Oracle® Fusion Middleware
Programming Security for Oracle WebLogic Server
12c Release 1 (12.1.1)
E24485-02

January 2012
This document explains how to use the Oracle WebLogic Server security programming features.
Contents

Preface

- Documentation Accessibility .. xi
- Conventions ... xi

1 Introduction and Roadmap

- Document Scope .. 1-1
- Audience for This Guide ... 1-1
- Guide to this Document ... 1-2
- Related Information ... 1-3
- Security Samples and Tutorials ... 1-3
- Security Examples in the WebLogic Server Distribution 1-4
- New and Changed Security Features in This Release 1-4

2 WebLogic Security Programming Overview

- What Is Security? ... 2-1
- Administration Console and Security ... 2-2
- Types of Security Supported by WebLogic Server 2-2
- Authentication .. 2-2
- Authorization ... 2-2
- Java EE Security .. 2-3
- Security APIs .. 2-3
- JAAS Client Application APIs .. 2-3
- Java JAAS Client Application APIs .. 2-3
- WebLogic JAAS Client Application APIs 2-3
- SSL Client Application APIs ... 2-4
- Java SSL Client Application APIs ... 2-4
- WebLogic SSL Client Application APIs 2-4
- Other APIs .. 2-5

3 Securing Web Applications

- Authentication With Web Browsers ... 3-1
- User Name and Password Authentication 3-2
- Digital Certificate Authentication ... 3-3
- Multiple Web Applications, Cookies, and Authentication 3-4
- Using Secure Cookies to Prevent Session Stealing 3-5
7 Using Network Connection Filters

7.1 The Benefits of Using Network Connection Filters .. 7-1
7.2 Network Connection Filter API .. 7-1
 7.2.1 Connection Filter Interfaces ... 7-2
 7.2.1.1 ConnectionFilter Interface ... 7-2
 7.2.1.2 ConnectionFilterRulesListener Interface ... 7-2
 7.2.2 Connection Filter Classes ... 7-3
 7.2.2.1 ConnectionFilterImpl Class ... 7-3
 7.2.2.2 ConnectionEvent Class ... 7-3
7.3 Guidelines for Writing Connection Filter Rules ... 7-3
 7.3.1 Connection Filter Rules Syntax .. 7-3
 7.3.2 Types of Connection Filter Rules .. 7-4
 7.3.3 How Connection Filter Rules are Evaluated ... 7-5
7.4 Configuring the WebLogic Connection Filter .. 7-5
7.5 Developing Custom Connection Filters .. 7-5
10 Using CertPath Building and Validation

10.1 CertPath Building .. 10-1
10.1.1 Instantiate a CertPathSelector ... 10-1
10.1.2 Instantiate a CertPathBuilderInterface ... 10-2
10.1.3 Use the JDK CertPathBuilderInterface Interface ... 10-3
10.1.4 Example Code Flow for Looking Up a Certificate Chain .. 10-4
10.2 CertPath Validation ... 10-4
10.2.1 Instantiate a CertPathValidatorParameters ... 10-5
10.2.2 Use the JDK CertPathValidator Interface ... 10-6
10.2.3 Example Code Flow for Validating a Certificate Chain .. 10-6

A Deprecated Security APIs
This preface describes the document accessibility features and conventions used in this guide—Programming Security for Oracle WebLogic Server.

Documentation Accessibility

Access to Oracle Support

Conventions

The following text conventions are used in this document:

<table>
<thead>
<tr>
<th>Convention</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>boldface</td>
<td>Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.</td>
</tr>
<tr>
<td>italic</td>
<td>Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.</td>
</tr>
<tr>
<td>monospace</td>
<td>Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.</td>
</tr>
</tbody>
</table>
Introduction and Roadmap

The following sections describe the contents and organization of this guide—Programming WebLogic Security:

- Section 1.1, "Document Scope"
- Section 1.2, "Audience for This Guide"
- Section 1.3, "Guide to this Document"
- Section 1.4, "Related Information"
- Section 1.5, "Security Samples and Tutorials"
- Section 1.6, "New and Changed Security Features in This Release"

1.1 Document Scope

This document explains how to use the WebLogic Server security programming features.

See Section 1.4, "Related Information" for a description of other WebLogic Server security documentation.

1.2 Audience for This Guide

This document is intended for the following audiences:

- Application Developers

 Java programmers who focus on developing client applications, adding security to Web applications and Enterprise JavaBeans (EJBs). They work with other engineering, Quality Assurance (QA), and database teams to implement security features. Application developers have in-depth/working knowledge of Java (including Java Platform, Enterprise Edition (Java EE) components such as servlets/JSPs and JSEE) and Java security.

 Application developers use the WebLogic security and Java security application programming interfaces (APIs) to secure their applications. Therefore, this document provides instructions for using those APIs for securing Web applications, Java applications, and Enterprise JavaBeans (EJBs).

- Security Developers

 Developers who focus on defining the system architecture and infrastructure for security products that integrate into WebLogic Server and on developing custom security providers for use with WebLogic Server. They work with application architects to ensure that the security architecture is implemented according to
design and that no security holes are introduced. They also work with WebLogic Server administrators to ensure that security is properly configured. Security developers have a solid understanding of security concepts, including authentication, authorization, auditing (AAA), in-depth knowledge of Java (including Java Management eXtensions (JMX), and working knowledge of WebLogic Server and security provider functionality.

Security developers use the Security Service Provider Interfaces (SSPIs) to develop custom security providers for use with WebLogic Server. This document does not address this task; for information on how to use the SSPIs to develop custom security providers, see Developing Security Providers for Oracle WebLogic Server

- **Server Administrators**

 Administrators who work closely with application architects to design a security scheme for the server and the applications running on the server, to identify potential security risks, and to propose configurations that prevent security problems. Related responsibilities may include maintaining critical production systems, configuring and managing security realms, implementing authentication and authorization schemes for server and application resources, upgrading security features, and maintaining security provider databases. WebLogic Server administrators have in-depth knowledge of the Java security architecture, including Web application and EJB security, Public Key security, and SSL.

- **Application Administrators**

 Administrators who work with WebLogic Server administrators to implement and maintain security configurations and authentication and authorization schemes, and to set up and maintain access to deployed application resources in defined security realms. Application administrators have general knowledge of security concepts and the Java Security architecture. They understand Java, XML, deployment descriptors, and can identify security events in server and audit logs.

While administrators typically use the Administration Console to deploy, configure, and manage applications when they put the applications into production, application developers may also use the Administration Console to test their applications before they are put into production. At a minimum, testing requires that applications be deployed and configured. This document does not cover some aspects of administration as it relates to security, rather, it references Securing Oracle WebLogic Server, Securing Resources Using Roles and Policies for Oracle WebLogic Server, and Oracle WebLogic Server Administration Console Help for descriptions of how to use the Administration Console to perform security tasks.

1.3 Guide to this Document

This document is organized as follows:

- **Chapter 2, “WebLogic Security Programming Overview”** discusses the need for security, and the WebLogic Security application programming Interfaces (APIs).

- **Chapter 3, “Securing Web Applications”** describes how to implement security in Web applications.

- **Chapter 4, “Using JAAS Authentication in Java Clients”** describes how to implement JAAS authentication in Java clients.

- **Chapter 5, “Using SSL Authentication in Java Clients”** describes how to implement SSL and digital certificate authentication in Java clients.
1.4 Related Information

In addition to this document, Programming WebLogic Security, the following documents provide information on the WebLogic Security Service:

- Understanding Security for Oracle WebLogic Server—This document summarizes the features of the WebLogic Security Service and presents an overview of the architecture and capabilities of the WebLogic Security Service. It is the starting point for understanding the WebLogic Security Service.

- Securing a Production Environment for Oracle WebLogic Server—This document highlights essential security measures for you to consider before you deploy WebLogic Server into a production environment.

- Developing Security Providers for Oracle WebLogic Server—This document provides security vendors and application developers with the information needed to develop custom security providers that can be used with WebLogic Server.

- Securing Oracle WebLogic Server—This document explains how to configure security for WebLogic Server and how to use Compatibility security.

- Securing Resources Using Roles and Policies for Oracle WebLogic Server—This document introduces the various types of WebLogic resources, and provides information that allows you to secure these resources using WebLogic Server.

- Oracle WebLogic Server Administration Console Help—This document describes how to use the Administration Console to perform security tasks.

- Oracle WebLogic Server API Reference—This document includes reference documentation for the WebLogic security packages that are provided with and supported by the WebLogic Server software.

1.5 Security Samples and Tutorials

In addition to the documents listed in Section 1.4, "Related Information", Oracle provides a variety of code samples for developers.
1.5.1 Security Examples in the WebLogic Server Distribution

WebLogic Server optionally installs API code examples in \WL_HOME\samples\server\examples\src\examples\security, where \WL_HOME is the top-level directory of your WebLogic Server installation. You can start the examples server, and obtain information about the samples and how to run them from the WebLogic Server Start menu.

The following examples illustrate WebLogic security features:

- Java Authentication and Authorization Service
- Outbound and Two-way SSL

The security tasks and code examples provided in this document assume that you are using the WebLogic security providers that are included in the WebLogic Server distribution, not custom security providers. The usage of the WebLogic security APIs does not change if you elect to use custom security providers, however, the management procedures of your custom security providers may be different.

Note: This document does not provide comprehensive instructions on how to configure WebLogic Security providers or custom security providers. For information on configuring WebLogic security providers and custom security providers, see *Securing Oracle WebLogic Server*.

1.6 New and Changed Security Features in This Release

For a comprehensive listing of the new WebLogic Server features introduced in this release, see *What’s New in Oracle WebLogic Server*.
This section provides an overview of programming WebLogic security.

The following topics are covered in this section:

- Section 2.1, "What Is Security?"
- Section 2.2, "Administration Console and Security"
- Section 2.3, "Types of Security Supported by WebLogic Server"
- Section 2.4, "Security APIs"

2.1 What Is Security?

Security refers to techniques for ensuring that data stored in a computer or passed between computers is not compromised. Most security measures involve proof material and data encryption. Proof material is typically a secret word or phrase that gives a user access to a particular application or system. Data encryption is the translation of data into a form that cannot be interpreted without holding or supplying the same secret.

Distributed applications, such as those used for electronic commerce (e-commerce), offer many access points at which malicious people can intercept data, disrupt operations, or generate fraudulent input. As a business becomes more distributed the probability of security breaches increases. Accordingly, as a business distributes its applications, it becomes increasingly important for the distributed computing software upon which such applications are built to provide security.

An application server resides in the sensitive layer between end users and your valuable data and resources. WebLogic Server provides authentication, authorization, and encryption services with which you can guard these resources. These services cannot provide protection, however, from an intruder who gains access by discovering and exploiting a weakness in your deployment environment.

Therefore, whether you deploy WebLogic Server on the Internet or on an intranet, it is a good idea to hire an independent security expert to go over your security plan and procedures, audit your installed systems, and recommend improvements.

Another good strategy is to read as much as possible about security issues and appropriate security measures. The document *Securing a Production Environment for Oracle WebLogic Server* highlights essential security measures for you to consider before you deploy WebLogic Server into a production environment. The document *Securing Resources Using Roles and Policies for Oracle WebLogic Server* introduces the various types of WebLogic resources, and provides information that allows you to secure these resources using WebLogic Server. For the latest information about securing Web servers, Oracle also recommends reading the Security Improvement Modules, Security

Oracle suggests that you apply the remedies recommended in our security advisories. In the event of a problem with an Oracle product, Oracle distributes an advisory and instructions with the appropriate course of action. If you are responsible for security related issues at your site, please register to receive future notifications.

2.2 Administration Console and Security

With regard to security, you can use the Administration Console to define and edit deployment descriptors for Web Applications, EJBs, Java EE Connectors, and Enterprise Applications. This document, *Programming WebLogic Security*, does not describe how to use the Administration Console to configure security. For information on how to use the Administration Console to define and edit deployment descriptors, see *Securing Resources Using Roles and Policies for Oracle WebLogic Server* and *Securing Oracle WebLogic Server*.

2.3 Types of Security Supported by WebLogic Server

WebLogic Server supports the following security mechanisms:

- **Section 2.3.1, “Authentication”**
- **Section 2.3.2, “Authorization”**
- **Section 2.3.3, “Java EE Security”**

2.3.1 Authentication

Authentication is the mechanism by which callers and service providers prove that they are acting on behalf of specific users or systems. Authentication answers the question, "Who are you?" using credentials. When the proof is bidirectional, it is referred to as mutual authentication.

WebLogic Server supports username and password authentication and certificate authentication. For certificate authentication, WebLogic Server supports both one-way and two-way SSL (Secure Sockets Layer) authentication. Two-way SSL authentication is a form of mutual authentication.

In WebLogic Server, Authentication providers are used to prove the identity of users or system processes. Authentication providers also remember, transport, and make identity information available to various components of a system (via subjects) when needed. You can configure the Authentication providers using the Web application and EJB deployment descriptor files, or the Administration Console, or a combination of both.

2.3.2 Authorization

Authorization is the process whereby the interactions between users and WebLogic resources are controlled, based on user identity or other information. In other words, authorization answers the question, "What can you access?"

In WebLogic Server, a WebLogic Authorization provider is used to limit the interactions between users and WebLogic resources to ensure integrity, confidentiality, and availability. You can configure the Authorization provider using the Web
application and EJB deployment descriptor files, or the Administration Console, or a combination of both.

WebLogic Server also supports the use of programmatic authorization (also referred to in this document as programmatic security) to limit the interactions between users and WebLogic resources.

2.3.3 Java EE Security

For implementation and use of user authentication and authorization, WebLogic Server utilizes the security services of the Java EE Development Kit 6.0 (JDK 6.0). Like the other Java EE components, the security services are based on standardized, modular components. WebLogic Server implements these Java security service methods according to the standard, and adds extensions that handle many details of application behavior automatically, without requiring additional programming.

2.4 Security APIs

This section lists the Security packages and classes that are implemented and supported by WebLogic Server. You use these packages to secure interactions between WebLogic Server and client applications, Enterprise JavaBeans (EJBs), and Web applications.

Note: Several of the WebLogic security packages, classes, and methods are deprecated in this release of WebLogic Server. For more detailed information on deprecated packages and classes, see Appendix A, "Deprecated Security APIs".

The following topics are covered in this section:

- Section 2.4.1, "JAAS Client Application APIs"
- Section 2.4.2, "SSL Client Application APIs"
- Section 2.4.3, "Other APIs"

2.4.1 JAAS Client Application APIs

You use Java APIs and WebLogic APIs to write client applications that use JAAS authentication.

The following topics are covered in this section:

- Section 2.4.1.1, "Java JAAS Client Application APIs"
- Section 2.4.1.2, "WebLogic JAAS Client Application APIs"

2.4.1.1 Java JAAS Client Application APIs

You use the following Java APIs to write JAAS client applications. The APIs are available at http://download.oracle.com/javase/6/docs/api/index.html.

- javax.naming
- javax.security.auth
- javax.security.auth.callback
- javax.security.auth.login
2.4.1.2 WebLogic JAAS Client Application APIs

You use the following WebLogic APIs to write JAAS client applications:
- weblogic.security
- weblogic.security.auth
- weblogic.security.auth.callback

For information on how to use these APIs, see Section 4.2.1, "JAAS Authentication APIs".

2.4.2 SSL Client Application APIs

You use Java and WebLogic APIs to write client applications that use SSL authentication:

The following topics are covered in this section:
- Section 2.4.2.1, "Java SSL Client Application APIs"
- Section 2.4.2.2, "WebLogic SSL Client Application APIs"

2.4.2.1 Java SSL Client Application APIs

You use the following Java APIs (available from http://download.oracle.com/javase/6/docs/api/index.html) to write SSL client applications:
- java.security
- java.security.cert
- java.crypto
- java.naming
- java.net
- java.security
- java.servlet
- java.servlet.http

WebLogic Server also supports the javax.net.SSL API (http://download.oracle.com/javase/6/docs/api/index.html), but Oracle recommends that you use the weblogic.security.SSL package when you use SSL with WebLogic Server.

For information on how to use these APIs, see Section 5.3.1, "SSL Authentication APIs".

2.4.2.2 WebLogic SSL Client Application APIs

You use the following WebLogic APIs to write SSL client applications.
- weblogic.net.http
- weblogic.security.SSL
For information on how to use these APIs, see Section 5.3.1, "SSL Authentication APIs".

2.4.3 Other APIs

Additionally, you use the following APIs to develop WebLogic Server applications:

- **weblogic.security.jacc**

- **weblogic.security.net**

 This API provides interfaces and classes that are used to implement network connection filters. Network connection filters allow or deny connections to WebLogic Server based on attributes such as the IP address, domain, or protocol of the initiator of the network connection. For more information about how to use this API, see Chapter 7, "Using Network Connection Filters".

- **weblogic.security.pk**

 This API provides interfaces and classes to build and validate certification paths. See Chapter 10, "Using CertPath Building and Validation" for information on using this API to build and validate certificate chains.

 See the java.security.cert package (http://download.oracle.com/javase/6/docs/api/java/security/cert/package-summary.html) for additional information on certificates and certificate paths.

- **weblogic.security.providers.saml**

 This API provides interfaces and classes that are used to perform mapping of user and group information to Security Assertion Markup Language (SAML) assertions, and to cache and retrieve SAML assertions.

 SAML is an XML-based framework for exchanging security information. WebLogic Server supports SAML V2.0 and V1.1, including the Browser/Post and Browser/Artifact profiles. SAML authorization is not supported.

 For more information about SAML, see http://www.oasis-open.org.

- **weblogic.security.service**

 This API includes interfaces, classes, and exceptions that support security providers. The WebLogic Security Framework consists of interfaces, classes, and exceptions provided by this API. The interfaces, classes, and exceptions in this API should be used in conjunction with those in the weblogic.security.spi package. For more information about how to use this API, see Developing Security Providers for Oracle WebLogic Server.

- **weblogic.security.services**

 This API provides the server-side authentication class. This class is used to perform a local login to the server. It provides login methods that are used with
CallbackHandlers to authenticate the user and return credentials using the default security realm.

- **weblogic.security.spi**

 This package provides the Security Service Provider Interfaces (SSPIs). It provides interfaces, classes, and exceptions that are used for developing custom security providers. In many cases, these interfaces, classes, and exceptions should be used in conjunction with those in the weblogic.security.service API. You implement interfaces, classes, and exceptions from this package to create runtime classes for security providers. For more information about how to use the SSPIs, see Developing Security Providers for Oracle WebLogic Server.

- **weblogic.servlet.security**

 This API provides a server-side API that supports programmatic authentication from within a servlet application. For more about how to use this API, see Section 3.7, "Using the Programmatic Authentication API".
WebLogic Server supports the Java EE architecture security model for securing Web applications, which includes support for declarative authorization (also referred to in this document as declarative security) and programmatic authorization (also referred to in this document as programmatic security).

This section covers the following topics:

- Section 3.1, "Authentication With Web Browsers"
- Section 3.2, "Multiple Web Applications, Cookies, and Authentication"
- Section 3.3, "Developing Secure Web Applications"
- Section 3.4, "Using Declarative Security With Web Applications"
- Section 3.5, "Web Application Security-Related Deployment Descriptors"
- Section 3.6, "Using Programmatic Security With Web Applications"
- Section 3.7, "Using the Programmatic Authentication API"

Note: You can use deployment descriptor files and the Administration Console to secure Web applications. This document describes how to use deployment descriptor files. For information on using the Administration Console to secure Web applications, see *Securing Resources Using Roles and Policies for Oracle WebLogic Server*.

WebLogic Server supports the use of the `HttpServletRequest.isUserInRole` and `HttpServletRequest.getUserPrincipal` methods and the use of the `security-role-ref` element in deployment descriptors to implement programmatic authorization in Web applications.

3.1 Authentication With Web Browsers

Web browsers can connect to WebLogic Server over either a HyperText Transfer Protocol (HTTP) port or an HTTP with SSL (HTTPS) port. The benefits of using an HTTPS port versus an HTTP port are two-fold. With HTTPS connections:

- All communication on the network between the Web browser and the server is encrypted. None of the communication, including the user name and password, is in clear text.
- As a minimum authentication requirement, the server is required to present a digital certificate to the Web browser client to prove its identity.
If the server is configured for two-way SSL authentication, both the server and client are required to present a digital certificate to each other to prove their identity.

3.1.1 User Name and Password Authentication

WebLogic Server performs user name and password authentication when users use a Web browser to connect to the server via the HTTP port. In this scenario, the browser and an instance of WebLogic Server interact in the following manner to authenticate a user (see Figure 3–1):

1. A user invokes a WebLogic resource in WebLogic Server by entering the URL for that resource in a Web browser. The HTTP URL contains the HTTP listen port, for example, `http://myserver:7001`.

2. The Web server in WebLogic Server receives the request.

Note: WebLogic Server provides its own Web server but also supports the use of Apache Server, Microsoft Internet Information Server, and Java System Web Server as Web servers.

3. The Web server determines whether the WebLogic resource is protected by a security policy. If the WebLogic resource is protected, the Web server uses the established HTTP connection to request a user name and password from the user.

4. When the user's Web browser receives the request from the Web server, it prompts the user for a user name and password.

5. The Web browser sends the request to the Web server again, along with the user name and password.

6. The Web server forwards the request to the Web server plug-in. WebLogic Server provides the following plug-ins for Web servers:
 - Apache-WebLogic Server plug-in
 - Java System Web Server plug-in
 - Internet Information Server (IIS) plug-in

 The Web server plug-in performs authentication by sending the request, via the HTTP protocol, to WebLogic Server, along with the authentication data (user name and password) received from the user.

7. Upon successful authentication, WebLogic Server proceeds to determine whether the user is authorized to access the WebLogic resource.

8. Before invoking a method on the WebLogic resource, the WebLogic Server instance performs a security authorization check. During this check, the server security extracts the user’s credentials from the security context, determines the user’s security role, compares the user’s security role to the security policy for the requested WebLogic resource, and verifies that the user is authorized to invoke the method on the WebLogic resource.

9. If authorization succeeds, the server fulfills the request.
3.1.2 Digital Certificate Authentication

WebLogic Server uses encryption and digital certificate authentication when Web browser users connect to the server via the HTTPS port. In this scenario, the browser and WebLogic Server instance interact in the following manner to authenticate and authorize a user (see Figure 3–1):

1. A user invokes a WebLogic resource in WebLogic Server by entering the URL for that resource in a Web browser. The HTTPS URL contains the SSL listen port, for example, `https://myserver:7002`.

2. The Web server in WebLogic Server receives the request.

3. The Web server checks whether the WebLogic resource is protected by a security policy. If the WebLogic resource is protected, the Web server uses the established HTTPS connection to request a user name and password from the user.

4. When the user’s Web browser receives the request from WebLogic Server, it prompts the user for a user name and password. (This step is optional.)

5. The Web browser sends the request again, along with the user name and password. (Only supplied if requested by the server.)

6. WebLogic Server presents its digital certificate to the Web browser.

7. The Web browser checks that the server’s name used in the URL (for example, `myserver`) matches the name in the digital certificate and that the digital certificate was issued by a trusted third party, that is, a trusted CA.

8. If two-way SSL authentication is in force on the server, the server requests a digital certificate from the client.

Note: WebLogic Server provides its own Web server but also supports the use of Apache Server, Microsoft Internet Information Server, and Java System Web Server as Web servers.
9. The Web server forwards the request to the Web server plug-in. If secure proxy is set (this is the case if the HTTPS protocol is being used), the Web server plug-in also performs authentication by sending the request, via the HTTPS protocol, to the WebLogic resource in WebLogic Server, along with the authentication data (user name and password) received from the user.

10. Upon successful authentication, WebLogic Server proceeds to determine whether the user is authorized to access the WebLogic resource.

11. Before invoking a method on the WebLogic resource, the server performs a security authorization check. During this check, the server extracts the user’s credentials from the security context, determines the user’s security role, compares the user’s security role to the security policy for the requested WebLogic resource, and verifies that the user is authorized to invoke the method on the WebLogic resource.

12. If authorization succeeds, the server fulfills the request.

For more information, see the following documents:

- Securing Oracle WebLogic Server
- Installing and Configuring the Apache HTTP Server Plug-In
- Installing and Configuring the Microsoft IIS Plug-In

3.2 Multiple Web Applications, Cookies, and Authentication

By default, WebLogic Server assigns the same cookie name (JSESSIONID) to all Web applications. When you use any type of authentication, all Web applications that use the same cookie name use a single sign-on for authentication. Once a user is authenticated, that authentication is valid for requests to any Web Application that uses the same cookie name. The user is not prompted again for authentication.
If you want to require separate authentication for a Web application, you can specify a
unique cookie name or cookie path for the Web application. Specify the cookie name
using the CookieName parameter and the cookie path with the CookiePath
parameter, defined in the WebLogic-specific deployment descriptor weblogic.xml
<session-descriptor> element. For more information, see "session-descriptor" in
Managing Server Startup and Shutdown for Oracle WebLogic Server.

If you want to retain the cookie name and still require independent authentication for
each Web application, you can set the cookie path parameter (CookiePath)
differently for each Web application.

WebLogic Server allows a user to securely access HTTPS resources in a session that
was initiated using HTTP, without loss of session data. This feature enables Web site
designers to prevent session stealing. For more information on this feature, see
Section 3.2.1, "Using Secure Cookies to Prevent Session Stealing".

3.2.1 Using Secure Cookies to Prevent Session Stealing

A common Web security problem is session stealing. This happens when an attacker
manages to get a copy of your session cookie, generally while the cookie is being
transmitted over the network. This can only happen when the data is being sent in
clear-text; that is, the cookie is not encrypted.

WebLogic Server allows a user to securely access HTTPS resources in a session that
was initiated using HTTP, without loss of session data. To enable this feature, add
AuthCookieEnabled="true" to the WebServer element in config.xml:

```xml
<WebServer Name="myserver" AuthCookieEnabled="true"/>
```

Setting AuthCookieEnabled to true, which is the default setting, causes the
WebLogic Server instance to send a new secure cookie, _WL_AUTHCOOKIE_-
JSESSIONID, to the browser when authenticating via an HTTPS connection. Once the
secure cookie is set, the session is allowed to access other security-constrained HTTPS
resources only if the cookie is sent from the browser.

Thus, WebLogic Server uses two cookies: the JSESSIONID cookie and the _WL_
AUTHCOOKIE_JSESSIONID cookie. By default, the JSESSIONID cookie is never
secure, but the _WL_AUTHCOOKIE_JSESSIONID cookie is always secure. A secure
cookie is only sent when an encrypted communication channel is in use. Assuming a
standard HTTPS login (HTTPS is an encrypted HTTP connection), your browser gets
both cookies.

For subsequent HTTP access, you are considered authenticated if you have a valid
JSESSIONID cookie, but for HTTPS access, you must have both cookies to be
considered authenticated. If you only have the JSESSIONID cookie, you must
re-authenticate.

With this feature enabled, once you have logged in over HTTPS, the secure cookie is
only sent encrypted over the network and therefore can never be stolen in transit. The
JSESSIONID cookie is still subject to in-transit hijacking. Therefore, a Web site
designer can ensure that session stealing is not a problem by making all sensitive data
require HTTPS. While the HTTP session cookie is still vulnerable to being stolen and
used, all sensitive operations require the _WL_AUTHCOOKIE_JSESSIONID, which
cannot be stolen, so those operations are protected.

You can also specify a cookie name for JSESSIONID or _WL_AUTHCOOKIE_
JSESSIONID using the CookieName parameter defined in the weblogic.xml
deployment descriptor's <session-descriptor> element, as follows:

```xml
<session-descriptor>
In this case, Weblogic Server will not use JSESSIONID and _WL_AUTHCOOKIE_JSESSIONID, but FOOAPPID and _WL_AUTHCOOKIE_FOOAPPID to serve the same purpose, as shown in Table 3–1.

<table>
<thead>
<tr>
<th>User-Specified in Deployment Descriptor</th>
<th>HTTP Session</th>
<th>HTTPS Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>No - uses the JSESSIONID default</td>
<td>JSESSIONID</td>
<td>_WL_AUTHCOOKIE_JSESSIONID</td>
</tr>
<tr>
<td>Yes - specified as FOOAPPID</td>
<td>FOOAPPID</td>
<td>_WL_AUTHCOOKIE_FOOAPPID</td>
</tr>
</tbody>
</table>

### 3.3 Developing Secure Web Applications
WebLogic Server supports three types of authentication for Web browsers:

- BASIC
- FORM
- CLIENT-CERT

The following sections cover the different ways to use these types of authentication:

- Section 3.3.1, "Developing BASIC Authentication Web Applications"
- Section 3.3.2, "Understanding BASIC Authentication with Unsecured Resources"
- Section 3.3.3, "Developing FORM Authentication Web Applications"
- Section 3.3.4, "Using Identity Assertion for Web Application Authentication"
- Section 3.3.5, "Using Two-Way SSL for Web Application Authentication"
- Section 3.3.6, "Providing a Fallback Mechanism for Authentication Methods"
- Section 3.3.7, "Developing Swing-Based Authentication Web Applications"
- Section 3.3.8, "Deploying Web Applications"

### 3.3.1 Developing BASIC Authentication Web Applications
With basic authentication, the Web browser pops up a login screen in response to a WebLogic resource request. The login screen prompts the user for a user name and password. Figure 3–2 shows a typical login screen.

![Authentication Login Screen](image-url)
To develop a Web application that provides basic authentication, perform these steps:

1. Create the web.xml deployment descriptor. In this file you include the following information (see Example 3–1):
   
   a. Define the welcome file. The welcome file name is welcome.jsp.
   
   b. Define a security constraint for each set of Web application resources, that is, URL resources, that you plan to protect. Each set of resources share a common URL. URL resources such as HTML pages, JSPs, and servlets are the most commonly protected, but other types of URL resources are supported. In Example 3–1, the URL pattern points to the welcome.jsp file located in the Web application’s top-level directory; the HTTP methods that are allowed to access the URL resource, POST and GET; and the security role name, webuser.

   Example 3–1 Basic Authentication web.xml File
   ```xml
 <?xml version='1.0' encoding='UTF-8'?>
 <welcome-file-list>
 <welcome-file>welcome.jsp</welcome-file>
 </welcome-file-list>
 </web-app>
   ```

   Note: See Section 3.3.2, "Understanding BASIC Authentication with Unsecured Resources" for important information about how unsecured resources are handled.

   Note: When specifying security role names, observe the following conventions and restrictions:
   
   ■ The proper syntax for a security role name is as defined for an Nmtoken in the Extensible Markup Language (XML) recommendation available on the Web at: http://www.w3.org/TR/REC-xml#NT-Nmtoken.
   
   ■ Do not use blank spaces, commas, hyphens, or any characters in this comma-separated list: \\
   
   ■ Security role names are case sensitive.
   
   ■ The suggested convention for security role names is that they be singular.

   c. Use the <login-config> tag to define the type of authentication you want to use and the security realm to which the security constraints will be applied. In Example 3–1, the BASIC type is specified and the realm is the default realm, which means that the security constraints will apply to the active security realm when the WebLogic Server instance boots.

   d. Define one or more security roles and map them to your security constraints. In our sample, only one security role, webuser, is defined in the security constraint so only one security role name is defined here (see the <security-role> tag in Example 3–1). However, any number of security roles can be defined.
Developing Secure Web Applications

2. Create the weblogic.xml deployment descriptor. In this file you map security role names to users and groups. Example 3–2 shows a sample weblogic.xml file that maps the webuser security role defined in the <security-role> tag in the web.xml file to a group named myGroup. Note that principals can be users or groups, so the <principal-name> can be used for either. With this configuration, WebLogic Server will only allow users in myGroup to access the protected URL resource—welcome.jsp.

Example 3–2  BASIC Authentication weblogic.xml File

```xml
<?xml version='1.0' encoding='UTF-8'?>
<weblogic-web-app xmlns="http://www.bea.com/ns/weblogic/90"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <security-role-assignment>
 <role-name>webuser</role-name>
 <principal-name>myGroup</principal-name>
 </security-role-assignment>
</weblogic-web-app>
```

3. Create a file that produces the Welcome screen that displays when the user enters a user name and password and is granted access. Example 3–3 shows a sample welcome.jsp file. Figure 3–3 shows the Welcome screen.

Example 3–3  BASIC Authentication welcome.jsp File

```html
<html>
<head>

Note: Starting in version 9.0, the default role mapping behavior is to create empty role mappings when none are specified in weblogic.xml. In version 8.x, if you did not include a weblogic.xml file, or included the file but did not include mappings for all security roles, security roles without mappings defaulted to any user or group whose name matched the role name. For information on role mapping behavior and backward compatibility settings, see the section "Understanding the Combined Role Mapping Enabled Setting" in Securing Resources Using Roles and Policies for Oracle WebLogic Server.
4. Start WebLogic Server and define the users and groups that will have access to the URL resource. In the `weblogic.xml` file (see Example 3–2), the `<principal-name>` tag defines myGroup as the group that has access to the `welcome.jsp`. Therefore, use the Administration Console to define the myGroup group, define a user, and add that user to the myGroup group. For information on adding users and groups, see "Users, Groups, and Security Roles" in Securing Resources Using Roles and Policies for Oracle WebLogic Server.

5. Deploy the Web application and use the user defined in the previous step to access the protected URL resource.
 a. For deployment instructions, see Section 3.3.8, "Deploying Web Applications".
 b. Open a Web browser and enter this URL:
      ```
      http://localhost:7001/basicauth/welcome.jsp
      ```
 c. Enter the user name and password. The Welcome screen displays.

3.3.1.1 Using HttpSessionListener to Account for Browser Caching of Credentials

The browser caches user credentials and frequently re-sends them to the server automatically. This can give the appearance that WebLogic Server sessions are not
being destroyed after logout or timeout. Depending on the browser, the credentials can be cached just for the current browser session, or across browser sessions.

You can validate that a WebLogic Server’s session was destroyed by creating a class that implements the `javax.servlet.http.HttpSessionListener` interface. Implementations of this interface are notified of changes to the list of active sessions in a web application. To receive notification events, the implementation class must be configured in the deployment descriptor for the web application in `web.xml`.

To configure a session listener class:

1. Open the `web.xml` deployment descriptor of the Web application for which you are creating a session listener class in a text editor. The `web.xml` file is located in the WEB-INF directory of your Web application.

