ORACLE

JD Edwards EnterpriseOne Tools
Connectors Guide

Release 9.1.x
E24221-04

April 2015

JD Edwards EnterpriseOne Tools Connectors Guide, Release 9.1.x
E24221-04
Copyright © 2011, 2015, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

Contents

PUrOIACE ... e e e ettt aen iX
Documentation AccesSibility ..o ix
AAUAICIICE ...ttt e et e e et e e et e e e et e e s eabeessatte s e st e s e et e e seateesanaeesanaaeesateeenateesaaneesaraaeean ix
ReElated DOCUITIEIESeoviieeiieceeeeeeeeeee ettt et e et e e ae e ete e e aeeeaaeeteeesaeeabeesaeeenseesessnseensessnseenseesneesnees iX
(@03 4 T£<3 015 (o) o - IR RRU OO X

1 Introduction to JD Edwards EnterpriseOne Tools Connectors

1.1 JD Edwards EnterpriseOne Tools Connectors OVerviewc.cccccocueueieirucieiiiccieeeeeanne,
1.2 Connectors Implementation...........cccccceuiiiiiiiiinininiiiiii e

2 Understanding COM Interoperability

2.1 COM INteroperabilitycccccciiiiiiiiiiiiiiiiiiiiic e
2.2 JD Edwards EnterpriseOne COM Interoperability ..o
2.2.1 COM ODJECES.....vviiiiiiiiiiciicce s
222 COM Interoperability USage.........cccccceuiuiiiiiiiiiiiiiiiiiiiciciicicicieieeeeeeeeeeeeeenienaas

3 Understanding the COM Solution for Business Function Execution

3.1 JD Edwards EnterpriseOne COM SEIVETcoviiiiiiiiiiiiiiiiiiccisnecccseensnenes
3.2 COM CONINECLOT ..uveeevevieiieeiieiesteeteereessesseesteseessesseessesstessasseessesseessesssessesseessesssessesssessesseessessesnes
3.3 GenCOM COMPONENES.....c.ciiiiiieieieieieiitte s
3.3.1 Understanding GeNnCOMcccocoviiiiiiininiiiniiiiiiinnsssss s
3.3.2 Installation INfOrMAtiONecvieieiiieieieeeee et e e sresssenseas
3.3.3 PrOGID ..o s
3.34 Setting Up an Environment for GenNCOM..........ccccccciuiiiiiiiiiiininiiiiiccccceccicens
3.3.4.1 Example: Include Directories..........cooviiuiiiiiiiiiiiiiiiciiiciiicccciee e
3.3.4.2 Example: Lib Directories ...t
3.34.3 Example: Pathis........cccoooiiiiiiiiiin e
3.3.4.4 Example: Basemake Directories ...
3.34.5 Example: Bkoffice Directories. ...
3.3.4.6 Example: DXSDKROOT DIrectories..........ccocccuiueueuiiiiiiiieieiiiiicieieeieceeeeeieneeieenns
3.3.4.7 INETSDK dir@CtOry .cvvveieiicieiiiicieteetc st
3.3.5 Running GenCOM.........ccoviiiiiiiiiiiiiiiii s
3.3.6 Using GeNCOM OUtPUL.......ciiviiiiiiiiiiccc e
3.3.6.1 VISUAL BASIC...eeuvieiieiieieieeietie ettt sttt e v e st s e eess e s e eseesseessessessaessasssans
3.3.6.2 VISUAL Ct ettt ettt ettt ettt e s teeaaesbeesbesbeensesreensenseenes

4

5

3.4 COM Wrapper CheckVer ... 3-10

3.4.1 Running CheckVer ... 3-10
3.4.1.1 SYNEAX 11 3-11
3.4.1.2 EXQMIPLe....iiiiiiiiiiiiiicc s 3-11
3.4.1.3 OPHIONS ..ot 3-11

Deploying the COM Solution for Business Function Execution

4.1 Understanding COM Server Deployment for Business Function Execution..................... 4-1
4.2 Setting Up the DCOM Server for Business Function Executionc.cccocovvvvcninncence. 4-2
4.21 Understanding DCOM Server Set Up ... 4-2
4.2.2 Setting Up DCOM for a Server Environment............c.cooooeueioiiinioiiceeiccccccc, 4-2
4.2.3 Setting Up Security on the COM SEIVET........cccoiiuiiiuiiimiemiiieeeieeeereeeneenerenenenenenenes 4-3
4.24 Setting Up the Identity as Interactive USeT..........ccoooueviiiiiiiiiiciiiccc, 4-3
4.2.5 Setting Up DCOM for a Client Environmentc.ccoooeiiiiiiiiiiccecieceecce 4-3
4.3 Installing COM CONNECLOT.......c.coeueuimiuimeieieieieieieieieieeieteieiete et 4-4
4.3.1 Installing COM Connector on a Non-JD Edwards EnterpriseOne

Client ENVIrONMENtccoiiiiiiiiiiiiiiiiiicic e 4-4
4.4 Using OCM Support with COM CONNECOTcccceuiuimimimeiiiieieiciemeieieereieierereneenenenenenenenenes 4-5
4.41 [INTEROP] ..ottt 4-6
4.4.2 [OCMYI ot 4-6
4.5 Using BHVRCOM With COM ..ottt 4-6
4.6 Use IJDETImeZone INTErfacecoeveririeierieieieteteiesieetesie ettt ettt eb e st 4-7
4.6.1 XML File generated by GenCOM for IJDETimeZonecccooeveirieieiiiiccieiiicciene. 4-8
4.7 Requesting Inbound XML Using COM Server.........cccoevvvrrnrrnenenirrreesesesseseseseseseseene 4-8
4.8 Using COM Reliabilitycccouoiiiiiiiiciii 4-10
4.9 Using COM Tracing and LOZGINgccouirmrioiiiiiiieciece i 4-10
4.91 Resolving Tracing ISSUESc.cccucuiuiuiuiuiiiiiieicicieieicieeeeteteenenee et enenees 4-10

Using COM Transactions

5.1 Understanding COM Interoperability Transactions..........c.cococoeeecuieiccceiiccceceenenns 5-1
5.1.1 Outline for Calling Prepare and Commuit..........ccoooiririoiiiiiiiiiic 5-1
5.1.2 COM+ Two-Phase Commit Transactioncoeeceirieueueiininecinnereceneseeeeeeenenenes 5-2
5.2 Setting Up the COM+ ENVITONMENt.....c.c.ceuiiiiiiiiiiiiiiiiiciciciciececeeeeieeieeeeeeeee e 5-2
5.3 Running COM+ Transactionsc.cceueveiirieiiiiieie e 5-3
5.3.1 Understanding COM+ Transactions...........c.cccccueuiiiiiiiiiiiiiieiceeeeeeeeeeieeenenennes 5-3
5.3.2 Creating a Transactional Object (SOEPT0].VDP)ccovvvveriviririrrinirrrrcree e 5-4
5.3.2.1 Modulel : Modulel.bas ..o 5-7
5.3.3 Creating a Transactional CHENt ... 5-7
5.4 Running a Distributed Transactionc.cccccoeeiiiiiiiiiiieeeceecceeeeeereeeeeeeeeeeeeenes 5-7
5.4.1 Understanding COM+ Transaction ..o 5-7
542 Creating MTStest for a Distributed Transaction (MTStest.vbp)ccccccueveuviriiinicinnns 5-8
5.4.2.1 MTSTestClass : MTSteSt.Das.cccucueuiiiiimiiiiiicieiccicicicecieeenee e 5-8
5422 Modulel : Modulel.bas ... 5-9
5.4.3 Creating ClientPrj for a Distributed Transaction............cccccceeviciiivviniiiicnnninicinene 5-10
54.4 Registering the COM+ .dll.......ccccouiiiiiiiiiiiiiiicceeeee s 5-10

