

Oracle® Fusion Middleware
Programming JTA for Oracle WebLogic Server

12c Release 1 (12.1.1)

E24377-03

January 2014

This document is written for application developers who are
interested in building transactional Java applications that run
in the WebLogic Server environment.

Oracle Fusion Middleware Programming JTA for Oracle WebLogic Server, 12c Release 1 (12.1.1)

E24377-03

Copyright © 2007, 2014, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Contents

Preface ... ix

Documentation Accessibility ... ix
Conventions ... ix

1 Introduction and Roadmap

1.1 Document Scope and Audience.. 1-1
1.2 Guide to this Document ... 1-1
1.3 Related Documentation.. 1-2
1.4 Samples and Tutorials ... 1-2
1.4.1 Avitek Medical Records Application (MedRec) and Tutorials..................................... 1-2
1.5 New and Changed Features in This Release... 1-2

2 Introducing Transactions

2.1 Overview of Transactions in WebLogic Server Applications .. 2-1
2.1.1 ACID Properties of Transactions .. 2-1
2.1.2 Supported Programming Model ... 2-2
2.1.3 Supported API Models ... 2-2
2.1.4 Distributed Transactions and the Two-Phase Commit Protocol 2-2
2.1.5 Support for Business Transactions.. 2-3
2.2 When to Use Transactions ... 2-3
2.3 What Happens During a Transaction ... 2-4
2.3.1 Transactions in WebLogic Server EJB Applications ... 2-4
2.3.1.1 Container-managed Transactions .. 2-5
2.3.1.2 Bean-managed Transactions ... 2-6
2.3.2 Transactions in WebLogic Server RMI Applications .. 2-6
2.4 Transactions Sample Code .. 2-7
2.4.1 Transactions Sample EJB Code ... 2-8
2.4.1.1 Importing Packages.. 2-8
2.4.1.2 Using JNDI to Return an Object Reference... 2-8
2.4.1.3 Starting a Transaction .. 2-9
2.4.1.4 Completing a Transaction .. 2-9
2.4.2 Transactions Sample RMI Code .. 2-9
2.4.2.1 Importing Packages... 2-10
2.4.2.2 Using JNDI to Return an Object Reference to the UserTransaction Object 2-10
2.4.2.3 Starting a Transaction ... 2-11

iv

2.4.2.4 Completing a Transaction ... 2-11

3 Configuring Transactions

3.1 Overview of Transaction Configuration.. 3-1
3.2 Configuring JTA ... 3-1
3.2.1 Unregister Resource Grace Period .. 3-2
3.2.2 Additional Attributes for Managing Transactions ... 3-2
3.3 Configuring Secure Inter-Domain and Intra-Domain Transaction Communication 3-4
3.3.1 Requirements for Transaction Communication .. 3-4
3.3.2 Configuring Communication for Inter-Domain Transactions 3-5
3.3.3 Configuring Domains for Intra-Domain Transactions... 3-7
3.3.4 Configuring Cross Domain Security... 3-8
3.3.4.1 Cross Domain Security is Not Transitive.. 3-8
3.3.4.2 Adding Domains to the Exclude List Based on Transaction Participation.......... 3-9
3.3.4.3 Important Considerations When Configuring Cross Domain Security 3-9
3.3.5 Configuring Security Interoperability Mode.. 3-10
3.3.5.1 Establish Domain Trust .. 3-10
3.3.5.2 Configuring Security Interoperability Mode... 3-11
3.3.5.3 Configuring Domains for JNDI Lookups Requiring an Admin User................ 3-11
3.4 Transaction Log Files... 3-12
3.4.1 Using the Default Persistent Store.. 3-12
3.4.1.1 Setting the Path for the Default Persistent Store .. 3-12
3.4.1.2 Setting the Default Persistent Store Synchronous Write Policy.......................... 3-12
3.4.2 Using a JDBC JTOG Store .. 3-12
3.5 Read-only, One-Phase Commit Optimizations ... 3-13
3.5.1 Configuring Read-only, One-phase Commit Optimization and Two-phase Commit

Disablement 3-13
3.5.2 Monitoring Read-only, One-phase Transaction Statistics .. 3-14

4 Managing Transactions

4.1 Monitoring Transactions.. 4-1
4.2 Handling Heuristic Completions ... 4-2
4.3 Moving a Server .. 4-2
4.4 Abandoning Transactions.. 4-3
4.4.1 Tuning Transaction Processing.. 4-3
4.5 Manually Resolving Current (Inflight) Transactions .. 4-5
4.5.1 Manual Commit and Rollback Options.. 4-6
4.6 Transaction Recovery After a Server Fails .. 4-7
4.6.1 Transaction Recovery Service Actions After a Crash ... 4-8
4.6.1.1 Clustering Failover When Using Apache With the WebLogic Proxy Plug-in..... 4-9
4.6.2 Recovering Transactions For a Failed Non-Clustered Server 4-9
4.6.3 Recovering Transactions For a Failed Clustered Server ... 4-10
4.6.3.1 Server Migration .. 4-10
4.6.3.2 Manual Transaction Recovery Service Migration... 4-10
4.6.3.2.1 What Occurs During Transaction Recovery Service Migration 4-10
4.6.3.3 Automatic Transaction Recovery Service Migration ... 4-11
4.6.3.4 Managed Server Independence ... 4-11

v

4.6.3.5 Limitations of Migrating the Transaction Recovery Service............................... 4-12
4.6.3.6 Preparing to Migrate the Transaction Recovery Service 4-12
4.6.3.7 Constraining Servers to Which the Transaction Recovery Service Can Migrate

4-13
4.6.3.8 Viewing Current Owner of the Transaction Recovery Service........................... 4-14
4.6.3.9 Manually Migrating the Transaction Recovery Service to the Original Server 4-14
4.6.4 How to Remove Transaction Records ... 4-15
4.6.4.1 How to Remove the TLOG in the LLR Database.. 4-15
4.6.4.2 How to Remove the TLOG Files from the Default Store 4-15
4.6.4.3 How to Remove the TLOG from a JDBC TLOG Store ... 4-15

5 Transaction Service

5.1 About the Transaction Service .. 5-1
5.2 Capabilities and Limitations ... 5-1
5.2.1 Lightweight Clients with Delegated Commit .. 5-2
5.2.2 Client-initiated Transactions.. 5-2
5.2.3 Transaction Integrity ... 5-2
5.2.4 Transaction Termination ... 5-2
5.2.5 Flat Transactions ... 5-2
5.2.6 Relationship of the Transaction Service to Transaction Processing 5-3
5.2.7 Multithreaded Transaction Client Support ... 5-3
5.2.8 Transaction Id... 5-3
5.2.9 Transaction Name and Properties... 5-3
5.2.10 Transaction Status.. 5-4
5.2.11 Transaction Statistics ... 5-4
5.2.12 General Constraints ... 5-4
5.3 Transaction Scope ... 5-4
5.4 Transaction Service in EJB Applications.. 5-4
5.5 Transaction Service in RMI Applications .. 5-5
5.6 Transaction Service Interoperating with OTS... 5-5
5.6.1 Server-Server 2PC.. 5-5
5.6.2 Client Demarcated Transactions ... 5-5

6 Java Transaction API and Oracle WebLogic Extensions

6.1 JTA API Overview .. 6-1
6.2 Oracle WebLogic Extensions to JTA .. 6-2

7 Logging Last Resource Transaction Optimization

7.1 About the LLR Optimization Transaction Optimization.. 7-2
7.2 Logging Last Resource Processing Details.. 7-2
7.3 LLR Database Table Details... 7-3
7.3.1 LLR Table Transaction Log Records ... 7-3
7.4 Failure and Recovery Processing for LLR ... 7-4
7.4.1 Coordinating Server Crash... 7-4
7.4.2 JDBC Connection Failure.. 7-4
7.4.3 LLR Transaction Recover During Server Startup ... 7-4

vi

7.4.4 Failover Considerations for LLR ... 7-5
7.5 Optimizing Performance with LLR.. 7-5
7.5.1 Optimizing Transaction Coordinator Location... 7-5
7.5.2 Varied Performance for Read-Only Operations Through an LLR Data Source......... 7-5
7.5.3 Dedicating LLR Tables by Data Source .. 7-6
7.5.3.1 Limitations... 7-6

8 Transactions in EJB Applications

8.1 Before You Begin... 8-1
8.2 General Guidelines ... 8-2
8.3 Transaction Attributes.. 8-2
8.3.1 About Transaction Attributes for EJBs ... 8-2
8.3.2 Transaction Attributes for Container-Managed Transactions 8-2
8.3.3 Transaction Attributes for Bean-Managed Transactions ... 8-3
8.4 Participating in a Transaction ... 8-3
8.5 Transaction Semantics.. 8-4
8.5.1 Transaction Semantics for Container-Managed Transactions 8-4
8.5.1.1 Transaction Semantics for Stateful Session Beans ... 8-4
8.5.1.2 Transaction Semantics for Stateless Session Beans.. 8-4
8.5.1.3 Transaction Semantics for Entity Beans .. 8-5
8.5.2 Transaction Semantics for Bean-Managed Transactions ... 8-5
8.5.2.1 Transaction Semantics for Stateful Session Beans ... 8-5
8.5.2.2 Transaction Semantics for Stateless Session Beans.. 8-6
8.6 Session Synchronization .. 8-6
8.7 Synchronization During Transactions ... 8-7
8.8 Setting Transaction Timeouts.. 8-7
8.9 Handling Exceptions in EJB Transactions ... 8-7

9 Transactions in RMI Applications

9.1 Before You Begin... 9-1
9.2 General Guidelines ... 9-1

10 Using JDBC XA Drivers with WebLogic Server

10.1 Using Oracle Thin/XA Driver ... 10-1
10.1.1 Set the Environment for the Oracle Thin/XA Driver.. 10-1
10.1.1.1 Configure WebLogic Server... 10-1
10.1.1.2 Enable XA on the Database Server.. 10-1
10.1.2 Oracle Thin/XA Driver Configuration Properties .. 10-2
10.2 Using Other XA Drivers.. 10-2
10.2.1 Using WebLogic-branded Data Direct Drivers .. 10-2
10.2.2 Additional Considerations .. 10-2

11 Coordinating XAResources with the WebLogic Server Transaction Manager

11.1 Overview of Coordinating Distributed Transactions with Foreign XAResources 11-2
11.2 Registering an XAResource to Participate in Transactions.. 11-3
11.3 Enlisting and Delisting an XAResource in a Transaction .. 11-5

vii

11.3.1 Standard Enlistment .. 11-6
11.3.2 Dynamic Enlistment ... 11-6
11.3.3 Static Enlistment ... 11-7
11.4 Commit processing.. 11-7
11.5 Recovery.. 11-7
11.6 Resource Health Monitoring .. 11-8
11.7 Java EE Connector Architecture Resource Adapter ... 11-9
11.8 Implementation Tips ... 11-9
11.8.1 Sharing the WebLogic Server Transaction Log .. 11-9
11.8.2 Transaction global properties .. 11-10
11.8.3 TxHelper.createXid... 11-10
11.9 Changes in the Resource Registration Name... 11-11
11.10 FAQs .. 11-11
11.11 Additional Documentation about JTA.. 11-11

12 Participating in Transactions Managed by a Third-Party Transaction
Manager

12.1 Overview of Participating in Foreign-Managed Transactions.. 12-1
12.2 Importing Transactions with the Client Interposed Transaction Manager..................... 12-2
12.2.1 Get the Client Interposed Transaction Manager .. 12-3
12.2.2 Get the XAResource from the Interposed Transaction Manager............................... 12-4
12.2.3 Limitations of the Client Interposed Transaction Manager 12-4
12.3 Importing Transactions with the Server Interposed Transaction Manager 12-4
12.3.1 Get the Server Interposed Transaction Manager ... 12-5
12.3.2 Limitations of the Server Interposed Transaction Manager....................................... 12-5
12.4 Transaction Processing for Imported Transactions .. 12-6
12.4.1 Transaction Processing Limitations for Imported Transactions................................ 12-6
12.5 Commit Processing for Imported Transactions... 12-7
12.6 Recovery for Imported Transactions... 12-7

13 Troubleshooting Transactions

13.1 Overview... 13-1
13.2 Troubleshooting Tools .. 13-1
13.2.1 Exceptions .. 13-1
13.2.2 Transaction Identifier ... 13-2
13.2.3 Transaction Name and Properties.. 13-2
13.2.4 Transaction Status... 13-2
13.2.5 Transaction Statistics .. 13-2
13.2.6 Transaction Monitoring ... 13-3
13.2.7 Debugging JTA Resources... 13-3
13.2.7.1 Enabling Debugging ... 13-3
13.2.7.2 Enable Debugging Using the Command Line .. 13-3
13.2.7.3 Enable Debugging Using the WebLogic Server Administration Console 13-3
13.2.7.4 Enable Debugging Using the WebLogic Scripting Tool 13-3
13.2.7.5 Changes to the config.xml File .. 13-4
13.2.7.6 JTA Debugging Scopes ... 13-5

viii

ix

Preface

This preface describes the document accessibility features and conventions used in this
guide—Programming JTA for Oracle WebLogic Server.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

x

1

Introduction and Roadmap 1-1

1Introduction and Roadmap

This chapter describes the contents and organization of this guide—Programming JTA
for Oracle WebLogic Server.

■ Section 1.1, "Document Scope and Audience"

■ Section 1.2, "Guide to this Document"

■ Section 1.3, "Related Documentation"

■ Section 1.4, "Samples and Tutorials"

■ Section 1.5, "New and Changed Features in This Release"

1.1 Document Scope and Audience
This document is written for application developers who are interested in building
transactional Java applications that run in the WebLogic Server environment. It is
assumed that readers are familiar with the WebLogic Server platform, Java Platform,
Enterprise Edition (Java EE) programming, and transaction processing concepts.

1.2 Guide to this Document
■ This chapter, Chapter 1, "Introduction and Roadmap," introduces the organization

of this guide.

■ Chapter 2, "Introducing Transactions," introduces transactions in EJB and RMI
applications running in the WebLogic Server environment. This chapter also
describes distributed transactions and the two-phase commit protocol for
enterprise applications.

■ Chapter 3, "Configuring Transactions," describes how to administer transactions in
the WebLogic Server environment.

■ Chapter 4, "Managing Transactions," provides information on administration tasks
used to manage transactions.

■ Chapter 5, "Transaction Service," describes the WebLogic Server Transaction
Service.

■ Chapter 6, "Java Transaction API and Oracle WebLogic Extensions," provides a
brief overview of the Java Transaction API (JTA).

■ Chapter 8, "Transactions in EJB Applications," describes how to implement
transactions in EJB applications.

■ Chapter 9, "Transactions in RMI Applications," describes how to implement
transactions in RMI applications.

Related Documentation

1-2 Programming JTA for Oracle WebLogic Server

■ Chapter 10, "Using JDBC XA Drivers with WebLogic Server," describes how to
configure and use third-party XA drivers in transactions.

■ Chapter 11, "Coordinating XAResources with the WebLogic Server Transaction
Manager," describes how to configure third-party systems to participate in
transactions coordinated by the WebLogic Server transaction manager.

■ Chapter 12, "Participating in Transactions Managed by a Third-Party Transaction
Manager," describes the process for configuring and participating in
foreign-managed transactions.

■ Chapter 13, "Troubleshooting Transactions," describes how to perform
troubleshooting tasks for applications using JTA.

1.3 Related Documentation
This document contains JTA-specific design and development information. For
comprehensive guidelines for developing, deploying, and monitoring WebLogic
Server applications, see the following documents:

■ Developing Applications for Oracle WebLogic Server is a guide to developing
WebLogic Server applications.

■ Deploying Applications to Oracle WebLogic Server is the primary source of
information about deploying WebLogic Server applications.

1.4 Samples and Tutorials
In addition to this document, Oracle provides a variety of code samples and tutorials
for developing transactional applications. The examples and tutorials illustrate
WebLogic Server in action, and provide practical instructions on how to perform key
application development tasks. Start the Examples server from the Start menu on
Windows machines. For Linux and other platforms, start the Examples server from the
WL_HOME\samples\domains\wl_server directory, where WL_HOME is the
top-level installation directory for WebLogic Platform.

1.4.1 Avitek Medical Records Application (MedRec) and Tutorials
MedRec is an end-to-end sample Java EE application shipped with WebLogic Server
that simulates an independent, centralized medical record management system. The
MedRec application provides a framework for patients, doctors, and administrators to
manage patient data using a variety of different clients.

MedRec demonstrates WebLogic Server and Java EE features, and highlights
Oracle-recommended best practices. MedRec is included in the WebLogic Server
distribution, and is accessed from the Start menu on Windows machines. For Linux
and other platforms, start MedRec from the WL_HOME\samples\domains\medrec
directory, where WL_HOME is the top-level installation directory for WebLogic Platform.

1.5 New and Changed Features in This Release
For a comprehensive listing of the new WebLogic Server features introduced in this
release, see What’s New in Oracle WebLogic Server.

2

Introducing Transactions 2-1

2Introducing Transactions

This chapter describes a basic overview of transactions, when to use a transaction, how
a transaction is processed, and example transaction code.

■ Section 2.1, "Overview of Transactions in WebLogic Server Applications"

■ Section 2.2, "When to Use Transactions"

■ Section 2.3, "What Happens During a Transaction"

■ Section 2.4, "Transactions Sample Code"

2.1 Overview of Transactions in WebLogic Server Applications
This section includes the following sections:

■ Section 2.1.1, "ACID Properties of Transactions"

■ Section 2.1.2, "Supported Programming Model"

■ Section 2.1.3, "Supported API Models"

■ Section 2.1.4, "Distributed Transactions and the Two-Phase Commit Protocol"

■ Section 2.1.5, "Support for Business Transactions"

2.1.1 ACID Properties of Transactions
A fundamental feature of WebLogic Server is transaction management. Transactions
are a means to guarantee that database changes are completed accurately and that they
take on all the ACID properties of a high-performance transaction, including:

■ Atomicity—all changes that a transaction makes to a database are made as one
unit; otherwise, all changes are rolled back.

■ Consistency—a successful transaction transforms a database from a previous valid
state to a new valid state.

■ Isolation—changes that a transaction makes to a database are not visible to other
operations until the transaction completes its work.

■ Durability—changes that a transaction makes to a database survive future system
or media failures.

WebLogic Server protects the integrity of your transactions by providing a complete
infrastructure for ensuring that database updates are done accurately, even across a
variety of resource managers. If any one operation fails, the entire set of operations is
rolled back.

Overview of Transactions in WebLogic Server Applications

2-2 Programming JTA for Oracle WebLogic Server

2.1.2 Supported Programming Model
WebLogic Server supports transactions in the Java Platform, Enterprise Edition (Java
EE) programming model. WebLogic Server provides full support for transactions in
Java applications that use Enterprise JavaBeans, in compliance with the Enterprise
JavaBeans (EJB) Specification 3.0. WebLogic Server also supports the Java Transaction
API (JTA) Specification 1.1. Both specifications are published at the following
locations:

2.1.3 Supported API Models
WebLogic Server supports the Java Transaction API (JTA), which is used by:

■ Enterprise JavaBean (EJB) applications within the WebLogic Server EJB container.

■ Remote Method Invocation (RMI) applications within the WebLogic Server
infrastructure.

For information about JTA, see the following API Javadoc.

■ The javax.transaction and javax.transaction.xa, available at
http://java.sun.com/products/jta/javadocs-1.0.1/index.html

■ The Java Transaction API specification, available at
http://www.oracle.com/technetwork/java/javaee/jta/index.html

2.1.4 Distributed Transactions and the Two-Phase Commit Protocol
WebLogic Server supports distributed transactions and the two-phase commit protocol
for enterprise applications. A distributed transaction is a transaction that updates
multiple resource managers (such as databases) in a coordinated manner. In contrast, a
local transaction begins and commits the transaction to a single resource manager that
internally coordinates API calls; there is no transaction manager. The two-phase
commit protocol is a method of coordinating a single transaction across two or more
resource managers. It guarantees data integrity by ensuring that transactional updates
are committed in all of the participating databases, or are fully rolled back out of all
the databases, reverting to the state prior to the start of the transaction. In other words,
either all the participating databases are updated, or none are updated.

Distributed transactions involve the following participants:

■ Transaction originator—initiates the transaction. The transaction originator can be
a user application, an Enterprise JavaBean, or a JMS client.

■ Transaction manager—manages transactions on behalf of application programs. A
transaction manager coordinates commands from application programs to start
and complete transactions by communicating with all resource managers that are
participating in those transactions. When resource managers fail during
transactions, transaction managers help resource managers decide whether to
commit or roll back pending transactions.

■ Recoverable resource—provides persistent storage for data. The resource is most
often a database.

Specification Location

EJB 3.0 http://java.sun.com/products/ejb/docs.html

JTA 1.1 http://www.oracle.com/technetwork/java/java
ee/jta/index.html

When to Use Transactions

Introducing Transactions 2-3

■ Resource manager—provides access to a collection of information and processes.
Transaction-aware JDBC drivers are common resource managers. Resource
managers provide transaction capabilities and permanence of actions; they are
entities accessed and controlled within a distributed transaction. The
communication between a resource manager and a specific resource is called a
transaction branch.

The first phase of the two-phase commit protocol is called the prepare phase. The
required updates are recorded in a transaction log file, and the resource must indicate,
through a resource manager, that it is ready to make the changes. Resources either vote
to commit the updates or to roll back to the previous state. What happens in the
second phase depends on how the resources vote. If all resources vote to commit, all
the resources participating in the transaction are updated. If one or more of the
resources vote to roll back, then all the resources participating in the transaction are
rolled back to their previous state.

2.1.5 Support for Business Transactions
WebLogic JTA provides the following support for your business transactions:

■ Creates a unique transaction identifier when a client application initiates a
transaction.

■ Supports an optional transaction name describing the business process that the
transaction represents. The transaction name makes statistics and error messages
more meaningful.

■ Works with the WebLogic Server infrastructure to track objects that are involved in
a transaction and, therefore, coordinates these objects when the transaction is
ready to commit.

■ Notifies the resource managers—which are, most often, databases—when they are
accessed on behalf of a transaction. Resource managers then lock the accessed
records until the end of the transaction.

■ Orchestrates the two-phase commit when the transaction completes, which
ensures that all the participants in the transaction commit their updates
simultaneously. It coordinates the commit with any databases that are being
updated using Open Group's XA protocol. Many popular relational databases
support this standard.

■ Executes the rollback procedure when the transaction must be stopped.

■ Executes a recovery procedure when failures occur. It determines which
transactions were active in the machine at the time of the crash, and then
determines whether the transaction should be rolled back or committed.

■ Manages transaction timeouts. If a business operation takes too much time or is
only partially completed due to failures, the system takes action to automatically
issue a timeout for the transaction and free resources, such as database locks.

2.2 When to Use Transactions
Transactions are appropriate in the situations described in the following list. Each
situation describes a transaction model supported by the WebLogic Server system.
Keep in mind that distributed transactions should not span more than a single user
input screen; more complex, higher level transactions are best implemented with a
series of distributed transactions.

What Happens During a Transaction

2-4 Programming JTA for Oracle WebLogic Server

■ Within the scope of a single client invocation on an object, the object performs
multiple edits to data in a database. If one edits fails, the object needs a mechanism
to roll back all the edits. (In this situation, the individual database edits are not
necessarily EJB or RMI invocations. A client, such as an applet, obtain a reference
to the Transaction and TransactionManager objects, using JNDI, and start a
transaction.)

For example, consider a banking application. The client invokes the transfer
operation on a teller object. The transfer operation requires the teller object to
make the following invocations on the bank database:

– Invoking the debit method on one account.

– Invoking the credit method on another account.

If the credit invocation on the bank database fails, the banking application needs a
way to roll back the previous debit invocation.

■ The client application needs a conversation with an object managed by the server
application, and the client application makes multiple invocations on a specific
object instance. The conversation may be characterized by one or more of the
following:

– Data is cached in memory or written to a database during or after each
successive invocation.

– Data is written to a database at the end of the conversation.

– The client application needs the object to maintain an in-memory context
between each invocation; that is, each successive invocation uses the data that
is being maintained in memory across the conversation.

– At the end of the conversation, the client application needs the ability to cancel
all database write operations that may have occurred during or at the end of
the conversation.

2.3 What Happens During a Transaction
This topic includes the following sections:

■ Section 2.3.1, "Transactions in WebLogic Server EJB Applications"

■ Section 2.3.2, "Transactions in WebLogic Server RMI Applications"

2.3.1 Transactions in WebLogic Server EJB Applications
Figure 2–1 illustrates how transactions work in a WebLogic Server EJB application.

What Happens During a Transaction

Introducing Transactions 2-5

Figure 2–1 How Transactions Work in a WebLogic Server EJB Application

WebLogic Server supports two types of transactions in WebLogic Server EJB
applications:

■ In container-managed transactions, the WebLogic Server EJB container manages
the transaction demarcation. Transaction attributes in the EJB deployment
descriptor determine how the WebLogic Server EJB container handles transactions
with each method invocation. For more information about the deployment
descriptor, see "Implementing Enterprise Java Beans" in Programming Enterprise
JavaBeans, Version 2.1, for Oracle WebLogic Server.

■ In bean-managed transactions, the EJB manages the transaction demarcation. The
EJB makes explicit method invocations on the UserTransaction object to begin,
commit, and roll back transactions. For more information, see
weblogic.transaction.UserTransaction in the Oracle WebLogic Server API
Reference.

The sequence of transaction events differs between container-managed and
bean-managed transactions.

2.3.1.1 Container-managed Transactions
For EJB applications with container-managed transactions, a basic transaction works in
the following way:

1. In the EJB's deployment descriptor, the Bean Provider or Application Assembler
specifies the transaction type (transaction-type element) for
container-managed demarcation (Container).

2. In the EJB's deployment descriptor, the Bean Provider or Application Assembler
specifies the default transaction attribute (trans-attribute element) for the
EJB, which is one of the following settings: NotSupported, Required,
Supports, RequiresNew, Mandatory, or Never. For a detailed description of
these settings, see Section 17.6.2 in the Enterprise JavaBeans Specification 2.0.

