Oracle® Fusion Middleware
Performance and Tuning for Oracle WebLogic Server

12c Release 1 (12.1.1)
E24390-05

August 2014

This document is for people who monitor performance and
tune the components in a WebLogic Server environment.

ORACLE

Oracle Fusion Middleware Performance and Tuning for Oracle WebLogic Server, 12c Release 1 (12.1.1)
E24390-05
Copyright © 2007, 2014, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

Contents

PIrEIACEooi e xiii
Documentation Accessibility ... Xiii
CONVEIEIONS ...ueninieiieiieiiniert ettt ettt ettt st se st b e st ettt e st e st e bt e bt s bbb e s b et et emt et esee bt eaesaesaenes Xiii

1 Introduction and Roadmap
1.1 Document Scope and AUIENCE..........ccccuiuiiiiiiiiiiiiic e 1-1
1.2 Guide to this DOCUMENTc.ceririeiiiirirreiciinereccteree ettt ettt se et sa et es 1-1
1.3 Performance Features of this Release...........ccccociiiiiiiiiiiiiiicicccccccee 1-2

2 Top Tuning Recommendations for WebLogic Server
2.1 TUNE POOL SIZES.....oiiiiieiiiciictc ettt sttt 2-1
2.2 Use the Prepared Statement Cachec...cooeeiiiiiiiii e 2-2
2.3 Use Logging Last Resource Optimization..........cccccvviiiiiiiiniiiiniiiiiiicccns 2-2
2.4 Tune Connection Backlog Buffering ... 2-2
25 TUne the ChUNK SIZEccooviiiiiiiiiiieee ettt 2-2
2.6 Use Optimistic or Read-only CONCUITENCYccvvveuimimimiuimiiiiiicicieieeieieeneneeeeneeeneneresenenenes 2-2
2.7 USE LOCAL INEEITACESeevenvvinitiicieict ettt ettt st 2-2
2.8 Use eager-relationship-caching ... 2-3
2.9 TUNE HTTP SESSIONSvcuvveuirinietiietiieitsieieteetsteetstests ettt se e s e sae e e sae e sre e ne e aene 2-3
210 Tune Messaging APpPlications.........ccoueiiriiiiiiiiciic 2-3

3 Performance Tuning Roadmap
3.1 Performance Tuning ROadmap...........cccueviiiriiiiiiiicic e 3-1
3.1.1 Understand Your Performance ODbjJectivesccccccvuiiiiiinieiiiiiiiiiciicicceeceiies 3-1
3.1.2 Measure Your Performance Metricsccccocciiininiiiiniiiiiiiiicicccccces 3-2
3.1.3 Monitor Disk and CPU UtiliZation..........ccoeciiiiiiiiiiiiiniiiiiccnccceceeeenas 3-2
3.1.4 Monitor Data Transfers Across the Networkcccocoveeiverininnennenncrneneerseene 3-3
3.1.5 Locate Bottlenecks in YOur SyStemccooviieiiiiiiiiiiiiicc 3-3
3.1.6 Minimize Impact of Bottleneckscccoooiiiii e, 3-3
3.1.7 Tune Your AppLCation ..o 3-3
3.1.8 Tune your DB ... 3-4
3.1.9 Tune WebLogic Server Performance Parameterscccocooeiiiiiiiiiiiiicccc 3-4
3.1.10 TUNE YOUT JVIM ettt ettt sttt st ettt et e s et esseeneas 34
3.1.11 Tune the Operating System...........cc.coiiiiiiiiiii e 3-4
3.1.12 Achieve Performance Objectives.........cooiiriieiiiiciiiiccic 3-4

3.2 TUNINE TIPS .ottt 3-4

4 Operating System Tuning

5 Tuning Java Virtual Machines (JVMs)

5.1 JVM Tuning Considerations...........cceuirieieiiiiiiieiiiicie e 5-1
5.2 Which JVM for Your SyStem?ccceviiiiiiininiininssssenns 5-2
5.2.1 Changing To a Different JVM ..ot 5-2
5.3 Garbage COILeCHiON ..ot e 5-2
5.3.1 VM Heap Size and Garbage Collection.............ooceueieiiiiiiiiiicieccceece e 5-2
5.3.2 Choosing a Garbage Collection Scheme...........c.cccoeciiiiiiiiinnicrccereeceene 5-3
5.3.3 Using Verbose Garbage Collection to Determine Heap Sizecccccoovviniinininne. 5-4
5.34 Specifying Heap Size Values.........c.cccooriiiiiiiiiiic e 5-5
5.3.5 Tuning Tips for Heap SiZescccccociiiiiiiiiiiiiiiiiiiicceeceeceeeee e 5-5
5.3.6 JRockit JVM Heap Size OPioNnS........ccviuiiiiiiiiiiiiiiiiiiiciieiieeeeeeeeeeennns 5-6
5.3.6.1 Other JRockit VIM OpHONScooorueiiiiicieiiccicic s 5-6
5.3.7 Java HotSpot VM Heap Size Options ... 5-7
5.3.7.1 Other Java HotSpot VM OpHONSccveveviiiiiiiiiiciiiicciccccceceen 5-7
5.3.8 Automatically Logging Low Memory Conditionsccccceimeieieiicieiiiiceee, 5-8
5.3.9 Manually Requesting Garbage ColleCtionc.ccceociiieiieuiieeceeeeeeeeeenenenes 5-8
5.3.10 Requesting Thread Stacks..........cccceiiiiiiiiii e, 5-8
5.4 Enable Spinning for IA32 Platformsccocouiiiiiiiiiiicc 5-8
5.41 SUN JDK ..ottt ettt ettt et et e s st e saesseessesseessessaenseassensesnsensesnnensennsas 5-8
5.4.2 JROCKIE o 5-9
5.5 Increasing Java Heap Size for Managed Servers............coooiiiiiiiiiciniicccecce 5-9
5.5.1 Using the Administration Console to Set Java Heap Sizeccccocvceiiiccccccnnnns 5-9
55.2 Modify the startManagedWebLogic Script to Set Java Heap Size.........c.ccccoveurinnnne. 5-9
5.5.3 Using the Command Line to Set Java Heap Sizeccccoovioiiiiiiiicciiiiicc 5-9
55.4 Determining the Memory Values Used by a Managed Serverccccccccccucucucnenennnee 5-9

6 Tuning WebLogic Diagnostic Framework and JRockit Flight Recorder

Integration
6.1 Using JRockit Flight ReCOTrder ... 6-1
6.2 USING WLDE ...t 6-1
6.2.1 Using JRockit controls outside of WLDF to control the default JVM recording 6-2
6.3 Tuning Considerations...........cooiiueiiiiiiieiec e 6-2

7 Tuning WebLogic Server

7.1 Setting Java Parameters for Starting WebLogic Server ... 7-1
7.2 Development vs. Production Mode Default Tuning Valuesccccooevviieiiiiinennnnnen. 7-2
7.3 DEPLOYIMENL ..ot 7-3
7.3.1 On-demand Deployment of Internal Applications..........c.ccoveuriiiiiiiiiiniiiiiiciinns 7-3
7.3.2 Use FastSwap Deployment to Minimize Redeployment Time..........cccccoovuviniinincnnnce. 7-3
7.3.3 Generic OVeITIAES......cooviiiuiiiiiiiiiiii e 7-3
7.4 Thread Managementccooouiioiiiiiiiic e 7-3
7.41 Tuning @ Work Manager...........cccccceiiiiiiiiniiiiiiiiccccse s 7-4

7.4.2
7.4.3
7.4.4
7.4.5
7.4.6
7.4.7
7.5
7.5.1
7.5.1.1
7.5.1.2
7.5.1.3
7.5.2
7.5.3
7.5.4
7.5.5
7.5.6
7.5.6.1
7.5.6.2
7.5.6.3
7.5.7
7.5.8
7.5.9
7.6
7.6.1
7.6.2
7.6.2.1
7.6.2.2
7.7
7.71
7.7.2
7.7.3
7.7.4
7.7.5
7.7.5.1
7752
7.7.6
7.7.7
7.7.8
7.7.9
7.8
7.8.1
7.8.2
7.8.3
7.8.4
7.8.5
7.8.6
7.9

How Many Work Managers are Needed?ccccooiiiiiiiniiicce 7-4

What are the SLA Requirements for Each Work Manager? ..o, 7-4
Tuning Execute QUEUEScccuiiiiiiiiiiiiiii s 7-4
Understanding the Differences Between Work Managers and Execute Queues....... 7-4
Migrating from Previous Releasescoooooiiiiiiiiiiiiiiccc 7-5
Tuning the Stuck Thread Detection Behavior ... 7-5
Tuning NetWork I/ O ..o 7-6
TUNING MUXETS ...ttt 7-6
JAVA IMIUXET ..ottt ettt et e e e e sseentesseesesseensesneensesssensesseensenseens 7-6

Native MUXETIS....c.coiiieiiiiieiectc et 7-7
Non-Blocking IO MUXETccouiuiiiiiiiieiicieecici s 7-7

