Oracle® Fusion Middleware

Developing Applications for Oracle WebLogic Server
11g Release 1 (10.3.6)

E13706-06

November 2011

This document describes building WebLogic Server
e-commerce applications using the Java Platform, Enterprise
Edition 5.

ORACLE

Oracle Fusion Middleware Developing Applications for Oracle WebLogic Server, 11g Release 1 (10.3.6)
E13706-06
Copyright © 2007, 2011, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

Contents

PUrOIACE ... e e e ettt aen Xi
Documentation AccesSibility ..o Xi
(@03 4 hT£=1 015 o) 0 I RRRT RPN Xi

1 Overview of WebLogic Server Application Development

]
]
)
)
)
)
)
]
)
)
]
)
)
)
)
)

)
)
)
)
)
)
)
)

—_. =2 A A

A Document Scope and AUIENCE..........ccccuiuiiiiiiiiiiiiic e 1-1
2 WebLogic Server and the Java EE Platformcccoooiiiiiiiiiiiiicccccceccceenenns 1-1
3 Overview of Java EE Applications and Modules...........ccccooriiiiniiiniccce 1-2
4 Web Application MOAULES.........ccccoiiiiiiiiiiiccc e 1-3
4.1 SEIVIEES ... 1-3
4.2 JavaServer Pages ... 1-3
4.3 More Information on Web Application Modules. ... 1-3
5 Enterprise JavaBean ModUlescccccciiiiiiiiiiiicrccreees e 1-4
5.1 EJB OVEIVIEW ...ttt ettt sttt et bbbt e bbbt e st e be et e b eaeas 1-4
5.2 EJBs and WebLogic SETVETcccccuiuiiimiiiiiiiiiiiiiiicicicc e 1-4
.6 ConnNector MOAULEScccuiiiiiiiicicc s 1-5
4 Enterprise APPLCAtioNSc.cuoiiiieiiiiiieie e 1-5
71 Java EE Programming Model..........ccccccoviiiiiiniiininiiiiiinncnnsas 1-5
7.2 Packaging and Deployment OVerview ..., 1-6
.8 WebLogic Web ServiCes ..ot 1-6
9 JMS and JDBC MOAUIEScociruiriiriinieieieieteteetete ettt e et esessesse st e e sesessenseneeneeseenas 1-7
.10 WebLogic Diagnostic Framework Modulescccooeiiiiiioniciic, 1-7
.10.1 Using an External Diagnostics Descriptorooceoiiiciiiiiicecccc e, 1-8
.10.1.1 Defining an External Diagnostics Descriptor ..., 1-8
11 XML Deployment Descriptors ... 1-8
14 Automatically Generating Deployment Descriptors...........ccococieiiiiciiiniccicene, 1-12
1.2 EJBGETN.....ciiiiiiiiicic ettt s 1-12
11.3 Java-based Command-line UtIlitiescceoeeeeiririnineneniceeete e 1-12
1.4 Upgrading Deployment Descriptors From Previous Releases of Java EE and WebLogic

Server 1-12

12 Deployment PIans.........cooiiiiiiiiiiiii e 1-13
13 Development SOffWATe.........cciiiiiiiiiic 1-14
131 APAChe ANt ..ot s 1-14
.13.1.1 Using A Third-Party Version of Ant..........ccccccceiviiiiiniiiininiinnicnnens 1-15
13.1.2 Changing the Ant Heap Size........cccocoviiiiiiiiiiiiiis 1-15
.13.2 Source Code EAitor O IDE ..ottt s eveens 1-15

1.13.3
1.134
1.13.5

Database System and JDBC Driver ... 1-15
WED BIOWSET ...ttt s 1-16
Third-Party SOftWare..........cccccuiiiiiiiccccee e 1-16

2 Using Ant Tasks to Configure and Use a WebLogic Server Domain

2.1

2.2
2.21
222
2.2.3
2.3
2.3.1
2.3.2
2.3.3
234
2.3.5
2.3.5.1
2352
2.3.5.3
2.3.54
2355
2.3.5.6
2.4
2.4.1
242
243
244
24.41
2442
245

Overview of Configuring and Starting Domains Using Ant Taskscccccccceeeecennnes 2-1
Starting Servers and Creating Domains Using the wlserver Ant Task.........c...cccoeuenenn. 2-1
Basic Steps for Using WISeIVeT ... 2-2
Sample build.xml Files fOr WISEIVETccccccciiuiiiiiiiiiciccecececeeee e 2-2
wlserver Ant Task Reference ... 2-3
Configuring a WebLogic Server Domain Using the wlconfig Ant Taskcccccceeueiinns 2-6
What the wlconfig Ant Task DOes..........cccoiiiiiiiiiiiiciecececee s 2-6
Basic Steps for Using Wlconfig........coueueveviiiiiiiiiii 2-7
wlconfig Ant Task Reference ... 2-8
Main AEIDULESvvvii s 2-8
Nested EIOMENLSccovviiiiiiiiiiiiiiiiicce s 2-8
CTRALR. .ottt et 2-9

ElEte oo 2-9

BOE et 2-9
b 2-10

QUETY oottt bbbt 2-10

INVOKE ..ottt s 2-11

Using the libclasspath Ant Taskcccooioiiiiiii 2-11
libclasspath Task Definition ... 2-11
libclasspath Ant Task Reference............cccceeieiiiiiiiiiiiiiiiiiiccccccceces 2-12
Main libclasspath Attributesooieiiii 2-12
Nested libclasspath EIEMENtSc.cccceucuiiiiiiriiiiiiiiiiccrecncrreer s 2-12
BDIarydir....cocveveiiiiieiiie s 2-12

HDTATY oo 2-12
Example libclasspath Ant Task..........cccocciiiiiiiiiiiieeeeeeeeeeeeeeeseeaene 2-13

3 Creating a Split Development Directory Environment

3.1

3.1.1
3.1.2
3.1.3
3.2

3.3

3.3.1
3.3.2
3.3.3
3.3.4
3.3.5
3.4

3.4.1
3.4.2
3.4.3

Overview of the Split Development Directory Environmentc.cccccccovvinnnnninnenc. 3-1
Source and Build Directories...........cocvuiiiiiiiiiiiiiiiiiiiiiii s 3-2
Deploying from a Split Development Directory ..o 3-3
Split Development Directory Ant Tasksccccccccvceiiiiiiiiiieecccceeeeeeeeennes 3-4

Using the Split Development Directory Structure: Main Stepscccevviieiiiiiiniinnnns 3-4

Organizing Java EE Components in a Split Development Directory........ccccccoevvuevriennnen. 3-5
Source Directory OVeIVIEW ... 3-5
Enterprise Application Configuration...........cccoveiiiiiiiiiiiiiies 3-8
Web APPLICALIONS ... 3-8
EJBS oot 3-9
Important Notes Regarding EJB Descriptors..........cccceueiieieiiiiciciciicccc 3-10

Organizing Shared Classes in a Split Development Directorycccocevvvviivnnennnes 3-11
Shared Utility ClasSesccccceueuiueiciiiiueiiieicicrieieecireesieeeeeie e 3-11
Third-Party LiDraries..........cooiiiiicicic e 3-11
Class Loading for Shared Classes..........c.cocooeeueieiiiniiiiccice s 3-12

3.5
3.5.1
3.6
3.6.1
3.6.2
3.7

Generating a Basic build.xml File Using weblogic.BuildXMLGen...........ccccccouviurunnnnnes 3-12
weblogic. BuildXMLGeN SYNtaXcccocoviviiiiiiiiiiiiciccceeeeeeenenennes 3-13
Developing Multiple-EAR Projects Using the Split Development Directory 3-14
Organizing Libraries and Classes Shared by Multiple EARs..........ccccccoooiiiinni. 3-14
Linking Multiple build.xml Files.........cccccooiiiiiiic e 3-15
Best Practices for Developing WebLogic Server Applications...........cccccceeucceriiecicunnnne. 3-15

4 Building Applications in a Split Development Directory

41

411
41.2
41.3
41.4
4.1.5
4.2

4.2.1
422
423
424
4.2.5
4.2.6

Compiling Applications Using WlcoOmpile..........ccocovvviiirirrrininnnnnrre e 4-1
Using includes and excludes Properties..........c.coooeueieiiiiiiiiicieccece, 4-2
wlcompile Ant Task Attributes.........coooiiiiiiii e, 4-2
Nested Javac OPLioNScccccccciciiiiiiiiieeeeeeereee e 4-2
Setting the Classpath for Compiling Codeccooeuiiiiiiiiniii, 4-2
Library Element for wlcompile and Wlappc........c.ccooiiiiiiiiiicc 4-3

Building Modules and Applications Using Wlappceccceeevevrrverninnnnninrereeeeeeeeenee 4-3
wlappc Ant Task Atributes ... 4-3
wlappc Ant Task SYNtaX ..o 4-5
Syntax Differences between appc and Wlappce........ccoceueeceiceiieecicccceeeceeeeees 4-5
weblogic.appc Reference ..o 4-5
WeblOZiC.aPPC SYNEAX.....uiviiiiecteieiictei e 4-5
WEDLOGIC.aPPC OPLIONS ...t 4-5

5 Deploying and Packaging from a Split Development Directory

5.1
5.2
5.2.1
5.2.2
5.2.3

Deploying Applications Using Wldeploy........cccccocciiiiiiiiiiiieiicceeeeeeeeeeeeeeeeeeenas 5-1
Packaging Applications Using Wlpackage...........cooeeueuiiriiieiniiiciceiinceece 5-1
Archive versus Exploded Archive Directory..........ccooeiiiiiiiiiiiiiiiiciiins 5-1
wlpackage Ant Task EXample........cooiiiiiiiiiiiiiiiccecceeceeeeeeeeeee e 5-2
wlpackage Ant Task Attribute Reference ..., 5-2

6 Developing Applications for Production Redeployment

6.1
6.2
6.2.1
6.3
6.3.1
6.3.2
6.3.3
6.3.4
6.3.5
6.3.6
6.4
6.4.1
6.5
6.6

What is Production Redeployment?cccoiiiiiiiiiiiccc 6-1
Supported and Unsupported Application Typescccccovuvvvicmeiniiiieieieccecceee 6-1
Additional Application SUPPOTt........ccriuiuiuimiiiiiiiiicceeeceee e 6-2
Programming Requirements and Conventions............ccocceuoiirieieiiiciciciicceccee 6-2
Applications Should Be Self-Containedc.c.cocooveieiiiininiiicccce, 6-2
Versioned Applications Access the Current Version JNDI Tree by Default............... 6-3
Security Providers Must Be Compatible ... 6-3
Applications Must Specify a Version Identifierccccooeniiiiiiiiicin, 6-3
Applications Can Access Name and Identifier ... 6-3
Client Applications Use Same Version when Possiblecccccocovvvininnnnninnn. 6-3
Assigning an Application VEISION ... 6-4
Application Version CONVENtIONS..........ccoceuiuiuiuiuiuiuimimieieieeereieeeeeneneee e nenenenenenes 6-4
Upgrading Applications to Use Production Redeploymentcccccevveviiiniiiiiinnnnns 6-4
Accessing Version INformation...........cccciiiiiiiiiiiiiiiccceeeeeeeas 6-5

7 Using Java EE Annotations and Dependency Injection

71

711
71.2
7.1.3
71.4
7.2

7.2.1
7.3

7.3.1
7.3.2
7.3.3
7.3.4
7.4

7.4.1
7.4.2
7.4.3
7.4.4
7.4.5

ANNOtAtion PrOCESSINGcvcviviviiiieieiiiticet 7-1
Annotation Parsing...........cviiiiiii 7-1
Deployment View of Annotation Configurationccccoeereieiiinciiiiincccc, 7-2
Compiling Annotated Classesccoceueiirrieiiiiicieec e 7-2
Dynamic Annotation Updates ..o 7-2

Dependency Injection of RESOUICEScceuvuiiiiiiiiiiiiiiiiiiiiicc s 7-2
Application Life Cycle Annotation Methods...........ccoooiiiiiiii 7-3

Standard JDK ANNOTAtiONScc.eeveveieieieieinieisesestesessesetessesesseseeseesassessessessessessessessessesens 7-3
javax.annotation.PostCONSIIUCE ... 7-4
javax.annotation. PreDestroy ... 7-4
javax.annotationN.RESOUICE.........ccviiviiiiiiiiiic s 7-5
javax.annotation.ReSOUICESc.coiiiiiiiiiicc e, 7-6

Standard Security-Related JDK ANnotations.........cccoveeieieiiiccieieicieccceeee 7-6
javax.annotation.security.DeclareROles...........ccccccucuiueiiiiiiiinninnicrccrreereceeaes 7-7
javax.annotation.security. DenyAll..........ccccooiiiiiiiiii e 7-7
javax.annotation.security. PermitAll ..o 7-7
javax.annotation.security.RolesAllowed.........c.cccccciuiiiiiiininniiicrcc s 7-7
javax.annotation.security. RUNAS..........cooviiiiiiiii s 7-8

8 Understanding WebLogic Server Application Classloading

vi

8.1
8.1.1
8.1.2
8.1.3
8.1.4
8.1.5
8.2
8.2.1
8.2.2
8.2.3
8.2.4
8.2.5
8.2.5.1
8.2.5.2
8.2.56.3
8.2.5.4
8.2.5.5
8.2.5.6
8.2.5.7
8.2.5.8
8.2.6
8.2.7
8.2.8
8.2.9
8.2.10
8.2.11

Java Classloading ... 8-1
Java Classloader Hierarchy ... 8-1
Loading @ CLassc.cevueueirieiririiicieirrieerereee e 8-2
prefer-web-inf-classes Element..........c.cccooviiiiiiiiiiic 8-2
Changing Classes in a Running Programccocovvininnnninninnns 8-3
Configuring Class Cachingcccccoceueiiiiiiiiiiiicceeeeeeee e 8-3

WebLogic Server Application Classloading ..o 8-4
Overview of WebLogic Server Application Classloading............cccccceviviniiiniiinininnen. 8-5
Application Classloader Hierarchy...........c.cccccoiiiiiiiiiiiiiccccceecceeeenes 8-5
Custom Module Classloader Hierarchiesc.ccoovevieiinieiiiiiiicniiniecceceeeiennes 8-6
Declaring the Classloader Hierarchy ..o, 8-7
User-Defined Classloader ReStriCtions...........ccccciiiiiiiicieeiiiceceeeeeeieeenenennes 8-9

Servlet Reloading Disabled ... 8-9
Nesting Depthi.......cccociiiiiiiiiiii e 8-9
MOAULE TYPES ..ttt 8-9
Duplicate ENtries ... 8-10
INEEIEACES ..ttt 8-10
Call-by-Value Semantics..........cccoeeiueemiiiiieieieeeeeeeeee e enenes 8-10
IN-FLight WOTK.....cooiiiiiiiii s 8-10
Development Use ONlycccccciiiiiiiiiiiiiiiiiiiiiicccees 8-10
Individual EJB Classloader for Implementation Classes.........c.cccocoeeueucucucueucicucncnnne. 8-10
Application Classloading and Pass-by-Value or Referencecccccceueiiciennne. 8-11
Using a Filtering Classloader ... 8-12
What is a Filtering ClassLoader ..o 8-12
Configuring a FilteringClassLoader ... 8-13
Resource Loading Order...........ccccociiiiiiiiiiiiiiiiiiiiiicie s 8-13

8.3
8.3.1
8.3.2
8.3.3
8.4
8.5
8.6

Resolving Class References Between Modules and Applications..........c.cccccevvevevivinennne. 8-14

About Resource Adapter Classesccooeuiiciciniiicieieiiccec s 8-14
Packaging Shared Utility Classesccccccocueueririririrnirirerrrccreeereeeeeeeeeeeeeeeeees 8-14
Manifest Class-Path.........ccooiiiii 8-15
Using the Classloader Analysis TOOL (CAT)c.ccooiiiiiiiniiiiiceecc i 8-15
Sharing Applications and Modules By Using Java EE Librariesccccccccecevuvvnrnenne. 8-17
Adding JARs to the Domain /1ib Directoryccccoooiiurieiiiiiieiciicicicece 8-17

9 Creating Shared Java EE Libraries and Optional Packages

10

9.1
9.1.1
9.1.2
9.1.3
9.14
9.1.5
9.2
9.2.1
9.2.2
9.2.3
9.24
9.3
9.3.1
9.3.2
9.4
9.5
9.5.1
9.5.2
9.6

9.7
9.8
9.9
9.10

9.11
9.12

Overview of Shared Java EE Libraries and Optional Packagesc.cccocoooreiiininininnninne. 9-1
Optional Packagesccccociiiiiiiiiiiniiiiiiii s 9-2
LiIbTary DATECIOTIES.c.cvvuririiiiriicieeerrc e 9-3
Versioning Support for Libraries...........ouiiiiiiiiiiiiiieeeeeeens 9-3
Shared Java EE Libraries and Optional Packages Compared..........ccccoovoruiiiiirnnnnn. 9-4
Additional INformation...........ccoviiiiiiiiiiiiii e 9-4

Creating Shared Java EE Libraries...........ccccoiiiiiiiiiiicicceeeenas 9-5
Assembling Shared Java EE Library Files..........ccccocooiiiiiiiiiiiiiiiiis 9-5
Assembling Optional Package Class Filesccccccoevvniinnnninnrncnrrececene 9-6
Editing Manifest Attributes for Shared Java EE Libraries...........ccococovnininininininen. 9-6
Packaging Shared Java EE Libraries for Distribution and Deployment...................... 9-8

