

Oracle® Fusion Middleware
Programming Advanced Features of JAX-RPC Web Services for
Oracle WebLogic Server

12c Release 1 (12.1.1)

E24969-01

December 2011

Documentation for software developers that describes how
to program advanced features for WebLogic JAX-RPC Web
services.

Oracle Fusion Middleware Programming Advanced Features of JAX-RPC Web Services for Oracle WebLogic
Server, 12c Release 1 (12.1.1)

E24969-01

Copyright © 2007, 2011, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Contents

Preface .. vii

Documentation Accessibility .. vii
Conventions .. vii

1 Introduction

2 Invoking a Web Service Using Asynchronous Request-Response

2.1 Overview of the Asynchronous Request-Response Feature .. 2-1
2.2 Using Asynchronous Request-Response: Main Steps ... 2-2
2.3 Configuring the Host WebLogic Server Instance for the Asynchronous Web Service 2-3
2.4 Writing the Asynchronous JWS File .. 2-4
2.4.1 Coding Guidelines for Invoking a Web Service Asynchronously................................ 2-6
2.4.2 Using Asynchronous Pre- and Post-call Contexts .. 2-8
2.4.3 Example of a Synchronous Invoke.. 2-9
2.5 Updating the build.xml File When Using Asynchronous Request-Response 2-10
2.6 Disabling The Internal Asynchronous Service .. 2-10
2.7 Using Asynchronous Request Response With a Proxy Server.. 2-11

3 Using Web Services Reliable Messaging

3.1 Overview of Web Service Reliable Messaging ... 3-1
3.1.1 Using WS-Policy to Specify Reliable Messaging Policy Assertions 3-3
3.1.2 Managing the Life Cycle of the Reliable Message Sequence... 3-3
3.2 Using Web Service Reliable Messaging: Main Steps ... 3-4
3.2.1 Prerequisites ... 3-6
3.3 Configuring the Destination WebLogic Server Instance... 3-6
3.4 Configuring the Source WebLogic Server Instance ... 3-8
3.5 Creating the Web Service Reliable Messaging WS-Policy File... 3-9
3.5.1 Creating a Custom WS-Policy File Using WS-ReliableMessaging Policy

Assertions Version 1.1.. 3-10
3.5.2 Creating a Custom WS-Policy File Using WS-ReliableMessaging Policy

Assertions Version 1.0 (Deprecated).. 3-12
3.5.3 Using Multiple Policy Alternatives.. 3-13
3.6 Programming Guidelines for the Reliable JWS File.. 3-14
3.6.1 Using the @Policy Annotation .. 3-16
3.6.2 Using the @Oneway Annotation .. 3-18

iv

3.6.3 Using the @BufferQueue Annotation .. 3-18
3.6.4 Using the @ReliabilityBuffer Annotation.. 3-18
3.7 Configuring Reliable Messaging for a Reliable Web Service .. 3-19
3.7.1 Using the Administration Console... 3-21
3.7.2 Using WLST... 3-22
3.8 Programming Guidelines for the JWS File That Invokes a Reliable Web Service.......... 3-22
3.9 Updating the build.xml File for a Client of a Reliable Web Service 3-26
3.10 Using Reliable Messaging With MTOM... 3-27
3.11 Client Considerations When Redeploying a Reliable Web Service.................................. 3-28
3.12 Using Reliable Messaging With a Proxy Server .. 3-28

4 Creating Conversational Web Services

4.1 Overview of Conversational Web Services... 4-1
4.2 Creating a Conversational Web Service: Main Steps... 4-3
4.3 Programming Guidelines for the Conversational JWS File .. 4-4
4.4 Programming Guidelines for the JWS File That Invokes a Conversational Web

Service... 4-7
4.5 ConversationUtils Utility Class .. 4-9
4.6 Updating the build.xml File for a Client of a Conversational Web Service 4-9
4.7 Updating a Stand-Alone Java Client to Invoke a Conversational Web Service 4-10
4.8 Example Conversational Web Service .NET Client .. 4-11
4.8.1 ConversationService.java File ... 4-12
4.8.2 Service.cs File... 4-14
4.8.3 build.xml File... 4-19
4.9 Client Considerations When Redeploying a Conversational Web Service 4-21

5 Creating Buffered Web Services

5.1 Overview of Buffered Web Services .. 5-1
5.2 Creating a Buffered Web Service: Main Steps .. 5-1
5.3 Configuring the Host WebLogic Server Instance for the Buffered Web Service............... 5-3
5.4 Programming Guidelines for the Buffered JWS File.. 5-4
5.5 Programming the JWS File That Invokes the Buffered Web Service 5-6
5.6 Updating the build.xml File for a Client of the Buffered Web Service 5-7

6 Using the Asynchronous Features Together

6.1 Using the Asynchronous Features Together... 6-1
6.2 Example of a JWS File That Implements a Reliable Conversational Web Service 6-2
6.3 Example of Client Web Service That Asynchronously Invokes a Reliable

Conversational Web Service.. 6-3

7 Using Callbacks to Notify Clients of Events

7.1 Overview of Callbacks ... 7-1
7.2 Callback Implementation Overview and Terminology .. 7-1
7.3 Programming Callbacks: Main Steps ... 7-3
7.4 Programming Guidelines for Target Web Service ... 7-3
7.5 Programming Guidelines for the Callback Client Web Service... 7-5

v

7.6 Programming Guidelines for the Callback Interface... 7-7
7.7 Updating the build.xml File for the Client Web Service ... 7-8

8 Using JMS Transport as the Connection Protocol

8.1 Overview of Using JMS Transport ... 8-1
8.2 Using JMS Transport Starting From Java: Main Steps .. 8-2
8.3 Using JMS Transport Starting From WSDL: Main Steps .. 8-3
8.4 Configuring the Host WebLogic Server Instance for the JMS Transport Web Service 8-5
8.5 Using the @WLJmsTransport JWS Annotation .. 8-6
8.6 Using the <WLJmsTransport> Child Element of the jwsc Ant Task................................... 8-7
8.7 Updating the WSDL to Use JMS Transport .. 8-8
8.8 Invoking a WebLogic Web Service Using JMS Transport .. 8-8
8.8.1 Overriding the Default Service Address URL... 8-9
8.8.2 Using JMS BytesMessage Rather Than the Default TextMessage 8-10
8.8.3 Disabling HTTP Access to the WSDL File .. 8-10

9 Creating and Using SOAP Message Handlers

9.1 Overview of SOAP Message Handlers .. 9-1
9.2 Adding SOAP Message Handlers to a Web Service: Main Steps .. 9-3
9.3 Designing the SOAP Message Handlers and Handler Chains .. 9-4
9.4 Creating the GenericHandler Class.. 9-5
9.4.1 Implementing the Handler.init() Method .. 9-7
9.4.2 Implementing the Handler.destroy() Method... 9-8
9.4.3 Implementing the Handler.getHeaders() Method.. 9-8
9.4.4 Implementing the Handler.handleRequest() Method.. 9-8
9.4.5 Implementing the Handler.handleResponse() Method ... 9-9
9.4.6 Implementing the Handler.handleFault() Method.. 9-10
9.4.7 Directly Manipulating the SOAP Request and Response Message Using SAAJ 9-11
9.4.7.1 The SOAPPart Object .. 9-11
9.4.7.2 The AttachmentPart Object .. 9-11
9.4.7.3 Manipulating Image Attachments in a SOAP Message Handler 9-12
9.5 Configuring Handlers in the JWS File .. 9-12
9.5.1 @javax.jws.HandlerChain.. 9-12
9.5.2 @javax.jws.soap.SOAPMessageHandlers ... 9-14
9.6 Creating the Handler Chain Configuration File.. 9-16
9.7 Compiling and Rebuilding the Web Service ... 9-16
9.8 Creating and Using Client-Side SOAP Message Handlers.. 9-17
9.8.1 Using Client-Side SOAP Message Handlers: Main Steps... 9-18
9.8.2 Example of a Client-Side Handler Class ... 9-19
9.8.3 Creating the Client-Side SOAP Handler Configuration File...................................... 9-19
9.8.4 XML Schema for the Client-Side Handler Configuration File 9-20
9.8.5 Specifying the Client-Side SOAP Handler Configuration File to clientgen............. 9-21

10 Using Database Web Services

10.1 Overview of Database Web Services... 10-1
10.1.1 Database Call-in .. 10-1

vi

10.1.2 Database Call-out.. 10-2
10.2 Type Mapping Between SQL and XML.. 10-3
10.2.1 SQL to XML Type Mappings for Web Service Call-Ins .. 10-3
10.2.2 XML-to-SQL Type Mapping for Web Service Call-outs ... 10-5
10.3 Developing Database Web Services Using Oracle JDeveloper ... 10-5

A Pre-Packaged WS-Policy Files for Reliable Messaging

A.1 DefaultReliability1.1.xml (WS-Policy File) ... A-1
A.2 Reliability1.1_SequenceTransportSecurity.xml (WS-Policy File) A-2
A.3 Reliability1.1_SequenceSTR.xml (WS-Policy File) .. A-2
A.4 Reliability1.0_1.1.xml (WS-Policy.xml File) ... A-2
A.5 DefaultReliability.xml (WS-Policy File) [Deprecated].. A-3
A.6 LongRunningReliability.xml (WS-Policy File) [Deprecated] .. A-4

vii

Preface

This preface describes the document accessibility features and conventions used in this
guide—Programming Advanced Features of JAX-RPC Web Services for Oracle WebLogic
Server.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

viii

1

Introduction 1-1

1Introduction

This chapter summarizes the advanced WebLogic Java API for XML-based RPC
(JAX-RPC) features that are described in this document. This document is a resource
for software developers who program advanced features for JAX-RPC.

For an overview of WebLogic Web services, standards, samples, and related
documentation, see Introducing WebLogic Web Services for Oracle WebLogic Server.

For information about WebLogic Web service security, see Securing WebLogic Web
Services for Oracle WebLogic Server.

Table 1–1 Programming Advanced Features Using JAX-RPC

Advanced Feature Description

Chapter 2, "Invoking a Web
Service Using Asynchronous
Request-Response"

Invoke a Web service asynchronously.

Chapter 3, "Using Web Services
Reliable Messaging"

Create a reliable Web service, as specified by the
WS-ReliableMessaging specification, and then create a
client Web services that invokes the reliable Web service.

Chapter 4, "Creating
Conversational Web Services"

Create a conversational Web service which communicates
with a client.

Chapter 6, "Using the
Asynchronous Features Together"

Use the asynchronous features, such as reliable messaging,
asynchronous request-response, and conversations,
together in a single Web service.

Chapter 7, "Using Callbacks to
Notify Clients of Events"

Notify a client of a Web service that an event has
happened by programming a callback.

Chapter 5, "Creating Buffered Web
Services"

Create a buffered Web service, which is a simpler type of
reliable Web service that one specified by the
WS-ReliableMessaging specification.

Chapter 8, "Using JMS Transport
as the Connection Protocol"

Specify that JMS, rather than the default HTTP/S, is the
connection protocol when invoking a Web service.

Chapter 9, "Creating and Using
SOAP Message Handlers"

Create and configure SOAP message handlers for a Web
service.

Chapter 10, "Using Database Web
Services"

Create a database Web service using JDeveloper.

1-2 Programming Advanced Features of JAX-RPC Web Services for Oracle WebLogic Server

2

Invoking a Web Service Using Asynchronous Request-Response 2-1

2Invoking a Web Service Using Asynchronous
Request-Response

This chapter describes how to invoke a WebLogic Java API for XML-based RPC
(JAX-RPC) Web service using asynchronous request-response.

This chapter includes the following topics:

■ Section 2.1, "Overview of the Asynchronous Request-Response Feature"

■ Section 2.2, "Using Asynchronous Request-Response: Main Steps"

■ Section 2.3, "Configuring the Host WebLogic Server Instance for the Asynchronous
Web Service"

■ Section 2.4, "Writing the Asynchronous JWS File"

■ Section 2.5, "Updating the build.xml File When Using Asynchronous
Request-Response"

■ Section 2.6, "Disabling The Internal Asynchronous Service"

■ Section 2.7, "Using Asynchronous Request Response With a Proxy Server"

2.1 Overview of the Asynchronous Request-Response Feature
When you invoke a Web service synchronously, the invoking client application waits
for the response to return before it can continue with its work. In cases where the
response returns immediately, this method of invoking the Web service might be
adequate. However, because request processing can be delayed, it is often useful for
the client application to continue its work and handle the response later on, or in other
words, use the asynchronous request-response feature of WebLogic Web services.

You invoke a Web service asynchronously only from a client running in a WebLogic
Web service, never from a stand-alone client application. The invoked Web service
does not change in any way, thus you can invoke any deployed Web service (both
WebLogic and non-WebLogic) asynchronously as long as the application server that
hosts the Web service supports the WS-Addressing specification at
http://www.w3.org/Submission/2004/SUBM-ws-addressing-20040810/.

When implementing asynchronous request-response in your client, rather than
invoking the operation directly, you invoke an asynchronous flavor of the same
operation. (This asynchronous flavor of the operation is automatically generated by
the jwsc Ant task.) For example, rather than invoking an operation called getQuote
directly, you would invoke getQuoteAsync instead. The asynchronous flavor of the
operation always returns void, even if the original operation returns a value. You then
include methods in your client that handle the asynchronous response or failures

Using Asynchronous Request-Response: Main Steps

2-2 Programming Advanced Features of JAX-RPC Web Services for Oracle WebLogic Server

when it returns later on. You put any business logic that processes the return value of
the Web service operation invoke or a potential failure in these methods. You use both
naming conventions and JWS annotations to specify these methods to the JWS
compiler. For example, if the asynchronous operation is called getQuoteAsync, then
these methods might be called onGetQuoteAsyncResponse and
onGetQuoteAsyncFailure.

2.2 Using Asynchronous Request-Response: Main Steps
The following procedure describes how to create a client Web service that
asynchronously invokes an operation in a different Web service. The procedure shows
how to create the JWS file that implements the client Web service from scratch; if you
want to update an existing JWS file, use this procedure as a guide.

For clarity, it is assumed in the procedure that:

■ The client Web service is called StockQuoteClientService.

■ The StockQuoteClientService service is going to invoke the
getQuote(String) operation of the already-deployed StockQuoteService
service whose WSDL is found at the following URL:

http://localhost:7001/async/StockQuote?WSDL

It is further assumed that you have set up an Ant-based development environment
and that you have a working build.xml file to which you can add targets for
running the jwsc Ant task and deploying the generated service. For more
information, see the following sections in Getting Started With JAX-RPC Web Services for
Oracle WebLogic Server:

■ "Use Cases and Examples"

■ "Developing WebLogic Web Services"

■ "Programming the JWS File"

■ "Invoking Web Services"

Note: For information about using asynchronous request-response
with other asynchronous features, such as Web service reliable
messaging or buffering, see Chapter 6, "Using the Asynchronous
Features Together." This section describes how to use the
asynchronous request-response feature on its own.

The asynchronous request-response feature works only with HTTP;
you cannot use it with the HTTPS or JMS transport.

Table 2–1 Steps to Use Asynchronous Request-Response

Step Description

1 Configure the WebLogic
Server instances.

Configure the asynchronous response service, as
described in Section 2.3, "Configuring the Host WebLogic
Server Instance for the Asynchronous Web Service".

2 Create a new JWS file, or
update an existing one, that
implements the
StockQuoteClientServic
e Web service.

Use your favorite IDE or text editor. See Section 2.4,
"Writing the Asynchronous JWS File".

Configuring the Host WebLogic Server Instance for the Asynchronous Web Service

Invoking a Web Service Using Asynchronous Request-Response 2-3

When you invoke the StockQuoteClientService Web service, which in turn
invokes the StockQuoteService Web service, the second invoke will be
asynchronous rather than synchronous.

2.3 Configuring the Host WebLogic Server Instance for the
Asynchronous Web Service

Configuring the WebLogic Server instance on which the asynchronous Web service is
deployed involves configuring JMS resources, such as JMS servers and modules, that
are used internally by the Web services runtime.

You can configure these resources manually or you can use the Configuration Wizard
to extend the WebLogic Server domain using a Web services-specific extension
template. Using the Configuration Wizard greatly simplifies the required
configuration steps; for details, see "Configuring Your Domain For Web Services
Features" in Getting Started With JAX-RPC Web Services for Oracle WebLogic Server.

If you prefer to configure the resources manually, perform the following steps.

3 Update your build.xml file
to compile the JWS file that
implements the
StockQuoteClientServic
e.

You will add a <clientgen> child element to the jwsc
Ant task so as to automatically generate the
asynchronous flavor of the Web service operations you
are invoking.

See Section 2.5, "Updating the build.xml File When Using
Asynchronous Request-Response".

4 Run the Ant target to build
the
StockQuoteClientServic
e.

For example:

prompt> ant build-clientService

5 Deploy the
StockQuoteClientServic
e Web service as usual.

See "Deploying and Undeploying WebLogic Web
Services" in Getting Started With JAX-RPC Web Services for
Oracle WebLogic Server.

Notes: Alternatively, you can use WLST to configure the resources.
For information about using WLST to extend the domain, see
"Configuring Existing Domains" in Oracle WebLogic Scripting Tool.

A domain that does not contain Web Services resources will still boot
and operate correctly for non-Web services scenarios, and any Web
Services scenario that does not involve asynchronous request and
response. You will, however, see INFO messages in the server log
indicating that asynchronous resources have not been configured and
that the asynchronous response service for Web services has not been
completely deployed.

Table 2–1 (Cont.) Steps to Use Asynchronous Request-Response

Step Description

Writing the Asynchronous JWS File

2-4 Programming Advanced Features of JAX-RPC Web Services for Oracle WebLogic Server

2.4 Writing the Asynchronous JWS File
The following example shows a simple JWS file that implements a Web service called
StockQuoteClient that has a single method, asyncOperation, that in turn
asynchronously invokes the getQuote method of the StockQuote service. The Java
code in bold is described Section 2.4.1, "Coding Guidelines for Invoking a Web Service

Table 2–2 Steps to Configure Host WebLogic Server Instance Manually for the
Asynchronous Web Service

Step Description

1 Invoke the Administration
Console for the domain that
contains the host WebLogic
Server instance.

To invoke the Administration Console in your browser,
enter the following URL:

http://host:port/console

where

■ host refers to the computer on which the
Administration Server is running.

■ port refers to the port number where the
Administration Server is listening for connection
requests. The default port number for the
Administration server is 7001.

See "Invoking the Administration Console" in Getting
Started With JAX-RPC Web Services for Oracle WebLogic
Server.

2 Create a JMS Server. Create a JMS Server. If a JMS server already exists, you
can use it if you do not want to create a new one.

See "Create JMS servers" in Oracle WebLogic Server
Administration Console Help.

3 Create JMS module and
define queue.

Create a JMS module, and then define a JMS queue in the
module. If a JMS module already exists, you can use it if
you do not want to create a new one. Target the JMS
queue to the JMS server you created in the preceding step.
Be sure you specify that this JMS queue is local, typically
by setting the local JNDI name. See "Create JMS system
modules" and "Create queues in a system module" in
Oracle WebLogic Server Administration Console Help.

If you want the asynchronous Web service to use the
default Web services queue, set the JNDI name of the JMS
queue to weblogic.wsee.DefaultQueue.

Clustering Considerations:

If you are using the Web service asynchronous feature in a
cluster, you must:

■ Create a local JMS queue, rather than a distributed
queue, when creating the JMS queue.

■ Explicitly target this JMS queue to each server in the
cluster.

4 Create a Work Manager. Define a Work Manager named
weblogic.wsee.mdb.DispatchPolicy, which is used
by the asynchronous request-response feature, by default.

See "Create global Work Managers" in Oracle WebLogic
Server Administration Console Help.

5 Tune your domain
environment, as required.
(Optional)

Review "Tuning Heavily Loaded Systems to Improve Web
Service Performance" in Performance and Tuning for Oracle
WebLogic Server.

Writing the Asynchronous JWS File

Invoking a Web Service Using Asynchronous Request-Response 2-5

Asynchronously". See Section 2.4.3, "Example of a Synchronous Invoke" to see how the
asynchronous invoke differs from a synchronous invoke of the same operation.

package examples.webservices.async_req_res;

import weblogic.jws.WLHttpTransport;
import weblogic.jws.ServiceClient;
import weblogic.jws.AsyncResponse;
import weblogic.jws.AsyncFailure;

import weblogic.wsee.async.AsyncPreCallContext;
import weblogic.wsee.async.AsyncCallContextFactory;
import weblogic.wsee.async.AsyncPostCallContext;

import javax.jws.WebService;
import javax.jws.WebMethod;

import examples.webservices.async_req_res.StockQuotePortType;

import java.rmi.RemoteException;

@WebService(name="StockQuoteClientPortType",
 serviceName="StockQuoteClientService",
 targetNamespace="http://examples.org/")

@WLHttpTransport(contextPath="asyncClient",
 serviceUri="StockQuoteClient",
 portName="StockQuoteClientServicePort")

/**
 * Client Web Service that invokes the StockQuote Service asynchronously.
 */

public class StockQuoteClientImpl {

 @ServiceClient(wsdlLocation="http://localhost:7001/async/StockQuote?WSDL",
 serviceName="StockQuoteService", portName="StockQuote")

 private StockQuotePortType port;

 @WebMethod
 public void asyncOperation (String symbol, String userName)
 throws RemoteException {

 AsyncPreCallContext apc = AsyncCallContextFactory.getAsyncPreCallContext();
 apc.setProperty("userName", userName);

 try {
 port.getQuoteAsync(apc, symbol);
 System.out.println("in getQuote method of StockQuoteClient WS");

 } catch (RemoteException re) {

 System.out.println("RemoteException thrown");
 throw new RuntimeException(re);
 }

 }

 @AsyncResponse(target="port", operation="getQuote")
 public void onGetQuoteAsyncResponse(AsyncPostCallContext apc, int quote) {

Writing the Asynchronous JWS File

2-6 Programming Advanced Features of JAX-RPC Web Services for Oracle WebLogic Server

 // Get the userName property we set on AsyncPreCallContext
 String userName = (String)apc.getProperty("userName");
 System.out.println("-------------------");
 System.out.println(username + " Got quote " + quote);
 System.out.println("-------------------");
 }

 @AsyncFailure(target="port", operation="getQuote")
 public void onGetQuoteAsyncFailure(AsyncPostCallContext apc, Throwable e) {
 System.out.println("-------------------");
 e.printStackTrace();
 System.out.println("-------------------");
 }

}

2.4.1 Coding Guidelines for Invoking a Web Service Asynchronously
The following guidelines for invoking an operation asynchronously correspond to the
Java code shown in bold in the example described in Section 2.4, "Writing the
Asynchronous JWS File". These guidelines are in addition to the standard ones for
creating JWS files. See Section 2.4.3, "Example of a Synchronous Invoke" to see how the
asynchronous invoke differs from a synchronous invoke of the same operation.

To invoke an operation asynchronously in your JWS file:

■ Import the following WebLogic-specific JWS annotations related to the
asynchronous request-response feature:

import weblogic.jws.ServiceClient;
import weblogic.jws.AsyncResponse;
import weblogic.jws.AsyncFailure;

■ Import the JAX-RPC stub, created later by the jwsc Ant task, of the port type of
the Web service you want to invoke. The stub package is specified by the
packageName attribute of the <clientgen> child element of jwsc, and the
name of the stub is determined by the WSDL of the invoked Web service.

import examples.webservices.async_req_res.StockQuotePortType;

■ Import the asynchronous pre- and post-call context WebLogic APIs:

import weblogic.wsee.async.AsyncCallContextFactory;
import weblogic.wsee.async.AsyncPreCallContext;
import weblogic.wsee.async.AsyncPostCallContext;

For more information about asynchronous pre- and post-call context, see
Section 2.4.2, "Using Asynchronous Pre- and Post-call Contexts". See the
"weblogic.wsee.async" package in Oracle WebLogic Server API Reference for
additional reference information about these APIs.

■ In the body of the JWS file, use the required @ServiceClient JWS annotation to
specify the WSDL, name, and port of the Web service you will be invoking
asynchronously. You specify this annotation at the field-level on a variable, whose
data type is the JAX-RPC port type of the Web service you are invoking.

 @ServiceClient(
 wsdlLocation="http://localhost:7001/async/StockQuote?WSDL",
 serviceName="StockQuoteService",
 portName="StockQuote")

Writing the Asynchronous JWS File

Invoking a Web Service Using Asynchronous Request-Response 2-7

 private StockQuotePortType port;

When you annotate a variable (in this case, port) with the @ServiceClient
annotation, the Web services runtime automatically initializes and instantiates the
variable, preparing it so that it can be used to invoke another Web service
asynchronously.

■ In the method of the JWS file which is going to invoke the getQuote operation
asynchronously, get a pre-call asynchronous context using the context factory:

AsyncPreCallContext apc =
 AsyncCallContextFactory.getAsyncPreCallContext();

For more information about asynchronous pre- and post-call context, see
Section 2.4.2, "Using Asynchronous Pre- and Post-call Contexts".

■ Use the setProperty method of the pre-call context to create a property to store
the username:

apc.setProperty("userName", userName);

■ Using the stub you annotated with the @ServiceClient annotation, invoke the
operation (in this case, getQuote). Instead of invoking it directly, however,
invoke the asynchronous flavor of the operation, which has Async added on to
the end of its name. The asynchronous flavor always returns void. Pass the
asynchronous context as the first parameter:

port.getQuoteAsync(apc, symbol);

■ For each operation you will be invoking asynchronously, create a method called
onOperationnameAsyncResponse, where Operationname refers to the name
of the operation, with initial letter always capitalized. The method must return
void, and have two parameters: the post-call asynchronous context and the return
value of the operation you are invoking. Annotate the method with the
@AsyncResponse JWS annotation; use the target attribute to specify the
variable whose datatype is the JAX-RPC stub and the operation attribute to
specify the name of the operation you are invoking asynchronously. Inside the
body of the method, put the business logic that processes the value returned by
the operation. Use the getProperty method of the post-call context to get the
property that was set by pre-call context before invoking the asynchronous
method:

 @AsyncResponse(target="port", operation="getQuote")
 public void onGetQuoteAsyncResponse(AsyncPostCallContext apc,
 int quote) {
 // Get the userName property we set on AsyncPreCallContext
 String userName = (String)apc.getProperty("userName");
 System.out.println("-------------------");
 System.out.println("Got quote " + quote);
 System.out.println("-------------------");
 }

For more information about asynchronous pre- and post-call context, see
Section 2.4.2, "Using Asynchronous Pre- and Post-call Contexts".

■ For each operation you will be invoking asynchronously, create a method called
onOperationnameAsyncFailure, where Operationname refers to the name
of the operation, with initial letter capitalized. The method must return void, and
have two parameters: the post-call asynchronous context and a Throwable object,
the superclass of all exceptions to handle any type of exception thrown by the

Writing the Asynchronous JWS File

2-8 Programming Advanced Features of JAX-RPC Web Services for Oracle WebLogic Server

invoked operation. Annotate the method with the @AsyncFailure JWS
annotation; use the target attribute to specify the variable whose datatype is the
JAX-RPC stub and the operation attribute to specify the name of the operation
you are invoking asynchronously. Inside the method, you can determine the exact
nature of the exception and write appropriate Java code.

 @AsyncFailure(target="port", operation="getQuote")
 public void onGetQuoteAsyncFailure(AsyncPostCallContext apc,
 Throwable e) {
 System.out.println("-------------------");
 e.printStackTrace();
 System.out.println("-------------------");
 }

2.4.2 Using Asynchronous Pre- and Post-call Contexts
The AsyncPreCallContext and AsyncPostCallContext APIs describe
asynchronous contexts that you can use in your Web service for a variety of reasons.
For example:

■ Set a property in the pre-context so that the method that handles the asynchronous
response can distinguish between different asynchronous calls.

■ Get and set contextual variables, such as the name of the user invoking the
operation, their password, and so on.

■ Get the name of the JAX-RPC stub that invoked a method asynchronously; and to
set a time-out interval on the context.

To use asynchronous pre- and post-call contexts:

1. Import the asynchronous pre- and post-call context WebLogic APIs:

import weblogic.wsee.async.AsyncCallContextFactory;
import weblogic.wsee.async.AsyncPreCallContext;
import weblogic.wsee.async.AsyncPostCallContext;

2. In the method of the JWS file that is going to invoke the asynchronous operation,
get a pre-call asynchronous context using the context factory. For example:

AsyncPreCallContext apc =
 AsyncCallContextFactory.getAsyncPreCallContext();

3. Use the pre-call context methods to operate on the asynchronous context before
the asynchronous method is called. The following example uses the
setProperty method of the pre-call context to create a property that stores the
username:

apc.setProperty("userName", userName);

Note: You are not required to use the @AsyncResponse and
@AsyncFailure annotations, although it is a good practice because it
clears up any ambiguity and makes your JWS file clean and
understandable. However, in the rare use case where you want one of
the onXXX methods to handle the asynchronous response or failure
from two (or more) stubs that are invoking operations from two
different Web services that have the same name, then you should
explicitly NOT use these annotations. Be sure that the name of the
onXXX methods follow the correct naming conventions exactly, as
described above.

Writing the Asynchronous JWS File

Invoking a Web Service Using Asynchronous Request-Response 2-9

4. Use the post-call context methods to operate on the asynchronous context after the
asynchronous method is called. The following example uses the getProperty
method of the post-call context to get the property that was set by pre-call context
before invoking the asynchronous method:

String userName = (String)apc.getProperty("userName");

2.4.3 Example of a Synchronous Invoke
The following example shows a JWS file that invokes the getQuote operation of the
StockQuote Web service synchronously. The example is shown only so you can
compare it with the corresponding asynchronous invoke shown in Section 2.4,
"Writing the Asynchronous JWS File".

package examples.webservices.async_req_res;

import weblogic.jws.WLHttpTransport;
import weblogic.jws.ServiceClient;

import javax.jws.WebService;
import javax.jws.WebMethod;

import java.rmi.RemoteException;

@WebService(name="SyncClientPortType",
 serviceName="SyncClientService",
 targetNamespace="http://examples.org/")

@WLHttpTransport(contextPath="syncClient",
 serviceUri="SyncClient",
 portName="SyncClientPort")

/**
 * Normal service-to-service client that invokes StockQuote service
 * synchronously.
 */

public class SyncClientImpl {

 @ServiceClient(wsdlLocation="http://localhost:7001/async/StockQuote?WSDL",
 serviceName="StockQuoteService", portName="StockQuote")
 private StockQuotePortType port;

 @WebMethod
 public void nonAsyncOperation(String symbol) throws RemoteException {

 int quote = port.getQuote(symbol);

 System.out.println("-------------------");
 System.out.println("Got quote " + quote);
 System.out.println("-------------------");

 }

}

Updating the build.xml File When Using Asynchronous Request-Response

2-10 Programming Advanced Features of JAX-RPC Web Services for Oracle WebLogic Server

2.5 Updating the build.xml File When Using Asynchronous
Request-Response

To update a build.xml file to generate the JWS file that invokes a Web service
operation asynchronously, add taskdefs and a build-clientService target that
looks something like the following; see the description after the example for details:

<taskdef name="jwsc"
 classname="weblogic.wsee.tools.anttasks.JwscTask" />

<target name="build-clientService">

 <jwsc
 enableAsyncService="true"
 srcdir="src"
 destdir="${clientService-ear-dir}" >

 <jws file="examples/webservices/async_req_res/StockQuoteClientImpl.java" >

 <clientgen
 wsdl="http://${wls.hostname}:${wls.port}/async/StockQuote?WSDL"
 packageName="examples.webservices.async_req_res"/>

 </jws>

 </jwsc>

</target>

Use the taskdef Ant task to define the full classname of the jwsc Ant tasks.

Update the jwsc Ant task that compiles the client Web service to include a
<clientgen> child element of the <jws> element so as to generate and compile the
JAX-RPC stubs for the deployed StockQuote Web service. The jwsc Ant task
automatically packages them in the generated WAR file so that the client Web service
can immediately access the stubs. By default, the jwsc Ant task in this case generates
both synchronous and asynchronous flavors of the Web service operations in the
JAX-RPC stubs. You do this because the StockQuoteClientImpl JWS file imports
and uses one of the generated classes.

2.6 Disabling The Internal Asynchronous Service
By default, every WebLogic Server instance deploys an internal asynchronous Web
service that handles the asynchronous request-response feature. To specify that you do
not want to deploy this internal service, start the WebLogic Server instance using the
-Dweblogic.wsee.skip.async.response=true Java system property.

One reason for disabling the asynchronous service is if you use a WebLogic Server
instance as a Web proxy to a WebLogic cluster. In this case, asynchronous messages
will never get to the cluster, as required, because the asynchronous service on the
proxy server consumes them instead. For this reason, you must disable the
asynchronous service on the proxy server using the system property.

For details on specifying Java system properties to configure WebLogic Server, see
"Specifying Java Options for a WebLogic Server Instance" in Managing Server Startup
and Shutdown for Oracle WebLogic Server.

Using Asynchronous Request Response With a Proxy Server

Invoking a Web Service Using Asynchronous Request-Response 2-11

2.7 Using Asynchronous Request Response With a Proxy Server
Client applications that use the asynchronous request-response feature might not
invoke the operation directly, but rather, use a proxy server. Reasons for using a proxy
include the presence of a firewall or the deployment of the invoked Web service to a
cluster.

In this case, the WebLogic Server instance that hosts the invoked Web service must be
configured with the address and port of the proxy server. If your Web service is
deployed to a cluster, you must configure every server in the cluster.

This procedure describes how to create a network channel, the primary configurable
WebLogic Server resource for managing network connection. Network channels
enable you to provide a consistent way to access the front-end address of a cluster. For
more information about network channels, see "Understanding Network Channels" in
Configuring Server Environments for Oracle WebLogic Server.

For each server instance:

1. Create a network channel for the protocol you use to invoke the Web service. You
must name the network channel weblogic-wsee-proxy-channel-XXX, where
XXX refers to the protocol. For example, to create a network channel for HTTPS,
call it weblogic-wsee-proxy-channel-https.

