

Oracle® Fusion Middleware
Development Guide for Oracle WebCenter WSRP Producer for
.NET

11g Release 1 (11.1.1.5.0)

E14117-04

April 2011

Oracle Fusion Middleware Development Guide for Oracle WebCenter WSRP Producer for .NET, 11g Release
1 (11.1.1.5.0)

E14117-04

Copyright © 2010, 2011, Oracle and/or its affiliates. All rights reserved.

Primary Author: Jennifer Shipman

Contributing Author: Promila Chitkara

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the
restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable
by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA
94065.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark licensed through X/Open Company, Ltd.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Contents

Preface ... v

1 Introducing Oracle WebCenter WSRP Producer for .NET

1.1 About the Oracle WebCenter WSRP Producer for .NET ... 1-1
1.2 Additional Documentation.. 1-1

2 Understanding the Configuration File

2.1 Portlet Nodes ... 2-1
2.2 Portlet Content Transformation Rulesets .. 2-2
2.2.1 Creating Custom Rules ... 2-3

3 Managing Required Script Files

3.1 Managing Required Script Files.. 3-1

4 Configuring Security Options

4.1 WS-Security (WSS) Configuration.. 4-1
4.1.1 WSDL Configuration... 4-1
4.1.2 Web.config Configuration .. 4-2
4.2 SSL Configuration... 4-3

5 Accomplishing Common Development Scenarios

5.1 Adding a Web Part as a Portlet... 5-1
5.2 .. Adding a Web Part with ASP.NET AJAX Controls 5-4
5.2.1 Managing AJAX Outside the .NET Framework.. 5-5
5.3 Adding an ASP.NET Application... 5-9
5.4 Adding a Help Page .. 5-10
5.5 Using Markup Transformation.. 5-11
5.5.1 Transforming Text .. 5-11
5.5.2 Creating a Custom Ruleset.. 5-11
5.6 Using Portlet Styles.. 5-12
5.7 Using Interportlet Communication with JavaScript... 5-13
5.8 Adding User Profile Data ... 5-17
5.9 Setting Up Security Tokens .. 5-21
5.9.1 Displaying a Token in a Web Part.. 5-21

iv

5.9.2Oracle WebLogic Portal with Default SAMLCredentialMapperV2 5-25
5.9.3 Oracle WebLogic Portal with Custom Signing Key .. 5-25
5.9.4 UNT for WebLogic Portal.. 5-26
5.9.5 SAML for Oracle WebCenter .. 5-27
5.9.6 UNT for Oracle WebCenter... 5-28
5.10 Using Oracle WebCenter Features .. 5-31
5.10.1 Using Customization in Oracle WebCenter.. 5-31
5.10.2 Using Oracle WebCenter Parameters .. 5-31

v

Preface

Development Guide for Oracle WebCenter WSRP Producer for .NET provides detailed
information on authoring portlets using the Oracle WebCenter WSRP Producer for
.NET.

Audience
This document is intended for Oracle WebCenter developers who want to create
WSRP portlets using Oracle WebCenter WSRP Producer for .NET.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/us/corporate/accessibility/index.html.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/support/contact.html or visit
http://www.oracle.com/accessibility/support.html if you are hearing
impaired.

Related Documents
For more information, see the following documents:

■ Oracle Fusion Middleware Installation and Upgrade Guide for Oracle WebCenter
Application Accelerator for Microsoft .NET

■ Release notes

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

vi

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Convention Meaning

1

Introducing Oracle WebCenter WSRP Producer for .NET 1-1

1Introducing Oracle WebCenter WSRP
Producer for .NET

This chapter introduces you to Oracle WebCenter WSRP Producer for .NET.

1.1 About the Oracle WebCenter WSRP Producer for .NET
The Oracle WebCenter WSRP Producer for .NET is a collection of libraries that surface
ASP.NET applications and WebParts as WSRP 1.0 or 2.0 portlets. This release supports
the latest ASP.NET 3.5 features such as Ajax and allows developers to code in
ASP.NET without coding against a .NET WSRP framework.

1.2 Additional Documentation
The following additional documentation is available.

Resource Description

Installation Guide This guide describes the prerequisites (such as required software) and
procedures for installing and upgrading Oracle WebCenter WSRP
Producer for .NET.

Release Notes The release notes provide information about new features, issues
addressed, and known issues in the release.

Additional Documentation

1-2 Oracle Fusion Middleware Development Guide for Oracle WebCenter WSRP Producer for .NET

2

Understanding the Configuration File 2-1

2Understanding the Configuration File

This chapter describes contents of the wsrp-producer.xml file.

The set up of a Web Part or ASP.NET application as a WSRP portlet is not complete
until the configuration file, wsrp-producer.xml, is filled out properly. Understanding
this file is critical. Open up the wsrp-producer.xml installed in
<installdir>\wsrpdefault for reference.

■ Section 2.1, "Portlet Nodes"

■ Section 2.2, "Portlet Content Transformation Rulesets"

2.1 Portlet Nodes
Each Web Part or .NET web application you wish to expose as a portlet must have its
own <portlet> node. Portlet nodes can include the following elements:

■ Portlet handle: The <handle> must be a string that uniquely identifies the
portlet. Alphanumeric characters are suggested for this portlet property.

■ Supported locale: The <supported-locale> must be a comma-delimited list of
supported locales. The typical format is [2 char language code] "-" [2
char country code] (for example, en-US). This information is sent to the
WSRP Consumer portal during registration. These values also drive the
localization for core properties of the portlet such as title and description.

■ Localized portlet information: The <description>, <display-name>,
<title>, and <short-title> properties are localized according to the "lang"
attribute value specified. Each value is returned as a LocalizedString for the
corresponding WSRP values of description, displayName, title, and shortTitle. See
the PortletDescription type in the WSRP specification for more details on these
properties.

■ Supported modes: The <supports> element includes several sub-elements:

– Portlet modes: The <portlet-modes> element defines URLs (typically a
relative path) for relevant WSRP portlet modes. The Oracle WebCenter WSRP
Producer for .NET handles portlet modes as follows:

Table 2–1 Portlet Modes

Portlet mode Action

wsrp:view Render the portlet.

wsrp:edit Render the portlet editor.

wsrp:help Render a web page for help.

Portlet Content Transformation Rulesets

2-2 Oracle Fusion Middleware Development Guide for Oracle WebCenter WSRP Producer for .NET

Any mode not on this list will be treated like wsrp:view mode. See the sections
that follow for examples of each portlet mode.

– MIME type: The <mime-type> element defines a mime type supported by
the portlet. If all mime types are supported, pass in "*". See the WSRP
Specification under the MarkupType type for more information on this
setting.

■ User profile information: The <user-profile> element allows you to define
user profile information in <profile-item> elements for use in portlets. For
more information on using this element, see Section 5.8, "Adding User Profile
Data."

■ Portlet content transformation: The <RuleSetRef> section allows you to
associate existing transformation rules (defined outside the portlet node) with a
portlet. Use the ID defined in the associated <RuleSet> element. Multiple
rulesets can be referenced by placing the IDs in the appropriate order in a
comma-delimited string. To add your own transformation rules, add a
<RewriterConfig> element and follow the same structure defined for the
<Rules> element. Existing rules can be combined with custom rules as shown in
the example below:

<RuleSetRef>Default</RuleSetRef>
<RewriterConfig>
 <Rules>
 <RewriterRule>
 <LookFor>test.csv</LookFor>
 <ChangeTo>download.csv</ChangeTo>
 <ChangeToAbsolute>false</ChangeToAbsolute>
 <ApplyTo>*</ApplyTo>
 <MakeResource>false</MakeResource>
 </RewriterRule>
 </Rules>
</RewriterConfig >

In the above example, the portlet will apply all rules associated with the "Default"
rule set and then replace any occurrences of "test.csv" with "download.csv".

For details on rulesets, see the next section.

2.2 Portlet Content Transformation Rulesets
The Oracle WebCenter WSRP Producer for .NET utilizes regular expressions to
transform relative URLs to absolute URLs and to URLs proxied through the WSRP
Consumer if necessary. Specific transformation rules are defined in the
wsrp-producer.xml file in <RuleSet> elements and referenced in each portlet.
Rulesets are a way of clustering a group of markup transformation rules.

wsrp:preview This mode is treated the same as wsrp:view.

urn:javax:portlet:mode:custo
m:edit_defaults

This WSRP custom mode is for WebCenter customization.

Note: If custom rules are combined with existing rulesets, custom
rules will be applied in order of listing after all the referenced rulesets.

Table 2–1 (Cont.) Portlet Modes

Portlet mode Action

Portlet Content Transformation Rulesets

Understanding the Configuration File 2-3

By default, there is a single default ruleset that ensures that hrefs are transformed and
proxied as WSRP resources, but "src" URL references (images and javascript) are
transformed but not proxied. If you want to use different transformation settings,
simply create a new ruleset as described in the next section. For an example of using
rulesets in a portlet, see Section 5.5, "Using Markup Transformation."

2.2.1 Creating Custom Rules
As noted in the previous section, custom rules can be defined within the portlet node
or outside the portlet node in a <RuleSet> element. Rulesets can be very useful if you
have a set of portlets that should use the same rules. Instead of copying the URL
transformation rules for each portlet, you can create a single ruleset and reference the
ID in each portlet. The syntax rules for the <RewriterConfig> element are the same
for both locations. (If the rule is defined within an individual portlet node, the
<RuleSet> element is omitted.)

The <RewriterConfig> element contains a <Rules> element that contains
<RewriterRule> elements, which define transformation rules using the elements in
the following table.

Note: It is strongly recommended that you not modify the default
ruleset.

Table 2–2 Elements to Define Transformation Rules

Element Value/Description

<LookFor> Required. Defines the URL to search for using text and/or
regular expressions. For example,
<LookFor>(activeSrc\":\")([^\"]+)</LookFor>
indicates that the transformer should look for URLs like
"activeSrc":"./test/foo/bar.js" or "activeSrc":"test2/bas.html"
for replacement.

<LookFor>must be the first element in the <RewriterRule>
element.

<ChangeToAbsolute> Required. If set to true, transforms any URL identified with the
<LookFor> element into an absolute URL. (Typically, the
transformation you wish to perform on an URL is to make it
an absolute URL since a relative URL does not make sense
when proxied through a WSRP Consumer.)

<MakeResource> Required. If set to true, ensures that the URL is proxied by the
WSRP Consumer. While this is important for resources that
you wish to protect, applying this option liberally can have
significant performance ramifications since the WSRP
Consumer must rewrite the URL and browser caching cannot
be relied upon. Use the <ApplyTo> to ensure that only those
URLs you wish to proxy are included.

<ApplyTo> Limits the URLs that are transformed to WSRP resources and
proxied using a comma-delimited list of keywords. (All URLs
returned by the <LookFor> element will be transformed to
absolute URLs if the </ChangeToAbsolute> is included in
the rule.)

Portlet Content Transformation Rulesets

2-4 Oracle Fusion Middleware Development Guide for Oracle WebCenter WSRP Producer for .NET

<ChangeTo> Changes the text returned by the <LookFor> element to the
provided text. (This is not used for URL transformation, but
allows you to use the <RewriterRule> element to change
any text within the portlet, and can include regular
expressions.) For example, the entry below redirects traffic
from myhost to myhost.mycompany.com instead:

<RewriterRule>
 <LookFor>myhost[\:]*[0-9]* </LookFor>
 <ChangeTo>myhost.mycompany.com</ChangeTo>
</RewriterRule>

Table 2–2 (Cont.) Elements to Define Transformation Rules

Element Value/Description

3

Managing Required Script Files 3-1

3Managing Required Script Files

This chapter discusses jquery-1.3.2.min.js and msPortletResizeHelper.js
files.