2. Add an event declaration using the listener element of the `web.xml` deployment descriptor. The event declaration defines the event listener class that is invoked when the event occurs. For example:

```
<listener>
  <listener-class>myApp.MySessionListener</listener-class>
</listener>
```

See “Configuring an Event Listener Class” in Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server for additional information and guidelines.

Write and deploy the session listener class. The example shown in Example 3-4 uses a simple counter to track the session count.

Example 3-4 Tracking the Session Count

```java
package myApp;
import javax.servlet.http.HttpSessionListener;
import javax.servlet.http.HttpSessionEvent;
public class MySessionListener implements HttpSessionListener {
    private static int sessionCount = 0;

    public void sessionCreated(HttpSessionEvent se) {
        sessionCount++;
        // Write to a log or do some other processing.
    }

    public void sessionDestroyed(HttpSessionEvent se) {
        if(sessionCount > 0)
            sessionCount--;
        // Write to a log or do some other processing.
    }
}
```

3.3.2 Understanding BASIC Authentication with Unsecured Resources

For WebLogic Server versions 9.2 and later, client requests that use HTTP BASIC authentication must pass WebLogic Server authentication, even if access control is not enabled on the target resource.

The setting of the Security Configuration MBean flag `enforce-valid-basic-auth-credentials` determines this behavior. (The DomainMBean can return the new Security Configuration MBean for the domain.) It specifies whether or not the system should allow requests with invalid HTTP BASIC authentication credentials to access unsecured resources.
The enforce-valid-basic-auth-credentials flag is true by default, and WebLogic Server authentication is performed. If authentication fails, the request is rejected. WebLogic Server must therefore have knowledge of the user and password.

You may want to change the default behavior if you rely on an alternate authentication mechanism. For example, you might use a backend web service to authenticate the client, and WebLogic Server does not need to know about the user. With the default authentication enforcement enabled, the web service can do its own authentication, but only if WebLogic Server authentication first succeeds.

If you explicitly set the enforce-valid-basic-auth-credentials flag to false, WebLogic Server does not perform authentication for HTTP BASIC authentication client requests for which access control was not enabled for the target resource.

In the previous example of a backend web service that authenticates the client, the web service can then perform its own authentication without WebLogic Server having knowledge of the user.

3.3.2.1 Setting the enforce-valid-basic-auth-credentials Flag

To set the enforce-valid-basic-auth-credentials flag, perform the following steps:

1. Add the `<enforce-valid-basic-auth-credentials>` element to `config.xml` within the `<security-configuration>` element.

   ```xml
   <enforce-valid-basic-auth-credentials>false</enforce-valid-basic-auth-credentials>
   </security-configuration>
   ```

2. Start or restart all of the servers in the domain.

3.3.2.2 Using WLST to Check the Value of enforce-valid-basic-auth-credentials

The Administration Console does not display or log the enforce-valid-basic-auth-credentials setting. However, you can use WLST to check the value in a running server. Remember that enforce-valid-basic-auth-credentials is a domain-wide setting.

The WLST session shown in Example 3-5 demonstrates how to check the value of the enforce-valid-basic-auth-credentials flag in a sample running server.

Example 3-5 Checking the Value of enforce-valid-basic-auth-credentials

```bash
wls:/offline> connect('weblogic','weblogic','t3://localhost:7001')
Connecting to t3://localhost:7001 with userid weblogic ... Successfully connected to Admin Server 'examplesServer' that belongs to domain 'wl_server'.
wls:/wl_server/serverConfig> cd('SecurityConfiguration')
wl_server:SecurityConfiguration> ls()
dr--   DefaultRealm
wls:/wl_server/serverConfig/SecurityConfiguration/wl_server> ls()
dr--   DefaultRealm
```
3.3.3 Developing FORM Authentication Web Applications

When using FORM authentication with Web applications, you provide a custom login screen that the Web browser displays in response to a Web application resource request and an error screen that displays if the login fails. The login screen can be generated using an HTML page, JSP, or servlet. The benefit of form-based login is that you have complete control over these screens so that you can design them to meet the requirements of your application or enterprise policy/guideline.

The login screen prompts the user for a user name and password. Figure 3–4 shows a typical login screen generated using a JSP and Example 3–6 shows the source code.

Figure 3–4 Form-Based Login Screen (login.jsp)

Example 3–6 Form-Based Login Screen Source Code (login.jsp)

```html
<html>
<head>)
  <title>Security WebApp login page</title>
</head>
<body bgcolor="#cccccc">
  <blockquote>
    <img src=Button_Final_web.gif align=right>
    <h2>Please enter your user name and password:</h2>
    <p>
      <form method="POST" action="j_security_check">
        <input type="text" name="j_username" value="">
        <input type="password" name="j_password" value="">
        <input type="submit" value="Submit">
      </form>
    </p>
  </blockquote>
</body>
</html>
```
To develop a Web application that provides FORM authentication, perform these steps:
1. Create the \texttt{web.xml} deployment descriptor. In this file you include the following information (see Example 3–8):

a. Define the welcome file. The welcome file name is \texttt{welcome.jsp}.

b. Define a security constraint for each set of URL resources that you plan to protect. Each set of URL resources share a common URL. URL resources such as HTML pages, JSPs, and servlets are the most commonly protected, but other types of URL resources are supported. In Example 3–8, the URL pattern points to /\texttt{admin/edit.jsp}, thus protecting the \texttt{edit.jsp} file located in the Web application's admin sub-directory, defines the HTTP method that is allowed to access the URL resource, GET, and defines the security role name, admin.

\begin{quote}
\textbf{Note:} Do not use hyphens in security role names. Security role names with hyphens cannot be modified in the Administration Console. Also, the suggested convention for security role names is that they be singular.
\end{quote}

c. Define the type of authentication you want to use and the security realm to which the security constraints will be applied. In this case, the \texttt{FORM} type is specified and no realm is specified, so the realm is the default realm, which means that the security constraints will apply to the security realm that is activated when a WebLogic Server instance boots.

d. Define one or more security roles and map them to your security constraints. In our sample, only one security role, admin, is defined in the security constraint so only one security role name is defined here. However, any number of security roles can be defined.

\textbf{Example 3–8 FORM Authentication web.xml File}

\begin{verbatim}
<?xml version='1.0' encoding='UTF-8'?>
<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <welcome-file-list>
 <welcome-file>welcome.jsp</welcome-file>
 </welcome-file-list>
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>AdminPages</web-resource-name>
 <description>
 These pages are only accessible by authorized administrators.
 </description>
 <url-pattern>/admin/edit.jsp</url-pattern>
 <http-method>GET</http-method>
 </web-resource-collection>
 <auth-constraint>
 <description>
 These are the roles who have access.
 </description>
 <role-name>admin</role-name>
 <user-data-constraint>
 ...
 </user-data-constraint>
 </auth-constraint>
 </security-constraint>
</web-app>
\end{verbatim}
Developing Secure Web Applications

Securing Web Applications

2. Create the weblogic.xml deployment descriptor. In this file you map security role names to users and groups. Example 3–9 shows a sample weblogic.xml file that maps the admin security role defined in the <security-role> tag in the web.xml file to the group supportGroup. With this configuration, WebLogic Server will only allow users in the supportGroup group to access the protected WebLogic resource. However, you can use the Administration Console to modify the Web application's security role so that other groups can be allowed to access the protected WebLogic resource.

Example 3–9 FORM Authentication weblogic.xml File

```xml
<?xml version='1.0' encoding='UTF-8'?>
    <security-role-assignment>
        <role-name>admin</role-name>
        <principal-name>supportGroup</principal-name>
    </security-role-assignment>
</weblogic-web-app>
```

3. Create a Web application file that produces the welcome screen when the user requests the protected Web application resource by entering the URL. Example 3–10 shows a sample welcome.jsp file. Figure 3–3 shows the Welcome screen.

Example 3–10 Form Authentication welcome.jsp File

```html
<html>
<head>
    <title>Security login example</title>
</head>
<body>
    String bgcolor;
    if ((bgcolor=(String)application.getAttribute("Background")) == null)
    {
```

<description>
This is how the user data must be transmitted.
</description>
<transport-guarantee>NONE</transport-guarantee>
</user-data-constraint>
</security-constraint>
</login-config>
<security-role>
 <description>
 An administrator
 </description>
 <role-name>
 admin
 </role-name>
</security-role>
</web-app>

<auth-method>FORM</auth-method>
<form-login-config>
 <form-login-page>/login.jsp</form-login-page>
 <form-error-page>/fail_login.html</form-error-page>
</form-login-config>
</login-config>
<security-role>
 <description>
 An administrator
 </description>
 <role-name>
 admin
 </role-name>
</security-role>
</web-app>

2. Create the weblogic.xml deployment descriptor. In this file you map security role names to users and groups. Example 3–9 shows a sample weblogic.xml file that maps the admin security role defined in the <security-role> tag in the web.xml file to the group supportGroup. With this configuration, WebLogic Server will only allow users in the supportGroup group to access the protected WebLogic resource. However, you can use the Administration Console to modify the Web application's security role so that other groups can be allowed to access the protected WebLogic resource.

Example 3–9 FORM Authentication weblogic.xml File

```xml
<?xml version='1.0' encoding='UTF-8'?>
    <security-role-assignment>
        <role-name>admin</role-name>
        <principal-name>supportGroup</principal-name>
    </security-role-assignment>
</weblogic-web-app>
```

3. Create a Web application file that produces the welcome screen when the user requests the protected Web application resource by entering the URL. Example 3–10 shows a sample welcome.jsp file. Figure 3–3 shows the Welcome screen.

Example 3–10 Form Authentication welcome.jsp File

```html
<html>
<head>
    <title>Security login example</title>
</head>
<body>
    String bgcolor;
    if ((bgcolor=(String)application.getAttribute("Background")) == null)
    {
```
4. Start WebLogic Server and define the users and groups that will have access to the URL resource. In the weblogic.xml file (see Example 3–9), the <role-name> tag defines admin as the group that has access to the edit.jsp file and defines the user joe as a member of that group. Therefore, use the Administration Console to define the admin group, and define user joe and add joe to the admin group. You can also define other users and add them to the group and they will also have access to the protected WebLogic resource. For information on adding users and groups, see "Users, Groups, and Security Roles" in Securing Resources Using Roles and Policies for Oracle WebLogic Server.

5. Deploy the Web application and use the user(s) defined in the previous step to access the protected Web application resource.
 a. For deployment instructions, see Section 3.3.8, "Deploying Web Applications".
 b. Open a Web browser and enter this URL:

```
http://hostname:7001/security/welcome.jsp
```

 c. Enter the user name and password. The Welcome screen displays.

3.3.4 Using Identity Assertion for Web Application Authentication

You use identity assertion in Web applications to verify client identities for authentication purposes. When using identity assertion, the following requirements must be met:

1. The authentication type must be set to CLIENT-CERT.
2. An Identity Assertion provider must be configured in the server. If the Web browser or Java client requests a WebLogic Server resource protected by a security policy, WebLogic Server requires that the Web browser or Java client have an
Developing Secure Web Applications

Securing Web Applications

3-17

identity. The WebLogic Identity Assertion provider maps the token from a Web browser or Java client to a user in a WebLogic Server security realm. For information on how to configure an Identity Assertion provider, see "Configuring Identity Assertion Providers" in Securing Oracle WebLogic Server.

3. The user corresponding to the token’s value must be defined in the server’s security realm; otherwise the client will not be allowed to access a protected WebLogic resource. For information on configuring users on the server, see "Users, Groups, and Security Roles" in Securing Resources Using Roles and Policies for Oracle WebLogic Server.

3.3.5 Using Two-Way SSL for Web Application Authentication

You use two-way SSL in Web applications to verify that clients are whom they claim to be. When using two-way SSL, the following requirements must be met:

1. The authentication type must be set to CLIENT-CERT.
2. The server must be configured for two-way SSL. For information on using SSL and digital certificates, see Chapter 5, "Using SSL Authentication in Java Clients". For information on configuring SSL on the server, see “Configuring SSL” in Securing Oracle WebLogic Server.
3. The client must use HTTPS to access the Web application on the server.
4. An Identity Assertion provider must be configured in the server. If the Web browser or Java client requests a WebLogic Server resource protected by a security policy, WebLogic Server requires that the Web browser or Java client have an identity. The WebLogic Identity Assertion provider allows you to enable a user name mapper in the server that maps the digital certificate of a Web browser or Java client to a user in a WebLogic Server security realm. For information on how to configure security providers, see "Configuring WebLogic Security Providers" in Securing Oracle WebLogic Server.
5. The user corresponding to the Subject’s Distinguished Name (SubjectDN) attribute in the client’s digital certificate must be defined in the server’s security realm; otherwise the client will not be allowed to access a protected WebLogic resource. For information on configuring users on the server, see "Users, Groups, and Security Roles" in Securing Resources Using Roles and Policies for Oracle WebLogic Server.

Note: When you use SSL authentication, it is not necessary to use web.xml and weblogic.xml files to specify server configuration because you use the Administration Console to specify the server's SSL configuration.

3.3.6 Providing a Fallback Mechanism for Authentication Methods

The Servlet 3.0 specification (http://jcp.org/en/jsr/detail?id=315) allows you to define the authentication method (BASIC, FORM, etc.) to be used in a Web application. WebLogic Server provides an auth-method security module that allows you to define multiple authentication methods (as a comma separated list), so the container can provide a fall-back mechanism. Authentication will be attempted in the order the values are defined in the auth-method list.

For example, you can define the following auth-method list in the login-config element of your web.xml file:

```
<login-config>
```

Securing Web Applications 3-17
<auth-method>CLIENT-CERT, BASIC</auth-method>
</login-config>

Then the container will first try to authenticate by looking at the CLIENT-CERT value. If that should fail, the container will challenge the user-agent for BASIC authentication.

If either FORM or BASIC are configured, then they must exist at the end of the list since they require a round-trip communication with the user. However, both FORM and BASIC cannot exist together in the list of auth-method values.

3.3.6.1 Configuration

The auth-method authentication security can be configured in two ways:

- Define a comma separated list of auth-method values in the login-config element of your web.xml file.

- Define the auth-method values as a comma separated list on the RealmMBean and in the login-config element of your web.xml use the REALM value, then the Web application will pick up the authentication methods from the security realm.

WebLogic Java Management Extensions (JMX) enables you to access the RealmMBean to create and manage the security resources. For more information, see "Overview of WebLogic Server Subsystem MBeans" in Developing Custom Management Utilities With JMX for Oracle WebLogic Server.

3.3.7 Developing Swing-Based Authentication Web Applications

Web browsers can also be used to run graphical user interfaces (GUIs) that were developed using Java Foundation Classes (JFC) Swing components.

For information on how to create a graphical user interface (GUI) for applications and applets using the Swing components, see the Creating a GUI with JFC/Swing tutorial (also known as The Swing Tutorial). You can access this tutorial on the Web at http://download.oracle.com/javase/tutorial/uiswing/.

After you have developed your Swing-based GUI, refer to Section 3.3.3, "Developing FORM Authentication Web Applications" and use the Swing-based screens to perform the steps required to develop a Web application that provides FORM authentication.

Note: When developing a Swing-based GUI, do not rely on the Java Virtual Machine-wide user for child threads of the swing event thread. This is not Java EE compliant and does not work in thin clients, or in IIOP in general. Instead, take either of the following approaches:

- Make sure an InitialContext is created before any Swing artifacts.

- Or, use the Java Authentication and Authorization Service (JAAS) to log in and then use the Security.runAs() method inside the Swing event thread and its children.

3.3.8 Deploying Web Applications

To deploy a Web application on a server running in development mode, perform the following steps:
1. Set up a directory structure for the Web application's files. Figure 3–6 shows the directory structure for the Web application named basicauth. The top-level directory must be assigned the name of the Web application and the sub-directory must be named WEB-INF.

![Basicauth Web Application Directory Structure](image)

2. To deploy the Web application in exploded directory format, that is, not in the Java archive (jar) format, simply move your directory to the applications directory on your server. For example, you would deploy the basicauth Web application in the following location:

 WL_HOME\user_projects\domains\mydomain\applications\basicauth

 If the WebLogic Server instance is running, the application should auto-deploy. Use the Administration Console to verify that the application deployed.

 If the WebLogic Server instance is not running, the Web application should auto-deploy when you start the server.

3. If you have not done so already, use the Administration Console to configure the users and groups that will have access to the Web application. To determine the users and groups that are allowed access to the protected WebLogic resource, examine the weblogic.xml file. For example, the weblogic.xml file for the basicauth sample (see Example 3–2) defines myGroup as the only group to have access to the welcome.jsp file.

 For more information on deploying secure Web applications, see "Deploying Applications and Modules with weblogic.deployer" in Deploying Applications to Oracle WebLogic Server.

3.4 Using Declarative Security With Web Applications

There are three ways to implement declarative security:

1. Security providers via the Administration Console, as described in Securing Resources Using Roles and Policies for Oracle WebLogic Server.

2. Java Authorization Contract for Containers (JACC), as described in Section 8.2.3, "Using the Java Authorization Contract for Containers".

3. Deployment descriptors, which are discussed in this section.
Which of these three methods is used is defined by the JACC flags and the security model. (Security models are described in "Options for Securing EJB and Web Application Resources" in *Securing Resources Using Roles and Policies for Oracle WebLogic Server.*)

To implement declarative security in Web applications, you can use deployment descriptors (web.xml and weblogic.xml) to define security requirements. The deployment descriptors map the application's logical security requirements to its runtime definitions. And at runtime, the servlet container uses the security definitions to enforce the requirements. For a discussion of using deployment descriptors, see Section 3.3, "Developing Secure Web Applications".

For information about how to use deployment descriptors and the externally-defined element to configure security in Web applications declaratively, see Section 3.5.2.1, "externally-defined".

For information about how to use the Administration Console to configure security in Web applications, see *Securing Resources Using Roles and Policies for Oracle WebLogic Server*.

3.5 Web Application Security-Related Deployment Descriptors

The following topics describe the deployment descriptor elements that are used in the web.xml and weblogic.xml files to define security requirements in Web applications:

- Section 3.5.1, "web.xml Deployment Descriptors"
- Section 3.5.2, "weblogic.xml Deployment Descriptors"

3.5.1 web.xml Deployment Descriptors

The following web.xml security-related deployment descriptor elements are supported by WebLogic Server:

- Section 3.5.1.1, "auth-constraint"
- Section 3.5.1.2, "security-constraint"
- Section 3.5.1.3, "security-role"
- Section 3.5.1.4, "security-role-ref"
- Section 3.5.1.5, "user-data-constraint"
- Section 3.5.1.6, "web-resource-collection"

3.5.1.1 auth-constraint

The optional auth-constraint element defines which groups or principals have access to the collection of Web resources defined in this security constraint.
Web Application Security-Related Deployment Descriptors

3.5.1.1.1 Used Within
The `auth-constraint` element is used within the `security-constraint` element.

3.5.1.1.2 Example
See Example 3–11 for an example of how to use the `auth-constraint` element in a `web.xml` file.

3.5.1.2 security-constraint
The `security-constraint` element is used in the `web.xml` file to define the access privileges to a collection of resources defined by the `web-resource-collection` element.

Note: Any resource that is protected by an `auth-constraint` element should also be protected by a `user-data-constraint` Element with a `<transport-guarantee>` of INTEGRAL or CONFIDENTIAL.

WebLogic Server establishes a Secure Sockets Layer (SSL) connection when the user is authenticated using the INTEGRAL or CONFIDENTIAL transport guarantee, thereby ensuring that all communication on the network between the Web browser and the server is encrypted and that none of the communication, including a user name and password, is in clear text.

Requiring SSL also means that WebLogic Server uses two cookies: the `JSESSIONID` cookie and the encrypted `_WL_AUTHCOOKIE_ JSESSIONID` cookie, as described in Section 3.2.1, "Using Secure Cookies to Prevent Session Stealing".

The following table describes the elements you can define within an `auth-constraint` element.

<table>
<thead>
<tr>
<th>Table 3–2 auth-constraint Element</th>
</tr>
</thead>
<tbody>
<tr>
<td>Element</td>
</tr>
<tr>
<td><description></td>
</tr>
<tr>
<td><role-name></td>
</tr>
</tbody>
</table>
Note: Any resource that is protected by an auth-constraint element should also be protected by a user-data-constraint Element with a transport-guarantee of INTEGRAL or CONFIDENTIAL.

WebLogic Server establishes a Secure Sockets Layer (SSL) connection when the user is authenticated using the INTEGRAL or CONFIDENTIAL transport guarantee, thereby ensuring that all communication on the network between the Web browser and the server is encrypted and that none of the communication, including a user name and password, is in clear text.

Requiring SSL also means that WebLogic Server uses two cookies: the JSESSIONID cookie and the encrypted _WL_AUTHCOOKIE_ JSESSIONID cookie, as described in Section 3.2.1, "Using Secure Cookies to Prevent Session Stealing".

The following table describes the elements you can define within a security-constraint element.

<table>
<thead>
<tr>
<th>Table 3–3 security-constraint Element</th>
</tr>
</thead>
<tbody>
<tr>
<td>Element</td>
</tr>
<tr>
<td><web-resource-collection></td>
</tr>
<tr>
<td><auth-constraint></td>
</tr>
<tr>
<td><user-data-constraint></td>
</tr>
</tbody>
</table>

3.5.1.2.1 Example Example 3–11 shows how to use the security-constraint element to defined security for the SecureOrdersEast resource in a web.xml file.

Example 3–11 Security Constraint Example

web.xml entries:

```
<security-constraint>
  <web-resource-collection>
    <web-resource-name>SecureOrdersEast</web-resource-name>
    <description>
      Security constraint for resources in the orders/east directory
    </description>
    <url-pattern>/orders/east/*</url-pattern>
    <http-method>POST</http-method>
    <http-method>GET</http-method>
  </web-resource-collection>
  <auth-constraint>
    <description>
      constraint for east coast sales
    </description>
  </auth-constraint>
</security-constraint>
```
3.5.1.3 security-role
The security-role element contains the definition of a security role. The definition consists of an optional description of the security role, and the security role name.

The following table describes the elements you can define within a security-role element.

<table>
<thead>
<tr>
<th>Element</th>
<th>Required/Optional</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><description></td>
<td>Optional</td>
<td>A text description of this security role.</td>
</tr>
<tr>
<td><role-name></td>
<td>Required</td>
<td>The role name. The name you use here must have a corresponding entry in the WebLogic-specific deployment descriptor, weblogic.xml, which maps roles to principals in the security realm. For more information, see Section 3.5.2.6, "security-role-assignment".</td>
</tr>
</tbody>
</table>

3.5.1.3.1 Example See Example 3–14 for an example of how to use the security-role element in a web.xml file.

3.5.1.4 security-role-ref
The security-role-ref element links a security role name defined by <security-role> to an alternative role name that is hard-coded in the servlet logic. This extra layer of abstraction allows the servlet to be configured at deployment without changing servlet code.

The following table describes the elements you can define within a security-role-ref element.

<table>
<thead>
<tr>
<th>Element</th>
<th>Required/Optional</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><description></td>
<td>Optional</td>
<td>Text description of the role.</td>
</tr>
<tr>
<td><role-name></td>
<td>Required</td>
<td>Defines the name of the security role or principal that is used in the servlet code.</td>
</tr>
<tr>
<td><role-link></td>
<td>Required</td>
<td>Defines the name of the security role that is defined in a <security-role> element later in the deployment descriptor.</td>
</tr>
</tbody>
</table>

3.5.1.4.1 Example See Example 3–17 for an example of how to use the security-role-ref element in a web.xml file.
3.5.1.5 user-data-constraint

The user-data-constraint element defines how data communicated between the client and the server should be protected.

Note: Any resource that is protected by an auth-constraint element should also be protected by a user-data-constraint Element with a <transport-guarantee> of INTEGRAL or CONFIDENTIAL.

WebLogic Server establishes a Secure Sockets Layer (SSL) connection when the user is authenticated using the INTEGRAL or CONFIDENTIAL transport guarantee, thereby ensuring that all communication on the network between the Web browser and the server is encrypted and that none of the communication, including a user name and password, is in clear text.

Requiring SSL also means that WebLogic Server uses two cookies: the JSESSIONID cookie and the encrypted _WL_AUTHCOOKIE_ JSESSIONID cookie, as described in Section 3.2.1, "Using Secure Cookies to Prevent Session Stealing".

The following table describes the elements you can define within a user-data-constraint element.

<table>
<thead>
<tr>
<th>Table 3–6</th>
<th>user-data-constraint Element</th>
</tr>
</thead>
<tbody>
<tr>
<td>Element</td>
<td>Required/Optional</td>
</tr>
<tr>
<td><description></td>
<td>Optional</td>
</tr>
<tr>
<td><transport-guarantee></td>
<td>Required</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WebLogic Server establishes a Secure Sockets Layer (SSL) connection when the user is authenticated using the INTEGRAL or CONFIDENTIAL transport guarantee.

3.5.1.5.1 Used Within The user-data-constraint element is used within the security-constraint element.

3.5.1.5.2 Example See Example 3–11 for an example of how to use the user-data-constraint element in a web.xml file.

3.5.1.6 web-resource-collection

The web-resource-collection element identifies a subset of the resources and HTTP methods on those resources within a Web application to which a security
constraint applies. If no HTTP methods are specified, the security constraint applies to all HTTP methods.

The following table describes the elements you can define within a web-resource-collection element.

Table 3–7 web-resource-collection Element

<table>
<thead>
<tr>
<th>Element</th>
<th>Required/Optional</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code><web-resource-name></code></td>
<td>Required</td>
<td>The name of this web resource collection.</td>
</tr>
<tr>
<td><code><description></code></td>
<td>Optional</td>
<td>Text description of the Web resource.</td>
</tr>
<tr>
<td><code><url-pattern></code></td>
<td>Required</td>
<td>The mapping, or location, of the Web resource collection. URL patterns must use the syntax defined in the Java Servlet Specification (http://jcp.org/en/jsr/detail?id=315). The pattern <code><url-pattern></code> applies the security constraint to the entire Web application.</td>
</tr>
<tr>
<td><code><http-method></code></td>
<td>Optional</td>
<td>The HTTP methods to which the security constraint applies when clients attempt to access the Web resource collection. If no HTTP methods are specified, then the security constraint applies to all HTTP methods. Specifying an HTTP method here limits the reach of the security constraint. Unless you have a particular requirement to specify an HTTP method, for security reasons you should not set this element.</td>
</tr>
</tbody>
</table>

3.5.1.6.1 Used Within

The web-resource-collection element is used within the security-constraint element.

3.5.1.6.2 Example

See Example 3–11 for an example of how to use the web-resource-collection element in a web.xml file.

3.5.2 weblogic.xml Deployment Descriptors

The following weblogic.xml security-related deployment descriptor elements are supported by WebLogic Server:

- Section 3.5.2.1, "externally-defined"
- Section 3.5.2.2, "run-as-principal-name"
- Section 3.5.2.3, "run-as-role-assignment"
- Section 3.5.2.4, "security-permission"
- Section 3.5.2.5, "security-permission-spec"
- Section 3.5.2.6, "security-role-assignment"

For additional information on weblogic.xml deployment descriptors, see the section "XML Deployment Descriptors" in Developing Applications for Oracle WebLogic Server.

For additional information on the weblogic.xml elements, see "weblogic.xml Deployment Descriptor Elements" in Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server.
3.5.2.1 externally-defined

The externally-defined element lets you explicitly indicate that you want the security roles defined by the role-name element in the web.xml deployment descriptors to use the mappings specified in the Administration Console. The element gives you the flexibility of not having to specify a specific security role mapping for each security role defined in the deployment descriptors for a particular Web application. Therefore, within the same security realm, deployment descriptors can be used to specify and modify security for some applications while the Administration Console can be used to specify and modify security for others.

The role mapping behavior for a server depends on which security deployment model is selected on the Administration Console. For information on security deployment models, see "Options for Securing EJB and Web Application Resources" in Securing Resources Using Roles and Policies for Oracle WebLogic Server.

Note: When specifying security role names, observe the following conventions and restrictions:

- The proper syntax for a security role name is as defined for an Nmtoken in the Extensible Markup Language (XML) recommendation available on the Web at: http://www.w3.org/TR/REC-xml#NT-Nmtoken.
- Do not use blank spaces, commas, hyphens, or any characters in this comma-separated list: \	, < >, #, |, &,
- Security role names are case sensitive.
- The suggested convention for security role names is that they be singular.

3.5.2.1.1 Used Within

The externally-defined element is used within the security-role-assignment element.

3.5.2.1.2 Example

Example 3–12 and Example 3–13 show by comparison how to use the externally-defined element in the weblogic.xml file. In Example 3–13, the specification of the "webuser" externally-defined element in the weblogic.xml means that for security to be correctly configured on the getReceipts method, the principals for webuser will have to be created in the Administration Console.

Note: If you need to list a significant number of principals, consider specifying groups instead of users. There are performance issues if you specify too many users.

Example 3–12 Using the web.xml and weblogic.xml Files to Map Security Roles and Principals to a Security Realm

web.xml entries:

```xml
<web-app>
  ...
  <security-role>
    <role-name>webuser</role-name>
    ...
  </security-role>
  ...
</web-app>
```
<weblogic.xml entries:
<weblogic-web-app>
 <security-role-assignment>
 <role-name>webuser</role-name>
 <principal-name>myGroup</principal-name>
 <principal-name>Bill</principal-name>
 <principal-name>Mary</principal-name>
 </security-role-assignment>
</weblogic-web-app>

Example 3–13 Using the externally-defined tag in Web Application Deployment Descriptors
web.xml entries:
<web-app>
...
 <security-role>
 <role-name>webuser</role-name>
 </security-role>
...
</web-app>
<weblogic.xml entries:
<weblogic-web-app>
 <security-role-assignment>
 <role-name>webuser</role-name>
 <externally-defined/>
 </security-role-assignment>
</weblogic-web-app>

For information about how to use the Administration Console to configure security for Web applications, see Securing Resources Using Roles and Policies for Oracle WebLogic Server.

3.5.2.2 run-as-principal-name
The run-as-principal-name element specifies the name of a principal to use for a security role defined by a run-as element in the companion web.xml file.

3.5.2.2.1 Used Within The run-as-principal-name element is used within a run-as-role-assignment element.

3.5.2.2.2 Example For an example of how to use the run-as-principal-name element, see Example 3–14.

3.5.2.3 run-as-role-assignment
The run-as-role-assignment element maps a given role name, defined by a role-name element in the companion web.xml file, to a valid user name in the system. The value can be overridden for a given servlet by the run-as-principal-name element in the servlet-descriptor. If the run-as-role-assignment element is absent for a given role name, the Web application container chooses the first principal-name defined in the security-role-assignment element.

The following table describes the elements you can define within a run-as-role-assignment element.
Example 3–14 run-as-role-assignment Element Example

web.xml:
```
<servlet>
  <servlet-name>SnoopServlet</servlet-name>
  <servlet-class>extra.SnoopServlet</servlet-class>
  <run-as>
    <role-name>runasrole</role-name>
  </run-as>
</servlet>
```

weblogic.xml:
```
<weblogic-web-app>
  <run-as-role-assignment>
    <role-name>runasrole</role-name>
    <run-as-principal-name>joe</run-as-principal-name>
  </run-as-role-assignment>
</weblogic-web-app>
```

3.5.2.5 security-permission-spec

The security-permission-spec element specifies a single security permission based on the Security policy file syntax. Refer to the following URL for the implementation of the security permission specification:

http://download.oracle.com/javase/6/docs/technotes/guides/security/PolicyFiles.html#FileSyntax

Note: Disregard the optional codebase and signedBy clauses.

3.5.2.5.1 Used Within

The security-permission-spec element is used within the security-permission element.
3.5.2.5.2 Example Example 3–15 shows how to use the security-permission-spec element to grant permission to the java.net.SocketPermission class.

Example 3–15 security-permission-spec Element Example

```xml
<weblogic-web-app>
  <security-permission>
    <description>Optional explanation goes here</description>
    <security-permission-spec>
      <!--
      A single grant statement following the syntax of
      http://java.sun.com/j2se/1.5.0/docs/guide/security/PolicyFiles.html#FileSyntax,
      without the "codebase" and "signedBy" clauses, goes here. For example:
      -->
      grant {
        permission java.net.SocketPermission ",", "resolve";
      }
    </security-permission-spec>
  </security-permission>
</weblogic-web-app>
```

In Example 3–15, permission java.net.SocketPermission is the permission class name, "," represents the target name, and resolve indicates the action (resolve host/IP name service lookups).

3.5.2.6 security-role-assignment

The security-role-assignment element declares a mapping between a security role and one or more principals in the WebLogic Server security realm.

Note: For information on using the security-role-assignment element in a weblogic-application.xml deployment descriptor for an enterprise application, see "Enterprise Application Deployment Descriptor Elements" in Developing Applications for Oracle WebLogic Server.

3.5.2.6.1 Example Example 3–16 shows how to use the security-role-assignment element to assign principals to the PayrollAdmin role.

Note: If you need to list a significant number of principals, consider specifying groups instead of users. There are performance issues if you specify too many users.

Example 3–16 security-role-assignment Element Example

```xml
<weblogic-web-app>
  <security-role-assignment>
    <role-name>PayrollAdmin</role-name>
    <principal-name>Tanya</principal-name>
    <principal-name>Fred</principal-name>
    <principal-name>system</principal-name>
  </security-role-assignment>
</weblogic-web-app>
```
3.6 Using Programmatic Security With Web Applications

You can write your servlets to access users and security roles programmatically in your servlet code. To do this, use the following methods in your servlet code: javax.servlet.http.HttpServletRequest.getUserPrincipal and javax.servlet.http.HttpServletRequest.isUserInRole(String role) methods.

3.6.1 getUserPrincipal

You use the getUserPrincipal() method to determine the current user of the Web application. This method returns a WLSUser Principal if one exists in the current user. In the case of multiple WLSUser Principals, the method returns the first in the ordering defined by the Subject.getPrincipals().iterator() method. If there are no WLSUser Principals, then the getUserPrincipal() method returns the first non-WLSGroup Principal. If there are no Principals or all Principals are of type WLSGroup, this method returns null. This behavior is identical to the semantics of the weblogic.security.SubjectUtils.getUserPrincipal() method.

For more information about how to use the getUserPrincipal() method, see http://www.oracle.com/technetwork/java/javaee/tech/index.html.