6 Using COM Connector Solution for Guaranteed Events

6.1 Understanding COM Connector Guaranteed Eventsccccooooiiiiiiccc 6-1
6.2 Setting Up the COM Connector for Guaranteed Eventsc.ccccccccceeciiiicicccceenns 6-2
6.2.1 Understanding COM Connector Setup for Guaranteed Events ..o, 6-2
6.2.2 Installing and Setting Up the COM Connector for Guaranteed Events....................... 6-2
6.2.3 Registering Components for COM CONNECLOTc.cceueueueuemeueueiemeeieieieeieeeieeeeeneeeeeenas 6-5
6.2.4 Subscribing to EVENtSoooviiiiiii s 6-5
6.2.5 Logging COM EVENtS.........ccooiiiiiiiiiiiiicicetec s 6-5
6.3 Implementing JD Edwards EnterpriseOne Interfaces...........cccccccecueciiceiicccnccceenenns 6-5
6.3.1 Implementing a JD Edwards EnterpriseOne Interface..........ccccccoveveiiiiiiniiiiiinninnns 6-5
6.3.2 Creating a COM+ COMPONENL......coiiiiiiiiiiiiicieiieeee s 6-6
6.3.2.1 EventSink: OneWorldTransientEventSink.cls..........cccccoviiininiiiiininns 6-6
6.3.3 Logging on to the COM Connector.........c.oviuiieiiiinieieiiciiei e 6-7
6.3.3.1 COMConnector: frmLOgin.frm.........c.cooviii 6-7
6.3.3.2 COMConnector COMMOINLDASccoveviviviriieiiiiiic e, 6-8
6.3.3.3 COMConnector: SubscriptionManagerccoceueieiirieieiicicie e 6-9
6.3.4 Subscribing to an EVent ... 6-12
6.3.4.1 Subscriber: MainFOrmM.fIm ..o, 6-12
6.3.5 Integrating with BizTalk.........cccooooiiiiiiii 6-20
6.3.5.1 Subscriber: BizTalk.Clscccccooviiiiiiiiiiiiiiiiiiiis 6-20
6.3.6 Adding a New APPLCationccccceucuiiuiuiiiiiiiieicicceceeee e 6-22
6.3.7 Installing the Event Classcccocueuiiiieiiiiicicci e 6-23
6.4 Registering EventSink for Persistent SUbscription ..., 6-23

7 Understanding jdeinterop.ini for COM Connector

7.1 Settings for jdeinterop.ini File for the COM Connectorccccoovoiriiiiinicciceiiccciee 7-1
711 [OCMYI ottt 7-1
71.2 [JDENETT ...ttt 7-2
713 [SERVER] ..ottt 7-2
7.1.4 [SECURITY oottt 7-2
7.1.5 [DEBUGT ..ottt 7-2
7.1.6 [INTEROP] ...ttt ettt 7-3
7.7 [EVENTS] ..o 7-4
7.1.8 [JMSEVENTS] ...t 7-5
7.1.8.1 WEDSPRETE. ... 7-8
7.1.8.2 Oracle WebLogic Application SErver ... 7-8

8 Understanding iJDEScript

8.1 IJDESCIIPL ..ot 8-1
8.2 IJDEScript COMMANS.........cooeuiieiiiiiiiiiiiiiiiiiee s 8-2
8.2.1 Build COmMMANdooviiiiieeii ettt ettt ae et et ere e teereenneennas 8-2
8.2.1.1 SYNEAX 1ot s 8-2
8.2.2 L@F 11 I @07’ 4110 F=1 o Lo SRS TPPRI 8-2
8.2.2.1 SYNEAX 1ottt s 8-2
8.2.2.2 EXQMIPIE....oiiiiiic e 8-2
8.2.3 Define COMMAN......cccccieieriieierieeeere ettt et e st e saeseesae s e essessaessesssessesssessesssassenses 8-2

8.2.3.1
8.2.3.2
8.2.4
8.2.4.1
8.2.4.2
8.2.5
8.2.5.1
8.2.6
8.2.6.1
8.2.7
8.2.7.1
8.2.7.2
8.2.8
8.2.8.1
8.2.8.2
8.2.9
8.2.9.1
8.2.9.2
8.2.10
8.2.10.1
8.2.10.2
8.2.11
8.2.11.1
8.2.11.2
8.2.12
8.2.12.1
8.2.13
8.2.13.1
8.2.13.2
8.2.14
8.2.14.1
8.2.14.2
8.2.15
8.2.15.1
8.2.15.2
8.2.16
8.2.16.1
8.2.16.2
8.2.17
8.2.17.1
8.2.17.2

SYNAX ottt 8-2
EXaMPLe....oiiiiiiiiiiiiiiiii s 8-3
Define! COMMAN.......ccocerierieieieieietee ettt ettt re e etessessessesbessessessessesseseeseesenns 8-3
SYNEAX 1.ttt 8-3
EXaMIPIe....oiiiiiiiiiiiiiiiii s 8-3
T Tl Qo) s/ g F- ' U KSR 8-3
SYNEAX 1.ttt 8-3
Help Command.........cccoevviiiiiiiniiiiiniiiiiiic s 8-4
SYNEAX 1ot s 8-4
Import CoMmMANdcooviiiiiiiceie s 8-4
SYNEAX 1ottt s 8-4
EXQMIPLE....oiiiiiiic e 8-4
Importlib Command..........ccouoiiirieii s 8-4
SYNEAX 1ottt s 8-5
EXQMIPIE....oiiiiiiiic e 8-5
Interface COMMANcccueiuieieriieierie ettt re e e e seessessaessesseessesssessesssensens 8-5
Syntax for COM ..o 8-5
COM EXamPIe......coiiiiiiiiiiiiiiiciicc s 8-5
Library Commandcccceveiiiiieiiiiiiiiie e 8-5
SYNEAX 1ottt s 8-5
EXQMIPIE....oiiiiiiiicc e 8-6
Login Commandccccoeeiiiiiniiiiiiiiii s 8-6
SYNEAX 1ottt s 8-6
EXQMIPIE....oiiiiiiic e 8-6
Logout Command.........cccceeiiiiiiiiiiiiiiiiiii e 8-6
SYNEAX 1ottt s 8-6
Opt COMMAN......coiiiiiiiiiiciiicerre e 8-6
SYNEAX c.vviiiiiieicee s 8-6
EXAMPIe ..o s 8-7
Rename COMMANccocveiiiriiiiinieieieieteteeeeetesese st es e sessessessessesessassessessessessessessessans 8-7
SYNAX oottt 8-7
EXQMIPLE....oiiiiiiiiiiiicii e 8-7
Say COMMANAoviiiiiiiciecc e 8-7
SYNEAX oottt s 8-7
EXQMIPLE.....oiiiiiiiiiiiiciiic s 8-7
SUD COMMANG.....eieiiieiieiiiieiesteeiet ettt e ettt e s e s esseseeseesassessessesessessessessesseseesensenns 8-8
SYNEAX c.vviiiiieiceee s 8-8
EXQMIPLE....oiiiiiiiiiiiii s 8-8
System COmMMANG........c.cceeueuiiiiiiiiririiiceee e 8-9
SYNEAX c.vviiiiciiciciece s 8-9
EXQMIPLE....oiiiiiiiiiiiiiiciii s 8-9

9 Understanding Java Interoperability Solution

9.1 Java Interoperability SOIULIONccccceuiiiiiiiiiiiiiiiii e 9-1

10 Working with the Dynamic Java Connector

10.1

vi

Understanding the Dynamic Java CONNECtOTcccceuvuriviriiirininiiiiiiiiinccreceeaes 10-1

11

10.2 Designing the Dynamic Java CONNectOr........cccouiiiiiiiiiiicieiecec 10-2

10.2.1 Business Function Spec Metadata Introspection............ccccooviiieiiiiiiiicce 10-2
10.2.1.1 BSFNMELhOQ ..ot 10-2
10.2.1.2 BSEINParameter.........ccccviiiiiiiiiiiiiiciiiciccic s 10-3
10.2.1.3 BSENSPECSOUICE......cvviviiiiitctcitctce s 10-3
10.2.1.4 SPECDICHONATY ..o 10-5
10.2.2 Business Function Spec Metadata Validation............cccccceevviiiiiiininnine, 10-7
10.2.3 SpecImageConSOle. ... e 10-8
10.2.3.1 Generate Spec IMage........ccociiviiiiiiiiii 10-8
10.2.3.2 USAZE ...ttt s 10-8
10.2.3.3 OPHONS ... 10-8
10.2.3.4 EXPlanation......cccocucuiiriiiiiiiicceceee s 10-8
10.2.3.5 EXaMIPLe....iiiiiiiiiiiiiccc s 10-9
10.2.3.6 Update Spec IMage.........ccceuoiiricieicic 10-9
10.2.3.7 USAGE ...t 10-9
10.2.3.8 OPHIONS ..o s 10-9
10.2.3.9 EXPlanation.........c.ooiiiiiiccci 10-9
10.2.3.10 EXQMIPLE....coiiiii e 10-10
10.2.3.11 Validate Spec IMagecovrurieiiiicieic e 10-10
10.2.3.12 USAZE .. 10-10
10.2.3.13 OPHONS ..o 10-10
10.2.3.14 EXPlanation........cccoveiiiiiiiiiiii e 10-10
10.2.3.15 EXAMIPLE...oiiiiiiiiiiiic 10-10
10.2.3.16 Synchronize Spec IMage........c.ccccuccuieiiiiiiiiccceeee s 10-10
10.2.3.17 USAZE .. 10-11
10.2.3.18 OPHONS ... 10-11
10.2.3.19 EXPlanation......cccoeveieuriririiiiiiee st 10-11
10.2.3.20 EXaMPIe....coiiiiiiiiiiiiii s 10-11
10.3 Installing the Dynamic Java CONNECtOTcccueuiiiricieiiiiicieeci e 10-11
10.4 Running the Dynamic Java CONNECOT ... 10-14
10.4.1 Calling a Business FUNCHONc.ccouoiiiieiiiiicc s 10-14
10.4.2 BSFIN CaCRE ...ttt 10-15
10.4.3 Transaction Using the Dynamic Java Connectorcccccoiiiiciiiocccnccicenenes 10-16
10.4.4 OCM Support for the Dynamic Java CONNECtOTccovvevvivieviieriiiiiiiiiiiiicnes 10-16
10.5 Managing the User Session for the Dynamic Java Connector..........cccccoveviiiiinnnnee. 10-17
10.5.1 User Session Management for the Dynamic Java Connector............cccocccoeeccucnnnee. 10-17
10.5.2 Inbound XML Request Using the Dynamic Java Connector.............cccoeeveiiuruennnee. 10-18
10.5.3 Logging for the Dynamic Java Connector..........cccccceueuiiviriniiiiininninnnnnnncnecae 10-19
10.5.4 Exception Handling for the Dynamic Java Connector-............cccoevevvvererecncrrcnecnnes 10-19
10.6 Using Sample Applicationsccccovvvviviiiiiiiiiiiiiniiii s 10-20
10.6.1 Sample APPLCALIONSc.coovviviiiiiiiiiriiii e 10-20
10.6.2 Setting Up Sample Applications........c.cccccueuciciiiciciinieiieicereecereeeeeeeeeeeeeses s 10-20
10.6.3 Running the Sample Applicationscccccevvvveiiiiiiiiiiiie 10-21
Using Java Connector Guaranteed Events