Which Platforms Have Performance Packs?...........ccccccooiiiniiiiiin, 7-7
Enabling Performance Packs............cocoooiiiiiiiiiiic 7-7
Changing the Number of Available Socket Readers...........cccccoceuiiiiniiiiiiiniiiiiininns 7-8
Network Channels..........cccoiiii s 7-8
Reducing the Potential for Denial of Service Attacks..........cccoooeeiiiiiieiiiicciiicine 7-8
Tuning Message SiZe.........ccoceoiiiiiiiiiiiiiiii e 7-8

Tuning Complete Message Timeout........cccccceuiuiuiuiiiiiiiiiniiicceecceeeeeeeeee 7-9

Tuning Number of File Descriptors.........cooecueiiiiiiiiiiiiciiccc 7-9

Tune the Chunk Parameters ... 7-9
Tuning Connection Backlog BUuffering ... 7-10
Tuning Cached ConNECtiONS.........ccucveiiiiiiicci e 7-10
Setting Your Compiler OPptionscoceueiiiiiiiiiiiicc s 7-10
Compiling EJB CIaSSEScucueuiuiuiuiiiciiicicicieieicicieieieiee ettt nnees 7-10
Setting JSP Compiler OPtions ... 7-10
Precompile JSPS ... 7-10
Optimize Java EXPIessions.........ccciiiiiniiiiiinicccceecnnnes 7-11

Using WebLogic Server Clusters to Improve Performance...........ccccccooeeieinicinininininn, 7-11
Scalability and High Availability ..o 7-11
How to Ensure Scalability for WebLogic Clusters..........ccccccoeuevrvvnnnnnnnrenccnes 7-12
Database Bottlenecks............coovuiiiiiiiiiiiiiiiiiiiiiicc s 7-12
Session REPLCAtIONc.cooviiiiiiiiiiiiciiic s 7-12
Asynchronous HTTP Session Replication..........ccccocovevvivinrvvnininnnncirrcnceeceeenes 7-13
Asynchronous HTTP Session Replication using a Secondary Server................ 7-13
Asynchronous HTTP Session Replication using a Databasecccccccueuence. 7-14
Invalidation of Entity EJBSccccoiiiiiiiiiiiiicccercccrceeeee s 7-14
Invalidation of HTTP SESSIONS.......ccccccvveviiiiiiiiiiiiiiciciicicccccc s 7-14
JNDI Binding, Unbinding and Rebinding.............cccocovvininnnninnnnniiccne, 7-14
Running Multiple Server Instances on Multi-Core Machines..........ccccccceeuvuvuvucunnncne 7-14
Monitoring a WebLogic Server Domain..............ooviiieiiiiiiiiiicc 7-15
Using the Administration Console to Monitor WebLogic Serverccccoeueneee. 7-15
Using the WebLogic Diagnostic Framework...........cccccociviiiiiiiiiiicinccene 7-15
Using JMX to Monitor WebLogic Server.........c.cooioiiiicieiiiiceccicce e 7-15
Using WLST to Monitor WebLogic Server ... 7-15
Resources to Monitor WebLogiC SEIVETc.cccccuiuiuiiiiiiciiiieiiieiecieeieeeeeeeeeneeenees 7-16
Third-Party Tools to Monitor WebLogic Server ... 7-16
Tuning Class and Resource Loadingcccccceeiiiiiiiiiiiiiiicecccceceeeens 7-16

7.9.1 Filtering Loader MechaniSmccooeueiiiriiiiiiiiciec e 7-16
7.9.2 Class CaChingc.oeiiiiiiicie e 7-17
7.10 Server Migration with Database Leasing on RAC Clusters..........cccccccoeeueuecrercncrcncenennn. 7-17

8 Tuning the WebLogic Persistent Store

8.1 Overview of Persistent StOTesccoveveiiiiiiiiiinic s 8-1
8.1.1 Using the Default Persistent Store............ocoooeiiiiiiiiiic 8-1
8.1.2 Using Custom File Stores and JDBC Storesccceuoioiicieiiiciceccecee, 8-2
8.1.3 Using a JDBC TLOG StOTe........ccoovviiiiiiiiiiiiiiiiiciiiic s 8-2
8.1.4 Using JMS Paging StOresccooieieieiiricieiieicieecie st 8-2
8.1.4.1 Using Flash Storage to Page JMS Messages..........cccceuevireieiniiicieieiciceieescie s 8-3
8.1.5 Using Diagnostic StOTeS..........ccoviiiiiiiiiiiiiiiic s 8-3
8.2 Best Practices When Using Persistent StOresococoeueueiiiciiiiiciciiicceece 8-3
8.3 Tuning JDBC STOT@Souoviuriiieiiieiiici et 8-4
8.4 TUNING FIlE SEOTES ...t 8-4
8.4.1 Basic Tuning INformationccceuiirieiiiicice s 8-4
8.4.2 Tuning a File Store Direct-Write-With-Cache Policycocooreiiiiiriiiici 8-5
8.4.2.1 Using Flash Storage to Increase Performanceccoeeeiiiiccciicncccnccnes 8-6
8.4.2.2 Additional Considerations...........c.ceiiiiieieiiiiiiiiiii e 8-6
8.4.3 Tuning the File Store Direct-Write POLCYcccoveriiiiiiiiieic e, 8-7
8.4.4 Tuning the File Store BIOCK SiZe ..o 8-7
8.4.4.1 Setting the Block Size for a File Store..........cccoooiiiiiiiiicc e 8-8
8.4.4.2 Determining the File Store Block Size ..., 8-9
8.4.4.3 Determining the File System Block Size.........cccccooviiininininnnrccene, 8-9
8.4.4.4 Converting a Store with Pre-existing Filescccoooiiiii 8-9
8.5 Using a Network File Systemi..........cooooiuiiiiiiiicc e 8-9
8.5.1 Configuring Synchronous Write POLICIESccccccueueuiiriiieiiiiieiicccrcceceeeceeeeees 8-10
8.5.2 Test Server Restart Behavior ... 8-10
8.5.3 Handling NFS Locking EITOrSc.coiieioiiicieiec s 8-10
8.5.3.1 Solution 1 - Copying Data Files to Remove NFS Locks..........cccccccocieiccinnnne. 8-11
8.5.3.2 Solution 2 - Disabling File Locks in WebLogic Server File Stores...................... 8-12
8.56.3.2.1 Disabling File Locking for the Default File Store...........cccccccovvnnnnnnnnne. 8-12
8.5.3.2.2 Disabling File Locking for a Custom File Storeccccccovvvvivnvnnnnene. 8-13
8.5.3.2.3 Disabling File Locking for a JMS Paging File Store.........ccccooooriiiiiiniennne, 8-13
8.56.3.24 Disabling File Locking for a Diagnostics File Store...........cccccccevvviininnne 8-14

9 DataBase Tuning

10

vi

9.1 General SUGEESHIONSc.ccuiiiiiiiiiiiii e 9-1
9.2 Database-Specific TUNINEc.cccoeeiiuiiiiiiiiiceeeeeeeee e 9-2
9.21 OTACLE . -ttt ettt ettt ettt ea et b e bbbt st e bt e et e et e be e eae 9-2
9.2.2 MICTOSOft SQL SEIVET ...cuveiiiiieieieietet ettt ettt ettt ettt e st s st e sesbessensenseneeseeneeneens 9-3
9.2.3 SYDASE ... 9-3

Tuning WebLogic Server EJBs

10.1 General EJB TUNING TiPS.....coiiiiiiiiiiceeiiceeeeeeeeie et sseeaes 10-1
10.2 Tuning EJB Caches.......cooii e 10-2

11

10.2.1 Tuning the Stateful Session Bean Cache..........ccoooeiiiiiii 10-2
10.2.2 Tuning the Entity Bean Cacheccoooiiiii 10-2
10.2.2.1 Transaction-Level Caching...........ccociiiiiiiiiiiiicceeeeeeeeeeeeeeeeees 10-2
10.2.2.2 Caching between Transactions............ccocueveiiiiiiiiiicicc e, 10-2
10.2.2.3 Ready Bean Caching ..o 10-3
10.2.3 Tuning the Query Cache.........ccccciiiiiiiicee s 10-3
10.3 Tuning EJB POOIS.......ooiiiii e 10-3
10.3.1 Tuning the Stateless Session Bean Pool............ccooiiiiiiiiie 10-3
10.3.2 Tuning the MDB POOL.......ccccccoiiiiiiiiiiecceeeeee s 10-4
10.3.3 Tuning the Entity Bean Poolccoiii 10-4
10.4 CMP Entity Bean TUNINGccocoiuiiiiiiiiiiiiiice s 10-4
10.4.1 Use Eager Relationship Caching ... 10-4
10.4.1.1 Using INNET JOINScveueiiiiiiiiiiiiiiiicciciie s 10-5
10.4.2 Use JDBC Batch Operations ... 10-5
10.4.3 Tuned UPdates.......cceuiiiiiiiiiiiiiciceecee s 10-5
10.4.4 Using Field GroUPS «....c.ccviurieiiiici e 10-5
10.4.5 Include-Updates. ..o s 10-6
10.4.6 CAll-DY-TEIEIEIICE ... 10-6
10.4.7 Bean-level Pessimistic LOCKINGccooueuiiiiiiiiiiicicc s 10-6
10.4.8 Concurrency Srategyccccieuiirieiiiiiciiiicc 10-7
10.5 Tuning In Response to Monitoring Statistics..........cccocviiviiiiiiiininiiiiice 10-8
10.5.1 Cache Miss Ratio.......ccciuiuiiiiiiiiiiiiiicicicicc s 10-8
10.5.2 Lock Waiter Ratioccceiiiiiiiiiiiiiiiiiiiccii s 10-8
10.5.3 Lock Timeout RAtIO ...cccvviiiiiiiiiiii s 10-9
10.5.4 P00l MisS RatiO.....ccoviviiiiiiiiiiiiiiciciciciicicic s 10-9
10.5.5 Destroyed Bean Ratio.........cooiiuiiiiiiii 10-10
10.5.6 Pool Timeout RAtioccccviuiiiiiiiiiiiiiccc e 10-10
10.5.7 Transaction Rollback Ratio........cococoviiiiiiiiiie 10-10
10.5.8 Transaction Timeout Ratio ... 10-11
10.6 Using the JDT COmMPILET.......ocooiiiiiiiiiiiiccccecccee e 10-11
Tuning Message-Driven Beans