3.6.2 isUserInRole

The javax.servlet.http.HttpServletRequest.isUserInRole(String role) method returns a boolean indicating whether the authenticated user is granted the specified logical security "role." If the user has not been authenticated, this method returns false.

The isUserInRole() method maps security roles to the group names in the security realm. Example 3–17 shows the elements that are used with the <servlet> element to define the security role in the web.xml file.

Example 3–17 IsUserInRole web.xml and weblogic.xml Elements

Begin web.xml entries:
...
<servlet>
 <security-role-ref>
 <role-name>user-rolename</role-name>
 <role-link>rolename-link</role-link>
 </security-role-ref>
</servlet>
<security-role>
 <role-name>rolename-link</role-name>
</security-role>
...
Begin weblogic.xml entries:
...
<security-role-assignment>
 <role-name>rolename-link</role-name>
 <principal-name>groupname</principal>
 <principal-name>username</principal>
</security-role-assignment>
...

The string role is mapped to the name supplied in the <role-name> element, which is nested inside the <security-role-ref> element of a <servlet> declaration in
the web.xml deployment descriptor. The <role-name> element defines the name of the security role or principal (the user or group) that is used in the servlet code. The <role-link> element maps to a <role-name> defined in the <security-role-assignment> element in the weblogic.xml deployment descriptor.

Note: When specifying security role names, observe the following conventions and restrictions:

- The proper syntax for a security role name is as defined for an Nmtoken in the Extensible Markup Language (XML) recommendation available on the Web at: http://www.w3.org/TR/REC-xml#NT-Nmtoken.
- Do not use blank spaces, commas, hyphens, or any characters in this comma-separated list: \t, <>, #, |, &, ~, ?, (), [].
- Security role names are case sensitive.
- The suggested convention for security role names is that they be singular.

For example, if the client has successfully logged in as user Bill with the security role of manager, the following method would return true:

```java
request.isUserInRole("manager")
```

Example 3–18 provides an example.

Example 3–18 Example of Security Role Mapping

Servlet code:

```java
out.println("Is the user a Manager? " +
        request.isUserInRole("manager"));
```

web.xml entries:

```xml
<servlet>
  ...
  <role-name>manager</role-name>
  <role-link>mgr</role-link>
  ...
</servlet>
```

weblogic.xml entries:

```xml
<security-role>
  <role-name>mgr</role-name>
</security-role>
```

Note:

3.7 Using the Programmatic Authentication API

There are some applications where programmatic authentication is appropriate. WebLogic Server provides a server-side `weblogic.servlet.security.ServletAuthentication API` that supports
programmatic authentication from within a servlet application. You can use the
weblogic.servlet.security.ServletAuthentication API to authenticate and log in the user.

Once the login is completed, it appears as if the user logged in using the standard mechanism.

You have the option of using either of two WebLogic-supplied classes with the ServletAuthentication API, the weblogic.security.SimpleCallbackHandler class or the weblogic.security.URLCallbackHandler class. For more information on these classes, see Oracle WebLogic Server API Reference.

Example 3–19 shows an example that uses SimpleCallbackHandler. Example 3–20 shows an example that uses URLCallbackHandler.

Example 3–19 Programmatic Authentication Code Fragment Using the SimpleCallbackHandler Class
CallbackHandler handler = new SimpleCallbackHandler(username, password);
Subject mySubject =
 weblogic.security.services.Authentication.login(handler);
weblogic.servlet.security.ServletAuthentication.runAs(mySubject, request);
// Where request is the httpservletrequest object.

Example 3–20 Programmatic Authentication Code Fragment Using the URLCallbackHandler Class
CallbackHandler handler = new URLCallbackHandler(username, password);
Subject mySubject =
 weblogic.security.services.Authentication.login(handler);
weblogic.servlet.security.ServletAuthentication.runAs(mySubject, request);
// Where request is the httpservletrequest object.

3.7.1 Change the User’s Session ID at Login
When an HttpSession is created in a servlet, it is associated with a unique ID. The browser must provide this session ID with its request in order for the server to find the session data again.

In order to avoid a type of attack called "session fixation," you should change the user's session ID at login. To do this, call the generateNewSessionID method of weblogic.servlet.security.ServletAuthentication after you call the login method.

The generateNewSessionID method moves all current session information into a completely different session ID and associates this session with this new ID.

Note: The session itself does not change, only its identifier.

It is possible that legacy applications might depend on the session ID remaining the same before and after login. Calling generateNewSessionID would break such an application. Oracle recommends that you do not build this dependency into your application. However, if you do, or if you are dealing with a legacy application of this type, Oracle recommends that you use SSL to protect all access to the application.
Note that, by default, the WebLogic container automatically regenerates IDs for non-programmatic logins.

See `ServletAuthentication` for additional information about the `generateNewSessionID()` method.
This section describes using JAAS authentication in Java clients.

The following topics are covered in this section:

- Section 4.1, "JAAS and WebLogic Server"
- Section 4.2, "JAAS Authentication Development Environment"
- Section 4.3, "Writing a Client Application Using JAAS Authentication"
- Section 4.4, "Using JNDI Authentication"
- Section 4.5, "Java Client JAAS Authentication Code Examples"

The sections refer to sample code which is included in the WebLogic Server distribution at:

SAMPLES_HOME\server\examples\src\examples\security\jaas

The jaas directory contains an instructions.html file, ant build files, a sample_jaas.config file, and the following Java files:

- BaseClient.java
- BaseClientConstants.java
- SampleAction.java
- SampleCallbackHandler.java
- SampleClient.java
- TradeResult.java
- TraderBean.java

You will need to look at the examples when reading the information in the following sections.

4.1 JAAS and WebLogic Server

The Java Authentication and Authorization Service (JAAS) is a standard extension to the security in the Java EE Development Kit. JAAS provides the ability to enforce access controls based on user identity. JAAS is provided in WebLogic Server as an alternative to the JNDI authentication mechanism.

WebLogic Server clients use the authentication portion of the standard JAAS only. The JAAS LoginContext provides support for the ordered execution of all configured authentication provider LoginModule instances and is responsible for the management of the completion status of each configured provider.
Note the following considerations when using JAAS authentication for Java clients:

- WebLogic Server clients can either use the JNDI login or JAAS login for authentication, however JAAS login is the preferred method.

- While JAAS is the preferred method of authentication, the WebLogic-supplied LoginModule (weblogic.security.auth.login.UsernamePasswordLoginModule) only supports username and password authentication. Thus, for client certificate authentication (also referred to as two-way SSL authentication), you should use JNDI. To use JAAS for client certificate authentication, you must write a custom LoginModule that does certificate authentication.

Note: If you write your own LoginModule for use with WebLogic Server clients, have it call weblogic.security.auth.Authenticate.authenticate() to perform the login.

- To perform a JAAS login from a remote Java client (that is, the Java client is not a WebLogic Server client), you may use the WebLogic-supplied LoginModule to perform the login. However, if you elect not to use the WebLogic-supplied LoginModule but decide to write your own instead, you must have it call the weblogic.security.auth.Authenticate.authenticate() method to perform the login.

- If you are using a remote, or perimeter, login system such as Security Assertion Markup Language (SAML), you do not need to call weblogic.security.auth.Authenticate.authenticate(). You only need to call the authenticate() method if you are using WebLogic Server to perform the logon.

Note: WebLogic Server provides full container support for JAAS authentication and supports full use of JAAS authentication and authorization in application code.

- Within WebLogic Server, JAAS is called to perform the login. Each Authentication provider includes a LoginModule. This is true for servlet logins as well as Java client logins via JNDI or JAAS. The method WebLogic Server calls internally to perform the JAAS logon is weblogic.security.auth.Authentication.authenticate(). When using the Authenticate class, weblogic.security.SimpleCallbackHandler may be a useful helper class.

- While WebLogic Server does not protect any resources using JAAS authorization (it uses WebLogic security), you can use JAAS authorization in application code to protect the application's own resources.

For more information about JAAS, see the JAAS documentation at http://www.oracle.com/technetwork/java/javase/jaas/index.html.

4.2 JAAS Authentication Development Environment

Whether the client is an application, applet, Enterprise JavaBean (EJB), or servlet that requires authentication, WebLogic Server uses the JAAS classes to reliably and securely authenticate to the server. JAAS implements a Java version of the Pluggable
Authentication Module (PAM) framework, which permits applications to remain independent from underlying authentication technologies. Therefore, the PAM framework allows the use of new or updated authentication technologies without requiring modifications to a Java application.

WebLogic Server uses JAAS for remote Java client authentication, and internally for authentication. Therefore, only developers of custom Authentication providers and developers of remote Java client applications need to be involved with JAAS directly. Users of Web browser clients or developers of within-container Java client applications (for example, those calling an EJB from a servlet) do not require direct use or knowledge of JAAS.

Note: In order to implement security in a WebLogic client you must install the WebLogic Server software distribution kit on the Java client.

The following topics are covered in this section:

- Section 4.2.1, "JAAS Authentication APIs"
- Section 4.2.2, "JAAS Client Application Components"
- Section 4.2.3, "WebLogic LoginModule Implementation"

4.2.1 JAAS Authentication APIs

To implement Java clients that use JAAS authentication on WebLogic Server, you use a combination of Java EE application programming interfaces (APIs) and WebLogic APIs.

Table 4–1 lists and describes the Java API packages used to implement JAAS authentication. The information in Table 4–1 is taken from the Java API documentation and annotated to add WebLogic Server specific information. For more information on the Java APIs, see the Javadocs at http://download.oracle.com/javase/6/docs/api/index.html and http://download.oracle.com/javaee/6/api/.

Table 4–1 lists and describes the WebLogic APIs used to implement JAAS authentication. For more information, see Oracle WebLogic Server API Reference.

<table>
<thead>
<tr>
<th>Java JAAS API</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>javax.security.auth.Subject (http://download.oracle.com/javase/6/docs/api/index.html)</td>
<td>The Subject class represents the source of the request, and can be an individual user or a group. The Subject object is created only after the subject is successfully logged in.</td>
</tr>
</tbody>
</table>
The `LoginContext` class describes the basic methods used to authenticate Subjects and provides a way to develop an application independent of the underlying authentication technology. A `Configuration` specifies the authentication technology, or `LoginModule`, to be used with a particular application. Therefore, different `LoginModules` can be plugged in under an application without requiring any modifications to the application itself.

After the caller instantiates a `LoginContext`, it invokes the `login` method to authenticate a `Subject`. This `login` method invokes the `login` method from each of the `LoginModules` configured for the name specified by the caller.

If the `login` method returns without throwing an exception, then the overall authentication succeeded. The caller can then retrieve the newly authenticated `Subject` by invoking the `getSubject` method. Principals and credentials associated with the `Subject` may be retrieved by invoking the `Subject`'s respective `getPrincipals`, `getPublicCredentials`, and `getPrivateCredentials` methods.

To log the `Subject` out, the caller invokes the `logout` method. As with the `login` method, this `logout` method invokes the `logout` method for each `LoginModule` configured for this `LoginContext`.

For a sample implementation of this class, see Example 4–3.

This is an abstract class for representing the configuration of `LoginModules` under an application. The `Configuration` specifies which `LoginModules` should be used for a particular application, and in what order the `LoginModules` should be invoked. This abstract class needs to be subclassed to provide an implementation which reads and loads the actual configuration.

In WebLogic Server, use a login configuration file instead of this class. For a sample configuration file, see Example 4–2. By default, WebLogic Server uses the configuration class, which reads from a configuration file.

`LoginModule` describes the interface implemented by authentication technology providers. `LoginModules` are plugged in under applications to provide a particular type of authentication.

While application developers write to the `LoginContext` API, authentication technology providers implement the `LoginModule` interface. A configuration specifies the `LoginModule(s)` to be used with a particular login application. Therefore, different `LoginModules` can be plugged in under the application without requiring any modifications to the application itself.

Note: WebLogic Server provides an implementation of the `LoginModule` class. Oracle recommends that you use this implementation for JAAS authentication in WebLogic Server Java clients; however, you can develop your own `LoginModule`.

Table 4–1 (Cont.) Java JAAS APIs

<table>
<thead>
<tr>
<th>Java JAAS API</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>javax.security.auth.login.LogiContext</code> (link)</td>
<td>The <code>LoginContext</code> class describes the basic methods used to authenticate Subjects and provides a way to develop an application independent of the underlying authentication technology. A <code>Configuration</code> specifies the authentication technology, or <code>LoginModule</code>, to be used with a particular application. Therefore, different <code>LoginModules</code> can be plugged in under an application without requiring any modifications to the application itself. After the caller instantiates a <code>LoginContext</code>, it invokes the <code>login</code> method to authenticate a <code>Subject</code>. This <code>login</code> method invokes the <code>login</code> method from each of the <code>LoginModules</code> configured for the name specified by the caller. If the <code>login</code> method returns without throwing an exception, then the overall authentication succeeded. The caller can then retrieve the newly authenticated <code>Subject</code> by invoking the <code>getSubject</code> method. Principals and credentials associated with the <code>Subject</code> may be retrieved by invoking the <code>Subject</code>'s respective <code>getPrincipals</code>, <code>getPublicCredentials</code>, and <code>getPrivateCredentials</code> methods. To log the <code>Subject</code> out, the caller invokes the <code>logout</code> method. As with the <code>login</code> method, this <code>logout</code> method invokes the <code>logout</code> method for each <code>LoginModule</code> configured for this <code>LoginContext</code>. For a sample implementation of this class, see Example 4–3.</td>
</tr>
<tr>
<td><code>javax.security.auth.login.Configuration</code> (link)</td>
<td>This is an abstract class for representing the configuration of <code>LoginModules</code> under an application. The <code>Configuration</code> specifies which <code>LoginModules</code> should be used for a particular application, and in what order the <code>LoginModules</code> should be invoked. This abstract class needs to be subclassed to provide an implementation which reads and loads the actual configuration. In WebLogic Server, use a login configuration file instead of this class. For a sample configuration file, see Example 4–2. By default, WebLogic Server uses the configuration class, which reads from a configuration file.</td>
</tr>
<tr>
<td><code>javax.security.auth.spi.LoginModule</code> (link)</td>
<td><code>LoginModule</code> describes the interface implemented by authentication technology providers. <code>LoginModules</code> are plugged in under applications to provide a particular type of authentication. While application developers write to the <code>LoginContext</code> API, authentication technology providers implement the <code>LoginModule</code> interface. A configuration specifies the <code>LoginModule(s)</code> to be used with a particular login application. Therefore, different <code>LoginModules</code> can be plugged in under the application without requiring any modifications to the application itself. Note: WebLogic Server provides an implementation of the <code>LoginModule</code> class. Oracle recommends that you use this implementation for JAAS authentication in WebLogic Server Java clients; however, you can develop your own <code>LoginModule</code>.</td>
</tr>
</tbody>
</table>
Implementations of this interface are passed to a CallbackHandler, allowing underlying security services to interact with a calling application to retrieve specific authentication data, such as usernames and passwords, or to display information such as error and warning messages. Callback implementations do not retrieve or display the information requested by underlying security services. Callback implementations simply provide the means to pass such requests to applications, and for applications to return requested information to the underlying security services.

An application implements a CallbackHandler and passes it to underlying security services so that they can interact with the application to retrieve specific authentication data, such as usernames and passwords, or to display information such as error and warning messages. CallbackHandlers are implemented in an application-dependent fashion.

Underlying security services make requests for different types of information by passing individual Callbacks to the CallbackHandler. The CallbackHandler implementation decides how to retrieve and display information depending on the Callbacks passed to it. For example, if the underlying service needs a username and password to authenticate a user, it uses a NameCallback and PasswordCallback. The CallbackHandler can then choose to prompt for a username and password serially, or to prompt for both in a single window.

Table 4–2 WebLogic JAAS APIs

<table>
<thead>
<tr>
<th>WebLogic JAAS API</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>weblogic.security.auth.Authenticate</td>
<td>An authentication class used to authenticate user credentials. The WebLogic implementation of the LoginModule, (weblogic.security.auth.login.UsernamePasswordLoginModule), uses this class to authenticate a user and add Principals to the Subject. Developers who write LoginModules must also use this class for the same purpose.</td>
</tr>
<tr>
<td>weblogic.security.auth.Callback.Cont extHandlerCallback</td>
<td>Underlying security services use this class to instantiate and pass a ContextHandlerCallback to the invokeCallback method of a CallbackHandler to retrieve the ContextHandler related to this security operation. If no ContextHandler is associated with this operation, the javax.security.auth.callback.UnsupportedCallbackException is thrown. This callback passes the ContextHandler to LoginModule.login() methods.</td>
</tr>
<tr>
<td>weblogic.security.auth.Callback.Grou pCallback</td>
<td>Underlying security services use this class to instantiate and pass a GroupCallback to the invokeCallback method of a CallbackHandler to retrieve group information.</td>
</tr>
</tbody>
</table>
4.2.2 JAAS Client Application Components

At a minimum, a JAAS authentication client application includes the following components:

- **Java client**

 The Java client instantiates a `LoginContext` object and invokes the login by calling the object's `login()` method. The `login()` method calls methods in each `LoginModule` to perform the login and authentication.

 The `LoginContext` also instantiates a new empty `javax.security.auth.Subject` object (which represents the user or service being authenticated), constructs the configured `LoginModule`, and initializes it with this new `Subject` and `CallbackHandler`.

 The `LoginContext` subsequently retrieves the authenticated `Subject` by calling the `LoginContext's getSubject` method. The `LoginContext` uses the `weblogic.security.Security.runAs()` method to associate the `Subject` identity with the `PrivilegedAction` or `PrivilegedExceptionAction` that they execute.

 For a sample implementation, see Example 4–5.

- **LoginModule**

 The `LoginModule` uses the `CallbackHandler` to obtain the user name and password and determines whether that name and password are the ones required.

 If authentication is successful, the `LoginModule` populates the `Subject` with a `Principal` representing the user. The `Principal` the `LoginModule` places in the `Subject` is an instance of `Principal`, which is a class implementing the `java.security.Principal` interface.

 You can write `LoginModule` files that perform different types of authentication, including username/password authentication and certificate authentication. A client application can include one `LoginModule` (the minimum requirement) or several `LoginModules`.

Table 4–2 (Cont.) WebLogic JAAS APIs

<table>
<thead>
<tr>
<th>WebLogic JAAS API</th>
<th>Description</th>
</tr>
</thead>
</table>
| `weblogic.security.auth.Callback.URLCallback` | Underlying security services use this class to instantiate and pass a `URLCallback` to the `invokeCallback` method of a `CallbackHandler` to retrieve URL information.
 The WebLogic implementation of the `LoginModule`, `(weblogic.security.auth.login.UsernamePasswordLoginModule)`, uses this class.
 Note: Application developers should not use this class to retrieve URL information. Instead, they should use the `weblogic.security.URLCallbackHandler`. |
| `weblogic.security.Security` | This class implements the WebLogic Server client `runAs` methods. Client applications use the `runAs` methods to associate their `Subject` identity with the `PrivilegedAction` or `PrivilegedExceptionAction` that they execute.
 For a sample implementation, see Example 4–5. |
| `weblogic.security.URLCallbackHandler` | The class used by application developers for returning a `username`, `password` and `URL`. Application developers should use this class to handle the `URLCallback` to retrieve URL information. |
Note: Use of the JAAS javax.security.auth.Subject.doAs methods in WebLogic Server applications do not associate the Subject with the client actions. You can use the doAs methods to implement Java EE security in WebLogic Server applications, but such usage is independent of the need to use the Security.runAs() method.

- CallbackHandler
 The CallbackHandle implements the javax.security.auth.callback.CallbackHandler interface. The LoginModule uses the CallbackHandler to communicate with the user and obtain the requested information, such as the username and password.

- Configuration file
 This file configures the LoginModule(s) used in the application. It specifies the location of the LoginModule(s) and, if there are multiple LoginModules, the order in which they are executed. This file enables Java applications to remain independent from the authentication technologies, which are defined and implemented using the LoginModule.

- Action file
 This file defines the operations that the client application will perform.

- ant build script (build.xml)
 This script compiles all the files required for the application and deploys them to the WebLogic Server applications directories.

For a complete working JAAS authentication client that implements the components described here, see the JAAS sample application in the SAMPLES_HOME\server\examples\src\examples\security\jaas directory provided with WebLogic Server.

For more information on the basics of JAAS authentication, see JAAS Authentication Tutorial available at http://download.oracle.com/javase/6/docs/technotes/guides/security/jaas/tutorials/GeneralAcnOnly.html.

4.2.3 WebLogic LoginModule Implementation

The WebLogic implementation of the LoginModule class (UsernamePasswordLoginModule.class) is provided in the WebLogic Server distribution in the weblogic.jar file, located in the WL_HOME\server\lib directory.

Note: WebLogic Server supports all callback types defined by JAAS as well as all callback types that extend the JAAS specification.

The WebLogic Server UsernamePasswordLoginModule checks for existing system user authentication definitions prior to execution, and does nothing if they are already defined.

For more information about implementing JAAS LoginModules, see the LoginModule Developer's Guide at
Writing a Client Application Using JAAS Authentication

4.2.4 JVM-Wide Default User and the runAs() Method

The first time you use the WebLogic Server implementation of the LoginModule (weblogic.security.auth.login UsernamePasswordLoginModule) to log on, the specified user becomes the machine-wide default user for the JVM (Java virtual machine). When you execute the weblogic.security.Security.runAs() method, it associates the specified Subject with the current thread's access permissions and then executes the action. If a specified Subject represents a non-privileged user (users who are not assigned to any groups are considered non-privileged), the JVM-wide default user is used. Therefore, it is important to make sure that the runAs() method specifies the desired Subject. You can do this using one of the following options:

- **Option 1**: If the client has control of main(), implement the wrapper code shown in Example 4–1 in the client code.
- **Option 2**: If the client does not have control of main(), implement the wrapper code shown in Example 4–1 on each thread's run() method.

Example 4–1 runAs() Method Wrapper Code

```java
import java.security.PrivilegedAction;
import javax.security.auth.Subject;
import weblogic.security.Security;

public class client {
    public static void main(String[] args) {
        Security.runAs(new Subject(),
                new PrivilegedAction() {
            public Object run() {
                //
                //If implementing in client code, main() goes here.
                //
                return null;
            }
        });
    }
}
```

4.3 Writing a Client Application Using JAAS Authentication

To use JAAS in a WebLogic Server Java client to authenticate a subject, perform the following procedure:

1. Implement LoginModule classes for the authentication mechanisms you want to use with WebLogic Server. You will need a LoginModule class for each type of authentication mechanism. You can have multiple LoginModule classes for a single WebLogic Server deployment.
Note: Oracle recommends that you use the implementation of the LoginModule provided by WebLogic Server (weblogic.security.auth.login UsernamePasswordLoginModule) for username/password authentication. You can write your own LoginModule for username/password authentication, however, do not attempt to modify the WebLogic Server LoginModule and reuse it. If you write your own LoginModule, you must have it call the weblogic.security.auth.Authenticate.authenticate() method to perform the login. If you use a remote login mechanism such as SAML, you do not need to call the authenticate() method. You only need to call authenticate() if you are using WebLogic Server to perform the logon.

The weblogic.security.auth.Authenticate class uses a JNDI Environment object for initial context as described in Table 4–1.

2. Implement the CallbackHandler class that the LoginModule will use to communicate with the user and obtain the requested information, such as the username, password, and URL. The URL can be the URL of a WebLogic cluster, providing the client with the benefits of server failover. The WebLogic Server distribution provides a SampleCallbackHandler which is used in the JAAS client sample. The SampleCallbackHandler.java code is available as part of the distribution in the directory SAMPLES_HOME\server\examples\src\examples\security\jaas.

Note: Instead of implementing your own CallbackHandler class, you can use either of two WebLogic-supplied CallbackHandler classes, weblogic.security.SimpleCallbackHandler or weblogic.security.URLCallbackHandler. For more information on these classes, see Oracle WebLogic Server API Reference.

3. Write a configuration file that specifies which LoginModule classes to use for your WebLogic Server and in which order the LoginModule classes should be invoked. See Example 4–2 for the sample configuration file used in the JAAS client sample provided in the WebLogic Server distribution.

Example 4–2 sample_jaas.config Code Example
/** Login Configuration for the JAAS Sample Application **/
Sample {
 weblogic.security.auth.login.UsernamePasswordLoginModule
 required debug=false;
};

1. In the Java client, write code to instantiate a LoginContext. The LoginContext consults the configuration file, sample_jaas.config, to load the default LoginModule configured for WebLogic Server. See Example 4–3 for an example LoginContext instantiation.

Note: If you use another means to authenticate the user, such as an Identity Assertion provider or a remote instance of WebLogic Server, the default LoginModule is determined by the remote source.
Example 4–3 LoginContext Code Fragment

... import javax.security.auth.login.LoginContext; ...
LoginContext loginContext = null; try {
 // Create LoginContext; specify username/password login module
 loginContext = new LoginContext('Sample',
 new SampleCallbackHandler(username, password, url));
}

1. Invoke the `login()` method of the `LoginContext` instance. The `login()` method invokes all the loaded LoginModules. Each LoginModule attempts to authenticate the subject. If the configured login conditions are not met, the `LoginContext` throws a `LoginException`. See Example 4–4 for an example of the `login()` method.

Example 4–4 Login() Method Code Fragment

... import javax.security.auth.login.LoginContext;
import javax.security.auth.login.LoginException;
import javax.security.auth.login.FailedLoginException;
import javax.security.auth.login.AccountExpiredException;
import javax.security.auth.login.CredentialExpiredException;
...
/**
 * Attempt authentication
 */
try {
 // If we return without an exception, authentication succeeded
 loginContext.login();
} catch(FailedLoginException fle) {
 System.out.println("Authentication Failed, " +
 fle.getMessage());
 System.exit(-1);
} catch(AccountExpiredException aee) {
 System.out.println("Authentication Failed: Account Expired");
 System.exit(-1);
} catch(CredentialExpiredException cee) {
 System.out.println("Authentication Failed: Credentials Expired");
 System.exit(-1);
} catch(Exception e) {
 System.out.println("Authentication Failed: Unexpected Exception, " + e.getMessage());
 e.printStackTrace();
 System.exit(-1);
}
1. Write code in the Java client to retrieve the authenticated Subject from the LoginContext instance using the javax.security.auth.Subject.getSubject() method and call the action as the Subject. Upon successful authentication of a Subject, access controls can be placed upon that Subject by invoking the weblogic.security.Security.runAs() method. The runAs() method associates the specified Subject with the current thread’s access permissions and then executes the action. See Example 4–5 for an example implementation of the getSubject() and runAs() methods.

Note: Use of the JAAS javax.security.auth.Subject.doAs methods in WebLogic Server applications do not associate the Subject with the client actions. You can use the doAs methods to implement Java EE security in WebLogic Server applications, but such usage is independent of the need to use the Security.runAs() method.

Example 4–5 getSubject() and runAs() Methods Code Fragment

```java
/**
 * Retrieve authenticated subject, perform SampleAction as Subject
 */
Subject subject = loginContext.getSubject();
SampleAction sampleAction = new SampleAction(url);
Security.runAs(subject, sampleAction);
System.exit(0);
```

1. Write code to execute an action if the Subject has the required privileges. Oracle provides a sample implementation, SampleAction, of the javax.security.PrivilegedAction class that executes an EJB to trade stocks. The SampleAction.java code is available as part of the distribution in the directory SAMPLES_HOME\server\examples\src\examples\security\jaas.

2. Invoke the logout() method of the LoginContext instance. The logout() method closes the user’s session and clear the Subject. See Example 4–6 for an example of the login() method.

Example 4–6 logout() Method Code Example

```java
... import javax.security.auth.login.LoginContext;...
try {
    System.out.println("logging out...");
    loginContext.logout();
}
```
4.4 Using JNDI Authentication

Java clients use the Java Naming and Directory Interface (JNDI) to pass credentials to WebLogic Server. A Java client establishes a connection with WebLogic Server by getting a JNDI InitialContext. The Java client then uses the InitialContext to look up the resources it needs in the WebLogic Server JNDI tree.

To specify a user and the user's credentials, set the JNDI properties listed in Table 4–1.

Table 4–3 JNDI Properties for Authentication

<table>
<thead>
<tr>
<th>Property</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>INITIAL_CONTEXT_FACTORY</td>
<td>Provides an entry point into the WebLogic Server environment. The class weblogic.jndi.WLInitialContextFactory is the JNDI SPI for WebLogic Server.</td>
</tr>
<tr>
<td>PROVIDER_URL</td>
<td>Specifies the host and port of the WebLogic Server that provides the name service. For example: t3://weblogic:7001.</td>
</tr>
<tr>
<td>SECURITY_PRINCIPAL</td>
<td>Specifies the identity of the user when that user authenticates to the default (active) security realm.</td>
</tr>
<tr>
<td>SECURITY_CREDENTIALS</td>
<td>Specifies the credentials of the user when that user authenticates to the default (active) security realm.</td>
</tr>
</tbody>
</table>

These properties are stored in a hash table that is passed to the InitialContext constructor. Example 4–7 illustrates how to use JNDI authentication in a Java client running on WebLogic Server.

Example 4–7 Example of Authentication

...
HashTable env = new Hashtable();
 env.put(Context.INITIAL_CONTEXT_FACTORY,
Using JAAS Authentication in Java Clients

4.5 Java Client JAAS Authentication Code Examples

A complete working JAAS authentication sample is provided with the WebLogic Server product. The sample is located in the SAMPLES_HOME\server\examples\src\examples\security\jaas directory. For a description of the sample and instructions on how to build, configure, and run this sample, see the package.html file in the sample directory. You can modify this code example and reuse it.

Notes: For information on JNDI contexts and threads and how to avoid potential JNDI context problems, see "JNDI Contexts and Threads" and "How to Avoid Potential JNDI Context Problems" in Programming JNDI for Oracle WebLogic Server.

In versions of WebLogic Server prior to 9.0, when using protocols other than IIOP with JNDI, the first user is "sticky" in the sense that it becomes the default user when no other user is present. This is not a good practice, as any subsequent logins that do not have a username and credential are granted the identity of the default user.

In version 9.0, this is no longer true and there is no default user.

To return to the previous behavior, the weblogic.jndi.WLContext.ENABLE_DEFAULT_USER field must be set, either via the command line or through the InitialContext interface.

```java
"weblogic.jndi.WLInitialContextFactory";
env.put(Context.PROVIDER_URL, "t3://weblogic:7001");
env.put(Context.SECURITY_PRINCIPAL, "javaclient");
env.put(Context.SECURITY_CREDENTIALS, "javaclientpassword");
ctx = new InitialContext(env);
```
This section describes using SSL authentication in Java clients.

The following topics are covered in this section:

- Section 5.1, "JSSE and WebLogic Server"
- Section 5.2, "Using JNDI Authentication"
- Section 5.3, "SSL Certificate Authentication Development Environment"
- Section 5.4, "Writing Applications that Use SSL"
- Section 5.5, "SSL Client Code Examples"

The sections refer to sample code which is included in the WebLogic Server distribution at:

SAMPLES_HOME\server\examples\src\examples\security\sslclient

The sslclient directory contains an instructions.html file, ant build files, and the following Java and JavaServer Pages (.jsp) files:

- MyListener.java
- NulledHostnameVerifier.java
- NulledTrustManager.java
- SSLClient.java
- SSLClientServlet.java
- SSLSocketClient.java
- SnoopServlet.jsp

You will need to look at the examples when reading the information in the following sections.

5.1 JSSE and WebLogic Server

The Java Secure Socket Extension (JSSE) is a set of packages that support and implement the SSL and TLS protocols, making those capabilities programmatically available. WebLogic Server provides Secure Sockets Layer (SSL) support for encrypting data transmitted between WebLogic Server clients and servers, Java clients, Web browsers, and other servers.
Using JNDI Authentication

WebLogic Server's JSSE implementation can be used by WebLogic clients, but is not required. Other JSSE implementations can be used for their client-side code outside the server as well.

The following restrictions apply when using SSL in WebLogic server-side applications:

- The use of other (third-party) JSSE implementations to develop WebLogic Server applications is not supported. The SSL implementation that WebLogic Server uses is static to the server configuration and is not replaceable by customer applications.
- The WebLogic implementation of JSSE does support JCE Cryptographic Service Providers (CSPs); however, due to the inconsistent provider support for JCE, Oracle cannot guarantee that untested providers will work out of the box. Oracle has tested WebLogic Server with the following providers:
 - The nCipher JCE provider.

Other providers may work with WebLogic Server, but an untested provider is not likely to work out of the box. For more information on using the JCE providers supported by WebLogic Server, see "Configuring SSL" in Securing Oracle WebLogic Server.

WebLogic Server uses the HTTPS port for Secure Sockets Layer (SSL) encrypted communication; only SSL can be used on that port.

Note: As of WebLogic Server version 12.1.1, JSSE is the only SSL implementation that is supported. The Certicom-based SSL implementation is removed and is no longer supported in WebLogic Server.

5.2 Using JNDI Authentication

Java clients use the Java Naming and Directory Interface (JNDI) to pass credentials to WebLogic Server. A Java client establishes a connection with WebLogic Server by getting a JNDI InitialContext. The Java client then uses the InitialContext to look up the resources it needs in the WebLogic Server JNDI tree.

Note: JAAS is the preferred method of authentication; however, the Authentication provider's LoginModule supports only username and password authentication. Thus, for client certificate authentication (also referred to as two-way SSL authentication), you should use JNDI. To use JAAS for client certificate authentication, you must write a custom Authentication provider whose LoginModule does certificate authentication.
To specify a user and the user's credentials, set the JNDI properties listed in Table 5–1.

Table 5–1 JNDI Properties Used for Authentication

<table>
<thead>
<tr>
<th>Property</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>INITIAL_CONTEXT_FACTORY</td>
<td>Provides an entry point into the WebLogic Server environment. The class</td>
</tr>
<tr>
<td></td>
<td>weblogic.jndi.WLInitialContextFactory is the JNDI SPI for WebLogic Server.</td>
</tr>
<tr>
<td>PROVIDER_URL</td>
<td>Specifies the host and port of the WebLogic Server that provides the name service. For example: t3s://weblogic:7002. (t3s is a WebLogic Server proprietary version of SSL.)</td>
</tr>
<tr>
<td>SECURITY_PRINCIPAL</td>
<td>Specifies the identity of the user when that user authenticates to the default (active) security realm.</td>
</tr>
<tr>
<td>SECURITY_CREDENTIALS</td>
<td>Specifies the credentials of the user when that user authenticates to the default (active) security realm.</td>
</tr>
</tbody>
</table>

These properties are stored in a hash table which is passed to the `InitialContext` constructor.