11.1 Understanding Java Connector EVents...........ccccooviiiiiiiiiniiccccccceeeeenes 11-1
11.1.1 PrerequiSitesooiiiiiiiiiiiiiiccc s 11-1

Vii

11.2 Developing a Java Connector Events Application..........ccccceeviveiiiieiiniciiiic, 11-5

11.2.1 Understanding Java Connector Events Application Development 11-5
11.2.2 Introspection OPerations...........cccceiviviviiiiiiiiiiiii s 11-5
11.2.2.1 EventIntrospectioNAPP.java ..o 11-5
11.2.3 Asynchronous Event SeSsions ..ot 11-6
11.2.3.1 MYLISteNer java......cccoeviiiiiiiiiiiiiic e 11-6
11.2.3.2 EVentASYNCAPP JAVA....cooiiiiiiiiiiictct et 11-8
11.2.4 Synchronous Event Sessions ..ot 11-9
11.2.4.1 EventSyNCAPP JAVAccviiiiiiiiiiiic e 11-9
11.3 Using the Sample Connector Events Clientc.ccoovoiiiiiiiiiic 11-10
11.3.1 Understanding Connector Events Client Toolcccccooiiiiiiiii 11-11
11.3.2 Prerequisites for Using the Sample Connector Events Client...........ccccccovuvurenence. 11-11
11.3.3 Using the Connector Events Client TOOL.........ccccoieieiiiiiiiii e 11-11
11.3.4 Configuring the Sample Connector Events Client...........c.cccoooeiiiiiiiiciene, 11-11
11.3.4.1 To configure the Sample Connector Events Client..........ccccccevvevrvvnnrnncnne. 11-12
11.3.5 Running the Sample Connector Events Client............cccooooeiiiiiiiiiniiciiiccee 11-13
11.3.6 Resolving Java Connector Events Client Tool ISSUescccocoerueieiiciciiicicnenne. 11-13
12 Understanding jdeinterop.ini for Java Connector
12,1 Settings for the jdeinterop.ini File for the Java Connector...........cccooooriieioiiniiiiicncnnnn, 12-1
12.1.1 [OCMYI ot 12-1
12.1.2 [CACHE] ...t 12-2
12.1.3 [IDENETT....oiiiiiiiieiniiii i 12-2
12.1.4 [SERVER] ..ottt 12-2
1215 [SECURITY .ottt 12-2
12.1.6 [INTEROP] ..ottt 12-2
12.1.7 [EVENTS] ..ot 12-3
13 Understanding jdelog.properties File
13.1 Settings for the jdelog.properties File ... 13-1
13.1.1 [EILOG ittt 13-2
13.1.2 [LOGI] ottt 13-2
13.1.3 [LOG2] ot 13-2
Glossary
Index

viii

Preface

Welcome to the JD Edwards EnterpriseOne Tools Connectors Guide.

Documentation Accessibility

Audience

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or
visit http: //www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

This guide is intended for system administrators and technical consultants who install
the COM connector or the Java connector. The guide is also intended for JD Edwards
EnterpriseOne developers who receive or send information to third-party systems
using the COM connector or the Java connector.

Related Documents

You can access related documents from the JD Edwards EnterpriseOne Release
Documentation Overview pages on My Oracle Support. Access the main
documentation overview page by searching for the document ID, which is 876932.1, or
by using this link:

https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&1d=876932.1

To navigate to this page from the My Oracle Support home page, click the Knowledge
tab, and then click the Tools and Training menu, JD Edwards EnterpriseOne, Welcome
Center, Release Information Overview.

This guide contains references to server configuration settings that JD Edwards
EnterpriseOne stores in configuration files (such as jde.ini, jas.ini, jdbj.ini,
jdelog.properties, and so on). Beginning with the JD Edwards EnterpriseOne Tools
Release 8.97, it is highly recommended that you only access and manage these settings
for the supported server types using the Server Manager program. See the Server
Manager Guide.

https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=876932.1

Conventions

The following text conventions are used in this document:

Convention

Meaning

Bold

Italics

Monospace

Indicates field values.

Indicates emphasis and JD Edwards EnterpriseOne or other
book-length publication titles.

Indicates a JD Edwards EnterpriseOne program, other code
example, or URL.

1

Introduction to JD Edwards EnterpriseOne
Tools Connectors

This chapter contains the following topics:
= Section 1.1, "JD Edwards EnterpriseOne Tools Connectors Overview"

= Section 1.2, "Connectors Implementation”

1.1 JD Edwards EnterpriseOne Tools Connectors Overview

Connectors are point-to-point component-based interoperability models that enable
third-party applications and JD Edwards EnterpriseOne to share logic and data.
Oracle's JD Edwards EnterpriseOne connector architecture includes Java and
Component Object Model (COM) connectors and provides:

= Access to business functions

= Session management

= Point of entry

= Connection pooling

= Inbound transaction functionality

= Outbound event functionality

Using connectors provides additional benefits, such as:
= Connectors are scalable

= Connectors provide multi-threading

s Connectors enable concurrent users

Oracle's JD Edwards EnterpriseOne supports the COM connector and the dynamic
Java connector. The COM connector is fully compliant with the Microsoft Component
Object Model. You can easily tie JD Edwards EnterpriseOne functionality to Visual
Basic and VC++ applications. The Java connector is a portable language, so you can
easily tie JD Edwards EnterpriseOne functionality to Java applications.

The JD Edwards EnterpriseOne connectors can receive and send XML documents. The
connector architecture provides the capability to expose C and Java APIs for XML
documents. Some of the benefits of using XML documents are:

= You can use XML documents to aggregate business function calls into one object,
which reduces network traffic.

Introduction to JD Edwards EnterpriseOne Tools Connectors 1-1

Connectors Implementation

= Because XML processing is based on the connector architecture, XML processing is
scalable and multiple connections can be opened.

s XML processing supports XML CallObject, XMLList, and XMLTrans.
To decide which connector is best for you:
= Identify the logic or data that you want to access in JD Edwards EnterpriseOne.

= Decide whether you want to use business functions exposed through a connector
directly or XML documents.

Then decide whether to use a COM connector or a Java connector. If you are using an
application server, these guidelines can help you decide which connector to select:

s If you are using Site Server, Commerce Server, or .NET, consider the COM
connector.

s If you are using a J2EE-based application server, consider the Java connector.

After you determine which connector you should use, you must install and configure
the connector. Installation and configuration information for COM and Java
connectors is provided in this document.

1.2 Connectors Implementation

This section provides an overview of the steps that are required to implement a JD
Edwards EnterpriseOne Connector.

In the planning phase of the implementation, take advantage of all JD Edwards
sources of information, including the installation guides, reference guides, and
troubleshooting information.

The following implementation steps need to be performed before working with JD
Edwards EnterpriseOne connectors:

1. Install JD Edwards EnterpriseOne and set up a user account.
See JD Edwards EnterpriseOne Server Manager Guide
2. Install JD Edwards EnterpriseOne applications.

See JD Edwards EnterpriseOne Applications Installation Guide for your platform and
database.