11,1 Use Transaction BatChingcocoiiiiiiiiiiiiiciiceeccecce e 11-1
11.2 MDB Thread Managementcoooruiiiiieiiiiiciec e 11-1
11.2.1 Determining the Number of Concurrent MDBscccccccoviiiiinininnnniiicnes 11-2
11.2.2 Selecting a ConcuUIrency Strategy ... 11-2
11.2.3 Thread Utilization When Using WebLogic Destinations ..o 11-3
11.2.4 Limitations for Multi-threaded Compatibility Mode Topic MDBs...........cccccccoeuuce. 11-3
11.3 Best Practices for Configuring and Deploying MDBs Using Distributed Topics 11-4
11.4 Using MDBs with Foreign Destinations.............ccoooeieieiinieiiiincicccecc 11-4
11.4.1 Concurrency for MDBs that Process Messages from Foreign Destinations............. 11-4
11.4.2 Thread Utilization for MDBs that Process Messages from Foreign Destinations... 11-5
11.5 Token-based Message Polling for Transactional MDBs Listening on Queues/Topics. 11-5
11.6 Compatibility for WLS 10.0 and Earlier-style Pollingccccccccevivvvinininnnininnne, 11-6

vii

12

13

14

viii

Tuning Data Sources

12,1 Data Source Administration..........cccooeiuiioiiiieiiicc 12-1
12,2 WaStE INOt. et 12-1
12.3 Database Listener Timeout under Heavy Server Loadsc.ccoceviiinieiinniiiniice, 12-2
12.4 Advanced Configurations for Oracle Drivers and Databases...........ccccocooevorieiiiirinienne. 12-2
12.5 Additional Oracle Features.........ccccoviiiiiiiiiiiiiici s 12-2
12.6 Use Best Design PractiCes ..ottt 12-2

Tuning Transactions

13.1 Logging Last Resource Transaction Optimization..........ccccoveiiiiiiiieiiiiciieeen, 13-1
13.1.1 LLR Tuning GUidelines..........cccoeuviiiiiiiiiniiiiiiiiiiiiii s 13-1
13.2 Read-only, One-Phase Commit Optimizationsccccoeiericeieiecmeeceeeeeeneenenens 13-2

Tuning WebLogic JMS

14.1 JMS Performance & Tuning Check List.........cccccoiiiiiiiiiiiiieiccceecceceeeeeeeeens 14-1
14.2 Handling Large Message Backlogscccooruiiiiiiiiioiiiicicc e 14-3
14.2.1 Improving Message Processing Performancecccocoooceiniiineinicciciciccce 14-3
14.2.2 Controlling Message Production.............cccocciiiiiiiciiiiiceccceeeeeeeeneenenens 14-5
14.2.2.1 Drawbacks to Controlling Message Productionccccceovrieieiiciciciiicicnnne, 14-5
14.3 Cache and Re-use Client RESOUICEScccoiiiimiiiiiiiiiiiiiiiicc s 14-5
14.4 Tuning Distributed QUEUES.........ccccciiuiiiiiiiiiiiiiccceeeeee et 14-6
145 TUNING TOPICS oiiiiiiii bbb 14-7
14.6 Tuning for Large MeSSageSsccoeueiiiurieiiiiicie ittt 14-7
14.7 Defining QUOLAc.cciuiiiiiiiiiiicceccce ettt 14-7
14.7 1 QUOLA RESOUTICESueovvieveniieiieieetesieete st ete st te e esteteese s e essesseessesseessesssessasssessesssesenssans 14-8
14.7.2 Destination-Level QUOLA........cc.ocieiiriiciiieceese ettt sre e ae e ebesvaesbeseeens 14-8
14.7.3 JMS Server-Level QUOTA......ccccivuerierieieieietee ettt sttt esesteesessesbe s essessessesseseesanss 14-9
14.8 Blocking Senders During Quota Conditions............ccouieiiiiiiciiiiiiicicccc e 14-9
14.8.1 Defining a Send Timeout on Connection Factoriesc.ccoooeieiiiiiciiiiicccine, 14-9
14.8.2 Specifying a Blocking Send Policy on JMS Servers..........cccooviiiimiiicccciccnenns 14-10
14.9 Tuning MessageMaXimMUINL.........cccoeueueiiirieiiiiicie et 14-10
14.9.1 Tuning MessageMaximum Limitations ..o 14-11
14.10 Setting Maximum Message Size for Network Protocols.........c.cccoeeeereiicinicccionccnne. 14-11
1411 Compressing MeSSAZESccviiiurieiiiiiriciicnicie et 14-11
14.12 Paging Out Messages To Free Up MemOTY ...t 14-12
14.12.1 Specifying a Message Paging Directory ... 14-12
14.12.2 Tuning the Message Buffer Size Option.........cccooviviiiniiiiiiiicccnes 14-13
14.13 Controlling the Flow of Messages on JMS Servers and Destinationscccccce....... 14-13
14.13.1 How Flow Control WOTKS ..o 14-13
14.13.2 Configuring FIow CONtrol ...t 14-14
14.13.3 Flow Control Thresholdsccccoviiiiiiiniiiiiiiicccccccenes 14-15
14.14 Handling Expired MeSSages........ccccoceiuiuiuimimiiiiieiiiiieeicieeieieeenere e esese e enene e senenenens 14-15
14.14.1 Defining a Message Expiration POLCYccccoueuiieiiiiiiiiiiiiceee 14-16
14.14.2 Configuring an Expiration Policy on TOPicscccccccevirvviiiiinnniiniicieaes 14-16
14.14.3 Configuring an Expiration Policy on Queues............ccccccevuvviirvnvnnnnnnnrereecenes 14-17
14.14.4 Configuring an Expiration Policy on Templates.........c.cccocoooruiiiiiiiiiiiciic, 14-17

15

16

17

14.14.5 Defining an Expiration Logging POLICYccccceviiiiiiiiiiiii 14-18

14.14.6 Expiration Log Output Format ..o 14-18
14.14.7 Tuning Active Message EXpiration..........ccccociiivniiiinniiiininicce 14-19
14.14.8 Configuring a JMS Server to Actively Scan Destinations for Expired Messages.. 14-19
14.15 Tuning Applications Using Unit-of-Order...........cccoooiiiiiiiiiiii, 14-20
14.15.1 Best Practicescooeveveiiieiiieiiicc e 14-20
14.15.2 Using UOO and Distributed Destinations...........ccccceieurieieiinicieicincecccee 14-20
14.15.3 Migrating Old Applications to Use UOOcccooeimiiiiiiiieiic, 14-20
14.16 Using One-Way Message SEeNdS ..o 14-21
14.16.1 Configure One-Way Sends On a Connection Factory...........cooceevicinincicinne. 14-21
14.16.2 One-Way Send Support In a Cluster With a Single Destinationccccccue.c.. 14-21
14.16.3 One-Way Send Support In a Cluster With Multiple Destinations........c...c.cccec....... 14-22
14.16.4 When One-Way Sends Are Not Supported ..o, 14-22
14.16.5 Different Client and Destination HOStScccccevviiiiiniiiiiiiiin 14-22
14.16.6 XA Enabled On Client's Host Connection Factoryccccccceevvvvirrnnncnnencnecnes 14-22
14.16.7 Higher QOS Detected..........cooiiiiiiiiiiieiii e 14-22
14.16.8 Destination Quota EXceededcccooviiiiiieiiiiieieiieeeteeeeeee e 14-23
14.16.9 Change In Server Security POLCYcccccccocueuiiiiiiiiniiiiiicecccceeceeeeeeeee s 14-23
14.16.10 Change In JMS Server or Destination Statuscccoceeiiriiiiiicccii 14-23
14.16.11 Looking Up Logical Distributed Destination Nameccccccceevvvviriiiiiiiinnnnne 14-23
14.16.12 Hardware Failure.........ccccooiiiiiiiiic s 14-23
14.16.13 One-Way Send QOS GUIidelines..........ccoeueviiriiiiiiicieicc s 14-23
14.17 Tuning the Messaging Performance Preference Optionccoooviiiiiiriiiiicene. 14-24
14.17.1 Messaging Performance Configuration Parameters............cccccovuvevvirirrnnnncncncnnes 14-25
14.17.2 Compatibility With the Asynchronous Message Pipeline.............cccooevoinriennnne. 14-26
14.18 Client-side Thread Pools..........cccccoviiiiiiiiiiiiii s 14-26
14.19 Best Practices for JMS .NET Client Applications..........ccccccucueueuriieieeeenicieereeeceeennes 14-26
Tuning WebLogic JMS Store-and-Forward