Example 5–1 demonstrates how to use one-way SSL certificate authentication in a Java client. For a two-SSL authentication code example, see **Example 5–4**.

Example 5–1 Example One-Way SSL Authentication Using JNDI

```java
...  
Hashtable env = new Hashtable();
    env.put(Context.INITIAL_CONTEXT_FACTORY,
             "weblogic.jndi.WLInitialContextFactory");
    env.put(Context.PROVIDER_URL, "t3s://weblogic:7002");
    env.put(Context.SECURITY_PRINCIPAL, "javaclient");
    env.put(Context.SECURITY_CREDENTIALS, "javaclientpassword");
    ctx = new InitialContext(env);
```

Note: For information on JNDI contexts and threads and how to avoid potential JNDI context problems, see "JNDI Contexts and Threads" and "How to Avoid Potential JNDI Context Problems" in Programming JNDI for Oracle WebLogic Server.

5.3 SSL Certificate Authentication Development Environment

The following topics are covered in this section:

- Section 5.3.1, "SSL Authentication APIs"
- Section 5.3.2, "SSL Client Application Components"

5.3.1 SSL Authentication APIs

To implement Java clients that use SSL authentication on WebLogic Server, use a combination of Java application programming interfaces (APIs) and WebLogic APIs.

Table 5–1 lists and describes the Java APIs packages used to implement certificate authentication. The information in **Table 5–1** is taken from the Java API documentation and annotated to add WebLogic Server specific information. For more information on
the Java APIs, see the Javadocs at
http://download.oracle.com/javase/6/docs/api/index.html and
http://download.oracle.com/javaee/6/api/.

Table 5–3 lists and describes the WebLogic APIs used to implement certificate authentication. For more information, see Oracle WebLogic Server API Reference.

Table 5–2 Java Certificate APIs

<table>
<thead>
<tr>
<th>Java Certificate APIs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>javax.crypto</td>
<td>This package provides the classes and interfaces for cryptographic operations. The cryptographic operations defined in this package include encryption, key generation and key agreement, and Message Authentication Code (MAC) generation. Support for encryption includes symmetric, asymmetric, block, and stream ciphers. This package also supports secure streams and sealed objects. Many classes provided in this package are provider-based (see the java.security.Provider class). The class itself defines a programming interface to which applications may be written. The implementations themselves may then be written by independent third-party vendors and plugged in seamlessly as needed. Therefore, application developers can take advantage of any number of provider-based implementations without having to add or rewrite code.</td>
</tr>
<tr>
<td>javax.net</td>
<td>This package provides classes for networking applications. These classes include factories for creating sockets. Using socket factories you can encapsulate socket creation and configuration behavior.</td>
</tr>
<tr>
<td>javax.net.SSL</td>
<td>While the classes and interfaces in this package are supported by WebLogic Server, Oracle recommends that you use the weblogic.security.SSL package when you use SSL with WebLogic Server.</td>
</tr>
<tr>
<td>java.security.cert</td>
<td>This package provides classes and interfaces for parsing and managing certificates, certificate revocation lists (CRLs), and certification paths. It contains support for X.509 v3 certificates and X.509 v2 CRLs.</td>
</tr>
</tbody>
</table>
This class represents an in-memory collection of keys and certificates. It is used to manage two types of keystore entries:

- **Key Entry**
 This type of keystore entry holds cryptographic key information, which is stored in a protected format to prevent unauthorized access.
 Typically, a key stored in this type of entry is a secret key, or a private key accompanied by the certificate chain for the corresponding public key.
 Private keys and certificate chains are used by a given entity for self-authentication. Applications for this authentication include software distribution organizations that sign JAR files as part of releasing and/or licensing software.

- **Trusted Certificate Entry**
 This type of entry contains a single public key certificate belonging to another party. It is called a trusted certificate because the keystore owner trusts that the public key in the certificate indeed belongs to the identity identified by the subject (owner) of the certificate.
 This type of entry can be used to authenticate other parties.

A private key. This interface contains no methods or constants. It merely serves to group (and provide type safety for) all private key interfaces.

Note: The specialized private key interfaces extend this interface. For example, see the DSAPrivateKey interface in java.security.interfaces.

This class represents a “Cryptographic Service Provider” for the Java Security API, where a provider implements some or all parts of Java Security, including:

- Algorithms (such as DSA, RSA, MD5 or SHA-1).
- Key generation, conversion, and management facilities (such as for algorithm-specific keys).

Each provider has a name and a version number, and is configured in each runtime it is installed in.

To supply implementations of cryptographic services, a team of developers or a third-party vendor writes the implementation code and creates a subclass of the Provider class.

<table>
<thead>
<tr>
<th>Java Certificate APIs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>java.security.KeyStore</td>
<td>This class represents an in-memory collection of keys and certificates. It is used to manage two types of keystore entries:</td>
</tr>
<tr>
<td></td>
<td>- Key Entry</td>
</tr>
<tr>
<td></td>
<td>This type of keystore entry holds cryptographic key information, which is stored in a protected format to prevent unauthorized access.</td>
</tr>
<tr>
<td></td>
<td>Typically, a key stored in this type of entry is a secret key, or a private key accompanied by the certificate chain for the corresponding public key.</td>
</tr>
<tr>
<td></td>
<td>Private keys and certificate chains are used by a given entity for self-authentication. Applications for this authentication include software distribution organizations that sign JAR files as part of releasing and/or licensing software.</td>
</tr>
<tr>
<td></td>
<td>- Trusted Certificate Entry</td>
</tr>
<tr>
<td></td>
<td>This type of entry contains a single public key certificate belonging to another party. It is called a trusted certificate because the keystore owner trusts that the public key in the certificate indeed belongs to the identity identified by the subject (owner) of the certificate.</td>
</tr>
<tr>
<td></td>
<td>This type of entry can be used to authenticate other parties.</td>
</tr>
<tr>
<td>java.security.PrivateKey</td>
<td>A private key. This interface contains no methods or constants. It merely serves to group (and provide type safety for) all private key interfaces.</td>
</tr>
<tr>
<td>java.security.Provider</td>
<td>This class represents a “Cryptographic Service Provider” for the Java Security API, where a provider implements some or all parts of Java Security, including:</td>
</tr>
<tr>
<td></td>
<td>- Algorithms (such as DSA, RSA, MD5 or SHA-1).</td>
</tr>
<tr>
<td></td>
<td>- Key generation, conversion, and management facilities (such as for algorithm-specific keys).</td>
</tr>
<tr>
<td></td>
<td>Each provider has a name and a version number, and is configured in each runtime it is installed in.</td>
</tr>
<tr>
<td></td>
<td>To supply implementations of cryptographic services, a team of developers or a third-party vendor writes the implementation code and creates a subclass of the Provider class.</td>
</tr>
</tbody>
</table>
This interface extends the ServletRequest interface to provide request information for HTTP servlets. The servlet container creates an HttpServletRequest object and passes it as an argument to the servlet's service methods (doGet, doPost, and so on.).

This interface extends the ServletResponse interface to provide HTTP-specific functionality in sending a response. For example, it has methods to access HTTP headers and cookies. The servlet container creates an HttpServletResponse object and passes it as an argument to the servlet's service methods (doGet, doPost, and so on.).

This class provides an output stream for sending binary data to the client. A ServletOutputStream object is normally retrieved via the ServletResponse.getOutputStream() method. This is an abstract class that the servlet container implements. Subclasses of this class must implement the java.io.OutputStream.write(int) method.

This class defines an object to assist a servlet in sending a response to the client. The servlet container creates a ServletResponse object and passes it as an argument to the servlet's service methods (doGet, doPost, and so on.).

This class is used to represent a HTTP with SSL (HTTPS) connection to a remote object. Use this class to make an outbound SSL connection from a WebLogic Server acting as a client to another WebLogic Server.
5.3.2 SSL Client Application Components

At a minimum, an SSL client application includes the following components:

- Java client

 Typically, a Java client performs these functions:
- Initializes an SSLContext with client identity, trust, a HostnameVerifier, and a TrustManager.
- Loads a keystore and retrieves the private key and certificate chain
- Uses an SSLSocketFactory
- Uses HTTPS to connect to a JSP served by an instance of WebLogic Server

HostnameVerifier

The HostnameVerifier implements the `weblogic.security.SSL.HostnameVerifier` interface.

HandshakeCompletedListener

The HandshakeCompletedListener implements the `javax.net.ssl.HandshakeCompletedListener` interface. It is used by the SSL client to receive notifications about the completion of an SSL handshake on a given SSL connection.

TrustManager

The TrustManager implements the `weblogic.security.SSL.TrustManager` interface.

For a complete working SSL authentication client that implements the components described here, see the SSLClient sample application in the `SAMPLES_HOME\server\examples\src\examples\security\sslclient` directory provided with WebLogic Server.

5.4 Writing Applications that Use SSL

This section covers the following topics:

- **Section 5.4.1, "Communicating Securely From WebLogic Server to Other WebLogic Servers"**
- **Section 5.4.2, "Writing SSL Clients"**
- **Section 5.4.3, "Using Two-Way SSL Authentication"**
- **Section 5.4.4, "Using a Custom Hostname Verifier"**
- **Section 5.4.5, "Using a Trust Manager"**
- **Section 5.4.8, "Using an SSLContext"**
- **Section 5.4.9, "Using URLs to Make Outbound SSL Connections"**

5.4.1 Communicating Securely From WebLogic Server to Other WebLogic Servers

You can use a URL object to make an outbound SSL connection from a WebLogic Server instance acting as a client to another WebLogic Server instance. The `weblogic.net.http.HttpsURLConnection` class provides a way to specify the security context information for a client, including the digital certificate and private key of the client.
The `weblogic.net.http.HttpsURLConnection` class provides methods for determining the negotiated cipher suite, getting/setting a hostname verifier, getting the server's certificate chain, and getting/setting an `SSLSocketFactory` in order to create new SSL sockets.

The SSLClient code example uses the `weblogic.net.http.HttpsURLConnection` class to make an outbound SSL connection. The SSLClient code example is available in the `examples.security.sslclient` package in the `SAMPLES_HOME\server\examples\src\examples\security\sslclient` directory.

5.4.2 Writing SSL Clients

This section uses examples to show how to write various types of SSL clients. Examples of the following types of SSL clients are provided:

- Section 5.4.2.1, "SSLClient Sample"
- Section 5.4.2.2, "SSLSocketClient Sample"
- Section 5.4.3, "Using Two-Way SSL Authentication"

5.4.2.1 SSLClient Sample

The SSLClient sample demonstrates how to use the WebLogic SSL library to make outgoing SSL connections using `URL` and `URLConnection` objects. It shows both how to do this from a stand-alone application as well as from a servlet in WebLogic Server.

Note: WebLogic Server acting as an SSL client uses the server's identity certificate for outgoing SSL connections. Applications running on WebLogic Server and using the previously described SSL APIs do not share the server's identity certificates by default, only the trust.

Example 5–2 shows code fragments from the SSLClient example; the complete example is located at `SAMPLES_HOME\server\examples\src\examples\security\sslclient` directory in the `SSLClient.java` file.

Example 5–2 SSLClient Sample Code Fragments

```java
package examples.security.sslclient;

import java.io.*;
import java.net.URL;
import java.security.Provider;
import javax.servlet.ServletOutputStream;
...

/*
 * This method contains an example of how to use the URL and
 * URLConnection objects to create a new SSL connection, using
 * WebLogic SSL client classes.
 */
public void wlsURLConnect(String host, String port,
                          String sport, String query,
                          OutputStream out)
    throws Exception {
...
    URL wlsUrl = null;
    try {
        wlsUrl = new URL("http", host, Integer.valueOf(port).intValue(),
```

Using SSL Authentication in Java Clients 5-9
Writing Applications that Use SSL

query);
weblogic.net.http.HttpURLConnection connection =
 new weblogic.net.http.HttpURLConnection(wlsUrl);
tryConnection(connection, out);
}
...
wlsUrl = new URL("https", host, Integer.valueOf(sport).intValue(),
 query);
weblogic.net.http.HttpsURLConnection sconnection =
 new weblogic.net.http.HttpsURLConnection(wlsUrl);
...

5.4.2.2 SSLSocketClient Sample

The SSLSocketClient sample demonstrates how to use SSL sockets to go directly to the
secure port to connect to a JSP served by an instance of WebLogic Server and display
the results of that connection. It shows how to implement the following functions:

- Initializing an SSLContext with client identity, a HostnameVerifier, and a
 TrustManager
- Loading a keystore and retrieving the private key and certificate chain
- Using an SSLSocketFactory
- Using HTTPS to connect to a JSP served by WebLogic Server
- Implementing the javax.net.ssl.HandshakeCompletedListener interface
- Creating a dummy implementation of the
 weblogic.security.SSL.HostnameVerifier class to verify that the server
 the example connects to is running on the desired host

Example 5–3 shows code fragments from the SSLSocketClient example; the complete
example is located at SAMPLES_HOME\server\examples\src\examples\security\sslclient directory in the
SSLSocketClient.java file. (The SSLClientServlet example in the sslclient
directory is a simple servlet wrapper of the SSLClient example.)

Example 5–3 SSLSocketClient Sample Code Fragments

```java
package examples.security.sslclient;
import java.io.*;
import java.security.KeyStore;
import java.security.PrivateKey;
import java.security.cert.Certificate;
import javax.net.ssl.HandshakeCompletedListener;
import javax.net.ssl.SSLSocket;
import weblogic.security.SSL.HostnameVerifier;
import weblogic.security.SSL.SSLContext;
import weblogic.security.SSL.SSLSocketFactory;
import weblogic.security.SSL.TrustManager;
...
SSLContext sslCtx = SSLContext.getInstance("https");
File KeyStoreFile  = new File("mykeystore");
...
// Open the keystore, retrieve the private key, and certificate chain
KeyStore ks = KeyStore.getInstance("jks");
ks.load(new FileInputStream("mykeystore"), null);
PrivateKey key = (PrivateKey)ks.getKey("mykey",
```
"testkey".toCharArray);
Certificate [] certChain = ks.getCertificateChain("mykey");
sslCtx.loadLocalIdentity(certChain, key);
HostnameVerifier hVerifier = null;
if (argv.length < 3)
 hVerifier = new NulledHostnameVerifier();
else
 hVerifier = (HostnameVerifier)
 Class.forName(argv[2]).newInstance();
sslCtx.setHostnameVerifier(hVerifier);
TrustManager tManager = new NulledTrustManager();
sslCtx.setTrustManager(tManager);
System.out.println(" Creating new SSLSocketFactory with SSLContext");
SSLSocketFactory sslSF = (SSLSocketFactory)
 sslCtx.getSocketFactory();
System.out.println(" Creating and opening new SSLSocket with
 SSLSocketFactory");
// using createSocket(String hostname, int port)
SSLSocket sslSock = (SSLSocket) sslSF.createSocket(argv[0],
 new Integer(argv[1]).intValue());
System.out.println(" SSLSocket created");
HandshakeCompletedListener mListener = null;
mListener = new MyListener();
sslSock.addHandshakeCompletedListener(new MyListener());
...

5.4.3 Using Two-Way SSL Authentication

When using certificate authentication, WebLogic Server sends a digital certificate to
the requesting client. The client examines the digital certificate to ensure that it is
authentic, has not expired, and matches the WebLogic Server instance that presented
it.

With two-way SSL authentication (a form of mutual authentication), the requesting
client also presents a digital certificate to WebLogic Server. When the instance of
WebLogic Server is configured for two-way SSL authentication, requesting clients are
required to present digital certificates from a specified set of certificate authorities.
WebLogic Server accepts only digital certificates that are signed by trusted certificate
authorities.

For information on how to configure WebLogic Server for two-way SSL authentication,
see the "Configuring SSL" in Securing Oracle WebLogic Server.

The following sections describe the different ways two-way SSL authentication can be
implemented in WebLogic Server.

- Section 5.4.3.1, "Two-Way SSL Authentication with JNDI"
- Section 5.4.3.3, "Using Two-Way SSL Authentication Between WebLogic Server
 Instances"
- Section 5.4.3.4, "Using Two-Way SSL Authentication with Servlets"

5.4.3.1 Two-Way SSL Authentication with JNDI

When using JNDI for two-way SSL authentication in a Java client, use the
setSSLClientCertificate() method of the WebLogic JNDI Environment class.
This method sets a private key and chain of X.509 digital certificates for client
authentication.
To pass digital certificates to JNDI, create an array of `InputStreams` opened on files containing DER-encoded digital certificates and set the array in the JNDI hash table. The first element in the array must contain an `InputStream` opened on the Java client’s private key file. The second element must contain an `InputStream` opened on the Java client’s digital certificate file. (This file contains the public key for the Java client.) Additional elements may contain the digital certificates of the root certificate authority and the signer of any digital certificates in a certificate chain. A certificate chain allows WebLogic Server to authenticate the digital certificate of the Java client if that digital certificate was not directly issued by the server’s trusted certificate authority.

You can use the `weblogic.security.PEMInputStream` class to read digital certificates stored in Privacy Enhanced Mail (PEM) files. This class provides a filter that decodes the base 64-encoded certificate from a PEM file.

Example 5–4 demonstrates how to use two-way SSL authentication in a Java client.

Example 5–4 Example of a Two-Way SSL Authentication Client That Uses JNDI

```java
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;
import weblogic.jndi.Environment;
import weblogic.security.PEMInputStream;
import java.io.InputStream;
import java.io.FileInputStream;
public class SSLJNDIClient {
    public static void main(String[] args) throws Exception {
        Context context = null;
        try {
            Environment env = new Environment();
            // set connection parameters
            env.setProviderUrl("t3s://localhost:7002");
            // The next two set methods are optional if you are using
            // a UserNameMapper interface.
            env.setSecurityPrincipal("system");
            env.setSecurityCredentials("weblogic");
            InputStream key = new FileInputStream("certs/demokey.pem");
            InputStream cert = new FileInputStream("certs/democert.pem");
            // wrap input streams if key/cert are in pem files
            key = new PEMInputStream(key);
            cert = new PEMInputStream(cert);
            env.setSSLClientCertificate(new InputStream[] { key, cert });
            env.setInitialContextFactory(Environment.DEFAULT_INITIAL_CONTEXT_FACTORY);
            context = env.getInitialContext();
            Object myEJB = (Object) context.lookup("myEJB");
        } finally {
            if (context != null) context.close();
        }
    }
}
```

When the JNDI `getInitialContext()` method is called, the Java client and WebLogic Server execute mutual authentication in the same way that a Web browser performs mutual authentication to get a secure Web server connection. An exception is thrown if the digital certificates cannot be validated or if the Java client’s digital
A digital certificate cannot be authenticated in the default (active) security realm. The authenticated user object is stored on the Java client's server thread and is used for checking the permissions governing the Java client's access to any protected WebLogic resources.

When you use the WebLogic JNDI Environment class, you must create a new Environment object for each call to the getInitialContext() method. Once you specify a User object and security credentials, both the user and their associated credentials remain set in the Environment object. If you try to reset them and then call the JNDI getInitialContext() method, the original user and credentials are used.

When you use two-way SSL authentication from a Java client, WebLogic Server gets a unique Java Virtual Machine (JVM) ID for each client JVM so that the connection between the Java client and WebLogic Server is constant. Unless the connection times out from lack of activity, it persists as long as the JVM for the Java client continues to execute. The only way a Java client can negotiate a new SSL connection reliably is by stopping its JVM and running another instance of the JVM.

The code in Example 5–4 generates a call to the WebLogic Identity Assertion provider that implements the weblogic.security.providers.authentication.UserNameMapper interface. The class that implements the UserNameMapper interface returns a user object if the digital certificate is valid. WebLogic Server stores this authenticated user object on the Java client's thread in WebLogic Server and uses it for subsequent authorization requests when the thread attempts to use WebLogic resources protected by the default (active) security realm.

Note: Security provider plug-ins are loaded from the system classpath. The system classpath must specify the implementation of a custom weblogic.security.providers.authentication.UserNameMapper interface.

If you have not configured an Identity Assertion provider that performs certificate-based authentication, a Java client running in a JVM with an SSL connection can change the WebLogic Server user identity by creating a new JNDI InitialContext and supplying a new user name and password in the JNDI SECURITY_PRINCIPAL and SECURITY_CREDENTIALS properties. Any digital certificates passed by the Java client after the SSL connection is made are not used. The new WebLogic Server user continues to use the SSL connection negotiated with the initial user's digital certificate.

If you have configured an Identity Assertion provider that performs certificate-based authentication, WebLogic Server passes the digital certificate from the Java client to the class that implements the UserNameMapper interface and the UserNameMapper class maps the digital certificate to a WebLogic Server user name. Therefore, if you want to set a new user identity when you use the certificate-based identity assertion, you cannot change the identity. This is because the digital certificate is processed only at the time of the first connection request from the JVM for each Environment.
When using two-way SSL, WebLogic Server verifies the digital certificate of the Web browser or Java client when establishing an SSL connection. However, the digital certificate does not identify the Web browser or Java client as a user in the WebLogic Server security realm. If the Web browser or Java client requests a WebLogic Server resource protected by a security policy, WebLogic Server requires the Web browser or Java client to have an identity. To handle this requirement, the WebLogic Identity Assertion provider allows you to enable a user name mapper that maps the digital certificate of a Web browser or Java client to a user in a WebLogic Server security realm. The user name mapper must be an implementation of the `weblogic.security.providers.authentication.UserNameMapper` interface.

You have the option of using the default implementation of the `weblogic.security.providers.authentication.UserNameMapper` interface, `DefaultUserNameMapperImpl`, or developing your own implementation.

The WebLogic Identity Assertion provider can call the implementation of the `UserNameMapper` interface for the following types of identity assertion token types:

- X.509 digital certificates passed via the SSL handshake
- X.509 digital certificates passed via CSIv2
- X.501 distinguished names passed via CSIv2

If you need to map different types of certificates, write your own implementation of the `UserNameMapper` interface.

To implement a `UserNameMapper` interface that maps a digital certificate to a user name, write a `UserNameMapper` class that performs the following operations:

1. Instantiates the `UserNameMapper` implementation class.
2. Creates the `UserNameMapper` interface implementation.
3. Uses the `mapCertificateToUserName()` method to map a certificate to a user name based on a certificate chain presented by the client.
4. Maps a string attribute type to the corresponding `AttributeValueAssertion` field type.

Security provider plug-ins are loaded from the system classpath. The system classpath must specify the implementation of the `weblogic.security.providers.authentication.UserNameMapper` interface.

Caution: Multiple, concurrent, user logins to WebLogic Server from a single client JVM when using two-way SSL and JNDI is not supported. If multiple logins are executed on different threads, the results are undeterminable and might result in one user’s requests being executed on another user’s login, thereby allowing one user to access another user’s data. WebLogic Server does not support multiple, concurrent, certificate-based logins from a single client JVM. For information on JNDI contexts and threads and how to avoid potential JNDI context problems, see "JNDI Contexts and Threads" and "How to Avoid Potential JNDI Context Problems" in Programming JNDI for Oracle WebLogic Server.
5.4.3.3 Using Two-Way SSL Authentication Between WebLogic Server Instances

You can use two-way SSL authentication in server-to-server communication in which one WebLogic Server instance is acting as the client of another WebLogic Server instance. Using two-way SSL authentication in server-to-server communication enables you to have dependable, highly-secure connections, even without the more common client/server environment.

Example 5–5 shows an example of how to establish a secure connection from a servlet running in one instance of WebLogic Server to a second WebLogic Server instance called server2.weblogic.com.

Example 5–5 Establishing a Secure Connection to Another WebLogic Server Instance

```java
FileInputStream[] f = new FileInputStream[3];
  f[0] = new FileInputStream("demokey.pem");
  f[1] = new FileInputStream("democert.pem");
  f[2] = new FileInputStream("ca.pem");
Environment e = new Environment();
e.setProviderURL("t3s://server2.weblogic.com:443");
e.setSSLClientCertificate(f);
e.setSSLServerName("server2.weblogic.com");
e.setSSLRootCAFingerprints("ac45e2d1ce492252acc27ee5c345ef26");

In Example 5–5, the WebLogic JNDI Environment class creates a hash table to store the following parameters:

- `setProviderURL`—specifies the URL of the WebLogic Server instance acting as the SSL server. The WebLogic Server instance acting as SSL client calls this method. The URL specifies the t3s protocol which is a WebLogic Server proprietary protocol built on the SSL protocol. The SSL protocol protects the connection and communication between the two WebLogic Servers instances.

- `setSSLClientCertificate`—specifies the private key and certificate chain to use for the SSL connection. You use this method to specify an input stream array that consists of a private key (which is the first input stream in the array) and a chain of X.509 certificates (which make up the remaining input streams in the array). Each certificate in the chain of certificates is the issuer of the certificate preceding it in the chain.

- `setSSLServerName`—specifies the name of the WebLogic Server instance acting as the SSL server. When the SSL server presents its digital certificate to the WebLogic Server acting as the SSL client, the name specified using the `setSSLServerName` method is compared to the common name field in the digital certificate. In order for hostname verification to succeed, the names must match. This parameter is used to prevent man-in-the-middle attacks.

- `setSSLRootCAFingerprint`—specifies digital codes that represent a set of trusted certificate authorities, thus specifying trust based on a trusted certificate fingerprint. The root certificate in the certificate chain received from the WebLogic Server instance acting as the SSL server has to match one of the fingerprints specified with this method in order to be trusted. This parameter is used to prevent man-in-the-middle attacks. It provides an addition to the default level of trust, which for clients running on WebLogic Server is that specified by the WebLogic Server trust configuration.
5.4.3.4 Using Two-Way SSL Authentication with Servlets

To authenticate Java clients in a servlet (or any other server-side Java class), you must check whether the client presented a digital certificate and if so, whether the certificate was issued by a trusted certificate authority. The servlet developer is responsible for asking whether the Java client has a valid digital certificate. When developing servlets with the WebLogic Servlet API, you must access information about the SSL connection through the `getAttribute()` method of the `HttpServletRequest` object.

The following attributes are supported in WebLogic Server servlets:

- `javax.servlet.request.X509Certificate`
- `javax.servlet.request.cipher_suite`—returns a string representing the cipher suite used by HTTPS.
- `javax.servlet.request.key_size`—returns an integer (0, 40, 56, 128, 168) representing the bit size of the symmetric (bulk encryption) key algorithm.
- `weblogic.servlet.request.SSLSession`
- `javax.net.ssl.SSLSession`—returns the SSL session object that contains the cipher suite and the dates on which the object was created and last used.

You have access to the user information defined in the digital certificates. When you get the `javax.servlet.request.X509Certificate` attribute, it is an array of type `java.security.cert.X509Certificate`. You simply cast the array to that type and examine the certificates.

A digital certificate includes information, such as the following:

- The name of the subject (holder, owner) and other identification information required to verify the unique identity of the subject.
- The subject's public key
- The name of the certificate authority that issued the digital certificate
- A serial number
- The validity period (or lifetime) of the digital certificate (as defined by a start date and an end date)

5.4.4 Using a Custom Hostname Verifier

A hostname verifier validates that the host to which an SSL connection is made is the intended or authorized party. A hostname verifier is useful when a WebLogic client or a WebLogic Server instance is acting as an SSL client to another application server. It helps prevent man-in-the-middle attacks.
By default, WebLogic Server, as a function of the SSL handshake, compares the CN field of the SSL server certificate Subject DN with the hostname in the URL used to connect to the server. If these names do not match, the SSL connection is dropped.

The dropping of the SSL connection is caused by the SSL client, which validates the hostname of the server against the digital certificate of the server. If anything but the default behavior is desired, you can either turn off hostname verification or register a custom hostname verifier. Turning off hostname verification leaves the SSL connections vulnerable to man-in-the-middle attacks.

You can turn off hostname verification in the following ways:

- In the Administration Console, specify None in the Hostname Verification field that is located on the Advanced Options pane under the Keystore & SSL tab for the server (for example, myserver).
- On the command line of the SSL client, enter the following argument:
  
  -Dweblogic.security.SSL.ignoreHostnameVerification=true

You can write a custom hostname verifier. The `weblogic.security.SSL.HostnameVerifier` interface provides a callback mechanism so that implementers of this interface can supply a policy on whether the connection to the URL's hostname should be allowed. The policy can be certificate-based or can depend on other authentication schemes.

To use a custom hostname verifier, create a class that implements the `weblogic.security.SSL.HostnameVerifier` interface and define the methods that capture information about the server's security identity.

Before you can use a custom hostname verifier, you need to specify the class for your implementation in the following ways:

- In the Administration Console, set the SSL.HostName Verifier field on the SSL tab under Server Configuration to the name of a class that implements this interface. The specified class must have a public no-arg constructor.
- On the command line, enter the following argument:
  
  -Dweblogic.security.SSL.hostnameVerifier=hostnameverifier

The value for hostnameverifier is the name of the class that implements the custom hostname verifier.

Example 5–6 shows code fragments from the NulledHostnameVerifier example; the complete example is located at SAMPLES_HOME\server\examples\src\examples\security\sslclient directory in the NulledHostnameVerifier.java file. This code example contains a...
NulledHostnameVerifier class which always returns true for the comparison. The sample allows the WebLogic SSL client to connect to any SSL server regardless of the server's hostname and digital certificate SubjectDN comparison.

Example 5–6  Hostname Verifier Sample Code Fragment

```java
public class NulledHostnameVerifier implements weblogic.security.SSL.HostnameVerifier {
 public boolean verify(String urlHostname, javax.net.ssl.SSLSession session) {
 return true;
 }
}
```

5.4.5 Using a Trust Manager

The weblogic.security.SSL.TrustManager interface provides the ability to:

- Ignore specific certificate validation errors
- Perform additional validation on the peer certificate chain

---

**Note:** This interface takes new style certificates and replaces the weblogic.security.SSL.TrustManagerJSSE interface, which is deprecated.

---

When an SSL client connects to an instance of WebLogic Server, the server presents its digital certificate chain to the client for authentication. That chain could contain an invalid digital certificate. The SSL specification says that the client should drop the SSL connection upon discovery of an invalid certificate. You can use a custom implementation of the TrustManager interface to control when to continue or discontinue an SSL handshake. Using a trust manager, you can ignore certain validation errors, optionally perform custom validation checks, and then decide whether or not to continue the handshake.

Use the weblogic.security.SSL.TrustManager interface to create a trust manager. The interface contains a set of error codes for certificate verification. You can also perform additional validation on the peer certificate and interrupt the SSL handshake if need be. After a digital certificate has been verified, the weblogic.security.SSL.TrustManager interface uses a callback function to override the result of verifying the digital certificate. You can associate an instance of a trust manager with an SSL context through the setTrustManager() method.

You can only set up a trust manager programmatically; its use cannot be defined through the Administration Console or on the command-line.

---

**Note:** Depending on the checks performed, use of a trust manager may potentially impact performance.

---

Example 5–7 shows code fragments from the NulledTrustManager example; the complete example is located at SAMPLES_HOME\server\examples\src\examples\security\sslclient directory in the NulledTrustManager.java file. The SSLSocketClient example uses the custom trust manager. The SSLSocketClient shows how to set up a new SSL connection by using an SSL context with the trust manager.
Example 5–7 NulledTrustManager Sample Code Fragments

```java
package examples.security.sslclient;

import weblogic.security.SSL.TrustManager;
import java.security.cert.X509Certificate;
...
public class NulledTrustManager implements TrustManager{
 public boolean certificateCallback(X509Certificate[] o, int validateErr) {
 System.out.println(" --- Do Not Use In Production ---
 " +
 " By using this NulledTrustManager, the trust in" +
 " the server's identity is completely lost.
 " +
 " --------------------------------");
 for (int i=0; i<o.length; i++)
 System.out.println(" certificate " + i + " -- " + o[i].toString());
 return true;
 }
}
```

5.4.6 Using the CertPath Trust Manager

The CertPathTrustManager, `weblogic.security.SSL.CertPathTrustManager`, makes use of the default security realm's configured CertPath validation providers to perform extra validation such as revocation checking.

By default, application code using outbound SSL in the server has access only to the built-in SSL certificate validation. However, application code can specify the CertPathTrustManager in order to access any additional certificate validation that the administrator has configured for the server. If you want your application code to also run the CertPath validators, the application code should use the CertPathTrustManager.

There are three ways to use this class:

- The Trust Manager calls the configured CertPathValidators only if the administrator has set a switch on the SSLMBean stating that outbound SSL should use the validators. That is, the application completely delegates validation to whatever the administrator configures. You use the `setUseConfiguredSSLValidation()` method for this purpose. This is the default.
- The Trust Manager always calls any configured CertPathValidators. You use the `setBuiltinSSLValidationAndCertPathValidators()` method for this purpose.
- The Trust Manager never calls any configured CertPathValidators. You use the `setBuiltinSSLValidationOnly()` method for this purpose.

5.4.7 Using a Handshake Completed Listener

The `javax.net.ssl.HandshakeCompletedListener` interface defines how an SSL client receives notifications about the completion of an SSL protocol handshake on a given SSL connection. Example 5–8 shows code fragments from the MyListener example; the complete example is located at `SAMPLES_HOME\server\examples\src\examples\security\sslclient` directory in the `MyListener.java` file.
Example 5–8  MyListener (HandshakeCompletedListener) Sample Code Fragments