See "Configure custom network channels" in Oracle WebLogic Server Administration
Console Help for general information about creating a network channel.

2. Configure the network channel, updating the External Listen Address and
External Listen Port fields with the address and port of the proxy server,
respectively.

Using Asynchronous Request Response With a Proxy Server

2-12 Programming Advanced Features of JAX-RPC Web Services for Oracle WebLogic Server

3

Using Web Services Reliable Messaging 3-1

3Using Web Services Reliable Messaging

This chapter describes Web services reliable messaging for WebLogic Java API for
XML-based RPC (JAX-RPC) Web services.

This chapter includes the following topics:

■ Section 3.1, "Overview of Web Service Reliable Messaging"

■ Section 3.2, "Using Web Service Reliable Messaging: Main Steps"

■ Section 3.3, "Configuring the Destination WebLogic Server Instance"

■ Section 3.4, "Configuring the Source WebLogic Server Instance"

■ Section 3.5, "Creating the Web Service Reliable Messaging WS-Policy File"

■ Section 3.6, "Programming Guidelines for the Reliable JWS File"

■ Section 3.7, "Configuring Reliable Messaging for a Reliable Web Service"

■ Section 3.8, "Programming Guidelines for the JWS File That Invokes a Reliable
Web Service"

■ Section 3.9, "Updating the build.xml File for a Client of a Reliable Web Service"

■ Section 3.10, "Using Reliable Messaging With MTOM"

■ Section 3.11, "Client Considerations When Redeploying a Reliable Web Service"

■ Section 3.12, "Using Reliable Messaging With a Proxy Server"

3.1 Overview of Web Service Reliable Messaging
Web service reliable messaging is a framework that enables an application running on
one application server to reliably invoke a Web service running on another application
server, assuming that both servers implement the WS-ReliableMessaging specification.
Reliable is defined as the ability to guarantee message delivery between the two Web
Services in the presence of software component, system, or network failures.

Note: Web service reliable messaging requires the use of
asynchronous request-response feature of WebLogic Web services.
Before proceeding, you should familiarize yourself with the concepts
described in Chapter 2, "Invoking a Web Service Using Asynchronous
Request-Response."

Overview of Web Service Reliable Messaging

3-2 Programming Advanced Features of JAX-RPC Web Services for Oracle WebLogic Server

WebLogic Web services conform to the WS-ReliableMessaging specification (June
2007) at
http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.1-spec-os-01
.pdf, which describes how two Web services running on different application servers
can communicate reliably. In particular, the specification describes an interoperable
protocol in which a message sent from a source endpoint (or client Web service) to a
destination endpoint (or Web service whose operations can be invoked reliably) is
guaranteed either to be delivered, according to one or more delivery assurances, or to
raise an error.

A reliable WebLogic Web service provides the following delivery assurances.

This document describes how to create the reliable and client Web services and how to
configure the two WebLogic Server instances to which the Web services are deployed.
See the WS-ReliableMessaging specification for detailed documentation about the
architecture of Web service reliable messaging (see
http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.1-spec-os-01
.pdf).

Note: Web services reliable messaging works between any two
application servers that implement the WS-ReliableMessaging
specification at
http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.
1-spec-os-01.pdf. In this document, however, it is assumed that
the two application servers are WebLogic Server instances.

Web services reliable messaging is not supported with the JMS
transport feature.

Table 3–1 Delivery Assurances for Reliable Messaging

Delivery Assurance Description

At Most Once Messages are delivered at most once, without duplication. It is
possible that some messages may not be delivered at all.

At Least Once Every message is delivered at least once. It is possible that some
messages are delivered more than once.

Exactly Once Every message is delivered exactly once, without duplication.

In Order Messages are delivered in the order that they were sent. This delivery
assurance can be combined with one of the preceding three
assurances.

Note: Web services reliable messaging requires the use of
asynchronous messages. Clients cannot invoke a reliable service
synchronously. When invoking a reliable stub method, you must use
the async signature—for example, xyzAsync() instead of xyz(). For
clients that create SOAP messages directly, the request message is
created with non-anonymous ReplyTo address.

You cannot set ReplyTo to the anonymous URI. Any attempt to invoke
an operation on a JAX-RPC-based reliable service (either by invoking
the sync stub signature or sending a request with anonymous
ReplyTo) will result in a runtime exception.

Overview of Web Service Reliable Messaging

Using Web Services Reliable Messaging 3-3

3.1.1 Using WS-Policy to Specify Reliable Messaging Policy Assertions
WebLogic Web services use WS-Policy files to enable a destination endpoint to
describe and advertise its Web service reliable messaging capabilities and
requirements. The WS-Policy files are XML files that describe features such as the
version of the supported WS-ReliableMessaging specification and quality of service
requirements. The WS-Policy specification (http://www.w3.org/TR/ws-policy/)
provides a general purpose model and syntax to describe and communicate the
policies of a Web service.

WebLogic Server includes pre-packaged WS-Policy files that contain typical reliable
messaging assertions, as described in Appendix A, "Pre-Packaged WS-Policy Files for
Reliable Messaging." If the pre-packaged WS-Policy files do not suit your needs, you
must create your own WS-Policy file. See Section 3.5, "Creating the Web Service
Reliable Messaging WS-Policy File" for details. See "Web Service Reliable Messaging
Policy Assertion Reference" in the WebLogic Web Services Reference for Oracle WebLogic
Server for reference information about the reliable messaging policy assertions.

3.1.2 Managing the Life Cycle of the Reliable Message Sequence
The following figure shows a one-way reliable message exchange.

Figure 3–1 Web Service Reliable Message Exchange

A reliable message sequence is used to track the progress of a set of messages that are
exchanged reliably between an RM source and RM destination. A sequence can be
used to send zero or more messages, and is identified by a string identifier. This
identifier is used to reference the sequence when using reliable messaging.

The Web service client application sends a message for reliable delivery which is
transmitted by the RM source to the RM destination. The RM destination
acknowledges that the reliable message has been received and delivers it to the Web
service application. The message may be retransmitted by the RM source until the
acknowledgement is received.

A Web service client sends messages to a target Web service by invoking methods on a
JAX-RPC stub. The stub is associated with the port type of the reliable Web service and
represents a programmatic interface to that service. WebLogic stores the identifier for
the reliable message sequence within this stub. This causes the reliable message
sequence to be connected to a single JAX-RPC stub. All messages that are sent using a
given stub will use the same reliable messaging sequence, regardless of the number of
messages that are sent using the stub. The JAX-RPC stub is created by the
<clientgen> child element of the "jwsc" Ant task.

Because WebLogic Server retains resources associated with the reliable sequence, it is
recommended that you take steps to release these resources in a timely fashion.

Using Web Service Reliable Messaging: Main Steps

3-4 Programming Advanced Features of JAX-RPC Web Services for Oracle WebLogic Server

WebLogic Server provides a utility class,
weblogic.wsee.reliability.WsrmUtils, for use with the Web service reliable
messaging. Use this class to perform common tasks such as set configuration options,
get the sequence id, and terminate a reliable sequence.

Under normal circumstances, a reliable sequence should be retained until all messages
have been sent and acknowledged by the RM destination. To facilitate the timely and
proper termination of a sequence, it is recommended that you identify the final
message in a reliable message sequence. Doing so indicates you are done sending
messages to the RM destination and that WebLogic Server can begin looking for the
final acknowledgement before automatically terminating the reliable sequence.
Indicate the final message using the
weblogic.wsee.reliability.WsrmUtils.setFinalMessage() method,
passing the JAX-RPC stub being used to send messages to the RM destination.

When you identify a final message, after all messages up to and including the final
message are acknowledged, the reliable message sequence is terminated, and all
resources are released. Otherwise, the sequence is terminated automatically after the
configured sequence expiration period is reached.

Although not recommended, you can terminate the sequence reliable message
sequence regardless of whether all messages have been acknowledged using the
terminateSequence() method. Once issued, no further reliable messages can be
sent on this stub.

For more information about the WsrmUtils utility class, see
"weblogic.wsee.reliability.WsrmUtils" in Oracle WebLogic Server API Reference.

3.2 Using Web Service Reliable Messaging: Main Steps
Configuring reliable messaging for a WebLogic Web service requires standard JMS
tasks such as creating JMS servers and Store and Forward (SAF) agents, as well as Web
service-specific tasks, such as adding additional JWS annotations to your JWS file.
Optionally, you create WS-Policy files that describe the reliable messaging capabilities
of the reliable Web service if you do not use the pre-packaged ones.

If you are using the WebLogic client APIs to invoke a reliable Web service, the client
application must run on WebLogic Server. Thus, configuration tasks must be
performed on both the source WebLogic Server instance on which the Web service that

Note: The JAX-RPC stub is not fully initialized until shortly after the
first method is invoked on the reliable Web service. When the first
method is invoked, the RM source sends a CreateSequence
message to the RM destination requesting that the RM destination
create and register the reliable sequence. The RM destination, at some
later time, responds with the ID for the newly created sequence. Until
this response ID is received, the RM source cannot have any further
communication with the RM destination and the JAX-RPC stub
representing the target service at the RM destination cannot be used.

You cannot perform operations on the reliable message sequence until
it is fully initialized; otherwise an error is returned. Use the
weblogic.wsee.reliability.WsrmUtils.waitForSequenceI
nitialization() method to monitor whether or not the reliable
message sequence has been initialized. Once the reliable sequence is
initialized, this method returns the ID of the sequence.

Using Web Service Reliable Messaging: Main Steps

Using Web Services Reliable Messaging 3-5

includes client code to invoke the reliable Web service reliably is deployed, as well as
the destination WebLogic Server instance on which the reliable Web service itself is
deployed.

The following table summarizes the steps to create a reliable Web service, as well as a
client Web service that invokes an operation of the reliable Web service. The procedure
describes how to create the JWS files that implement the two Web services from
scratch; if you want to update existing JWS files, use this procedure as a guide. The
procedure also describes how to configure the source and destination WebLogic Server
instances.

Table 3–2 Steps to Create and Invoke a Reliable Web Service

Step Description

1 Configure the destination
and source WebLogic Server
instances.

You will deploy the reliable Web service to the destination
WebLogic Server instance. For information about
configuring the destination WebLogic Server instance, see
Section 3.3, "Configuring the Destination WebLogic Server
Instance".

You will deploy the client Web service that invokes the
reliable Web service to the source WebLogic Server instance.
For information about configuring the source WebLogic
Server instance, see Section 3.4, "Configuring the Source
WebLogic Server Instance".

2 Create the WS-Policy file.
(Optional)

Using your favorite XML or plain text editor, optionally
create a WS-Policy file that describes the reliable messaging
capabilities of the Web service running on the destination
WebLogic Server. For details about creating your own
WS-Policy file, see Section 3.5, "Creating the Web Service
Reliable Messaging WS-Policy File".

This step is not required if you plan to use one of the
WS-Policy files that are included in WebLogic Server; see
Appendix A, "Pre-Packaged WS-Policy Files for Reliable
Messaging," for more information.

3 Create or update the JWS
file that implements the
reliable Web service.

This Web service will be deployed to the destination
WebLogic Server instance. See Section 3.6, "Programming
Guidelines for the Reliable JWS File".

4 Update the build.xml file
that is used to compile the
reliable Web services.

Update your build.xml file to include a call to the jwsc
Ant task which will compile the reliable JWS file into a Web
service.

See "Running the jwsc WebLogic Web Services Ant Task" in
Getting Started With JAX-RPC Web Services for Oracle
WebLogic Server for general information about using the
jwsc task.

5 Compile and deploy the
reliable JWS file.

Compile the reliable JWS file by calling the appropriate
target and deploy to the destination WebLogic Server. For
example:

prompt> ant build-mainService deploy-mainService

6 Configure the reliable Web
service.

Configure the reliable messaging options for the reliable
Web service using the Administration Console. See
Section 3.7, "Configuring Reliable Messaging for a Reliable
Web Service".

7 Create or update the JWS
file that implements the
client Web service.

This service invokes the reliable Web service and will be
deployed to the source WebLogic Server. See Section 3.8,
"Programming Guidelines for the JWS File That Invokes a
Reliable Web Service".

Configuring the Destination WebLogic Server Instance

3-6 Programming Advanced Features of JAX-RPC Web Services for Oracle WebLogic Server

Each of these steps is described in more detail in the following sections.

In addition, the following advanced topics are discussed:

■ Using Reliable Messaging With MTOM—Develop a reliable Web service that uses
MTOM/XOP to optimize the transmission of XML data of type
xs:base64Binary in SOAP messages

■ Client Considerations When Redeploying a Reliable Web Service—Describes client
considerations for when you deploy a new version of an updated reliable
WebLogic Web service alongside an older version of the same Web service.

■ Using Reliable Messaging With a Proxy Server—Describes considerations when
invoking a reliable Web services operations using a proxy server.

3.2.1 Prerequisites
It is assumed that you have completed the following tasks:

■ You have created the destination and source WebLogic Server instances.

■ You have set up an Ant-based development environment for each environment.

■ You have working build.xml files that you can edit, for example, to add targets
for running the jwsc Ant task and deploying the generated reliable Web service.

For more information, see "Developing WebLogic Web Services" in Getting Started With
JAX-RPC Web Services for Oracle WebLogic Server.

3.3 Configuring the Destination WebLogic Server Instance
To configure the WebLogic Server instance on which the reliable Web service is
deployed, configure the JMS and store and forward (SAF) resources.

You can configure these resources manually or you can use the Configuration Wizard
to extend the WebLogic Server domain using a Web services-specific extension
template. Using the Configuration Wizard greatly simplifies the required
configuration steps; for details, see "Configuring Your Domain For Web Services
Features" in Getting Started With JAX-RPC Web Services for Oracle WebLogic Server.

8 Update the build.xml file
that is used to compile the
client Web service.

See Section 3.9, "Updating the build.xml File for a Client of a
Reliable Web Service".

9 Compile and deploy the
client JWS file.

Compile your client JWS file by calling the appropriate
target and deploy to the source WebLogic Server. For
example:

prompt> ant build-clientService
deploy-clientService

Table 3–2 (Cont.) Steps to Create and Invoke a Reliable Web Service

Step Description

Configuring the Destination WebLogic Server Instance

Using Web Services Reliable Messaging 3-7

If you prefer to configure the resources manually, perform the following steps.

Note: Alternatively, you can use WLST to configure the resources.
For information about using WLST to extend the domain, see
"Configuring Existing Domains" in Oracle WebLogic Scripting Tool.

A domain that does not contain Web Services resources will still boot
and operate correctly for non-Web services scenarios, and any Web
Services scenario that does not involve asynchronous request and
response. You will, however, see INFO messages in the server log
indicating that asynchronous resources have not been configured and
that the asynchronous response service for Web services has not been
completely deployed.

Table 3–3 Steps to Configure the Destination WebLogic Server Instance Manually

Step Description

1 Invoke the Administration
Console for the domain that
contains the destination
WebLogic Server.

To invoke the Administration Console in your browser, enter the following
URL:

http://host:port/console

where

■ host refers to the computer on which the Administration Server is
running.

■ port refers to the port number where the Administration Server is
listening for connection requests. The default port number for the
Administration server is 7001.

See "Invoking the Administration Console" in Getting Started With JAX-RPC
Web Services for Oracle WebLogic Server.

2 Create persistent file store.
(Optional)

Optionally create a persistent store (file or JDBC) that will be used by the
destination WebLogic Server to store internal Web service reliable messaging
information. You can use an existing one, or the default store that always
exists, if you do not want to create a new one.

See "Create file stores" in Oracle WebLogic Server Administration Console Help.

3 Create a JMS Server. Create a JMS Server. If a JMS server already exists, you can use it if you do not
want to create a new one.

See "Create JMS servers" in Oracle WebLogic Server Administration Console Help.

4 Create JMS module and
define queue.

Create a JMS module, and then define a JMS queue in the module. If a JMS
module already exists, you can use it if you do not want to create a new one.
Target the JMS queue to the JMS server you created in the preceding step. Be
sure you specify that this JMS queue is local, typically by setting the local
JNDI name.

Take note of the JNDI name you define for the JMS queue because you will
later use it when you program the JWS file that implements your reliable Web
service.

See "Create JMS system modules" and "Create queues in a system module" in
Oracle WebLogic Server Administration Console Help.

Clustering Considerations:

If you are using the Web service reliable messaging feature in a cluster, you
must:

■ Create a local JMS queue, rather than a distributed queue, when creating
the JMS queue.

■ Explicitly target this JMS queue to each server in the cluster.

Configuring the Source WebLogic Server Instance

3-8 Programming Advanced Features of JAX-RPC Web Services for Oracle WebLogic Server

3.4 Configuring the Source WebLogic Server Instance
Configuring the WebLogic Server instance on which the client Web service is deployed
involves configuring JMS and store and forward (SAF) resources.

You can configure these resources manually or you can use the Configuration Wizard
to extend the WebLogic Server domain using a Web services-specific extension
template. Using the Configuration Wizard greatly simplifies the required
configuration steps; for details, see "Configuring Your Domain For Web Services
Features" in Getting Started With JAX-RPC Web Services for Oracle WebLogic Server.

If you prefer to configure the resources manually, perform the following steps.

5 Create a store and forward
(SAF) agent.

You can use an existing one if you do not want to create a new one.

When you create the SAF agent:

■ Set the Agent Type field to Both to enable both sending and receiving
agents.

■ Be sure to target the SAF agent by clicking Next on the first assistant page
to view the Select targets page (rather than clicking Finish).

Clustering Considerations:

■ If you are using reliable messaging within a cluster, you must target the
SAF agent to the cluster.

See "Create Store-and-Forward agents" in Oracle WebLogic Server
Administration Console Help.

6 Tune your domain
environment, as required.
(Optional)

Review "Tuning Heavily Loaded Systems to Improve Web service
Performance" in Performance and Tuning for Oracle WebLogic Server.

7 Restart the server. In order for the configuration changes to take effect, you must restart the
server, as described in "Starting and Stopping Servers" in Managing Server
Startup and Shutdown for Oracle WebLogic Server.

Notes: Alternatively, you can use WLST to configure the resources.
For information about using WLST to extend the domain, see
"Configuring Existing Domains" in Oracle WebLogic Scripting Tool.

A domain that does not contain Web Services resources will still boot
and operate correctly for non-Web services scenarios, and any Web
Services scenario that does not involve asynchronous request and
response. You will, however, see INFO messages in the server log
indicating that asynchronous resources have not been configured and
that the asynchronous response service for Web services has not been
completely deployed.

Table 3–3 (Cont.) Steps to Configure the Destination WebLogic Server Instance Manually

Step Description

Creating the Web Service Reliable Messaging WS-Policy File

Using Web Services Reliable Messaging 3-9

3.5 Creating the Web Service Reliable Messaging WS-Policy File
A WS-Policy file is an XML file that contains policy assertions that comply with the
WS-Policy specification. In this case, the WS-Policy file contains Web service reliable
messaging policy assertions.

WebLogic Server includes pre-packaged WS-Policy files that contain typical reliable
messaging assertions that you can use if you do not want to create your own
WS-Policy file. The pre-packaged WS-Policy files are listed in the following table.

Table 3–4 Steps to Configure the Source WebLogic Server Instance

Step Description

1 Invoke the Administration
Console for the domain that
contains the source WebLogic
Server.

To invoke the Administration Console in your browser, enter the following
URL:

http://host:port/console

where

■ host refers to the computer on which the Administration Server is
running.

■ port refers to the port number where the Administration Server is
listening for connection requests. The default port number for the
Administration server is 7001.

See "Invoking the Administration Console" in Getting Started With JAX-RPC
Web Services for Oracle WebLogic Server.

2 Create persistent file store.
(Optional)

Optionally create a persistent store (file or JDBC) that will be used by the
source WebLogic Server to store internal Web service reliable messaging
information. You can use an existing one, or the default store that always
exists, if you do not want to create a new one.

See "Create file stores" in Oracle WebLogic Server Administration Console Help.

3 Create as store and forward
(SAF) agent.

You can use an existing one if you do not want to create a new one.

When you create the SAF agent, set the Agent Type field to Both to enable
both sending and receiving agents.

See "Create Store-and-Forward agents" in Oracle WebLogic Server
Administration Console Help.

6 Tune your domain
environment, as required.
(Optional)

Review "Tuning Heavily Loaded Systems to Improve Web service
Performance" in Performance and Tuning for Oracle WebLogic Server.

7 Restart the server. In order for the configuration changes to take effect, you must restart the
server, as described in "Starting and Stopping Servers" in Managing Server
Startup and Shutdown for Oracle WebLogic Server.

Note: The DefaultReliability.xml and
LongRunningReliability.xml files are deprecated in this release.
Use of the DefaultReliability1.1.xml, Reliability1.1_
SequenceTransportSecurity, or Reliability1.0_1.1.xml
file is recommended and required to comply with the 1.1 version of
the WS-ReliableMessaging specification at
http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.
1-spec-os-01.pdf.

Creating the Web Service Reliable Messaging WS-Policy File

3-10 Programming Advanced Features of JAX-RPC Web Services for Oracle WebLogic Server

You can use one of the pre-packaged reliable messaging WS-Policy files included in
WebLogic Server; these files are adequate for most use cases. You cannot modify the
pre-packaged files. If the values do not suit your needs, you must create a custom
WS-Policy file. The following sections describe how to create a custom WS-Policy file.

■ Section 3.5.1, "Creating a Custom WS-Policy File Using WS-ReliableMessaging
Policy Assertions Version 1.1"

■ Section 3.5.2, "Creating a Custom WS-Policy File Using WS-ReliableMessaging
Policy Assertions Version 1.0 (Deprecated)"

■ Section 3.5.3, "Using Multiple Policy Alternatives"

3.5.1 Creating a Custom WS-Policy File Using WS-ReliableMessaging Policy Assertions
Version 1.1

This section describes how to create a custom WS-Policy file that contains Web service
reliable messaging assertions that are based on WS Reliable Messaging Policy
Assertion Version 1.1 at
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-
01.pdf. In the current release, many of the reliable messaging policy assertions are
managed through JWS annotations or configuration.

Table 3–5 Pre-packaged WS-Policy Files

Pre-packaged WS-Policy File Description

DefaultReliability1.1.xml Specifies policy assertions related to quality of service. The Web service
reliable messaging assertions are based on WS Reliable Messaging Policy
Assertion 1.1 at
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-
spec-os-01.pdf. See Section A.1, "DefaultReliability1.1.xml (WS-Policy
File)".

Reliability1.1_
SequenceTransportSecurity

Specifies policy assertions related to transport-level security and quality of
service. The Web service reliable messaging assertions are based on WS
Reliable Messaging Policy Assertion 1.1 at
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-
spec-os-01.pdf. See Section A.2, "Reliability1.1_
SequenceTransportSecurity.xml (WS-Policy File)".

Reliability1.0_1.1.xml Combines 1.1 and 1.0 WS Reliable Messaging policy assertions. This sample
relies on smart policy selection to determine the policy assertion that is
applied at runtime. See Section A.4, "Reliability1.0_1.1.xml (WS-Policy.xml
File)"

DefaultRelibility.xml Deprecated. The Web service reliable messaging assertions are based on WS
Reliable Messaging Policy Assertion Version 1.0 at
http://schemas.xmlsoap.org/ws/2005/02/rm/WS-RMPolicy.pdf
. In this release, many of the reliable messaging policy assertions are
managed through JWS annotations or configuration.

Specifies typical values for the reliable messaging policy assertions, such as
inactivity timeout of 10 minutes, acknowledgement interval of 200
milliseconds, and base retransmission interval of 3 seconds. See Section A.5,
"DefaultReliability.xml (WS-Policy File) [Deprecated]".

LongRunningReliability.xml Deprecated. The Web service reliable messaging assertions are based on WS
Reliable Messaging Policy Assertion Version 1.0 for long running processes.
In this release, many of the reliable messaging policy assertions are
managed through JWS annotations or configuration.

Similar to the preceding default reliable messaging WS-Policy file, except
that it specifies a much longer activity timeout interval (24 hours.) See
Section A.6, "LongRunningReliability.xml (WS-Policy File) [Deprecated]".

Creating the Web Service Reliable Messaging WS-Policy File

Using Web Services Reliable Messaging 3-11

The root element of the WS-Policy file is <Policy> and it should include the
following namespace declaration:

<wsp:Policy
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy">

You wrap all Web service reliable messaging policy assertions inside of a
<wsrmp:RMAssertion> element. This element should include the following
namespace declaration for using Web service reliable messaging policy assertions:

<wsrmp:RMAssertion
 xmlns:wsrmp="http://docs.oasis-open.org/ws-rx/wsrmp/200702">

The following table lists the Web service reliable messaging assertions that you can
specify in the WS-Policy file. The order in which the assertions appear is important.
You can specify the following assertions; the order they appear in the following list is
the order in which they should appear in your WS-Policy file:

The following example shows a simple Web service reliable messaging WS-Policy file:

<?xml version="1.0"?>

<wsp:Policy xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy">
 <wsrmp:RMAssertion
 xmlns:wsrmp="http://docs.oasis-open.org/ws-rx/wsrmp/200702">
 <wsrmp:SequenceTransportSecurity/>
 <wsrmp:DeliveryAssurance>
 <wsp:Policy>
 <wsrmp:ExactlyOnce/>
 </wsp:Policy>
 </wsrmp:DeliveryAssurance>
 </wsrmp:RMAssertion>
</wsp:Policy>

For more information about Reliable Messaging policy assertions in the WS-Policy file,
see "Web Service Reliable Messaging Policy Assertion Reference" in WebLogic Web
Services Reference for Oracle WebLogic Server.

Table 3–6 Web Service Reliable Messaging Assertions (Version 1.1)

Assertion Description

<wsrmp:SequenceSTR> To secure messages in a reliable sequence, the runtime will use the
wsse:SecurityTokenReference that is referenced in the
CreateSequence message. You can only specify one security
assertion; that is, you can specify wsrmp:SequenceSTR or
wsrmp:SequenceTransportSecurity, but not both.

<wsrmp:SequenceTransportSecurity> To secure messages in a reliable sequence, the runtime will use the
SSL transport session that is used to send the CreateSequence
message. This assertion must be used in conjunction with the
sp:TransportBinding assertion that requires the use of some
transport-level security mechanism (for example, sp:HttpsToken).
You can only specify one security assertion; that is, you can specify
wsrmp:SequenceSTR or wsrmp:SequenceTransportSecurity,
but not both.

<wsrm:DeliveryAssurance> Delivery assurance (or quality of service) of the Web service. Valid
values are AtMostOnce, AtLeastOnce, ExactlyOnce, and
InOrder. You can set one of the delivery assurances defined in the
following table. If not set, the delivery assurance defaults to
ExactlyOnce.

Creating the Web Service Reliable Messaging WS-Policy File

3-12 Programming Advanced Features of JAX-RPC Web Services for Oracle WebLogic Server

3.5.2 Creating a Custom WS-Policy File Using WS-ReliableMessaging Policy Assertions
Version 1.0 (Deprecated)

This section describes how to create a custom WS-Policy file that contains Web service
reliable messaging assertions that are based on WS Reliable Messaging Policy
Assertion Version 1.0 at
http://schemas.xmlsoap.org/ws/2005/02/rm/WS-RMPolicy.pdf.

The root element of the WS-Policy file is <Policy> and it should include the
following namespace declarations for using Web service reliable messaging policy
assertions:

<wsp:Policy
 xmlns:wsrm="http://schemas.xmlsoap.org/ws/2005/02/rm"
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:beapolicy="http://www.bea.com/wsrm/policy">

You wrap all Web service reliable messaging policy assertions inside of a
<wsrm:RMAssertion> element. The assertions that use the wsrm: namespace are
standard ones defined by the WS-ReliableMessaging specification at
http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.1-spec-os-01
.pdf. The assertions that use the beapolicy: namespace are WebLogic-specific. See
"Web Service Reliable Messaging Policy Assertion Reference" in the WebLogic Web
Services Reference for Oracle WebLogic Server for details.

The following table lists the Web service reliable messaging assertions that you can
specify in the WS-Policy file. All Web service reliable messaging assertions are
optional, so only set those whose default values are not adequate. The order in which
the assertions appear is important. You can specify the following assertions; the order
they appear in the following list is the order in which they should appear in your
WS-Policy file,

Note: In the current release, many of the reliable messaging policy
assertions are managed through JWS annotations or configuration.

Table 3–7 Web Service Reliable Messaging Assertions (Version 1.0)

Assertion Description

<wsrm:InactivityTimeout> Number of milliseconds, specified with the Milliseconds
attribute, which defines an inactivity interval. After this amount of
time, if the destination endpoint has not received a message from
the source endpoint, the destination endpoint may consider the
sequence to have terminated due to inactivity. The same is true for
the source endpoint. By default, sequences never timeout.

<wsrm:BaseRetransmissionInterval> Interval, in milliseconds, that the source endpoint waits after
transmitting a message and before it retransmits the message if it
receives no acknowledgment for that message. Default value is set
by the SAF agent on the source endpoint's WebLogic Server
instance.

<wsrm:ExponentialBackoff> Specifies that the retransmission interval will be adjusted using the
exponential backoff algorithm. This element has no attributes.

Creating the Web Service Reliable Messaging WS-Policy File

Using Web Services Reliable Messaging 3-13

The following example shows a simple Web service reliable messaging WS-Policy file:

<?xml version="1.0"?>

<wsp:Policy
 xmlns:wsrm="http://schemas.xmlsoap.org/ws/2005/02/rm/policy"
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:beapolicy="http://www.bea.com/wsrm/policy"
 >

 <wsrm:RMAssertion>

 <wsrm:InactivityTimeout
 Milliseconds="600000" />
 <wsrm:BaseRetransmissionInterval
 Milliseconds="500" />
 <wsrm:ExponentialBackoff />
 <wsrm:AcknowledgementInterval
 Milliseconds="2000" />

 </wsrm:RMAssertion>

</wsp:Policy>

For more information about Reliable Messaging policy assertions in the WS-Policy file,
see "Web Service Reliable Messaging Policy Assertion Reference" in WebLogic Web
Services Reference for Oracle WebLogic Server.

3.5.3 Using Multiple Policy Alternatives
You can configure multiple policy alternatives—also referred to as smart policy
alternatives—for a single Web service by creating a custom policy file. At runtime,
WebLogic Server selects which of the configured policies to apply. It excludes policies
that are not supported or have conflicting assertions and selects the appropriate policy,
based on your configured preferences, to verify incoming messages and build the
response messages.

<wsrm:AcknowledgmentInterval> Maximum interval, in milliseconds, in which the destination
endpoint must transmit a stand-alone acknowledgement. The
default value is set by the SAF agent on the destination endpoint's
WebLogic Server instance.

<beapolicy:Expires> Amount of time after which the reliable Web service expires and
does not accept any new sequence messages. The default value is to
never expire. This element has a single attribute, Expires, whose
data type is an XML Schema duration type (see
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502
/#duration). For example, if you want to set the expiration time to
one day, use the following: <beapolicy:Expires
Expires="P1D" />.

<beapolicy:QOS> Delivery assurance level, as described in Table 3–9. The element has
one attribute, QOS, which you set to one of the following values:
AtMostOnce, AtLeastOnce, or ExactlyOnce. You can also
include the InOrder string to specify that the messages be in order.
The default value is ExactlyOnce InOrder. This element is
typically not set.

Table 3–7 (Cont.) Web Service Reliable Messaging Assertions (Version 1.0)

Assertion Description

Programming Guidelines for the Reliable JWS File

3-14 Programming Advanced Features of JAX-RPC Web Services for Oracle WebLogic Server

The following example provides an example of a security policy that supports both
1.1and 1.0 WS-Reliable Messaging. Each policy alternative is enclosed in a <wsp:All>
element.

<wsp:Policy xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <wsrmp10:RMAssertion
 xmlns:wsrmp10="http://schemas.xmlsoap.org/ws/2005/02/rm/policy">
 <wsrmp10:InactivityTimeout Milliseconds="1200000"/>
 <wsrmp10:BaseRetransmissionInterval Milliseconds="60000"/>
 <wsrmp10:ExponentialBackoff/>
 <wsrmp10:AcknowledgementInterval Milliseconds="800"/>
 </wsrmp10:RMAssertion>
 </wsp:All>
 <wsp:All>
 <wsrmp:RMAssertion
 xmlns:wsrmp="http://docs.oasis-open.org/ws-rx/wsrmp/200702">
 <wsrmp:SequenceSTR/>
 <wsrmp:DeliveryAssurance>
 <wsp:Policy>
 <wsrmp:AtMostOnce/>
 </wsp:Policy>
 </wsrmp:DeliveryAssurance>
 </wsrmp:RMAssertion>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

For more information about multiple policy alternatives, see "Smart Policy Selection"
in "Configuring Message-Level Security" in Securing WebLogic Web Services for Oracle
WebLogic Server.

3.6 Programming Guidelines for the Reliable JWS File
This section describes how to create the JWS file that implements the reliable Web
service.

The following JWS annotations are used in the JWS file that implements a reliable Web
service.

Note: The 1.0 Web service reliable messaging assertions are prefixed
by wsrmp10.

Table 3–8 JWS Annotations for Reliable Messaging

Annotation Description

@weblogic.jws.Policy Required. Specifies that the Web service has a WS-Policy
file attached to it that contains reliable messaging
assertions. See Section 3.6.1, "Using the @Policy
Annotation".

@javax.jws.Oneway Required only if you invoke the reliable Web service
operation synchronously (that is, you are not using the
asynchronous request-response feature). See Section 3.6.2,
"Using the @Oneway Annotation".

