers. For each virtual server, the load balancer should allow configuration of traffic management on multiple ports. For example, for Oracle HTTP Server in the Web tier, the load balancer must be configured with a virtual server and ports for HTTP and HTTPS traffic.
 - The virtual server names must be associated with IP addresses and be part of your DNS. Clients must be able to access the external load balancer through the virtual server names.

- Ability to detect node failures and immediately stop routing traffic to the failed node

- Fault-tolerant mode
 It is highly recommended that you configure the load balancer to be in fault-tolerant mode.

- Ability to configure the virtual server to return immediately to the calling client
 It is highly recommended that you configure the load balancer virtual server to return immediately to the calling client when the back-end services to which it forwards traffic are unavailable. This is preferred over the client disconnecting on its own after a timeout based on the TCP/IP settings on the client computer.

- Sticky routing capability
 Sticky routing capability is the ability to maintain sticky connections to components. Examples of this include cookie-based persistence, IP-based persistence, and so on.

- SSL acceleration
 The load balancer should be able to terminate SSL requests at the load balancer and forward traffic to the back-end real servers using the equivalent non-SSL protocol (for example, HTTPS to HTTP). Typically, this feature is called SSL acceleration and it is required for this EDG.

2.1.4 About the Application Tier

Nodes in the application tier are located in the DMZ secure zone.
In this tier, APPHOST1 and APPHOST2 run the Oracle WebLogic Server Administration Console and Oracle Enterprise Manager Fusion Middleware Control, but in an active-passive configuration. You can fail over the Administration Server manually (see Section 8.5, "Manually Failing Over the Administration Server to APPHOST2"); alternatively, you can configure the Administration Console with CFC/CRS to fail over automatically on a separate hardware cluster (not shown in this architecture).

The Oracle Business Intelligence Cluster Controller and Oracle BI Scheduler system components run on APPHOST1 and APPHOST2 in an active-passive configuration. The other Oracle Business Intelligence system components, Oracle BI Server, Oracle BI JavaHost, and Oracle BI Presentation Services, run on APPHOST1 and APPHOST2 in an active-active configuration. All system components are managed by OPMN and do not run in the Managed Servers.

The Oracle Business Intelligence Java components, including Oracle Real-Time Decisions, Oracle BI Publisher, Oracle BI for Microsoft Office, and the Oracle BI Enterprise Edition Analytics application, run in the two Managed Servers on APPHOST1 and APPHOST2. Oracle Web Services Manager (Oracle WSM) is another Java component that provides a policy framework to manage and secure Web services in the EDG topology. WSM Policy Manager runs in active-active configuration in the two Managed Servers in APPHOST1 and APPHOST2.

2.1.5 About the Data Tier

Nodes in the data tier are located in the most secured network zone (the intranet).

In this tier, an Oracle RAC database runs on the nodes CUSTDBHOST1 and CUSTDBHOST2. The database contains the schemas needed by the Oracle Business Intelligence components. The Oracle Business Intelligence components running in the application tier access this database.

On the firewall protecting the data tier, the database listener port (typically, 1521) is required to be open. The LDAP ports (typically, 389 and 636) are also required to be open for the traffic accessing the LDAP storage in the IDM EDG.

2.1.6 About the Unicast Requirement for Communication

Oracle recommends that the nodes in the MyBICompany topology communicate using unicast. Unlike multicast communication, unicast does not require cross-network configuration and it reduces potential network errors that can occur from multicast address conflicts as well.

In unicast messaging mode, the default listening port of the server is used if no channel is configured.

Cluster members communicate to the group leader when they need to send a broadcast message which is usually the heartbeat message. When the cluster members detect the failure of a group leader, the next oldest member becomes the group leader.

The frequency of communication in unicast mode is similar to the frequency of sending messages on multicast port.

The following considerations apply when using unicast to handle cluster communications:

- All members of a WebLogic cluster must use the same message type. Mixing between multicast and unicast messaging is not allowed.

- Individual cluster members cannot override the cluster messaging type.
The entire cluster must be shut down and restarted to change the message modes (from unicast to multicast or from multicast to unicast).

- JMS topics configured for multicasting can access WebLogic clusters configured for unicast because a JMS topic publishes messages on its own multicast address that is independent of the cluster address. However, the following considerations apply:
 - The router hardware configurations that allow unicast clusters may not allow JMS multicast subscribers to work.
 - JMS multicast subscribers must be in a network hardware configuration that allows multicast accessibility. (That is, JMS subscribers must be in a multicast-enabled network to access multicast topics.)

2.2 Hardware Requirements for an Enterprise Deployment on Linux

Before you install and configure your enterprise deployment, review the Oracle Fusion Middleware System Requirements and Specifications document on the Oracle Technology Network (OTN) to ensure that your environment meets the minimum installation requirements for the products you are installing.

In addition, Table 2–1 lists the typical hardware requirements for the enterprise deployment described in this guide on Linux operating systems.

You must perform the appropriate capacity planning to determine the number of nodes, CPU, and memory requirements for each node depending on the specific system’s load, as well as the throughput and response requirements.

Table 2–1 Typical Hardware Requirements

<table>
<thead>
<tr>
<th>Server</th>
<th>Disk</th>
<th>Memory</th>
<th>TMP Directory</th>
<th>Swap</th>
</tr>
</thead>
<tbody>
<tr>
<td>Database</td>
<td>nXm</td>
<td>6-8 GB</td>
<td>Default</td>
<td>Default</td>
</tr>
<tr>
<td></td>
<td>n = number of disks, at least 4 (striped as one disk)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>m = size of the disk (minimum of 30 GB)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WEBHOST</td>
<td>10 GB</td>
<td>4 GB</td>
<td>Default</td>
<td>Default</td>
</tr>
<tr>
<td>APPHOST</td>
<td>20 GB or more</td>
<td>8 GB</td>
<td>Default</td>
<td>Default</td>
</tr>
</tbody>
</table>

2.3 Identifying the Software Components to Install

Table 2–2 lists the Oracle software you will need to obtain before starting the procedures in this guide.

For complete information about downloading Oracle Fusion Middleware software, see the Oracle Fusion Middleware Download, Installation, and Configuration Readme Files on the Oracle Technology Network (OTN).

Table 2–2 Components and Installation Sources

<table>
<thead>
<tr>
<th>Component</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oracle Database 10g or 11g</td>
<td>Oracle Database (in 10g series, 10.2.0.4 or higher; in 11g series, 11.1.0.7 or higher)</td>
</tr>
<tr>
<td>Repository Creation Utility (RCU)</td>
<td>Oracle Fusion Middleware Repository Creation Utility 11g (11.1.1.1.0)</td>
</tr>
</tbody>
</table>
2.4 Clock Synchronization

The clocks of all servers participating in the cluster must be synchronized to within one second difference to enable proper functioning of jobs and adapters. To accomplish this, use a single network time server and then point each server to that network time server.

The procedure for pointing to the network time server is different on different operating systems. Refer to your operating system documentation for more information.

2.5 Road Map for the Reference Topology Installation and Configuration

Table 2–3 describes each of the steps in the enterprise deployment process for Oracle Business Intelligence. The table also provides information on where to obtain more information on each step in the process.

<table>
<thead>
<tr>
<th>Table 2–3</th>
<th>Steps in the Oracle Business Intelligence Enterprise Deployment Process</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>Prepare your Network for the Enterprise Deployment</td>
<td>Understand concepts like virtual server names, IPs, and virtual IPS, and configure your load balancer by defining virtual host names.</td>
</tr>
<tr>
<td>Prepare your File System for the Enterprise Deployment</td>
<td>Review the terminology for directories and directory environment variables, and configure shared storage.</td>
</tr>
<tr>
<td>Prepare your Database for the Enterprise Deployment</td>
<td>Review database requirements, create database services, load the Oracle Business Intelligence schemas in the Oracle RAC database, and back up the database.</td>
</tr>
<tr>
<td>Install the Software for the Enterprise Deployment</td>
<td>Install Oracle HTTP Server, Oracle WebLogic Server, and Oracle Fusion Middleware.</td>
</tr>
</tbody>
</table>

Table 2–2 | Components and Installation Sources |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Component</td>
<td>Details</td>
</tr>
<tr>
<td>------------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>Oracle WebLogic Server (WLS)</td>
<td>Oracle Weblogic Server (10.3.6)</td>
</tr>
<tr>
<td>Oracle HTTP Server</td>
<td>Oracle Fusion Middleware WebTier and Utilities 11g (11.1.1.5.0)</td>
</tr>
<tr>
<td>Oracle Business Intelligence</td>
<td>Oracle Business Intelligence Enterprise Edition 11g (11.1.1.6.0) and Oracle Business Intelligence Enterprise Edition 11g (11.1.1.6.2) patch</td>
</tr>
<tr>
<td>Oracle Access Manager 10g Webgate or Oracle Access Manager 11g Webgate</td>
<td>Oracle Access Manager 10g Webgates (10.1.4.3.0); OAM OHS 11g Webgates per platform Oracle Access Manager 11g Webgates (11.1.1.5.0); OAM OHS 11g Webgates per platform</td>
</tr>
<tr>
<td>Oracle Virtual Directory (OVD)</td>
<td>Oracle Identity Management 11g (11.1.1.5.0)</td>
</tr>
</tbody>
</table>
Table 2–3: Steps in the Oracle Business Intelligence Enterprise Deployment Process

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
<th>More Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configure the Web Tier for the Enterprise Deployment</td>
<td>Associate the Oracle Web tier with the Oracle WebLogic Domain, configure the load balancer, and configure virtual host names.</td>
<td>Chapter 7, "Configuring the Web Tier for an Enterprise Deployment"</td>
</tr>
<tr>
<td>Create a Domain with the Administration Server and First Managed Server</td>
<td>Run the Oracle Business Intelligence Configuration Assistant to create a domain and perform post-configuration and verification tasks.</td>
<td>Chapter 8, "Creating a Domain with the Administration Server and First Managed Server"</td>
</tr>
<tr>
<td>Scale Out the Oracle Business Intelligence System</td>
<td>Extend the domain by scaling out Oracle Business Intelligence on APPHOST2, including scaling the BI system, scaling system components, configuring secondary instances of singleton system components, and performing additional high availability configuration.</td>
<td>Chapter 9, "Scaling Out the Oracle Business Intelligence System"</td>
</tr>
<tr>
<td>Set Up Node Manager</td>
<td>Set up Node Manager by enabling host name verification, starting Node Manager, and configuring WebLogic Servers to use custom keystores.</td>
<td>Chapter 10, "Setting Up Node Manager for an Enterprise Deployment"</td>
</tr>
<tr>
<td>Configure Server Migration</td>
<td>Configure server migration for the WLS_SOA1 and WLS_SOA2 managed servers. The WLS_SOA1 managed server is configured to restart on SOAHOST2 should a failure occur. The WLS_SOA2 managed server is configured to restart on SOAHOST1 should a failure occur.</td>
<td>Chapter 11, "Configuring Server Migration for an Enterprise Deployment"</td>
</tr>
<tr>
<td>Integrate with Oracle Identity Management</td>
<td>Configure the credential and policy store, integrate with Oracle Access Manager 10g or 11g, and back up the Identity Management configuration.</td>
<td>Chapter 12, "Integrating an Enterprise Deployment with Oracle Identity Management"</td>
</tr>
<tr>
<td>Manage your Enterprise Deployment</td>
<td>Learn to start and stop Oracle Business Intelligence, monitor, scale, and patch your enterprise deployment, perform backups and recoveries, and review troubleshooting information.</td>
<td>Chapter 13, "Managing Enterprise Deployments"</td>
</tr>
</tbody>
</table>
Preparing the Network for an Enterprise Deployment

This chapter describes the network environment preconfiguration required by the Oracle Business Intelligence enterprise topology. Use this chapter to plan your configuration of virtual server names, load balancers, IPs and Virtual IPs, and firewalls and ports.

This chapter includes the following topics:

- Section 3.1, "Overview of Preparing the Network for an Enterprise Deployment"
- Section 3.2, "About Virtual Server Names Used by the Topology"
- Section 3.3, "Configuring the Load Balancer"
- Section 3.4, "About IPs and Virtual IPs"
- Section 3.5, "About Firewalls and Ports"
- Section 3.6, "About LDAP as Credential and Policy Store"

3.1 Overview of Preparing the Network for an Enterprise Deployment

You must configure several virtual servers and associated ports on the load balancer for different types of network traffic and monitoring. These virtual servers should be configured to the appropriate real hosts and ports for the services running. Also, the load balancer should be configured to monitor the real host and ports for availability so that the traffic to these is stopped as soon as possible when a service is down. This ensures that incoming traffic on a given virtual host is not directed to an unavailable service in the other tiers.

You must ensure that every computer where you plan to run Oracle Business Intelligence can access (ping) the primary host computer of your cluster using its fully qualified domain name. For the installation to succeed, every computer on which you scale out your installation must be able to support bidirectional communication with the Administration Server on the cluster’s primary host.

3.2 About Virtual Server Names Used by the Topology

The BI enterprise topology uses the following virtual server names:

- bi.mycompany.com
- admin.mycompany.com
- biinternal.mycompany.com
Ensure that the virtual server names are associated with IP addresses and are part of your DNS. The nodes running Oracle Fusion Middleware must be able to resolve these virtual server names.

In addition, the virtual IP addresses must be on the same subnet as the physical host IP addresses.

You will define the virtual server names on the load balancer using the procedure in Section 3.3, "Configuring the Load Balancer."

3.2.1 bi.mycompany.com

bi.mycompany.com is a virtual server name that acts as the access point for all HTTP traffic to the run-time Oracle BI components. Traffic to SSL is configured. Clients access this service using the address bi.mycompany.com:443. This virtual server is defined on the load balancer.

3.2.2 admin.mycompany.com

admin.mycompany.com is a virtual server name that acts as the access point for all internal HTTP traffic that is directed to administration services such as Oracle WebLogic Administration Server Console and Oracle Enterprise Manager.

The incoming traffic from clients is not SSL-enabled. Clients access this service using the address admin.mycompany.com:80 and the requests are forwarded to port 7777 on WEBHOST1 and WEBHOST2. This virtual server is defined on the load balancer.

3.2.3 biinternal.mycompany.com

biinternal.mycompany.com is a virtual server name used for internal invocation of BI services. This URL is not exposed to the internet and is only accessible from the intranet.

The incoming traffic from clients is not SSL-enabled. Clients access this service using the address biinternal.mycompany.com:80 and the requests are forwarded to port 7777 on WEBHOST1 and WEBHOST2. This virtual server is defined on the load balancer.

3.3 Configuring the Load Balancer

This enterprise topology uses an external load balancer. Configure the load balancer by defining the virtual server names described in Section 3.2, "About Virtual Server Names Used by the Topology."

The procedure described in this section contains high-level steps. The actual steps you will perform vary depending on the type of load balancer you use. For detailed instructions, consult the documentation for your load balancer.

For more information on load balancers, see Section 2.1.3, "About the Web Tier Nodes."

Note: For more information on validated load balancers and their configuration, see the following page on the Oracle Technology Network at:

To configure the load balancer by defining the virtual server names:

1. Create a pool of servers. You will assign this pool to virtual servers.

2. Add the addresses of the Oracle HTTP Server hosts to the pool. For example:
 - WEBHOST1:7777
 - WEBHOST2:7777

3. Configure a virtual server in the load balancer for bi.mycompany.com:443 and define the following rules for this virtual server:
 - For this virtual server, use your system's frontend address as the virtual server address (for example, bi.mycompany.com). The frontend address is the externally facing host name used by your system that will be exposed in the Internet.
 - Configure this virtual server with port 80 and port 443. Any request that goes to port 80 (non-ssl protocol) should be redirected to port 443 (ssl protocol).
 - Specify HTTP as the protocol.
 - Enable address and port translation.
 - Enable reset of connections when services and/or nodes are down.
 - Assign the pool created in step 1 to the virtual server.
 - Create rules to filter out access to /console and /em on this virtual server.

4. Configure a virtual server in the load balancer for admin.mycompany.com:80 and define the following rules for this virtual server:
 - For this virtual server, use your internal administration address as the virtual server address (for example, admin.mycompany.com). This address is typically not externalized.
 - Specify HTTP as the protocol.
 - Enable address and port translation.
 - Enable reset of connections when services and/or nodes are down.
 - Optionally, create rules to allow access only to /console and /em on this virtual server.
 - Assign the pool created in step 1 to the virtual server.

5. Configure a virtual server in the load balancer for biinternal.mycompany.com:80 and define the following rules for this virtual server:
 - For this virtual server, use your internal administration address as the virtual server address (for example, biinternal.mycompany.com). This address is typically not externalized.
 - Specify HTTP as the protocol.
 - Enable address and port translation.
 - Enable reset of connections when services and/or nodes are down.
 - Optionally, create rules to filter out access to /console and /em on this virtual server.

6. Configure monitors for the Oracle HTTP Server nodes to detect failures in these nodes.
Set up a monitor to regularly ping the "/" URL context.

Tip: Use GET /\n\ninstead if the Oracle HTTP Server's document root does not include index.htm and Oracle WebLogic Server returns a 404 error for "/".

For the ping interval, specify a value that does not overload your system. You can try 5 seconds as a starting point.

For the timeout period, specify a value that can account for the longest response time that you can expect from your BI system, that is, specify a value greater than the longest period of time any of your requests to HTTP servers can take.

After you configure the virtual host in Section 7.5, "Configuring Virtual Hosts," you should be able to access the virtual host name addresses. If you cannot access them, review this procedure to ensure that it was completed correctly.

3.4 About IPs and Virtual IPs

Table 3–1 describes the various virtual hosts.

<table>
<thead>
<tr>
<th>Virtual IP</th>
<th>VIP Maps to...</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIP1</td>
<td>ADMINVHN</td>
<td>ADMINVHN is the virtual host name that is the listen address for the Administration Server and fails over with manual failover of the Administration Server. It is enabled on the node where the Administration Server process is running (APPHOST1 by default).</td>
</tr>
<tr>
<td>VIP2</td>
<td>APPHOST1VHN1</td>
<td>APPHOST1VHN1 is the virtual host name that maps to the listen address for bi_server1 and fails over with server migration of this Managed Server. It is enabled on the node where the bi_server1 process is running (APPHOST1 by default).</td>
</tr>
<tr>
<td>VIP3</td>
<td>APPHOST2VHN1</td>
<td>APPHOST2VHN1 is the virtual host name that maps to the listen address for bi_server2 and fails over with server migration of this Managed Server. It is enabled on the node where the bi_server2 process is running (APPHOST2 by default).</td>
</tr>
</tbody>
</table>

3.4.1 Enabling Virtual IPs for the Managed Servers

The BI domain uses virtual host names as the listen addresses for the Oracle Business Intelligence Managed Servers. You must enable the VIPs, mapping each of these host names on the two BI computers (VIP2 on APPHOST1 and VIP3 on APPHOST2), and they must correctly resolve to the virtual host names in the network system used by the topology (either by DNS Server or hosts resolution).

Before the Managed Servers can be configured to listen on a virtual IP Address, one of the network interface cards on the host running the Managed Server must be configured to listen on this virtual IP Address.

Perform the following steps once on each host to enable the appropriate virtual IP Address (VIP2 on APPHOST1 and VIP3 on APPHOST2). In an UNIX environment, the command must be run as the root user:
1. On the appropriate host (APPHOST1 or APPHOST2), run the `ifconfig` command to get the value of the netmask. In a UNIX environment, run this command as the root user. For example, on APPHOST1:

```
[root@APPHOST1 ~] # /sbin/ifconfig
eth0     Link encap:Ethernet  HWaddr 00:11:43:D7:5B:06
          inet addr:139.185.140.51  Bcast:139.185.140.255  Mask:255.255.255.0
          inet6 addr: fe80::211:43ff:fed7:5b06/64 Scope:Link
          UP BROADCAST RUNNING MULTICAST  MTU:1500  Metric:1
          RX packets:10626133 errors:0 dropped:0 overruns:0 frame:0
          TX packets:10951629 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:1000
          RX bytes:4036851474 (3.7 GiB)  TX bytes:2770209798 (2.5 GiB)
          Base address:0xecc0 Memory:dfae0000-dfb00000
```

2. Bind the virtual IP Address to the network interface card using `ifconfig`. In a UNIX environment, run this command as the root user. Use a netmask value that was obtained in Step 1.

 The syntax and usage for the `ifconfig` command is as follows:

 `/sbin/ifconfig networkCardInterface Virtual_IP_Address netmask netMask`

 For example:

 `/sbin/ifconfig eth0:1 100.200.140.206 netmask 255.255.255.0`

3. Update the routing table using `arping`. In a UNIX environment, run this command as the root user.

 `/sbin/arping -q -U -c 3 -I networkCardInterface Virtual_IP_Address`

 For example:

 `/sbin/arping -q -U -c 3 -I eth0 100.200.140.206`

See also Section 8.3.4.1, "Enabling ADMINVHN on APPHOST1" for information about enabling VIP1 for the Administration Server on APPHOST1.

3.5 About Firewalls and Ports

Many Oracle Fusion Middleware components and services use ports. As an administrator, you must know the port numbers used by these services, and ensure that the same port number is not used by two services on a host.

Most port numbers are assigned during installation.

Table 3–2 lists the ports used in the Oracle Business Intelligence topology, including the ports that you must open on the firewalls in the topology.

Firewall notation:

- FW0 refers to the outermost firewall.
- FW1 refers to the firewall between the Web tier and the application tier.
- FW2 refers to the firewall between the application tier and the data tier.
<table>
<thead>
<tr>
<th>Type</th>
<th>Firewall</th>
<th>Port and Port Range</th>
<th>Protocol / Application</th>
<th>Inbound / Outbound</th>
<th>Other Considerations and Timeout Guidelines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Browser request</td>
<td>FW0</td>
<td>80</td>
<td>HTTP / Load Balancer</td>
<td>Inbound</td>
<td>Timeout depends on all HTML content and the type of process model used for BI.</td>
</tr>
<tr>
<td>Browser request</td>
<td>FW0</td>
<td>443</td>
<td>HTTPS / Load Balancer</td>
<td>Inbound</td>
<td>Timeout depends on all HTML content and the type of process model used for BI.</td>
</tr>
<tr>
<td>Load balancer to Oracle HTTP Server</td>
<td>n/a</td>
<td>7777</td>
<td>HTTP</td>
<td>n/a</td>
<td>See Section 3.3, “Configuring the Load Balancer.”</td>
</tr>
<tr>
<td>Oracle HTTP Server registration with Administration Server</td>
<td>FW1</td>
<td>7001</td>
<td>HTTP/t3</td>
<td>Inbound</td>
<td>Set the timeout to a short period (5-10 seconds).</td>
</tr>
<tr>
<td>Oracle HTTP Server management by Administration Server</td>
<td>FW1</td>
<td>7001</td>
<td>HTTP/t3</td>
<td>Outbound</td>
<td>Set the timeout to a short period (5-10 seconds).</td>
</tr>
<tr>
<td>BI Server access</td>
<td>FW1</td>
<td>9704</td>
<td>HTTP/bi_server</td>
<td>Inbound</td>
<td>Timeout varies based on the type of process model used for BI.</td>
</tr>
<tr>
<td>Communication between BI Cluster members</td>
<td>n/a</td>
<td>9704</td>
<td>TCP/IP Unicast</td>
<td>n/a</td>
<td>By default, this communication uses the same port as the server's listen address.</td>
</tr>
<tr>
<td>Session replication within a WebLogic Server cluster</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>By default, this communication uses the same port as the server's listen address.</td>
</tr>
<tr>
<td>Oracle WebLogic Server Administration Console access</td>
<td>FW1</td>
<td>7001</td>
<td>HTTP / Administration Server and Enterprise Manager</td>
<td>Both</td>
<td>You should tune this timeout based on the type of access to the Administration Console (whether you plan to use the Administration Console from application tier clients, or from clients external to the application tier).</td>
</tr>
<tr>
<td>Node Manager</td>
<td>n/a</td>
<td>5556</td>
<td>TCP/IP</td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>
3.6 About LDAP as Credential and Policy Store

With Oracle Fusion Middleware, you can use different types of credential and policy stores in a WebLogic domain. Domains can use stores based on XML files or on different types of LDAP providers. When a domain uses an LDAP store, all policy and credential data is kept and maintained in a centralized store. However, when using XML policy stores, the changes made on Managed Servers are not propagated to the Administration Server unless they use the same domain home.

The Oracle Business Intelligence enterprise deployment topology uses different domain homes for the Administration Server and the Managed Servers as described in Section 4.3, "About Recommended Locations for the Different Directories." Derived from this, and for integrity and consistency purposes, Oracle requires the use of an LDAP store as the credential and policy store in the context of an Oracle Business Intelligence enterprise deployment. To configure your Oracle Business Intelligence enterprise deployment with an LDAP store as the credential and policy store, follow the steps in Section 12.1, "Configuring the Credential and Policy Store."

<table>
<thead>
<tr>
<th>Type</th>
<th>Firewall</th>
<th>Port and Port Range</th>
<th>Protocol / Application</th>
<th>Inbound / Outbound</th>
<th>Other Considerations and Timeout Guidelines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access Server access</td>
<td>FW1</td>
<td>6021</td>
<td>OAP</td>
<td>Inbound</td>
<td>For actual values, see "Firewall and Port Configuration" in the Oracle Fusion Middleware Enterprise Deployment Guide for Oracle Identity Management.</td>
</tr>
<tr>
<td>Database access for BI Server and BI Publisher JDBC data sources</td>
<td>FW1</td>
<td>Listening port for client connections to the listener</td>
<td>SQL*Net</td>
<td>Both</td>
<td>Timeout depends on all database content and on the type of process model used for BI.</td>
</tr>
<tr>
<td>Database access</td>
<td>FW2</td>
<td>1521</td>
<td>SQL*Net</td>
<td>Inbound</td>
<td>Timeout depends on all database content and on the type of process model used for BI.</td>
</tr>
<tr>
<td>Oracle Internet Directory access</td>
<td>FW2</td>
<td>389</td>
<td>LDAP</td>
<td>Inbound</td>
<td>You should tune the directory server's parameters based on load balancer, and not the other way around.</td>
</tr>
<tr>
<td>Oracle Internet Directory access</td>
<td>FW2</td>
<td>636</td>
<td>LDAP SSL</td>
<td>Inbound</td>
<td>You should tune the directory server's parameters based on load balancer, and not the other way around.</td>
</tr>
<tr>
<td>JOC for OWSM</td>
<td>n/a</td>
<td>9991</td>
<td>TCP/IP</td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Note: The firewall ports depend on the definition of TCP/IP ports.
This chapter describes how to prepare your file system for an Oracle Business Intelligence enterprise deployment. It provides information about recommended directory structure and locations, and includes a procedure for configuring shared storage.

This chapter includes the following topics:

- Section 4.1, "Overview of Preparing the File System for Enterprise Deployment"
- Section 4.2, "Terminology for Directories and Directory Environment Variables"
- Section 4.3, "About Recommended Locations for the Different Directories"
- Section 4.4, "Configuring Shared Storage"

4.1 Overview of Preparing the File System for Enterprise Deployment

It is important to set up your file system in a way that makes the enterprise deployment easier to understand, configure, and manage. Oracle recommends setting up your files system according to information in this chapter. The terminology defined in this chapter is used in diagrams and procedures throughout the guide.

Use this chapter as a reference to help understand the directory variables used in the installation and configuration procedures. Other directory layouts are possible and supported, but the model adopted in this guide is chosen for maximum availability, providing both the best isolation of components and symmetry in the configuration and facilitating backup and disaster recovery. The rest of the document uses this directory structure and directory terminology.

4.2 Terminology for Directories and Directory Environment Variables

This section describes the directory environment variables used throughout this guide for configuring the Oracle Business Intelligence enterprise deployment. The following directory variables are used to describe the directories installed and configured in the guide:

- **ORACLE_BASE**: This environment variable and related directory path refers to the base directory under which Oracle products are installed.

- **MW_HOME**: This environment variable and related directory path refers to the location where Oracle Fusion Middleware resides.

- **WL_HOME**: This environment variable and related directory path contains installed files necessary to host an Oracle WebLogic Server.
About Recommended Locations for the Different Directories

- **ORACLE_HOME**: This environment variable and related directory path refers to the directory where the binaries required to run Oracle Business Intelligence are installed.

- **ORACLE_COMMON_HOME**: This environment variable and related directory path refers to the Oracle home that contains the binary and library files required for Oracle Enterprise Manager Fusion Middleware Control and Java Required Files (JRF).

- **Domain directory**: This directory path refers to the location where the Oracle WebLogic domain information (configuration artifacts) is stored. Different WLS Servers can use different domain directories even when in the same node.

- **ORACLE_INSTANCE**: An Oracle instance directory contains configuration files, log files, and temporary files for one or more Oracle system components (such as Oracle BI Server, Oracle BI Presentation Services, Oracle HTTP Server, and so on).

 Tip: You can simplify directory navigation by using environment variables as shortcuts to the locations in this section. For example, you could use an environment variable called $ORACLE_BASE in Linux to refer to /u01/app/oracle (that is, the recommended ORACLE_BASE location). In Windows, you would use %ORACLE_BASE% and use Windows-specific commands.

4.3 About Recommended Locations for the Different Directories

Oracle Business Intelligence 11g supports the deployment and instantiation of multiple processes (such as Managed Servers, BI Servers, and Presentation Services servers) from a single binary installation. This capability simplifies lifecycle operations like patching, upgrade, and test-to-production, as well as scale-out operations for an Oracle Business Intelligence deployment. However, for maximum availability, Oracle recommends using redundant binary installations. In the EDG model, two Oracle Fusion Middleware homes (MW_HOME), each of which has a WL_HOME and an ORACLE_HOME for each product suite, are installed in a shared storage. Additional servers (when scaling out or up) of the same type can use either one of these two locations without requiring more installations. Ideally, users should use two different volumes (referred to as VOL1 and VOL2 in subsequent text) for redundant binary location, thus isolating as much as possible the failures in each volume. For additional protection, Oracle recommends that these volumes are disk-mirrored. If multiple volumes are not available, Oracle recommends using mount points to simulate the same mount location in a different directory in the shared storage. Although this does not guarantee the protection that multiple volumes provide, it does allow protection from user deletions and individual file corruption.

When an ORACLE_HOME or a WL_HOME is shared by multiple servers on different computers, you should keep the Oracle Inventory (oraInventory) and Middleware home list on those computers up-to-date. Doing so ensures consistency when you perform future installations or apply patches. To update the oraInventory on a computer and "attach" an installation in a shared storage to it, use ORACLE_HOME/oui/bin/attachHome.sh. To update the Middleware home list to add or remove a WL_HOME, edit the user_home/bea/beahomelist file. This is required for any additional computers where Oracle Business Intelligence is installed, in addition to the two computers used in this EDG.

Oracle recommends also separating the domain directory used by the Administration Server from the domain directory used by the Managed Servers. This allows a symmetric configuration for the domain directories used by Managed Servers, and isolates the failover of the Administration Server. The domain directory for the
Administration Server must reside in a shared storage to allow failover to another computer with the same configuration. The domain directories of the Managed Servers can reside in a local or shared storage.

You can use a shared domain directory for all Managed Servers on different computers, or use one domain directory for each computer. Sharing domain directories for Managed Servers facilitates the scale-out procedures. In this case, the deployment should conform to the requirements (if any) of the storage system to facilitate multiple computers mounting the same shared volume.

All procedures that apply to multiple local domains apply to a single shared domain. Therefore, this enterprise deployment guide uses a model where one domain directory is used for each computer. The directory can be local or reside in shared storage.

4.3.1 Recommended Directory Locations

This section describes the directories recommended. Wherever a shared storage location is directly specified, it is implied that shared storage is required for that directory. When using local disk or shared storage is optional, the mount specification is qualified with "if using a shared disk." The shared storage locations are examples and can be changed as long as the provided mount points are used. However, Oracle recommends this structure in the shared storage device for consistency and simplicity.

ORACLE_BASE:

/\u01/app/oracle

MW_HOME (Application Tier):

\`\`ORACLE_BASE/product/fmw\`

- Mount point: \`\`ORACLE_BASE/product/fmw\`
- Shared storage location: \`\`ORACLE_BASE/product/fmw\` (VOL1 and VOL2)

Mounted from: Nodes alternatively mount VOL1 or VOL2 in such a way that at least half the nodes use an installation and the other half use the other one. In the EDG for Oracle Business Intelligence, APPHOST1 mounts VOL1 and APPHOST2 mounts VOL2. When only one volume is available, nodes mount two different directories in shared storage alternatively (that is, for example, APPHOST1 would use \`\`ORACLE_BASE/product/fmw1\` as shared storage location and APPHOST2 would use \`\`ORACLE_BASE/product/fmw2\` as shared storage location).

Note: When there is just one volume available in the shared storage, you can provide redundancy using different directories to protect from accidental file deletions and for patching purposes. Two \`\`MW_HOME\`\`s would be available; at least one at \`\`ORACLE_BASE/product/fmw1\`, and another at \`\`ORACLE_BASE/product/fmw2\`. These \`\`MW_HOME\`\`s are mounted on the same mount point in all nodes.

MW_HOME (Web tier):

\`\`ORACLE_BASE/product/fmw/web\`

- Mount point: \`\`ORACLE_BASE/product/fmw\`
- Shared storage location: \`\`ORACLE_BASE/product/fmw\` (VOL1 and VOL2)
Mounted from: For shared storage installations, nodes alternatively mount VOL1 or VOL2 in such a way that at least half the nodes use an installation and the other half use the other one. In the EDG for BI, WEBHOST1 would mount VOL1 and WEBHOST2 would mount VOL2. When only one volume is available, nodes mount the two suggested directories in shared storage alternatively (that is, for example, WEBHOST1 would use ORACLE_BASE/product/fmw1 as shared storage location and WEBHOST2 would use ORACLE_BASE/product/fmw2 as shared storage location).

Note: Web tier installation is usually performed on local storage to the WEBHOST nodes. When using shared storage, appropriate security restrictions for access to the storage device across tiers must be considered.

WL_HOME:

MW_HOME/wlservr_10.3

ORACLE_HOME:

MW_HOME/Oracle_BI1

ORACLE_COMMON_HOME:

MW_HOME/oracle_common

ORACLE_INSTANCE:

ORACLE_BASE/admin/instance_name

- If you are using a shared disk, the mount point on the system is ORACLE_BASE/admin/instance_name mounted to ORACLE_BASE/admin/instance_name (VOL1).

Note: (VOL1) is optional; you could also use (VOL2).

Domain Directory for Admin Directory:

ORACLE_BASE/admin/domain_name/aserver/domain_name (the last "domain_name" is added by the Configuration Assistant).

- Mount point on system: ORACLE_BASE/admin/domain_name/aserver
- Shared storage location: ORACLE_BASE/admin/domain_name
- Mounted from: Only the node where the Administration Server is running needs to mount this directory. When the Administration Server is relocated (failed over) to a different node, the node then mounts the same shared storage location on the same mount point. The remaining nodes in the topology do not need to mount this location.

Domain Directory for Managed Server:

ORACLE_BASE/admin/domain_name/mserver/domain_name

- If you are using a shared disk, the mount point on the system is ORACLE_BASE/admin/domain_name/mserver mounted to ORACLE_BASE/admin/domain_name/Node_n/mserver/ (each node uses a different domain directory for Managed Servers).
About Recommended Locations for the Different Directories

Location for JMS file-based stores and Tlogs:

- Mount point: `ORACLE_BASE/admin/domain_name/cluster_name/jms`
- Shared storage location: `ORACLE_BASE/admin/domain_name/cluster_name/tlogs`
- Mounted from: All nodes running BI components must mount this shared storage location so that transaction logs and JMS stores are available when server migration to another node takes place.