```java
package examples.security.sslclient;

import java.io.File;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.FileInputStream;
import javax.net.ssl.HandshakeCompletedListener;
import java.util.Hashtable;
import javax.net.ssl.SSLSession;
...
public class MyListener implements HandshakeCompletedListener
{
 public void handshakeCompleted(javax.net.ssl.HandshakeCompletedEvent event)
 {
 SSLSession session = event.getSession();
 System.out.println("Handshake Completed with peer " +
 session.getPeerHost());
 System.out.println(" cipher: " + session.getCipherSuite());
 Certificate[] certs = null;
 try
 {
 certs = session.getPeerCertificates();
 }
 catch (SSLPeerUnverifiedException puv)
 {
 certs = null;
 }
 if (certs != null)
 {
 System.out.println(" peer certificates:");
 for (int z=0; z<certs.length; z++)
 System.out.println(" certs[" +z+"]: " + certs[z]);
 }
 else
 {
 System.out.println("No peer certificates presented");
 }
 }
}
```

5.4.8 Using an SSLContext

The SSLContext class is used to programmatically configure SSL and to retain SSL session information. Each instance can be configured with the keys, certificate chains, and trusted CA certificates that will be used to perform authentication. SSL sockets created with the same SSLContext and used to connect to the same SSL server could potentially reuse SSL session information. Whether the session information is actually reused depends on the SSL server.

For more information on session caching see "SSL Session Behavior" in Securing Oracle WebLogic Server. To associate an instance of a trust manager class with its SSL context, use the weblogic.security.SSL.SSLContext.setTrustManager() method.

You can only set up an SSL context programmatically; not by using the Administration Console or the command line. A Java new expression or the getInstance() method
of the SSLContext class can create an SSLContext object. The getInstance() method is static and it generates a new SSLContext object that implements the specified secure socket protocol. An example of using the SSLContext class is provided in the SSLSocketClient.java sample in the SAMPLES_HOME\server\examples\src\examples\security\sslclient directory. The SSLSocketClient example shows how to create a new SSL socket factory that will create a new SSL socket using SSLContext.

Example 5–9 shows a sample instantiation using the getInstance() method.

Example 5–9  SSL Context Code Example
import weblogic.security.SSL.SSLContext;
SSLcontext sslctx = SSLContext.getInstance ("https")

5.4.9 Using URLs to Make Outbound SSL Connections
You can use a URL object to make an outbound SSL connection from a WebLogic Server instance acting as a client to another WebLogic Server instance. WebLogic Server supports both one-way and two-way SSL authentication for outbound SSL connections.

For one-way SSL authentication, you use the java.net.URL, java.net.URLConnection, and java.net.HTTPURLConnection classes to make outbound SSL connections using URL objects. Example 5–10 shows a simpleURL class that supports both HTTP and HTTPS URLs and that only uses these Java classes (that is, no WebLogic classes are required). To use the simpleURL class for one-way SSL authentication (HTTPS) on WebLogic Server, all that is required is that "weblogic.net" be defined in the system property for java.protocols.handler.pkgs.

Note: Because the simpleURL sample shown in Example 5–10 defaults trust and hostname checking, this sample requires that you connect to a real Web server that is trusted and that passes hostname checking by default. Otherwise, you must override trust and hostname checking on the command line.

Example 5–10  One-Way SSL Authentication URL Outbound SSL Connection Class That Uses Java Classes Only
import java.net.URL;
import java.net.URLConnection;
import java.net.HttpURLConnection;
import java.io.IOException;
public class simpleURL
{
    public static void main (String [] argv)
    {
        if (argv.length != 1)
        {
            System.out.println("Please provide a URL to connect to");
            System.exit(-1);
        }
        setupHandler();
        connectToURL(argv[0]);
    }
    private static void setupHandler()
    {
{  
    java.util.Properties p = System.getProperties();
    String s = p.getProperty("java.protocol.handler.pkgs");
    if (s == null)
        s = "weblogic.net";
    else if (s.indexOf("weblogic.net") == -1)
        s += "|weblogic.net";
    p.put("java.protocol.handler.pkgs", s);
    System.setProperties(p);
}

private static void connectToURL(String theURLSpec)
{
    try
    {
        URL theURL = new URL(theURLSpec);
        URLConnection urlConnection = theURL.openConnection();
        HttpURLConnection connection = null;
        if (!(urlConnection instanceof HttpURLConnection))
        {
            System.out.println("The URL is not using HTTP/HTTPS: " +
                theURLSpec);
            return;
        }
        connection = (HttpURLConnection) urlConnection;
        connection.connect();
        String responseStr = "\t\t" +
            connection.getResponseCode() + " -- " +
            connection.getResponseBody() + "\n\t\t" +
            connection.getContent().getName().getClassName() + "\n";
        connection.disconnect();
        System.out.println(responseStr);
    }
    catch (IOException ioe)
    {
        System.out.println("Failure processing URL: " + theURLSpec);
        ioe.printStackTrace();
    }
}

For two-way SSL authentication, the weblogic.net.http.HttpsURLConnection class provides a way to specify the security context information for a client, including the digital certificate and private key of the client. Instances of this class represent an HTTPS connection to a remote object.

The SSLClient sample code demonstrates using the WebLogic URL object to make an outbound SSL connection (see Example 5-11). The code example shown in Example 5-11 is excerpted from the SSLClient.java file in the SAMPLES_HOME\server\examples\src\examples\security\sslclient directory.

Example 5-11  WebLogic Two-Way SSL Authentication URL Outbound SSL Connection Code Example

wlsUrl = new URL('https', host, Integer.valueOf(sport).intValue(),
    query);
weblogic.net.http.HttpsURLConnection sconnection =
    new weblogic.net.http.HttpsURLConnection(wlsUrl);
...
InputStream [] ins = new InputStream[2];
    ins[0] = new FileInputStream("clientkey.pem");
ins[1] = new FileInputStream("client2certs.pem");
String pwd = "clientkey";
sconnection.loadLocalIdentity(ins[0], ins[1], pwd.toCharArray());

5.5 SSL Client Code Examples

A complete working SSL authentication sample is provided with the WebLogic Server product. The sample is located in the SAMPLES_HOME\server\examples\src\examples\security\sslclient directory. For a description of the sample and instructions on how to build, configure, and run this sample, see the package.html file in the sample directory. You can modify this code example and reuse it.
This section describes securing EJBs.

WebLogic Server supports the Java EE architecture security model for securing Enterprise JavaBeans (EJBs), which includes support for declarative authorization (also referred to in this document as declarative security) and programmatic authorization (also referred to in this document as programmatic security).

The following topics are covered in this section:

- Section 6.1, "Java EE Architecture Security Model"
- Section 6.2, "Using Declarative Security With EJBs"
- Section 6.3, "EJB Security-Related Deployment Descriptors"
- Section 6.4, "Using Programmatic Security With EJBs"

Note: You can use metadata annotations, deployment descriptor files, the Administration Console, and JACC to secure EJBs. For information on using the Administration Console to secure EJBs, see Securing Resources Using Roles and Policies for Oracle WebLogic Server. For information on JACC, see Section 8.2.3, "Using the Java Authorization Contract for Containers".

### 6.1 Java EE Architecture Security Model

The document Designing Enterprise Applications with the J2EE Platform, Second Edition, states in Section 9.3 Authorization:

"In the J2EE architecture, a container serves as an authorization boundary between the components it hosts and their callers. The authorization boundary exists inside the container's authentication boundary so that authorization is considered in the context of successful authentication. For inbound calls, the container compares security attributes from the caller's credential with the access control rules for the target component. If the rules are satisfied, the call is allowed. Otherwise, the call is rejected."

"There are two fundamental approaches to defining access control rules: capabilities and permissions. Capabilities focus on what a caller can do. Permissions focus on who can do something. The J2EE application programming model focuses on permissions. In the J2EE architecture, the job of the deployer is to map the permission model of the application to the capabilities of users in the operational environment."

The same document then discusses two ways to control access to application resources using the Java EE architecture, declarative authorization and programmatic authorization.
6.1.1 Declarative Authorization

The document Designing Enterprise Applications with the J2EE Platform, Second Edition, states in Section 9.3.1 Authorization:

"The deployer establishes the container-enforced access control rules associated with a J2EE application. The deployer uses a deployment tool to map an application permission model, which is typically supplied by the application assembler, to policy and mechanisms specific to the operational environment. The application permission model is defined in a deployment descriptor."

WebLogic Server supports the use of deployment descriptors to implement declarative authorization in EJBs.

6.1.1.1 Declarative Authorization Via Annotations

As of EJB 3.x, to make the deployer’s task easier, the application developer can define security roles. Developers can specify security metadata annotations directly in the EJB bean class to identify the roles that are allowed to invoke all, or a subset, of the EJB’s methods.

As stated in the "Securing an Enterprise Bean Using Declarative Security" section of the Java EE 6 Tutorial, "Declarative security enables the application developer to specify which users are authorized to access which methods of the enterprise beans and to authenticate these users with basic, or username-password, authentication. Frequently, the person who is developing an enterprise application is not the same person who is responsible for deploying the application. An application developer who uses declarative security to define method permissions and authentications mechanisms is passing along to the deployer a security view of the enterprise beans contained in the EJB JAR. When a security view is passed on to the deployer, he or she uses this information to define method permissions for security roles. If you don’t define a security view, the deployer will have to determine what each business method does to determine which users are authorized to call each method."

At deployment time, the deployer then creates these security roles if they do not already exist and maps users to these roles using the WebLogic Server Administration Console to update the security realm. For details, see "Manage Security Roles" in the Oracle WebLogic Server Administration Console Help. The deployer can also map any security roles to users using the weblogic-ejb-jar.xml deployment descriptor.
### 6.1.2 Programmatic Authorization

The document *Designing Enterprise Applications with the J2EE Platform, Second Edition*, states in Section 9.3.2 Programmatic Authorization:

"A J2EE container makes access control decisions before dispatching method calls to a component. The logic or state of the component doesn’t factor in these access decisions. However, a component can use two methods, `EJBContext.isCallerInRole` (for use by enterprise bean code) and `HttpServletRequest.isUserInRole` (for use by Web components), to perform finer-grained access control. A component uses these methods to determine whether a caller has been granted a privilege selected by the component based on the parameters of the call, the internal state of the component, or other factors such as the time of the call."

"The application component provider of a component that calls one of these functions must declare the complete set of distinct rolename values to be used in all calls. These declarations appear in the deployment descriptor as `security-role-ref` elements. Each `security-role-ref` element links a privilege name embedded in the application as a rolename to a security role. Ultimately, the deployer establishes the link between the privilege names embedded in the application and the security roles defined in the deployment descriptor. The link between privilege names and security roles may differ for components in the same application."

"In addition to testing for specific privileges, an application component can compare the identity of its caller, acquired using `EJBContext.getCallerPrincipal` or `HttpServletRequest.getUserPrincipal`, to the distinguished caller identities embedded in the state of the component when it was created. If the identity of the caller is equivalent to a distinguished caller, the component can allow the caller to proceed. If not, the component can prevent the caller from further interaction. The caller principal returned by a container depends on the authentication mechanism used by the caller. Also, containers from different vendors may return different principals for the same user authenticating by the same mechanism. To account for variability in principal forms, an application developer who chooses to apply distinguished caller state in component access decisions should allow multiple distinguished caller identities, representing the same user, to be associated with components. This is recommended especially where application flexibility or portability is a priority."

WebLogic Server supports the use of the `EJBContext.isCallerInRole` and `EJBContext.getCallerPrincipal` methods and the use of the `security-role-ref` element in deployment descriptors to implement programmatic authorization in EJBs.

---

**Note:** Programmatic authorization is also referred in this document as programmatic security.

---

The document *Designing Enterprise Applications with the J2EE Platform, Second Edition* is available online at
6.1.3 Declarative Versus Programmatic Authorization

The document *Designing Enterprise Applications with the J2EE Platform, Second Edition* states in Section 9.3.3 Declarative Versus Programmatic Authorization:

"There is a trade-off between the external access control policy configured by the deployer and the internal policy embedded in the application by the component provider. The external policy is more flexible after the application has been written. The internal policy provides more flexible functionality while the application is being written. In addition, the external policy is transparent and completely comprehensible to the deployer, while internal policy is buried in the application and may only be completely understood by the application developer. These trade-offs should be considered in choosing the authorization model for particular components and methods."


As described in Section 6.1.1.1, "Declarative Authorization Via Annotations", to make the deployer’s task easier, the application developer can specify security metadata annotations directly in the EJB bean class to identify the roles that are allowed to invoke all, or a subset, of the EJB’s methods. However, deployment descriptor elements always override their annotation counterparts, which gives the deployer final control.

6.2 Using Declarative Security With EJBs

There are three ways to implement declarative security:

1. Security providers via the Administration Console, as described in *Securing Resources Using Roles and Policies for Oracle WebLogic Server*.

2. Java Authorization Contract for Containers (JACC), as described in Section 8.2.3, "Using the Java Authorization Contract for Containers".

3. Deployment descriptors and metadata annotations, which are discussed in this section.

Which of these three methods is used is defined by the JACC flags and the security model. (Security models are described in "Options for Securing EJB and Web Application Resources" in *Securing Resources Using Roles and Policies for Oracle WebLogic Server*.)

6.2.1 Implementing Declarative Security Via Metadata Annotations

As described in "What Was New and Changed in EJB 3.0", you are no longer required to create the deployment descriptor files (such as `ejb-jar.xml`). You can now use metadata annotations in the bean file itself to configure metadata.

You can still use XML deployment descriptors in addition to, or instead of, the metadata annotations if you so choose.
To use metadata annotations:

1. Use the metadata annotations feature and create an annotated EJB bean file.

2. At deployment time, the deployer must then create these security roles if they do not already exist and map users to these roles using the WebLogic Server Administration Console to update the security realm. For details, see "Manage Security Roles" in the Oracle WebLogic Server Administration Console Help.

The annotations are part of the javax.security.annotation package. The following security-related annotations are available:

- javax.annotation.security.DeclareRoles — Explicitly lists the security roles that will be used to secure the EJB.
- javax.annotation.security.RolesAllowed — Specifies the security roles that are allowed to invoke all the methods of the EJB (when specified at the class-level) or a particular method (when specified at the method-level.)
- javax.annotation.security.DenyAll — Specifies that the annotated method cannot be invoked by any role.
- javax.annotation.security.PermitAll — Specifies that the annotated method can be invoked by all roles.
- javax.annotation.security.RunAs — Specifies the role which runs the EJB. By default, the EJB runs as the user who actually invokes it.

6.2.1.1 Security-Related Annotation Code Examples

The section "Securing Access to the EJB" in Programming Enterprise JavaBeans for Oracle WebLogic Server provides an example of a simple stateless session EJB that uses all of the security-related annotations.

The section "Specifying Authorized Users by Declaring Security Roles" in the Java EE 6 Tutorial also discusses how to use annotations to specify the method permissions for the methods of a bean class, with accompanying code examples.

6.2.2 Implementing Declarative Security Via Deployment Descriptors

To implement declarative security in EJBs you can use deployment descriptors (ejb-jar.xml and weblogic-ejb-jar.xml) to define the security requirements. Example 6–1 shows examples of how to use the ejb-jar.xml and weblogic-ejb-jar.xml deployment descriptors to map security role names to a security realm. The deployment descriptors map the application's logical security requirements to its runtime definitions. And at runtime, the EJB container uses the security definitions to enforce the requirements.

To configure security in the EJB deployment descriptors, perform the following steps (see Example 6–1):

1. Use a text editor to create ejb-jar.xml and weblogic-ejb-jar.xml deployment descriptor files.

2. In the ejb-jar.xml file, define the security role name, the EJB name, and the method name (see bold text).

---

**Note:** Deployment descriptor elements always override their annotation counterparts. In the case of conflicts, the deployment descriptor value overrides the annotation value.
Notes: The proper syntax for a security role name is as defined for an Nmtoken in the Extensible Markup Language (XML) recommendation available on the Web at: http://www.w3.org/TR/REC-xml#NT-Nmtoken.

When specifying security role names, observe the following conventions and restrictions:

- Do not use blank spaces, commas, hyphens, or any characters in this comma-separated list: \t, <, >, #, \, & , ~, ?, ( ), { }.
- Security role names are case sensitive.
- The suggested convention for security role names is that they be singular.

For more information on configuring security in the ejb-jar.xml file, see the Enterprise JavaBeans Specification, Version 2.0 which is at this location on the Internet: http://java.sun.com/products.ejb/docs.html.

3. In the WebLogic-specific EJB deployment descriptor file, weblogic-ejb-jar.xml, define the security role name and link it to one or more principals (users or groups) in a security realm.

For more information on configuring security in the weblogic-ejb-jar.xml file, see “weblogic-ejb-jar.xml Deployment Descriptor Reference” in Programming Enterprise JavaBeans, Version 2.1, for Oracle WebLogic Server.

Example 6–1 Using ejb-jar.xml and weblogic-ejb-jar.xml Files to Map Security Role Names to a Security Realm

**ejb-jar.xml** entries:

```
...<assembly-descriptor>
 <security-role>
 <role-name>manager</role-name>
 </security-role>
 <security-role>
 <role-name>east</role-name>
 </security-role>
 <method-permission>
 <role-name>manager</role-name>
 <role-name>east</role-name>
 <method>
 <ejb-name>accountsPayable</ejb-name>
 <method-name>getReceipts</method-name>
 </method>
 </method-permission>
...</assembly-descriptor>
```

**weblogic-ejb-jar.xml** entries:

```
<security-role-assignment>
 <role-name>manager</role-name>
 <principal-name>al</principal-name>
 <principal-name>george</principal-name>
 <principal-name>ralph</principal-name>
</security-role-assignment>
```
6.3 EJB Security-Related Deployment Descriptors

The following topics describe the deployment descriptor elements that are used in the ejb-jar.xml and weblogic-ejb-jar.xml files to define security requirements in EJBs:

- Section 6.3.1, "ejb-jar.xml Deployment Descriptors"
- Section 6.3.2, "weblogic-ejb-jar.xml Deployment Descriptors"

6.3.1 ejb-jar.xml Deployment Descriptors

The following ejb-jar.xml deployment descriptor elements are used to define security requirements in WebLogic Server:

- Section 6.3.1.1, "method"
- Section 6.3.1.2, "method-permission"
- Section 6.3.1.3, "role-name"
- Section 6.3.1.4, "run-as"
- Section 6.3.1.5, "security-identity"
- Section 6.3.1.6, "security-role"
- Section 6.3.1.7, "security-role-ref"
- Section 6.3.1.8, "unchecked"
- Section 6.3.1.9, "use-caller-identity"

6.3.1.1 method

The method element is used to denote a method of an enterprise bean’s home or component interface, or, in the case of a message-driven bean, the bean’s onMessage method, or a set of methods.

The following table describes the elements you can define within an method element.

<table>
<thead>
<tr>
<th>Element</th>
<th>Required/Optional</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;description&gt;</td>
<td>Optional</td>
<td>A text description of the method.</td>
</tr>
<tr>
<td>&lt;ejb-name&gt;</td>
<td>Required</td>
<td>Specifies the name of one of the enterprise beans declared in the ejb-jar.xml file.</td>
</tr>
<tr>
<td>&lt;method-intf&gt;</td>
<td>Optional</td>
<td>Allows you to distinguish between a method with the same signature that is multiply defined across both the home and component interfaces of the enterprise bean.</td>
</tr>
<tr>
<td>&lt;method-name&gt;</td>
<td>Required</td>
<td>Specifies a name of an enterprise bean method or the asterisk (*) character. The asterisk is used when the element denotes all the methods of an enterprise bean’s component and home interfaces.</td>
</tr>
<tr>
<td>&lt;method-params&gt;</td>
<td>Optional</td>
<td>Contains a list of the fully-qualified Java type names of the method parameters.</td>
</tr>
</tbody>
</table>
6.3.1.1 Used Within  The method element is used within the method-permission element.

6.3.1.2 Example  For an example of how to use the method element, see Example 6–1.

6.3.1.2 method-permission

The method-permission element specifies that one or more security roles are allowed to invoke one or more enterprise bean methods. The method-permission element consists of an optional description, a list of security role names or an indicator to state that the method is unchecked for authorization, and a list of method elements.

The security roles used in the method-permission element must be defined in the security-role elements of the deployment descriptor, and the methods must be methods defined in the enterprise bean's component and/or home interfaces.

The following table describes the elements you can define within a method-permission element.

<table>
<thead>
<tr>
<th>Element</th>
<th>Required/Optional</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;description&gt;</td>
<td>Optional</td>
<td>A text description of this security constraint.</td>
</tr>
<tr>
<td>&lt;role-name&gt; or &lt;unchecked&gt;</td>
<td>Required</td>
<td>The role-name element or the unchecked element must be specified.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The role-name element contains the name of a security role. The name must conform to the lexical rules for an NMTOKEN.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The unchecked element specifies that a method is not checked for authorization by the container prior to invocation of the method.</td>
</tr>
<tr>
<td>&lt;method&gt;</td>
<td>Required</td>
<td>Specifies a method of an enterprise bean's home or component interface, or, in the case of a message-driven bean, the bean's onMessage method, or a set of methods.</td>
</tr>
</tbody>
</table>

6.3.1.2.1 Used Within  The method-permission element is used within the assembly-descriptor element.

6.3.1.2.2 Example  For an example of how to use the method-permission element, see Example 6–1.

6.3.1.3 role-name

The role-name element contains the name of a security role. The name must conform to the lexical rules for an NMTOKEN.

6.3.1.3.1 Used Within  The role-name element is used within the method-permission, run-as, security-role, and security-role-ref elements.

6.3.1.3.2 Example  For an example of how to use the role-name element, see Example 6–1.
6.3.1.4 run-as
The run-as element specifies the run-as identity to be used for the execution of the enterprise bean. It contains an optional description, and the name of a security role.

6.3.1.4.1 Used Within The run-as element is used within the security-identity element.

6.3.1.4.2 Example For an example of how to use the run-as element, see Example 6-8.

6.3.1.5 security-identity
The security-identity element specifies whether the caller's security identity is to be used for the execution of the methods of the enterprise bean or whether a specific run-as identity is to be used. It contains an optional description and a specification of the security identity to be used.

The following table describes the elements you can define within an security-identity element.

<table>
<thead>
<tr>
<th>Table 6–3 security-identity Element</th>
</tr>
</thead>
<tbody>
<tr>
<td>Element</td>
</tr>
<tr>
<td>&lt;description&gt;</td>
</tr>
<tr>
<td>&lt;use-caller-identity&gt; or &lt;run-as&gt;</td>
</tr>
</tbody>
</table>

6.3.1.5.1 Used Within The security-identity element is used within the entity, message-driven, and session elements.

6.3.1.5.2 Example For an example of how to use the security-identity element, see Example 6–3 and Example 6–8.

6.3.1.6 security-role
The security-role element contains the definition of a security role. The definition consists of an optional description of the security role, and the security role name.

6.3.1.6.1 Used Within The security-role element is used within the assembly-descriptor element.

6.3.1.6.2 Example For an example of how to use the assembly-descriptor element, see Example 6–1.

6.3.1.7 security-role-ref
The security-role-ref element contains the declaration of a security role reference in the enterprise bean's code. The declaration consists of an optional description, the security role name used in the code, and an optional link to a security role.
role. If the security role is not specified, the Deployer must choose an appropriate security role.

The value of the role-name element must be the String used as the parameter to the EJBContext.isCallerInRole(String roleName) method or the HttpServletRequest.isUserInRole(String role) method.

6.3.1.7.1 Used Within The security-role-ref element is used within the entity and session elements.

6.3.1.7.2 Example For an example of how to use the security-role-ref element, see Example 6–2.

Example 6–2 Security-role-ref Element Example

```xml
<security-role-ref>
 <role-name>rolenamedifffromlink</role-name>
 <role-link>role121SL</role-link>
</security-role-ref>
<security-role-ref>
 <role-name>roleForRemotes</role-name>
 <role-link>roleForRemotes</role-link>
</security-role-ref>
<security-role-ref>
 <role-name>roleForLocalAndRemote</role-name>
 <role-link>roleForLocalAndRemote</role-link>
</security-role-ref>
```

6.3.1.8 unchecked
The unchecked element specifies that a method is not checked for authorization by the container prior to invocation of the method.

6.3.1.8.1 Used Within The unchecked element is used within the method-permission element.

6.3.1.8.2 Example For an example of how to use the unchecked element, see Example 6–1.
6.3.1.9 use-caller-identity
The use-caller-identity element specifies that the caller's security identity be used as the security identity for the execution of the enterprise bean’s methods.

6.3.1.9.1 Used Within The use-caller-identity element is used within the security-identity element.

6.3.1.9.2 Example For an example of how to use the use-caller-identity element, see Example 6–3.

Example 6–3 use-caller-identity Element Example

```
<ejb-jar>
 <enterprise-beans>
 <session>
 <ejb-name>SecurityEJB</ejb-name>
 <home>weblogic.ejb20.SecuritySLHome</home>
 <remote>weblogic.ejb20.SecuritySL</remote>
 <local-home>
 weblogic.ejb20.SecurityLocalSLHome
 </local-home>
 <local>weblogic.ejb20.SecurityLocalSL</local>
 <ejb-class>weblogic.ejb20.SecuritySLBean</ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>
 </session>
 <message-driven>
 <ejb-name>SecurityEJB</ejb-name>
 <ejb-class>weblogic.ejb20.SecuritySLBean</ejb-class>
 <transaction-type>Container</transaction-type>
 <security-identity>
 <use-caller-identity/>
 </security-identity>
 </message-driven>
 </enterprise-beans>
</ejb-jar>
```

6.3.2 weblogic-ejb-jar.xml Deployment Descriptors
The following weblogic-ejb-jar.xml deployment descriptor elements are used to define security requirements in WebLogic Server:

- Section 6.3.2.1, "client-authentication"
- Section 6.3.2.2, "client-cert-authentication"
- Section 6.3.2.3, "confidentiality"
- Section 6.3.2.4, "externally-defined"
- Section 6.3.2.5, "identity-assertion"
- Section 6.3.2.6, "iiop-security-descriptor"
- Section 6.3.2.7, "integrity"
- Section 6.3.2.8, "principal-name"
- Section 6.3.2.9, "role-name"
- Section 6.3.2.10, "run-as-identity-principal"
6.3.2.1 client-authentication
The client-authentication element specifies whether the EJB supports or requires client authentication.

The following table defines the possible settings.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>Client authentication is not supported.</td>
</tr>
<tr>
<td>supported</td>
<td>Client authentication is supported, but not required.</td>
</tr>
<tr>
<td>required</td>
<td>Client authentication is required.</td>
</tr>
</tbody>
</table>

6.3.2.1.1 Example For an example of how to use the client-authentication element, see Example 6–6.

6.3.2.2 client-cert-authentication
The client-cert-authentication element specifies whether the EJB supports or requires client certificate authentication at the transport level.

The following table defines the possible settings.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>Client certificate authentication is not supported.</td>
</tr>
<tr>
<td>supported</td>
<td>Client certificate authentication is supported, but not required.</td>
</tr>
<tr>
<td>required</td>
<td>Client certificate authentication is required.</td>
</tr>
</tbody>
</table>

6.3.2.2.1 Example For an example of how to use the client-cert-authentication element, see Example 6–10.

6.3.2.3 confidentiality
The confidentiality element specifies the transport confidentiality requirements for the EJB. Using the confidentiality element ensures that the data is sent between the client and server in such a way as to prevent other entities from observing the contents.

The following table defines the possible settings.
6.3.2.3.1 Example  For an example of how to use the confidentiality element, see Example 6–10.

6.3.2.4 externally-defined
The externally-defined element lets you explicitly indicate that you want the security roles defined by the role-name element in the weblogic-ejb-jar.xml deployment descriptors to use the mappings specified in the Administration Console. The element gives you the flexibility of not having to specify a specific security role mapping for each security role defined in the deployment descriptors for a particular Web application. Therefore, within the same security realm, deployment descriptors can be used to specify and modify security for some applications while the Administration Console can be used to specify and modify security for others.

When specifying security role names, observe the following conventions and restrictions:

- The proper syntax for a security role name is as defined for an Nmtoken in the Extensible Markup Language (XML) recommendation available on the Web at: http://www.w3.org/TR/REC-xml#NT-Nmtoken.
- Do not use blank spaces, commas, hyphens, or any characters in this comma-separated list: \t, <, >, #, l, &, ~, ?, ( ), { }.
- Security role names are case sensitive.
- The suggested convention for security role names is that they be singular.

Example 6–4 and Example 6–5 show by comparison how to use the externally-defined element in the weblogic-ejb-jar.xml file. In Example 6–5, the specification of the "manager" externally-defined element in the weblogic-ejb-jar.xml means that for security to be correctly configured on

---

**Table 6–6 confidentiality Element**

<table>
<thead>
<tr>
<th>Setting</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>Confidentiality is not supported.</td>
</tr>
<tr>
<td>supported</td>
<td>Confidentiality is supported, but not required.</td>
</tr>
<tr>
<td>required</td>
<td>Confidentiality is required.</td>
</tr>
</tbody>
</table>

---

**Note:** Starting in version 9.0, the default role mapping behavior is to create empty role mappings when none are specified. In version 8.1, EJB required that role mappings be defined in the weblogic-ejb-jar.xml descriptor or deployment would fail. With 9.0, EJB and WebApp behavior are consistent in creating empty role mappings.

For information on role mapping behavior and backward compatibility settings, see the section "Understanding the Combined Role Mapping Enabled Setting" in *Securing Resources Using Roles and Policies for Oracle WebLogic Server*. The role mapping behavior for a server depends on which security deployment model is selected on the Administration Console. For information on security deployment models, see "Options for Securing EJB and Web Application Resources" in *Securing Resources Using Roles and Policies for Oracle WebLogic Server*.
the `getReceipts` method, the principals for `manager` will have to be created in the Administration Console.

**Example 6–4  Using the `ejb-jar.xml` and `weblogic-ejb-jar.xml` Deployment Descriptors to Map Security Roles in EJBs**

ejb-jar.xml entries:

```xml
...<assembly-descriptor>
 <security-role>
 <role-name>manual</role-name>
 </security-role>
 <security-role>
 <role-name>east</role-name>
 </security-role>
 <method-permission>
 <role-name>manual</role-name>
 <role-name>east</role-name>
 <method>
 <ejb-name>accountsPayable</ejb-name>
 <method-name>getReceipts</method-name>
 </method>
 </method-permission>
...</assembly-descriptor>
```

weblogic-ejb-jar.xml entries:

```xml
...<security-role-assignment>
 <role-name>manual</role-name>
 <principal-name>joe</principal-name>
 <principal-name>Bill</principal-name>
 <principal-name>Mary</principal-name>
...</security-role-assignment>
```

**Example 6–5  Using the externally-defined Element in EJB Deployment Descriptors for Role Mapping**

ejb-jar.xml entries:

```xml
...<assembly-descriptor>
 <security-role>
 <role-name>manual</role-name>
 </security-role>
 <security-role>
 <role-name>east</role-name>
 </security-role>
 <method-permission>
 <role-name>manual</role-name>
 <role-name>east</role-name>
 <method>
 <ejb-name>accountsPayable</ejb-name>
 <method-name>getReceipts</method-name>
 </method>
 </method-permission>
...</assembly-descriptor>
```

weblogic-ejb-jar.xml entries:

```xml
...
For more information on using the Administration Console to configure security for EJBs, see *Securing Resources Using Roles and Policies for Oracle WebLogic Server*.

6.3.2.5 identity-assertion

The `identity-assertion` element specifies whether the EJB supports identity assertion.

The following table defines the possible settings.

Table 6–7 identity-assertion Element

<table>
<thead>
<tr>
<th>Setting</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>Identity assertion is not supported</td>
</tr>
<tr>
<td>supported</td>
<td>Identity assertion is supported, but not required.</td>
</tr>
<tr>
<td>required</td>
<td>Identity assertion is required.</td>
</tr>
</tbody>
</table>

6.3.2.5.1 Used Within

The `identity-assertion` element is used with the `iiop-security-descriptor` element.

6.3.2.5.2 Example

For an example of how to the `identity-assertion` element, see Example 6–6.

6.3.2.6 iiop-security-descriptor

The `iiop-security-descriptor` element specifies security configuration parameters at the bean-level. These parameters determine the IIOP security information contained in the interoperable object reference (IOR).

6.3.2.6.1 Example

For an example of how to use the `iiop-security-descriptor` element, see Example 6–6.

Example 6–6 iiop-security-descriptor Element Example

```xml
<weblogic-enterprise-bean>
  <iiop-security-descriptor>
    <transport-requirements>
      <confidentiality>supported</confidentiality>
      <integrity>supported</integrity>
      <client-cert-authorization>supported</client-cert-authorization>
    </transport-requirements>
    <client-authentication>supported</client-authentication>
    <identity-assertion>supported</identity-assertion>
  </iiop-security-descriptor>
</weblogic-enterprise-bean>
```
6.3.2.7 integrity
The integrity element specifies the transport integrity requirements for the EJB. Using the integrity element ensures that the data is sent between the client and server in such a way that it cannot be changed in transit.

The following table defines the possible settings.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>Integrity is not supported.</td>
</tr>
<tr>
<td>supported</td>
<td>Integrity is supported, but not required.</td>
</tr>
<tr>
<td>required</td>
<td>Integrity is required.</td>
</tr>
</tbody>
</table>

6.3.2.7.1 Used Within The integrity element is used within the transport-requirements element.

6.3.2.7.2 Example For an example of how to use the integrity element, see Example 6–10.

6.3.2.8 principal-name
The principal-name element specifies the name of the principal in the ProductName security realm that applies to role name specified in the security-role-assignment element. At least one principal is required in the security-role-assignment element. You may define more than one principal-name for each role name.

Note: If you need to list a significant number of principals, consider specifying groups instead of users. There are performance issues if you specify too many users.

6.3.2.8.1 Used Within The principal-name element is used within the security-role-assignment element.

6.3.2.8.2 Example For an example of how to use the principal-name element, see Example 6–1.

6.3.2.9 role-name
The role-name element identifies an application role name that the EJB provider placed in the companion ejb-jar.xml file. Subsequent principal-name elements in the stanza map ProductName principals to the specified role-name.

6.3.2.9.1 Used Within The role-name element is used within the security-role-assignment element.

6.3.2.9.2 Example For an example of how to use the role-name element, see Example 6–1.

6.3.2.10 run-as-identity-principal
The run-as-identity-principal element specifies which security principal name is to be used as the run-as principal for a bean that has specified a security-identity run-as role-name in its ejb-jar deployment descriptor. For an explanation of how of
run-as role-names to are mapped to run-as-identity-principals (or run-as-principal-names, see Section 6.3.2.12, "run-as-role-assignment".

Note: Deprecated: The run-as-identity-principal element is deprecated in the WebLogic Server 8.1. Use the run-as-principal-name element instead.