Programming Guidelines for the Reliable JWS File

Using Web Services Reliable Messaging 3-15

The following example shows a simple JWS file that implements a reliable Web
service; see the explanation after the example for coding guidelines that correspond to
the Java code in bold.

package examples.webservices.reliable;

import javax.jws.WebMethod;
import javax.jws.WebService;
import javax.jws.Oneway;

import weblogic.jws.WLHttpTransport;

import weblogic.jws.ReliabilityBuffer;
import weblogic.jws.BufferQueue;
import weblogic.jws.Policy;

/**
 * Simple reliable Web Service.
 */

@WebService(name="ReliableHelloWorldPortType",
 serviceName="ReliableHelloWorldService")

@WLHttpTransport(contextPath="ReliableHelloWorld",
 serviceUri="ReliableHelloWorld",
 portName="ReliableHelloWorldServicePort")

@Policy(uri="ReliableHelloWorldPolicy.xml",
 direction=Policy.Direction.both,
 attachToWsdl=true)
@BufferQueue(name="webservices.reliable.queue")

public class ReliableHelloWorldImpl {

 private static String onewaySavedInput = null;

/**
 * A one-way helloWorld method that saves the given string for later
 * concatenation to the end of the message passed into helloWorldReturn.
 */
 @WebMethod()
 @Oneway()
 @ReliabilityBuffer(retryCount=10, retryDelay="10 seconds")

 public void helloWorld(String input) {
 System.out.println(" Hello World " + input);
 onewaySavedInput = input;
 }

@weblogic.jws.BufferQueue Optional. Specifies the JNDI name of the JMS queue which
WebLogic Server uses to store reliable messages internally.
See Section 3.6.3, "Using the @BufferQueue Annotation".

@weblogic.jws.ReliabilityBuff
er

Optional. Specifies the number of times WebLogic Server
should attempt to deliver the message from the JMS queue
to the Web service implementation and the amount of time
that the server should wait in between retries. See
Section 3.6.4, "Using the @ReliabilityBuffer Annotation"

Table 3–8 (Cont.) JWS Annotations for Reliable Messaging

Annotation Description

Programming Guidelines for the Reliable JWS File

3-16 Programming Advanced Features of JAX-RPC Web Services for Oracle WebLogic Server

/**
 * This echo method concatenates the saved message from helloWorld
 * onto the end of the provided message, and returns it.
 */
 @WebMethod()
 @ReliabilityBuffer(retryCount=10, retryDelay="10 seconds")

 public String echo(String input2) {
 System.out.println(" Hello World " + input2 + onewaySavedInput);
 return input + onewaySavedInput;
 }
}

In the example, the custom ReliableHelloWorldPolicy.xml policy file is
attached to the Web service at the class level, which means that the policy file is
applied to all public operations of the Web service. The policy file is applied only to
the request Web service message (as required by the reliable messaging feature) and it
is attached to the WSDL file. For information about the pre-packaged policies available
and creating a custom policy, see Section 3.5, "Creating the Web Service Reliable
Messaging WS-Policy File".

The JMS queue that WebLogic Server uses internally to enable the Web service reliable
messaging has a JNDI name of webservices.reliable.queue, as specified by the
@BufferQueue annotation.

The helloWorld() method has been marked with both the @WebMethod and
@Oneway JWS annotations, which means it is a public operation called helloWorld.
Because of the @Policy annotation, the operation can be invoked reliably. The Web
services runtime attempts to deliver reliable messages to the service a maximum of 10
times, at 10-second intervals, as described by the @ReliabilityBuffer annotation.
The message may require re-delivery if, for example, the transaction is rolled back or
otherwise does not commit.

The echo() method has been marked with the @WebMethod and JWS annotation,
which means it is a public operation called echo. Because of the @Policy annotation,
the operation can be invoked reliably. It uses the same reliability buffer configuration
as the helloWorld() method.

3.6.1 Using the @Policy Annotation
Use the @Policy annotation in your JWS file to specify that the Web service has a
WS-Policy file attached to it that contains reliable messaging assertions. WebLogic
Server delivers a set of pre-packaged WS-Policy files, as described in Appendix A,
"Pre-Packaged WS-Policy Files for Reliable Messaging."

Follow the following guidelines when using the @Policy annotation for Web service
reliable messaging:

■ Use the uri attribute to specify the build-time location of the policy file, as
follows:

– If you have created your own WS-Policy file, specify its location relative to the
JWS file. For example:

@Policy(uri="ReliableHelloWorldPolicy.xml",
 direction=Policy.Direction.both,
 attachToWsdl=true)

Programming Guidelines for the Reliable JWS File

Using Web Services Reliable Messaging 3-17

In this example, the ReliableHelloWorldPolicy.xml file is located in the
same directory as the JWS file.

– To specify one of the pre-packaged WS-Policy files or a WS-Policy file that is
packaged in a shared Java EE library, use the policy: prefix along with the
name and path of the policy file. This syntax tells the jwsc Ant task at
build-time not to look for an actual file on the file system, but rather, that the
Web service will retrieve the WS-Policy file from WebLogic Server at the time
the service is deployed.

– To specify that the policy file is published on the Web, use the http: prefix
along with the URL, as shown in the following example:

@Policy(uri="http://someSite.com/policies/mypolicy.xml"
 direction=Policy.Direction.both,
 attachToWsdl=true)

■ By default, WS-Policy files are applied to both the request (inbound) and response
(outbound) SOAP messages. You can change this default behavior with the
direction attribute by setting the attribute to Policy.Direction.inbound
or Policy.Direction.outbound.

■ You can specify whether the Web service requires the operations to be invoked
reliably and have the responses delivered reliably using the wsp:optional
attribute within the policy file specified by uri.

If the optional attribute is set to false for outbound on any operation, then:

– The client must provide an offer sequence (<wsrm: Offer...> as described in
the WS-ReliableMessaging specification at
http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.1-spec
-os-01.pdf) for use when sending reliable responses.

– Responses will be sent reliably for all operations requiring a response.

If the optional attribute is set to true for outbound on all operations, then:

– The client is not required to provide an offer sequence.

– Responses will be sent reliably if the client provides an offer sequence;
otherwise, responses will be sent non-reliably.

■ Set the attachToWsdl attribute of the @Policy annotation to specify whether
the policy file should be attached to the WSDL file that describes the public
contract of the Web service. Typically, you want to publicly publish the policy so
that client applications know the reliable messaging capabilities of the Web
service. For this reason, the default value of this attribute is true.

Note: Shared Java EE libraries are useful when you want to share a
WS-Policy file with multiple Web services that are packaged in
different Enterprise applications. As long as the WS-Policy file is
located in the META-INF/policies or WEB-INF/policies
directory of the shared Java EE library, you can specify the policy file
in the same way as if it were packaged in the same archive at the Web
service. See "Creating Shared Java EE Libraries and Optional
Packages" in Developing Applications for Oracle WebLogic Server for
information about creating libraries and setting up your environment
so the Web service can locate the policy files.

Programming Guidelines for the Reliable JWS File

3-18 Programming Advanced Features of JAX-RPC Web Services for Oracle WebLogic Server

For more information about the @Policy annotation, see "weblogic.jws.Policy" in
WebLogic Web Services Reference for Oracle WebLogic Server.

3.6.2 Using the @Oneway Annotation
If you plan on invoking the reliable Web service operation synchronously (or in other
words, not using the asynchronous request-response feature), then you must annotate
the implementing method with the @Oneway annotation to specify that the method is
one-way. This means that the method cannot return a value, but rather, must explicitly
return void.

Conversely, if the method is not annotated with the @Oneway annotation, then you
must invoke it using the asynchronous request-response feature. If you are unsure
how the operation is going to be invoked, consider creating two flavors of the
operation: synchronous and asynchronous.

See Chapter 2, "Invoking a Web Service Using Asynchronous Request-Response," and
Chapter 6, "Using the Asynchronous Features Together."

3.6.3 Using the @BufferQueue Annotation
Use the @BufferQueue annotation to specify the JNDI name of the JMS queue which
WebLogic Server uses to store reliable messages internally. The JNDI name is the one
you configured when creating a JMS queue in step 4 in Section 3.3, "Configuring the
Destination WebLogic Server Instance".

The @BufferQueue annotation is optional; if you do not specify it in your JWS file
then WebLogic Server uses a queue with a JNDI name of
weblogic.wsee.DefaultQueue. You must, however, still explicitly create a JMS
queue with this JNDI name using the Administration Console.

For more information about the @BufferQueue annotation, see
"weblogic.jws.BufferQueue" in WebLogic Web Services Reference for Oracle WebLogic
Server.

3.6.4 Using the @ReliabilityBuffer Annotation
Use the @ReliabilityBuffer annotation to specify the number of times WebLogic
Server should attempt to deliver the message from the JMS queue to the Web service
implementation and the amount of time that the server should wait in between retries.

Use the retryCount attribute to specify the number of retries and the retryDelay
attribute to specify the wait time. The format of the retryDelay attribute is a number
and then one of the following strings:

■ seconds

■ minutes

■ hours

■ days

■ years

For example, to specify a retry count of 20 and a retry delay of two days, use the
following syntax:

@ReliabilityBuffer(retryCount=20, retryDelay="2 days")

The retry count and delay default to 3 and 5 seconds, respectively.

Configuring Reliable Messaging for a Reliable Web Service

Using Web Services Reliable Messaging 3-19

For more information about the @ReliabilityBuffer annotation, see
"weblogic.jws.ReliabilityBuffer" in WebLogic Web Services Reference for Oracle WebLogic
Server.

3.7 Configuring Reliable Messaging for a Reliable Web Service
If necessary, you can edit the reliable message configuration options for a reliable Web
service that are stored in the weblogic-webservices.xml descriptor by updating
the application deployment plan. The deployment plan associates new values with
specific locations in the descriptors for your application. At deployment time, a
deployment plan is merged with the descriptors in the application by applying the
values in its variable assignments to the locations in the application descriptors to
which the variables are linked.

The following table summarizes the reliable messaging options that can be configured
for the reliable Web service.

Table 3–9 Configuration Options for Reliable Messaging

Configuration Option Description

Customize Reliable Message
Configuration

Flag that specifies whether you want to customize the
reliable message configuration defined in the Web service
descriptor or deployment plan at the Web service endpoint
level. This flag is available only when configuring reliable
messaging at the Web service endpoint level If not
checked, the reliable message configuration specified for
the WebLogic Server is used.

Note: This flag does not reflect the configuration of
Reliable Messaging in other forms, such as, WS-RM policy
directly specified in the WSDL.

Base Retransmission Interval Interval of time that must pass before a message is
retransmitted to the RM destination.

If the source endpoint does not receive an
acknowledgement for a given message within the
specified interval, the source endpoint retransmits the
message. The source endpoint can modify this
retransmission interval at any point during the lifetime of
the sequence of messages.

This element can be used in conjunction with the
Retransmission Exponential Backoff element to specify the
algorithm that is used to adjust the retransmission
interval.

The value specified must be a positive value and conform
to the XML schema duration lexical format,
PnYnMnDTnHnMnS, where nY specifies the number of
years, nM specifies the number of months, nD specifies the
number of days, T is the date/time separator, nH specifies
the number of hours, nM specifies the number of minutes,
and nS specifies the number of seconds. This value
defaults to P0DT3S (3 seconds).

Configuring Reliable Messaging for a Reliable Web Service

3-20 Programming Advanced Features of JAX-RPC Web Services for Oracle WebLogic Server

Enable Retransmission
Exponential Backoff

Flag that specifies whether the message retransmission
interval will be adjusted using the exponential backoff
algorithm.

This element is used in conjunction with the Base
Retransmission Interval element. If a destination endpoint
does not acknowledge a sequence of messages for the time
interval specified by the Base Retransmission Interval, the
exponential backoff algorithm is used for timing
successive retransmissions by the source endpoint, should
the message continue to go unacknowledged.

The exponential backoff algorithm specifies that
successive retransmission intervals should increase
exponentially, based on the base retransmission interval.
For example, if the base retransmission interval is 2
seconds, and the exponential backoff element is set,
successive retransmission intervals if messages continue to
go unacknowledged are 2, 4, 8, 16, 32, and so on.

This value defaults to false, the same retransmission
interval is used in successive retries; the interval does not
increase exponentially.

Acknowledgement Interval Maximum interval during which the destination endpoint
must transmit a stand-alone acknowledgement.

A destination endpoint can send an acknowledgement on
the return message immediately after it has received a
message from a source endpoint, or it can send one
separately as a stand-alone acknowledgement. If a return
message is not available to send an acknowledgement, a
destination endpoint may wait for up to the
acknowledgement interval before sending a stand-alone
acknowledgement. If there are no unacknowledged
messages, the destination endpoint may choose not to
send an acknowledgement.

The value specified must be a positive value and conform
to the XML schema duration lexical format,
PnYnMnDTnHnMnS, where nY specifies the number of
years, nM specifies the number of months, nD specifies the
number of days, T is the date/time separator, nH specifies
the number of hours, nM specifies the number of minutes,
and nS specifies the number of seconds. This value
defaults to P0DT0.2S (200 milliseconds).

Inactivity Timeout Inactivity interval. If, during the inactivity timeout
interval, an endpoint (the RM source or destination) has
not received messages application or control messages, the
endpoint may consider the RM sequence to have been
terminated due to inactivity.

The value specified must be a positive value and conform
to the XML schema duration lexical format,
PnYnMnDTnHnMnS, where nY specifies the number of
years, nM specifies the number of months, nD specifies the
number of days, T is the date/time separator, nH specifies
the number of hours, nM specifies the number of minutes,
and nS specifies the number of seconds. This value
defaults to P0DT600S (600 seconds).

Table 3–9 (Cont.) Configuration Options for Reliable Messaging

Configuration Option Description

Configuring Reliable Messaging for a Reliable Web Service

Using Web Services Reliable Messaging 3-21

You can set the reliable messaging configuration options using the Administration
Console or WLST, as described in the following sections.

■ Section 3.7.1, "Using the Administration Console"

■ Section 3.7.2, "Using WLST"

3.7.1 Using the Administration Console
To configure reliable messaging for the Web service endpoint using the Administration
Console:

1. Invoke the Administration Console, as described in "Invoking the Administration
Console" in Getting Started With JAX-WS Web Services for Oracle WebLogic Server.

2. In the left navigation pane, select Deployments.

3. Click the name of the Web service in the Deployments table.

4. Select the Configuration tab, then the Ports tab.

5. Click the name of the Web service endpoint in the Ports table.

6. Select the Reliable Message tab.

7. Click Customize Reliable Message Configuration and follow the instructions to
save the deployment plan, if required.

8. Set the reliable messaging properties, as required.

9. Click Save.

Sequence Expiration Expiration time for a sequence regardless of activity.

The value specified must be a positive value and conform
to the XML schema duration lexical format,
PnYnMnDTnHnMnS, where nY specifies the number of
years, nM specifies the number of months, nD specifies the
number of days, T is the date/time separator, nH specifies
the number of hours, nM specifies the number of minutes,
and nS specifies the number of seconds. This value
defaults to P1D (1 day).

Buffer Retry Count Number of times to retry a reliable request. This value
defaults to 3.

Buffer Retry Delay Amount of time to wait before retrying a reliable request.

The retry attempts are between the client's request
message on the JMS queue and delivery of the message to
the Web service implementation.

The value specified must be a positive value and conform
to the XML schema duration lexical format,
PnYnMnDTnHnMnS, where nY specifies the number of
years, nM specifies the number of months, nD specifies the
number of days, T is the date/time separator, nH specifies
the number of hours, nM specifies the number of minutes,
and nS specifies the number of seconds. This value
defaults to P0DT5S (5 seconds).

Table 3–9 (Cont.) Configuration Options for Reliable Messaging

Configuration Option Description

Programming Guidelines for the JWS File That Invokes a Reliable Web Service

3-22 Programming Advanced Features of JAX-RPC Web Services for Oracle WebLogic Server

3.7.2 Using WLST
For a complete description and example of using WLST to update an application's
deployment plan to configure reliable messaging, see "Updating the Deployment Plan"
in Oracle WebLogic Scripting Tool.

For your reference, the following table summarizes the XPath values for the WS-RM
configuration options.

3.8 Programming Guidelines for the JWS File That Invokes a Reliable
Web Service

If you are using the WebLogic client APIs, you must invoke a reliable Web service from
within a Web service; you cannot invoke a reliable Web service from a stand-alone
client application.

Table 3–10 WS_RM Configuration Variable Names and XPath Values

Configuration
Option Example Variable Name XPath Value

Inactivity Timeout ReliabilityConfig_
InactivityTimeout

/weblogic-webservices/webservice-description/
[webservice-description-name="
service_name"]/port-component/
[port-component-name="port_name"]
/reliability-config/inactivity-timeout

Base Retransmission
Interval

ReliabilityConfig_
BaseRetransmission
Interval

/weblogic-webservices/webservice-description/
[webservice-description-name=
"service_name"]/port-component/
[port-component-name="port-name"]
/reliability-config/base-retransmission-interval

Retransmission
Exponential Backoff

ReliabilityConfig_
Retransmission
ExponentialBackoff

/weblogic-webservices/webservice-description/
[webservice-description-name=
"service_name"]/port-component/
[port-component-name="port-name"]/reliability-
config/retransmission-exponential-backoff

Acknowledgement
Interval

ReliabilityConfig_
AcknowledgementInterval

/weblogic-webservices/webservice-description/
[webservice-description-name=
"service_name"]/port-component/
[port-component-name="port-name"]
/reliability-config/acknowledgement-interval

Sequence Expiration ReliabilityConfig_
SequenceExpiration

/weblogic-webservices/webservice-description/
[webservice-description-name=
"service_name"]/port-component/
[port-component-name="port-name"]
/reliability-config/sequence-expiration

Buffer Retry Count ReliabilityConfig_
BufferRetryCount

/weblogic-webservices/webservice-description/
[webservice-description-name=
"service_name"]/port-component/
[port-component-name="port-name"]
/reliability-config/buffer-retry-count

Buffer Retry Delay ReliabilityConfig_
BufferRetryDelay

/weblogic-webservices/webservice-description/
[webservice-description-name=
"service_name"]/port-component/
[port-component-name="port-name"]
/reliability-config/buffer-retry-delay

Programming Guidelines for the JWS File That Invokes a Reliable Web Service

Using Web Services Reliable Messaging 3-23

The following example shows a simple JWS file for a Web service that invokes a
reliable operation from the service described in Section 3.6, "Programming Guidelines
for the Reliable JWS File".

package examples.webservices.reliable;

import java.rmi.RemoteException;

import javax.jws.WebMethod;
import javax.jws.WebService;
import javax.xml.rpc.Stub;
import weblogic.jws.WLHttpTransport;
import weblogic.jws.ServiceClient;
import weblogic.jws.ReliabilityErrorHandler;

import weblogic.jws.AsyncFailure;
import weblogic.jws.AsyncResponse;

import examples.webservices.reliable.ReliableHelloWorldPortType;

import weblogic.wsee.reliability.ReliabilityErrorContext;
import weblogic.wsee.reliability.ReliableDeliveryException;
import weblogic.wsee.reliability.WsrmUtils;

@WebService(name="ReliableClientPortType",
 serviceName="ReliableClientService")

@WLHttpTransport(contextPath="ReliableClient",
 serviceUri="ReliableClient",
 portName="ReliableClientServicePort")

public class ReliableClientImpl
{
 private static String responseMessage = null;

 @ServiceClient(
 serviceName="ReliableHelloWorldService",
 portName="ReliableHelloWorldServicePort")

 private ReliableHelloWorldPortType port;

 @WebMethod
 public void callHelloWorld(String input, String input2, String serviceUrl)
 throws RemoteException {

 ((Stub)port)._setProperty(Stub.ENDPOINT_ADDRESS_PROPERTY, serviceUrl);

 port.helloWorld(input);

 System.out.println(" Invoked the ReliableHelloWorld.helloWorld operation
reliably.");
 WsrmUtils.setFinalMessage((Stub)port);
 port.echo(input2);
 System.out.println(" Invoked the ReliableHelloWorld.echo operation reliably."
);
 }

 @AsyncResponse(target = "port", operation = "echo")
 public void onEchoAsyncResponse(String msg) {

Programming Guidelines for the JWS File That Invokes a Reliable Web Service

3-24 Programming Advanced Features of JAX-RPC Web Services for Oracle WebLogic Server

 System.out.println("ClientService: Got async response for request : " + msg);
 responseMessage = msg;
 }

 @AsyncFailure(target = "port", operation = "echo")
 public void onEchoAsyncFailure(Throwable t) {
 System.out.println("ClientService: Got async FAILURE for request : " + t);
 t.printStackTrace();
 }

 @ReliabilityErrorHandler(target="port")
 public void onReliableMessageDeliveryError(ReliabilityErrorContext ctx) {

 ReliableDeliveryException fault = ctx.getFault();
 String message = null;
 if (fault != null) {
 message = ctx.getFault().getMessage();
 }
 String operation = ctx.getOperationName();
 System.out.println("Reliable operation " + operation + " may have not invoked.
The error message is " + message);
 }

}

As illustrated in the previous examples (in bold text), follow these guidelines when
programming the JWS file that invokes a reliable Web service:

■ Import the @ServiceClient and @ReliabilityErrorHandler JWS
annotations:

import weblogic.jws.ServiceClient;
import weblogic.jws.ReliabilityErrorHandler;

■ Import the WebLogic APIs that you will use in the method that handles the error
that results when the client Web service does not receive an acknowledgement of
message receipt from the reliable Web service:

import weblogic.wsee.reliability.ReliabilityErrorContext;
import weblogic.wsee.reliability.ReliableDeliveryException;

■ Import the APIs used for asynchronous response and failure.

import weblogic.jws.AsyncFailure;
import weblogic.jws.AsyncResponse;

■ Import the JAX-RPC stub, created later by the <clientgen> child element of the
jwsc Ant task, of the port type of the reliable Web service you want to invoke. The
stub package is specified by the packageName attribute of <clientgen>, and
the name of the stub is determined by the WSDL of the invoked Web service.

import examples.webservices.reliable.ReliableHelloWorldPortType;

■ Import the APIs used for life cycle management (to set properties and specify the
final message later).

import javax.xml.rpc.Stub;
import weblogic.wsee.reliability.WsrmUtils;

■ In the body of the JWS file, use the @ServiceClient JWS annotation to specify
the name and port of the reliable Web service you want to invoke. You specify this

Programming Guidelines for the JWS File That Invokes a Reliable Web Service

Using Web Services Reliable Messaging 3-25

annotation at the field-level on a private variable, whose data type is the JAX-RPC
port type of the Web service you are invoking.

@ServiceClient(
 serviceName="ReliableHelloWorldService",
 portName="ReliableHelloWorldServicePort")

 private ReliableHelloWorldPortType port;

■ Use the port._setProperty method to dynamically specify the target service
endpoint address within the Web service client. For more information, see
"Accessing Runtime Information About a Web service" in Getting Started With
JAX-RPC Web Services for Oracle WebLogic Server.

((Stub)port)._setProperty(Stub.ENDPOINT_ADDRESS_PROPERTY, serviceUrl);

■ Using the stub you annotated with the @ServiceClient annotation, invoke the
helloWorld reliable operation:

port.helloWorld(input);

Because the operation has been marked one-way, it does not return a value.

■ Create a method that handles the error when the client Web service does not
receive an acknowledgement from the reliable Web service that the latter has
received a message and annotate this method with the
@weblogic.jws.ReliabilityErrorHandler annotation:

@ReliabilityErrorHandler(target="port")
public void onReliableMessageDeliveryError(ReliabilityErrorContext ctx) {
 ReliableDeliveryException fault = ctx.getFault();
 String message = null;
 if (fault != null) {
 message = ctx.getFault().getMessage();
 }
 String operation = ctx.getOperationName();
 System.out.println("Reliable operation " + operation + " may have not
invoked. The error message is " + message);
 }

This method takes ReliabilityErrorContext as its single parameter and
returns void.

See "weblogic.jws.ReliabilityErrorHandler" in WebLogic Web Services Reference for
Oracle WebLogic Server for details about programming this error-handling method.

■ Because the service is not conversational, any state kept in the port field will be
lost when this method returns. In the case of reliable messaging, this state includes
the ID of the reliable sequence being used to send messages. The
setFinalMessage method specifies that this is the final message to be sent on
this sequence. This will allow the reliable messaging subsystem to proactively
clean up the reliable sequence instead of timing out.

WsrmUtils.setFinalMessage((Stub)port);

■ Using the stub you annotated with the @ServiceClient annotation, invoke the
echo reliable operation:

port.echo(input2);

Updating the build.xml File for a Client of a Reliable Web Service

3-26 Programming Advanced Features of JAX-RPC Web Services for Oracle WebLogic Server

■ Create methods to handle the asynchronous response or failure. Use the
@weblogic.jws.AsyncResponse and @weblogic.jws.AsyncFailure
annotations:

@AsyncResponse(target = "port", operation = "echo")
public void onEchoAsyncResponse(String msg) {
 System.out.println("ClientService: Got async response for request : " + msg);
 responseMessage = msg;
}

@AsyncFailure(target = "port", operation = "echo")
public void onEchoAsyncFailure(Throwable t) {
 System.out.println("ClientService: Got async FAILURE for request : " + t);
 t.printStackTrace();
}

For more information about generating asynchronous response and failure
methods, see Section 2.4, "Writing the Asynchronous JWS File".

When programming the client Web service:

■ Do not specify any reliable messaging annotations (other than
@ReliabilityErrorHandler) or use any reliable messaging assertions in the
associated WS-Policy files.

■ Do not specify the wsdlLocation attribute of the @ServiceClient annotation.
This is because the runtime retrieval of the specified WSDL might not succeed;
therefore, it is better for WebLogic Server to use a local WSDL file instead.

3.9 Updating the build.xml File for a Client of a Reliable Web Service
To update a build.xml file to generate the JWS file that invokes the operation of a
reliable Web service, add taskdef and a build-reliable-client targets similar
to the following:

<taskdef name="jwsc"
 classname="weblogic.wsee.tools.anttasks.JwscTask" />

<target name="build-reliable-client">

 <jwsc
 enableAsyncService="true"
 srcdir="src"
 destdir="${client-ear-dir}" >

 <jws file="examples/webservices/reliable/ReliableClientImpl.java">

 <clientgen

wsdl="http://${wls.destination.host}:${wls.destination.port}/ReliableHelloWorld/Re
liableHelloWorld?WSDL"
 packageName="examples.webservices.reliable"/>

 </jws>

 </jwsc>

</target>

Use the taskdef Ant task to define the full classname of the jwsc Ant tasks.

Using Reliable Messaging With MTOM

Using Web Services Reliable Messaging 3-27

Update the jwsc Ant task that compiles the client Web service to include a
<clientgen> child element of the <jws> element so as to generate and compile the
JAX-RPC stubs for the deployed ReliableHelloWorld Web service. The jwsc Ant
task automatically packages them in the generated WAR file so that the client Web
service can immediately access the stubs. You do this because the
ReliableClientImpl JWS file imports and uses one of the generated classes.

3.10 Using Reliable Messaging With MTOM
The following example shows a simple JWS file that implements a reliable Web service
and uses MTOM/XOP to optimize the transmission of XML data of type
xs:base64Binary in SOAP messages; see the explanation after the example for
coding guidelines that correspond to the Java code in bold. This example builds on the
example provided in Section 3.8, "Programming Guidelines for the JWS File That
Invokes a Reliable Web Service".

package examples.webservices.reliable;

import javax.jws.WebMethod;
import javax.jws.WebService;
import javax.jws.Oneway;
import weblogic.jws.WLHttpTransport;

import weblogic.jws.ReliabilityBuffer;
import weblogic.jws.BufferQueue;
import weblogic.jws.Policy;
import weblogic.jws.Policies;

/**
 * Simple reliable Web Service.
 */

@WebService(name="ReliableHelloWorldPortType",
 serviceName="ReliableHelloWorldService")

@WLHttpTransport(contextPath="ReliableHelloWorld",
 serviceUri="ReliableHelloWorld",
 portName="ReliableHelloWorldServicePort")

@Policies({@Policy(uri="ReliableHelloWorldPolicy.xml",
 direction=Policy.Direction.both,
 attachToWsdl=true),
 @Policy(uri = "policy:Mtom.xml")})

@BufferQueue(name="webservices.reliable.queue")

public class ReliableHelloWorldImpl {

 @WebMethod()
 @Oneway()
 @ReliabilityBuffer(retryCount=10, retryDelay="10 seconds")

 public void helloWorld(String input) {
 System.out.println(" Hello World " + input);

 }

 @WebMethod

Client Considerations When Redeploying a Reliable Web Service

3-28 Programming Advanced Features of JAX-RPC Web Services for Oracle WebLogic Server

 public byte[] echoBinary(byte[] bytes) {
 return bytes;
 }
}

As illustrated in the previous example (in bold text), follow these guidelines when
programming the JWS file that invokes a reliable Web service with MTOM:

■ Use the "@weblogic.jws.Policy" annotation to specify that the pre-packaged
Mtom.xml file should be applied to your Web service. Use the
"@weblogic.jws.Policies" annotation to group multiple WS-Policy files, including
the reliable messaging policy file and the MTOM policy file.

@Policies({@Policy(uri="ReliableHelloWorldPolicy.xml",
 direction=Policy.Direction.both,
 attachToWsdl=true),
 @Policy(uri = "policy:Mtom.xml")})

■ Use the Java byte[] data type in your Web service operations as either a return
value or input parameter whenever you want the resulting SOAP message to use
MTOM/XOP to send or receive the binary data.

public byte[] echoBinary(byte[] bytes) {
 return bytes;
}

3.11 Client Considerations When Redeploying a Reliable Web Service
WebLogic Server supports production redeployment, which means that you can
deploy a new version of an updated reliable WebLogic Web service alongside an older
version of the same Web service.

WebLogic Server automatically manages client connections so that only new client
requests are directed to the new version. Clients already connected to the Web service
during the redeployment continue to use the older version of the service until they
complete their work, at which point WebLogic Server automatically retires the older
Web service. If the client is connected to a reliable Web service, its work is considered
complete when the existing reliable message sequence is explicitly ended by the client
or as a result of a timeout.

For additional information about production redeployment and Web service clients,
see "Client Considerations When Redeploying a Web service" in Getting Started With
JAX-RPC Web Services for Oracle WebLogic Server.

3.12 Using Reliable Messaging With a Proxy Server
Client applications that invoke reliable Web services might not invoke the operation
directly, but rather, use a proxy server. Reasons for using a proxy include the presence
of a firewall or the deployment of the invoked Web service to a cluster.

In this case, the WebLogic Server instance that hosts the invoked Web service must be
configured with the address and port of the proxy server. If your Web service is
deployed to a cluster, you must configure every server in the cluster.

Note: In this release of WebLogic Server, the only supported Java
data type when using MTOM/XOP is byte[]; other binary data
types, such as image, are not supported.

Using Reliable Messaging With a Proxy Server

Using Web Services Reliable Messaging 3-29

This procedure describes how to create a network channel, the primary configurable
WebLogic Server resource for managing network connection. Network channels
enable you to provide a consistent way to access the front-end address of a cluster. For
more information about network channels, see "Understanding Network Channels" in
Configuring Server Environments for Oracle WebLogic Server.

For each server instance:

1. Create a network channel for the protocol you use to invoke the Web service. You
must name the network channel weblogic-wsee-proxy-channel-XXX, where
XXX refers to the protocol. For example, to create a network channel for HTTPS,
call it weblogic-wsee-proxy-channel-https.

See "Configure custom network channels" in Oracle WebLogic Server Administration
Console Help for general information about creating a network channel.

2. Configure the network channel, updating the External Listen Address and
External Listen Port fields with the address and port of the proxy server,
respectively.

3. Disable the asynchronous response service on the WebLogic Server proxy server
by starting the WebLogic Server instance using the
-Dweblogic.wsee.skip.async.response=true Java system property.

By default, every WebLogic Server instance deploys an internal asynchronous Web
service that handles the asynchronous request-response feature. If you do not
specify this system property, asynchronous messages will never get to the cluster,
as required, because the asynchronous service on the proxy server will consume
them instead.

Using Reliable Messaging With a Proxy Server

3-30 Programming Advanced Features of JAX-RPC Web Services for Oracle WebLogic Server

4

Creating Conversational Web Services 4-1

4Creating Conversational Web Services

This chapter describes how to create conversational WebLogic Java API for XML-based
RPC (JAX-RPC) Web services.

This chapter includes the following topics:

■ Section 4.1, "Overview of Conversational Web Services"

■ Section 4.2, "Creating a Conversational Web Service: Main Steps"

■ Section 4.3, "Programming Guidelines for the Conversational JWS File"

■ Section 4.4, "Programming Guidelines for the JWS File That Invokes a
Conversational Web Service"

■ Section 4.5, "ConversationUtils Utility Class"

■ Section 4.6, "Updating the build.xml File for a Client of a Conversational Web
Service"

■ Section 4.7, "Updating a Stand-Alone Java Client to Invoke a Conversational Web
Service"

■ Section 4.8, "Example Conversational Web Service .NET Client"

■ Section 4.9, "Client Considerations When Redeploying a Conversational Web
Service"

4.1 Overview of Conversational Web Services
A Web service and the client application that invokes it may communicate multiple
times to complete a single task. Also, multiple client applications might communicate
with the same Web service at the same time. Conversations provide a straightforward
way to keep track of data between calls and to ensure that the Web service always
responds to the correct client.

Conversations meet two challenges inherent in persisting data across multiple
communications:

■ Conversations uniquely identify a two-way communication between one client
application and one Web service so that messages are always returned to the
correct client. For example, in a shopping cart application, a conversational Web
service keeps track of which shopping cart belongs to which customer. A
conversational Web service implements this by creating a unique conversation ID
each time a new conversation is started with a client application.

■ Conversations maintain state between calls to the Web service; that is, they keep
track of the data associated with a particular client application between its calls to
the service. Conversations ensure that the data associated with a particular client

Overview of Conversational Web Services

4-2 Programming Advanced Features of JAX-RPC Web Services for Oracle WebLogic Server

is saved until it is no longer needed or the operation is complete. For example, in a
shopping cart application, a conversational Web service remembers which items
are in the shopping cart while the customer continues shopping. Maintaining state
is also needed to handle failure of the computer hosting the Web service in the
middle of a conversation; all state-related data is persisted to disk so that when the
computer comes up it can continue the conversation with the client application.

WebLogic Server manages this unique ID and state by creating a conversation context
each time a client application initiates a new conversation. The Web service then uses
the context to correlate calls to and from the service and to persist its state-related data.