1-2 JD Edwards EnterpriseOne Tools Connectors Guide

2

Understanding COM Interoperability

This chapter contains the following topics:
» Section 2.1, "COM Interoperability"
» Section 2.2, "D Edwards EnterpriseOne COM Interoperability"

2.1 COM Interoperability

COM enables developers to build systems by assembling reusable components from
different vendors. COM provides logic and data sharing among disparate applications.
COM is a binary interoperability specification and communication convention for
software components. It is a single-vendor technology that is available on Microsoft
platforms only. Since most independent software components are also self-contained,
they are frequently called objects or servers.

Being a binary specification, COM is inherently independent of programming
languages. Unlike software libraries or DLLs, which are compiled to specific language
or linkage conventions, COM-based software components are created ready to work
with any COM client. For example, a Visual C++ application can use COM objects
created in Visual Basic, or a VBScript within an intranet web page to control a COM
object written in MicroFocus COBOL.

The COM connector provides these two types of services on the JD Edwards
EnterpriseOne server:

= Business function execution.
These chapters discuss business function execution:
- Understanding JD Edwards EnterpriseOne COM Server.
— Deploying the COM Server for Business Functions.
- Using COM Transactions.
= Asynchronous event notifications and introspection operations.

The chapter, Using COM Connector Events - Guaranteed Events, discusses event
notifications and introspection operations.

The COM connector provides a mechanism for running business functions on the JD
Edwards EnterpriseOne server. You use the GenCOM utility on the Microsoft
Windows client to generate wrappers for business function objects. The wrappers can
be deployed on any machine. You can develop application code for the generated
wrappers using Visual Basic (VB) or C++. Once the objects change in the package, the
connector communicates with the JD Edwards EnterpriseOne server for login, logoff,
transactions, and for each business function execution call. Distributed Component

Understanding COM Interoperability 2-1

JD Edwards EnterpriseOne COM Interoperability

Object Model (DCOM) enables COM objects in a distributed environment. COM+
transactions enables COM applications and third-party applications to take part in
distributed transactions.

The COM connector supports subscribe and publish functionality for JD Edwards
EnterpriseOne events.

2.2 JD Edwards EnterpriseOne COM Interoperability

This section discusses:
= COM objects
s COM interoperability usage

2.2.1 COM Objects

Using COM, JD Edwards EnterpriseOne exposes all master and major business
functions through the interface definition language (IDL) standard. A business
function is a logical collection of C functions and their associated data structures
grouped together to produce a unit of work. With COM, JD Edwards EnterpriseOne
can pass logic and data requests to other applications using COM wrappers. COM
objects are wrappers around these business functions and data structures. These
wrappers provide common interoperability methods across dissimilar systems. A
wrapper is attached to each master and major business function and provides stubs for
third-party applications to access.

The interface provided by the COM wrappers has a one-to-one correspondence with
the business functions. For example, if within the system library a business function
named B550001 exists, and within this business function two C functions, named fool
and foo2 exist with data structures for each function, named DS1 and DS2, the
corresponding COM object would be:

Interface IDS1
{
}
Interface IDS2
{
}
Interface IB550001
{
HRESULT fool {IDS1 * param, IConnector* conn, long accessNumber) ;
HRESULT foo2 (IDS2 * param, IConnector* conn, long accessNumber) ;
}
Their associated program IDs (ProgID) would be:
IDS1 - DS1.jdeDS1.1
IDS2 - DS2.jdeDS2.1
IB550001 - B550001.3jdeB550001.1

2.2.2 COM Interoperability Usage

This illustration shows how the COM interoperability solution for business function
execution typically flows:

2-2 JD Edwards EnterpriseOne Tools Connectors Guide

JD Edwards EnterpriseOne COM Interoperability

Figure 2-1 COM interoperability solution for business function execution

Component
Architecture
1
Interoperability 3 Application Suites
Administrator COM Server Manufacturing
Financial
2 Dist./Logisti
E:Er;ﬁ Deploy_ Generated HRS Logistics
Wrappers Wrappers
'Enmmunil:ate.
EnterpriseOne
Component
4 Architactura
Technology Layer
X IBM i
& Windows
LINIX
L 4
Interoperability
DLLU/Class/IDLtlb — 5 —» Clients/Third-
Party Applications
Interoperability Interoperability
Developers Developers

1. The administrator generates the COM wrappers.

2. The administrator deploys the COM objects to the COM server.

3. The COM server enables communication with the application server so that the
generated COM objects can be used in applications.

4. The COM objects are configured to communicate with the application server once
the COM objects are on the COM server.

5. The DLLs or IDLs from the generated COM objects are copied so that developers
can use them.

6. The application developers create the applications.

7. The applications communicate with the COM server.

This illustration shows how the COM interoperability solution for event notification
and introspection typically flows:

Understanding COM Interoperability 2-3

JD Edwards EnterpriseOne COM Interoperability

Figure 2-2 COM interoperability solution — event notification and introspection

Install EnterpriseOne
Windows Client

Set Up a Non-
EnterpriseOne
Environment

@ @ Configure
D~

COM Connector COMl

Interoperability
Client/Third Party

(4) >

(2)

COM Component

»

Component
Architecture

1. Install a JD Edwards EnterpriseOne client.

2. Configure the COM connector.

EnterpriseOne

3. COM connector enables communications with JD Edwards EnterpriseOne so that
clients can introspect and subscribe to events.

4. Applications developer creates applications to subscribe to and receive events.

2-4 JD Edwards EnterpriseOne Tools Connectors Guide

3

Understanding the COM Solution for Business

Function Execution

This chapter contains the following topics:

Section 3.1, "JD Edwards EnterpriseOne COM Server"
Section 3.2, "COM Connector"

Section 3.3, "GenCOM Components"

Section 3.4, "COM Wrapper CheckVer"

3.1 JD Edwards EnterpriseOne COM Server

The

JD Edwards EnterpriseOne COM server contains two parts:
COM connector.

Generated JD Edwards EnterpriseOne COM (GenCOM) components (wrappers).

This diagram shows the two parts of the COM server:

Figure 3—1 Parts of the COM server

@
@

® Q@ % Connector
QQ @

EnterpriseOne Interface

A

Generated
Business Functi
Wrappers

JDENET middleware
access to EnterpriseOne

ons COM Connector

Understanding the COM Solution for Business Function Execution 3-1

COM Connector

3.2 COM Connector

The COM server provides an interface to JD Edwards EnterpriseOne, executes
business functions within valid transactions, and provides error processing for
interoperability clients. The main component of the COM server is the COM connector.
The COM connector provides COM components that interface with JD Edwards
EnterpriseOne and hosts the business component DLL generated by the GenCOM
tool. The COM connector also provides the connector component that enables an
interoperability client to log in and log out from JD Edwards EnterpriseOne. It
manages all user sessions connected to the COM server. This table identifies the
binaries that combine to comprise the COM connector:

Binary Explanation

JDECOMConnector2.exe Primary interface for login and createBusinessObjects. Also
maintains the created users and business objects.

JDECOMMN.AI Interface for JDEMathNumeric and JDETimeZone.

Callobject.dll Internal to JDECOMConnector.exe.

Comlog.dll Used for logging, cache, and OCM lookup.

EventClass.dll JD Edwards EnterpriseOne event class that is implemented to
receive events.

EventListener.dll Receives events from the JD Edwards EnterpriseOne server and
publishes the events to COM+ Events.

EventManager.dll Provides the interface for subscribe, unsubscribe, getList, and
getTemplate for events.

jdeunicode.dll The Unicode library, which is internal to JD Edwards

EnterpriseOne.

OneWorldInterfaceTx.dll

Provides the interface for JD Edwards EnterpriseOne
transactions and COM+ two-phase commit transactions.

Xmlinterop.dll

Contains the JDENET transport mechanism and the
XMLRequest.

ClientService.dll Enables event notification and introspection using XML over
HTTP protocol. Applicable for JD Edwards EnterpriseOne 8.95
and later Tools releases only.

EventHandler.dll Receives events from the Transaction server and publishes

events to COM+.

The JDECOMConnector2.idl defines the COM interfaces of the COM connector.
JDECOMConnector2.idl is available under the Include directory.

The COM connector is available with the JD Edwards EnterpriseOne server and client
install.

3.3 GenCOM Components

This section discusses:

= Section 3.3.1, "Understanding GenCOM".

m Section 3.3.2, "Installation Information".

= Section 3.3.3, "ProgID".

= Section 3.3.4, "Setting Up an Environment for GenCOM".

3-2 JD Edwards EnterpriseOne Tools Connectors Guide

GenCOM Components

= Section 3.3.5, "Running GenCOM".
= Section 3.3.6, "Using GenCOM Output".

3.3.1 Understanding GenCOM

GenCOM is a client tool that uses a multipass process to generate JD Edwards
EnterpriseOne COM components. GenCOM is included in the client installation. The
COM Generation Tool is in <install>\system\bin32\GenCOM.exe.