3.1 Managing Required Script Files
The WSRP Producer for .NET makes use of two files: jquery-1.3.2.min.js and
msPortletResizeHelper.js. By default, these files are made into WSRP resources.
Unlike any other javascript files portlet content transformation rulesets described in
Section 2.2, "Portlet Content Transformation Rulesets" are not applied to these files. To
take advantage of browser caching of javascript you may wish to deploy these
required scripts to a web server, such as Apache.

To override the default behavior, add the jQueryExternalURL and
msResizeHelperExternalURL .NET application settings keys, as shown in
Example 3–1, to the web.config file of your WSRP Producer for .NET.

Example 3–1 .NET Application Settings Keys

<appSettings>
 <add key="jQueryExternalURL"
value="http://myhost.mycompany.com/path/jquery-1.3.2.min.js"/>
 <add key="msResizeHelperExternalURL"
value="http://myhost.mycompany.com/path/msPortletResizeHelper.js"/>
</appSettings>

Managing Required Script Files

3-2 Oracle Fusion Middleware Development Guide for Oracle WebCenter WSRP Producer for .NET

4

Configuring Security Options 4-1

4Configuring Security Options

The WSRP specification does not specify which security techniques should be
employed, but does encourage anyone using message-level security to use
WS-Security standards. The specification makes mention of transport-level security,
but only requires that "a Producer's WSDL declare ports for an HTTPS service entry
point".

■ Section 4.1, "WS-Security (WSS) Configuration"

■ Section 4.2, "SSL Configuration"

4.1 WS-Security (WSS) Configuration
The Oracle WebCenter WSRP Producer for .NET supports two types of WS-Security
token profiles: SAML and Username Token (UNT).

4.1.1 WSDL Configuration
There are two WSDL files that contain WSS policy information:

■ WSRP 1.0: wsrp_v1_bindings.wsdl and WSRPService.wsdl
(<installdir>\wsrpdefault\wsdl\1.0)

■ WSRP 2.0: wsrp-2.0-bindings.wsdl and WSRPService.wsdl
(<installdir>\wsrpdefault\wsdl\2.0)

The WSRPService.wsdl file should include the following as a child of the root element
<wsdl:definitions> and before the <wsdl:service> element:

Example 4–1 SAML

<wsp:UsingPolicy wsdl:Required="true" />
<wsp:Policy s1:Id="SAMLAuth.xml">
 <wsp:All>
 <wssp:Identity>
 <wssp:SupportedTokens>
 <wssp:SecurityToken
TokenType="http://docs.oasis-open.org/wss/2004/01/oasis-2004-01-saml-token-profile
-1.0#SAMLAssertionID">
 <wssp:Claims>
 <wssp:ConfirmationMethod>sender-vouches</wssp:ConfirmationMethod>
 </wssp:Claims>
 </wssp:SecurityToken>
 </wssp:SupportedTokens>
 </wssp:Identity>
 </wsp:All>
</wsp:Policy>

WS-Security (WSS) Configuration

4-2 Oracle Fusion Middleware Development Guide for Oracle WebCenter WSRP Producer for .NET

Example 4–2 UNT

<wsp:UsingPolicy wsdl:Required="true" />
 <wsp:Policy s1:Id="UNTAuth.xml">
 <wsp:All>
 <wssp:Identity>
 <wssp:SupportedTokens>
 <wssp:SecurityToken
TokenType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-
profile-1.0#UsernameToken">
 <wssp:UsePassword
Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profi
le-1.0#PasswordText"/>
 </wssp:SecurityToken>
 </wssp:SupportedTokens>
 </wssp:Identity>
 </wsp:All>
 </wsp:Policy>

The UsingPolicy must be set to "required" or certain WSRP Consumers (such as WLP)
will not honor the security policy. The Policy node is a standard WS-Security policy
element where SAML v1.1 sender-vouches confirmation is defined. See the
WS-Security specification for details.

The most important piece to note for WSDL configuration is the "Id" attribute for the
policy. This must be referenced in the wsrp*bindings.wsdl file. Open the wsrp_v1_
bindings.wsdl or wsrp-2.0-bindings.wsdl file and find the <wsdl:input> elements
with the names "getMarkup" and "performBlockingInteraction". These sections should
reference which policy to use. For example, if the Id for the policy in WSRPService is
"SAMLAuth.xml", the policy reference in wsrp*bindings.wsdl would look like the
following:

<wsp:Policy xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy">
 <wsp:PolicyReference URI="#SAMLAuth.xml"/>
</wsp:Policy>
(If the Id for the policy in WSRPService.wsdl is "UNTAuth.xml", the PolicyReference
URI value in wsrp*bindings.wsdl would be "#UNTAuth.xml".)

4.1.2 Web.config Configuration
The Oracle WebCenter WSRP Producer for .NET uses Microsoft Web Services
Extensions (WSE) 2.0 SP3. This section discusses the default way in which WSE is set
up to handle WS-Security tokens. To learn more about WSE and security tokens, refer
to the Microsoft documentation
(http://msdn.microsoft.com/en-us/library/ms824677.aspx).

Security aspects of WSE are managed under the <security> element under the
<microsoft.web.services2> element in Web.config.

The default UNT and SAML Security Token Managers defined in Web.config do not
actually perform authentication. Instead, they strip off the token XML and provide it
to individual portlets registered under the Oracle WebCenter WSRP Producer for
.NET WSRP producer. This allows individual portlets to implement their own
authentication and authorization methodologies. To implement authentication at the
WSRP SOAP endpoints, create your own SecurityTokenManager for WSE following
the Microsoft documentation.

SSL Configuration

Configuring Security Options 4-3

To learn more about the default UNT and Security Token Managers, see Section 5.9,
"Setting Up Security Tokens" in the next section. Source code for the default
SecurityTokenManager is available in the \wsrpdefault\src folder in the
installation directory.

4.2 SSL Configuration
To set up SSL (either one-way or two-way), follow the Microsoft documentation on
configuring IIS and the documentation provided for your WSRP Consumer portal. Use
"https" on all endpoint URLs in WSRPService.wsdl. For WSRP resources, the Oracle
WebCenter WSRP Producer for .NET will determine whether to use http or https
depending on which was used to access the endpoint.

Note: WSE does not properly handle WSS 1.0 security tokens sent by
the WebCenter WSRP Consumer, so the Oracle WebCenter WSRP
Producer for .NET uses a request filter to decrypt any encrypted
content, validate signatures, and then pass the modified SOAP
message without encryption and signature to WSE. To learn more
about the default request filter implemented for security tokens sent
from WebCenter, see the development tutorials in the next section.

Note: Two-way SSL is not supported in Oracle WebCenter.

SSL Configuration

4-4 Oracle Fusion Middleware Development Guide for Oracle WebCenter WSRP Producer for .NET

5

Accomplishing Common Development Scenarios 5-1

5Accomplishing Common Development
Scenarios

This chapter provides step-by-step tutorials to achieve common development
scenarios:

■ Section 5.1, "Adding a Web Part as a Portlet"

■ Section 5.2, "Adding a Web Part with ASP.NET AJAX Controls"

■ Section 5.3, "Adding an ASP.NET Application"

■ Section 5.4, "Adding a Help Page"

■ Section 5.5, "Using Markup Transformation"

■ Section 5.6, "Using Portlet Styles"

■ Section 5.7, "Using Interportlet Communication with JavaScript"

■ Section 5.8, "Adding User Profile Data"

■ Section 5.9, "Setting Up Security Tokens"

■ Section 5.10, "Using Oracle WebCenter Features"

5.1 Adding a Web Part as a Portlet
By default, the ASP.NET Web Part editor zone supports three different types of
preferences (referred to as Personalization). This section illustrates how to work with
the default preferences. The Oracle WebCenter WSRP Producer for .NET also supports
custom Personalization editors.

In the example below, steps 1-3 create an ASP.NET Web Part just as you would for
consumption in ASP.NET outside of the Oracle WebCenter WSRP Producer for .NET,
and steps 5-8 add the Web Part to the Oracle WebCenter WSRP Producer for .NET.
Refer to the Microsoft documentation for more details on how to create Web Parts
from User Controls
(http://msdn.microsoft.com/en-us/magazine/cc300767.aspx).

1. Open a Visual Studio Web Application Project and create a Web User Control
named TestPreferences.ascx.

2. Add three labels named lblStringPref, lblBooleanPref, and lblEnumPref.

3. Create three properties that include the [Personalizable, WebBrowsable]
attribute. Match the label display values to the properties as shown in the example
code below:

 protected void Page_Load(object sender, EventArgs e)

Adding a Web Part as a Portlet

5-2 Oracle Fusion Middleware Development Guide for Oracle WebCenter WSRP Producer for .NET

 {
 lblBooleanPref.Text = "Checkbox Pref: " + _boolPref;
 lblStringPref.Text = "Text Pref: " + _stringPref;
 lblEnumPref.Text = "Dropdown Pref: " + _enumPref;

 }
 #region Preferences
 private string _stringPref = "";
 private bool _boolPref = false;

 public enum TestEnum
 {
 ListItem1, ListItem2, ListItem3
 }
 private TestEnum _enumPref = TestEnum.ListItem2;

 [Personalizable, WebBrowsable]
 public string TextPref
 {
 get { return _stringPref; }
 set { _stringPref = value; }
 }

 [Personalizable, WebBrowsable]
 public bool CheckboxPref
 {
 get { return _boolPref; }
 set { _boolPref = value; }
 }

 [Personalizable, WebBrowsable]
 public TestEnum DropdownPrefs
 {
 get { return _enumPref; }
 set { _enumPref = value; }
 }
 #endregion

4. Test that the code compiles before continuing.

5. Make a copy of the existing \ASPNET_AJAX_sample folder under
<installdir>\wsrpdefault\portlets and rename it "TestPreferences".

6. Replace the Simple_DateTime.ascx file with the TestPreferences.ascx file you
created in steps 1-3.

7. Copy the compiled assembly from your Visual Studio project to the
<installdir>\wsrpdefault\bin folder.

8. Update the default.aspx file in <installdir>\wsrpdefault\portlets\TestPreferences
to reference your control instead of the Simple_Date_Time control. The resulting
code should look something like the following:

<%@ Page Language="C#"
MasterPageFile="~/portlets/Resources/MasterPages/WSRP.Master" Title="Content
Page Test" %>
<%@ Register src= "~/portlets/TestPreferences/UserControl/TestPreferences.ascx"
tagname="TestPreferences" tagprefix="uc1" %>
<asp:Content ID="Content1" ContentPlaceHolderID="webpartcontrol"
Runat="Server">
 <uc1:TestPreferences ID="TestPreferences1" runat="server" />
</asp:Content>

Adding a Web Part as a Portlet

Accomplishing Common Development Scenarios 5-3

9. Update the <installdir>\wsrpdefault\wsrp-producer.xml file to include your
portlet as follows:

■ Make a copy of an existing <portlet> element and its contents.

■ Change the handle, display name, description, title, and short title elements to
the correct values for the new portlet.

■ Update the <url> node under the <portlet-mode> element to point to your
portlet.

For the example above, the<portlet> element would look like the following:

<portlet>
 <handle>TestPreferences</handle>
 <supported-locale>en,fr</supported-locale>
 <descriptions>
 <description lang="en">Test Preferences</description>
 <description lang="fr">Test Preferences</description>
 </descriptions>
 <display-names>
 <display-name lang="en">Test Preferences</display-name>
 <display-name lang="fr">Test Preferences</display-name>
 </display-names>
 <titles>
 <title lang="en">Test Preferences</title>
 <title lang="fr">Test Preferences</title>
 </titles>
 <short-titles>
 <short-title lang="en">Test Preferences</short-title>
 <short-title lang="fr">Test Preferences</short-title>
 </short-titles>
 <supports>
 <portlet-modes>
 <portlet-mode>
 <name>wsrp:view</name>
 <url>/portlets/TestPreferences/default.aspx</url>
 </portlet-mode>
 <portlet-mode>
 <name>wsrp:edit</name>
 <url>/portlets/TestPreferences/default.aspx</url>
 </portlet-mode>
 </portlet-modes>
 <mime-type>text/html</mime-type>
 </supports>
 <user-profile>
 <profile-item>businessInfo/online/email</profile-item>
 </user-profile>
</portlet>

10. Register the WSRP producer by pointing your WSRP Consumer at the WSDL URL
that is in the shortcut Start|Programs|Oracle Application Accelerator for
.NET|WSRP 1.0 WSDL. (Refer to the product documentation for your WSRP
Consumer portal for details on how to register a WSRP producer WSDL.)