15,1 Best PractiCesccoiviviiiiiiiiiiiiicc s 15-1
152 TUNING TIPS ittt 15-1
Tuning WebLogic Message Bridge

16,1 BeSt Practicesccviieiieii e 16-1
16.2 Changing the Batch SiZe ... 16-1
16.3 Changing the Batch Interval..........ccooooiiiiiiiiccceece s 16-2
16.4 Changing the Quality of Service........ocoooimiiiiiiiii 16-2
16.5 Using Multiple Bridge INSTancescccooiiiiiiiiiiiiiiicccccccccceeeees 16-2
16.6 Changing the Thread POOL Size..........cccooioiiiiiiiiiiiiciccccceece s 16-2
16.7 Avoiding Durable SubSCIptionscccoviiiiiiiic 16-3
16.8 Co-locating Bridges with Their Source or Target Destinationc.c.ccccooveevviiiininennen. 16-3
16.9 Changing the Asynchronous Mode Enabled Attributeccccccoooiiiiiiiciiiicennne. 16-3
Tuning Resource Adapters

17.1 Classloading Optimizations for Resource Adapterscccccceeeuerverrerenrnreeeneene 17-1
17.2 Connection Optimizations.........cccoviviviiiiiiiiiiiii s 17-1

18

19

20

17.3 Thread Managementcccoiiuiiiiiiicieiicce e 17-2
17.4 InteractionSpec Interface........ccooiiiiiiiiiiiiiic e 17-2

Tuning Web Applications

18.1 BeSt PractiCescooivviiviuiiiictcc e 18-1
18.1.1 Disable Page Checks........cccciuiiiiiiiiiccceeeeeeeeeee e 18-1
18.1.2 Use Custom JSP Tagscoceueiiiiricieiiiciett e 18-1
18.1.3 Precompile JSPSs......coii s 18-2
18.1.4 Disable Access LOZGINGc.cueueuiuiiiiiiiiiiciiiicicieieieieieieieeeeeeeeeeeee e 18-2
18.1.5 Use HTML Template COmMPTIESSIONcvvveviviviiiiiiiiiiiiiiiiciciciicis 18-2
18.1.6 Use Service Level AGreements..........coccciuiiiiiiiiiiiiiiiiiinicicccceeeeeenennes 18-2
18.1.7 Related REAINGc.c.cueuiiiiiiiiiiieiciiciccce e 18-2
18.2 Session Managementccouiuiuiiiiiiicicicccie e 18-2
18.2.1 Managing Session PersiStence ...ttt 18-3
18.2.2 Minimizing SESSIONS........ccouiuiiviiiiiiiiiii s 18-3
18.2.3 Aggregating 5ession Datac.cceuoviiiioiiiicii 18-3
18.3 Pub-Sub Tuning Guidelinesccccoviiiiiiiiiiiiiic s 18-4

Tuning Web Services

19.1 Web Services Best PractiCes.........cccooiviiiiiiiiiiiiiiicccc s 19-1
19.2 Tuning Web Service Reliable Messaging AGents..........cccccciecemeeeccemereeeneeeenenenenenns 19-2
19.3 Tuning Heavily Loaded Systems to Improve Web Service Performance 19-2
19.3.1 Setting the Work Manager Thread Pool Minimum Size Constraint.............c.c......... 19-3
19.3.2 Setting the Buffering SeSSions..........ccccccieiiiiiiiiiniiicerecrerre s 19-3
19.3.3 Releasing Asynchronous ReSOUICesccooeurueiiiciiiiiiiicicic e 19-3

Tuning WebLogic Tuxedo Connector

20.1 Configuration GUIdelinescccoviririiiiiiiiiice e 20-1
20.2 Best PractiCesccccoeeuiioieiiiiiciieiei s 20-2

A Using the WebLogic 8.1 Thread Pool Model

AA How to Enable the WebLogic 8.1 Thread Pool Modelccccooeiiiiiiininincne, A-1
A2 Tuning the Default Exectite QUEUEccoovviiiiiiiiiiiiiiiccece s A-2
A2A1 Should You Modify the Default Thread Count?............cooooveiiiiiiiiie A-2
A3 Using Execute Queues to Control Thread Usage.........ccocovoveeieinivccininiicccccce, A-3
A.3.1 Creating Execute QUEUES............cccoiviiiiiiiiiiiiii s A-4
A3.2 Modifying the Thread COUNtccoooiiieiiiiiiii e A-6
A3.3 Tuning Execute Queues for Overflow Conditionsccccccevvivvvviininnninnnnes A-6
A34 Assigning Servlets and JSPs to Exectite QUEUEScccoueuvuceriiiiiiiiinviiccccceees A-7
A3.5 Assigning E]Bs and RMI Objects to Execute Queues ..., A-8
A4 Monitoring Execute Threads...........cccccciiiiiiiiiiiiiiiiiiiccccices A-8
A5 Allocating Execute Threads to Act as Socket Readerscccccccoceciiiciiciiciiccene. A-8
A5.1 Setting the Number of Socket Reader Threads For a Server Instance A-9
Ab5.2 Setting the Number of Socket Reader Threads on Client Machines............................ A-9
A6 Tuning the Stuck Thread Detection Behavior............cccocovvviinininniincrcreeeeeene A-9

B Capacity Planning

B.1
B.1.1
B.1.2
B.1.3
B.1.4
B.1.5
B.1.6
B.1.7
B.1.8
B.1.9
B.1.10
B.2
B.3
B.3.1
B.3.2
B.4
B.4.1
B.5

Capacity Planning FactOrsccoouoiiiiiiiiic B-1
Programmatic and Web-based CHENtSc.cccovvvirvieiirrnirceceereeeeaes B-2
RMI and Server TraffiC........ccooiiiiiiiiiiiiiiiiicc s B-2
SSL Connections and Performance ..o B-2
WebLogic Server Process Load...........ccciiiiiiiiiiiiiicecceeeeeeeneeeeeeeeneeeeees B-3
Database Server Capacity and User Storage Requirements............cccooceviiiriennennne. B-3
CONCUITENT SESSIONSevvvriiiiieieic et B-3
Network Load ... s B-4
Clustered Configurationsccceueviirieiiiicicie s B-4
Server MAIation ..ot B-4
APPLication DESIGN......c.ccuiuiiiiiiiiiiiiiicicceiece s B-5

Assessing Your Application Performance Objectives ..., B-5

Hardware TUNING ...t B-5
Benchmarks for Evaluating Performancecccccccocceceiieincceceeeceeeeeeeeenes B-5
Supported PIatfOrms ..o B-5

Network Performance ... B-5
Determining Network Bandwidth ... B-6

Related INfOrMAtioNcccoeviiiiiiiiiiiiiiiiicc s B-6

xi

Xii

Preface

This preface describes the document accessibility features and conventions used in this
guide—Performance and Tuning for Oracle WebLogic Server.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For
information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

xiii

Xiv

1

Introduction and Roadmap

This chapter describes the contents and organization of this guide—Performance and
Tuning for Oracle WebLogic Server.

Section 1.1, "Document Scope and Audience"
Section 1.2, "Guide to this Document”

Section 1.3, "Performance Features of this Release"

1.1 Document Scope and Audience

This document is written for people who monitor performance and tune the
components in a WebLogic Server environment. It is assumed that readers know
server administration and hardware performance tuning fundamentals, WebLogic
Server, XML, and the Java programming language.

1.2 Guide to this Document

This chapter, Chapter 1, "Introduction and Roadmap," introduces the organization
of this guide.

Chapter 2, "Top Tuning Recommendations for WebLogic Server," discusses the
most frequently recommended steps for achieving optimal performance tuning for
applications running on WebLogic Server.

Chapter 3, "Performance Tuning Roadmap," provides a roadmap to help tune your
application environment to optimize performance.

Chapter 4, "Operating System Tuning," discusses operating system issues.

Chapter 5, "Tuning Java Virtual Machines (JVMs)," discusses JVM tuning
considerations.

Chapter 6, "Tuning WebLogic Diagnostic Framework and JRockit Flight Recorder
Integration," provides information on how WebLogic Diagnostic Framework
(WLDF) works with JRockit Mission Control Flight Recorder.

Chapter 7, "Tuning WebLogic Server," contains information on how to tune
WebLogic Server to match your application needs.

Chapter 8, "Tuning the WebLogic Persistent Store," provides information on how
to tune a persistent store.

Chapter 9, "DataBase Tuning," provides information on how to tune your data
base.

Introduction and Roadmap 1-1

Performance Features of this Release

Chapter 10, "Tuning WebLogic Server E]Bs," provides information on how to tune
applications that use E]Bs.