GenCOM is a command line tool that reads a script file to determine which
components to generate. GenCOM uses an iJDEScript file as input to generate a COM
DLL that is hosted by the COM connector. The iJDEScript file specifies wrapper
components for business functions. Once the generated wrapper components are
registered to the COM environment, they can be used to access business function

functionality.

This illustration shows the process:

Figure 3-2 GenCOM process

Client Workstation

. , .| EnterpriseOne
iJDEScript Client
\
1 2
v
GenCOM 6—> Makefile
A |
4 7
v ! v
COM Wrapper
Source
IDL
Emitter Tree COM DLLs

1. GenCOM reads the i]DEScript file.

Enterprise Server

3—>

EnterpriseOne
Server

2. GenCOM retrieves the metadata for the business functions specified in the

iJDEScript file.

3. GenCOM resolves dependency on the data structure.

4. GenCOM creates an internal emitter tree for the library to be generated.

Understanding the COM Solution for Business Function Execution 3-3

GenCOM Components

5. GenCOM reads each node of the internal emitter tree and generates the
appropriate COM code.

6. GenCOM generates a make file.
7. GenCOM compiles and builds the COM DLL from the generated code.
See Understanding iJDEScript.

3.3.2 Installation Information

Because the GenCOM application produces interfaces based on the package currently
installed on the machine, installation plans must be made on a site-by-site basis. The
DLLs produced are business function release-dependent and can be installed only on
machines with the identical packages available.

The GenCOM output is COM servers in the form of DLLs. You can use these DLLs to
create an interface with the JD Edwards EnterpriseOne system. You should not assume
that a client has installed these servers as part of the standard JD Edwards
EnterpriseOne installation. You should provide a full installation of any of the servers
the applications require.

3.3.3 ProgID

Each time GenCOM generates a wrappet, it creates a ProgID for each COM
component. The ProgID identifies the COM component in the registry. The ProgID is
independent of JD Edwards EnterpriseOne and is based on the library and the
interface specifications in the script file. The key, OneWorldRelease, contains the JD
Edwards EnterpriseOne release and environment information. For example, if the
library name is AddressBook and the interface name is JDEAddressBook, then the
ProgID will be AddressBook.JDE AddressBook. If GenCOM is run with environment
DVONIS2, then the OneWorldRelease key contains DVINIS2. If a type mismatch exists,
you receive a warning.

The CompatibleEnvironment key remembers the list of JD Edwards EnterpriseOne
environments with which the wrapper is compatible. If an environment is not on the
list or is listed as incompatible, the COM client receives an error message when trying
to create the object with the environment.

This sample code illustrates the standard ProgID naming conventions:

HKEY CLASSES ROOT\

CLSID\{77454442-7941-44BB-9BCB-4253E80AC8B3) }

\InprocServer32 C:\B9\System\IDA\Samples\AddressBook\AddressBook.dll
\ProgID AddressBook.JDEAddressBook

\VersionIndependentProgID AddressBook.JDEAddressBook
\OneWorldRelease DVINIS2

\CompatibleEnvironment DVINIS2

3.3.4 Setting Up an Environment for GenCOM

You set up an environment for GenCom on a Microsoft Windows client using
Microsoft Visual Studio 2010. Setting up the GenCOM environment involves several
steps. You should make sure that these items are set up appropriately:

s Include directories
s Lib Directories

m Paths

3-4 JD Edwards EnterpriseOne Tools Connectors Guide

GenCOM Components

= Basemake directory

= BKoffice directory

= DXSDKROOT directory
s INETSDK directory

3.3.4.1 Example: Include Directories
<Directory where Microsoft Visual Studio 2010 files are located>\include

Example: C:\Program Files\Microsoft Visual Studio 10.0\VC\PlatformSDK\Include
Example: C:\Program Files\Microsoft Visual Studio 10.0\VC\atlmfc\include
Example: C:\Program Files\Microsoft Visual Studio 10.0\VC\include

<Directory where JD Edwards EnterpriseOne is located and release either Master,
Prod, or Pristine>\include

Example: C:\B9\System\include
Example: C:\B9\System\includev
Example: C:\BO\STAGINGA\include

3.3.4.2 Example: Lib Directories
< Directory where Microsoft Visual Studio 2010 files are located>\1ib

Example: C:\Program Files\Microsoft Visual Studio 10.0\SDK\v2.0\Lib
Example: C:\Program Files\Microsoft Visual Studio 10.0\VC\lib
Example: C:\Program Files\Microsoft Visual Studio 10.0\VC\atlmfc\lib
< Directory where JD Edwards EnterpriseOne is located>\System\Lib32
Example: C:\B9\system\ Lib32

3.3.4.3 Example: Paths

< Directory where Microsoft Visual Studio 2010 files are located>

Example: C:\Program Files\Microsoft Visual Studio 10.0\SDK\v2.0\Bin
Example: C:\Program Files\Microsoft Visual Studio 10.0\Common7\Tools
Example: C:\Program Files\Microsoft Visual Studio 10.0\Common7\Tools\Bin
Example: C:\Program Files\Microsoft Visual Studio 10.0\VC\bin

Example: C:\Program Files\Microsoft Visual Studio 10.0\VC\PlatformSDK\

< Directory where Windows NT is located>

Example: C:\Winnt\System32

3.3.4.4 Example: Basemake Directories

Example: C:\Program Files\ Microsoft Visual Studio
10.0\VC\PlatformSDK\Include\BK Office.Mak

3.3.4.5 Example: Bkoffice Directories
Example: C:\Program Files\Microsoft Visual Studio 10.0\VC\PlatformSDK

Understanding the COM Solution for Business Function Execution 3-5

GenCOM Components

3.3.4.6 Example: DXSDKROOT Directories
Example: C:\Program Files\Microsoft Visual Studio 10.0\VC\PlatformSDK

3.3.4.7 INETSDK directory
Example: C:\Program Files\Microsoft Visual Studio 10.0\VC\PlatformSDK

3.3.5 Running GenCOM

You run GenCOM from the command line to expose objects through COM. In a
development environment, developers may run the COM Generation tool. In a
production environment, a system administrator should run the COM Generation
Tool.

To run GenCOM in Visual Studio 2010, include this setting in the JD Edwards
EnterpriseOne Client jde.ini File, [JDE_CG] section:

VisualStudioVersion=10

When you use GenCOM, use the iJDEScript scripting language to script code
generation activities. The syntax is:

GenCOM [options] [libraries]
For example, if you want to see available libraries that you can run GenCOM against,

you enter the command C:\B9\System\Bin32>gencom /ListLibraries from the
system command line.

To generate COM wrappers for Category 1 business functions in the CAEC library,
enter this command from the command line:

GenCOM /Cat 1 /UserID Devuserl /Password Devuserl /Environment ADEVHP02 CAEC

Options available for generation include:

Option Description
/? Lists the options available for generation.
/C++ <option> Provides GenCOM with the compiler options you want to use in the

generation of the COM servers.

/Cat <category> Tells GenCOM to generate wrappers based on these categories:
master business functions
major business functions
minor business functions

uncategorized business functions

/CL <file> Tells GenCOM what compiler (.exe) to use for compilation.
/Cmd * Processes code generation commands from the console.

/Cmd <filename> Processes code generation commands from <filename>.

/Debug Builds debug information (.pdb and .bsc files) into the libraries so

that the Visual Studio debugger can access source information.

/EnvironmentID <env> Provides GenCOM with the environment in which you want to sign
in to JD Edwards EnterpriseOne.

/ErrFile <file> Provides GenCOM with the filename to log errors produced by
GenCOM during the generation process, for example, errors.log.

3-6 JD Edwards EnterpriseOne Tools Connectors Guide

GenCOM Components

Option Description

/MIDL Provides GenCOM with the MIDL compiler options you wish to use
in the generation of the COM servers.

/MTL <file> Tells which MIDL compiler (.exe) to use for compilation.

/ListLibraries Lists all the available libraries against which you can run GenCOM.

/MsgFile <file> Provides GenCOM with the filename to log messages produced by
GenCOM during the generation process, for example, messages.log.

/NoBSFN Tells GenCOM not to create wrappers for business functions. This
option is for generating parameter sets only.

/NoCompile Tells GenCOM to generate the source files without compiling.

/NoDebug Optimizes libraries for space using the /O1 Visual C++ compiler
option.

/Out <path> Provides GenCOM with the directory path in which to place the

output files, for example C:\winnt\system32.

/OWRelease flag for You can override the OWRelease information by activating this flag

GenCOM and typing a string that specifies the version information. The
recommendation is that you follow a naming convention that is
consistent throughout the implementation or use the default version
information that is generated by GenCOM.

/Password <password> Provides GenCOM with the password with which you want to sign
in to JD Edwards EnterpriseOne.