6.3.2.10.1 Used Within The run-as-identity-principal element is used within the run-as-role-assignment element.

6.3.2.10.2 Example For an example of how to use the run-as-identity-principal element, see Example 6–7.

Example 6–7 run-as-identity-principal Element Example

ejb-jar.xml:
```xml
<ejb-jar>
  <enterprise-beans>
    <session>
      <ejb-name>Caller2EJB</ejb-name>
      <home>weblogic.ejb11.security.CallerBeanHome</home>
      <remote>weblogic.ejb11.security.CallerBeanRemote</remote>
      <ejb-class>weblogic.ejb11.security.CallerBean</ejb-class>
      <session-type>Stateful</session-type>
      <transaction-type>Container</transaction-type>
      <ejb-ref>
        <ejb-ref-name>Callee2Bean</ejb-ref-name>
        <ejb-ref-type>Session</ejb-ref-type>
        <home>weblogic.ejb11.security.CalleeBeanHome</home>
        <remote>weblogic.ejb11.security.CalleeBeanRemote</remote>
      </ejb-ref>
      <security-role-ref>
        <role-name>users1</role-name>
        <role-link>users1</role-link>
      </security-role-ref>
      <security-identity>
        <run-as>
          <role-name>users2</role-name>
        </run-as>
      </security-identity>
    </session>
  </enterprise-beans>
</ejb-jar>
```

weblogic-ejb-jar.xml:
```xml
<weblogic-ejb-jar>
  <weblogic-enterprise-bean>
    <ejb-name>Caller2EJB</ejb-name>
    <reference-descriptor>
      <ejb-reference-description>
        <ejb-ref-name>Callee2Bean</ejb-ref-name>
        <jndi-name>security.Callee2Bean</jndi-name>
      </ejb-reference-description>
    </reference-descriptor>
    <run-as-identity-principal>wsUser3</run-as-identity-principal>
  </weblogic-enterprise-bean>
  <security-role-assignment>
    <role-name>user</role-name>
    <principal-name>wsUser2</principal-name>
    <principal-name>wsUser3</principal-name>
  </security-role-assignment>
</weblogic-ejb-jar>
```
6.3.2.11 run-as-principal-name
The run-as-principal-name element specifies which security principal name is to be used as the run-as principal for a bean that has specified a security-identity run-as role-name in its ejb-jar deployment descriptor. For an explanation of how the run-as role-names map to run-as-principal-names, see Section 6.3.2.12, "run-as-role-assignment".

6.3.2.11.1 Used Within The run-as-principal-name element is used within the run-as-role-assignment element.

6.3.2.11.2 Example For an example of how to use the run-as-principal-name element, see Example 6–8.

6.3.2.12 run-as-role-assignment
The run-as-role-assignment element is used to map a given security-identity run-as role-name that is specified in the ejb-jar.xml file to a run-as-principal-name specified in the weblogic-ejb-jar.xml file. The value of the run-as-principal-name element for a given role-name is scoped to all beans in the ejb-jar.xml file that use the specified role-name as their security-identity. The value of the run-as-principal-name element specified in weblogic-ejb-jar.xml file can be overridden at the individual bean level by specifying a run-as-principal-name element under that bean's weblogic-enterprise-bean element.

Note: For a given bean, if there is no run-as-principal-name element specified in either a run-as-role-assignment element or in a bean specific run-as-principal-name element, then the EJB container will choose the first principal-name of a security user in the weblogic-enterprise-bean security-role-assignment element for the role-name and use that principal-name as the run-as-principal-name.

6.3.2.12.1 Example For an example of how to use the run-as-role-assignment element, see Example 6–8.

Example 6–8 run-as-role-assignment Element Example
In the ejb-jar.xml file:
// Beans "A_EJB_with_runAs_role_X" and "B_EJB_with_runAs_role_X"
// specify a security-identity run-as role-name "runAs_role_X".
// Bean "C_EJB_with_runAs_role_Y" specifies a security-identity
// run-as role-name 'runAs_role_Y'.
<ejb-jar>
 <enterprise-beans>
 <session>
 <ejb-name>SecurityEJB</ejb-name>
 <home>weblogic.ejb20.SecuritySLHome</home>
 <remote>weblogic.ejb20.SecuritySL</remote>
 <local-home>
 weblogic.ejb20.SecurityLocalSLHome
 </local-home>
 "runAs_role_X".
 </session>
 <session>
 <ejb-name>SecurityEJB</ejb-name>
 <home>weblogic.ejb20.SecuritySLHome</home>
 <remote>weblogic.ejb20.SecuritySL</remote>
 <local-home>
 weblogic.ejb20.SecurityLocalSLHome
 </local-home>

Note: For a given bean, if there is no run-as-principal-name element specified in either a run-as-role-assignment element or in a bean specific run-as-principal-name element, then the EJB container will choose the first principal-name of a security user in the weblogic-enterprise-bean security-role-assignment element for the role-name and use that principal-name as the run-as-principal-name.
Each of the three beans shown in Example 6–8 will choose a different principal name to run as.

- **A_EJB_with_runAs_role_X**

 This bean’s run-as role-name is runAs_role_X. The jar-scoped <run-as-role-assignment> mapping will be used to look up the name of the principal to use. The <run-as-role-assignment> mapping specifies that for <role-name> runAs_role_X we are to use <run-as-principal-name> Fred. Therefore, Fred is the principal name that will be used.

- **B_EJB_with_runAs_role_X**
This bean’s run-as role-name is also runAs_role_X. This bean will not use the jar scoped <run-as-role-assignment> to look up the name of the principal to use because that value is overridden by this bean’s <weblogic-enterprise-bean> <run-as-principal-name> value Joe. Therefore Joe is the principal name that will be used.

- C_EJB_with_runAs_role_Y

This bean’s run-as role-name is runAs_role_Y. There is no explicit mapping of runAs_role_Y to a run-as principal name, that is, there is no jar scoped <run-as-role-assignment> for runAs_role_Y nor is there a bean scoped <run-as-principal-name> specified in this bean’s <weblogic-enterprise-bean>. To determine the principal name to use, the <security-role-assignment> for <role-name> runAs_role_Y is examined. The first <principal-name> corresponding to a user that is not a Group is chosen. Therefore, Harry is the principal name that will be used.

6.3.2.13 security-permission
The security-permission element specifies a security permission that is associated with a Java EE Sandbox.

6.3.2.13.1 Example For an example of how to use the security-permission element, see Example 6–9.

6.3.2.14 security-permission-spec
The security-permission-spec element specifies a single security permission based on the Security policy file syntax.

For more information, see the implementation of the security permission specification:
http://download.oracle.com/javase/6/docs/technotes/guides/security/PolicyFiles.html#FileSyntax

Note: Disregard the optional codebase and signedBy clauses.

6.3.2.14.1 Used Within The security-permission-spec element is used within the security-permission element.

6.3.2.14.2 Example For an example of how to use the security-permission-spec element, see Example 6–9.

Example 6–9 security-permission-spec Element Example
<weblogic-ejb-jar>
 <security-permission>
 <description>Optional explanation goes here</description>
 <security-permission-spec>
 <! A single grant statement following the syntax of
 http://java.sun.com/j2se/1.5.0/docs/guide/security/PolicyFiles.html#FileSyntax,
 without the codebase and signedBy clauses, goes here. For example:
 -->
 grant {
 permission java.net.SocketPermission *, resolve;
 };
 </security-permission-spec>
 </security-permission>
</weblogic-ejb-jar>
<security-permission>
</weblogic-ejb-jar>

In Example 6–9, permission java.net.SocketPermission is the permission class name, "*" represents the target name, and resolve (resolve host/IP name service lookups) indicates the action.

6.3.2.15 security-role-assignment
The security-role-assignment element maps application roles in the ejb-jar.xml file to the names of security principals available in ProductName.

Note: For information on using the security-role-assignment element in a weblogic-application.xml deployment descriptor for an enterprise application, see "Enterprise Application Deployment Descriptor Elements" in Developing Applications for Oracle WebLogic Server.

6.3.2.15.1 Example For an example of how to use the security-role-assignment element, see Example 6–1.

6.3.2.16 transport-requirements
The transport-requirements element defines the transport requirements for the EJB.

6.3.2.16.1 Used Within The transport-requirements element is used within the iiop-security-descriptor element.

6.3.2.16.2 Example For an example of how to use the transport-requirements element, see Example 6–10.

Example 6–10 transport-requirements Element Example
<weblogic-enterprise-bean>
 <iiop-security-descriptor>
 <transport-requirements>
 <confidentiality>supported</confidentiality>
 <integrity>supported</integrity>
 <client-cert-authorization>
 supported
 </client-cert-authorization>
 </transport-requirements>
 </iiop-security-descriptor>
<weblogic-enterprise-bean>

6.4 Using Programmatic Security With EJBs
To implement programmatic security in EJBs, use the javax.ejb.EJBContext.getCallerPrincipal() and the javax.ejb.EJBContext.isCallerInRole() methods.

6.4.1 getCallerPrincipal
Use the getCallerPrincipal() method to determine the caller of the EJB. The javax.ejb.EJBContext.getCallerPrincipal() method returns a WLSUserPrincipal if one exists in the Subject of the calling user. In the case of multiple
WLSUser Principals, the method returns the first in the ordering defined by the Subject.getPrincipals().iterator() method. If there are no WLSUser Principals, then the getCallerPrincipal() method returns the first non-WLSGroup Principal. If there are no Principals or all Principals are of type WLSGroup, this method returns weblogic.security.WLSPrincipals.getAnonymousUserPrincipal(). This behavior is similar to the semantics of weblogic.security.SubjectUtils.getUserPrincipal() except that SubjectUtils.getUserPrincipal() returns a null whereas EJBContext.getCallerPrincipal() returns WLSPrincipals.getAnonymousUserPrincipal().

For more information about how to use the getCallerPrincipal() method, see http://www.oracle.com/technetwork/java/javaee/tech/index.html.

6.4.2 isCallerInRole

The isCallerInRole() method is used to determine if the caller (the current user) has been assigned a security role that is authorized to perform actions on the WebLogic resources in that thread of execution. For example, the method javax.ejb.EJBContext.isCallerInRole("admin") will return true if the current user has admin privileges.

For more information about how to use the isCallerInRole() method, see http://www.oracle.com/technetwork/java/javaee/tech/index.html.
This section describes using network connection filters.

This section covers the following topics:

- Section 7.1, "The Benefits of Using Network Connection Filters"
- Section 7.2, "Network Connection Filter API"
- Section 7.3, "Guidelines for Writing Connection Filter Rules"
- Section 7.4, "Configuring the WebLogic Connection Filter"
- Section 7.5, "Developing Custom Connection Filters"

7.1 The Benefits of Using Network Connection Filters

Security roles and security policies let you secure WebLogic resources at the domain level, the application level, and the application-component level. Connection filters let you deny access at the network level. Thus, network connection filters provide an additional layer of security. Connection filters can be used to protect server resources on individual servers, server clusters, or an entire internal network.

Connection filters are particularly useful for controlling access through the Administration port. Depending on your network firewall configuration, you might be able to use a connection filter to further restrict administration access. A typical use is to restrict access to the Administration port to only the servers and machines in the domain. Even if an attacker gets access to a machine inside the firewall, they will not be able to perform administration operations unless they are on one of the permitted machines.

Network connection filters are a type of firewall in that they can be configured to filter on protocols, IP addresses, and DNS node names. For example, you can deny any non-SSL connections originating outside of your corporate network. This would ensure that all access from systems on the Internet would be secure.

7.2 Network Connection Filter API

This section describes the `weblogic.security.net` package. This API provides interfaces and classes for developing network connection filters. It also includes a class, `ConnectionFilterImpl`, which is a ready-to-use implementation of a network connection filter. For more information, see *Oracle WebLogic Server API Reference* for this release of WebLogic Server.

This section covers the following topics:

- Section 7.2.1, "Connection Filter Interfaces"
7.2.1 Connection Filter Interfaces

To implement connection filtering, write a class that implements the connection filter interfaces. The following `weblogic.security.net` interfaces are provided for implementing connection filters:

- Section 7.2.1.1, "ConnectionFilter Interface"
- Section 7.2.1.2, "ConnectionFilterRulesListener Interface"

7.2.1.1 ConnectionFilter Interface

This interface defines the `accept()` method, which is used to implement connection filtering. To program the server to perform connection filtering, instantiate a class that implements this interface and then configure that class in the Administration Console. This interface is the minimum implementation requirement for connection filtering.

Note: Implementing this interface alone does not permit the use of the Administration Console to enter and modify filtering rules to restrict client connections; you must use some other form (such as a flat file, which is defined in the Administration Console) for that purpose. To use the Administration Console to enter and modify filtering rules, you must also implement the `ConnectionFilterRulesListener` interface. For a description of the `ConnectionFilterRulesListener` interface, see Section 7.2.1.2, "ConnectionFilterRulesListener Interface".

7.2.1.2 ConnectionFilterRulesListener Interface

The server uses this interface to determine whether the rules specified in the Administration Console in the `ConnectionFilterRules` field are valid during startup and at runtime.

Note: You can implement this interface or just use the WebLogic connection filter implementation, `weblogic.security.net.ConnectionFilterImpl`, which is provided as part of the WebLogic Server product.

This interface defines two methods that are used to implement connection filtering: `setRules()` and `checkRules()`. Implementing this interface in addition to the `ConnectionFilter` interface allows the use of the Administration Console to enter filtering rules to restrict client connections.

Note: In order to enter and edit connection filtering rules on the Administration Console, you must implement the `ConnectionFilterRulesListener` interface; otherwise some other means must be used. For example, you could use a flat file.

7.2.2 Connection Filter Classes

Two `weblogic.security.net` classes are provided for implementing connection filters:
7.2.2.1 ConnectionFilterImpl Class
This class is the WebLogic connection filter implementation of the ConnectionFilter and ConnectionFilterRulesListener interfaces. Once configured using the Administration Console, this connection filter accepts all incoming connections by default, and also provides static factory methods that allow the server to obtain the current connection filter. To use this connection to deny access, simply enter connection filter rules using the Administration Console.

This class is provided as part of the WebLogic Server product. To configure this class for use, see Section 7.4, "Configuring the WebLogic Connection Filter".

7.2.2.2 ConnectionEvent Class
This is the class from which all event state objects are derived. All events are constructed with a reference to the object, that is, the source that is logically deemed to be the object upon which a specific event initially occurred. To create a new ConnectionEvent instance, applications use the methods provided by this class: getLocalAddress(), getLocalPort(), getRemoteAddress(), getRemotePort(), and hashcode().

7.3 Guidelines for Writing Connection Filter Rules
This section describes how connection filter rules are written and evaluated. If no connection rules are specified, all connections are accepted.

Depending on how you implement connection filtering, connection filter rules can be written in a flat file or input directly on the Administration Console.

The following sections provide information and guidelines for writing connection filter rules:

7.3.1 Connection Filter Rules Syntax
The syntax of connection filter rules is as follows:

- Each rule must be written on a single line.
- Tokens in a rule are separated by white space.
- A pound sign (#) is the comment character. Everything after a pound sign on a line is ignored.
- Whitespace before or after a rule is ignored.
- Lines consisting only of whitespace or comments are skipped.

The format of filter rules differ depending on whether you are using a filter file to enter the filter rules or you enter the filter rules on the Administration Console.

- When entering the filter rules on the Administration Console, enter them in the following format:
targetAddress localAddress localPort action protocols

- When specifying rules in the filter file, enter them in the following format:
 targetAddress action protocols
 - targetAddress specifies one or more systems to filter.
 - localAddress defines the host address of the WebLogic Server instance. (If you specify an asterisk (*), the match returns all local IP addresses.)
 - localPort defines the port on which the WebLogic Server instance is listening. (If you specify an asterisk (*), the match returns all available ports on the server).
 - action specifies the action to perform. This value must be allow or deny.
 - protocols is the list of protocol names to match. The following protocols may be specified: http, https, t3, t3s, ldap, ldaps, iiop, iiops, and com. (Although the giop, giops, and dcom protocol names are still supported, their use is deprecated as of release 9.0; you should use the equivalent iiop, iiops, and com protocol names.)

 - If no protocol is defined, all protocols will match a rule.

7.3.2 Types of Connection Filter Rules

Two types of filter rules are recognized:

- Fast rules
 A fast rule applies to a hostname or IP address with an optional netmask. If a hostname corresponds to multiple IP addresses, multiple rules are generated (in no particular order). Netmasks can be specified either in numeric or dotted-quad form. For example:

```
dialup-555-1212.pa.example.net 127.0.0.1 7001 deny t3 t3s #http(s) OK
192.168.81.0/255.255.254.0   127.0.0.1 8001 allow   #23-bit netmask
192.168.0.0/16   127.0.0.1 8002 deny   #like /255.255.0.0
```

Hostnames for fast rules are looked up once at startup of the WebLogic Server instance. While this design greatly reduces overhead at connect time, it can result in the filter obtaining out of date information about what addresses correspond to a hostname. Oracle recommends using numeric IP addresses instead.

- Slow rules
 A slow rule applies to part of a domain name. Because a slow rule requires a connect-time DNS lookup on the client-side in order to perform a match, it may take much longer to run than a fast rule. Slow rules are also subject to DNS spoofing. Slow rules are specified as follows:

```
*.script-kiddiez.org 127.0.0.1 7001 deny
```

An asterisk only matches at the head of a pattern. If you specify an asterisk anywhere else in a rule, it is treated as part of the pattern. Note that the pattern
will never match a domain name since an asterisk is not a legal part of a domain name.

7.3.3 How Connection Filter Rules are Evaluated

When a client connects to WebLogic Server, the rules are evaluated in the order in which they were written. The first rule to match determines how the connection is treated. If no rules match, the connection is permitted.

To further protect your server and only allow connections from certain addresses, specify the last rule as:

```
0.0.0.0/0  *  *  deny
```

With this as the last rule, only connections that are allowed by preceding rules are allowed, all others are denied. For example, if you specify the following rules:

```
<Remote IP Address>  *  *  allow https
0.0.0.0/0  *  *  deny
```

Only machines with the Remote IP Address are allowed to access the instance of WebLogic Server running connection filter. All other systems are denied access.

Note: The default connection filter implementation interprets a target address of 0 (0.0.0.0/0) as meaning "the rule should apply to all IP addresses." By design, the default filter does not evaluate the port or the local address, just the action. To clearly specify restrictions when using the default filter, modify the rules.

Another option is to implement a custom connection filter.

7.4 Configuring the WebLogic Connection Filter

WebLogic Server provides an out-of-the-box network connection filter. To use the filter, simply configure it using the Administration Console. For information on how to configure connection filters, see Securing Oracle WebLogic Server.

7.5 Developing Custom Connection Filters

If you decide not to use the WebLogic connection filter and want to develop you own, your can use the application programming interface (API) provided in the weblogic.security.net package to do so. For a description of this API, see Section 7.2, "Network Connection Filter API".

To develop custom connection filters with WebLogic Server, perform the following steps:

1. Write a class that implements the ConnectionFilter interface (minimum requirement).

 Or, optionally, if you want to use the Administration Console to enter and modify the connection filtering rules directly, write a class that implements both the ConnectionFilter interface and the ConnectionFilterRulesListener interface.

2. If you choose the minimum requirement in step 1 (only implementing the ConnectionFilter interface), enter the connection filtering rules in a flat file and define the location of the flat file in the class that implements the
Developing Custom Connection Filters

ConnectionFilter interface. Then use the Administration Console to configure
the class in WebLogic Server. For instructions for configuring the class in the
Administration Console, see "Using Connection Filters" in Securing Oracle
WebLogic Server.

3. If you choose to implement both interfaces in step 1, use the Administration
Console to configure the class and to enter the connection filtering rules. For
instructions on configuring the class in the Administration Console, see "Using
Connection Filters" in Securing Oracle WebLogic Server.

Note that if connection filtering is implemented when a Java or Web browser client
tries to connect to a WebLogic Server instance, The WebLogic Server instance
constructs a ConnectionEvent object and passes it to the accept() method of your
connection filter class. The connection filter class examines the ConnectionEvent
object and accepts the connection by returning, or denies the connection by throwing a
FilterException.

Both implemented classes (the class that implements only the ConnectionFilter
interface and the class that implements both the ConnectionFilter interface and
the ConnectionFilterRulesListener interface) must call the accept() method
after gathering information about the client connection. However, if you only
implement the ConnectionFilter interface, the information gathered includes the
remote IP address and the connection protocol: http, https, t3, t3s, ldap, ldaps,
iioi, iiois, or com. If you implement both interfaces, the information gathered
includes the remote IP address, remote port number, local IP address, local port
number and the connection protocol.
This section describes using Java security to protect WebLogic resources. This section discusses the following topics:

- Section 8.1, "Using Java EE Security to Protect WebLogic Resources"
- Section 8.2, "Using the Java Security Manager to Protect WebLogic Resources"

8.1 Using Java EE Security to Protect WebLogic Resources

WebLogic Server supports the use of Java EE security to protect URL (Web), Enterprise JavaBeans (EJBs), and Connector components. In addition, WebLogic Server extends the connector model of specifying additional security policies in the deployment descriptor to the URL and EJB components.

Note: Java EE has requirements for Java 2 security default permissions for different application types (see the Java EE specification) as does the Java EE Connector Architecture specification.

The connector specification provides for deployment descriptors to specify additional security policies using the `<security-permission>` tag (see Example 8–1):

Example 8–1 Security-Permission Tag Sample

```xml
<security-permission>
  <description> Optional explanation goes here </description>
  <security-permission-spec>
    <!--
    A single grant statement following the syntax of 
    http://java.sun.com/j2se/1.4.2/docs/guide/security/PolicyFiles.html#FileSyntax 
    without the 'codebase' and 'signedBy' clauses goes here. For example:
    -->
    grant {
      permission java.net.SocketPermission "*", "resolve";
    };
  </security-permission-spec>
</security-permission>
```

Besides support of the `<security-permission>` tag in the `rar.xml` file, WebLogic Server adds the `<security-permission>` tag to the `weblogic.xml` and
weblogic-ejb-jar.xml files. This extends the connector model to the two other application types, Web applications and EJBs, provides a uniform interface to security policies across all component types, and anticipates future Java EE specification changes.

8.2 Using the Java Security Manager to Protect WebLogic Resources

The Java Security Manager can be used with WebLogic Server to provide additional protection for resources running in a Java Virtual Machine (JVM). Using a Java Security Manager is an optional security step. The following sections describe how to use the Java Security Manager with WebLogic Server:

- Section 8.2.1, "Setting Up the Java Security Manager"
- Section 8.2.2, "Using Printing Security Manager"
- Section 8.2.3, "Using the Java Authorization Contract for Containers"

8.2.1 Setting Up the Java Security Manager

When you run WebLogic Server under Java 2 (SDK 1.2 or later), WebLogic Server can use the Java Security Manager in Java 2, which prevents untrusted code from performing actions that are restricted by the Java security policy file.

The JVM has security mechanisms built into it that allow you to define restrictions to code through a Java security policy file. The Java Security Manager uses the Java security policy file to enforce a set of permissions granted to classes. The permissions allow specified classes running in that instance of the JVM to permit or not permit certain runtime operations. In many cases, where the threat model does not include malicious code being run in the JVM, the Java Security Manager is unnecessary. However, when untrusted third-parties use WebLogic Server and untrusted classes are being run, the Java Security Manager may be useful.

To use the Java Security Manager with WebLogic Server, specify the
-Djava.security.policy and -Djava.security.manager arguments when starting WebLogic Server. The -Djava.security.policy argument specifies a filename (using a relative or fully-qualified pathname) that contains Java 2 security policies.

WebLogic Server provides a sample Java security policy file, which you can edit and use. The file is located at WL_HOME\server\lib\weblogic.policy.

Note: This sample policy file is not complete and is not sufficient to start WebLogic Server without first being modified. In particular, you will need to add various permissions based on your configuration in order for WLS and all applications to work properly.

For example, to successfully start WLS and deploy an application via the Administration Console, you might need to add permissions such as the following to weblogic.policy:

```
permission java.util.PropertyPermission "*", 'read';
permission java.lang.RuntimePermission "*";
permission java.io.FilePermission '<<ALL FILES>>', 'read,write';
```
permission javax.management.MBeanPermission '*', '*';

If you enable the Java Security Manager but do not specify a security policy file, the Java Security Manager uses the default security policies defined in the java.policy file in the $JAVA_HOME\jre\lib\security directory.

Define security policies for the Java Security Manager in one of the following ways:

- Section 8.2.1.1, "Modifying the weblogic.policy file for General Use"
- Section 8.2.1.2, "Setting Application-Type Security Policies"
- Section 8.2.1.3, "Setting Application-Specific Security Policies"

8.2.1.1 Modifying the weblogic.policy file for General Use

To use the Java Security Manager security policy file with your WebLogic Server deployment, you must specify the location of the weblogic.policy file to the Java Security Manager when you start WebLogic Server. To do this, you set the following arguments on the Java command line you use to start the server:

- java.security.manager tells the JVM to use a Java security policy file.
- java.security.policy tells the JVM the location of the Java security policy file to use. The argument is the fully qualified name of the Java security policy, which in this case is weblogic.policy.

For example:

```
java...-Djava.security.manager \
-Djava.security.policy="c:\weblogic\weblogic.policy"
```

Note: Be sure to use `==` instead of `=` when specifying the java.security.policy argument so that only the weblogic.policy file is used by the Java Security Manager. The `==` causes the weblogic.policy file to override any default security policy. A single equal sign `=` causes the weblogic.policy file to be appended to an existing security policy.

If you have extra directories in your CLASSPATH or if you are deploying applications in extra directories, add specific permissions for those directories to your weblogic.policy file.

Oracle recommends taking the following precautions when using the weblogic.policy file:

- Make a backup copy of the weblogic.policy file and put the backup copy in a secure location.
- Set the permissions on the weblogic.policy file via the operating system such that the administrator of the WebLogic Server deployment has write and read privileges and no other users have access to the file.
Using the Java Security Manager to Protect WebLogic Resources

Caution: The Java Security Manager is partially disabled during the booting of Administration and Managed Servers. During the boot sequence, the current Java Security Manager is disabled and replaced with a variation of the Java Security Manager that has the checkRead() method disabled. While disabling this method greatly improves the performance of the boot sequence, it also minimally diminishes security. The startup classes for WebLogic Server are run with this partially disabled Java Security Manager and therefore the classes need to be carefully scrutinized for security considerations involving the reading of files.

8.2.1.2 Setting Application-Type Security Policies

Set default security policies for Servlets, EJBs, and Java EE Connector Resource Adapters in the Java security policy file. The default security policies for Servlets, EJBs, and Resource Adapters are defined in the Java security policy file under the following codebases:

- Servlets—"file:/weblogic/application/defaults/Web"
- EJBs—"file:/weblogic/application/defaults/EJB"
- Resource Adapters—"file:/weblogic/application/defaults/Connector"

Note: These security policies apply to all Servlets, EJBs, and Resource Adapters deployed in the particular instance of WebLogic Server.

8.2.1.3 Setting Application-Specific Security Policies

Set security policies for a specific Servlet, EJB, or Resource Adapter by adding security policies to their deployment descriptors. Deployment descriptors are defined in the following files:

- Servlets—weblogic.xml
- EJBs—weblogic-ejb-jar.xml
- Resource Adapters—rar.xml

Note: The security policies for Resource Adapters follow the Java EE standard while the security policies for Servlets and EJBs follow the WebLogic Server extension to the Java EE standard.

Example 8–2 shows the syntax for adding a security policy to a deployment descriptor:

Example 8–2 Security Policy Syntax

<security-permission>
<description>

8-4 Programming Security for Oracle WebLogic Server
Allow getting the J2EEJ2SETest4 property
</description>
<security-permission-spec>
 grant {
 permission java.util.PropertyPermission "welcome.J2EEJ2SETest4","read";
 };
</security-permission-spec>
</security-permission>

Note: The `<security-permission-spec>` tag cannot currently be added to a weblogic-application.xml file, you are limited to using this tag within a weblogic-ejb-jar.xml, rar.xml, or weblogic.xml file. Also, variables are not supported in the `<security-permission-spec>` attribute.

8.2.2 Using Printing Security Manager

Printing Security Manager is an enhancement to the Java Security Manager. You can use Printing Security Manager to identify all of the required permissions for any Java application running under Java Security Manager. Unlike The Java Security Manager, which identifies needed permissions one at a time, the Printing Security Manager identifies all of the needed permissions without intervention.

For more information on Java Security Manager, see the Java Security Web page at http://download.oracle.com/javase/6/docs/technotes/guides/security/overview/jsoverview.html.

Note: Do not use Printing Security Manager in production environments. It is intended solely for development to identify missing permissions.

It does **not** prevent untrusted code operations.

8.2.2.1 Printing Security Manager Startup Arguments

To use the Java Security Manager with WebLogic Server, you specify two arguments when starting WebLogic Server:

- `-Djava.security.manager=weblogic.security.psm.PrintingSecurityManager`

 The `-Djava.security.manager` argument tells WebLogic Server which Java Security Manager to start, in this case the Printing Security Manager.

- `-Djava.security.policy`

 The `-Djava.security.policy` argument specifies a filename (using a relative or fully-qualified pathname) that contains Java 2 security policies. WebLogic Server provides a sample Java security policy file, which you can edit and use. The file is located at `WL_HOME\server\lib\weblogic.policy`.

 By default, `startWebLogic.cmd(sh)` already includes the `-Djava.security.policy=$WL_HOME/server/lib/weblogic.policy` property, so you do not need to specify it unless you want to use another Java security policy file.
Using the Java Security Manager to Protect WebLogic Resources

Note: This sample policy file is not complete and is not sufficient to start WebLogic Server without first being modified. In particular, you will need to add various permissions based on your configuration in order for WLS and all applications to work properly.

See the following sections for additional information:

- Section 8.2.1.1, "Modifying the weblogic.policy file for General Use"
- Section 8.2.1.2, "Setting Application-Type Security Policies"
- Section 8.2.1.3, "Setting Application-Specific Security Policies"

8.2.2.2 Starting WebLogic Server With Printing Security Manager

To start WebLogic Server with the Printing Security Manager from a UNIX shell, pass the following argument to the startWebLogic.sh script in `DOMAIN_HOME`. This example uses the default weblogic.policy Java policy file from startWeblogic.sh.

```
startWeblogic.sh
-Xbootclasspath/p:$MWHOME/modules/com.bea.core.weblogic.security.psm_1.0.0.0.jar
-Djava.security.manager=weblogic.security.psm.PrintingSecurityManager
```

For a Windows system without a UNIX shell, first set the startup options in `JAVA_OPTIONS`, and then use the `startWebLogic.cmd` script in `DOMAIN_HOME` to start WebLogic Server. This example uses the default weblogic.policy Java policy file from `startWeblogic.cmd`.

```
$ set JAVA_OPTIONS=-Xbootclasspath/p:$MWHOME/modules/com.bea.core.weblogic.security.psm_1.0.0.0.jar
-Djava.security.manager=weblogic.security.psm.PrintingSecurityManager

$ Domain_HOME\startWeblogic.cmd
```

8.2.2.3 Writing Output Files

Printing Security Manager generates output that lists which code source needs which permissions. It also generates a policy grant that you can copy and paste into the policy file.

By default, output is to System.out. You can configure output files via two arguments:

- `-Doracle.weblogic.security.manager.printing.file=psm_perms.txt`
- `-Doracle.weblogic.security.manager.printing.generated.grants.file=psm_grants.txt`

The value of the first system argument is a file to which Printing Security Manager writes all missing-permission messages. The value of the second argument is a file to which Printing Security Manager writes the missing policy grants.

For example, for a Windows system without a UNIX shell, add the argument to `JAVA_OPTIONS`:

```
$ set JAVA_OPTIONS=-Xbootclasspath/p:$MWHOME/modules/com.bea.core.weblogic.security.psm_1.0.0.0.jar
-Djava.security.manager=weblogic.security.psm.PrintingSecurityManager
-Doracle.weblogic.security.manager.printing.file=psm_perms.txt

$ startWeblogic.cmd
```
If you do not specify the full path for the output files, they are created in `DOMAIN_HOME`.

8.2.3 Using the Java Authorization Contract for Containers

The Java Authorization Contract for Containers (JACC) is part of Java EE. JACC extends the Java 2 permission-based security model to EJBs and Servlets. JACC is defined by JSR-115 (http://www.jcp.org/en/jsr/detail?id=115).

JACC provides an alternate authorization mechanism for the EJB and Servlet containers in a WebLogic Server domain. As shown in Table 8–2, when JACC is configured, the WebLogic Security framework access decisions, adjudication, and role mapping functions are not used for EJB and Servlet authorization decisions.

WebLogic Server implements a JACC provider which, although fully compliant with JSR-115, is not as optimized as the WebLogic Authorization provider. The Java JACC classes are used for rendering access decisions. Because JSR-115 does not define how to address role mapping, WebLogic JACC classes are used for role-to-principal mapping. See http://www.oracle.com/technetwork/java/javaee/javaacc-138697.html for information on developing a JACC provider.

Note: The JACC classes used by WebLogic Server do not include an implementation of a Policy object for rendering decisions but instead rely on the `java.security.Policy` (http://download.oracle.com/javase/6/docs/api/java/security/Policy.html) object.

This section discusses the following topics:

- [Section 8.2.3.1, "Comparing the WebLogic JACC Provider with the WebLogic Authentication Provider"](#)
- [Section 8.2.3.2, "Enabling the WebLogic JACC Provider"](#)

Table 8–2 shows which providers are used for role mapping when JACC is enabled.

Table 8–1 When JACC is Enabled

<table>
<thead>
<tr>
<th>Status</th>
<th>Provider used for EJB/Servlet Authorization and Role Mapping</th>
<th>Provider used for all other Authorization and Role Mapping</th>
<th>EJB/Servlet Roles and Policies Can be Viewed and Modified by the Administration Console</th>
</tr>
</thead>
<tbody>
<tr>
<td>JACC is enabled</td>
<td>JACC provider</td>
<td>WebLogic Security Framework providers</td>
<td>No</td>
</tr>
<tr>
<td>JACC is not enabled</td>
<td>WebLogic Security Framework providers</td>
<td>WebLogic Security Framework providers</td>
<td>Yes, depending on settings</td>
</tr>
</tbody>
</table>

Using the Java Security Manager to Protect WebLogic Resources

8.2.3.1 Comparing the WebLogic JACC Provider with the WebLogic Authentication Provider

The WebLogic JACC provider fully complies with JSR-115; however, it does not support dynamic role mapping, nor does it address authorization decisions for resources other than EJBs and Servlets. For better performance, and for more flexibility regarding security features, Oracle recommends using SSPI-based providers.