3. Optionally, in the EJB's deployment descriptor, the Bean Provider or Application
Assembler specifies the trans-attribute for one or more methods.

4. When a client application invokes a method in the EJB, the EJB container checks
the trans-attribute setting in the deployment descriptor for that method. If
no setting is specified for the method, the EJB uses the default trans-attribute
setting for that EJB.

What Happens During a Transaction

2-6 Programming JTA for Oracle WebLogic Server

5. The EJB container takes the appropriate action depending on the applicable
trans-attribute setting.

■ For example, if the trans-attribute setting is Required, the EJB
container invokes the method within the existing transaction context or, if the
client called without a transaction context, the EJB container begins a new
transaction before executing the method.

■ In another example, if the trans-attribute setting is Mandatory, the EJB
container invokes the method within the existing transaction context. If the
client called without a transaction context, the EJB container throws the
javax.transaction.TransactionRequiredException exception.

6. During invocation of the business method, if it is determined that a rollback is
required, the business method calls the EJBContext.setRollbackOnly
method, which notifies the EJB container that the transaction is to be rolled back at
the end of the method invocation.

7. At the end of the method execution and before the result is sent to the client, the
EJB container completes the transaction, either by committing the transaction or
rolling it back (if the EJBContext.setRollbackOnly method was called).

2.3.1.2 Bean-managed Transactions
For EJB applications with bean-managed transaction demarcations, a basic transaction
works in the following way:

1. In the EJB's deployment descriptor, the Bean Provider or Application Assembler
specifies the transaction type (transaction-type element) for
container-managed demarcation (Bean).

2. The client application uses JNDI to obtain an object reference to the
UserTransaction object for the WebLogic Server domain.

3. The client application begins a transaction using the UserTransaction.begin
method, and issues a request to the EJB through the EJB container. All operations
on the EJB execute within the scope of a transaction.

■ If a call to any of these operations raises an exception (either explicitly or
because of a communication failure), catch the exception and use the
UserTransaction.rollback method to roll back the transaction.

■ If no exceptions occur, the client application commits the current transaction
using the UserTransaction.commit method. This method ends the
transaction and starts the processing of the operation. The transaction is
committed only if all of the participants in the transaction agree to commit.

4. The UserTransaction.commit method causes the EJB container to call the
transaction manager to complete the transaction.

5. The transaction manager is responsible for coordinating with the resource
managers to update any databases.

2.3.2 Transactions in WebLogic Server RMI Applications
Figure 2–2 illustrates how transactions work in a WebLogic Server RMI application.

Note: Calling the EJBContext.setRollbackOnly method is
allowed only for methods that have a meaningful transaction context.

Transactions Sample Code

Introducing Transactions 2-7

Figure 2–2 How Transactions Work in a WebLogic Server RMI Application

For RMI client and server applications, a basic transaction works in the following way:

1. The application uses JNDI to return an object reference to the UserTransaction
object for the WebLogic Server domain.

Obtaining the object reference begins a conversational state between the
application and that object. The conversational state continues until the transaction
is completed (committed or rolled back). Once instantiated, RMI objects remain
active in memory until they are released (typically during server shutdown). For
the duration of the transaction, the WebLogic Server infrastructure does not
perform any deactivation or activation.

2. The client application begins a transaction using the UserTransaction.begin
method, and issues a request to the server application. All operations on the server
application execute within the scope of a transaction.

■ If a call to any of these operations raises an exception (either explicitly or
because of a communication failure), catch the exception and the use the
UserTransaction.rollback method to roll back the transaction.

■ If no exceptions occur, the client application commits the current transaction
using the UserTransaction.commit method. This method ends the
transaction and starts the processing of the operation. The transaction is
committed only if all of the participants in the transaction agree to commit.

3. The UserTransaction.commit method causes WebLogic Server to call the
transaction manager to complete the transaction.

4. The transaction manager is responsible for coordinating with the resource
managers to update any databases.

For more information, see Chapter 9, "Transactions in RMI Applications."

2.4 Transactions Sample Code
This section includes the following sections:

■ Section 2.4.1, "Transactions Sample EJB Code"

■ Section 2.4.2, "Transactions Sample RMI Code"

Transactions Sample Code

2-8 Programming JTA for Oracle WebLogic Server

2.4.1 Transactions Sample EJB Code
This section provides a walkthrough of sample code fragments from a class in an EJB
application. This topic includes the following sections:

■ Section 2.4.1.1, "Importing Packages"

■ Section 2.4.1.2, "Using JNDI to Return an Object Reference"

■ Section 2.4.1.3, "Starting a Transaction"

■ Section 2.4.1.4, "Completing a Transaction"

The code fragments demonstrate using the UserTransaction object for
bean-managed transaction demarcation. The deployment descriptor for this bean
specifies the transaction type (transaction-type element) for transaction
demarcation (Bean).

2.4.1.1 Importing Packages
Example 2–1 shows importing the necessary packages for transactions, including:

■ javax.transaction.UserTransaction. For a list of methods associated with
this object, see the online Javadoc.

■ System exceptions. For a list of exceptions, see the online Javadoc.

Example 2–1 Importing Packages

import javax.naming.*;
import javax.transaction.UserTransaction;
import javax.transaction.SystemException;
import javax.transaction.HeuristicMixedException
import javax.transaction.HeuristicRollbackException
import javax.transaction.NotSupportedException
import javax.transaction.RollbackException
import javax.transaction.IllegalStateException
import javax.transaction.SecurityException
import java.sql.*;
import java.util.*;

2.4.1.2 Using JNDI to Return an Object Reference
Example 2–2 shows how look up an object on the JNDI tree.

Example 2–2 Performing a JNDI Lookup

Context ctx = null;
Hashtable env = new Hashtable();

env.put(Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.jndi.WLInitialContextFactory");

Notes: In a global transaction, use a database connection from a local
JDBC data source—on the WebLogic Server instance on which the EJB
is running. Do not use a connection from a JDBC data source on a
remote WebLogic Server instance.

These code fragments do not derive from any of the sample
applications that ship with WebLogic Server. They simply illustrate
the use of the UserTransaction object within an EJB application.

Transactions Sample Code

Introducing Transactions 2-9

// Parameters for the WebLogic Server.
// Substitute the correct hostname, port number
// user name, and password for your environment:
env.put(Context.PROVIDER_URL, "t3://localhost:7001");
env.put(Context.SECURITY_PRINCIPAL, "Fred");
env.put(Context.SECURITY_CREDENTIALS, "secret");

ctx = new InitialContext(env);

UserTransaction tx = (UserTransaction)
 ctx.lookup("javax.transaction.UserTransaction");

2.4.1.3 Starting a Transaction
Example 2–3 shows starting a transaction by getting a UserTransaction object and
calling the javax.transaction.UserTransaction.begin() method. Database
operations that occur after this method invocation and prior to completing the
transaction exist within the scope of this transaction.

Example 2–3 Starting a Transaction

UserTransaction tx = (UserTransaction)
 ctx.lookup("javax.transaction.UserTransaction");
tx.begin();

2.4.1.4 Completing a Transaction
Example 2–4 shows completing the transaction depending on whether an exception
was thrown during any of the database operations that were attempted within the
scope of this transaction:

■ If an exception was thrown during any of the database operations, the application
calls the javax.transaction.UserTransaction.rollback() method.

■ If no exception was thrown, the application calls the
javax.transaction.UserTransaction.commit() method to attempt to
commit the transaction after all database operations completed successfully.
Calling this method ends the transaction and starts the processing of the
operation, causing the WebLogic Server EJB container to call the transaction
manager to complete the transaction. The transaction is committed only if all of
the participants in the transaction agree to commit.

Example 2–4 Completing a Transaction

tx.commit();

// or:

tx.rollback();

2.4.2 Transactions Sample RMI Code
This topic provides a walkthrough of sample code fragments from a class in an RMI
application. This topic includes the following sections:

■ Section 2.4.2.1, "Importing Packages"

■ Section 2.4.2.2, "Using JNDI to Return an Object Reference to the UserTransaction
Object"

Transactions Sample Code

2-10 Programming JTA for Oracle WebLogic Server

■ Section 2.4.2.3, "Starting a Transaction"

■ Section 2.4.2.4, "Completing a Transaction"

The code fragments demonstrate using the UserTransaction object for RMI
transactions. For guidelines on using transactions in RMI applications, see Chapter 9,
"Transactions in RMI Applications."

2.4.2.1 Importing Packages
Example 2–5 shows importing the necessary packages, including the following
packages used to handle transactions:

■ javax.transaction.UserTransaction. For a list of methods associated with
this object, see the online Javadoc.

■ System exceptions. For a list of exceptions, see the online Javadoc.

Example 2–5 Importing Packages

import javax.naming.*;
import java.rmi.*;
import javax.transaction.UserTransaction;
import javax.transaction.SystemException;
import javax.transaction.HeuristicMixedException
import javax.transaction.HeuristicRollbackException
import javax.transaction.NotSupportedException
import javax.transaction.RollbackException
import javax.transaction.IllegalStateException
import javax.transaction.SecurityException
import java.sql.*;
import java.util.*;

After importing these classes, initialize an instance of the UserTransaction object to
null.

2.4.2.2 Using JNDI to Return an Object Reference to the UserTransaction Object
Example 2–6 shows searching the JNDI tree to return an object reference to the
UserTransaction object for the appropriate WebLogic Server domain.

Example 2–6 Performing a JNDI Lookup

Context ctx = null;
Hashtable env = new Hashtable();

Note: These code fragments do not derive from any of the sample
applications that ship with WebLogic Server. They simply illustrate
the use of the UserTransaction object within an RMI application.

Note: Obtaining the object reference begins a conversational state
between the application and that object. The conversational state
continues until the transaction is completed (committed or rolled
back). Once instantiated, RMI objects remain active in memory until
they are released (typically during server shutdown). For the duration
of the transaction, the WebLogic Server infrastructure does not
perform any deactivation or activation.

Transactions Sample Code

Introducing Transactions 2-11

env.put(Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.jndi.WLInitialContextFactory");

// Parameters for the WebLogic Server.
// Substitute the correct hostname, port number
// user name, and password for your environment:
env.put(Context.PROVIDER_URL, "t3://localhost:7001");
env.put(Context.SECURITY_PRINCIPAL, "Fred");
env.put(Context.SECURITY_CREDENTIALS, "secret");

ctx = new InitialContext(env);

UserTransaction tx = (UserTransaction)
 ctx.lookup("javax.transaction.UserTransaction");

2.4.2.3 Starting a Transaction
Example 2–7 shows starting a transaction by calling the
javax.transaction.UserTransaction.begin() method. Database operations
that occur after this method invocation and prior to completing the transaction exist
within the scope of this transaction.

Example 2–7 Starting a Transaction

UserTransaction tx = (UserTransaction)
 ctx.lookup("javax.transaction.UserTransaction");
tx.begin();

2.4.2.4 Completing a Transaction
Example 2–8 shows completing the transaction depending on whether an exception
was thrown during any of the database operations that were attempted within the
scope of this transaction:

■ If an exception was thrown, the application calls the
javax.transaction.UserTransaction.rollback() method if an
exception was thrown during any of the database operations.

■ If no exception was thrown, the application calls the
javax.transaction.UserTransaction.commit() method to attempt to
commit the transaction after all database operations completed successfully.
Calling this method ends the transaction and starts the processing of the
operation, causing WebLogic Server to call the transaction manager to complete
the transaction. The transaction is committed only if all of the participants in the
transaction agree to commit.

Example 2–8 Completing a Transaction

tx.commit();

// or:

tx.rollback();

Transactions Sample Code

2-12 Programming JTA for Oracle WebLogic Server

3

Configuring Transactions 3-1

3Configuring Transactions

This chapter describes basic configuration tasks related to transactions. These tasks
include using JTA, configuring secure transaction communication, using transaction
log (TLOG) files, and using read-only, one-phase commit optimizations.

■ Section 3.1, "Overview of Transaction Configuration"

■ Section 3.2, "Configuring JTA"

■ Section 3.3, "Configuring Secure Inter-Domain and Intra-Domain Transaction
Communication"

■ Section 3.4, "Transaction Log Files"

■ Section 3.5, "Read-only, One-Phase Commit Optimizations"

3.1 Overview of Transaction Configuration
The Administration Console provides the interface used to configure features of
WebLogic Server, including WebLogic JTA. The configuration process involves
specifying values for attributes. These attributes define the transaction environment,
including the following:

■ Transaction timeouts and limits

■ Transaction manager behavior

You should also be familiar with the administration of Java EE components that
participate in transactions, such as EJBs, JDBC data sources, and JMS.

3.2 Configuring JTA
Once you configure WebLogic JTA and any transaction participants, the system
manages transactions using the JTA API and the WebLogic JTA extensions. Note the
following:

■ Configuration settings for JTA (transactions) are applicable at the domain level,
meaning that configuration attribute settings apply to all servers within a domain.
See "Configure JTA" in the Oracle WebLogic Server Administration Console Help.

Note: You can also use the WebLogic Scripting Tool (WLST; see
Oracle WebLogic Scripting Tool) or JMX (see Developing Custom
Management Utilities With JMX for Oracle WebLogic Server) to configure
transaction-related settings.

Configuring JTA

3-2 Programming JTA for Oracle WebLogic Server

■ Monitoring tasks for JTA are performed at the server level. See "Monitor JTA" in
the Oracle WebLogic Server Administration Console Help.

■ Configuration settings for participating resources (such as JDBC data sources) are
per configured object. The settings apply to all instances of a particular object. See
"JDBC Data Source Transaction Options" in Configuring and Managing JDBC Data
Sources for Oracle WebLogic Server and "Configure global transaction options for a
JDBC data source" in the Oracle WebLogic Server Administration Console Help.

3.2.1 Unregister Resource Grace Period
If you have resources that you may occasionally undeploy and redeploy such as a
JDBC data source module packaged with an application, minimize the risk of
abandoned transactions because of an unregistered resource by setting the
Unregistered Resource Grace Period for the domain. The grace period is the number of
seconds that the transaction manager waits for transactions to complete before
unregistering a resource.

During the specified grace period, the unregisterResource call blocks until the call
returns, and no new transactions are started for the associated resource. If the number
of outstanding transactions for the resource goes to 0, the unregisterResource call
returns immediately.

At the end of the grace period, if there are still outstanding transactions associated
with the resource, the unregisterResource call returns and a log message is written on
the server on which the resource was previously registered.

3.2.2 Additional Attributes for Managing Transactions
By default, if an XA resource that is participating in a global transaction fails to
respond to an XA call from the WebLogic Server transaction manager, WebLogic
Server flags the resource as unhealthy and unavailable, and blocks any further calls to
the resource in an effort to preserve resource threads. The failure can be caused by
either an unhealthy transaction or an unhealthy resource—there is no distinction
between the two causes. In both cases, the resource is marked as unhealthy.

To mitigate this limitation, WebLogic Server provides the configuration attributes
listed in Table 3–1:

Configuring JTA

Configuring Transactions 3-3

Except for Resource Health Monitoring for a JDBC data source, you set these attributes
directly in the config.xml file when the domain is inactive. These attributes are not
available in the Administration Console. The following example shows an excerpt of a
configuration file with these attributes:

...
 <JTA
 MaxUniqueNameStatistics="5"
 TimeoutSeconds="300"
 RecoveryThresholdMillis="150000"
 MaxResourceUnavailableMillis="900000"
 MaxResourceRequestOnServer="60"
 MaxXACallMillis="180000"
 />

Table 3–1 XA Resource Health Monitoring Configuration Attributes

Attribute MBean Definition

ResourceHealthMonit
oring

weblogic.managment.configurat
ion.JDBCXAParamsBean

ResourcehealthMonitoring attribute in
JDBCXAParamsBean MBean

Enables or disables resource health monitoring for the
JDBC data source. This attribute only applies to data
sources that use an XA JDBC driver for database
connections. It is ignored if a non-XA JDBC driver is
used.

If set to true, resource health monitoring is enabled. If
an XA resource fails to respond to an XA call within
the period specified in the MaxXACallMillis
attribute, WebLogic Server marks the data source as
unhealthy and blocks any further calls to the resource.

If set to false, the feature is disabled.

Default: true

Set the Resource Health Monitoring attribute for a
JDBC data source on the "JDBC Data Source:
Configuration: Connection Pool" tab in the
Administration Console.

MaxXACallMillis weblogic.management.configura
tion.JTAMBean

Sets the maximum allowed duration (in milliseconds)
of XA calls to XA resources. This setting applies to the
entire domain.

Default: 120000

MaxResourceUnavaila
bleMillis

weblogic.management.configura
tion.JTAMBean

The maximum duration (in milliseconds) that an XA
resource is marked as unhealthy. After this duration,
the XA resource is declared available again, even if the
resource is not explicitly re-registered with the
transaction manager. This setting applies to the entire
domain.

Default: 1800000

MaxResourceRequestO
nServer

weblogic.management.configura
tion.JTAMBean

Maximum number of concurrent requests to resources
allowed for each server in the domain.

Default: 50

Minimum: 10

Maximum: java.lang.Integer.MAX_VALUE

Configuring Secure Inter-Domain and Intra-Domain Transaction Communication

3-4 Programming JTA for Oracle WebLogic Server

3.3 Configuring Secure Inter-Domain and Intra-Domain Transaction
Communication

For a transaction manager to manage distributed transactions, the transaction manager
must be able to communicate with all participating servers and resources to prepare
and then commit or rollback the transactions. How a communication channel is
configured depends on whether the transaction route is:

■ Inter-domain—The transaction communication is between servers participating in
transactions that are not in the same domain.

■ Intra-domain—The transaction communication is between servers participating in
transactions within the same domain.

Communication channels must be secure to prevent a malicious third-party from
using man-in-the-middle attacks to affect transaction outcomes and potentially
gaining administrative control over one or more domains. WebLogic Server provides
the following options to secure a communication channel:

■ Cross Domain Security—Uses a credential mapper to enable you to configure
compatible communication channels between servers in Inter-domain
transactions. Although it requires a more complex configuration, Cross Domain
Security enables you to tailor trust between individual domains.

■ Security Interoperability Mode—Establishes trust between all domains that
participate in a transaction by setting a security credential of all domains to the
same value so that principals in a Subject from one WebLogic Server instance are
accepted as principals in another instance. It is simpler to configure than Cross
Domain Security but some settings of Security Interoperability Mode rely on
domain trust and offer less security than Cross Domain Security.

The following sections provide information on how to configure secure
communication between servers during a transaction:

■ Section 3.3.1, "Requirements for Transaction Communication"

■ Section 3.3.2, "Configuring Communication for Inter-Domain Transactions"

■ Section 3.3.3, "Configuring Domains for Intra-Domain Transactions"

■ Section 3.3.4, "Configuring Cross Domain Security"

■ Section 3.3.5, "Configuring Security Interoperability Mode"

3.3.1 Requirements for Transaction Communication
Please note the following requirements when configuring communication channels for
your transaction environment:

■ The domains and all participating resources must have unique names. That is, you
cannot have a JDBC data source, a server, or a domain with the same name as an
object in another domain or the domain itself.

■ Keep all the domains used by your process symmetric with respect to Cross
Domain Security configuration and Security Interoperability Mode. Because both
settings are set at the domain level, it is possible for a domain to be in a mixed
mode, meaning the domain has both Cross Domain Security and Security
Interoperability Mode set.

■ If you are interoperating with WebLogic Server 8.1 domains, there is a known
issue which may occur when performing inter-domain transactions due to
incompatibilities between JMX 1.0 and JMX 1.2. To correct this incompatibility, use

Configuring Secure Inter-Domain and Intra-Domain Transaction Communication

Configuring Transactions 3-5

the JVM flag -Djmx.serial.form=1.0 as described in "JMX 1.2
Implementation" in Upgrade Guide for Oracle WebLogic Server

■ Only one data source with both of the following attribute conditions participate in
a global transaction, regardless of the domain in which the data source is
configured:

– Logging Last Resource or Emulate Two-Phase Commit is selected.

– The data source uses a non-XA driver to create database connections.

3.3.2 Configuring Communication for Inter-Domain Transactions
You must correctly configure compatible communication channels using either Cross
Domain Security or Security Interoperability Mode for all participating domains in
global transactions. See:

■ Section 3.3.4, "Configuring Cross Domain Security"

■ Section 3.3.5, "Configuring Security Interoperability Mode"

Use the following table to determine when to use Cross Domain Security or Security
Interoperability Mode:

Table 3–2 Selecting a Channel Configuration

Channel Configuration Advantage Disadvantage

Cross Domain Security ■ specific users are
configured to establish
communication between a
domain pair.

■ With SSL, prevents
man-in-the-middle
attacks.

■ More complex
configuration.

■ Any change to the
transaction flow, such as
changing participants,
participant roles
(coordinator versus
resource or
subcoordinator), adding
or removing a domain, or
changing the transaction
route, requires a
configuration change.

Security Interoperability
Mode

■ Very easy to configure.

■ No need to understand
the transaction flow when
configuring Security
Interoperability Mode.

■ Backward compatible
with WebLogic 8.1.]

■ When in default mode,
using the admin channel
prevents
man-in-the-middle
attacks.

■ Trust is transitive: if
Domain A trusts Domain
B and Domain B trusts
Domain C, then Domain
A will trust Domain C.

■ When set to
compatibility,
inter-domain trust grants
administrator privileges
across domains. That is,
with trust established
between domains, an
Administrator in Domain
A has administrator
privileges in Domain B.

■ In some configurations,
there is a narrow
possibility of
man-in-the-middle
attacks.

Configuring Secure Inter-Domain and Intra-Domain Transaction Communication

3-6 Programming JTA for Oracle WebLogic Server

Use the following table to determine the type of communication channel configuration
required for inter-domain transactions.

Table 3–3 Communication Channel Configurations for Inter-Domain Transactions

Domain
10.x and 9.2 MP2
and higher MPs

9.0, 9.1, 9.2 MP1 and
lower 8.1 SP5 and higher 8.1 SP4 and lower

10.x and 9.2 MP2
and higher MPs

Configure both
domains for Cross
Domain Security

or

use Security
Interoperability
mode and set both
domains to either
default or
performance

Configure the 10.x or
9.2 MP2 and higher
MP domain for Cross
Domain Security and
include the 9.0, 9.1, or
9.2 MP1 and lower
domain in the
exception list

or

use Security
Interoperability mode
and set both domains
to either default or
performance

Configure the 10.x or 9.2
MP2 and higher MP
domain for Cross
Domain Security and
include the 8.1 domain
in the exception list

or

use Security
Interoperability mode
and set both domains to
performance

Configure the 10.x or
9.2 MP2 and higher
MP for Cross Domain
Security and include
the 8.1 domain in the
exception list

or

use Security
Interoperability mode
and set the 10.x or 9.2
MP2 and higher MP
to compatibility

Configuring Secure Inter-Domain and Intra-Domain Transaction Communication

Configuring Transactions 3-7

3.3.3 Configuring Domains for Intra-Domain Transactions
You must correctly configure compatible communication channels between servers
participating in transactions within the same domain using Security Interoperability
Mode. See Section 3.3.5, "Configuring Security Interoperability Mode".

9.0, 9.1, 9.2 MP1
and lower

Configure the 10.x or
9.2 MP2 and higher
MP domain for
Cross Domain
Security and include
the 9.0, 9.1, or 9.2
MP1 and lower
domain in the
exception list

or

use Security
Interoperability
mode and set both
domains to either
default or
performance

Set both domains to
either default or
performance

Set both domains to
performance

Set the 9.x domain to
compatibility

8.1 SP5 and
higher

Configure the 10.x or
9.2 MP2 and higher
MP domain for
Cross Domain
Security and include
the 8.1 domain in the
exception list

or

use Security
Interoperability
mode and set both
domains to
performance

Set both domains to
performance

Set both domains to
performance

Set the 8.1 SP5 and
higher domain to
compatibility

8.1 SP4 and lower Configure the 10.x or
9.2 MP2 and higher
MP for Cross
Domain Security
and include the 8.1
domain in the
exception list

or

use Security
Interoperability
mode and set the
10.x or 9.2 MP2 and
higher MP to
compatibility

Set the 9.x domain to
compatibility

Set the 8.1 SP5 and
higher domain to
compatibility

N/A

Note: When Security Interoperability Mode is set to
performance, you are not required to set domain trust between the
domains.

Table 3–3 (Cont.) Communication Channel Configurations for Inter-Domain Transactions

Domain
10.x and 9.2 MP2
and higher MPs

9.0, 9.1, 9.2 MP1 and
lower 8.1 SP5 and higher 8.1 SP4 and lower

Configuring Secure Inter-Domain and Intra-Domain Transaction Communication

3-8 Programming JTA for Oracle WebLogic Server

For servers in a WebLogic Server 10.x domain, set participating servers to either
default, performance or compatibility.

3.3.4 Configuring Cross Domain Security
Cross Domain Security uses a credential mapper to enable you to configure compatible
communication channels between servers in global transactions. For every domain
pair that participates in a transaction, a credential mapper is configured. Every domain
pair have a different set of credentials which belong to the CrossDomainConnector
security role (see "Configuring a Cross-Domain User" in Securing Oracle WebLogic
Server.

See "Enabling Cross Domain Security Between WebLogic Server Domains" and
"Configure a Credential Mapping for Cross-Domain Security" in Securing Oracle
WebLogic Server.

3.3.4.1 Cross Domain Security is Not Transitive
Servers participating in a transaction set cross-domain credential mapping with each
other. Unlike domain-trust, the cross domain security configuration is not transitive;
that is, because A trusts B and B trusts C, it is not therefore also true that A trusts C.