Referencing Shared Java EE Libraries in an Enterprise Application..........cccccccovuveerenencnce. 9-8
Overriding context-roots Within a Referenced Enterprise Library.........cccccce.e... 9-10
URISs for Shared Java EE Libraries Deployed As a Standalone Module................... 9-11

Referencing Optional Packages from a Java EE Application or Module......................... 9-11

Using weblogic.appmerge to Merge Librariescccoeeveeieiiiiiniciiciciccccenen, 9-13
Using weblogic.appmerge from the CLI.........cccccoooiiiiiiiniice, 9-13
Using weblogic.appmerge as an Ant TasK...........cocoiiiiiiiiiiieceeeececneeneees 9-14

Integrating Shared Java EE Libraries with the Split Development Directory Environment ...
9-14

Deploying Shared Java EE Libraries and Dependent Applications..........cccccccooerurunnne. 9-14
Web Application Shared Java EE Library Information...........ccccccoeeeiiiiincciiincenne. 9-15
Using WebApp Libraries With Web Applications..........c.cccceeeviiiiiiniininn 9-15
Accessing Registered Shared Java EE Library Information with LibraryRuntimeMBean
9-16

Order of Precedence of Modules When Referencing Shared Java EE Libraries............. 9-16
Best Practices for Using Shared Java EE Librariesc.cccoccooeoiiiiiiiiiiiecces 9-17

Programming Application Life Cycle Events

10.1
10.2
10.3
10.3.1
10.4
10.5
10.6
10.6.1

Understanding Application Life Cycle Events..........cccccoeiiiiiiiiiiiiiin 10-1
Registering Events in weblogic-application.xml.........ccccocceviiniinnnnniniiiine, 10-2
Programming Basic Life Cycle Listener Functionalityc.cccccceceiincicicninccnnes 10-2

Configuring a Role-Based Application Life Cycle Listener...........ccccecovuvivininininnnnn 10-4
Examples of Configuring Life Cycle Events with and without the URI Parameter 10-4
Understanding Application Life Cycle Event Behavior During Re-deployment........... 10-5
Programming Application Version Life Cycle Eventsccccocevviiiiiiiiiininnnne, 10-5

Understanding Application Version Life Cycle Event Behavior........c.cccccccoevennnne. 10-5

vii

1

12

13

10.6.2 Types of Application Version Life Cycle Events..........c.ccccovieiiiinininiiiiennnn, 10-6

10.6.3 Example of Production Deployment Sequence When Using Application Version Life
Cycle Events 10-6

Programming Context Propagation

11.1 Understanding Context Propagation...........ccccooooiriiiiiiiiiiiiiiccccce 11-1
11.2 Programming Context Propagation: Main Stepsccccoviiiininiininiiinniccne, 11-2
11.3 Programming Context Propagation in a Client...........c.cccooeeiiiiiiiiiiiicc 11-2
11.4 Programming Context Propagation in an Application ..o 11-4

Programming JavaMail with WebLogic Server

12.1 Overview of Using JavaMail with WebLogic Server Applications..........cc.ccoooreurinnnne. 12-1
12.2 Understanding JavaMail Configuration Files...........c.cocoovinnniininnnnciiccccccccene 12-2
12.3 Configuring JavaMail for WebLogic Server.........ccoovieiiiiiiiiiiiicc e 12-2
12.4 Sending Messages with JavaMailccocooiiiii 12-2
12.5 Reading Messages with JavaMail.........cccociiiiiiiiiiiiiiiiceeceeeceeeeeeee s 12-3

Threading and Clustering Topics

13.1 Using Threads in WebLOGIiC SEIVET ... 13-1
13.2 Using the Work Manager API for Lower-Level Threading...........ccccoooeeviiiiiiinnnnan. 13-2
13.3 Programming Applications for WebLogic Server Clusters..........c.ccoevivviviiiiiiincnnen. 13-2

A Enterprise Application Deployment Descriptor Elements

viii

AA weblogic-application.xml Deployment Descriptor Elementscccccoovoiiiiiiiineeines A-1
Al WEDLOGIC-aPPLICAtION ... e A-1
A1.2 €D o s A-7
A1.21 ENItY-CACNE ...t A-8
A1.3 MAX-CACHE-8IZE ..o s A-9
A1l14 XIML vttt s A-10
A1.41 PATSET-FACTOTY ..o A-10
A1.4.2 ENtItY-MNAPPING .ovvviviviiiiiii s A-11
A1.5 JAbC-cONNECHION-POOL......oiiiiiiiiii A-12
A15.1 CONNECION-FACTOTY ... A-12
A152 POOL-PATAIMS.....ceeec et esaes A-13
A.153 AIIVEI-PATAINS.ooviviviiiciciicic s A-18
A.1.6 SECUTILY vttt A-20
Al17 ApPlicatioN-PaTAIM......c.ciiiiiiiiiiic s A-21
A1.8 classloader-structure ..o A-21
A1.9 LISEEIIET .ottt A-21
A.1.10 SINGLETON-SETVICEouviiiiiiiiiicicicicic et A-22
A1.11 SEATEUP ..ttt A-22
A1.12 SRULAOWI ...t A-23
A1.13 WOTK-TNANAZET ...ttt eeees A-23
A1.14 S€SSI0N-AESCIIPLOT ...ttt s A-25
A1.15 BDTary-Tef ...c.c.cooiiiiiic s A-27
A1.16 library-context-root-OVerride ... A-28

A1.17 FASE-SWAD vt A-28
A2 weblogic-application.xml Schema...........cooooii A-29
A3 application.Xml SChemaccccciiiiiiiice s A-29

B wideploy Ant Task Reference

B.1 Overview of the wldeploy Ant TasK ... B-1
B.2 Basic Steps for Using Wldeploy........cccuiiiiriiiiiiiiicc B-1
B.3 Sample build.xml Files for Wldeployccccooiiiiiiiiiiiiiec B-2
B.4 wldeploy Ant Task Attribute Reference..........ccccoceiiiiiiiiiiiiiccicceccceceeeeeeeeenes B-3
B.4.1 Main AHTIDULESoovviiii s B-3
B.4.2 Nested <files> Child Element...........cccccccoviiiiiiiiiniiiiiiiiiiiiis B-8

Preface

This preface describes the document accessibility features and conventions used in this
guide—Developing Applications for Oracle WebLogic Server.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For
information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

xi

Xii

1

Overview of WebLogic Server Application

Development

The following sections provide an overview of WebLogic Server applications and basic
concepts.

Section 1.1, "Document Scope and Audience"

Section 1.2, "WebLogic Server and the Java EE Platform"
Section 1.3, "Overview of Java EE Applications and Modules"
Section 1.4, "Web Application Modules"

Section 1.5, "Enterprise JavaBean Modules"

Section 1.6, "Connector Modules"

Section 1.7, "Enterprise Applications"

Section 1.8, "WebLogic Web Services"

Section 1.9, "JMS and JDBC Modules"

Section 1.10, "WebLogic Diagnostic Framework Modules"
Section 1.11, "XML Deployment Descriptors"

Section 1.12, "Deployment Plans"

Section 1.13, "Development Software"

1.1 Document Scope and Audience

This document is written for application developers who want to build WebLogic
Server e-commerce applications using the Java Platform, Enterprise Edition 6. It is
assumed that readers know Web technologies, object-oriented programming
techniques, and the Java programming language.

WebLogic Server applications are created by Java programmers, Web designers, and
application assemblers. Programmers and designers create modules that implement
the business and presentation logic for the application. Application assemblers
assemble the modules into applications that are ready to deploy on WebLogic Server.

1.2 WebLogic Server and the Java EE Platform

WebLogic Server implements Java Platform, Enterprise Edition (Java EE) Version 5.0
technologies (see
http://www.oracle.com/technetwork/java/javaee/documentation/inde

Overview of WebLogic Server Application Development 1-1

Overview of Java EE Applications and Modules

x.html). Java EE is the standard platform for developing multi-tier Enterprise
applications based on the Java programming language. The technologies that make up
Java EE were developed collaboratively by Oracle and other software vendors.

An important aspect of the Java EE programming model is the introduction of
metadata annotations. Annotations simplify the application development process by
allowing a developer to specify within the Java class itself how the application
component behaves in the container, requests for dependency injection, and so on.
Annotations are an alternative to deployment descriptors that were required by older
versions of Enterprise applications (Java EE 1.4 and earlier).

According to Oracle, "the focus in Java EE 5 is ease of development. With Java EE 5,
there is less code to write — much of the boilerplate code has been removed, defaults
are used whenever possible, and annotations are used extensively to reduce the need
for deployment descriptors."

= EJB 3.0 makes it much easier to program an EJB, in particular by reducing the
number of required programming artifacts and introducing a set of EJB-specific
metadata annotations that make programming the bean file easier and more
intuitive. Another goal of EJB 3.0 is to standardize the persistence framework and
reduce the complexity of the entity bean programming model and object-relational
(O/R) mapping model. WebLogic Server continues to support Version 2.1 of the
EJB specification.

s Java EE 5 includes simplified Web Services support and the latest web services
APIs, making it an ideal implementation platform for Service-Oriented
Architectures (SOA).

s Constructing web applications is made easier with JavaServer Faces (JSF)
technology and the JSP Standard Tag Library (JSTL). Java EE 5 supports rich
thin-client technologies such as AJAX, for building applications for Web 2.0.

WebLogic Server Java EE applications are based on standardized, modular
components. WebLogic Server provides a complete set of services for those modules
and handles many details of application behavior automatically, without requiring
programming. Java EE defines module behaviors and packaging in a generic, portable
way, postponing run-time configuration until the module is actually deployed on an
application server.

Java EE includes deployment specifications for Web applications, EJB modules, Web
Services, Enterprise applications, client applications, and connectors. Java EE does not
specify how an application is deployed on the target server—only how a standard
module or application is packaged. For each module type, the specifications define the
files required and their location in the directory structure.

Java is platform independent, so you can edit and compile code on any platform, and
test your applications on development WebLogic Servers running on other platforms.
For example, it is common to develop WebLogic Server applications on a PC running
Windows or Linux, regardless of the platform where the application is ultimately
deployed.

For more information, refer to the Java EE specification at:
http://download.oracle.com/javaee/5/api/

1.3 Overview of Java EE Applications and Modules

A WebLogic Server Java EE application consists of one of the following modules or
applications running on WebLogic Server:

1-2 Developing Applications for Oracle WebLogic Server

Web Application Modules

Web application modules—HTML pages, servlets, JavaServer Pages, and related
files. See Section 1.4, "Web Application Modules".

Enterprise Java Beans (E]B) modules—entity beans, session beans, and
message-driven beans. See Section 1.5, "Enterprise JavaBean Modules".

Connector modules—resource adapters. See Section 1.6, "Connector Modules".

Enterprise applications—Web application modules, E]B modules, resource
adapters and Web Services packaged into an application. See Section 1.7,
"Enterprise Applications".

Web Services—See Section 1.8, "WebLogic Web Services".

A WebLogic application can also include the following WebLogic-specific modules:

JDBC and JMS modules—See Section 1.9, "JMS and JDBC Modules".

WebLogic Diagnostic FrameWork (WLDF) modules—See Section 1.10, "WebLogic
Diagnostic Framework Modules".

1.4 Web Application Modules

A Web application on WebLogic Server includes the following files:

1.4.1 Servlets

At least one servlet or JSP, along with any helper classes.

Optionally, a web.xml deployment descriptor, a Java EE standard XML document
that describes the contents of a WAR file.

Optionally, a weblogic.xml deployment descriptor, an XML document
containing WebLogic Server-specific elements for Web applications.

A Web application can also include HTML and XML pages with supporting files
such as images and multimedia files.

Servlets are Java classes that execute in WebLogic Server, accept a request from a
client, process it, and optionally return a response to the client. An HttpServlet is most
often used to generate dynamic Web pages in response to Web browser requests.

1.4.2 JavaServer Pages

JavaServer Pages (JSPs) are Web pages coded with an extended HTML that makes it
possible to embed Java code in a Web page. JSPs can call custom Java classes, known
as tag libraries, using HTML-like tags. The appc compiler compiles JSPs and
translates them into servlets. WebLogic Server automatically compiles JSPs if the
servlet class file is not present or is older than the JSP source file. See Section 4.2,
"Building Modules and Applications Using wlappc".

You can also precompile JSPs and package the servlet class in a Web application
(WAR) file to avoid compiling in the server. Servlets and JSPs may require additional
helper classes that must also be deployed with the Web application.

1.4.3 More Information on Web Application Modules

See the following documentation:

Section 3.3, "Organizing Java EE Components in a Split Development Directory".

Developing Web Applications, Servlets, and |SPs for Oracle WebLogic Server

Overview of WebLogic Server Application Development 1-3

Enterprise JavaBean Modules

» Programming JSP Tag Extensions for Oracle WebLogic Server

1.5 Enterprise JavaBean Modules

Enterprise JavaBeans (EJBs) beans are server-side Java modules that implement a
business task or entity and are written according to the E]B specification. There are
three types of E]Bs: session beans, entity beans, and message-driven beans.

Enterprise JavaBeans (EJB) 3.0 is a Java EE 5 technology for the development and
deployment of component-based business applications. Although EJB 2.X is a
powerful and useful technology, the programming model was complex and confusing,
requiring the creation of multiple Java files and deployment descriptors for even the
simplest EJB. This complexity hindered the wide adoption of E]Bs.

Therefore, one of the central goals of version 3.0 of the EJB specification is to make it
easier to program an EJB, in particular by reducing the number of required
programming artifacts and introducing a set of EJB-specific metadata annotations that
make programming the bean file easier and more intuitive. Another goal of the EJB 3.0
specification was to standardize the persistence framework and reduce the complexity
of the entity bean programming model and object-relational (O/R) mapping model.

For more information on Enterprise JavaBeans 3.0, see "Programming WebLogic
Enterprise JavaBeans, Version 3.0 for Oracle WebLogic Server".

For more information on Enterprise JavaBeans 2.X, see "Understanding Enterprise
JavaBeans".

1.5.1 EJB Overview

Session beans execute a particular business task on behalf of a single client during a
single session. Session beans can be stateful or stateless, but are not persistent; when a
client finishes with a session bean, the bean goes away.

Entity beans represent business objects in a data store, usually a relational database
system. Persistence—loading and saving data—can be bean-managed or
container-managed. More than just an in-memory representation of a data object,
entity beans have methods that model the behaviors of the business objects they
represent. Entity beans can be accessed concurrently by multiple clients and they are
persistent by definition.

The container creates an instance of the message-driven bean or it assigns one from a
pool to process the message. When the message is received in the JMS destination, the
message-driven bean assigns an instance of itself from a pool to process the message.
Message-driven beans are not associated with any client. They simply handle
messages as they arrive.

1.5.2 EJBs and WebLogic Server

Java EE cleanly separates the development and deployment roles to ensure that
modules are portable between E]B servers that support the EJB specification.
Deploying an EJB in WebLogic Server requires running the WebLogic Server appc
compiler to generate classes that enforce the EJB security, transaction, and life cycle
policies. See Section 4.2, "Building Modules and Applications Using wlappc".

The Java EE-specified deployment descriptor, ejb-jar .xml, describes the enterprise
beans packaged in an EJB application. It defines the beans' types, names, and the
names of their home and remote interfaces and implementation classes. The

1-4 Developing Applications for Oracle WebLogic Server

Enterprise Applications

ejb-jar.xml deployment descriptor defines security roles for the beans, and
transactional behaviors for the beans' methods.

Additional deployment descriptors provide WebLogic-specific deployment
information. A weblogic-cmp-rdbms-Jjar.xml deployment descriptor unique to
container-managed entity beans maps a bean to tables in a database. The
weblogic-ejb-jar.xml deployment descriptor supplies additional information
specific to the WebLogic Server environment, such as JNDI bind names, clustering,
and cache configuration.

1.6 Connector Modules

Connectors (also known as resource adapters) contain the Java, and if necessary, the
native modules required to interact with an Enterprise Information System (EIS). A
resource adapter deployed to the WebLogic Server environment enables Java EE
applications to access a remote EIS. WebLogic Server application developers can use
HTTP servlets, JavaServer Pages (JSPs), Enterprise Java Beans (E]Bs), and other APIs to
develop integrated applications that use the EIS data and business logic.

To deploy a resource adapter to WebLogic Server, you must first create and configure
WebLogic Server-specific deployment descriptor, weblogic-ra.xml file, and add
this to the deployment directory. Resource adapters can be deployed to WebLogic
Server as standalone modules or as part of an Enterprise application. See Section 1.7,
"Enterprise Applications".

For more information on connectors, see Programming Resource Adapters for Oracle
WebLogic Server.

1.7 Enterprise Applications

An Enterprise application consists of one or more Web application modules, EJB
modules, and resource adapters. It might also include a client application. An
Enterprise application can be optionally defined by an application.xml file, which
was the standard Java EE deployment descriptor for Enterprise applications.

1.7.1 Java EE Programming Model

An important aspect of the Java EE programming model is the introduction of
metadata annotations. Annotations simplify the application development process by
allowing a developer to specify within the Java class itself how the application behaves
in the container, requests for dependency injection, and so on. Annotations are an
alternative to deployment descriptors that were required by older versions of
Enterprise applications (1.4 and earlier).

With Java EE annotations, the standard application.xml and web.xml
deployment descriptors are optional. The Java EE programming model uses the JDK
5.0 annotations feature (see http://download.oracle.com/javaee/5/api/) for
Web containers, such as E]Bs, servlets, Web applications, and JSPs. See Chapter 7,
"Using Java EE Annotations and Dependency Injection.”