11. The portlet should now be available in your WSRP Consumer. Test the portlet
functionality:

a. Add the portlet to your portal. You should see the three labels showing the
default values set for the preferences in the TestPreferences.ascx file.

b. Access the preference editor according to the documentation for your WSRP
Consumer portal. You should see the same preference editor you would see if

Adding a Web Part with ASP.NET AJAX Controls

5-4 Oracle Fusion Middleware Development Guide for Oracle WebCenter WSRP Producer for .NET

you added your own Web Part editor zone in ASP.NET. Change the
preferences, click Close, and observe that the labels change.

c. Log out and log in to your portal. The preference values you changed should
be persisted.

5.2 Adding a Web Part with ASP.NET AJAX Controls
A key feature of the Oracle WebCenter WSRP Producer for .NET is support for
controls that are rendered using ASP.NET AJAX.

This tutorial starts with the example in the previous section. Again, most of the steps
are typical tasks required to set up an ASP.NET Web Part to use ASP.NET AJAX
functionality. Refer to the Microsoft documentation for details on how to set up
ASP.NET AJAX script managers and update panels.

1. Open the project you created in Section 5.1, "Adding a Web Part as a Portlet".

2. From the AJAX Extensions portion of the Visual Studio toolbox, add a Script
Manager and an Update Panel.

3. Add a label, a text box, and a button inside the Update Panel.

4. Add a label, a text box, and a button outside the Update Panel. When you are
finished, the source view should look something like the following:

<asp:Label ID="lblStringPref" runat="server" Text="Label"></asp:Label>

<asp:Label ID="lblBooleanPref" runat="server" Text="Label"></asp:Label>

<asp:Label ID="lblEnumPref" runat="server" Text="Label"></asp:Label>

<asp:ScriptManager ID="ScriptManager1" runat="server">
</asp:ScriptManager>
<asp:UpdatePanel ID="UpdatePanel1" runat="server">
<ContentTemplate>
 <asp:TextBox ID="txtAjax" runat="server"></asp:TextBox>
 <asp:Button ID="btnAjax" runat="server" Text="PostAJAX" />

 <asp:Label ID="lblAjax" runat="server" Text="AJAX post here"></asp:Label>
</ContentTemplate>
</asp:UpdatePanel>
<asp:TextBox ID="txtPostback" runat="server"></asp:TextBox>
<asp:Button ID="btnPostback" runat="server" Text="Postback" />

<asp:Label ID="lblPostback" runat="server" Text="Postback content
here"></asp:Label>

5. Modify the page load method so that text box entries are displayed in the label.
The source code for the page load method will look something like the following:

protected void Page_Load(object sender, EventArgs e)
 {
 lblBooleanPref.Text = "Checkbox Pref: " + _boolPref;
 lblStringPref.Text = "Text Pref: " + _stringPref;
 lblEnumPref.Text = "Dropdown Pref: " + _enumPref;

 lblAjax.Text = txtAjax.Text;
 lblPostback.Text = txtPostback.Text;

 }

6. Test that the code compiles before continuing. (You can also register the control in
an aspx page in your Visual Studio project to test that it is working. See the Visual
Studio documentation for details.)

7. Replace the <installdir>\wsrpdefault\portlets\TestPreferences.ascx file with the
latest version.

Adding a Web Part with ASP.NET AJAX Controls

Accomplishing Common Development Scenarios 5-5

8. Open the TestPreferences.ascx file in a text editor and remove the
asp:ScriptManager control. The Oracle WebCenter WSRP Producer for .NET
references an ASP.NET Master Page that registers a ScriptManager, and ASP.NET
does not allow more than one ScriptManager per application. See the Microsoft
documentation on Master Pages and ScriptManager for more information.

9. Replace the compiled assembly in the <installdir>\wsrpdefault\bin folder.

10. Go back to your portal, refresh the portlet and test its functionality again.

5.2.1 Managing AJAX Outside the .NET Framework
There may be times when you want to control XMLHttpRequests directly, rather than
rely on the ASP.NET 3.5 AJAX controls. To do this, you must account for the fact that
URLs are transformed via the WSRP proxy. This tutorial provides the steps necessary
to get a simple AJAX project working.

This example starts with the code from the previous example. Under the asp:Label
in the previous sample, add the following code:

<!-- Added for simple AJAX sample -->

<asp:ListBox ID="listBoxPets" runat="server">
 <asp:ListItem Text="cat" Value="cat" Selected="True"/>
 <asp:ListItem Text="dog" Value="dog" />
 <asp:ListItem Text="bird" Value="bird" />
 <asp:ListItem Text="fish" Value="fish" />
</asp:ListBox>
<!-- This href URL will be properly transformed by WSRP proxy -->

<!-- Result of selection will be placed here -->
<div id="AjaxResponse"></div>
This code constructs a simple list box with a hidden href that points at the URL to
which the XMLHttpRequest will send data. This URL is placed in an anchor href so
that the markup transformer will rewrite the URL for the WSRP proxy. (For details on
transformation, see Section 5.5, "Using Markup Transformation".)

Under the <div> add the following javascript:

<script language="javascript" type="text/javascript">
 var xmlHttp;
 /* Tap into the onchange event so that whenever an item is selected in the

Note: In this sample, there are no URLs returned in the response.
However, you may need the response from the AJAX request to be
transformed by the Portlet Content Transformation rulesets (for
example, if you have URLs you want proxied by the WSRP
Consumer). To do this, add a "handle" query string argument to the
target URL that references the handle you gave the portlet in
wsrp-producer.xml. In this sample, the handle would be
"TestPreferences" so the hidden URL would be changed to <a
id="hiddenposturl"
href="AjaxPostDestination.aspx?handle=TestPreference
s" visible="false" >. You must also make sure that the
Content Type returned is text/html (it is text/plain in this sample) or
certain WSRP consumers will not properly proxy the transformed
URLs.

Adding a Web Part with ASP.NET AJAX Controls

5-6 Oracle Fusion Middleware Development Guide for Oracle WebCenter WSRP Producer for .NET

 list box, that value is sent to the server.
 */
 var selectmenu;
 var selectMenus = getElementsByTagNameAndEndingId("select", "listBoxPets");
 selectmenu = selectMenus[0];

 selectmenu.onchange = function() {
 // Prepare the XHR
 createXMLHttpRequest();
 // Get the selected value
 var selectedPet = getSelectedPet();
 // get the URL from a hidden argument since this will be transformed.
 var hiddenPetURL = getElementsByTagNameAndEndingId("a", "hiddenposturl");
 // Prepare the request.
 xmlHttp.open("POST", hiddenPetURL, true);
 // Assign this to a function that will process the requested items
 xmlHttp.onreadystatechange = handleStateChange;
 // Important note - If you use application/x-www-form-urlencoded you must
include the ;charset=UTF-8 or
 // this will not work in Firefox 3.x. Works fine in all versions of IE
w/o this.
 xmlHttp.setRequestHeader("Content-Type",
"application/x-www-form-urlencoded;charset=UTF-8");
 // Send the value as post parameters. This is the suggested methodology
using the Application Accelerator for .NET
 xmlHttp.send("petselection=" + selectedPet);
 }

 /*
 Standard AJAX method. This creates the appropriate XMLHttpRequest (XHR)
object, the core of AJAX.
 */
 function createXMLHttpRequest() {
 if (window.ActiveXObject) {
 xmlHttp = new ActiveXObject("Microsoft.XMLHTTP");
 }
 else {
 xmlHttp = new XMLHttpRequest();
 }
 }

 /*
 This function handles the results of the XMLHttpRequest (XHR).
 This is part of the standard AJAX methodology of using the onreadystatechange
event of the XHR to manage the results.
 */
 function handleStateChange() {
 if (xmlHttp.readyState == 4) {
 if (xmlHttp.status == 200) {
 parseResults();
 }
 }
 }

 /*
 This helper function grabs the first selection and returns it
 */
 function getSelectedPet() {
 var result = "";
 var options = selectmenu.childNodes;

Adding a Web Part with ASP.NET AJAX Controls

Accomplishing Common Development Scenarios 5-7

 var option = null;
 for (var i = 0; i < options.length; i++) {
 option = options[i];
 if (option.selected) {
 result = option.value;
 }
 }
 return result;
 }

 /*
 Write out the results returned from the XHR POST
 */
 function parseResults() {
 //var responseDiv = document.getElementById("WebPartManager1_AjaxWebPart2_
PetsServerResponse");
 var responseDivs = getElementsByTagNameAndEndingId("div", "AjaxResponse");
 var responseDiv = responseDivs[0];
 if (responseDiv.hasChildNodes()) {
 responseDiv.removeChild(responseDiv.childNodes[0]);
 }
 var responseText = document.createTextNode(xmlHttp.responseText);
 responseDiv.appendChild(responseText);
 }

 /*
 This function returns a list of DOM elements that have the tag name specified
and have an ID
 that ends in the value supplied. The reason for this function is that ASP.NET
prepends control
 ID's with the webpart zone name and this function provides a handy way of
locating the our
 control of interest.
 tagName - DOM tag name to look for (e.g. div, select, p)
 endingID - String that the ID of the DOM elements should end with
 returns - list of DOM elements that have the tag name and have an id that ends
with value supplied
 */
 function getElementsByTagNameAndEndingId(tagName, endingId) {
 var tagItems = document.getElementsByTagName(tagName);
 var idValue;
 var idNode;
 var startPos;
 var returnElements = new Array(1); // Typically only one item
 var j = 0;
 for (i = 0; i < tagItems.length; i++) {
 idNode = tagItems.item(i).attributes.getNamedItem("id");
 if (idNode != null) {
 idValue = idNode.nodeValue;
 startPos = idValue.indexOf(endingId);
 if (startPos > -1 && endingId == idValue.substring(startPos)) {
 returnElements[j] = tagItems.item(i);
 j++;
 }
 }
 }
 return returnElements;
 }

Adding a Web Part with ASP.NET AJAX Controls

5-8 Oracle Fusion Middleware Development Guide for Oracle WebCenter WSRP Producer for .NET

 </script>
The javascript above simply takes the value of a selected listbox item, passes it as a
POST parameter to an URL, and then takes the response text and places it in a div.
This is mostly standard AJAX methodology with two exceptions. The first is that the
URL is grabbed from a hidden href so it will be properly transformed to a WSRP
proxied URL. The second is that the URLs cannot contain query string parameters
(like most AJAX requests) because they will not be properly appended by the WSRP
Consumer.