Consider the follow scenario:

■ DomainA has Server1 (coordinator)

■ DomainB has Server2 (sub-coordinator)

■ DomainC has Server3 and Server4 (Server3 is a sub-coordinator)

■ DomainD has Server5 (does not participate in the transaction)

To set the cross-domain credential mapping in this scenario, do the following:

1. Set cross-domain security in DomainA for DomainB

2. Set cross-domain security in DomainB for DomainA

3. Set cross-domain security in DomainA for DomainC

4. Set cross-domain security in DomainC for DomainA

5. Set cross-domain security in DomainB for DomainC

6. Set cross-domain security in DomainC for DomainB

Because DomainD does not participate in the transaction, using cross-domain
credential mapping is not required. However, see Section 3.3.4.2, "Adding Domains to
the Exclude List Based on Transaction Participation" for further clarification.

To present this information in another way, consider Table 3–4. A table cell containing
Yes indicates that you must configure cross domain security for this domain
combination.

Table 3–4 Setting Cross Domain Security with Three Participating Domains

-- DomainA DomainB DomainC DomainD

DomainA No Yes Yes No

DomainB Yes No Yes No

DomainC Yes Yes No No

DomainD No No No No

Configuring Secure Inter-Domain and Intra-Domain Transaction Communication

Configuring Transactions 3-9

If you were then to add both DomainD and an additional DomainE to the
cross-domain security configuration, the cross-domain credential map would be as
shown in Table 3–5. A table cell containing Yes indicates that you must configure cross
domain security for this domain combination.

3.3.4.2 Adding Domains to the Exclude List Based on Transaction Participation
The exclude list provides a mechanism for a server in a domain with Cross Domain
Security configured to participate in a transaction with a server in another domain that
does not support or have Cross Domain Security enabled.

If any server in a domain in which cross domain security is not configured participates
in a transaction with any server in a domain in which cross domain security is
configured, add that domain to the exclude list of the domain that has cross domain
security configured. Security Interoperability Mode is used to establish
communication channels for participating domains as described in Section 3.3.4.3,
"Important Considerations When Configuring Cross Domain Security."

You do not need to add the domain to the exclude list of all domains that have cross
domain security configured; the domain must explicitly participate in a transaction
with the domain in question for this requirement to take effect.

Consider the following scenario:

■ Transaction #1:

– DomainA has Server1 (coordinator)

– DomainB has Server2 (sub-coordinator)

– DomainC has Server3 and Server4 (Server3 is a sub-coordinator)

– DomainD has Server5 (does not participate in the transaction, cross-domain
security not configured)

■ Transaction #2:

– DomainB has Server6 (coordinator)

– DomainD has Server5 (sub-coordinator, cross-domain security not configured)

In this case DomainD has to be in the exclusion list of DomainB because of Transaction
#2.

You do not need to include it in the exclusion list of DomainA or DomainC because
DomainD does not participate in any transactions with servers in these two domains.

3.3.4.3 Important Considerations When Configuring Cross Domain Security
When configuring Cross Domain Security, consider the following guidelines:

■ Domain trust is not required for Cross Domain Security.

Table 3–5 Setting Cross Domain Security with Five Participating Domains

DomainA DomainB DomainC DomainD DomainE

DomainA No Yes Yes Yes Yes

DomainB Yes No Yes Yes Yes

DomainC Yes Yes No Yes Yes

DomainD Yes Yes Yes No Yes

DomainE Yes Yes Yes Yes No

Configuring Secure Inter-Domain and Intra-Domain Transaction Communication

3-10 Programming JTA for Oracle WebLogic Server

■ For every domain pair that participates in a transaction, a credential mapper must
be correctly configured having a set of credentials which belong to the
CrossDomainConnector security role. If the credential mapping is not correct,
transactions across the participating domains fail. See "Configure a Credential
Mapping for Cross-Domain Security" in Securing Oracle WebLogic Server.

■ Configure one-way SSL to provide additional communication security to protect
the transaction from a man-in-the-middle attack.

■ To interoperate with WebLogic domains that either do not support Cross Domain
Security or have Cross Domain Security disabled, you must add these domains to
the Excluded Domain Names list of every participating WebLogic Server
domain that has Cross Domain Security enabled. If the configuration of the
Excluded Domain Names list and the CrossDomainSecurityEnabled flag is
not consistent in all participating domains, branches of the transaction fail.

■ If Cross Domain Security Enabled flag is disabled or the domain is in the
Excluded Domain Names list, then Security Interoperability Mode is used to
establish communication channels for participating domains.

■ When enabling or disabling the Cross Domain Security Enabled flag, there
may be a period of time where transactions or other remote calls can fail. For
transactions, if the commit request fails, the commit is retried after the
configuration change is complete. If a transaction RMI call fails during any other
request, then the transaction times out and the transaction is rolled back. The
rollback is retried until AbandonTimeoutSeconds.

3.3.5 Configuring Security Interoperability Mode
Security Interoperability Mode enables you to configure compatible
communication channels between servers in global transactions. Use the following
steps to configure Security Interoperability Mode:

1. Section 3.3.5.1, "Establish Domain Trust"

2. Section 3.3.5.2, "Configuring Security Interoperability Mode" using the values from
Table 3–3.

3.3.5.1 Establish Domain Trust
Establish domain trust by setting a security credential for all domains to the same
value in all participating domains.

■ For 8.x domains, see Enabling Trust Between WebLogic Domains in Managing
WebLogic Security at http://download.oracle.com/docs/cd/E13222_
01/wls/docs81/secmanage/domain.html#domain_interop.

■ For 9.x domains, see Enable trust between domains in Oracle WebLogic Server
Administration Console Help at
http://download.oracle.com/docs/cd/E13222_
01/wls/docs92/ConsoleHelp/taskhelp/security/EnableTrustBetwee
nDomains.html.

■ For 10.x domains, see Enable trust between domains in Oracle WebLogic Server
Administration Console Help at

Note: When Security Interoperability Mode is set to
performance, you are not required to set domain trust between the
domains.

Configuring Secure Inter-Domain and Intra-Domain Transaction Communication

Configuring Transactions 3-11

http://download.oracle.com/docs/cd/E13222_
01/wls/docs100/ConsoleHelp/taskhelp/security/EnableTrustBetwe
enDomains.html.

3.3.5.2 Configuring Security Interoperability Mode
Every participating server must set the Security Interoperability Mode
parameter to the same value:

Valid values are:

■ default—The transaction coordinator makes calls using the kernel identity over an
admin channel if it is enabled. If the admin channel is not configured, the
Security Interoperability Mode behavior is the same as using
performance.

■ performance—The transaction coordinator always makes calls using anonymous.
This implies a security risk since a malicious third party could then try to affect the
outcome of transactions using a man-in-the-middle attack.

■ compatibility—The transaction coordinator makes calls as the kernel identity over
a non-secure channel. This mode is required when interacting with WebLogic
Servers servers that do not support Security Interoperability Mode. This
is a high security risk because a successful man-in-the-middle attack would allow
the attacker to gain administrative control over both domains. This setting should
only be used when strong network security is in place.

To configure Security Interoperability Mode for participating servers, see the
following topics in the Oracle WebLogic Server Administration Console Help:

■ For servers in WebLogic Server 10.x domains, see Configure security
interoperability mode at http://download.oracle.com/docs/cd/E13222_
01/wls/docs100/ConsoleHelp/taskhelp/jta/ConfigureInteropMode.
html.

■ For servers in WebLogic Server 9.x domains, see Configure the security mode for
XA transactions at http://download.oracle.com/docs/cd/E13222_
01/wls/docs92/ConsoleHelp/taskhelp/jta/ConfigureInteropMode.h
tml.

■ For servers in WebLogic Server 8.1 domains, see Using Security Interoperability
Mode at http://download.oracle.com/docs/cd/E13222_
01/wls/docs81/ConsoleHelp/jta.html#CR241279.

3.3.5.3 Configuring Domains for JNDI Lookups Requiring an Admin User
The following section provides information on how to configure SecurityInteropMode
when transactions use JNDI lookups that require an admin user.

■ If the WebLogic Server domain is 9.0, 9.1, 9.2 and higher MP, 10.x or higher MP
then do one of the following:

– Set SecurityInteropMode=default, configure admin channels, and
enable domain trust.

– Set SecurityInteropMode=compatibility and enable domain trust.

■ If the WebLogic Server domain is 8.1SP5 and higher SP, then set
SecurityInteropMode=compatibility and enable domain trust.

When SecurityInteropMode is set to compatibility Man-in-the-middle attacks are
possible.

Transaction Log Files

3-12 Programming JTA for Oracle WebLogic Server

3.4 Transaction Log Files
Each server has a transaction log which stores information about committed
transactions coordinated by the server that may not have been completed. WebLogic
Server uses the transaction log when recovering from system crashes or network
failures. You cannot directly view the transaction log—the records are in a binary
format and are stored in either the default persistent store or a JDBC TLOG store for
the server.

3.4.1 Using the Default Persistent Store
To take advantage of the migration capability of the Transaction Recovery Service for
servers in a cluster, you must store the transaction log in a location that is available to a
server and its backup servers, preferably on a dual-ported SCSI disk or on a Storage
Area Network (SAN). See Section 3.4.1.1, "Setting the Path for the Default Persistent
Store" for more information.

If the file system on which the default store saves transaction log records runs out of
space or is inaccessible, commit() throws SystemException, and the transaction
manager places a message in the system error log. No transactions are committed until
more space is available.

3.4.1.1 Setting the Path for the Default Persistent Store
Each server instance, including the administration server, has a default persistent
store, which is a file-based store that is available to subsystems that do not require
explicit selection of a particular store and function best by using the system's default
storage mechanism. The transaction manager uses the default persistent store to store
transaction log records. In many cases, the default persistent store requires no
configuration. However, to enable migration of the Transaction Recovery Service, you
must configure the default persistent store so that it stores its data files on a persistent
storage solution that is available to other servers in the cluster if the original server
fails.

See "Configure the default persistent store for Transaction Recovery Service migration"
in the Oracle WebLogic Server Administration Console Help for instructions.

3.4.1.2 Setting the Default Persistent Store Synchronous Write Policy
WebLogic Server uses the default persistent store to store transaction log records.
Select a write policy for the default store to change the way WebLogic Server writes
records to disk, see "Guidelines for Configuring a Synchronous Write Policy" in
Configuring Server Environments for Oracle WebLogic Server.

See "Configure the default persistent store for Transaction Recovery Service migration"
in the Oracle WebLogic Server Administration Console Help for instructions.

3.4.2 Using a JDBC JTOG Store
You can configure a JDBC TLOG store to persist transaction logs to a database, which
allows you to leverage replication and HA characteristics of the underlying database,
simplify disaster recovery, and improve Transaction Recovery service migration. See
"Using a JDBC TLog Store" in Configuring Server Environments for Oracle WebLogic
Server.

Read-only, One-Phase Commit Optimizations

Configuring Transactions 3-13

3.5 Read-only, One-Phase Commit Optimizations
When resource managers, such as the Oracle Database (including AQ and RAC),
provide read-only optimizations, Oracle WebLogic can provide a read-only, one-phase
commit optimization that provides a number of benefits – even when enabling
multiple connections of the same XA transactions – such as eliminating
XAResource.prepare network calls and transaction log writes, both in Oracle
WebLogic and in the resource manager.

For applications that do not require two-phase commit transactions, you can further
optimize performance by also disabling the WebLogic "Two Phase Commit" protocol,
which coordinates transactions across two or more resource managers. Disabling
two-phase commits, does the following:

■ Removes persistent in-doubt logging and locks, as well as bookkeeping overhead
in the database.

■ Removes all checkpoint logging in WebLogic.

■ Enforces and/or tests the assumption that a particular server instance does not
require two-phase commit.

■ Removes the need for WebLogic migration (whole server or service) recovery,
which in turn removes the need for additional assets/capacity, management, etc.,
involved in such migrations.

3.5.1 Configuring Read-only, One-phase Commit Optimization and Two-phase Commit
Disablement

In order to enable the read-only, one-phase commit optimization and disable
two-phase commits, configure the following JTA domain configuration attributes:

■ Execute XA Calls In Parallel – Set to false to enable the read-only, one-phase
commit optimization.

■ Enable Two Phase Commit – Optionally, set to false to disable two-phase
commit transactions. This disables all transaction logging, including checkpoint
records. Any attempt to use two-phase commit will result in a RollbackException
being thrown.

Important! The Enable Two Phase Commit setting, which is true by default,
should not to be set to false unless it is well-known that the application only
uses a resource manager that provides read-only optimization, such as Oracle
database, or that the application only uses a single connection to a single resource
manager.

Note: Read-only, One-phase Commit Optimization requires Oracle
DB 11.1.0.7.3PSU or above.

Note: If a XA resource returns an XA_OK vote from a prepare (for
example, if it is not an Oracle database), and the WebLogic instance
then crashes before rollback can take place, there will be an in-doubt
record and locks will be held in the resource manager (database) that
will need to be manually resolved.

Read-only, One-Phase Commit Optimizations

3-14 Programming JTA for Oracle WebLogic Server

For more information on all JTA domain configuration options, see "Configuring JTA
Domains" in the WebLogic Administration Console Online Help.

3.5.2 Monitoring Read-only, One-phase Transaction Statistics
For monitoring purposes, there are five transaction processing statistics on the JTA
Monitoring page, which together break down the Transaction Committed Total Count
statistic to better track any read-only, one-phase commit transactions.

■ Transaction No Resources Committed Total Count – The total number of
transactions with no enlisted resources that were committed since the server was
started.

■ Transaction One Resource One Phase Committed Total Count – The total number
of transactions with only one enlisted resource that were one-phase committed
since the server was started.

■ Transaction Read Only One Phase Committed Total Count – The total number of
transactions with more than one enlisted resource that were one-phase committed
due to read-only optimization since the server was started.

■ Transaction Two Phase Committed Total Count – The total number of transactions
with more than one enlisted resource that were two-phase committed since the
server was started.

■ Transaction LLR Committed Total Count – The total number of LLR transactions
that were committed since the server was started.

Note: If the only resource enlisted in a JTA transaction is an LLR data source, then
such transactions are included under the Transaction One Resource One Phase
Committed Total Count category rather than the Transaction LLR Committed Total
Count category.

For more information on JTA monitoring statistics, see "Monitoring JTA Statistics" in
the WebLogic Administration Console Online Help.

4

Managing Transactions 4-1

4Managing Transactions

This chapter provides information on administration tasks used to manage
transactions. These tasks include monitoring transactions, handling heuristic
completions, how to abandon a transaction, resolving in-flight transactions, and
transaction recovery.

■ Section 4.1, "Monitoring Transactions"

■ Section 4.2, "Handling Heuristic Completions"

■ Section 4.3, "Moving a Server"

■ Section 4.4, "Abandoning Transactions"

■ Section 4.5, "Manually Resolving Current (Inflight) Transactions"

■ Section 4.6, "Transaction Recovery After a Server Fails"

Monitor transactions on a server using statistics and monitoring facilities. Use the
Administration Console to configure these features and to display the resulting
output.

4.1 Monitoring Transactions
In the Administration Console, monitor transactions for each server in the domain.
Transaction statistics are displayed for a specific server, not the entire domain.

For instructions, see the following pages in the Oracle WebLogic Server Administration
Console Help:

■ "View transaction statistics" (and "Servers: Monitoring: JTA: Summary")

■ "View statistics for named transactions" (and "Servers: Monitoring: JTA:
Transactions By Name")

■ "View transaction statistics for XA resources" (and "Servers: Monitoring: JTA XA
Resources")

■ "View transaction statistics for non-XA resources" (and "Servers: Monitoring: JTA:
Non-XA Resources")

■ "View current transactions" (and "Servers: Monitoring: JTA: Transactions")

■ "View transaction recovery statistics" (and "Servers: Monitoring: JTA: Recovery
Services")

Handling Heuristic Completions

4-2 Programming JTA for Oracle WebLogic Server

4.2 Handling Heuristic Completions
A heuristic completion (or heuristic decision) occurs when a resource makes a
unilateral decision during the completion stage of a distributed transaction to commit
or rollback updates. This can leave distributed data in an indeterminate state. Network
failures or resource timeouts are possible causes for heuristic completion. In the event
of an heuristic completion, one of the following heuristic outcome exceptions may be
thrown:

■ HeuristicRollback—one resource participating in a transaction decided to
autonomously rollback its work, even though it agreed to prepare itself and wait
for a commit decision. If the Transaction Manager decided to commit the
transaction, the resource's heuristic rollback decision was incorrect, and might lead
to an inconsistent outcome since other branches of the transaction were
committed.

■ HeuristicCommit—one resource participating in a transaction decided to
autonomously commit its work, even though it agreed to prepare itself and wait
for a commit decision. If the Transaction Manager decided to rollback the
transaction, the resource's heuristic commit decision was incorrect, and might lead
to an inconsistent outcome since other branches of the transaction were rolled
back.

■ HeuristicMixed—the Transaction Manager is aware that a transaction resulted
in a mixed outcome, where some participating resources committed and some
rolled back. The underlying cause was most likely heuristic rollback or heuristic
commit decisions made by one or more of the participating resources.

■ HeuristicHazard—the Transaction Manager is aware that a transaction might
have resulted in a mixed outcome, where some participating resources committed
and some rolled back. But system or resource failures make it impossible to know
for sure whether a Heuristic Mixed outcome definitely occurred. The underlying
cause was most likely heuristic rollback or heuristic commit decisions made by
one or more of the participating resources.

When an heuristic completion occurs, a message is written to the server log. Refer to
your database vendor documentation for instructions on resolving heuristic
completions.

Some resource managers save context information for heuristic completions. This
information can be helpful in resolving resource manager data inconsistencies. If the
ForgetHeuristics attribute is selected (set to true) on the JTA panel of the
WebLogic Console, this information is removed after an heuristic completion. When
using a resource manager that saves context information, you may want to set the
ForgetHeuristics attribute to false.

4.3 Moving a Server
A server instance is identified by its URL (IP address or DNS name plus the listening
port number). Changing the URL by moving the server to a new machine or changing
the Listening Port of a server on the same machine effectively moves the server so the
server identity may no longer match the information stored in the transaction logs.

■ If the new server has the same URL as the old server, the Transaction Recovery
Service searches all transaction log files for incomplete transactions and completes
them as described in Section 4.6.1, "Transaction Recovery Service Actions After a
Crash".

Abandoning Transactions

Managing Transactions 4-3

■ When the coordinator server is in the same domain as the sub-coordinator and the
server URL changes, the coordinator queries the Administration Server for the
new URL of the sub-coordinator and the propagation of any new transactions and
any transactions that are committing or rolling back use the new URL. Transaction
branches for the sub-coordinator with pending commit records stored in the
coordinator's transaction log files before the URL change are unrecoverable. If you
wish, you can delete the transaction log files of the coordinator. This step prevents
the Transaction Recovery Service from attempting to resolve these transactions
until the value of the AbandonTimeoutSeconds parameter is exceeded. See
Section 4.4, "Abandoning Transactions" and Section 4.6.4, "How to Remove
Transaction Records" for more information.

■ When transactions span multiple domains and if a server acting as a remote
transaction sub-coordination fails and its URL changes, any ongoing transactions
do not complete (commit or are rolled back) because the coordinator is unable to
communicate with the remote domain’s Admin server. The coordinator is unable
to contact the sub-coordinator using the new URL and any ongoing transactions
fail. The coordinator attempts the commit or rollback request until the
AbandonTimeoutSeconds value is exceeded. See Section 4.4, "Abandoning
Transactions" for more information. Any new transactions fail because the
coordinator cannot contact the sub-coordinator. The TLOGs of the coordinator and
sub-coordinators, excluding the moved server domain, must be deleted. See
Section 4.6.4, "How to Remove Transaction Records."

Oracle recommends configuring server instances using DNS names rather than IP
addresses to promote portability.

If you move a server to a new machine, follow the instructions for Section 4.6.2,
"Recovering Transactions For a Failed Non-Clustered Server."

4.4 Abandoning Transactions
You can choose to abandon incomplete transactions after a specified amount of time.
In the two-phase commit process for distributed transactions, the transaction manager
coordinates all resource managers involved in a transaction. After all resource
managers vote to commit or rollback, the transaction manager notifies the resource
managers to act—to either commit or rollback changes. During this second phase of
the two-phase commit process, the transaction manager continues to try to complete
the transaction until all resource managers indicate that the transaction is completed.
Using the AbandonTimeoutSeconds attribute, set the maximum time, in seconds,
that a transaction manager persists in attempting to complete a transaction during the
second phase of the commit protocol. The default value is 86400 seconds, or 24 hours.
After the abandon transaction timer expires, no further attempt is made to resolve the
transaction with any resources that are unavailable or unable to acknowledge the
transaction outcome. If the transaction is in a prepared state before being abandoned,
the transaction manager rolls back the transaction to release any locks held on behalf
of the abandoned transaction and writes an heuristic error to the server log.

You may want to review the following related information:

■ For instructions on how to set the AbandonTimeoutSeconds attribute, see
"Configure JTA" in the Oracle WebLogic Server Administration Console Help.

4.4.1 Tuning Transaction Processing
The first phase of the two-phase commit protocol is called the prepare phase. The
required updates are recorded in a transaction log file, and the resource must indicate,

Abandoning Transactions

4-4 Programming JTA for Oracle WebLogic Server

through a resource manager, that it is ready to make the changes. Resources either vote
to commit the updates or to roll back to the previous state. The second or commit
phase is what happens after the resources vote. If all resources vote to commit, all the
resources participating in the transaction are updated. If one or more of the resources
vote to roll back, then all the resources participating in the transaction are rolled back
to their previous state. WebLogic Server provides the following parameters that you
can use to tune the amount of time spent processing a transaction.

■ The maximum amount of time that can be spent processing from the beginning of
a transaction until the end of the first phase of a transaction is controlled by setting
the value of the transaction-timeout attribute.

■ The maximum amount of time that can be spent processing the second phase of a
transaction is controlled by setting the value of the
completion-timeout-seconds attribute.

Prior to WebLogic Server 10.3.3, the maximum amount of time spent processing the
second phase was approximately twice the default transaction-timeout value
with a maximum value of 120 seconds and not tunable. For the vast majority of
environments, the time allotted for completion of the second phase is adequate.
However, in environments where high system stress or high network latency can
occur, it is possible to exceed the maximum amount of time available to complete the
commit phase and the transaction manager throws a SystemException. A
SystemException is non-deterministic relative to transaction outcome so an
application environment must provide special exception handling for this case which
often involves manually analyzing the transaction activity and state of the resources
involved in the transaction. As application stacks become more complex, it becomes
more difficult to resolve transaction outcomes. The completion-timeout-seconds
attribute provides the possibility for a successful or deterministic completion in many
cases by allowing a longer processing time for the commit phase.

If the completion-timeout-seconds value exceeds the value set for
abandon-timeout-seconds, the abandon-timeout-seconds overrides
completion-timeout-seconds value. If the transaction is abandoned, a
SystemException is thrown. In general, transactions requiring a large values for the
transaction-completion-seconds attribute indicate a need for system tuning.

For configuration information, see:

■ "Configure advanced domain JTA options" in Oracle WebLogic Server Administration
Console Online Help

■ "CompletionTimeoutSeconds" in Oracle WebLogic Server MBean Reference

Note: Please note that if the abandon-timeout-seconds value is
set less than 60 seconds, it is voided by the default
completion-timeout-seconds setting. Also, within the first 600
seconds (ten minutes) after the transaction service's startup, the
abandon-timeout-seconds setting becomes fully void.

Note: The completion-timeout-seconds attribute does not apply to
imported transactions such as JCA transactions or to recovering
transactions.

Manually Resolving Current (Inflight) Transactions

Managing Transactions 4-5

4.5 Manually Resolving Current (Inflight) Transactions
In some cases, a transaction may not complete normally due to system or network
failures. In such situations there may be locks held on behalf of the pending
transaction that are inhibiting the progress of other transactions. After the Abandon
Timeout period has elapsed, the WebLogic Server Transaction Manager removes the
transaction from its internal data structures and writes a heuristic error to the server
log. You can also manually resolve "stuck" transactions.

To manually resolve a transaction, you view current (inflight) transactions for a server
from the Server>Monitoring>JTA tab (see "View current transactions" in Oracle
WebLogic Server Administration Console Help) and then view details about a specific
transaction by clicking the transaction id. You can then force a commit or a rollback,
depending on the status of the transaction.

The following table provides information on transaction status and resolution options.

Note: It is possible for a transaction to have different states at
different servers. For instance, a transaction may have been committed
at the coordinating server, but a remote participant may not have
received the commit instruction.

Table 4–1 Transaction Status Definitions and Manual Resolution Options

Status Definition Forced Commit? Forced Rollback?

Active The application is processing the
transaction. The transaction has not yet
reached the two-phase commit
processing.

Y

Prepari
ng

Corresponds to the interval between
when the transaction manager starts
the javax.transaction.Synchronization
beforeCompletion() callback
processing, through the first phase of
the 2PC protocol, and up to the point
when all participants have responded,
"ready to commit."

Y

Prepare
d

The interval between when all
participants have responded to
prepare up to the commit point
(commit log record is flushed to disk)
or to the initiation of rollback
processing.

Y Y

Commit
ting

The time from when the commit
decision is made up to the point when
all participants have been informed of
the outcome and the
javax.transaction.Synchroniz
ation afterCompletion()
callback processing has completed.

Y

Commit
ted

The transaction has been committed. It
is likely that heuristics exists,
otherwise the transaction would have
been completed and would not have
been displayed in the list of current
transactions.

Y

Manually Resolving Current (Inflight) Transactions

4-6 Programming JTA for Oracle WebLogic Server

4.5.1 Manual Commit and Rollback Options
To manually resolve a transaction, you can choose from the following options.Options
are restricted as described in Table 4–1, " Transaction Status Definitions and Manual
Resolution Options".

■ Force Local Commit—Each participating resource that is registered on the server
is issued a commit operation for the specified transaction and the transaction will
be removed from the local transaction manager's data structures. If the local server
is the coordinator for the transaction, the commit record is released. See "Force
local commit" in Oracle WebLogic Server Administration Console Help.