Chapter 11, "Tuning Message-Driven Beans," provides information on how to tune
Message-Driven beans.

Chapter 12, "Tuning Data Sources," provides information on how to tune JDBC
applications.

Chapter 13, "Tuning Transactions," provides information on how to tune Logging
Last Resource transaction optimization.

Chapter 14, "Tuning WebLogic JMS," provides information on how to tune
applications that use WebLogic JMS.

Chapter 15, "Tuning WebLogic JMS Store-and-Forward," provides information on
how to tune applications that use JMS Store-and-Forward.

Chapter 16, "Tuning WebLogic Message Bridge," provides information on how to
tune applications that use the WebLogic Message Bridge.

Chapter 17, "Tuning Resource Adapters," provides information on how to tune
applications that use resource adaptors.

Chapter 18, "Tuning Web Applications," provides best practices for tuning
WebLogic Web applications and application resources:

Chapter 19, "Tuning Web Services," provides information on how to tune
applications that use Web services.

Chapter 20, "Tuning WebLogic Tuxedo Connector," provides information on how
to tune applications that use WebLogic Tuxedo Connector.

Appendix A, "Using the WebLogic 8.1 Thread Pool Model," provides information
on using execute queues.

Appendix B, "Capacity Planning," provides an introduction to capacity planning.

1.3 Performance Features of this Release

WebLogic Server introduces the following performance enhancements:

Section 8.4.2, "Tuning a File Store Direct-Write-With-Cache Policy"
Section 8.5, "Using a Network File System"

Section 6, "Tuning WebLogic Diagnostic Framework and JRockit Flight Recorder
Integration”

Performance and Tuning for Oracle WebLogic Server

2

Top Tuning Recommendations for WebLogic

Server

This chapter provides a short list of top performance tuning recommendations. Tuning
WebLogic Server and your WebLogic Server application is a complex and iterative
process. To get you started, we have created a short list of recommendations to help
you optimize your application's performance. These tuning techniques are applicable
to nearly all WebLogic applications.

Section 2.1, "Tune Pool Sizes"

Section 2.2, "Use the Prepared Statement Cache"
Section 2.3, "Use Logging Last Resource Optimization"
Section 2.4, "Tune Connection Backlog Buffering"
Section 2.5, "Tune the Chunk Size"

Section 2.6, "Use Optimistic or Read-only Concurrency”
Section 2.7, "Use Local Interfaces"

Section 2.8, "Use eager-relationship-caching"

Section 2.9, "Tune HTTP Sessions"

Section 2.10, "Tune Messaging Applications"

2.1 Tune Pool Sizes

Provide pool sizes (such as pools for JDBC connections, Stateless Session EJBs, and
MDBs) that maximize concurrency for the expected thread utilization.

For WebLogic Server releases 9.0 and higher—A server instance uses a self-tuned
thread-pool. The best way to determine the appropriate pool size is to monitor the
pool's current size, shrink counts, grow counts, and wait counts. See Section 7.4,
"Thread Management". Tuning MDBs are a special case, please see Chapter 11,
"Tuning Message-Driven Beans".

For releases prior to WebLogic Server 9.0—In general, the number of connections
should equal the number of threads that are expected to be required to process the
requests handled by the pool. The most effective way to ensure the right pool size
is to monitor it and make sure it does not shrink and grow. See Section A.1, "How
to Enable the WebLogic 8.1 Thread Pool Model".

Top Tuning Recommendations for WebLogic Server 2-1

Use the Prepared Statement Cache

2.2 Use the Prepared Statement Cache

The prepared statement cache keeps compiled SQL statements in memory, thus
avoiding a round-trip to the database when the same statement is used later. See
Chapter 12, "Tuning Data Sources".

2.3 Use Logging Last Resource Optimization

When using transactional database applications, consider using the JDBC data source
Logging Last Resource (LLR) transaction policy instead of XA. The LLR optimization
can significantly improve transaction performance by safely eliminating some of the
2PC XA overhead for database processing, especially for two-phase commit database
insert, update, and delete operations. For more information, see Chapter 12, "Tuning
Data Sources".

2.4 Tune Connection Backlog Buffering

You can tune the number of connection requests that a WebLogic Server instance
accepts before refusing additional requests. This tunable applies primarily for Web
applications. See Section 7.5.8, "Tuning Connection Backlog Buffering".

2.5 Tune the Chunk Size

A chunk is a unit of memory that the WebLogic Server network layer, both on the
client and server side, uses to read data from and write data to sockets. A server
instance maintains a pool of these chunks. For applications that handle large amounts
of data per request, increasing the value on both the client and server sides can boost
performance. See Section 7.5.7, "Tune the Chunk Parameters".

2.6 Use Optimistic or Read-only Concurrency

Use optimistic concurrency with cache-between-transactions or read-only concurrency
with query-caching for CMP EJBs wherever possible. Both of these two options
leverage the Entity Bean cache provided by the EJB container.

= Optimistic-concurrency with cache-between-transactions work best with
read-mostly beans. Using verify-reads in combination with these provides high
data consistency guarantees with the performance gain of caching. See Chapter 10,
"Tuning WebLogic Server E]Bs".

= Query-caching is a WebLogic Server 9.0 feature that allows the EJB container to
cache results for arbitrary non-primary-key finders defined on read-only EJBs. All
of these parameters can be set in the application/module deployment descriptors.
See Section 10.4.8, "Concurrency Strategy".

2.7 Use Local Interfaces

Use local-interfaces or use call-by-reference semantics to avoid the overhead of
serialization when one EJB calls another or an E]B is called by a servlet/JSP in the
same application. Note the following;:

= Inrelease prior to WebLogic Server 8.1, call-by-reference is turned on by default.
For releases of WebLogic Server 8.1 and higher, call-by-reference is turned off by
default. Older applications migrating to WebLogic Server 8.1 and higher that do
not explicitly turn on call-by-reference may experience a drop in performance.

2-2 Performance and Tuning for Oracle WebLogic Server

Tune Messaging Applications

= This optimization does not apply to calls across different applications.

2.8 Use eager-relationship-caching

Use eager-relationship-caching wherever possible. This feature allows the E]B
container to load related beans using a single SQL statement. It improves performance
by reducing the number of database calls to load related beans in transactions when a
bean and it's related beans are expected to be used in that transaction. See Chapter 10,
"Tuning WebLogic Server EJBs".

2.9 Tune HTTP Sessions

Optimize your application so that it does as little work as possible when handling
session persistence and sessions. You should also design a session management
strategy that suits your environment and application. See Section 18.2, "Session
Management".

2.10 Tune Messaging Applications

Oracle provides messaging users a rich set of performance tunables. In general, you
should always configure quotas and paging. See:

s Chapter 8, "Tuning the WebLogic Persistent Store"

s Chapter 14, "Tuning WebLogic J]MS"

s Chapter 15, "Tuning WebLogic JMS Store-and-Forward"
s Chapter 16, "Tuning WebLogic Message Bridge"

Top Tuning Recommendations for WebLogic Server 2-3

Tune Messaging Applications

2-4 Performance and Tuning for Oracle WebLogic Server

3

Performance Tuning Roadmap

This chapter provides a tuning roadmap and tuning tips for you can use to improve
system performance:

= Section 3.1, "Performance Tuning Roadmap"

= Section 3.2, "Tuning Tips"

3.1 Performance Tuning Roadmap

The following steps provide a roadmap to help tune your application environment to
optimize performance:

1. Section 3.1.1, "Understand Your Performance Objectives"
2. Section 3.1.2, "Measure Your Performance Metrics"

3. Section 3.1.5, "Locate Bottlenecks in Your System"

4. Section 3.1.6, "Minimize Impact of Bottlenecks"
5

Section 3.1.12, "Achieve Performance Objectives"

3.1.1 Understand Your Performance Objectives

To determine your performance objectives, you need to understand the application
deployed and the environmental constraints placed on the system. Gather information
about the levels of activity that components of the application are expected to meet,
such as:

s The anticipated number of users.

s The number and size of requests.

s The amount of data and its consistency.

s Determining your target CPU utilization.

Your target CPU usage should not be 100%, you should determine a target CPU
utilization based on your application needs, including CPU cycles for peak usage.
If your CPU utilization is optimized at 100% during normal load hours, you have
no capacity to handle a peak load. In applications that are latency sensitive and
maintaining the ability for a fast response time is important, high CPU usage
(approaching 100% utilization) can reduce response times while throughput stays
constant or even increases because of work queuing up in the server. For such
applications, a 70% - 80% CPU utilization recommended. A good target for
non-latency sensitive applications is about 90%.

Performance objectives are limited by constraints, such as

Performance Tuning Roadmap 3-1

Performance Tuning Roadmap

s The configuration of hardware and software such as CPU type, disk size vs. disk
speed, sufficient memory.

There is no single formula for determining your hardware requirements. The
process of determining what type of hardware and software configuration is
required to meet application needs adequately is called capacity planning.
Capacity planning requires assessment of your system performance goals and an
understanding of your application. Capacity planning for server hardware should
focus on maximum performance requirements. See Appendix B, "Capacity
Planning."

= The ability to interoperate between domains, use legacy systems, support legacy
data.

= Development, implementation, and maintenance costs.