If the application includes WebLogic Server-specific extensions, the application is
further defined by a weblogic-application.xml file. Enterprise applications that
include a client module will also have a client-application.xml deployment
descriptor and a WebLogic run-time client application deployment descriptor. See
Appendix A, "Enterprise Application Deployment Descriptor Elements."

Overview of WebLogic Server Application Development 1-5

WebLogic Web Services

1.7.2 Packaging and Deployment Overview

For both production and development purposes, Oracle recommends that you
package and deploy even standalone Web applications, E]Bs, and resource adapters as
part of an Enterprise application. Doing so allows you to take advantage of Oracle's
split development directory structure, which greatly facilities application
development. See Chapter 3, "Creating a Split Development Directory Environment."

An Enterprise application consists of Web application modules, EJB modules, and
resource adapters. It can be packaged as follows:

= For development purposes, Oracle recommends the WebLogic split development
directory structure. Rather than having a single archived EAR file or an exploded
EAR directory structure, the split development directory has two parallel
directories that separate source files and output files. This directory structure is
optimized for development on a single WebLogic Server instance. See Chapter 3,
"Creating a Split Development Directory Environment." Oracle provides the
wlpackage Ant task, which allows you to create an EAR without having to use
the JAR utility; this is exclusively for the split development directory structure. See
Section 5.2, "Packaging Applications Using wlpackage".

s For development purposes, Oracle further recommends that you package
standalone Web applications and Enterprise JavaBeans (E]Bs) as part of an
Enterprise application, so that you can take advantage of the split development
directory structure. See Section 3.3, "Organizing Java EE Components in a Split
Development Directory”.

s For production purposes, Oracle recommends the exploded (unarchived) directory
format. This format enables you to update files without having to redeploy the
application. To update an archived file, you must unarchive the file, update it, then
rearchive and redeploy it.

= You can choose to package your application as a JAR archived file using the jar
utility with an . ear extension. Archived files are easier to distribute and take up
less space. An EAR file contains all of the JAR, WAR, and RAR module archive
files for an application and an XML descriptor that describes the bundled
modules. See Section 5.2, "Packaging Applications Using wlpackage".

The optional META-INF/application.xml deployment descriptor contains an
element for each Web application, E]B, and connector module, as well as additional
elements to describe security roles and application resources such as databases. If this
descriptor is present the WebLogic deployer picks the list of modules from this
descriptor. However if this descriptor is not present, the container guesses the modules
from the annotations defined on the POJO (plain-old-Java-object) classes. See
Appendix A, "Enterprise Application Deployment Descriptor Elements."

1.8 WebLogic Web Services

Web Services can be shared by and used as modules of distributed Web-based
applications. They commonly interface with existing back-end applications, such as
customer relationship management systems, order-processing systems, and so on. Web
Services can reside on different computers and can be implemented by vastly different
technologies, but they are packaged and transported using standard Web protocols,
such as HTTP, thus making them easily accessible by any user on the Web.

A Web Service consists of the following modules, at a minimum:

= A Web Service implementation hosted by a server on the Web. WebLogic Web
Services are hosted by WebLogic Server. A Web Service module may include either

1-6 Developing Applications for Oracle WebLogic Server

WebLogic Diagnostic Framework Modules

Java classes or E]Bs that implement the Web Service. Web Services are packaged
either as Web application archives (WARs) or EJB modules (JARs), depending on
the implementation.

= A standard for transmitting data and Web Service invocation calls between the
Web Service and the user of the Web Service. WebLogic Web Services use Simple
Object Access Protocol (SOAP) 1.1 as the message format and HTTP as the
connection protocol.

= A standard for describing the Web Service to clients so they can invoke it.
WebLogic Web Services use Web Services Description Language (WSDL) 1.1, an
XML-based specification, to describe themselves.

= A standard for clients to invoke Web services—JAX-WS or JAX-RPC. See Getting
Started With JAX-WS Web Services for Oracle WebLogic Server or Getting Started With
JAX-RPC Web Services for Oracle WebLogic Server, respectively.

= A standard for finding and registering the Web Service (UDDI).

For more information about WebLogic Web Services and the standards that are
supported, see Introducing WebLogic Web Services for Oracle WebLogic Server.

1.9 JMS and JDBC Modules

JMS and JDBC configurations are stored as modules, defined by an XML file that
conforms to the weblogic-jms.xsd and jdbc-data-source.xsd schema,
respectively. These modules are similar to standard Java EE modules. An
administrator can create and manage JMS and JDBC modules as global system
resources, as modules packaged with a Java EE application (as a packaged resource),
or as standalone modules that can be made globally available.

With modular deployment of JMS and JDBC resources, you can migrate your
application and the required JMS or JDBC configuration from environment to
environment, such as from a testing environment to a production environment,
without opening an enterprise application file (such as an EAR file) or a JMS or JDBC
standalone module, and without extensive manual JMS or JDBC reconfiguration.

Application developers create application modules in an enterprise-level IDE or
another development tool that supports editing of XML files, then package the JMS or
JDBC modules with an application and pass the application to a WebLogic
Administrator to deploy.

For more information, see:
s "Configuring JMS Application Modules for Deployment"
s "Configuring JDBC Application Modules for Deployment”

1.10 WebLogic Diagnostic Framework Modules

The WebLogic Diagnostic Framework (WLDF) provides features for generating,
gathering, analyzing, and persisting diagnostic data from WebLogic Server instances
and from applications deployed to server instances. For server-scoped diagnostics,
some WLDF features are configured as part of the configuration for the domain. Other
features are configured as system resource descriptors that can be targeted to servers
(or clusters). For application-scoped diagnostics, diagnostic features are configured as
resource descriptors for the application.

Application-scoped instrumentation is configured and deployed as a diagnostic
module, which is similar to a diagnostic system module. However, an application

Overview of WebLogic Server Application Development 1-7

XML Deployment Descriptors

module is configured in an XML configuration file named
weblogic-diagnostics.xml which is packaged with the application archive.

For detailed instructions for configuring instrumentation for applications, see
"Configuring Application-Scoped Instrumentation"”.

1.10.1 Using an External Diagnostics Descriptor

WLS also supports the use of an external diagnostics descriptor so you can integrate
diagnostic functionality into an application that has not imported diagnostic
descriptors. This feature supports the deployment view and deployment of an
application or a module, detecting the presence of an external diagnostics descriptor if
the descriptor is defined in your deployment plan (plan.xml).

1.10.1.1 Defining an External Diagnostics Descriptor

First, define the diagnostic descriptor as external and configure its URI in the
plan.xml file. For example:

<module-override>
<module-name>reviewService.ear</module-name>
<module-type>ear</module-type>
</module-descriptor>
<module-descriptor external="true">
<root-element>wldf-resource</root-element>
<uri>META-INF/weblogic-diagnostics.xml</uri>

</module-override>
<config-root>D:\plan</config-root>

Then place the external diagnostic descriptor file under the URI. Using the example
above, you would place the descriptor file under d: \plan\ META-INF.

1.11 XML Deployment Descriptors

A deployment configuration refers to the process of defining the deployment descriptor
values required to deploy an Enterprise application to a particular WebLogic Server
domain. The deployment configuration for an application or module is stored in three
types of XML document: Java EE deployment descriptors, WebLogic Server
descriptors, and WebLogic Server deployment plans. This section describes the Java
EE and WebLogic-specific deployment descriptors. See Section 1.12, "Deployment
Plans" for information on deployment plans.

The Java EE programming model uses the JDK 5.0 annotations feature for Web
containers (see http: //download.oracle.com/javaee/5/api/), such as EJBs,
servlets, Web applications, and JSPs. Annotations simplify the application
development process by allowing a developer to specify within the Java class itself
how the component behaves in the container, requests for dependency injection, and
so on. Annotations are an alternative to deployment descriptors that were required by
older versions of Web applications (2.4 and earlier), Enterprise applications (1.4 and
earlier), and Enterprise JavaBeans (2.x and earlier). See Chapter 7, "Using Java EE
Annotations and Dependency Injection."

However, Enterprise applications fully support the use of deployment descriptors,
even though the standard Java EE ones are not required. For example, you may prefer
to use the old EJB 2.x programming model, or might want to allow further
customizing of the EJB at a later development or deployment stage; in these cases you

1-8 Developing Applications for Oracle WebLogic Server

XML Deployment Descriptors

can create the standard deployment descriptors in addition to, or instead of, the
metadata annotations.

Modules and applications have deployment descriptors—XML documents—that
describe the contents of the directory or JAR file. Deployment descriptors are text
documents formatted with XML tags. The Java EE specifications define standard,
portable deployment descriptors for Java EE modules and applications. Oracle defines
additional WebLogic-specific deployment descriptors for deploying a module or
application in the WebLogic Server environment.

Table 1-1 lists the types of modules and applications and their Java EE-standard and
WebLogic-specific deployment descriptors.

Note:

The XML schemas for the WebLogic deployment descriptors listed in

the following table include elements from the
http://xmlns.oracle.com/weblogic/weblogic-javaee/1l.2/weblo
gic-javaee.xsd schema, which describes common elements shared among
all WebLogic-specific deployment descriptors.

For the most current schema information, see the Oracle WebLogic Server
Schema Home page at
http://www.oracle.com/technology/weblogic/index.html.

Table 1-1 Java EE and WebLogic Deployment Descriptors

Module or Application Scope

Deployment Descriptors

Web Application

Java EE

web.xml

See the Servlet 2.5 Schema at
http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd.

WebLogic

weblogic.xml

Schema:
http://xmlns.oracle.com/weblogic/weblogic-web-app/1.3
/weblogic-web-app.xsd

See "weblogic.xml Deployment Descriptor Elements" in Developing Web
Applications, Servlets, and [SPs for Oracle WebLogic Server.

Enterprise Bean 3.0

Java EE

ejb-jar.xml

See the EJB 3.0 Schema at
http://java.sun.com/xml/ns/javaee/ejb-jar_3_0.xsd

WebLogic

weblogic-ejb-jar.xml

Schema:
http://xmlns.oracle.com/weblogic/weblogic-ejb-jar/1.2
/weblogic-ejb-jar.xsd

weblogic-rdbms-jar.xml

Schema:
http://xmlns.oracle.com/weblogic/weblogic-rdbms-jar/1
.2/weblogic-rdbms-jar.xsd

persistence-configuration.xml

Schema:
http://xmlns.oracle.com/weblogic/persistence-configur
ation/1l.0/persistence-configuration.xsd

See Programming WebLogic Enterprise JavaBeans, Version 3.0 for Oracle
WebLogic Server.

Overview of WebLogic Server Application Development 1-9

XML Deployment Descriptors

Table 1-1 (Cont.) Java EE and WebLogic Deployment Descriptors

Module or Application Scope Deployment Descriptors

Enterprise Bean 2.1 Java EE ejb-jar.xml

See the EJB 2.1 Schema at
http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd

WebLogic weblogic-ejb-jar.xml

Schema:
http://xmlns.oracle.com/weblogic/weblogic-ejb-jar/1.2
/weblogic-ejb-jar.xsd

See "The weblogic-ejb-jar.xml Deployment Descriptor" in Programming
WebLogic Enterprise JavaBeans for Oracle WebLogic Server.
weblogic-cmp-rdbms-jar.xml

Schema:
http://xmlns.oracle.com/weblogic/weblogic-rdbms-jar/1
.2/weblogic-rdbms-jar.xsd

See "The weblogic-cmp-rdbms-jar.xml Deployment Descriptor" in
Programming WebLogic Enterprise JavaBeans for Oracle WebLogic Server.

Web Services Java EE webservices.xml

See the Web Services 1.2 Schema at
http://java.sun.com/xml/ns/javaee/javaee_web_
services_1_2.xsd.

WebLogic weblogic-webservices.xml

Schema:
http://xmlns.oracle.com/weblogic/weblogic-webservices
/1.1/weblogic-webservices.xsd

weblogic-wsee-clientHandlerChain.xml

Schema:
http://xmlns.oracle.com/weblogic/weblogic-wsee-client
HandlerChain/1l.0/weblogic-wsee-clientHandlerChain.xsd

weblogic-webservices-policy.xml

Schema:
http://xmlns.oracle.com/weblogic/webservice-policy-re
f/1.1/webservice-policy-ref.xsd

weblogic-wsee-standaloneclient.xml

Schema:
http://xmlns.oracle.com/weblogic/weblogic-wsee-standa
loneclient/1.0/weblogic-wsee-standaloneclient.xsd

See "WebLogic Web Service Deployment Descriptor Element Reference"
in WebLogic Web Services Reference for Oracle WebLogic Server.

Resource Adapter Java EE ra.xml

See the Connector 1.5 Schema at
http://java.sun.com/xml/ns/j2ee/connector_1_5.xsd.

WebLogic weblogic-ra.xml

Schema:
http://xmlns.oracle.com/weblogic/weblogic-connector/1
.2/weblogic-connector.xsd

See "weblogic-ra.xml Schema" in Programming Resource Adapters for
Oracle WebLogic Server.

1-10 Developing Applications for Oracle WebLogic Server

XML Deployment Descriptors

Table 1-1 (Cont.) Java EE and WebLogic Deployment Descriptors

Module or Application Scope

Deployment Descriptors

Enterprise Application

Java EE

application.xml

See the Application 5 Schema at
http://java.sun.com/xml/ns/javaee/application_5.xsd.

WebLogic

weblogic-application.xml

Schema:
http://xmlns.oracle.com/weblogic/weblogic-application
/1.3 /weblogic-application.xsd

See Section A.1, "weblogic-application.xml Deployment Descriptor
Elements".

Client Application

Java EE

application-client.xml

See the Application Client 5 Schema at
http://java.sun.com/xml/ns/javaee/application-client_
5.xsd.

WebLogic

application-client.xml

Schema:
http://xmlns.oracle.com/weblogic/weblogic-application
-client/1.2/weblogic-application-client.xsd

See "Developing a Java EE Application Client (Thin Client)" in
Programming Stand-alone Clients for Oracle WebLogic Server.

HTTP Pub/Sub
Application

WebLogic

weblogic-pubsub.xml

Schema:
http://xmlns.oracle.com/weblogic/weblogic-pubsub/1.0/
weblogic-pubsub.xsd

See "Using the HTTP Publish-Subscribe Server" in Developing Web
Applications, Servlets, and [SPs for Oracle WebLogic Server.

JMS Module

WebLogic

FileName-jms.xml, where FileName can be anything you want.

Schema:
http://xmlns.oracle.com/weblogic/weblogic-jms/1.2/web
logic-jms.xsd

See "Configuring JMS Application Modules for Deployment” in
Configuring and Managing JMS for Oracle WebLogic Server.

JDBC Module

WebLogic

FileName-jdbc.xml, where Fi]leName can be anything you want.

Schema:
http://xmlns.oracle.com/weblogic/jdbc-data-source/1.2
/jdbc-data-source.xsd

See "Configuring JDBC Application Modules for Deployment" in
Configuring and Managing [DBC for Oracle WebLogic Server.

Deployment Plan

WebLogic

plan.xml

Schema:
http://xmlns.oracle.com/weblogic/deployment-plan/1.0/
deployment-plan.xsd

See "Understanding WebLogic Server Deployment" in Deploying
Applications to Oracle WebLogic Server.

WLDF Module

WebLogic

weblogic-diagnostics.xml

Schema:
http://xmlns.oracle.com/weblogic/weblogic-diagnostics
/1.0/weblogic-diagnostics.xsd

See "Deploying WLDF Application Modules" in Configuring and Using
the Diagnostics Framework for Oracle WebLogic Server.

Overview of WebLogic Server Application Development 1-11

XML Deployment Descriptors

When you package a module or application, you create a directory to hold the
deployment descriptors—WEB-INF or META-INF—and then create the XML
deployment descriptors in that directory.

1.11.1 Automatically Generating Deployment Descriptors

WebLogic Server provides a variety of tools for automatically generating deployment
descriptors. These are discussed in the sections that follow.

1.11.2 EJBGen

EJBGen is an Enterprise JavaBeans 2.x code generator or command-line tool that uses
Javadoc markup to generate EJB deployment descriptor files. You annotate your Bean
class file with Javadoc tags and then use EJBGen to generate the Remote and Home
classes and the deployment descriptor files for an EJB application, reducing to a single
file you need to edit and maintain your EJB . java and descriptor files. See "EJBGen
Reference" in Programming WebLogic Enterprise JavaBeans for Oracle WebLogic Server.

1.11.3 Java-based Command-line Utilities

WebLogic Server includes a set of Java-based command-line utilities that automatically
generate both standard Java EE and WebLogic-specific deployment descriptors for
Web applications and Enterprise applications.

These command-line utilities examine the classes you have assembled in a staging
directory and build the appropriate deployment descriptors based on the servlet
classes, and so on. These utilities include:

= Jjava weblogic.marathon.ddinit.EarInit — automatically generates the
deployment descriptors for Enterprise applications.

= Jjava weblogic.marathon.ddinit.WebInit — automatically generates the
deployment descriptors for Web applications.

For an example of DDInit, assume that you have created a directory called c: \stage
that contains the JSP files and other objects that make up a Web application but you
have not yet created the web . xml and weblogic.xml deployment descriptors. To
automatically generate them, execute the following command:

prompt> java weblogic.marathon.ddinit.WebInit c:\stage

The utility generates the web . xml and weblogic.xml deployment descriptors and
places them in the WEB-INF directory, which DDInit will create if it does not already
exist.

1.11.4 Upgrading Deployment Descriptors From Previous Releases of Java EE and
WebLogic Server

So that your applications can take advantage of the features in the current Java EE
specification and release of WebLogic Server, Oracle recommends that you always
upgrade deployment descriptors when you migrate applications to a new release of
WebLogic Server.