/Role Provides GenCOM with the role with which you want to sign in to
JD Edwards EnterpriseOne.

/STA Generates STA components. (By default, all generated components
are MTA and are optimized for scalability and performance. /STA
enables you to generate STA components if you need them.)

/TempOut <path> Provides GenCOM with the directory path in which to place
temporary files needed for the build process, for example, C:\temp.

/UserID <userid> Provides GenCOM with the user name with which you wish to sign
in to JD Edwards EnterpriseOne.

3.3.6 Using GenCOM Output

The output for GenCOM produces fully functional COM servers based on the library
to which you generate wrappers. Because you are interacting with the JD Edwards
EnterpriseOne system, you must follow security and installation procedures to gain
access to the system.

You must have a fully licensed copy of JD Edwards EnterpriseOne properly installed
on the target machine. You must also sign in to the JD Edwards EnterpriseOne
environment. For the sign-in process, you use the jdeCOMConnector interface.

3.3.6.1 Visual Basic

This code example demonstrates how to use a generated COM business function
wrapper in Visual Basic. This example creates business objects. Refer to the
AddressBook sample included with the COM interoperability software for a complete
working example of this functionality.

Dim WithEvents OW As OneWorldInterface '//OneWorldInterface
Dim conn As New Connector '//COM Connector

Dim connRole As IConnector2 '//Connector Interface with role
Dim AB as JDEAddressBook '//AddressBook

Understanding the COM Solution for Business Function Execution 3-7

GenCOM Components

Dim phone as D0100032 '//Data Source

Dim Mailing As D0100031 '//Data Source

Dim AddressAs D0100033 '//Data Source

Dim EffectiveDate As D0100019 '//Data Source

DimParentAddress As D0100381 '//Data Source

Dim sessionID As Long '//server Session ID

Private Sub Form_Load()

Set connRole = conn

'sessionID=conn.Login("Foo", "Bar", "DVINIS2", "*ALL")
sessionID=connRole.Login("Foo", "Bar", "DVINIS2", "*ALL")

Set OW = conn.CreateBusinessObject ("OneWorld.FunctionHelper.1l", sessionID)
Set AB = conn.CreateBusinessObject ("AddressBook.JDEAddressBook", sessionID)
Set phone = AB.CreateGetPhoneParameterset

Set Mailing = AB.CreateGetMailingNameParameterset

SetAddress = AB.CreateGetEffectiveAddressParameterset

Set EffectiveDate = AB.CreateGetABEffectiveDateParameterset

Set ParentAddress = AB.CreateGetParentAddressParameterset

End Sub

3.3.6.2 Visual C++

This Visual C++ code example demonstrates how to create the connector and how to
create a business function on the COM server. This example creates an AddressBook
business function and uses GenCOM objects from C++.

#include <windows.h>
#include <stdio.h>
#include <objbase.h>
#include <comdef.h>
#include <wchar.h>
#include addressbook.h
#include AddressBook_i.c
#include jdecomconnector2.h
#include jdecomconnector2_i.c
#define IPhone ID0100032
#define IMailing ID0100031
#define IAddress ID0100033
#define IEffectiveDate ID0100019
#define IParentAddress ID0100381
#define SERVER OLESTR("COMSRV") //Change to the COM server.
#define ABNO 4242 //change this according to user input.
HRESULT CreateConnector (IConnector **ppConnector)
{
HRESULT hr = E_FAIL;

*ppConnector = 0;

//NOTE: Pass a COSERVERINFO struct to activate on a remote machine
COSERVERINFO csi = {0, SERVER, 0, 0};
MULTI_QI mgi = { &IID_IConnector, 0, 0 };
hr = CoCreateInstanceEx (CLSID Connector, 0, CLSCTX_LOCAIL_SERVER,
0, // &csi,
1, &mgi);

1f (SUCCEEDED (hr) && SUCCEEDED (mgi.hr))
{

ppConnector = reinterpret_cast<IConnector*> (mgi.pItf);

}

return hr;

}

3-8 JD Edwards EnterpriseOne Tools Connectors Guide

GenCOM Components

HRESULT Login(IConnector **pConnector, IOneWorldInterface **ow,
long *accessno)
{

HRESULT hr;

IDispatch *idsptch = 0;

printf ("Login started\n");
bstr_t User(L "Foo "), PassWord(L"Bar "), Env("DVINIS2");
hr = (*pConnector)->Login(User,PassWord, Env,accessno);

if(!SUCCEEDED (hr))

printf("Login failed with hr = %x", hr);

return E_FAIL;
}
_bstr_t bo("OneWorld_FunctionHelper.1l");
hr=(*pConnector) ->CreateBusinessObject (bo, *accessno, &idsptch);
if(!SUCCEEDED (hr) || (!ow))
{

Printf ("CreateBusinessObject (OneWorld.FunctionHelper.1l) failed
with hr %x",hr);

return E_FATL;

}
hr=idsptch->QueryInterface (IID_IOneWorldInterface, (void **)ow);
if (I SUCCEEDED (hr) | | (low))

{

Printf(QueryInterface for IOneWorldInterface failed with hr "%x",hr);
return E_FAIL

}

printf ("Login completed \n");

return S_OK;

}

HRESULT UseAddressBook (IConnector *pConnector, IOneWorldInterface
*ow, long*accessno)

{

HRESULT hr;

IJDEAddressBook *ab;

IDispatch *idsptch;

IPhone *phone;

IMailing *Mailing;

IAddress *Address;

IEffectiveDate *EffectiveDate;

IParentAddress ParentAddress;

printf ("Starting to use AddressBook\n");
_bstr_t bo("AddressBook.JDEAddressBook") ;
hr = pConnector->CreateBusinessObject (bo, *accessno, &idsptch);
hr = idsptch->QueryInterface(IID_IJDEAddressBook, (void **&ab);

if (I SUCCEEDED (hr) | | (tab))

printf("CreateBusinessObject(AddressBook) has failed with hr %x",
hr);

return E_FAIL;

}

return S_OK;

}

Understanding the COM Solution for Business Function Execution 3-9

COM Wrapper CheckVer

This code creates the connector object and uses it to create a business function with its
associated ParameterSet. The code then calls a method, Fool, on the business object
with the ParameterSet, the connector, and the access code returned by the act of
logging on to the connector.

Int main(int argc, char *argv([])

{

HRESULT hr;

IOneWorldInterface *ow;

long accessno;

IConnector *pConnector;

hr - CoInitializeEx (0, COINIT_MULTITHREADED) ;
if (SUCCEEDED (hr))

(

hr = CreateConnector (&pConnector) ;

if (SUCCEEDED (hr))

{

Login(&pConnector, &ow, &accessno);
//Do more processing with AddressBook and logoff at the end.
}

CoUninitialize();

}

3.4 COM Wrapper CheckVer

You can run CheckVer to verify whether a previously generated COM object is
compatible with another environment. Typically, a system administrator performs this
task.

The XML files generated by GenCOM are the signatures of the objects generated
against specific JD Edwards EnterpriseOne environments. These XML files can be used
with CheckVer to verify that the wrappers on the COM server are compatible with
these environments.

When you introduce a new JD Edwards EnterpriseOne environment, you run
GenCOM against the new environment by using the /NoCompile option. You also use
the iJDEScript that you used to generate the wrappers on the COM server to generate
XML signature files for the objects in the new environment. Run CheckVer on the
COM server with the newly generated XML files to verify that the new environment is
compatible with wrappers on the COM server that was previously generated with a
different environment. CheckVer updates the registry settings for the wrapper on the
COM server according to the result of the compatibility test. If the new environment is
incompatible, the COM client cannot create business objects with the new
environment.

3.4.1 Running CheckVer

CheckVer compares the XML signature file that is produced from GenCOM with the
spec definitions on the local JD Edwards EnterpriseOne client machine. You can run
CheckVer from the command line on the COM server, or CheckVer can be run
automatically as part of the GenCOM process.

To see the options that CheckVer provides, run this command from the command line:

c:\>CheckVer.exe -?

3-10 JD Edwards EnterpriseOne Tools Connectors Guide

COM Wrapper CheckVer

3.4.1.1 Syntax

CheckVer [option] <filename>

3.4.1.2 Example

CheckVer -r addressbook.xml

3.4.1.3 Options

-1 -- CheckVer reports only whether the environment is compatible with the server. It
does not update the registry settings for the wrapper on the COM server with the
result, and CheckVer does not validate the wrapper DLL.