You will use this information to set realistic performance objectives for your
application environment, such as response times, throughput, and load on specific
hardware.

3.1.2 Measure Your Performance Metrics

After you have determined your performance criteria in Section 3.1.1, "Understand
Your Performance Objectives”, take measurements of the metrics you will use to
quantify your performance objectives. The following sections provide information on
measuring basic performance metrics:

s Section 3.1.3, "Monitor Disk and CPU Utilization"

s Section 3.1.4, "Monitor Data Transfers Across the Network"

3.1.3 Monitor Disk and CPU Utilization

Run your application under a high load while monitoring the:
= Application server (disk and CPU utilization)
m Database server (disk and CPU utilization)

The goal is to get to a point where the application server achieves your target CPU
utilization. If you find that the application server CPU is under utilized, confirm
whether the database is bottle necked. If the database CPU is 100 percent utilized, then
check your application SQL calls query plans. For example, are your SQL calls using
indexes or doing linear searches? Also, confirm whether there are too many ORDER BY
clauses used in your application that are affecting the database CPU. See Chapter 4,
"Operating System Tuning".

If you discover that the database disk is the bottleneck (for example, if the disk is 100
percent utilized), try moving to faster disks or to a RAID (redundant array of
independent disks) configuration, assuming the application is not doing more writes
then required.

Once you know the database server is not the bottleneck, determine whether the
application server disk is the bottleneck. Some of the disk bottlenecks for application
server disks are:

= Persistent Store writes
= Transaction logging (tlogs)
= HTTP logging

= Server logging

3-2 Performance and Tuning for Oracle WebLogic Server

Performance Tuning Roadmap

The disk I/O on an application server can be optimized using faster disks or RAID,
disabling synchronous JMS writes, using JTA direct writes for tlogs, or increasing the
HTTP log buffer.

3.1.4 Monitor Data Transfers Across the Network

Check the amount of data transferred between the application and the application
server, and between the application server and the database server. This amount
should not exceed your network bandwidth; otherwise, your network becomes the
bottleneck. See Section 4, "Operating System Tuning."

3.1.5 Locate Bottlenecks in Your System

If you determine that neither the network nor the database server is the bottleneck,
start looking at your operating system, JVM, and WebLogic Server configurations.
Most importantly, is the machine running WebLogic Server able to get your target CPU
utilization with a high client load? If the answer is no, then check if there is any
locking taking place in the application. You should profile your application using a
commercially available tool (for example, JProbe or Optimizelt) to pinpoint
bottlenecks and improve application performance.

Tip: Evenif you find that the CPU is 100 percent utilized, you should
profile your application for performance improvements.

3.1.6 Minimize Impact of Bottlenecks

In this step, you tune your environment to minimize the impact of bottlenecks on your
performance objectives. It is important to realize that in this step you are minimizing
the impact of bottlenecks, not eliminating them. Tuning allows you to adjust resources
to achieve your performance objectives. For the scope of this document, this includes
(from most important to least important):

= Section 3.1.7, "Tune Your Application”

= Section 3.1.8, "Tune your DB"

= Section 3.1.9, "Tune WebLogic Server Performance Parameters"
s Section 3.1.10, "Tune Your JVM"

= Section 3.1.11, "Tune the Operating System"

= Section 8, "Tuning the WebLogic Persistent Store"

3.1.7 Tune Your Application

To quote the authors of Oracle WebLogic Server: Optimizing WebLogic Server Performance:
"Good application performance starts with good application design. Overly-complex
or poorly-designed applications will perform poorly regardless of the system-level
tuning and best practices employed to improve performance." In other words, a poorly
designed application can create unnecessary bottlenecks. For example, resource
contention could be a case of poor design, rather than inherent to the application
domain.

For more information, see:
s Chapter 10, "Tuning WebLogic Server E]Bs"
» Chapter 11, "Tuning Message-Driven Beans"

Performance Tuning Roadmap 3-3

Tuning Tips

s Chapter 12, "Tuning Data Sources"

s Chapter 13, "Tuning Transactions"

s Chapter 14, "Tuning WebLogic J]MS"

s Chapter 15, "Tuning WebLogic JMS Store-and-Forward"
s Chapter 16, "Tuning WebLogic Message Bridge"

s Chapter 17, "Tuning Resource Adapters"

s Chapter 18, "Tuning Web Applications"

s Chapter 19, "Tuning Web Services"

s Chapter 20, "Tuning WebLogic Tuxedo Connector"

3.1.8 Tune your DB

Your database can be a major enterprise-level bottleneck. Database optimization can be
complex and vender dependent. See Section 9, "DataBase Tuning".

3.1.9 Tune WebLogic Server Performance Parameters

The WebLogic Server uses a number of OOTB (out-of-the-box) performance-related
parameters that can be fine-tuned depending on your environment and applications.
Tuning these parameters based on your system requirements (rather than running
with default settings) can greatly improve both single-node performance and the
scalability characteristics of an application. See Chapter 7, "Tuning WebLogic Server".

3.1.10 Tune Your JVM

The Java virtual machine (JVM) is a virtual "execution engine" instance that executes
the bytecodes in Java class files on a microprocessor. See Chapter 5, "Tuning Java
Virtual Machines (JVMs)".

3.1.11 Tune the Operating System

Each operating system sets default tuning parameters differently. For Windows
platforms, the default settings are usually sufficient. However, the UNIX and Linux
operating systems usually need to be tuned appropriately. See Chapter 4, "Operating
System Tuning".

3.1.12 Achieve Performance Objectives

Performance tuning is an iterative process. After you have minimized the impact of
bottlenecks on your system, go to Step 2, Section 3.1.2, "Measure Your Performance
Metrics" and determine if you have met your performance objectives.

3.2 Tuning Tips
This section provides tips and guidelines when tuning overall system performance:

s Performance tuning is not a silver bullet. Simply put, good system performance
depends on: good design, good implementation, defined performance objectives,
and performance tuning.

3-4 Performance and Tuning for Oracle WebLogic Server

Tuning Tips

Performance tuning is ongoing process. Implement mechanisms that provide
performance metrics which you can compare against your performance objectives,
allowing you to schedule a tuning phase before your system fails.

The object is to meet your performance objectives, not eliminate all bottlenecks.
Resources within a system are finite. By definition, at least one resource (CPU,
memory, or I/O) will be a bottleneck in the system. Tuning allows you minimize
the impact of bottlenecks on your performance objectives.

Design your applications with performance in mind:
- Keep things simple - avoid inappropriate use of published patterns.
- Apply Java EE performance patterns.

— Optimize your Java code.

Performance Tuning Roadmap 3-5

Tuning Tips

3-6 Performance and Tuning for Oracle WebLogic Server

4

Operating System Tuning

This chapter describes how to tune your operating system. Proper OS tuning improves
system performance by preventing the occurrence of error conditions. Operating
system error conditions always degrade performance. Typically most error conditions
are TCP tuning parameter related and are caused by the operating system's failure to
release old sockets from a close_wait call. Common errors are "connection

refused”, "too many open files" on the server-side, and "address in use:
connect" on the client-side.

In most cases, these errors can be prevented by adjusting the TCP wait_time value
and the TCP queue size. Although users often find the need to make adjustments
when using tunnelling, OS tuning may be necessary for any protocol under
sufficiently heavy loads.

Tune your operating system according to your operating system documentation. For
Windows platforms, the default settings are usually sufficient. However, the Solaris
and Linux platforms usually need to be tuned appropriately.

Operating System Tuning 4-1

4-2 Performance and Tuning for Oracle WebLogic Server

O

Tuning Java Virtual Machines (JVMs)

This chapter describes how to configure JVM tuning options for WebLogic Server. The
Java virtual machine (JVM) is a virtual "execution engine" instance that executes the
bytecodes in Java class files on a microprocessor. How you tune your JVM affects the
performance of WebLogic Server and your applications.

= Section 5.1, "JVM Tuning Considerations"
» Section 5.2, "Which JVM for Your System?"

» Section 5.3, "Garbage Collection"

= Section 5.4, "Enable Spinning for IA32 Platforms"

= Section 5.5, "Increasing Java Heap Size for Managed Servers"

5.1 JVM Tuning Considerations

The following table presents general JVM tuning considerations for WebLogic Server.

Table 5-1 General JVM Tuning Considerations

Tuning Factor

Information Reference

JVM vendor and version

Use only production JVMs on which WebLogic Server has been
certified. This release of WebLogic Server supports only those
JVMs that are Java SE 5.0-compliant.

See "Supported Configurations" in What's New in Oracle WebLogic
Server for links to the latest certification information on various
platforms.

Tuning heap size and
garbage collection

For WebLogic Server heap size tuning details, see Section 5.3,
"Garbage Collection".

Choosing a GC (garbage
collection) scheme

Depending on your application, there are a number of GC
schemes available for managing your system memory, as
described in Section 5.3.2, "Choosing a Garbage Collection
Scheme".

Mixed client/server JVMs

Deployments using different JVM versions for the client and
server are supported in WebLogic Server. See "Supported
Configurations" in What's New in Oracle WebLogic Server for links
to the latest supported mixed client/server JVMs.

Tuning Java Virtual Machines (JVMs) 5-1

Which JVM for Your System?