Create the target page that the AJAX request will be sent to by creating a new ASPX
page called AjaxPostDestination.aspx in the same directory as test.aspx. Paste the
following code into the file:

<%@ Page Language="C#" AutoEventWireup="true" ValidateRequest="false" %>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<!-- NOTE that validaterequest is set to false. This is the only way our
hand-rolled AJAX requests will be accepted. -->
<head id="Head1" runat="server">
 <title>Untitled Page</title>
 <script language="CS" runat="server">
 void Page_Load(object sender, System.EventArgs e){}
 protected override void Render(HtmlTextWriter writer)
 {
 // Take over the response writer and send only the results of the
selection
 // Turn cacheability off so that each request is viewed as "new"
 Response.Cache.SetCacheability(HttpCacheability.NoCache);
 // For this simple example, just send back plain text. A more
sophisticated JSON or XML response could be set here.
 Response.ContentType = "text/plain";
 writer.Write("You selected " + Request.Params["petselection"]);
 }
 </script>
</head>
<body>
 <form id="form1" runat="server">
 <div>

 </div>
 </form>
</body>
</html>
Note that the Master Page is not referenced; it would serve no purpose since that page
is not displayed. Also note that the ValidateRequest attribute is set to "false".
ASP.NET would throw a validation error without this attribute because the form is not
being posted as expected (with more than a single parameter). Finally, note that
caching is turned off. Since a query string parameter such as datetime cannot be added
to the request, there is no way to make it unique.

Refresh the page where the portlet resides. The portlet should now display a list box
with four pets listed in it. When you click on a pet name, you should see the pet
selection displayed at the bottom of the portlet.

In summary, to use XMLHttpRequest in your code without using ASP.NET 3.5 AJAX
controls, follow the rules below:

Adding an ASP.NET Application

Accomplishing Common Development Scenarios 5-9

■ Put the target URL for an XMLHttpRequest in a hidden anchor tag as an href (or
use some other place like a hidden input field) and then grab the value of that href
as the target URL to send in the XMLHttpRequest.

■ If you need the response from the AJAX request to be transformed by the Portlet
Content Transformation rulesets (for example, you have URLs you want proxied
by the WSRP Consumer) add a "handle" query string argument to the target URL
that references the handle you gave the portlet in wsrp-producer.xml.

■ Do not use querystring parameters as a way of posting data. Use POST parameters
only.

■ Turn off caching in your target page so the request is not cached.

5.3 Adding an ASP.NET Application
If your portlet does not use preferences, you can use the Oracle WebCenter WSRP
Producer for .NET to surface an ASP.NET application with WSRP. This tutorial adds
an ASP.NET Web Form to the Oracle WebCenter WSRP Producer for .NET.

1. Create a very simple ASP.NET web form. For example, the test.aspx file below
prints "Hello World" in an ASP.NET label control:

<%@ Page Language="C#" AutoEventWireup="true" %>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" >
<head runat="server">
 <script language="CS" runat="server">
 void Page_Load(object sender, System.EventArgs e)
 {
 this.lblTest.Text = "Hello World";
 }
 </script>
 <title>Untitled Page</title>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <asp:Label ID="lblTest" runat="server" Text=""></asp:Label>
 </div>
 </form>
</body>
</html>

2. Create a folder under <installdir>\wsrpdefault\portlets called "testASPX".

3. Copy the test.aspx file you created to the new folder.

4. Modify the aspx file to reference the Oracle WebCenter WSRP Producer for .NET
Master Page as follows.

■ Remove all DOM elements outside of the <head> and <body>.

Note: It is important to understand that the Oracle WebCenter
WSRP Producer for .NET uses a Master Page to render content. Your
aspx file must reference the appropriate content placeholders of the
Master Page as outlined below.

Adding a Help Page

5-10 Oracle Fusion Middleware Development Guide for Oracle WebCenter WSRP Producer for .NET

■ Replace the <head> element with the content placeholder identified by
"wsrphead" and include any necessary child elements from the<head>
element.

<asp:Content ID="ContentHead1" ContentPlaceHolderID="wsrphead"
Runat="Server">

■ Replace the <body> and <form> elements with the content placeholder
identified by "Main" and include any necessary child elements from
the<form> element.

<asp:Content ID="ContentBody1" ContentPlaceHolderID="Main" Runat="Server">
For example, a modified test.aspx file would look something like the following:

<%@ Page Language="C#"
MasterPageFile="~/portlets/Resources/MasterPages/WSRP.Master" Title="Content
Page Test" %>
<asp:Content ID="ContentHead1" ContentPlaceHolderID="wsrphead" Runat="Server">
<script language="CS" runat="server">
 void Page_Load(object sender, System.EventArgs e)
 {
 this.lblTest.Text = "Hello World";
 }
 </script>
</asp:Content>
<asp:Content ID="ContentBody1" ContentPlaceHolderID="Main" Runat="Server">
<asp:Label ID="lblTest" runat="server" Text=""></asp:Label>
</asp:Content>

5. Create a new <portlet> entry in wsrp-producer.xml with a portlet handle
named "testASPX". Remove the <portlet-mode> element for wsrp:edit since
Web Forms do not support preferences.

6. Add the new "testASPX" portlet to your portal. You should see "Hello World"
displayed.

In the above example, the C# code was placed directly in the file. If you want to use a
code-behind .cs file, simply add that code to an \App_Code subfolder under
<installdir>\wsrpdefault or add the compiled C# assembly to
<installdir>\wsrpdefault\bin, and change the <%@ Page directive in the .aspx file to
reference the assembly or class.

5.4 Adding a Help Page
To add a help file for any portlet, simply add a new <portlet-mode> element
named wsrp:help that points to the help file. For example, to add a help file called
testASPXhelp.htm to the previous example, the <portlet-modes> element would
look like the following:

<portlet-modes>
 <portlet-mode>
 <name>wsrp:view</name>
 <url>/portlets/TestASPX/test.aspx</url>
 </portlet-mode>
 <portlet-mode>
 <name>wsrp:help</name>
 <url>/portlets/TestASPX/testASPXhelp.htm</url>
 </portlet-mode>
 </portlet-modes>
When you view the portlet in your portal, the help link for the portlet should bring
you to the testASPXhelp.htm page.

Using Markup Transformation

Accomplishing Common Development Scenarios 5-11

5.5 Using Markup Transformation
The Oracle WebCenter WSRP Producer for .NET allows you to implement markup
transformation to modify URLs and other static content before it is displayed in the
browser.

5.5.1 Transforming Text
This tutorial provides a simplified example that modifies the "Hello World" text in
Section 5.3, "Adding an ASP.NET Application" to read "Hello New World".

1. Open the <installdir>\wsrpdefault\wsrp-producer.xml file in a text editor.

2. Go to the <portlet> node with the handle "TestASPX" and add the following
below the <RuleSetRef> element:

<RewriterConfig>
 <Rules>
 <RewriterRule>
 <LookFor>Hello World</LookFor>
 <ChangeToAbsolute>false</ChangeToAbsolute>
 <ChangeTo>Hello New World</ChangeTo>
 <ApplyTo>*</ApplyTo>
 <MakeResource>false</MakeResource>
 </RewriterRule>
 </Rules>
 </RewriterConfig>
For details on ruleset elements in wsrp-producer.xml, see Section 2.2, "Portlet
Content Transformation Rulesets."

3. Refresh the portal page that includes the testASPX portlet. The portlet should now
display "Hello New World".

5.5.2 Creating a Custom Ruleset
This tutorial illustrates custom URL transformation by modifying the portlet from
Section 5.2, "Adding a Web Part with ASP.NET AJAX Controls" to proxy the
WebResource.axd and ScriptResource.axd files generated by the .NET framework
when ASP.NET AJAX controls are added. (The Default ruleset defined at the top of the
wsrp-producer.xml file ensures that URLs to web resource files generated by the .NET
framework (*.axd) are made absolute, but are not proxied as WSRP resources. The
practical reason for proxying .axd files would be a scenario in which WSRP Consumer
portal users are not able to access URLs to your internal network.)

1. Open the <installdir>\wsrpdefault\wsrp-producer.xml file in a text editor.

2. Copy the entire Default ruleset (<RuleSet id="Default">) and rename the id
to "axdproxy".

3. Locate the first <RewriterRule> in the new ruleset. In the <ApplyTo> element,
add ", .axd".

4. Locate the second and third <RewriterRule> elements and remove ",.axd" from
the <ApplyTo> elements under each.

5. Make a copy of the third <RewriterRule> (with <LookFor>(src=\")').
Change the <ApplyTo> element to include only ".axd" and change
<MakeResource> to true.

The finished ruleset should look something like the following:

<RuleSet id="axdproxy">

Using Portlet Styles

5-12 Oracle Fusion Middleware Development Guide for Oracle WebCenter WSRP Producer for .NET

 <RewriterConfig>
 <Rules>
 <RewriterRule>
 <LookFor>(href=\")([^\"]+)</LookFor>
 <ChangeToAbsolute>true</ChangeToAbsolute>
 <ApplyTo>.aspx,.htm,.html,.axd</ApplyTo>
 <MakeResource>true</MakeResource>
 </RewriterRule>
 <RewriterRule>
 <LookFor>(href=\")([^\"]+)</LookFor>
 <ChangeToAbsolute>true</ChangeToAbsolute>
 <ApplyTo>.css</ApplyTo>
 <MakeResource>false</MakeResource>
 </RewriterRule>
 <RewriterRule>
 <LookFor>(src=\")([^\"]+)</LookFor>
 <ChangeToAbsolute>true</ChangeToAbsolute>
 <ApplyTo>.css,.js,.img,.png,.jpg,.gif</ApplyTo>
 <MakeResource>false</MakeResource>
 </RewriterRule>
 <RewriterRule>
 <LookFor>(src=\")([^\"]+)</LookFor>
 <ChangeToAbsolute>true</ChangeToAbsolute>
 <ApplyTo>.axd</ApplyTo>
 <MakeResource>true</MakeResource>
 </RewriterRule>
 </Rules>
 </RewriterConfig>
 </RuleSet>

6. Go to the <portlet> node with the handle "TestPreferences" and change the
<RuleSetRef> element to reference the new axdproxy ruleset
(<RuleSetRef>axdproxy</RuleSetRef>).

7. Save your changes to wsrp-producer.xml.

8. Refresh the portal page the includes the TestPreferences portlet. All URLs with
.axd should now be proxied by the WSRP consumer portal. To confirm this, use a
DOM inspection tool to search for .axd files; they will be transformed to a
URL-encoded value that begins with the URL to the WSRP Consumer portal. To
compare these URLs with un-proxied URLs, simply switch the <RuleSetRef>
for the portlet back to "Default".

5.6 Using Portlet Styles
The Oracle WebCenter WSRP Producer for .NET does not require any special steps to
apply skins and themes. Styles, themes, and skin management are delegated to the
.NET framework. For example, to apply a particular WebCenter theme, simply place
the source .css file in the \App_Themes folder and follow standard .NET rules to
apply the style you want to a single control, a single portlet, or a set of portlets.

This simplified tutorial shows how to use built-in ASP.NET functionality to apply a
style to all labels in all portlets. For more detailed information, see the Microsoft
documentation on ASP.NET themes and skins.

1. Create a folder in <installdir>\wsrpdefault\App_Themes and name it
"MyTheme".

2. Create a new file that contains the following line:
<asp:Label runat="server" ForeColor="white" BackColor="green"

Using Interportlet Communication with JavaScript

Accomplishing Common Development Scenarios 5-13

/>

3. Save the file in the \MyTheme folder as "my.skin".

4. Open the <installdir>\wsrpdefault\Web.config file in a text editor.

5. Locate the <pages> element and add the following attribute:
theme="MyTheme". This will make all ASP.NET pages use the themes defined in
the "App_Themes\MyTheme" folder.

6. View any portlets that contain a label (for example, the portlets in the previous
tutorials) and note that the background color is now green.

5.7 Using Interportlet Communication with JavaScript
The most direct way to pass data from one portlet to another is to use JavaScript. This
tutorial shows a simple technique that uses one portlet as a "master" portlet from
which a user selects an item. When an item is selected, data is passed to another
portlet, which displays detailed information about the item.

First, create the "master" portlet. In Visual Studio, as part of a Web Application Project,
create a new Web User Control and name it MasterList.ascx. For ease of deployment,
don't put code in a separate file.