Conversations between a client application and a Web service have three distinct
phases:

■ Start—A client application initiates a conversation by invoking the start operation
of the conversational Web service. The Web service in turn creates a new
conversation context and an accompanying unique ID, and starts an internal timer
to measure the idle time and the age of the conversation.

■ Continue—After the client application has started the conversation, it invokes one
or more continue operations to continue the conversation. The conversational Web
service uses the ID associated with the invoke to determine which client
application it is conversing with, what state to persist, and which idle timer to
reset. A typical continue operation would be one that requests more information
from the client application, requests status, and so on.

■ Finish—A client application explicitly invokes the finish operation when it has
finished its conversation; the Web service then marks any data or resources
associated with the conversation as deleted.

Conversations typically occur between two WebLogic Web services: one is marked
conversational and defines the start, continue, and finish operations and the other Web
service uses the @ServiceClient annotation to specify that it is a client of the
conversational Web service. You can also invoke a conversational Web service from a
stand-alone Java client, although there are restrictions.

As with other WebLogic Web service features, you use JWS annotations to specify that
a Web service is conversational.

Note: The client Web service that invokes a conversational Web
service is not required to also be conversational. However, if the client
is not conversational, there is a danger of multiple instances of this
client accessing the same conversational Web service stub and
possibly corrupting the saved conversational state. If you believe this
might true in your case, then specify that the client Web service also be
conversational. In this case you cannot use a stand-alone Java client,
because there is no way to mark it as conversational using the
WebLogic APIs.

A conversational Web service on its own does not guarantee message
delivery or that the messages are delivered in order, exactly once. If
you require this kind of message delivery guarantee, you must also
specify that the Web service be reliable. See Section 3.2, "Using Web
Service Reliable Messaging: Main Steps" and Section 6.1, "Using the
Asynchronous Features Together".

Creating a Conversational Web Service: Main Steps

Creating Conversational Web Services 4-3

4.2 Creating a Conversational Web Service: Main Steps
The following procedure describes how to create a conversational Web service, as well
as a client Web service and stand-alone Java client application, both of which initiate
and conduct a conversation. The procedure shows how to create the JWS files that
implement the two Web services from scratch. If you want to update existing JWS files,
you can also use this procedure as a guide.

It is assumed that you have set up an Ant-based development environment and that
you have a working build.xml file to which you can add targets for running the
jwsc Ant task and deploying the generated conversational Web service. It is further
assumed that you have a similar setup for the WebLogic Server instance that hosts the
client Web service that initiates the conversation. For more information, see the
following sections in Getting Started With JAX-RPC Web Services for Oracle WebLogic
Server:

■ "Use Cases and Examples"

■ "Developing WebLogic Web Services"

■ "Programming the JWS File"

■ "Invoking Web Services"

Table 4–1 Steps to Create a Conversational Web Service

Step Description

1 Create a new JWS file, or
update an existing one, that
implements the
conversational Web service.

Use your favorite IDE or text editor. See Section 4.3,
"Programming Guidelines for the Conversational JWS
File".

2 Update your build.xml file
to include a call to the jwsc
Ant task to compile the
conversational JWS file into a
Web service.

See "Running the jwsc WebLogic Web Services Ant Task"
in Getting Started With JAX-RPC Web Services for Oracle
WebLogic Server.

3 Run the Ant target to build
the conversational Web
service.

For example:

prompt> ant build-mainService

4 Deploy the target Web service
as usual.

See "Deploying and Undeploying WebLogic Web
Services" in Getting Started With JAX-RPC Web Services for
Oracle WebLogic Server.

5 Create a new JWS file, or
update an existing one, that
implements the client Web
service.

If the client application is a stand-alone Java client, see
Section 4.7, "Updating a Stand-Alone Java Client to
Invoke a Conversational Web Service". Skip Steps 6-9.

If the client application is itself a Web service, follow
Steps 6-9.

6 Create a new JWS file, or
update an existing one, that
initiates and conducts the
conversation with the
conversational Web service.

Use your favorite IDE or text editor. It is assumed that the
client Web service is deployed to a different WebLogic
Server instance form the one that hosts the conversational
Web service. See Section 4.4, "Programming Guidelines
for the JWS File That Invokes a Conversational Web
Service".

7 Update the build.xml file
that builds the client Web
service.

See Section 4.6, "Updating the build.xml File for a Client
of a Conversational Web Service".

8 Run the Ant target to build
the client Web services.

For example:

prompt> ant build-clientService

Programming Guidelines for the Conversational JWS File

4-4 Programming Advanced Features of JAX-RPC Web Services for Oracle WebLogic Server

4.3 Programming Guidelines for the Conversational JWS File
The following example shows a simple JWS file that implements a conversational Web
service; see the explanation after the example for coding guidelines that correspond to
the Java code in bold.

package examples.webservices.conversation;

import java.io.Serializable;

import weblogic.jws.WLHttpTransport;
import weblogic.jws.Conversation;
import weblogic.jws.Conversational;
import weblogic.jws.Context;
import weblogic.wsee.jws.JwsContext;
import weblogic.wsee.jws.ServiceHandle;

import javax.jws.WebService;
import javax.jws.WebMethod;
@Conversational(maxIdleTime="10 minutes",
 maxAge="1 day",
 runAsStartUser=false,
 singlePrincipal=false)
@WebService(name="ConversationalPortType",
 serviceName="ConversationalService",
 targetNamespace="http://examples.org/")

@WLHttpTransport(contextPath="conv",
 serviceUri="ConversationalService",
 portName="ConversationalServicePort")

/**
 * Conversational Web service.
 */

public class ConversationalServiceImpl implements Serializable {

 @Context
 private JwsContext ctx;
 public String status = "undefined";

 @WebMethod
 @Conversation (Conversation.Phase.START)
 public String start() {

 ServiceHandle handle = ctx.getService();
 String convID = handle.getConversationID();

 status = "start";
 return "Starting conversation, with ID " + convID + " and status equal to " + status;

 }

9 Deploy the client Web service
as usual.

See "Deploying and Undeploying WebLogic Web
Services" in Getting Started With JAX-RPC Web Services for
Oracle WebLogic Server.

Table 4–1 (Cont.) Steps to Create a Conversational Web Service

Step Description

Programming Guidelines for the Conversational JWS File

Creating Conversational Web Services 4-5

 @WebMethod
 @Conversation (Conversation.Phase.CONTINUE)
 public String middle(String message) {

 status = "middle";
 return "Middle of conversation; the message is: " + message + " and status is " + status;

 }

 @WebMethod
 @Conversation (Conversation.Phase.FINISH)
 public String finish(String message) {

 status = "finish";
 return "End of conversation; the message is: " + message + " and status is " + status;

 }

}

Follow these guidelines when programming the JWS file that implements a
conversational Web service. Code snippets of the guidelines are shown in bold in the
preceding example.

■ Conversational Web services must implement java.io.Serializable, so you
must first import the class into your JWS file:

import java.io.Serializable;

■ Import the conversational JWS annotations:

import weblogic.jws.Conversation;
import weblogic.jws.Conversational;

■ If you want to access runtime information about the conversational Web service,
import the @Context annotation and context APIs:

import weblogic.jws.Context;

import weblogic.wsee.jws.JwsContext;
import weblogic.wsee.jws.ServiceHandle;

See "Accessing Runtime Information about a Web service" in Getting Started With
JAX-RPC Web Services for Oracle WebLogic Server for more information about the
runtime Web service context.

■ Use the class-level @Conversational annotation to specify that the Web service
is conversational. Although this annotation is optional (assuming you are
specifying the @Conversation method-level annotation), it is a best practice to
always use it in your JWS file to clearly specify that your Web service is
conversational.

Specify any of the following optional attributes: maxIdleTime is the maximum
amount of time that the Web service can be idle before WebLogic Server finishes
the conversation; maxAge is the maximum age of the conversation;
runAsStartUser indicates whether the continue and finish phases of an existing
conversation are run as the user who started the conversation; and
singlePrincipal indicates whether users other than the one who started a
conversation are allowed to execute the continue and finish phases of the
conversation.

Programming Guidelines for the Conversational JWS File

4-6 Programming Advanced Features of JAX-RPC Web Services for Oracle WebLogic Server

@Conversational(maxIdleTime="10 minutes",
 maxAge="1 day",
 runAsStartUser=false,
 singlePrincipal=false)

If a JWS file includes the @Conversational annotation, all operations of the Web
service are conversational. The default phase of an operation, if it does not have an
explicit @Conversation annotation, is continue. However, because a
conversational Web service is required to include at least one start and one finish
operation, you must use the method-level @Conversation annotation to specify
which methods implement these operations.

See "weblogic.jws.Conversational" in WebLogic Web Services Reference for Oracle
WebLogic Server for additional information and default values for the attributes.

■ Your JWS file must implement java.io.Serializable:

public class ConversationalServiceImpl implements Serializable {

■ To access runtime information about the Web service, annotate a private class
variable, of data type weblogic.wsee.jws.JwsContext, with the field-level
@Context JWS annotation:

 @Context
 private JwsContext ctx;

■ Use the @Conversation annotation to specify the methods that implement the
start, continue, and finish phases of your conversation. A conversation is required
to have at least one start and one finish operation; the continue operation is
optional. Use the following parameters to the annotation to specify the phase:
Conversation.Phase.START, Conversation.Phase.CONTINUE, or
Conversation.Phase.FINISH. The following example shows how to specify
the start operation:

 @WebMethod
 @Conversation (Conversation.Phase.START)
 public String start() {...

If you mark just one method of the JWS file with the @Conversation annotation,
then the entire Web service becomes conversational and each operation is
considered part of the conversation; this is true even if you have not used the
optional class-level @Conversational annotation in your JWS file. Any methods
not explicitly annotated with @Conversation are, by default, continue
operations. This means that, for example, if a client application invokes one of
these continue methods without having previously invoked a start operation, the
Web service returns a runtime error.

Finally, if you plan to invoke the conversational Web service from a stand-alone
Java client, the start operation is required to be request-response, or in other
words, it cannot be annotated with the @Oneway JWS annotation. The operation
can return void. If you are going to invoke the Web service only from client
applications that run in WebLogic Server, then this requirement does not apply.

See "weblogic.jws.Conversation" in WebLogic Web Services Reference for Oracle
WebLogic Server for additional information.

■ Use the JwsContext instance to get runtime information about the Web service.

For example, the following code in the start operation gets the ID that WebLogic
Server assigns to the new conversation:

Programming Guidelines for the JWS File That Invokes a Conversational Web Service

Creating Conversational Web Services 4-7

ServiceHandle handle = ctx.getService();
String convID = handle.getConversationID();

See "Accessing Runtime Information about a Web service" in Getting Started With
JAX-RPC Web Services for Oracle WebLogic Server for detailed information on using
the context-related APIs.

4.4 Programming Guidelines for the JWS File That Invokes a
Conversational Web Service

The following example shows a simple JWS file for a Web service that invokes the
conversational Web service described in Section 4.3, "Programming Guidelines for the
Conversational JWS File"; see the explanation after the example for coding guidelines
that correspond to the Java code in bold.

package examples.webservices.conversation;

import weblogic.jws.WLHttpTransport;
import weblogic.jws.ServiceClient;

import weblogic.wsee.conversation.ConversationUtils;

import javax.jws.WebService;
import javax.jws.WebMethod;

import javax.xml.rpc.Stub;

import examples.webservices.conversation.ConversationalPortType;

import java.rmi.RemoteException;

@WebService(name="ConversationalClientPortType",
 serviceName="ConversationalClientService",
 targetNamespace="http://examples.org/")

@WLHttpTransport(contextPath="convClient",
 serviceUri="ConversationalClient",
 portName="ConversationalClientPort")

/**
 * client that has a conversation with the ConversationalService.
 */

public class ConversationalClientImpl {

 @ServiceClient(
 wsdlLocation="http://localhost:7001/conv/ConversationalService?WSDL",
 serviceName="ConversationalService",
 portName="ConversationalServicePort")

 private ConversationalPortType port;

 @WebMethod
 public void runConversation(String message) {

 try {

 // Invoke start operation
 String result = port.start();

Programming Guidelines for the JWS File That Invokes a Conversational Web Service

4-8 Programming Advanced Features of JAX-RPC Web Services for Oracle WebLogic Server

 System.out.println("start method executed.");
 System.out.println("The message is: " + result);

 // Invoke continue operation
 result = port.middle(message);
 System.out.println("middle method executed.");
 System.out.println("The message is: " + result);

 // Invoke finish operation
 result = port.finish(message);
 System.out.println("finish method executed.");
 System.out.println("The message is: " + result);
 ConversationUtils.renewStub((Stub)port);

 }
 catch (RemoteException e) {
 e.printStackTrace();
 }

 }

}

Follow these guidelines when programming the JWS file that invokes a conversational
Web service; code snippets of the guidelines are shown in bold in the preceding
example:

■ Import the @ServiceClient JWS annotation:

import weblogic.jws.ServiceClient;

■ Optionally import the WebLogic utility class for further configuring a
conversation:

import weblogic.wsee.conversation.ConversationUtils;

■ Import the JAX-RPC stub of the port type of the conversational Web service you
want to invoke. The actual stub itself will be created later by the jwsc Ant task.
The stub package is specified by the packageName attribute of the <clientgen>
child element of <jws>, and the name of the stub is determined by the WSDL of
the invoked Web service.

import examples.webservices.conversation.ConversationalPortType;

■ In the body of the JWS file, use the @ServiceClient JWS annotation to specify
the WSDL, name, and port of the conversational Web service you want to invoke.
You specify this annotation at the field-level on a private variable, whose data type
is the JAX-RPC port type of the Web service you are invoking.

@ServiceClient(
 wsdlLocation="http://localhost:7001/conv/ConversationalService?WSDL",
 serviceName="ConversationalService",
 portName="ConversationalServicePort")

 private ConversationalPortType port;

■ Using the stub you annotated with the @ServiceClient annotation, invoke the
start operation of the conversational Web service to start the conversation. You can
invoke the start method from any location in the JWS file (constructor, method,
and so on):

Updating the build.xml File for a Client of a Conversational Web Service

Creating Conversational Web Services 4-9

String result = port.start();

■ Optionally invoke the continue methods to continue the conversation. Be sure you
use the same stub instance so that you continue the same conversation you started:

result = port.middle(message);

■ Once the conversation is completed, invoke the finish operation so that the
conversational Web service can free up the resources it used for the current
conversation:

result = port.finish(message);

■ If you want to reuse the Web service conversation stub to start a new conversation,
you must explicitly renew the stub using the renewStub() method of the
weblogic.wsee.conversation.ConversationUtils utility class:

ConversationUtils.renewStub((Stub)port);

4.5 ConversationUtils Utility Class
WebLogic Server provides a utility class for use with the conversation feature. Use this
class to perform common tasks such as getting and setting the conversation ID and
setting configuration options. Some of these tasks are performed in the conversational
Web service, some are performed in the client that invokes the conversational Web
service. See Section 4.4, "Programming Guidelines for the JWS File That Invokes a
Conversational Web Service" for an example of using this class.

See "weblogic.wsee.conversation.ConversationUtils" in Oracle WebLogic Server API
Reference for details.

4.6 Updating the build.xml File for a Client of a Conversational Web
Service

You update a build.xml file to generate the JWS file that invokes a conversational
Web service by adding taskdefs and a build-clientService target that looks
something like the following example. See the description after the example for details.

<taskdef name="jwsc"
 classname="weblogic.wsee.tools.anttasks.JwscTask" />

 <target name="build-clientService">

 <jwsc
 enableAsyncService="true"
 srcdir="src"
 destdir="${clientService-ear-dir}" >

 <jws

Note: The client Web service that invokes a conversational Web
service is not required to also be conversational. However, if the client
is not conversational, there is a danger of multiple instances of this
client accessing the same conversational Web service stub and
possibly corrupting the saved conversational state. If you believe this
might true in your case, then specify that the client Web service also be
conversational.

Updating a Stand-Alone Java Client to Invoke a Conversational Web Service

4-10 Programming Advanced Features of JAX-RPC Web Services for Oracle WebLogic Server

file="examples/webservices/conversation/ConversationalClientImpl.java" >
 <clientgen

wsdl="http://${wls.hostname}:${wls.port}/conv/ConversationalService?WSDL"
 packageName="examples.webservices.conversation"/>

 </jws>

 </jwsc>

 </target>

Use the taskdef Ant task to define the full classname of the jwsc Ant tasks.

Update the jwsc Ant task that compiles the client Web service to include a
<clientgen> child element of the <jws> element so as to generate and compile the
JAX-RPC stubs for the deployed ConversationalService Web service. The jwsc
Ant task automatically packages them in the generated WAR file so that the client Web
service can immediately access the stubs. You do this because the
ConversationalClientImpl JWS file imports and uses one of the generated
classes.

4.7 Updating a Stand-Alone Java Client to Invoke a Conversational Web
Service

The following example shows a simple stand-alone Java client that invokes the
conversational Web service described in Section 4.3, "Programming Guidelines for the
Conversational JWS File". See the explanation after the example for coding guidelines
that correspond to the Java code in bold.

package examples.webservices.conv_standalone.client;

import java.rmi.RemoteException;

import javax.xml.rpc.ServiceException;
import javax.xml.rpc.Stub;
import weblogic.wsee.jaxrpc.WLStub;

/**
 * stand-alone client that invokes and converses with ConversationlService.
 */

public class Main {

 public static void main(String[] args)
 throws ServiceException, RemoteException{

 ConversationalService service = new ConversationalService_Impl(args[0] + "?WSDL");
 ConversationalPortType port = service.getConversationalServicePort();

 // Set property on stub to specify that client is invoking a Web service
 // that uses advanced features; this property is automatically set if
 // the client runs in a WebLogic Server instance.

 Stub stub = (Stub)port;
 stub._setProperty(WLStub.COMPLEX, "true");

 // Invoke start operation to begin the conversation
 String result = port.start();

Example Conversational Web Service .NET Client

Creating Conversational Web Services 4-11

 System.out.println("start method executed.");
 System.out.println("The message is: " + result);

 // Invoke continue operation
 result = port.middle("middle");
 System.out.println("middle method executed.");
 System.out.println("The message is: " + result);

 // Invoke finish operation
 result = port.finish("finish");
 System.out.println("finish method executed.");
 System.out.println("The message is: " + result);

 }

}

Follow these guidelines when programming the stand-alone Java client that invokes a
conversational Web service. Code snippets of the guidelines are shown in bold in the
preceding example.

■ Import the weblogic.wsee.jaxrpc.WLStub class:

import weblogic.wsee.jaxrpc.WLStub;

■ Set the WLStub.Complex property on the JAX-RPC stub of the
ConversationalService using the _setProperty method:

Stub stub = (Stub)port;
stub._setProperty(WLStub.COMPLEX, "true");

This property specifies to the Web services runtime that the client is going to
invoke an advanced Web service, in this case a conversational one. This property is
automatically set when invoking a conversational Web service from another
WebLogic Web service.

■ Invoke the start operation of the conversational Web service to start the
conversation:

 String result = port.start();

■ Optionally invoke the continue methods to continue the conversation:

result = port.middle(message);

■ Once the conversation is completed, invoke the finish operation so that the
conversational Web service can free up the resources it used for the current
conversation:

result = port.finish(message);

4.8 Example Conversational Web Service .NET Client
This section demonstrates how to create a .NET WSE3.0 client for a WebLogic
conversational Web service. The example includes the following files:

■ ConversationService.java -- JWS file that uses the @Conversation and
@Callback annotations to implement a conversational Web service.
ConversationService.java can optionally communicate results to its client
via a callback.

Example Conversational Web Service .NET Client

4-12 Programming Advanced Features of JAX-RPC Web Services for Oracle WebLogic Server

■ Service.cs -- The C# source file of the ConversationClient .NET Web
service that acts as a client to the ConversationService Web service.

The sample .NET client can participate in conversations with
ConversationService, as well as receiving results via callback.

■ build.xml -- Ant build file that contains targets for building and deploying the
Conversational Web service.

These files are described in detail in the sections that follow.

4.8.1 ConversationService.java File
The example ConversationService.java file is shown in Example 4–1. The
example includes extensive comments that describe its function.

Example 4–1 ConversationService.java File

package conv;

import javax.jws.WebMethod;
import javax.jws.WebService;
import javax.jws.Oneway;

import weblogic.jws.Conversation;
import weblogic.jws.Callback;
import weblogic.jws.CallbackService;

import java.io.Serializable;

/**
 * Demonstrates use of the @Conversation annotation to manage the lifetime of the
service
 * and provide data persistence and message correlation.
 *
 * Remember that multiple clients might invoke a web service simultaneously. When
the
 * web service stores data relevant to the client or calls additional services
 * in order to process a client's request, the service must be able to process
returned
 * data from the external services in the context of the specific client it
relates
 * to. This is all automatic when conversations are used.
 *
 * Remember that not all clients are capable of accepting callbacks.
Specifically,
 * clients operating from behind firewalls may not be able to receive asynchronous
 * callbacks. You may wish to provide a synchronous interface, like this one,
 * for such clients. If a client can accept callbacks, it must send a callback
endpoint refrence
 * as part of any "start conversation" method invocation.
 *
 * To see the behavior in the Test View, invoke startRequest and then
getRequestStatus
 * several times quickly.
 */
@WebService(serviceName = "ConversationService", portName = "conversation",
targetNamespace = "http://www.openuri.org/")
public class ConversationService implements Serializable {

 @Callback

Example Conversational Web Service .NET Client

Creating Conversational Web Services 4-13

 public CallbackInterface callback;
 private boolean useCallbacks;
 private int num;

 /**
 * Starts the conversation
 */
 @Conversation(Conversation.Phase.START)
 @WebMethod
 public void startRequest(boolean useCallbacks) {
 this.useCallbacks = useCallbacks;
 }

 @WebMethod
 @Conversation(Conversation.Phase.CONTINUE)
 public String getRequestStatus() {

 num++;
 if (num == 1)
 return "This is the first time you call getRequestStatus method.";
 if (num == 2 && useCallbacks) {
 callback.onResultReady("finished");
 return "This is the second time you call getRequestStatus method, the
conversation has been terminated automtically when the onResultReady callback
method is invoked.";
 } else
 return "You have called getRequestStatus method " + num + " times";

 }

 /**
 * Used to tell Conversation.jws that the current conversation is
 * no longer needed.
 */
 @WebMethod
 @Conversation(Conversation.Phase.FINISH)
 public void terminateRequest() {

 }

 @CallbackService(serviceName = "ConversationCallbackService")
 public interface CallbackInterface {

 /**
 * Callback to invoke on the client when the external service
 * returns its result. Will only be called it the client can
 * accept callbacks and told us where to send them.
 * <p/>
 * If this callback is used, it implicitly terminates the
 * conversation with no action required on the part of the
 * client.
 */
 @WebMethod
 @Oneway
 @Conversation(Conversation.Phase.FINISH)
 public void onResultReady(String result);
 }

}

Example Conversational Web Service .NET Client

4-14 Programming Advanced Features of JAX-RPC Web Services for Oracle WebLogic Server

4.8.2 Service.cs File
The example Service.cs file is shown in Example 4–2.

This conversation proxy file was created using the Microsoft WSDL to Proxy Class tool
WseWsdl3.exe (see
http://msdn.microsoft.com/en-us/library/aa529578.aspx) and the
ConversationService Web service’s WSDL file.

The example includes extensive comments that describe its function.

Example 4–2 Service.cs File

using System;
using System.Web;
using System.Web.Services;
using System.Web.Services.Protocols;
using System.Diagnostics;
using System.IO;
using System.Xml;
using Microsoft.Web.Services3.Addressing;
using Microsoft.Web.Services3;
using System.Collections.Generic;
using Microsoft.Web.Services3.Design;

[WebService(Namespace = "http://tempuri.org/")]
[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
public class Service : System.Web.Services.WebService
{

 public Service () {

 //Uncomment the following line if using designed components
 //InitializeComponent();
 }

 /*
 * start invokes the Conversation web service's startRequest
 * operation.
 *
 * Since the Conversation web service is conversational,
 * we must also persist the ReplyTo endpoint reference SOAP header
 * for subsequent calls.
 *
 * Since the Conversation web service can optionally communicate
 * the result of it's work via a callback, we must prepare a
 * second SOAP header CallbackTo SOAP header, which is the endpoint reference
 * of the recipient to which callbacks should be sent.
 */
 [WebMethod(EnableSession = true)]
 public void start(Boolean useCallbacks, Boolean useIPAddress)
 {
 /*
 * The Conversation proxy was created using .NET WSE3.0's WseWsdl3.exe
 * application and the Conversation.jws's WSDL file. The WSDL
 * file for any WLS web service may be obtained
 * by hitting the web service's URL with "?WSDL" appended to
 * the end. For example:
 *
 * http://somehost:7001/samples/async/Conversation.jws?WSDL

Example Conversational Web Service .NET Client

Creating Conversational Web Services 4-15

 *
 * WseWsdl3.exe produces a C# proxy class. Place the resulting
 * ConversationService.cs file in your .NET project, then use Visual
 * Studio's Project->Add Existing Item menu action to "import"
 * the class into the project.
 */
 ConversationServiceSoapBinding conv;
 String callbackLocation;
 int asmxIndex;

 /*
 * Construct the callback URL from various pieces of
 * server and HttpRequest info.
 */
 Uri requestUrl = Context.Request.Url;

 if (useIPAddress)
 {
 /*
 * if useIPAddress is true, construct the callback address
 * with the IP address of this host.
 */
 callbackLocation = requestUrl.Scheme + "://" +
System.Net.Dns.GetHostByName(requestUrl.Host).AddressList[0] +
 ":" + requestUrl.Port + requestUrl.AbsolutePath;
 }
 else
 {
 /*
 * if useIPAddress is false, construct the callback address
 * with the hostname of this host.
 */
 callbackLocation = requestUrl.Scheme + "://" + requestUrl.Host +
 ":" + requestUrl.Port + requestUrl.AbsolutePath;
 }

 // Remove everything after ".asmx"
 asmxIndex = callbackLocation.IndexOf(".asmx") + 5;
 callbackLocation = callbackLocation.Remove(asmxIndex,
 callbackLocation.Length - asmxIndex);

 /*
 * Create an instance of the proxy for the Conversation
 * web service.
 *
 */
 conv = new ConversationServiceSoapBinding();

 /*
 * When callback is enabled, a custom callback header should be added into
 * the outbound soap message.
 *
 */
 if (useCallbacks)
 enableSoapFilterToAddCallbackHeader(conv, callbackLocation);

 /*
 * Invoke the startRequest method of the web service. The

Example Conversational Web Service .NET Client

4-16 Programming Advanced Features of JAX-RPC Web Services for Oracle WebLogic Server

 * single boolean parameter determines whether the Conversation
 * web service will use callbacks to communicate the result
 * back to this client.
 *
 * If the argument is true, an onResultReady callback will
 * be sent when the result is ready. This client must implement
 * a method with that name that expects the message shape defined
 * by the target web service (returns void and accepts a single
 * string argument). See the onResultReady method below.
 *
 * If the argument to startRequest is false, callbacks will not
 * be used and this client must use the getRequestStatus method
 * to poll the Conversation web service for the result.
 */
 conv.startRequest(useCallbacks);
 /*
 * Persist the ReplyTo header in session state so that it can
 * be used in other methods that take part in the conversation.
 *
 * This is not safe since one session could start multiple
 * conversations, but there is no other apparent way to persist
 * this information. Member variables of WebService classes
 * are not persisted across method invocations.
 */
 Session["ConversationReplyTo"] =
conv.ResponseSoapContext.Addressing.ReplyTo;

 }

 /* the CallbackTo header defintion isn't exposed by WLS9x/WLS10x callback
service.
 * So we need to use SOAPFilter to add the CallbackTo header.
 *
 */
 private static void
enableSoapFilterToAddCallbackHeader(ConversationServiceSoapBinding conv, String
callbackLocation)
 {
 //Create a custom policy.
 Policy myPolicy = new Policy();
 // Create a new policy assertion
 MyPolicyAssertion myAssertion = new MyPolicyAssertion(callbackLocation);
 // Add the assertion to the policy
 myPolicy.Assertions.Add(myAssertion);
 //Set the custom policy you have created on the client proxy
 conv.SetPolicy(myPolicy);
 }

 /*
 * getStatus invokes Conversation's getRequestStatus method.
 * getRequestStatus is a polling method that is an alternative
 * for web services that cannot recieve callbacks.
 *
 * Note that a conversation must be started with startRequest before
 * this method may be invoked. If not, or if this method is invoked
 * outside of a conversation for any reason, it will get back a SOAP
 * fault indicating that the conversation does not exist.
 */
 [WebMethod(EnableSession = true)]

Example Conversational Web Service .NET Client

Creating Conversational Web Services 4-17

 public String getStatus()
 {
 String result;

 /*
 * Create an instance of the proxy for the Conversation
 * web service. We could probably persist the proxy instance
 * in session state, but chose not to.
 */
 ConversationServiceSoapBinding conv = new
ConversationServiceSoapBinding();

 /*
 * change the destination to the ReplyTo endpoint reference we cached on
session state in
 * the start method.
 */
 conv.RequestSoapContext.Addressing.Destination =
(EndpointReference)Session["ConversationReplyTo"];
 /*
 * Invoke the getRequestStatus method of the web service.
 */
 result = conv.getRequestStatus();
 return result;
 }

 /*
 * finish invokes Conversation's terminateRequest method, which
 * terminates the current conversation.
 *
 * Note that a conversation must be started with startRequest before
 * this method may be invoked. If not, or if this method is invoked
 * outside of a conversation for any reason, it will get back a SOAP
 * fault indicating that the conversation does not exist.
 */
 [WebMethod(EnableSession = true)]
 public void finish()
 {
 /*
 * Create an instance of the proxy for the Conversation
 * web service. We could probably persist the proxy instance
 * in session state, but chose not to.
 */
 ConversationServiceSoapBinding conv = new
ConversationServiceSoapBinding();

 /*
 * change the destination to the ReplyTo endpoint reference we cached on
session state in
 * the start method. Both "continue" and "finish" methods use the same
destination.
 */
 conv.RequestSoapContext.Addressing.Destination =
(EndpointReference)Session["ConversationReplyTo"];
 /*
 * Invoke the terminateRequest method of the web service.
 */
 conv.terminateRequest();
 }

Example Conversational Web Service .NET Client

4-18 Programming Advanced Features of JAX-RPC Web Services for Oracle WebLogic Server

 /*
 * onResultReady is a callback handler for the onResultReady
 * callback that Conversation.jws can optionally use to return
 * its results.
 *
 * .NET WSE3.0 does not support callbacks directly, but a callback is just
 * a method invocation message. So if you construct a WebMethod with
 * the same signature as the callback and set the XML namespace
 * properly, it serves as a callback handler.
 *
 */
 [WebMethod]
 [SoapDocumentMethod(OneWay = true,
 Action = "http://www.openuri.org/ConversationService_
CallbackInterface/onResultReady",
 RequestElementName = "http://www.openuri.org/",
 ResponseNamespace = "http://www.openuri.org/"
)]
 public void onResultReady(String result)
 {
 /*
 * When the callback is invoked, log a message to the
 * hardcoded file c:\temp\ConversationClient.log.
 *
 * Note: if c:\temp does not exist on this server, an
 * Exception will be raised. Since it is not handled here,
 * it will be returned as a SOAP fault to the Conversation
 * web service.
 */
 TextWriter output;
 output = File.AppendText("c:\\temp\\ConversationClient.log");
 String msg = "[" + DateTime.Now.ToString() + "] callback received";
 output.WriteLine(msg);
 output.Flush();
 output.Close();
 }

}

public class MyFilter : Microsoft.Web.Services3.SoapFilter
{
 private String callbackLocation;

 public MyFilter(String callbackLocation)
 {
 this.callbackLocation = callbackLocation;
 }

 public override SoapFilterResult ProcessMessage(SoapEnvelope envelope)
 {

 //create the CallbackTo soap element.
 XmlDocument xmldoc = new XmlDocument();
 XmlElement xmlEle = xmldoc.CreateElement("callback", "CallbackTo",
"http://www.openuri.org/2006/03/callback");

 //create the CallbackTo endpoint reference.
 Address callbacto = new Address(new Uri(callbackLocation));
 XmlElement xmlEle2 =new EndpointReference(callbacto).GetXml(xmldoc);

Example Conversational Web Service .NET Client

Creating Conversational Web Services 4-19

 //add the CallbackTo endpoint reference into CallbackTo SOAP element.
 xmlEle.AppendChild(xmlEle2.FirstChild);
 //add the whole CallbackTo SOAP element into SOAP header.
 XmlNode callbackheader = envelope.ImportNode(xmlEle, true);
 envelope.DocumentElement.FirstChild.AppendChild(callbackheader);
 return SoapFilterResult.Continue;

 }
}

public class MyPolicyAssertion : Microsoft.Web.Services3.Design.PolicyAssertion
{
 private String callbackLocation;

 public MyPolicyAssertion(String callbackLocation)
 {
 this.callbackLocation = callbackLocation;
 }

 public override SoapFilter CreateClientInputFilter(FilterCreationContext
context)
 {
 return null;
 }

 public override SoapFilter CreateClientOutputFilter(FilterCreationContext
context)
 {
 //use MyFilter to add the CallbackTo header in the outbound soap message.
 return new MyFilter(callbackLocation);
 }

 public override SoapFilter CreateServiceInputFilter(FilterCreationContext
context)
 {
 return null;
 }

 public override SoapFilter CreateServiceOutputFilter(FilterCreationContext
context)
 {
 return null;
 }

}

4.8.3 build.xml File
The example build.xml file is shown in Example 4–3.

build.xml assumes that you copy the example source files to a new directory WL_
HOME\samples\server\examples\src\examples\webservices\conv, where
WL_HOME is the directory containing your WebLogic Server installation.

build.xml also requires that you first set your examples environment correctly via
WL_HOME\samples\domains\wl_server>setExamplesEnv.cmd(sh and that
the examples server is already started.

The example includes comments that describe the build file function and targets.