Table 5-1 (Cont.) General JVM Tuning Considerations

Tuning Factor Information Reference

UNIX threading models Choices you make about Solaris threading models can have a
large impact on the performance of your JVM on Solaris. You can
choose from multiple threading models and different methods of
synchronization within the model, but this varies from JVM to
JVM.

See "Performance Documentation For the Java Hotspot Virtual
Machine: Threading” at
http://java.sun.com/docs/hotspot/threads/threads
.html.

5.2 Which JVM for Your System?

Although this section focuses on the Java SE 5.0 JVM for the Windows, UNIX, and
Linux platforms, the JRockit JVM was developed expressly for server-side applications
and optimized for Intel architectures to ensure reliability, scalability, manageability,
and flexibility for Java applications. For more information about the benefits of using
JRockit on Windows and Linux platforms, see "Introduction to JRockit [DK" at
http://download.oracle.com/docs/cd/E13150_01/jrockit_
jvm/jrockit/webdocs/index.html.

For more information on JVMs in general, see "Introduction to the JVM specification” at
http://java.sun.com/docs/books/vmspec/2nd-edition/html/Introduct
ion.doc.html#3057.

5.2.1 Changing To a Different JVM

When you create a domain, if you choose to customize the configuration, the
Configuration Wizard presents a list of JDKs that WebLogic Server installed. From this
list, you choose the JVM that you want to run your domain and the wizard configures
the Oracle start scripts based on your choice. After you create a domain, if you want to
use a different JVM, see "Changing the JVM That Runs Servers" in Managing Server
Startup and Shutdown for Oracle WebLogic Server.

5.3 Garbage Collection

Garbage collection is the VM's process of freeing up unused Java objects in the Java
heap. The following sections provide information on tuning your VM's garbage
collection:

» Section 5.3.1, "VM Heap Size and Garbage Collection"

= Section 5.3.2, "Choosing a Garbage Collection Scheme"

= Section 5.3.3, "Using Verbose Garbage Collection to Determine Heap Size"
» Section 5.3.4, "Specifying Heap Size Values"

= Section 5.3.8, "Automatically Logging Low Memory Conditions"

= Section 5.3.9, "Manually Requesting Garbage Collection"

= Section 5.3.10, "Requesting Thread Stacks"

5.3.1 VM Heap Size and Garbage Collection

The Java heap is where the objects of a Java program live. It is a repository for live
objects, dead objects, and free memory. When an object can no longer be reached from

5-2 Performance and Tuning for Oracle WebLogic Server

Garbage Collection

any pointer in the running program, it is considered "garbage" and ready for
collection. A best practice is to tune the time spent doing garbage collection to within
5% of execution time.

The JVM heap size determines how often and how long the VM spends collecting
garbage. An acceptable rate for garbage collection is application-specific and should be
adjusted after analyzing the actual time and frequency of garbage collections. If you
set a large heap size, full garbage collection is slower, but it occurs less frequently. If
you set your heap size in accordance with your memory needs, full garbage collection
is faster, but occurs more frequently.

The goal of tuning your heap size is to minimize the time that your JVM spends doing
garbage collection while maximizing the number of clients that WebLogic Server can
handle at a given time. To ensure maximum performance during benchmarking, you
might set high heap size values to ensure that garbage collection does not occur during
the entire run of the benchmark.

You might see the following Java error if you are running out of heap space:

java.lang.OutOfMemoryError <<no stack trace available>>
java.lang.OutOfMemoryError <<no stack trace available>>
Exception in thread "main"

To modify heap space values, see Section 5.3.4, "Specifying Heap Size Values".

To configure WebLogic Server to detect automatically when you are running out of
heap space and to address low memory conditions in the server, see Section 5.3.8,
"Automatically Logging Low Memory Conditions" and Section 5.3.4, "Specifying Heap
Size Values".

5.3.2 Choosing a Garbage Collection Scheme

Depending on which JVM you are using, you can choose from several garbage
collection schemes to manage your system memory. For example, some garbage
collection schemes are more appropriate for a given type of application. Once you
have an understanding of the workload of the application and the different garbage
collection algorithms utilized by the JVM, you can optimize the configuration of the
garbage collection.

Refer to the following links for in-depth discussions of garbage collection options for
your JVM:

= For an overview of the garbage collection schemes available with Sun's HotSpot
VM, see "Tuning Garbage Collection with the 5.0 Java Virtual Machine” at
http://www.oracle.com/technetwork/java/gc-tuning-5-138395.htm
1.

= For a comprehensive explanation of the collection schemes available, see
"Improving Java Application Performance and Scalability by Reducing Garbage Collection
Times and Sizing Memory Using [DK 1.4.1" at
http://www.oracle.com/technetwork/java/index-jsp-138820.html.

= For a discussion of the garbage collection schemes available with the JRockit JDK,
see "Using the JRockit Memory Management System” at
http://download.oracle.com/docs/cd/E13150_01/jrockit_
jvm/jrockit/webdocs/index.html.

= For some pointers about garbage collection from an HP perspective, see
"Performance tuning Java: Tuning steps” at
http://h21007 .www2 .hp.com/dspp/tech/tech_
TechDocumentDetailPage_ IDX/1,1701,1604,00.html.

Tuning Java Virtual Machines (JVMs) 5-3

Garbage Collection

5.3.3 Using Verbose Garbage Collection to Determine Heap Size

The verbose garbage collection option (verbosegc) enables you to measure exactly
how much time and resources are put into garbage collection. To determine the most
effective heap size, turn on verbose garbage collection and redirect the output to a log
file for diagnostic purposes.

The following steps outline this procedure:

1.

Monitor the performance of WebLogic Server under maximum load while running
your application.

Use the -~verbosegc option to turn on verbose garbage collection output for your
JVM and redirect both the standard error and standard output to a log file.

This places thread dump information in the proper context with WebLogic Server
informational and error messages, and provides a more useful log for diagnostic
purposes.

For example, on Windows and Solaris, enter the following:

% java -ms32m -mx200m -verbosegc -classpath SCLASSPATH
-Dweblogic.Name=%SERVER_NAME% -Dbea.home="C:\Oracle\Middleware"
-Dweblogic.management .username=3%WLS_USER%
-Dweblogic.management . password=%WLS_PW%
-Dweblogic.management . server=$ADMIN_URL%
-Dweblogic.ProductionModeEnabled=%STARTMODE%
-Djava.security.policy="%WL_HOME%\server\lib\weblogic.policy" weblogic.Server
>> logfile.txt 2>&1

where the logfile.txt 2>&1 command redirects both the standard error and
standard output to a log file.

On HPUX, use the following option to redirect stderr stdout to a single file:
-Xverbosegc:file=/tmp/gcSs.out

where $$ maps to the process ID (PID) of the Java process. Because the output

includes timestamps for when garbage collection ran, you can infer how often
garbage collection occurs.

Analyze the following data points:

a. How often is garbage collection taking place? In the weblogic.log file, compare
the time stamps around the garbage collection.

b. How long is garbage collection taking? Full garbage collection should not take
longer than 3 to 5 seconds.

c. What is your average memory footprint? In other words, what does the heap
settle back down to after each full garbage collection? If the heap always
settles to 85 percent free, you might set the heap size smaller.

Review the New generation heap sizes (Sun) or Nursery size (Jrockit).
s For Jrockit: see Section 5.3.6, "JRockit JVM Heap Size Options".
= For Sun: see Section 5.3.7, "Java HotSpot VM Heap Size Options".

Make sure that the heap size is not larger than the available free RAM on your
system.

Use as large a heap size as possible without causing your system to "swap" pages
to disk. The amount of free RAM on your system depends on your hardware
configuration and the memory requirements of running processes on your

5-4 Performance and Tuning for Oracle WebLogic Server

Garbage Collection

machine. See your system administrator for help in determining the amount of
free RAM on your system.

If you find that your system is spending too much time collecting garbage (your
allocated virtual memory is more than your RAM can handle), lower your heap
size.

Typically, you should use 80 percent of the available RAM (not taken by the
operating system or other processes) for your JVM.

If you find that you have a large amount of available free RAM remaining, run
more instances of WebLogic Server on your machine.

Remember, the goal of tuning your heap size is to minimize the time that your
JVM spends doing garbage collection while maximizing the number of clients that
WebLogic Server can handle at a given time.

JVM vendors may provide other options to print comprehensive garbage
collection reports. For example, you can use the JRockit JVM -Xgcreport option
to print a comprehensive garbage collection report at program completion, see
"Viewing Garbage Collection Behavior”, at
http://download.oracle.com/docs/cd/E13150_01/jrockit_
jvm/jrockit/webdocs/index.html.

5.3.4 Specifying Heap Size Values

System performance is greatly influenced by the size of the Java heap available to the
JVM. This section describes the command line options you use to define the heap sizes
values.You must specify Java heap size values each time you start an instance of
WebLogic Server. This can be done either from the java command line or by
modifying the default values in the sample startup scripts that are provided with the
WebLogic distribution for starting WebLogic Server.