Add a label and a list box, but leave the file empty. The contents of the file should look
like the following:

<%@ Control Language="C#" AutoEventWireup="true" %>
<asp:Label ID="lblHousingType" runat="server" Text="Select House
Type"></asp:Label>

<asp:ListBox ID="listBoxHousing" runat="server" Height="80px" Width="171px">
 <asp:ListItem>Single Family</asp:ListItem>
 <asp:ListItem>Condominium</asp:ListItem>
 <asp:ListItem>Cooperative</asp:ListItem>
 <asp:ListItem>Tenancy in Common</asp:ListItem>
</asp:ListBox>
<script runat="server">
 protected void Page_Load(object sender, EventArgs e)
 {
 }
</script>
Add the following JavaScript at the bottom of the file:

<script type="text/javascript" language="javascript" >
// Set up an onchange event for listBoxHousing.
//This can also be done by adding onChange attribute to the asp:ListBox
var selectmenu;
var selectMenus = getElementsByTagNameAndEndingId("select", "listBoxHousing");
selectmenu = selectMenus[0];
selectmenu.onchange=function()
{
 // Update a hidden field in another portlet. This is how information will be
passed
 // From one portlet to another.
 var i = selectmenu.selectedIndex;
 var text = selectmenu[i].value;
var portletFrame = getFrameFromSrcAttribute(window.parent.document, "DetailPage");
var portletContent = portletFrame.contentWindow;
portletContent.theForm.submitHousingField.value= text;
portletContent.theForm.submit();

Using Interportlet Communication with JavaScript

5-14 Oracle Fusion Middleware Development Guide for Oracle WebCenter WSRP Producer for .NET

}

/*
This function returns a list of DOM elements that have the tag name specified and
have an ID
that ends in the value supplied. The reason for this function is that ASP.NET
prepends control
ID's with the webpart zone name and this function provides a handy way of locating
the our
control of interest.
tagName - DOM tag name to look for (e.g. div, select, p)
endingID - String that the ID of the DOM elements should end with
returns - list of DOM elements that have the tag name and have an id that ends
with value supplied
*/
function getElementsByTagNameAndEndingId(tagName, endingId) {
var tagItems = document.getElementsByTagName(tagName);
var idValue;
var idNode;
var startPos;
var returnElements = new Array(1); // Typically only one item
var j = 0;
for (i = 0; i < tagItems.length; i++) {
idNode = tagItems.item(i).attributes.getNamedItem("id");
if (idNode != null) {
idValue = idNode.nodeValue;
startPos = idValue.indexOf(endingId);
if (startPos > -1 && endingId == idValue.substring(startPos)) {
returnElements[j] = tagItems.item(i);
j++;
}
}
}
return returnElements;
}
/* This function finds an iframe based on the src element
docSource - document element to search in for frame
srcSearch - string value that should be searched for in an iframe's src field
returns - iframe element
*/
function getFrameFromSrcAttribute(docSource, srcSearch) {
var iFrames = docSource.getElementsByTagName("iframe");
var srcNode;
var srcValue;
var returnFrame;
for (i = 0; i < iFrames.length; i++) {
srcNode = iFrames.item(i).attributes.getNamedItem("src");
if (srcNode != null) {
srcValue = srcNode.nodeValue;
startPos = srcValue.indexOf(srcSearch);
if (srcValue.indexOf(srcSearch) > -1) {
returnFrame = iFrames.item(i);
}
}
}
return returnFrame;
}
</script>
The code above takes the item selected from the listbox (a select DOM element),
locates the "detail" portlet, and writes a value to a hidden field. The most important

Using Interportlet Communication with JavaScript

Accomplishing Common Development Scenarios 5-15

part of this code is how the second portlet is located by looking for the iframe that
contains it based on text in the "src" attribute that uniquely identifies it. (In this
sample, the unique identifier is the folder name under which the portlet will be placed,
"DetailPage".)

The next step is to create the "detail" portlet. In Visual Studio, as part of a Web
Application Project, create a new Web User Control and name it DetailPage.ascx. For
ease of deployment, don't put code in a separate file. Add two ASP.NET labels and a
hidden input field. The hidden field is where data from the "master" portlet will be
placed. The contents of the file should look like the following:

<%@ Control Language="C#" AutoEventWireup="true" %>
<asp:Label ID="lblHousing" runat="server" Text="Housing Type Info:"></asp:Label>

<asp:Label ID="lblHousingTypeInfo" runat="server" Text="None
selected"></asp:Label>
<!-- Use a hidden field to get data from another portlet -->
<input type="hidden" id="submitHousingField" name="submitHousingField" value=""/>
Add the following code to the bottom of the file.

<script runat="server">
 protected void Page_Load(object sender, EventArgs e)
 {
 if (Request.Params != null)
 {
 if (Request.Params["submitHousingField"] != null)
 {
 string housingType = Request.Params["submitHousingField"].ToString();
 // You'd probably look this up in a database in a real case, but simple switch
statement used for simplicity
 switch (housingType)
 {
 case "Single Family":
 {
 lblHousingTypeInfo.Text = "Single family homes consist of a structure and
the land.";
 break;
 }
 case "Condominium":
 {
 lblHousingTypeInfo.Text = "You own a condo, but the building housing the
condominium is maintained by the home owners association.";
 break;
 }
 case "Cooperative":
 {
 lblHousingTypeInfo.Text = "In a Cooperative, you own shares in the
corporation that owns the entire building.";
 break;
 }
 case "Tenancy in Common":
 {
 lblHousingTypeInfo.Text = "In a TIC, you own a share of the mortgage on the
entire building.";
 break;
 }
 default:
 {
 lblHousingTypeInfo.Text = "Unrecognized housing type selected.";
 break;
 }

Using Interportlet Communication with JavaScript

5-16 Oracle Fusion Middleware Development Guide for Oracle WebCenter WSRP Producer for .NET

 }
 }
 }
}
</script>
The above code writes out values to the label based upon what is passed in a a form
parameter from the hidden input field. If you look back at the MasterList.ascx file, you
will see that it populates a hidden input field called "submitHousingField". (In a real
implementation, the detail data would be taken from a database rather than
hard-coded.)

The next set of steps set up the two Web User Controls you created in the previous
steps and surfaces them as portlets using the Oracle WebCenter WSRP Producer for
.NET.

1. Create the following folder: <installdir>\wsrpdefault\portlets\MasterList. Add a
new file to the folder called default.aspx that contains the following code:

<%@ Page Language="C#"
MasterPageFile="~/portlets/Resources/MasterPages/WSRP.Master" Title="Content
Page Test" %>
<%@ Register src= "~/portlets/MasterList/UserControl/MasterList.ascx"
tagname="MasterList" tagprefix="uc1" %>
<asp:Content ID="Content1" ContentPlaceHolderID="webpartcontrol"
Runat="Server">
 <uc1:MasterList ID="MasterList1" runat="server" />
</asp:Content>

2. Create the following folder:
<installdir>\wsrpdefault\portlets\MasterList\UserControl and copy the
MasterList.ascx file that you created to this folder.

3. Create the following folder: <installdir>\wsrpdefault\portlets\DetailPage. Add a
new file to the folder called default.aspx that contains the following code:

<%@ Page Language="C#"
MasterPageFile="~/portlets/Resources/MasterPages/WSRP.Master" Title="Content
Page Test" %>
<%@ Register src= "~/portlets/DetailPage/UserControl/DetailPage.ascx"
tagname="DetailPage" tagprefix="uc1" %>
<asp:Content ID="Content1" ContentPlaceHolderID="webpartcontrol"
Runat="Server">
 <uc1:DetailPage ID="DetailPage1" runat="server" />
</asp:Content>

4. Create the following folder:
<installdir>\wsrpdefault\portlets\DetailPage\UserControl and copy the
DetailPage.ascx file that you created to this folder.

5. Open <installdir>\wsrpdefault\wsrp-producer.xml in a text editor and add the
following <portlet> elements to it. (For more information about the configuration
file, see Chapter 3, "Managing Required Script Files.")

<portlet>
 <handle>HousingType</handle>
 <supported-locale>en</supported-locale>
 <descriptions>
 <description lang="en">Housing Type</description>
 </descriptions>
 <display-names>
 <display-name lang="en">Housing Type</display-name>
 </display-names>
 <titles>
 <title lang="en">Housing Type</title>

Adding User Profile Data

Accomplishing Common Development Scenarios 5-17

 </titles>
 <short-titles>
 <short-title lang="en">Housing Type</short-title>
 </short-titles>
 <supports>
 <portlet-modes>
 <portlet-mode>
 <name>wsrp:view</name>
 <url>/portlets/MasterList/default.aspx</url>
 </portlet-mode>
 </portlet-modes>
 <mime-type>text/html</mime-type>
 </supports>
</portlet>

<portlet>
 <handle>HousingDetail</handle>
 <supported-locale>en</supported-locale>
 <descriptions>
 <description lang="en">Housing Detail</description>
 </descriptions>
 <display-names>
 <display-name lang="en">Housing Detail</display-name>
 </display-names>
 <titles>
 <title lang="en">Housing Detail</title>
 </titles>
 <short-titles>
 <short-title lang="en">Housing Detail</short-title>
 </short-titles>
 <supports>
 <portlet-modes>
 <portlet-mode>
 <name>wsrp:view</name>
 <url>/portlets/DetailPage/default.aspx</url>
 </portlet-mode>
 </portlet-modes>
 <mime-type>text/html</mime-type>
 </supports>
</portlet>

6. Register the WSRP producer by pointing your WSRP Consumer at the WSDL URL
that is in the shortcut Start|Programs|Oracle Application Accelerator for
.NET|WSRP 1.0 WSDL. (Refer to the product documentation for your WSRP
Consumer portal for details on how to register a WSRP producer WSDL.)

7. Add the "HousingType" and "HousingDetail" portlets (these are the names
defined in the wsrp-producer.xml file) to a single page in your portal. Whenever
you click on a housing type in one portlet, details about the housing type should
appear in the other portlet.

This tutorial shows just one simple way that you can add interportlet communication
functionality to portlets.

5.8 Adding User Profile Data
This tutorial creates a Web Part that uses user profile data. This example creates the
Web Part as a class that inherits from
System.Web.UI.WebControls.WebParts.WebPart. You could also create a Web User

Adding User Profile Data

5-18 Oracle Fusion Middleware Development Guide for Oracle WebCenter WSRP Producer for .NET

Control to perform the same function. See the Microsoft documentation for more
details on both options.

1. Create a new C# class in Visual Studio and copy in the following code:

using System;
using System.Collections.Generic;
using System.Collections;
using System.Linq;
using System.Text;
using System.Configuration;

using System.Web;
using System.Web.Profile;
using System.Web.UI;
using System.Web.UI.HtmlControls;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;

namespace TestUserProfile
{
 public class UserProfileWebPart : WebPart
 {

 Label lblEmailWLP;
 Label lblEmailWSRP;
 protected override void CreateChildControls()
 {

 // Create a label and assign a user profile value. Try the WLP
format and then the standard WSRP format.
 lblEmailWLP = new Label();
 lblEmailWLP.ID = "lblEmailWLP";
 lblEmailWLP.Text = "WLP profile email: " +
this.Context.Profile["GroupSpace.email"].ToString();
 this.Controls.Add(lblEmailWLP);

IMPORTANT: This note is very important for any WSRP Consumer
that uses preferences as defined in the WSRP specification (including
Oracle WebCenter).