Understanding the COM Solution for Business Function Execution 3-11

COM Wrapper CheckVer

3-12 JD Edwards EnterpriseOne Tools Connectors Guide

4

Deploying the COM Solution for Business

Function Execution

This chapter contains the following topics:

Section 4.1, "Understanding COM Server Deployment for Business Function
Execution”

Section 4.2, "Setting Up the DCOM Server for Business Function Execution”
Section 4.3, "Installing COM Connector"

Section 4.4, "Using OCM Support with COM Connector"

Section 4.5, "Using BHVRCOM with COM"

Section 4.6, "Use IJDETimeZone Interface"

Section 4.7, "Requesting Inbound XML Using COM Server"

Section 4.8, "Using COM Reliability"

Section 4.9, "Using COM Tracing and Logging"

4.1 Understanding COM Server Deployment for Business Function

Execution

The COM server uses socket-based middleware to access the JD Edwards
EnterpriseOne application server. The jdeinterop.ini file must be configured to specify
the JD Edwards EnterpriseOne server. The COM server reads the jdeinterop.ini file
and opens the socket connection to the specified application server.

This diagram illustrates COM server deployment:

Deploying the COM Solution for Business Function Execution 4-1

Setting Up the DCOM Server for Business Function Execution

Figure 4-1 COM server deployment

Interop Server

Interop Client

Generated
Wrappers

Interop Client «<—JDENet—>»{ EnterpriseOne

Interop Client »> Architecture

Qi Component |

4.2 Setting Up the DCOM Server for Business Function Execution
This section provides an overview of the DCOM server and discusses how to:
= Set up DCOM for a server environment.
= Set up security on the COM server.
= Set up the identity as interactive user.

s Set up DCOM for a client environment.

4.2.1 Understanding DCOM Server Set Up

You can set up a DCOM server on a JD Edwards EnterpriseOne server machine.
DCOM enables COM objects in a distributed environment. To ensure that the
interoperability client works properly, you must set up DCOM for both a server
environment and for a client environment.

4.2.2 Setting Up DCOM for a Server Environment

Use these steps to set up DCOM for a server environment:
1. Run GenCOM on a JD Edwards EnterpriseOne client machine, with these options:
gencom /out <path> /tempout <path> /cmd App.cmd

Because GenCOM is a JD Edwards EnterpriseOne client-side only tool, you must
perform this step on a JD Edwards EnterpriseOne client machine.

2. Copy the App.dll file and the App.tlb file generated by GenCOM to the COM
server machine.

3. On the COM server machine, from the command line:
- Runjdecomconnector2.exe /RegServer.
- Runregsvr32 App.dll.

— Set the correct security level for jdecomconnector2.exe and App.dlL

4-2 JD Edwards EnterpriseOne Tools Connectors Guide

Setting Up the DCOM Server for Business Function Execution

4.2.3 Setting Up Security on the COM Server

Use these steps to set up security on the COM server:

1. From the Start menu, select Run.

2. Enter Dcomcenfg.exe.

3. On Distributed COM Configuration Properties, click the Default Security tab.
4. Click the Edit Default Button in Default Access Permissions group.

The Registry Value Permissions form appears. Some entries might already be
present.

5. On Registry Value Permissions, click Add.

6. On Add Users and Groups, select the appropriate domain from the List Names
From option.

7. Click Everyone, and then click Add.
Type of access should be Allow Access.
8. Click OK.

Repeat Steps 4 through 7 for default launch permissions. No setup is required for
default configuration permissions.

4.2.4 Setting Up the Identity as Interactive User

Use these steps to set up the identity as interactive user:
1. Run DCOMCnfg.

2. On Distributed COM Configuration Properties, select JDECOMConnector2, and
then click Properties.

3. OnJDECOMConnector2Properties, click the Identity tab, and then select the
interactive user option.

4. Click Apply to apply the change.

Note: You must perform this task every time you register the
connector. If you copy the JDECOMConnector2.exe using Explorer,
Explorer reruns the registration, and you must repeat these steps.

To use Callbacks (Connection Points) with the COM solution, repeat the same
procedure on the COM client machine. Most of the shipped examples use Callbacks
and require that you open the security on the client machine.

4.2.5 Setting Up DCOM for a Client Environment

Use these steps to set up DCOM for a client environment:

1. From a DOS prompt on the DCOM client machine, run jdecomconnector2.exe
/RegServer.

2. At the prompt, enter oleview.exe.
3. From the menu bar, select oleview.

4. Click View and select Expert Mode.

Deploying the COM Solution for Business Function Execution 4-3

Installing COM Connector

10.
11.

In the oleview window under Object Classes, double-click All Objects, and wait
for all objects to appear.

Under All Objects, find and click Connector Class.

Click the Implementation tab on the right-side panel, and then click the local
server and remove anything that appears in the editing window.

On the Activation tab, select the Launch as Interactive User option.
In Remote Machine Name, enter the COM server machine name.
Repeat steps 5 through 8 for MathNumeric Class.

Start the DCOM client application.

Note: Client-only business functions are not reachable.

4.3 Installing COM Connector

This section discusses how to install the COM connector in a non-JD Edwards
EnterpriseOne client environment.

4.3.1 Installing COM Connector on a Non-JD Edwards EnterpriseOne Client

Environment

Use these steps to install the COM connector on a non-JD Edwards EnterpriseOne
client machine:

1.

Copy these files from the JD Edwards EnterpriseOne server (system\bin32) to a
directory on the desired machine. For example, copy the files in c:\program
files\]DEdwards to a non-JD Edwards EnterpriseOne client machine.

- CallObject.dll

— ClientService.dll

- comlog.dll

- EventHandler.dll

— EventListner.dll

- icuil8n.dll

- icuuc.dll

— JDECOMConnector2.exe
- jdecommn.dll

- jdel.dll

- jdeunicode.dll

— PSThread.dll

— ustdio.dll

- XERCES4C.dll

- XercesWrapper.dll
- XERCESDDOM.dI1

- xmlinterop.dll

4-4 JD Edwards EnterpriseOne Tools Connectors Guide

Using OCM Support with COM Connector

- XMLRequest.dll

2. Create a new directory Icu\data\ on the machine where the COM server is
located. Copy all of the files from the JD Edwards EnterpriseOne server in folder
system\Locale\xml*.* into Icu\data\. Create a new system variable, ICU_DATA,
in the environment variables of the system properties and specify the path to the
Icu\data\ as the value.

3. Execute this command on the target location to register the COM connector
components:

JDECOMConnector2.exe /RegServer

4. Run GenCOM on a JD Edwards EnterpriseOne client machine and copy the
output DLL and the wrapper components (for example, wrapper.dll).

5. Execute this command to register the COM wrapper components:

regsvr32 wrapper.dll

6. Create the JDEinterop.ini file.

Set the]D Edwards EnterpriseOne server and port values to the JD Edwards
EnterpriseOne application server with which you want the COM server to
communicate.

The COM server is now ready:.
To unregister the COM server, use the /unreserved option. For example:

JDECOMConnector2.exe /unreserved

To unregister the COM wrapper, use the /u option. For example:

regsvr32 /u wrapper.dll

See Also:

= Understanding jdeinterop.ini for COM Connector.

4.4 Using OCM Support with COM Connector

You use Object Configuration Manager (OCM) to map business functions to a JD
Edwards EnterpriseOne server so that the COM connector can access OCM to run
business functions. You no longer configure the jdeinterop.ini file to define the JD
Edwards EnterpriseOne server from which you want to execute business functions.
Using OCM support should result in increased performance, scalability, and load
balancing. OCM mapping enables the COM interoperability server to distribute the
processes of the COM connector client to various JD Edwards EnterpriseOne servers'
requests, depending on the user, environment, and role name.

To take advantage of COM connector OCM support, the system administrator should:

s Get the GenCOM JD Edwards EnterpriseOne 8.10 (or later) version and regenerate
the business wrapper function.

s Configure the OCM and map the business function on the enterprise server.

= Add these settings in the jdeinterop.ini configuration file.

Deploying the COM Solution for Business Function Execution 4-5

Using BHYRCOM with COM

4.4.1 [INTEROP]

Setting Explanation

EnterpriseServer = ntroptl For COM events and backward compatibility.

SecurityServer = ntroptl Validates the login.

Port = 6079 The port number.

The database administrator or JD Edwards EnterpriseOne administrator can provide
these settings for the [OCM] section of the jdeinterop.ini configuration file. This
information is used for database connectivity.

4.4.2 [OCM]

Setting Explanation
DSN=ODA ITTND17 The data source name from the system DSN of the ODBC
setting.

OCM Datasource = COM OCM System data source for JD Edwards EnterpriseOne client.

DB User = JDE User for the data source connection.

DB Pwd =]JDE Password for the data source connection.

Object Owner = SYS9 For UNIX platforms, this is the object owner in the [DB
SYSTEM SETTINGS].

Seperator=. For Oracle, SQL and UDB databases, the separator is a period

(.); for IBM i, the separator is a slash (/).

If you use a client machine, the settings can be found in the client jde.ini file. An
example of the database name and object owner is: JDE9.S5YS9, where JDE9 is the
database name and SYS9 is the object owner.