■ Force Global Commit—A local commit operation is attempted at each
participating server for the specified transaction. If this option is invoked on a
non-coordinating server, the coordinator will be contacted to process the
operation. The coordinating server will issue asynchronous requests to each
participant server. See "Force global commit" in Oracle WebLogic Server
Administration Console Help.

■ Force Local Rollback—Each participating resource that is registered on the local
server is issued a rollback operation for the specified transaction. The transaction
will then be removed from the local transaction manager's data structures. See
"Force local rollback" in Oracle WebLogic Server Administration Console Help.

■ Force Global Rollback—A local rollback operation is attempted at each
participating server for the specified transaction. If this option is invoked on a
non-coordinating server, the coordinator will be contacted to process the
operation. The coordinating server will issue asynchronous requests to each
participant server. See "Force global rollback" in Oracle WebLogic Server
Administration Console Help.

Rolling
Back

This state occurs from the point when
rollback processing is initiated up to
the point when all participants have
been instructed to rollback and the
javax.transaction.Synchroniz
ation afterCompletion()
callback processing has completed.

Y

Rolled
Back

The transaction has been rolled back. It
is likely that heuristics exists,
otherwise the transaction would have
been destroyed and would not have
been displayed in the list of current
transactions.

Y

Marked
Roll
Back

The transaction has been marked for
rollback, perhaps as a result of a
setRollbackOnly operation.

Y

No
Transact
ion

Unkno
wn

Current status cannot be determined. Y Y

Table 4–1 (Cont.) Transaction Status Definitions and Manual Resolution Options

Status Definition Forced Commit? Forced Rollback?

Transaction Recovery After a Server Fails

Managing Transactions 4-7

The difference between the Local and Global options is that Local options act only
upon the current server resources (resources on the server that you select in the
navigation tree in the left pane of the Administration Console), whereas the Global
options attempt to perform the operation across all participating servers. If a Global
operation is invoked for a transaction that is not coordinated by the local server then
an attempt will be made to contact the coordinator of the transaction in order to
perform the operation. If the coordinator cannot be reached, the operation will fail
with a javax.transaction.SystemException.

In the case where a transaction may have been committed at the coordinating server
(committing status), but a remote participant did not receive the commit instruction
(prepared status). You can force a local commit on the remote participant to complete
the transaction. In this case it is possible to force a rollback on the remote participant
since its transaction state will still be prepared, but the transaction will complete
heuristically. If you try to force a global rollback, the operation will fail because the
state at the coordinator is committing. You cannot roll back a transaction with the
committing status.

4.6 Transaction Recovery After a Server Fails
The WebLogic Server transaction manager is designed to recover from system crashes
with minimal user intervention. The transaction manager makes every effort to resolve
transaction branches that are prepared by resource managers with a commit or roll
back, even after multiple crashes or crashes during recovery.

To facilitate recovery after a crash, WebLogic Server provides the Transaction Recovery
Service, which automatically attempts to recover transactions on system startup. On
startup, the Transaction Recovery Service parses all transaction log records for
incomplete transactions and completes them as described in Section 4.6.1, "Transaction
Recovery Service Actions After a Crash".

Because the Transaction Recovery Service is designed to gracefully handle transaction
recovery after a crash, Oracle recommends that you attempt to restart a crashed server
and allow the Transaction Recovery Service to handle incomplete transactions.

If a server crashes and you do not expect to be able to restart it within a reasonable
period of time, you may need to take action. Procedures for recovering transactions
after a server failure differ based on your WebLogic Server environment. For a
non-clustered server, you can manually move the server (with the default persistent
store DAT file) to another system (machine) to recover transactions. See Section 4.6.2,
"Recovering Transactions For a Failed Non-Clustered Server" for more information.
For a server in a cluster, you can manually migrate the whole server or the Transaction
Recovery Service to another server in the same cluster. Migrating the Transaction
Recovery Service involves selecting a server with access to the transaction logs to
recover transactions, and then migrating the service using the Administration Console
or the WebLogic command-line interface.

Note: When you select any of these options, WebLogic Server writes
entries to the server log.

Note: For non-clustered servers, you can only move the entire server
to a new system. For clustered servers, you can migrate the entire
server or temporarily migrate the Transaction Recovery Service.

Transaction Recovery After a Server Fails

4-8 Programming JTA for Oracle WebLogic Server

For more information about migrating the Transaction Recovery Service, see
Section 4.6.3, "Recovering Transactions For a Failed Clustered Server". For more
information about clusters, see Using Clusters for Oracle WebLogic Server.

The following sections provide information on how to recover after a failure:

■ Section 4.6.1, "Transaction Recovery Service Actions After a Crash"

■ Section 4.6.2, "Recovering Transactions For a Failed Non-Clustered Server"

■ Section 4.6.3, "Recovering Transactions For a Failed Clustered Server"

■ Section 4.6.4, "How to Remove Transaction Records"

4.6.1 Transaction Recovery Service Actions After a Crash
When you restart a server after a crash or when you migrate the Transaction Recovery
Service to another (backup) server, the Transaction Recovery Service does the
following:

■ Complete transactions ready for second phase of two-phase commit

For transactions for which a commit decision has been made but the second phase
of the two-phase commit process has not completed (transactions recorded in the
transaction log), the Transaction Recovery Service completes the commit process.

■ Resolve prepared transactions

For transactions that the transaction manager has prepared with a resource
manager (transactions in phase one of the two-phase commit process), the
Transaction Recovery Service must call XAResource.recover() during crash
recovery for each resource manager and eventually resolve (by calling the
commit(), rollback(), or forget() method) all transaction IDs returned by
recover().

■ Report heuristic completions

If a resource manager reports a heuristic exception, the Transaction Recovery
Service records the heuristic exception in the server log and calls forget() if the
Forget Heuristics configuration attribute is enabled. If the Forget
Heuristics configuration attribute is not enabled, refer to your database
vendor's documentation for information about resolving heuristic completions.
See Section 4.2, "Handling Heuristic Completions" for more information.

The Transaction Recovery Service provides the following benefits:

■ Maintains consistency across resources

The Transaction Recovery Service handles transaction recovery in a consistent,
predictable manner: For a transaction for which a commit decision has been made
but is not yet committed before a crash, and XAResource.recover() returns
the transaction ID, the Transaction Recovery Service consistently calls
XAResource.commit(); for a transaction for which a commit decision has not
been made before a crash, and XAResource.recover() returns its transaction
ID, the Transaction Recovery Service consistently calls
XAResource.rollback(). With consistent, predictable transaction recovery, a
transaction manager crash by itself cannot cause a mixed heuristic completion
where some branches are committed and some are rolled back.

■ Persists in achieving transaction resolution

If a resource manager crashes, the Transaction Recovery Service must eventually
call commit() or rollback() for each prepared transaction until it gets a

Transaction Recovery After a Server Fails

Managing Transactions 4-9

successful return from commit() or rollback(). The attempts to resolve the
transaction can be limited by setting the AbandonTimeoutSeconds
configuration attribute. See Section 4.4, "Abandoning Transactions" for more
information.

4.6.1.1 Clustering Failover When Using Apache With the WebLogic Proxy Plug-in
When using Apache with the WebLogic Proxy plug-in as the front-end for a cluster,
the plug-in uses several configuration parameters to determine how long to wait for
connections to the WebLogic Server host and, after a connection is established, how
long the plug-in waits for a response:

■ Verify the setting of the Apache idempotent flag. When idempotent is set to
ON, and if the servers do not respond within the specified WLIOTimeoutSecs
value, the plug-ins fail over. The plug-ins also fail over if idempotent is set to
ON and the servers respond with an error such as READ_ERROR_FROM_SERVER.
If set to OFF, the plug-ins do not fail over. For more information, see "Parameters
for Web Server Plug-Ins" in Using Web Server 1.1 Plug-Ins with Oracle WebLogic
Server.

■ Verify the setting of WebLogic Proxy Plug-in retry mechanism; for example,
whether the maximum number of retries allowed is equal to the
ConnectTimeoutSecs value divided by the ConnectRetrySecs value. For
more information, see "Failover, Cookies, and HTTP Sessions" in Using Web Server
1.1 Plug-Ins with Oracle WebLogic Server.

4.6.2 Recovering Transactions For a Failed Non-Clustered Server
To recover transactions for a failed server, follow these steps:

1. Move (or make available) the persistent store DAT file (which contains all
transaction log records) from the failed server to a new server.

2. Set the path for the default persistent store with the path to the data file. See
Section 3.4.1.1, "Setting the Path for the Default Persistent Store".

3. Start the new server. The Transaction Recovery Service searches all transaction log
files for incomplete transactions and completes them as described in Section 4.6.1,
"Transaction Recovery Service Actions After a Crash".

When moving transaction log records after a server failure, make all transaction log
records available on the new machine before starting the server there. Otherwise,
transactions in the process of being committed at the time of a crash might not be
resolved correctly, resulting in application data inconsistencies. Accomplish this by
storing persistent store data files on a dual-ported disk available to both machines. As
in the case of a planned migration, update the default file store directory attribute
with the new path before starting the server if the pathname is different on the new
machine.

Note: The Transaction Recovery Service is designed to gracefully
handle transaction recovery after a crash. Oracle recommends that
you attempt to restart a crashed server and allow the Transaction
Recovery Service to handle incomplete transactions, rather than move
the server to a new machine.

Transaction Recovery After a Server Fails

4-10 Programming JTA for Oracle WebLogic Server

4.6.3 Recovering Transactions For a Failed Clustered Server
When a clustered server fails, you have the following options for recovering
transactions:

■ Section 4.6.3.1, "Server Migration"

■ Section 4.6.3.2, "Manual Transaction Recovery Service Migration"

4.6.3.1 Server Migration
For clustered servers, WebLogic Server enables you to migrate a failing server to a new
machine, including the Transaction Recovery Service. When the server migrates to
another machine, it must be able to locate the transaction log records to complete or
recover transactions. Transaction log records are stored in the default persistent store
for the server. If you plan to migrate clustered servers in the event of a failure, you
must set up the default persistent store so that it stores records in a shared storage
system that is accessible to any potential machine to which a failed migratable server
might be migrated. For highest reliability, use a shared storage solution that is itself
highly available—for example, a storage area network (SAN).

For information about server migration, see "Whole Server Migration" in Using
Clusters for Oracle WebLogic Server.

For more information about setting default persistent store options, see:

■ Section 3.4.1.1, "Setting the Path for the Default Persistent Store"

■ Section 3.4.1.2, "Setting the Default Persistent Store Synchronous Write Policy"

4.6.3.2 Manual Transaction Recovery Service Migration
When a clustered server crashes, you can manually migrate the Transaction Recovery
Service from the crashed server to another server in the same cluster using the
Administration Console or the command-line interface. For instructions to manually
migrate the Transaction Recovery Service using the Administration Console, see
"Manually migrate the Transaction Recovery Service" in the Oracle WebLogic Server
Administration Console Help.

You can also configure WebLogic Server to automatically migrate the Transaction
Recovery Service to a healthy candidate server based with the help of WebLogic Server
health monitoring of singleton services. See Section 4.6.3.3, "Automatic Transaction
Recovery Service Migration".

4.6.3.2.1 What Occurs During Transaction Recovery Service Migration When manual or
automatic service migration takes place, the following events occur:

1. The Transaction Recovery Service on the backup server takes ownership of the
transaction log from the crashed server.

2. The Transaction Recovery Service searches all transaction log records from the
failed server for incomplete transactions and completes them as described in
Section 4.6.1, "Transaction Recovery Service Actions After a Crash".

3. If the Transaction Recovery Service on the backup server successfully completes all
incomplete transactions from the failed server, the server releases ownership of the
Transaction Recovery Service for the failed server so the failed server can reclaim it
upon restart.

A server can perform transaction recovery for multiple failed servers. While
recovering transactions for other servers, the backup server continues to process and
recover its own transactions. If the backup server fails during recovery, you can

Transaction Recovery After a Server Fails

Managing Transactions 4-11

migrate the Transaction Recovery Service to yet another server, which continues the
transaction recovery. You can also manually migrate the Transaction Recovery Service
back to the original failed server using the Administration Console or the
command-line interface. See Section 4.6.3.9, "Manually Migrating the Transaction
Recovery Service to the Original Server" for more information.

When a backup server completes transaction recovery for a server, it releases
ownership of the Transaction Recovery Service for the failed server. When you restart
a failed server, it attempts to reclaim ownership of its Transaction Recovery Service. If
a backup server is in the process of recovering transactions when you restart the failed
server, the backup server stops recovering transactions, performs some internal
cleanup, and releases ownership of the Transaction Recovery service so the failed
server can reclaim it and start properly. The failed server then completes its own
transaction recovery.

If a backup server still owns the Transaction Recovery Service for a failed server and
the backup server is inactive when you attempt to restart the failed server, the failed
server does not start because the backup server cannot release ownership of the
Transaction Recovery Service. This is also true if the fail back mechanism fails or if the
backup server cannot communicate with the Administration Server. You can manually
migrate the Transaction Recovery using the Administration Console or the
command-line interface.

4.6.3.3 Automatic Transaction Recovery Service Migration
You can specify to have the Transaction Recovery Service automatically migrated from
an unhealthy server instance to a healthy server instance, with the help of the server
health monitoring services. This way the backup server can complete transaction work
for the failed server. See "Roadmap for Configuring Automatic Migration of the JTA
Transaction Recovery Service" in Using Clusters for Oracle WebLogic Server.

4.6.3.4 Managed Server Independence
Prior to WebLogic Server 10.0, when a cluster's primary Managed Server was booted,
but was unable to contact the Administration Server (mostly because that
Administration Server had not started yet), then the primary Managed Server would
automatically go into MSI (managed server independence) mode and continue to boot
up using its local configuration information. During a manual migration of the
Transaction Recovery Service, this situation posed a potential risk that a backup server
was still recovering TLOG data on behalf of the primary Managed Server, which could
then lead to concurrent access to TLOG and potential corruption of the TLOG.

To avoid risking potential TLOG corruption, there is a strictOwnershipCheck
property on the JTAMigratableTargetMBean. This way, when a primary Managed
Server attempts to boot up and it finds that it cannot connect to the Administration
Server (for the manual JTA migration policy) or the Singleton Master (for the
automatic JTA migration policy), then it verifies its independence by checking the
value of the strictOwnershipCheck, as follows:

■ True – This is the recommended setting. The primary Managed Server throws an
exception and fail to boot.

■ False – The primary Managed Server skips the Transaction Recovery Service
failback, then it can boot successfully. This poses the same TLOG corruption risk
as in WebLogic Server 9.2 or earlier.

Transaction Recovery After a Server Fails

4-12 Programming JTA for Oracle WebLogic Server

4.6.3.5 Limitations of Migrating the Transaction Recovery Service
When manually or automatically migrating the Transaction Recovery Service, the
following limitations apply:

■ You cannot migrate the Transaction Recovery Service to a backup server from a
server that is running. You must stop the server before migrating the Transactions
Recovery Service.

■ The backup server does not accept new transaction work for the failed server. It
only processes incomplete transactions.

■ The backup server does not process heuristic log files.

■ The backup server only processes log records written by WebLogic Server. It does
not process log records written by gateway implementations, including WebLogic
Tuxedo Connector.

In addition to the limitations described above, the following rules also apply when
WebLogic Server 10.0 or later is configured to automatically migrate the Transaction
Recovery Service:

■ If the cluster also contains servers from earlier releases of WebLogic Server, the
primary server and backup servers must be WebLogic Server 10.0 or later. To
enforce this when automatic migration is enabled, on the Administration Console,
only WebLogic Server 10.0 or later servers appear in the Candidate Servers
Available list.

■ Manual service migration is supported between release 9.2 or earlier servers and
release 10.0 or later servers if no migration scripts are used.

4.6.3.6 Preparing to Migrate the Transaction Recovery Service
To migrate the Transaction Recovery Service from a failed server in a cluster to another
server (backup server) in the same cluster, the backup server must have access to the
transaction log records from the failed server. Therefore, you must store default
persistent store data files on persistent storage available to all potential backup servers
in the cluster. Consider the following:

■ A storage area network (SAN) is recommended.

■ If you use an NFS file system, configure the NFS server so that disk writes are not
cached.

■ Regardless of the storage solution, test failover and migration.

With some storage solutions, particularly some versions of NFS, file locking can be
an issue. You may need to configure your storage server to handle file locks
effectively or you may need to turn off file locking for the WebLogic file store.

Transaction Recovery After a Server Fails

Managing Transactions 4-13

The following persistent store rules apply when manually or automatically migrating
the Transaction Recovery Service:

■ The default persistent store cannot be shared by JTA and other migratable services.
Other migratable services, such as JMS services, must use another custom store if
they are targeted to a migratable target.

■ If post-deactivation and pre-activation scripts are specified to perform any
dismounting and mounting of the default store, then the Node Manager must be
configure and running on all candidate machines.

The Administration Server must be available when the primary server starts up, fails
over, or fails back. This is required to guarantee that the Transaction Recovery Service
gets exclusive ownership to its TLOG correctly and without conflict. When the
primary server starts up, the Transaction Recovery Service connects to Administration
Server to get the latest information about JTA. And should failover/failback occur, the
Transaction Recovery Service saves the latest information to Administration Server.

When migrating the Transaction Recovery Service from a server, you must stop the
failing or failed server before actually migrating the Transaction Recovery Service. If
the original server is still running, you cannot migrate the Transaction Recovery
Service from it.

All servers that participate in the migration must have a listen address specified in
their configuration. See "Configure listen addresses" in the Oracle WebLogic Server
Administration Console Help.

4.6.3.7 Constraining Servers to Which the Transaction Recovery Service Can
Migrate
You may want to limit the choices of the servers to use as a Transaction Recovery
Service backup for a server in a cluster. For example, all servers in your cluster may
not have access to the transaction log records for a server. You can limit the list of
destination servers available on the "Servers: Configuration: Migration" page in the
Administration Console. See "Configure candidate servers for Transaction Recovery
Service migration" in the Oracle WebLogic Server Administration Console Help for
instructions.

Important: NFS storage may not fully protect transactional data, as it
may be configured to silently buffer synchronous write requests in
volatile memory. If a file store Directory is located on an NFS mount,
and the file store’s Synchronous Write Policy is anything other than
Disabled, check your NFS implementation and configuration to
make sure that it is configured to support synchronous writes. A
Disabled synchronous write policy does not perform synchronous
writes, but, as a consequence, is generally not transactionally safe. You
may detect undesirable buffering of synchronous write requests by
observing high persistent message or transaction throughput that
exceeds the physical capabilities of your storage device. On the NFS
server, check the synchronous write setting of the exported NFS
directory hosting your File Store. A SAN based file store, or a JDBC
store, may provide an easier solution for safe centralized storage. See
File Locking and NFS in Performance and Tuning for Oracle WebLogic
Server.

Transaction Recovery After a Server Fails

4-14 Programming JTA for Oracle WebLogic Server

4.6.3.8 Viewing Current Owner of the Transaction Recovery Service
When you migrate the Transaction Recovery Service to another server in the cluster,
the backup server takes ownership of the Transaction Recovery Service until it
completes all incomplete transactions. After which, it releases ownership of the
Transaction Recovery Service and the original server can reclaim it. You can see the
current owner on the "Servers: Control: Migration" page in the Oracle WebLogic Server
Administration Console Help. Follow these instructions:

1. In the Domain Structure tree in the Administration console, expand Environment
and click Servers.

2. Select the original server from which the Transaction Recovery Service was
migrated, then select the Control > Migration tab.

3. Click Advanced. Under JTA Migration Options, Hosting Server indicates the
current owner of the Transaction Recovery Service.

4.6.3.9 Manually Migrating the Transaction Recovery Service to the Original Server
After completing transaction recovery for a failed server, a backup server releases
ownership of the Transaction Recovery Service so that the original server can reclaim it
when the server is restarted. If the backup server stops (crashes) for any reason before
it completes transaction recovery, the original server cannot reclaim ownership of the
Transaction Recovery Service and does not start.

You can manually migrate the Transaction Recovery Service back to the original server
by selecting the original server as the destination server. The backup server must not
be running when you migrate the service back to the original server. Follow the
instructions below.

For instructions on manually migrating the Transaction Recovery Service using the
Administration Console, see "Manually migrate the Transaction Recovery Service" in
the Oracle WebLogic Server Administration Console Help.

Note: You must include the original server in the list of chosen
servers so that you can manually migrate the Transaction Recovery
Service back to the original server, if need be. The Administration
Console enforces this rule.

Notes: Please note the following:

■ If a backup server fails before completing the transaction recovery
actions, the primary server cannot reclaim ownership of the
Transaction Recovery Service and recovery is not re-attempted
after the rebooting server. Therefore, you must attempt to
manually re-migrate the Transaction Recovery Service to another
backup server.

■ If you restart the original server while the backup server is
recovering transactions, the backup server gracefully releases
ownership of the Transaction Recovery Service. You do not need
to stop the backup server. See Section 4.6.3, "Recovering
Transactions For a Failed Clustered Server".

Transaction Recovery After a Server Fails

Managing Transactions 4-15

4.6.4 How to Remove Transaction Records
Before deleting TLOGs the WebLogic Server instance should be shutdown gracefully
to allow the completion of as many transactions as possible.

The location of TLOGs is dependent whether you are using the default store, a JDBC
TLOG store, and if LLR is a participating resource in a transaction.

■ When one resource involved in the transaction is a LLR, then the TLOGs are stored
in two locations.

– The transaction records are stored in a database table. See Section 4.6.4.1,
"How to Remove the TLOG in the LLR Database."

– The server and resource checkpoints are stored in the default store or a JDBC
TLOG store. See Section 4.6.4.2, "How to Remove the TLOG Files from the
Default Store" andSection 4.6.4.3, "How to Remove the TLOG from a JDBC
TLOG Store."

■ If there are no participating LLR in the transactions, the transaction records,
server checkpoints, and resource checkpoints are all saved to the TLOG file in the
default store or a JDBC TLOG store. See Section 4.6.4.2, "How to Remove the
TLOG Files from the Default Store" andSection 4.6.4.3, "How to Remove the TLOG
from a JDBC TLOG Store."

4.6.4.1 How to Remove the TLOG in the LLR Database
Default name of the LLR table is WL_LLR_SERVERNAME, where SERVERNAME is the
name of the server instance. See JDBC LLR Table Name in "Servers: Configuration:
General" in Oracle WebLogic Server Administration Console Help. To delete the LLR TLOG
that is kept in the database, remove all the records from the table by issuing drop
table WL_LLR_SERVERNAME.

4.6.4.2 How to Remove the TLOG Files from the Default Store
To remove the TLOGs in a the default store, delete all files having the following
pattern:

 $DOMAIN_HOME/servers/servername/data/store/default/_WLS_
SERVERNAMExxxxxx.DAT

where xxxxxx are integers ranging from 0 to 9.

4.6.4.3 How to Remove the TLOG from a JDBC TLOG Store
The name of the JDBC TLOG store is the PrefixName prepended to the name of the
server hosting the JDBC TLOG store and ends in "_". For example, a valid JDBC TLOG

Note: You should delete TLOGs only in an extreme case. Deleting
the TLOGs removes transaction records, resulting in heuristic failures.
For example, see Section 4.3, "Moving a Server."

Note: If the default store contains a configured JMS file store,
deleting the TLOG also deletes the JMS File Store. In this case, before
deleting the TLOG files, first export the JMS messages to another
location. You can then safely delete the TLOG files and import the JMS
messages back to the original store. See "Managing JMS Messages" in
Configuring and Managing JMS for Oracle WebLogic Server.

Transaction Recovery After a Server Fails

4-16 Programming JTA for Oracle WebLogic Server

store name using the default Prefix Name is TLOG_MyServer_ where TLOG_ is the
Prefix Name and MyServer is the name of the server hosting the JDBC TLOG store.
You database administrator can remove the existing TLOG information from your
JDBC TLOG store.

5

Transaction Service 5-1

5Transaction Service

This chapter describes the information used to write transactional applications to be
used with WebLogic Server. Topics include the capabilities and limitations of the
transaction service and how to use it with EJBs, RMI applications, and the Object
Transaction Service (OTS).

This section discusses the following topics:

■ Section 5.1, "About the Transaction Service"

■ Section 5.2, "Capabilities and Limitations"

■ Section 5.3, "Transaction Scope"

■ Section 5.4, "Transaction Service in EJB Applications"

■ Section 5.5, "Transaction Service in RMI Applications"

■ Section 5.6, "Transaction Service Interoperating with OTS"

5.1 About the Transaction Service
WebLogic Server provides a Transaction Service that supports transactions in EJB and
RMI applications. In the WebLogic Server EJB container, the Transaction Service
provides an implementation of the transaction services described in the Enterprise
JavaBeans Specification 3.0 at http://java.sun.com/products/ejb/2.0.html.

For EJB and RMI applications, WebLogic Server also provides the
javax.transaction and javax.transaction.xa packages, which implement
the Java Transaction API (JTA) for Java applications. For more information about JTA,
see the Java Transaction API (JTA) Specification 1.1, published at
http://www.oracle.com/technetwork/java/javaee/jta/index.html. For
more information about the UserTransaction object that applications use to
demarcate transaction boundaries, see
weblogic.transaction.UserTransaction in the Oracle WebLogic Server API
Reference.

5.2 Capabilities and Limitations
This section includes the following sections:

■ Section 5.2.1, "Lightweight Clients with Delegated Commit"

■ Section 5.2.2, "Client-initiated Transactions"

■ Section 5.2.3, "Transaction Integrity"

■ Section 5.2.4, "Transaction Termination"

Capabilities and Limitations

5-2 Programming JTA for Oracle WebLogic Server

■ Section 5.2.5, "Flat Transactions"

■ Section 5.2.6, "Relationship of the Transaction Service to Transaction Processing"

■ Section 5.2.7, "Multithreaded Transaction Client Support"

■ Section 5.2.12, "General Constraints"

These sections describe the capabilities and limitations of the Transaction Service that
supports EJB and RMI applications:

5.2.1 Lightweight Clients with Delegated Commit
A lightweight client runs on a single-user, unmanaged desktop system that has
irregular availability. Owners may turn their desktop systems off when they are not in
use. These single-user, unmanaged desktop systems should not be required to perform
network functions such as transaction coordination. In particular, unmanaged systems
should not be responsible for ensuring atomicity, consistency, isolation, and durability
(ACID) properties across failures for transactions involving server resources.
WebLogic Server remote clients are lightweight clients.