ASP.NET supports only one level of nesting for profile properties
(properties can only be nested under a <group>), but many of the
UserProfile items defined in the specification are nested several levels
deep. For example, a user's business email would be defined as
businessInfo/online/email and a user's home mobile phone extension
would be defined as homeInfo/telecom/mobile/number in the WSRP
specification. To account for this, the Oracle WebCenter WSRP
Producer for .NET uses the "_" character as a replacement for nested
objects. This is shown in the steps that follow where
businessInfo/online/email is treated as businessInfo_online.email in
the C# code, but referenced in Web.config as:

 <group name="businessInfo_online">
 <add name="email" defaultValue="John.Doe@acme.com"/>
 </group>

Oracle WebLogic Portal follows the same single level of nesting rules
that ASP.NET uses, so this issue does not apply.

Adding User Profile Data

Accomplishing Common Development Scenarios 5-19

 HtmlGenericControl br1 = new HtmlGenericControl("br");
 this.Controls.Add(br1);

 lblEmailWSRP = new Label();
 lblEmailWSRP.ID = "lblEmailWSRP";
 lblEmailWSRP.Text = "WSRP profile email: " +
this.Context.Profile["businessInfo_online.email"].ToString();
 this.Controls.Add(lblEmailWSRP);
 HtmlGenericControl br2 = new HtmlGenericControl("br");
 this.Controls.Add(br2);
 }
 }
}

2. Compile this code into an assembly called "TestUserProfile" and copy the
assembly to <installdir>\wsrpdefault\bin.

3. Open <installdir>\wsrpdefault\Web.config and update the profile properties so
that those referenced by the code are used. Note that in the C# code, profile
properties are specified in group.name format.

Locate the <properties> element and replace it with the following:

 <properties>
 <group name="businessInfo_online">
 <add name="email" defaultValue="John.Doe@acme.com"/>
 </group>
 <group name="GroupSpace">
 <add name="email" defaultValue="John.Doe@acme.com"/>
 </group>
 </properties>

4. Create a folder under <installdir>\wsrpdefault\portlets called "TestUserProfile".

5. Copy the default.aspx file from <installdir>\wsrpdefault\portlets\ASPNET_
AJAX_sample to your new \TestUserProfile folder.

6. Update the <installdir>\wsrpdefault\portlets\TestPreferences\default.aspx file
to reference the new TestUserProfile assembly instead of the Simple_Date_Time
control.

■ Replace "src" with "assembly" and reference the TestUserProfile assembly you
created.

■ Replace "tagname" with "namespace" and reference the TestUserProfile
namespace used by the class.

■ Add the class name after the ":" following the tagprefix under the content
placeholder.

 The resulting file will look something like the following:

<%@ Page Language="C#"
MasterPageFile="~/portlets/Resources/MasterPages/WSRP.Master" Title="Content
Page Test" %>
<%@ Register assembly="TestUserProfile" namespace="TestUserProfile"

Note: For this example to work, there must be a default value. In
WebCenter or other WSRP consumers that use the WSRP specification
UserProfile items the GroupSpace.email property will not be
available. WLP uses UserProfile extensions to pass items, so you could
not create a nested businessInfo/online/email profile property.

Adding User Profile Data

5-20 Oracle Fusion Middleware Development Guide for Oracle WebCenter WSRP Producer for .NET

tagprefix="uc1" %>
 <asp:Content ID="Content1" ContentPlaceHolderID="webpartcontrol"
Runat="Server">
 <uc1:UserProfileWebPart ID="UserProfileWebPart1" runat="server" />
</asp:Content>

7. Update the <installdir>\wsrpdefault\wsrp-producer.xml file to include your
portlet AND the profile properties you are using.

■ Make a copy of an existing <portlet> node and its contents under the
<portlets> element.

■ Update the handle, display name, description, title, and short title elements for
the new portlet.

■ Update the <url> node under each of the <portlet-mode> elements to
point to the new portlet. (The wsrp:edit and wsrp:help modes are not
necessary.)

■ Add the profile properties referenced in the portlet to the <profile-item>
elements under the <user-profile> element.

When finished, the new <portlet> node should look like the following:

<portlet>
 <handle>TestUserProfile</handle>
 <supported-locale>en,fr</supported-locale>
 <descriptions>
 <description lang="en">Test UserProfile</description>
 <description lang="fr">Test UserProfile</description>
 </descriptions>
 <display-names>
 <display-name lang="en">Test UserProfile</display-name>
 <display-name lang="fr">Test UserProfile</display-name>
 </display-names>
 <titles>
 <title lang="en">Test UserProfile</title>
 <title lang="fr">Test UserProfile</title>
 </titles>
 <short-titles>
 <short-title lang="en">Test UserProfile</short-title>
 <short-title lang="fr">Test UserProfile</short-title>
 </short-titles>
 <supports>
 <portlet-modes>
 <portlet-mode>
 <name>wsrp:view</name>
 <url>/portlets/TestUserProfile/default.aspx</url>
 </portlet-mode>
 </portlet-modes>
 <mime-type>text/html</mime-type>
 </supports>
 <user-profile>
 <profile-item>businessInfo/online/email</profile-item>
 <profile-item>GroupSpace/email</profile-item>
 </user-profile>
</portlet>

8. The portlet should now be available in your WSRP Consumer. (You should have
already registered the WSRP producer as explained in Section 5.1, "Adding a Web
Part as a Portlet.") Add the portlet to your portal. You should the two labels
showing the default values for the profile properties from Web.Config.

Setting Up Security Tokens

Accomplishing Common Development Scenarios 5-21

9. Configure your WSRP Consumer to send the email preference according to your
portal documentation.

For Oracle WebLogic Portal, use the steps below. (The default WLP Data Sync has
a PropertySet called "GroupSpace" and one of the properties in this PropertySet is
called "email".)

a. Log into the WLP Administration Console.

b. Select Users, Groups, and Roles | User Management.

c. Click on the user you have been using to test Web Parts.

d. Click on the User Profile tab.

e. Select the GroupSpace PropertySet in the dropdown menu. (If this PropertySet
does not exist, create a new PropertySet called "GroupSpace" and populate it
with a "Single, Unrestricted" property called "email".)

f. Edit the "email" property (enter a value).

g. Log in to Oracle WebLogic Portal with the user you edited and view the
UserProfile Web Part portlet to see your changes.

5.9 Setting Up Security Tokens
By default, the Oracle WebCenter WSRP Producer for .NET pulls the XML containing
a <wsse:Security> element defined in a SOAP header and puts it into the
HttpContext.Items collection. The token will only be available for the duration of the
ASP.NET request and is identified by the ASP.NET session ID.

Due to the wide number of possibilities that the WS-Security specification allows for
structuring security tokens the Oracle WebCenter WSRP Producer for .NET
installation includes the source code for its default security implementation in
<installdir>\wsrpdefault\src. For the default SecurityTokenManager implementation,
see the files in the \token subfolder. For the default request filter that is applied
specifically for WebCenter WSS 1.0 tokens before the tokens are passed to the default
SecurityTokenManager, see the files in the \util subfolder.

This section provides several tutorials illustrating how to access security tokens in a
number of ways.

■ Section 5.9.1, "Displaying a Token in a Web Part"

■ Section 5.9.2, "Oracle WebLogic Portal with Default SAMLCredentialMapperV2"

■ Section 5.9.3, "Oracle WebLogic Portal with Custom Signing Key"

■ Section 5.9.4, "UNT for WebLogic Portal"

■ Section 5.9.5, "SAML for Oracle WebCenter"

■ Section 5.9.6, "UNT for Oracle WebCenter"

5.9.1 Displaying a Token in a Web Part
This tutorial creates a simple Web Part that displays a security token. The Web Part
created is generic enough that it can be used for looking at any type of wsse:security
token (including SAML from WLP or UNT from WebCenter). The Web Part is created
as a class that inherits from System.Web.UI.WebControls.WebParts.WebPart (you
could provide the same functionality with a Web User Control).

Setting Up Security Tokens

5-22 Oracle Fusion Middleware Development Guide for Oracle WebCenter WSRP Producer for .NET

1. Create a new C# class in Visual Studio. Make sure to add a reference to the WSE
assembly component Microsoft.Web.Services2 or the sample code will not
compile. Copy in the following code:

using System;
using System.Collections.Generic;
using System.Collections;
using System.Text;
using System.Configuration;

using System.Web;
using System.Web.UI;
using System.Web.UI.HtmlControls;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Xml;

using Microsoft.Web.Services2.Security.Tokens;

namespace SecurityTokenWebPart
{
 public class SecurityTokenWebPart : WebPart
 {
 Label lblSamlHeader;
 Label lblUntHeader;
 Label lblSecurityHeader;
 Label lblSamlToken;
 Label lblUntToken;
 Label lblSecurityToken;
 protected override void CreateChildControls()
 {
 // Create text label for SAML token
 lblSamlHeader = new Label();
 lblSamlHeader.ID = "lblSamlHeader";
 lblSamlHeader.Text = "SAML token:";
 this.Controls.Add(lblSamlHeader);
 HtmlGenericControl br1 = new HtmlGenericControl("br");
 this.Controls.Add(br1);

 // Retrieve the SAML security token associated with this session,
if available
 lblSamlToken = new Label();
 lblSamlToken.ID = "lblSamlToken";
 Object item = HttpContext.Current.Items[Page.Session.SessionID +
".SAML_TOKEN"];
 if (item != null)
 {
 lblSamlToken.Text =
HttpUtility.HtmlEncode(HttpUtility.UrlDecode(item.ToString()));
 }
 else
 {
 lblSamlToken.Text = "SAML token unavailable";
 }
 this.Controls.Add(lblSamlToken);
 HtmlGenericControl br2 = new HtmlGenericControl("br");
 this.Controls.Add(br2);

 // Create text label for UNT token

Setting Up Security Tokens

Accomplishing Common Development Scenarios 5-23

 lblUntHeader = new Label();
 lblUntHeader.ID = "lblUntHeader";
 lblUntHeader.Text = "UNT token:";
 this.Controls.Add(lblUntHeader);
 HtmlGenericControl br3 = new HtmlGenericControl("br");
 this.Controls.Add(br3);

 // Retrieve the UNT security token associated with this session, if
available
 lblUntToken = new Label();
 lblUntToken.ID = "lblUntToken";
 item = HttpContext.Current.Items[Page.Session.SessionID +
".USERNAME_TOKEN"];
 if (item != null)
 {
 lblUntToken.Text =
HttpUtility.HtmlEncode(HttpUtility.UrlDecode(item.ToString()));
 }
 else
 {
 lblUntToken.Text = "Username token (UNT) unavailable";
 }
 this.Controls.Add(lblUntToken);
 HtmlGenericControl br4 = new HtmlGenericControl("br");
 this.Controls.Add(br4);

 // Create text label for security tokens
 lblSecurityHeader = new Label();
 lblSecurityHeader.ID = "lblSecurityHeader";
 lblSecurityHeader.Text = "Security token(s):";
 this.Controls.Add(lblSecurityHeader);
 HtmlGenericControl br5 = new HtmlGenericControl("br");
 this.Controls.Add(br5);

 // Retrieve all the security tokens associated with this session,
if available
 lblSecurityToken = new Label();
 lblSecurityToken.ID = "lblSecurityToken";
 item = HttpContext.Current.Items[Page.Session.SessionID +
".TOKENS"];
 if (item != null)
 {
 SecurityTokenCollection tokens = item as
SecurityTokenCollection;
 if (tokens.Count > 0)
 {
 foreach (SecurityToken token in tokens)
 {
 XmlElement xe = token.GetXml(new XmlDocument());
 lblSecurityToken.Text +=
HttpUtility.HtmlEncode(xe.OuterXml);
 }
 }
 else
 {
 lblSecurityToken.Text = "Security token unavailable";
 }
 }
 else
 {

Setting Up Security Tokens

5-24 Oracle Fusion Middleware Development Guide for Oracle WebCenter WSRP Producer for .NET

 lblSecurityToken.Text = "Security token unavailable";
 }
 this.Controls.Add(lblSecurityToken);
 }
 }

2. Compile this code into an assembly named "ViewSecurityToken".

3. Copy the assembly into <installdir>\wsrpdefault\bin.

4. Create a folder under <installdir>\wsrpdefault\portlets called
"ViewSecurityToken".

5. Copy the default.aspx file from <installdir>\wsrpdefault\portlets\ASPNET_
AJAX_sample to your new \ViewSecurityToken folder.