To upgrade the deployment descriptors in your Java EE applications and modules,
first use the weblogic.DDConverter tool to generate the upgraded descriptors into
a temporary directory. Once you have inspected the upgraded deployment descriptors
to ensure that they are correct, repackage your Java EE module archive or exploded
directory with the new deployment descriptor files.

1-12 Developing Applications for Oracle WebLogic Server

Deployment Plans

Invoke weblogic.DDConverter with the following command:

prompt> java weblogic.DDConverter [options] archive file or._directory

where archive file_or_ directory refers to the archive file (EAR, WAR, JAR, or
RAR) or exploded directory of your Enterprise application, Web application, EJB, or
resource adapter.

The following table describes the weblogic.DDConverter command options.

Option Description

-a <dir> Specifies the directory to which descriptors are written.
-help Prints the standard usage message.

-quiet Turns off output messages except error messages.
-verbose Turns on additional output used for debugging.

The following example shows how to use the weblogic.DDConverter command to
generate upgraded deployment descriptors for the my . ear Enterprise application into
the subdirectory tempdir in the current directory:

prompt> java weblogic.DDConverter -d tempdir my.ear

1.12 Deployment Plans

A deployment plan is an XML document that defines an application's WebLogic Server
deployment configuration for a specific WebLogic Server environment. A deployment
plan resides outside of an application's archive file, and can apply changes to
deployment properties stored in the application's existing WebLogic Server
deployment descriptors. Administrators use deployment plans to easily change an
application's WebLogic Server configuration for a specific environment without
modifying existing Java EE or WebLogic-specific deployment descriptors. Multiple
deployment plans can be used to reconfigure a single application for deployment to
multiple, differing WebLogic Server environments.

After programmers have finished programming an application, they export its
deployment configuration to create a custom deployment plan that administrators
later use for deploying the application into new WebLogic Server environments.
Programmers distribute both the application deployment files and the custom
deployment plan to deployers (for example, testing, staging, or production
administrators) who use the deployment plan as a blueprint for configuring the
application for their environment.

WebLogic Server provides the following tools to help programmers export an
application's deployment configuration:

= weblogic.PlanGenerator creates a template deployment plan with null
variables for selected categories of WebLogic Server deployment descriptors. This
tool is recommended if you are beginning the export process and you want to
create a template deployment plan with null variables for an entire class of
deployment descriptors.

s The Administration Console updates or creates new deployment plans as
necessary when you change configuration properties for an installed application.
You can use the Administration Console to generate a new deployment plan or to
add or override variables in an existing plan. The Administration Console
provides greater flexibility than weblogic.PlanGenerator, because it allows

Overview of WebLogic Server Application Development 1-13

Development Software

you to interactively add or edit individual deployment descriptor properties in the
plan, rather than export entire categories of descriptor properties.

For complete and detailed information about creating and using deployment plans,
see:

s "Understanding WebLogic Server Deployment"
= "Exporting an Application for Deployment to New Environments"

s "Understanding WebLogic Server Deployment Plans"

1.13 Development Software

This section reviews required and optional tools for developing WebLogic Server
applications.

1.13.1 Apache Ant

The preferred Oracle method for building applications with WebLogic Server is
Apache Ant. Ant is a Java-based build tool. One of the benefits of Ant is that is it is
extended with Java classes, rather than shell-based commands. Oracle provides
numerous Ant extension classes to help you compile, build, deploy, and package
applications using the WebLogic Server split development directory environment.

Another benefit is that Ant is a cross-platform tool. Developers write Ant build scripts
in eXtensible Markup Language (XML). XML tags define the targets to build,
dependencies among targets, and tasks to execute in order to build the targets. Ant
libraries are bundled with WebLogic Server to make it easier for our customers to
build Java applications out of the box.

To use Ant, you must first set your environment by executing either the
setExamplesEnv.cmd (Windows) or setExamplesEnv. sh (UNIX) commands
located in the wI_SERVER\ samples\domains\wl_server directory, where wr,_
SERVER is your WebLogic Server installation directory.

For a complete explanation of ant capabilities, see:
http://jakarta.apache.org/ant/manual/index.html

Note: The Apache Jakarta Web site publishes online documentation for only
the most current version of Ant, which might be different from the version of
Ant that is bundled with WebLogic Server. Use the following command, after
setting your WebLogic environment, to determine the version of Ant bundled
with WebLogic Server:

prompt> ant -version

To view the documentation for a specific version of Ant, such as the version
included with WebLogic Server, download the Ant zip file from
http://archive.apache.org/dist/ant/binaries/ and extract the
documentation.

For more information on using Ant to compile your cross-platform scripts or using
cross-platform scripts to create XML scripts that can be processed by Ant, refer to any
of the WebLogic Server examples, such as WI._
HOME/samples/server/examples/src/examples/ejb20/basic/beanManage
d/build.xml.

1-14 Developing Applications for Oracle WebLogic Server

Development Software

Also refer to the following WebLogic Server documentation on building examples
using Ant: WL_
HOME/samples/server/examples/src/examples/examples.html.

1.13.1.1 Using A Third-Party Version of Ant

You can use your own version of Ant if the one bundled with WebLogic Server is not
adequate for your purposes. To determine the version of Ant that is bundled with
WebLogic Server, run the following command after setting your WebLogic
environment:

prompt> ant -version

If you plan to use a different version of Ant, you can replace the appropriate JAR file in
the WL_HOME\server\lib\ant directory with an updated version of the file (where
WL_HOME refers to the main WebLogic installation directory, such as
c:\Oracle\Middleware\wlserver_10.x) or add the new file to the front of your
CLASSPATH.

1.13.1.2 Changing the Ant Heap Size

By default the environment script allocates a heap size of 128 megabytes to Ant. You
can increase or decrease this value for your own projects by setting the -X option in
your local ANT_OPTS environment variable. For example:

prompt> setenv ANT_OPTS=-Xmx128m

If you want to set the heap size permanently, add or update the MEM_ARGS variable in
the scripts that set your environment, start WebLogic Server, and so on, as shown in
the following snippet from a Windows command script that starts a WebLogic Server
instance:

set MEM_ARGS=-Xms32m -Xmx200m

See the scripts and commands in WL_HOME/server/bin for examples of using the
MEM_ARGS variable.

1.13.2 Source Code Editor or IDE

You need a text editor to edit Java source files, configuration files, HTML or XML
pages, and JavaServer Pages. An editor that gracefully handles Windows and UNIX
line-ending differences is preferred, but there are no other special requirements for
your editor. You can edit HTML or XML pages and JavaServer Pages with a plain text
editor, or use a Web page editor such as Dreamweaver. For XML pages, you can also
use an enterprise-level IDE with DTD validation or another development tool that
supports editing of XML files.

1.13.3 Database System and JDBC Driver

Nearly all WebLogic Server applications require a database system. You can use any
DBMS that you can access with a standard JDBC driver, but services such as WebLogic
Java Message Service (JMS) require a supported JDBC driver for Oracle, Sybase,
Informix, Microsoft SQL Server, or IBM DB2. Refer to Oracle Fusion Middleware
Supported System Configurations at
http://www.oracle.com/technology/software/products/ias/files/fus
ion_certification.html to find out about supported database systems and JDBC
drivers.

Overview of WebLogic Server Application Development 1-15

Development Software

1.13.4 Web Browser

Most Java EE applications are designed to be executed by Web browser clients.
WebLogic Server supports the HTTP 1.1 specification and is tested with current
versions of the Firefox and Microsoft Internet Explorer browsers.

When you write requirements for your application, note which Web browser versions
you will support. In your test plans, include testing plans for each supported version.
Be explicit about version numbers and browser configurations. Will your application
support Secure Socket Layers (SSL) protocol? Test alternative security settings in the
browser so that you can tell your users what choices you support.

If your application uses applets, it is especially important to test browser
configurations you want to support because of differences in the JVMs embedded in
various browsers. One solution is to require users to install the Java plug-in so that
everyone has the same Java run-time version.

1.13.5 Third-Party Software

You can use third-party software products to enhance your WebLogic Server
development environment. See "WebLogic Developer Tools Resources" at
http://www.oracle.com/technology/products/developer-tools/index.
html, which provides developer tools information for products that support the
application servers.

Note: Check with the software vendor to verify software compatibility with
your platform and WebLogic Server version.

1-16 Developing Applications for Oracle WebLogic Server

2

Using Ant Tasks to Configure and Use a

WebLogic Server Domain

The following sections describe how to start and stop WebLogic Server instances and
configure WebLogic Server domains using WebLogic Ant tasks that you can include in
your development build scripts:

Section 2.1, "Overview of Configuring and Starting Domains Using Ant Tasks"
Section 2.2, "Starting Servers and Creating Domains Using the wlserver Ant Task"
Section 2.3, "Configuring a WebLogic Server Domain Using the wlconfig Ant Task"
Section 2.4, "Using the libclasspath Ant Task"

2.1 Overview of Configuring and Starting Domains Using Ant Tasks

WebLogic Server provides a pair of Ant tasks to help you perform common
configuration tasks in a development environment. The configuration tasks enable you
to start and stop WebLogic Server instances as well as create and configure WebLogic
Server domains.

When combined with other WebLogic Ant tasks, you can create powerful build scripts
for demonstrating or testing your application with custom domains. For example, a
single Ant build script can:

Compile your application using the wlcompile, wlappc, and Web Services Ant
tasks.

Create a new single-server domain and start the Administration Server using the
wlserver Ant task.

Configure the new domain with required application resources using the
wlconfig Ant task.

Deploy the application using the wldeploy Ant task.

Automatically start a compiled client application to demonstrate or test product
features.

The sections that follow describe how to use the configuration Ant tasks, wlserver
and wlconfig.

2.2 Starting Servers and Creating Domains Using the wiserver Ant Task

The wlserver Ant task enables you to start, reboot, shutdown, or connect to a
WebLogic Server instance. The server instance may already exist in a configured

Using Ant Tasks to Configure and Use a WebLogic Server Domain 2-1

Starting Servers and Creating Domains Using the wiserver Ant Task

WebLogic Server domain, or you can create a new single-server domain for
development by using the generateconfig=true attribute.

When you use the wlserver task in an Ant script, the task does not return control
until the specified server is available and listening for connections. If you start up a
server instance using wlserver, the server process automatically terminates after the
Ant VM terminates. If you only connect to a currently-running server using the
wlserver task, the server process keeps running after Ant completes.

The wlserver WebLogic Server Ant task extends the standard java Ant task
(org.apache.tools.ant.taskdefs.Java). This means that all the attributes of
the java Ant task also apply to the wlserver Ant task. For example, you can use the
output and error attributes to specify the name of the files to which output and
standard errors of the wlserver Ant task is written, respectively. For full
documentation about the attributes of the standard java Ant task, see Java on the
Apache Antsite (http://ant.apache.org/manual/Tasks/java.html).

2.2.1 Basic Steps for Using wiserver

To use the wlserver Ant task:
1. Set your environment.

On Windows NT, execute the setWLSEnv . cmd command, located in the directory
WL_HOME\server\bin, where WL_HOME is the top-level directory of your
WebLogic Server installation.

On UNIX, execute the setWLSEnv. sh command, located in the directorywr._
HOME\server\bin, where WL_HOME is the top-level directory of your WebLogic
Server installation.

Note: The wlserver task is predefined in the version of Ant shipped with
WebLogic Server. If you want to use the task with your own Ant installation,
add the following task definition in your build file:

<taskdef name="wlserver"
classname="weblogic.ant.taskdefs.management .WLServer" />

2. Add acall to the wlserver task in the build script to start, shutdown, restart, or
connect to a server. See Section 2.2.3, "wlserver Ant Task Reference" for
information about wlserver attributes and default behavior.

3. Execute the Ant task or tasks specified in the build.xml file by typing ant in the
staging directory, optionally passing the command a target argument:

prompt> ant

Use ant -verbose to obtain more detailed messages from the wlserver task.

2.2.2 Sample build.xml Files for wiserver

2-2

The following shows a minimal wlserver target that starts a server in the current
directory using all default values:

<target name="wlserver-default">
<wlserver/>
</target>

Developing Applications for Oracle WebLogic Server

Starting Servers and Creating Domains Using the wliserver Ant Task

This target connects to an existing, running server using the indicated connection
parameters and username/password combination:

<target name="connect-server">

<wlserver host="127.0.0.1" port="7001" username="weblogic" password="weblogic"
action="connect"/>
</target>

This target starts a WebLogic Server instance configured in the config subdirectory:

<target name="start-server">
<wlserver dir="./config" host="127.0.0.1" port="7001" action="start"/>
</target>

This target creates a new single-server domain in an empty directory, and starts the
domain's server instance:

<target name="new-server">

<delete dir="./tmp"/>

<mkdir dir="./tmp"/>

<wlserver dir="./tmp" host="127.0.0.1" port="7001"

generateConfig="true" username="weblogic" password="weblogic" action="start"/>
</target>

2.2.3 wiserver Ant Task Reference

The following table describes the attributes of the wlserver Ant task.

Table 2-1 Attributes of the wiserver Ant Task
Data

Attribute Description Type Required?

policy The path to the security policy file for the WebLogic Server File No
domain. This attribute is used only for starting server instances.

dir The path that holds the domain configuration (for example, File No
c:\Oracle\Middleware\user_
projects\domains\mydomain). By default, wlserver uses
the current directory.

beahome The path to the Middleware Home directory (for example, File No
c:\Oracle\Middleware).

weblogichome The path to the WebLogic Server installation directory (for File No
example, c: \Oracle\Middleware\wlserver_10.3).

servername The name of the server to start, shutdown, reboot, or connect to. ~ String Required
A WebLogic Server instance is uniquely identified by its protocol, (s)l?lll};tg\hen
host, and port values, so if you use this set of attributes to specify down t}gle
the server you want to start, shutdown or reboot, you do not Administrati
need to specify its actual name using the servername attribute. on server
The only exception is when you want to shutdown the ’
Administration server; in this case you must specify this attribute.
The default value for this attribute is myserver

domainname The name of the WebLogic Server domain in which the serveris String No
configured.

adminserverurl The URL to access the Administration Server in the domain. This String Required for
attribute is required if you are starting up a Managed Server in starting
the domain. Managed

Servers.

Using Ant Tasks to Configure and Use a WebLogic Server Domain 2-3

Starting Servers and Creating Domains Using the wiserver Ant Task

Table 2-1 (Cont.) Attributes of the wiserver Ant Task

Attribute

Data
Description Type

Required?

username

The username of an administrator account. If you omit both the String
username and password attributes, wlserver attempts to

obtain the encrypted username and password values from the

boot .properties file. See "Boot Identity Files" in the Managing

Server Startup and Shutdown for Oracle WebLogic Server for more
information on boot .properties.

No

password

The password of an administrator account. If you omit both the String
username and password attributes, wlserver attempts to

obtain the encrypted username and password values from the
boot.properties file. See "Boot Identity Files" in the Managing

Server Startup and Shutdown for Oracle WebLogic Server for more
information on boot .properties.

pkpassword

The private key password for decrypting the SSL private key file. ~String

timeout

The maximum time, in milliseconds, that wlserver waits fora long
server to boot. This also specifies the maximum amount of time
to wait when connecting to a running server.

The default value for this attribute is 0, which means the Ant task
never times out.

timeoutSeconds

The maximum time, in seconds, that wlserver waits for a server long
to boot. This also specifies the maximum amount of time to wait
when connecting to a running server.

The default value for this attribute is 0, which means the Ant task
never times out.

productionmodeenab
led

Specifies whether a server instance boots in development mode boolean
or in production mode.

Development mode enables a WebLogic Server instance to
automatically deploy and update applications that are in the
domain_name/autodeploy directory (where domain_name is
the name of a WebLogic Server domain). In other words,
development mode lets you use auto-deploy. Production mode
disables the auto-deployment feature. See "Deploying
Applications and Modules" for more information.

Valid values for this attribute are True and False. The default
value is False (which means that by default a server instance
boots in development mode.)

Note: If you boot the server in production mode by setting this
attribute to True, you must reboot the server to set the mode
back to development mode. Or in other words, you cannot reset
the mode on a running server using other administrative tools,
such as the WebLogic Server Scripting Tool (WLST).

host

The DNS name or IP address on which the server instance is String
listening.

The default value for this attribute is localhost.

port

The TCP port number on which the server instance is listening. int

The default value for this attribute is 7001.

No

generateconfig

Specifies whether or not wlserver creates a new domain for the boolean
specified server.

Valid values for this attribute are true and false. The default
value is false.

No

2-4 Developing Applications for Oracle WebLogic Server

Starting Servers and Creating Domains Using the wliserver Ant Task

Table 2-1 (Cont.) Attributes of the wiserver Ant Task

Data
Attribute Description Type Required?

action Specifies the action wlserver performs: start, shutdown, String No
reboot, or connect.

The shutdown action can be used with the optional
forceshutdown attribute perform a forced shutdown.

The default value for this attribute is start.

failonerror This is a global attribute used by WebLogic Server Ant tasks. It Boolean No
specifies whether the task should fail if it encounters an error
during the build.

Valid values for this attribute are true and false. The default
value is false.

forceshutdown This optional attribute is used in conjunction with the Boolean No
action="shutdown" attribute to perform a forced shutdown.
For example:

<wlserver
host="${wls.host}"
port="${port}"
username="${wls.username}"
password="${wls.password}"
action="shutdown"
forceshutdown="true" />

Valid values for this attribute are true and
false. The default value is false.

noExit (Optional) Leave the server process running after ant exits. Valid Boolean No
values are true or false. The default value is false, which
means the server process will shut down when ant exits.

protocol Specifies the protocol that the wlserver Ant task uses to String No
communicate with the WebLogic Server instance.