Location for Oracle BI Presentation Catalog:

- Mount point: `ORACLE_BASE/admin/domain_name/cluster_name/catalog/customCatalog` (where `customCatalog` is an example of the catalog name)
- Shared storage location: `ORACLE_BASE/admin/domain_name/cluster_name`
- Mounted from: All nodes containing the instances of Presentation Services in the cluster mount this location (all nodes must have read and write access).

Note that the Oracle BI Presentation Catalog is called Presentation Service Repository in Fusion Middleware Control.

Location for Repository Publishing Directory:

- Mount point: `ORACLE_BASE/admin/domain_name/cluster_name/ClusterRPD`
- Shared storage location: `ORACLE_BASE/admin/domain_name/cluster_name`
- Mounted from: All nodes containing the instances of BI Server in the cluster mount this location. The master BI Server must have read and write access to this directory. All other BI Servers must have read access.

Note that the repository publishing directory is identified as the Shared Location for the BI Server Repository in Fusion Middleware Control.

Location for BI Server Global Cache:

- Mount point: `ORACLE_BASE/admin/domain_name/cluster_name/GlobalCache`
- Shared storage location: `ORACLE_BASE/admin/domain_name/cluster_name`
- Mounted from: All nodes containing the instances of BI Server in the cluster mount this location. The master BI Server must have read and write access to this directory. All other BI Servers must have read access.

Location for BI Publisher Configuration Folder:

- Mount point: `ORACLE_BASE/admin/domain_name/cluster_name/bipublisher/config`
■ Shared storage location: `ORACLE_BASE/admin/domain_name/cluster_name`
■ Mounted from: All nodes containing the instances of BI Publisher in the cluster mount this location with read/write access.

Location for BI Publisher Scheduler Temp Directory:

`ORACLE_BASE/admin/domain_name/cluster_name/bipublisher/temp`
■ Mount point: `ORACLE_BASE/admin/domain_name/cluster_name`
■ Shared storage location: `ORACLE_BASE/admin/domain_name/cluster_name`
■ Mounted from: All nodes containing the instances of BI Publisher in the cluster mount this location with read/write access.

Location for Application Directory for Administration Server:

`ORACLE_BASE/admin/domain_name/asever/applications`
■ Mount point: `ORACLE_BASE/admin/domain_name/asever/applications`
■ Shared storage location: `ORACLE_BASE/admin/domain_name/asever`

Location for Application Directory for Managed Server:

`ORACLE_BASE/admin/domain_name/mserver/applications`

Note: This directory is local in the context of the EDG for Oracle Business Intelligence.

4.3.2 Directory Structure and Configurations

This section provides a diagram to help illustrate the recommended directory structure and shared storage.

Figure 4–1 shows the recommended directory structure.

Figure 4–1 **EDG Directory Structure for Oracle Business Intelligence**
Note that the directory structure in Figure 4–1 does not show other required internal directories such as oracle_common. It also does not show shared component directories; see Section 4.4, "Configuring Shared Storage" for information about shared directories.

Table 4–1 explains what the various color-coded elements in Figure 4–1 mean.

<table>
<thead>
<tr>
<th>Element</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The Administration Server domain directories, applications, deployment plans, file adapter control directory, JMS and TX logs, and the entire MW_HOME are on a shared disk.</td>
</tr>
<tr>
<td></td>
<td>The Managed Server domain directories can be on a local disk or a shared disk. To share the Managed Server domain directories on multiple computers, you must mount the same shared disk location across the computers. The instance_name directory for the Web tier can be on a local disk or a shared disk.</td>
</tr>
<tr>
<td></td>
<td>Fixed name.</td>
</tr>
<tr>
<td></td>
<td>Installation-dependent name.</td>
</tr>
</tbody>
</table>

4.4 Configuring Shared Storage

Use the following commands to create and mount shared storage locations so that APPHOST1 and APPHOST2 can see the same location for binary installation in two separate volumes.

Note: The user ID used to create a shared storage file system owns and has read, write, and execute privileges for those files. Other users in the operating system group can read and execute the files, but they do not have write privileges. For more information about installation and configuration privileges, see the "Understanding Installation and Configuration Privileges and Users" section in the Oracle Fusion Middleware Installation Planning Guide.

"nasfiler" is the shared storage filer.

From APPHOST1:

```
APPHOST1> mount nasfiler:/vol/vol1/u01/app/oracle/product/fmw
 /u01/app/oracle/product/fmw -t nfs
```

From APPHOST2:

```
APPHOST2> mount nasfiler:/vol/vol2/u01/app/oracle/product/fmw
 /u01/app/oracle/product/fmw -t nfs
```

If only one volume is available, you can provide redundancy for the binaries by using two different directories in the shared storage and mounting them to the same directory in the APPHOST servers:

From APPHOST1:

```
APPHOST1> mount nasfiler:/vol/vol1/u01/app/oracle/product/fmw1
 /u01/app/oracle/product/fmw -t nfs
```

From APPHOST2:
APPHOST2> mount nasfiler:/vol/vol2/u01/app/oracle/product/fmw2
/u01/app/oracle/product/fmw -t nfs

The following commands show how to share the BI TX logs location across different
nodes:

APPHOST1> mount nasfiler:/vol/vol1/u01/app/oracle/stores/bifoundation_domain/
bi_cluster/tlogs /u01/app/oracle/stores/bifoundation_domain/
bi_cluster/tlogs -t nfs

APPHOST2> mount nasfiler:/vol/vol1/u01/app/oracle/stores/bifoundatin_domain/
bi_cluster/tlogs /u01/app/oracle/stores/bifoundation_domain/
bi_cluster/tlogs -t nfs

Note: The shared storage can be a NAS or SAN device. The
following illustrates an example of creating storage for a NAS device
from APPHOST1. The options may differ depending on the specific
storage device.

APPHOST1> mount nasfiler:/vol/vol1/fmw11shared ORACLE_BASE/wls -t
nfs -o rw,bg,hard,nointr,tcp,vers=3,timeo=300,rsize=32768,
wsize=32768

Contact your storage vendor and computer administrator for the
correct options for your environment.

Validating the Shared Storage Configuration

Ensure that you can read and write files to the newly mounted directories by creating
a test file in the shared storage location you just configured.

For example:

```bash
$ cd newly mounted directory
$ touch testfile
```

Verify that the owner and permissions are correct:

```bash
$ ls -l testfile
```

Then remove the file:

```bash
$ rm testfile
```

4.4.1 Ensuring That Shared Network Files Are Accessible in Windows Environments

In Windows environments, shared storage is typically specified using Universal
Naming Convention (UNC). UNC is a PC format for specifying locations of resources
on a local area network. UNC uses the following format:

```
\server_name\shared_resource_path_name
```

In addition, you must use named users to run OPMN processes in Windows
environments so that the shared network files are accessible.

To run OPMN processes using a named user:

1. Open the Services dialog. For example, select **Start > Programs > Administrative
 Tools > Services.**
2. Right-click **OracleProcessManager_instance** and then select **Properties.**
3. Select the **Log On** tab.
4. Select **This account**, and then provide a user name and password.
5. Click **OK**.
Preparing the Database for an Enterprise Deployment

This chapter describes procedures for preparing your database for an Oracle Business Intelligence enterprise deployment. The procedures include initial setup of the database, loading the Oracle Business Intelligence schemas, and backing up the database.

Important: Oracle strongly recommends that you read the Oracle Fusion Middleware Release Notes for any additional installation and deployment considerations before starting the setup process.

This chapter contains the following topics:

- Section 5.1, "Overview of Preparing the Database for an Enterprise Deployment"
- Section 5.2, "About Database Requirements"
- Section 5.3, "Creating Database Services for 10.x and 11.1.x Databases"
- Section 5.4, "Loading the Oracle Business Intelligence Schemas in the Oracle RAC Database"
- Section 5.5, "Backing Up the Database"

5.1 Overview of Preparing the Database for an Enterprise Deployment

You must install a database and then load the Oracle Business Intelligence schemas into it before you can configure the Oracle Fusion Middleware components. You load the Oracle Business Intelligence schemas using the Repository Creation Utility (RCU).

For the enterprise topology, an Oracle Real Application Clusters (Oracle RAC) database is highly recommended to achieve a highly available data tier. When you install Oracle Business Intelligence, the installer prompts you to enter the information for connecting to the database that contains the required schemas.

5.2 About Database Requirements

Before loading the Oracle Business Intelligence schemas into your database, ensure that the database meets the requirements described in the following sections:

- Section 5.2.1, "Database Host Requirements"
- Section 5.2.2, "Supported Database Versions"
5.2.1 Database Host Requirements

On the hosts CUSTDBHOST1 and CUSTDBHOST2 in the data tier, note the following requirements:

- **Oracle Clusterware**
 For 11g Release 1 (11.1) for Linux, refer to the *Oracle Clusterware Installation Guide for Linux*.

- **Oracle Real Application Clusters**
 For 11g Release 1 (11.1) for Linux, refer to the *Oracle Real Application Clusters Installation Guide for Linux and UNIX*. For 10g Release 2 (10.2) for Linux, refer to the *Oracle Database Oracle Clusterware and Oracle Real Application Clusters Installation Guide for Linux*.

- **Automatic Storage Management (optional)**
 ASM is installed for the node as a whole. It is recommended that you install it in a separate Oracle home from the Oracle Database Oracle home. You can select this option when running the runInstaller. In the Select Configuration page, select the **Configure Automatic Storage Management** option to create a separate Oracle home for ASM.

5.2.2 Supported Database Versions

Oracle Business Intelligence requires the presence of a supported database and schemas.

To check if your database is certified or to see all certified databases, refer to the "Oracle Fusion Middleware 11g Release 1 (11.1.x)" product area on the Oracle Fusion Middleware Supported System Configurations page on the Oracle Technology Network at:

To check the release of your database, you can query the `PRODUCT_COMPONENT_VERSION` view, as follows:

```
SQL> SELECT VERSION FROM SYS.PRODUCT_COMPONENT_VERSION WHERE PRODUCT LIKE '%Oracle%';
```

5.2.3 Recommended Database Character Set

Oracle strongly recommends using a database with AL32UTF8 as the database character set. You must select the AL32UTF8 character set when you install the database. If your database does not support AL32UTF8, you will get a warning when you run the Repository Creation Utility (RCU). Check the database documentation for information on choosing a character set for the database.

5.3 Creating Database Services for 10.x and 11.1.x Databases

Oracle recommends that a specific database service be used for a product suite, even when product suites share the same database. It is also recommended that the database service used is different than the default database service. For complete
instructions on creating database services, see the chapter on Workload Management in the Oracle Database Oracle Clusterware and Oracle Real Application Clusters Administration and Deployment Guide.

Run-time connection load balancing requires configuring Oracle RAC Load Balancing Advisory with service-level goals for each service for which load balancing is enabled. The Oracle RAC Load Balancing Advisory can be configured for SERVICE_TIME or THROUGHPUT. The connection load balancing goal should be set to SHORT. For 10g and 11g Release 1 Databases, use the DBMS_SERVICE package for this modification. For 11g Release 2 use the srvctl command utility instead.

This section contains the following topics:

- Section 5.3.1, "Creating Database Services for 10.x and 11g Release 1 Databases"
- Section 5.3.2, "Creating Database Services for 11.2.x Databases"

5.3.1 Creating Database Services for 10.x and 11g Release 1 Databases

The following steps provide an example for service creation and modification using the DBMS_SERVICE package:

1. Log on to SQL*Plus and create the service:

```
prompt> sqlplus "sys/password as sysdba"
SQL> EXECUTE DBMS_SERVICE.CREATE_SERVICE
(SERVICE_NAME => 'biedg.mycompany.com',
NETWORK_NAME => 'biedg.mycompany.com');
```

Note: For the service name of the Oracle RAC database, use lowercase letters, followed by the domain name. For example, biedg.mycompany.com.

Also, the EXECUTE DBMS_SERVICE command shown must be entered on a single line to execute properly. For more information about the DBMS_SERVICE package, see the Oracle Database PL/SQL Packages and Types Reference.

2. Add the service to the database and assign it to the instances using srvctl:

```
prompt> srvctl add service -d custdb -s biedg.mycompany.com -r custdb1,custdb2
```

3. Start the service using srvctl:

```
prompt> srvctl start service -d custdb -s biedg.mycompany.com
```

Note: For more information about the SRVCTL command, see the Oracle Real Application Clusters Administration and Deployment Guide.

4. Modify the service for the appropriate service goals:

```
SQL>EXECUTE DBMS_SERVICE.MODIFY_SERVICE (service_name => 'biedg.mycompany.com',
goal => DBMS_SERVICE.GOAL_THROUGHPUT, clb_goal =>DBMS_SERVICE.CLB_GOAL_SHORT);
```

or:

```
SQL>EXECUTE DBMS_SERVICE.MODIFY_SERVICE (service_name => 'biedg.mycompany.com',
goal => DBMS_SERVICE.GOAL_SERVICE_TIME, clb_goal =>DBMS_SERVICE.CLB_GOAL_SHORT)
```
5.3.2 Creating Database Services for 11.2.x Databases

The following steps provide an example for service creation and modification using the srvctl utility:

1. Log on to SQL*Plus and create the service:

```
prompt> sqlplus "sys/password as sysdba"
SQL> EXECUTE DBMS_SERVICE.CREATE_SERVICE
(SERVICE_NAME => 'biedg.mycompany.com',
NETWORK_NAME => 'biedg.mycompany.com',
);
```

Note: For the service name of the Oracle RAC database, use lowercase letters, followed by the domain name. For example, biedg.mycompany.com.

Also, the EXECUTE DBMS_SERVICE command shown must be entered on a single line to execute properly. For more information about the DBMS_SERVICE package, see the Oracle Database PL/SQL Packages and Types Reference.

2. Add the service to the database and assign it to the instances using srvctl:

```
prompt> srvctl add service -d custdb -s biedg.mycompany.com -r custdb1,custdb2
```

3. Start the service using srvctl:

```
prompt> srvctl start service -d custdb -s biedg.mycompany.com
```

Note: For more information about the SRVCTL command, see the Oracle Real Application Clusters Administration and Deployment Guide.

4. Modify the service for the appropriate service goals:

```
prompt> srvctl modify service -d biedg -s biedg.mycompany.com -B SERVICE_TIME -j SHORT
```

or:

```
prompt> srvctl modify service -d biedg -s biedg.mycompany.com -B THROUGHPUT -j SHORT
```

5.4 Loading the Oracle Business Intelligence Schemas in the Oracle RAC Database

The Repository Creation Utility (RCU) is available from the RCU DVD. The RCU version used to seed the database must match the patch set level of the Oracle Business Intelligence installation. This means that if you install Oracle Business Intelligence 11g (11.1.1.6.0) in this enterprise deployment, you must use RCU 11g (11.1.1.6.0).

Perform these steps to load the Oracle Business Intelligence schemas into your database:
1. Insert the Repository Creation Utility (RCU) DVD, and then start RCU from the bin directory in the RCU home directory.

 prompt> cd RCU_HOME/bin
 prompt> ./rcu

2. In the Welcome screen, click Next.

3. In the Create Repository screen, select Create to load component schemas into a database. Click Next.

4. In the Database Connection Details screen, enter connect information for your database:

 - **Database Type**: Select Oracle Database.
 - **Host Name**: Specify the name of the node on which the database resides. For the Oracle RAC database, specify the VIP name or one of the node names as the host name: CUSTDBHOST1-VIP.
 - **Port**: Specify the listen port number for the database: 1521.
 - **Service Name**: Specify the service name of the database (biedg.mycompany.com).
 - **Username**: Specify the name of the user with DBA or SYSDBA privileges: SYS.
 - **Password**: Enter the password for the SYS user.
 - **Role**: Select the database user's role from the list: SYSDBA (required by the SYS user).

 Click Next.

5. In the Select Components screen, do the following:

 - Select **Create a new Prefix**, and then enter a prefix to use for the database schemas (for example, DEV or PROD). You can specify up to six characters as a prefix. Prefixes are used to create logical groupings of multiple repositories in a database. For more information, see the Oracle Fusion Middleware Repository Creation Utility User’s Guide.

 Tip: Note the name of the schema, because the upcoming steps require this information.

 - Select the following components:
 - **AS Common Schemas: Metadata Services** (automatically selected)
 - **Oracle Business Intelligence: Business Intelligence Platform**

 Click Next.

 The following image shows the Select Components screen:
6. In the Schema Passwords screen, enter passwords for the main schema users, and click Next.

You can choose either Use same passwords for all schemas or Specify different passwords for all schemas, depending on your requirements.

Do not select Use main schema passwords for auxiliary schemas. The auxiliary passwords are derived from the passwords of the main schema users.

Tip: Note the names of the schema passwords, because the upcoming steps require this information.

7. In the Map Tablespaces screen, choose the tablespaces for the selected components, and click Next.

8. In the Summary screen, click Create.

9. In the Completion Summary screen, click Close.

About Oracle WSM Policies and the OWSM MDS Schemas
Oracle recommends using the database used for identity management to store the Oracle WSM policies. It is therefore expected that you will use the identity management database information for the OWSM MDS schemas, which will be different from the one used for the rest of the BI schemas. To create the required schemas in the identity management database, repeat the preceding steps using the identity management database information, but select only AS Common Schemas: Metadata Services in the Select Components screen (step 5). See Chapter 12, "Integrating an Enterprise Deployment with Oracle Identity Management" for information on using the identity management database to store the Oracle WSM policies.

Tip: Note the names of the schema passwords, because the upcoming steps require this information.
5.5 Backing Up the Database

After you have loaded the Oracle Business Intelligence schemas in your database, make a backup before installing the software for your enterprise deployment. Backing up the database enables you to quickly recover from any issues that may occur in subsequent steps. You can choose to use your database backup strategy for this purpose, or you can simply make a backup using operating system tools or Oracle Recovery Manager (RMAN). Oracle recommends using RMAN for the database, particularly if the database was created using Oracle ASM. If possible, you can also perform a cold backup using operating system tools such as tar.
This chapter describes the software installations required for the Oracle Business Intelligence enterprise deployment reference topology. You install Oracle HTTP Server and then Oracle Fusion Middleware.

6.1 Overview of the Software Installation Process

The enterprise deployment software installation is divided into two parts. The first part covers the required Web tier installations, while the second part addresses the required Oracle Fusion Middleware components. Later chapters describe the required configuration steps to create the reference topology for Oracle Business Intelligence.

Software to Install

Table 6–1 shows what software should be installed on each host or be accessible from each host.

<table>
<thead>
<tr>
<th>Hosts</th>
<th>Oracle HTTP Server</th>
<th>Oracle WebLogic Server</th>
<th>Oracle Business Intelligence</th>
</tr>
</thead>
<tbody>
<tr>
<td>WEBHOST1</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>WEBHOST2</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>APPHOST1</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>APPHOST2</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

See Section 2.3, "Identifying the Software Components to Install" for information about software versions.
6.2 Installing Oracle HTTP Server

This section contains the following topics:

- Section 6.2.1, "Prerequisites to Installing Oracle HTTP Server"
- Section 6.2.2, "Installing Oracle HTTP Server on WEBHOST1 and WEBHOST2"
- Section 6.2.3, "Backing Up the Oracle HTTP Server Installation"

6.2.1 Prerequisites to Installing Oracle HTTP Server

Before installing Oracle HTTP Server, check that your computers meet the following requirements:

- Ensure that the system, patch, kernel, and other requirements are met as specified in the Oracle Fusion Middleware Installation Guide for Oracle Web Tier.

- Because Oracle HTTP Server is installed on port 7777 by default, you must ensure that port 7777 is not used by any service on the nodes. To check if this port is in use, run the following command before installing Oracle HTTP Server:

 netstat -an | grep 7777

 You must free port 7777 if it is in use.

- On Linux platforms, if the /etc/oraInst.loc file exists, check that its contents are correct. Specifically, check that the inventory directory is correct and that you have write permissions for that directory. If the /etc/oraInst.loc file does not exist, you can skip this step.

- Before starting the installation, ensure that the following environment variables are not set:
 - LD_ASSUME_KERNEL
 - ORACLE_INSTANCE

6.2.2 Installing Oracle HTTP Server on WEBHOST1 and WEBHOST2

When you install Oracle HTTP Server, you are installing the Web tier and NOT associating it with a domain. However, you do need to create a MW_HOME directory for the Web tier, even though it is not associated with a domain.

As described in Chapter 4, "Preparing the File System for an Enterprise Deployment," you install Oracle Fusion Middleware in at least two storage locations for redundancy.

1. Start the installer for Oracle HTTP Server from the installation media:

 ./runInstaller

2. In the Specify Inventory Directory screen, do the following:

 a. Enter HOME/oraInventory, where HOME is the home directory of the user performing the installation (this is the recommended location).

 b. Enter the OS group for the user performing the installation.

 c. Click Next.

 Follow the instructions on screen to execute /createCentralInventory.sh as root, then click OK.
The Specify Inventory Directory screen appears only on a UNIX operating system, for the first installation by Oracle Universal Installer. The installer uses the inventory directory to keep track of all Oracle products installed on the machine.

3. In the Welcome screen, click Next.

4. In the Select Installation Type screen, select Install Software - Do Not Configure, and click Next.

5. In the Prerequisite Checks screen, verify that all checks complete successfully, and click Next.

6. In the Specify Installation Location screen, specify the following values:
 - **Oracle Middleware Home**: ORACLE_BASE/product/fmw
 - **Oracle Home Directory**: Oracle_WT1

 Note that these are two separate volumes on WEBHOST1 and WEBHOST2, even though the directory names are the same.

 Click Next.

7. In the Specify Security Updates screen, choose whether you want to receive security updates from Oracle support and if you do, enter your e-mail address.

8. In the Installation Summary screen, review the selections to ensure they are correct. If they are not, click Back to modify selections on previous screens. When you are ready, click Install.

 On UNIX systems, if prompted to run the oracleRoot.sh script, make sure you run it as the root user.

 The Oracle HTTP Server software is installed.

9. In the Installation Progress screen, click Next.

10. In the Installation Complete screen, click Finish to exit.

6.2.3 Backing Up the Oracle HTTP Server Installation

Back up the Middleware home for Oracle HTTP Server (make sure to stop the server first):

WEBHOSTn> tar -cvpf fmwhomeback.tar ORACLE_BASE/product/fmw HOME/oraInventory

6.3 Installing Oracle Fusion Middleware

This section describes how to install the required Oracle Fusion Middleware software for the enterprise deployment reference topology for Oracle Business Intelligence. The software components to be installed consist of the WebLogic Server home (WL_HOME) and Oracle home (ORACLE_HOME). As described in Chapter 4, "Preparing the File System for an Enterprise Deployment," you install Oracle Fusion Middleware in at least two storage locations for redundancy.

Important: Oracle strongly recommends that you read the Oracle Fusion Middleware Release Notes for any additional installation and deployment considerations before starting the setup process.

This section covers the following topics:
Section 6.3.1, "Installing Oracle WebLogic Server and Creating the Middleware Home"

Section 6.3.2, "Installing Oracle Business Intelligence"

Section 6.3.3, "Patching Oracle Business Intelligence"

Section 6.3.4, "Backing Up the Oracle Fusion Middleware Installation"

6.3.1 Installing Oracle WebLogic Server and Creating the Middleware Home

If you are installing Oracle WebLogic Server on 64-bit platforms using a 64-bit JDK, follow the steps in "Installing WebLogic Server on 64-Bit Platforms Using a 64-Bit JDK" in the Oracle Fusion Middleware Installation Guide for Oracle WebLogic Server instead of the steps in this section.

Perform these steps to install Oracle WebLogic Server on APPHOST1 and APPHOST2:

1. Start the installer for Oracle WebLogic Server from the installation media.

2. In the Welcome screen, click Next.

3. In the Choose Middleware Home Directory screen, do the following:
 - Select Create a new Middleware Home.
 - For Middleware Home Directory, enter ORACLE_BASE/product/fmw.
 - Click Next.

4. In the Register for Security Updates screen, choose whether you want to receive security updates from Oracle support and if you do, enter your e-mail address. Click Next.

5. In the Choose Install Type screen, select Typical and click Next.

6. In the Choose Product Installation Directories screen, accept the directory ORACLE_BASE/product/fmw/wlserver_10.3. Also accept the default directory for Oracle Coherence (ORACLE_BASE/product/fmw/coherence_3.7).

7. Click Next.

8. In the Installation Summary screen, click Next.

 The Oracle WebLogic Server software is installed.

9. In the Installation Complete screen, clear the Run Quickstart option and click Done.

10. Validate the installation by verifying that the following directories and files appear in the ORACLE_HOME directory after installing Oracle WebLogic Server:
 - coherence_version
 - jrockit-jdkversion
6.3.2 Installing Oracle Business Intelligence

Perform the steps described in this section to install Oracle Business Intelligence Enterprise Edition 11g (11.1.1.6.0) on APPHOST1 and APPHOST2. Note that because the installation is performed on a shared storage, the MW_HOME is accessible and used by the Oracle BI servers in APPHOST1 and APPHOST2.

1. On Linux platforms, if the /etc/oraInst.loc file exists, check that its contents are correct. Specifically, check that the inventory directory is correct and that you have write permissions for that directory. If the /etc/oraInst.loc file does not exist, you can skip this step.

2. Start the installer for Oracle Business Intelligence from the installation media:

 ./runInstaller

3. In the Specify Inventory Directory screen, do the following:

 a. Enter $HOME/oraInventory, where $HOME is the home directory of the user performing the installation (this is the recommended location).

 b. Enter the OS group for the user performing the installation.

 c. Click Next.

 Follow the instructions on screen to execute /createCentralInventory.sh as root, then click OK.

 The Specify Inventory Directory screen appears only on a UNIX operating system, for the first installation by Oracle Universal Installer. The installer uses the inventory directory to keep track of all Oracle products installed on the computer.

4. In the Welcome screen, click Next.

5. In the Install Software Updates screen, choose whether to skip software updates, search My Oracle Support for software updates, or search your local directory for updates. When you are ready to proceed, click Next.

6. In the Select Installation Type screen, select Software Only Install and click Next.

7. In the Prerequisite Checks screen, verify that all checks complete successfully, and click Next.

8. In the Specify Installation Location screen, select the previously installed Middleware home from the drop-down list. For the Oracle home directory, enter the directory name (Oracle_BI1).

 Click Next.
9. In the Specify Security Updates screen, choose whether you want to receive security updates from Oracle support and if you do, enter your e-mail address and click Next.

10. In the Summary screen, click Install.
 The Oracle Business Intelligence software is installed.

11. In the Installation Progress screen, click Next.

12. In the Complete screen, click Finish.

13. Validate the installation by verifying that the following directories and files appear in the ORACLE_HOME directory after installing both Oracle WebLogic Server and Oracle Business Intelligence:

 - coherence_X.X
 - jrockit-jdkY.Y
 - modules
 - oracle_common
 - registry.xml
 - utils
 - domain-registry.xml
 - logs
 - ocm.rsp
 - registry.dat
 - Oracle_BI1
 - wlserver_10.3

6.3.3 Patching Oracle Business Intelligence

Download and apply the Oracle Business Intelligence Enterprise Edition 11g (11.1.1.6.2) patch on APPHOST1 and APPHOST2. Refer to the instructions in the readme that comes with the patch for detailed information. See also the Oracle Fusion Middleware Patching Guide for additional information and concepts.

6.3.4 Backing Up the Oracle Fusion Middleware Installation

At this point, back up the Middleware home. Make sure to stop the servers first.

To back up the Middleware home, run the following command:

```
APPHOSTn> tar -cvpf fmwhomeback.tar ORACLE_BASE/product/fmw HOME/oraInventory
```

This command creates a backup of the installation files for both Oracle WebLogic Server and the Oracle Fusion Middleware components, including Oracle Business Intelligence.
This chapter describes how to configure the Oracle Web tier to support the Oracle Business Intelligence enterprise deployment.

Important: Oracle strongly recommends that you read the *Oracle Fusion Middleware Release Notes* for any additional installation and deployment considerations before starting the setup process.

This chapter contains the following topics:

- Section 7.1, "Overview of Configuring the Web Tier"
- Section 7.2, "Running the Configuration Wizard to Configure Oracle HTTP Server"
- Section 7.3, "Validating the Configuration"
- Section 7.4, "Configuring the Load Balancer to Route HTTP Requests"
- Section 7.5, "Configuring Virtual Hosts"

7.1 Overview of Configuring the Web Tier

This chapter describes how to associate the Oracle Web Tier with the WebLogic Server domain. Once the Web tier is associated with the WebLogic Server, you can monitor it using Oracle Enterprise Manager Fusion Middleware Control.

You then configure the load balancer to route all HTTP requests to WEBHOST1 and WEBHOST2.

The last section describes how to define the directives of the `<VirtualHost>` section of the `httpd.conf` file on both OHS servers. You created these virtual host names when you configured the load balancer in Section 3.3, "Configuring the Load Balancer."

7.2 Running the Configuration Wizard to Configure Oracle HTTP Server

The steps for configuring the Oracle Web tier are the same for both WEBHOST1 and WEBHOST2.

Note: Before configuring the Oracle Web Tier software, you must install it on WEBHOST1 and WEBHOST2, as described in Section 6.2, "Installing Oracle HTTP Server."
Perform these steps to configure the Oracle Web tier:

1. Change the directory to the location of the Oracle Fusion Middleware Configuration Wizard:

 `WEBHOSTtn> cd ORACLE_HOME/bin`

2. Start the Configuration Wizard:

 `WEBHOSTtn> ./config.sh`

3. In the Welcome screen, click Next.

4. In the Configure Components screen, select Oracle HTTP Server and deselect Associate Selected Components with WebLogic Domain. Ensure that Oracle Web Cache is not selected.

 Click Next.

5. In the Specify Component Details screen, specify the following values:

 - **Instance Home Location**: `ORACLE_BASE/admin/webn`
 - **Instance Name**: `webn`
 - **OHS Component Name**: `ohnn` (where `n` is a sequential number for your installation; for example, 1 for WEBHOST1, 2 for WEBHOST2, and so on.)

 Click Next.

 Note: Oracle HTTP Server instance names on WEBHOST1 and WEBHOST2 must be different.

6. In high-availability implementations, although it is not mandatory, it is simpler if all ports used by the various components are synchronized across hosts. You can bypass automatic port configuration by specifying the ports you want to use in a file.

 In the Configure Ports screen, select a file name and then click View/Edit. The file looks similar to the following:

   ```
   [OHS]
   #Listen port for OHS component
   OHS Port = 7777
   
   [OPMN]
   #Process Manager Local port no
   OPMN Local Port = 1880
   ```

 You can find a sample `staticports.ini` file in the `/Disk1/stage/Response/` directory.

 Click Next.

7. In the Specify Security Updates screen, choose whether you want to receive security updates from Oracle support and if you do, enter your e-mail address.

8. In the Installation Summary screen, review the selections to ensure they are correct. If they are not, click Back to modify selections on previous screens. When you are ready, click Configure.

9. Multiple configuration assistants are launched in succession; this process can be lengthy. When it completes, click Next, and the Installation Complete screen appears.
10. In the Installation Complete screen, click Finish to exit.

7.3 Validating the Configuration

After the configuration is complete, check that it is possible to access the Oracle HTTP Server home page using the following URLs:

http://webhost1.mycompany.com:7777/

http://webhost2.mycompany.com:7777/

7.4 Configuring the Load Balancer to Route HTTP Requests

Configure your load balancer to route all HTTP requests to the hosts running Oracle HTTP Server (WEBHOST1, WEBHOST2). You do not need to enable sticky sessions (insert cookie) on the load balancer when Oracle HTTP Server is front-ending Oracle WebLogic Server. You need sticky sessions if you are going directly from the load balancer to Oracle WebLogic Server, which is not the case in the topology described in this guide. Also, you should set monitors for HTTP.

The instructions for this configuration will vary depending on which load balancer you use. See your load balancer documentation for specific instructions.

7.5 Configuring Virtual Hosts

To configure the virtual hosts, complete the tasks described in the following sections:

- Section 7.5.1, "Editing the httpd.conf File"
- Section 7.5.2, "Restarting Both Oracle HTTP Servers"
- Section 7.5.3, "Validating the Configuration"

7.5.1 Editing the httpd.conf File

For Oracle Business Intelligence to work with the load balancer, a virtual host must be created in the Oracle HTTP Server configuration. Define the directives of the `<VirtualHost>` section of the `httpd.conf` file on both Oracle HTTP Servers. This file is located in the following directory:

ORACLE_INSTANCE/config/OHS/ohs

Add the following entries to the file:

```plaintext
NameVirtualHost *:7777
<VirtualHost *:7777>
  ServerName https://bi.mycompany.com:443
  ServerAdmin you@your.address
  RewriteEngine On
  RewriteOptions inherit
</VirtualHost>

NameVirtualHost *:7777
<VirtualHost *:7777>
  ServerName admin.mycompany.com:80
  ServerAdmin you@your.address
  RewriteEngine On
  RewriteOptions inherit
</VirtualHost>
```
NameVirtualHost *:7777
<VirtualHost *:7777>
 ServerName biinternal.mycompany.com:80
 ServerAdmin you@your.address
 RewriteEngine On
 RewriteOptions inherit
</VirtualHost>

Note: Make sure to perform this step for both WEBHOST1 and WEBHOST2.

7.5.2 Restarting Both Oracle HTTP Servers

After modifying the `httpd.conf` files, you must restart both Oracle HTTP Servers, as follows:

```
WEBHOSTn> cd ORACLE_BASE/admin/instance_name/bin
WEBHOSTn> opmnctl stopall
WEBHOSTn> opmnctl startall
```

7.5.3 Validating the Configuration

Access the following URLs to ensure that your load balancer and Oracle HTTP Server are configured properly:

If you cannot access these URLs, check to ensure that you completed the procedure in Section 3.3, "Configuring the Load Balancer" correctly.
This chapter describes how to create a domain with the Administration Server and the first Oracle Business Intelligence Managed Server using the Oracle Business Intelligence Configuration Assistant, Oracle WebLogic Server Administration Console, and Oracle Enterprise Manager Fusion Middleware Control. Later, you will scale out the domain to add additional components. This is addressed in later chapters in this document.

Important: Oracle strongly recommends that you read the *Oracle Fusion Middleware Release Notes* for any additional installation and deployment considerations before starting the setup process.

This chapter contains the following topics:

- Section 8.1, "Overview of Creating a Domain"
- Section 8.2, "Creating a Domain and the bi_server1 Managed Server on APPHOST1"
- Section 8.3, "Post-Configuration and Verification Tasks"
- Section 8.4, "Configuring Oracle HTTP Server for the WebLogic Domain"
- Section 8.5, "Manually Failing Over the Administration Server to APPHOST2"
- Section 8.6, "Backing Up the Installation"

8.1 Overview of Creating a Domain

Table 8–1 lists the steps for creating a WebLogic domain for Oracle Business Intelligence that contains the Administration Server and the first Managed Server, including post-configuration tasks.
Creating a Domain and the bi_server1 Managed Server on APPHOST1

Run the Oracle Business Intelligence Configuration Assistant from the Oracle home directory to create a domain containing the Administration Server and the first Managed Server.

1. Ensure that the database where you installed the Business Intelligence Platform schemas is running. For an Oracle RAC database, it is recommended that you ensure that all instances are running, so that the validation check that is performed in later steps is more reliable.

2. Change the directory to the location of the Configuration Assistant (created in Chapter 6, "Installing the Software for an Enterprise Deployment"):

   ```bash
   APPHOST1> cd ORACLE_HOME/bin
   ```

3. Start the Configuration Assistant:

   ```bash
   APPHOST1> ./config.sh
   ```

4. In the Welcome screen, click Next.

5. In the Prerequisite Checks screen, verify that all checks complete successfully, and then click Next.

6. The Create, Scale Out or Extend screen is displayed. In this screen, select Create New BI System, then enter the following:

 - **User Name:** `weblogic`
 - **User Password:** `your_password`
 - **Domain Name:** `bifoundation_domain`

 Click Next.