6. Update the <installdir>\wsrpdefault\portlets\ViewSecurityToken\default.aspx
file to reference the new TestUserProfile assembly instead of the Simple_Date_
Time control.

■ Replace "src" with "assembly" and reference the ViewSecurityToken assembly
you created.

■ Replace "tagname" with "namespace" and reference the
SecurityTokenWebPart namespace used by the class.

■ Add the class name after the ":" following the tagprefix under the content
placeholder.

 The resulting file will look something like the following:

<%@ Page Language="C#"
MasterPageFile="~/portlets/Resources/MasterPages/WSRP.Master" Title="Content
Page Test" %>
<%@ Register assembly="ViewSecurityToken" namespace="SecurityTokenWebPart"
tagprefix="uc1" %>
 <asp:Content ID="Content1" ContentPlaceHolderID="webpartcontrol"
Runat="Server">
 <uc1:SecurityTokenWebPart ID="SecurityTokenWebPart1" runat="server" />
</asp:Content>

7. Update the <installdir>\wsrpdefault\wsrp-producer.xml file to include your
portlet.

■ Make a copy of an existing <portlet> node and its contents under the
<portlets> element.

■ Update the handle, display name, description, title, and short title elements for
the new portlet.

■ Update the <url> node under each of the <portlet-mode> elements to
point to the new portlet. (The wsrp:edit and wsrp:help modes are not
necessary.)

When finished, the new <portlet> node should look like the following:

<portlet>
 <handle>ViewSecurityToken</handle>
 <supported-locale>en</supported-locale>
 <descriptions>
 <description lang="en">View SecurityToken</description>
 </descriptions>
 <display-names>
 <display-name lang="en">View SecurityToken</display-name>
 </display-names>
 <titles>

Setting Up Security Tokens

Accomplishing Common Development Scenarios 5-25

 <title lang="en">View SecurityToken</title>
 </titles>
 <short-titles>
 <short-title lang="en">View SecurityToken</short-title>
 </short-titles>
 <supports>
 <portlet-modes>
 <portlet-mode>
 <name>wsrp:view</name>
 <url>/portlets/ViewSecurityToken/default.aspx</url>
 </portlet-mode>
 </portlet-modes>
 <mime-type>text/html</mime-type>
 </supports>
</portlet>

8. The portlet should now be available in your WSRP Consumer. (You should have
already registered the WSRP producer as explained in Section 5.1, "Adding a Web
Part as a Portlet.") Add the portlet to your portal. Assuming that you have not set
up SAML or UNT tokens you should just see "Security token unavailable" when
you view the portlet.

5.9.2 Oracle WebLogic Portal with Default SAMLCredentialMapperV2
The Oracle WebCenter WSRP Producer for .NET is configured to request SAML
tokens by default. Oracle WebLogic Portal is set up with a SAML Credential Mapper
version (SAMLCredentialMapperV2) that is compliant with this version of the Oracle
WebCenter WSRP Producer for .NET by default. This tutorial illustrates how to view
SAML tokens from Oracle WebLogic Portal.

1. Log in to the WebLogic Server hosting your Oracle WebLogic Portal.

2. Go to Security Realms | myrealm | Providers | Credential Mapping.

3. Click on SAMLCredentialMapper. (The description should include "Security
Assertion Markup Language v1.1" and the version should be "2.0".)

4. Confirm that this is the default setup by clicking the Provider Specific tab and
noting that the Signing Key Alias is "wsrpconsumerrsa".

5. Click the Management tab and on the "Relying Party" link named "rp_00001".

6. Make sure that both Enabled and Sign Assertions are true (they should be true by
default).

7. Select Include Key Info.

8. Click Save.

9. Restart Oracle WebLogic Server (even if WLS indicates a restart is not necessary).

10. Log in to Oracle WebLogic Portal and view the portlet you created Section 5.9.1,
"Displaying a Token in a Web Part." The portlet should display a raw SAML
security token.

5.9.3 Oracle WebLogic Portal with Custom Signing Key
The previous section used the default "wsrpconsumerrsa" Signing Key Alias. In a
typical SAML set up, you would use your own private key to sign SAML assertions.
This section explains how to tailor the steps defined in Oracle WebLogic Portal
documentation for creating SAML assertion to account for a WSRP producer created
by the Oracle WebCenter WSRP Producer for .NET.

Setting Up Security Tokens

5-26 Oracle Fusion Middleware Development Guide for Oracle WebCenter WSRP Producer for .NET

When configuring a Relying Party for the Oracle WebCenter WSRP Producer for .NET,
follow the guidelines below:

■ Create the Relying Party with "WSS/Sender-Vouches". (You can ignore the
"Source Site Federation Services" portion of the WebLogic documentation as long
as you are using WSS/Sender-Vouches.)

■ Make sure that Sign Assertions and Include Keyinfo are selected.

■ If the Relying Party will not use a value of "default" (all parties rely on this SAML
credential mapper), be sure to put the full URL to the .asmx file defined in your
WSRPService.wsdl.

5.9.4 UNT for WebLogic Portal
This tutorial illustrates how to view UNT tokens with a username and password from
Oracle WebLogic Portal. The first two steps make sure the Oracle WebCenter WSRP
Producer for .NET is set up to request UNT with username and password when it is
registered, and the rest of the steps configure WLP to send UNT tokens with username
and password.

1. Open the <installdir>\wsrpdefault\wsdl\1.0\WSRPService.wsdl file
in a text editor.

2. Replace the wsp:Policy element that references SAMLAuth.xml with the
following:

 <wsp:Policy s1:Id="UNTAuth.xml">
 <wsp:All>
 <wssp:Identity>
 <wssp:SupportedTokens>
 <wssp:SecurityToken
TokenType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-tok
en-profile-1.0#UsernameToken">
 <wssp:UsePassword
Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-pr
ofile-1.0#PasswordText"/>
 </wssp:SecurityToken>
 </wssp:SupportedTokens>
 </wssp:Identity>
 </wsp:All>
 </wsp:Policy>

3. Open the <installdir>\wsrpdefault\wsdl\1.0\wsrp_v1_
bindings.wsdl file in a text editor.

4. Replace all instances of "SAMLAuth.xml" with "UNTAuth.xml". You should see
the following under the <wsdl:input> elements with the names "getMarkup" and
"performBlockingInteraction":

<wsp:Policy xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy">
 <wsp:PolicyReference URI="#UNTAuth.xml"/>
</wsp:Policy>

5. Log in to the WebLogic Server hosting your Oracle WebLogic Portal.

Note: The PolicyReference URI value is the #Id of the wsp:Policy
defined for UNT in
<installdir>\wsrpdefault\wsdl\1.0\WSRPService.wsdl.

Setting Up Security Tokens

Accomplishing Common Development Scenarios 5-27

6. Go to Security Realms | myrealm | Credential Mappings.

7. Click New and enter settings that point to the markup endpoints. Leave the
defaults except the following:

■ Protocol: http

■ Remote Host: <host name> (e.g., myproducer.mycompany.com)

■ Remote Port: <host port> (e.g., 8678)

■ Path: /wsrpdefault/wsdl/1.0/WSRPBaseService.asmx (This is the path after
the host and port in the URL. Be sure to begin the path with "/".)

8. Before clicking Next, confirm that the values are correct. You should get a
response from http://<host name>:<host
port>/wsrpdefault/wsdl/1.0/WSRPBaseService.asmx.

9. Click Next.

10. Enter user information:

■ Local user: <A user registered with WebLogic Server, for example, the
"weblogic" user>

■ Remote user: testuser <The user to send to the producer when the "Local user"
is logged in>

■ Remote password: testpassword <The password to send to the producer when
the "Local user" is logged in>

11. Click Finish.

12. Restart Oracle WebLogic Server (even if WLS indicates a restart is not necessary).

13. Register your producer with Oracle WebLogic Portal under a new name so that
portlets now ask for UNT tokens instead of SAML tokens.

1. Log in to the WebLogic Portal administration console and remove the portlet
you registered inSection 5.9.1, "Displaying a Token in a Web Part."

2. Create a new WSRP Producer in the administration console pointing to the
same WSRPService.wsdl you used to register the first portlet.

3. Add the same portlet again.

4. Log in to WebLogic Portal with the "Local user" you entered in the Credential
Mapper and view the portlet. The portlet should display a raw UNT security
token.

5.9.5 SAML for Oracle WebCenter
There are several different SAML token profiles supported by Oracle WebCenter. The
Oracle WebCenter WSRP Producer for .NET supports all of the WSS 1.0 options, but
does not support WSS 1.1. This tutorial uses the SAML profile that is the most similar
to the default provided by WLP (see Section 5.9.3, "Oracle WebLogic Portal with
Custom Signing Key"), WSS 1.0 SAML Token with Message Identity. See the
WebCenter documentation on securing a WSRP Producer for details on the security
token options available.

This tutorial describes the process for setting up this token profile in Enterprise
Manager. If you register WSRP producers using WLST, register your producer with
the SAML_TOKEN_WITH_MSG_INTEGRITY token type and other arguments that
correspond to Enterprise Manager settings described below. You should already have

Setting Up Security Tokens

5-28 Oracle Fusion Middleware Development Guide for Oracle WebCenter WSRP Producer for .NET

completed the tutorial inSection 5.9.1, "Displaying a Token in a Web Part" before
beginning this tutorial.

1. Create a private key pair on the WebCenter host machine using the java keytool.
Set the key algorithm to "rsa" and the key size to 1024. Refer to WebCenter or Java
documentation on generating key pairs. (An example command is
C:\Oracle\Middleware\jdk160_20\bin\keytool -genkeypair -keystore
C:\Oracle\Middleware\keystores\mykeystore.jks -storepass mykeystorepass
-keyalg rsa -keysize 1024 -alias wckey -keypass wckeypass.)

2. In Enterprise Manager, go to the Add New Portlet Producer page and select
WSRP Producer.

3. Enter the URL to the same WSDL you used in Section 5.9.1, "Displaying a Token in
a Web Part".

4. In the security section, select the token profile WSS 1.0 SAML Token with
Message Integrity.

5. Choose the custom option and define an Issuer Name. This can be any name you
wish.

6. Enter values in the Keystore section of the page based on the values you used to
generate the key with the keytool. (Leave the encryption key values empty; they
are not required because encryption is not used.)

7. Once the producer is registered, add the ViewSecurityToken portlet to a
WebCenter Space. If you are logged in (not anonymous) to WebCenter, the portlet
should show a SAML token with your user name in the Assertion.

5.9.6 UNT for Oracle WebCenter
There are two different Username token (UNT) profiles supported by Oracle
WebCenter. The Oracle WebCenter WSRP Producer for .NET supports both of these

Keystore value Keytool argument

Store Path -keystore

Password -storepass

Signature Key Alias -keyalias

Signature Key Password -keypass

Note on SAML with Message Protection: If you choose to use WSS
1.0 SAML with Message Protection, you must create a private key in
the Windows certificate store and import a public key certificate into
the java keystore on your WebCenter Spaces host machine. Once you
have imported the certificate, enter the keyalias you used during the
keytool import command as the Recipient Alias. This way the
imported certificate will be used to encrypt the message to the
producer.

The process for managing the windows certificate store is explained in
the next section, Section 5.9.6, "UNT for Oracle WebCenter". The steps
are the same for SAML, except you must select the WSS 1.0 SAML
with Message Protection option instead of WSS 1.0 Username Token
with Password.