The Transaction Service allows lightweight clients to do a delegated commit, which
means that the Transaction Service allows lightweight clients to begin and terminate
transactions while the responsibility for transaction coordination is delegated to a
transaction manager running on a server machine. Client applications do not require a
local transaction server. The remote implementation of UserTransaction that EJB or
RMI clients use delegates the actual responsibility of transaction coordination to the
transaction manager on the server.

5.2.2 Client-initiated Transactions
A client, such as an applet, can obtain a reference to the UserTransaction and
TransactionManager objects using JNDI. A client can begin a transaction using
either object reference. To get the Transaction object for the current thread, the
client program must invoke the
((TransactionManager)tm).getTransaction() method.

5.2.3 Transaction Integrity
Checked transaction behavior provides transaction integrity by guaranteeing that a
commit does not succeed unless all transactional objects involved in the transaction
have completed the processing of their transactional requests. The Transaction Service
provides checked transaction behavior that is equivalent to that provided by the
request/response inter-process communication models defined by The Open Group.

5.2.4 Transaction Termination
WebLogic Server allows transactions to be terminated only by the client that created
the transaction.

5.2.5 Flat Transactions
WebLogic Server implements the flat transaction model. Nested transactions are not
supported.

Note: The client may be a server object that requests the services of
another object.

Capabilities and Limitations

Transaction Service 5-3

5.2.6 Relationship of the Transaction Service to Transaction Processing
The Transaction Service relates to various transaction processing servers, interfaces,
protocols, and standards in the following ways:

■ Support for The Open Group XA interface.The Open Group Resource Managers
are resource managers that can be involved in a distributed transaction by
allowing their two-phase commit protocol to be controlled using The Open Group
XA interface. WebLogic Server supports interaction with The Open Group
Resource Managers.

■ Support for the OSI TP protocol. Open Systems Interconnect Transaction
Processing (OSI TP) is the transactional protocol defined by the International
Organization for Standardization (ISO). WebLogic Server does not support
interactions with OSI TP transactions.

■ Support for the LU 6.2 protocol. Systems Network Architecture (SNA) LU 6.2 is a
transactional protocol defined by IBM. WebLogic Server does not support
interactions with LU 6.2 transactions.

■ Support for the ODMG standard. ODMG-93 is a standard defined by the Object
Database Management Group (ODMG) that describes a portable interface to
access Object Database Management Systems. WebLogic Server does not support
interactions with ODMG transactions.

5.2.7 Multithreaded Transaction Client Support
WebLogic Server supports multithreaded transactional clients. Clients can make
transaction requests concurrently in multiple threads.

5.2.8 Transaction Id
The Transaction Service assigns a transaction identifier (XID) to each transaction. This
ID can isolate information about a specific transaction in a log file. You can retrieve the
transaction identifier using the getXID method in the
weblogic.transaction.Transaction interface. For detailed information on
methods for getting the transaction identifier, see
weblogic.transaction.Transaction in the Oracle WebLogic Server API Reference.

5.2.9 Transaction Name and Properties
WebLogic JTA provides extensions to javax.transaction.Transaction that
support transaction naming and user-defined properties. These extensions are
included in the weblogic.transaction.Transaction interface.

The transaction name indicates a type of transaction (for example, funds transfer or
ticket purchase) and should not be confused with the transaction ID, which identifies a
unique transaction on a server. The transaction name makes it easier to identify a
transaction type in the context of an exception or a log file.

User-defined properties are key/value pairs, where the key is a string identifying the
property and the value is the current value assigned to the property. Transaction
property values must be objects that implement the Serializable interface. You
manage properties in your application using the set and get methods defined in the
weblogic.transaction.Transaction interface. Once set, properties stay with a
transaction during its entire lifetime and are passed between machines as the
transaction travels through the system. Properties are saved in the transaction log, and
are restored during crash recovery processing. If a transaction property is set more
than once, the latest value is retained.

Transaction Scope

5-4 Programming JTA for Oracle WebLogic Server

For detailed information on methods for setting and getting the transaction name and
transaction properties, see weblogic.transaction.Transaction in the Oracle
WebLogic Server API Reference.

5.2.10 Transaction Status
The Java Transaction API provides transaction status codes using the
javax.transaction.Status class. Use the getStatusAsString method in
weblogic.transaction.Transaction to return the status of the transaction as a
string. The string contains the major state as specified in
javax.transaction.Status with an additional minor state (such as logging or
pre-preparing).

5.2.11 Transaction Statistics
Transaction statistics are provided for all transactions handled by the transaction
manager on a server. These statistics include the number of total transactions,
transactions with a specific outcome (such as committed, rolled back, or heuristic
completion), rolled back transactions by reason, and the total time that transactions
were active. For detailed information on transaction statistics, see Section 4.1,
"Monitoring Transactions".

5.2.12 General Constraints
The following constraints apply to the Transaction Service:

■ In WebLogic Server, a client or a server object cannot invoke methods on an object
that is infected with (or participating in) another transaction. The method
invocation issued by the client or the server instance returns an exception.

■ In WebLogic Server, clients using third-party implementations of the Java
Transaction API (for Java applications) are not supported.

■ The transaction log buffer is limited to 250 KB. If your application includes very
large transactions that require transaction log writes that exceed this value,
WebLogic Server instance throws an exception. In that case, you must reconfigure
your application to work around the buffer size.

5.3 Transaction Scope
The scope of a transaction refers to the environment in which the transaction is
performed. WebLogic Server supports transactions on standalone servers, between
non-clustered servers, between clustered servers within a domain, and between
domains. To enable inter-domain transaction support, see Section 3.3, "Configuring
Secure Inter-Domain and Intra-Domain Transaction Communication".

5.4 Transaction Service in EJB Applications
The WebLogic Server EJB container provides a Transaction Service that supports the
two types of transactions in WebLogic Server EJB applications:

■ Container-managed transactions. In container-managed transactions, the
WebLogic Server EJB container manages the transaction demarcation. Transaction
attributes in the EJB deployment descriptor determine how the WebLogic Server
EJB container handles transactions with each method invocation.

Transaction Service Interoperating with OTS

Transaction Service 5-5

■ Bean-managed transactions. In bean-managed transactions, the EJB manages the
transaction demarcation. The EJB makes explicit method invocations on the
UserTransaction object to begin, commit, and roll back transactions. For more
information about UserTransaction methods, see
weblogic.transaction.UserTransaction in the Oracle WebLogic Server API
Reference.

For an introduction to transaction management in EJB applications, see Section 2.3.1,
"Transactions in WebLogic Server EJB Applications" and Section 2.4.1, "Transactions
Sample EJB Code".

5.5 Transaction Service in RMI Applications
WebLogic Server provides a Transaction Service that supports transactions in
WebLogic Server RMI applications. In RMI applications, the client or server
application makes explicit method invocations on the UserTransaction object to
begin, commit, and roll back transactions.

For more information about UserTransaction methods, see the online javadoc. For
an introduction to transaction management in RMI applications, see Section 2.3.2,
"Transactions in WebLogic Server RMI Applications" and Section 2.4.2, "Transactions
Sample RMI Code".

5.6 Transaction Service Interoperating with OTS
WebLogic Server provides a Transaction Service that supports interoperation with the
Object Transaction Service (OTS). See the Java Transaction Service (JTS) Specification at
http://www.omg.org/cgi-bin/doc?formal/2003-09-02. For this release,
WebLogic Server interoperates with OTS in the following scenarios:

■ Section 5.6.1, "Server-Server 2PC"

■ Section 5.6.2, "Client Demarcated Transactions"

5.6.1 Server-Server 2PC
In this situation, a server-to-server 2PC transaction is completed using interposition.
The originating server creates an Xid and propagates the transaction to the target
server. The target server registers itself as a resource with the originating server. The
originating server drives the completion of the transaction. Logging Last Resource
(LLR) transaction optimization, as described in Chapter 7, "Logging Last Resource
Transaction Optimization," is not supported.

5.6.2 Client Demarcated Transactions
The client starts a transaction on the server using the OTS client APIs. The client then
retrieves the Xid from this transaction and then propagates this per-request until the
transaction is committed. Although the client initiates the transaction, all the commit
processing occurs on the server.

Transaction Service Interoperating with OTS

5-6 Programming JTA for Oracle WebLogic Server

6

Java Transaction API and Oracle WebLogic Extensions 6-1

6Java Transaction API and Oracle WebLogic
Extensions

This chapter provides a brief overview of the Java Transaction API (JTA) and
extensions to the API provided by Oracle.

■ Section 6.1, "JTA API Overview"

■ Section 6.2, "Oracle WebLogic Extensions to JTA"

6.1 JTA API Overview
WebLogic Server supports the javax.transaction package and the
javax.transaction.xa package, which implement the Java Transaction API (JTA)
for Java applications. For more information about JTA, see the Java Transaction API
(JTA) Specification published at
http://www.oracle.com/technetwork/java/javaee/jta/index.html. For
a detailed description of the javax.transaction and javax.transaction.xa
interfaces, see the JTA Javadoc.

JTA includes the following components:

■ An interface for demarcating and controlling transactions from an application,
javax.transaction.UserTransaction. You use this interface as part of a
Java client program or within an EJB as part of a bean-managed transaction.

■ An interface for allowing a transaction manager to demarcate and control
transactions for an application, javax.transaction.TransactionManager.
This interface is used by an EJB container as part of a container-managed
transaction and uses the javax.transaction.Transaction interface to
perform operations on a specific transaction.

■ Interfaces that allow the transaction manager to provide status and
synchronization information to an applications server,
javax.transaction.Status and
javax.transaction.Synchronization. These interfaces are accessed only
by the transaction manager and cannot be used as part of an applications program.

■ Interfaces for allowing a transaction manager to work with resource managers for
XA-compliant resources (javax.transaction.xa.XAResource) and to
retrieve transaction identifiers (javax.transaction.xa.Xid). These interfaces
are accessed only by the transaction manager and cannot be used as part of an
applications program.

Oracle WebLogic Extensions to JTA

6-2 Programming JTA for Oracle WebLogic Server

6.2 Oracle WebLogic Extensions to JTA
Extensions to the Java Transactions API are provided where the JTA specification does
not cover implementation details and where additional capabilities are required.

Oracle WebLogic provides the following capabilities based on interpretations of the
JTA specification:

■ Client-initiated transactions—the JTA transaction manager interface
(javax.transaction.TransactionManager) is made available to clients and
bean providers through JNDI. This allows clients and EJBs using bean-managed
transactions to suspend and resume transactions.

■ Scope of transactions—transactions can operate within and between clusters and
domains.

■ Enhanced javax.transaction.TransactionSynchronizationRegistry
support—WebLogic Server provides the ability to lookup the
TransactionSynchronizationRegistry object in JNDI using the standard
name of java:comp/TransactionSynchronizationRegistry. Oracle
extends support by providing two additional global JNDI names:
javax/transaction/TransactionSynchronizationRegistry and
weblogic/transaction/TransactionSynchronizationRegistry. For
more information, see
javax.transaction.TransactionSynchronizationRegistry at
http://download.oracle.com/javaee/5/api/index.html?javax/tran
saction/TransactionSynchronizationRegistry.html.

Oracle WebLogic Server provides the following classes and interfaces as extensions to
JTA:

■ weblogic.transaction.RollbackException (extends
javax.transaction.RollbackException)

This class preserves the original reason for a rollback for use in more
comprehensive exception information.

■ weblogic.transaction.TransactionManager (extends
javax.transaction.TransactionManager)

The WebLogic JTA transaction manager object supports this interface, which
allows XA resources to register and unregister themselves with the transaction
manager on startup. It also allows a transaction to be resumed after suspension.

This interface includes the following methods:

– registerStaticResource, registerDynamicResource, and
unregisterResource

– registerResource— (new in WebLogic Server 8.1) This method includes
support for properties that determine how the resource is controlled by the
transaction manager.

– getTransaction

– forceResume and forceSuspend

– begin

Note: A suspended transaction must be resumed in the same server
process in which it was suspended.

Oracle WebLogic Extensions to JTA

Java Transaction API and Oracle WebLogic Extensions 6-3

■ weblogic.transaction.Transaction (extends
javax.transaction.Transaction)

The WebLogic JTA transaction object supports this interface, which allows users to
get and set transaction properties.

This interface includes the following methods:

– setName and getName

– addProperties, setProperty, getProperty, and getProperties

– setRollbackReason and getRollbackReason

– getHeuristicErrorMessage

– getXID and getXid

– getStatusAsString

– getMillisSinceBegin

– getTimeToLiveMillis

– isTimedOut

■ weblogic.transaction.TransactionHelper

This class enables you to obtain the current transaction manager and transaction. It
replaces TxHelper.

This interface includes the following static methods:

– getTransaction

– getUserTransaction

– getTransactionManager

■ weblogic.transaction.TxHelper (Deprecated, use TransactionHelper
instead)

This class enables you to obtain the current transaction manager and transaction.

This interface includes the following static methods:

– getTransaction, getUserTransaction, getTransactionManager

– status2String

■ weblogic.transaction.XAResource (extends
javax.transaction.xa.XAResource)

This class provides delistment capabilities for XA resources.

This interface includes the following method:

– getDelistFlag

■ weblogic.transaction.nonxa.NonXAResource

This interface enables resources that do not support the
javax.transaction.xa.XAResource interface to easily integrate with the
WebLogic Server transaction manager. The transaction manager supports a
variation of the Last Agent two-phase commit optimization that allows a non-XA
resource to participate in a distributed transaction. The protocol issues a one-phase
commit to the non-XA resource and uses the result of the operation to base the
commit decision for the transaction.

Oracle WebLogic Extensions to JTA

6-4 Programming JTA for Oracle WebLogic Server

For a detailed description of the WebLogic extensions to the javax.transaction
and javax.transaction.xa interfaces, see the weblogic.transaction package
summary in the Oracle WebLogic Server API Reference.

7

Logging Last Resource Transaction Optimization 7-1

7Logging Last Resource Transaction
Optimization

This chapter describes how WebLogic Server supports Logging Last Resource (LLR)
transaction optimization through JDBC data sources. LLR is a performance
enhancement option that enables one non-XA resource to participate in a global
transaction with the same ACID guarantee as XA.

LLR is a refinement of the "Last Agent Optimization." It differs from Last Agent
Optimization in that it is transactionally safe. The LLR resource uses a local transaction
for its transaction work. The WebLogic Server transaction manager prepares all other
resources in the transaction and then determines the commit decision for the global
transaction based on the outcome of the LLR resource's local transaction.

In a global two-phase commit (2PC) transaction with an LLR participant, the
WebLogic Server transaction manager follows these basic steps:

■ Calls prepare on all other (XA-compliant) transaction participants.

■ Inserts a commit record to a table on the LLR participant (rather than to the
file-based transaction log).

■ Commits the LLR participant's local transaction (which includes both the
transaction commit record insert and the application's SQL work).

■ Calls commit on all other transaction participants.

■ After the transaction completes successfully, lazily deletes the database transaction
log entry as part of a future transaction.

The following sections provide more information about LLR transaction processing in
WebLogic Server:

■ Section 7.1, "About the LLR Optimization Transaction Optimization"

■ Section 7.2, "Logging Last Resource Processing Details"

■ Section 7.3, "LLR Database Table Details"

■ Section 7.4, "Failure and Recovery Processing for LLR"

■ Section 7.5, "Optimizing Performance with LLR"

For more information about the advantages of LLR, see "Understanding the Logging
Last Resource Transaction Option" in Configuring and Managing JDBC Data Sources for
Oracle WebLogic Server.

About the LLR Optimization Transaction Optimization

7-2 Programming JTA for Oracle WebLogic Server

7.1 About the LLR Optimization Transaction Optimization
In many cases a global transaction becomes a two-phase commit (2PC) transaction
because it involves a database operation (using JDBC) and another non-database
operation, such as a message queueing operation (using JMS). In cases such as this
where there is one database participant in a 2PC transaction, the Logging Last
Resource (LLR) Optimization transaction option can significantly improve transaction
performance by eliminating some XA overhead for database processing and by
avoiding the use of JDBC XA drivers, which typically are less efficient than non-XA
drivers. The LLR transaction option does not incur the same data risks as borne by the
Emulate Two-Phase Commit JDBC data source option and the NonXAResource
resource adapter (Connector) option.

7.2 Logging Last Resource Processing Details
At server boot or data source deployment, LLR data sources load or create a table on
the database from which the data source pools database connections. The table is
created in the schema determined by the user specified to create database connections.
If the database table cannot be created or loaded, then server boot fails.

Within a global transaction, the first connection obtained from an LLR data source
reserves an internal JDBC connection that is dedicated to the transaction. The internal
JDBC connection is reserved on the specific server that is also the transactions'
coordinator. All subsequent transaction operations on any connections obtained from a
same-named data source on any server are routed to this same single internal JDBC
connection.

When an LLR transaction is committed, the WebLogic Server transaction manager
handles the processing transparently. From an application perspective, the transaction
semantics remain the same, but from an internal perspective, the transaction is
handled differently than standard XA transactions. When the application commits the
global transaction, the WebLogic Server transaction manager atomically commits the
local transaction on the LLR connection before committing transaction work on any
other transaction participants. For a two-phase commit transaction, the transaction
manager also writes a 2PC record on the database as part of the same local transaction.
After the local transaction completes successfully, the transaction manager calls
commit on all other global transaction participants. After all other transaction
participants complete the commit phase, the related LLR 2PC transaction record is
freed for deletion. The transaction manager lazily deletes the transaction record after a
short interval or with another local transaction.

If the application rolls back the global transaction or the transaction times out, the
transaction manager rolls back the work in the local transaction and does not store a
2PC record in the database.

To enable the LLR transaction optimization, you create a JDBC data source with the
Logging Last Resource transaction protocol, then use database connections from the
data source in your applications. WebLogic Server automatically creates the required
table on the database.

See "Create LLR-enabled JDBC data sources" in the Oracle WebLogic Server
Administration Console Help. Also see "Understanding the Logging Last Resource
Transaction Option" in Configuring and Managing JDBC Data Sources for Oracle WebLogic
Server.

For a list of data source configuration and usage requirements and limitations, see the
following topics in Configuring and Managing JDBC Data Sources for Oracle WebLogic
Server:

LLR Database Table Details

Logging Last Resource Transaction Optimization 7-3

■ "Programming Considerations and Limitations for LLR Data Sources"

■ "Administrative Considerations and Limitations for LLR Data Sources"

7.3 LLR Database Table Details
Each WebLogic server instance maintains a database "LLR" table on the database to
which a JDBC LLR data source pools database connections. These tables are used for
storing transaction log records, and are automatically created. If multiple LLR data
sources are deployed on the same WebLogic server instance and connect to the same
database instance and database schema, they also share the same LLR table.

LLR table names are automatically generated unless administrators choose to
configure them. The default table name is WL_LLR_SERVERNAME. For some DBMS
systems, the maximum length for a table name is 18 characters. You should consider
maximum table name length when configuring your environment.

Note the following restrictions regarding LLR database tables:

■ The server does not boot if an LLR table is unreachable during boot. LLR
transaction records must be available to correctly resolve in-doubt transactions
during recovery, which runs automatically at server startup.

■ Multiple servers must not share the same LLR table. On server startup, WebLogic
Server checks to ensure that the domain and server name of the JDBC data source
match the domain and server name stored in the table when the table is created. If
WebLogic Server detects that multiple servers are sharing the same LLR table,
WebLogic Server instance shuts down one or more of the servers.

To change the table name used to store transaction log records for the resource, follow
these steps:

1. In the Change Center in the upper-left corner of the Administration Console
window, click Lock & Edit to start a configuration editing session.

2. On the Servers: Configuration: General page, click to Advanced to show the
advanced configuration options. See

3. In JDBC LLR Table Name, enter the name of the table to use to store transaction
records for the resource, then click Save. See "Servers: Configuration: General" in
Oracle WebLogic Server Administration Console Help.

4. Repeat steps 2 and 3 for each server on which the LLR-enabled data source is
deployed.

5. Click Activate Changes in the Change Center.

7.3.1 LLR Table Transaction Log Records
For each committed 2PC LLR transaction, the transaction manager automatically
inserts a transaction record into an LLR database table. Once LLR transactions
complete, the transaction manager lazily deletes their transaction records. If an LLR
table transaction log record delete fails, the server logs a warning message and retry
the delete again later.

If you move a database that contains LLR transaction records, ensure that you move
the LLR table contents to the new database so that transactions can be completed
properly.

Note: You must restart all servers for the change to take effect.

Failure and Recovery Processing for LLR

7-4 Programming JTA for Oracle WebLogic Server

7.4 Failure and Recovery Processing for LLR
In general, the WebLogic transaction manager processes transaction failures in the
following way:

■ For two-phase commit errors that occur before the local transaction commit is
attempted, the transaction manager immediately throws a transaction rolled back
exception.

■ For two-phase commit errors that occur during the local transaction commit, the
behavior depends on whether the transaction record is written to the database:

– If the record is written, the transaction manager commits the transaction.

– If the record is not written, the transaction manager rolls back the transaction.

– If it is unknown whether the record is written, the transaction manager throws
an ambiguous commit failure exception and attempts to complete the
transaction every 5 seconds until the transaction abandon timeout. If the
transaction is still incomplete, the transaction manager logs an abandoned
transaction message.

7.4.1 Coordinating Server Crash
If a transaction's coordinating server crashes before an LLR resource stores its
transaction log record or before an LLR resource commits, the transaction rolls back. If
the server crashes after the LLR resource is committed, the transactions eventually
fully commit. During server boot, the transaction coordinator uses the LLR resource to
read the transaction log record from the database and then use the recovered
information to commit any unfinished work on any participating non-LLR XA
resources.

7.4.2 JDBC Connection Failure
If the JDBC connection in an LLR resource fails during a 2PC transaction record insert,
the transaction manager rolls back the transaction.

If the JDBC connection in an LLR resource fails during the commit of the local
transaction, the result depends on whether the transaction is a one-phase commit
(1PC, where the LLR resource is the only participant) or 2PC:

■ For a 1PC transaction, the transaction are fully committed, fully rolled back, or
block waiting for the resolution of the local transaction. The outcome of the
transaction is fully ACID because it is eventually fully committed or fully rolled
back.

■ For a 2PC transaction, the outcome is as described in Section 7.4, "Failure and
Recovery Processing for LLR".

7.4.3 LLR Transaction Recover During Server Startup
During server startup, the transaction manager for each WebLogic server must recover
incomplete transactions coordinated by the server, including LLR transactions. To do
so, each server attempts to read the transaction records from the LLR database tables

Note: Do not manually delete the LLR transaction records or the LLR
table in a production system. Doing so can lead to silent heuristic
transaction failures which are not logged.

Optimizing Performance with LLR

Logging Last Resource Transaction Optimization 7-5

for each LLR data source. If the server cannot access the LLR database tables or if the
recovery fails, the server instance does not start and the transaction manager marks
the server with a bad health state: HealthState.HEALTH_FAILED.

If a timeout occurs during recovery, it may be due to unresolved local transactions that
have locked rows within the LLR log tables. Such local transactions must be resolved
so that the transaction manager can determine the state of the global transaction
whose record is stored in the locked row. Local database transactions can only be
diagnosed and resolved using each database's specific tools (the commands differ from
database to database).

7.4.4 Failover Considerations for LLR
Consider the following notes and limitations regarding failover with LLR:

■ A transaction log (TLog) is still required for LLR transactions:

– TLog still stores transaction manager "checkpoint" records

– TLog must still be reachable or copied on failover

■ LLR supports server migration and transaction recovery service migration. To use
the transaction recovery service migration, ensure that each LLR resource be
targeted to either the cluster or the set of candidate servers in the cluster. See
Section 4.6.3, "Recovering Transactions For a Failed Clustered Server".

7.5 Optimizing Performance with LLR
This section includes the following information:

■ Section 7.5.1, "Optimizing Transaction Coordinator Location"

■ Section 7.5.2, "Varied Performance for Read-Only Operations Through an LLR
Data Source"

■ Section 7.5.3, "Dedicating LLR Tables by Data Source"

7.5.1 Optimizing Transaction Coordinator Location
Within a global transaction with an LLR participant, WebLogic Server automatically
routes all connection operations to the transaction's coordinating server. This routing
can be expensive. You may see better performance if you optimize your applications to
run directly on the coordinating server if possible, and optimize your applications to
use connection instances that are directly hosted on the coordinator.

For client applications that begin a transaction, the coordinator of transaction is the
first WebLogic server the client calls under the transaction (any RMI, EJB, JDBC, or
JMS call). In the JMS case, this is the server that hosts the client's JMS connection,
which is not necessarily the same as the server that hosts the JMS destination.

For server side applications, the coordinator of the transaction is the local server if a
local resource is invoked first (including JMS destinations and JDBC connections)
unless a remote server is called first (any remotely hosted JDBC connection, EJB, RMI
call, or JMS connection). This includes remote servers in other clusters or domains.

7.5.2 Varied Performance for Read-Only Operations Through an LLR Data Source
The LLR optimization provides a significant increase in performance for insert,
update, and delete operations. However, for read operations with LLR, performance is

Optimizing Performance with LLR

7-6 Programming JTA for Oracle WebLogic Server

somewhat slower than read operations with XA. For best performance, you may want
to configure a non-LLR JDBC data source for read-only operations.

7.5.3 Dedicating LLR Tables by Data Source
To improve performance in environments using Oracle RAC, you can specify a LLR
table for each data source instead of for each server to better utilize the local node
caches in Oracle RAC clusters.

Use the following system property to set the specification of a LLR table by data
source when starting a WebLogic Server instance:

-Dweblogic.llr.table.datasourcename=tablename

where: datasourcename is the name of a data source and tablename is the name of
the LLR table that maps to datasourcename.