Section 5.3.5, "Tuning Tips for Heap Sizes"
Section 5.3.6, "JRockit JVM Heap Size Options"
Section 5.3.7, "Java HotSpot VM Heap Size Options"

5.3.5 Tuning Tips for Heap Sizes

The following section provides general guidelines for tuning VM heap sizes:

The heap sizes should be set to values such that the maximum amount of memory
used by the VM does not exceed the amount of available physical RAM. If this
value is exceeded, the OS starts paging and performance degrades significantly.
The VM always uses more memory than the heap size. The memory required for
internal VM functionality, native libraries outside of the VM, and permanent
generation memory (for the Sun VM only: memory required to store classes and
methods) is allocated in addition to the heap size settings.

When using a generational garbage collection scheme, the nursery size should not
exceed more than half the total Java heap size. Typically, 25% to 40% of the heap
size is adequate.

In production environments, set the minimum heap size and the maximum heap
size to the same value to prevent wasting VM resources used to constantly grow
and shrink the heap. This also applies to the New generation heap sizes (Sun) or
Nursery size (Jrockit).

Tuning Java Virtual Machines (JVMs) 5-5

Garbage Collection

5.3.6 JRockit JVM Heap Size Options

Although JRockit provides automatic heap resizing heuristics, they are not optimal for
all applications. In most situations, best performance is achieved by tuning the VM for
each application by adjusting the heaps size options shown in the following table.

Table 5-2 JRockit JVM Heap Size Options

TASK Option Description
Setting the -Xns Optimally, you should try to make the
Nursery nursery as large as possible while still

keeping the garbage collection pause times
acceptably low. This is particularly important
if your application is creating a lot of
temporary objects.

The maximum size of a nursery cannot
exceed 95% of the maximum heap size.

Setting initial and -Xms Oracle recommends setting the minimum

minimum heap heap size (-Xms) equal to the maximum heap

size size (-Xmx) to minimize garbage collections.

Setting maximum -Xmx Setting a low maximum heap value compared

heap size to the amount of live data decrease
performance by forcing frequent garbage
collections.

Setting garbage -Xgc: parallel

collection

Performs adaptive -XXaggressive:memory To do this, the bottleneck detector will run

optimizations as with a higher frequency from the start and
early as possible then gradually lower its frequency. This

in the Java options also tells JRockit to use the available
application run. memory aggressively.

For example, when you start a WebLogic Server instance from a java command line,
you could specify the JRockit VM heap size values as follows:

$ java -XnslOm -Xms512m -Xmx512m

The default size for these values is measured in bytes. Append the letter 'k’ or 'K' to the
value to indicate kilobytes, 'm' or 'M' to indicate megabytes, and 'g' or 'G' to indicate
gigabytes. The example above allocates 10 megabytes of memory to the Nursery heap
sizes and 512 megabytes of memory to the minimum and maximum heap sizes for the
WebLogic Server instance running in the JVM.

For detailed information about setting the appropriate heap sizes for WebLogic's
JRockit JVM, see “Tuning the JRockit JVM" at
http://download.oracle.com/docs/cd/E13150_01/jrockit_
jvm/jrockit/webdocs/index.html.

5.3.6.1 Other JRockit VM Options

Oracle provides other command-line options to improve the performance of your
JRockit VM. For detailed information, see "Command Line Reference " at
http://download.oracle.com/docs/cd/E13150_01/jrockit_
jvm/jrockit/jrdocs/refman/index.html.

5-6 Performance and Tuning for Oracle WebLogic Server

Garbage Collection

5.3.7 Java HotSpot VM Heap Size Options

You achieve best performance by individually tuning each application. However,
configuring the Java HotSpot VM heap size options listed in the following table when
starting WebLogic Server increases performance for most applications.

These options may differ depending on your architecture and operating system. See
your vendor's documentation for platform-specific JVM tuning options.

Table 5-3 Java Heap Size Options

Task

Option

Comments

Setting the New
generation heap size

-XX:NewSize

As a general rule, set -XX:NewSize to be
one-fourth the size of the heap size. Increase

the value of this option for larger numbers
of short-lived objects.

Be sure to increase the New generation as
you increase the number of processors.
Memory allocation can be parallel, but
garbage collection is not parallel.

Set the maximum size of the New
Generation heap size.

Setting the maximum -XX:MaxNewSize
New generation heap

size

Setting New heap size -XX:SurvivorRatio The New generation area is divided into

ratios three sub-areas: Eden, and two survivor
spaces that are equal in size.
Configure the ratio of the Eden/survivor
space size. Try setting this value to 8, and
then monitor your garbage collection.

Setting initial heap size -Xms As a general rule, set initial heap size
(-Xms) equal to the maximum heap size
(-Xmx) to minimize garbage collections.

Setting maximum heap -Xmx Set the maximum size of the heap.

size

Setting Big Heaps and -XX:+UseISM See

Intimate Shared Memory -xX:+AggressiveHeap http://java.sun.com/docs/hotspot
/ism.html

For example, when you start a WebLogic Server instance from a java command line,
you could specify the HotSpot VM heap size values as follows:

$ java -XX:NewSize=128m -XX:MaxNewSize=128m -XX:SurvivorRatio=8 -Xms512m -Xmx512m

The default size for these values is measured in bytes. Append the letter 'k’ or 'K' to the
value to indicate kilobytes, 'm' or 'M' to indicate megabytes, and 'g' or 'G' to indicate
gigabytes. The example above allocates 128 megabytes of memory to the New
generation and maximum New generation heap sizes, and 512 megabytes of memory
to the minimum and maximum heap sizes for the WebLogic Server instance running
in the JVM.

5.3.7.1 Other Java HotSpot VM Options

Oracle provides other standard and non-standard command-line options to improve
the performance of your VM. How you use these options depends on how your
application is coded.

Test both your client and server JVMs to see which options perform better for your
particular application. See

Tuning Java Virtual Machines (JVMs) 5-7

Enable Spinning for IA32 Platforms

http://www.oracle.com/technetwork/java/javase/tech/vmoptions-jsp
-140102.html for more information on the command-line options and environment
variables that can affect the performance characteristics of the Java HotSpot Virtual
Machine.

For additional examples of the HotSpot VM options, see:

» "Standard Options for Windows (Win32) VMs" at
http://download.oracle.com/javase/6/docs/technotes/tools/wind
ows/java.html.

» “Standard Options for Solaris VMs and Linux VMs" at
http://download.oracle.com/javase/6/docs/technotes/tools/sola
ris/java.html.

The Java Virtual Machine document provides a detailed discussion of the Client and
Server implementations of the Java virtual machine for Java SE 5.0 at
http://download.oracle.com/javase/1.5.0/docs/guide/vm/index.html

5.3.8 Automatically Logging Low Memory Conditions

WebLogic Server enables you to automatically log low memory conditions observed
by the server. WebLogic Server detects low memory by sampling the available free
memory a set number of times during a time interval. At the end of each interval, an
average of the free memory is recorded and compared to the average obtained at the
next interval. If the average drops by a user-configured amount after any sample
interval, the server logs a low memory warning message in the log file and sets the
server health state to "warning." See "Log low memory conditions" in Oracle WebLogic
Server Administration Console Help.

5.3.9 Manually Requesting Garbage Collection

You may find it necessary to manually request full garbage collection from the
Administration Console. When you do, remember that garbage collection is costly as
the JVM often examines every living object in the heap. See "Manually request garbage
collection” in Oracle WebLogic Server Administration Console Help.

5.3.10 Requesting Thread Stacks

You may find it necessary to display thread stacks while tuning your applications. See
"Display thread stacks" in Oracle WebLogic Server Administration Console Help.

5.4 Enable Spinning for IA32 Platforms

If you are running a high-stress application with heavily contended locks on a
multiprocessor system, you can attempt to improve performance by using spinning.
This option enables the ability to spin the lock for a short time before going to sleep.

5.4.1 Sun JDK

Sun has changed the default lock spinning behavior in JDK 5.0 on the Windows IA32
platform. For the JDK 5.0 release, lock spinning is disabled by default. For this release,
Oracle has explicitly enabled spinning in the environment scripts used to start
WebLogic Server. To enable spinning, use the following VM option:

-XX:+UseSpinning

5-8 Performance and Tuning for Oracle WebLogic Server

Increasing Java Heap Size for Managed Servers

5.4.2 JRockit

The JRockit VM automatically adjusts the spinning for different locks, eliminating the
need set this parameter.

5.5 Increasing Java Heap Size for Managed Servers

For better performance, you may need to increase the heap size for each Managed
Server in your environment.

The following sections provide information on how to modify the java heap size for
managed servers.

= Section 5.5.1, "Using the Administration Console to Set Java Heap Size"

= Section 5.5.2, "Modify the startManagedWebLogic Script to Set Java Heap Size"
= Section 5.5.3, "Using the Command Line to Set Java Heap Size"

= Section 5.5.4, "Determining the Memory Values Used by a Managed Server"

See "Configuring Remote Startup Arguments" in Node Manager Administrator's Guide
for Oracle WebLogic Server.

5.5.1 Using the Administration Console to Set Java Heap Size

If you use Node Manager to start the Managed Servers, you can specify a heap size as
a Java argument on the Server Start tab for each Managed Server. See "Increasing the
Java Heap size for a managed server" in the Oracle WebLogic Server Administration
Console Help