Valid values are t3, t3s, http, https, and iiop. The default
value is £3.

forceImplicitUpgrade Specifies whether the wlserver Ant task, if run against an 8.1 Boolean No.
(or previous) domain, should implicitly upgrade it.

Valid values are true or false. The default value is false,
which means that the Ant task does not implicitly upgrade the
domain, but rather, will fail with an error indicating that the
domain needs to be upgraded.

For more information about upgrading domains, see Upgrade
Guide for Oracle WebLogic Server.

Using Ant Tasks to Configure and Use a WebLogic Server Domain 2-5

Configuring a WebLogic Server Domain Using the wiconfig Ant Task

Table 2-1 (Cont.) Attributes of the wiserver Ant Task

Attribute

Data
Description Type Required?

configFile

Specifies the configuration file for your domain. String No.

The value of this attribute must be a valid XML file that conforms
to the XML schema as defined in the WebLogic Server Domain
Configuration Schema at
http://xmlns.oracle.com/weblogic/domain/1.0/doma
in.xsd.

The XML file must exist in the Administration Server's root
directory, which is either the current directory or the directory
that you specify with the dir attribute.

If you do not specify this attribute, the default value is
config.xml in the directory specified by the dir attribute. If
you do not specify the dir attribute, then the default domain
directory is the current directory.

useBootProperties

Specifies whether to use the boot . properties file when Boolean No
starting a WebLogic Server instance. If this attribute is set to

true, WebLogic Server uses the username and encrypted

password stored in the boot . properties file to start rather

than any values set with the username and password

attributes.

Note: The values of the username and password attributes are
still used when shutting down or rebooting the WebLogic Server
instance. The useBootProperties attribute applies only when
starting the server. Valid values for this attribute are true and
false. The default value is false.

verbose

Specifies that the Ant task output additional information as it is Boolean No
performing its action.

Valid values for this attribute are true and false. The default
valueis false.

2.3 Configuring a WebLogic Server Domain Using the wiconfig Ant Task

The following sections describe how to use the wlconfig Ant task to configure a
WebLogic Server domain.

Note:: The wlconfig Ant task works only against MBeans that are
compatible with the MBean server, which was deprecated as of version 9.0 of
WebLogic Server. In particular, the wlconfig Ant task uses the deprecated
proprietary APl weblogic.management . MBeanHome to access WebLogic
MBeans; therefore, wlconfig does not use the standard JMX interface

(javax.management .MBeanServerConnection) to discover MBeans. This

means that the only MBeans that you can access using wlconfig are those
listed under the Deprecated MBeans category in the Oracle WebLogic Server
MBean Reference

For equivalent functionality, you should use the WebLogic Scripting Tool
(WLST). See Oracle WebLogic Scripting Tool.

2.3.1 What the wiconfig Ant Task Does

The wlconfig Ant task enables you to configure a WebLogic Server domain by
creating, querying, or modifying configuration MBeans on a running Administration
Server instance. Specifically, wlconfig enables you to:

2-6 Developing Applications for Oracle WebLogic Server

Configuring a WebLogic Server Domain Using the wiconfig Ant Task

s Create new MBeans, optionally storing the new MBean Object Names in Ant
properties.

s Set attribute values on a named MBean available on the Administration Server.

s Create MBeans and set their attributes in one step by nesting set attribute
commands within create MBean commands.

= Query MBeans, optionally storing the query results in an Ant property reference.
= Query MBeans and set attribute values on all matching results.

= Establish a parent/child relationship among MBeans by nesting create commands
within other create commands.

2.3.2 Basic Steps for Using wiconfig

1. Set your environment in a command shell. See Section 2.2.1, "Basic Steps for Using
wlserver" for details.

Note: The wlconfig task is predefined in the version of Ant shipped with
WebLogic Server. If you want to use the task with your own Ant installation,
add the following task definition in your build file:

<taskdef name="wlconfig"
classname="weblogic.ant.taskdefs.management .WLConfig"/>

2. wlconfig is commonly used in combination with wlserver to configure a new
WebLogic Server domain created in the context of an Ant task. If you will be using
wlconfig to configure such a domain, first use wlserver attributes to create a
new domain and start the WebLogic Server instance.

3. Add an initial call to the wlconfig task to connect to the Administration Server
for a domain. For example:

<target name="doconfig">
<wlconfig url="t3://localhost:7001" username="weblogic"
password="weblogic">
</target>

4. Addnested create, delete, get, set, and query elements to configure the
domain.

5. Execute the Ant task or tasks specified in the build.xml file by typing ant in the
staging directory, optionally passing the command a target argument:

prompt> ant doconfig

Use ant -verbose to obtain more detailed messages from the wlconfig task.

Note: Since WLST is the recommended tool for domain creation scripts, you
should refer to the WLST offline sample scripts that are installed with the
software. The offline scripts demonstrate how to create domains using the
domain templates and are located in the following directory: WL_

HOME\ common\templates\scripts\wlst, where WL_ HOME refers to the
top-level installation directory for WebLogic Server. For example, the
basicWLSDomain.py script creates a simple WebLogic domain, while
sampleMedRecDomain.py creates a domain that defines resources similar to
those used in the Avitek MedRec sample. See Oracle WebLogic Scripting Tool.

Using Ant Tasks to Configure and Use a WebLogic Server Domain 2-7

Configuring a WebLogic Server Domain Using the wiconfig Ant Task

2.3.3 wlconfig Ant Task Reference

The following sections describe the attributes and elements that can be used with

wlconfig.

2.3.4 Main Attributes

The following table describes the main attributes of the wlconfig Ant task.

Table 2-2 Main Attributes of the wiconfig Ant Task

Attribute

Data
Description Type

Required?

url

The URL of the domain's Administration Server. String

Yes

username

The username of an administrator account. String

No

password

The password of an administrator account. String

To avoid having the plain text password appear in the build file or in
process utilities such as ps, first store a valid username and encrypted
password in a configuration file using the WebLogic Scripting Tool
(WLST) storeUserConfig command. Then omit both the username
and password attributes in your Ant build file. When the attributes are
omitted, wlconfig attempts to login using values obtained from the
default configuration file.

If you want to obtain a username and password from a non-default
configuration file and key file, use the userconfigfile and
userkeyfile attributes with wlconfig.

See the command reference for storeUserConfig in the WebLogic
Scripting Tool Command Reference for more information on storing and
encrypting passwords.

No

failonerror

This is a global attribute used by WebLogic Server Ant tasks. It specifies =~ Boolean
whether the task should fail if it encounters an error during the build.
This attribute is set to true by default.

No

userconfigfile

Specifies the location of a user configuration file to use for obtaining the File
administrative username and password. Use this option, instead of the
username and password attributes, in your build file when you do not

want to have the plain text password shown in-line or in process-level

utilities such as ps.

Before specifying the userconfigfile attribute, you must first generate
the file using the WebLogic Scripting Tool (WLST) storeUserConfig
command as described in the WebLogic Scripting Tool Command Reference.

userkeyfile

Specifies the location of a user key file to use for encrypting and File
decrypting the username and password information stored in a user
configuration file (the userconfigfile attribute).

Before specifying the userkeyfile attribute, you must first generate the
key file using the WebLogic Scripting Tool (WLST) storeUserConfig
command as described in the WebLogic Scripting Tool Command Reference.

2.3.5 Nested Elements

wlconfig also has several elements that can be nested to specify configuration

options:

s create
n delete
s set

2-8 Developing Applications for Oracle WebLogic Server

Configuring a WebLogic Server Domain Using the wiconfig Ant Task

n get
= query
= invoke

2.3.5.1 create

The create element creates a new MBean in the WebLogic Server domain. The
wlconfig task can have any number of create elements.

A create element can have any number of nested set elements, which set attributes
on the newly-created MBean. A create element may also have additional, nested
create elements that create child MBeans.

The create element has the following attributes.

Table 2-3 Attributes of the create Element
Data
Attribute Description Type Required?
name The name of the new MBean object to create. String No (wlconfig supplies a
default name if none is
specified.)
type The MBean type. String Yes
property The name of an optional Ant property that holds the String No
object name of the newly-created MBean.
Note: If you nest a create element inside of another
create element, you cannot specify the property
attribute for the nested create element.
2.3.5.2 delete
The delete element removes an existing MBean from the WebLogic Server domain.
delete takes a single attribute:
Table 2-4 Attribute of the delete Element
Data
Attribute Description Type Required?
mbean The object name of the MBean to delete. String Required when the delete element

is a direct child of the wlconfig task.
Not required when nested within a
query element.

2.3.5.3 set

The set element sets MBean attributes on a named MBean, a newly-created MBean, or
on MBeans retrieved as part of a query. You can include the set element as a direct
child of the wlconfig task, or nested within a create or query element.

The set element has the following attributes:

Using Ant Tasks to Configure and Use a WebLogic Server Domain 2-9

Configuring a WebLogic Server Domain Using the wiconfig Ant Task

Table 2-5

Attributes of the set Element

Attribute

Data

Description Type

Required?

attribute

The name of the MBean attribute to set. String

Yes

value

The value to set for the specified MBean attribute. String

You can specify multiple object names (stored in Ant properties)
as a value by delimiting the entire value list with quotes and
separating the object names with a semicolon.

Yes

mbean

The object name of the MBean whose values are being set. This ~ String
attribute is required only when the set element is included as a

direct child of the main wlconfig task; it is not required when

the set element is nested within the context of a create or

query element.

Required only
when the set
element is a direct
child of the

wlconfig task.

domain

This attribute specifies the JMX domain name for Security String
MBeans and third-party SPI MBeans. It is not required for
administration MBeans, as the domain corresponds to the

WebLogic Server domain.

Note: You cannot use this attribute if the set element is nested
inside of a create element.

No

Table 2-6

2.3.5.4 get

The get element retrieves attribute values from an MBean in the WebLogic Server

domain. The wlconfig task can have any number of get elements.

The get element has the following attributes.

Attributes of the get Element

Attribute

Data

Description Type

Required?

attribute

The name of the MBean attribute whose value you want to String
retrieve.

Yes

property

The name of an Ant property that will hold the retrieved MBean String
attribute value.

Yes

mbean

The object name of the MBean you want to retrieve attribute values String
from.

Yes

2.3.5.5 query

The query elements finds MBean that match a search pattern.

The query element supports the following nested child elements:

set—performs set operations on all MBeans in the result set.

get—performs get operations on all MBeans in the result set.

create—each MBean in the result set is used as a parent of a new MBean.

delete—performs delete operations on all MBeans in the result set.

invoke—invokes all matching MBeans in the result set.

wlconfig can have any number of nested query elements.

query has the following attributes:

2-10 Developing Applications for Oracle WebLogic Server

Using the libclasspath Ant Task

Table 2-7 Attributes of the query Element

Data

Attribute Description Type Required?
domain The name of the WebLogic Server domain in which to search for String No

MBeans.
type The type of MBean to query. String No
name The name of the MBean to query. String No
pattern A JMX query pattern. String No
property The name of an optional Ant property that will store the query String No

results.
domain This attribute specifies the JMX domain name for Security MBeans ~ String No

and third-party SPI MBeans. It is not required for administration
MBeans, as the domain corresponds to the WebLogic Server domain.

2.3.5.6 invoke

The invoke element invokes a management operation for one or more MBeans. For
WebLogic Server MBeans, you usually use this command to invoke operations other
than the getAttribute and setAttribute that most WebLogic Server MBeans
provide.

The invoke element has the following attributes.

Table 2-8 Attributes of the invoke Element

Data

Attribute Description Type Required?

mbean The object name of the MBean you want to invoke. String You must specify either the
mbean or type attribute of
the invoke element.

type The type of MBean to invoke. String You must specify either the
mbean or type attribute of
the invoke element.

methodName The method of the MBean to invoke. String Yes

arguments The list of arguments (separated by spaces) to pass to String No

the method specified by the methodName attribute.

2.4 Using the libclasspath Ant Task

Use the 1ibclasspath Ant task to build applications that use libraries, such as
application libraries and web libraries.

= Section 2.4.1, "libclasspath Task Definition"
s Section 2.2.3, "wlserver Ant Task Reference"

= Section 2.4.5, "Example libclasspath Ant Task"

2.4.1 libclasspath Task Definition

To use the task with your own Ant installation, add the following task definition in
your build file:

<taskdef name="libclasspath"
classname="weblogic.ant.taskdefs.build.LibClasspathTask"/>

Using Ant Tasks to Configure and Use a WebLogic Server Domain 2-11

Using the libclasspath Ant Task

2.4.2 libclasspath Ant Task Reference

The following sections describe the attributes and elements that can be used with the
libclasspath Ant task.

= Section 2.4.3, "Main libclasspath Attributes"
» Section 2.4.4, "Nested libclasspath Elements"

2.4.3 Main libclasspath Attributes

The following table describes the main attributes of the 1ibclasspath Ant task.

Table 2-9 Atiributes of the libclasspath Ant Task

Attribute Description Required

basedir The root of .ear or .war file to extract from. Either basedir or basewar is
required.

basewar The name of the .war file to extract from. If basewar is specified,

basedir is ignored and the
library referenced in basewar is
used as the . war file to extract
classpath or resourcepath
information from.

tmpdir The fully qualified name of the directory to be used for Yes.
extracting libraries.

classpathproperty Contains the classpath for the referenced libraries. At least one of the two attributes

For example, if basedir points to a . war file that is required.

references web application libraries in the
weblogic.xml file, the classpathproperty
contains the WEB-INF/classes and WEB-INF/lib
directories of the web application libraries.

Additionally, if basedir points to a . war file that has
.war files under WEB-INF/bea-ext, the
classpathproperty contains the
WEB-INF/classes and WEB-INF/11ib directories for
the Oracle extensions.

resourcepathproperty Contains library resources that are not classes.

For example, if basedir points to a .war file that has
.war files under WEB-INF/bea-ext,
resourcepathproperty contains the roots of the
exploded extensions.

2.4.4 Nested libclasspath Elements

libclasspath also has two elements that can be nested to specify configuration
options. At least one of the elements is required when using the 1ibclasspath Ant
task:

2.4.4.1 librarydir

The following attribute is required when using this element:

dir—Specifies that all files in this directory are registered as available libraries.

2.4.4.2 library

The following attribute is required when using this element:

2-12 Developing Applications for Oracle WebLogic Server

Using the libclasspath Ant Task

file—Register this file as an available library.

2.4.5 Example libclasspath Ant Task

This section provides example code of a 1ibclasspath Ant task:

Example 2—-1 Example libclasspath Ant Task Code

<taskdef name="libclasspath"
classname="weblogic.ant.taskdefs.build.LibClasspathTask"/>

<!-- Builds classpath based on libraries defined in weblogic-application.xml.
-——>
<target name="init.app.libs">
<libclasspath basedir="${src.dir}" tmpdir="S${tmp.dir}"
classpathproperty="app.lib.classpath">
<librarydir dir="${weblogic.home}/common/deployable-libraries/"/>
</libclasspath>
<echo message="app.lib.claspath is ${app.lib.classpath}" level="info"/>
</target>

Using Ant Tasks to Configure and Use a WebLogic Server Domain 2-13

Using the libclasspath Ant Task

2-14 Developing Applications for Oracle WebLogic Server

3

Creating a Split Development Directory

Environment

The following sections describe the steps for creating a WebLogic Server split
development directory that you can use to develop a Java EE application or module:

Section 3.1, "Overview of the Split Development Directory Environment"
Section 3.2, "Using the Split Development Directory Structure: Main Steps”
Section 3.3, "Organizing Java EE Components in a Split Development Directory"
Section 3.4, "Organizing Shared Classes in a Split Development Directory”
Section 3.5, "Generating a Basic build.xml File Using weblogic.BuildXMLGen"

Section 3.6, "Developing Multiple-EAR Projects Using the Split Development
Directory"

Section 3.7, "Best Practices for Developing WebLogic Server Applications”

3.1 Overview of the Split Development Directory Environment

The WebLogic split development directory environment consists of a directory layout
and associated Ant tasks that help you repeatedly build, change, and deploy Java EE
applications. Compared to other development frameworks, the WebLogic split
development directory provides these benefits:

Fast development and deployment. By minimizing unnecessary file copying, the
split development directory Ant tasks help you recompile and redeploy
applications quickly without first generating a deployable archive file or exploded
archive directory.

Simplified build scripts. The Oracle-provided Ant tasks automatically determine
which Java EE modules and classes you are creating, and build components in the
correct order to support common classpath dependencies. In many cases, your
project build script can simply identify the source and build directories and allow
Ant tasks to perform their default behaviors.

Easy integration with source control systems. The split development directory
provides a clean separation between source files and generated files. This helps
you maintain only editable files in your source control system. You can also clean
the build by deleting the entire build directory; build files are easily replaced by
rebuilding the project.

Creating a Split Development Directory Environment 3-1

Overview of the Split Development Directory Environment

3.1.1 Source and Build Directories

The source and build directories form the basis of the split development directory
environment. The source directory contains all editable files for your project—Java
source files, editable descriptor files, JSPs, static content, and so forth. You create the
source directory for an application by following the directory structure guidelines
described in Section 3.3, "Organizing Java EE Components in a Split Development
Directory".