For example, using the system property:

 -Dweblogic.llr.table.LLRDS1=myllrtable1

 When the server starts:

■ a INFO message is written to stdout

LLR data source LLRDS1 using LLR table myllrtable1

■ All LLR entries for the server that use data source LLRDS1 are stored in the LLR
table named mylltable1.

Define one table for each data source on each server on which the data source is
targeted. The same table cannot be shared by different WLS instances. If LLRDS1 is
targeted to two WebLogic Server instances S1 and S2, then create two tables: S1_
LLRDS1 and S2_LLRDS1, and specify the proper system properties for each server.

For example:

For instance S1, use -Dweblogic.llr.table.LLRDS1=S1_LLRDS1

For instance S2, use -Dweblogic.llr.table.LLRDS1=S2_LLRDS1

7.5.3.1 Limitations
JTA service migration does not support LLR tables that are dedicated by data source.

Note: In the next WebLogic Server release, the node-id will
automatically be captured in an extended LLR table allowing data to
be partitioned to the respective WebLogic Server node without
needing to manually allocate a table per data source.

8

Transactions in EJB Applications 8-1

8Transactions in EJB Applications

This chapter describes how to integrate transactions in Enterprise JavaBeans (EJBs)
applications that run under Oracle WebLogic Server.

■ Section 8.1, "Before You Begin"

■ Section 8.2, "General Guidelines"

■ Section 8.3, "Transaction Attributes"

■ Section 8.4, "Participating in a Transaction"

■ Section 8.5, "Transaction Semantics"

■ Section 8.6, "Session Synchronization"

■ Section 8.7, "Synchronization During Transactions"

■ Section 8.8, "Setting Transaction Timeouts"

■ Section 8.9, "Handling Exceptions in EJB Transactions"

8.1 Before You Begin
Before you begin, you should read Chapter 2, "Introducing Transactions," particularly
the following topics:

■ Section 2.3.1, "Transactions in WebLogic Server EJB Applications"

■ Section 2.4.1, "Transactions Sample EJB Code"

This document describes the Oracle WebLogic Server implementation of transactions
in Enterprise JavaBeans. The information in this document supplements the Enterprise
JavaBeans Specification 2.1.

For information about implementing Enterprise JavaBeans in WebLogic Server
applications, see Programming Enterprise JavaBeans, Version 2.1, for Oracle WebLogic
Server.

Note: Before proceeding with the rest of this chapter, you should be
familiar with the contents of the EJB Specification 2.1 document,
particularly the concepts and material presented in Chapter 16,
"Support for Transactions."

General Guidelines

8-2 Programming JTA for Oracle WebLogic Server

8.2 General Guidelines
The following general guidelines apply when implementing transactions in EJB
applications for WebLogic Server:

■ The EJB specification allows for flat transactions only. Transactions cannot be
nested.

■ The EJB specification allows for distributed transactions that span multiple
resources (such as databases) and supports the two-phase commit protocol for
both EJB CMP 2.1 and EJB CMP 1.1.

■ Use standard programming techniques to optimize transaction processing. For
example, properly demarcate transaction boundaries and complete transactions
quickly.

■ Use a database connection from a local TxDataSource—on the WebLogic Server
instance on which the EJB is running. Do not use a connection from a
TxDataSource on a remote WebLogic Server instance.

■ Be sure to tune the EJB cache to ensure maximum performance in transactional
EJB applications. For more information, see Programming Enterprise JavaBeans,
Version 2.1, for Oracle WebLogic Server.

For general guidelines about the WebLogic Server Transaction Service, see Section 5.2,
"Capabilities and Limitations".

8.3 Transaction Attributes
This section includes the following sections:

■ Section 8.3.1, "About Transaction Attributes for EJBs"

■ Section 8.3.2, "Transaction Attributes for Container-Managed Transactions"

■ Section 8.3.3, "Transaction Attributes for Bean-Managed Transactions"

8.3.1 About Transaction Attributes for EJBs
Transaction attributes determine how transactions are managed in EJB applications.
For each EJB, the transaction attribute specifies whether transactions are demarcated
by the WebLogic Server EJB container (container-managed transactions) or by the EJB
itself (bean-managed transactions). The setting of the transaction-type element in
the deployment descriptor determines whether an EJB is container-managed or
bean-managed. See Chapter 16, "Support for Transactions," and Chapter 21,
"Deployment Descriptor," in the EJB Specification 2.1, for more information about the
transaction-type element.

In general, the use of container-managed transactions is preferred over bean-managed
transactions because application coding is simpler. For example, in container-managed
transactions, transactions do not need to be started explicitly.

WebLogic Server fully supports method-level transaction attributes as defined in
Section 16.4 in the EJB Specification 2.1.

8.3.2 Transaction Attributes for Container-Managed Transactions
For container-managed transactions, the transaction attribute is specified in the
container-transaction element in the deployment descriptor.
Container-managed transactions include all entity beans and any stateful or stateless
session beans with a transaction-type set to Container. For more information

Participating in a Transaction

Transactions in EJB Applications 8-3

about these elements, see Programming Enterprise JavaBeans, Version 2.1, for Oracle
WebLogic Server.

The Application Assembler can specify the following transaction attributes for EJBs
and their business methods:

■ NotSupported

■ Supports

■ Required

■ RequiresNew

■ Mandatory

■ Never

For a detailed explanation about how the WebLogic Server EJB container responds to
the trans-attribute setting, see section 17.6.2 in the EJB Specification 2.1 at
http://java.sun.com/products/ejb/docs.html.

The WebLogic Server EJB container automatically sets the transaction timeout if a
timeout value is not defined in the deployment descriptor. The container uses the
value of the Timeout Seconds configuration parameter. The default timeout value is
30 seconds.

For EJBs with container-managed transactions, the EJBs have no access to the
javax.transaction.UserTransaction interface, and the entering and exiting
transaction contexts must match. In addition, EJBs with container-managed
transactions have limited support for the setRollbackOnly and
getRollbackOnly methods of the javax.ejb.EJBContext interface, where
invocations are restricted by rules specified in Sections 16.4.4.2 and 16.4.4.3 of the EJB
Specification 2.1.

8.3.3 Transaction Attributes for Bean-Managed Transactions
For bean-managed transactions, the bean specifies transaction demarcations using
methods in the javax.transaction.UserTransaction interface. Bean-managed
transactions include any stateful or stateless session beans with a
transaction-type set to Bean. Entity beans cannot use bean-managed
transactions.

For stateless session beans, the entering and exiting transaction contexts must match.
For stateful session beans, the entering and exiting transaction contexts may or may
not match. If they do not match, the WebLogic Server EJB container maintains
associations between the bean and the non-terminated transaction.

Session beans with bean-managed transactions cannot use the setRollbackOnly
and getRollbackOnly methods of the javax.ejb.EJBContext interface.

8.4 Participating in a Transaction
When the EJB Specification 2.1 uses the phrase "participating in a transaction," Oracle
interprets this to mean that the bean meets either of the following conditions:

■ The bean is invoked in a transactional context (container-managed transaction).

■ The bean begins a transaction using the UserTransaction API in a bean method
invoked by the client (bean-managed transaction), and it does not suspend or
terminate that transaction upon completion of the corresponding bean method
invoked by the client.

Transaction Semantics

8-4 Programming JTA for Oracle WebLogic Server

8.5 Transaction Semantics
This topic contains the following sections:

■ Section 8.5.1, "Transaction Semantics for Container-Managed Transactions"

■ Section 8.5.2, "Transaction Semantics for Bean-Managed Transactions"

The EJB Specification 2.1 describes semantics that govern transaction processing
behavior based on the EJB type (entity bean, stateless session bean, or stateful session
bean) and the transaction type (container-managed or bean-managed). These
semantics describe the transaction context at the time a method is invoked and define
whether the EJB can access methods in the
javax.transaction.UserTransaction interface. EJB applications must be
designed with these semantics in mind.

8.5.1 Transaction Semantics for Container-Managed Transactions
For container-managed transactions, transaction semantics vary for each bean type.

8.5.1.1 Transaction Semantics for Stateful Session Beans
Table 8–1 describes the transaction semantics for stateful session beans in
container-managed transactions.

8.5.1.2 Transaction Semantics for Stateless Session Beans
Table 8–2 describes the transaction semantics for stateless session beans in
container-managed transactions.

Table 8–1 Transaction Semantics for Stateful Session Beans in Container-Managed
Transactions

Method

Transaction Context at the
Time the Method Was
Invoked

Can Access
UserTransaction
Methods?

Constructor Unspecified No

setSessionContext() Unspecified No

ejbCreate() Unspecified No

ejbRemove() Unspecified No

ejbActivate() Unspecified No

ejbPassivate() Unspecified No

Business method Yes or No based on transaction
attribute

No

afterBegin() Yes No

beforeCompletion() Yes No

afterCompletion() No No

Table 8–2 Transaction Semantics for Stateless Session Beans in Container-Managed
Transactions

Method

Transaction Context at the
Time the Method Was
Invoked

Can Access
UserTransaction
Methods?

Constructor Unspecified No

Transaction Semantics

Transactions in EJB Applications 8-5

8.5.1.3 Transaction Semantics for Entity Beans
Table 8–3 describes the transaction semantics for entity beans in container-managed
transactions.

8.5.2 Transaction Semantics for Bean-Managed Transactions
For bean-managed transactions, the transaction semantics differ between stateful and
stateless session beans. For entity beans, transactions are never bean-managed.

8.5.2.1 Transaction Semantics for Stateful Session Beans
Table 8–4 describes the transaction semantics for stateful session beans in
bean-managed transactions.

setSessionContext() Unspecified No

ejbCreate() Unspecified No

ejbRemove() Unspecified No

Business method Yes or No based on transaction
attribute

No

Table 8–3 Transaction Semantics for Entity Beans in Container-Managed Transactions

Method

Transaction Context at the
Time the Method Was
Invoked

Can Access
UserTransaction
Methods?

Constructor Unspecified No

setEntityContext() Unspecified No

unsetEntityContext() Unspecified No

ejbCreate() Determined by transaction
attribute of matching create

No

ejbPostCreate() Determined by transaction
attribute of matching create

No

ejbRemove() Determined by transaction
attribute of matching remove

No

ejbFind() Determined by transaction
attribute of matching find

No

ejbActivate() Unspecified No

ejbPassivate() Unspecified No

ejbLoad() Determined by transaction
attribute of business method
that invoked ejbLoad()

No

ejbStore() Determined by transaction
attribute of business method
that invoked ejbStore()

No

Business method Yes or No based on transaction
attribute

No

Table 8–2 (Cont.) Transaction Semantics for Stateless Session Beans in
Container-Managed Transactions

Method

Transaction Context at the
Time the Method Was
Invoked

Can Access
UserTransaction
Methods?

Session Synchronization

8-6 Programming JTA for Oracle WebLogic Server

8.5.2.2 Transaction Semantics for Stateless Session Beans
Table 8–5 describes the transaction semantics for stateless session beans in
bean-managed transactions.

8.6 Session Synchronization
A stateful session bean using container-managed transactions can implement the
javax.ejb.SessionSynchronization interface to provide transaction
synchronization notifications. In addition, all methods on the stateful session bean
must support one of the following transaction attributes: REQUIRES_NEW, MANDATORY
or REQUIRED. For more information about the
javax.ejb.SessionSynchronization interface, see Section 6.5.3 in the EJB
Specification 2.1.

Table 8–4 Transaction Semantics for Stateful Session Beans in Bean-Managed
Transactions

Method

Transaction Context at the
Time the Method Was
Invoked

Can Access
UserTransaction
Methods?

Constructor Unspecified No

setSessionContext() Unspecified No

ejbCreate() Unspecified Yes

ejbRemove() Unspecified Yes

ejbActivate() Unspecified Yes

ejbPassivate() Unspecified Yes

Business method Typically, no unless a previous
method execution on the bean
had completed while in a
transaction context

Yes

afterBegin() Not applicable Not applicable

beforeCompletion() Not applicable Not applicable

afterCompletion() Not applicable Not applicable

Table 8–5 Transaction Semantics for Stateless Session Beans in Bean-Managed
Transactions

Method

Transaction Context at the
Time the Method Was
Invoked

Can Access
UserTransaction
Methods?

Constructor Unspecified No

setSessionContext() Unspecified No

ejbCreate() Unspecified Yes

ejbRemove() Unspecified Yes

Business method No Yes

Handling Exceptions in EJB Transactions

Transactions in EJB Applications 8-7

8.7 Synchronization During Transactions
If a bean implements SessionSynchronization, the WebLogic Server EJB
container typically makes the following callbacks to the bean during transaction
commit time:

■ afterBegin()

■ beforeCompletion()

■ afterCompletion()

The EJB container can call other beans or involve additional XA resources in the
beforeCompletion method. The number of calls is limited by the
beforeCompletionIterationLimit attribute. This attribute specifies how many
cycles of callbacks are processed before the transaction is rolled back. A
synchronization cycle can occur when a registered object receives a
beforeCompletion callback and then enlists additional resources or causes a
previously synchronized object to be reregistered. The iteration limit ensures that
synchronization cycles do not run indefinitely.

8.8 Setting Transaction Timeouts
Bean providers can specify the timeout period for transactions in EJB applications. If
the duration of a transaction exceeds the specified timeout setting, then the
Transaction Service rolls back the transaction automatically.

Timeouts are specified according to the transaction type:

■ Container-managed transactions. The Bean Provider configures the
trans-timeout-seconds attribute in the weblogic-ejb-jar.xml deployment descriptor.

■ Bean-managed transactions. An application calls the
UserTransaction.setTransactionTimeout method.

8.9 Handling Exceptions in EJB Transactions
WebLogic Server EJB applications must catch and handle specific exceptions thrown
during transactions. For detailed information about handling exceptions, see Chapter
17, "Exception Handling," in the EJB Specification 2.1.

For more information about how exceptions are thrown by business methods in EJB
transactions, see the following tables in Section 17.3: Table 12 (for container-managed
transactions) and Table 13 (for bean-managed transactions).

For a client's view of exceptions, see Section 17.4, particularly Section 12.4.1
(application exceptions), Section 17.4.2 (java.rmi.RemoteException), Section
17.4.2.1 (javax.transaction.TransactionRolledBackException), and
Section 17.4.2.2 (javax.transaction.TransactionRequiredException).

Note: You must set the timeout before you begin() the transaction.
Setting a timeout does not affect transaction transactions that have
begun.

Handling Exceptions in EJB Transactions

8-8 Programming JTA for Oracle WebLogic Server

9

Transactions in RMI Applications 9-1

9Transactions in RMI Applications

This chapter describes the guidelines and provides additional references for using
transactions in RMI applications that run under Oracle WebLogic Server.

■ Section 9.1, "Before You Begin"

■ Section 9.2, "General Guidelines"

9.1 Before You Begin
Before you begin, read Chapter 2, "Introducing Transactions," particularly the
following topics:

■ Section 2.3.2, "Transactions in WebLogic Server RMI Applications"

■ Section 2.4.2, "Transactions Sample RMI Code"

For more information about RMI applications, see Programming Stand-alone Clients for
Oracle WebLogic Server.

9.2 General Guidelines
The following general guidelines apply when implementing transactions in RMI
applications for WebLogic Server:

■ WebLogic Server allows for flat transactions only. Transactions cannot be nested.

■ Use standard programming techniques to optimize transaction processing. For
example, properly demarcate transaction boundaries and complete transactions
quickly.

■ For RMI applications, callback objects are not recommended for use in transactions
because they are not subject to WebLogic Server administration.

By default, all method invocations on the remote objects are transactional. If a
callback object is required, you must compile these classes using the WebLogic
RMI compiler using the -nontransactional flag. See "Using the WebLogic RMI
Compiler" and "WebLogic RMI Compiler Options" in Programming RMI for Oracle
WebLogic Server.

■ In RMI applications, an RMI client can initiate a transaction, but all transaction
processing must occur on server objects or remote objects hosted by WebLogic
Server. Remote objects hosted on a client JVM cannot participate in the transaction
processing.

General Guidelines

9-2 Programming JTA for Oracle WebLogic Server

As a work-around, you can suspend the transaction before making a call to a
remote object on a client JVM, and then resume the transaction after the remote
operation returns.

For general guidelines about the WebLogic Server Transaction Service, see Section 5.2,
"Capabilities and Limitations".

10

Using JDBC XA Drivers with WebLogic Server 10-1

10Using JDBC XA Drivers with WebLogic
Server

This section provides an overview of XA JDBC drivers with WebLogic Server in
distributed transactions. These drivers provide connectivity between WebLogic Server
connection pools and the DBMS. Drivers used in distributed transactions are
designated by the driver name followed by /XA; for example, Oracle Thin/XA Driver

This chapter includes the following sections:

■ Section 10.1, "Using Oracle Thin/XA Driver"

■ Section 10.2, "Using Other XA Drivers"

10.1 Using Oracle Thin/XA Driver
WebLogic Server ships with the Oracle Thin Driver preconfigured and ready to use. If
you want to update the driver or use a different version, see "Using API Extensions in
JDBC Drivers" in Programming JDBC for Oracle WebLogic Server.

■ Section 10.1.1, "Set the Environment for the Oracle Thin/XA Driver"

■ Section 10.1.2, "Oracle Thin/XA Driver Configuration Properties"

10.1.1 Set the Environment for the Oracle Thin/XA Driver
The following sections explain how to set the environment for the Oracle Thin/XA
Driver.

10.1.1.1 Configure WebLogic Server
For information on how to configure WebLogic Server for use with the Oracle
Thin/XA Driver, see "Using API Extensions in JDBC Drivers" in Programming JDBC for
Oracle WebLogic Server.

10.1.1.2 Enable XA on the Database Server
To prepare the database for XA, perform these steps:

1. Log on to sqlplus as system user, for example, sqlplus sys/CHANGE_ON_
INSTALL@<DATABASE ALIAS NAME>

2. Execute the following command: @xaview.sql

The xaview.sql script resides in the $ORACLE_HOME/rdbms/admin directory

3. All database users for which XA data sources are defined need to be granted the
following permissions individually or through one or more roles:

Using Other XA Drivers

10-2 Programming JTA for Oracle WebLogic Server

■ grant select on v$xatrans$ to <user/role>;

■ grant select on pending_trans$ to <user/role>;

■ grant select on dba_2pc_pending to <user/role>;

■ grant select on dba_pending_transactions to <user/role>;

■ grant execute on dbms_xa to <user/role>;

Where <user/role> is either a data base user or a role.

If the above steps are not performed on the database server, normal XA database
queries and updates may work fine. However, when the Weblogic Server Transaction
Manager performs recovery on a re-boot after a crash, recover for the Oracle resource
faisl with XAER_RMERR. Crash recovery is a standard operation for an XA resource.

10.1.2 Oracle Thin/XA Driver Configuration Properties
For information on how to configure data source properties, see "Configuring JDBC
Data Sources" in Configuring and Managing JDBC Data Sources for Oracle WebLogic
Server.

10.2 Using Other XA Drivers
To use other XA-compliant JDBC drivers, you must include the path to the driver class
libraries in your CLASSPATH and follow the configuration instructions provided by
the vendor.

10.2.1 Using WebLogic-branded Data Direct Drivers
For information on how to configure WebLogic Server for use with WebLogic-branded
Data Direct drivers, see "Using WebLogic-branded DataDirect Drivers" in Programming
JDBC for Oracle WebLogic Server

10.2.2 Additional Considerations
Your data base vendor may provide instructions to perform steps to prepare your
environment for XA. These steps may include how to:

■ Enable your data base server for XA. This may include granting additional user
permissions.

■ Compensate for vendor-specific transactional behavior, such as threading,
timeout, and rollback behavior.

■ Use vendor-specific connection properties.

Consult your data base vendor documentation for specific details.

11

Coordinating XAResources with the WebLogic Server Transaction Manager 11-1

11Coordinating XAResources with the
WebLogic Server Transaction Manager

This chapter describes how external, third-party systems can participate in distributed
transactions coordinated by the WebLogic Server transaction manager by registering a
javax.transaction.xa.XAResource implementation with the WebLogic Server
transaction manager. The WebLogic Server transaction manager then drives the
XAResource as part of its Two-Phase Commit (2PC) protocol. This is referred to as
"exporting transactions."

By exporting transactions, you can integrate third-party transaction managers with the
WebLogic Server transaction manager if the third-party transaction manager
implements the XAResource interface. With an exported transaction, the third-party
transaction manager would act as a subordinate transaction manager to the WebLogic
Server transaction manager.

WebLogic Server can also participate in distributed transactions coordinated by
third-party systems (sometimes referred to as foreign transaction managers). The
WebLogic Server processing occurs as part of the work of the external transaction. The
third-party transaction manager then drives the WebLogic Server transaction manager
as part of its commit processing. This is referred to as "importing transactions."

Details about coordinating third-party systems within a transaction (exporting
transactions) are described in this section. Details about participating in transactions
coordinated by third-party systems (importing transactions) are described in
Chapter 12, "Participating in Transactions Managed by a Third-Party Transaction
Manager." Note that WebLogic Server IIOP, WebLogic Tuxedo Connector (WTC)
gateway, and Oracle Java Adapter for Mainframe (JAM) gateway internally use the
same mechanism described in these chapters to import and export transactions in
WebLogic Server.

The following sections describe how to configure third-party systems to participate in
transactions coordinated by the WebLogic Server transaction manager:

■ Section 11.1, "Overview of Coordinating Distributed Transactions with Foreign
XAResources"

■ Section 11.2, "Registering an XAResource to Participate in Transactions"

■ Section 11.3, "Enlisting and Delisting an XAResource in a Transaction"

■ Section 11.4, "Commit processing"

■ Section 11.5, "Recovery"

■ Section 11.6, "Resource Health Monitoring"

■ Section 11.7, "Java EE Connector Architecture Resource Adapter"

Overview of Coordinating Distributed Transactions with Foreign XAResources

11-2 Programming JTA for Oracle WebLogic Server

■ Section 11.8, "Implementation Tips"

■ Section 11.9, "Changes in the Resource Registration Name"

■ Section 11.10, "FAQs"

■ Section 11.11, "Additional Documentation about JTA"

11.1 Overview of Coordinating Distributed Transactions with Foreign
XAResources

In order to participate in distributed transactions coordinated by the WebLogic Server
transaction manager, third-party systems must implement the
javax.transaction.xa.XAResource interface and then register its XAResource
object with the WebLogic Server transaction manager. For details about implementing
the javax.transaction.xa.XAResource interface, refer to the Java Platform
Enterprise Edition, v 5.0 API Specifications at:

http://download.oracle.com/javaee/5/api/javax/transaction/xa/XAR
esource.html

During transaction processing, you must enlist the XAResource object of the
third-party system with each applicable transaction object.

Figure 11–1 shows the process for third-party systems to participate in transactions
coordinated by the WebLogic Server transaction manager.

Figure 11–1 Distributed Transactions with Third-Party Participants

Depending on the enlistment mode that you use when you enlist an XAResource
object with a transaction, WebLogic Server may automatically delist the XAResource
object at the appropriate time. For more information about enlistment and delistment,
see Section 11.3, "Enlisting and Delisting an XAResource in a Transaction". For more
information about registering XAResource objects with the WebLogic Server
transaction manager, see Section 11.2, "Registering an XAResource to Participate in
Transactions".

Registering an XAResource to Participate in Transactions

Coordinating XAResources with the WebLogic Server Transaction Manager 11-3

11.2 Registering an XAResource to Participate in Transactions
In order to participate in distributed transactions coordinated by the WebLogic Server
transaction manager, third-party systems must implement the
javax.transaction.xa.XAResource interface and then register its XAResource
object with the WebLogic Server transaction manager. Registration is required to:

■ Specify the transaction branch qualifier for the XAResource. The branch qualifier
identifies the transaction branch of the resource manager instance and is used for
all distributed transactions that the resource manager (RM) instance participates
in. Each transaction branch represents a unit of work in the distributed transaction
and is isolated from other branches. Each transaction branch receives exactly one
set of prepare-commit calls during Two-Phase Commit (2PC) processing. The
WebLogic Server transaction manager uses the resource name as the transaction
branch qualifier.

A resource manager instance is defined by the XAResource.isSameRM method.
XAResource instances that belong to the same resource manager instance should
return true for isSameRM. Note that you should avoid registering the same
resource manager instance under different resource names (for example, different
resource branches) to avoid confusion of transaction branches.

■ Specify the enlistment mode. For a resource manager instance to participate in a
specific distributed transaction, it enlists an XAResource instance with the JTA
javax.transaction.Transaction object. The WebLogic Server transaction
manager provides three enlistment modes: static, dynamic, and object-oriented.
Enlistment modes are discussed in greater detail in Section 11.3, "Enlisting and
Delisting an XAResource in a Transaction".

■ Bootstrap the XAResource if the WebLogic Server transaction manager must
perform crash recovery. (The JTA Specification does not define a standard API to
do so; see the Java Transaction API at
http://www.oracle.com/technetwork/java/javaee/jta/index.html).

The Java Transaction API suggests that the transaction manager is responsible for
assigning the branch qualifiers. However, for recovery to work properly, the same
transaction branch qualifier must be supplied both at normal processing and upon
crash recovery. As the transaction branch qualifier is specified during registration,
registration with the WebLogic Server transaction manager is required to support
crash recovery and normal transaction processing.

During recovery, the WebLogic Server transaction manager performs the following
tasks:

– It reads its transaction log records and for those XA resources that participated
in the distributed transactions that were logged, it continues the second phase
of the 2PC protocol to commit the XA resources with the specified branch
qualifier.

– It resolves any other in-doubt transactions of the XA resources by calling
XAResource.recover. It then commits or rolls back the returned
transactions (Xids) that belonged to it. (Note that the returned Xids would
have the specified branch qualifier.)

Note: Registration is a per-process action (compared with enlistment
and delistment which is per-transaction).