Setting Up Security Tokens

Accomplishing Common Development Scenarios 5-29

options. This tutorial describes working with the UNT profile that is the most similar
to the default provided by WLP (see Section 5.9.4, "UNT for WebLogic Portal"), WSS
1.0 Username Token with Password. See the WebCenter documentation on securing a
WSRP Producer for more details on the security token options available.

This tutorial describes the process for setting up this token profile in Enterprise
Manager. If you register WSRP producers using WLST, register your producer with
the USERNAME_WITH_PASSWORD token type and other arguments that
correspond to Enterprise Manager settings described below. You should already have
completed the tutorial inSection 5.9.1, "Displaying a Token in a Web Part" before
beginning this tutorial.

1. Add a private key in the Windows certificate store on the Windows machine
hosting your WSRP Producer. The following steps show you how to create a
private key in LocalMachine|TrustedPeople Store and LocalMachine|Personal
Store. Refer to your Microsoft documentation for more information on the
Windows certificate store.

a. Locate the makecert.exe tool. If this tool is not present, download the
Microsoft Windows SDK for Windows and .NET Framework 3.5 SP1.

b. Open a command window that has the makecert.exe PATH dependencies
available. If Visual Studio 2008 is present, you can launch a Visual Studio 2008
Command Prompt from the Start Menu. If the Windows SDK is present, you
can launch a command shell from under the Microsoft Windows SDK folder
in the Start Menu.

c. Create a certificate with the algorithm set to sha1. An example command is:
makecert.exe -a sha1 -n CN=DotNetWSRPProducer -sr LocalMachine -ss My
-sky exchange -sk DotNetWSRPProducer.

2. Import the key certificate into the TrustedPeople Store and Personal Store of the
Windows certificate store. Use the same command window where you ran
makecert.exe to run certmgr.exe. An example command is: certmgr.exe -add -c -n
DotNetWSRPProducer -s -r LocalMachine My -s -r LocalMachine TrustedPeople

3. Grant security rights to the certificate for the user running the ASP.NET processes
for the IIS application running the Oracle WebCenter WSRP Producer for .NET (by
default this is the Network Service user).

■ If you installed the administrator version of WSE 2.0 SP3, use the X509
certificate tool available in the Start Menu, open the certificate from the correct
store, view the key file properties, and make sure Network Service has full
control.

■ If you do not have the X509 certificate tool, you can still set proper
permissions on the certificate you created by going to
%SystemDrive%\ProgramData\Microsoft\Crypto\RSA\MachineKeys,
finding the most recent file (these are system files so you must configure
Windows Explorer to show hidden files), and granting the Network Service
user full control.

4. Locate the certificate in the store.

a. Bring up mmc.exe from the command line.

b. From the menu bar, select File|Add/Remove Snap-in.

c. Select certificates.

d. Select Computer Account (to view the LocalMachine contents).

e. Go to the Personal section of the store and locate the certificate you added.

Setting Up Security Tokens

5-30 Oracle Fusion Middleware Development Guide for Oracle WebCenter WSRP Producer for .NET

5. Export the certificate.

a. Right-click on your certificate and select All Tasks|Export...

b. In the wizard that pops up, export the public key as a DER encoded binary
(DER is X509 format that java keytool likes) with a file name of your choice
(e.g. dnaakey.der).

6. Copy the .der file over to the WebCenter Spaces box and import the key using the
java key tool. An example command is: C:\Oracle\Middleware\jdk160_
20\bin\keytool -genkeypair -keystore
C:\Oracle\Middleware\keystores\mykeystore.jks -import -storepass
mykeystorepass -keyalg rsa -keysize 1024 -alias dnaakey -keypass dnaakeypass
-file C:\Oracle\Middleware\keystores\dnaakey.der

7. Create a private key pair on the WebCenter host machine using the java keytool.
Set the key algorithm to "rsa" and the key size to 1024. If you already completed
Section 5.9.5, "SAML for Oracle WebCenter," use the same key for this tutorial.
Refer to your WebCenter or Java documentation on generating key pairs. An
example command is: C:\Oracle\Middleware\jdk160_20\bin\keytool
-genkeypair -keystore C:\Oracle\Middleware\keystores\mykeystore.jks
-storepass mykeystorepass -keyalg rsa -keysize 1024 -alias wckey -keypass
wckeypass

8. In Enterprise Manager, go to the Add New Portlet Producer page and select
WSRP Producer.

9. Enter the URL to the same WSDL you used in Section 5.9.1, "Displaying a Token in
a Web Part."

10. In the security section, select the token profile WSS 1.0 Username Token with
Password.

11. Choose the custom option.

12. In the Associated External Application section choose Create New... You will be
brought to a new page where you can create a new external application. Give the
application a name and click OK. This tells WebCenter to prompt end users to
enter the login credentials they want to pass to the WSRP Producer portlet.

13. Once you are returned to the Add New Portlet Producer page, enter values in the
Keystore section of the page based on the values you used to generate the key
with the keytool. (Leave the encryption key values empty; they are not required
because encryption is not used.)

14. Once the producer is registered, add the ViewSecurityToken portlet to a
WebCenter Space. The first time you view the portlet you should see an "Update
login information" link. Click this link and provide a user name and password.

Keystore value Keytool argument

Store Path -keystore

Password -storepass

Signature Key Alias -keyalias

Signature Key Password -keypass

Recipient Alias
(Note: This value comes from
importing the certificate (step
6), not generating the key.)

-keyalias

Using Oracle WebCenter Features

Accomplishing Common Development Scenarios 5-31

This will be the user name and password that is sent to the portlet in the
Username and password token (UNT). Once you enter this information the portlet
should show a token with the user name and password you entered.

5.10 Using Oracle WebCenter Features
The following features are included specifically for Oracle WebCenter. Since these
features are based on WSRP standards there is a possibility they could be applied to
any WSRP Consumer.

5.10.1 Using Customization in Oracle WebCenter
This tutorial shows how to enable the Customize option for Web Parts surfaced in an
Oracle WebCenter GroupSpace. This example starts with the "TestPreferences" portlet
described in Section 5.1, "Adding a Web Part as a Portlet."

Open <installdir>\wsrpdefault\wsrp-producer.xml in a text editor. Locate the
TestPreferences portlet and add a new <portlet-mode> section under the
<portlet-modes> element with a name of urn:javax:portlet:mode:custom:edit_defaults.
The <supports> element for the portlet with the new value should look something like
the following:

<supports>
 <portlet-modes>
 <portlet-mode>
 <name>wsrp:view</name>
 <url>/portlets/TestPreferences/default.aspx</url>
 </portlet-mode>
 <portlet-mode>
 <name>wsrp:edit</name>
 <url>/portlets/TestPreferences/default.aspx</url>
 </portlet-mode>
 <portlet-mode>
 <name>urn:javax:portlet:mode:custom:edit_defaults</name>
 <url>/portlets/TestPreferences/default.aspx</url>
 </portlet-mode>
 </portlet-modes>
 <mime-type>text/html</mime-type>
 </supports>

Add the TestPreferences portlet to an Oracle WebCenter Space, and while in Oracle
Composer, select the Customize option (wrench icon).

5.10.2 Using Oracle WebCenter Parameters
Oracle WebCenter parameters are passed to WSRP 2.0 producers using the
navigationalParameters defined in the WSRP 2.0 specification. This tutorial shows
how to pass WebCenter parameters to a portlet.

In Visual Studio, open the TestPreferences.ascx Web User Control you created in
Section 5.1, "Adding a Web Part as a Portlet". Add two labels called lblParameter1 and
lblParameter2 to the bottom of the form.

<asp:Label ID="lblParameter1" runat="server" Text=""></asp:Label></br>
<asp:Label ID="lblParameter2" runat="server" Text=" "></asp:Label>
Add the following code to the bottom of the Page_Load method:

Dictionary<string, string> ParameterCollection =

Using Oracle WebCenter Features

5-32 Oracle Fusion Middleware Development Guide for Oracle WebCenter WSRP Producer for .NET

HttpContext.Current.Items["NavigationalParameters"] as Dictionary<string, string>;
lblParameter1.Text = ParameterCollection["TestParameter1"];
lblParameter2.Text = ParameterCollection["TestParameter2"];
Test that this compiles. In particular, make sure that you have
System.Collections.Generic referenced. Update your TestPreferences.ascx and
TestPreferences.ascx.cs (and designer .cs file if you created one of these) under the
App_Code directory.

The following steps are required to inform the WebCenter WSRP Consumer of the
existence of these parameters. Open <installdir>\wsrpdefault\wsrp-producer.xml in
a text editor and locate the TestPreferences <portlet> element. Above the <supports>
element add the following XML:

<navigational-parameters>
 <parameter>
 <identifier>TestParameter1</identifier>
 </parameter>
 <parameter>
 <identifier>TestParameter2</identifier>
 </parameter>
</navigational-parameters>
Note that the identifier names match the names pulled from the navigational
parameters collection in the Page_Load method described in an earlier step.

In an Oracle WebCenter Personal or GroupSpace page, open the WebCenter page
editor. Add the TestPreferences portlet and click the Edit button. On the parameters
tab you should see the two parameters you defined, TestParameter1 and
TestParameter2. Enter a value for each parameter and click Apply and Ok. You should
see the values you entered at the bottom of the portlet.

Note: The Oracle WebCenter WSRP Consumer only utilizes the
identifier portion of the navigationalParameter. However, if you have
a different WSRP Consumer for which you wish to use
navigationParameters you may also assign localized values for the
description, label, and hint in your wsrp-producer.xml. For example:

<navigational-parameters>
 <parameter>
 <identifier>TestParameter1</identifier>
 <description>
 <parameter-description
lang="en">parameter1-en</parameter-description>
 <parameter-description
lang="fr">parameter1-fr</parameter-description>
 </description>
 <label>
 <parameter-label lang="en">parameter1-label-en</parameter-label>
 <parameter-label lang="fr">parameter1-label-fr</parameter-label>
 </label>
 <hint>
 <parameter-hint lang="en">parameter1-hint-en</parameter-hint>
 <parameter-hint lang="fr">parameter1-hint-fr</parameter-hint>
 </hint>
 </parameter>
</navigational-parameters>

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Introducing Oracle WebCenter WSRP Producer for .NET
	1.1 About the Oracle WebCenter WSRP Producer for .NET
	1.2 Additional Documentation

	2 Understanding the Configuration File
	2.1 Portlet Nodes
	2.2 Portlet Content Transformation Rulesets
	2.2.1 Creating Custom Rules

	3 Managing Required Script Files
	3.1 Managing Required Script Files

	4 Configuring Security Options
	4.1 WS-Security (WSS) Configuration
	4.1.1 WSDL Configuration
	4.1.2 Web.config Configuration

	4.2 SSL Configuration

	5 Accomplishing Common Development Scenarios
	5.1 Adding a Web Part as a Portlet
	5.2 Adding a Web Part with ASP.NET AJAX Controls
	5.2.1 Managing AJAX Outside the .NET Framework

	5.3 Adding an ASP.NET Application
	5.4 Adding a Help Page
	5.5 Using Markup Transformation
	5.5.1 Transforming Text
	5.5.2 Creating a Custom Ruleset

	5.6 Using Portlet Styles
	5.7 Using Interportlet Communication with JavaScript
	5.8 Adding User Profile Data
	5.9 Setting Up Security Tokens
	5.9.1 Displaying a Token in a Web Part
	5.9.2 Oracle WebLogic Portal with Default SAMLCredentialMapperV2
	5.9.3 Oracle WebLogic Portal with Custom Signing Key
	5.9.4 UNT for WebLogic Portal
	5.9.5 SAML for Oracle WebCenter
	5.9.6 UNT for Oracle WebCenter

	5.10 Using Oracle WebCenter Features
	5.10.1 Using Customization in Oracle WebCenter
	5.10.2 Using Oracle WebCenter Parameters