Example Conversational Web Service .NET Client

4-20 Programming Advanced Features of JAX-RPC Web Services for Oracle WebLogic Server

Example 4–3 build.xml File

<?xml version="1.0" encoding="ISO-8859-1"?>
<project name="webservices.conversation" default="all" basedir=".">

 <!-- set global properties for this build -->
 <property file="../../../examples.properties"/>

 <property name="client.dir" value="${client.classes.dir}/webservices_
conversation" />
 <property name="package.dir" value="examples/webservices/conv"/>
 <property name="package" value="examples.webservices.conv"/>
 <property name="ear.dir"
value="${examples.build.dir}/webservicesConversationEar" />

 <path id="client.class.path">
 <pathelement path="${java.class.path}"/>
 </path>

 <!-- Web service WLS Ant task definitions -->
 <taskdef name="jwsc"
 classname="weblogic.wsee.tools.anttasks.JwscTask" />
 <taskdef name="clientgen"
 classname="weblogic.wsee.tools.anttasks.ClientGenTask" />

 <target name="all" depends="build, deploy"/>

 <target name="clean">
 <delete dir="${ear.dir}"/>
 </target>

 <!-- Target that builds the conversational Web service -->
 <target name="build" description="Target that builds the MTOM Web service">
 <jwsc
 srcdir="${examples.src.dir}/${package.dir}"
 sourcepath="${examples.src.dir}"
 destdir="${ear.dir}"
 classpath="${java.class.path}"
 keepGenerated="true"
 deprecation="${deprecation}"
 debug="${debug}">
 <jws file="ConversationService.java">
<WLHttpTransport contextPath="/samples/async" serviceURI="conversation.jws"/>
</jws>
 </jwsc>
 </target>

 <!-- Target that deploys the conversational Web service -->
 <target name="deploy" description="Target that deploys the conversational Web
service">
 <wldeploy
 action="deploy"
 source="${ear.dir}"
 user="${wls.username}"
 password="${wls.password}"
 verbose="true"
 adminurl="t3://${wls.hostname}:${wls.port}"
 targets="${wls.server.name}"

Client Considerations When Redeploying a Conversational Web Service

Creating Conversational Web Services 4-21

 failonerror="${failondeploy}"/>
 </target>

 <!-- Target that undeploys the conversational Web service -->
 <target name="undeploy" description="Target that deploys the conversational Web
service">
 <wldeploy
 action="undeploy"
 name="webservicesConversationEar"
 user="${wls.username}"
 password="${wls.password}"
 verbose="true"
 adminurl="t3://${wls.hostname}:${wls.port}"
 targets="${wls.server.name}"
 failonerror="${failondeploy}"/>
 </target>

</project>

4.9 Client Considerations When Redeploying a Conversational Web
Service

WebLogic Server supports production redeployment, which means that you can
deploy a new version of an updated conversational WebLogic Web service alongside
an older version of the same Web service.

WebLogic Server automatically manages client connections so that only new client
requests are directed to the new version. Clients already connected to the Web service
during the redeployment continue to use the older version of the service until they
complete their work, at which point WebLogic Server automatically retires the older
Web service. If the client is connected to a conversational Web service, its work is
considered complete when the existing conversation is explicitly ended by the client or
because of a timeout.

For additional information about production redployment and Web service clients, see
"Client Considerations When Redeploying a Web service" in Getting Started With
JAX-RPC Web Services for Oracle WebLogic Server.

Client Considerations When Redeploying a Conversational Web Service

4-22 Programming Advanced Features of JAX-RPC Web Services for Oracle WebLogic Server

5

Creating Buffered Web Services 5-1

5Creating Buffered Web Services

This chapter describes how to create buffered WebLogic Java API for XML-based RPC
(JAX-RPC) Web services.

This chapter includes the following topics:

■ Section 5.1, "Overview of Buffered Web Services"

■ Section 5.2, "Creating a Buffered Web Service: Main Steps"

■ Section 5.3, "Configuring the Host WebLogic Server Instance for the Buffered Web
Service"

■ Section 5.4, "Programming Guidelines for the Buffered JWS File"

■ Section 5.5, "Programming the JWS File That Invokes the Buffered Web Service"

■ Section 5.6, "Updating the build.xml File for a Client of the Buffered Web Service"

5.1 Overview of Buffered Web Services
When a buffered operation is invoked by a client, the method operation goes on a JMS
queue and WebLogic Server deals with it asynchronously. As with Web service reliable
messaging, if WebLogic Server goes down while the method invocation is still in the
queue, it will be dealt with as soon as WebLogic Server is restarted. When a client
invokes the buffered Web service, the client does not wait for a response from the
invoke, and the execution of the client can continue.

5.2 Creating a Buffered Web Service: Main Steps
The following procedure describes how to create a buffered Web service and a client
Web service that invokes an operation of the buffered Web service. The procedure
shows how to create the JWS files that implement the two Web services from scratch. If
you want to update existing JWS files, use this procedure as a guide. The procedure
also shows how to configure the WebLogic Server instance that hosts the buffered Web
service.

It is assumed that you have set up an Ant-based development environment and that
you have a working build.xml file to which you can add targets for running the

Note: Unless you are also using the asynchronous request-response
feature, you do not need to invoke a buffered Web service from
another Web service, you can also invoke it from a stand-alone Java
application.

Creating a Buffered Web Service: Main Steps

5-2 Programming Advanced Features of JAX-RPC Web Services for Oracle WebLogic Server

jwsc Ant task and deploying the generated buffered Web service. It is further
assumed that you have a similar setup for the WebLogic Server instance that hosts the
client Web service that invokes the buffered Web service. For more information, see in
Getting Started With JAX-RPC Web Services for Oracle WebLogic Server:

■ "Use Cases and Examples"

■ "Developing WebLogic Web Services"

■ "Programming the JWS File"

■ "Invoking Web Services"

Table 5–1 Steps to Create a Buffered Web Service

Step Description

1 Configure the WebLogic
Server instance that hosts the
buffered Web service.

See Section 5.3, "Configuring the Host WebLogic Server Instance for the
Buffered Web Service".

2 Create a new JWS file, or
update an existing one, that
implements the buffered Web
service.

Use your favorite IDE or text editor. See Section 5.4, "Programming
Guidelines for the Buffered JWS File".

3 Update your build.xml file
to include a call to the jwsc
Ant task to compile the JWS
file into a buffered Web
service.

For example:

<jwsc
 srcdir="src"
 destdir="${service-ear-dir}" >
 <jws
 file="examples/webservices/async_
buffered/AsyncBufferedImpl.java"
 />
</jwsc>

See "Running the jwsc WebLogic Web Services Ant Task" in Getting Started
With JAX-RPC Web Services for Oracle WebLogic Server for general information
about using the jwsc Ant task.

4 Recompile your JWS file by
calling the appropriate target,
then redeploy the Web service
to the WebLogic Server.

For example:

prompt> ant build-clientService deploy-clientService

For more information about deployment, see See "Deploying and
Undeploying WebLogic Web Services" in Getting Started With JAX-RPC Web
Services for Oracle WebLogic Server.

5 Create a new JWS file, or
update an existing one, that
implements the client Web
service that invokes the
buffered Web service.

See Section 5.5, "Programming the JWS File That Invokes the Buffered Web
Service".

6 Update the build.xml file
that builds the client Web
service.

See Section 5.6, "Updating the build.xml File for a Client of the Buffered Web
Service".

7 Recompile your client JWS
file by calling the appropriate
target, then redeploy the Web
service to the client WebLogic
Server.

For example:

prompt> ant build-clientService deploy-clientService

For more information about deployment, see See "Deploying and
Undeploying WebLogic Web Services" in Getting Started With JAX-RPC Web
Services for Oracle WebLogic Server.

Configuring the Host WebLogic Server Instance for the Buffered Web Service

Creating Buffered Web Services 5-3

5.3 Configuring the Host WebLogic Server Instance for the Buffered Web
Service

Configuring the WebLogic Server instance on which the buffered Web service is
deployed involves configuring JMS resources, such as JMS servers and modules, that
are used internally by the Web services runtime.

You can configure these resources manually or you can use the Configuration Wizard
to extend the WebLogic Server domain using a Web services-specific extension
template. Using the Configuration Wizard greatly simplifies the required
configuration steps; for details, see "Configuring Your Domain For Web Services
Features" in Getting Started With JAX-RPC Web Services for Oracle WebLogic Server.

If you prefer to configure the resources manually, perform the following steps.

Notes: Alternatively, you can use WLST to configure the resources.
For information about using WLST to extend the domain, see
"Configuring Existing Domains" in Oracle WebLogic Scripting Tool.

A domain that does not contain Web Services resources will still boot
and operate correctly for non-Web services scenarios, and any Web
Services scenario that does not involve asynchronous request and
response. You will, however, see INFO messages in the server log
indicating that asynchronous resources have not been configured and
that the asynchronous response service for Web services has not been
completely deployed.

Table 5–2 Steps to Configure Host WebLogic Server Instance Manually for the Buffered Web Service

Step Description

1 Invoke the Administration
Console for the domain that
contains the host WebLogic
Server instance.

To invoke the Administration Console in your browser, enter the following
URL:

http://host:port/console

where

■ host refers to the computer on which the Administration Server is
running.

■ port refers to the port number where the Administration Server is
listening for connection requests. The default port number for the
Administration server is 7001.

See "Invoking the Administration Console" in Getting Started With JAX-RPC
Web Services for Oracle WebLogic Server.

3 Create a JMS Server. Create a JMS Server. If a JMS server already exists, you can use it if you do not
want to create a new one.

See "Create JMS servers" in Oracle WebLogic Server Administration Console Help.

Programming Guidelines for the Buffered JWS File

5-4 Programming Advanced Features of JAX-RPC Web Services for Oracle WebLogic Server

5.4 Programming Guidelines for the Buffered JWS File
The following example shows a simple JWS file that implements a buffered Web
service; see the explanation after the example for coding guidelines that correspond to
the Java code in bold.

package examples.webservices.buffered;

import javax.jws.WebMethod;
import javax.jws.WebService;
import javax.jws.Oneway;

import weblogic.jws.WLHttpTransport;
import weblogic.jws.MessageBuffer;
import weblogic.jws.BufferQueue;

@WebService(name="BufferedPortType",
 serviceName="BufferedService",
 targetNamespace="http://example.org")

@WLHttpTransport(contextPath="buffered",
 serviceUri="BufferedService",
 portName="BufferedPort")

// Annotation to specify a specific JMS queue rather than the default
@BufferQueue(name="my.jms.queue")

/**
 * Simple buffered Web Service.
 */

public class BufferedImpl {

 @WebMethod()

4 Create JMS module and
define queue.

Create a JMS module, and then define a JMS queue in the module. If a JMS
module already exists, you can use it if you do not want to create a new one.
Target the JMS queue to the JMS server you created in the preceding step. Be
sure you specify that this JMS queue is local, typically by setting the local
JNDI name. See "Create JMS system modules" and "Create queues in a system
module" in Oracle WebLogic Server Administration Console Help.

If you want the buffered Web service to use the default Web services queue,
set the JNDI name of the JMS queue to
weblogic.wsee.DefaultCallbackQueue. Otherwise, if you use a
different JNDI name, be sure to use the @BufferQueue annotation in the JWS
file to specify this JNDI name to the reliable Web service. See Section 5.4,
"Programming Guidelines for the Buffered JWS File".

Clustering Considerations:

If you are using the Web service buffering feature in a cluster, you must:

■ Create a local JMS queue, rather than a distributed queue, when creating
the JMS queue.

■ Explicitly target this JMS queue to each server in the cluster.

4 Tune your domain
environment, as required.
(Optional)

Review "Tuning Heavily Loaded Systems to Improve Web Service
Performance" in WebLogic Server Performance and Tuning.

Table 5–2 (Cont.) Steps to Configure Host WebLogic Server Instance Manually for the Buffered Web

Step Description

Programming Guidelines for the Buffered JWS File

Creating Buffered Web Services 5-5

 @MessageBuffer(retryCount=10, retryDelay="10 seconds")
 @Oneway()
 public void sayHelloNoReturn(String message) {
 System.out.println("sayHelloNoReturn: " + message);

 }
}

Follow these guidelines when programming the JWS file that implements a buffered
Web service. Code snippets of the guidelines are shown in bold in the preceding
example.

■ Import the JWS annotations used for buffered Web services:

import javax.jws.Oneway;
import weblogic.jws.MessageBuffer;
import weblogic.jws.BufferQueue;

See the following bullets for guidelines on which JWS annotations are required.

■ Optionally use the class-level @BufferQueue JWS annotation to specify the JNDI
name of the JMS queue used internally by WebLogic Server when it processes a
buffered invoke; for example:

 @BufferQueue(name="my.jms.queue")

If you do not specify this JWS annotation, then WebLogic Server uses the default
Web services JMS queue (weblogic.wsee.DefaultQueue).

You must create both the default JMS queue and any queues specified with this
annotation before you can successfully invoke a buffered operation. See
Section 5.3, "Configuring the Host WebLogic Server Instance for the Buffered Web
Service" for details.

■ Use the @MessageBuffer JWS annotation to specify the operations of the Web
service that are buffered. The annotation has two optional attributes:

– retryCount: The number of times WebLogic Server should attempt to
deliver the message from the JMS queue to the Web service implementation
(default 3).

– retryDelay: The amount of time that the server should wait in between
retries (default 5 minutes).

For example:

@MessageBuffer(retryCount=10, retryDelay="10 seconds")

You can use this annotation at the class-level to specify that all operations are
buffered, or at the method-level to choose which operations are buffered.

■ If you plan on invoking the buffered Web service operation synchronously (or in
other words, not using the asynchronous request-response feature), then the
implementing method is required to be annotated with the @Oneway annotation to
specify that the method is one-way. This means that the method cannot return a
value, but rather, must explicitly return void. For example:

@Oneway()
public void sayHelloNoReturn(String message) {

Conversely, if the method is not annotated with the @Oneway annotation, then you
must invoke it using the asynchronous request-response feature. If you are unsure

Programming the JWS File That Invokes the Buffered Web Service

5-6 Programming Advanced Features of JAX-RPC Web Services for Oracle WebLogic Server

how the operation is going to be invoked, consider creating two flavors of the
operation: synchronous and asynchronous.

See Chapter 2, "Invoking a Web Service Using Asynchronous Request-Response,"
and Chapter 6, "Using the Asynchronous Features Together."

5.5 Programming the JWS File That Invokes the Buffered Web Service
You can invoke a buffered Web service from both a stand-alone Java application (if not
using asynchronous request-response) and from another Web service. Unlike other
WebLogic Web services asynchronous features, however, you do not use the
@ServiceClient JWS annotation in the client Web service, but rather, you invoke
the service as you would any other. For details, see "Invoking a Web Service from
Another Web Service" in Getting Started With JAX-RPC Web Services for Oracle WebLogic
Server.

The following sample JWS file shows how to invoke the sayHelloNoReturn
operation of the BufferedService Web service:

package examples.webservices.buffered;

import java.rmi.RemoteException;
import javax.xml.rpc.ServiceException;

import javax.jws.WebService;
import javax.jws.WebMethod;

import weblogic.jws.WLHttpTransport;

import examples.webservices.buffered.BufferedPortType;
import examples.webservices.buffered.BufferedService_Impl;
import examples.webservices.buffered.BufferedService;

@WebService(name="BufferedClientPortType",
 serviceName="BufferedClientService",
 targetNamespace="http://examples.org")

@WLHttpTransport(contextPath="bufferedClient",
 serviceUri="BufferedClientService",
 portName="BufferedClientPort")

public class BufferedClientImpl {

 @WebMethod()
 public String callBufferedService(String input, String serviceUrl)
 throws RemoteException {

 try {

 BufferedService service = new BufferedService_Impl(serviceUrl + "?WSDL");
 BufferedPortType port = service.getBufferedPort();

 // Invoke the sayHelloNoReturn() operation of BufferedService

 port.sayHelloNoReturn(input);

 return "Invoke went okay!";

 } catch (ServiceException se) {

Updating the build.xml File for a Client of the Buffered Web Service

Creating Buffered Web Services 5-7

 System.out.println("ServiceExcpetion thrown");
 throw new RuntimeException(se);

 }
 }
}

5.6 Updating the build.xml File for a Client of the Buffered Web Service
To update a build.xml file to generate the JWS file that invokes a buffered Web
service operation, add taskdefs and a build-clientService targets that look
something like the following example. See the description after the example for details.

<taskdef name="jwsc"
 classname="weblogic.wsee.tools.anttasks.JwscTask" />

<target name="build-clientService">

 <jwsc
 enableAsyncService="true"
 srcdir="src"
 destdir="${clientService-ear-dir}" >

 <jws file="examples/webservices/buffered/BufferedClientImpl.java">
 <clientgen

wsdl="http://${wls.hostname}:${wls.port}/buffered/BufferedService?WSDL"
 packageName="examples.webservices.buffered"/>

 </jws>

 </jwsc>

 </target>

Use the taskdef Ant task to define the full classname of the jwsc Ant tasks.

Update the jwsc Ant task that compiles the client Web service to include a
<clientgen> child element of the <jws> element so as to generate and compile the
JAX-RPC stubs for the deployed BufferedService Web service. The jwsc Ant task
automatically packages them in the generated WAR file so that the client Web service
can immediately access the stubs. You do this because the BufferedClientImpl
JWS file imports and uses one of the generated classes.

Updating the build.xml File for a Client of the Buffered Web Service

5-8 Programming Advanced Features of JAX-RPC Web Services for Oracle WebLogic Server

6

Using the Asynchronous Features Together 6-1

6Using the Asynchronous Features Together

This chapter describes how to use the asynchronous features together with WebLogic
Java API for XML-based RPC (JAX-RPC) Web services.

This chapter includes the following topics:

■ Section 6.1, "Using the Asynchronous Features Together"

■ Section 6.2, "Example of a JWS File That Implements a Reliable Conversational
Web Service"

■ Section 6.3, "Example of Client Web Service That Asynchronously Invokes a
Reliable Conversational Web Service"

6.1 Using the Asynchronous Features Together
The preceding sections describe how to use the WebLogic Web service asynchronous
features (Web service reliable messaging, conversations, asynchronous
request-response, and buffering) on their own. Typically, however, Web services use
the features together; see Section 6.2, "Example of a JWS File That Implements a
Reliable Conversational Web Service" and Section 6.3, "Example of Client Web Service
That Asynchronously Invokes a Reliable Conversational Web Service" for examples.

When used together, some restrictions described in the individual feature sections do
not apply, and sometimes additional restrictions apply. The following table
summarizes considerations for various feature combinations.

Example of a JWS File That Implements a Reliable Conversational Web Service

6-2 Programming Advanced Features of JAX-RPC Web Services for Oracle WebLogic Server

6.2 Example of a JWS File That Implements a Reliable Conversational
Web Service

The following sample JWS file implements a Web service that is both reliable and
conversational:

package examples.webservices.async_mega;

import java.io.Serializable;

import weblogic.jws.WLHttpTransport;
import weblogic.jws.Conversation;
import weblogic.jws.Policy;

import javax.jws.WebService;

Table 6–1 Considerations When Using Asynchronous Features Together

Feature Combination Consideration

Asynchronous request-response
with Web service reliable
messaging or buffering

■ The asynchronous response from the reliable Web service is also reliable.
This means that you must also configure a JMS server, module, and
queue on the source WebLogic Server instance, in a similar way you
configured the destination WebLogic Server instance, to handle the
response.

When you create the JMS queue on the source WebLogic Server instance,
you are required to specify a JNDI name of
weblogic.wsee.DefaultQueue; you can name the queue anything
you want. You must also ensure that you specify that this JMS queue is
local, typically by setting the local JNDI name.

■ The reliable or buffered operation cannot be one-way; in other words, you
cannot annotate the implementing method with the @Oneway annotation.

Asynchronous request-response
with Web service reliable
messaging

If you set a property in one of the asynchronous contexts
(AsyncPreCallContext or AsyncPostCallContext), then the property
must implement java.io.Serializable.

Asynchronous request-response
with buffering

You must use the @ServiceClient JWS annotation in the client Web service
that invokes the buffered Web service operation.

Conversations with Web service
reliable messaging

■ JWS conversations are not the same as reliable sequences, and are not
linked in any way. You must consider the management of reliable
sequences separately from the life cycle of a conversation. For example,
when using reliable messaging to send messages between a client service
and a reliable and conversational service, finishing the conversation does
not terminate the reliable sequence. You must explicitly cause the reliable
sequence to be terminated (using WsrmUtils.setFinalMessage() or
other acceptable method) or allows the reliable sequence to remain active
until it expires when the sequence lifetime is exceeded). For more
information about reliable message sequence life cycle, see Section 3.1.2,
"Managing the Life Cycle of the Reliable Message Sequence".

■ If you set the property WLStub.CONVERSATIONAL_METHOD_BLOCK_
TIMEOUT on the stub of the client Web service, the property is ignored
because the client does not block.

■ At least one method of the reliable conversational Web service must not
be marked with the @Oneway annotation.

Conversations with asynchronous
request-response

Asynchronous responses between a client conversational Web service and any
other Web service also participate in the conversation. For example, assume
WebServiceA is conversational, and it invokes WebServiceB using
asynchronous request-response. Because WebServiceA is conversational the
asynchronous responses from WebServiceB also participates in the same
conversation.

Example of Client Web Service That Asynchronously Invokes a Reliable Conversational Web Service

Using the Asynchronous Features Together 6-3

import javax.jws.WebMethod;

@WebService(name="AsyncMegaPortType",
 serviceName="AsyncMegaService",
 targetNamespace="http://examples.org/")

@Policy(uri="AsyncReliableConversationPolicy.xml",
 attachToWsdl=true)

@WLHttpTransport(contextPath="asyncMega",
 serviceUri="AsyncMegaService",
 portName="AsyncMegaServicePort")

/**
 * Web Service that is both reliable and conversational.
 */

public class AsyncMegaServiceImpl implements Serializable {

 @WebMethod
 @Conversation (Conversation.Phase.START)
 public String start() {
 return "Starting conversation";
 }

 @WebMethod
 @Conversation (Conversation.Phase.CONTINUE)
 public String middle(String message) {
 return "Middle of conversation; the message is: " + message;
 }

 @WebMethod
 @Conversation (Conversation.Phase.FINISH)
 public String finish(String message) {
 return "End of conversation; the message is: " + message;
 }

}

6.3 Example of Client Web Service That Asynchronously Invokes a
Reliable Conversational Web Service

The following JWS file shows how to implement a client Web service that reliably
invokes the various conversational methods of the Web service described in
Section 6.2, "Example of a JWS File That Implements a Reliable Conversational Web
Service"; the client JWS file uses the asynchronous request-response feature as well.

package examples.webservices.async_mega;

import weblogic.jws.WLHttpTransport;
import weblogic.jws.ServiceClient;
import weblogic.jws.AsyncResponse;
import weblogic.jws.AsyncFailure;

import javax.jws.WebService;
import javax.jws.WebMethod;
import javax.xml.rpc.Stub;

import weblogic.wsee.async.AsyncPreCallContext;

Example of Client Web Service That Asynchronously Invokes a Reliable Conversational Web Service

6-4 Programming Advanced Features of JAX-RPC Web Services for Oracle WebLogic Server

import weblogic.wsee.async.AsyncCallContextFactory;
import weblogic.wsee.async.AsyncPostCallContext;
import weblogic.wsee.reliability.WsrmUtils;

import examples.webservices.async_mega.AsyncMegaPortType;
import examples.webservices.async_mega.AsyncMegaService;
import examples.webservices.async_mega.AsyncMegaService_Impl;

import java.rmi.RemoteException;

@WebService(name="AsyncMegaClientPortType",
 serviceName="AsyncMegaClientService",
 targetNamespace="http://examples.org/")

@WLHttpTransport(contextPath="asyncMegaClient",
 serviceUri="AsyncMegaClient",
 portName="AsyncMegaClientServicePort")

/**
 * Client Web Service that has a conversation with the AsyncMegaService
 * reliably and asynchronously.
 */

public class AsyncMegaClientImpl {

 @ServiceClient(
 wsdlLocation="http://localhost:7001/asyncMega/AsyncMegaService?WSDL",
 serviceName="AsyncMegaService",
 portName="AsyncMegaServicePort")

 private AsyncMegaPortType port;

 @WebMethod
 public void runAsyncReliableConversation(String message) {

 AsyncPreCallContext apc = AsyncCallContextFactory.getAsyncPreCallContext();
 apc.setProperty("message", message);

 try {
 port.startAsync(apc);
 System.out.println("start method executed.");

 port.middleAsync(apc, message);
 System.out.println("middle method executed.");

 // Since this service is not conversational, any state kept in the port
 // field will be lost when this method returns. In the case of reliable
 // messaging, this state includes the ID of the reliable sequence being
 // used to send messages. The setFinalMessage method specifies
 // that this is the final message to be sent on this sequence. This
 // will allow the reliable messaging subsystem to proactively clean up
 // the reliable sequence instead of timing out.
 WsrmUtils.setFinalMessage((Stub)port);
 port.finishAsync(apc, message);
 System.out.println("finish method executed.");

 }
 catch (RemoteException e) {
 e.printStackTrace();
 }

Example of Client Web Service That Asynchronously Invokes a Reliable Conversational Web Service

Using the Asynchronous Features Together 6-5

 }

 @AsyncResponse(target="port", operation="start")
 public void onStartAsyncResponse(AsyncPostCallContext apc, String message) {
 System.out.println("-------------------");
 System.out.println("Got message " + message);
 System.out.println("-------------------");
 }

 @AsyncResponse(target="port", operation="middle")
 public void onMiddleAsyncResponse(AsyncPostCallContext apc, String message) {
 System.out.println("-------------------");
 System.out.println("Got message " + message);
 System.out.println("-------------------");
 }

 @AsyncResponse(target="port", operation="finish")
 public void onFinishAsyncResponse(AsyncPostCallContext apc, String message) {
 System.out.println("-------------------");
 System.out.println("Got message " + message);
 System.out.println("-------------------");
 }

 @AsyncFailure(target="port", operation="start")
 public void onStartAsyncFailure(AsyncPostCallContext apc, Throwable e) {
 System.out.println("-------------------");
 e.printStackTrace();
 System.out.println("-------------------");
 }

 @AsyncFailure(target="port", operation="middle")
 public void onMiddleAsyncFailure(AsyncPostCallContext apc, Throwable e) {
 System.out.println("-------------------");
 e.printStackTrace();
 System.out.println("-------------------");
 }

 @AsyncFailure(target="port", operation="finish")
 public void onFinishAsyncFailure(AsyncPostCallContext apc, Throwable e) {
 System.out.println("-------------------");
 e.printStackTrace();
 System.out.println("-------------------");
 }
}

Example of Client Web Service That Asynchronously Invokes a Reliable Conversational Web Service

6-6 Programming Advanced Features of JAX-RPC Web Services for Oracle WebLogic Server

7

Using Callbacks to Notify Clients of Events 7-1

7Using Callbacks to Notify Clients of Events

This chapter describes how to callbacks with WebLogic Java API for XML-based RPC
(JAX-RPC) Web services to notify clients of events.

This chapter includes the following topics:

■ Section 7.1, "Overview of Callbacks"

■ Section 7.2, "Callback Implementation Overview and Terminology"

■ Section 7.3, "Programming Callbacks: Main Steps"

■ Section 7.4, "Programming Guidelines for Target Web Service"

■ Section 7.5, "Programming Guidelines for the Callback Client Web Service"

■ Section 7.6, "Programming Guidelines for the Callback Interface"

■ Section 7.7, "Updating the build.xml File for the Client Web Service"

7.1 Overview of Callbacks
Callbacks notify a client of your Web service that some event has occurred. For
example, you can notify a client when the results of that client's request are ready, or
when the client's request cannot be fulfilled.

When you expose a method as a standard public operation in your JWS file (by using
the @WebMethod annotation), the client sends a SOAP message to the Web service to
invoke the operation. When you add a callback to a Web service, however, you define
a message that the Web service sends back to the client Web service, notifying the client of
an event that has occurred. So exposing a method as a public operation and defining a
callback are completely symmetrical processes, with opposite recipients.

WebLogic Server automatically routes the SOAP message from client invoke to the
target Web service. In order to receive callbacks, however, the client must be operating
in an environment that provides the same services. This typically means the client is a
Web service running on a Web server. If the client does not meet these requirements, it
is likely not capable of receiving callbacks from your Web service.

The protocol and message format used for callbacks is always the same as the protocol
and message format used by the conversation start method that initiated the current
conversation. If you attempt to override the protocol or message format of a callback,
an error is thrown.

7.2 Callback Implementation Overview and Terminology
To implement callbacks, you must create or update the following three Java files:

Callback Implementation Overview and Terminology

7-2 Programming Advanced Features of JAX-RPC Web Services for Oracle WebLogic Server

■ Callback interface: Java interface file that defines the callback methods. You do not
explicitly implement this file yourself; rather, the jwsc Ant task automatically
generates an implementation of the interface. The implementation simply passes a
message from the target Web service back to the client Web service. The generated
Web service is deployed to the same WebLogic Server that hosts the client Web
service.

In the example in this section, the callback interface is called
CallbackInterface. The interface defines a single callback method called
callbackOperation().

■ JWS file that implements the target Web service: The target Web service includes
one or more standard operations that invoke a method defined in the callback
interface; this method in turn sends a message back to the client Web service that
originally invoked the operation of the target Web service.

In the example, this Web service is called TargetService and it defines a single
standard method called targetOperation().

■ JWS file that implements the client Web service: The client Web service invokes
an operation of the target Web service. This Web service includes one or more
methods that specify what the client should do when it receives a callback
message back from the target Web service via a callback method.

In the example, this Web service is called CallbackClient and the method that
is automatically invoked when it receives a callback is called
callbackHandler(). The method that invokes TargetService in the
standard way is called clientOperation().

The following graphic shows the flow of messages:

1. The clientOperation() method of the CallbackClient Web service,
running in one WebLogic Server instance, explicitly invokes the
targetOperation() operation of the TargetService. The TargetService
service might be running in a separate WebLogic Server instance.

2. The implementation of the TargetService.targetOperation() method
explicitly invokes the callbackOperation() operation of the
CallbackInterface, which implements the callback service. The callback
service is deployed to the WebLogic Server which hosts the client Web service.

3. The jwsc-generated implementation of the
CallbackInterface.callbackOperation() method simply sends a
message back to the CallbackClient Web service. The client Web service
includes a method callbackHandler() that handles this message.

Programming Guidelines for Target Web Service

Using Callbacks to Notify Clients of Events 7-3

7.3 Programming Callbacks: Main Steps
The procedure in this section describes how to program and compile the three JWS
files that are required to implement callbacks: the target Web service, the client Web
service, and the callback interface. The procedure shows how to create the JWS files
from scratch; if you want to update existing JWS files, you can also use this procedure
as a guide.

It is assumed that you have set up an Ant-based development environment and that
you have a working build.xml file to which you can add targets for running the
jwsc Ant task and deploying the Web services. For more information, see Getting
Started With JAX-RPC Web Services for Oracle WebLogic Server.

7.4 Programming Guidelines for Target Web Service
The following example shows a simple JWS file that implements the target Web
service; see the explanation after the example for coding guidelines that correspond to
the Java code in bold.

package examples.webservices.callback;

Table 7–1 Steps to Program Callbacks

Step Description

1 Create a new JWS file, or
update an existing one, that
implements the target Web
service.

Use your favorite IDE or text editor. See Section 7.4, "Programming
Guidelines for Target Web Service".

Note: The JWS file that implements the target Web service invokes one or
more callback methods of the callback interface. However, the step that
describes how to program the callback interface comes later in this
procedure. For this reason, programmers typically program the three JWS
files at the same time, rather than linearly as implied by this procedure. The
steps are listed in this order for clarity only.

2 Update your build.xml file
to include a call to the jwsc
Ant task to compile the target
JWS file into a Web service.

See "Running the jwsc WebLogic Web Services Ant Task" in Getting Started
With JAX-RPC Web Services for Oracle WebLogic Server.

3 Run the Ant target to build
the target Web service.

For example:

prompt> ant build-mainService

4 Deploy the target Web service
as usual.

See "Deploying and Undeploying WebLogic Web Services" in Getting Started
With JAX-RPC Web Services for Oracle WebLogic Server.

5 Create a new JWS file, or
update an existing one, that
implements the client Web
service.

It is assumed that the client Web service is deployed to a different WebLogic
Server instance from the one that hosts the target Web service. See Section 7.5,
"Programming Guidelines for the Callback Client Web Service".

6 Create the callback JWS
interface that implements the
callback Web service.

See Section 7.6, "Programming Guidelines for the Callback Interface".

7 Update the build.xml file
that builds the client Web
service.

The jwsc Ant task that builds the client Web service also implicitly generates
the callback Web service from the callback interface file. See Section 7.7,
"Updating the build.xml File for the Client Web Service".

8 Run the Ant target to build
the client and callback Web
services.

For example:

prompt> ant build-clientService

9 Deploy the client Web service
as usual.

See "Deploying and Undeploying WebLogic Web Services" in Getting Started
With JAX-RPC Web Services for Oracle WebLogic Server.

Programming Guidelines for Target Web Service

7-4 Programming Advanced Features of JAX-RPC Web Services for Oracle WebLogic Server

import weblogic.jws.WLHttpTransport;
import weblogic.jws.Callback;

import javax.jws.WebService;
import javax.jws.WebMethod;

@WebService(name="CallbackPortType",
 serviceName="TargetService",
 targetNamespace="http://examples.org/")

@WLHttpTransport(contextPath="callback",
 serviceUri="TargetService",
 portName="TargetServicePort")

/**
 * callback service
 */

public class TargetServiceImpl {

 @Callback
 CallbackInterface callback;

 @WebMethod
 public void targetOperation (String message) {

 callback.callbackOperation (message);
 }

}

Follow these guidelines when programming the JWS file that implements the target
Web service. Code snippets of the guidelines are shown in bold in the preceding
example.