Registering an XAResource to Participate in Transactions

11-4 Programming JTA for Oracle WebLogic Server

Failure to register the XAResource implementation with the WebLogic Server
transaction manager may result in unexpected transaction branching behavior. If
registration is not performed before the XA resource is enlisted with a WebLogic
Server distributed transaction, the WebLogic Server transaction manager uses the class
name of the XAResource instance as the resource name (and thus the branch qualifier),
which may cause undesirable resource name and transaction branch conflicts.

Each resource manager instance should register itself only once with the WebLogic
Server transaction manager. Each resource manager instance, as identified by the
resource name during registration, adds significant overhead to the system during
recovery and commit processing and health monitoring, increases memory used by
associated internal data structures, reduces efficiency in searching through internal
maps, and so forth. Therefore, for scalability and performance reasons, you should not
indiscriminately register XAResource instances under different transaction branches.

Note that the JTA XAResource adopts an explicit transaction model, where the Xid is
always explicitly passed in the XAResource methods and a single resource manager
instance handles all of the transactions. This is in contrast to the CORBA OTS
Resource, which adopts an implicit transaction model, where there is a different OTS
Resource instance for each transaction that it participates in. You should use the JTA
model when designing an XAResource.

Each foreign resource manager instance should register an XAResource instance with
the WebLogic Server transaction manager upon server startup. In WebLogic Server,
you can use startup classes to register foreign transaction managers.

Follow these steps to register the resource manager with the WebLogic Server
transaction manager:

1. Obtain the WebLogic Server transaction manager using JNDI or the TxHelper
interface:

import javax.transaction.xa.XAResource;
import weblogic.transaction.TransactionManager;
import weblogic.transaction.TxHelper;
InitialContext initCtx = ... ; // initialized to the initial context
TransactionManager tm = TxHelper.getTransactionManager();

or

TransactionManager tm =
(TransactionManager)initCtx.lookup("weblogic.transaction.TransactionManager");

or

TransactionManager tm =
(TransactionManager)initCtx.lookup("javax.transaction.TransactionManager");

2. Register the XA resource instance with the WebLogic Server transaction manager:

String name = ... ; // name of the RM instance
XAResource res = ... ; // an XAResource instance of the RM instance
tm.registerResource(name, res); // register a resource with the standard
enlistment mode

or

tm.registerDynamicResource(name, res); // register a resource with the dynamic
enlistment mode

or

Enlisting and Delisting an XAResource in a Transaction

Coordinating XAResources with the WebLogic Server Transaction Manager 11-5

tm.registerStaticResource(name, res); // register a resource with the static
enlistment mode

Refer to Section 11.3, "Enlisting and Delisting an XAResource in a Transaction" for a
detailed discussion of the different enlistment modes. Note that when you register the
XAResource, you specify the enlistment mode that is subsequently used, but you are
not actually enlisting the resource during the registration process. Actual enlistment
should be done with the transaction (not at server startup) using a different API,
which is also discussed in detail in Section 11.3, "Enlisting and Delisting an
XAResource in a Transaction".

Each XAResource instance that you register is used for recovery and commit
processing of multiple transactions in parallel. Ensure that the XAResource instance
supports resource sharing as defined in JTA Specification Version 1.0.1B Section 3.4.6.

You should unregister the XAResource from the WebLogic Server transaction manager
when the resource no longer accept new requests. Use the following method to
unregister the XAResource:

tm.unregisterResource(name, res);

11.3 Enlisting and Delisting an XAResource in a Transaction
For an XAResource to participate in a distributed transaction, the XAResource instance
must be enlisted with the Transaction object. Depending on the enlistment mode, you
may need to perform different actions. The WebLogic Server transaction manager
supports the following enlistment modes:

■ Section 11.3.1, "Standard Enlistment"

■ Section 11.3.2, "Dynamic Enlistment"

■ Section 11.3.3, "Static Enlistment"

Even though you enlist the XAResource with the Transaction object, the enlistment
mode is determined when you register the XAResource with the WebLogic Server
transaction manger, not when you enlist the resource in the Transaction. See
Section 11.2, "Registering an XAResource to Participate in Transactions".

XAResource.start and end calls can be expensive. The WebLogic Server
transaction manager provides the following optimizations to minimize the number of
these calls:

■ Delayed delistment:

Whether or not your XAResource implementation performs any explicit
delistment or not, the WebLogic Server transaction manager always delays
delisting of any XAResource instances that are enlisted in the current transaction
until immediately before the following events, at which time the XAResource is
delisted:

– Returning the call to the caller, whether it is returned normally or with an
exception

– Making a call to another server

■ Ignored duplicate enlistment:

Note: Duplicate registration of the same XAResource is ignored.

Enlisting and Delisting an XAResource in a Transaction

11-6 Programming JTA for Oracle WebLogic Server

The WebLogic Server transaction manager ignores any explicit enlistment of an
XAResource that is enlisted. This may happen if the XAResource is explicitly
delisted (which is delayed or ignored by the WebLogic Server transaction manager
as mentioned above) and is subsequently re-enlisted within the duration of the
same call.

By default, the WebLogic Server transaction manager delists the XAResource by
calling XAResource.end with the TMSUSPEND flag. Some database management
systems may keep cursors open if XAResource.end is called with TMSUSPEND, so
you may prefer to delist an XAResource by calling XAResource.end with
TMSUCCESS wherever possible. To do so, you can implement the
weblogic.transaction.XAResource interface (instead of the
javax.transaction.xa.XAResource), which includes the getDelistFlag
method. For more information, see weblogic.transaction.XAResource in the
Oracle WebLogic Server API Reference.

11.3.1 Standard Enlistment
With standard enlistment mode, enlist the XAResource instance only once with the
Transaction object. Also, it is possible to enlist multiple XAResource instances of the
same branch with the same transaction. The WebLogic Server transaction manager
ensures that XAResource.end is called on all XAResource instances when
appropriate (as discussed below). The WebLogic Server transaction manager ensures
that each branch receives only one set of prepare-commit calls during transaction
commit time. However, attempting to enlist a particular XAResource instance when it
is already enlisted is ignored.

Standard enlistment simplifies enlistment, but it may also cause unnecessary
enlistment and delistment of an XAResource if the resource is not accessed at all
within the duration of a particular method call.

To enlist an XAResource with the Transaction object, follow these steps:

1. Obtain the current Transaction object using the TransactionHelper interface:

import weblogic.transaction.Transaction; // extends
javax.transaction.Transaction
import weblogic.transaction.TransactionHelper;
Transaction tx = TransactionHelper.getTransaction();

2. Enlist the XAResource instance with the Transaction object:

tx.enlistResource(res);

After the XAResource is enlisted with the Transaction, the WebLogic Server
transaction manager manages any subsequent delistment (as described in Section 11.3,
"Enlisting and Delisting an XAResource in a Transaction") and re-enlistment. For
standard enlistment mode, the WebLogic Server transaction manager re-enlists the
XAResource in the same Transaction upon the following occasions:

■ Before a request is executed

■ After a reply is received from another server. (The WebLogic Server transaction
manager delists the XAResource before sending the request to another server.)

11.3.2 Dynamic Enlistment
With the dynamic enlistment mode, you must enlist the XAResource instance with the
Transaction object before every access of the resource. With this enlistment mode, only
one XAResource instance from each transaction branch is allowed to be enlisted for

Recovery

Coordinating XAResources with the WebLogic Server Transaction Manager 11-7

each transaction at a time. The WebLogic Server transaction manager ignores attempts
to enlist additional XAResource instances (of the same transaction branch) after the
first instance is enlisted, but before it is delisted.

With dynamic enlistment, enlistments and delistments of XAResource instances are
minimized.

The steps for enlisting the XAResource are the same as described in Section 11.3.1,
"Standard Enlistment".

11.3.3 Static Enlistment
With static enlistment mode, you do not need to enlist the XAResource instance with
any Transaction object. The WebLogic Server transaction manager implicitly enlists the
XAResource for all transactions with the following events:

■ Before a request is executed

■ After a reply is received from another server

11.4 Commit processing
During commit processing, the WebLogic Server transaction manager either uses the
XAResource instances currently enlisted with the transaction, or the XAResource
instances that are registered with the transaction manager to perform the two-phase
commit. The WebLogic Server transaction manager ensures that each transaction
branch receives only one set of prepare-commit calls. You must ensure that any
XAResource instance can be used for commit processing for multiple transactions
simultaneously from different threads, as defined in JTA Specification Version 1.0.1B
Section 3.4.6.

11.5 Recovery
When a WebLogic Server server is restarted, the WebLogic Server transaction manager
reads its own transaction logs (with log records of transactions that are successfully
prepared, but may not have completed the second commit phase of 2PC processing).

Note: Consider the following before using the static enlistment
mode:

■ Static enlistment mode eliminates the requirement to enlist
XAResources. However, unnecessary enlistment and delistment
may result, if the resource is not used in a particular transaction.

■ A faulty XAResource may adversely affect all transactions even if
the resource is not used in the transaction.

■ A single XAResource instance is used to associate different
transactions with different threads at the same time. That is,
XAResource.start and XAResource.end can be called on the
same XAResource instance in an interleaved manner for different
Xids in different threads. You must ensure that the XAResource
supports such an association pattern, which is not required by the
JTA specification.

Due to the performance overhead, poor fault isolation, and
demanding transaction association requirement, static enlistment
should only be used with discretion and after careful consideration.

Resource Health Monitoring

11-8 Programming JTA for Oracle WebLogic Server

The WebLogic Server transaction manager then continues to retry commit of the
XAResources for these transactions. As discussed in Section 11.2, "Registering an
XAResource to Participate in Transactions", one purpose of the WebLogic Server
transaction manager resource registration API is for bootstrapping XAResource
instances for recovery. You must ensure that an XAResource instance is registered with
the WebLogic Server transaction manager upon server restart. The WebLogic Server
transaction manager retries the commit call every minute, until a valid XAResource
instance is registered with the WebLogic Server transaction manager.

When a transaction manager that is acting as a transaction coordinator crashes, it is
possible that the coordinator may not have logged some in-doubt transactions in the
coordinator's transaction log. Thus, upon server restart, the coordinator must call
XAResource.recover on the resource managers, and roll back the in-doubt
transactions that were not logged. As with commit retries, the WebLogic Server
transaction manager retries XAResource.recover every 5 minutes, until a valid
XAResource instance is registered with the WebLogic Server transaction manager.

The WebLogic Server transaction manager checkpoints a new XAResource in its
transaction log records when the XAResource is first enlisted with the WebLogic
Server transaction manager. Upon server restart, the WebLogic Server transaction
manager then calls XAResource.recover on all the resources previously
checkpointed (removed from the transaction log records after the transaction
completed). A resource is only removed from a checkpoint record if it has not been
accessed for the last PurgeResourceFromCheckpointIntervalSeconds interval
(default is 24 hours). Therefore, to reduce the resource recovery overhead, you should
ensure that only a small number of resource manager instances are registered with the
WebLogic Server transaction manager.

When implementing XAResource.recover, you should use the flags as described in
the X/Open XA specification as follows:

■ When the WebLogic Server transaction manager calls XAResource.recover
with TMSTARTRSCAN, the resource returns the first batch of in-doubt Xids.

The WebLogic Server transaction manager then calls XAResource.recover with
TMNOFLAGS repeatedly, until the resource returns either null or a zero-length array
to signal that there are no more Xids to recover. If the resource has returned all the
Xids in the previous XAResource.recover(TMSTARTRSCAN) call, then it can
either return null or a zero-length array here, or it may also throw XAER_PROTO,
to indicate that it has finished and forgotten the previous recovery scan. A
common XAResource.recover implementation problem is ignoring the flags or
always returning the same set of Xids on XAResource.recover(TMNOFLAGS).
This causes the WebLogic Server transaction manager recovery to loop infinitely,
and subsequently fail.

■ The WebLogic Server transaction manager XAResource.recover with
TMENDRSCAN flag to end the recovery scan. The resource may return additional
Xids.

11.6 Resource Health Monitoring
To prevent losing server threads to faulty XAResources, WebLogic Server JTA has an
internal resource health monitoring mechanism. A resource is considered active if
either there are no pending requests or the result from any of the XAResource pending
requests is not XAER_RMFAIL. If an XAResource is not active within two minutes, the
WebLogic Server transaction manager declares it dead. Any further requests to the
XAResource are shunned, and an XAER_RMFAIL XAException is thrown.

Implementation Tips

Coordinating XAResources with the WebLogic Server Transaction Manager 11-9

The two minute interval can be configured using the maxXACallMillis JTAMBean
attribute. It is not exposed through the Administration Console. You can configure
maxXACallMillis in the config.xml file. For example:

<Domain>
....
<JTA
 MaxXACallMillis="240000"
/>
....
</Domain>

To receive notification from the WebLogic Server transaction manager and to inform
the WebLogic Server transaction manager whether it is indeed dead when the resource
is about to be declared dead, you can implement
weblogic.transaction.XAResource (which extends
javax.transaction.xa.XAResource) and register it with the transaction
manager. The transaction manager calls the detectUnavailable method of the
XAResource when it is about to declare it unavailable. If the XAResource returns
true, then it is not declared unavailable. If the XAResource is indeed unavailable, it
can use this opportunity to perform cleanup and re-registration with the transaction
manager. For more information, see weblogic.transaction.XAResource in the
Oracle WebLogic Server API Reference.

11.7 Java EE Connector Architecture Resource Adapter
Besides registering with the WebLogic Server transaction manager directly, you can
also implement the Java EE Connector Architecture resource adapter interfaces. When
you deploy the resource adapter, the WebLogic Server Java EE container registers the
resource manager's XAResource with the WebLogic Server transaction manager
automatically.

For more information, see Programming Resource Adapters for Oracle WebLogic Server.

11.8 Implementation Tips
The following sections provide tips for exporting and importing transactions with the
WebLogic Server transaction manager:

■ Section 11.8.1, "Sharing the WebLogic Server Transaction Log"

■ Section 11.8.2, "Transaction global properties"

■ Section 11.8.3, "TxHelper.createXid"

11.8.1 Sharing the WebLogic Server Transaction Log
The WebLogic Server transaction manager exposes the transaction log to be shared
with system applications such as gateways. This provides a way for system
applications to take advantage of the box-carring (batching) transaction log
optimization of the WebLogic Server transaction manager for fast logging. Note that it
is important to release the transaction log records in a timely fashion. (The WebLogic
Server transaction manager only removes a transaction log file if all the records in it
are released). Failure to do so may result in a large number of transaction log files, and
could lead to re-commit of a large number of already committed transactions, or in an
extreme case, circular collision and overwriting of transaction log files.

Implementation Tips

11-10 Programming JTA for Oracle WebLogic Server

The WebLogic Server transaction manager exposes a transaction logger interface:
weblogic.transaction.TransactionLogger. It is only available on the server,
and it can be obtained with the following steps:

1. Get the server transaction manager:

import weblogic.transaction.ServerTransactionManager;
import weblogic.transaction.TxHelper;
ServerTransactionManager stm =
(ServerTransactionManager)TxHelper.getTransactionManager();

2. Get the TransactionLogger:

TransactionLogger tlog = stm.getTransactionLogger();

The XAResource's log records must implement the
weblogic.transaction.TransactionLoggable interface in order to be written
to the transaction log. For more information about the
weblogic.transaction.TransactionLogger interface and usage of the
TransactionLogger interface, see
weblogic.transaction.TransactionLogger in the Oracle WebLogic Server API
Reference.

11.8.2 Transaction global properties
A WebLogic Server JTA transaction object is associated with both local and global
properties. Global properties are propagated with the transaction propagation context
among servers, and are also saved as part of the log record in the transaction log. You
can access the transaction global properties as follows:

1. Obtain the transaction object:

import weblogic.transaction.Transaction;
import weblogic.transaction.TransactionHelper;
Transaction tx = TransactionHelper.getTransaction(); // Get the transaction
associated with the thread

or

Transaction tx = TxHelper.getTransaction(xid); // Get the transaction with the
given Xid

2. Get or set the properties on the transaction object:

tx.setProperty("foo", "fooValue");
tx.getProperty("bar");

For more information, see weblogic.transaction.TxHelper in the Oracle
WebLogic Server API Reference.

11.8.3 TxHelper.createXid
You can use the TxHelper.createXid(int formatId, byte[] gtrid,
byte[] bqual) method to create Xids, for example, to return to the WebLogic
Server transaction manager on recovery.

For more information, see weblogic.transaction.TxHelper in the Oracle
WebLogic Server API Reference.

Additional Documentation about JTA

Coordinating XAResources with the WebLogic Server Transaction Manager 11-11

11.9 Changes in the Resource Registration Name
This release changes the behavior of the resource registration name for XA data source
configurations. In previous releases, the JTA registration name was simply the name of
the data source. Now, the registration name is a combination of data source name and
domain.

All resources registered with JTA now have a corresponding runtime MBean that
exposes XA usage statistics for the resource. This altered (qualified) the JMX
ObjectName of the MBean, and may impact existing applications that perform a JMX
lookup of such a runtime MBean by name. In previous releases, a data source
configuration with a name of mydatasource in domain mydomain would have a JTA
resource runtime MBean registered under the object name:

com.bea:ServerRuntime=myserver,Name=mydatasource,Type=Transactio
nResourceRuntime,JTARuntime=JTARuntime

For this release, the new qualified object name is:

com.bea:ServerRuntime=myserver,Name=mydatasource_
mydomain,Type=TransactionResourceRuntime,JTARuntime=JTARuntime

The transaction branch qualifier is also derived from the JTA resource registration
name. Any pending transaction branches for XA data sources at the time of upgrade
may not be recoverable after upgrade. Oracle recommends that no pending
transactions are left pending in database resources prior to upgrade. Otherwise, any
pending database transactions may need to be resolved manually by a database
administrator. See

This release provides a new system property to disable the qualifying of the
registration name:

 -Dweblogic.jdbc.qualifyRMName=false

11.10 FAQs
■ Why does the XAResource's Xid have a branch qualifier, but not the transaction

manager's transaction?

WebLogic Server JTA transaction objects do not have branch qualifiers (for
example,
TxHelper.getTransaction().getXid().getBranchQualifier() would
be null). Since the branch qualifiers are specific to individual resource managers,
the WebLogic Server transaction manager only sets the branch qualifiers in the
Xids that are passed into XAResource methods.

■ What is the TxHelper.getTransaction() method used for?

The WebLogic Server JTA provides the TxHelper.getTransaction() API to
return the transaction associated with the current thread. However, note that
WebLogic Server JTA suspends the transaction context before calling the
XAResource methods, so you should only rely on the Xid input parameter to
identify the transaction, but not the transaction associated with the current thread.

11.11 Additional Documentation about JTA
Refer to the JTA specification 1.0.1B Section 4.1 for a connection-based Resource Usage
scenario, which illustrates the JTA interaction between the transaction manager and
resource manager. The JTA specification is available at
http://www.oracle.com/technetwork/java/javaee/jta/index.html.

Additional Documentation about JTA

11-12 Programming JTA for Oracle WebLogic Server

12

Participating in Transactions Managed by a Third-Party Transaction Manager 12-1

12Participating in Transactions Managed by a
Third-Party Transaction Manager

This chapter describes how WebLogic Server participates in distributed transactions
coordinated by third-party systems (referred to as foreign transaction managers). The
WebLogic Server processing occurs as part of the work of the external transaction. The
foreign transaction manager then drives the WebLogic Server transaction manager as
part of its commit processing. This is referred to as "importing" transactions into
WebLogic Server.

The following sections describe the process for configuring and participating in
foreign-managed transactions:

■ Section 12.1, "Overview of Participating in Foreign-Managed Transactions"

■ Section 12.2, "Importing Transactions with the Client Interposed Transaction
Manager"

■ Section 12.3, "Importing Transactions with the Server Interposed Transaction
Manager"

■ Section 12.4, "Transaction Processing for Imported Transactions"

■ Section 12.5, "Commit Processing for Imported Transactions"

■ Section 12.6, "Recovery for Imported Transactions"

12.1 Overview of Participating in Foreign-Managed Transactions
The WebLogic Server transaction manager exposes a
javax.transaction.xa.XAResource implementation using the
weblogic.transaction.InterposedTransactionManager interface. A foreign
transaction manager can access the InterposedTransactionManager interface to
coordinate the WebLogic Server transaction manager XAResource during its commit
processing.

When importing a transaction from a foreign transaction manager into the WebLogic
Server transaction manager, you must register the WebLogic Server interposed
transaction manager as a subordinate with the foreign transaction manager. The
WebLogic Server transaction manager then acts as the coordinator for the imported
transaction within WebLogic Server.

WebLogic Server supports two configuration schemes for importing transactions:

■ Using a client-side gateway (implemented externally to WebLogic Server) that
uses the client interposed transaction manager

Importing Transactions with the Client Interposed Transaction Manager

12-2 Programming JTA for Oracle WebLogic Server

■ Using a server-side gateway implemented on a WebLogic Server instance that uses
the server interposed transaction manager

Although there are some differences in limitations and in implementation details, the
basic behavior is the same for importing transactions in both configurations:

1. Lookup the WebLogic Server transaction manager and register it as an
XAResource as necessary in the third-party system.

2. Enlist and delist applicable transaction participants during transaction processing.

3. Send the prepare message to the WebLogic Server transaction manager, which
then acts as a subordinate transaction manager and coordinates the prepare phase
for transaction participants within WebLogic Server.

4. Send the commit or roll back message to the WebLogic Server transaction
manager, which then acts as a subordinate transaction manager and coordinates
the second phase of the two-phase commit process for transaction participants
within WebLogic Server.

5. Unregister, as necessary.

12.2 Importing Transactions with the Client Interposed Transaction
Manager

You can use the client interposed transaction manager in WebLogic Server to drive the
two-phase commit process for transactions that are coordinated by a third-party
transaction manager and include transaction participants within WebLogic Server,
such as JMS resources and JDBC resources. The client interposed transaction manager
is an implementation of the javax.transaction.xa.XAResource interface. You
access the client interposed transaction manager directly from the third-party
application, typically from a gateway in the third-party application. The transaction
manager in the third-party system then sends the prepare and commit messages to the
gateway, which propagates the message to the WebLogic Server transaction manger.
The WebLogic Server transaction manager then acts as a subordinate transaction
manager and coordinates the transaction participants within WebLogic Server.
Figure 12–1 shows the interaction between the two transaction managers and the
client-side gateway.

Figure 12–1 Importing Transactions into WebLogic Server Using a Client-Side Gateway

Importing Transactions with the Client Interposed Transaction Manager

Participating in Transactions Managed by a Third-Party Transaction Manager 12-3

Figure 12–2 shows the flow of interactions between a foreign transaction manager,
WebLogic Server client-side JTA objects, and the WebLogic Server transaction
manager.

Figure 12–2 State Diagram Illustrating Steps to Import a Transaction Using the Client Interposed
Transaction Manager

To access the interposed transaction manager in WebLogic Server using a client-side
gateway, you must perform the following steps:

■ Section 12.2.1, "Get the Client Interposed Transaction Manager"

■ Section 12.2.2, "Get the XAResource from the Interposed Transaction Manager"

12.2.1 Get the Client Interposed Transaction Manager
In a client-side gateway, the you can get the WebLogic server interposed transaction
manager's XAResource with the getClientInterposedTransactionManager
method. For example:

import javax.naming.Context;
import weblogic.transaction.InterposedTransactionManager;
import weblogic.transaction.TxHelper;
Context initialCtx;
String serverName;
InterposedTransactionManager itm =
TxHelper.getClientInterposedTransactionManager(initialCtx, serverName);

The server name parameter is the name of the server that acts as the interposed
transaction manager for the foreign transaction. When the foreign transaction manager
performs crash recovery, it must contact the same WebLogic Server server to obtain the
list of in-doubt transactions that were previously imported into WebLogic Server.

Importing Transactions with the Server Interposed Transaction Manager

12-4 Programming JTA for Oracle WebLogic Server

For more information, see weblogic.transaction.TxHelper in the Oracle
WebLogic Server API Reference.

12.2.2 Get the XAResource from the Interposed Transaction Manager
After you get the interposed transaction manager, you must get the XAResource object
associated with the interposed transaction manager:

import javax.transaction.xa.XAResource;
XAResource xar = itm.getXAResource();

12.2.3 Limitations of the Client Interposed Transaction Manager
Note the following limitations when importing transactions using a client-side
gateway:

■ You cannot use the
TxHelper.getServerInterposedTransactionManager() method in
client-side gateways.

■ You can only use one WebLogic Server client interposed transaction manager at a
time. Do not use multiple client interposed transaction managers (connecting to
different WebLogic Server servers) to import transactions at the same time. (See
Section 12.4, "Transaction Processing for Imported Transactions" for more
information about this limitation and how transactions are processed with the
WebLogic Server interposed transaction manager.)

12.3 Importing Transactions with the Server Interposed Transaction
Manager

You can use the server interposed transaction manager in WebLogic Server to drive the
two-phase commit process for transactions that are coordinated by a third-party
transaction manager and include transaction participants within WebLogic Server,
such as JMS resources and JDBC resources. The server interposed transaction manager
is an implementation of the javax.transaction.xa.XAResource interface. You
access the server interposed transaction manager by creating a server-side gateway on
WebLogic Server and then accessing the gateway from a third-party system. The
transaction manager in the third-party system then sends the prepare and commit
messages to the server-side gateway, which propagates the message to the WebLogic
Server transaction manager. The WebLogic Server transaction manager then acts as a
subordinate transaction manager and coordinates the transaction participants within
WebLogic Server. Figure 12–3 shows the interaction between the two transaction
managers and the server-side gateway.

Importing Transactions with the Server Interposed Transaction Manager

Participating in Transactions Managed by a Third-Party Transaction Manager 12-5

Figure 12–3 Importing Transactions into WebLogic Server Using a Server-Side Gateway

To access the interposed transaction manager in WebLogic Server using a server-side
gateway, you must perform the following steps:

■ Section 12.3.1, "Get the Server Interposed Transaction Manager"

■ Section 12.2.2, "Get the XAResource from the Interposed Transaction Manager"

12.3.1 Get the Server Interposed Transaction Manager
In a server-side gateway, you can get the interposed transaction manager's
XAResource as follows:

import javax.naming.Context;
import weblogic.transaction.InterposedTransactionManager;
import weblogic.transaction.TxHelper;
InterposedTransactionManager itm =
TxHelper.getServerInterposedTransactionManager();

For more information, see weblogic.transaction.TxHelper in the Oracle
WebLogic Server API Reference.