The top level of the source directory always represents an Enterprise application
(.ear file), even if you are developing only a single Java EE module. Subdirectories
beneath the top level source directory contain:

= Enterprise Application Modules (E]Bs and Web applications)

Note: The split development directory structure does not provide
support for developing new Resource Adapter components.

s Descriptor files for the Enterprise application (application.xml and
weblogic-application.xml)

» Utility classes shared by modules of the application (for example, exceptions,
constants)

» Libraries (compiled. jar files, including third-party libraries) used by modules of
the application

The build directory contents are generated automatically when you run the
wlcompile ant task against a valid source directory. The wlcompile task recognizes
EJB, Web application, and shared library and class directories in the source directory,
and builds those components in an order that supports common class path
requirements. Additional Ant tasks can be used to build Web Services or generate
deployment descriptor files from annotated EJB code.

Figure 3—1 Source and Build Directories

Source
Directory Build Process Build Directory

Java Source, .
Compiled

JSPs, ol

Annotated .EJB asses
Generated

Static HTML and Deployment

Graphics Descriptors

Editable

Deployment

Descriptors

Third-Party JAR

Files

The build directory contains only those files generated during the build process. The
combination of files in the source and build directories form a deployable Java EE
application.

3-2 Developing Applications for Oracle WebLogic Server

Overview of the Split Development Directory Environment

The build and source directory contents can be place in any directory of your choice.
However, for ease of use, the directories are commonly placed in directories named
source and build, within a single project directory (for example,
\myproject\buildand \myproject\source).

3.1.2 Deploying from a Split Development Directory

All WebLogic Server deployment tools (weblogic.Deployer, wldeploy, and the
Administration Console) support direct deployment from a split development
directory. You specify only the build directory when deploying the application to
WebLogic Server.

WebLogic Server attempts to use all classes and resources available in the source
directory for deploying the application. If a required resource is not available in the
source directory, WebLogic Server then looks in the application's build directory for
that resource. For example, if a deployment descriptor is generated during the build
process, rather than stored with source code as an editable file, WebLogic Server
obtains the generated file from the build directory.

WebLogic Server discovers the location of the source directory by examining the
.beabuild. txt file that resides in the top level of the application's build directory. If
you ever move or modify the source directory location, edit the .beabuild. txt file
to identify the new source directory name.

Section 5.1, "Deploying Applications Using wldeploy" describes the wldeploy Ant
task that you can use to automate deployment from the split directory environment.

Figure 3-2 shows a typical deployment process. The process is initiated by specifying
the build directory with a WebLogic Server tool. In the figure, all compiled classes and
generated deployment descriptors are discovered in the build directory, but other
application resources (such as static files and editable deployment descriptors) are
missing. WebLogic Server uses the hidden .beabuild. txt file to locate the
application's source directory, where it finds the required resources.

Creating a Split Development Directory Environment 3-3

Using the Split Development Directory Structure: Main Steps

Figure 3-2 Split Directory Deployment

l Deploy I

Source . .
Directory Build Directory
Java Source
! Compiled
JSPs, ~—
Annotated EJB Classes
Static HTML Generated
and Graphics < Deployment -ff—
Descriptors

Editable
Deployment i -beabuild tit f—
Descriptors
Third-Party JAR

Files -

3.1.3 Split Development Directory Ant Tasks

Oracle provides a collection of Ant tasks designed to help you develop applications
using the split development directory environment. Each Ant task uses the source,
build, or both directories to perform common development tasks:

s wlcompile—This Ant task compiles the contents of the source directory into
subdirectories of the build directory. wlcompile compiles Java classes and also
processes annotated . ejb files into deployment descriptors, as described in
Section 4.1, "Compiling Applications Using wlcompile".

» wlappc—This Ant task invokes the appc compiler, which generates JSPs and
container-specific EJB classes for deployment. See Section 4.2, "Building Modules
and Applications Using wlappc".

= wldeploy—This Ant task deploys any format of Java EE applications (exploded or
archived) to WebLogic Server. To deploy directly from the split development
directory environment, you specify the build directory of your application. See
Section B, "wldeploy Ant Task Reference".

= wlpackage—This Ant task uses the contents of both the source and build
directories to generate an EAR file or exploded EAR directory that you can give to
others for deployment.

3.2 Using the Split Development Directory Structure: Main Steps

The following steps illustrate how you use the split development directory structure to
build and deploy a WebLogic Server application.

1. Create the main EAR source directory for your project. When using the split
development directory environment, you must develop Web applications and EJBs
as part of an Enterprise application, even if you do not intend to develop multiple

3-4 Developing Applications for Oracle WebLogic Server

Organizing Java EE Components in a Split Development Directory

Java EE modules. See Section 3.3, "Organizing Java EE Components in a Split
Development Directory”.

2. Add one or more subdirectories to the EAR directory for storing the source for
Web applications, EJB components, or shared utility classes. See Section 3.3,
"Organizing Java EE Components in a Split Development Directory" and
Section 3.4, "Organizing Shared Classes in a Split Development Directory".

3. Store all of your editable files (source code, static content, editable deployment
descriptors) for modules in subdirectories of the EAR directory. Add the entire
contents of the source directory to your source control system, if applicable.

4. Set your WebLogic Server environment by executing either the setWLSEnv . cmd
(Windows) or setWLSEnv . sh (UNIX) script. The scripts are located in the wr._
HOME\server\bin\ directory, where WL_HOME is the top-level directory in which
WebLogic Server is installed.

5. Use the weblogic.BuildXMLGen utility to generate a default build.xml file
for use with your project. Edit the default property values as needed for your
environment. See Section 3.5, "Generating a Basic build.xml File Using
weblogic.BuildXMLGen".

6. Use the default targets in the build.xml file to build, deploy, and package your
application. See Section 3.5, "Generating a Basic build.xml File Using
weblogic.BuildXMLGen" for a list of default targets.

3.3 Organizing Java EE Components in a Split Development Directory

The split development directory structure requires each project to be staged as a Java
EE Enterprise application. Oracle therefore recommends that you stage even
standalone Web applications and EJBs as modules of an Enterprise application, to
benefit from the split directory Ant tasks. This practice also allows you to easily add or
remove modules at a later date, because the application is already organized as an
EAR.

Note: If your project requires multiple EARs, see also Section 3.6,
"Developing Multiple-EAR Projects Using the Split Development Directory".

The following sections describe the basic conventions for staging the following
module types in the split development directory structure:

= Section 3.3.2, "Enterprise Application Configuration"
= Section 3.3.3, "Web Applications"

= Section 3.3.4, "E]Bs"

» Section 3.4.1, "Shared Utility Classes"

= Section 3.4.2, "Third-Party Libraries"

The directory examples are taken from the splitdir sample application installed in
WL_HOME\samples\server\examples\src\examples\splitdir, where WL,_
HOME is your WebLogic Server installation directory.

3.3.1 Source Directory Overview

The following figure summarizes the source directory contents of an Enterprise
application having a Web application, E]JB, shared utility classes, and third-party

Creating a Split Development Directory Environment 3-5

Organizing Java EE Components in a Split Development Directory

libraries. The sections that follow provide more details about how individual parts of
the enterprise source directory are organized.

3-6 Developing Applications for Oracle WebLogic Server

Organizing Java EE Components in a Split Development Directory

Figure 3-3 Overview of Enterprise Application Source Directory

helloWorldEar

— build.xml

. META-IMF
I: application.xml
weblogic-application.xml

—{ helloWebApp

| hellojsp

— WEE-INF

web. xml
weblogic.xmi

Src

|_ Java Source Files

N {in package
— static directories)

HTML, Graphics,
Static files™
— helloEJB

Java Source Files
{in package directories)

META-INF

weblogic-ejb-jar.xml

— applitils ejb-jar.xml*

Java Source Files
(in package diractorfas)

L APP-INF

T

|— Third-Party JAR Files

Creating a Split Development Directory Environment 3-7

Organizing Java EE Components in a Split Development Directory

3.3.2 Enterprise Application Configuration
The top level source directory for a split development directory project represents an
Enterprise application. The following figure shows the minimal files and directories
required in this directory.

Figure 3—-4 Enterprise Application Source Directory

Source

helloWorldEar

— build,xml

META-INF

—— application.xml

—— weblogic-application,xml
The Enterprise application directory will also have one or more subdirectories to hold

a Web application, E]JB, utility class, and/or third-party Jar file, as described in the
following sections.

3.3.3 Web Applications

Web applications use the basic source directory layout shown in the figure below.

3-8 Developing Applications for Oracle WebLogic Server

Organizing Java EE Components in a Split Development Directory

3.3.4 EJBs

Figure 3-5 Web Application Source and Build Directories

gurca

helloWorldEar

I— helloWebApp

hello.jsp

Build

helloWorldEar

|— helloWebApp

|— WEB-INF

WEB-

INF L

*Not used in
helloWorldEar sample

=1 src

classes

Java Source Files
(in package directories)

— web.xml

L weblogic.xml

. HTML, Graphics,
Static files*

The key directories and files for the Web application are:

— jsp_serviet

‘ Compiled JSPs

and Servlets

| Java Class Files
(in package directories)

s helloWebApp\ —The top level of the Web application module can contain JSP
files and static content such as HTML files and graphics used in the application.
You can also store static files in any named subdirectory of the Web application
(for example, helloWebApp\graphics or helloWebApp\static.)

s helloWebApp\WEB-INF\ —Store the Web application's editable deployment
descriptor files (web.xml and weblogic.xml) in the WEB-INF subdirectory.

= helloWebApp\WEB-INF\src —Store Java source files for Servlets in package
subdirectories under WEB-INF\src.

When you build a Web application, the appc Ant task and jspc compiler compile
JSPs into package subdirectories under helloWebApp\WEB-INF\classes\jsp_
servlet in the build directory. Editable deployment descriptors are not copied

during the build process.

EJBs use the source directory layout shown in the figure below.

Creating a Split Development Directory Environment 3-9

Organizing Java EE Components in a Split Development Directory

Figure 3-6 EJB Source and Build Directories

Source Build
helloWorldEar helloWorldEar
helloEJE helloEJE
Java Source Files Java Class Files
' {in package directories) {in package directories)
it |
I METAJNF* . META-INF
|
—_— - -
; ------- ajb-jar.xml* —— gjb-jar.xml
P weblogic-g/b-far.xmi* L weblogic-sjb-jar.xmi
*Mot used in

helloWorldEar sample

The key directories and files for an EJB are:

= helloEJB\ —Store all EJB source files under package directories of the EJB
module directory. The source files can be either . java source files, or annotated
.ejb files.

= helloEJB\META-INF\ —Store editable EJB deployment descriptors (ejb-jar.xml
and weblogic-ejb-jar.xml) in the META-INF subdirectory of the EJB module
directory. The helloWorldEar sample does not include a hel10EJB\META-INF
subdirectory, because its deployment descriptors files are generated from
annotations in the . ejb source files. See Section 3.3.5, "Important Notes Regarding
EJB Descriptors".

During the build process, EJB classes are compiled into package subdirectories of the
helloEJB module in the build directory. If you use annotated . ejb source files, the
build process also generates the EJB deployment descriptors and stores them in the
helloEJB\META-INF subdirectory of the build directory.

3.3.5 Important Notes Regarding EJB Descriptors

EJB deployment descriptors should be included in the source META-INF directory and
treated as source code only if those descriptor files are created from scratch or are
edited manually. Descriptor files that are generated from annotated . ejb files should
appear only in the build directory, and they can be deleted and regenerated by
building the application.

For a given E]JB component, the E]JB source directory should contain either:

= EJBsource code in . java source files and editable deployment descriptors in
META-INF

or:

3-10 Developing Applications for Oracle WebLogic Server

Organizing Shared Classes in a Split Development Directory

= EJB source code with descriptor annotations in . ejb source files, and no editable
descriptors in META-INF .

In other words, do not provide both annotated . ejb source files and editable
descriptor files for the same EJB component.

3.4 Organizing Shared Classes in a Split Development Directory

The WebLogic split development directory also helps you store shared utility classes
and libraries that are required by modules in your Enterprise application. The
following sections describe the directory layout and classloading behavior for shared
utility classes and third-party JAR files.

3.4.1 Shared Utility Classes

Enterprise applications frequently use Java utility classes that are shared among
application modules. Java utility classes differ from third-party JARs in that the source
files are part of the application and must be compiled. Java utility classes are typically
libraries used by application modules such as E]Bs or Web applications.

Figure 3—7 Java Utility Class Directory

Source Build
helloWorldEar helloWorldEar
I— appUtils L APP-INF
Java Source Files | Jawa Class Files
{in package directories) {in package directories)

Place the source for Java utility classes in a named subdirectory of the top-level
Enterprise application directory. Beneath the named subdirectory, use standard
package subdirectory conventions.

During the build process, the wlcompile Ant task invokes the javac compiler and
compiles Java classes into the APP-INF/classes/ directory under the build
directory. This ensures that the classes are available to other modules in the deployed
application.

3.4.2 Third-Party Libraries

You can extend an Enterprise application to use third-party . jar files by placing the
files in the APP-INF\1ib\ directory, as shown below:

Creating a Split Development Directory Environment 3-11

Generating a Basic build.xml File Using weblogic.BuildXMLGen

Figure 3-8 Third-party Library Directory

Saurce

helloWorldEar

APP-INF

L

I— Third-Party JAR Files

Third-party JARs are generally not compiled, but may be versioned using the source
control system for your application code. For example, XML parsers, logging
implementations, and Web application framework JAR files are commonly used in
applications and maintained along with editable source code.

During the build process, third-party JAR files are not copied to the build directory,
but remain in the source directory for deployment.

3.4.3 Class Loading for Shared Classes

The classes and libraries stored under APP-INF/classes and APP-INF/1lib are
available to all modules in the Enterprise application. The application classloader
always attempts to resolve class requests by first looking in APP-INF/classes, then
APP-INF/lib.

3.5 Generating a Basic build.xml File Using weblogic.BuildXMLGen

After you set up your source directory structure, use the weblogic.BuildXMLGen
utility to create a basic build.xml file. weblogic.BuildXMLGen is a convenient utility
that generates an Ant build.xml file for Enterprise applications that are organized in
the split development directory structure. The utility analyzes the source directory and
creates build and deploy targets for the Enterprise application as well as individual
modules. It also creates targets to clean the build and generate new deployment
descriptors.

Additionally, optional packages are supported as Java EE shared libraries in
weblogic.BuildXMLGen, whereby all manifests of an application and its modules are
scanned to look for optional package references. If optional package references are
found they are added to the compile and appc tasks in the generated build.xml file.

For example, if a library located at 1ib\echolib. jar is referenced as an optional
package, the tasks generated by weblogic.BuildXMLGen will contains an appc task
that would appear as follows:

<target name="appc" description="Runs weblogic.appc on your application">
<wlappc source="${dest.dir}" verbose="${verbose}">
<library file="lib\echolib\echolib.jar" />
</wlappc>
</target>

3-12 Developing Applications for Oracle WebLogic Server

Generating a Basic build.xml File Using weblogic.BuildXMLGen

The compile and appc tasks for modules also use the lib\echolib\echolib. jar
library.

3.5.1 weblogic.BuildXMLGen Syntax
The syntax for weblogic.Build XMLGen is as follows:

java weblogic.BuildXMLGen [options] <source directory>

where options include:

» -help—print standard usage message

s -version—print version information

m -projectName <project name>—name of the Ant project

s -d <directory>—directory where build.xml is created. The default is the
current directory.

s -file <build.xml>—name of the generated build file

s -librarydir <directories>—create build targets for shared Java EE

libraries in the comma-separated list of directories. See Chapter 9, "Creating
Shared Java EE Libraries and Optional Packages.".

= -username <username>—user name for deploy commands
m -password <password>—user password

After running weblogic.BuildXMLGen, edit the generated build.xml file to specify
properties for your development environment. The list of properties you need to edit
are shown in the listing below.

Example 3—1 build.xml Editable Properties

<!-- BUILD PROPERTIES ADJUST THESE FOR YOUR ENVIRONMENT -->
<property name="tmp.dir" value="/tmp" />
<property name="dist.dir" value="S${tmp.dir}/dist"/>
<property name="app.name" value="helloWorldEar" />
<property name="ear" value="${dist.dir}/S${app.name}.ear"/>
<property name="ear.exploded" value="${dist.dir}/${app.name}_exploded"/>
<property name="verbose" value="true" />
<property name="user" value="USERNAME" />
<property name="password" value="PASSWORD" />
<property name="servername" value="myserver" />
<property name="adminurl" value="iiop://localhost:7001" />

In particular, make sure you edit the tmp . dir property to point to the build directory
you want to use. By default, the build.xml file builds projects into a subdirectory
tmp . dir named after the application (/ tmp/helloWorldEar in the above listing).

The following listing shows the default main targets created in the build.xml file.
You can view these targets at the command prompt by entering the ant
-projecthelp command in the EAR source directory.

Example 3-2 Default build.xml Targets

appc Runs weblogic.appc on your application

build Compiles helloWorldEar application and runs appc
clean Deletes the build and distribution directories
compile Only compiles helloWorldEar application, no appc

compile.appStartup Compiles just the appStartup module of the application

Creating a Split Development Directory Environment 3-13

Developing Multiple-EAR Projects Using the Split Development Directory

compile.appUtils Compiles just the appUtils module of the application
compile.build.orig Compiles just the build.orig module of the application
compile.helloEJB Compiles just the helloEJB module of the application
compile.helloWebApp Compiles just the helloWebApp module of the application
compile.javadoc Compiles just the javadoc module of the application
deploy Deploys (and redeploys) the entire helloWorldEar
application

descriptors Generates application and module descriptors

ear Package a standard J2EE EAR for distribution
ear.exploded Package a standard exploded J2EE EAR

redeploy.appStartup Redeploys just the appStartup module of the application
redeploy.appUtils Redeploys just the appUtils module of the application
redeploy.build.orig Redeploys just the build.orig module of the application
redeploy.helloEJB Redeploys just the helloEJB module of the application
redeploy.helloWebApp Redeploys just the helloWebApp module of application
redeploy.javadoc Redeploys just the javadoc module of the application
undeploy Undeploys the entire helloWorldEar application

3.6 Developing Multiple-EAR Projects Using the Split Development

Directory

The split development directory examples and procedures described previously have
dealt with projects consisting of a single Enterprise application. Projects that require
building multiple Enterprise applications simultaneously require slightly different
conventions and procedures, as described in the following sections.