■ Import the required JWS annotations:

import weblogic.jws.Callback;

■ Use the @weblogic.jws.Callback JWS annotation to specify that a variable is
a callback, which means that you can use the annotated variable to send callback
events back to a client Web service that invokes an operation of the
TargetService Web service. The data type of the variable is the callback
interface, which in this case is called CallbackInterface.

@Callback
CallbackInterface callback;

■ In a method that implements an operation of the TargetService, use the
annotated variable to invoke one of the callback methods of the callback interface,
which in this case is called callbackOperation():

callback.callbackOperation (message);

See "JWS Annotation Reference" in WebLogic Web Services Reference for Oracle WebLogic
Server for additional information about the WebLogic-specific JWS annotations
discussed in this section.

Programming Guidelines for the Callback Client Web Service

Using Callbacks to Notify Clients of Events 7-5

7.5 Programming Guidelines for the Callback Client Web Service
The following example shows a simple JWS file for a client Web service that invokes
the target Web service described in Section 7.4, "Programming Guidelines for Target
Web Service"; see the explanation after the example for coding guidelines that
correspond to the Java code in bold.

package examples.webservices.callback;

import weblogic.jws.WLHttpTransport;
import weblogic.jws.ServiceClient;
import weblogic.jws.CallbackMethod;
import weblogic.jws.security.CallbackRolesAllowed;
import weblogic.jws.security.SecurityRole;

import javax.jws.WebService;
import javax.jws.WebMethod;

import examples.webservices.callback.CallbackPortType;

import java.rmi.RemoteException;

@WebService(name="CallbackClientPortType",
 serviceName="CallbackClientService",
 targetNamespace="http://examples.org/")

@WLHttpTransport(contextPath="callbackClient",
 serviceUri="CallbackClient",
 portName="CallbackClientPort")

public class CallbackClientImpl {

 @ServiceClient(
 wsdlLocation="http://localhost:7001/callback/TargetService?WSDL",
 serviceName="TargetService",
 portName="TargetServicePort")
 @CallbackRolesAllowed(@SecurityRole(role="mgr", mapToPrincipals="joe"))
 private CallbackPortType port;

 @WebMethod
 public void clientOperation (String message) {

 try {

 port.targetOperation(message);
 }
 catch (RemoteException e) {
 e.printStackTrace();
 }

 }
 @CallbackMethod(target="port", operation="callbackOperation")
 @CallbackRolesAllowed(@SecurityRole(role="engineer",
mapToPrincipals="shackell"))
 public void callbackHandler(String msg) {

 System.out.println (msg);
 }

}

Programming Guidelines for the Callback Client Web Service

7-6 Programming Advanced Features of JAX-RPC Web Services for Oracle WebLogic Server

Follow these guidelines when programming the JWS file that invokes the target Web
service; code snippets of the guidelines are shown in bold in the preceding example:

■ Import the required JWS annotations:

import weblogic.jws.ServiceClient;
import weblogic.jws.CallbackMethod;

■ Optionally import the security-related annotations if you want to specify the roles
that are allowed to invoke the callback methods:

import weblogic.jws.security.CallbackRolesAllowed;
import weblogic.jws.security.SecurityRole;

■ Import the JAX-RPC stub of the port type of the target Web service you want to
invoke. The actual stub itself will be created later by the jwsc Ant task. The stub
package is specified by the packageName attribute of the <clientgen> child
element of <jws>, and the name of the stub is determined by the WSDL of the
invoked Web service.

import examples.webservices.callback.CallbackPortType;

■ In the body of the JWS file, use the @ServiceClient JWS annotation to specify
the WSDL, name, and port of the target Web service you want to invoke. You
specify this annotation at the field-level on a private variable, whose data type is
the JAX-RPC port type of the Web service you are invoking.

@ServiceClient(
 wsdlLocation="http://localhost:7001/callback/TargetService?WSDL",
 serviceName="TargetService",
 portName="TargetServicePort")
@CallbackRolesAllowed(@SecurityRole(role="mgr", mapToPrincipals="joe"))
private CallbackPortType port;

The preceding code also shows how to use the optional
@CallbackRolesAllowed annotation to specify the list of @SecurityRoles
that are allowed to invoke the callback methods.

■ Using the variable you annotated with the @ServiceClient annotation, invoke
an operation of the target Web service. This operation in turn will invoke a
callback method of the callback interface:

port.targetOperation(message);

■ Create a method that will handle the callback message received from the callback
service. You can name this method anything you want. However, its signature
should exactly match the signature of the corresponding method in the callback
interface.

Annotate the method with the @CallbackMethod annotation to specify that this
method handles callback messages. Use the target attribute to specify the name
of the JAX-RPC port for which you want to receive callbacks (in other words, the
variable you previously annotated with @ServiceClient). Use the operation
attribute to specify the name of the callback method in the callback interface from
which this method will handle callback messages.

 @CallbackMethod(target="port", operation="callbackOperation")
 @CallbackRolesAllowed(@SecurityRole(role="engineer",
mapToPrincipals="shackell"))
 public void callbackHandler(String msg) {
 System.out.println (msg);

Programming Guidelines for the Callback Interface

Using Callbacks to Notify Clients of Events 7-7

 }

The preceding code also shows how to use the optional
@CallbackRolesAllowed annotation to further restrict the security roles that
are allowed to invoke this particular callback method.

See "JWS Annotation Reference" in WebLogic Web Services Reference for Oracle WebLogic
Server for additional information about the WebLogic-specific JWS annotations
discussed in this section.

7.6 Programming Guidelines for the Callback Interface
The callback interface is also a JWS file that implements a Web service, except for one
big difference: instead of using the standard @javax.jws.WebService annotation to
specify that it is a standard Web service, you use the WebLogic-specific
@weblogic.jws.CallbackService to specify that it is a callback service. The
attributes of @CallbackService are a restricted subset of the attributes of
@WebService.

Follow these restrictions on the allowed data types and JWS annotations when
programming the JWS file that implements a callback service:

■ You cannot use any WebLogic-specific JWS annotations other than
@weblogic.jws.CallbackService.

■ You can use all standard JWS annotations except for the following:

– javax.jws.HandlerChain

– javax.jws.soap.SOAPMessageHandler

– javax.jws.soap.SOAPMessageHandlers

■ You can use all supported data types as parameters or return values except
Holder classes (user-defined data types that implement the
javax.xml.rpc.holders.Holder interface).

The following example shows a simple callback interface file that implements a
callback Web service. The target Web service, described in Section 7.4, "Programming
Guidelines for Target Web Service", explicitly invokes a method in this interface. The
jwsc-generated implementation of the callback interface then automatically sends a
message back to the client Web service that originally invoked the target Web service;
the client service is described in Section 7.5, "Programming Guidelines for the Callback
Client Web Service". See the explanation after the example for coding guidelines that
correspond to the Java code in bold.

package examples.webservices.callback;

import weblogic.jws.CallbackService;

import javax.jws.Oneway;
import javax.jws.WebMethod;

@CallbackService
public interface CallbackInterface {

 @WebMethod
 @Oneway
 public void callbackOperation (String msg);

}

Updating the build.xml File for the Client Web Service

7-8 Programming Advanced Features of JAX-RPC Web Services for Oracle WebLogic Server

Follow these guidelines when programming the JWS interface file that implements the
callback Web service. Code snippets of the guidelines are shown in bold in the
preceding example.

■ Import the required JWS annotation:

import weblogic.jws.CallbackService;

■ Annotate the interface declaration with the @CallbackService annotation to
specify that the JWS file implements a callback service:

@CallbackService
public interface CallbackInterface {

■ Create a method that the target Web service explicitly invokes; this is the method
that automatically sends a message back to the client service that originally
invoked the target Web service. Because this is a Java interface file, you do not
provide an implementation of this method. Rather, the WebLogic Web services
runtime generates an implementation of the method via the jwsc Ant task.

public void callbackOperation (String msg);

See "JWS Annotation Reference" in WebLogic Web Services Reference for Oracle WebLogic
Server for additional information about the WebLogic-specific JWS annotations
discussed in this section.

7.7 Updating the build.xml File for the Client Web Service
When you run the jwsc Ant task against the JWS file that implements the client Web
service, the task implicitly also generates the callback Web service, as described in this
section.

You update a build.xml file to generate a client Web service that invokes the target
Web service by adding taskdefs and a build-clientService target that looks
something like the following example. See the description after the example for details.

<taskdef name="jwsc"
 classname="weblogic.wsee.tools.anttasks.JwscTask" />

<target name="build-clientService">

 <jwsc
 srcdir="src"
 destdir="${clientService-ear-dir}" >

 <jws file="examples/webservices/callback/CallbackClientImpl.java" >

 <clientgen
 wsdl="http://${wls.hostname}:${wls.port}/callback/TargetService?WSDL"
 packageName="examples.webservices.callback"
 serviceName="TargetService" />

 </jws>

Note: Although the example shows the callback method returning
void and annotated with the @Oneway annotation, this is not a
requirement.

Updating the build.xml File for the Client Web Service

Using Callbacks to Notify Clients of Events 7-9

 </jwsc>

</target>

Use the taskdef Ant task to define the full classname of the jwsc Ant tasks.

Update the jwsc Ant task that compiles the client Web service to include a
<clientgen> child element of the <jws> element so as to generate and compile the
JAX-RPC stubs for the deployed TargetService Web service. The jwsc Ant task
automatically packages them in the generated WAR file so that the client Web service
can immediately access the stubs. You do this because the CallbackClientImpl
JWS file imports and uses one of the generated classes.

Because the WSDL of the target Web service includes an additional <service>
element that describes the callback Web service (which the target Web service invokes),
the <clientgen> child element of the jwsc Ant task also generates and compiles the
callback Web service and packages it in the same EAR file as the client Web service.

Updating the build.xml File for the Client Web Service

7-10 Programming Advanced Features of JAX-RPC Web Services for Oracle WebLogic Server

8

Using JMS Transport as the Connection Protocol 8-1

8Using JMS Transport as the Connection
Protocol

This chapter describes how to use JMS transport as the connection protocol with
WebLogic Java API for XML-based RPC (JAX-RPC) Web service using asynchronous
request-response.

This chapter includes the following topics:

■ Section 8.1, "Overview of Using JMS Transport"

■ Section 8.2, "Using JMS Transport Starting From Java: Main Steps"

■ Section 8.3, "Using JMS Transport Starting From WSDL: Main Steps"

■ Section 8.4, "Configuring the Host WebLogic Server Instance for the JMS Transport
Web Service"

■ Section 8.5, "Using the @WLJmsTransport JWS Annotation"

■ Section 8.6, "Using the <WLJmsTransport> Child Element of the jwsc Ant Task"

■ Section 8.8, "Invoking a WebLogic Web Service Using JMS Transport"

8.1 Overview of Using JMS Transport
Typically, client applications use HTTP/S as the connection protocol when invoking a
WebLogic Web service. You can, however, configure a WebLogic Web service so that
client applications use JMS as the transport instead.

Using JMS transport offers the following benefits: reliability, scalability, and quality of
service. As with Web service reliable messaging, if WebLogic Server goes down while
the method invocation is still in the queue, it will be dealt with as soon as WebLogic
Server is restarted. When a client invokes a Web service, the client does not wait for a
response from the invoke, and the execution of the client can continue. Using JMS
transport does require slightly more overhead and programming complexity than
HTTP/S.

You configure transports using either JWS annotations or child elements of the jwsc
Ant task, as described in later sections. When a WebLogic Web service is configured to
use JMS as the connection transport, the endpoint address specified for the
corresponding port in the generated WSDL of the Web service uses jms:// in its URL
rather than http://. An example of a JMS endpoint address is as follows:

jms://myHost:7001/transports/JMSTransport?URI=JMSTransportQueue

The URI=JMSTransportQueue section of the URL specifies the JMS queue that has
been configured for the JMS transport feature. Although you cannot invoke the Web

Using JMS Transport Starting From Java: Main Steps

8-2 Programming Advanced Features of JAX-RPC Web Services for Oracle WebLogic Server

service using HTTP, you can view its WSDL using HTTP, which is how the
clientgen is still able to generate JAX-RPC stubs for the Web service.

For each transport that you specify, WebLogic Server generates an additional port in
the WSDL. For this reason, if you want to give client applications a choice of transports
they can use when they invoke the Web service (JMS, HTTP, or HTTPS), you should
explicitly add the transports using the appropriate JWS annotations or child elements
of jwsc.

8.2 Using JMS Transport Starting From Java: Main Steps
To use JMS transport when starting from Java, you must perform at least one of the
following tasks:

■ Add the @WLJmsTransport annotation to your JWS file.

■ Add a <WLJmsTransport> child element to the jwsc Ant task. This setting
overrides the transports defined in the JWS file.

The following procedure describes the complete set of steps required so that your Web
service can be invoked using the JMS transport when starting from Java.

Note: Using JMS transport is an added-value WebLogic feature;
non-WebLogic client applications, such as a .NET client, may not be
able to invoke the Web service using the JMS port.

Note: Because you might not know at the time that you are coding
the JWS file which transport best suits your needs, it is often better to
specify the transport at build-time using the <WLJmsTransport>
child element.

Note: It is assumed that you have created a basic JWS file that
implements a Web service and that you want to configure the Web
service to be invoked using JMS. It is also assumed that you have set
up an Ant-based development environment and that you have a
working build.xml file that includes targets for running the jwsc
Ant task and deploying the service. For more information, see Getting
Started With JAX-RPC Web Services for Oracle WebLogic Server.

Table 8–1 Steps to Use JMS Transport Starting From Java

Step Description

1 Configure the WebLogic
Server domain for the
required JMS components.

See Section 8.4, "Configuring the Host WebLogic Server Instance for the JMS
Transport Web Service".

2 Add the @WLJmsTransport
annotation to your JWS file.
(Optional)

This step is optional. If you do not add the @WLJmsTransport annotation to
your JWS file, then you must add a <WLJmsTransport> child element to
the jwsc Ant task, as described in Step 3.

See Section 8.5, "Using the @WLJmsTransport JWS Annotation".

Using JMS Transport Starting From WSDL: Main Steps

Using JMS Transport as the Connection Protocol 8-3

See Section 8.8, "Invoking a WebLogic Web Service Using JMS Transport" for
information about updating your client application to invoke the Web service using
JMS transport.

8.3 Using JMS Transport Starting From WSDL: Main Steps
To use JMS transport when starting from WSDL, you must perform at least one of the
following tasks:

■ Update the WSDL to use JMS transport before running the wsdlc Ant task.

■ Update the stubbed-out JWS implementation file generated by the wsdlc Ant task
to add the @WLJmsTransport annotation.

■ Add a <WLJmsTransport> child element to the jwsc Ant task used to build the
JWS implementation file. This setting overrides the transports defined in the JWS
file.

The following procedure describes the complete set of steps required so that your Web
service can be invoked using the JMS transport when starting from WSDL.

3 Add a <WLJmsTransport>
child element to the jwsc Ant
task. (Optional)

Use the <WLJmsTransport> child element to override the transports
defined in the JWS file. This step is required if you did not add the
@WLJmsTransport annotation to your JWS file in Step 2. Otherwise, this
step is optional.

See Section 8.6, "Using the <WLJmsTransport> Child Element of the jwsc Ant
Task" for details.

4 Build your Web service by
running the target in the
build.xml Ant file that calls
the jwsc task.

For example, if the target that calls the jwsc Ant task is called
build-service, then you would run:

prompt> ant build-service

See "Running the jwsc WebLogic Web Services Ant Task" in Getting Started
With JAX-RPC Web Services for Oracle WebLogic Server.

5 Deploy your Web service to
WebLogic Server.

See "Deploying and Undeploying WebLogic Web Services" in Getting Started
With JAX-RPC Web Services for Oracle WebLogic Server.

Note: Because you might not know at the time that you are coding
the JWS file which transport best suits your needs, it is often better to
specify the transport at build-time using the <WLJmsTransport>
child element.

Note: It is assumed in this procedure that you have an existing
WSDL file.

Table 8–1 (Cont.) Steps to Use JMS Transport Starting From Java

Step Description

Using JMS Transport Starting From WSDL: Main Steps

8-4 Programming Advanced Features of JAX-RPC Web Services for Oracle WebLogic Server

See Section 8.8, "Invoking a WebLogic Web Service Using JMS Transport" for
information about updating your client application to invoke the Web service using
JMS transport.

Table 8–2 Steps to Use JMS Transport Starting From WSDL

Step Description

1 Configure the WebLogic
Server domain for the
required JMS components.

See Section 8.4, "Configuring the Host WebLogic Server Instance for the JMS
Transport Web Service".

2 Update the WSDL to use JMS
transport. (Optional)

This step is optional. If you do not update the WSDL to use JMS transport,
then you must do at least one of the following:

■ Edit the stubbed out JWS file to add the @WLJmsTransport annotation
to your JWS file, as described in Step 4.

■ Add a <WLJmsTransport> child element to the jwsc Ant task, as
described in Step 5.

See Section 8.7, "Updating the WSDL to Use JMS Transport".

3 Run the wsdlc Ant task
against the WSDL file.

For example, if the target that calls the wsdlc Ant task is called
generate-from-wsdl, then you would run:

prompt> ant generate-from-wsdl

See "Running the wsdlc WebLogic Web Services Ant Task" in Getting Started
With JAX-RPC Web Services for Oracle WebLogic Server.

4 Update the stubbed-out JWS
file.

The wsdlc Ant task generates a stubbed-out JWS file.You need to add your
business code to the Web service so it behaves as you want. See "Updating
the Stubbed-out JWS Implementation Class File Generated by wsdlc" in
Getting Started With JAX-RPC Web Services for Oracle WebLogic Server.

If you updated the WSDL to use the JMS transport in Step 2, the JWS file
includes the @WLJmsTransport annotation that defines the JMS transport. If
the @WLJmsTransport annotation is not included in the JWS file, you must
do at least one of the following:

■ Edit the JWS file to add the @WLJmsTransport annotation to your JWS
file, as described in Section 8.5, "Using the @WLJmsTransport JWS
Annotation".

■ Add a <WLJmsTransport> child element to the jwsc Ant task, as
described in Step 5.

5 Add a <WLJmsTransport>
child element to the jwsc Ant
task. (Optional)

Use the <WLJmsTransport> child element to override the transports
defined in the JWS file. This step is required if the JWS file does not include
the @WLJmsTransport annotation, as noted in Step 4. Otherwise, this step is
optional.

See Section 8.6, "Using the <WLJmsTransport> Child Element of the jwsc Ant
Task" for details.

6 Run the jwsc Ant task
against the JWS file to build
the Web service.

Specify the artifacts generated by the wsdlc Ant task as well as your
updated JWS implementation file, to generate an Enterprise Application that
implements the Web service. See "Running the jwsc WebLogic Web Services
Ant Task" in Getting Started With JAX-RPC Web Services for Oracle WebLogic
Server.

7 Deploy the Web service to
WebLogic Server.

See "Deploying and Undeploying WebLogic Web Services" in Getting Started
With JAX-RPC Web Services for Oracle WebLogic Server.

Configuring the Host WebLogic Server Instance for the JMS Transport Web Service

Using JMS Transport as the Connection Protocol 8-5

8.4 Configuring the Host WebLogic Server Instance for the JMS
Transport Web Service

Configuring the WebLogic Server instance on which the JMS transport Web service is
deployed involves configuring JMS resources, such as JMS servers and modules, that
are used internally by the Web services runtime.

You can configure these resources manually or you can use the Configuration Wizard
to extend the WebLogic Server domain using a Web services-specific extension
template. Using the Configuration Wizard greatly simplifies the required
configuration steps; for details, see "Configuring Your Domain For Web Services
Features" in Getting Started With JAX-RPC Web Services for Oracle WebLogic Server.

If you prefer to configure the resources manually, perform the following steps.

Notes: Alternatively, you can use WLST to configure the resources.
For information about using WLST to extend the domain, see
"Configuring Existing Domains" in Oracle WebLogic Scripting Tool.

A domain that does not contain Web Services resources will still boot
and operate correctly for non-Web services scenarios, and any Web
Services scenario that does not involve asynchronous request and
response. You will, however, see INFO messages in the server log
indicating that asynchronous resources have not been configured and
that the asynchronous response service for Web services has not been
completely deployed.

Table 8–3 Steps to Configure Host WebLogic Server Instance Manually for the JMS Transport Web Service

Step Description

1 Invoke the Administration
Console for the domain that
contains the host WebLogic
Server instance.

To invoke the Administration Console in your browser, enter the following
URL:

http://host:port/console

where

■ host refers to the computer on which the Administration Server is
running.

■ port refers to the port number where the Administration Server is
listening for connection requests. The default port number for the
Administration server is 7001.

See "Invoking the Administration Console" in Getting Started With JAX-RPC
Web Services for Oracle WebLogic Server.

Using the @WLJmsTransport JWS Annotation

8-6 Programming Advanced Features of JAX-RPC Web Services for Oracle WebLogic Server

8.5 Using the @WLJmsTransport JWS Annotation
If you know at the time that you program the JWS file that you want client
applications to use JMS transport (instead of HTTP/S) to invoke the Web service, you
can use the @WLJmsTransport to specify the details of the invocation. Later, at
build-time, you can override the invocation defined in the JWS file and add additional
JMS transport specifications, by specifying the <WLJmsTransport> child element of
the jwsc Ant task, as described in Section 8.6, "Using the <WLJmsTransport> Child
Element of the jwsc Ant Task".

Follow these guidelines when using the @WLJmsTranport annotation:

■ You can include only one @WLJmsTransport annotation in a JWS file.

■ Use the queue attribute to specify the JNDI name of the JMS queue you
configured earlier in the section. If you want to use the default Web services queue
(weblogic.wsee.DefaultQueue) then you do not have to specify the queue
attribute.

■ Use the connectionFactory attribute to specify the JNDI name of the
connection factory. The default value of this attribute is the default JMS connection
factory for your WebLogic Server instance.

The following example shows a simple JWS file that uses the @WLJmsTransport
annotation, with the relevant code in bold:

package examples.webservices.jmstransport;

import javax.jws.WebMethod;
import javax.jws.WebService;
import javax.jws.soap.SOAPBinding;

import weblogic.jws.WLJmsTransport;

@WebService(name="JMSTransportPortType",

3 Create a JMS Server. Create a JMS Server. If a JMS server already exists, you can use it if you do not
want to create a new one.

See "Create JMS servers" in Oracle WebLogic Server Administration Console Help.

4 Create JMS module and
define queue.

Create a JMS module, and then define a JMS queue in the module. If a JMS
module already exists, you can use it if you do not want to create a new one.
Target the JMS queue to the JMS server you created in the preceding step. Be
sure you specify that this JMS queue is local, typically by setting the local
JNDI name. See "Create JMS system modules" and "Create queues in a system
module" in Oracle WebLogic Server Administration Console Help.

If you want the JMS transport Web service to use the default Web services
queue, set the JNDI name of the JMS queue to
weblogic.wsee.DefaultQueue. Otherwise, if you use a different JNDI
name, be sure to specify the queue name when specifying the
@WLJmsTransport annotation or <WLJmsTransport> child element of the
jwsc Ant task.

Clustering Considerations:

If you are using the Web service JMS transport feature in a cluster, you must:

■ Create a local JMS queue, rather than a distributed queue, when creating
the JMS queue.

■ Explicitly target this JMS queue to each server in the cluster.

Table 8–3 (Cont.) Steps to Configure Host WebLogic Server Instance Manually for the JMS Transport Web

Step Description

Using the <WLJmsTransport> Child Element of the jwsc Ant Task

Using JMS Transport as the Connection Protocol 8-7

 serviceName="JMSTransportService",
 targetNamespace="http://example.org")

@SOAPBinding(style=SOAPBinding.Style.DOCUMENT,
 use=SOAPBinding.Use.LITERAL,
 parameterStyle=SOAPBinding.ParameterStyle.WRAPPED)

// WebLogic-specific JWS annotation that specifies the context path and
// service URI used to build the URI of the Web Service is
// "transports/JMSTransport"

@WLJmsTransport(contextPath="transports", serviceUri="JMSTransport",
 queue="JMSTransportQueue", portName="JMSTransportServicePort",
 connectionFactory="JMSTransportConnectionFactory")

/**
 * This JWS file forms the basis of simple Java-class implemented WebLogic
 * Web Service with a single operation: sayHello
 */

public class JMSTransportImpl {

 @WebMethod()
 public String sayHello(String message) {
 System.out.println("sayHello:" + message);
 return "Here is the message: '" + message + "'";
 }
}

8.6 Using the <WLJmsTransport> Child Element of the jwsc Ant Task
You can also specify the JMS transport at build-time by using the
<WLJmsTransport> child element of the <jws> element of the jwsc Ant task.
Reasons for specifying the transport at build-time include:

■ You need to override the attribute values specified in the JWS file.

■ The JWS file specifies a different transport, and at build-time you decide that JMS
should be the transport.

■ The JWS file does not include a @WLXXXTransport annotation; thus by default
the HTTP transport is used, but at build-time you decide you want to clients to use
the JMS transport to invoke the Web service.

If you specify a transport to the jwsc Ant task, it takes precedence over any transport
annotation in the JWS file.

The following example shows how to specify a transport to the jwsc Ant task:

 <target name="build-service">

 <jwsc
 srcdir="src"
 destdir="${ear-dir}">
 <jws file="examples/webservices/jmstransport/JMSTransportImpl.java">

 <WLJmsTransport
 contextPath="transports"
 serviceUri="JMSTransport"
 portName="JMSTransportServicePort"
 queue="JMSTransportQueue"

Updating the WSDL to Use JMS Transport

8-8 Programming Advanced Features of JAX-RPC Web Services for Oracle WebLogic Server

 connectionFactory="JMSTransportConnectionFactory"/>

 </jws>

 </jwsc>

 </target>

The preceding example shows how to specify the same values for the URL and JMS
queue as were specified in the JWS file shown in Section 8.5, "Using the
@WLJmsTransport JWS Annotation".

For more information about using the jwsc Ant task, see "jwsc" in WebLogic Web
Services Reference for Oracle WebLogic Server.

8.7 Updating the WSDL to Use JMS Transport
To update the WSDL to use JMS transport, you need to add <wsdl:binding> and
<wsdl:service> definitions that define JMS transport information. You can add the
definitions in one of the following ways:

■ Edit the existing HTTP <wsdl:binding> and <wsdl:service> definitions.

■ To specify multiple transport options in the WSDL, copy the existing HTTP
<wsdl:binding> and <wsdl:service> definitions and edit them to use JMS
transport.

In either case, you must modify the <wsdl:binding> and <wsdl:service>
definitions to use JMS transport as follows:

■ Set the transport attribute of the <soapwsdl:binding> child element of the
<wsdl:binding> element to
http://www.openuri.org/2002/04/soap/jms/. For example:

<binding name="JmsTransportServiceSoapBindingjms"
type="tns:JmsTransportPortType">
 <soap:binding style="document"
transport="http://www.openuri.org/2002/04/soap/jms/"/>

■ Specify a JMS-style endpoint URL for the location attribute of the
<soapwsdl:address> child element of the <wsdl:service>. For example:

<s0:service name="JmsTransportService">
 <s0:port binding="s1:JmsTransportServiceSoapBindingjms"
name="JmsTransportServicePort">
 <s2:address
location="jms://localhost:7001/transports/JmsTransport?URI=JMSTransportQueue"/>
 </s0:port>
 </s0:service>

8.8 Invoking a WebLogic Web Service Using JMS Transport
You write a client application to invoke a Web service using JMS transport in the same
way as you write one using the HTTP transport; the only difference is that you must
ensure that the JMS queue (specified by the @WLJmsTransport annotation or
<WLJmsTransport> child element of the jwsc Ant task) and other JMS objects have
been created. See Section 8.2, "Using JMS Transport Starting From Java: Main Steps" or
Section 8.3, "Using JMS Transport Starting From WSDL: Main Steps" for more
information.

Invoking a WebLogic Web Service Using JMS Transport

Using JMS Transport as the Connection Protocol 8-9

Although you cannot invoke a JMS-transport-configured Web service using HTTP, you
can view its WSDL using HTTP, which is how the clientgen Ant task is still able to
create the JAX-RPC stubs for the Web service. For example, the URL for the WSDL of
the Web service shown in this section would be:

http://host:port/transports/JMSTransport?WSDL

However, because the endpoint address in the WSDL of the deployed Web service
uses jms:// instead of http://, and the address includes the qualifier ?URI=JMS_
QUEUE, the clientgen Ant task automatically creates the stubs needed to use the
JMS transport when invoking the Web service, and your client application need not do
anything different than normal. An example of a JMS endpoint address is as follows:

jms://host:port/transports/JMSTransport?URI=JMSTransportQueue

For general information about invoking a Web service, see "Invoking Web Services" in
Getting Started With JAX-RPC Web Services for Oracle WebLogic Server.

8.8.1 Overriding the Default Service Address URL
When you write a client application that uses the clientgen-generated JAX-RPC
stubs to invoke a Web service, the default service address URL of the Web service is
the one specified in the <address> element of the WSDL file argument of the
Service constructor.

Sometimes, however, you might need to override this address, in particular when
invoking a WebLogic Web service that is deployed to a cluster and you want to specify
the cluster address or a list of addresses of the managed servers in the cluster. You
might also want to use the t3 protocol to invoke the Web service. To override this
service endpoint URL when using JMS transport, use the
weblogic.wsee.jaxrpc.WLStub.JMS_TRANSPORT_JNDI_URL stub property as
shown in the following example:

package examples.webservices.jmstransport.client;

import weblogic.wsee.jaxrpc.WLStub;

import java.rmi.RemoteException;

import javax.xml.rpc.ServiceException;
import javax.xml.rpc.Stub;

/**
 * This is a simple standalone client application that invokes the
 * the <code>sayHello</code> operation of the JMSTransport Web service.
 */

public class Main {

 public static void main(String[] args)

Note: If you have specified that the Web service you invoke using
JMS transport also runs within the context of a transaction (in other
words, the JWS file includes the @weblogic.jws.Transactional
annotation), you must use asynchronous request-response when
invoking the service. If you do not, a deadlock will occur and the
invocation will fail.

Invoking a WebLogic Web Service Using JMS Transport

8-10 Programming Advanced Features of JAX-RPC Web Services for Oracle WebLogic Server

 throws ServiceException, RemoteException{

 JMSTransportService service = new JMSTransportService_Impl(args[0] + "?WSDL"
);
 JMSTransportPortType port = service.getJMSTransportServicePort();

 Stub stub = (Stub) port;

 stub._setProperty(WLStub.JMS_TRANSPORT_JNDI_URL,
 "t3://shackell01.amer.com:7001");
 try {
 String result = null;

 result = port.sayHello("Hi there! ");

 System.out.println("Got JMS result: " + result);

 } catch (RemoteException e) {
 throw e;
 }
 }
}

See "WLStub" in Oracle WebLogic Server API Reference for additional stub properties.

8.8.2 Using JMS BytesMessage Rather Than the Default TextMessage
When you use JMS transport, the Web services runtime uses, by default, the
javax.jms.TextMessage object to send the message. This is usually adequate for
most client applications, but sometimes you might need to send binary data rather
than ordinary text; in this case you must request that the Web services runtime use
javax.jms.BytesMessage instead. To do this, use the WLStub.JMS_TRANSPORT_
MESSAGE_TYPE stub property in your client application and set it to the value
WLStub.JMS_BYTESMESSAGE, as shown in the following example:

 stub._setProperty(WLStub.JMS_TRANSPORT_MESSAGE_TYPE,
 WLStub.JMS_BYTESMESSAGE);

The Web services runtime sends back the response using the same message data type
as the request.

See Section 8.8.1, "Overriding the Default Service Address URL" for a full example of a
client application in which you can set this property. See "WLStub" in Oracle WebLogic
Server API Reference for additional stub properties.

8.8.3 Disabling HTTP Access to the WSDL File
As described in Section 8.8, "Invoking a WebLogic Web Service Using JMS Transport",
the WSDL of the deployed Web service is, by default, still accessible using HTTP. If
you want to disable access to the WSDL file, in particular if your Web service can be
accessed outside of a firewall, then you can do one of the following:

■ Use the weblogic.jws.WSDL annotation in your JWS file to programmatically
disable access. For details, see "weblogic.jws.WSDL" in WebLogic Web Services
Reference for Oracle WebLogic Server.

■ Use the Administration Console to disable access to the WSDL file after the Web
service has been deployed. In this case, the configuration information will be
stored in the deployment plan rather than through the annotation.

Invoking a WebLogic Web Service Using JMS Transport

Using JMS Transport as the Connection Protocol 8-11

To use the Administration Console to perform this task, go to the Configuration ->
General page of the deployed Web service and uncheck the View Dynamic WSDL
Enabled check box. After saving the configuration to the deployment plan, you
must redeploy (update) the Web service, or Enterprise Application which contains
it, for the change to take effect.

Invoking a WebLogic Web Service Using JMS Transport

8-12 Programming Advanced Features of JAX-RPC Web Services for Oracle WebLogic Server

9

Creating and Using SOAP Message Handlers 9-1

9Creating and Using SOAP Message Handlers

This chapter describes how to create and use SOAP message handlers with WebLogic
Java API for XML-based RPC (JAX-RPC) Web services.

This chapter includes the following topics:

■ Section 9.1, "Overview of SOAP Message Handlers"

■ Section 9.2, "Adding SOAP Message Handlers to a Web Service: Main Steps"

■ Section 9.3, "Designing the SOAP Message Handlers and Handler Chains"

■ Section 9.4, "Creating the GenericHandler Class"

■ Section 9.5, "Configuring Handlers in the JWS File"

■ Section 9.6, "Creating the Handler Chain Configuration File"

■ Section 9.7, "Compiling and Rebuilding the Web Service"

■ Section 9.8, "Creating and Using Client-Side SOAP Message Handlers"

9.1 Overview of SOAP Message Handlers
Some Web services need access to the SOAP message, for which you can create SOAP
message handlers.

A SOAP message handler provides a mechanism for intercepting the SOAP message
in both the request and response of the Web service. You can create handlers in both
the Web service itself and the client applications that invoke the Web service.

A simple example of using handlers is to access information in the header part of the
SOAP message. You can use the SOAP header to store Web service specific
information and then use handlers to manipulate it.