7. In the Specify Installation Location screen, enter:

 - **Middleware Home:** `ORACLE_BASE/product/fmw` (dimmed)
 - **Oracle Home:** `ORACLE_BASE/product/fmw/Oracle_BI1` (dimmed)

Table 8–1 Steps for Creating a Domain for Oracle Business Intelligence

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
<th>More Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create a WebLogic Domain</td>
<td>Run the Oracle Business Intelligence Configuration Assistant to create a WebLogic domain containing the Administration Server and the first Managed Server.</td>
<td>Section 8.2, “Creating a Domain and the bi_server1 Managed Server on APPHOST1”</td>
</tr>
<tr>
<td>Post-Configuration and Verification Tasks</td>
<td>Follow the instructions for post-configuration and validation tasks.</td>
<td>Section 8.3, “Post-Configuration and Verification Tasks”</td>
</tr>
<tr>
<td>Configure Oracle HTTP Server for the WebLogic Domain</td>
<td>Configure Oracle HTTP Server for the Administration Server and Managed Server in the WebLogic domain and validate the configuration.</td>
<td>Section 8.4, “Configuring Oracle HTTP Server for the WebLogic Domain”</td>
</tr>
<tr>
<td>Test Administration Server Failover</td>
<td>Follow the instructions to manually fail over the Administration Server from APPHOST1 to APPHOST2.</td>
<td>Section 8.5, “Manually Failing Over the Administration Server to APPHOST2”</td>
</tr>
<tr>
<td>Back Up the Installation</td>
<td>Back up the installation to the local disk.</td>
<td>Section 8.6, “Backing Up the Installation”</td>
</tr>
</tbody>
</table>

8.2 Creating a Domain and the bi_server1 Managed Server on APPHOST1

Run the Oracle Business Intelligence Configuration Assistant from the Oracle home directory to create a domain containing the Administration Server and the first Managed Server with Oracle Business Intelligence components.

1. Ensure that the database where you installed the Business Intelligence Platform schemas is running. For an Oracle RAC database, it is recommended that you ensure that all instances are running, so that the validation check that is performed in later steps is more reliable.

2. Change the directory to the location of the Configuration Assistant (created in Chapter 6, "Installing the Software for an Enterprise Deployment"):

   ```bash
   APPHOST1> cd ORACLE_HOME/bin
   ```

3. Start the Configuration Assistant:

   ```bash
   APPHOST1> ./config.sh
   ```

4. In the Welcome screen, click Next.

5. In the Prerequisite Checks screen, verify that all checks complete successfully, and then click Next.

6. The Create, Scale Out or Extend screen is displayed. In this screen, select Create New BI System, then enter the following:

 - **User Name:** `weblogic`
 - **User Password:** `your_password`
 - **Domain Name:** `bifoundation_domain`

 Click Next.

7. In the Specify Installation Location screen, enter:

 - **Middleware Home:** `ORACLE_BASE/product/fmw` (dimmed)
 - **Oracle Home:** `ORACLE_BASE/product/fmw/Oracle_BI1` (dimmed)
Creating a Domain and the bi_server1 Managed Server on APPHOST1

- **WebLogic Server Home:** `ORACLE_BASE/product/fmw/wlserver_10.3` (dimmed)
- **Domain Home:** `ORACLE_BASE/admin/domain_name/aserver/domain_name`
The Domain Home must end with the domain name.
- **Instance Home:** `ORACLE_BASE/admin/instance1`
- **Instance Name:** `instance1`

Click Next.

8. In the Configure Components screen, select the following:
 - Oracle Business Intelligence
 - Business Intelligence Enterprise Edition
 - Business Intelligence Publisher
 - Real-Time Decisions

Click Next.

9. In the BIPLATFORM Schema screen, provide the following information:
 - **Database Type:** Oracle Database
 - **Connect String:** `CUSTDBHOST1:1521:CUSTDB1^CUSTDBHOST2:1521:CUSTDB2@BIEDG.MYCOMPANY.COM`
 - **BIPLATFORM Schema Username:** `prefix_BIPLATFORM`
 - **BIPLATFORM Schema Password:** `your_password`

Click Next.

10. In the MDS Schema screen, verify the information. For example:
 - **Database Type:** Oracle Database
 - **Connect String:** `CUSTDBHOST1:1521:CUSTDB1^CUSTDBHOST2:1521:CUSTDB2@BIEDG.MYCOMPANY.COM`
 - **MDS Schema Username:** `prefix_MDS`
 - **MDS Password:** `your_password`

Click Next.

11. In the Configure Ports screen, select one of the following:
 - Auto Port Configuration
 - Specify Ports using Configuration File

Click Next.

12. In the Specify Security Updates screen, choose whether you want to receive security updates from Oracle support and if you do, enter your e-mail address. Click Next.

13. In the Summary screen, click **Configure**.

14. In the Configuration Progress screen, verify that all the Configuration Tools have completed successfully and click **Next**.

15. In the Complete screen, click **Finish**.
Usually, Node Manager is started automatically when config.sh completes. If Node Manager is not running for some reason, run these commands to start it on APPHOST1:

```
APPHOST1> cd WL_HOME/server/bin
APPHOST1> ./startNodeManager.sh
```

8.3 Post-Configuration and Verification Tasks

After configuring the domain with the Oracle Business Intelligence Configuration Assistant, follow these instructions for post-configuration and verification.

This section includes the following topics:

- Section 8.3.1, "Configuring JMS for Oracle BI Publisher"
- Section 8.3.2, "Creating boot.properties for the Administration Server on APPHOST1"
- Section 8.3.3, "Starting the Administration Server on APPHOST1"
- Section 8.3.4, "Enabling Administration Server High Availability"
- Section 8.3.5, "Validating the Administration Server"
- Section 8.3.6, "Setting the Listen Address for bi_server1 Managed Server"
- Section 8.3.7, "Updating the Oracle BI Publisher Scheduler Configuration"
- Section 8.3.8, "Disabling Host Name Verification for the bi_server1 Managed Server"
- Section 8.3.9, "Configuring Oracle BI Composer"
- Section 8.3.10, "Validating Oracle Business Intelligence on APPHOST1"

8.3.1 Configuring JMS for Oracle BI Publisher

You must configure the location for all persistence stores to a directory visible from both nodes. Change all persistent stores to use this shared base directory.

1. Log into the Administration Console.
2. In the Domain Structure window, expand the Services node and then click the Persistent Stores node. The Summary of Persistent Stores page is displayed.
3. In the Change Center, click Lock & Edit.
4. Click BipJmsStore and enter a directory that is located in the shared storage. This shared storage is accessible from both APPHOST1 and APPHOST2:

 `ORACLE_BASE/admin/domain_name/bi_cluster/jms`

5. Click Save and then click Activate Changes.
6. The changes will not take effect until the Managed Server is restarted. Restart the Managed Server.

8.3.2 Creating boot.properties for the Administration Server on APPHOST1

Create a boot.properties file for the Administration Server on APPHOST1. This file enables the Administration Server to start without prompting you for the administrator username and password.

1. Go to the following directory:
2. In this directory, create a file called `boot.properties` using a text editor and enter the following lines in the file:

```
username=Admin_Username
password=Admin_Password
```

Note: When you start the Administration Server, the username and password entries in the file get encrypted. You start the Administration Server in Section 8.3.3, "Starting the Administration Server on APPHOST1." For security reasons, you want to minimize the time the entries in the file are left unencrypted. After you edit the file, you should start the server as soon as possible so that the entries get encrypted.

3. Save the file and close the editor.

8.3.3 Starting the Administration Server on APPHOST1

The Administration Server is started and stopped using Node Manager. However, the first start of the Administration Server with Node Manager requires changing the default username and password that the Configuration Assistant set for Node Manager. Follow these steps to start the Administration Server using Node Manager:

1. Use the Administration Console to update the Node Manager credentials:
 a. Open a Web browser and go to `http://APPHOST1:7001/console`.
 b. Log in as the administrator.
 c. In the Change Center, click **Lock & Edit** to enable configuration changes.
 d. Click `domain_name`, then **Security**, then **General**, and then expand the **Advanced** options at the bottom.
 e. Enter a new username for Node Manager, or make a note of the existing one and update the Node Manager password.
 f. Click **Save**.
 g. Click **Activate Changes**.

2. Stop the Administration Server process using one of the following methods:
 - Use Ctrl+C in the shell where it was started
 - Use the standard process identification and kill commands in the operating system
 - Log in to the Administration Console and click **Servers** under the Environment heading, then click the **Control** tab. Select **AdminServer(admin)** and click **Shutdown**.

3. Stop and restart Node Manager and enable dynamic registration, as follows:

 a. Stop the running NodeManager process.
 b. Restart Node Manager and enable dynamic registration using the following commands:

```
APPHOST1> cd WL_HOME/server/bin
APPHOST1> export JAVA_OPTIONS=-DDomainRegistrationEnabled=true
```
4. Start the Oracle WebLogic Scripting Tool (WLST) and connect to Node Manager with `nmconnect` and the credentials set in step 1, and start the Administration Server using `nmstart`:

```
APPHOST1> cd ORACLE_COMMON_HOME/common/bin
APPHOST1> ./wlst.sh
```

In the WLST shell, execute the following command:

```
wls:/offline>nmConnect('Admin_User','Admin_Password','APPHOST1', 'node_manager_port', 'domain_name', 'Domain_Home')
```

```
wls:/nm/domain_name> nmStart('AdminServer')
```

For example:

```
wls:/offline>nmConnect('weblogic', 'my_password', 'APPHOST1', '9556', 'bifoundation_domain', '/u01/app/oracle/admin/bifoundation_domain/aserver/ bifoundation_domain')
```

```
wls:/nm/bifoundation_domain> nmStart('AdminServer')
```

Note: `APPHOST1` is the address of the node where the domain was created, not the listen address of the Administration Server. Also, the username and password are only used to authenticate connections between Node Manager and clients. They are independent from the server admin ID and password, and are stored in the `ORACLE_BASE/admin/domain_name/aserver/domain_ name/config/nodemanager/nm_password.properties` file.

8.3.4 Enabling Administration Server High Availability

The Oracle WebLogic Server Administration Server is a singleton application, so it cannot be deployed in an active-active configuration. By default, the Administration Server is only available on the first installed node, and for this enterprise topology, it is available only on APPHOST1. If this node becomes unavailable, then the Administration Console and Fusion Middleware Control also become unavailable. To avoid this scenario, the Administration Server and the applications deployed to it must be enabled for high availability. The enterprise deployment architecture in this guide calls for the deploying the Administration Server on a disk shared between APPHOST1 and APPHOST2.

The process described in this guide initially deploys the Administration Server and the bi_server1 Managed Server on the shared disk mounted on APPHOST1, and then manually migrates the bi_server1 Managed Server domain information to the local file.
This process is necessary to overcome certain design constraints in the Oracle Universal Installer.

This section contains the following topics:

- Section 8.3.4.1, "Enabling ADMINVHN on APPHOST1"
- Section 8.3.4.2, "Create a Machine for the Administration Server"
- Section 8.3.4.3, "Enabling the Administration Server to Listen on the Virtual IP Address"
- Section 8.3.4.4, "Creating a Separate Domain Directory for the bi_server1 Managed Server"
- Section 8.3.4.5, "Enabling Fusion Middleware Control Failover"

8.3.4.1 Enabling ADMINVHN on APPHOST1

The Administration Server must be configured to listen on a virtual IP Address to enable it to seamlessly failover from one host to another. In case of a failure, the Administration Server, along with the virtual IP Address, can be migrated from one host to another.

However, before the Administration Server can be configured to listen on a virtual IP Address, one of the network interface cards on the host running the Administration Server must be configured to listen on this virtual IP Address. The steps to enable a virtual IP Address are completely dependent on the operating system.

Follow the steps in this section to enable a virtual IP Address on APPHOST1. In a UNIX environment, the command must be run as the root user:

1. On APPHOST1, run the `ifconfig` command to get the value of the netmask. In a UNIX environment, run this command as the root user. Use a netmask value that was obtained in Step 1.

 The syntax and usage for the `ifconfig` command is as follows:

   ```
   /sbin/ifconfig networkCardInterface Virtual_IP_Address netmask netMask
   ```

 For example:

   ```
   /sbin/ifconfig eth0:1 100.200.140.206 netmask 255.255.255.0
   ```

2. On APPHOST1, bind the virtual IP Address to the network interface card using `ifconfig`. In a UNIX environment, run this command as the root user.

 The syntax and usage for the `ifconfig` command is as follows:

   ```
   /sbin/ifconfig networkCardInterface Virtual_IP_Address
   ```

 For example:

   ```
   /sbin/ifconfig eth0:1
   ```

3. Update the routing table using `arping`. In a UNIX environment, run this command as the root user.

   ```
   /sbin/arping -q -U -c 3 -I networkCardInterface Virtual_IP_Address
   ```

 For example:
See also Section 3.4.1, "Enabling Virtual IPs for the Managed Servers" for information about enabling VIP2 and VIP3 for the Managed Servers on APPHOST1 and APPHOST2.

8.3.4.2 Create a Machine for the Administration Server
Create a new machine and assign the Administration Server to the new machine using the Administration Console.

1. Log in to the Administration Console.
2. In the Change Center, click **Lock & Edit**.
3. In the Environment section of the Home page, click **Machines**.
4. On the Summary of Machines page, select the Machine that is associated with the Administration Server from under the Machines table and click **Clone**. For example: APPHOST1.MYCOMPANY.COM.
5. On the Clone a Machine page, enter the Name of the Machine under the Machine Identity section and click **OK**. For example, enter ADMINHOST as the machine name.
6. On the Summary of Machines page, click the newly created Machine link.
7. On the Settings page for the ADMINHOST machine, select the **Servers** tab.
8. Click **Add** under the Servers table.
9. On the Add a Server to Machine page, choose **Select an existing server, and associate it with this machine option**.
10. Choose the AdminServer from the drop-down menu.
11. Click **Finish** to associate the Administration Server with the Machine.
12. In the Change Center, click **Activate Changes**.

8.3.4.3 Enabling the Administration Server to Listen on the Virtual IP Address
Ensure that you have performed the steps described in Section 8.3.4.1, "Enabling ADMINVHN on APPHOST1" before setting the Administration Server listen address.

Perform these steps to set the Administration Server listen address:

1. Log in to the Administration Console.
2. In the Change Center, click **Lock & Edit**.
3. Expand the **Environment** node in the Domain Structure window.
4. Click **Servers**. The Summary of Servers page is displayed.
5. Select **AdminServer(admin)** in the Names column of the table. The Setting page for AdminServer(admin) is displayed.
6. Set the **Listen Address** to ADMINVHN.
7. Click **Save**.
8. Click **Activate Changes**.
9. The changes will not take effect until the Administration Server is restarted. Follow these steps to restart the Administration Server:
 a. In the Summary of Servers page, select the **Control** tab.
b. Select AdminServer(admin) in the table and then click Shutdown.

c. Start the Administration Server again from the command line, as follows:

 APPHOST1> cd ORACLE_COMMON_HOME/common/bin
 APPHOST1> ./wlst.sh
 wls:/offline> nmConnect
 ('Admin_User','Admin_Password','APPHOST1','5556','domain_name','DOMAIN home')
 wls:/rm/domain_name> nmStart ('AdminServer')

8.3.4.4 Creating a Separate Domain Directory for the bi_server1 Managed Server

Use the pack and unpack commands to separate the domain directory used by the Administration Server from the domain directory used by the bi_server1 Managed Server in APPHOST1.

1. Stop the Administration Server and bi_server1 Managed Server, as follows:
 a. Log in to the Administration Console.
 b. Expand the Environment node in the Domain Structure window.
 c. Click Servers. The Summary of Servers page is displayed.
 d. On the Summary of Servers page, select the Control tab.
 e. Select AdminServer(admin) and bi_server1 in the table and then click Shutdown.

2. Run the pack command on APPHOST1 to create a template pack using the following command. Make sure to pass managed=true to pack just the bi_server1 Managed Server domain information.

 APPHOST1> cd ORACLE_HOME/common/bin
 APPHOST1> ./pack.sh -managed=true -domain=path_to_installer_created_domain
 -template=templateName.jar -template_name=templateName

 For example:
 APPHOST1> cd ORACLE_HOME/common/bin
 APPHOST1> ./pack.sh -managed=true -domain=ORACLE_BASE/admin/bifoundation_domain/aserver/bifoundation_domain
 -template=/tmp/managedServer.jar -template_name=ManagedServer_Template

3. Run the unpack command on APPHOST1 to unpack the template to the domain directory of the Managed Server using the following command:

 APPHOST1> cd ORACLE_HOME/common/bin
 APPHOST1> ./unpack.sh -domain=path_to_domain_on_LocalFileSystem
 -template=templateName.jar -app_dir=path_to_applications_dir_on_LocalFileSystem

 For example:
 APPHOST1> cd ORACLE_HOME/common/bin
 APPHOST1> ./unpack.sh -domain=ORACLE_BASE/admin/bifoundation_domain/mserver/bifoundation_domain
 -template=/tmp/managedServer.jar -app_dir=ORACLE_BASE/admin/bifoundation_domain/mserver/applications

4. Start the Oracle WebLogic Scripting Tool (WLST) and connect to Node Manager with nmconnect and the credentials set in step 2, and start the Administration Server using nmstart:

 APPHOST1> cd ORACLE_COMMON_HOME/common/bin
In the WLST shell, execute the following command:

```
APPHOST1> ./wlst.sh
```

```wls:/offline>nmConnect('Admin_User', 'Admin_Pasword', 'APPHOST1',
'node_manager_port', 'domain_name', 'Domain_Home')
```

```
wls:/nm/domain_name> nmStart('AdminServer')
```

For example:

```
wls:/offline>nmConnect('weblogic', 'my_password', 'APPHOST1', '9556',
'bifoundation_domain', '/u01/app/oracle/admin/bifoundation_domain/
aserver/bifoundation_domain')
```

```
wls:/nm/bifoundation_domain> nmStart('AdminServer')
```

5. Start the bi_server1 Managed Server on APPHOST1, as follows (ensure that Node Manager is up and running):

 a. Log in to the Administration Console.

 b. Expand the **Environment** node in the Domain Structure window.

 c. Click **Servers**. The Summary of Servers page is displayed.

 d. On the Summary of Servers page, select the **Control** tab.

 e. Select **bi_server1** in the table and then click **Start**.

8.3.4.5 Enabling Fusion Middleware Control Failover

To enable Fusion Middleware Control failover, copy the em.ear file from the `MW_HOME/user_projects/applications/bifoundation_domain` directory to the equivalent directory on all nodes where Administration Server HA might be performed. In some cases, you might need to create the `MW_HOME/user_projects/applications/bifoundation_domain` directory on the other nodes.

8.3.5 Validating the Administration Server

Perform these steps to ensure that the Administration Server is properly configured:

1. Open a Web browser and go to http://ADMINVHN:7001/console.

2. Log in as the administrator.

3. Check that you can access Fusion Middleware Control at:

 http://ADMINVHN:7001/em

4. Log in to Fusion Middleware Control with the username and password you specified in Section 8.3.2, "Creating boot.properties for the Administration Server on APPHOST1."

8.3.6 Setting the Listen Address for bi_server1 Managed Server

Ensure that you have performed the steps described in Section 3.4.1, "Enabling Virtual IPs for the Managed Servers" before setting the bi_server1 listen address.

Perform these steps to set the listen address for the Managed Server:

1. Log in to the Administration Console.

2. In the Change Center, click **Lock & Edit**.
3. Expand the Environment node in the Domain Structure window.

4. Click Servers. The Summary of Servers page is displayed.

5. Select bi_server1 in the Names column of the table. The Setting page for bi_server1 is displayed.

6. Set the Listen Address to APPHOST1VHN1.

7. Click Save.

8. Click Activate Changes.

9. The changes will not take effect until the bi_server1 Managed Server is restarted (ensure that Node Manager is up and running):
 a. On the Summary of Servers page, select the Control tab.
 b. Select bi_server1 in the table and then click Shutdown.
 c. After the server has shut down, select bi_server1 in the table and then click Start.

10. Restart the Oracle Business Intelligence system components, as follows:

    ```
    cd ORACLE_BASE/admin/instances/instance1/bin
    ./opmnctl stopall
    ./opmnctl startall
    ```

8.3.7 Updating the Oracle BI Publisher Scheduler Configuration

Follow the steps in this section to update the WebLogic JNDI URL for the Oracle BI Publisher Scheduler.

To update the Oracle BI Publisher Scheduler configuration:

1. Log in to Oracle BI Publisher at the following URL:
 http://APPHOST1VHN1:9704/xmlpserver

2. Click the Administration link.

3. Click Scheduler Configuration under System Maintenance. The Scheduler Configuration screen is displayed.

4. Update the WebLogic JNDI URL under JMS Configuration, as follows:
   ```
   cluster:t3://bi_cluster
   ```

5. Click Test JMS.
 You should receive a confirmation message that JMS tested successfully.

6. Click Apply. The changes are sent to the cluster to be applied at run time.

7. Check the Scheduler status from the Scheduler Diagnostics tab.

8.3.8 Disabling Host Name Verification for the bi_server1 Managed Server

This step is required if you have not set up the appropriate certificates to authenticate the different nodes with the Administration Server (see Chapter 10, "Setting Up Node Manager for an Enterprise Deployment"). If you have not configured the server certificates, you will receive errors when managing the different Oracle WebLogic Servers. To avoid these errors, disable host name verification while setting up and validating the topology, and enable it again after the EDG topology configuration is complete as described in Chapter 10, "Setting Up Node Manager for an Enterprise Deployment."
Perform these steps to disable host name verification:

1. Log in to the Administration Console.
2. In the Change Center, click **Lock & Edit**.
3. Expand the **Environment** node in the Domain Structure window.
4. Click **Servers**. The Summary of Servers page is displayed.
5. Select **bi_server1** in the Names column of the table. The settings page for the server is displayed.
6. Open the **SSL** tab.
7. Expand the **Advanced** section of the page.
8. Set **Hostname Verification** to 'None'.
9. Click **Save**.
10. Click **Activate Changes**.
11. The change will not take effect until the **bi_server1** Managed Server is restarted (ensure that Node Manager is up and running):
 a. On the Summary of Servers page, select the **Control** tab.
 b. Select **bi_server1** in the table and then click **Shutdown**.
 c. Select **bi_server1** in the table and then click **Start**.
12. Restart the Oracle Business Intelligence system components, as follows:
   ```
cd ORACLE_BASE/admin/instance1/bin
./opmnctl stopall
./opmnctl startall
   
```

8.3.9 Configuring Oracle BI Composer

Oracle BI Composer (BI Composer) is an optional component in Oracle Business Intelligence that enables you to create, edit, or view analyses using wizard instead of the Analysis editor.

You can configure BI Composer using the `ORACLE_HOME/bicomposer/install/configureComposer.py` script. This is a Python script that can be used to configure BI Composer in the Managed Servers. The script runs in WLST online mode and expects the Administration Server to be up and running.

Note: After configuring BI Composer using the `configure Composer.py` script, you must restart all affected Managed Servers for the configuration to take effect.

To configure BI Composer:

1. Run the `configureComposer.py` script using the command-line Oracle WebLogic Scripting Tool (WLST), as follows:

```bash
APPHOST1> ORACLE_COMMON_HOME/common/bin/wlst.sh
ORACLE_HOME/bicomposer/install/configureComposer.py admin_server_domain_home
Admin_Server_host Admin_Server_port admin_user
```

For example:

```bash
APPHOST1> ORACLE_COMMON_HOME/common/bin/wlst.sh
```
Enter the password for the administrator user when prompted.

Note: The `configureComposer.py` script stops the Administration Server. The Administration Server and all affected Managed Servers and system components must be restarted for the configuration to take effect, as described in the next steps.

2. Start the Administration Server and `bi_server1` Managed Server on `APPHOST1`.

3. Start the Oracle Business Intelligence system components on `APPHOST1`.

4. Verify the BI Composer configuration, as follows:
 a. Log in to the Administration Console.
 b. Expand **Deployments** in the Domain Structure window.
 c. Verify that the BI Composer application and shared libraries are visible as follows:
 - `bicomposer (11.1.1)`
 - `oracle.bi.composer (11.1.1,11.1.1)`
 - `oracle.bi.jbips (11.1.1,11.1.1)`

BI Composer is now available in Oracle Business Intelligence. For information about how BI Composer is displayed, see "Availability of BI Composer in Oracle BI Enterprise Edition" in the *Oracle Fusion Middleware User’s Guide for Oracle Business Intelligence Enterprise Edition*.

8.3.10 Validating Oracle Business Intelligence on `APPHOST1`

Access the following URLs:

- Access http://`APPHOST1VHN1:9704/analytics` to verify the status of `bi_server1`.
- Access http://`APPHOST1VHN1:9704/wsm-pm` to verify the status of Web Services Manager. Click **Validate Policy Manager**. A list of policies and assertion templates available in the data is displayed.

 Note: The configuration is incorrect if no policies or assertion templates appear.
- Access http://`APPHOST1VHN1:9704/xmlpserver` to verify the status of the Oracle BI Publisher application.
- Access http://`APPHOST1VHN1:9704/bioffice/about.jsp` to verify the status of the Oracle BI for Microsoft Office application.
- Access http://`APPHOST1VHN1:9704/bicomposer` to verify the status of the Oracle BI Composer application. You only need to verify this URL if BI Composer has been configured.
8.4 Configuring Oracle HTTP Server for the WebLogic Domain

This section covers how to configure Oracle HTTP Server for the WebLogic domain that contains the Administration Server and the bi_server1 Managed Server.

This section contains the following topics:

- Section 8.4.1, "Configuring Oracle HTTP Server for the Administration Server"
- Section 8.4.2, "Configuring Oracle HTTP Server for the bi_servern Managed Servers"
- Section 8.4.3, "Turning On the WebLogic Plug-In Enabled Flag"
- Section 8.4.4, "Registering Oracle HTTP Server with Oracle WebLogic Server"
- Section 8.4.5, "Setting the Frontend URL for the Administration Console"
- Section 8.4.6, "Validating Access Through Oracle HTTP Server"

8.4.1 Configuring Oracle HTTP Server for the Administration Server

To enable Oracle HTTP Server to route to the Administration Server, you must set the corresponding mount points in your HTTP server configuration:

1. On WEBHOST1 and WEBHOST2, add the following lines to the ORACLE_INSTANCE/config/OHS/component_name/mod_wl_ohs.conf file:

   ```
   # The admin URLs should only be accessible via the admin virtual host
   NameVirtualHost *:7777
   <VirtualHost *:7777>
   ServerName admin.mycompany.com:80
   ServerAdmin you@your.address
   RewriteEngine On
   RewriteOptions inherit

   # Admin Server and EM
   <Location /console>
   SetHandler weblogic-handler
   WebLogicHost ADMINVHN
   WeblogicPort 7001
   </Location>

   <Location /consolehelp>
   SetHandler weblogic-handler
   WebLogicHost ADMINVHN
   WeblogicPort 7001
   </Location>

   <Location /em>
   SetHandler weblogic-handler
   WebLogicHost ADMINVHN
   WeblogicPort 7001
   </Location>

   </VirtualHost>
   ```

 Note that the value for the VirtualHost parameter depends on how the LBR virtual host was set up. You might need to use a different value than the one shown, such as 80.

2. Restart Oracle HTTP Server on both WEBHOST1 and WEBHOST2, as follows:
8.4.2 Configuring Oracle HTTP Server for the bi_server Managed Servers

To enable Oracle HTTP Server to route to bi_cluster, which contains the bi_server Managed Servers, you must set the WebLogicCluster parameter to the list of nodes in the cluster:

1. On WEBHOST1 and WEBHOST2, add the following lines to the ORACLE_BASE/admin/instance_name/config/OHS/component_name/mod_wl_ohs.conf file. Note that you only need to include entries related to /bicomposer if BI Composer has been configured.

 \# redirect browser requests that omit document/dir
 RedirectMatch 301 /analytics$ /analytics/
 RedirectMatch 301 /bimiddleware$ /bimiddleware/
 RedirectMatch 301 /xmlpserver$ /xmlpserver/
 RedirectMatch 301 /ui$ /ui/
 RedirectMatch 301 /bisearch$ /bisearch/
 RedirectMatch 301 /mapviewer$ /mapviewer/
 RedirectMatch 301 /bicontent$ /bicontent/
 \# only if BI Composer has been configured.
 \#RedirectMatch 301 /bicomposer$ /bicomposer/

 \# WSM-PM
 \<Location /wsm-pm>
 \SetHandler weblogic-handler
 \WebLogicCluster APPHOST1VHN1:9704,APPHOST2VHN1:9704
 \WLProxySSL ON
 \WLProxySSLPassThrough ON
 \</Location>

 \# BIEE Analytics
 \<Location /analytics>
 \SetHandler weblogic-handler
 \WebLogicCluster APPHOST1VHN1:9704,APPHOST2VHN1:9704
 \WLProxySSL ON
 \WLProxySSLPassThrough ON
 \</Location>

 \<Location /analytics-ws>
 \SetHandler weblogic-handler
 \WebLogicCluster APPHOST1VHN1:9704,APPHOST2VHN1:9704
 \WLProxySSL ON
 \WLProxySSLPassThrough ON
 \</Location>

 \<Location /bimiddleware>
 \SetHandler weblogic-handler
 \WebLogicCluster APPHOST1VHN1:9704,APPHOST2VHN1:9704
 \WLProxySSL ON
 \WLProxySSLPassThrough ON
 \</Location>

 \<Location /bicontent>
 \SetHandler weblogic-handler
 \</Location>
WebLogicCluster APPHOST1VHN1:9704,APPHOST2VHN1:9704
WLProxySSL ON
WLProxySSLPassThrough ON
</Location>

MapViewer
<Location /mapviewer>
 SetHandler weblogic-handler
 WebLogicCluster APPHOST1VHN1:9704,APPHOST2VHN1:9704
 WLProxySSL ON
 WLProxySSLPassThrough ON
</Location>

BI Publisher
<Location /xmlpserver>
 SetHandler weblogic-handler
 WebLogicCluster APPHOST1VHN1:9704,APPHOST2VHN1:9704
 WLProxySSL ON
 WLProxySSLPassThrough ON
</Location>

Oracle RTD
<Location /ui>
 SetHandler weblogic-handler
 WebLogicCluster APPHOST1VHN1:9704,APPHOST2VHN1:9704
 WLProxySSL ON
 WLProxySSLPassThrough ON
</Location>

<Location /rtis>
 SetHandler weblogic-handler
 WebLogicCluster APPHOST1VHN1:9704,APPHOST2VHN1:9704
 WLProxySSL ON
 WLProxySSLPassThrough ON
</Location>

<Location /schema>
 SetHandler weblogic-handler
 WebLogicCluster APPHOST1VHN1:9704,APPHOST2VHN1:9704
 WLProxySSL ON
 WLProxySSLPassThrough ON
</Location>

<Location /ws>
 SetHandler weblogic-handler
 WebLogicCluster APPHOST1VHN1:9704,APPHOST2VHN1:9704
 WLProxySSL ON
 WLProxySSLPassThrough ON
</Location>

BI Office
<Location /bioffice>
 SetHandler weblogic-handler
 WebLogicCluster APPHOST1VHN1:9704,APPHOST2VHN1:9704
 WLProxySSL ON
 WLProxySSLPassThrough ON
</Location>

<Location /bioofficeclient>
 SetHandler weblogic-handler
</Location>
WebLogicCluster APPHOST1VHN1:9704,APPHOST2VHN1:9704
WLProxySSL ON
WLProxySSLPassThrough ON
</Location>

BI Search
<Location /bisearch>
 SetHandler weblogic-handler
 WebLogicCluster APPHOST1VHN1:9704,APPHOST2VHN1:9704
 WLProxySSL ON
 WLProxySSLPassThrough ON
</Location>

BI Composer
only if BI Composer has been configured.
#<Location /bicomposer>
SetHandler weblogic-handler
WebLogicCluster APPHOST1VHN1:9704,APPHOST2VHN1:9704
WLProxySSL ON
WLProxySSLPassThrough ON
#</Location>

2. Make sure the httpd.conf file located in the same directory as the mod_wl_ohs file contains the following lines:

NameVirtualHost *:7777
<VirtualHost *:7777>
 ServerName https://bi.mycompany.com:443
 ServerAdmin you@your.address
 RewriteEngine On
 RewriteOptions inherit
</VirtualHost>

NameVirtualHost *:7777
<VirtualHost *:7777>
 ServerName admin.mycompany.com:80
 ServerAdmin you@your.address
 RewriteEngine On
 RewriteOptions inherit
</VirtualHost>

3. Restart Oracle HTTP Server on both WEBHOST1 and WEBHOST2, as follows:

WEBHOST1> ORACLE_BASE/admin/instance_name/bin/opmnctl restartproc
ias-component=ohs1
WEBHOST2> ORACLE_BASE/admin/instance_name/bin/opmnctl restartproc
ias-component=ohs2

Note: Add other resources as appropriate (such as analyticsRes or ActionSamples to support functionality in SampleApp.rpd).

Note: Values such as bi.mycompany.com:443, admin.mycompany.com:80 and you@your.address that are noted in this document serve as examples only. Enter values based on the actual environment.
The servers specified in the WebLogicCluster parameters are only important at startup time for the plug-in. The list must provide at least one running cluster member for the plug-in to discover other members in the cluster. The listed cluster member must be running when Oracle HTTP Server is started. Oracle WebLogic Server and the plug-in work together to update the server list automatically with new, failed, and recovered cluster members.

Sample scenarios include:

- **Example 1:** If you have a two-node cluster and then add a third member, you do not need to update the configuration to add the third member. The third member will be discovered dynamically at run time.

- **Example 2:** You have a three-node cluster, but only two nodes are listed in the configuration. However, if both listed nodes are down when you start Oracle HTTP Server, then the plug-in would fail to route to the cluster. You must ensure that at least one of the listed nodes is running when you start Oracle HTTP Server.

If you list all the members of the cluster, then you guarantee you can route to the cluster, assuming at least one member is running when Oracle HTTP Server is started. For more information on configuring the WebLogic Server plug-in, see *Oracle Fusion Middleware Using Web Server Plug-Ins with Oracle WebLogic Server*.

8.4.3 Turning On the WebLogic Plug-In Enabled Flag

For security purposes, and because the load balancer terminates SSL requests (Oracle HTTP Server routes the requests as non-SSL to WebLogic Server), after SSL is configured for the load balancer, turn on the WebLogic Plugin Enabled flag for the domain. To do this, follow these steps:

1. Log in to the Administration Console.
2. Click the domain name in the navigation tree on the left.
3. Click the **Web Applications** tab.
4. In the Change Center, click **Lock & Edit**.
5. Select **WebLogic Plugin Enabled**.
6. Click **Save**, then click **Activate Changes**.

8.4.4 Registering Oracle HTTP Server with Oracle WebLogic Server

For Fusion Middleware Control to be able to manage and monitor Oracle HTTP Server instances, they must be registered with the domain. To do this, you must register Oracle HTTP Server with Oracle WebLogic Server using the following command:

```
WEBHOST1> cd ORACLE_INSTANCE/bin
WEBHOST1> ./opmnctl registerinstance -adminHost ADMINVHN -adminPort 7001 -adminUsername weblogic
```

You must also run this command from WEBHOST2 for OHS2.