Note: The following sections refer to the MedRec sample application, which
consists of three separate Enterprise applications as well as shared utility
classes, third-party JAR files, and dedicated client applications. The MedRec
source and build directories are installed under wr._
HOME/samples/server/medrec, where WL_HOME is the WebLogic Server
installation directory.

3.6.1 Organizing Libraries and Classes Shared by Multiple EARs

For single EAR projects, the split development directory conventions suggest keeping
third-party JAR files in the APP-INF/1ib directory of the EAR source directory.
However, a multiple-EAR project would require you to maintain a copy of the same
third-party JAR files in the APP-INF/1ib directory of each EAR source directory. This
introduces multiple copies of the source JAR files, increases the possibility of some
JAR files being at different versions, and requires additional space in your source
control system.

To address these problems, consider editing your build script to copy third-party JAR
files into the APP-INF/1ib directory of the build directory for each EAR that requires
the libraries. This allows you to maintain a single copy and version of the JAR files in
your source control system, yet it enables each EAR in your project to use the JAR files.

The MedRec sample application installed with WebLogic Server uses this strategy, as
shown in the following figure.

3-14 Developing Applications for Oracle WebLogic Server

Best Practices for Developing WebLogic Server Applications

Figure 3-9 Shared JAR Files in MedRec

build bwild

I— medrecEar I— physicianEar
I— APP-INF I— APP-NF
I_ liby I— lib

—— commaons-"jar —— commaons-"jar
exceptions.jar exceptions.jar
strufs.jar struts.jar
utils.jar utils.jar
value.jar value.jar

MedRec takes a similar approach to utility classes that are shared by multiple EARs in
the project. Instead of including the source for utility classes within the scope of each
ear that needs them, MedRec keeps the utility class source independent of all EARs.
After compiling the utility classes, the build script archives them and copies the JARs
into the build directory under the APP-INF/LIB subdirectory of each EAR that uses
the classes, as shown in figure Figure 3-9.

3.6.2 Linking Multiple build.xml Files

When developing multiple EARs using the split development directory, each EAR
project generally uses its own build.xml file (perhaps generated by multiple runs of
weblogic.BuildXMLGen.). Applications like MedRec also use a master build.xml
file that calls the subordinate build.xml files for each EAR in the application suite.

Ant provides a core task (named ant) that allows you to execute other project build
files within a master build.xmal file. The following line from the MedRec master
build file shows its usage:

<ant inheritAll="false" dir="${root}/startupEar" antfile="build.xml"/>
The above task instructs Ant to execute the file named build.xml in the

/startupEar subdirectory. The inheritAll parameter instructs Ant to pass only
user properties from the master build file tot the build.xml file in /startupEar.

MedRec uses multiple tasks similar to the above to build the startupEar,
medrecEar, and physicianEar applications, as well as building common utility
classes and client applications.

3.7 Best Practices for Developing WebLogic Server Applications
Oracle recommends the following "best practices" for application development.

= Package applications as part of an Enterprise application. See Section 5.2,
"Packaging Applications Using wlpackage".

Creating a Split Development Directory Environment 3-15

Best Practices for Developing WebLogic Server Applications

s Use the split development directory structure. See Section 3.3, "Organizing Java EE
Components in a Split Development Directory".

= For distribution purposes, package and deploy in archived format. See Section 5.2,
"Packaging Applications Using wlpackage".

= In most other cases, it is more convenient to deploy in exploded format. See
Section 5.2.1, "Archive versus Exploded Archive Directory".

= Never deploy untested code on a WebLogic Server instance that is serving
production applications. Instead, set up a development WebLogic Server instance
on the same computer on which you edit and compile, or designate a WebLogic
Server development location elsewhere on the network.

= Evenif you do not run a development WebLogic Server instance on your
development computer, you must have access to a WebLogic Server distribution to
compile your programs. To compile any code using WebLogic or Java EE APlIs, the
Java compiler needs access to the weblogic. jar file and other JAR files in the
distribution directory. Install WebLogic Server on your development computer to
make WebLogic distribution files available locally.

3-16 Developing Applications for Oracle WebLogic Server

4

Building Applications in a Split Development
Directory

The following sections describe the steps for building WebLogic Server Java EE
applications using the WebLogic split development directory environment:

= Section 4.1, "Compiling Applications Using wlcompile"
= Section 4.2, "Building Modules and Applications Using wlappc"

4.1 Compiling Applications Using wicompile

You use the wlcompile Ant task to invoke the javac compiler to compile your
application's Java components in a split development directory structure. The basic
syntax of wlcompile identifies the source and build directories, as in this command
from the helloWorldEar sample:

<wlcompile srcdir="${src.dir}" destdir="${dest.dir}"/>

Note: Deployment descriptors are no longer mandatory in Java EE 5;
therefore, exploded module directories must indicate the module type by
using the .war or . jar suffix when there is no deployment descriptor in these
directories. The suffix is required so that wlcompile can recognize the
modules. The . war suffix indicates the module is a Web application module
and the . jar suffix indicates the module is an EJB module.

The following is the order in which events occur using this task:
1. wlcompile compiles the Java components into an output directory:

WL_HOME\samples\server\examples\build\helloWorldEar\APP-INF\classes\

where WI,_HOME is the WebLogic Server installation directory.

2. wlcompile builds the EJBs and automatically includes the previously built Java
modules in the compiler's classpath. This allows the E]Bs to call the Java modules
without requiring you to manually edit their classpath.

3. Finally, wlcompile compiles the Java components in the Web application with the
EJB and Java modules in the compiler's classpath. This allows the Web
applications to refer to the EJB and application Java classes without requiring you
to manually edit the classpath.

Building Applications in a Split Development Directory 4-1

Compiling Applications Using wicompile

4.1.1 Using includes and excludes Properties

More complex Enterprise applications may have compilation dependencies that are
not automatically handled by the wlcompile task. However, you can use the include
and exclude options to wlcompile to enforce your own dependencies. The includes
and excludes properties accept the names of Enterprise application modules—the
names of subdirectories in the Enterprise application source directory—to include or
exclude them from the compile stage.

The following line from the helloWorldEar sample shows the appStartup module
being excluded from compilation:

<wlcompile srcdir="${src.dir}" destdir="${dest.dir}"
excludes="appStartup"/>

4.1.2 wlcompile Ant Task Attributes

Table 4-1 contains Ant task attributes specific to wlcompile.

Table 4-1 wicompile Ant Task Attributes

Attribute Description

srcdir The source directory.

destdir The build /output directory.

classpath Allows you to change the classpath used by wlcompile.

includes Allows you to include specific directories from the build.

excludes Allows you to exclude specific directories from the build.

librarydir Specifies a directory of shared Java EE libraries to add to the
classpath. See Chapter 9, "Creating Shared Java EE Libraries and
Optional Packages."

4.1.3 Nested javac Options

The wlcompile Ant task can accept nested javac options to change the compile-time
behavior. For example, the following wlcompile command ignores deprecation
warnings and enables debugging:

<wlcompile srcdir="${mysrcdir}" destdir="${mybuilddir}">
<javac deprecation="false" debug="true"
debuglevel="lines,vars, source"/>

</wlcompile>

4.1.4 Setting the Classpath for Compiling Code

Most WebLogic services are based on Java EE standards and are accessed through
standard Java EE packages. The Sun, WebLogic, and other Java classes required to
compile programs that use WebLogic services are packaged in the weblogic. jar file
in the 1ib directory of your WebLogic Server installation. In addition to
weblogic.jar, include the following in your compiler's CLASSPATH:

s The lib\tools. jar file in the JDK directory, or other standard Java classes
required by the Java Development Kit you use.

s The examples.property file for Apache Ant (for examples environment). This
file is discussed in the WebLogic Server documentation on building examples
using Ant located at: samples\server\examples\src\examples\examples.html

= Classes for third-party Java tools or services your programs import.

4-2 Developing Applications for Oracle WebLogic Server

Building Modules and Applications Using wlappc

s Other application classes referenced by the programs you are compiling.

4.1.5 Library Element for wicompile and wlappc

The 1ibrary element is an optional element used to define the name and optional
version information for a module that represents a shared Java EE library required for
building an application, as described in Chapter 9, "Creating Shared Java EE Libraries
and Optional Packages." The 1ibrary element can be used with both wlcompile
and wlappc, described in Section 4.2, "Building Modules and Applications Using
wlappc'.

The name and version information are specified as attributes to the library element,
described in Table 4-2.

Table 4-2 Library attributes

Attribute Description

file Required filename of a Java EE library

name The optional name of a required Java EE library.
specificationversion An optional specification version required for the library.
implementationversion An optional implementation version required for the library.

The format choices for both specificationversion and
implementationversion are described in Section 9.3, "Referencing Shared Java EE
Libraries in an Enterprise Application". The following output shows a sample
library reference:

<library file="c:\mylibs\lib.jar" name="ReqgLib" specificationversion="920"
implementationversion="1.1" />

4.2 Building Modules and Applications Using wlappc

The weblogic.appc compiler generates JSPs and container-specific EJB classes for
deployment, and validates deployment descriptors for compliance with the current
Java EE specifications. appc performs validation checks between the application-level
deployment descriptors and the individual modules in the application as well as
validation checks across the modules.

Additionally, optional packages are supported as Java EE shared libraries in appc,
whereby all manifests of an application and its modules are scanned to look for
optional package references.

wlappc is the Ant task interface to the weblogic . appc compiler. The following
section describe the wlappc options and usage. Both weblogic. appc and the
wlappc Ant task compile modules in the order in which they appear in the
application.xml deployment descriptor file that describes your Enterprise
application.

4.2.1 wilappc Ant Task Attributes

Table 4-3 describes Ant task options specific to wlappc. These options are similar to
the weblogic.appc command-line options, but with a few differences.

Building Applications in a Split Development Directory 4-3

Building Modules and Applications Using wlappc

Notes: See Section 4.2.4, "weblogic.appc Reference" for a list of
weblogic.appc options.

See also Section 4.1.5, "Library Element for wlcompile and wlappc".

Table 4-3 wlappc Ant Task Attributes

Option Description
print Prints the standard usage message.
version Prints appc version information.

output <file>

Specifies an alternate output archive or directory. If not set, the output is placed
in the source archive or directory.

forceGeneration Forces generation of EJB and JSP classes. Without this flag, the classes may not
be regenerated (if determined to be unnecessary).
lineNumbers Adds line numbers to generated class files to aid in debugging.

writeInferredDescriptors

Specifies that the application or module contains deployment descriptors with
annotation information.

basicClientJar Does not include deployment descriptors in client JARs generated for E]Bs.
idl Generates IDL for EJB remote interfaces.

idloverwrite Always overwrites existing IDL files.

idlverbose Displays verbose information for IDL generation.

idlNovalueTypes Does not generate valuetypes and the methods/attributes that contain them.

idlNoAbstractInterfaces

Does not generate abstract interfaces and methods/attributes that contain them.

idlFactories Generates factory methods for valuetypes.
idlVisibroker Generates IDL somewhat compatible with Visibroker 4.5 C++.
idlorbix Generates IDL somewhat compatible with Orbix 2000 2.0 C++.

idlDirectory <dir>

Specifies the directory where IDL files will be created (default: target directory or
JAR)

idlMethodSignatures <>

Specifies the method signatures used to trigger IDL code generation.

iiop

Generates CORBA stubs for E]JBs.

iiopDirectory <dir>

Specifies the directory where IIOP stub files will be written (default: target
directory or JAR)

keepgenerated

Keeps the generated . java files.

librarydir

Specifies a directory of shared Java EE libraries to add to the classpath. See
Chapter 9, "Creating Shared Java EE Libraries and Optional Packages."

compiler <java.jdt>

Selects the Java compiler to use. Defaults to JDT.

debug Compiles debugging information into a class file.
optimize Compiles with optimization on.

nowarn Compiles without warnings.

verbose Compiles with verbose output.

deprecation Warns about deprecated calls.

normi Passes flags through to Symantec's s;.
runtimeflags Passes flags through to Java runtime

4-4 Developing Applications for Oracle WebLogic Server

Building Modules and Applications Using wlappc

Table 4-3 (Cont.) wlappc Ant Task Attributes

Option

Description

classpath <path>

Selects the classpath to use during compilation.

clientJarOutputDir <dir> Specifies a directory to place generated client jar files. If not set, generated jar

files are placed into the same directory location where the JVM is running.

advanced

Prints advanced usage options.

4.2.2 wlappc Ant Task Syntax

The basic syntax for using the wlappc Ant task determines the destination source
directory location. This directory contains the files to be compiled by wlappc.

<wlappc source="${dest.dir}" />

The following is an example of a wlappc Ant task command that invokes two options
(idl and idl0rverWrite) from Table 4-3.

<wlappc source="S${dest.dir}"idl="true" idlOrverWrite="true" />

4.2.3 Syntax Differences between appc and wlappc

There are some syntax differences between appc and wlappc. For appc, the presence
of a flag in the command is a boolean. For wlappc, the presence of a flag in the
command means that the argument is required.

To illustrate, the following are examples of the same command, the first being an appc
command and the second being a wlappc command:

java weblogic.appc -idl foo.ear
<wlappc source="${dest.dir} idl="true"/>

4.2.4 weblogic.appc Reference

The following sections describe how to use the command-line version of the appc
compiler. The weblogic.appc command-line compiler reports any warnings or
errors encountered in the descriptors and compiles all of the relevant modules into an
EAR file, which can be deployed to WebLogic Server.

4.2.5 weblogic.appc Syntax

Use the following syntax to run appc:

prompt>java weblogic.appc [options] <ear, jar, or war file or directory>

4.2.6 weblogic.appc Options

The following are the available appc options:

Option Description

-print Prints the standard usage message.

-version Prints appc version information.

-output <file> Specifies an alternate output archive or directory. If not set, the output is

placed in the source archive or directory.

-forceGeneration Forces generation of EJB and JSP classes. Without this flag, the classes
may not be regenerated (if determined to be unnecessary).

Building Applications in a Split Development Directory 4-5

Building Modules and Applications Using wlappc

Option

Description

-library
<file[[@name=<strin
g>] [@libspecver=<ve
rsion>] [@libimplver
=<version|string>]]
>

A comma-separated list of shared Java EE libraries. Optional name and
version string information must be specified in the format described in
Section 9.3, "Referencing Shared Java EE Libraries in an Enterprise
Application”.

-writeInferredDescr Specifies that the application or module contains deployment

iptors descriptors with annotation information.

-lineNumbers Adds line numbers to generated class files to aid in debugging.

-basicClientJar Does not include deployment descriptors in client JARs generated for
E]Bs.

-idl Generates IDL for EJB remote interfaces.

-idloverwrite Always overwrites existing IDL files.

-idlverbose Displays verbose information for IDL generation.

-1d1NoValueTypes Does not generate valuetypes and the methods/attributes that contain
them.

-idlNoAbstractInter Does not generate abstract interfaces and methods/attributes that

faces contain them.

-idlFactories Generates factory methods for valuetypes.

-idlvisibroker Generates IDL somewhat compatible with Visibroker 4.5 C++.

-idlorbix Generates IDL somewhat compatible with Orbix 2000 2.0 C++.

-idlDirectory <dir>

Specifies the directory where IDL files will be created (default: target
directory or JAR)

-idlMethodSignature Specifies the method signatures used to trigger IDL code generation.
S <>

-iiop Generates CORBA stubs for EJBs.

-iiopDirectory Specifies the directory where IIOP stub files will be written (default:
<dir> target directory or JAR)

-keepgenerated Keeps the generated . java files.

-compiler <javac>

Selects the Java compiler to use.

-g Compiles debugging information into a class file.
-0 Compiles with optimization on.

-nowarn Compiles without warnings.

-verbose Compiles with verbose output.

-deprecation Warns about deprecated calls.

-normi Passes flags through to Symantec's s;.
-J<option> Passes flags through to Java runtime.

-classpath <path>

Selects the classpath to use during compilation.

-clientJarOutputDir Specifies a directory to place generated client jar files. If not set,

<dir> generated jar files are placed into the same directory location where the
JVM is running.

-advanced Prints advanced usage options.

4-6 Developing Applications for Oracle WebLogic Server

O

Deploying and Packaging from a Split
Development Directory

The following sections describe the steps for deploying WebLogic Server Java EE
applications using the WebLogic split development directory environment:

= Section 5.1, "Deploying Applications Using wldeploy"
= Section 5.2, "Packaging Applications Using wlpackage"

5.1 Deploying Applications Using wideploy

The wldeploy task provides an easy way to deploy directly from the split
development directory. wlcompile provides most of the same arguments as the
weblogic.Deployer directory. To deploy from a split development directory, you
simply identify the build directory location as the deployable files, as in:

<wldeploy user="${user}" password="${password}"
action="deploy" source="${dest.dir}"
name="helloWorldEar" />

The above task is automatically created when you use weblogic.BuildXMLGen to
create the build.xml file.

See Appendix B, "wldeploy Ant Task Reference," for a complete command reference.

5.2 Packaging Applications Using wipackage

The wlpackage Ant task uses the contents of both the source and build directories to
create either a deployable archive file (. EAR file), or an exploded archive directory
representing the Enterprise application (exploded . EAR directory). Use wlpackage
when you want to deliver your application to another group or individual for
evaluation, testing, performance profiling, or production deployment.