You can also use SOAP message handlers to improve the performance of your Web
service. After your Web service has been deployed for a while, you might discover that
many consumers invoke it with the same parameters. You could improve the
performance of your Web service by caching the results of popular invokes of the Web
service (assuming the results are static) and immediately returning these results when
appropriate, without ever invoking the back-end components that implement the Web
service. You implement this performance improvement by using handlers to check the
request SOAP message to see if it contains the popular parameters.

The following table lists the standard JWS annotations that you can use in your JWS
file to specify that a Web service has a handler chain configured; later sections discuss
how to use the annotations in more detail. For additional information, see the Web
services MetaData for the Java Platform (JSR-181) specification at
http://www.jcp.org/en/jsr/detail?id=181.

Overview of SOAP Message Handlers

9-2 Programming Advanced Features of JAX-RPC Web Services for Oracle WebLogic Server

The following table describes the main classes and interfaces of the
javax.xml.rpc.handler API, some of which you use when creating the handler
itself. These APIs are discussed in detail in a later section. For additional information
about these APIs, see the JAX-RPC 1.1 specification at
http://java.net/projects/jax-rpc/.

Table 9–1 JWS Annotations Used To Configure SOAP Message Handler Chains

JWS Annotation Description

javax.jws.HandlerChain Associates the Web service with an externally defined
handler chain. Use this annotation when multiple
Web services need to share the same handler
configuration, or if the handler chain consists of
handlers for multiple transports.

javax.jws.soap.SOAPMessageHandler
s

Specifies a list of SOAP handlers that run before and
after the invocation of each Web service operation.
Use this annotation (rather than @HandlerChain) if
embedding handler configuration information in the
JWS file itself is preferred, rather than having an
external configuration file.

The @SOAPMessageHandler annotation is an array
of @SOAPMessageHandlers. The handlers are
executed in the order they are listed in this array.

Note; This annotation works with JAX-RPC Web
services only.

javax.jws.soap.SOAPMessageHandler Specifies a single SOAP message handler in the
@SOAPMessageHandlers array.

Table 9–2 JAX-RPC Handler Interfaces and Classes

javax.xml.rpc.handler Classes
and Interfaces Description

Handler Main interface that is implemented when creating a
handler. Contains methods to handle the SOAP request,
response, and faults.

GenericHandler Abstract class that implements the Handler interface.
User should extend this class when creating a handler,
rather than implement Handler directly.

The GenericHandler class is a convenience abstract
class that makes writing handlers easy. This class
provides default implementations of the life cycle
methods init and destroy and also different handle
methods. A handler developer should only override
methods that it needs to specialize as part of the derived
handler implementation class.

HandlerChain Interface that represents a list of handlers. An
implementation class for the HandlerChain interface
abstracts the policy and mechanism for the invocation of
the registered handlers.

HandlerRegistry Interface that provides support for the programmatic
configuration of handlers in a HandlerRegistry.

HandlerInfo Class that contains information about the handler in a
handler chain. A HandlerInfo instance is passed in the
Handler.init method to initialize a Handler
instance.

Adding SOAP Message Handlers to a Web Service: Main Steps

Creating and Using SOAP Message Handlers 9-3

9.2 Adding SOAP Message Handlers to a Web Service: Main Steps
The following procedure describes the high-level steps to add SOAP message handlers
to your Web service.

It is assumed that you have created a basic JWS file that implements a Web service and
that you want to update the Web service by adding SOAP message handlers and
handler chains. It is also assumed that you have set up an Ant-based development
environment and that you have a working build.xml file that includes a target for
running the jwsc Ant task. For more information, see in Getting Started With JAX-RPC
Web Services for Oracle WebLogic Server:

■ "Use Cases and Examples"

■ "Developing WebLogic Web Services"

■ "Programming the JWS File"

■ "Invoking Web Services"

For information about creating client-side SOAP message handlers and handler chains,
see Section 9.8, "Creating and Using Client-Side SOAP Message Handlers".

MessageContext Abstracts the message context processed by the handler.
The MessageContext properties allow the handlers in
a handler chain to share processing state.

soap.SOAPMessageContext Sub-interface of the MessageContext interface used to
get at or update the SOAP message.

javax.xml.soap.SOAPMessage Object that contains the actual request or response SOAP
message, including its header, body, and attachment.

Table 9–3 Steps to Add SOAP Message Handlers to a Web Service

Step Description

1 Design the handlers and
handler chains.

See Section 9.3, "Designing the SOAP Message Handlers
and Handler Chains".

2 For each handler in the
handler chain, create a Java
class that extends the
javax.xml.rpc.handler.
GenericHandler abstract
class.

See Section 9.4, "Creating the GenericHandler Class".

3 Update your JWS file, adding
annotations to configure the
SOAP message handlers.

See Section 9.5, "Configuring Handlers in the JWS File".

4 If you are using the
@HandlerChain standard
annotation in your JWS file,
create the handler chain
configuration file.

See Section 9.6, "Creating the Handler Chain
Configuration File".

5 Compile all handler classes in
the handler chain and rebuild
your Web service.

See Section 9.7, "Compiling and Rebuilding the Web
Service".

Table 9–2 (Cont.) JAX-RPC Handler Interfaces and Classes

javax.xml.rpc.handler Classes
and Interfaces Description

Designing the SOAP Message Handlers and Handler Chains

9-4 Programming Advanced Features of JAX-RPC Web Services for Oracle WebLogic Server

9.3 Designing the SOAP Message Handlers and Handler Chains
When designing your SOAP message handlers and handler chains, you must decide:

■ The number of handlers needed to perform all the work

■ The sequence of execution

Each handler in a handler chain has one method for handling the request SOAP
message and another method for handling the response SOAP message. An ordered
group of handlers is referred to as a handler chain. You specify that a Web service has a
handler chain attached to it with one of two JWS annotations: @HandlerChain or
@SOAPMessageHandler. When to use which is discussed in a later section.

When invoking a Web service, WebLogic Server executes handlers as follows:

1. The handleRequest() methods of the handlers in the handler chain are all
executed in the order specified by the JWS annotation. Any of these
handleRequest() methods might change the SOAP message request.

2. When the handleRequest() method of the last handler in the handler chain
executes, WebLogic Server invokes the back-end component that implements the
Web service, passing it the final SOAP message request.

3. When the back-end component has finished executing, the handleResponse()
methods of the handlers in the handler chain are executed in the reverse order
specified in by the JWS annotation. Any of these handleResponse() methods
might change the SOAP message response.

4. When the handleResponse() method of the first handler in the handler chain
executes, WebLogic Server returns the final SOAP message response to the client
application that invoked the Web service.

For example, assume that you are going to use the @HandlerChain JWS annotation
in your JWS file to specify an external configuration file, and the configuration file
defines a handler chain called SimpleChain that contains three handlers, as shown in
the following sample:

<jwshc:handler-config xmlns:jwshc="http://www.bea.com/xml/ns/jws"
 xmlns:soap1="http://HandlerInfo.org/Server1"
 xmlns:soap2="http://HandlerInfo.org/Server2"
 xmlns="http://java.sun.com/xml/ns/j2ee" >

 <jwshc:handler-chain>

 <jwshc:handler-chain-name>SimpleChain</jwshc:handler-chain-name>

 <jwshc:handler>
 <handler-name>handlerOne</handler-name>
 <handler-class>examples.webservices.soap_handlers.global_
handler.ServerHandler1</handler-class>
 </jwshc:handler>

 <jwshc:handler>
 <handler-name>handlerTwo</handler-name>
 <handler-class>examples.webservices.soap_handlers.global_
handler.ServerHandler2</handler-class>
 </jwshc:handler>

 <jwshc:handler>
 <handler-name>handlerThree</handler-name>
 <handler-class>examples.webservices.soap_handlers.global_
handler.ServerHandler3</handler-class>

Creating the GenericHandler Class

Creating and Using SOAP Message Handlers 9-5

 </jwshc:handler>

 </jwshc:handler-chain>

</jwshc:handler-config>

The following graphic shows the order in which WebLogic Server executes the
handleRequest() and handleResponse() methods of each handler.

Figure 9–1 Order of Execution of Handler Methods

Each SOAP message handler has a separate method to process the request and
response SOAP message because the same type of processing typically must happen
for the inbound and outbound message. For example, you might design an Encryption
handler whose handleRequest() method decrypts secure data in the SOAP request
and handleResponse() method encrypts the SOAP response.

You can, however, design a handler that process only the SOAP request and does no
equivalent processing of the response.

You can also choose not to invoke the next handler in the handler chain and send an
immediate response to the client application at any point.

9.4 Creating the GenericHandler Class
Your SOAP message handler class should extend the
javax.rpc.xml.handler.GenericHandler abstract class, which itself
implements the javax.rpc.xml.handler.Handler interface.

The GenericHandler class is a convenience abstract class that makes writing
handlers easy. This class provides default implementations of the life cycle methods
init() and destroy() and the various handleXXX() methods of the Handler
interface. When you write your handler class, only override those methods that you
need to customize as part of your Handler implementation class.

In particular, the Handler interface contains the following methods that you can
implement in your handler class that extends GenericHandler:

■ init()

See Section 9.4.1, "Implementing the Handler.init() Method".

■ destroy()

See Section 9.4.2, "Implementing the Handler.destroy() Method".

■ getHeaders()

See Section 9.4.3, "Implementing the Handler.getHeaders() Method".

■ handleRequest()

See Section 9.4.4, "Implementing the Handler.handleRequest() Method".

Creating the GenericHandler Class

9-6 Programming Advanced Features of JAX-RPC Web Services for Oracle WebLogic Server

■ handleResponse()

See Section 9.4.5, "Implementing the Handler.handleResponse() Method".

■ handleFault()

See Section 9.4.6, "Implementing the Handler.handleFault() Method".

Sometimes you might need to directly view or update the SOAP message from within
your handler, in particular when handling attachments, such as image. In this case, use
the javax.xml.soap.SOAPMessage abstract class, which is part of the SOAP With
Attachments API for Java 1.1 (SAAJ) specification at https://saaj.dev.java.net/. For
details, see Section 9.4.7, "Directly Manipulating the SOAP Request and Response
Message Using SAAJ".

The following example demonstrates a simple SOAP message handler that prints out
the SOAP request and response messages to the WebLogic Server log file:

package examples.webservices.soap_handlers.global_handler;

import javax.xml.namespace.QName;
import javax.xml.rpc.handler.HandlerInfo;
import javax.xml.rpc.handler.GenericHandler;
import javax.xml.rpc.handler.MessageContext;
import javax.xml.rpc.handler.soap.SOAPMessageContext;
import javax.xml.rpc.JAXRPCException;

import weblogic.logging.NonCatalogLogger;

/**
 * This class implements a handler in the handler chain, used to access the SOAP
 * request and response message.
 * <p>
 * This class extends the <code>javax.xml.rpc.handler.GenericHandler</code>
 * abstract classs and simply prints the SOAP request and response messages to
 * the server log file before the messages are processed by the backend
 * Java class that implements the Web Service itself.
 */

public class ServerHandler1 extends GenericHandler {

 private NonCatalogLogger log;

 private HandlerInfo handlerInfo;

 /**
 * Initializes the instance of the handler. Creates a nonCatalogLogger to
 * log messages to.
 */

 public void init(HandlerInfo hi) {

 log = new NonCatalogLogger("WebService-LogHandler");
 handlerInfo = hi;
 }

 /**
 * Specifies that the SOAP request message be logged to a log file before the
 * message is sent to the Java class that implements the Web Service.
 */

 public boolean handleRequest(MessageContext context) {

Creating the GenericHandler Class

Creating and Using SOAP Message Handlers 9-7

 SOAPMessageContext messageContext = (SOAPMessageContext) context;

 System.out.println("** Request: "+messageContext.getMessage().toString());
 log.info(messageContext.getMessage().toString());
 return true;

 }

 /**
 * Specifies that the SOAP response message be logged to a log file before the
 * message is sent back to the client application that invoked the Web
 * service.
 */

 public boolean handleResponse(MessageContext context) {

 SOAPMessageContext messageContext = (SOAPMessageContext) context;

 System.out.println("** Response: "+messageContext.getMessage().toString());
 log.info(messageContext.getMessage().toString());
 return true;

 }

 /**
 * Specifies that a message be logged to the log file if a SOAP fault is
 * thrown by the Handler instance.
 */

 public boolean handleFault(MessageContext context) {

 SOAPMessageContext messageContext = (SOAPMessageContext) context;

 System.out.println("** Fault: "+messageContext.getMessage().toString());
 log.info(messageContext.getMessage().toString());
 return true;

 }

 public QName[] getHeaders() {

 return handlerInfo.getHeaders();

 }

}

9.4.1 Implementing the Handler.init() Method
The Handler.init() method is called to create an instance of a Handler object and
to enable the instance to initialize itself. Its signature is:

 public void init(HandlerInfo config) throws JAXRPCException {}

The HandlerInfo object contains information about the SOAP message handler, in
particular the initialization parameters. Use the
HandlerInfo.getHandlerConfig() method to get the parameters; the method
returns a java.util.Map object that contains name-value pairs.

Creating the GenericHandler Class

9-8 Programming Advanced Features of JAX-RPC Web Services for Oracle WebLogic Server

Implement the init() method if you need to process the initialization parameters or
if you have other initialization tasks to perform.

Sample uses of initialization parameters are to turn debugging on or off, specify the
name of a log file to which to write messages or errors, and so on.

9.4.2 Implementing the Handler.destroy() Method
The Handler.destroy() method is called to destroy an instance of a Handler
object. Its signature is:

 public void destroy() throws JAXRPCException {}

Implement the destroy() method to release any resources acquired throughout the
handler's life cycle.

9.4.3 Implementing the Handler.getHeaders() Method
The Handler.getHeaders() method gets the header blocks that can be processed
by this Handler instance. Its signature is:

 public QName[] getHeaders() {}

9.4.4 Implementing the Handler.handleRequest() Method
The Handler.handleRequest() method is called to intercept a SOAP message
request before it is processed by the back-end component. Its signature is:

 public boolean handleRequest(MessageContext mc)
 throws JAXRPCException,SOAPFaultException {}

Implement this method to perform such tasks as decrypting data in the SOAP message
before it is processed by the back-end component, and so on.

The MessageContext object abstracts the message context processed by the SOAP
message handler. The MessageContext properties allow the handlers in a handler
chain to share processing state.

Use the SOAPMessageContext sub-interface of MessageContext to get at or
update the contents of the SOAP message request. The SOAP message request itself is
stored in a javax.xml.soap.SOAPMessage object. For detailed information on this
object, see Section 9.4.7, "Directly Manipulating the SOAP Request and Response
Message Using SAAJ".

The SOAPMessageContext class defines two methods for processing the SOAP
request:

■ SOAPMessageContext.getMessage()returns a
javax.xml.soap.SOAPMessage object that contains the SOAP message
request.

■ SOAPMessageContext.setMessage(javax.xml.soap.SOAPMessage)updates
the SOAP message request after you have made changes to it.

After you code all the processing of the SOAP request, code one of the following
scenarios:

■ Invoke the next handler on the handler request chain by returning true.

The next handler on the request chain is specified as either the next <handler>
subelement of the <handler-chain> element in the configuration file specified
by the @HandlerChain annotation, or the next @SOAPMessageHandler in the

Creating the GenericHandler Class

Creating and Using SOAP Message Handlers 9-9

array specified by the @SOAPMessageHandlers annotation. If there are no more
handlers in the chain, the method either invokes the back-end component, passing
it the final SOAP message request, or invokes the handleResponse() method of
the last handler, depending on how you have configured your Web service.

■ Block processing of the handler request chain by returning false.

Blocking the handler request chain processing implies that the back-end
component does not get executed for this invoke of the Web service. You might
want to do this if you have cached the results of certain invokes of the Web service,
and the current invoke is on the list.

Although the handler request chain does not continue processing, WebLogic
Server does invoke the handler response chain, starting at the current handler. For
example, assume that a handler chain consists of two handlers: handlerA and
handlerB, where the handleRequest() method of handlerA is invoked before
that of handlerB. If processing is blocked in handlerA (and thus the
handleRequest() method of handlerB is not invoked), the handler response
chain starts at handlerA and the handleRequest() method of handlerB is not
invoked either.

■ Throw the javax.xml.rpc.soap.SOAPFaultException to indicate a SOAP
fault.

If the handleRequest() method throws a SOAPFaultException, WebLogic
Server catches the exception, terminates further processing of the handler request
chain, and invokes the handleFault() method of this handler.

■ Throw a JAXRPCException for any handler-specific runtime errors.

If the handleRequest() method throws a JAXRPCException, WebLogic Server
catches the exception, terminates further processing of the handler request chain,
logs the exception to the WebLogic Server log file, and invokes the
handleFault() method of this handler.

9.4.5 Implementing the Handler.handleResponse() Method
The Handler.handleResponse() method is called to intercept a SOAP message
response after it has been processed by the back-end component, but before it is sent
back to the client application that invoked the Web service. Its signature is:

 public boolean handleResponse(MessageContext mc) throws JAXRPCException {}

Implement this method to perform such tasks as encrypting data in the SOAP message
before it is sent back to the client application, to further process returned values, and
so on.

The MessageContext object abstracts the message context processed by the SOAP
message handler. The MessageContext properties allow the handlers in a handler
chain to share processing state.

Use the SOAPMessageContext sub-interface of MessageContext to get at or
update the contents of the SOAP message response. The SOAP message response itself
is stored in a javax.xml.soap.SOAPMessage object. See Section 9.4.7, "Directly
Manipulating the SOAP Request and Response Message Using SAAJ".

The SOAPMessageContext class defines two methods for processing the SOAP
response:

Creating the GenericHandler Class

9-10 Programming Advanced Features of JAX-RPC Web Services for Oracle WebLogic Server

■ SOAPMessageContext.getMessage(): returns a
javax.xml.soap.SOAPMessage object that contains the SOAP message
response.

■ SOAPMessageContext.setMessage(javax.xml.soap.SOAPMessage):
updates the SOAP message response after you have made changes to it.

After you code all the processing of the SOAP response, code one of the following
scenarios:

■ Invoke the next handler on the handler response chain by returning true.

The next response on the handler chain is specified as either the preceding
<handler> subelement of the <handler-chain> element in the configuration
file specified by the @HandlerChain annotation, or the preceding
@SOAPMessageHandler in the array specified by the @SOAPMessageHandlers
annotation. (Remember that responses on the handler chain execute in the reverse
order that they are specified in the JWS file. See Section 9.3, "Designing the SOAP
Message Handlers and Handler Chains" for more information.)

If there are no more handlers in the chain, the method sends the final SOAP
message response to the client application that invoked the Web service.

■ Block processing of the handler response chain by returning false.

Blocking the handler response chain processing implies that the remaining
handlers on the response chain do not get executed for this invoke of the Web
service and the current SOAP message is sent back to the client application.

■ Throw a JAXRPCException for any handler specific runtime errors.

If the handleRequest() method throws a JAXRPCException, WebLogic Server
catches the exception, terminates further processing of the handler request chain,
logs the exception to the WebLogic Server logfile, and invokes the
handleFault() method of this handler.

9.4.6 Implementing the Handler.handleFault() Method
The Handler.handleFault() method processes the SOAP faults based on the
SOAP message processing model. Its signature is:

 public boolean handleFault(MessageContext mc) throws JAXRPCException {}

Implement this method to handle processing of any SOAP faults generated by the
handleResponse() and handleRequest() methods, as well as faults generated by
the back-end component.

The MessageContext object abstracts the message context processed by the SOAP
message handler. The MessageContext properties allow the handlers in a handler
chain to share processing state.

Use the SOAPMessageContext sub-interface of MessageContext to get at or
update the contents of the SOAP message. The SOAP message itself is stored in a
javax.xml.soap.SOAPMessage object. See Section 9.4.7, "Directly Manipulating
the SOAP Request and Response Message Using SAAJ".

The SOAPMessageContext class defines the following two methods for processing
the SOAP message:

■ SOAPMessageContext.getMessage(): returns a
javax.xml.soap.SOAPMessage object that contains the SOAP message.

Creating the GenericHandler Class

Creating and Using SOAP Message Handlers 9-11

■ SOAPMessageContext.setMessage(javax.xml.soap.SOAPMessage):
updates the SOAP message after you have made changes to it.

After you code all the processing of the SOAP fault, do one of the following:

■ Invoke the handleFault() method on the next handler in the handler chain by
returning true.

■ Block processing of the handler fault chain by returning false.

9.4.7 Directly Manipulating the SOAP Request and Response Message Using SAAJ
The javax.xml.soap.SOAPMessage abstract class is part of the SOAP With
Attachments API for Java 1.1 (SAAJ) specification (see https://saaj.dev.java.net/). You
use the class to manipulate request and response SOAP messages when creating SOAP
message handlers. This section describes the basic structure of a SOAPMessage object
and some of the methods you can use to view and update a SOAP message.

A SOAPMessage object consists of a SOAPPart object (which contains the actual
SOAP XML document) and zero or more attachments.

Refer to the SAAJ Javadocs for the full description of the SOAPMessage class.

9.4.7.1 The SOAPPart Object
The SOAPPart object contains the XML SOAP document inside of a SOAPEnvelope
object. You use this object to get the actual SOAP headers and body.

The following sample Java code shows how to retrieve the SOAP message from a
MessageContext object, provided by the Handler class, and get at its parts:

SOAPMessage soapMessage = messageContext.getMessage();
SOAPPart soapPart = soapMessage.getSOAPPart();
SOAPEnvelope soapEnvelope = soapPart.getEnvelope();
SOAPBody soapBody = soapEnvelope.getBody();
SOAPHeader soapHeader = soapEnvelope.getHeader();

9.4.7.2 The AttachmentPart Object
The javax.xml.soap.AttachmentPart object contains the optional attachments to
the SOAP message. Unlike the rest of a SOAP message, an attachment is not required
to be in XML format and can therefore be anything from simple text to an image file.

Use the following methods of the SOAPMessage class to manipulate the attachments:

■ countAttachments(): returns the number of attachments in this SOAP
message.

■ getAttachments(): retrieves all the attachments (as AttachmentPart objects)
into an Iterator object.

■ createAttachmentPart(): create an AttachmentPart object from another
type of Object.

■ addAttachmentPart(): adds an AttachmentPart object, after it has been
created, to the SOAPMessage.

Note: If you are going to access a java.awt.Image attachment
from your SOAP message handler, see Section 9.4.7.3, "Manipulating
Image Attachments in a SOAP Message Handler" for important
information.

Configuring Handlers in the JWS File

9-12 Programming Advanced Features of JAX-RPC Web Services for Oracle WebLogic Server

9.4.7.3 Manipulating Image Attachments in a SOAP Message Handler
It is assumed in this section that you are creating a SOAP message handler that
accesses a java.awt.Image attachment and that the Image has been sent from a
client application that uses the client JAX-RPC stubs generated by the clientgen Ant
task.

In the client code generated by the clientgen Ant task, a java.awt.Image
attachment is sent to the invoked WebLogic Web service with a MIME type of
text/xml rather than image/gif, and the image is serialized into a stream of
integers that represents the image. In particular, the client code serializes the image
using the following format:

■ int width

■ int height

■ int[] pixels

This means that, in your SOAP message handler that manipulates the received Image
attachment, you must deserialize this stream of data to then re-create the original
image.

9.5 Configuring Handlers in the JWS File
There are two standard annotations you can use in your JWS file to configure a
handler chain for a Web service: @javax.jws.HandlerChain and
@javax.jws.soap.SOAPMessageHandlers.

9.5.1 @javax.jws.HandlerChain
When you use the @javax.jws.HandlerChain annotation (also called
@HandlerChain in this chapter for simplicity) you use the file attribute to specify
an external file that contains the configuration of the handler chain you want to
associate with the Web service. The configuration includes the list of handlers in the
chain, the order in which they execute, the initialization parameters, and so on.

Use the @HandlerChain annotation, rather than the @SOAPMessageHandlers
annotation, in your JWS file if one or more of the following conditions apply:

■ You want multiple Web services to share the same configuration.

■ Your handler chain includes handlers for multiple transports.

■ You want to be able to change the handler chain configuration for a Web service
without recompiling the JWS file that implements it.

The following JWS file shows an example of using the @HandlerChain annotation;
the relevant Java code is shown in bold:

package examples.webservices.soap_handlers.global_handler;

import java.io.Serializable;

import javax.jws.HandlerChain;
import javax.jws.WebService;
import javax.jws.WebMethod;
import javax.jws.soap.SOAPBinding;

import weblogic.jws.WLHttpTransport;

@WebService(serviceName="HandlerChainService",

Configuring Handlers in the JWS File

Creating and Using SOAP Message Handlers 9-13

 name="HandlerChainPortType")

// Standard JWS annotation that specifies that the handler chain called
// "SimpleChain", configured in the HandlerConfig.xml file, should fire
// each time an operation of the Web Service is invoked.

@HandlerChain(file="HandlerConfig.xml", name="SimpleChain")

@SOAPBinding(style=SOAPBinding.Style.DOCUMENT,
 use=SOAPBinding.Use.LITERAL,
 parameterStyle=SOAPBinding.ParameterStyle.WRAPPED)

@WLHttpTransport(contextPath="HandlerChain", serviceUri="HandlerChain",
 portName="HandlerChainServicePort")

/**
 * This JWS file forms the basis of simple Java-class implemented WebLogic
 * Web Service with a single operation: sayHello. The Web Service also
 * has a handler chain associated with it, as specified by the
 * @HandlerChain annotation.
 */

public class HandlerChainImpl {

 public String sayHello(String input) {
 weblogic.utils.Debug.say("in backend component. input:" +input);
 return "'" + input + "' to you too!";
 }
}

Before you use the @HandlerChain annotation, you must import it into your JWS
file, as shown in the preceding example.

Use the file attribute of the @HandlerChain annotation to specify the name of the
external file that contains configuration information for the handler chain. The value of
this attribute is a URL, which may be relative or absolute. Relative URLs are relative to
the location of the JWS file at the time you run the jwsc Ant task to compile the file.

Use the name attribute to specify the name of the handler chain in the configuration
file that you want to associate with the Web service. The value of this attribute
corresponds to the name attribute of the <handler-chain> element in the
configuration file.

For details about creating the external configuration file, see Section 9.6, "Creating the
Handler Chain Configuration File".

For additional detailed information about the standard JWS annotations discussed in
this section, see the Web services Metadata for the Java Platform specification at
http://www.jcp.org/en/jsr/detail?id=181.

Note: It is an error to specify more than one @HandlerChain
annotation in a single JWS file. It is also an error to combine the
@HandlerChain annotation with the @SOAPMessageHandlers
annotation.

Configuring Handlers in the JWS File

9-14 Programming Advanced Features of JAX-RPC Web Services for Oracle WebLogic Server

9.5.2 @javax.jws.soap.SOAPMessageHandlers

When you use the @javax.jws.soap.SOAPMessageHandlers (also called
@SOAPMessageHandlers in this section for simplicity) annotation, you specify,
within the JWS file itself, an array of SOAP message handlers (specified with the
@SOAPMessageHandler annotation) that execute before and after the operations of a
Web service. The @SOAPMessageHandler annotation includes attributes to specify
the class name of the handler, the initialization parameters, list of SOAP headers
processed by the handler, and so on. Because you specify the list of handlers within the
JWS file itself, the configuration of the handler chain is embedded within the Web
service.

Use the @SOAPMessageHandlers annotation if one or more of the following
conditions apply:

■ You prefer to embed the configuration of the handler chain inside the Web service
itself, rather than specify the configuration in an external file.

■ Your handler chain includes only SOAP handlers and none for any other
transport.

■ You prefer to recompile the JWS file each time you change the handler chain
configuration.

The following JWS file shows a simple example of using the
@SOAPMessageHandlers annotation; the relevant Java code is shown in bold:

package examples.webservices.soap_handlers.simple;

import java.io.Serializable;

import javax.jws.soap.SOAPMessageHandlers;
import javax.jws.soap.SOAPMessageHandler;
import javax.jws.soap.SOAPBinding;
import javax.jws.WebService;
import javax.jws.WebMethod;

import weblogic.jws.WLHttpTransport;

@WebService(name="SimpleChainPortType",
 serviceName="SimpleChainService")

// Standard JWS annotation that specifies a list of SOAP message handlers
// that exeucte before and after an invocation of all operations in the
// Web Serice.

@SOAPMessageHandlers ({
 @SOAPMessageHandler (
 className="examples.webservices.soap_handlers.simple.ServerHandler1"),
 @SOAPMessageHandler (
 className="examples.webservices.soap_handlers.simple.ServerHandler2")
 })

@SOAPBinding(style=SOAPBinding.Style.DOCUMENT,
 use=SOAPBinding.Use.LITERAL,

Note: This annotation has been deprecated as of the Web services
Metadata for the Java Platform specification (JSR-181) at
http://www.jcp.org/en/jsr/detail?id=181.

Configuring Handlers in the JWS File

Creating and Using SOAP Message Handlers 9-15

 parameterStyle=SOAPBinding.ParameterStyle.WRAPPED)

@WLHttpTransport(contextPath="SimpleChain", serviceUri="SimpleChain",
 portName="SimpleChainServicePort")

/**
 * This JWS file forms the basis of simple Java-class implemented WebLogic
 * Web Service with a single operation: sayHello. The Web Service also
 * has a handler chain associated with it, as specified by the
 * @SOAPMessageHandler/s annotations.
 */

public class SimpleChainImpl {

 // by default all public methods are exposed as operations

 public String sayHello(String input) {
 weblogic.utils.Debug.say("in backend component. input:" +input);
 return "'" + input + "' to you too!";
 }
}

Before you use the @SOAPMessageHandlers and @SOAPMessageHandler
annotations, you must import them into your JWS file, as shown in the preceding
example. Note that these annotations are in the javax.jws.soap package.

The order in which you list the handlers (using the @SOAPMessageHandler
annotation) in the @SOAPMessageHandlers array specifies the order in which the
handlers execute: in forward order before the operation, and in reverse order after the
operation. The preceding example configures two handlers in the handler chain,
whose class names are examples.webservices.soap_
handlers.simple.ServerHandler1 and examples.webservices.soap_
handlers.simple.ServerHandler2.

Use the initParams attribute of @SOAPMessageHandler to specify an array of
initialization parameters expected by a particular handler. Use the @InitParam
standard JWS annotation to specify the name/value pairs, as shown in the following
example:

@SOAPMessageHandler(
 className = "examples.webservices.soap_handlers.simple.ServerHandler1",
 initParams = { @InitParam(name="logCategory", value="MyService")}
)

The @SOAPMessageHandler annotation also includes the roles attribute for listing
the SOAP roles implemented by the handler, and the headers attribute for listing the
SOAP headers processed by the handler.

For additional detailed information about the standard JWS annotations discussed in
this section, see the Web services Metadata for the Java Platform specification
http://www.jcp.org/en/jsr/detail?id=181.

Note: It is an error to combine the @SOAPMessageHandlers
annotation with the @HandlerChain annotation.

Creating the Handler Chain Configuration File

9-16 Programming Advanced Features of JAX-RPC Web Services for Oracle WebLogic Server

9.6 Creating the Handler Chain Configuration File
If you decide to use the @HandlerChain annotation in your JWS file to associate a
handler chain with a Web service, you must create an external configuration file that
specifies the list of handlers in the handler chain, the order in which they execute, the
initialization parameters, and so on.

Because this file is external to the JWS file, you can configure multiple Web services to
use this single configuration file to standardize the handler configuration file for all
Web services in your enterprise. Additionally, you can change the configuration of the
handler chains without needing to recompile all your Web services. Finally, if you
include handlers in your handler chain that use a non-SOAP transport, then you are
required to use the @HandlerChain annotation rather than the
@SOAPMessageHandler annotation.

The configuration file uses XML to list one or more handler chains, as shown in the
following simple example:

<jwshc:handler-config xmlns:jwshc="http://www.bea.com/xml/ns/jws"
 xmlns:soap1="http://HandlerInfo.org/Server1"
 xmlns:soap2="http://HandlerInfo.org/Server2"
 xmlns="http://java.sun.com/xml/ns/j2ee" >
 <jwshc:handler-chain>
 <jwshc:handler-chain-name>SimpleChain</jwshc:handler-chain-name>
 <jwshc:handler>
 <handler-name>handler1</handler-name>
 <handler-class>examples.webservices.soap_handlers.global_
handler.ServerHandler1</handler-class>
 </jwshc:handler>
 <jwshc:handler>
 <handler-name>handler2</handler-name>
 <handler-class>examples.webservices.soap_handlers.global_
handler.ServerHandler2</handler-class>
 </jwshc:handler>
 </jwshc:handler-chain>
</jwshc:handler-config>

In the example, the handler chain called SimpleChain contains two handlers:
handler1 and handler2, implemented with the class names specified with the
<handler-class> element. The two handlers execute in forward order before the
relevant Web service operation executes, and in reverse order after the operation
executes.

Use the <init-param>, <soap-role>, and <soap-header> child elements of the
<handler> element to specify the handler initialization parameters, SOAP roles
implemented by the handler, and SOAP headers processed by the handler,
respectively.

For the XML Schema that defines the external configuration file, additional
information about creating it, and additional examples, see the Web services Metadata
for the Java Platform specification at
http://www.jcp.org/en/jsr/detail?id=181.

9.7 Compiling and Rebuilding the Web Service
It is assumed in this section that you have a working build.xml Ant file that
compiles and builds your Web service, and you want to update the build file to
include handler chain. See "Developing WebLogic Web Services" in Getting Started

Creating and Using Client-Side SOAP Message Handlers

Creating and Using SOAP Message Handlers 9-17

With JAX-RPC Web Services for Oracle WebLogic Server for information on creating this
build.xml file.

Follow these guidelines to update your development environment to include message
handler compilation and building:

■ After you have updated the JWS file with either the @HandlerChain or
@SOAPMessageHandlers annotation, you must rerun the jwsc Ant task to
recompile the JWS file and generate a new Web service. This is true anytime you
make a change to an annotation in the JWS file.