Note: After registering Oracle HTTP Server, it should appear as a manageable target in Fusion Middleware Control. To verify this, log in to Fusion Middleware Control. The WebTier item in the navigation tree should show that Oracle HTTP Server has been registered.
8.4.5 Setting the Frontend URL for the Administration Console

The Administration Console application tracks changes made to ports, channels and security using the console. When changes made through the console are activated, the console validates its current listen address, port, and protocol. If the listen address, port, and protocol are still valid, the console redirects the HTTP request replacing the host and port information with the Administration Server’s listen address and port. When the Administration Console is accessed using a load balancing router (LBR), it is required to change the Administration Server’s frontend URL so that the user’s Web browser is redirected to the appropriate LBR address. To do this, follow these steps:

1. Log in to the Administration Console.
2. In the Change Center, click **Lock & Edit**.
3. Expand the **Environment** node in the Domain Structure window.
4. Click **Servers**. The Summary of Servers page is displayed.
5. Select **AdminServer(admin)** in the Names column of the table. The settings page for AdminServer(admin) is displayed.
6. Click the **Protocols** tab.
7. Click the **HTTP** tab.
8. Set the **Frontend Host** field to `admin.mycompany.com` (your LBR address).
9. Set the **Frontend HTTP Port** to 80.
10. Click **Save**, then click **Activate Changes**.

To eliminate redirections, it is recommended that you disable the Administration Console’s “Follow changes” feature. To do this, log in to the Administration Console and click **Preferences**, and then **Shared Preferences**. Clear the **Follow Configuration Changes** option, and then click **Save**.

8.4.6 Validating Access Through Oracle HTTP Server

Verify that the server status is reported as ‘Running’ in the Administration Console. If the server is shown as ‘Starting’ or ‘Resuming,’ wait for the server status to change to ‘Started.’ If another status is reported (such as ‘Admin’ or ‘Failed’), check the server output log files for errors.

This section contains the following topics:

- Section 8.4.6.1, "Validating the Administration Console and Fusion Middleware Control"
- Section 8.4.6.2, "Validating bi_cluster"

8.4.6.1 Validating the Administration Console and Fusion Middleware Control

Validate the Administration Console and Fusion Middleware Control through both Oracle HTTP Server instances using the following URLs:

- http://WEBHOSTn:7777/console
- http://WEBHOSTn:7777/em
Manually Failing Over the Administration Server to APPHOST2

8.4.6.2 Validating bi_cluster

Validate bi_cluster through Oracle HTTP Server using the following URLs (for both WEBHOST1 and WEBHOST2):

- http://WEBHOSTn:7777/analytics
- http://WEBHOSTn:7777/mapviewer
- http://WEBHOSTn:7777/xmlpserver
- http://WEBHOSTn:7777/ui
- http://WEBHOSTn:7777/wsm-pm
- http://WEBHOSTn:7777/bioffice/about.jsp
- http://WEBHOSTn:7777/bicomposer

You only need to validate the /bicomposer URL if BI Composer has been configured.

For information on configuring system access through the load balancer, see Section 3.3, "Configuring the Load Balancer."

8.5 Manually Failing Over the Administration Server to APPHOST2

In case a node fails, you can fail over the Administration Server to another node. This section describes how to fail over the Administration Server from APPHOST1 to APPHOST2, and contains the following topics:

- Section 8.5.1, "Assumptions and Procedure"
- Section 8.5.2, "Validating Access to APPHOST2 Through Oracle HTTP Server"
- Section 8.5.3, "Failing the Administration Server Back to APPHOST1"

8.5.1 Assumptions and Procedure

Note the following assumptions:

- The Administration Server is configured to listen on ADMINVHN, and not on ANY address.
- The Administration Server is failed over from APPHOST1 to APPHOST2, and the two nodes have these IP addresses:
 - APPHOST1: 100.200.140.165
 - APPHOST2: 100.200.140.205

Note: After setting the frontend URL to the LBR address, the access to the console through the WEBHOSTn addresses will be redirected by the console to the frontend URL, thus validating the correct configuration of both Oracle HTTP Server and the LBR device.
ADMINVHN: 100.200.140.206. This is the VIP where the Administration Server is running, assigned to ethX:Y, available in APPHOST1 and APPHOST2.

- The domain directory where the administration server is running in APPHOST1 is on a shared storage and is mounted also from APPHOST2.

- Oracle WebLogic Server and Oracle Fusion Middleware components have been installed in APPHOST2 (that is, the same paths for ORACLE_HOME and MW_HOME that exist on APPHOST1 are also available on APPHOST2).

Procedure
The following procedure shows how to fail over the Administration Server to a different node (APPHOST2):

1. Stop the Administration Server, if it is running.

2. Migrate the IP address to the second node:
 a. Run the following command as root on APPHOST1 (where X:Y is the current interface used by ADMINVHN):

   ```bash
   APPHOST1> /sbin/ifconfig ethX:Y down
   ```

 b. Run the following command on APPHOST2:

   ```bash
   APPHOST2> /sbin/ifconfig interface:index IP_address netmask netmask
   ```
 For example:
   ```bash
   APPHOST2> /sbin/ifconfig eth0:1 10.200.140.206 netmask 255.255.255.0
   ```

 c. Update the routing tables using arping. For example:

   ```bash
   APPHOST2> /sbin/arping -b -A -c 3 -I eth0 100.200.140.206
   ```

3. Start Node Manager in APPHOST2, using the instructions given in Step 3 of Section 8.3.3, "Starting the Administration Server on APPHOST1."

4. Start the Administration Server on APPHOST2, using the instructions given in Step 4 of Section 8.3.3, "Starting the Administration Server on APPHOST1."

5. Test that you can access the Administration Server on APPHOST2, as follows:
 a. Ensure that you can access the Administration Console at http://ADMINVHN:7001/console.

 b. Check that you can access and verify the status of components in Fusion Middleware Control at http://ADMINVHN:7001/em.

8.5.2 Validating Access to APPHOST2 Through Oracle HTTP Server

Perform the steps described in Section 8.4.6, "Validating Access Through Oracle HTTP Server" to check that you can access the Administration Server when it is running on APPHOST2.

Note: Make sure that the netmask and interface to be used match the available network configuration in APPHOST2.
8.5.3 Failing the Administration Server Back to APPHOST1

This step checks that you can fail back the Administration Server; that is, stop it on APPHOST2 and run it on APPHOST1 again. To do this, migrate ADMINVHN back to the APPHOST1 node as follows:

1. Make sure the Administration Server is not running.

2. Run the following command as root on APPHOST2.

   ```
   APPHOST2> /sbin/ifconfig ethX:Y down
   ```

3. Run the following command on APPHOST1:

   ```
   APPHOST1> /sbin/ifconfig interface:index IP_Address netmask netmask
   ```

 For example:

   ```
   APPHOST1> /sbin/ifconfig eth0:1 100.200.140.206 netmask 255.255.255.0
   ```

 Note: Make sure that the netmask and interface you use matches the available network configuration in APPHOST1.

4. Update the routing tables using arping. For example:

   ```
   APPHOST1> /sbin/arping -b -A -c 3 -I ethZ 100.200.140.206
   ```

5. Start the Administration Server again on APPHOST1, as described in Step 4 of Section 8.3.3, "Starting the Administration Server on APPHOST1."

6. Test that you can access the Administration Console at http://ADMINVHN:7001/console.

7. Check that you can access and verify the status of components in Fusion Middleware Control at http://ADMINVHN:7001/em.

If you encounter problems with Administration Server failover, see Section 13.8.2, "Administration Server Fails to Start After a Manual Failover" for additional information.

8.6 Backing Up the Installation

After you have verified that the extended domain is working, back up the installation. This is a quick backup for the express purpose of immediate restore in case of problems in the further steps. The backup destination is the local disk. This backup can be discarded after the enterprise deployment setup is complete. At that point, the regular deployment-specific backup and recovery process can be initiated. The Oracle Fusion Middleware Administrator's Guide provides further details. For information on describing the Oracle HTTP Server data that must be backed up and restored, refer to the "Backup and Recovery Recommendations for Oracle HTTP Server" section in that guide. For information on how to recover components, see the "Recovering Components" and "Recovering After Loss of Component Host" sections in the guide. For recommendations specific to recovering from the loss of a host, see the "Recovering Oracle HTTP Server to a Different Host" section in the guide. Also refer to the Oracle Database Backup and Recovery User's Guide for information on database backup.

Perform these steps to back up the installation at this point:

1. Back up the Web tier:
a. Shut down the instance using opmnctl:

WEBHOSTn> ORACLE_BASE/admin/instance_name/bin/opmnctl stopall

b. Back up the Middleware home on the Web tier using the following command (as root):

WEBHOSTn> tar -cvpf BACKUP_LOCATION/web.tar $MW_HOME

c. Back up the Oracle instance on the Web tier using the following command:

WEBHOSTn> tar -cvpf BACKUP_LOCATION/web_instance_name.tar $ORACLE_INSTANCE

d. Start the instance using opmnctl:

WEBHOSTn> cd ORACLE_BASE/admin/instance_name/bin
WEBHOSTn> opmnctl startall

2. Back up the database. This is a full database backup (either hot or cold) using Oracle Recovery Manager (recommended) or operating system tools such as tar for cold backups if possible.

3. Back up the BI Instance in the application tier, as follows:

a. Shut down the instance using opmnctl:

APPHOST1> ORACLE_INSTANCE/bin/opmnctl stopall

b. Back up the Middleware home on the application tier using the following command:

APPHOST1> tar -cvpf BACKUP_LOCATION/bi.tar $MW_HOME

c. Back up the Oracle instance on the application tier using the following command:

APPHOST1> tar -cvpf BACKUP_LOCATION/bi_instance_name.tar $ORACLE_INSTANCE

d. Start the instance using opmnctl:

APPHOST1> ORACLE_INSTANCE/bin/opmnctl startall

4. Back up the Administration Server and Managed Server domain directories to save your domain configuration. The configuration files all exist in the ORACLE_BASE/admin/domain_name directory. Run the following command to create the backup:

APPHOST1> tar -cvpf edgdomainback.tar $ORACLE_BASE/admin/domain_name
This chapter describes how to scale out the Oracle Business Intelligence system using the Configuration Assistant. It is assumed that an Oracle Business Intelligence ORACLE_HOME (binaries) has already been installed and is available from APPHOST1 and APPHOST2, and that a domain with an Administration Server has been created. This is the domain that will be extended in this chapter to support Oracle Business Intelligence components.

Important: Oracle strongly recommends that you read the Oracle Fusion Middleware Release Notes for any additional installation and deployment considerations before starting the setup process.

This chapter contains the following topics:

- Section 9.1, "Overview of Scaling Out the Oracle Business Intelligence System"
- Section 9.2, "Setting Up Shared File Locations"
- Section 9.3, "Scaling Out the Oracle Business Intelligence System on APPHOST2"
- Section 9.4, "Configuring the bi_server2 Managed Server"
- Section 9.5, "Performing Additional Configuration for Oracle Business Intelligence Availability"
- Section 9.6, "Other Post-Configuration and Verification Tasks"
- Section 9.7, "Backing Up the Installation"

9.1 Overview of Scaling Out the Oracle Business Intelligence System

Table 9–1 lists and describes the steps to scale out the Oracle Business Intelligence system and perform post-configuration tasks.
Table 9–1 Steps for Scaling Out the Oracle Business Intelligence System

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
<th>More Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set Up Shared File Locations</td>
<td>Set up locations for shared files in Oracle BI Enterprise Edition and Oracle BI Publisher.</td>
<td>Section 9.2, "Setting Up Shared File Locations"</td>
</tr>
<tr>
<td>Scale Out the Oracle Business Intelligence System</td>
<td>Use the Oracle Business Intelligence Configuration Assistant to scale out the Oracle Business Intelligence system, then use Fusion Middleware Control to scale out system components and configure secondary instances for singleton system components.</td>
<td>Section 9.3, "Scaling Out the Oracle Business Intelligence System on APPHOST2"</td>
</tr>
<tr>
<td>Configure the bi_server2 Managed Server</td>
<td>Set the listen address and disable host name verification for the bi_server2 Managed Server.</td>
<td>Section 9.4, "Configuring the bi_server2 Managed Server"</td>
</tr>
<tr>
<td>Perform Additional Configuration for Oracle Business Intelligence Availability</td>
<td>Perform additional high availability configuration tasks for Oracle BI Scheduler, Oracle Real-Time Decisions, Oracle BI Publisher, and Oracle BI for Microsoft Office.</td>
<td>Section 9.5, "Performing Additional Configuration for Oracle Business Intelligence Availability"</td>
</tr>
<tr>
<td>Perform Other Post-Configuration and Verification Tasks</td>
<td>Configure a default persistence store for transaction recovery, start and validate Oracle Business Intelligence on APPHOST2, and configure Node Manager and server migration for the Managed Servers.</td>
<td>Section 9.6, "Other Post-Configuration and Verification Tasks"</td>
</tr>
<tr>
<td>Back Up the Installation</td>
<td>Back up the installation to the local disk.</td>
<td>Section 9.7, "Backing Up the Installation"</td>
</tr>
</tbody>
</table>

9.2 Setting Up Shared File Locations

This section covers how to set up locations for shared files in Oracle BI Enterprise Edition and Oracle BI Publisher. It contains the following topics:

- Section 9.2.1, "Setting Up Oracle BI Enterprise Edition Shared Files"
- Section 9.2.2, "Setting the Location of the Shared Oracle BI Publisher Configuration Folder"

9.2.1 Setting Up Oracle BI Enterprise Edition Shared Files

This section contains the following topics:

- Section 9.2.1.1, "Setting the Location of the Shared Oracle BI Repository"
- Section 9.2.1.2, "Setting the Location of the Shared Oracle BI Presentation Catalog"
- Section 9.2.1.3, "Setting the Location of the Global Cache"

9.2.1.1 Setting the Location of the Shared Oracle BI Repository

When you specify a repository publishing directory for the Oracle BI repository, each Oracle BI Server instance loads the repository from the shared network location.

Perform the following steps in Oracle Enterprise Manager Fusion Middleware Control:

1. Log in to Fusion Middleware Control.
2. Expand the Business Intelligence node in the Farm _domain_name_ window.
3. Click coreapplication.
4. Click Deployment, then click Repository.
5. Click Lock and Edit Configuration.
 In a Windows environment, you must specify a UNC path name.
7. If you already have a repository deployed locally in your system, upload the repository again so that it gets copied to the shared location. Otherwise, you can skip this step.
8. Click Apply.
9. Click Activate Changes.

9.2.1.2 Setting the Location of the Shared Oracle BI Presentation Catalog

Each Presentation Services instance loads the Oracle BI Presentation Catalog from the catalog location specified in Fusion Middleware Control.

Perform the following steps:
1. Copy your existing (locally published) Oracle BI Presentation Catalog to the shared location. An example of a locally published catalog is:

 `ORACLE_INSTANCE/bifoundation/OracleBIPresentationServicesComponent/coreapplication_obipsn/catalog/SampleAppLite`

 You must perform this step before designating the Catalog Location from Fusion Middleware Control.
2. Log in to Fusion Middleware Control.
3. Expand the Business Intelligence node in the Farm_domain_name window.
4. Click coreapplication.
5. Click Deployment, then click Repository.
6. Click Lock and Edit Configuration.
7. Specify the Catalog Location for the shared Oracle BI Presentation Catalog.
 In a Windows environment, you must specify a UNC path name.
8. Click Apply.
9. Click Activate Changes.

9.2.1.3 Setting the Location of the Global Cache

The global cache resides on a shared file system (a mounted file system on UNIX, or a network shared drive on Windows) and stores purging events, seeding events (often generated by Agents), and result sets associated with seeding events. Note that each Oracle BI Server still maintains its own local query cache for regular queries.

Perform the following steps in Fusion Middleware Control:
1. Log in to Fusion Middleware Control.
2. Expand the Business Intelligence node in the Farm_domain_name window.
3. Click coreapplication.
4. Click **Capacity Management**, then click **Performance**.

5. Click **Lock and Edit Configuration**.

6. In the Global Cache section, specify the shared location for storing purging and seeding cache entries in the **Global cache path** field. In a Windows environment, you must specify a UNC path name.

7. Enter a value for **Global cache size** to specify the maximum size of the global cache (for example, 250 MB).

8. Click **Apply**.

9. Click **Activate Changes**.

10. Click **Restart to apply recent changes**.

11. Click **Restart** under Manage System.

12. Click **Yes** in the confirmation dialog.

9.2.2 Setting the Location of the Shared Oracle BI Publisher Configuration Folder

Follow these steps to set server configuration options for Oracle BI Publisher:

1. Copy the contents of the `DOMAIN_HOME/config/bipublisher/repository` directory to the shared configuration folder location.

2. On APPHOST1, log in to BI Publisher with Administrator credentials and select the **Administration** tab.

3. Under System Maintenance, select **Server Configuration**.

4. In the **Path** field under Configuration Folder, enter the shared location for the Configuration Folder.

5. Apply your changes and restart your BI Publisher application, as follows:
 a. Log in to the Administration Console.
 b. Click **Deployments** in the Domain Structure window.
 c. Select `bipublisher(11.1.1)`.
 d. Click **Stop** and then select **When work completes** or **Force Stop Now**.
 e. After the application has stopped, click **Start** and then select **Servicing all requests**.

6. Because Oracle BI Publisher reads its configuration from the Administration Server central location rather than from the Managed Server’s configuration directory when the Managed Servers are restarted, you must copy the XML configuration file for Oracle BI Publisher from the Managed Server to the Administration Server location.

 To do this, on APPHOST1, copy the file `xmlp-server-config.xml` from:

 `ORACLE_BASE/admin/domain_name/mserver/domain_name/config/bipublisher`

 to:

 `ORACLE_BASE/admin/domain_name/aserver/domain_name/config/bipublisher`
9.3 Scaling Out the Oracle Business Intelligence System on APPHOST2

This section explains how to scale out Oracle Business Intelligence on APPHOST2. Perform the steps in the following sections:

- Section 9.3.1, "Using the Configuration Assistant to Scale Out the BI System"
- Section 9.3.2, "Scaling Out the System Components"
- Section 9.3.3, "Configuring Secondary Instances of Singleton System Components"

9.3.1 Using the Configuration Assistant to Scale Out the BI System

Run the Configuration Assistant from the Oracle home directory to scale out the BI system, as follows:

1. Ensure that BI_Server1 is up and running.
2. Change the directory to location of the Configuration Assistant, as follows:

   ```sh
   APPHOST2> cd ORACLE_HOME/bin
   ```

3. Start the Oracle Business Intelligence Configuration Assistant:

   ```sh
   APPHOST2> ./config.sh
   ```

4. In the Welcome screen, click Next.
5. In the Prerequisite Checks screen, verify that all checks complete successfully, and then click Next.
6. In the Create, Scale Out, or Extend screen, select **Scale Out BI System** and enter the following:
 - **Host Name**: ADMINVHN
 - **Port**: 7001
 - **User name**: weblogic
 - **User Password**: your_password
 Click Next.

7. In the Scale Out BI System Details screen, enter the following:
 - **Middleware Home**: ORACLE_BASE/product/fmw (dimmed)
 - **Oracle Home**: ORACLE_BASE/product/fmw/Oracle_BI1 (dimmed)
 - **WebLogic Server Home**: ORACLE_BASE/product/fmw/wlserver_10.3 (dimmed)
 - **Domain Home**: ORACLE_BASE/admin/domain_name/mserver/domain_name
 - **Applications Home**: ORACLE_BASE/admin/domain_name/mserver/applications
 - **Instance Home**: ORACLE_BASE/admin/instance2
 - **Instance Name**: instance2 (dimmed)
 Click Next.

8. In the Configure Ports screen, select one of the following:
 - Auto Port Configuration
 - Specify Ports using Configuration File
Click Next.

9. In the Specify Security Updates screen, choose whether you want to receive security updates from Oracle support and if you do, enter your e-mail address. Click Next.

10. In the Summary screen, click Configure.

11. In the Configuration Progress screen, verify that all the Configuration Tools have completed successfully and click Next.

12. In the Complete screen, click Finish.

Usually, Node Manager is started automatically when config.sh completes. If Node Manager is not running for some reason, run these commands to start it on APPHOST2:

1. Run the setNMProps.sh script, which is located in the $ORACLE_COMMON_HOME/common/bin directory, to set the StartScriptEnabled property to 'true' before starting Node Manager:

 APPHOST2> cd $ORACLE_COMMON_HOME/common/bin
 APPHOST2> ./setNMProps.sh

 Note: You must use the StartScriptEnabled property to avoid class loading failures.

2. Start Node Manager:

 APPHOST2> cd $WL_HOME/server/bin
 APPHOST2> ./startNodeManager.sh

9.3.2 Scaling Out the System Components

Perform the following steps in Fusion Middleware Control:

1. Log in to Fusion Middleware Control.

2. Expand the Business Intelligence node in the Farm_domain_name window.

3. Click$coreapplication.

4. Click Capacity Management, then click Scalability.

5. Click Lock and Edit Configuration.

6. For the APPHOST2 instance2 Oracle instance, increment the Oracle Business Intelligence components by 1:

 ■ BI Servers
 ■ Presentation Servers
 ■ JavaHosts

7. Change the Port Range From and Port Range To to be the same as the APPHOST1 instance1 Oracle instance.

8. Click Apply.

9. Click Activate Changes.

You do not need to restart at this point, because you will perform a restart after completing the steps in Section 9.3.3.
9.3.3 Configuring Secondary Instances of Singleton System Components

The Oracle BI Cluster Controllers and Oracle BI Scheduler are singleton components that operate in active/passive mode. Configure a secondary instance of these components so that they are distributed for high availability.

Perform the following steps in Fusion Middleware Control:

1. Log in to Fusion Middleware Control.
2. Expand the **Business Intelligence** node in the Farm_**domain_name** window.
3. Click **coreapplication**.
4. Click **Availability**, then click **Failover**.
5. Click **Lock and Edit Configuration** to activate the Primary/Secondary Configuration section of the **Availability** tab.
7. Click **Apply**.

 Under Potential Single Points of Failure, it should report No problems - all components have a backup.
8. Click **Activate Changes**.
9. Click **Restart to apply recent changes**.
10. Click **Restart** under Manage System.
11. Click **Yes** in the confirmation dialog.

9.4 Configuring the bi_server2 Managed Server

This section explains how to configure the bi_server2 Managed Server, and contains the following topics:

- Section 9.4.1, "Setting the Listen Address for the bi_server2 Managed Server"
- Section 9.4.2, "Disabling Host Name Verification for the bi_server2 Managed Server"

9.4.1 Setting the Listen Address for the bi_server2 Managed Server

Ensure that you have performed the steps described in Section 3.4.1, "Enabling Virtual IPs for the Managed Servers" before setting the bi_server2 listen address.

Perform these steps to set the listen address for the Managed Server:

1. Log in to the Oracle WebLogic Server Administration Console.
2. In the Change Center, click **Lock & Edit**.
3. Expand the **Environment** node in the Domain Structure window.
4. Click **Servers**. The Summary of Servers page is displayed.
5. Select **bi_server2** in the Names column of the table. The settings page for bi_server2 is displayed.
6. Set the **Listen Address** to APPHOST2VHN1.
7. Click **Save**.
8. Click **Activate Changes**.
Performing Additional Configuration for Oracle Business Intelligence Availability

9.4.2 Disabling Host Name Verification for the bi_server2 Managed Server

This step is required if you have not set up the appropriate certificates to authenticate the different nodes with the Administration Server (see Chapter 10, "Setting Up Node Manager for an Enterprise Deployment"). If you have not configured the server certificates, you will receive errors when managing the different Oracle WebLogic Servers. To avoid these errors, disable host name verification while setting up and validating the topology, and enable it again after the EDG topology configuration is complete as described in Chapter 10, "Setting Up Node Manager for an Enterprise Deployment."

Perform these steps to disable host name verification:

1. Log in to the Administration Console.
2. In the Change Center, click Lock & Edit.
3. Expand the Environment node in the Domain Structure window.
4. Click Servers. The Summary of Servers page is displayed.
5. Select bi_server2 in the Names column of the table. The settings page for the server is displayed.
6. Open the SSL tab.
7. Expand the Advanced section of the page.
8. Set host name verification to 'None'.
9. Click Save.
10. Click Activate Changes.
11. The change will not take effect until the bi_server2 Managed Server is restarted (ensure that Node Manager is up and running):
 a. In the Summary of Servers screen, select the Control tab.
 b. Select bi_server2 in the table and then click Shutdown.
 c. Select bi_server2 in the table and then click Start.
12. Restart the BI System Components on APPHOST2, as follows:
 a. Log in to Fusion Middleware Control.
 b. Expand the Business Intelligence node in the Farm_domain_name window.
 c. Click coreapplication.
 d. On the Business Intelligence Overview page, click Restart.

9.5 Performing Additional Configuration for Oracle Business Intelligence Availability

This section describes additional high availability configuration tasks for Oracle BI Scheduler, Oracle Real-Time Decisions, Oracle BI Publisher, and Oracle BI for Microsoft Office. It contains the following topics:

- Section 9.5.1, "Additional Configuration Tasks for Oracle BI Scheduler"
- Section 9.5.2, "Additional Configuration Tasks for Oracle Real-Time Decisions"
9.5.1 Additional Configuration Tasks for Oracle BI Scheduler

If you use server-side scripts with Oracle BI Scheduler, it is recommended that you configure a shared directory for the scripts so that they can be shared by all Oracle BI Scheduler components in a cluster.

Perform these steps only if you are using server-side scripts.

To share Oracle BI Scheduler scripts:

1. Copy the default Oracle BI Scheduler scripts (for example, ORACLE_INSTANCE/bifoundation/OracleBISchedulerComponent/coreapplication_obisch1/scripts/common) and custom Oracle BI Scheduler scripts (for example, ORACLE_INSTANCE/bifoundation/OracleBISchedulerComponent/coreapplication_obisch1/scripts/scheduler) from APPHOST1 to the shared BI Scheduler scripts location.

2. Update the SchedulerScriptPath and DefaultScriptPath elements of the Oracle BI Scheduler instanceconfig.xml file, as follows:

 ■ SchedulerScriptPath: Refers to the path where Oracle BI Scheduler-created job scripts are stored. Change this to the path of the shared BI Scheduler scripts location.

 ■ DefaultScriptPath: Specifies the path where user-created job scripts (not agents) are stored. Change this to the path of the shared BI Scheduler scripts location.

 In a Windows environment, you must specify a UNC path name.

3. Restart the Oracle BI Scheduler component, as follows:

 opmnctl stopproc ias-component=coreapplication_obisch1
 opmnctl startproc ias-component=coreapplication_obisch1

 The instanceconfig.xml file for Oracle BI Scheduler is located in ORACLE_INSTANCE/config/OracleBISchedulerComponent/coreapplication_obisch1. You must update this file for each Oracle BI Scheduler component in the deployment.

9.5.2 Additional Configuration Tasks for Oracle Real-Time Decisions

This section contains the following topics:

■ Section 9.5.2.1, "Configuring Oracle Real-Time Decisions Clustering Properties"

■ Section 9.5.2.2, "Adding System Properties to the Server Start Tab"

9.5.2.1 Configuring Oracle Real-Time Decisions Clustering Properties

Perform the following steps in Fusion Middleware Control to set up cluster-specific configuration properties for Oracle RTD.

You only need to perform these steps for the first node in your deployment. You do not need to set cluster-specific configuration properties for Oracle RTD for subsequent nodes.

1. Log in to Fusion Middleware Control.
2. Expand the **Application Deployments** node in the Farm _domain_name_ window.

3. Click **OracleRTD(11.1.1)(bi_cluster)**.

4. Click any node under it. For example, **OracleRTD(11.1.1)(bi_server1)**.

5. In the right pane, click **Application Deployment**, and then select **System MBean Browser**.

6. In the System MBean Browser pane, expand **Application Defined MBeans**.

7. For any one of the servers under OracleRTD, navigate to the **SDClusterPropertyManager -> Misc** MBean and set the **DecisionServiceAddress** attribute to http://biinternal.mycompany.com. Other servers automatically get updated with the value you set.

8. Click **Apply**.

9.5.2.2 Adding System Properties to the Server Start Tab

After scaling out Oracle RTD, use the Administration Console to add three system properties to the **Server Start** tab of each Managed Server, as follows:

1. Log in to the Administration Console.

2. In the Change Center, click **Lock & Edit**.

3. Expand the **Environment** node in the Domain Structure window.

4. Click **Servers**. The Summary of Servers page is displayed.

5. Select **bi_server<1,2>** in the table. The settings page for the server is displayed.

6. Click the **Server Start** tab.

7. Add the following properties in the **Arguments** box:

 - `Drtd.clusterRegistryJobIntervalMs=12000`
 - `Drtd.clusterDepartureThresholdMs=50000`
 - `Drtd.clusterDepartureThreshold2Ms=50000`

8. Click **Save**.

9. Click **Activate Changes**.

10. The change will not take effect until the **bi_server<1,2>** Managed Servers are restarted (make sure that Node Manager is up and running):

 a. In the Summary of Servers screen, select the **Control** tab.

 b. Select **bi_server<1,2>** in the table and then click **Shutdown**.

 c. Restart **bi_server<1,2>**.

11. Restart the BI System Components:

 `cd /u02/local/oracle/config/BIInstance/bin
 ./opmnctl stopall
 ./opmnctl startall`

Performing this task enables an instance of Oracle RTD to be migrated successfully from one host to another in the event of a failure of a Managed Server.

Even after these changes, if the server migration finishes in less than 50 seconds, the Oracle RTD batch framework will be in an inconsistent state.

If the enterprise has deployed any RTD Inline Services that host Batch Job implementations, and if after a server migration the batch console command,
"batch-names", or its brief name, "bn", shows no registered batch jobs, then the Oracle RTD Batch Manager service must be stopped and restarted. To do this, follow these steps:

1. In Fusion Middleware Control, expand the WebLogic Domain node in the left pane. Then, right-click bifoundation_domain and select System MBean Browser.

2. Locate the SDPropertyManager > Misc MBean, under Application Defined MBeans > OracleRTD > Server:bi_server.

 Be sure to select the Misc MBean that corresponds to the local node where you are making the change. For example, if you are connecting to APPHOST1, then make sure to update the attribute associated with bi_server1.

3. Set the BatchManagerEnabled attribute to false and click Apply.

4. Set the BatchManagerEnabled attribute back to true and click Apply. Performing this task causes the Batch Manager to stop and be restarted.

 When it restarts, it will be running on either the same server as before, or on a different server.

5. After restarting Batch Manager, note that the corresponding MBean does not always immediately get refreshed on the server where Batch Manager comes back up, so this is not a concern. Instead, verify that Batch Manager is now operational by using the Batch Console tool, as follows:

 a. Locate the zip file for the Oracle RTD client tools in the following location:

 ORACLE_HOME/clients/rtd/rtd_client_11.1.1.zip

 b. Because most Oracle RTD client tools do not run on UNIX, unzip this file in a location on a Windows computer (referred to here as RTD_HOME). Then, locate the batch console jar file in:

 RTD_HOME/client/Batch/batch-console.jar

 d. When prompted, enter the user name and password of a user who is a member of the Administrator role, BI_Administrator role, or some other role authorized to administer Oracle RTD batch jobs.

 e. When prompted for a command, enter bn:

 Checking server connection...
 command: bn
 CrossSellSelectOffers
 command:quit

 If Batch Manager has successfully restarted, then the "bn" command lists the names of all batch implementations hosted by all deployed RTD Inline Services.

 The commonly deployed example, CrossSell, hosts a batch implementation named CrossSellSelectOffers, shown in the preceding example.

9.5.3 Additional Configuration Tasks for Oracle BI Publisher

This section contains the following topics:
9.5.3.1 Setting Scheduler Configuration Options

Follow these steps to set Scheduler configuration options:

1. On APPHOST1, log in to BI Publisher with Administrator credentials and select the Administration tab.
2. Under System Maintenance, select Scheduler Configuration.
3. Select Quartz Clustering under the Scheduler Selection.
4. Click Apply.

9.5.3.2 Configuring Integration with Oracle BI Presentation Services

Follow these steps to configure Oracle BI Publisher integration with Oracle BI Presentation Services:

1. Log into Oracle BI Publisher with Administrator credentials and select the Administration tab.
2. Under Integration, select Oracle BI Presentation Services.
3. Verify and update the following:
 - Server Protocol: HTTP
 - Server: biinternal.mycompany.com
 - Port: 80
 - URL Suffix: analytics-ws/saw.dll
4. Click Apply.
5. Restart your Oracle BI Publisher application.

9.5.3.3 Setting the Oracle BI EE Data Source

The Oracle BI EE Data Source must point to the clustered Oracle BI Servers through the Cluster Controllers. Perform this task in Oracle BI Publisher.

To set the Oracle BI EE data source in Oracle BI Publisher:

1. Log in to Oracle BI Publisher with Administrator credentials and select the Administration tab.
2. Under Data Sources, select JDBC Connection.
3. Update the Oracle BI EE data source setting by changing the Connection String parameter to the following:

 jdbc:oraclebi://primary_cluster_controller_host:primary_cluster_controller_port/PrimaryCCS=primary_cluster_controller_host;PrimaryCCSPort=primary_cluster_controller_port;SecondaryCCS=secondary_cluster_controller_host;SecondaryCCSPort=secondary_cluster_controller_port;

 For example:
jdbc:oraclebi://APPHOST1:9706/PrimaryCCS=APPHOST1;PrimaryCCSPort=9706;SecondaryCCS=APPHOST2;SecondaryCCSPort=9706;

4. Select **Use System User**.

If you do not want to use the system user for the connection, deselect **Use System User** and specify the BIImpersonateUser credentials for **Username** and **Password**.

For more information about the BIImpersonateUser user in this context, see “Credentials for Connecting to the Oracle BI Presentation Catalog” in the *Oracle Fusion Middleware Developer’s Guide for Oracle Business Intelligence Enterprise Edition*.

5. Click **Test Connection**. You should receive a "Connection established successfully" message.

6. Click **Apply**.

9.5.3.4 Configuring JMS for Oracle BI Publisher

You must configure the location for all persistence stores to a directory visible from both nodes. Change all persistent stores to use this shared base directory.

1. Log into the Administration Console.

2. In the Domain Structure window, expand the **Services** node and then click the **Persistent Stores** node. The Summary of Persistent Stores page is displayed.

3. In the Change Center, click **Lock & Edit**.

4. Click **New**, and then **Create File Store**.

Enter a name (for example, BipJmsStore2) and target BI_SERVER2. Enter a directory that is located in shared storage so that it is accessible from both APPHOST1 and APPHOST2: `ORACLE_BASE/admin/domain_name/bi_cluster/jms`

5. Click **OK** and **Activate Changes**.

6. Click **OK** and **Activate Changes**.

7. In the Domain Structure window, expand the **Services** node and then click the **Messaging > JMS Servers** node. The Summary of JMS Servers page is displayed.

8. In the Change Center, click **Lock & Edit**.

9. Click **New**.

10. Enter a name (for example, BipJmsServer2) and in the **Persistence Store** drop-down list, select BipJmsStore2 and click **Next**.

11. Select **BI_SERVER2** as the target.

12. Click **Finish** and **Activate Changes**.

13. In the Domain Structure window, expand the **Services** node and then click the **Messaging > JMS Modules** node. The JMS Modules page is displayed.

14. In the Change Center, click **Lock & Edit**.

15. Click **BipJmsResource** and then click the **Subdeployments** tab.

16. Select **BipJmsSubDeployment** under Subdeployments.

17. Add the new Oracle BI Publisher JMS Server, **BipJmsServer2**, as an additional target for the subdeployment.

18. Click **Save** and **Activate Changes**.
To validate the JMS configuration performed for Oracle BI Publisher, perform the steps in Section 9.5.3.5, “Updating the Oracle BI Publisher Scheduler Configuration.”

9.5.3.5 Updating the Oracle BI Publisher Scheduler Configuration
Follow the steps in this section to update the JMS Shared Temp Directory for the Oracle BI Publisher Scheduler. You only need to perform the steps in this section on one of the APPHOSTS (either APPHOST1 or APPHOST2).