Table 8–2 compares the features provided by the WebLogic JACC provider with those of the WebLogic Authorization provider.

Table 8–2 Comparing the WebLogic JACC Provider with the WebLogic Authorization Provider

<table>
<thead>
<tr>
<th>WebLogic JACC Provider</th>
<th>WebLogic Authorization Provider</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implements the JACC specification (JSR-115)</td>
<td>Value-added security framework</td>
</tr>
<tr>
<td>Addresses only EJB and Servlet deployment/authorization decisions</td>
<td>Addresses deployment/authorization decisions</td>
</tr>
<tr>
<td>Uses the java.security.Policy object to render decisions</td>
<td>Allows for multiple authorization/role providers</td>
</tr>
<tr>
<td>Static role mapping at deployment time</td>
<td>Dynamic role mapping</td>
</tr>
<tr>
<td>Java EE permissions control access</td>
<td>Entitlements engine controls access</td>
</tr>
<tr>
<td>Role and role-to-principal mappings are modifiable only through deployment descriptors</td>
<td>Roles and role-to-principal mappings are modifiable through deployment descriptors and the Administration Console</td>
</tr>
</tbody>
</table>

8.2.3.2 Enabling the WebLogic JACC Provider

To enable the WebLogic JACC Provider from the command line, you must specify the following system property/value pairs:

- **Property:** java.security.manager
 - **Value:** No value required.
- **Property:** java.security.policy
 - **Value:** A valid weblogic.policy file, specified using either a relative or an absolute pathname
- **Property:** javax.security.jacc.PolicyConfigurationFactory.provider
 - **Value:** No value required.

Note: In a domain, either enable JACC on all servers or on none. The reason is that JACC is server-specific while the WebLogic Security Framework is realm/domain specific. If you enable JACC, either by using the WebLogic JACC provider or (recommended) by creating your own JACC provider, you are responsible for keeping EJB and Servlet authorization policies synchronized across the domain. For example, applications are redeployed each time a server boots. If a server configured for JACC reboots without specifying the JACC options on the command line, the server will use the default WebLogic Authorization provider for EJB and Servlet role mapping and authorization decisions.
■ Value:
 weblogic.security.jacc.simpleprovider.PolicyConfigurationFactoryImpl

■ Property: javax.security.jacc.policy.provider
■ Value: weblogic.security.jacc.simpleprovider.SimpleJACCPolicy
■ Property: weblogic.security.jacc.RoleMapperFactory.provider
■ Value:
 weblogic.security.jacc.simpleprovider.RoleMapperFactoryImpl

For example, assuming a properly configured weblogic.policy file, the following command line will enable the WebLogic JACC provider:

```
# ./startWebLogic.sh -Djava.security.manager
-Djava.security.policy=<pathname>/weblogic.policy 
-Djavax.security.jacc.policy.provider=weblogic.security.jacc.simpleprovider.SimpleJACCPolicy 
-Djavax.security.jacc.PolicyConfigurationFactory.provider=weblogic.security.jacc.simpleprovider.PolicyConfigurationFactoryImpl 
-Dweblogic.security.jacc.RoleMapperFactory.provider=weblogic.security.jacc.simpleprovider.RoleMapperFactoryImpl
```

Note: Use -Djava.security.policy=<pathname>/weblogic.security if you want to override any default security policy. A single equal sign (=) causes the weblogic.policy file to be appended to an existing security policy.
This section describes the SAML APIs used with WebLogic Server.

The Security Assertion Markup Language, SAML, is an XML-based protocol for exchanging security information between disparate entities. The SAML standard defines a framework for exchanging security information between software entities on the Web. SAML security is based on the interaction of asserting and relying parties.

SAML provides single sign-on capabilities; users can authenticate at one location and then access service providers at other locations without having to log in multiple times.

WebLogic Server supports SAML versions 2.0 and 1.1. The WebLogic Server implementation:

- Supports the HTTP POST and HTTP Artifact bindings for the Web SSO profile for SAML 1.1. For SAML 2.0, WebLogic Server adds the HTTP Redirect binding for the Web SSO profile.
- Supports SAML authentication and attribute statements (does not support SAML authorization statements)

For a general description of SAML and SAML assertions in a WebLogic Server environment, see "Security Assertion Markup Language (SAML)" in *Understanding Security for Oracle WebLogic Server*.

For information on configuring a SAML credential mapping provider, see "Configuring a SAML Credential Mapping Provider for SAML 1.1" and "Configuring a SAML 2.0 Credential Mapping Provider for SAML 2.0" in *Securing Oracle WebLogic Server*.

This section covers the following topics:

- Section 9.1, "SAML API Description"
- Section 9.2, "Custom POST Form Parameter Names"
- Section 9.3, "Creating Assertions for Non-WebLogic SAML 1.1 Relying Parties"
- Section 9.4, "Configuring SAML SSO Attribute Support"
9.1 SAML API Description

Table 9–1 lists the WebLogic SAML APIs. Table 9–2 lists the WebLogic SAML 2.0 APIs. See the Javadoc for details.

<table>
<thead>
<tr>
<th>WebLogic SAML API</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>weblogic.security.providers.saml</td>
<td>The WebLogic SAML package.</td>
</tr>
<tr>
<td>SAMLAssertionStore</td>
<td>Interface that defines methods for storing and retrieving assertions for the Artifact profile. This interface is deprecated in favor of SAMLAssertionStoreV2.</td>
</tr>
<tr>
<td>SAMLAssertionStoreV2</td>
<td>The SAMLAssertionStoreV2 interface extends the SAMLAssertionStore interface, adding methods to support identification and authentication of the destination site requesting an assertion from the SAML ARS. Note that V2 refers to the second version of the WebLogic SAML provider, not to version 2 of the SAML specification.</td>
</tr>
<tr>
<td>SAMLCredentialAttributeMapper</td>
<td>Interface used to perform mapping from Subject to SAMLAssertion attributes.</td>
</tr>
<tr>
<td>SAMLCredentialNameMapper</td>
<td>Interface that defines methods used to map subject information to fields in a SAML assertion.</td>
</tr>
<tr>
<td>SAMLIdentityAssertionAttributeMapper</td>
<td>Interface used to perform mapping from SAML Attribute Statement to Attribute Principals.</td>
</tr>
<tr>
<td>SAMLIdentityAssertionNameMapper</td>
<td>Interface that defines methods used to map information from a SAML assertion to user and group names.</td>
</tr>
<tr>
<td>SAMLUsedAssertionCache</td>
<td>Interface that defines methods for caching assertion IDs so that the POST profile one-use policy can be enforced. Classes implementing this interface must have a public no-arg constructor.</td>
</tr>
<tr>
<td>SAMLNameMapperInfo</td>
<td>Instances of this class are used to pass user and group information to and from the name mappers. The class also defines several useful constants.</td>
</tr>
<tr>
<td>SAMLAssertionStoreV2.AssertionInfo</td>
<td>The AssertionInfo class is returned by SAMLAssertionStoreV2.retrieveAssertionInfo(). It contains the retrieved assertion and related information. An implementation of the SAMLAssertionStoreV2 interface would have to return this class.</td>
</tr>
<tr>
<td>SAMLAttributeInfo</td>
<td>A class that represents a single attribute of a SAMLAssertion AttributeStatement.</td>
</tr>
<tr>
<td>SAMLAttributeStatementInfo</td>
<td>A class that represents an AttributeStatement in a SAML Assertion.</td>
</tr>
<tr>
<td>SAMLNameMapperInfo</td>
<td>The SAMLNameMapperInfo is used to represent user name and group information for SAML assertions.</td>
</tr>
<tr>
<td>SAMLCommonPartner</td>
<td>Abstract representation of attributes common to a SAML 1.1 Partner.</td>
</tr>
</tbody>
</table>
Table 9–1 WebLogic SAML APIs

<table>
<thead>
<tr>
<th>WebLogic SAML API</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAML-RelyingParty</td>
<td>Represents a SAML Relying Party entry in the SAML Relying Party registry.</td>
</tr>
<tr>
<td>SAML-AssertingParty</td>
<td>Represents a SAML Asserting Party entry in the LDAP Asserting Party registry.</td>
</tr>
<tr>
<td>SAML-Partner</td>
<td>Abstract representation of a SAML partner.</td>
</tr>
</tbody>
</table>

Note: The SAML name mapper classes are required to be in the system classpath. If you create a custom SAMLIdentityAssertionNameMapper, SAMLCredentialNameMapper, SAMLAssertionStore, or SAMLUsedAssertionCache, you must place the respective class in the system classpath.

Table 9–2 WebLogic SAML 2.0 APIs

<table>
<thead>
<tr>
<th>WebLogic SAML 2.0 APIs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>com.bea.security.saml2.providers</td>
<td>Provides interfaces and classes for the configuration, control, and monitoring of SAML 2.0 security providers in a WebLogic security realm.</td>
</tr>
<tr>
<td>SAML2AttributeInfo</td>
<td>A class that represents a single attribute of a SAML 2.0 Assertion AttributeStatement.</td>
</tr>
<tr>
<td>SAML2AttributeStatementInfo</td>
<td>A class that represents an AttributeStatement in a SAML 2.0 Assertion.</td>
</tr>
<tr>
<td>SAML2CredentialAttributeMapper</td>
<td>Interface used to perform mapping from Subject to SAML 2.0 Assertion attributes.</td>
</tr>
<tr>
<td>SAML2CredentialNameMapper</td>
<td>Interface used to perform the mapping of user and group information to SAML 2.0 assertions.</td>
</tr>
<tr>
<td>SAML2IdentityAssertionMapper</td>
<td>Interface used to perform mapping from SAML 2.0 Attribute Statement to Attribute Principals.</td>
</tr>
<tr>
<td>SAML2IdentityAssertionNameMapper</td>
<td>Interface used to perform the mapping of user information contained in a SAML 2.0 assertion to a local user name.</td>
</tr>
<tr>
<td>SAML2NameMapperInfo</td>
<td>The SAML2NameMapperInfo is used to represent user name and group information contained in SAML 2.0 assertions.</td>
</tr>
<tr>
<td>com.bea.security.saml2.providers.registry</td>
<td>Abstract interfaces for SAML 2.0 Identity Provider and Service Provider partners and metadata.</td>
</tr>
<tr>
<td>BindingClientPartner</td>
<td>Binding Client partner is a partner that supports backend channel communication.</td>
</tr>
<tr>
<td>IdPPartner</td>
<td>Abstract representation of a SAML 2.0 Identity Provider partner.</td>
</tr>
<tr>
<td>Endpoint</td>
<td>Abstract representation of a SAML 2.0 service endpoint.</td>
</tr>
<tr>
<td>IndexedEndpoint</td>
<td>This class represents the end point that could be indexed, like Artifact Resolution Service’s end point.</td>
</tr>
</tbody>
</table>
9.2 Custom POST Form Parameter Names

The parameters names passed to the POST form when a custom POST form is specified for SAML POST profile handling depend on which SAML provider is configured.

- For the WebLogic Server 9.1 and higher, Federation Services implementation (in effect when V2 providers are configured), see Table 9–3.
- For the WebLogic Server 9.0 SAML services implementation (in effect when V1 providers are configured), see Table 9–4.

The tables provide the parameter names and their data types (required for casting the returned Java Object).

For both implementations, the SAML response itself is passed using the parameter name specified by SAML:

SAMLResponse (String): The base64-encoded SAML Response element.

Table 9–3 SAML V2 Provider Custom POST Form Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TARGET (String)</td>
<td>The TARGET URL specified as a query parameter on the incoming Intersite Transfer Service (ITS) request.</td>
</tr>
<tr>
<td>SAML_AssertionConsumerURL (String)</td>
<td>The URL of the Assertion Consumer Service (ACS) at the destination site (where the form should be POSTed).</td>
</tr>
</tbody>
</table>
If you use the SAML 1.1 Credential Mapping Provider Version 2 to configure a source site, but configure a third-party SAML Relying Party that is implemented on a non-WebLogic Server platform, the SAML assertions generated by WebLogic Server might not support all of the attributes required by the configured third-party SAML Relying Party. In this case the Relying Party might be unable to work with the Asserting Party because certain expected attributes of the assertion are not available.

You can create a custom SAML name mapper that maps Subjects to the specific SAML 1.1 assertion attributes required by your third-party SAML Relying Party by implementing the `SAMLCredentialAttributeMapper` interface, which is provided by WebLogic Server. Details about the `SAMLCredentialAttributeMapper` are available in the Oracle WebLogic Server API Reference.

The following sections explain how to create a custom SAML name mapper:

- **Section 9.3.1, "Overview of Creating a Custom SAML Name Mapper"**
- **Section 9.3.2, "Do You Need Multiple SAMLCredentialAttributeMapper Implementations?"**
- **Section 9.3.3, "Classes, Interfaces, and Methods"**
- **Section 9.3.4, "Example Custom SAMLCredentialAttributeMapper Class"**
- **Section 9.3.5, "Make the Custom SAMLCredentialAttributeMapper Class Available in the Console"**

9.3.1 Overview of Creating a Custom SAML Name Mapper

To create a custom implementation of the `SAMLCredentialAttributeMapper` interface, you must do the following:

- Use the following classes to describe the attribute data for an assertion:
 - `SAMLAttributeStatementInfo`
 - `SAMLAttributeInfo`
Also implement the `SAMLCredentialNameMapper` interface. The
`SAMLCredentialAttributeMapper` and `SAMLCredentialNameMapper`
interfaces must both be in the same implementation.

By also implementing the `SAMLCredentialNameMapper` interface, you can later
use the WebLogic Server Administration Console to set the
NameMapperClassName attribute to the class name of this
`SAMLCredentialAttributeMapper` instance.

You configure the custom SAML name mapper in the active security realm, using
the User Name Mapper Class Name attribute of the SAML Credential Mapping
Provider Version 2.

9.3.2 Do You Need Multiple `SAMLCredentialAttributeMapper` Implementations?

The name mapper class name you configure for a SAML Credential Mapping Provider
Version 2, as described in Section 9.3.5, "Make the Custom
`SAMLCredentialAttributeMapper` Class Available in the Console," is used as the
default for that provider. However, you can optionally set a name mapper class name
specific to any or all of the Relying Parties configured for the SAML Credential
Mapping Provider Version 2. Setting the name mapper class name in this manner
overrides the default value. If the configured SAML Relying Parties require different
attributes, you can create multiple `SAMLCredentialAttributeMapper`
implementations.

9.3.3 Classes, Interfaces, and Methods

This section describes the new classes, interfaces, and methods that you must use
when creating your custom SAML name mapper implementation. See Section 9.3.4,
"Example Custom `SAMLCredentialAttributeMapper` Class," for example code.

9.3.3.1 `SAMLAttributeStatementInfo` Class

Example 9–1 shows the methods and arguments in the
`SAMLAttributeStatementInfo` class. Embedded comments provide additional
information and context.

Example 9–1 Listing of `SAMLAttributeStatementInfo` Class

```java
/**
 * A class that represents the attributes of an AttributeStatement
 * in a SAML Assertion
 */

class SAMLAttributeStatementInfo {

    /**
     * Constructs a `SAMLAttributeStatementInfo` with
     * no attributes. The `SAMLAttributeStatementInfo`
     * represents a empty `SAMLAttributeStatement`. It is
     * expected that `SAMLAttributeInfo` elements will be
     * added to this instance.
     *
     * Public `SAMLAttributeStatementInfo`();

    /**
     * Constructs a `SAMLAttributeStatementInfo` containing multiple
     * `SAMLAttributeInfo` elements. The `SAMLAttributeStatementInfo`
```
* represents a SAML AttributeStatement with multiple Attributes.

* @param data SAMLAttributeInfo

public SAMLAttributeStatementInfo(Collection data);

/**
 * returns a Collection of SAMLAttributeInfo elements. The
 * collection represents the Attributes contained by
 * a single AttributeStatement of a SAML Assertion
 * The returned Collection is immutable and may be empty.
 * @return Collection

public Collection getAttributeInfo();

/**
 * adds a Collection of SAMLAttributeInfo instances to
 * this SAMLAttributeStatementInfo instance, to the
 * end of the existing list, in the order that the
 * param Collection iterates through the Collection.
 * See SAMLAttributeInfo(String, String, Collection)
 * for information on parameter handling.
 * @param data

public void setAttributeInfo(Collection data);

/**
 * Adds a single SAMLAttributeInfo instance to this
 * SAMLAttributeStatementInfo instance, at the end of
 * the existing list.
 * See SAMLAttributeInfo(String, String, Collection)
 * for information on parameter handling.
 * @param info

public void addAttributeInfo(SAMLAttributeInfo info);

9.3.3.1.1 SAMLAttributeInfo Class Example 9–2 shows the methods and arguments in the
SAMLAttributeInfo class. Embedded comments provide additional information
and context.

Example 9–2 Listing of SAMLAttributeInfo Class

/**
 * A class that represents a single Attribute of a SAML Assertion
 * AttributeStatement.
 */
class SAMLAttributeInfo {

/**
 * Constructs a SAMLAttributeInfo instance with all null fields
 */
 public SAMLAttributeInfo();

/**
 * Constructs a SAMLAttributeInfo instance representing the SAML 1.1
 * Attribute fields
 * null elements of the Collection are ignored.
 * Elements with null ‘name’ or ‘namespace’ fields
 * are ignored; the resulting SAMLAttributeInfo will not
 * be included in a created SAMLAssertion. Null
 * attribute values are added as the empty string (ie, "").
 * @param name String
 * @param namespace String
 * @param values Collection of String values
 */
 public SAMLAttributeInfo(String name, String namespace, Collection values;

/**
 * Constructs a SAMLAttributeInfo instance representing the attribute fields
 * See SAMLAttributeInfo(String, String, Collection) for
 * information on parameter handling.
 * @param name String
 * @param namespace String
 * @param value String
 */
 public SAMLAttributeInfo(String name, String namespace, String value);

/**
 * sets the name and namespace of this attribute
 * See SAMLAttributeInfo(String, String, Collection) for
 * information on parameter handling.
 * @param name String, cannot be null
 * @param namespace String, cannot be null
 */
 public void setAttributeName(String name, String namespace);

/**
 * returns the name of this attribute.
 * @return String
 */
 public String getAttributeName();

/**
 * returns a String representing this attribute’s namespace
 * @return String
 */
 public String getAttributeNamespace();
}
public void setAttributeValues(Collection values);

public void addAttributeValue(String value);

public Collection getAttributeValues();

9.3.3.2 SAMLCredentialAttributeMapper Interface

The SAML Credential Mapping Provider Version 2 determines if the custom SAML name mapper is an implementation of the attribute mapping interface and, if so, calls the methods of the attribute mapping interface to obtain SAML attribute name/value pairs to write to the generated SAML assertion. If the implementation does not support the attribute mapping interface, attribute mapping is silently skipped.

The SAML Credential Mapping Provider Version 2 does not validate the attribute names or values obtained from the custom attribute mapper. Attribute names and values are treated as follows:

- Any attribute with a non-null attribute name and namespace is written to the SAML assertion.
- An attribute with a null attribute name or namespace is ignored, and subsequent attributes of the same Collection are processed normally.
- Any attribute with a null value is written to the SAMLAttributeInfo instances with a value of "". The resulting SAML assertion is written as the string <AttributeValue></AttributeValue>.

Example 9–3 Listing of SAMLCredentialAttributeMapper Interface

/**
 * Interface used to perform mapping of Subject to SAML assertions
 * attributes.
 */
public interface SAMLCredentialAttributeMapper
{
/**
 * Maps a <code>Subject</code> to a set of values used to construct a
 * <code>SAMLAttributeStatementInfo</code> element for a SAML assertion.
 * The returned <code>Collection</code> contains
 * SAMLAttributeStatementInfo elements, each element
 * of which will be used to
 * construct a SAML <code>AttributeStatement</code> element for the SAML
 * assertion.
 * @param subject The <code>Subject</code> that should be mapped.
 * @param handler The <code>ContextHandler</code> passed to the SAML
 * Credential Mapper.
 * @return A <code>Collection</code> of SAMLAttributeStatementInfo
 * instances, or <code>null</code> if no mapping is made.
 */

 public Collection mapAttributes(Subject subject, ContextHandler handler);
}

9.3.3.2.1 New Methods for SAMLNameMapperInfo Class

The SAMLCredentialNameMapper calls new methods on the SAMLNameMapperInfo
class to get and set the authentication method attribute to be written to the SAML
Assertion.

The new methods are shown in Example 9–4. Embedded comments provide
additional information and context.

Example 9–4 Listing of SAMLNameMapperInfo Class

public class SAMLNameMapperInfo
{
 [existing definition]

 /**
 * Called by the SAML Credential Name Mapper implementation to set
 * the authentication method attribute to be written to the SAML Assertion.
 * See SAML 1.1 Assertions and Protocols, Section 7.1 for possible
 * values returned.
 * @param value the Authentication Method
 */

 public void setAuthenticationMethod(String value);

 /**
 * Called by the SAML Credential Mapper to retrieve the authentication
 * method attribute to be written to the SAML Assertion. See SAML 1.1
 * Assertions and Protocols, Section 7.1 for possible values returned.
 */
9.3.4 Example Custom SAMLCredentialAttributeMapper Class

Example 9–5 shows an example implementation of the SAMLCredentialNameMapper and SAMLCredentialAttributeMapper interfaces.

While the SAMLCredentialNameMapper example implementation maps user and group information stored in the Subject, the SAMLCredentialAttributeMapper example implementation maps attribute information stored in the ContextHandler.

This example does not show how the attributes are placed in the ContextHandler.

Note that you could implement the SAMLCredentialAttributeMapper to map information stored in the Subject rather than the ContextHandler.

Embedded comments provide additional information and context.

Example 9–5 Listing of Example Custom SAMLCredentialAttributeMapper Class

```java
import java.util.ArrayList;
import java.util.Collection;
import java.util.Set;
import javax.security.auth.Subject;
import weblogic.security.providers.saml.SAMLAttributeStatementInfo;
import weblogic.security.providers.saml.SAMLAttributeInfo;
import weblogic.security.providers.saml.SAMLCredentialNameMapper;
import weblogic.security.providers.saml.SAMLCredentialAttributeMapper;
import weblogic.security.providers.saml.SAMLNameMapperInfo;
import weblogic.security.service.ContextHandler;
import weblogic.security.service.ContextElement;
import weblogic.security.spi.WLSGroup;
import weblogic.security.spi.WLSUser;

/**
 * @exclude
 *
 * The <code>CustomSAMLAttributeMapperImpl</code> class implements
 * name and attribute mapping for the SAML Credential Mapper.
 * 
 * @author Copyright (c) 2004 by BEA Systems, Inc. All Rights Reserved.
 */

public class CustomSAMLAttributeMapperImpl implements
    SAMLCredentialNameMapper, SAMLCredentialAttributeMapper {

    /**
     * Your logging code here
     */

    private final static String defaultAuthMethod =
        "urn:oasis:names:tc:SAML:1.0:am:unspecified";

    private final static String SAML_CONTEXT_ATTRIBUTE_NAME =
        "com.bea.contextelement.saml.context.attribute.name";

    private String nameQualifier = null;
    private String authMethod = defaultAuthMethod;
```
public CustomSAMLMapperImpl()
{
 // make constructor public
}

/**
 * Set the name qualifier value
 */
public synchronized void setNameQualifier(String nameQualifier) {
 this.nameQualifier = nameQualifier;
}

/**
 * Map a <code>Subject</code> and return mapped user and group
 * info as a <code>SAMLNameMapperInfo</code> object.
 */
public SAMLNameMapperInfo mapSubject(Subject subject, ContextHandler handler) {
 // Provider checks for null Subject...
 Set subjects = subject.getPrincipals(WLSUser.class);
 Set groups = subject.getPrincipals(WLSGroup.class);
 String userName = null;

 if (subjects == null || subjects.size() == 0) {
 yourlogcode("mapSubject: No valid WLSUser principals
found in Subject, returning null");
 return null;
 }

 if (groups == null || groups.size() == 0) {
 yourlogcode("mapSubject: No valid WLSGroup principals
found in Subject, continuing");
 }

 if (subjects.size() != 1) {
 yourlogcode("mapSubject: More than one WLSUser
principal found in Subject, taking first user only");
 }

 userName = ((WLSUser)subjects.iterator().next()).getName();
 if (userName == null || userName.equals("") {
 yourlogcode("mapSubject: Username string is null or
empty, returning null");
 return null;
 }

 // Return mapping information...
 yourlogcode("mapSubject: Mapped subject: qualifier: " +
 nameQualifier + ", name: " + userName + ", groups: " + groups);
 return new SAMLNameMapperInfo(nameQualifier, userName,
 groups);
}

/**
 * Map a <code>String</code> subject name and return mapped user and group
 * info as a <code>SAMLNameMapperInfo</code> object.
 */
public SAMLNameMapperInfo mapName(String name, ContextHandler handler) {
 yourlogcode("mapName: Mapped name: qualifier: " +
 nameQualifier + ", name: " + name);
 return new SAMLNameMapperInfo(nameQualifier, name, null);
/**
 * Returns the SAML AttributeName for group information.
 * @return The AttributeName.
 */

public String getGroupAttrName() {
 return SAMLNameMapperInfo.BEA_GROUP_ATTR_NAME;
}

/**
 * Returns the SAML AttributeNamespace for group information.
 * @return The AttributeNamespace.
 */

public String getGroupAttrNamespace() {
 return SAMLNameMapperInfo.BEA_GROUP_ATTR_NAMESPACE;
}

/**
 * set the auth method.
 * @param method String
 */

public void setAuthenticationMethod(String method) {
 if (method != null)
 authMethod = method;
}

/**
 * get the auth method
 * @return method String
 */

public String getAuthenticationMethod() {
 return authMethod;
}

/**
 * maps a Subject/Context to a Collection of SAMLAttributeStatementInfo
 * instances.
 * @return <code>Collection</code>
 */

public Collection mapAttributes(Subject subject, ContextHandler handler) {
 yourlogcode("mapAttributes: Subject: "+subject.toString()+",
 ContextHandler: "+handler.toString());

 Object element = handler.getValue(SAML_CONTEXT_ATTRIBUTE_NAME);

 yourlogcode("mapAttributes: got element from ContextHandler");
 yourlogcode("mapAttributes: element is a:"+element.getClass().getName());
 TestAttribute[] tas = (TestAttribute[])element;

 /*
 * loop through all test attributes and write a SAMLAttributeStatementInfo
 * for each one.
 */

 ArrayList statementList = new ArrayList();
for (int k = 0; k < tas.length; k++)
{
 ArrayList al = null;
 String[] values = tas[k].getValues();
 if (values != null)
 {
 al = new ArrayList();
 for (int i = 0; i < values.length; i++)
 if (values[i] != null)
 al.add(values[i]);
 else al.add("");
 }

 SAMLAtributeInfo ai = new SAMLAtributeInfo(tas[k].getName(),
 tas[k].getNamespace(), al);

 SAMLAtributeStatementInfo asi = new
 SAMLAtributeStatementInfo();
 asi.addAttributeInfo(ai);
 statementList.add(asi);
}
return statementList;
}

9.3.5 Make the Custom SAMLCredentialAttributeMapper Class Available in the Console

To have the SAML Credential Mapping Provider Version 2 use this
SAMLCredentialAttributeMapper instance, you use the WebLogic Server
Administration Console to set the existing NameMapperClassName attribute to the
class name of this SAMLCredentialAttributeMapper instance.

That is, you use the Console control for the name mapper class name attribute to
specify the class name of the SAMLCredentialAttributeMapper in the active
security realm.

You can configure the user name mapper class name attribute in one of the following
ways:

- Once for the SAML Provider Version 2
- Individually for one or more Relying Parties
- Both for the SAML Credential Mapping Provider Version 2, and individually for
 Relying Parties.

To use a custom user name mapper with the WebLogic SAML Credential Mapping
Provider Version 2:

1. If you have not already done so, in the Change Center of the Administration
 Console, click Lock & Edit.
2. On the Security Realms page, select the name of the realm you are configuring (for
 example, TestRealm).
3. Expand Providers > Credential Mapping and select the name of the SAML
 Credential Mapping Provider Version 2.
4. Select the Provider Specific tab.
5. In the Default Name Mapper Class Name field, enter the class name of your
 SAMLCredentialAttributeMapper implementation.
 The class name must be in the system classpath.
6. Click Save.

7. To activate these changes, in the Change Center, click Activate Changes.

When you configure a SAML Relying Party, you can optionally set a name mapper class specific to that Relying Party, which will override the default value you set here for the default name mapper class name.

For details about how to set a name mapper class name in the Administration Console, see "Configure a custom user name mapper" in the Oracle WebLogic Server Administration Console Help.

9.4 Configuring SAML SSO Attribute Support

This section describes SAML SSO attributes and how to use them with SAML 2.0 and SAML 1.1. The following topics are described:

- Section 9.4.1, "What Are SAML SSO Attributes?"
- Section 9.4.2, "New API's for SAML Attributes"
- Section 9.4.3, "SAML 2.0 Basic Attribute Profile Required"
- Section 9.4.4, "Passing Multiple Attributes to SAML Credential Mappers"
- Section 9.4.5, "How to Implement SAML Attributes"
- Section 9.4.6, "Examples of the SAML 2.0 Attribute Interfaces"
- Section 9.4.7, "Examples of the SAML 1.1 Attribute Interfaces"
- Section 9.4.8, "Make the Custom SAML Credential Attribute Mapper Class Available in the Console"
- Section 9.4.9, "Make the Custom SAML Identity Asserter Class Available in the Console"

9.4.1 What Are SAML SSO Attributes?

A SAML assertion is a piece of data produced by a SAML authority regarding either an act of authentication performed on a subject, attribute information about the subject, or authorization data applying to the subject with respect to a specified resource.

The SAML specification (see http://www.oasis-open.org) allows additional, unspecified information about a particular subject to be exchanged between SAML partners as attribute statements in an assertion. A SAML attribute assertion is therefore a particular type of SAML assertion that conveys site-determined information about attributes of a Subject.

In previous versions of WebLogic Server, the SAML 1.1 Credential Mapping provider supported attribute information, stored in the Subject, that specified the groups to which the identity contained in the assertion belonged.

In this release, WebLogic Server enhances the SAML 1.1 and 2.0 Credential Mapping provider and Identity Assertion provider mechanisms to support the use of a custom attribute mapper that can obtain additional attributes (other than group information) to be written into SAML assertions, and to then map attributes from incoming SAML assertions.

To do this:
The SAML credential mapper (on the SAML Identity Provider site) determines how to package the attributes based on the existence of this custom attribute mapper.

The SAML identity asserter (on the SAML Service Provider site) determines how to get the attributes based on the configuration of the custom name mapper.

The Java Subject is used to make the attributes extracted from assertions available to applications. This requires that the SAML Authentication provider be configured and the virtual user be enabled on a SAML partner.

9.4.2 New API's for SAML Attributes

This release includes the following new SAML attribute API's for SAML 2.0:

- `SAML2AttributeInfo`
- `SAML2AttributeStatementInfo`
- `SAML2CredentialAttributeMapper`
- `SAML2IdentityAssertionAttributeMapper`

For SAML 1.1 you can instead use the following existing SAML attribute API's:

- `SAMLAttributeInfo`
- `SAMLAttributeStatementInfo`
- `SAMLCredentialNameMapper`
- `SAMLCredentialAttributeMapper`
- `SAMLIdentityAssertionAttributeMapper`

Subsequent sections describe the use of these SAML attribute API's.

9.4.3 SAML 2.0 Basic Attribute Profile Required

SAML 1.1 does not prescribe the name format of the SAML attribute.

However, only the SAML 2.0 Basic Attribute Profile is supported for SAML 2.0. Only attributes with the `urn:oasis:names:tc:SAML:2.0:attrname-format:basic` name format in `SAML2AttributeInfo` are written into a SAML 2.0 assertion.

The `urn:oasis:names:tc:SAML:2.0:attrname-format:basic` name format is the default, so you need not set it.

If you do set the name format, you must specify `urn:oasis:names:tc:SAML:2.0:attrname-format:basic` in the `SAML2.AttributeInfo.setAttributeNameFormat` method, as follows:

```java
SAML2AttributeInfo attrInfo = new SAML2AttributeInfo("AttributeWithSingleValue", "ValueOfAttributeWithSingleValue");
attrInfo.setAttributeNameFormat("urn:oasis:names:tc:SAML:2.0:attrname-format:basic");
attrs.add(attrInfo);
```

9.4.4 Passing Multiple Attributes to SAML Credential Mappers

When the configured attribute mapper is called, it returns `Collection<SAML2AttributeStatementInfo>`. You can specify multiple attribute statements, each containing multiple attributes, each possibly having multiple attribute values.
An example of doing this is as follows:

```java
private Collection<SAML2AttributeStatementInfo> getAttributeStatementInfo(
    Subject subject, ContextHandler handlers) {
  Collection<SAML2AttributeInfo> attrs = new ArrayList<SAML2AttributeInfo>();

  SAML2AttributeInfo attrInfo = new SAML2AttributeInfo(
      "AttributeWithSingleValue", "ValueOfAttributeWithSingleValue");
  attrInfo.setAttributeNameFormat("urn:oasis:names:tc:SAML:2.0:attrname-format:basic");
  attrs.add(attrInfo);

  ArrayList<String> v = new ArrayList<String>();
  v.add("Value1OfAttributeWithMultipleValue");
  v.add("Value2OfAttributeWithMultipleValue");
  v.add("Value3OfAttributeWithMultipleValue");
  SAML2AttributeInfo attrInfo1 = new SAML2AttributeInfo(
      "AttributeWithMultipleValue", v);
  attrInfo1.setAttributeNameFormat("urn:oasis:names:tc:SAML:2.0:attrname-format:basic");
  attrs.add(attrInfo1);

  SAML2AttributeInfo attrInfo2 = new SAML2AttributeInfo(
      "AttributeWithInvalidNameFormat", "ValueOfAttributeWithInvalidNameFormatValue");
  attrInfo2.setAttributeNameFormat("urn:oasis:names:tc:SAML:2.0:attrname-format:unspecified");
  attrs.add(attrInfo2);

  SAML2AttributeInfo attrInfo3 = new SAML2AttributeInfo(
      "AttributeWithNullValue", "null");
  attrInfo3.setAttributeNameFormat("urn:oasis:names:tc:SAML:2.0:attrname-format:basic");
  attrs.add(attrInfo3);

  Collection<SAML2AttributeStatementInfo> attrStatements = new ArrayList<SAML2AttributeStatementInfo>();
  attrStatements.add(new SAML2AttributeStatementInfo(attrs));
  attrStatements.add(new SAML2AttributeStatementInfo(attrs1));
  return attrStatements;
}
```

9.4.5 How to Implement SAML Attributes

This section walks through the process you follow to implement SAML attributes.