If you used the @HandlerChain annotation in your JWS file, reran the jwsc Ant
task to regenerate the Web service, and subsequently changed only the external
configuration file, you do not need to rerun jwsc for the second change to take
affect.

■ The jwsc Ant task compiles SOAP message handler Java files into handler classes
(and then packages them into the generated application) if all the following
conditions are true:

– The handler classes are referenced in the @HandlerChain or
@SOAPMessageHandler(s) annotations of the JWS file.

– The Java files are located in the directory specified by the sourcepath
attribute.

– The classes are not currently in your CLASSPATH.

If you want to compile the handler classes yourself, rather than let jwsc compile
them automatically, ensure that the compiled classes are in your CLASSPATH
before you run the jwsc Ant task.

■ You deploy and invoke a Web service that has a handler chain associated with it in
the same way you deploy and invoke one that has no handler chain. The only
difference is that when you invoke any operation of the Web service, the WebLogic
Web services runtime executes the handlers in the handler chain both before and
after the operation invoke.

9.8 Creating and Using Client-Side SOAP Message Handlers
The preceding sections describe how to create server-side SOAP message handlers that
execute as part of the Web service running on WebLogic Server. You can also create
client-side handlers that execute as part of the client application that invokes a Web
service operation. In the case of a client-side handler, the handler executes twice:

■ Directly before the client application sends the SOAP request to the Web service

■ Directly after the client application receives the SOAP response from the Web
service

You can configure client-side SOAP message handlers for both stand-alone clients and
clients that run inside of WebLogic Server.

You create the actual Java client-side handler in the same way you create a server-side
handler: write a Java class that extends the
javax.xml.rpc.handler.GenericHandler abstract class. In many cases you can
use the exact same handler class on both the Web service running on WebLogic Server
and the client applications that invoke the Web service. For example, you can write a
generic logging handler class that logs all sent and received SOAP messages, both for
the server and for the client.

Creating and Using Client-Side SOAP Message Handlers

9-18 Programming Advanced Features of JAX-RPC Web Services for Oracle WebLogic Server

Similar to the server-side SOAP handler programming, you use an XML file to specify
to the clientgen Ant task that you want to invoke client-side SOAP message
handlers. However, the XML Schema of this XML file is slightly different, as described
in the following procedure.

9.8.1 Using Client-Side SOAP Message Handlers: Main Steps
The following procedure describes the high-level steps to add client-side SOAP
message handlers to the client application that invokes a Web service operation.

It is assumed that you have created the client application that invokes a deployed Web
service, and that you want to update the client application by adding client-side SOAP
message handlers and handler chains. It is also assumed that you have set up an
Ant-based development environment and that you have a working build.xml file
that includes a target for running the clientgen Ant task. For more information, see
"Invoking a Web Service from a Stand-alone Client: Main Steps" in Getting Started With
JAX-RPC Web Services for Oracle WebLogic Server.

1. Design the client-side SOAP handlers and the handler chain which specifies the
order in which they execute. This step is almost exactly the same as that of
designing the server-side SOAP message handlers, except the perspective is from
the client application, rather than a Web service.

See Section 9.3, "Designing the SOAP Message Handlers and Handler Chains".

2. For each handler in the handler chain, create a Java class that extends the
javax.xml.rpc.handler.GenericHandler abstract class. This step is very
similar to the corresponding server-side step, except that the handler executes in a
chain in the client rather than the server.

See Section 9.4, "Creating the GenericHandler Class" for details about
programming a handler class. See Section 9.8.2, "Example of a Client-Side Handler
Class" for an example.

3. Create the client-side SOAP handler configuration file. This XML file describes the
handlers in the handler chain, the order in which they execute, and any
initialization parameters that should be sent.

See Section 9.8.3, "Creating the Client-Side SOAP Handler Configuration File".

4. Update the build.xml file that builds your client application, specifying to the
clientgen Ant task the name of the SOAP handler configuration file. Also
ensure that the build.xml file compiles the handler files into Java classes and
makes them available to your client application.

See Section 9.8.5, "Specifying the Client-Side SOAP Handler Configuration File to
clientgen".

5. Rebuild your client application by running the relevant task:

prompt> ant build-client

When you next run the client application, the SOAP messaging handlers listed in the
configuration file automatically execute before the SOAP request message is sent and
after the response is received.

Creating and Using Client-Side SOAP Message Handlers

Creating and Using SOAP Message Handlers 9-19

9.8.2 Example of a Client-Side Handler Class
The following example shows a simple SOAP message handler class that you can
configure for a client application that invokes a Web service.

package examples.webservices.client_handler.client;

import javax.xml.namespace.QName;
import javax.xml.rpc.handler.HandlerInfo;
import javax.xml.rpc.handler.GenericHandler;
import javax.xml.rpc.handler.MessageContext;

public class ClientHandler1 extends GenericHandler {

 private QName[] headers;

 public void init(HandlerInfo hi) {
 System.out.println("in " + this.getClass() + " init()");
 }

 public boolean handleRequest(MessageContext context) {
 System.out.println("in " + this.getClass() + " handleRequest()");
 return true;
 }

 public boolean handleResponse(MessageContext context) {
 System.out.println("in " + this.getClass() + " handleResponse()");
 return true;
 }

 public boolean handleFault(MessageContext context) {
 System.out.println("in " + this.getClass() + " handleFault()");
 return true;
 }

 public QName[] getHeaders() {
 return headers;
 }
}

9.8.3 Creating the Client-Side SOAP Handler Configuration File
The client-side SOAP handler configuration file specifies the list of handlers in the
handler chain, the order in which they execute, the initialization parameters, and so
on. See Section 9.8.4, "XML Schema for the Client-Side Handler Configuration File" for
a full description of this file.

The configuration file uses XML to describe a single handler chain that contains one or
more handlers, as shown in the following simple example:

<weblogic-wsee-clientHandlerChain
 xmlns="http://www.bea.com/ns/weblogic/90"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

Note: You do not have to update your actual client application to
invoke the client-side SOAP message handlers; as long as you specify
to the clientgen Ant task the handler configuration file, the
generated JAX-RPC stubs automatically take care of executing the
handlers in the correct sequence.

Creating and Using Client-Side SOAP Message Handlers

9-20 Programming Advanced Features of JAX-RPC Web Services for Oracle WebLogic Server

 xmlns:j2ee="http://java.sun.com/xml/ns/j2ee">

 <handler>
 <j2ee:handler-name>clienthandler1</j2ee:handler-name>
 <j2ee:handler-class>examples.webservices.client_
handler.client.ClientHandler1</j2ee:handler-class>
 <j2ee:init-param>
 <j2ee:param-name>ClientParam1</j2ee:param-name>
 <j2ee:param-value>value1</j2ee:param-value>
 </j2ee:init-param>
 </handler>

 <handler>
 <j2ee:handler-name>clienthandler2</j2ee:handler-name>
 <j2ee:handler-class>examples.webservices.client_
handler.client.ClientHandler2</j2ee:handler-class>
 </handler>

</weblogic-wsee-clientHandlerChain>

In the example, the handler chain contains two handlers: clienthandler1 and
clienthandler2, implemented with the class names specified with the
<j2ee:handler-class> element. The two handlers execute in forward order
directly before the client application sends the SOAP request to the Web service, and
then in reverse order directly after the client application receives the SOAP response
from the Web service.

The example also shows how to use the <j2ee:init-param> element to specify one
or more initialization parameters to a handler.

Use the <soap-role>, <soap-header>, and <port-name> child elements of the
<handler> element to specify the SOAP roles implemented by the handler, the SOAP
headers processed by the handler, and the port-name element in the WSDL with which
the handler is associated with, respectively.

9.8.4 XML Schema for the Client-Side Handler Configuration File
The following XML Schema file defines the structure of the client-side SOAP handler
configuration file:

<?xml version="1.0" encoding="UTF-8"?>

<schema
 targetNamespace="http://www.bea.com/ns/weblogic/90"
 xmlns:wls="http://www.bea.com/ns/weblogic/90"
 xmlns:j2ee="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"
 >
 <include schemaLocation="weblogic-j2ee.xsd"/>

 <element name="weblogic-wsee-clientHandlerChain"
 type="wls:weblogic-wsee-clientHandlerChainType">
 <xsd:key name="wsee-clienthandler-name-key">
 <xsd:annotation>
 <xsd:documentation>

 Defines the name of the handler. The name must be unique within the

Creating and Using Client-Side SOAP Message Handlers

Creating and Using SOAP Message Handlers 9-21

 chain.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:selector xpath="j2ee:handler"/>
 <xsd:field xpath="j2ee:handler-name"/>
 </xsd:key>
 </element>

 <complexType name="weblogic-wsee-clientHandlerChainType">
 <sequence>
 <xsd:element name="handler"
 type="j2ee:service-ref_handlerType"
 minOccurs="0" maxOccurs="unbounded">
 </xsd:element>
 </sequence>
 </complexType>
</schema>

A single configuration file specifies a single client-side handler chain. The root of the
configuration file is <weblogic-wsee-clientHandlerChain>, and the file
contains zero or more <handler> child elements, each of which describes a handler in
the chain.

The structure of the <handler> element is described by the Java EE service-ref_
handlerType complex type, specified in the Java EE 1.4 Web service client XML
Schema http://java.sun.com/xml/ns/j2ee/j2ee_web_services_client_
1_1.xsd.

9.8.5 Specifying the Client-Side SOAP Handler Configuration File to clientgen
Use the handlerChainFile attribute of the clientgen Ant task to specify the
client-side SOAP handler configuration file, as shown in the following excerpt from a
build.xml file:

 <clientgen
 wsdl="http://ariel:7001/handlers/ClientHandlerService?WSDL"
 destDir="${clientclass-dir}"
 handlerChainFile="ClientHandlerChain.xml"
 packageName="examples.webservices.client_handler.client"/>

The JAX-RPC stubs generated by clientgen automatically ensure that the handlers
described by the configuration file execute in the correct order before and after the
client application invokes the Web service operation.

Creating and Using Client-Side SOAP Message Handlers

9-22 Programming Advanced Features of JAX-RPC Web Services for Oracle WebLogic Server

10

Using Database Web Services 10-1

10Using Database Web Services

This chapter describes how to use database Web services.

This chapter includes the following topics:

■ Overview of Database Web Services

■ Type Mapping Between SQL and XML

■ Developing Database Web Services Using Oracle JDeveloper

10.1 Overview of Database Web Services
In heterogeneous and disconnected environments, there is an increasing need to access
stored procedures, data and metadata, through Web service interfaces. Database Web
service technology enables Web services for databases. It works in two directions:

■ Database Call-in—Access database resources as a Web service

■ Database Call-out—Consuming external Web services from the database itself

10.1.1 Database Call-in
Turning the Oracle database into a Web service provider takes advantage of your
investment in Java stored procedures, PL/SQL packages, Advanced Queues,
pre-defined SQL queries and DML.

Client applications can query and retrieve data from Oracle databases and invoke
stored procedures using standard Web service protocols. There is no dependency on
Oracle specific database connectivity protocols. Applications can employ any cached
WebLogic Server connection. This approach is very beneficial in heterogeneous,
distributed, and non-connected environments.

Since database Web services are a part of WebLogic Web services, they can participate
in a consistent and uniform development and deployment environment. Messages
exchanged between the Web service exposed database and the Web service client can
take advantage of all of the management features provided by WebLogic Web services,
such as security, reliability, auditing and logging.

The following figure illustrates Web service call-in.

Note: Creating Web services out of Query, Java, DML, and Advanced
Queues is not supported in this release.

Overview of Database Web Services

10-2 Programming Advanced Features of JAX-RPC Web Services for Oracle WebLogic Server

Figure 10–1 Web Service Calling in to the Database

The following steps describe the process shown in the previous figure:

1. A request for a type of database service arrives at the application server. The
service endpoint implicitly specifies the type of service requested.

2. The JAX-RPC processing servlet references the SOAP libraries and XML parser to
decode the request.

3. The servlet passes the request to the classes that correspond to the exposed
database operations. The generated classes can represent PL/SQL packages,
queries, DML, AQ Streams, or Java classes in the database.

4. The database passes the response to the JAX-RPC processing servlet, which
references the SOAP libraries and XML parser to encode it.

5. A SOAP response formed in accordance with the WSDL is returned to the client.

10.1.2 Database Call-out
You can extend a relational database's storage, indexing, and searching capabilities to
include Web services. By calling a Web service, the database can track, aggregate,
refresh, and query dynamic data produced on-demand, such as stock prices, currency
exchange rates, or weather information. An example of using the database as a service
consumer would be to call an external Web service from a predefined database job to
obtain inventory information from multiple suppliers, then update your local
inventory database. Another example is that of a Web Crawler: a database job can be
scheduled to collate product and price information from a number of sources.

The following figure illustrates database call-out.

Figure 10–2 Calling Web Services from Within the Database

The following steps describe the process shown in the previous figure:

Type Mapping Between SQL and XML

Using Database Web Services 10-3

■ SQL and PL/SQL call specs—Invoke a Web service through a user-defined
function call either directly within a SQL statement or view, or through a variable.

■ Dynamic Web service invocation using the UTL_DBWS PL/SQL package. A Call
object can be dynamically created based on a WSDL and subsequently, Web
services operations can be invoked.

Oracle Database PL/SQL Packages and Types Reference provides more
information on using the UTL_DBWS PL/SQL package.

■ Pure Java static proxy class—Generate a client proxy class which uses JAX-RPC.
This method simplifies the Web service invocation as the location of the service is
already known without needing to look up the service in the UDDI registry. The
client proxy class does all of the work to construct the SOAP request, including
marshalling and unmarshalling parameters.

■ Pure Java using DII (dynamic invocation interface) over JAX-RPC—Dynamic
invocation provides the ability to construct the SOAP request and access the
service without the client proxy.

Which method to use depends on whether you want to execute from SQL or PL/SQL,
from Java classes, or whether the service is known ahead of time (static invocation) or
only at runtime (DII).

10.2 Type Mapping Between SQL and XML
The following sections describe the type mappings between SQL and XML for call-ins
and call-outs when the Web service is known ahead of time (static invocation).

When the Web service is known at runtime you can use only the Dynamic Invocation
Interface (DII) or the UTL_DBWS PL/SQL package. For more information on using the
JAX-RPC DII, see the API at the following Web address:
http://java.sun.com/j2ee/1.4/docs/#api.

10.2.1 SQL to XML Type Mappings for Web Service Call-Ins
In a database Web service call-in, a SQL operation, such as a PL/SQL stored procedure
or a SQL statement, is mapped into one or more Web service operations. The
parameters to the SQL operation are mapped from SQL types into XML types.

The following table illustrates the SQL-to-XML mappings for Web service call-ins. The
first column lists the SQL types. The second column of the table, XML Type (Literal),
shows SQL-to-XML type mappings for the default literal value of the use attribute.
The third column, XML Type (Encoded), shows the mappings for the encoded value of
the use attribute. The literal and encoded values refer to the rules for encoding the
body of a SOAP message.

Note: The reason there may be more than one operation is because
OracleAS Web services may be providing additional data
representation choices for the SQL values in XML, such as different
representations of SQL result sets.

Table 10–1 SQL-to-XML Type Mappings for Web Services Call-ins

SQL Type XML Type (Literal) XML Type (Encoded)

INT int int

Type Mapping Between SQL and XML

10-4 Programming Advanced Features of JAX-RPC Web Services for Oracle WebLogic Server

A query or a PL/SQL function returning REF CURSOR will be mapped into the three
methods listed below, where name is the name of the query or the PL/SQL function.

■ nameBeans—This method returns an array, where each element is an instance of an
XSD complex type that represents one row in the cursor. A complex type
sub-element corresponds to a column in that row.

■ nameXMLRowSet—This method returns a swaRef or text_xml response that
contains an OracleWebRowSet instance in XML format.

■ nameXML—this method returns an XML any or text_xml response that contains an
Oracle XDB row set.

Both OUT and IN OUT PL/SQL parameters are mapped to IN OUT parameters in the
WSDL file.

INTEGER int int

FLOAT double double

NUMBER decimal decimal

VARCHAR2 string string

DATE dateTime dateTime

TIMESTAMP dateTime dateTime

BLOB byte[] byte[]

CLOB String String

LONG String String

RAW byte[] byte[]

Primitive PL/SQL indexby
table

Array Array

PL/SQL Boolean boolean boolean

PL/SQL indexby table complexType complexType

PL/SQL record complexType complexType

REF CURSOR (nameBeans) Array Array

REF CURSOR

nameXML)

any test_xml

REF CURSOR

nameMLRowSet

swaRef test_xml

SQL object complexType complexType

SQL table complexType complexType

SYS.XMLTYPE any test_xml

Note: If National Language Support (also known as "NLS" or
"Globalization Support") characters are used in a SQL SYS.XMLTYPE
value, they may not be properly handled.

Table 10–1 (Cont.) SQL-to-XML Type Mappings for Web Services Call-ins

SQL Type XML Type (Literal) XML Type (Encoded)

Developing Database Web Services Using Oracle JDeveloper

Using Database Web Services 10-5

Note that Table 10–1 provides two different mappings: one for literal and another for
encoded use. The default mapping is literal. From a database Web service's
perspective, there is no special reason why encoded should be used. The mapping for
encoded is provided in case you encounter scenarios which call for the encoded use
setting. All of the descriptions in this chapter assume that you will be using the literal
use setting unless otherwise specified.

10.2.2 XML-to-SQL Type Mapping for Web Service Call-outs
In database Web services call-outs, XML types are mapped into SQL types. The
following table lists the XML-to-SQL type mappings used in call-outs.

10.3 Developing Database Web Services Using Oracle JDeveloper
Using Oracle JDeveloper 11g you can generate and deploy a PL/SQL Web service.
JDeveloper's Create PL/SQL Web service wizard makes it easy to generate a web
service from a PL/SQL package or a Java stored procedure that uses object types. A
Java stored procedure is defined by a SQL specification that invokes it, and the
PL/SQL Web service wizard treats these in the same way as packages.You can create
Web services in a bottom-up fashion; that is, you cannot create a database Web service
from a WSDL.

For more information, see "Creating PL/SQL Web Services" in the "Developing with
Web Services" section of the Oracle JDeveloper online help.

Table 10–2 XML-to-SQL Type Mappings for Web Service Call-outs

XML Type SQL Type

int NUMBER

float NUMBER

double NUMBER

decimal NUMBER

dateTime DATE

String VARCHAR2

byte[] RAW

complexType SQL OBJECT

Array SQL TABLE

test_xml XML Type

Note: Creating Web services out of Query, Java, DML, and Advanced
Queues is not supported in this release.

Developing Database Web Services Using Oracle JDeveloper

10-6 Programming Advanced Features of JAX-RPC Web Services for Oracle WebLogic Server

A

Pre-Packaged WS-Policy Files for Reliable Messaging A-1

APre-Packaged WS-Policy Files for Reliable
Messaging

This appendix describes the pre-packaged WS-Policy files that contain typical reliable
messaging assertions that you can use to support reliable messaging with WebLogic
Java API for XML-based RPC (JAX-RPC) Web services.

This appendix includes the following topics:

■ Section A.1, "DefaultReliability1.1.xml (WS-Policy File)"

■ Section A.2, "Reliability1.1_SequenceTransportSecurity.xml (WS-Policy File)"

■ Section A.3, "Reliability1.1_SequenceSTR.xml (WS-Policy File)"

■ Section A.4, "Reliability1.0_1.1.xml (WS-Policy.xml File)"

■ Section A.5, "DefaultReliability.xml (WS-Policy File) [Deprecated]"

■ Section A.6, "LongRunningReliability.xml (WS-Policy File) [Deprecated]"

You cannot change these pre-packaged files. If their values do not suit your needs, you
must create your own WS-Policy file. See Section 3.5, "Creating the Web Service
Reliable Messaging WS-Policy File" for details. See "Web Service Reliable Messaging
Policy Assertion Reference" in WebLogic Web Services Reference for Oracle WebLogic
Server for reference information about the reliable messaging policy assertions.

A.1 DefaultReliability1.1.xml (WS-Policy File)
The DefaultRealiability1.1.xml WS-Policy file specifies policy assertions
related to quality of service. The Web service reliable messaging assertions are based
on WS Reliable Messaging Policy Assertion 1.1 at
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-
01.pdf.

<?xml version="1.0"?>

<wsp:Policy
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 >
 <wsrmp:RMAssertion
 xmlns:wsrmp="http://docs.oasis-open.org/ws-rx/wsrmp/200702"
 >
 <wsrmp:DeliveryAssurance>
 <wsp:Policy>
 <wsrmp:ExactlyOnce />
 </wsp:Policy>
 </wsrmp:DeliveryAssurance>

Reliability1.1_SequenceTransportSecurity.xml (WS-Policy File)

A-2 Programming Advanced Features of JAX-RPC Web Services for Oracle WebLogic Server

 </wsrmp:RMAssertion>
</wsp:Policy>

A.2 Reliability1.1_SequenceTransportSecurity.xml (WS-Policy File)
The Reliability1.1_SequenceTransportSecurity.xml file specifies policy
assertions related to transport-level security and quality of service. The Web service
reliable messaging assertions are based on WS Reliable Messaging Policy Assertion 1.1
at
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-
01.pdf.

<wsp:Policy xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy">
 <wsrmp:RMAssertion
 xmlns:wsrmp="http://docs.oasis-open.org/ws-rx/wsrmp/200702">
 <wsrmp:SequenceTransportSecurity/>
 <wsrmp:DeliveryAssurance>
 <wsp:Policy>
 <wsrmp:ExactlyOnce/>
 </wsp:Policy>
 </wsrmp:DeliveryAssurance>
 </wsrmp:RMAssertion>
</wsp:Policy>

A.3 Reliability1.1_SequenceSTR.xml (WS-Policy File)
The Reliability1.1_SequenceSTR.xml file specifies that in order to secure
messages in a reliable sequence, the runtime will use the
wsse:SecurityTokenReference that is referenced in the CreateSequence
message. The Web service reliable messaging assertions are based on WS Reliable
Messaging Policy Assertion 1.1 at
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-
01.pdf.

<wsp:Policy xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy">
 <wsrmp:RMAssertion
 xmlns:wsrmp="http://docs.oasis-open.org/ws-rx/wsrmp/200702">
 <wsrmp:SequenceSTR/>
 <wsrmp:DeliveryAssurance>
 <wsp:Policy>
 <wsrmp:ExactlyOnce/>
 </wsp:Policy>
 </wsrmp:DeliveryAssurance>
 </wsrmp:RMAssertion>
</wsp:Policy>

A.4 Reliability1.0_1.1.xml (WS-Policy.xml File)
The Reliability1.0_1.1.xml WS-Policy.xml file combines 1.1 and 1.0
WS-Reliable Messaging policy assertions. This sample relies on smart policy selection
to determine the policy assertion that is applied at runtime. For more information
about smart policy selection, see Section 3.5.3, "Using Multiple Policy Alternatives".

Note: The 1.0 Web service reliable messaging assertions are prefixed
by wsrmp10.

DefaultReliability.xml (WS-Policy File) [Deprecated]

Pre-Packaged WS-Policy Files for Reliable Messaging A-3

<wsp:Policy xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <wsrmp10:RMAssertion
 xmlns:wsrmp10="http://schemas.xmlsoap.org/ws/2005/02/rm/policy">
 <wsrmp10:InactivityTimeout Milliseconds="600000"/>
 <wsrmp10:BaseRetransmissionInterval Milliseconds="3000"/>
 <wsrmp10:ExponentialBackoff/>
 <wsrmp10:AcknowledgementInterval Milliseconds="200"/>
 </wsrmp10:RMAssertion>
 </wsp:All>
 <wsp:All>
 <wsrmp:RMAssertion
 xmlns:wsrmp="http://docs.oasis-open.org/ws-rx/wsrmp/200702">
 <wsrmp:SequenceSTR/>
 <wsrmp:DeliveryAssurance>
 <wsp:Policy>
 <wsrmp:ExactlyOnce/>
 </wsp:Policy>
 </wsrmp:DeliveryAssurance>
 </wsrmp:RMAssertion>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

A.5 DefaultReliability.xml (WS-Policy File) [Deprecated]
This WS-Policy file is deprecated. The Web service reliable messaging assertions are
based on WS Reliable Messaging Policy Assertion Version 1.0 at
http://schemas.xmlsoap.org/ws/2005/02/rm/policy/. In the current
release, many of the reliable messaging policy assertions are managed through JWS
annotations or configuration.

The DefaultReliability.xml WS-Policy file specifies typical values for the
reliable messaging policy assertions, such as inactivity timeout of 10 minutes,
acknowledgement interval of 200 milliseconds, and base retransmission interval of 3
seconds.

<?xml version="1.0"?>

<wsp:Policy
 xmlns:wsrm="http://schemas.xmlsoap.org/ws/2005/02/rm/policy"
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:beapolicy="http://www.bea.com/wsrm/policy"
 >

 <wsrm:RMAssertion >

 <wsrm:InactivityTimeout
 Milliseconds="600000" />
 <wsrm:BaseRetransmissionInterval
 Milliseconds="3000" />
 <wsrm:ExponentialBackoff />
 <wsrm:AcknowledgementInterval
 Milliseconds="200" />
 <beapolicy:Expires Expires="P1D" optional="true"/>
 </wsrm:RMAssertion>

</wsp:Policy>

LongRunningReliability.xml (WS-Policy File) [Deprecated]

A-4 Programming Advanced Features of JAX-RPC Web Services for Oracle WebLogic Server

A.6 LongRunningReliability.xml (WS-Policy File) [Deprecated]
This WS-Policy file is deprecated. The Web service reliable messaging assertions are
based on WS Reliable Messaging Policy Assertion Version 1.0 at
http://schemas.xmlsoap.org/ws/2005/02/rm/policy/. In the current
release, many of the reliable messaging policy assertions are managed through JWS
annotations or configuration.

The LongRunningRelibility.xml WS-Policy files specifies values that are similar
to the DefaultReliability.xml WS-Policy file, except that it specifies a much
longer activity timeout interval (24 hours). See Section A.6,
"LongRunningReliability.xml (WS-Policy File) [Deprecated]".

<?xml version="1.0"?>

<wsp:Policy
 xmlns:wsrm="http://schemas.xmlsoap.org/ws/2005/02/rm/policy"
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:beapolicy="http://www.bea.com/wsrm/policy"
 >

 <wsrm:RMAssertion >

 <wsrm:InactivityTimeout
 Milliseconds="86400000" />
 <wsrm:BaseRetransmissionInterval
 Milliseconds="3000" />
 <wsrm:ExponentialBackoff />
 <wsrm:AcknowledgementInterval
 Milliseconds="200" />
 <beapolicy:Expires Expires="P1M" optional="true"/>
 </wsrm:RMAssertion>

</wsp:Policy>

	Contents
	Preface
	Documentation Accessibility
	Conventions

	1 Introduction
	2 Invoking a Web Service Using Asynchronous Request-Response
	2.1 Overview of the Asynchronous Request-Response Feature
	2.2 Using Asynchronous Request-Response: Main Steps
	2.3 Configuring the Host WebLogic Server Instance for the Asynchronous Web Service
	2.4 Writing the Asynchronous JWS File
	2.4.1 Coding Guidelines for Invoking a Web Service Asynchronously
	2.4.2 Using Asynchronous Pre- and Post-call Contexts
	2.4.3 Example of a Synchronous Invoke

	2.5 Updating the build.xml File When Using Asynchronous Request-Response
	2.6 Disabling The Internal Asynchronous Service
	2.7 Using Asynchronous Request Response With a Proxy Server

	3 Using Web Services Reliable Messaging
	3.1 Overview of Web Service Reliable Messaging
	3.1.1 Using WS-Policy to Specify Reliable Messaging Policy Assertions
	3.1.2 Managing the Life Cycle of the Reliable Message Sequence

	3.2 Using Web Service Reliable Messaging: Main Steps
	3.2.1 Prerequisites

	3.3 Configuring the Destination WebLogic Server Instance
	3.4 Configuring the Source WebLogic Server Instance
	3.5 Creating the Web Service Reliable Messaging WS-Policy File
	3.5.1 Creating a Custom WS-Policy File Using WS-ReliableMessaging Policy Assertions Version 1.1
	3.5.2 Creating a Custom WS-Policy File Using WS-ReliableMessaging Policy Assertions Version 1.0 (Deprecated)
	3.5.3 Using Multiple Policy Alternatives

	3.6 Programming Guidelines for the Reliable JWS File
	3.6.1 Using the @Policy Annotation
	3.6.2 Using the @Oneway Annotation
	3.6.3 Using the @BufferQueue Annotation
	3.6.4 Using the @ReliabilityBuffer Annotation

	3.7 Configuring Reliable Messaging for a Reliable Web Service
	3.7.1 Using the Administration Console
	3.7.2 Using WLST

	3.8 Programming Guidelines for the JWS File That Invokes a Reliable Web Service
	3.9 Updating the build.xml File for a Client of a Reliable Web Service
	3.10 Using Reliable Messaging With MTOM
	3.11 Client Considerations When Redeploying a Reliable Web Service
	3.12 Using Reliable Messaging With a Proxy Server

	4 Creating Conversational Web Services
	4.1 Overview of Conversational Web Services
	4.2 Creating a Conversational Web Service: Main Steps
	4.3 Programming Guidelines for the Conversational JWS File
	4.4 Programming Guidelines for the JWS File That Invokes a Conversational Web Service
	4.5 ConversationUtils Utility Class
	4.6 Updating the build.xml File for a Client of a Conversational Web Service
	4.7 Updating a Stand-Alone Java Client to Invoke a Conversational Web Service
	4.8 Example Conversational Web Service .NET Client
	4.8.1 ConversationService.java File
	4.8.2 Service.cs File
	4.8.3 build.xml File

	4.9 Client Considerations When Redeploying a Conversational Web Service

	5 Creating Buffered Web Services
	5.1 Overview of Buffered Web Services
	5.2 Creating a Buffered Web Service: Main Steps
	5.3 Configuring the Host WebLogic Server Instance for the Buffered Web Service
	5.4 Programming Guidelines for the Buffered JWS File
	5.5 Programming the JWS File That Invokes the Buffered Web Service
	5.6 Updating the build.xml File for a Client of the Buffered Web Service

	6 Using the Asynchronous Features Together
	6.1 Using the Asynchronous Features Together
	6.2 Example of a JWS File That Implements a Reliable Conversational Web Service
	6.3 Example of Client Web Service That Asynchronously Invokes a Reliable Conversational Web Service

	7 Using Callbacks to Notify Clients of Events
	7.1 Overview of Callbacks
	7.2 Callback Implementation Overview and Terminology
	7.3 Programming Callbacks: Main Steps
	7.4 Programming Guidelines for Target Web Service
	7.5 Programming Guidelines for the Callback Client Web Service
	7.6 Programming Guidelines for the Callback Interface
	7.7 Updating the build.xml File for the Client Web Service

	8 Using JMS Transport as the Connection Protocol
	8.1 Overview of Using JMS Transport
	8.2 Using JMS Transport Starting From Java: Main Steps
	8.3 Using JMS Transport Starting From WSDL: Main Steps
	8.4 Configuring the Host WebLogic Server Instance for the JMS Transport Web Service
	8.5 Using the @WLJmsTransport JWS Annotation
	8.6 Using the <WLJmsTransport> Child Element of the jwsc Ant Task
	8.7 Updating the WSDL to Use JMS Transport
	8.8 Invoking a WebLogic Web Service Using JMS Transport
	8.8.1 Overriding the Default Service Address URL
	8.8.2 Using JMS BytesMessage Rather Than the Default TextMessage
	8.8.3 Disabling HTTP Access to the WSDL File

	9 Creating and Using SOAP Message Handlers
	9.1 Overview of SOAP Message Handlers
	9.2 Adding SOAP Message Handlers to a Web Service: Main Steps
	9.3 Designing the SOAP Message Handlers and Handler Chains
	9.4 Creating the GenericHandler Class
	9.4.1 Implementing the Handler.init() Method
	9.4.2 Implementing the Handler.destroy() Method
	9.4.3 Implementing the Handler.getHeaders() Method
	9.4.4 Implementing the Handler.handleRequest() Method
	9.4.5 Implementing the Handler.handleResponse() Method
	9.4.6 Implementing the Handler.handleFault() Method
	9.4.7 Directly Manipulating the SOAP Request and Response Message Using SAAJ
	9.4.7.1 The SOAPPart Object
	9.4.7.2 The AttachmentPart Object
	9.4.7.3 Manipulating Image Attachments in a SOAP Message Handler

	9.5 Configuring Handlers in the JWS File
	9.5.1 @javax.jws.HandlerChain
	9.5.2 @javax.jws.soap.SOAPMessageHandlers

	9.6 Creating the Handler Chain Configuration File
	9.7 Compiling and Rebuilding the Web Service
	9.8 Creating and Using Client-Side SOAP Message Handlers
	9.8.1 Using Client-Side SOAP Message Handlers: Main Steps
	9.8.2 Example of a Client-Side Handler Class
	9.8.3 Creating the Client-Side SOAP Handler Configuration File
	9.8.4 XML Schema for the Client-Side Handler Configuration File
	9.8.5 Specifying the Client-Side SOAP Handler Configuration File to clientgen

	10 Using Database Web Services
	10.1 Overview of Database Web Services
	10.1.1 Database Call-in
	10.1.2 Database Call-out

	10.2 Type Mapping Between SQL and XML
	10.2.1 SQL to XML Type Mappings for Web Service Call-Ins
	10.2.2 XML-to-SQL Type Mapping for Web Service Call-outs

	10.3 Developing Database Web Services Using Oracle JDeveloper

	A Pre-Packaged WS-Policy Files for Reliable Messaging
	A.1 DefaultReliability1.1.xml (WS-Policy File)
	A.2 Reliability1.1_SequenceTransportSecurity.xml (WS-Policy File)
	A.3 Reliability1.1_SequenceSTR.xml (WS-Policy File)
	A.4 Reliability1.0_1.1.xml (WS-Policy.xml File)
	A.5 DefaultReliability.xml (WS-Policy File) [Deprecated]
	A.6 LongRunningReliability.xml (WS-Policy File) [Deprecated]