To update the Oracle BI Publisher Scheduler configuration:

1. Log in to Oracle BI Publisher at the one of the following URLs:
 - http://APPHOST1VHN1:9704/xmlpserver
 - http://APPHOST2VHN1:9704/xmlpserver
2. Click the Administration link.
3. Click Scheduler Configuration under System Maintenance. The Scheduler Configuration screen is displayed.
4. Update the Shared Directory by entering a directory that is located in the shared storage. This shared storage is accessible from both APPHOST1 and APPHOST2.
5. Click Test JMS.
 You should receive a confirmation message that JMS tested successfully.
6. Click Apply.
7. Check the Scheduler status from the Scheduler Diagnostics tab.

9.5.4 Additional Configuration Tasks for Oracle BI for Microsoft Office
This section contains the following topics:

- Section 9.5.4.1, "Configuring Oracle BI for Microsoft Office Properties"
- Section 9.5.4.2, "Validating Oracle BI for Microsoft Office Configuration"

9.5.4.1 Configuring Oracle BI for Microsoft Office Properties
Follow these steps to perform additional configuration tasks for Oracle BI for Microsoft Office:

1. Validate the Oracle BI EE Office Server setup by accessing the following URLs:
 - http://APPHOST1VHN1:9704/bioffice/about.jsp
 - http://APPHOST2VHN1:9704/bioffice/about.jsp
 The About Oracle BI EE Office Server page is displayed:
2. Go to the Oracle BI EE Office Server directory. For example:

```
DOMAIN_HOME/servers/managed_server/tmp/_WL_user/bioffice_11.1.1/cvsibb/war/WEB-INF
```

If you are not sure how to locate the Oracle BI EE Office Server directory, check the LogDir parameter on the About Oracle BI EE Office Server page. The Oracle BI EE Office Server directory is the parent directory of the log directory.

3. On both APPHOST1 and APPHOST2, open `bioffice.xml` for editing and modify the properties shown in Table 9–2.

Table 9–2 Properties in bioffice.xml

<table>
<thead>
<tr>
<th>Property Name</th>
<th>Valid Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SawBaseURL</td>
<td><code>https://bi.mydomain.com:443/analytics/saw.dll</code> or <code>https://bi.mydomain.com:443/analytics-ws/saw.dll</code></td>
<td>Load Balancer Virtual Server Name URL for Oracle BI Presentation Services. Important: If SSO is enabled, then enter the URL for the protected analytics servlet that you deployed when configuring Oracle BI for Microsoft Office to integrate with the SSO-enabled Oracle BI Server. The URL that is specified for this property is used for Web services requests between the BI Office Server and Presentation Services.</td>
</tr>
<tr>
<td>SawUseSSO</td>
<td>0 = No (Default) 1 = Yes</td>
<td>Set this property to 1 if the Oracle Business Intelligence implementation is enabled for SSO.</td>
</tr>
</tbody>
</table>
4. Restart the Oracle BI for Microsoft Office application, as follows:
 a. Log in to the Administration Console.
 b. Click Deployments in the Domain Structure window.
 c. Select bioffice(11.1.1).
 d. Click Stop.
 e. After the application has stopped, click Start.

5. Validate that the SawBaseURL parameter has been updated on the About Oracle BI EE Office Server page.

9.5.4.2 Validating Oracle BI for Microsoft Office Configuration

Follow these steps to validate configuration for Oracle BI for Microsoft Office:

1. Log in to Oracle BI Presentation Services at:

 ![Image](https://bi.mydomain.com:443/analytics)

2. In the lower left pane, under the Get Started heading, select **Download BI Desktop Tools** and then select **Oracle BI for MS Office**.

3. Install Oracle BI for Microsoft Office by running the Oracle BI Office InstallShield Wizard.

4. Open Microsoft Excel or Microsoft Powerpoint.

5. From the Oracle BI menu, select **Preferences**.

6. In the **Connections** tab, select **New**.

7. Enter values for the following fields:

 - **Server Name**: Provide a name for the connection.
 - **BI Office Server**: Provide the URL for the Oracle BI EE Office Server.
 - **Application Name**: Enter the Application Name that you defined for the Oracle BI EE Office Server when you deployed the Oracle BI EE Office Server application to WLS. The default name is **bioffice**.
 - **Port**: Enter the Oracle BI EE Office Server port number.

 The following image shows the New Connection dialog:

Table 9–2 (Cont.) Properties in bioffice.xml

<table>
<thead>
<tr>
<th>Property Name</th>
<th>Valid Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SawWebURLforSSO</td>
<td>https://bi.mydomain.com:443/analytics/saw.dll</td>
<td>When SSO is enabled, use this property to enter the public URL that allows external users to access Oracle Business Intelligence using SSO from Oracle BI for Microsoft Office.</td>
</tr>
</tbody>
</table>
8. Click **Test Connection** to test the connection between the add-in and the Oracle BI EE Office Server. Successful connections receive a Test connection successful message, as shown in the following image:

9. Log in as an Administrator (for example, weblogic) and validate that you can access the Oracle BI Task Pane, as shown in the following image:
9.6 Other Post-Configuration and Verification Tasks

After performing the high availability configuration tasks for Oracle BI Scheduler, Oracle Real-Time Decisions, Oracle BI Publisher, and Oracle BI for Microsoft Office, follow these additional instructions for post-configuration and verification.

This section contains the following topics:

- Section 9.6.1, "Configuring a Default Persistence Store for Transaction Recovery"
- Section 9.6.2, "Starting and Validating Oracle Business Intelligence on APPHOST2"
- Section 9.6.3, "Configuring Node Manager for the Managed Servers"
- Section 9.6.4, "Configuring Server Migration for the Managed Servers"

9.6.1 Configuring a Default Persistence Store for Transaction Recovery

Each server has a transaction log that stores information about committed transactions that are coordinated by the server that may not have been completed. The WebLogic Server uses this transaction log for recovery from system crashes or network failures. To leverage the migration capability of the Transaction Recovery Service for the servers within a cluster, store the transaction log in a location accessible to a server and its backup servers.

Note: Preferably, this location should be a dual-ported SCSI disk or on a Storage Area Network (SAN).

Perform these steps for each Managed Server to set the location for the default persistence store:

1. Log in to the Administration Console.

2. In the Change Center, click **Lock & Edit**.

3. In the Domain Structure window, expand the **Environment** node and then click the **Servers** node. The Summary of Servers page is displayed.

4. Click the name of the server (represented as a hyperlink) in the Names column of the table. The Settings page for the selected server is displayed, and defaults to the **Configuration** tab.

5. Open the **Services** tab.

6. In the Default Store section of the page, enter the path to the folder where the default persistent stores will store its data files. The directory structure of the path is as follows:

```
ORACLE_BASE/admin/domain_name/bi_cluster_name/tlogs
```

Use the same path for each Managed Server. When the Managed Servers are restarted, subdirectories are created for each one.

7. Click **Save** and **Activate Changes**.

Note: To enable migration of the Transaction Recovery service, specify a location on a persistent storage solution that is available to other servers in the cluster. Both bi_server1 and bi_server2 must be able to access this directory.
9.6.2 Starting and Validating Oracle Business Intelligence on APPHOST2

This section contains the following topics:

- Section 9.6.2.1, "Starting the bi_server2 Managed Server"
- Section 9.6.2.2, "Starting the Oracle Business Intelligence System Components"
- Section 9.6.2.3, "Validating Oracle Business Intelligence URLs"
- Section 9.6.2.4, "Validating Access Through Oracle HTTP Server"

9.6.2.1 Starting the bi_server2 Managed Server

Perform these steps to start the bi_server2 Managed Server:

1. Start the bi_server2 Managed Server using the Administration Console, as follows:

 a. Expand the Environment node in the Domain Structure window.
 b. Click Servers. The Summary of Servers page is displayed.
 c. Click the Control tab.
 d. Select bi_server2 and then click Start.

2. Verify that the server status is reported as ‘Running’ in the Administration Console. If the server is shown as ‘Starting’ or ‘Resuming,’ wait for the server status to change to ‘Started.’ If another status is reported (such as ‘Admin’ or ‘Failed’), check the server output log files for errors.

9.6.2.2 Starting the Oracle Business Intelligence System Components

You can control Oracle Business Intelligence system components using opmnctl commands.

To start the Oracle Business Intelligence system components using the opmnctl command-line tool:

1. Go to the directory that contains the OPMN command-line tool, located in ORACLE_INSTANCE/bin.

2. Run the opmnctl command to start the Oracle Business Intelligence system components:

 - opmnctl startall
 Starts OPMN and all Oracle Business Intelligence system components.
 - opmnctl start
 Starts OPMN only.
 - opmnctl startproc ias-component=component_name
 Starts a particular system component. For example, where coreapplication_obips2 is the Presentation Services component:

 opmnctl startproc ias-component=coreapplication_obips2

3. Check the status of the Oracle Business Intelligence system components:

 opmnctl status

9.6.2.3 Validating Oracle Business Intelligence URLs

Access the following URLs:

Other Post-Configuration and Verification Tasks

- Access http://APPHOST2VHN1:9704/wsm-pm to verify the status of Web Services Manager. Click Validate Policy Manager. A list of policies and assertion templates available in the data is displayed.

 Note: The configuration is incorrect if no policies or assertion templates appear.

- Access http://APPHOST2VHN1:9704/xmlpserver to verify the status of the Oracle BI Publisher application.

9.6.2.4 Validating Access Through Oracle HTTP Server

You should verify URLs to ensure that the appropriate routing and failover is working from Oracle HTTP Server to bi_cluster. Perform these steps to verify the URLs:

1. While bi_server2 is running, stop bi_server1 using the Administration Console.

2. Access the following URLs to verify that routing and failover is functioning properly:
 - http://WEBHOST1:7777/analytics
 - http://WEBHOST1:7777/xmlpserver
 - http://WEBHOST1:7777/ui

3. Start bi_server1 from the Administration Console.

4. Stop bi_server2 from the Administration Console.

5. Access the following URLs to verify that routing and failover is functioning properly:
 - http://WEBHOST1:7777/analytics
 - http://WEBHOST1:7777/xmlpserver
 - http://WEBHOST1:7777/ui

6. Start bi_server2 from the Administration Console.

9.6.3 Configuring Node Manager for the Managed Servers

Oracle recommends using host name verification for the communication between Node Manager and the servers in the domain. This requires the use of certificates for the different addresses communicating with the Administration Server and other servers. See Chapter 10, "Setting Up Node Manager for an Enterprise Deployment" for further details. The procedures in that chapter must be performed twice using the information provided in Table 9–3.

<table>
<thead>
<tr>
<th>Run</th>
<th>Host Name (HOST)</th>
<th>Server Name (WLS_SERVER)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run1:</td>
<td>APPHOST1</td>
<td>bi_server1</td>
</tr>
<tr>
<td>Run2:</td>
<td>APPHOST2</td>
<td>bi_server2</td>
</tr>
</tbody>
</table>
9.6.4 Configuring Server Migration for the Managed Servers

Server Migration is required for proper failover of the Oracle BI Publisher components in the event of failure in any of the APPHOST1 and APPHOST2 nodes. See Chapter 11, "Configuring Server Migration for an Enterprise Deployment" for further details.

9.7 Backing Up the Installation

After you have verified that the scaled out domain is working, back up the installation. This is a quick backup for the express purpose of immediate restore in case of problems in the further steps. The backup destination is the local disk. This backup can be discarded after the enterprise deployment setup is complete. At that point, the regular deployment-specific backup and recovery process can be initiated. The Oracle Fusion Middleware Administrator’s Guide provides further details. For information on describing the Oracle HTTP Server data that must be backed up and restored, refer to the "Backup and Recovery Recommendations for Oracle HTTP Server" section in that guide. For information on how to recover components, see the "Recovering Components" and "Recovering After Loss of Component Host" sections in the guide. For recommendations specific to recovering from the loss of a host, see the "Recovering Oracle HTTP Server to a Different Host" section in the guide. Also refer to the Oracle Database Backup and Recovery User’s Guide for information on database backup.

Perform these steps to back up the installation at this point:

1. Back up the Web tier:
 a. Shut down the instance using opmnctl:
      ```
      WEBHOSTn> ORACLE_BASE/admin/instance_name/bin/opmnctl stopall
      ```
 b. Back up the Middleware home on the Web tier using the following command (as root):
      ```
      WEBHOSTn> tar -cvpf BACKUP_LOCATION/web.tar MW_HOME
      ```
 c. Back up the Oracle instance on the Web tier using the following command:
      ```
      WEBHOSTn> tar -cvpf BACKUP_LOCATION/web_instance_name.tar ORACLE_INSTANCE
      ```
 Repeat this step for WEBHOST2.
 d. Start the instance using opmnctl:
      ```
      WEBHOSTn> cd ORACLE_BASE/admin/instance_name/bin
      WEBHOSTn> opmnctl startall
      ```

2. Back up the database. This is a full database backup (either hot or cold) using Oracle Recovery Manager (recommended) or operating system tools such as tar for cold backups if possible.

3. Back up the BI Instance in the application tier, as follows:
 a. Shut down the instance using opmnctl:
      ```
      APPHOSTn> ORACLE_INSTANCE/bin/opmnctl stopall
      ```
 b. Back up the Middleware home on the application tier using the following command:
      ```
      APPHOSTn> tar -cvpf BACKUP_LOCATION/bi.tar MW_HOME
      ```
c. Back up the Oracle instance on the application tier using the following command:

```
APPHOSTn> tar -cvpf BACKUP_LOCATION/bi_instance_name.tar ORACLE_INSTANCE
```

d. Start the instance using opmnctl:

```
APPHOSTn> ORACLE_INSTANCE/bin/opmnctl startall
```

4. Back up the Administration Server and Managed Server domain directories to save your domain configuration. The configuration files all exist in the `ORACLE_BASE/admin/domain_name` directory. Run the following command to create the backup:

```
APPHOSTn> tar -cvpf edgdomainback.tar ORACLE_BASE/admin/domain_name
```

Note: Create backups on all computers in the application tier by following the steps shown in this section.
This chapter describes how to configure Node Manager according to the Enterprise Deployment recommendations.

Important: Oracle strongly recommends that you read the *Oracle Fusion Middleware Release Notes* for any additional installation and deployment considerations before starting the setup process.

This chapter contains the following topics:

- Section 10.1, "About Setting Up Node Manager"
- Section 10.2, "Changing the Location of the Node Manager Log"
- Section 10.3, "Enabling Host Name Verification Certificates for Node Manager"
- Section 10.4, "Starting Node Manager"

10.1 About Setting Up Node Manager

Node Manager enables you to start and stop the Administration Server and the Managed Servers.

Oracle provides two main recommendations for Node Manager configuration in enterprise deployment topologies:

1. Oracle recommends placing the Node Manager log file in a location different from the default one (which is inside the Middleware home where Node Manager resides). See Section 10.2, "Changing the Location of the Node Manager Log" for further details.

2. Oracle also recommends using host name verification for the communication between Node Manager and the servers in the domain. This requires the use of certificates for the different addresses used in the domain. This chapter explains the steps for configuring certificates in the hosts for host name verification. See Section 10.3, "Enabling Host Name Verification Certificates for Node Manager" for further details.

Note: The passwords used in this guide are provided only as examples. Use secure passwords in a production environment. For example, use passwords that consist of random sequences of both uppercase and lowercase characters as well as numbers.
10.2 Changing the Location of the Node Manager Log

Change the location of the Node Manager log by editing the nodemanager.properties file, located in the MW_HOME/wlserv_10.3/common/nodemanager directory. Add the new location for the log file using the following line:

LogFile=ORACLE_BASE/admin/nodemanager.log

Oracle recommends that this location be outside the MW_HOME directory and inside the admin directory for the EDG.

Restart Node Manager for the change to take effect.

10.3 Enabling Host Name Verification Certificates for Node Manager

Setting up host name verification certificates for communication between Node Manager and the Administration Server consists of the following steps:

- Step 1: Generating Self-Signed Certificates Using the utils.CertGen Utility
- Step 2: Creating an Identity Keystore Using the utils.ImportPrivateKey Utility
- Step 3: Creating a Trust Keystore Using the Keytool Utility
- Step 4: Configuring Node Manager to Use the Custom Keystores
- Step 5: Configuring Managed Servers to Use the Custom Keystores
- Step 6: Changing the Host Name Verification Setting for the Managed Servers

10.3.1 Generating Self-Signed Certificates Using the utils.CertGen Utility

The certificates added in this chapter (as an example) address a configuration where Node Manager listens on a physical host name (APPHOSTn.mycompany.com) and a Managed Server listens on a virtual host name (APPHOSTnVHN1.mycompany.com). Whenever a Managed Server is using a virtual host name, it is implied that the Managed Server can be migrated from one node to another. Consequently, the directory where keystores and trust keystores are maintained ideally must reside on a shared storage that is accessible from the failover. If additional host names are used in the same or different nodes, the steps in this example will need to be extended to:

- Add the required host names to the certificate stores (if they are different from APPHOSTn.mycompany.com and APPHOSTnVHN1.mycompany.com).
- Change the identity and trust store location information for Node Manager (if the additional host names are used by Node Manager) or for the servers (if the additional host names are used by Managed Servers).

Follow these steps to create self-signed certificates on APPHOSTn. These certificates should be created using the network name or alias. For information on using trust CA certificates instead, see “Configuring Identity and Trust” in Oracle Fusion Middleware Securing Oracle WebLogic Server.

The following examples configure certificates for APPHOSTn.mycompany.com and APPHOSTnVHN1.mycompany.com; that is, it is assumed that both a physical host name (APPHOSTn) and a virtual host name (APPHOSTnVHN1) are used in APPHOSTn. It is also assumed that APPHOSTn.mycompany.com is the address used by Node Manager, and APPHOSTnVHN1.mycompany.com is the address used by a Managed Server or the Administration Server. This is the common situation for nodes hosting an Administration Server and an Oracle Fusion Middleware component, or for nodes where two Managed Servers coexist with one server listening on the physical
host name and one server using a virtual host name (which is the case for servers that use migration servers).

1. Set up your environment by running the `WL_HOME/server/bin/setWLSEnv.sh` script. In the Bourne shell, run the following commands:

 `APPHOSTn> cd WL_HOME/server/bin
 APPHOSTn> ./setWLSEnv.sh`

 Verify that the CLASSPATH environment variable is set:
 `APPHOSTn> echo $CLASSPATH`

2. Create a user-defined directory for the certificates. For example, create a directory called `certs` under the `ORACLE_BASE/admin/domain_name/cluster_name` directory. Note that certificates can be shared across WLS domains.

 `APPHOSTn> cd ORACLE_BASE/admin/domain_name/cluster_name
 APPHOSTn> mkdir certs`

3. Change the directory to the directory that you just created:

 `APPHOSTn> cd certs`

4. Run the `utils.CertGen` tool from the user-defined directory to create the certificates for both `APPHOSTn.mycompany.com` and `APPHOSTnVHN1.mycompany.com`.

 Syntax (all on a single line):

   ```java utils.CertGen Key_Passphrase Cert_File_Name Key_File_Name [export | domestic] [Host_Name]
   Examples:
   `APPHOSTn> java utils.CertGen welcome1 APPHOSTn.mycompany.com_cert
   APPHOSTn.mycompany.com_key domestic APPHOSTn.mycompany.com`
   `APPHOSTn> java utils.CertGen welcome1 APPHOSTnVHN1.mycompany.com_cert
   APPHOSTnVHN1.mycompany.com_key domestic APPHOSTnVHN1.mycompany.com`

   Sample output for the command shown in the first example is:

   ...... Will generate certificate signed by CA from CertGenCA.der file
   ...... With Domestic Key Strength
   ...... Common Name will have Hostname APPHOSTn.mycompany.com
   ...... Issuer CA name is CN=CertGenCAB,OU=FOR TESTING ONLY,O=MyOrganization,
   L=MyTown,ST=MyState,C=US`

10.3.2 Creating an Identity Keystore Using the `utils.ImportPrivateKey` Utility

   Follow these steps to create an identity keystore on `APPHOSTn`:

   1. Create a new identity keystore called `appIdentityKeyStore` using the `utils.ImportPrivateKey` utility. Create this keystore under the same directory as the
Enabling Host Name Verification Certificates for Node Manager

certificates (that is, `ORACLE_BASE/admin/domain_name/aserver/domain_name/certs`).

---

**Note:** The identity store is created (if none exists) when you import a certificate and the corresponding key into the identity store using the `utils.ImportPrivateKey` utility.

---

2. Import the certificate and private key for both APPHOSTn.mycompany.com and APPHOSTnVHN1.mycompany.com into the identity store. Make sure that you use a different alias for each of the certificate/key pairs imported.

Syntax (all on a single line):

```java
java utils.ImportPrivateKey Keystore_File Keystore_Password
Certificate_Alias_to_Use Private_Key_Passphrase
Certificate_File Private_Key_File [Keystore_Type]
```

Examples:

```shell
APPHOSTn> java utils.ImportPrivateKey appIdentityKeyStore.jks welcomel
appIdentity1 welcome1 ORACLE_BASE/admin/domain_name/aserver/domain_name/
certs/APPHOSTn.mycompany.com_cert.pem ORACLE_BASE/admin/domain_name/
aserver/domain_name/certs/APPHOSTn.mycompany.com_key.pem

APPHOSTn> java utils.ImportPrivateKey appIdentityKeyStore.jks welcomel
appIdentity2 welcome1 ORACLE_BASE/admin/domain_name/aserver/
domain_name/certs/APPHOSTnVHN1.mycompany.com_cert.pem ORACLE_BASE/admin/
domain_name/aserver/domain_name/certs/APPHOSTnVHN1.mycompany.com_key.pem
```

10.3.3 Creating a Trust Keystore Using the Keytool Utility

You only need to perform the steps in this section for the first Managed Server.

Follow these steps to create the trust keystore on APPHOST1:

1. Copy the standard Java keystore to create the new trust keystore because it already contains most of the root CA certificates needed. Oracle does not recommend modifying the standard Java trust keystore directly. Copy the standard Java CA certificates located under the `WL_HOME/server/lib` directory to the same directory as the certificates. For example:

   ```shell
 APPHOST1> cp WL_HOME/server/lib/cacerts ORACLE_BASE/admin/domain_name/aserver/domain_name/certs/appTrustKeyStore.jks
   ```

2. The default password for the standard Java keystore is 'changeit'. Oracle recommends always changing the default password. Use the keytool utility to do this. The syntax is (all on a single line):

   ```shell
 APPHOST1> keytool -storepasswd -new New_Password -keystore Trust_Keystore
 -storepass Original_Password
   ```

   For example:

   ```shell
 APPHOST1> keytool -storepasswd -new welcomel -keystore appTrustKeyStore.jks
 -storepass changeit
   ```

3. The CA certificate CertGenCA.der is used to sign all certificates generated by the `utils.CertGen` tool. It is located in the `WL_HOME/server/lib` directory. This CA certificate must be imported into the `appTrustKeyStore` using the keytool utility. The syntax is (all on a single line):

   ```shell
 APPHOST1> keytool -import -alias CertGenCA -trustcacerts -keystore appTrustKeyStore.jks
   ```
Enabling Host Name Verification Certificates for Node Manager

Setting Up Node Manager for an Enterprise Deployment

10.3.4 Configuring Node Manager to Use the Custom Keystores

To configure Node Manager to use the custom keystores, add the following lines to the end of the nodemanager.properties file located in the `WL_HOME/common/nodemanager` directory:

```
KeyStores=CustomIdentityAndCustomTrust
CustomIdentityKeyStoreFileName=Identity_Keystore
CustomIdentityKeyStorePassPhrase=Identity_Keystore_Password
CustomIdentityAlias=Identity_Alias
CustomIdentityPrivatePassPhrase=Private_Key_Used_When_Creating_Certificate
```

Make sure to use the correct value for `CustomIdentityAlias` on each node. For example, on APPHOST2, use `appIdentity2`.

For example:

```
KeyStores=CustomIdentityAndCustomTrust
CustomIdentityKeyStoreFileName=ORACLE_BASE/admin/domain_name/aserver/domain_name/certs/appIdentityKeyStore.jks
CustomIdentityKeyStorePassPhrase=welcome1
CustomIdentityAlias=appIdentity2
CustomIdentityPrivatePassPhrase=welcome1
```

The passphrase entries in the nodemanager.properties file get encrypted when you start Node Manager as described in Section 10.4, "Starting Node Manager." For security reasons, you want to minimize the time the entries in the nodemanager.properties file are left unencrypted. After you edit the file, you should start Node Manager as soon as possible so that the entries get encrypted.

10.3.5 Configuring Managed Servers to Use the Custom Keystores

You must perform the steps in this section for the Administration Server and all Managed Servers.

To configure the identity and trust keystores:

1. Log in to the Oracle WebLogic Server Administration Console.
2. In the Change Center, click Lock & Edit.
3. Expand the Environment node in the Domain Structure window.
4. Click Servers. The Summary of Servers page is displayed.
5. Click the name of the server for which you want to configure the identity and trust keystores (bi_server). The settings page for the selected server is displayed.
6. Select Configuration, and then select Keystores.
7. In the Keystores field, change to the Custom Identity and Custom Trust method for storing and managing private keys/digital certificate pairs and trusted CA certificates.
Enabling Host Name Verification Certificates for Node Manager

8. In the Identity section, define attributes for the identity keystore as follows:
   
   a. **Custom Identity Keystore**: Enter the fully qualified path to the identity keystore:
      
      ```
 ORACLE_BASE/admin/domain_name/aserver/domain_name/certs/appIdentityKeyStore.jks
      ```
   
   b. **Custom Identity Keystore Type**: Ensure that this field is blank. Do not keep the default value of JKS.
   
   c. **Custom Identity Keystore Passphrase**: Enter the keystore password (Keystore_Password) you provided in Section 10.3.2, "Creating an Identity Keystore Using the utils.ImportPrivateKey Utility."
      
      This attribute might be optional or required, depending on the type of keystore. All keystores require the passphrase to write to the keystore. However, some keystores do not require the passphrase to read from the keystore. Oracle WebLogic Server only reads from the keystore, so whether you need to define this property depends on the requirements of the keystore.
   
9. In the Trust section, define properties for the trust keystore:
   
   a. **Custom Trust Keystore**: Enter the fully qualified path to the trust keystore:
      
      ```
 ORACLE_BASE/admin/domain_name/aserver/domain_name/certs/appTrustKeyStore.jks
      ```
   
   b. **Custom Trust Keystore Type**: This field defaults to JKS. You must explicitly remove the default value so that the field is blank.
   
   c. **Custom Trust Keystore Passphrase**: Enter the password you provided for New_Password in Section 10.3.3, "Creating a Trust Keystore Using the Keytool Utility."
      
      This attribute might be optional or required, depending on the type of keystore. All keystores require the passphrase to write to the keystore. However, some keystores do not require the passphrase to read from the keystore. Oracle WebLogic Server only reads from the keystore, so whether you define this property depends on the requirements of the keystore.
   
10. Click **Save**.

11. In the Change Center, click **Activate Changes**.

12. Select **Configuration**, then select **SSL**.

13. In the Change Center, click **Lock & Edit**.

14. In the **Private Key Alias** field, enter the alias you used for the host name on which the Managed Server listens.
   
   In the **Private Key Passphrase** and the **Confirm Private Key Passphrase** fields, enter the password for the keystore that you created in Section 10.3.2, "Creating an Identity Keystore Using the utils.ImportPrivateKey Utility."

15. Click **Save**.

16. In the Change Center, click **Activate Changes**.
10.3.6 Changing the Host Name Verification Setting for the Managed Servers

After the steps in the previous sections have been performed, you should set host name verification for the affected Managed Servers to **Bea Host Name Verifier**. To do this, perform the following steps for all Managed Servers:

1. Log in to the Administration Console.
2. In the Change Center, click **Lock & Edit**.
3. Expand the **Environment** node in the Domain Structure window.
4. Click **Servers**. The Summary of Servers page is displayed.
5. Select the Managed Server in the **Names** column of the table. The settings page for the server is displayed.
6. Open the **SSL** tab.
7. Expand the **Advanced** section of the page.
8. Set **Hostname Verification** to **BEA Hostname Verifier**.
9. Click **Save**.
10. In the Change Center, click **Activate Changes**.
11. Restart the Managed Server for which the changes have been applied.

10.4 Starting Node Manager

When using a common/shared storage installation for **MW_HOME**, Node Manager is started from different nodes using the same base configuration (**nodemanager.properties**). In that case, it is required to add the certificate for all the nodes that share the binaries to the appIdentityKeyStore.jks identity store. To do this, create the certificate for the new node and import it to appIdentityKeyStore.jks as described in **Section 10.3.2, "Creating an Identity Keystore Using the utils.ImportPrivateKey Utility."** After the certificates are available in the store, each Node Manager must point to a different identity alias to send the correct certificate to the Administration Server. To do this, set different environment variables before starting Node Manager in the different nodes:

```
APPHOSTn> cd WL_HOME/server/bin
APPHOSTn> export JAVA_OPTIONS=-DCustomIdentityAlias=appIdentity
```

Make sure to specify the custom identity alias specifically assigned to each host. For example, specify appIdentity1 for APPHOST1 and appIdentity2 for APPHOST2.

---

**Note:** Verify that Node Manager is using the appropriate stores and alias from the Node Manager output. Node Manager output should show the following:

```
CustomIdentityKeyStoreFileName=ORACLE_BASE/admin/domain_name/aserver/domain_name/certs/appIdentityKeyStore.jks
CustomIdentityAlias=appIdentityn
```

where \( n \) is 1, 2, ...

If you are not using a common/shared storage installation for **MW_HOME**, run these commands to restart Node Manager on APPHOSTn:
1. Stop the Node Manager process by using CTRL-C in the shell where it was started, or by process identification and kill in the operating system.

2. Start Node Manager, as follows:

   APPHOSTn> cd WL_HOME/server/bin
   APPHOSTn> ./startNodeManager.sh

**Note:** If you have not configured and started Node Manager for the first time, run the `ORACLE_COMMON_HOME/common/bin/setNMProps.sh` script. This will enable the use of the start script, which is required for Oracle Business Intelligence.
This chapter describes the procedures for configuring server migration for the Oracle Business Intelligence enterprise deployment.

**Important:** Oracle strongly recommends that you read the Oracle Fusion Middleware Release Notes for any additional installation and deployment considerations before starting the setup process.

This chapter contains the following topics:

- Section 11.1, "Overview of Server Migration for an Enterprise Deployment"
- Section 11.2, "Setting Up a User and Tablespace for the Server Migration Leasing Table"
- Section 11.3, "Creating a Multi-Data Source Using the Administration Console"
- Section 11.4, "Enabling Host Name Verification Certificates"
- Section 11.5, "Editing the Node Manager Properties File"
- Section 11.6, "Setting Environment and Superuser Privileges for the wlsifconfig.sh Script"
- Section 11.7, "Configuring Server Migration Targets"
- Section 11.8, "Testing the Server Migration"

11.1 Overview of Server Migration for an Enterprise Deployment

Configure server migration for the bi_server1 and bi_server2 Managed Servers. With server migration configured, should a failure occur, the bi_server1 Managed Server restarts on APPHOST2, and the bi_server2 Managed Server restarts on APPHOST1. For this configuration, the bi_server1 and bi_server2 servers listen on specific floating IPs that are failed over by WLS Server Migration.

Perform the steps in the following sections to configure server migration for the Managed Servers.
11.2 Setting Up a User and Tablespace for the Server Migration Leasing Table

Set up a user and tablespace for the server migration leasing table using the create tablespace leasing command.

To set up a user and tablespace for the server migration leasing table:

1. Create a tablespace called leasing. For example, log on to SQL*Plus as the sysdba user and run the following command:

   ```sql
 SQL> create tablespace leasing
 logging datafile 'DB_HOME/oradata/orcl/leasing.dbf'
 size 32m autoextend on next 32m maxsize 2048m extent management local;
   ```

2. Create a user named leasing and assign to it the leasing tablespace:

   ```sql
 SQL> create user leasing identified by welcome1;
 SQL> grant create table to leasing;
 SQL> grant create session to leasing;
 SQL> alter user leasing default tablespace leasing;
 SQL> alter user leasing quota unlimited on LEASING;
   ```

3. Create the leasing table using the leasing.ddl script:

   a. Copy the leasing.ddl file located in either of the following directories to your database node:
      ```
 WL_HOME/server/db/oracle/817
 WL_HOME/server/db/oracle/920
      ```

   b. Connect to the database as the leasing user.

   c. Run the leasing.ddl script in SQL*Plus:
      ```
 SQL> @copy_location/leasing.ddl;
      ```

11.3 Creating a Multi-Data Source Using the Administration Console

Create a multi-data source for the leasing table from the Oracle WebLogic Server Administration Console.

You create a data source for each of the Oracle RAC database instances during the process of setting up the multi-data source, both for these data sources and the global leasing multi-data source. When you create a data source:

- Make sure that this is a non-XA data source.
- The names of the multi-data sources are in the format of `<MultiDS>-rac0`, `<MultiDS>-rac1`, and so on.
- Use Oracle's Driver (Thin) Version 9.0.1, 9.2.0, 10, 11.
- Data sources do not require support for global transactions. Therefore, do not use any type of distributed transaction emulation/participation algorithm for the data source (do not choose the Supports Global Transactions option, or the Logging Last Resource, Emulate Two-Phase Commit, or One-Phase Commit suboptions), and specify a service name for your database.
- Target these data sources to the bi_cluster.
- Make sure the initial connection pool capacity of the data sources is set to 0 (zero). To do this, select Services, and then Data Sources. In the Data Sources list, click
the name of the data source, and then click the **Connection Pool** tab and enter 0 (zero) in the **Initial Capacity** field.

For additional recommendations for setting up a multi-data source for Oracle RAC, see "Considerations for High Availability Oracle Database Access" in the *Oracle Fusion Middleware High Availability Guide*.

To create a multi-data source:

1. In the Domain Structure window in the Administration Console, expand the **Services** node, then click **Data Sources**. The Summary of JDBC Data Sources page is displayed.
2. In the Change Center, click **Lock & Edit**.
3. Click **New**, then select **Multi Data Source**. The Create a New JDBC Multi Data Source page is displayed.
4. For **Name**, enter leasing.
5. For **JNDI Name**, enter jdbc/leasing.
6. For **Algorithm Type**, select **Failover** (the default).
7. Click **Next**.
8. On the Select Targets page, select **bi_cluster** as the target.
9. Click **Next**.
10. On the Select Data Source Type page, select **non-XA driver** (the default).
11. Click **Next**.
12. Click **Create a New Data Source**.
13. For **Name**, enter leasing-rac0. For **JNDI Name**, enter jdbc/leasing-rac0. For **Database Type**, select **Oracle**.

   **Note:** When creating the multi-data sources for the leasing table, enter names in the format of `<MultiDS>-rac0, <MultiDS>-rac1,` and so on.

14. Click **Next**.
15. For **Database Driver**, select **Oracle's Driver (Thin) for RAC Service-Instance connections; Versions:10 and later**.
16. Click **Next**.
17. Deselect **Supports Global Transactions**.
18. Click **Next**.
19. Enter the leasing schema details, as follows:
   - **Service Name**: Enter the service name of the database.
   - **Database name**: Enter the Instance Name for the first instance of the Oracle RAC database.
   - **Host Name**: Enter the name of the node that is running the database. For the Oracle RAC database, specify the first instance's VIP name or the node name as the host name.
   - **Port**: Enter the port number for the database (1521).
20. Click Next.

21. Click Test Configuration and verify that the connection works.

22. Click Next.

23. On the Select Targets page, select bi_cluster as the target.

24. Click Finish.

25. Click Create a New Data Source for the second instance of your Oracle RAC database, target it to the bi_cluster, repeating the steps for the second instance of your Oracle RAC database.

26. On the Add Data Sources page, add leasing-rac0 and leasing-rac1 to your datasource by moving them to the Chosen list.

27. Click Finish.

28. Click Activate Changes.

11.4 Enabling Host Name Verification Certificates

Create the appropriate certificates for host name verification between Node Manager and the Administration Server. This procedure is described in Section 10.3, “Enabling Host Name Verification Certificates for Node Manager.” If you have not yet created these certificates, perform the steps in this section to create certificates for host name verification between Node Manager and the Administration Server.

11.5 Editing the Node Manager Properties File

Edit the Node Manager properties file for the Node Managers in both nodes where server migration is being configured. The nodemanager.properties file is located in the following directory:

WL_HOME/common/nodemanager

Add the following properties to enable server migration to work properly:

Interface=eth0
NetMask=255.255.255.0
UseMACBroadcast=true

- **Interface:** This property specifies the interface name for the floating IP (for example, eth0).

  Do not specify the sub-interface, such as eth0:1 or eth0:2. This interface is to be used without :0 or :1. Node Manager scripts traverse the different :X-enabled IPs to determine which to add or remove. For example, the valid values in Linux environments are eth0, eth1, eth2, eth3, ethn, depending on the number of interfaces configured.

- **NetMask:** This property specifies the net mask for the interface for the floating IP. The net mask should be the same as the net mask on the interface; 255.255.255.0 is used as an example in this document.

- **UseMACBroadcast:** This property specifies whether to use a node’s MAC address when sending ARP packets, or in other words, whether to use the -b flag in the arping command.
Verify in the Node Manager output (the shell where Node Manager is started) that these properties in use. Otherwise, problems might occur during migration. The output should be similar to the following:

```plaintext
... StateCheckInterval=500 Interface=eth0 NetMask=255.255.255.0 ...
```

**Note:** The following steps are not required if the server properties (start properties) have been properly set and Node Manager can start the servers remotely.

1. Set the following property in the nodemanager.properties file:
   - **StartScriptEnabled:** Set this property to ‘true’. This is required for Node Manager to start the Managed Servers using start scripts.

2. Start Node Manager on APPHOST1 and APPHOST2 by running the startNodeManager.sh script, which is located in the `WL_HOME/server/bin` directory.

**Note:** When running Node Manager from a shared storage installation, multiple nodes are started using the same nodemanager.properties file. However, each node may require different NetMask or Interface properties. In this case, specify individual parameters on a per-node basis using environment variables. For example, to use a different interface (eth3) in HOSTn, use the Interface environment variable as follows:

```plaintext
HOSTn> export JAVA_OPTIONS=-DInterface=eth3
```

Then, start Node Manager after the variable has been set in the shell.

## 11.6 Setting Environment and Superuser Privileges for the wlsifconfig.sh Script

Set the environment and superuser privileges for the wlsifconfig.sh script, as follows:

1. Ensure that your PATH environment variable includes these files:

<table>
<thead>
<tr>
<th>File</th>
<th>Located in this directory</th>
</tr>
</thead>
<tbody>
<tr>
<td>wlsifconfig.sh</td>
<td><code>ORACLE_BASE/admin/domain_name/mserver/domain_name/bin/server_migration</code></td>
</tr>
<tr>
<td>wlscontrol.sh</td>
<td><code>WL_HOME/common/bin</code></td>
</tr>
<tr>
<td>nodemanager.domains</td>
<td><code>WL_HOME/common/nodemanager</code></td>
</tr>
</tbody>
</table>

2. Grant sudo configuration for the wlsifconfig.sh script.
   - Configure sudo to work without a password prompt.
For security reasons, sudo should be restricted to the subset of commands required to run the `wlsifconfig.sh` script. For example, perform these steps to set the environment and superuser privileges for the `wlsifconfig.sh` script:

- **a.** Grant sudo privilege to the WebLogic user (‘oracle’) with no password restriction, and grant execute privilege on the `/sbin/ifconfig` and `/sbin/arping` binaries.

- **b.** Make sure the script is executable by the WebLogic user (‘oracle’). The following is an example of an entry inside `/etc/sudoers` granting sudo execution privilege for `oracle` and also over `ifconfig` and `arping`:

  \[
  \text{oracle ALL=NOPASSWD: /sbin/ifconfig,/sbin/arping}
  \]

**Note:** Ask the system administrator for the sudo and system rights as appropriate to this step.

---

### 11.7 Configuring Server Migration Targets

Configure server migration targets. You first assign all the available nodes for the cluster’s members and then specify candidate machines (in order of preference) for each server that is configured with server migration. Follow these steps to configure cluster migration in a cluster:

1. Log in to the Administration Console (http://Host:Admin_Port/console). Typically, `Admin_Port` is 7001 by default.

2. In the Domain Structure window, expand **Environment** and select **Clusters**. The Summary of Clusters page is displayed.

3. Click the cluster for which you want to configure migration (bi_cluster) in the Name column of the table.

4. Click the **Migration** tab.

5. In the Change Center, click **Lock & Edit**.

6. In the **Available** field, select the machine to which to allow migration and click the right arrow. In this case, select APPHOST1 and APPHOST2.

7. Select the data source to be used for automatic migration. In this case, select the leasing data source.

8. Click **Save**.

9. Click **Activate Changes**.

10. Set the candidate machines for server migration. You must perform this task for all of the Managed Servers as follows:

    - **a.** In the Domain Structure window of the Administration Console, expand **Environment** and select **Servers**.

    **Tip:** Click **Customize this table** in the Summary of Servers page and move Current Machine from the Available window to the Chosen window to view the machine on which the server is running. This will be different from the configuration if the server gets migrated automatically.

    - **b.** Click the server for which you want to configure migration.

    - **c.** Click the **Migration** tab.
11.8 Testing the Server Migration

Perform these steps to verify that server migration is working properly:

From APPHOST1:
1. Stop the bi_server1 Managed Server. To do this, run this command:
   
   ```
 APPHOST1> kill -9 pid
   ```
   
   where `pid` specifies the process ID of the Managed Server. You can identify the `pid` in the node by running this command:
   
   ```
 APPHOST1> ps -ef | grep bi_server1
   ```

2. Watch the Node Manager console. You should see a message indicating that bi_server1’s floating IP has been disabled.

3. Wait for Node Manager to try a second restart of bi_server1. It waits for a fence period of 30 seconds before trying this restart.

4. After Node Manager restarts the server, stop it again. Node Manager should now log a message indicating that the server will not be restarted again locally.

From APPHOST2:
1. Watch the local Node Manager console. After 30 seconds since the last try to restart bi_server1 on node 1, Node Manager on node 2 should prompt that the floating IP for bi_server1 is being brought up and that the server is being restarted in this node.

2. Access one of the applications (for example, BI Publisher) using the same IP.

Verification From the Administration Console

Migration can also be verified in the Administration Console:

1. Log in to the Administration Console.

2. Click Domain on the left console.

3. Click the Monitoring tab and then the Migration subtab.

   The Migration Status table provides information on the status of the migration, as shown in the following image:
Note: After a server is migrated, to fail it back to its original node/computer, stop the Managed Server from the Administration Console and then start it again. The appropriate Node Manager will start the Managed Server on the computer to which it was originally assigned.
This chapter describes how to integrate Oracle Business Intelligence with Oracle Identity Management.

Before you perform the steps in this chapter, you must have successfully completed the installation and configuration steps described in both of the following:

- Oracle Fusion Middleware Enterprise Deployment Guide for Oracle Identity Management
- The previous chapters of this guide

**Important:** Oracle strongly recommends that you read the Oracle Fusion Middleware Release Notes for any additional installation and deployment considerations before starting the setup process.

This chapter contains the following topics:

- Section 12.1, "Configuring the Credential and Policy Store"
- Section 12.2, "Oracle Access Manager 10g Integration"
- Section 12.3, "Oracle Access Manager 11g Integration"
- Section 12.4, "Backing Up the Identity Management Configuration"

### 12.1 Configuring the Credential and Policy Store

This section contains the following topics:

- Section 12.1.1, "Overview of Credential and Policy Store Configuration"
- Section 12.1.2, "Configuring the Credential Store"
- Section 12.1.3, "Configuring the Policy Store"
- Section 12.1.4, "Reassociating Credentials and Policies"
- Section 12.1.5, "Refreshing User GUIDs After Identity Store Reassociation"

#### 12.1.1 Overview of Credential and Policy Store Configuration

Oracle Fusion Middleware allows using different types of credentials and policy stores in a WebLogic domain. Domains can use stores based on an XML file or on different types of LDAP providers. When a domain uses an LDAP store, all policy and credential data is kept and maintained in a centralized store. However, when using
XML policy stores, the changes made on Managed Servers are not propagated to the Administration Server unless they use the same domain home. Because the Oracle Business Intelligence EDG topology uses different domain homes for the Administration Server and the Managed Server, Oracle requires the use of an LDAP store as policy and credential store for integrity and consistency.

By default, Oracle WebLogic Server domains use an XML file for the policy store. The following sections describe the steps required to change the default store to Oracle Internet Directory LDAP for credentials or policies.

---

**Note:** The back-end repository for the policy store and the credential store must use the same kind of LDAP server. To preserve this coherence, note that reassociating one store implies reassociating the other one, that is, the reassociation of both credential and the policy stores is accomplished as a unit using Oracle Enterprise Manager Fusion Middleware Control or the WLST command `reassociateSecurityStore`.

---

### 12.1.2 Configuring the Credential Store

This section explains how to configure the credential store and contains the following topics:

- Section 12.1.2.1, "Creating Users and Groups"
- Section 12.1.2.2, "Backing Up Configuration Files"
- Section 12.1.2.3, "Configuring the Identity Store to Use LDAP"
- Section 12.1.2.4, "Setting the Order of Providers"
- Section 12.1.2.5, "Moving the WebLogic Administrator to LDAP"

#### 12.1.2.1 Creating Users and Groups

Create the users and groups you need in Oracle Internet Directory, if you have not done so already. See the *Oracle Fusion Middleware Administrator’s Guide for Oracle Internet Directory* for more information.

#### 12.1.2.2 Backing Up Configuration Files

To be safe, first back up the relevant configuration files:

- `ORACLE_BASE/admin/domain_name/aserver/domain_name/config/config.xml`
- `ORACLE_BASE/admin/domain_name/aserver/domain_name/config/fmwconfig/jps-config.xml`
- `ORACLE_BASE/admin/domain_name/aserver/domain_name/config/fmwconfig/system-jazn-data.xml`

Also back up the `boot.properties` file for the Administration Server.

#### 12.1.2.3 Configuring the Identity Store to Use LDAP

To configure the credential store to use LDAP, set the proper authenticator using the Oracle WebLogic Server Administration Console, as follows:

1. Log in to the Administration Console.
2. Click the **Security Realms** link on the left navigation bar.
3. Click the myrealm default realm entry to configure it.

4. Open the Providers tab within the realm. Notice that there is a DefaultAuthenticator provider configured for the realm.

5. In the Change Center, click Lock & Edit.

6. Click New to add a new provider.

7. Enter a name for the provider, such as OIDAuthenticator.

8. Select the OracleInternetDirectoryAuthenticator type from the list of authenticators.

9. Click OK.

10. In the Providers screen, click the newly created authenticator.

11. Set the control flag to SUFFICIENT. This indicates that if a user can be authenticated successfully by this authenticator, then that authentication should be accepted and any additional authenticators should not be invoked. If the authentication fails, it will be passed to the next authenticator in the chain.

    Make sure that all subsequent authenticators also have their control flag set to SUFFICIENT. In particular, check the control flag for the DefaultAuthenticator and set it to SUFFICIENT if necessary.

12. Click Save.

13. Open the Provider Specific tab, then enter details specific to your LDAP server, as shown in Table 12–1.

14. Click Save when done.

15. Click Activate Changes to propagate the changes.

Table 12–1  LDAP Server Details

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host</td>
<td>For example: oid.mycompany.com</td>
<td>The host name of the LDAP server.</td>
</tr>
<tr>
<td>Port</td>
<td>For example: 636</td>
<td>The LDAP server port number.</td>
</tr>
<tr>
<td>Principal</td>
<td>For example: cn=orcladmin</td>
<td>The LDAP user DN used to connect to the LDAP server.</td>
</tr>
<tr>
<td>Credential</td>
<td>your_password</td>
<td>The password used to connect to the LDAP server.</td>
</tr>
<tr>
<td>SSL Enabled</td>
<td>Selected</td>
<td>Specifies whether SSL protocol is used when connecting to the LDAP server.</td>
</tr>
<tr>
<td>User Base DN</td>
<td>For example: cn=Users,dc=mycompany, dc=com</td>
<td>Specifies the DN under which your Users start.</td>
</tr>
<tr>
<td>Group Base DN</td>
<td>For example: cn=Groups,dc=mycompany, dc=com</td>
<td>Specifies the DN that points to your Groups node.</td>
</tr>
<tr>
<td>User Name Attribute</td>
<td>cn</td>
<td>The user name attribute.</td>
</tr>
<tr>
<td>Use Retrieved User Name as Principal</td>
<td>Selected</td>
<td>This option must be enabled.</td>
</tr>
</tbody>
</table>
16. Restart the Administration Server and the Managed Servers.

12.1.2.4 Setting the Order of Providers
Reorder the OID Authenticator and Default Authenticator and ensure that the control flags for each authenticator is set as follows:

- OID LDAP Authenticator: SUFFICIENT
- Default Authenticator: SUFFICIENT

Restart the Administration Server, the Managed Servers, and the Oracle Business Intelligence system components.

12.1.2.5 Moving the WebLogic Administrator to LDAP
After LDAP has been configured, all users (including administrative users) should be LDAP users. This must be configured by the LDAP administrator. An administration group should be created with the necessary users. For information about the required steps, see “Creating Users and Groups for Oracle Identity Manager” in the Oracle Fusion Middleware Enterprise Deployment Guide for Oracle Identity Management. Use 'BIAdministrators' for the group name.

After this group is created, you must update the role definition for the WLS Global Admin role in WebLogic Server, as follows:

1. Log in to the Administration Console.
2. Go to the location that defines the Admin role by selecting Security Realms, then your realm name, then Role and Policies, then Global Roles, then Roles, and then Admin. Click the View Role Conditions link.
   By default, you can see that the Administrators group in Oracle Internet Directory defines who has the Admin role in WebLogic Server.
3. Click Add Conditions to add a different group name (BIAdministrators). Then, delete the Administrators group, leaving the new one you added.
4. Click Save.
5. After making this change, any members of the new group specified will be authorized to administer WebLogic Server.

12.1.2.5.1 Updating the boot.properties File and Restarting the System
The boot.properties file for the Administration Server must be updated with the WebLogic admin user created in Oracle Internet Directory. Follow these steps to update the boot.properties file:

1. On APPHOST1, go to the following directory:
   APPHOST1> cd ORACLE_BASE/admin/domain_name/aserver/
domain_name/servers/AdminServer/security

2. Rename the existing boot.properties file:
   APPHOST1> mv boot.properties boot.properties.backup

3. Use a text editor to create a file called boot.properties under the security directory. Enter the following lines in the file:
   username=admin_user
   password=admin_user_password

4. Save the file.
5. Stop and restart the Administration Server.

12.1.3 Configuring the Policy Store

The domain policy store is the repository of system and application-specific policies. In a given domain, there is one store that stores all policies that all applications deployed in the domain can use. This section provides the steps to configure Oracle Internet Directory LDAP as the policy store for the Oracle Business Intelligence EDG topology.

To ensure proper access to the Oracle Internet Directory LDAP server directory used as a policy store, you must set a node in the server directory.

An Oracle Internet Directory administrator must follow these steps to create the appropriate node in the Oracle Internet Directory server:

1. Create an LDIF file (jpstestnode.ldif in this example) specifying the following DN and CN entries:
   
   ```
 dn: cn=jpsroot_bi,dc=mycompany,dc=com
 cn: jpsroot_bi
 objectclass: top
 objectclass: OrclContainer
   ```
   
   The DN of the root node (jpsroot_bi in the previous step) must be distinct from any other DN. One root node can be shared by multiple WebLogic domains. It is not required that his node be created at the top level, as long as read and write access to the subtree is granted to the Oracle Internet Directory administrator.

2. Import this data into the Oracle Internet Directory server using the command `ldapadd`, as shown in the following example:

   ```
 OIDHOST1> ORACLE_HOME/bin/ldapadd -h ldap_host -p ldap_port -D cn=orcladmin -w password -c -v -f jpstestnode.ldif
   ```

3. Verify that the node has been successfully inserted using the command `ldapsearch`, as shown in the following example:

   ```
 OIDHOST1> ORACLE_HOME/bin/ldapsearch -h ldap_host -p ldap_port -D cn=orcladmin -w password -b "cn=jpsroot_bi,dc=mycompany,dc=com" objectclass="orclContainer"
   ```

4. When using Oracle Internet Directory as the LDAP-Based policy store, run the utility `oidstats.sql` in the INFRADBHOST to generate database statistics for optimal database performance:

   ```
 OIDHOST1> connect ods/welcome1
 OIDHOST1> @ORACLE_HOME/ldap/admin/oidstats.sql
   ```

   **Note:** The oidstats.sql utility only needs to be run once after the initial provisioning.

12.1.4 Reassociating Credentials and Policies

To reassociate the policy and credential store with Oracle Internet Directory, use the WLST `reassociateSecurityStore` command, as follows:

1. From APPHOST1, start the wlst shell:

   ```
 APPHOST1> cd ORACLE_COMMON_HOME/common/bin
 APPHOST1> ./wlst.sh
   ```
2. Connect to the WebLogic Administration Server using the `wlst connect` command, as follows:

   ```
 connect ("AdminUser", "AdminPassword", "t3://hostname:port")
   ```

   For example:

   ```
 connect ("weblogic", "welcome1", "t3://ADMINVHN:7001")
   ```

3. Run the `reassociateSecurityStore` command, as follows:

   ```
 reassociateSecurityStore(domain="domainName", admin="cn=admin_user_name", password="orclPassword", ldapurl="ldap://LDAPHOST:LDAPPORT", servertype="OID", jpsroot="cn=jpsroot_bi")
   ```

   For example:

   ```
 wls:/bifoundation_domain/serverConfig>
 reassociateSecurityStore(domain='bifoundation_domain', admin='cn=orcladmin', password='welcome1', ldapurl='ldap://oid.mycompany.com:389', servertype='OID', jpsroot='cn=jpsroot_bi,dc=mycompany,dc=com')
   ```

4. Restart the Administration Server after the command completes successfully.

   **Note:** For credential and policy changes to take effect, the servers in the domain must be restarted.

### 12.1.5 Refreshing User GUIDs After Identity Store Reassociation

This section contains the following topics:

- Section 12.1.5.1, "About User GUIDs"
- Section 12.1.5.2, "About Refreshing GUIDs"
- Section 12.1.5.3, "Refreshing User GUIDs"

#### 12.1.5.1 About User GUIDs

In Oracle Business Intelligence 11g Release 1 (11.1.1), users are recognized by their global unique identifiers (GUIDs), not by their names. GUIDs are identifiers that are completely unique for a given user. Using GUIDs to identify users provides a higher level of security because it ensures that data and metadata is uniquely secured for a specific user, independent of the user name.

Oracle recommends that you follow these two best practices to ensure that GUIDs are consistently applied in each phase of the development to production lifecycle:

- Ensure that a fan-out replica of the identity store is used between development, test, and production systems, so that user GUIDs are consistent and identical across the complete development to production lifecycle. See “Setting Up Replication” in the *Oracle Fusion Middleware Administrator’s Guide for Oracle Internet Directory* for further information about creating fan-out replicas.

- Wherever possible, secure access to data and metadata using application roles rather than individual users.

#### 12.1.5.2 About Refreshing GUIDs

GUID refresh (also called GUID synchronization or GUID regeneration) updates any metadata references to user GUIDs in the Oracle BI repository and Oracle BI
Presentation Catalog. During the GUID refresh process, each user name is looked up in the identity store. Then, all metadata references to the GUID associated with that user name are replaced with the GUID in the identity store.

GUID refresh might be required when Oracle Business Intelligence is reassociated with an identity store that has different GUIDs for the same users. This situation might occur when reassociating Oracle Business Intelligence with a different type of identity store and should be a rare event.

Note that if Oracle best practices are not observed and Oracle Business Intelligence repository data is migrated between systems that have different GUIDs for the same users, GUID refresh is required for the system to function. This is not a recommended practice, because it raises the risk that data and metadata secured to one user (for example, John Smith, who left the company two weeks ago) becomes accessible to another user (for example, John Smith, who joined last week). Using application roles wherever possible and using GUIDs consistently across the full development production lifecycle prevents this problem from occurring.

12.1.5.3 Refreshing User GUIDs
To refresh user GUIDs, perform the following steps on APPHOST1 and APPHOST2. Note that GUID refresh must occur with only one node operating at a time.

1. Stop Oracle BI Server and Presentation Services on all nodes except where you are refreshing the user GUIDs. For example:
   ```
 cd ORACLE_BASE/admin/instancen/bin
 ./opmnctl stopproc ias-component=coreapplication_obips1
 ./opmnctl stopproc ias-component=coreapplication_obis1
   ```

2. Update the FMW_UPDATE_ROLE_AND_USER_REF_GUIDS parameter in NQSConfig.INI:
   a. Open NQSConfig.INI for editing at:
      ```
 ORACLE_INSTANCE/config/OracleBIServerComponent/coreapplication_obisn
      ```
   b. Locate the FMW_UPDATE_ROLE_AND_USER_REF_GUIDS parameter and set it to YES, as follows:
      ```
 FMW_UPDATE_ROLE_AND_USER_REF_GUIDS = YES;
      ```
   c. Save and close the file.

3. Update the Catalog element in the instanceconfig.xml file:
   a. Open instanceconfig.xml for editing at:
      ```
 ORACLE_INSTANCE/config/OracleBIPresentationServicesComponent/coreapplication_obipsn
      ```
   b. Locate the Catalog element and update it as follows:
      ```
 <Catalog>
 <UpgradeAndExit>false</UpgradeAndExit>
 <UpdateAccountGUIDs>UpdateAndExit</UpdateAccountGUIDs>
 </Catalog>
      ```
   c. Save and close the file.

4. On the node where you are refreshing the GUIDs, start the Oracle BI Server and Presentation Services using opmnctl:
   ```
 cd ORACLE_BASE/admin/instancen/bin
 ./opmnctl startproc ias-component=coreapplication_obis1
   ```
After you confirm that the Oracle BI Server is running, then start Presentation Services:

```bash
./opmnctl startproc ias-component=coreapplication_obips1
```

5. **Set the** `FMW_UPDATE_ROLE_AND_USER_REF_GUIDS` **parameter in** `NQSConfig.INI` **back to NO.**

**Important:** You must perform this step to ensure that your system is secure.

6. Update the Catalog element in `instanceconfig.xml` to remove the UpdateAccount GUIDs entry.

7. Restart the Oracle Business Intelligence system components using `opmnctl`:

   ```bash
 cd ORACLE_BASE/admin/instance/bin
 ./opmnctl stopall
 ./opmnctl startall
   ```

---

**12.2 Oracle Access Manager 10g Integration**

This section describes how to set up Oracle Access Manager 10g as a single sign-on solution for the Oracle Business Intelligence topology.

This section contains the following topics:

- **Section 12.2.1, "About Oracle Access Manager Integration"**
- **Section 12.2.2, "Using the Oracle Access Manager Configuration Tool"**
- **Section 12.2.3, "Updating the Host Identifier"**
- **Section 12.2.4, "Updating the WebGate Profile"**
- **Section 12.2.5, "Installing and Configuring WebGate"**
- **Section 12.2.6, "Configuring IP Validation for WebGate"**
- **Section 12.2.7, "Setting Up WebLogic Authenticators"**
- **Section 12.2.8, "Configuring Applications"**

---

**12.2.1 About Oracle Access Manager Integration**

The instructions for Oracle Access Manager 10g assume an existing Oracle Access Manager installation, complete with Access Managers and a policy protecting the Policy manager. For more information about installing and configuring an Oracle Access Manager installation, see the *Oracle Fusion Middleware Enterprise Deployment Guide for Oracle Identity Management*.

The configuration described in this chapter includes a directory service such as Oracle Internet Directory, either as a standalone component or as part of an Oracle Virtual Directory configuration. This section provides the necessary steps for configuring your Oracle Business Intelligence installation with Oracle Internet Directory.

In addition, the Oracle Access Manager installation should have its own Web server configured with WebGate. This section also provides steps for using the Oracle Access Manager Web server as a delegated authentication server.
12.2.2 Using the Oracle Access Manager Configuration Tool

This section explains how to use the Oracle Access Manager Configuration Tool and contains the following topics:

- Section 12.2.2.1, "About the Oracle Access Manager Configuration Tool"
- Section 12.2.2.2, "Collecting Information for the Oracle Access Manager Configuration Tool"
- Section 12.2.2.3, "Running the Oracle Access Manager Configuration Tool"
- Section 12.2.2.4, "Verifying Successful Creation of the Policy Domain and AccessGate"

12.2.2.1 About the Oracle Access Manager Configuration Tool

The Oracle Access Manager Configuration Tool (oamcfgtool) starts a series of scripts and sets up the required policies. It requires various parameters as inputs. Specifically, it creates the following:

- A Form Authentication scheme in Oracle Access Manager
- Policies to enable authentication in Oracle WebLogic Server
- A WebGate entry in Oracle Access Manager to enable Oracle HTTP Server WebGates (from your Web tier) to protect your configured application
- A Host Identifier, depending on the scenario chosen (a default host identifier would be used, if not provided)
- Policies to protect and unprotect the application-specific URL

12.2.2.2 Collecting Information for the Oracle Access Manager Configuration Tool

Collect or prepare the following information before running the Oracle Access Manager Configuration Tool:

- Password: Create a secure password. This will be used as the password for the WebGate installation performed later.
- LDAP Host: The host name of the Directory Server or load balancer address, for HA/EDG configurations.
- LDAP Port: The port number of the Directory Server.
- LDAP USER DN: The DN of the LDAP administrator user (for example, "cn=orcladmin").
- LDAP password: The password of the LDAP administrator user.
- OAM_AA_HOST: The host name of the Oracle Access Manager instance.
- OAM_AA_PORT: The Oracle Access Manager port number.

12.2.2.3 Running the Oracle Access Manager Configuration Tool

The Oracle Access Manager Configuration Tool is located in the following directory:

```
MW_HOME/oracle_common/modules/oracle.oamprovider_11.1.1
```

The tool can be run from any computer with the required installation files. In this case, you run it from APPHOST1.
Run the Oracle Access Manager Configuration Tool, as follows (all on a single line):

```
MW_HOME/jrockit_version/bin/java -jar oamcfgtool.jar mode=CREATE
app_domain="bifoundation_domain" protected_uris="$PROTECTED_URI_LIST"
public_uris="$PUBLIC_URI_LIST" ldap_host="oid.mycompany.com" ldap_port=389
ldap_userdn="cn=LDAP_admin_user_name"
dlап_userpassword=LDAP_admin_user_password oam_aaa_host=OAMHOST1
oam_aaa_port=OAMPORT1 oam_aaa_mode=simple
```

For $PROTECTED_URI_LIST, use:

```
*/analytics/saw.dll,/*xmlpserver,/*/ui,/*/biooffice,/*/em,/*/console,/*/ui/adfAuthentication"
```

For $PUBLIC_URI_LIST, use:

```
/analytics,/analytics/saw.dll/*xmlpserver/services,*/xmlpserver/report_service,*/xmlpserver/ReportTemplateService.xls,*/xmlpserver/Guest,*/ui/do/logout,*/ui/images,*/biooffice/services/*xmlpserver?WSDL"
```

You will be prompted for the app_agent_password.

---

**Note:** When integrating with Oracle Identity Management, use the transport mode currently in use by the Oracle Identity Management servers. For example, Open, Simple, or Cert.

---

12.2.2.4 Verifying Successful Creation of the Policy Domain and AccessGate

This section covers how to validate that the Policy Domain and AccessGate were created successfully.

**Verifying the Policy Domain**

Follow these steps to verify the policy domain:

1. Log on to Oracle Access Manager at:
   
   http://OAMADMINHOST:port/access/oblix

2. Click **Policy Manager**.

3. Click the **My Policy Domains** link on the left panel. A list of all policy domains is displayed, including the domain you just created.

4. Click the link to the policy domain you just created. The General area of the domain is displayed.

5. Click the **Resources** tab. The URIs you specified are displayed. You can also click other tabs to view other settings.

**Verifying the AccessGate Configuration**

Follow these steps to verify the AccessGate configuration:

1. Click the **Access System Console** link on the top right. Note that this link toggles between Access System Console and Policy Manager when you click it.
2. Click the Access System Configuration tab.
3. Click the AccessGate Configuration link in the left pane.
4. Enter bifoundation_domain as the search criterion (or another substring in your app_domain), and then click Go.
   The AccessGate for the domain you just created is displayed. This result will have the suffix _AG (for example, bifoundation_domain_AG).
5. Click the AccessGate for your domain to see details.

12.2.3 Updating the Host Identifier

The Oracle Access Manager Configuration Tool uses the value of the app_domain parameter to create a host identifier for the policy domain. This host identifier must be updated with all the host name variations for the host so that the configuration works correctly.

Follow these steps to update the host identifier created by the Oracle Access Manager Configuration Tool:

1. Navigate to the Access System Console by entering the following URL in your Web browser:
   
   http://hostname:port/access/oblix

   where hostname refers to the host where the WebPass Oracle HTTP Server instance is running, and port refers to the HTTP port of the Oracle HTTP Server instance.

2. When prompted for a username and password, log in as an administrator. Click OK.

3. On the Access System main page, click the Access System Console link.


5. On the Access System Configuration page, click Host Identifiers on the bottom left.

6. On the List all host identifiers page, click the host identifier created by the Oracle Access Manager Configuration Tool. For example, select bifoundation_domain.

7. On the Host Identifier Details page, click Modify.

8. On the Modifying host identifier page, add all the possible host name variations for the host. Click the plus and minus symbols to add or delete fields as necessary.

   The Preferred HTTP Host value used in the Access System Configuration must be added as one of the host name variations. For example:


9. Select Update Cache and then click Save.

   The following message is displayed: "Updating the cache at this point will flush all the cache in the system. Are you sure?"

   Click OK to finish saving the configuration changes.

10. Verify the changes on the Host Identifier Details page.
### 12.2.4 Updating the WebGate Profile

The Oracle Access Manager Configuration Tool populates the Preferred_HTTP_Host and hostname attributes for the WebGate profile that is created with the value of the app_domain parameter. Both of these attributes must be updated with the correct values for the configuration to work.

Follow these steps to update the WebGate profile created by the Oracle Access Manager Configuration Tool:

1. Navigate to the Access System Console by entering the following URL in your Web browser:
   
   ```
 http://hostname:port/access/oblix
   ```
   
   where `hostname` refers to the host where the WebPass Oracle HTTP Server instance is running, and `port` refers to the HTTP port of the Oracle HTTP Server instance.

2. When prompted for a username and password, log in as an administrator. Click OK.

3. On the Access System main page, click the **Access System Console** link.

4. On the Access System Console page, click the **Access System Configuration** tab to display the AccessGate Search page.

5. Enter the appropriate search criteria and click **Go** to display a list of AccessGates.

6. Select the AccessGate created by the Oracle Access Manager Configuration Tool. For example: bifoundation_domain_AG

7. On the AccessGate Details page, select **Modify** to display the Modify AccessGate page.

8. On the Modify AccessGate page, update the following:

   - **Hostname**: Update the hostname with the name of the computer where WebGate is running. For example: webhost1.mycompany.com

   - **Preferred HTTP Host**: Update the Preferred_HTTP_Host with one of the host name variations specified in the previous section. For example: webhost1.mycompany.com:7777

   - **Primary HTTP Cookie Domain**: Update the Primary HTTP Cookie Domain with the Domain suffix or the host identifier. For example: mycompany.com

   - **Port**: Update the port with the port where WebGate is running. For example: 7777*

   - **Maximum Connections**: Set to 4.

9. Click **Save**, then click **OK** to confirm.

10. Verify the values displayed on the Details for AccessGate page to confirm that the updates were successful.

### 12.2.5 Installing and Configuring WebGate

WebGate must be installed on each of the WEBHOSTn computers to secure the Web tier. To do this, follow these steps:

1. Launch the WebGate installer using the following command:

   ```
 ./Oracle_Access_Manager10_1_4_3_0_linux_OHS11g_WebGate -gui
   ```

2. The Welcome screen is displayed. Click **Next**.
3. In the Customer Information screen, enter the user name and user group under which the Web server is running. Click **Next** to continue.

4. In the installation target screen, specify the directory where WebGate should be installed. Click **Next** to continue.

5. In the installation summary screen, click **Next**.

6. Download the required GCC runtime libraries for WebGate as instructed in the WebGate configuration screen, and use **Browse** to point to their location on the local computer. Click **Next** to continue.

7. The installer now creates the required artifacts. After that process is complete, click **Next** to continue.

8. In the transport security mode screen, select the same mode that was configured for the BI Access Gate (for example, **Simple**) and click **Next** to continue.

9. **Note:** When integrating with Oracle Identity Management, use the transport mode currently in use by the Oracle Identity Management servers. For example, Open, Simple, or Cert.

9. In the WebGate Configuration screen, provide the details of the Access Server that will be used. You must provide the following information:

   - WebGate ID, as provided when the Oracle Access Manager Configuration Tool was executed
   - Access Server ID, as reported by the Oracle Access Manager Access Server configuration
   - Access Server host name, as reported by the Oracle Access Manager Access Server configuration
   - Access Server port number, as reported by the Oracle Access Manager Access Server configuration
   - Global Access Protocol Pass Phrase

   You can obtain these details from your Oracle Access Manager administrator. Click **Next** to continue.

10. In the Configure Web Server screen, click **Yes** to automatically update the Web server. Click **Next** to continue.

11. In the next Configure Web Server page, a message informs you that the Web Server configuration has been modified for WebGate. Click **Yes** to confirm.

12. Stop and start your Web server for the configuration updates to take effect. Click **Next** to continue.

13. In the next Configure Web Server screen, a message about SSL is displayed. Click **Next** to continue.

14. In the next Configure Web Server screen, a message with the location of the document that has information about the rest of the product setup and Web server configuration is displayed. Choose **No** and click **Next** to continue.
The final Configure Web Server screen appears with a message to manually launch a browser and open the HTML document for further information on configuring your Web server. Click Next to continue.

The Oracle COREid Readme screen appears. Review the information on the screen and click Next to continue.

A message appears, providing details of the installation and informing you that the installation was successful.

12.2.6 Configuring IP Validation for WebGate

IP Validation determines if a client’s IP address is the same as the IP address stored in the ObSSOCookie generated for single sign-on. IP Validation can cause issues in systems using load balancer devices configured to perform IP termination, or when the authenticating webgate is front-ended by a different load balancer from the one front-ending the enterprise deployment. To configure your load balancer so that it is not validated in these cases, follow these steps:

1. Navigate to the Access System Console using the following URL:

   http://hostname:port/access/oblix

   Where hostname refers to the host where the WebPass Oracle HTTP Server instance is running, and port refers to the HTTP port of the Oracle HTTP Server instance.

2. On the Access System main page, click the Access System Console link, and then log in as an administrator.

3. On the Access System Console main page, click Access System Configuration, and then click the Access Gate Configuration link on the left pane to display the AccessGates Search page.

4. Enter the appropriate search criteria and click Go to display a list of AccessGates.

5. Select the AccessGate created by the Oracle Access Manager configuration tool.

6. Click Modify at the bottom of the page.

7. In the IPValidationException field, enter the address of the load balancer used to front-end the deployment.

8. Click Save at the bottom of the page.

12.2.7 Setting Up WebLogic Authenticators

The instructions in this section assume that you have already set up the LDAP Authenticators.

This section contains the following topics:

- Section 12.2.7.1, “Setting Up the Oracle Access Manager ID Asserter”
- Section 12.2.7.2, “Setting the Order of Providers”

12.2.7.1 Setting Up the Oracle Access Manager ID Asserter

To set up the Oracle Access Manager ID Asserter, follow these steps:

1. Log in to the Administration Console.

2. In the Change Center, click Lock & Edit.

3. Navigate to SecurityRealms\myrealm\Providers.
4. Click **New** and select **OAM Identity Asserter** from the drop-down menu.

5. Name the asserter (for example: OAM ID Asserter) and click **OK**.

6. Click the newly added asserter to see the configuration screen for OAM Identity Asserter.

7. Set the control flag to **REQUIRED** and click **Save**.

8. Open the Provider Specific tab to configure the following required settings:
   - **Primary Access Server**: Provide the Oracle Access Manager server endpoint information in **HOST:PORT** format.
   - **AccessGate Name**: Provide the name of the AccessGate (for example, bifoundation_domain_AG).
   - **AccessGate password**: Provide the password for the AccessGate.

9. Click **Save** when done.

10. Click **Activate Changes** to propagate the changes.

11. Restart the Administration Server and the Managed Servers.

### 12.2.7.2 Setting the Order of Providers

Reorder the Oracle Access Manager Identity Asserter, Oracle Internet Directory Authenticator, and Default Authenticator by ensuring that the control flag for each authenticator is set, as follows:

- OAM Identity Asserter: REQUIRED
- OID LDAP Authenticator: SUFFICIENT
- Default Authenticator: SUFFICIENT

Then, restart the Administration Server, the Managed Servers, and the Oracle Business Intelligence system components.

### 12.2.8 Configuring Applications

This section explains how to configure applications, and contains the following topics:

- **Section 12.2.8.1, "Enabling SSO/Oracle Access Manager for Oracle BI Enterprise Edition"
- **Section 12.2.8.2, "Enabling SSO/Oracle Access Manager for Oracle BI Publisher"
- **Section 12.2.8.3, "Enabling SSO/Oracle Access Manager for Oracle BI for Microsoft Office"
- **Section 12.2.8.4, "Enabling SSO/Oracle Access Manager for Oracle BI Search"
- **Section 12.2.8.5, "Enabling SSO/Oracle Access Manager for Oracle Real-Time Decisions"

#### 12.2.8.1 Enabling SSO/Oracle Access Manager for Oracle BI Enterprise Edition

To enable SSO and Oracle Access Manager for Oracle BI Enterprise Edition, follow these steps:

1. Log in to Fusion Middleware Control.
2. Go to **Business Intelligence > coreapplication > Security**.
3. Click **Lock and Edit Configuration**.
4. Choose Enable SSO and select Oracle Access Manager for SSO Provider.

5. Configure the login/logout information for the Oracle BI Presentation Services processes by entering the logon and logoff URLs in the following fields:

   - **The SSO Provider Logon URL**: http://OAM_host:OAM_port/oamsso/login.html
   - **The SSO Provider Logoff URL**: http://OAM_host:OAM_port/access/oblix/lang/en-us/logout.html

6. Click Apply.

7. Click Activate Changes.

8. Restart all Oracle Business Intelligence system components using opmnctl or Fusion Middleware Control.

**12.2.8.2 Enabling SSO/Oracle Access Manager for Oracle BI Publisher**

To enable SSO and Oracle Access Manager for Oracle BI Publisher, follow these steps:

1. In Oracle BI Publisher, go to the Administration > Security Configuration page to enable SSO.

2. On the Security Configuration Page, provide the following information in the Single Sign-On section:
   
   
   b. For Single Sign-On Type, select Oracle Access Manager.
   
   c. For Single Sign-Off URL, enter a URL of the following format:

   ```
   ```

3. Click Apply.

4. Restart the bipublisher application from the Administration Console.

**12.2.8.3 Enabling SSO/Oracle Access Manager for Oracle BI for Microsoft Office**

SSO configuration for Oracle BI for Microsoft Office was covered in Section 9.5.4.1, "Configuring Oracle BI for Microsoft Office Properties." If you have not already enabled SSO for Oracle BI for Microsoft Office, perform the steps in Section 9.5.4.1 to accomplish this task.

**12.2.8.4 Enabling SSO/Oracle Access Manager for Oracle BI Search**

To enable SSO and Oracle Access Manager for Oracle BI Search, follow these steps:

1. Open the BISearchConfig.properties file for editing. You can find this file at:

   ```
 DOMAIN_HOME/config/fmwconfig/biinstances/coreapplication/
   ```

2. Set the value of BIServerSSOUrl to the following:

   ```
 https://bi.mycompany.com/analytics
   ```

3. Save and close the file.

**12.2.8.5 Enabling SSO/Oracle Access Manager for Oracle Real-Time Decisions**

This section provides information about Oracle Real-Time Decisions configuration with Oracle Access Manager.
This section contains the following topics:

- Section 12.2.8.5.1, "Oracle RTD and Oracle Access Manager Logout Guidelines"
- Section 12.2.8.5.2, "Avoiding Problems with Decision Center Logout Redirection"

12.2.8.5.1 Oracle RTD and Oracle Access Manager Logout Guidelines

For Oracle RTD to comply with Oracle Access Manager logout guidelines (in particular, invoking a logout through /adfAuthentication?logout=true&end_url=/ui/do/logout), integration with Oracle Access Manager 10g requires additional WebGate configuration to handle the end_url. Without this additional configuration, you are logged out, but not redirected to the end URL because Oracle Access Manager 10g WebGate does not process end_url.

For information about configuration procedures, see the Oracle Fusion Middleware Application Security Guide.

12.2.8.5.2 Avoiding Problems with Decision Center Logout Redirection

When Webgate 10g against Oracle Access Manager (OAM) 11g is configured as the SSO provider for Oracle RTD Decision Center access, logging out of, then back into Decision Center should ask users for their user name and password credentials on the re-login. To ensure that this occurs correctly, you must configure the following Oracle RTD Decision Center resources in OAM/Webgate as public (unprotected or anonymous access):

1. Decision Center logout URI /ui/do/logout
2. Decision Center images /ui/images/*

12.3 Oracle Access Manager 11g Integration

This section describes how to set up Oracle Access Manager 11g as the single sign-on solution for the Oracle Business Intelligence Enterprise Deployment topology.

This section contains the following sections:

- Section 12.3.1, "Overview of Oracle Access Manager Integration"
- Section 12.3.2, "Prerequisites for Oracle Access Manager"
- Section 12.3.3, "Install WebGate"
- Section 12.3.4, "Register the WebGate Agent"
- Section 12.3.5, "Configuring IP Validation for WebGate"
- Section 12.3.6, "Setting Up the WebLogic Authenticators"
- Section 12.3.7, "Configuring Applications"

12.3.1 Overview of Oracle Access Manager Integration

Oracle Access Manager is the recommended single sign-on solution for Oracle Fusion Middleware 11g Release 1. For more information on installing and configuring an Oracle Access Manager installation, see the Oracle Fusion Middleware Enterprise Deployment Guide for Oracle Identity Management. This section explains the procedure for configuring the Oracle Business Intelligence installation with an existing Oracle Access Manager 11g installation and the underlying directory service. Oracle recommends using either Oracle Internet Directory, Oracle Virtual Directory, or both of these directory services.
12.3.2 Prerequisites for Oracle Access Manager

The setup for Oracle Access Manager assumes an existing Oracle Access Manager installation complete with Access Managers and a policy protecting the Policy Manager. For more information on installing and configuring Oracle Access Manager, see the Oracle Fusion Middleware Enterprise Deployment Guide for Oracle Identity Management. This setup includes a directory service such as Oracle Internet Directory, either standalone or as part of an Oracle Virtual Directory configuration. This chapter provides the necessary steps for configuring your Oracle Business Intelligence installation with either Oracle Internet Directory or Oracle Virtual Directory.

In addition, the Oracle Access Manager installation should have its own Web server configured with a WebGate. This section also provides the steps for using the Oracle Access Manager Web server as a delegated authentication server.

12.3.3 Install WebGate

You must install a WebGate on each of the WEBHOST computers where an HTTP Server has already been installed. Section 12.3.3 and Section 12.3.4 should be repeated for each WEBHOST in the deployment environment.

12.3.3.1 Installing GCC Libraries

You must download and install third-party GCC libraries on your computer before installing WebGate.

You can download the appropriate GCC library from the following third-party Web site:

http://gcc.gnu.org/

For Linux 32-bit, the required libraries are libgcc_s.so.1 and libstdc++.so.5 with a version number of 3.3.2. Table 12–2 lists the versions of GCC third-party libraries for Linux and Solaris.

<table>
<thead>
<tr>
<th>Operating System</th>
<th>Architecture</th>
<th>GCC Libraries</th>
<th>Required Library Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linux 32-bit</td>
<td>x86</td>
<td>libgcc_s.so.1</td>
<td>3.3.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>libstdc++.so.5</td>
<td></td>
</tr>
<tr>
<td>Linux 64-bit</td>
<td>x64</td>
<td>libgcc_s.so.1</td>
<td>3.4.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>libstdc++.so.6</td>
<td></td>
</tr>
<tr>
<td>Solaris 64-bit</td>
<td>SPARC</td>
<td>libgcc_s.so.1</td>
<td>3.3.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>libstdc++.so.5</td>
<td></td>
</tr>
</tbody>
</table>
### 12.3.3.2 Installing WebGate

This section describes the procedures for installing WebGate.

**Launching the Installer**

The Installer program for Oracle HTTP Server 11g Webgate for Oracle Access Manager is included in the webgate.zip file.

To start the installation wizard:

1. Extract the contents of the `webgate.zip` file to a directory. By default, this directory is named `webgate`.

2. Move to the `Disk1` directory under the `webgate` folder.

3. Start the installer using the following command:

   ```bash
 $./runInstaller -jreLoc WebTier_Home/jdk
   ```

   After the installer starts, the Welcome screen appears.

**Installation Flow and Procedure**

If you need additional help with any of the installation screens, click **Help** to access the online help.

To install Oracle HTTP Server 11g Webgate for Oracle Access Manager:

1. In the Welcome screen, click **Next**.

2. In the Prerequisite Checks screen, click **Next**.

3. In the Specify Installation Location screen, specify the Middleware Home and Oracle Home locations. You can use the default location, or choose another location. Click **Next**.

4. In the Specify GCC Library screen, specify the directory that contains the GCC libraries, and click **Next**.

5. In the Installation Summary screen, verify the information on this screen and click **Install** to begin the installation.

6. In the Installation Progress screen, you may be prompted to run the `ORACLE_HOME/oracleRoot.sh` script to set up the proper file and directory permissions. Click **Next** to continue.

7. In the Installation Complete screen, click **Finish** to exit the installer.

### 12.3.3.3 Post-Installation Steps

Complete the following procedure after installing Oracle HTTP Server 11g Webgate for Oracle Access Manager:

1. Move to the following directory under your Oracle home for Webgate:

   ```bash
 $ cd Webgate_Home/webgate/ohs/tools/deployWebGate
   ```

---

**Note:** The Middleware home contains an Oracle home for Oracle Web Tier.
2. On the command line, run the following command to copy the required bits of agent from the `Webgate_Home` directory to the Webgate Instance location:

```
$./deployWebGateInstance.sh -w Webgate_Instance_Directory
-oh Webgate_Oracle_Home
```

Where `Webgate_Oracle_Home` is the directory where you have installed Oracle HTTP Server Webgate and created as the Oracle home for Webgate, as in the following example:

```
MW_HOME/Oracle_OAMWebGate1
```

The `Webgate_Instance_Directory` is the location of Webgate Instance Home, which is same as the Instance Home of Oracle HTTP Server, as in the following example:

```
MW_HOME/Oracle_WT1/instances/instance1/config/OHS/ohs1
```

---

**Note:** An Instance Home for Oracle HTTP Server is created after you configure Oracle HTTP Server.

---

3. Run the following command to ensure that the `LD_LIBRARY_PATH` variable contains `Oracle_Home_for_Oracle_HTTP_Server/lib`:

```
$ export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:Oracle_Home_for_Oracle_HTTP_Server/lib
```

4. From your present working directory, move up one directory level:

```
$ cd Webgate_Home/webgate/ohs/tools/setup/InstallTools
```

5. On the command line, run the following command to copy the `apache_webgate.template` from the `Webgate_Home` directory to the Webgate Instance location (renamed to `webgate.conf`) and update the `httpd.conf` file to add one line to include the name of `webgate.conf`:

```
$./EditHttpConf -w Webgate_Instance_Directory [-oh Webgate_Oracle_Home]
[-o output_file]
```

Where `WebGate_Oracle_Home` is the directory where you have installed Oracle HTTP Server Webgate for Oracle Access Manager and created as the Oracle Home for Webgate, as in the following example:

```
MW_HOME/Oracle_OAMWebGate1
```

The `Webgate_Instance_Directory` is the location of Webgate Instance Home, which is same as the Instance Home of Oracle HTTP Server, as in the following example:

```
MW_HOME/Oracle_WT1/instances/instance1/config/OHS/ohs1
```

The `output_file` is the name of the temporary output file used by the tool, as in the following example:

```
Edithttpconf.log
```

---

**Note:** The `-oh WebGate_Oracle_Home` and `-o output_file` parameters are optional.
12.3.4 Register the WebGate Agent

This section describes the procedures for registering the WebGate Agent.

12.3.4.1 The RREG Tool

The RREG tool is part of the Oracle Access Manager 11g installation. If it is not already available, extract it using the following procedure:

1. After installing and configuring Oracle Access Manager, navigate to the following location:
   
   \( \text{IDM\_Home}/\text{oam/srver/rreg/client} \)

2. On the command line, untar the \( \text{RREG.tar.gz} \) file using gunzip, as in the following example:

   \text{gunzip RREG.tar.gz}

   \text{tar -xvf RREG.tar}

You can find the tool that is used to register the agent in the following location:

\( \text{RREG\_Home/bin/oamreg.sh} \)

\( \text{RREG\_Home} \) is the directory to which you extracted the contents of \( \text{RREG.tar.gz/rreg} \).

The RREG Configuration Tool provides a way to register protected and public resources into the OAM system. The list of protected resources to be added to the OAM system is as follows:

- \( /\text{analytics/saw.dll} \)
- \( /\text{bicontent} \)
- \( /\text{bioffice} \)
- \( /\text{biofficeclient} \)
- \( /\text{xmlpserver} \)
- \( /\text{ui} \)
- \( /\text{mapviewer} \)
- \( /\text{bicomposer} \)
- \( /\text{bisearch} \)
- \( /\text{em} \)
- \( /\text{em/…/*/} \)
- \( /\text{console} \)
- \( /\text{console/…/*/} \)

Where "/…/**" implies all resources under the base url context.

Note that you only need to include \( /\text{bicomposer} \) if BI Composer has been configured.

The list of public resources is:

- \( /\text{analytics} \)
- \( /\text{analytics/saw.dll/wsdl} \)
- \( /\text{bioffice/services/saw} \)
- \( /\text{ui/do/logout} \)
- \( /\text{xmlpserver/services} \)
- \( /\text{xmlpserver/report_service} \)
- \( /\text{xmlpserver/ReportTemplateService.xls} \)
- \( /\text{xmlpserver/Guest} \)
- \( /\text{biservices} \)
- \( /\text{ui/images/*} \)

The list of excluded resources is:
12.3.4.2 Updating the OAM11gRequest File

In the `RREG_Home/input` directory, there is a template file named `OAM11GRequest.xml`. Copy this template to a new file called `BIOAM11GRequest.xml` and edit it to create the policies for the Oracle Business Intelligence installation. After editing, the file should look as follows. Note that you only need to include `/bicomposer` if BI Composer has been configured.

```xml
<?xml version="1.0" encoding='UTF-8'?>
<!-- Copyright (c) 2009, 2010, Oracle and/or its affiliates. All rights reserved. -->
<OAM11GRegRequest>
 <serverAddress>http://$$oamhost$$:$$oamadminserverport$$</serverAddress>
 <hostIdentifier>$$webtierhost$$_bi</hostIdentifier>
 <agentName>$$webtierhost$$_bi</agentName>
 <applicationDomain>$$webtierhost$$_bi</applicationDomain>
 <cachePragmaHeader>private</cachePragmaHeader>
 <logOutUrls>
 <url>/oamsso/logout.html</url>
 </logOutUrls>
 <protectedResourcesList>
 <resource>/analytics/saw.dll</resource>
 <resource>/bicontent</resource>
 <resource>/bioffice</resource>
 <resource>/biofficeclient</resource>
 <resource>/xmlpserver</resource>
 <resource>/ui</resource>
 <resource>/mapviewer</resource>
 <resource>/bicomposer</resource>
 <resource>/bisearch</resource>
 <resource>/em</resource>
 <resource>/em/.../*</resource>
 <resource>/console</resource>
 <resource>/console/.../*</resource>
 </protectedResourcesList>
 <publicResourcesList>
 </publicResourcesList>
</OAM11GRegRequest>
```

**Note:** Replace `$$webtierhost$$`, `$$oamadminserverport$$`, `$$oamhost$$`, and `load_balancer_source_IP` with their respective values in your installation.
12.3.4.3 Running the oamreg Tool

Run the oamreg tool using the following command:

```
$ RREG_Home/bin/oamreg.sh inband RREG_Home/input/BIOAM11gRequest.xml
```

Note that the JAVA_HOME operating system environment variable must be set to jdk6 for this command to work.

The run should look similar to the following:

```
Welcome to OAM Remote Registration Tool!
Parameters passed to the registration tool are:
Mode: inband
Filename: /u01/oim/oim_home/oam/server/rreg/client/rreg/input/BIOAM11GRequest.xml
Enter admin username: oamadmin_user
Username: oamadmin_user
Enter admin password: my_password
Do you want to enter a Webgate password?(y/n):
y
Enter webgate password: my_password
Enter webgate password again: my_password
Password accepted. Proceeding to register..
Nov 9, 2011 6:48:44 PM
oracle.security.am.engines.rreg.client.handlers.request.OAM11GRequestHandler
getWebgatePassword
INFO: Passwords matched and accepted.
Do you want to import an URIs file?(y/n):
n
Request summary:
OAM11G Agent Name:WEBHOST_bi
URL String:WEBHOST_bi
Registering in Mode:inband
Your registration request is being sent to the Admin server at:
http://oamserver.mycompany.com:OAMADMINSERVER_PORT
```
Inband registration process completed successfully! Output artifacts are created in the output folder.

### 12.3.4.4 Copying Access Files to WEBHOSTs

In OPEN mode, the following two files are generated in `OAM_REG_HOME/output/$$webtierhost$$_bi`:

- `ObAccessClient.xml`
- `cwallet.sso`

Copy these files to the webgate instance (`Webgate_Instance_Home/config/OHS/ohsN/webgate/config/`) location on WEBHOST1 and WEBHOST2.

In SIMPLE mode, copy the following files from the `OAM_REG_HOME/output/$$webtierhost$$_bi` directory to the `Webgate_Instance_Home/webgate/config` directory on WEBHOST1 and WEBHOST2:

- `ObAccessClient.xml`
- `cwallet.sso`
- `password.xml`

In addition, copy the following files from the `OAM_REG_HOME/output/$$webtierhost$$_bi` directory to the `Webgate_Instance_Home/webgate/config/simple` directory on WEBHOST1 and WEBHOST2:

- `aaa_key.pem`
- `aaa_cert.pem`

---

**Note:** When integrating with Oracle Identity Management, use the transport mode currently in use by the Oracle Identity Management servers. For example, Open, Simple, or Cert.

---

### 12.3.5 Configuring IP Validation for WebGate

IP Validation determines if a client’s IP address is the same as the IP address stored in the ObSSOCookie generated for single sign-on. IP Validation can cause issues in systems using load balancer devices configured to perform IP termination, or when the authenticating webgate is front-ended by a different load balancer from the one front-ending the enterprise deployment. To configure your load balancer so that it is not validated in these cases, follow these steps:

1. Go to the Oracle Access Manager 11g Console using the following URL:

   `http://hostname:port/oamconsole`

2. Log in as the Oracle Access Manager 11g Administrator.

3. On the Welcome page, click the **System Configuration** tab.

4. In the Access Manager Settings section, expand the **SSO Agents** node. Then, double-click **OAM Agents** to display the OAM Agents Search page.

5. Enter the appropriate search criteria and click **Search** to display a list of OAM Agents.

6. Select the OAM Agent created by the Oracle Access Manager configuration tool.
7. In the IP Validation Exception field, enter the address of the load balancer used to front-end the deployment.

8. Click Apply at the top of the page.

12.3.6 Setting Up the WebLogic Authenticators

This section assumes that you have already set up the LDAP authenticator by following the steps in Section 12.1.2.3, "Configuring the Identity Store to Use LDAP" If you have not already created the LDAP authenticator, do it before continuing with this section.

This section includes the following topics:

- Section 12.3.6.1, "Back Up Configuration Files"
- Section 12.3.6.2, "Setting Up the OAM ID Asserter"
- Section 12.3.6.3, "Setting the Order of Providers"

12.3.6.1 Back Up Configuration Files

To be safe, first back up the relevant configuration files:

- `ORACLE_BASE/admin/domain_name/aserver/domain_name/config/config.xml`
- `ORACLE_BASE/admin/domain_name/aserver/domain_name/config/fmwconfig/jps-config.xml`
- `ORACLE_BASE/admin/domain_name/aserver/domain_name/config/fwmconfig/system-jazn-data.xml`

In addition, back up the `boot.properties` file for the Administration Server.

12.3.6.2 Setting Up the OAM ID Asserter

To set up the OAM ID Asserter:

1. Log into Weblogic Console, if not already logged in.

2. Click Lock and Edit.

3. Navigate to SecurityRealms, <Default Realm Name>, and then Providers.

4. Click New and Select OAM Identity Asserter from the dropdown menu.

5. Name the asserter (for example, OAM ID Asserter) and click Save.

6. Click the newly added asserter to see the configuration screen for OAM Identity Asserter.

7. Set the control flag to 'REQUIRED'.

8. Ensure that both the ObSSOCookie and OAM_REMOTE_USER options are selected under active types.

9. Click Save when done.

10. Click Activate Changes to propagate the changes.

11. Restart the Administration Server and Managed Servers.

Finally, log in as admin to the WLST console at:

- `ORACLE_COMMON_HOME/common/bin/wlst.sh`

Then, run the following command:

```
addOAMSSOProvider(loginuri="/${app.context}/adfAuthentication",logouturi="oamsso/logout.html")
```
For example:

```
wls:/offline> connect('weblogic','my_password','t3://ADMINVHN:7001')
Connecting to t3:ADMINVHN:7001 with userid weblogic ...
Successfully connected to Admin Server 'AdminServer' that belongs to domain 'bifoundation_domain'.
```

```
wls:/bifoundation_domain/serverConfig>
wls:/bifoundation_domain/serverConfig>
addOAMSSOProvider(loginuri="/${app.context}/adfAuthentication",logouturi="oamsso/logout.html")
```

12.3.6.3 Setting the Order of Providers
Reorder the OAM Identity Asserter, OID Authenticator, and Default Authenticator by ensuring that the control flag for each authenticator is set as follows:

- OAM Identity Asserter: REQUIRED
- OID LDAP Authenticator (or OVD LDAP Authenticator): SUFFICIENT
- Default Authenticator: SUFFICIENT

Then, restart the Administration Server, the Managed Servers, and the Oracle Business Intelligence system components.

12.3.7 Configuring Applications
This section explains how to configure applications, and contains the following topics:

- Section 12.3.7.1, "Enabling SSO/Oracle Access Manager for Oracle BI Enterprise Edition"
- Section 12.3.7.2, "Enabling SSO/Oracle Access Manager for Oracle BI Publisher"
- Section 12.3.7.3, "Enabling SSO/Oracle Access Manager for Oracle BI for Microsoft Office"
- Section 12.3.7.4, "Enabling SSO/Oracle Access Manager for Oracle BI Search"
- Section 12.3.7.5, "Enabling SSO/Oracle Access Manager for Oracle Real-Time Decisions"

12.3.7.1 Enabling SSO/Oracle Access Manager for Oracle BI Enterprise Edition
To enable SSO and Oracle Access Manager for Oracle BI Enterprise Edition, follow these steps:

1. Log in to Fusion Middleware Control.
2. Go to Business Intelligence > coreapplication > Security > Single Sign On.
3. Click Lock and Edit Configuration.
4. Choose Enable SSO and select Oracle Access Manager for SSO Provider.
5. Configure the login/logout information for the Oracle BI Presentation Services processes by entering the logon and logoff URLs in the following fields:
   - **The SSO Provider Logon URL:** http://OAM_host:OAM_port/oamsso/login.html
   - **The SSO Provider Logoff URL:** http://OAM_host:OAM_port/oamsso/logout.html
6. Click Apply.

7. Click Activate Changes.

8. Restart all Oracle Business Intelligence system components using opmnctl or Fusion Middleware Control.

12.3.7.2 Enabling SSO/Oracle Access Manager for Oracle BI Publisher
To enable SSO and Oracle Access Manager for Oracle BI Publisher, follow these steps:

1. In Oracle BI Publisher, go to the Administration > Security Configuration page to enable SSO.

2. On the Security Configuration Page, provide the following information in the Single Sign-On section:
   b. For Single Sign-On Type, select Oracle Access Manager.
   c. For Single Sign-Off URL, enter a URL of the following format:
      
      \[
      \text{http://OAM\_host:OAM\_port/oamsso/logout.html}
      \]

3. Click Apply.

4. Restart the bipublisher application from the Administration Console.

12.3.7.3 Enabling SSO/Oracle Access Manager for Oracle BI for Microsoft Office
SSO configuration for Oracle BI for Microsoft Office was covered in Section 9.5.4.1, "Configuring Oracle BI for Microsoft Office Properties." If you have not already enabled SSO for Oracle BI for Microsoft Office, perform the steps in Section 9.5.4.1 to accomplish this task.

12.3.7.4 Enabling SSO/Oracle Access Manager for Oracle BI Search
To enable SSO and Oracle Access Manager for Oracle BI Search, follow these steps:

1. Open the BISearchConfig.properties file for editing. You can find this file at:
   
   \[
   \text{DOMAIN\_HOME/config/fmwconfig/biinstances/coreapplication/}
   \]

2. Set the value of BIServerSSOUrl to the following:
   
   \[
   \text{https://bi.mycompany.com/analytics}
   \]

3. Save and close the file.

12.3.7.5 Enabling SSO/Oracle Access Manager for Oracle Real-Time Decisions
This section provides information about Oracle Real-Time Decisions configuration with Oracle Access Manager.

This section contains the following topics:

- Section 12.3.7.5.1, "Oracle RTD and Oracle Access Manager Logout Guideline"
- Section 12.3.7.5.2, "Avoiding Problems with Decision Center Logout Redirection"

12.3.7.5.1 Oracle RTD and Oracle Access Manager Logout Guideline

For Oracle RTD to comply with Oracle Access Manager logout guidelines (in particular, invoking a logout through /adfAuthentication?logout=true&end_url=/ui/do/logout), integration with Oracle Access Manager 10g requires additional WebGate
configuration to handle the end_url. Without this additional configuration, you are logged out, but not redirected to the end URL because Oracle Access Manager 10g WebGate does not process end_url.

For information about configuration procedures, see the Oracle Fusion Middleware Application Security Guide.

**12.3.7.5.2 Avoiding Problems with Decision Center Logout Redirection** When Webgate 10g against Oracle Access Manager (OAM) 11g is configured as the SSO provider for Oracle RTD Decision Center access, logging out of, then back into Decision Center should ask users for their user name and password credentials on the re-login. To ensure that this occurs correctly, you must configure the following Oracle RTD Decision Center resources in OAM/Webgate as public (unprotected or anonymous access):

1. Decision Center logout URI /ui/do/logout
2. Decision Center images /ui/images/*

### 12.4 Backing Up the Identity Management Configuration

After you have verified that the extended domain is working, back up the configuration. This is a quick backup for the express purpose of immediate restore in case of problems in the further steps. The backup destination is the local disk. This backup can be discarded after the enterprise deployment setup is complete. At this point, the regular deployment-specific backup and recovery process can be initiated. The Oracle Fusion Middleware Administrator’s Guide provides further details. For information on describing the Oracle HTTP Server data that must be backed up and restored, refer to the "Backup and Recovery Recommendations for Oracle HTTP Server" section in that guide. For information on how to recover components, see the "Recovering Components" and "Recovering After Loss of Component Host" sections in the guide. Also refer to the Oracle Database Backup and Recovery User’s Guide for information on database backup.

To back up the configuration at this point:

1. **Back up the Web tier:**
   
   a. Shut down the instance using opmnctl.
   
   ```bash
 WEBHOSTn> ORACLE_BASE/admin/instance_name/bin/opmnctl stopall
   ```

   b. Back up the Middleware Home on the Web tier using the following command (as root):
   
   ```bash
 WEBHOSTn> tar -cvpf BACKUP_LOCATION/web.tar $MW_HOME
   ```

   c. Back up the Instance home on the Web tier using the following command (as root):
   
   ```bash
 WEBHOSTn> tar -cvpf BACKUP_LOCATION/web_instance.tar $ORACLE_INSTANCE
   ```

   d. Start the instance using opmnctl:
   
   ```bash
 WEBHOSTn> ORACLE_BASE/admin/instance_name/bin/opmnctl startall
   ```

2. **Back up the Administration Server domain directory.** Perform a backup to save your domain configuration. The configuration files all exist under the ORACLE_
BASE/admin/domain_name directory. Run the following command to create the backup:

```
APPHOSTn> tar -cvpf edgdomainback.tar ORACLE_BASE/admin/domain_name
```
Backing Up the Identity Management Configuration
This chapter describes operations that you can perform after you have set up your Oracle Business Intelligence topology, including monitoring, scaling, and backing up your enterprise deployment.

This chapter contains the following topics:

- Section 13.1, "About Managing Enterprise Deployments"
- Section 13.2, "Starting and Stopping Oracle Business Intelligence"
- Section 13.3, "Monitoring Enterprise Deployments"
- Section 13.4, "Scaling Enterprise Deployments"
- Section 13.5, "Performing Backups and Recoveries for Enterprise Deployments"
- Section 13.6, "Patching Enterprise Deployments"
- Section 13.7, "Preventing Timeouts for SQLNet Connections"
- Section 13.8, "Troubleshooting Enterprise Deployments"

13.1 About Managing Enterprise Deployments

After configuring your Oracle Business Intelligence enterprise deployment, use the information in this chapter to manage the deployment. This chapter includes topics on typical operations like starting, stopping, monitoring, and patching your deployment.

At some point, you might need to expand the topology by scaling it up, or out. See Section 13.4, "Scaling Enterprise Deployments" for information about these tasks.

Back up the topology before and after any configuration changes. See Section 13.5, "Performing Backups and Recoveries for Enterprise Deployments" for information.

This chapter also documents solutions for possible known issues that may occur after you have configured the topology in Section 13.8, "Troubleshooting Enterprise Deployments."

13.2 Starting and Stopping Oracle Business Intelligence

To start Oracle Business Intelligence, you must always start the Managed Servers first, before the system components. In addition, any time the Managed Servers are restarted, the system components must be restarted also.

For additional information, see "Starting and Stopping Oracle Business Intelligence" in the Oracle Fusion Middleware System Administrator’s Guide for Oracle Business Intelligence Enterprise Edition.
This section contains the following topics:

- Section 13.2.1, "Starting and Stopping Oracle Business Intelligence Managed Servers"
- Section 13.2.2, "Starting and Stopping Oracle Business Intelligence System Components"

13.2.1 Starting and Stopping Oracle Business Intelligence Managed Servers

Follow these steps to stop, start, or restart Oracle Business Intelligence Managed Servers:

1. Log in to the Oracle WebLogic Server Administration Console.
2. Expand the Environment node in the Domain Structure window.
3. Click Servers. The Summary of Servers page is displayed.
4. Select the Oracle Business Intelligence Managed Server you want to manage (for example, bi_server1, bi_server2, and so on).
5. Perform one of the following actions:
   - To stop the Managed Server, click Stop.
   - To start the Managed Server, click Start.
   - To restart the Managed Server, first click Stop and wait until the server is completely stopped. Then, select the Managed Server again and click Start.

13.2.2 Starting and Stopping Oracle Business Intelligence System Components

Follow these steps to stop, start, or restart Oracle Business Intelligence system components:

1. Log in to Oracle Enterprise Manager Fusion Middleware Control.
2. Expand the Business Intelligence node in the Farm_domain_name window.
3. Click coreapplication.
4. On the Business Intelligence Overview page, click Stop, Start, or Restart.

13.3 Monitoring Enterprise Deployments

For information on monitoring the Oracle Business Intelligence topology, see "Monitoring Service Levels" in the Oracle Fusion Middleware System Administrator’s Guide for Oracle Business Intelligence Enterprise Edition.

See also "Diagnosing and Resolving Issues in Oracle Business Intelligence" in the Oracle Fusion Middleware System Administrator’s Guide for Oracle Business Intelligence Enterprise Edition for information about Oracle Business Intelligence log files, including rotating and managing logs.

13.4 Scaling Enterprise Deployments

You can scale up or scale out the Oracle Business Intelligence enterprise topology, as follows:

- When you scale up the topology, you add additional system components to one of the existing nodes in your enterprise topology.
When you scale out the topology, you add a new node to your topology with a Managed Server and set of system components.

This section includes the following topics:

- Section 13.4.1, "Scaling Up the Oracle Business Intelligence Topology"
- Section 13.4.2, "Scaling Out the Oracle Business Intelligence Topology"

Note: To scale out and up the SOA subsystem used by I/PM, refer to the SOA enterprise deployment topology documentation.

13.4.1 Scaling Up the Oracle Business Intelligence Topology

This procedure assumes that you already have an enterprise topology that includes two nodes, with a Managed Server and a full set of system components on each node. To scale up the topology, you increase the number of system components running on one of your existing nodes.

Note that it is not necessary to run multiple Managed Servers on a given node.

To scale up the Oracle Business Intelligence enterprise topology:

1. Log in to Fusion Middleware Control.
2. Expand the Business Intelligence node in the Farm_domain_name window.
3. Click coreapplication.
4. Click Capacity Management, then click Scalability.
5. Click Lock and Edit Configuration.
6. Change the number of BI Servers, Presentation Servers, or JavaHosts using the arrow keys.
7. Click Apply, then click Activate Changes.
8. Click Overview, then click Restart.

13.4.2 Scaling Out the Oracle Business Intelligence Topology

When scaling out the topology, you add a new Managed Server and set of system components to a new node in your topology (APPHOST3). This procedure assumes that you already have an enterprise topology that includes two nodes, with a Managed Server and a full set of system components on each node.

Prerequisites

Before performing the steps in this section, check that you meet these requirements:

- There must be existing nodes running Oracle Business Intelligence Managed Servers within the topology.
- The new node (APPHOST3) can access the existing home directories for Oracle WebLogic Server and Oracle Business Intelligence.
- When an ORACLE_HOME or WL_HOME is shared by multiple servers in different nodes, it is recommended that you keep the Oracle Inventory and Middleware home list in those nodes updated for consistency in the installations and application of patches. To update the oraInventory in a node and "attach" an installation in a shared storage to it, use ORACLE_HOME/oui/bin/attachHome.sh. To update the Middleware home list to add or remove a WL_HOME, edit the MWaddin.

Note: To scale out and up the SOA subsystem used by I/PM, refer to the SOA enterprise deployment topology documentation.
You must ensure that all shared storage directories are available on the new node. Ensure that all shared directories listed in Section 4.3.1, “Recommended Directory Locations” are available on all nodes, except for the ORACLE_INSTANCE directory and the domain directory for the scaled out Managed Server.

Also, if you are using shared storage for the identity keystore and trust keystore that hold your host name verification certificates, ensure that the shared storage directory is accessible from the scaled-out node (APPHOST3). If you are using local directories for your keystores, follow the steps in Section 10.3, “Enabling Host Name Verification Certificates for Node Manager” to create and configure a local identity keystore for the scaled-out node.

For example, mount the following directories:

- Transaction Log directory
- JMS Persistence Store
- Global Cache
- BI Presentation Catalog
- BI Repository Publishing directory
- BI Publisher Catalog
- BI Publisher Configuration Keystore (certs)
- MW_HOME

### 13.4.2.1 Scale-out Procedure for Oracle Business Intelligence

Perform these steps to scale out Oracle Business Intelligence on APPHOST3:

1. On APPHOST3, mount the existing Middleware home, which should include the Oracle Business Intelligence installation and (optionally, if the domain directory for Managed Servers in other nodes resides on shared storage) the domain directory, and ensure that the new node has access to this directory, just like the rest of the nodes in the domain.

2. To attach ORACLE_HOME in shared storage to the local Oracle Inventory, execute the following command:

   ```bash
 APPHOST3> cd ORACLE_COMMON_HOME/oui/bin/
 APPHOST3> ./attachHome.sh -jreLoc ORACLE_BASE/product/fmw/jrockit_version
   ```

   To update the Middleware home list, create (or edit, if another WebLogic installation exists in the node) the MW_HOME/.home file and add `ORACLE_BASE/product/fmw` to it.

3. Run the Configuration Assistant from one of the shared Oracle homes, using the steps in Section 9.3, “Scaling Out the Oracle Business Intelligence System on APPHOST2” as a guide.

4. Scale out the system components on APPHOST3, using the steps in Section 9.3.2, “Scaling Out the System Components” as a guide.

5. Configure the bi_server3 Managed Server by setting the Listen Address and disabling host name verification, using the steps in Section 9.4, “Configuring the bi_server2 Managed Server” as a guide.
6. Configure JMS for Oracle BI Publisher, as described in Section 9.5.3.4, "Configuring JMS for Oracle BI Publisher."

7. Configure Oracle BI for Microsoft Office on APPHOST3, as described in Section 9.5.4, "Additional Configuration Tasks for Oracle BI for Microsoft Office.”

8. Set the location of the default persistence store for bi_server 3, as described in Section 9.6.1, "Configuring a Default Persistence Store for Transaction Recovery.”

9. Configure Oracle HTTP Server for APPHOST3VHN1, using the steps in Section 8.4.2, "Configuring Oracle HTTP Server for the bi_servern Managed Servers” as a guide.


11. Set up server migration for the new node, as described in the following sections:
   - Section 11.4, "Enabling Host Name Verification Certificates”
   - Section 11.5, "Editing the Node Manager Properties File”
   - Section 11.6, "Setting Environment and Superuser Privileges for the wlsifconfig.sh Script”
   - Section 11.7, "Configuring Server Migration Targets”
   - Section 11.8, "Testing the Server Migration”

12. To validate the configuration, access the following URLs:
   - Access http://APPHOST3VHN1:9704/wsm-pm to verify the status of Web Services Manager. Click Validate Policy Manager. A list of policies and assertion templates available in the data is displayed.
     Note: The configuration is incorrect if no policies or assertion templates appear.
   - Access http://APPHOST3VHN1:9704/xmlpserver to verify the status of the Oracle BI Publisher application.

13. Oracle recommends using host name verification for the communication between Node Manager and the servers in the domain. This requires the use of certificates for the different addresses communicating with the Administration Server and other servers. See Chapter 10, "Setting Up Node Manager for an Enterprise Deployment” for further details.

13.5 Performing Backups and Recoveries for Enterprise Deployments

See "Backup and Recovery Recommendations for Oracle Business Intelligence” in the Oracle Fusion Middleware Administrator’s Guide for full information about backing up and recovering Oracle Business Intelligence.
13.6 Patching Enterprise Deployments


13.7 Preventing Timeouts for SQLNet Connections

Much of the EDG production deployment involves firewalls. Because database connections are made across firewalls, Oracle recommends that the firewall be configured so that the database connection is not timed out. For Oracle Real Application Clusters (Oracle RAC), the database connections are made on Oracle RAC VIPs and the database listener port. You must configure the firewall to not time out such connections. If such a configuration is not possible, set the `*SQLNET.EXPIRE_TIME=n*` parameter in the `ORACLE_HOME/network/admin/sqlnet.ora` file on the database server, where `n` is the time in minutes. Set this value to less than the known value of the timeout for the network device (that is, a firewall). For Oracle RAC, set this parameter in all of the Oracle home directories.

13.8 Troubleshooting Enterprise Deployments

This section covers the following topics:

- Section 13.8.1, "Page Not Found When Accessing BI Applications Through Load Balancer"
- Section 13.8.2, "Administration Server Fails to Start After a Manual Failover"
- Section 13.8.3, "Error While Activating Changes in Administration Console"
- Section 13.8.4, "bi_server Managed Server Not Failed Over After Server Migration"
- Section 13.8.5, "bi_server Managed Server Not Reachable From Browser After Server Migration"
- Section 13.8.6, "OAM Configuration Tool Does Not Remove URLs"
- Section 13.8.7, "Users Redirected to Login Screen After Activating Changes"
- Section 13.8.8, "Users Redirected to Home Page After Activating Changes"
- Section 13.8.9, "Configured JOC Port Already in Use"
- Section 13.8.10, "Out-of-Memory Issues on Managed Servers"
- Section 13.8.11, "Missing JMS Instances on Oracle BI Publisher Scheduler Diagnostics Page"
- Section 13.8.12, "Oracle BI Publisher Jobs in Inconsistent State After Managed Server Shutdown"
- Section 13.8.13, "JMS Instance Fails In an Oracle BI Publisher Cluster"
- Section 13.8.14, "Configuring MapViewer When the Administrator Belongs to a Custom Group"

13.8.1 Page Not Found When Accessing BI Applications Through Load Balancer

**Problem:** A 404 "page not found" message is displayed in the Web browser when you try to access Oracle Business Intelligence applications (such as Oracle BI Presentation Services, Oracle BI Publisher, and Oracle Real-Time Decisions) using the load balancer.
The error is intermittent and BI servers appear as “Running” in the Administration Console.

**Solution:** Even when the BI Managed Servers are up and running, some of the applications contained in them may be in Admin, Prepared, or other states different from Active. The applications might be unavailable while the BI server is running. Check the Deployments page in the Administration Console to verify the status of the affected application. It should be in “Active” state. Check the BI server’s output log for errors pertaining to that application and try to start it from the Deployments page in the Administration Console.

### 13.8.2 Administration Server Fails to Start After a Manual Failover

**Problem:** Administration Server fails to start after the Administration Server node failed and manual failover to another nodes is performed. The Administration Server output log reports the following:

```<Feb 19, 2009 3:43:05 AM PST> <Warning> <EmbeddedLDAP> <BEA-171520> <Could not obtain an exclusive lock for directory: ORACLE_BASE/admin/edg_domain/aserver/edg_domain/servers/AdminServer/data/ldap/ldapfiles. Waiting for 10 seconds and then retrying in case existing WebLogic Server is still shutting down.>`

Solution: When restoring a node after a node crash and using shared storage for the domain directory, you may see this error in the log for the Administration Server due to unsuccessful lock cleanup. To resolve this error, remove the file `ORACLE_BASE/admin/domain_name/aserver/domain_name/servers/AdminServer/data/ldap/ldapfiles/EmbeddedLDAP.lok`.

13.8.3 Error While Activating Changes in Administration Console

Problem: Activation of changes in Administration Console fails after changes to a server's start configuration have been performed. The Administration Console reports the following when clicking “Activate Changes”:

An error occurred during activation of changes, please see the log for details.

[Management:141190] The commit phase of the configuration update failed with an exception:
In production mode, it's not allowed to set a clear text value to the property: PasswordEncrypted of ServerStartMBean

Solution: This may happen when start parameters are changed for a server in the Administration Console. In this case, provide user name/password information in the server start configuration in the Administration Console for the specific server whose configuration was being changed.

13.8.4 bi_server Managed Server Not Failed Over After Server Migration

Problem: After reaching the maximum restart attempts by local Node Manager, Node Manager in the failover node tries to restart it, but the server does not come up. The server seems to be failed over as reported by Node Manager’s output information. The VIP used by the bi_server Managed Server is not enabled in the failover node after Node Manager tries to migrate it (if config in the failover node does not report the VIP in any interface). Executing the command “sudo ifconfig $INTERFACE $ADDRESS $NETMASK” does not enable the IP in the failover node.

Solution: The rights and configuration for `sudo` execution should not prompt for a password. Verify the configuration of `sudo` with your system administrator so that `sudo` works without a password prompt.
13.8.5 bi_server Managed Server Not Reachable From Browser After Server Migration

Problem: Server migration is working (bi_server Managed Server is restarted in the failed over node), but the `Virtual_Hostname:9704/analytics` URL cannot be accessed in the Web browser. The server has been "killed" in its original host and Node Manager in the failover node reports that the VIP has been migrated and the server started. The VIP used by the bi_server Managed Server cannot be pinged from the client's node (that is, the node where the browser is being used).

Solution: The `arping` command executed by Node Manager to update ARP caches did not broadcast the update properly. In this case, the node is not reachable to external nodes. Either update the nodemanager.properties file to include the MACBroadcast or execute a manual `arping`:

```
/sbin/arping -b -q -c 3 -A -I INTERFACE $NullDevice 2>&1
```

Where `INTERFACE` is the network interface where the virtual IP is enabled and `ADDRESS` is the virtual IP address.

13.8.6 OAM Configuration Tool Does Not Remove URLs

Problem: The OAM Configuration Tool has been used and a set of URLs was added to the policies in Oracle Access Manager. One of multiple URLs had a typo. Executing the OAM Configuration Tool again with the correct URLs completes successfully; however, when accessing Policy Manager, the incorrect URL is still there.

Solution: The OAM Configuration Tool only adds new URLs to existing policies when executed with the same `app_domain` name. To remove a URL, use the Policy Manager Console in OAM. Log on to the Access Administration site for OAM, click My Policy Domains, and then click the created policy domain (bifoundation_domain). Click the Resources tab, and then remove the incorrect URLs.

13.8.7 Users Redirected to Login Screen After Activating Changes

Problem: After configuring Oracle HTTP Server and LBR to access the Administration Console, some activation changes cause the redirection to the login screen for the Administration Console.

Solution: This is the result of the console attempting to follow changes to port, channel, and security settings as a user makes these changes. For certain changes, the console may redirect to the Administration Server’s listen address. Activation is completed regardless of the redirection. It is not required to log in again; users can simply update the URL to `admin.mycompany.com/console/console.portal` and directly access the home page for the Administration Console.

Note: This problem will not occur if you have disabled tracking of the changes described in this section.

13.8.8 Users Redirected to Home Page After Activating Changes

Problem: After configuring OAM, some activation changes cause redirection to the Administration Console home page (instead of the context menu where the activation was performed).

Solution: This is expected when OAM SSO is configured and the Administration Console is set to follow configuration changes (redirections are performed by the Administration Server when activating some changes). Activations should complete regardless of this redirection. For successive changes not to redirect, access the
Administration Console, choose Preferences, then Shared Preferences, and deselect the "Follow Configuration Changes" check box.

13.8.9 Configured JOC Port Already in Use

Problem: Attempts to start a Managed Server that uses the Java Object Cache, such as OWSM Managed Servers, fail. The following errors appear in the logs:

- J2EE JOC-058 distributed cache initialization failure
- J2EE JOC-043 base exception:
- J2EE JOC-803 unexpected EOF during read.

Solution: Another process is using the same port that JOC is attempting to obtain. Either stop that process, or reconfigure JOC for this cluster to use another port in the recommended port range.

13.8.10 Out-of-Memory Issues on Managed Servers

Problem: You are experiencing out-of-memory issues on Managed Servers.

Solution: Increase the size of the memory heap allocated for the Java VM to at least one gigabyte:

1. Log in to the Administration Console.
2. Click **Environment**, then **Servers**.
3. Click a Managed Server name.
4. Open the **Configuration** tab.
5. Open the **Server Start** tab in the second row of tabs.
6. Include the memory parameters in the **Arguments** box. For example:

   ```
   -Xms256m -Xmx1024m -XX:CompileThreshold=8000 -XX:PermSize=128m
   -XX:MaxPermSize=1024m
   ```

Note: The memory parameter requirements may differ between various JVMs (Sun, JRockit, or others).

7. Save the configuration changes.
8. Restart all running Managed Servers.

13.8.11 Missing JMS Instances on Oracle BI Publisher Scheduler Diagnostics Page

In some cases, only one JMS instance is visible on the Oracle BI Publisher Scheduler diagnostics page, rather than all instances in the cluster. This issue is most likely caused by clocks being out of sync. See **Section 2.4, "Clock Synchronization"** for more information on the importance of synchronizing clocks on all nodes in the cluster.

13.8.12 Oracle BI Publisher Jobs in Inconsistent State After Managed Server Shutdown

Before shutting down the Managed Server on which Oracle BI Publisher is running, it is a best practice (but not mandatory) to wait for all running Oracle BI Publisher jobs to complete, or to cancel any unfinished jobs using the Report Job History page. Otherwise, the shutdown might cause some jobs to incorrectly stay in a running state.

13.8.9 Configured JOC Port Already in Use

Problem: Attempts to start a Managed Server that uses the Java Object Cache, such as OWSM Managed Servers, fail. The following errors appear in the logs:

- J2EE JOC-058 distributed cache initialization failure
- J2EE JOC-043 base exception:
- J2EE JOC-803 unexpected EOF during read.

Solution: Another process is using the same port that JOC is attempting to obtain. Either stop that process, or reconfigure JOC for this cluster to use another port in the recommended port range.

13.8.10 Out-of-Memory Issues on Managed Servers

Problem: You are experiencing out-of-memory issues on Managed Servers.

Solution: Increase the size of the memory heap allocated for the Java VM to at least one gigabyte:

1. Log in to the Administration Console.
2. Click **Environment**, then **Servers**.
3. Click a Managed Server name.
4. Open the **Configuration** tab.
5. Open the **Server Start** tab in the second row of tabs.
6. Include the memory parameters in the **Arguments** box. For example:

   ```
   -Xms256m -Xmx1024m -XX:CompileThreshold=8000 -XX:PermSize=128m
   -XX:MaxPermSize=1024m
   ```

Note: The memory parameter requirements may differ between various JVMs (Sun, JRockit, or others).

7. Save the configuration changes.
8. Restart all running Managed Servers.

13.8.11 Missing JMS Instances on Oracle BI Publisher Scheduler Diagnostics Page

In some cases, only one JMS instance is visible on the Oracle BI Publisher Scheduler diagnostics page, rather than all instances in the cluster. This issue is most likely caused by clocks being out of sync. See **Section 2.4, "Clock Synchronization"** for more information on the importance of synchronizing clocks on all nodes in the cluster.

13.8.12 Oracle BI Publisher Jobs in Inconsistent State After Managed Server Shutdown

Before shutting down the Managed Server on which Oracle BI Publisher is running, it is a best practice (but not mandatory) to wait for all running Oracle BI Publisher jobs to complete, or to cancel any unfinished jobs using the Report Job History page. Otherwise, the shutdown might cause some jobs to incorrectly stay in a running state.
13.8.13 JMS Instance Fails In an Oracle BI Publisher Cluster

On rare occasions, a JMS instance is missing from an Oracle BI Publisher Scheduler cluster. To resolve this issue, restart the Oracle BI Publisher application from the Oracle WebLogic Server Administration Console.

To restart your BI Publisher application:
1. Log in to the Administration Console.
2. Click **Deployments** in the Domain Structure window.
3. Select **bipublisher(11.1.1)**.
4. Click **Stop**.
5. After the application stops, click **Start**.

13.8.14 Configuring MapViewer When the Administrator Belongs to a Custom Group

If your WebLogic domain administration account uses a different group name than Administrators (the default), you must update the MapViewer weblogic.xml file on all nodes to include the actual group name.

To update the MapViewer weblogic.xml file with the custom group name:
1. Open the MapViewer weblogic.xml file for editing. You can find the MapViewer weblogic.xml file in:

 `ORACLE_HOME/bifoundation/jee/mapviewer.ear/web.war/WEB-INF`

2. In the weblogic.xml file, locate the following lines:

   ```xml
   <security-role-assignment>
     <role-name>map_admin_role</role-name>
     <principal-name>Administrators</principal-name>
   </security-role-assignment>

   <security-role-assignment>
     <role-name>secure_maps_role</role-name>
     <principal-name>Administrators</principal-name>
   </security-role-assignment>
   ```

3. Replace the two occurrences of Administrators with the actual administration group name (for example, BIAdministrators). For example:

   ```xml
   <security-role-assignment>
     <role-name>map_admin_role</role-name>
     <principal-name>BIAdministrators</principal-name>
   </security-role-assignment>

   <security-role-assignment>
     <role-name>secure_maps_role</role-name>
     <principal-name>BIAdministrators</principal-name>
   </security-role-assignment>
   ```

4. Save and close the file.

5. Restart the MapViewer application, as follows:
 a. Log in to the Administration Console.
 b. Click **Deployments** in the Domain Structure window.
 c. Select **mapviewer(11.1.1)**.
d. Click Stop.

e. After the application has stopped, click Start.

6. Repeat these steps on all nodes.
A

AccessGate, 12-10
active-passive components
 about, 2-5
 configuring secondary instances for, 9-7
admin.conf, 8-14
Administration Console
 error when activating changes, 13-7
 redirecting to home page, 13-8
 redirecting to login screen, 13-8
Administration Server
 application directory location, 4-6
 backing up the domain, 8-22
 boot.properties on APPHOST1, 8-4
 configuring Oracle HTTP Server for, 8-14
 configuring to use custom keystores, 10-5
 creating domain with, 8-1
 creating machine for, 8-8
 enabling high availability for, 8-6
 failing over to APPHOST1, 8-22
 failing over to APPHOST2, 8-20
 port, 3-6
 separating domain directory from Managed Server domain directory, 8-9
 setting frontend URL, 8-19
 setting listen address, 8-8
 start failure, 13-7
 starting on APPHOST1, 8-5
 validation, 8-10
admin.mycompany.com virtual server name, 3-2
ADMINVHN
 about, 3-4
 enabling on APPHOST1, 8-7
APPHOST
 boot.properties for Administration Server, 8-4
 creating domain on, 8-2
 creating Middleware home, 6-4
 failing over Administration Server, 8-20, 8-22
 installing Oracle Business Intelligence, 6-5
 installing Oracle WebLogic Server, 6-4
 mounting shared storage locations, 4-7
 scaling out, 9-5
 starting Administration Server, 8-5
 starting Oracle Business Intelligence on, 9-19
APPHOST1VHN1, 3-4
APPHOST2VHN1, 3-4
application tier
 in enterprise deployment topology, 2-4
 MW_HOME directory, 4-3
attachHome.sh script, 4-2
authenticators, 12-14, 12-25

B
backing up
 after creating domain with Administration Server, 8-22
 after installing Oracle Business Intelligence, 6-6
 after scaling out to APPHOST2, 9-21
 after setting up Oracle HTTP Server, 6-3
 configuration files, 12-2
 enterprise deployments, 13-5
backups
 configuration files, 12-25
 installation, 12-28
best practices
 timeouts for SQLNet connections, 13-6
bi_cluster
 routing to, 8-15
 validating access through Oracle HTTP Server, 8-20, 9-20
bi_server1
 creating, 8-2
 disabling host name verification, 8-11
 setting listen address, 8-10
bi_server2
 disabling host name verification, 9-8
 setting listen address, 9-7
 starting, 9-19
biinternal.mycompany.com virtual server name, 3-2
bi.mycompany.com virtual server name, 3-2
boot.properties for Administration Server, 8-4

C
Catalog Location, setting, 9-3
certificates
 host name verification, 10-2
 self-signed, 10-2
clock synchronization, 2-7
cluster agent, about, 1-3
Cluster Controller, configuring secondary instance for, 9-7
clusterware, about, 1-3
configuration
creating domain with Administration Server, 8-1
credential store, 12-1, 12-2
custom keystores for Node Manager, 10-5
environment variables, 4-1
for default persistence store, 9-18
for Oracle BI Enterprise Edition, 9-2
for Oracle BI for Microsoft Office, 9-14
for Oracle BI Publisher, 9-11
for Oracle Real-Time Decisions, 9-9
for singleton system components, 9-7
frontend URL for Administration Console, 8-19
JOC port in use, 13-9
load balancer, 3-2
Node Manager, 10-1
Oracle HTTP Server, 7-3
Oracle HTTP Server for Administration Server, 8-14
Oracle HTTP Server for Managed Servers, 8-15
policy store, 12-1, 12-5
regenerating user GUIDs, 12-6
server migration
shared storage, 4-7
targets for server migration, 11-6
virtual hosts, 7-3
Web tier, 7-1
WebGate, 12-12
Configuration Assistant
using to create the domain, 8-2
using to scale out the system, 9-5
createCentralInventory.sh script, 6-2, 6-5
creating
domain with Administration Server, 8-1
Middleware home, 6-4
credential store
configuring, 12-1, 12-2
reassociating, 12-5
custom keystores, 10-5
data source, 11-2
data tier
configuring database services, 5-2
database requirements, 5-2
in enterprise deployment topology, 2-5
supported database versions, 5-2
database
backing up, 5-7
components, 5-5
port, 3-7
prefix for schemas, 5-5
requirements, 5-2
services, 5-2
supported versions, 5-2
default persistence store, configuring, 9-18
directory environment variables, 4-1
directory structure, 4-2
about, 4-1
application directory (Administration Server), 4-6
application directory (Managed Servers), 4-6
BI Publisher configuration folder, 4-5
BI Publisher Scheduler temp directory, 4-6
diagram, 4-6
domain directory, 4-4
global cache location, 4-5
JMS file stores, 4-5
MW_HOME, 4-3
Oracle BI Presentation Catalog, 4-5
ORACLE_BASE, 4-3
ORACLE_COMMON_HOME, 4-4
ORACLE_HOME, 4-4
ORACLE_INSTANCE, 4-4
repository publishing directory, 4-5
Tlogs, 4-5
WL_HOME, 4-4
disabling host name verification
bi_server1, 8-11
bi_server2, 9-8
domain directory
about, 4-2
Administration Server directory location, 4-4
Managed Server directory location, 4-4
domain, creating with Administration Server, 8-1
E
enterprise deployments
about, 1-1
application tier, 2-4
backups and recoveries, 13-5
data tier, 2-5
directory structure, 4-1, 4-2
environment variables, 4-1
hardware requirements, 2-6
installation summary for, 2-6
Oracle Identity Management, 2-2
patching, 13-6
shared storage, 4-1
summary of recommendations for, 1-5
terminology for, 1-2
topology, 2-1
troubleshooting, 13-6
unicast requirement for, 2-5
Web tier, 2-3
environment privileges, 11-5
environment variables, 4-1
F
failback, about, 1-2
failover
about, 1-2
Administration Server to APPHOST1, 8-22
Administration Server to APPHOST2, 8-20
troubleshooting, 13-7
firewalls, 3-5
FMW
See Oracle Fusion Middleware
frontend URL
setting for Administration Console, 8-19

G
global cache, 4-5, 9-3
Global cache path, setting, 9-3
GUIDs, regenerating, 12-6

H
hardware cluster, about, 1-2
hardware requirements, 2-6
high availability
additional configuration for, 9-8
enabling for Administration Server, 8-6
home page, redirecting to, 13-8
host identifier, 12-11
host name verification
certificates for Node Manager, 10-2
disabling for bi_server1, 8-11
disabling for bi_server2, 9-8
setting for Managed Servers, 10-7
httpd.conf, 7-3, 8-17

I
ID Asserter, 12-14, 12-25
identity keystore, 10-3
identity store, configuring, 12-2
incorrect URLs, 13-8
installation
creating domain with Administration Server, 8-1
Middleware home, 6-4
Oracle Business Intelligence, 6-5
Oracle Fusion Middleware, 6-3
Oracle HTTP Server, 6-2
Oracle WebLogic Server, 6-4
software, 6-1
summary, 2-6
WebGate, 12-12
instanceconfig.xml, 12-7

J
Java Object Cache, 13-9
Java VM, memory heap for, 13-9
JMS
configuring for Oracle BI Publisher, 9-13
file store location, 4-5
JOC port, 13-9

K
keystores
configuring Administration Server for, 10-5
configuring Managed Servers for, 10-5
custom, 10-5
identity, 10-3

trust, 10-4
Keytool utility, 10-4

L
LDAP
about, 12-1
moving WebLogic administrator to, 12-4
LDIF file, 12-5
leasing table for server migration, 11-2
leasing.ddl script, 11-2
listen address
setting for Administration Server, 8-8
setting for Managed Servers, 8-10, 9-7
load balancer
configuration, 3-2
configuring with Oracle HTTP Server, 7-3
port, 3-6
requirements for, 2-4
virtual server, 3-3
login screen, redirecting to, 13-8
logs
for Oracle Business Intelligence, 13-2
Node Manager, 10-2
rotating, 13-2

M
machine, creating for Administration Server, 8-8
Managed Servers
adding to new nodes, 13-4
application directory location, 4-6
backing up the domain, 9-21
configuring Oracle HTTP Server for, 8-15
configuring to use custom keystores, 10-5
creating bi_server1, 8-2
enabling virtual IPs (VIPs) for, 3-4
memory heap for Java VM, 13-9
out-of-memory issues, 13-9
separating domain directory from Administration Server domain directory, 8-9
setting host name verification, 10-7
setting listen address, 8-10, 9-7
starting, 13-2
managing the topology, 13-1
manual failover, 13-7
mapping of virtual IPs, 3-4
memory heap for Java VM, 13-9
Middleware home, about, 1-2
migration of servers
see server migration
mod_wl_ohs.conf, 8-15
monitoring the topology, 13-2
mounting shared storage locations, 4-7
multi-data source, 11-2
MW_HOME
about, 4-1
location, 4-3
N

network
 firewalls, 3-5
 host name, 1-3
 ports, 3-5
 synchronizing clocks, 2-7
Node Manager
 about, 10-1
 changing log location, 10-2
 custom keystores, 10-5
 generating self-signed certificates, 10-2
 host name verification certificates, 10-2
 identity keystore, 10-3
 port, 3-6
 properties file, 11-4
 recommendations, 10-1
 setup, 10-1
 starting, 10-7
 trust keystore, 10-4
nodes, adding servers to, 13-4
NQSConfig.INI, 12-8

O

OAM
 See Oracle Access Manager
OAM, see 'Oracle Access Manager (OAM)'
oamcfgtool
 about, 12-9
 collecting information, 12-9
 running, 12-9
Oracle Access Manager, 2-1
 about, 12-8
 enabling for Oracle BI Publisher, 12-16, 12-27
 enabling for Oracle Business Intelligence, 12-15, 12-26
 ID Asserter, 12-14
 oamcfgtool, 12-9
 order of providers, 12-15
 updating host identifier, 12-11
 updating WebGate profile, 12-12
 verifying AccessGate, 12-10
 verifying policy domain, 12-10
 WebGate, 12-12
 WebLogic authenticators, 12-14
Oracle Access Manager (OAM)
 ID Asserter, 12-25
 order of providers, 12-26
 overview, 12-17
 prerequisites, 12-18
 WebLogic authenticators, 12-25
Oracle BI for Microsoft Office
 configuring properties for, 9-14
 validating configuration for, 9-16
Oracle BI Presentation Catalog
 file locations, 4-5
 setting location for, 9-3
Oracle BI Publisher
 configuration folder, 4-5
 configuring integration with Presentation Services, 9-12
 configuring JMS, 9-13
 configuring SSO for, 12-16, 12-27
 Scheduler temp directory, 4-6
 setting location for configuration folder, 9-4
 setting Oracle BI EE data source, 9-12
 setting Scheduler configuration options, 9-12
 setting WebLogic JNDI URL for Scheduler, 8-11
 updating Scheduler configuration, 9-14
Oracle BI Repository, setting shared location, 9-2
Oracle BI Scheduler
 configuring secondary instance for, 9-7
 setting script paths for, 9-9
Oracle BI Server ports, 3-6
Oracle Business Intelligence
 configuring SSO for, 12-15, 12-26
 directory structure, 4-6
 installing, 6-5
 scaling out on APPHOST2, 9-5
 scaling up, 13-3
 schemas, loading in database, 5-4
 starting on APPHOST2, 9-19
 verifying AccessGate, 12-10
 verifying policy domain, 12-10
 WebGate, 12-12
 WebLogic authenticators, 12-14
Oracle Fusion Middleware
 backing up, 6-6
 creating Middleware home, 6-4
 installing Oracle Business Intelligence, 6-5
 installing Oracle WebLogic Server, 6-4
 installing software, 6-3
Oracle home, about, 1-2
Oracle HTTP Server
 backing up, 6-3
 configuration, 7-3
 configuring for Administration Server, 8-14
 configuring for Managed Servers, 8-15
 installation, 6-2
 load balancer, 3-3, 7-3
 location, 6-3
 port, 3-6, 6-2
 registering with Oracle WebLogic Server, 8-18
 requirements, 6-2
 validating Administration Server access, 8-19, 8-21
 validating bi_cluster access, 8-20, 9-20
Oracle Identity Management
 in enterprise deployment topology, 2-2
 integrating with, 12-1
Oracle instance, about, 1-2
Oracle Real-Time Decisions
 configuring clustering properties for, 9-9
 Oracle WebLogic Scripting Tool (WLST), starting
 Administration Server using, 8-6
Oracle WebLogic Server
 configuring to use custom keystores, 10-5
 installation, 6-4
 registering Oracle HTTP Server with, 8-18
ORACLE_BASE
 about, 4-1
 location, 4-3
ORACLE_COMMON_HOME
about, 4-2
location, 4-4
ORACLE_HOME
about, 4-2
location, 4-4
ORACLE_INSTANCE
about, 4-2
location, 4-4
oracleRoot.sh script, 6-3
out-of-memory issues, 13-9

P
pack/unpack, using to separate domain directories, 8-9
patching enterprise deployments, 13-6
physical host name, about, 1-4
physical IP, about, 1-4
policy domain, 12-10
policy store
configuring, 12-1, 12-5
reassociating, 12-5
ports, 3-5
Administration Server, 3-6
database, 3-7
JOC port in use, 13-9
load balancer, 3-6
Node Manager, 3-6
Oracle BI Server, 3-6
Oracle HTTP Server, 3-6, 6-2
prefix for database schemas, 5-5
primary node, about, 1-3
properties file of Node Manager, 11-4
provider order for OAM, 12-26
provider order for Oracle Access Manager, 12-15

R
reassociating credentials and policies, 12-5
recommendations
for enterprise topology, 1-5
for Node Manager, 10-1
recovery of enterprise deployments, 13-5
redirecting to home page, 13-8
redirecting to login screen, 13-8
registering Oracle HTTP Server with WebLogic Server, 8-18
Repository Creation Utility, using to load schemas, 5-4
repository publishing directory, 4-5, 9-2
requirements
database, 5-2
hardware, 2-6
load balancer, 2-4
Oracle HTTP Server, 6-2
shared storage, 4-1
software, 6-1
unicast, 2-5

S
scaling out
Oracle Business Intelligence, 9-5, 13-4
prerequisites, 13-3
system components, 9-6, 13-3
topology, 13-2
scripts
attachHome.sh, 4-2
createCentralInventory.sh, 6-2, 6-5
leasing.ddl, 11-2
oracleRoot.sh, 6-3
wlsifconfig.sh, 11-5
secondary node, about, 1-3
sself-signed certificates, 10-2
servers migration, 11-1
configuring targets, 11-6
creating a multi-data source, 11-2
editing the Node Manager properties file, 11-4
leasing table, 11-2
multi-data source, 11-2
setting environment and superuser privileges, 11-5
setting up user and tablespace, 11-2
testing, 11-7
troubleshooting, 13-7, 13-8
setting up
Node Manager, 10-1
WebLogic authenticators, 12-14
setting up WebLogic authenticators, 12-25
shared storage
about, 1-3
configuration, 4-7
for BI Publisher configuration folder, 9-4
for global cache, 9-3
for Oracle BI Presentation Catalog, 9-3
for Oracle BI Repository, 9-2
for Oracle BI Scheduler scripts, 9-9
mounting locations, 4-7
recommendations, 4-1
singleton system components, configuring secondary instances for, 9-7
software
installation, 6-1
Oracle Fusion Middleware, 6-3
Oracle HTTP Server, 6-2
Oracle WebLogic Server, 6-4
requirements, 6-1
versions, 6-1
SQLNet connections, timeouts, 13-6
SSL acceleration requirement, 2-4
SSO
enabling for Oracle BI Publisher, 12-16, 12-27
enabling for Oracle Business Intelligence, 12-15, 12-26
starting
Administration Server on APPHOST1, 8-5
Managed Servers, 13-2
Node Manager, 10-7
Oracle Business Intelligence, 13-1
system components, 13-2
sticky routing capability, 2-4
stopping Oracle Business Intelligence, 13-1
superuser privileges, 11-5
switchback, about, 1-4
switchover, about, 1-4
system components
 scaling out, 9-6
 scaling up, 13-3
 starting, 9-19, 13-2

T
 tablespace for server migration, 11-2
 targets for server migration, 11-6
 terminology, for enterprise deployments, 1-2
 testing server migration, 11-7
 timeouts for SQLNet connections, 13-6
 Tlogs, location of, 4-5
 topology
 directory structure, 4-1, 4-2
 environment variables, 4-1
 for enterprise deployments, 2-1
 managing, 13-1
 monitoring, 13-2
 Oracle Access Manager, 2-1
 scaling out, 13-4
 shared storage, 4-1
 troubleshooting, 13-6
 activating changes in Administration Server, 13-7
 incorrect URLs, 13-8
 manual failover, 13-7
 memory heap for Java VM, 13-9
 no access to applications through load balancer, 13-6
 out-of-memory issues, 13-9
 redirecting to home page, 13-8
 redirecting to login screen, 13-8
 server migration, 13-7, 13-8
 trust keystore, 10-4

U
 unicast requirement, 2-5
 updating the host identifier, 12-11
 updating WebGate profile, 12-12
 URLs, validating for Oracle Business Intelligence, 8-13, 9-19
 utils.CertGen utility, 10-2
 utils.ImportPrivateKey utility, 10-3

V
 validation
 AccessGate, 12-10
 Administration Server, 8-10
 Administration Server access through Oracle HTTP Server, 8-19, 8-21
 bi_cluster access through Oracle HTTP Server, 8-20, 9-20

for Oracle BI for Microsoft Office, 9-16
Oracle Business Intelligence URLs, 8-13, 9-19
policy domain, 12-10
server migration, 11-7
Web tier installation, 7-3
versions of software, 6-1
virtual host name, about, 1-4
virtual hosts
 ADMINVHN, 3-4
 APPHOST1VHN1, 3-4
 APPHOST2VHN1, 3-4
 configuration, 7-3
virtual IPs (VIPs)
 about, 1-4
 description, 3-4
 enabling for Managed Servers, 3-4
 mapping, 3-4
virtual server names, 3-1
<VirtualHost> entries in httpd.conf, 7-3

W
 Web tier
 configuration, 7-1
 in enterprise deployment topology, 2-3
 load balancer requirements, 2-4
 MW_HOME location, 4-3
 validating installation, 7-3
 WebGate
 installing and configuring, 12-12
 profile, 12-12
 WEBHOST
 admin.conf, 8-14
 configuring Oracle HTTP Server for Administration Server, 8-14
 configuring Oracle HTTP Server with load balancer, 7-3
 configuring Web tier, 7-1
 installing Oracle HTTP Server, 6-2
 load balancer, 3-3
 registering Oracle HTTP Server with WebLogic Server, 8-18
 validating Administration Server access through Oracle HTTP Server, 8-19, 8-21
 validating bi_cluster access through Oracle HTTP Server, 8-20, 9-20
 WebLogic administrator, moving to LDAP, 12-4
 WebLogic authenticators, 12-14, 12-25
 WebLogic JNDI URL, setting for Oracle BI Publisher Scheduler, 8-11
 WebLogic Server home, about, 1-2
 WL_HOME
 about, 4-1
 location, 4-4
 wlsifconfig.sh script, 11-5