After you get the interposed transaction manager, you must get the XAResource. See
Section 12.2.2, "Get the XAResource from the Interposed Transaction Manager".

12.3.2 Limitations of the Server Interposed Transaction Manager
Note the following limitations when importing transactions using a server-side
gateway:

■ Do not use the TxHelper.getClientInterposedTransactionManager()
method in a server-side gateway on a WebLogic Server server. Doing so causes
performance issues.

■ You can only use one WebLogic Server server interposed transaction manager at a
time. Do not use multiple server interposed transaction managers (on the same
thread) to import transactions at the same time. (See Section 12.4, "Transaction
Processing for Imported Transactions" for more information about this limitation

Transaction Processing for Imported Transactions

12-6 Programming JTA for Oracle WebLogic Server

and how transactions are processed with the WebLogic Server interposed
transaction manager.)

12.4 Transaction Processing for Imported Transactions
To import a foreign transaction into WebLogic Server, the foreign transaction manager
or gateway can do the following:

xar.start(foreignXid, TMNOFLAGS);

This operation associates the current thread with the imported transaction. All
subsequent calls made to other servers propagate the imported WebLogic Server
transaction, until the transaction is disassociated from the thread.

To disassociate the imported transaction from the current thread, the foreign
transaction manager or gateway should do the following:

xar.end(foreignXid, TMSUCCESS);

Note that the WebLogic Server transaction manager ignores the flag.

12.4.1 Transaction Processing Limitations for Imported Transactions
Note the following processing limitations and behavior for imported transactions:

■ After a WebLogic Server transaction is started, the gateway cannot call start again
on the same thread. With a client-side gateway, you can only call xar.start on
one client interposed transaction manager at a time. Attempting to call
xar.start on another client interposed transaction manager (before xar.end
was called on the first one) throws an XAException with XAER_RMERR. With a
server-side gateway, attempting to call xar.start on a client or server interposed
transaction manager also throws a XAException with XAER_RMERR if there is an
active transaction associated with the current thread.

■ The WebLogic Server interposed transaction manager's XAResource exhibits
loosely-coupled transaction branching behavior on different WebLogic Server
servers. That is, if the same foreign Xid is imported on different WebLogic Server
servers, they are imported to different WebLogic Server transactions.

■ The WebLogic Server transaction manager does not flatten the transaction tree, for
example, the imported transaction of a previously exported WebLogic Server
transaction are in a separate branch from the original WebLogic Server transaction.

■ A foreign transaction manager should ensure that all foreign Xids that are
imported into WebLogic Server are unique and are not reused within the sum of
the transaction abandon timeout period and the transaction timeout period.
Failure to do so may result in log records that are never released in the WebLogic
Server transaction manager. This could lead to inefficient crash recovery.

Note: The flag is ignored by the WebLogic Server transaction
manager. If the foreign Xid has been imported previously on the same
WebLogic Server server, WebLogic Server associates the current thread
with the previously imported WebLogic Server transaction.

Recovery for Imported Transactions

Participating in Transactions Managed by a Third-Party Transaction Manager 12-7

12.5 Commit Processing for Imported Transactions
The foreign transaction manager should drive the interposed transaction manager in
the 2PC protocol as it does the other XAResources. Note that the beforeCompletion
callbacks registered with the WebLogic Server JTA (for example, the EJB container) are
called when the foreign transaction manager prepares the interposed transaction
manager's XAResource. The afterCompletion callbacks are called during
XAResource.commit or XAResource.rollback.

The WebLogic Server interposed transaction manager honors the XAResource contract
as described in the Java Transaction API at
http://www.oracle.com/technetwork/java/javaee/jta/index.html.

■ Once prepared by a foreign transaction manager, the WebLogic Server interposed
transaction manager waits persistently for a commit or rollback outcome from the
foreign transaction manager until the transaction abandon timeout expires.

■ The WebLogic Server interposed transaction manager remembers heuristic
outcomes persistently until being told to forget about the transaction by the
foreign transaction manager or until transaction abandon timeout.

The WebLogic Server transaction manager logs a prepare record for the imported
transaction after all the WebLogic Server participants are successfully prepared. If
there are multiple WebLogic Server participants for the imported transaction, the
transaction manager logs a prepare record even if the XAResource.commit is a
one-phase commit.

12.6 Recovery for Imported Transactions
During the crash recovery of the foreign transaction manager, the foreign transaction
manager must get the XAResource of the WebLogic Server interposed transaction
manager again, and call recover on it. The WebLogic Server interposed transaction
manager then returns the list of prepared or heuristically completed transactions. The
foreign transaction manager should then resolve those in-doubt transactions: either
commit or rollback the prepared transactions, and call forget on the heuristically
completed transactions.

Recovery for Imported Transactions

12-8 Programming JTA for Oracle WebLogic Server

13

Troubleshooting Transactions 13-1

13Troubleshooting Transactions

This chapter describes troubleshooting tools and tasks for use in determining why
transactions fail and deciding what actions to take to correct the problem.

This section discusses the following topics:

■ Section 13.1, "Overview"

■ Section 13.2, "Troubleshooting Tools"

13.1 Overview
WebLogic Server includes the ability to monitor currently running transactions and
ensure that adequate information is captured in the case of heuristic completion. It also
provides the ability to monitor performance of database queries, transactional
requests, and bean methods.

13.2 Troubleshooting Tools
WebLogic Server provides the following aids to transaction troubleshooting:

■ Section 13.2.1, "Exceptions"

■ Section 13.2.2, "Transaction Identifier"

■ Section 13.2.3, "Transaction Name and Properties"

■ Section 13.2.4, "Transaction Status"

■ Section 13.2.5, "Transaction Statistics"

■ Section 13.2.6, "Transaction Monitoring"

■ Section 13.2.7, "Debugging JTA Resources"

13.2.1 Exceptions
WebLogic JTA supports all standard JTA exceptions. For more information about
standard JTA exceptions, see the API Javadoc for the following packages, available at
http://java.sun.com/products/jta/javadocs-1.0.1/index.html:

■ javax.transaction

■ javax.transaction.xa

In addition to the standard JTA exceptions, WebLogic Server provides the class
weblogic.transaction.RollbackException. This class extends
javax.transaction.RollbackException and preserves the original reason for a

Troubleshooting Tools

13-2 Programming JTA for Oracle WebLogic Server

rollback. Before rolling a transaction back, or before setting it to rollbackonly, an
application can supply a reason for the rollback. All rollbacks triggered inside the
transaction service set the reason (for example, timeouts, XA errors, unchecked
exceptions in beforeCompletion, or inability to contact the transaction manager).
Once set, the reason cannot be overwritten.

13.2.2 Transaction Identifier
The Transaction Service assigns a transaction identifier (Xid) to each transaction. This
ID can isolate information about a specific transaction in a log file. You can retrieve the
transaction identifier using the getXID method in the
weblogic.transaction.Transaction interface. For detailed information on
methods for getting the transaction identifier, see
weblogic.transaction.Transaction in the Oracle WebLogic Server API Reference.

13.2.3 Transaction Name and Properties
WebLogic JTA provides extensions to javax.transaction.Transaction that
support transaction naming and user-defined properties. These extensions are
included in the weblogic.transaction.Transaction interface.

The transaction name indicates a type of transaction (for example, funds transfer or
ticket purchase) and should not be confused with the transaction ID, which identifies a
unique transaction on a server. The transaction name makes it easier to identify a
transaction type in the context of an exception or a log file.

User-defined properties are key/value pairs, where the key is a string identifying the
property and the value is the current value assigned to the property. Transaction
property values must be objects that implement the Serializable interface. You
manage properties in your application using the set and get methods defined in the
weblogic.transaction.Transaction interface. Once set, properties stay with a
transaction during its entire lifetime and are passed between machines as the
transaction travels through the system. Properties are saved in the transaction log, and
are restored during crash recovery processing. If a transaction property is set more
than once, the latest value is retained.

For detailed information on methods for setting and getting the transaction name and
transaction properties, see weblogic.transaction.Transaction in the Oracle
WebLogic Server API Reference.

13.2.4 Transaction Status
The Java Transaction API provides transaction status codes using the
javax.transaction.Status class. Use the getStatusAsString method in
weblogic.transaction.Transaction to return the status of the transaction as a
string. The string contains the major state as specified in
javax.transaction.Status with an additional minor state (such as logging or
pre-preparing).

13.2.5 Transaction Statistics
Transaction statistics are provided for all transactions handled by the transaction
manager on a server. These statistics include the number of total transactions,
transactions with a specific outcome (such as committed, rolled back, or heuristic
completion), rolled back transactions by reason, and the total time that transactions
were active. For detailed information about transaction statistics, see "Monitor JTA" in
the Oracle WebLogic Server Administration Console Help.

Troubleshooting Tools

Troubleshooting Transactions 13-3

13.2.6 Transaction Monitoring
The Administration Console enables you to monitor transactions. Monitoring tasks are
performed at the server level. Transaction statistics are displayed for a specific server.

13.2.7 Debugging JTA Resources
Once you have narrowed the problem down to a specific application, you can activate
WebLogic Server's debugging features to track down the specific problem within the
application.

13.2.7.1 Enabling Debugging
You can enable debugging by setting the appropriate ServerDebug configuration
attribute to "true." Optionally, you can also set the server StdoutSeverity to
"Debug".

You can modify the configuration attribute in any of the following ways.

13.2.7.2 Enable Debugging Using the Command Line
Set the appropriate properties on the command line. For example,

-Dweblogic.debug.DebugJDBCJTA=true
-Dweblogic.log.StdoutSeverity="Debug"

This method is static and can only be used at server startup.

13.2.7.3 Enable Debugging Using the WebLogic Server Administration Console
Use the WebLogic Server Administration Console to set the debugging values:

1. If you have not done so, in the Change Center of the Administration Console, click
Lock & Edit (see "Use the Change Center" in Oracle WebLogic Server Administration
Console Help).

2. In the left pane of the console, expand Environment and select Servers.

3. On the Summary of Servers page, click the server on which you want to enable or
disable debugging to open the settings page for that server.

4. Click Debug.

5. Expand default.

6. Select the check box for the debug scopes or attributes you want to modify.

7. Select Enable to enable (or Disable to disable) the debug scopes or attributes you
have checked.

8. To activate these changes, in the Change Center of the Administration Console,
click Activate Changes.

9. Not all changes take effect immediately—some require a restart (see "Use the
Change Center" in Oracle WebLogic Server Administration Console Help).

This method is dynamic and can enable debugging while the server is running.

13.2.7.4 Enable Debugging Using the WebLogic Scripting Tool
Use the WebLogic Scripting Tool (WLST) to set the debugging values. For example, the
following command runs a program for setting debugging values called debug.py:

java weblogic.WLST debug.py

Troubleshooting Tools

13-4 Programming JTA for Oracle WebLogic Server

The debug.py program contains the following code:

user='user1'
password='password'
url='t3://localhost:7001'
connect(user, password, url)
edit()
cd('Servers/myserver/ServerDebug/myserver')
startEdit()
set('DebugJDBCJTA','true')
save()
activate()

Note that you can also use WLST from Java. The following example shows a Java file
used to set debugging values:

import weblogic.management.scripting.utils.WLSTInterpreter;
import java.io.*;
import weblogic.jndi.Environment;
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;

public class test {
 public static void main(String args[]) {
 try {
 WLSTInterpreter interpreter = null;
 String user="user1";
 String pass="pw12ab";
 String url ="t3://localhost:7001";
 Environment env = new Environment();
 env.setProviderUrl(url);
 env.setSecurityPrincipal(user);
 env.setSecurityCredentials(pass);
 Context ctx = env.getInitialContext();

 interpreter = new WLSTInterpreter();
 interpreter.exec
 ("connect('"+user+"','"+pass+"','"+url+"')");
 interpreter.exec("edit()");
 interpreter.exec("startEdit()");
 interpreter.exec
 ("cd('Servers/myserver/ServerDebug/myserver')");
 interpreter.exec("set('DebugJDBCJTA','true')");
 interpreter.exec("save()");
 interpreter.exec("activate()");

 } catch (Exception e) {
 System.out.println("Exception "+e);
 }
 }
}

Using the WLST is a dynamic method and can enable debugging while the server is
running.

13.2.7.5 Changes to the config.xml File
Changes in debugging characteristics, through console, or WLST, or command line are
persisted in the config.xml file. See Example 13–1:

Troubleshooting Tools

Troubleshooting Transactions 13-5

Example 13–1 Example Debugging Stanza for JTA

.

.

.
<server>
<name>myserver</name>
<server-debug>
<debug-scope>
<name>weblogic.transaction</name>
<enabled>true</enabled>
</debug-scope>
<debug-jdbcjta>true</debug-jdbcjta>
</server-debug>
</server>
.
.
.

This sample config.xml fragment shows a transaction debug scope (set of debug
attributes) and a single JTA attribute.

13.2.7.6 JTA Debugging Scopes
It is possible to see the tree view of the DebugScope definitions using java
weblogic.diagnostics.debug.DebugScopeViewer.

You can enable the following registered debugging scopes for JTA:

■ DebugJDBCJTA (scope weblogic.jdbc.transaction) - not currently used.

■ DebugJTAXA (scope weblogic.transaction.xa) - traces for XA resources.

■ DebugJTANonXA (scope weblogic.transaction.nonxa) - traces for non-XA
resources.

■ DebugJTAXAStackTrace (scope weblogic.transaction.stacktrace) - detailed
tracing that prints stack traces at various critical locations.

■ DebugJTARMI (scope weblogic.transaction.rmi) - not currently used.

■ DebugJTA2PC (scope weblogic.transaction.twopc) - traces all 2-phase commit
operations.

■ DebugJTA2PCStackTrace (scope weblogic.transaction.twopcstacktrace) -
detailed two-phase commit tracing that prints stack traces.

■ DebugJTATLOG (scope weblogic.transaction.tlog) - traces transaction logging
information.

■ DebugJTAJDBC (scope weblogic.transaction.jdbc, weblogic.jdbc.transaction) -
traces information about reading/writing JTA records.

■ DebugJTARecovery (scope weblogic.transaction.recovery) - traces recovery
information.

■ DebugJTAGateway (scope weblogic.transaction.gateway) - traces information
about imported transactions.

■ DebugJTAGatewayStackTrace (scope weblogic.transaction.gatewaystacktrace)
- stack traces related to imported transactions.

■ DebugJTANaming (scope weblogic.transaction.naming) - traces transaction
naming information.

Troubleshooting Tools

13-6 Programming JTA for Oracle WebLogic Server

■ DebugJTANamingStackTrace (scope weblogic.transaction.namingstacktrace) -
traces transaction naming information.

■ DebugJTAResourceHealth (scope weblogic.transaction.resourcehealth) - traces
information about XA transaction resource health.

■ DebugJTAMigration (scope weblogic.transaction.migration) - traces information
about Transaction Log migration.

■ DebugJTALifecycle (scope weblogic.transaction.lifecycle) - traces information
about the transaction server lifecycle (initialization, suspension, resuming, and
shutdown).

■ DebugJTALLR (scope weblogic.transaction.llr) - traces all Logging Last Resource
operations.

■ DebugJTAHealth (scope weblogic.transaction.health) - traces information about
transaction subsystem health.

■ DebugJTATransactionName (scope weblogic.transaction.name) - traces
transaction names.

■ DebugJTAResourceName (scope weblogic.transaction.resourcename) - traces
transaction resource names.

	Contents
	Preface
	Documentation Accessibility
	Conventions

	1 Introduction and Roadmap
	1.1 Document Scope and Audience
	1.2 Guide to this Document
	1.3 Related Documentation
	1.4 Samples and Tutorials
	1.4.1 Avitek Medical Records Application (MedRec) and Tutorials

	1.5 New and Changed Features in This Release

	2 Introducing Transactions
	2.1 Overview of Transactions in WebLogic Server Applications
	2.1.1 ACID Properties of Transactions
	2.1.2 Supported Programming Model
	2.1.3 Supported API Models
	2.1.4 Distributed Transactions and the Two-Phase Commit Protocol
	2.1.5 Support for Business Transactions

	2.2 When to Use Transactions
	2.3 What Happens During a Transaction
	2.3.1 Transactions in WebLogic Server EJB Applications
	2.3.1.1 Container-managed Transactions
	2.3.1.2 Bean-managed Transactions

	2.3.2 Transactions in WebLogic Server RMI Applications

	2.4 Transactions Sample Code
	2.4.1 Transactions Sample EJB Code
	2.4.1.1 Importing Packages
	2.4.1.2 Using JNDI to Return an Object Reference
	2.4.1.3 Starting a Transaction
	2.4.1.4 Completing a Transaction

	2.4.2 Transactions Sample RMI Code
	2.4.2.1 Importing Packages
	2.4.2.2 Using JNDI to Return an Object Reference to the UserTransaction Object
	2.4.2.3 Starting a Transaction
	2.4.2.4 Completing a Transaction

	3 Configuring Transactions
	3.1 Overview of Transaction Configuration
	3.2 Configuring JTA
	3.2.1 Unregister Resource Grace Period
	3.2.2 Additional Attributes for Managing Transactions

	3.3 Configuring Secure Inter-Domain and Intra-Domain Transaction Communication
	3.3.1 Requirements for Transaction Communication
	3.3.2 Configuring Communication for Inter-Domain Transactions
	3.3.3 Configuring Domains for Intra-Domain Transactions
	3.3.4 Configuring Cross Domain Security
	3.3.4.1 Cross Domain Security is Not Transitive
	3.3.4.2 Adding Domains to the Exclude List Based on Transaction Participation
	3.3.4.3 Important Considerations When Configuring Cross Domain Security

	3.3.5 Configuring Security Interoperability Mode
	3.3.5.1 Establish Domain Trust
	3.3.5.2 Configuring Security Interoperability Mode
	3.3.5.3 Configuring Domains for JNDI Lookups Requiring an Admin User

	3.4 Transaction Log Files
	3.4.1 Using the Default Persistent Store
	3.4.1.1 Setting the Path for the Default Persistent Store
	3.4.1.2 Setting the Default Persistent Store Synchronous Write Policy

	3.4.2 Using a JDBC JTOG Store

	3.5 Read-only, One-Phase Commit Optimizations
	3.5.1 Configuring Read-only, One-phase Commit Optimization and Two-phase Commit Disablement
	3.5.2 Monitoring Read-only, One-phase Transaction Statistics

	4 Managing Transactions
	4.1 Monitoring Transactions
	4.2 Handling Heuristic Completions
	4.3 Moving a Server
	4.4 Abandoning Transactions
	4.4.1 Tuning Transaction Processing

	4.5 Manually Resolving Current (Inflight) Transactions
	4.5.1 Manual Commit and Rollback Options

	4.6 Transaction Recovery After a Server Fails
	4.6.1 Transaction Recovery Service Actions After a Crash
	4.6.1.1 Clustering Failover When Using Apache With the WebLogic Proxy Plug-in

	4.6.2 Recovering Transactions For a Failed Non-Clustered Server
	4.6.3 Recovering Transactions For a Failed Clustered Server
	4.6.3.1 Server Migration
	4.6.3.2 Manual Transaction Recovery Service Migration
	4.6.3.2.1 What Occurs During Transaction Recovery Service Migration

	4.6.3.3 Automatic Transaction Recovery Service Migration
	4.6.3.4 Managed Server Independence
	4.6.3.5 Limitations of Migrating the Transaction Recovery Service
	4.6.3.6 Preparing to Migrate the Transaction Recovery Service
	4.6.3.7 Constraining Servers to Which the Transaction Recovery Service Can Migrate
	4.6.3.8 Viewing Current Owner of the Transaction Recovery Service
	4.6.3.9 Manually Migrating the Transaction Recovery Service to the Original Server

	4.6.4 How to Remove Transaction Records
	4.6.4.1 How to Remove the TLOG in the LLR Database
	4.6.4.2 How to Remove the TLOG Files from the Default Store
	4.6.4.3 How to Remove the TLOG from a JDBC TLOG Store

	5 Transaction Service
	5.1 About the Transaction Service
	5.2 Capabilities and Limitations
	5.2.1 Lightweight Clients with Delegated Commit
	5.2.2 Client-initiated Transactions
	5.2.3 Transaction Integrity
	5.2.4 Transaction Termination
	5.2.5 Flat Transactions
	5.2.6 Relationship of the Transaction Service to Transaction Processing
	5.2.7 Multithreaded Transaction Client Support
	5.2.8 Transaction Id
	5.2.9 Transaction Name and Properties
	5.2.10 Transaction Status
	5.2.11 Transaction Statistics
	5.2.12 General Constraints

	5.3 Transaction Scope
	5.4 Transaction Service in EJB Applications
	5.5 Transaction Service in RMI Applications
	5.6 Transaction Service Interoperating with OTS
	5.6.1 Server-Server 2PC
	5.6.2 Client Demarcated Transactions

	6 Java Transaction API and Oracle WebLogic Extensions
	6.1 JTA API Overview
	6.2 Oracle WebLogic Extensions to JTA

	7 Logging Last Resource Transaction Optimization
	7.1 About the LLR Optimization Transaction Optimization
	7.2 Logging Last Resource Processing Details
	7.3 LLR Database Table Details
	7.3.1 LLR Table Transaction Log Records

	7.4 Failure and Recovery Processing for LLR
	7.4.1 Coordinating Server Crash
	7.4.2 JDBC Connection Failure
	7.4.3 LLR Transaction Recover During Server Startup
	7.4.4 Failover Considerations for LLR

	7.5 Optimizing Performance with LLR
	7.5.1 Optimizing Transaction Coordinator Location
	7.5.2 Varied Performance for Read-Only Operations Through an LLR Data Source
	7.5.3 Dedicating LLR Tables by Data Source
	7.5.3.1 Limitations

	8 Transactions in EJB Applications
	8.1 Before You Begin
	8.2 General Guidelines
	8.3 Transaction Attributes
	8.3.1 About Transaction Attributes for EJBs
	8.3.2 Transaction Attributes for Container-Managed Transactions
	8.3.3 Transaction Attributes for Bean-Managed Transactions

	8.4 Participating in a Transaction
	8.5 Transaction Semantics
	8.5.1 Transaction Semantics for Container-Managed Transactions
	8.5.1.1 Transaction Semantics for Stateful Session Beans
	8.5.1.2 Transaction Semantics for Stateless Session Beans
	8.5.1.3 Transaction Semantics for Entity Beans

	8.5.2 Transaction Semantics for Bean-Managed Transactions
	8.5.2.1 Transaction Semantics for Stateful Session Beans
	8.5.2.2 Transaction Semantics for Stateless Session Beans

	8.6 Session Synchronization
	8.7 Synchronization During Transactions
	8.8 Setting Transaction Timeouts
	8.9 Handling Exceptions in EJB Transactions

	9 Transactions in RMI Applications
	9.1 Before You Begin
	9.2 General Guidelines

	10 Using JDBC XA Drivers with WebLogic Server
	10.1 Using Oracle Thin/XA Driver
	10.1.1 Set the Environment for the Oracle Thin/XA Driver
	10.1.1.1 Configure WebLogic Server
	10.1.1.2 Enable XA on the Database Server

	10.1.2 Oracle Thin/XA Driver Configuration Properties

	10.2 Using Other XA Drivers
	10.2.1 Using WebLogic-branded Data Direct Drivers
	10.2.2 Additional Considerations

	11 Coordinating XAResources with the WebLogic Server Transaction Manager
	11.1 Overview of Coordinating Distributed Transactions with Foreign XAResources
	11.2 Registering an XAResource to Participate in Transactions
	11.3 Enlisting and Delisting an XAResource in a Transaction
	11.3.1 Standard Enlistment
	11.3.2 Dynamic Enlistment
	11.3.3 Static Enlistment

	11.4 Commit processing
	11.5 Recovery
	11.6 Resource Health Monitoring
	11.7 Java EE Connector Architecture Resource Adapter
	11.8 Implementation Tips
	11.8.1 Sharing the WebLogic Server Transaction Log
	11.8.2 Transaction global properties
	11.8.3 TxHelper.createXid

	11.9 Changes in the Resource Registration Name
	11.10 FAQs
	11.11 Additional Documentation about JTA

	12 Participating in Transactions Managed by a Third-Party Transaction Manager
	12.1 Overview of Participating in Foreign-Managed Transactions
	12.2 Importing Transactions with the Client Interposed Transaction Manager
	12.2.1 Get the Client Interposed Transaction Manager
	12.2.2 Get the XAResource from the Interposed Transaction Manager
	12.2.3 Limitations of the Client Interposed Transaction Manager

	12.3 Importing Transactions with the Server Interposed Transaction Manager
	12.3.1 Get the Server Interposed Transaction Manager
	12.3.2 Limitations of the Server Interposed Transaction Manager

	12.4 Transaction Processing for Imported Transactions
	12.4.1 Transaction Processing Limitations for Imported Transactions

	12.5 Commit Processing for Imported Transactions
	12.6 Recovery for Imported Transactions

	13 Troubleshooting Transactions
	13.1 Overview
	13.2 Troubleshooting Tools
	13.2.1 Exceptions
	13.2.2 Transaction Identifier
	13.2.3 Transaction Name and Properties
	13.2.4 Transaction Status
	13.2.5 Transaction Statistics
	13.2.6 Transaction Monitoring
	13.2.7 Debugging JTA Resources
	13.2.7.1 Enabling Debugging
	13.2.7.2 Enable Debugging Using the Command Line
	13.2.7.3 Enable Debugging Using the WebLogic Server Administration Console
	13.2.7.4 Enable Debugging Using the WebLogic Scripting Tool
	13.2.7.5 Changes to the config.xml File
	13.2.7.6 JTA Debugging Scopes