Note: This section uses the SAML 2.0 interface names for the purpose of example. SAML 1.1 usage is similar except for different interface names for the mapper- and partner-related classes, as well as the attribute and method names used for the mapper configuration.

From the SAML credential mapping (Identity Provider) site:

1. Instantiate the `SAML2AttributeInfo` and `SAML2AttributeStatementInfo` classes.

 Implement the `SAML2CredentialAttributeMapper` interface.
Also implement the `SAML2CredentialNameMapper` interface in the same implementation. (The `SAML2CredentialAttributeMapper` and `SAML2CredentialNameMapper` interfaces must both be in the same implementation.)

By implementing the `SAML2CredentialNameMapper` interface, you can then use the WebLogic Server Administration Console to set the `NameMapperClassName` attribute to the class name of your `SAML2CredentialAttributeMapper` instance.

2. Use the WebLogic Server Administration Console to configure your new custom attribute mapper on a SAML provider, or on each individual partner, using the `NameMapperClassName` attribute of the SAML Credential Mapping provider to identify it. See Section 9.4.8, "Make the Custom SAML Credential Attribute Mapper Class Available in the Console".

3. The SAML Credential Mapping provider determines if the configured custom name mapper is an implementation of the attribute mapping interface and, if so, calls your custom attribute mapping interface to obtain attribute values to write to the generated SAML assertions.

4. The SAML Credential Mapping provider does not validate the attribute names or values obtained from your custom attribute mapper.

Any attribute with a non-null attribute name is written to the attribute statements in the SAML assertion. An attribute with a null or empty attribute name is ignored, and subsequent attributes are processed.

If an attribute has multiple values, each value appears as an `<AttributeValue>` element of a single `<Attribute>` in SAML attribute statements.

For SAML 1.1, attributes with a null value are written to the SAML assertion as an empty string (""").

For SAML 2.0, null or empty attribute values are handled based on Assertions and the Protocols for the OASIS SAML V2.0 March 2005 (http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf).

An attribute with a name format other than `urn:oasis:names:tc:SAML:2.0:attrname-format:basic` is skipped.

From the SAML Identity Assertion (Service Provider) site:

1. Implement the `SAML2IdentityAsserterAttributeMapper` and `SAML2IdentityAsserterNameMapper` interfaces in the same implementation. (The `SAML2IdentityAsserterAttributeMapper` and `SAML2IdentityAsserterNameMapper` interfaces must both be in the same implementation.)

By implementing the `SAML2IdentityAsserterNameMapper` interface, you can then use the WebLogic Server Administration Console to set the `NameMapperClassName` attribute to the class name of your `SAML2IdentityAsserterAttributeMapper` instance.

2. Use the WebLogic Server Administration Console to configure the SAML Identity Assertion provider, as described in Section 9.4.9, "Make the Custom SAML Identity Asserter Class Available in the Console". Set the `NameMapperClassName` attribute to the class name of your custom `SAML2IdentityAsserterAttributeMapper` instance.
The SAML Identity Assertion provider processes `<AttributeStatement>` elements of the incoming SAML assertions and constructs a collection of SAML attribute statements.

3. The SAML Identity Assertion provider determines if the configured custom name mapper implements the `SAML2IdentityAsserterAttributeMapper` interface. If it does, the SAML Identity Assertion provider calls the `mapAttributeInfo` method to obtain the SAML assertion’s attributes.

Your `mapAttributeInfo` method takes a `Collection` of `SAMLAttributeStatementInfo` instances that represent the attributes of attribute statements in a SAML Assertion, and maps the desired attributes in any application specific way.

4. The SAML Identity Assertion provider makes the attributes from a SAML assertion available to consumers via the Java Subject. This requires that the SAML Authentication provider be configured and the virtual user be enabled on a SAML partner.

The attributes returned by the mapper are stored as subject principals or private credentials, depending on the class type of the mapped attributes. Specifically, if the mapper returns a collection of `Principal` objects, the mapped attributes are stored into the subject principal set. Otherwise, the subject private credential set is used to carry the mapped attributes.

The consuming code needs to know the class type of the object that the mapper uses to represent attributes added to the subject, as shown in Example 9–7.

5. The SAML Identity Assertion provider checks the `ContextHandler` and attribute mapper. (This walk through assumes the presence of the attribute mapper as stated in Step 4).

9.4.6 Examples of the SAML 2.0 Attribute Interfaces

This section provides examples of implementing the SAML 2.0 attribute interfaces that allow writing additional attributes into SAML assertions.

9.4.6.1 Example Custom SAML 2.0 Credential Attribute Mapper

Example 9–6 shows an example of a single class that implements both the `SAML2CredentialNameMapper` interface and the `SAML2CredentialAttributeMapper` interface.

Example 9–6 SAML 2.0 Credential Attribute Mapper

```java
public class CustomSAML2CredentialAttributeMapperImpl implements SAML2CredentialNameMapper, SAML2CredentialAttributeMapper {
    private String nameQualifier = null;

    public Collection<SAML2AttributeStatementInfo> mapAttributes(
        Subject subject, ContextHandler handler) {
        return getAttributeStatementInfo(subject, handler);
    }

    /**
     */
```

Note: If both the `ContextHandler` and attribute mapper are present and configured, the attributes are instead made available to Web services via the `ContextHandler`, as described in Securing WebLogic Web Services for Oracle WebLogic Server.
```java
/**
 * same as SAML2NameMapperImpl
 */
public SAML2NameMapperInfo mapName(String name, ContextHandler handler) {
    System.out.println("CustomSAML2CredentialAttributeMapperImpl:mapName: Mapped name:
        qualifier: "
        + nameQualifier + ", name: " + name);
    return new SAML2NameMapperInfo(nameQualifier, name, null);
}

/**
 * same as SAML2NameMapperImpl
 */
public synchronized void setNameQualifier(String nameQualifier) {
    this.nameQualifier = nameQualifier;
}

/**
 * same as SAML2NameMapperImpl
 */
public SAML2NameMapperInfo mapSubject(Subject subject, ContextHandler handler) {
    // Provider checks for null Subject...
    Set subjects = subject.getPrincipals(WLSUser.class);
    Set groups = subject.getPrincipals(WLSGroup.class);
    String userName = null;
    Set<String> groupStrings = new java.util.HashSet();
    if (subjects == null || subjects.size() == 0) {
        System.out.println("CustomSAML2CredentialAttributeMapperImpl:mapSubject: No valid WLSUser
            principals found in Subject, returning null");
        return null;
    }
    if (groups == null || groups.size() == 0) {
        System.out.println("CustomSAML2CredentialAttributeMapperImpl:mapSubject: No valid WLSGroup
            principals found in Subject, continuing");
    } else{
        java.util.Iterator<WLSGroup> it = groups.iterator();
        while(it.hasNext()){
            WLSGroup wg = it.next();
            groupStrings.add(wg.getName());
        }
    }

    if (subjects.size() != 1) {
        System.out.println("CustomSAML2CredentialAttributeMapperImpl:mapSubject: More than one
            WLSUser principal found in Subject, taking first user only");
    }

    userName = ((WLSUser) subjects.iterator().next()).getName();
```
if (userName == null || userName.equals("")) {
 System.out.println("CustomSAML2CredentialAttributeMapperImpl:mapSubject: Username string is null or empty, returning null");
 return null;
}

// Return mapping information...
System.out

TRACE.info("CustomSAML2CredentialAttributeMapperImpl:mapSubject: Mapped subject: qualifier: "+ nameQualifier
+ ", name: "
+ userName
+ ", groups: "
+ groups);

SAML2NameMapperInfo saml2NameMapperInfo = new SAML2NameMapperInfo(nameQualifier, userName, groupStrings);

private Collection<SAML2AttributeStatementInfo> getAttributeStatementInfo(
 Subject subject, ContextHandler handlers) {
 Collection<SAML2AttributeInfo> attrs = new ArrayList<SAML2AttributeInfo>();

 SAML2AttributeInfo attrInfo = new SAML2AttributeInfo(
 "AttributeWithSingleValue", "ValueOfAttributeWithSingleValue");
 attrInfo.setAttributeNameFormat("urn:oasis:names:tc:SAML:2.0:attrname-format:basic");
 attrs.add(attrInfo);

 ArrayList<String> v = new ArrayList<String>();
 v.add("Value1OfAttributeWithMultipleValue");
 v.add("Value2OfAttributeWithMultipleValue");
 v.add("Value3OfAttributeWithMultipleValue");
 SAML2AttributeInfo attrInfo1 = new SAML2AttributeInfo(
 "AttributeWithMultipleValue", v);
 attrInfo.setAttributeNameFormat("urn:oasis:names:tc:SAML:2.0:attrname-format:basic");
 attrs.add(attrInfo1);

 Collection<SAML2AttributeStatementInfo> attrStatements = new ArrayList<SAML2AttributeStatementInfo>();
 attrStatements.add(new SAML2AttributeStatementInfo(attrs));
 attrStatements.add(new SAML2AttributeStatementInfo(attrs1));
 return attrStatements;
}

Use the WebLogic Server Administration Console to configure the User Name Mapper
class name to the fully-qualified class name of this mapper implementation, as
Configuring SAML SSO Attribute Support

described in Section 9.4.8, "Make the Custom SAML Credential Attribute Mapper Class Available in the Console".

The attributes encapsulated in the collection of \texttt{SAML2AttributeStatementInfo} objects returned by the custom mapper implementation are included in the generated assertions by the SAML 2.0 Credential Mapping provider.

9.4.6.2 Custom SAML 2.0 Identity Asserter Attribute Mapper

Example 9–7 shows an example implementation of \texttt{SAML2IdentityAsserterNameMapper} and \texttt{SAML2IdentityAsserterAttributeMapper}.

Example 9–7 Custom SAML 2.0 Identity Asserter Attribute Mapper

```java
public class CustomSAML2IdentityAsserterAttributeMapperImpl implements SAML2IdentityAsserterNameMapper, SAML2IdentityAsserterAttributeMapper {
    /**
     * same as SAML2NameMapperImpl
     */
    public String mapNameInfo(SAML2NameMapperInfo info, ContextHandler handler) {
        // Get the user name ...
        String userName = info.getName();
        System.out.println("CustomSAML2IdentityAsserterAttributeMapperImpl:mapNameInfo: returning name: " + userName);
        return userName;
    }

    public Collection<Object> mapAttributeInfo0(Collection<SAML2AttributeStatementInfo> attrStmtInfos, ContextHandler contextHandler) {
        if (attrStmtInfos == null || attrStmtInfos.size() == 0) {
            System.out.println("CustomIAAttributeMapperImpl: attrStmtInfos has no elements");
            return null;
        }
        Collection<Object> customAttrs = new ArrayList<Object>();
        for (SAML2AttributeStatementInfo stmtInfo : attrStmtInfos) {
            Collection<SAML2AttributeInfo> attrs = stmtInfo.getAttributeInfo();
            if (attrs == null || attrs.size() == 0) {
                System.out.println("CustomIAAttributeMapperImpl: no attribute in statement: " + stmtInfo.toString());
                continue;
            } else {
                for (SAML2AttributeInfo attr : attrs) {
                    if (attr.getAttributeName().equals("AttributeWithSingleValue")) {
                        CustomPrincipal customAttr1 = new CustomPrincipal(attr.getAttributeName(), attr.getAttributeNameFormat(), attr.getAttributeValues());
                        customAttrs.add(customAttr1);
                    } else {
                        String customAttr = new StringBuffer().append(attr.getAttributeName()).append(',').append(attr.getAttributeValues()).toString();
                        customAttrs.add(customAttr);
                    }
                }
            }
        }
        return customAttrs;
    }
}
```
The SAML 2.0 IdentityAssertion provider makes the attributes from a SAML assertion available to consumers via the subject.

Use the WebLogic Server Administration Console to configure the User Name Mapper class name to the fully-qualified class name of this mapper implementation, as described in Section 9.4.9, "Make the Custom SAML Identity Asserter Class Available in the Console".

If you are allowing virtual users to log in via SAML, you need to create and configure an instance of the SAML Authentication provider. For information, see Configuring the SAML Authentication Provider.

If the virtual user is enabled and SAML Authenticator provider configured, the attributes returned by the custom attribute mapper are added into the subject.

The attributes returned by the mapper are stored as subject principals or private credentials, depending on the class type of the mapped attributes. Specifically, if the mapper returns a collection of Principal objects, the mapped attributes are stored into the subject principal set. Otherwise, the subject private credential set is used to carry the mapped attributes. The example code shows both approaches.

Your application code needs to know the class type of the object that the mapper uses to represent attributes added to the subject. Applications can retrieve the SAML

```java
customAttrs.add(customAttr);
}
}
return customAttrs;
}

public Collection<Principal> mapAttributeInfo(
Collection<SAML2AttributeStatementInfo> attrStmtInfos,
ContextHandler contextHandler) {
if (attrStmtInfos == null || attrStmtInfos.size() == 0) {
    System.out.println("CustomIAAttributeMapperImpl: attrStmtInfos has no elements");
    return null;
}

Collection<Principal> pals = new ArrayList<Principal>();
for (SAML2AttributeStatementInfo stmtInfo : attrStmtInfos) {
    Collection<SAML2AttributeInfo> attrs = stmtInfo.getAttributeInfo();
    if (attrs == null || attrs.size() == 0) {
        System.out.println("CustomIAAttributeMapperImpl: no attribute in statement: " + stmtInfo.toString());
    } else {
        for (SAML2AttributeInfo attr : attrs) {
            CustomPrincipal pal = new CustomPrincipal(attr.getAttributeName(), attr.getAttributeNameFormat(), attr.getAttributeValues());
            pals.add(pal);
        }
    }
}
return pals;
}
```
attributes from the subject private credential or principal set, given the class type that
the customer attribute mapper uses to represent the attributes.

9.4.7 Examples of the SAML 1.1 Attribute Interfaces

This section provides examples of implementing the SAML 1.1 attribute interfaces that
allow writing additional attributes into SAML assertions.

9.4.7.1 Example Custom SAML 1.1 Credential Attribute Mapper

Example 9–8 shows an example of a single class that implements both the
SAMLCredentialNameMapper interface and the
SAMLCredentialAttributeMapper interface.

Example 9–8 SAML 1.1 Credential Attribute Mapper

public class CustomCredentialAttributeMapperImpl implements
SAMLCredentialNameMapper, SAMLCredentialAttributeMapper {
 private String nameQualifier = null;

 public Collection<SAMLAttributeStatementInfo> mapAttributes(Subject subject,
 ContextHandler handler) {
 return AttributeStatementInfoGenerator.getInfos(subject, handler);
 }

 public SAMLNameMapperInfo mapSubject(Subject subject, ContextHandler handler) {
 // Provider checks for null Subject...
 String userName = null;
 userName = ((WLSUser) subjects.iterator().next()).getName();
 if (userName == null || userName.equals("")) {
 System.out
 .println("CustomCredentialAttributeMapperImpl:mapSubject: Username
 string is null or empty, returning null");
 return null;
 }

 // Return mapping information...
 System.out
 .println("CustomCredentialAttributeMapperImpl:mapSubject: Mapped subject:
 qualifier: "
 + nameQualifier + ", name: " + userName + ", groups: " + groups);
 return new SAMLNameMapperInfo(nameQualifier, userName, groups);
 }

 class AttributeStatementInfoGenerator {
 static final String SAML_ATTR_NAME_SAPCE = "urn:bea:security:saml:attributes";

 static Collection<SAMLAttributeStatementInfo> getInfos(Subject subject,
 ContextHandler handlers) {
 SAMLAttributeInfo info1 = new SAMLAttributeInfo("AttributeWithSingleValue",
 SAML_ATTR_NAME_SAPCE, "ValueOfAttributeWithSingleValue");
 ArrayList<String> v2 = new ArrayList<String>();
 v2.add("Value1OfAttributeWithMultipleValue");
 v2.add("Value2OfAttributeWithMultipleValue");
 }
 }
}
SAMLAttributeInfo info2 = new SAMLAttributeInfo("AttributeWithMultipleValue", SAML_ATTR_NAME_SAPCE, v2);

SAMLAttributeStatementInfo stmt1 = new SAMLAttributeStatementInfo();
stmt1.addAttributeInfo(info1);
stmt1.addAttributeInfo(info2);

ArrayList<SAMLAttributeStatementInfo> result = new ArrayList<SAMLAttributeStatementInfo>();
result.add(stmt1);
result.add(stmt1);
return result;

Use the WebLogic Server Administration Console to configure the User Name Mapper class name to the fully-qualified class name of this mapper implementation, as described in Section 9.4.8, "Make the Custom SAML Credential Attribute Mapper Class Available in the Console".

The attributes encapsulated in the collection of SAMLAttributeStatementInfo objects returned by the custom mapper implementation are included in the generated assertions by the SAML 1.1 Credential Mapping provider.

9.4.7.2 Custom SAML 1.1 Identity Asserter Attribute Mapper

Example 9–9 shows an example implementation of SAMLIdentityAssertionNameMapper and SAMLIdentityAssertionAttributeMapper.

Example 9–9 Custom SAML 1.1 Identity Asserter Attribute Mapper

```java
public class CustomIdentityAssertionAttributeMapperImpl implements SAMLIdentityAssertionNameMapper, SAMLIdentityAssertionAttributeMapper {

    public String mapNameInfo(SAMLNameMapperInfo info, ContextHandler handler) {
        // Get the user name ...
        String userName = info.getName();
        System.out.println("CustomIdentityAssertionAttributeMapperImpl:mapNameInfo: returning name: '
            + userName);
        return userName;
    }

    public void mapAttributeInfo(
            Collection<SAMLAttributeStatementInfo> attrStmtInfos,
            ContextHandler contextHandler) {
        if (attrStmtInfos == null || attrStmtInfos.size() == 0) {
            System.out.println("CustomIAAttributeMapperImpl: attrStmtInfos has no elements");
            return;
        }

        Object obj = contextHandler.getValue(ContextElementDictionary.SAML_ATTRIBUTE_PRINCIPALS);
        if (obj == null || !(obj instanceof Collection)) {
            System.out.println("CustomIAAttributeMapperImpl: can't get " + ContextElementDictionary.SAML_ATTRIBUTE_PRINCIPALS
```
The SAML 1.1 IdentityAssertion provider makes the attributes from a SAML assertion available to consumers via the subject.

Use the WebLogic Server Administration Console to configure the User Name Mapper class name to the fully-qualified class name of this mapper implementation, as described in Section 9.4.9, "Make the Custom SAML Identity Asserter Class Available in the Console".

If you are allowing virtual users to log in via SAML, you need to create and configure an instance of the SAML Authentication provider. For information, see Configuring the SAML Authentication Provider.

If the virtual user is enabled and SAML Authenticator provider configured, the attributes returned by the custom attribute mapper are added into the subject.

The attributes returned by the mapper are stored as subject principals or private credentials, depending on the class type of the mapped attributes. Specifically, if the mapper returns a collection of Principal objects, the mapped attributes are stored into the subject principal set. Otherwise, the subject private credential set is used to carry the mapped attributes.

Your application code needs to know the class type of the object that the mapper uses to represent attributes added to the subject. Applications can retrieve the SAML attributes from the subject private credential or principal set, given the class type that the customer attribute mapper uses to represent the attributes.

9.4.8 Make the Custom SAML Credential Attribute Mapper Class Available in the Console

To have the SAML Credential Mapping provider use your SAML2CredentialAttributeMapper (SAML 2.0) or SAMLCredentialAttributeMapper (SAML 1.1) instance, you use the WebLogic Server Administration Console to set the existing NameMapperClassName attribute to the class name of this SAML2CredentialAttributeMapper or SAMLCredentialAttributeMapper instance.
That is, you use the Console control for the name mapper class name attribute to specify the class name of the SAML2CredentialAttributeMapper or SAMLCredentialAttributeMapper instance in the active security realm.

To use a custom user name mapper with the WebLogic SAML Credential Mapping provider:

1. If you have not already done so, in the Change Center of the Administration Console, click Lock & Edit.
2. On the Security Realms page, select the name of the realm you are configuring (for example, TestRealm).
3. Expand Providers > Credential Mapping and select the name of the SAML 2.0 Credential Mapping provider, or the SAML Credential Mapping provider Version 2.
4. Select the Provider Specific tab.
5. In the Name Mapper Class Name (SAML 2.0) or Default Name Mapper Class Name (SAML 1.1) field, enter the class name of your SAML2CredentialAttributeMapper or SAMLCredentialAttributeMapper implementation.

 The class name must be in the system classpath.
6. Click Save.
7. To activate these changes, in the Change Center, click Activate Changes.

9.4.9 Make the Custom SAML Identity Asserter Class Available in the Console

To have the SAML Identity Assertion provider use this SAML2IdentityAssertionAttributeMapper (SAML 2.0) or SAMLIdentityAssertionAttributeMapper (SAML 1.1) instance, you use the WebLogic Server Administration Console to set the existing NameMapperClassName attribute to the class name of this SAML2IdentityAssertionAttributeMapper or SAMLIdentityAssertionAttributeMapper instance.

That is, you use the Console control for the name mapper class name attribute to specify the class name of the SAML2IdentityAssertionAttributeMapper or SAMLIdentityAssertionAttributeMapper instance in the active security realm.

To use a custom user name mapper with the WebLogic SAML Identity Asserter provider:

1. If you have not already done so, in the Change Center of the Administration Console, click Lock & Edit.
2. On the Security Realms page, select the name of the realm you are configuring (for example, TestRealm).
3. Expand Providers > Authentication and select the name of the SAML 2.0 Identity Asserter, or the SAML Identity Asserter Version 2.
4. Select the Provider Specific tab.
5. In the Name Mapper Class Name (SAML 2.0) or Default Name Mapper Class Name (SAML 1.1) field, enter the class name of your SAML2IdentityAssertionAttributeMapper or SAMLIdentityAssertionAttributeMapper implementation.

 The class name must be in the system classpath.
6. Click **Save**.

7. To activate these changes, in the Change Center, click **Activate Changes**.

For details about how to set a name mapper class name in the Administration Console, see "Configure a custom user name mapper" in the *Oracle WebLogic Server Administration Console Help*.
This section describes using CertPath building and validation.

The WebLogic Security service provides the Certificate Lookup and Validation (CLV) API that finds and validates X509 certificate chains.

A CertPath is a JDK class that stores a certificate chain in memory. The term CertPath is also used to refer to the JDK architecture and framework that is used to locate and validate certificate chains. The CLV framework extends and completes the JDK CertPath functionality. CertPath providers rely on a tightly-coupled integration of WebLogic and JDK interfaces.

Your application code can use the default CertPath providers provided by WebLogic Server to build and validate certificate chains, or any custom CertPath providers.

The following topics are covered in this section:

- Section 10.1, "CertPath Building"
- Section 10.2, "CertPath Validation"
- Section 10.1.1, "Instantiate a CertPathSelector"
- Section 10.1.2, "Instantiate a CertPathBuilderParameters"
- Section 10.1.3, "Use the JDK CertPathBuilder Interface"
- Section 10.2.1, "Instantiate a CertPathValidatorParameters"
- Section 10.2.2, "Use the JDK CertPathValidator Interface"

10.1 CertPath Building

To use a CertPath Builder in your application, follow these steps:

1. Section 10.1.1, "Instantiate a CertPathSelector"
2. Section 10.1.2, "Instantiate a CertPathBuilderParameters"
3. Section 10.1.3, "Use the JDK CertPathBuilder Interface"

10.1.1 Instantiate a CertPathSelector

The CertPathSelector interface (weblogic.security.pk.CertPathSelector) contains the selection criteria for locating and validating a certification path. Because there are many ways to look up certification paths, a derived class is implemented for each type of selection criteria.

Each selector class has one or more methods to retrieve the selection data and a constructor.
The classes in `weblogic.security.pk` that implement the `CertPathSelector` interface, one for each supported type of certificate chain lookup, are as follows:

- **EndCertificateSelector** – used to find and validate a certificate chain given its end certificate.
- **IssuerDNSerialNumberSelector** – used to find and validate a certificate chain from its end certificate's issuer DN and serial number.
- **SubjectDNSelector** – used to find and validate a certificate chain from its end certificate's subject DN.
- **SubjectKeyIdentifierSelector** – used to find and validate a certificate chain from its end certificate's subject key identifier (an optional field in X509 certificates).

Notes: The selectors that are supported depend on the configured CertPath providers. The configured CertPath providers are determined by the administrator. The WebLogic CertPath provider uses only the EndCertificateSelector selector.

Example 10–1 shows an example of choosing a selector.

Example 10–1 Make a certificate chain selector

```java
// you already have the end certificate
// and want to use it to lookup and
// validate the corresponding chain
X509Certificate endCertificate = ...  // make a cert chain selector
CertPathSelector selector = new EndCertificateSelector(endCertificate);
```

10.1.2 Instantiate a CertPathBuilderParameters

You pass an instance of `CertPathBuilderParameters` as the `CertPathParameters` object to the JDK's `CertPathBuilder.build()` method.

The following constructor and method are provided:

- **CertPathBuilderParameters**

```java
public CertPathBuilderParameters(String realmName,
                                  CertPathSelector selector,
                                  X509Certificate[]
                                  trustedCAs,
                                  ContextHandler context)
```

Constructs a `CertPathBuilderParameters`

You must provide the realm name. To do this, get the domain's `SecurityConfigurationMBean`. Then, get the `SecurityConfigurationMBean`'s default realm attribute, which is a realm MBean. Finally, get the realm MBean's name attribute. You must use the runtime JMX MBean server to get the realm name.

You must provide the `selector`. You use one of the `weblogic.security.pk.CertPathSelector` interfaces derived classes, described in Section 10.1.1, "Instantiate a CertPathSelector" to specify the selection criteria for locating and validating a certification path.
Specify trusted CAs if you have them. Otherwise, the server’s trusted CAs are used. These are just a hint to the configured CertPath builder and CertPath validators which, depending on their lookup/validation algorithm, may or may not use these trusted CAs.

ContextHandler is used to pass in an optional list of name/value pairs that the configured CertPathBuilder and CertPathValidators may use to look up and validate the chain. It is symmetrical with the context handler passed to other types of security providers. Setting context to null indicates that there are no context parameters.

- clone

 Object clone()

This interface is not cloneable.

Example 10–2 shows an example of passing an instance of CertPathBuilderParameters.

Example 10–2 Pass An Instance of CertPathBuilderParameters

```java
// make a cert chain selector
CertPathSelector selector = new EndCertificateSelector(endCertificate);
String realm = _;
// create and populate a context handler if desired, or null
ContextHandler context = _;
// pass in a list of trusted CAs if desired, or null
X509Certificate[] trustedCAs = _;
// make the params
CertPathBuilderParams params =
    new CertPathBuilderParameters(realm, selector, context, trustedCAs);
```

10.1.3 Use the JDK CertPathBuilder Interface

The `java.security.cert.CertPathBuilder` interface is the API for the `CertPathBuilder` class. To use the JDK CertPathBuilder interface, do the following:

1. Call the static `CertPathBuilder.getInstance` method to retrieve the CLV framework's `CertPathBuilder`. You must specify "WLSCertPathBuilder" as the algorithm name that's passed to the call.

2. Once the `CertPathBuilder` object has been obtained, call the "build" method on the returned `CertPathBuilder`. This method takes one argument - a `CertPathParameters` object that indicates which chain to find and how it should be validated.

 You must pass an instance of `weblogic.security.pk.CertPathBuilderParameters` as the `CertPathParameters` object to the JDK's `CertPathBuilder.build()` method, as described in Section 10.1.2, "Instantiate a CertPathBuilderParameters".

3. If successful, the result (including the CertPath that was built) is returned in an object that implements the `CertPathBuilderResult` interface. The builder determines how much of the CertPath is returned.

4. If not successful, the `CertPathBuilder` build method throws `InvalidAlgorithmParameterException` if the params is not a WebLogic `CertPathBuilderParameters`, if the configured `CertPathBuilder` does not support the selector, or if the realm name does not match the realm name of the default realm from when the server was booted.
The CertPathBuilder build method throws CertPathBuilderException if the cert path could not be located or if the located cert path is not valid.

10.1.4 Example Code Flow for Looking Up a Certificate Chain

Example 10–3 Looking up a Certificate Chain

```java
import weblogic.security.pk.CertPathBuilderParameters;
import weblogic.security.pk.CertPathSelector;
import weblogic.security.pk.EndCertificateSelector;
import weblogic.security.service.ContextHandler;
import java.security.cert.CertPath;
import java.security.cert.CertPathBuilder;
import java.security.cert.X509Certificate;

// you already have the end certificate
X509Certificate endCertificate = ...

// make a cert chain selector
CertPathSelector selector = new EndCertificateSelector(endCertificate);

String realm = _;

// create and populate a context handler if desired
ContextHandler context = _;

// pass in a list of trusted CAs if desired
X509Certificate[] trustedCAs = _;

// make the params
CertPathBuilderParameters params =
new CertPathBuilderParameters(realm, selector, context, trustedCAs);

// get the WLS CertPathBuilder
CertPathBuilder builder =
CertPathBuilder.getInstance("WLSCertPathBuilder");

// use it to look up and validate the chain
CertPath certpath = builder.build(params).getCertPath();
X509Certificate[] chain =
certpath.getCertificates().toArray(new X509Certificate[0]);
```

10.2 CertPath Validation

To use a CertPath Validator in your application, follow these steps:

1. Section 10.2.1, "Instantiate a CertPathValidatorParameters"
2. Section 10.2.2, "Use the JDK CertPathValidator Interface"

10.2.1 Instantiate a CertPathValidatorParameters

You pass an instance of CertPathValidatorParameters as the CertPathParameters object to the JDK’s CertPathValidator.validate() method.

The following constructor and method are provided:

- CertPathValidatorParameters
public CertPathValidatorParameters(String realmName,
 X509Certificate[] trustedCAs,
 ContextHandler context)

Constructs a CertPathValidatorParameters.

You must provide the realm name. To do this, get the domain’s
SecurityConfigurationMBean. Then, get the SecurityConfigurationMBean’s default
realm attribute, which is a realm MBean. Finally, get the realm MBean’s name
attribute. You must use the runtime JMX MBean server to get the realm name.

Specify trusted CAs if you have them. Otherwise, the server’s trusted CAs are
used. These are just a hint to the configured CertPath builder and CertPath
validators which, depending on their lookup/validation algorithm, may or may
not use these trusted CAs.

ContextHandler is used to pass in an optional list of name/value pairs that the
configured CertPathBuilder and CertPathValidators may use to look up and
validate the chain. It is symmetrical with the context handler passed to other types
of security providers. Setting context to null indicates that there are no context
parameters.

- clone

Object clone()

This interface is not cloneable.

Example 10–4 shows an example of passing an instance of
CertPathValidatorParameters.

Example 10–4 Pass an Instance of CertPathValidatorParameters

// get the WLS CertPathValidator
CertPathValidator validator =
 CertPathValidator.getInstance("WLSCertPathValidator");

String realm = _;

// create and populate a context handler if desired, or null
ContextHandler context = _;

// pass in a list of trusted CAs if desired, or null
X509Certificate[] trustedCAs = _;

// make the params (for the default security realm)
CertPathValidatorParams params =
 new CertPathValidatorParams(realm, context, trustedCAs);

10.2.2 Use the JDK CertPathValidator Interface

The java.security.cert.CertPathValidator interface is the API for the
CertPathValidator class. To use the JDK CertPathValidator interface, do the
following:

1. Call the static CertPathValidator.getInstance method to retrieve the CLV
framework’s CertPathValidator. You must specify "WLSCertPathValidator" as the
algorithm name that’s passed to the call.
2. Once the CertPathValidator object has been obtained, call the "validate" method on the returned CertPathValidator. This method takes one argument - a CertPathParameters that indicates how it should be validated.

You must pass an instance of weblogic.security.pk.CertPathValidatorParameters as the CertPathParameters object to the JDK’s CertPathValidator.validate() method, as described in Section 10.2.1, "Instantiate a CertPathValidatorParameters".

3. If successful, the result is returned in an object that implements the CertPathValidatorResult interface.

4. If not successful, the CertPathValidator.validate() method throws InvalidAlgorithmParameterException if params is not a WebLogic CertPathValidatorParameters or if the realm name does not match the realm name of the default realm from when the server was booted.

The CertPathValidator validate method throws CertPathValidatorException if the certificates in the CertPath are not ordered (the end certificate must be the first cert) or if the CertPath is not valid.

10.2.3 Example Code Flow for Validating a Certificate Chain

Example 10–5 Performing Extra Validation

```java
import weblogic.security.pk.CertPathValidatorParams;
import weblogic.security.service.ContextHandler;
import java.security.cert.CertPath;
import java.security.cert.CertPathValidator;
import java.security.cert.X509Certificate;

// you already have an unvalidated X509 certificate chain
// and you want to get it validated
X509Certificate[] chain = ...

// convert the chain to a CertPath
CertPathFactory factory = CertPathFactory.getInstance("X509");
ArrayList list = new ArrayList(chain.length);
for (int i = 0; i < chain.length; i++) {
    list.add(chain[i]);
}
CertPath certPath = factory.generateCertPath(list);

// get the WLS CertPathValidator
CertPathValidator validator = CertPathValidator.getInstance("WLSCertPathValidator");

String realm = _;

// create and populate a context handler if desired, or null
ContextHandler context = _;

// pass in a list of trusted CAs if desired, or null
X509Certificate[] trustedCAs = _;

// make the params (for the default security realm)
CertPathValidatorParams params =
    new CertPathValidatorParams(realm, context, trustedCAs);
```
// use it to validate the chain
validator.validate(certPath, params);
Some or all of the Security interfaces, classes, and exceptions in the following WebLogic security packages were deprecated prior to this release of WebLogic Server:

- `weblogic.security.service`
- `weblogic.security.SSL`

For specific information on the interfaces, classes, and exceptions deprecated in each package, see the *Oracle WebLogic Server API Reference*.