5.2.1 Archive versus Exploded Archive Directory

For production purposes, it is convenient to deploy Enterprise applications in
exploded (unarchived) directory format. This applies also to standalone Web
applications, EJBs, and connectors packaged as part of an Enterprise application.
Using this format allows you to update files directly in the exploded directory rather
than having to unarchive, edit, and rearchive the whole application. Using exploded
archive directories also has other benefits, as described in Deployment Archive Files
Versus Exploded Archive Directories in Deploying Applications to Oracle WebLogic
Server.

Deploying and Packaging from a Split Development Directory 5-1

Packaging Applications Using wipackage

You can also package applications in a single archived file, which is convenient for
packaging modules and applications for distribution. Archive files are easier to copy,
they use up fewer file handles than an exploded directory, and they can save disk

space with file compression.

The Java classloader can search for Java class files (and other file types) in a JAR file
the same way that it searches a directory in its classpath. Because the classloader can
search a directory or a JAR file, you can deploy Java EE modules on WebLogic Server
in either a JAR (archived) file or an exploded (unarchived) directory.

5.2.2 wipackage Ant Task Example

In a production environment, use the wlpackage Ant task to package your split
development directory application as a traditional EAR file that can be deployed to
WebLogic Server. Continuing with the MedRec example, you would package your

application as follows:

<wlpackage tofile="\physicianEAR\physicianEAR.ear"

srcdir="\physicianEAR"
destdir="\build\physicianEAR" />

<wlpackage todir="\physicianEAR\explodedphysicianEar"

srcdir="\src\physicianEAR"
destdir="\build\physicianEAR" />

5.2.3 wipackage Ant Task Attribute Reference
The following table describes the attributes of the wlpackage Ant task.

Table 5-1 Attributes of the wipackage Ant Task
Data
Attribute Description Type Required?
tofile Name of the EAR archive file into which the wlpackage Ant String You must specify one of
task packages the split development directory application. the following two
attributes: tofile or
todir.
todir Name of an exploded directory into which the wlpackage Ant String You must specify one of
task packages the split development directory application. the following two
attributes: tofile or
todir.
srcdir Specifies the source directory of your split development String Yes.
directory application.
The source directory contains all editable files for your
project—Java source files, editable descriptor files, JSPs, static
content, and so forth.
destdir Specifies the build directory of your split development directory String Yes.

application.

It is assumed that you have already executed the wlcompile
Ant task against the source directory to generate the needed
components into the build directory; these components include
compiled Java classes and generated deployment descriptors.

5-2 Developing Applications for Oracle WebLogic Server

6

Developing Applications for Production
Redeployment

The following sections describes how to program and maintain applications use the
production redeployment strategy:

= Section 6.1, "What is Production Redeployment?"

= Section 6.2, "Supported and Unsupported Application Types"

= Section 6.3, "Programming Requirements and Conventions"

ms Section 6.4, "Assigning an Application Version"

= Section 6.5, "Upgrading Applications to Use Production Redeployment”

= Section 6.6, "Accessing Version Information”

6.1 What is Production Redeployment?

Production redeployment enables an Administrator to redeploy a new version of an
application in a production environment without stopping the deployed application or
otherwise interrupting the application's availability to clients. Production
redeployment works by deploying a new version of an updated application alongside
an older version of the same application. WebLogic Server automatically manages
client connections so that only new client requests are directed to the new version.
Clients already connected to the application during the redeployment continue to use
the older, retiring version of the application until they complete their work.

See "Using Production Redeployment to Upgrade Applications" for more information.

6.2 Supported and Unsupported Application Types

Production redeployment only supports HTTP clients and RMI clients. Your
development and design team must ensure that applications using production
redeployment are not accessed by an unsupported client. WebLogic Server does not
detect when unsupported clients access the application, and does not preserve
unsupported client connections during production redeployment.

Enterprise applications can contain any of the supported Java EE module types.
Enterprise applications can also include application-scoped JMS and JDBC modules.

If an Enterprise application includes a JCA resource adapter module, the module:

= Must be JCA 1.5 compliant

s Must implement the weblogic.connector.extensions.Suspendable
interface

Developing Applications for Production Redeployment 6-1

Programming Requirements and Conventions

= Must be used in an application-scoped manner, having
enable-access-outside-app set to false (the default value).

Before resource adapters in a newer version of the EAR are deployed, resource
adapters in the older application version receive a callback. WebLogic Server then
deploys the newer application version and retires the entire older version of the EAR.

For a complete list of production redeployment requirements for resource adapters,
see "Production Redeployment" in Programming Resource Adapters for Oracle WebLogic
Server.

6.2.1 Additional Application Support

Additional production redeployment support is provided for Enterprise applications
that are accessed by inbound JMS messages from a global JMS destination, and that
use one or more message-driven beans as consumers. For this type of application,
WebLogic Server suspends message-driven beans in the older, retiring application
version before deploying message-driven beans in the newer version. Production
redeployment is not supported with JMS consumers that use the J]MS API for global
JMS destinations. If the message-driven beans need to receive all messages published
from topics, including messages published while bean are suspended, use durable
subscribers.

6.3 Programming Requirements and Conventions

WebLogic Server performs production redeployment by deploying two instances of an
application simultaneously. You must observe certain programming conventions to
ensure that multiple instances of the application can co-exist in a WebLogic Server
domain. The following sections describe each programming convention required for
using production redeployment.

6.3.1 Applications Should Be Self-Contained

As a best practice, applications that use the in-place redeployment strategy should be
self-contained in their use of resources. This means you should generally use
application-scoped JMS and JDBC resources, rather than global resources, whenever
possible for versioned applications.

If an application must use a global resource, you must ensure that the application
supports safe, concurrent access by multiple instances of the application. This same
restriction also applies if the application uses external (separately-deployed)
applications, or uses an external property file. WebLogic Server does not prevent the
use of global resources with versioned applications, but you must ensure that
resources are accessed in a safe manner.

Looking up a global JNDI resource from within a versioned application results in a
warning message. To disable this check, set the JNDI environment property
weblogic. jndi.WLContext .ALLOW_GLOBAL_RESOURCE_LOOKUP to true when
performing the JNDI lookup.

Similarly, looking up an external application results in a warning unless you set the
JNDI environment property, weblogic. jndi.WLContext . ALLOW_EXTERNAL_
APP_LOOKUP, to true.

6-2 Developing Applications for Oracle WebLogic Server

Programming Requirements and Conventions

6.3.2 Versioned Applications Access the Current Version JNDI Tree by Default

WebLogic Server binds application-scoped resources, such as JMS and JDBC
application modules, into a local JNDI tree available to the application. As with
non-versioned applications, versioned applications can look up application-scoped
resources directly from this local tree. Application-scoped JMS modules can be
accessed via any supported JMS interfaces, such as the JMS API or a message-driven
bean.

Application modules that are bound to the global JNDI tree should be accessed only
from within the same application version. WebLogic Server performs version-aware
JNDI lookups and bindings for global resources deployed in a versioned application.
By default, an internal JNDI lookup of a global resource returns bindings for the same
version of the application.

If the current version of the application cannot be found, you can use the JNDI
environment property weblogic.jndi.WLContext .RELAX_VERSION_LOOKUP to
return bindings from the currently active version of the application, rather than the
same version.

Note:: Setweblogic.jndi.WLContext.RELAX_VERSION_LOOKUP to
true only if you are certain that the newer and older version of the resource
that you are looking up are compatible with one another.

6.3.3 Security Providers Must Be Compatible

Any security provider used in the application must support the WebLogic Server
application versioning SSPI. The default WebLogic Server security providers for
authorization, role mapping, and credential mapping support the application
versioning SSPL

6.3.4 Applications Must Specify a Version Identifier

In order to use production redeployment, both the current, deployed version of the
application and the updated version of the application must specify unique version
identifiers. See Section 6.4, "Assigning an Application Version".

6.3.5 Applications Can Access Name and Identifier

Versioned applications can programmatically obtain both an application name, which
remains constant across different versions, and an application identifier, which
changes to provide a unique label for different versions of the application. Use the
application name for basic display or error messages that refer to the application's
name irrespective of the deployed version. Use the application ID when the
application must provide unique identifier for the deployed version of the application.
See Section 6.6, "Accessing Version Information" for more information about the
MBean attributes that provide the name and identifier.

6.3.6 Client Applications Use Same Version when Possible

As described in Section 6.1, "What is Production Redeployment?", WebLogic Server
attempts to route a client application's requests to the same version of the application
until all of the client's in-progress work has completed. However, if an application
version is retired using a timeout period, or is undeployed, the client's request will be
routed to the active version of the application. In other words, a client's association
with a given version of an application is maintained only on a "best-effort basis."

Developing Applications for Production Redeployment 6-3

Assigning an Application Version

This behavior can be problematic for client applications that recursively access other
applications when processing requests. WebLogic Server attempts to dispatch requests
to the same versions of the recursively-accessed applications, but cannot guarantee
that an intermediate application version is not undeployed manually or after a timeout
period. If you have a group of related applications with strict version requirements,
Oracle recommends packaging all of the applications together to ensure version
consistency during production redeployment.

6.4 Assigning an Application Version

Oracle recommends that you specify the version identifier in the MANIFEST . MF of the
application, and automatically increment the version each time a new application is
released for deployment. This ensures that production redeployment is always
performed when the administrator or deployer redeploys the application.

For testing purposes, a deployer can also assign a version identifier to an application
during deployment and redeployment. See "Assigning a Version Identifier During
Deployment and Redeployment" in Deploying Applications to Oracle WebLogic Server.

6.4.1 Application Version Conventions

WebLogic Server obtains the application version from the value of the
Weblogic-Application-Version property in the MANIFEST . MF file. The version
string can be a maximum of 215 characters long, and must consist of valid characters
as identified in Table 6-1.

Table 6-1 Valid and Invalid Characters

Valid ASCII Characters Invalid Version Constructs

a-zZ

A-Z

0-9

non "non non

period ("."), underscore ("_"), or hyphen (
combination with other characters

) in

For example, the following manifest file content describes an application with version
"v920.beta™

Manifest-Version: 1.0
Created-By: 1.4.1_05-b01 (Sun Microsystems Inc.)
Weblogic-Application-Version: v920.beta

6.5 Upgrading Applications to Use Production Redeployment

If you are upgrading applications for deployment to WebLogic Server 9.2, note that the
Name attribute retrieved from AppDeploymentMBean now returns a unique
application identifier consisting of both the deployed application name and the
application version string. Applications that require only the deployed application
name must use the new ApplicationName attribute instead of the Name attribute.
Applications that require a unique identifier can use either the Name or
ApplicationIdentifier attribute, as described in Section 6.6, "Accessing Version
Information".

6-4 Developing Applications for Oracle WebLogic Server

Accessing Version Information

6.6 Accessing Version Information

Your application code can use new MBean attributes to retrieve version information
for display, logging, or other uses. The following table describes the read-only
attributes provided by ApplicationMBean.

Table 6—2 Read-Only Version Attributes in ApplicationMBean

Attribute Name Description
ApplicationName A String that represents the deployment name of the application
VersionIdentifier A String that uniquely identifies the current application version across all versions of

the same application

ApplicationIdentifier A String that uniquely identifies the current application version across all deployed
applications and versions

ApplicationRuntimeMBean also provides version information in the new
read-only attributes described in the following table.

Table 6—-3 Read-Only Version Attributes in ApplicationRuntimelMBean

Attribute Name Description

ApplicationName A String that represents the deployment name of the application
ApplicationVersion A string that represents the version of the application.

ActiveVersionState An integer that indicates the current state of the active application version. Valid

states for an active version are:

= ACTIVATED—indicates that one or more modules of the application are active
and available for processing new client requests.

s PREPARED—indicates that WebLogic Server has prepared one or more modules
of the application, but that it is not yet active.

= UNPREPARED—indicates that no modules of the application are prepared or
active.

See the Oracle WebLogic Server API Reference for more information.

Note that the currently active version does not always correspond to the
last-deployed version, because the Administrator can reverse the production
redeployment process. See "Rolling Back the Production Redeployment Process" in
Deploying Applications to Oracle WebLogic Server.

Developing Applications for Production Redeployment 6-5

Accessing Version Information

6-6 Developing Applications for Oracle WebLogic Server

7

Using Java EE Annotations and Dependency
Injection

The following sections describe the concepts of MetaData annotation and dependency
injection:

= Section 7.1, "Annotation Processing”"

= Section 7.2, "Dependency Injection of Resources"

m Section 7.3, "Standard JDK Annotations"

= Section 7.4, "Standard Security-Related JDK Annotations"

7.1 Annotation Processing

With Java EE annotations, the standard application.xml and web.xml
deployment descriptors are optional. The Java EE programming model uses the JDK
5.0 annotations feature for Web containers, such as EJBs, servlets, Web applications,
and JSPs (see http://download.oracle.com/javaee/5/api/).

Annotations simplify the application development process by allowing developers to
specify within the Java class itself how the application component behaves in the
container, requests for dependency injection, and so on. Annotations are an alternative
to deployment descriptors that were required by older versions of Enterprise
applications (Java EE 1.4 and earlier).

7.1.1 Annotation Parsing

The application components can use annotations to define their needs. Annotations
reduce or eliminate the need to deal with deployment descriptors. Annotations
simplify the development of application components. The deployment descriptor can
still override values defined in the annotation. One usage of annotations is to define
fields or methods that need Dependency Injection (DI). Annotations are defined on the
POJO (plain old Java object) component classes like the EJB or the servlet.

An annotation on a field or a method can declare that fields/methods need injection,
as described in Section 7.2, "Dependency Injection of Resources". Annotations may
also be applied to the class itself. The class-level annotations declare an entry in the
application component's environment but do not cause the resource to be injected.
Instead, the application component is expected to use JNDI or component context
lookup method to lookup the entry. When the annotation is applied to the class, the
JNDI name and the environment entry type must be specified explicitly.

Using Java EE Annotations and Dependency Injection 7-1

Dependency Injection of Resources

7.1.2 Deployment View of Annotation Configuration

The Java EE Deployment API [JSR88] provides a way for developers to examine
deployment descriptors. For example, consider an EJB Module that has no deployment
descriptors. Assuming that it has some classes that have been declared as E]Bs using
annotations, a user of Session Helper will still be able to deal with the module as if it
had the deployment descriptor. So the developer can modify the configuration
information and it will be written out in a deployment plan. During deployment, such
a plan will be honored and will override information from annotations.

7.1.3 Compiling Annotated Classes

The WebLogic Server utility appc (and its Ant equivalent wlappc) and Appmerge
support metadata annotations. The appmerge and appc utilities take an application
or module as inputs and process them to produce an output application or module
respectively. When used with -writeInferredDescriptors flag, the output
application/module will contain deployment descriptors with annotation information.
The descriptors will also have the metadata-complete attribute set to true, as no
annotation processing needs to be done if the output application or module is
deployed directly. However, setting of metadata-complete attribute to true will
also restrict appmerge and appc from processing annotations in case these tools are
invoked on a previously processed application or module.

The original descriptors must be preserved in such cases to with an . orig suffix. If a
developer wants to reapply annotation processing on the output application, they
must restore the descriptors and use the -writeInferredDescriptors flag again.
If appmerge or appc is used with -writeInferredDescriptors on an Enterprise
application for which no standard deployment descriptor exists, the descriptor will be
generated and written out based on the inference rules in the Java EE specification.

For more information on using appc, see Section 4.2.4, "weblogic.appc Reference". For
more information on using appmerge, see Section 9.5, "Using weblogic.appmerge to
Merge Libraries".

7.1.4 Dynamic Annotation Updates

Deployed modules can be updated using update deployment operation. If such an
update has changes to deployment descriptor or updated classes, the container must
consider annotation information again while processing the new deployment
descriptor.

Containers use the descriptor framework's two-phase update mechanism to check the
differences between the current and proposed descriptors. This mechanism also
informs the containers about any changes in the non-dynamic properties. The
containers then deal with such non-dynamic changes in their own specific ways. The
container must perform annotation processing on the proposed descriptor to make
sure that it is finding the differences against the right reference.

Similarly, some of the classes from a module could be updated during an update
operation. If the container knows that these classes could affect configuration
information through annotations, it makes sure that nothing has changed.

7.2 Dependency Injection of Resources

Dependency injection (DI) allows application components to declare dependencies on
external resources and configuration parameters via annotations. The container reads
these annotations and injects resources or environment entries into the application

7-2 Developing Applications for Oracle WebLogic Server

Standard JDK Annotations

components. Dependency injection is simply an easier-to-program alternative to using
the javax interfaces or JNDI APIs to look up resources.

A field or a method of an application component can be annotated with the
@Resource annotation. Note that the container will unbox the environment entry as
required to match it to a primitive type used for the injection field or method.
Example 7-1 illustrates how an application component uses the @Resource
annotation to declare environment entries.

Example 7-1 Dependency Injection of Environment Entries
// fields

// The maximum number of tax exemptions, configured by the Deployer.
@Resource int maxExemptions;
// The minimum number of tax exemptions, configured by the Deployer.
@Resource int minExemptions;

}

In the above code the @Resource annotation has not specified a name; therefore, the
container would look for an env-entry name called
<class-name>/maxExemptions and inject the value of that entry into the
maxExemptions variable. The field or method may have any access qualifier (public,
private, etc.). For all classes except application client main classes, the fields or
methods must not be static. Because application clients use the same life cycle as Java
EE applications, no instance of the application client main class is created by the
application client container. Instead, the static main method is invoked