4.5 Using BHYRCOM with COM

JD Edwards EnterpriseOne clients use the BHVRCOM structure to control the
execution of business functions. A COM client can use the IBHVRCOM interface to set
and get BHVRCOM values for business functions. The interface definition is in the
jdeconnector2.idl file.

This Visual Basic code demonstrates how to query the IBHVRCOM interface and pass
values to business functions:

Dim conn As New Connector '//COM Connector

DIM WithEvents OW As OneWorldInterface '//OneWorldInterface

Dim myBHVRCOM As IOneWorldBHVRCOM '//BHVRCOM

Dim AB As JDEAddressBook '// AddressBook

Dim phone As D0100032 '//Data source

1 = conn.Login("JDE", "JDE", "M7332RS02")

Set OW = conn.CreateBusinessObject ("OneWorld.FunctionHelper.1",1)
Set myBHVRCOM = OW '// query the IOneWorldBHVRCOM interface
MyBHVRCOM.iBobMode = 8 '// set BHVRCOM values

MyBHVRCOM. szApplication = "myApp"

MyBHVRCOM. szVersion = "myVersion"

Set AB = conn.CreateBusinessObject ("AddressBook.JDEAddressBook", 1)
Set phone = AB.CreateGetPhoneParameterset

4-6 JD Edwards EnterpriseOne Tools Connectors Guide

Use IJDETimeZone Interface

Phone.mnAddressNumber = 1
AB.GetPhone phone, OW, conn, 1 '// business function is executed with
the BHVRCOM values

This table explains some of the code:

Code Explanation

myBHVRCOM.iBobMode= BobMode is the mode (add, update, delete) of the interactive
application. Values for BobMode are:

BOB_MODE_UNDEFINED = 0
BOB_MODE_SPECIAL =1
BOB_MODE_ADD =2
BOB_MODE_ADD_PRIMARY =3
BOB_MODE_ADD_SPECIAL = 4
BOB_MODE_DELETE =5
BOB_MODE_UPDATE = 6
BOB_MODE_UPDATE_SPECIAL =7
BOB_MODE_INQUIRE = 8
BOB_MODE_COPY =9

myBHVRCOM.szApplication= The value is the name of the interactive application.

MyBHVRCOM.szVersion= The value is the version of the interactive application. This
field can be used for localizations of the applications.

4.6 Use IUDETimeZone Interface

To modify and display the JDEUTIME data type in the appropriate format, the COM
client and GenCOM must use the JDEUTIME APIs. Date and time information is
displayed in a time based on the date and time that is in the personal profile or a time
zone specified by an application.

These steps, along with sample code, illustrate how to use the IJDETimeZone Interface.
n Create the IJ]DETimeZone interface.

MULTI_QI mgi = { &IID_IJDETimeZone, 0, 0 };
hr = CoCreatelInstanceEx (CLSID_JDETimeZone, 0, CLSCTX_ALL, 0, 1, &mgi);
if (SUCCEEDED (hr) && SUCCEEDED (mgi.hr))

{
ppJddeTimeZone = reinterpret_cast<IJDETimeZone> (mgi.pItf);
3.

m Set the time for a time zone (UTC-5:30) for the data structure DXXXXXX.

If a time zone is not specified, the time is considered to be at UTC. If an invalid
time zone string is passed, then an error occurs.

DATE dt;

BSTR bstrUTC = SysAllocString (L"UTC-5:30");
pJDETimeZone->put_DateTime (bstrUTC, &dt) ;
DXXXXXX->put_jdOrderDate (pJDETimeZone) ;

= Get a time for a given time zone from JD Edwards EnterpriseOne.

Deploying the COM Solution for Business Function Execution 4-7

Requesting Inbound XML Using COM Server

If a time zone string is not passed, the time and date stored in JD Edwards
EnterpriseOne, which is at UTC, is returned. If an invalid time string is passed,
then an error occurs.

DXXXXXX->get_jdOrderDate (pJDETimeZone) ;
DATE dt;

BSTR bstrUTC = SysAllocString (L"UTC-5:30");
pJDETimeZone->get_DateTime (bstrUTC, *dt) ;

4.6.1 XML File generated by GenCOM for IUDETimeZone

For each data item whose data type is JDEUTIME in the data structure DXXXXXX,
GenCOM generates this XML file:

<Signature environment="Environment Name">
<Interface name="Interface Name">
<Method name="BSFN">
<Param name="DXXXXXX" type="u" />
</Method>
</Interface>
</Signature>

4.7 Requesting Inbound XML Using COM Server

You can use the COM connector to send inbound synchronous XML requests (such as
XML CallObject, XML List, and XML UBE) to the JD Edwards EnterpriseOne server.

See Also
= "Submit a UBE from XML" in the |D Edwards EnterpriseOne Tools Interoperability
Guide.

= "Understanding XML CallObject" in the D Edwards EnterpriseOne Tools
Interoperability Guide.

s "Understanding XML List" in the JD Edwards EnterpriseOne Tools Interoperability
Guide.

This sample code shows how to use the COM connector to execute an inbound XML
request.

// File: testDriver.cpp

// Purpose: a test driver to submit the xml request document to OneWorld through
// ThinNet

// Usage: testDriver <input xml doc> <host> <port> <timeout>

// Platform: Win32 Console Program.

// DLL requirement: xmlinterop.dll, jdeunicode.dll, jdel.dll, jdethread.dll.

#include "iostream"
#include "fstream"
#include "string"
#include <jde.h>
#include <jdeunicode.h>

extern "C" ZCHAR * JDEWINAPI jdeXMLRequest (const JCHAR *szHostName, unsigned short

usPort, const int nNetTimeout, void *xml, int size);
extern "C" void JDEWINAPI jdeFreeXMLResponse (ZCHAR *szResp);

4-8 JD Edwards EnterpriseOne Tools Connectors Guide

Requesting Inbound XML Using COM Server

int _cdecl wmain(int argc, wchar_t* argv[], wchar_t* envpl[])

{

ZCHAR *buf;

DWORD dwSize;
DWORD dwBytesRead;
HANDLE hFile;

if(argc != 5)

{

std::wcout << _J("Usage: cotest <input xml doc> <host> <port> <timeout>");
return 0;

// read the <XML input doc>.
// Note: the APIs for reading the file are only avaliable in win32.

if (INVALID_HANDLE VALUE == (hFile = CreateFile(argv[l], GENERIC_READ,
0, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL)))
return 0;

if (OXFFFFFFFF == (dwSize = ::GetFileSize(hFile, NULL)))
return 0;

buf = new ZCHAR[dwSize + 1];

memset (buf, 0, dwSize+l);

if (!ReadFile(hFile, buf, dwSize, &dwBytesRead, NULL))
return 0;

CloseHandle (hFile);

// call C thinNet API to send XML request document
ZCHAR* presp = jdeXMLRequest (argv([2], jdeAtoi(argv([3]), jdeAtoi(argv[4]), buf,
0);

// write the XML response into a log file <xmlDoc.log>
// Note: the APIs for writing the file are only avaliable in win32.
std: :wstring outFile((JCHAR*)argv([1l]);

std::wstring outExt (_J(".log"));
int 1i;
if((i = outFile.find(_J("."))) > 0)

{

outFile.replace(i, 4, outExt);

}
else
{
outFile.append(outExt);
}

ZCHAR *outfile = new ZCHAR[jdeStrlen(outFile.c_str())+1];
jdeFromUnicode (outfile, outFile.c_str(), jdeStrlen(outFile.c_str())+1, NULL);

std::ofstream outf (outfile);
outf << presp;

// free the resource
delete [] buf;

Deploying the COM Solution for Business Function Execution 4-9

Using COM Reliability

delete[] outfile;
jdeFreeXMLResponse (presp) ;

return 0;

}

4.8 Using COM Reliability

Graceful fail-over and fault tolerance mechanisms are important, especially for
applications that require high availability. The COM connector provides basic support
for fault tolerance at the protocol level.

You should take additional precautions to provide further reliability. After you use the
COM connector to enter an order or execute a business function, the process should:

s Handle transaction failures.

Transactions can fail because of communication line failures. Sometimes
transactions must be aborted because of errors in input or deadlocks. These
failures must be handled appropriately.

» Wait for the confirmation or success notification from the business function to
ascertain that the call was successfully committed.

= Query on the order entered to make sure that it has been committed to the
database.

Due to high network traffic, a business function can properly execute, but the
confirmation message might not reach you.

4.9 Using COM Tracing and Logging

You use COM tracing and logging to help you debug the COM applications. You use
the jdeinterop.ini file to configure tracing and logging settings. The logging format is
similar to the JD Edwards EnterpriseOne logging format. For example, both logging
formats include the Time Thread ID [User ID] and Description, as illustrated:

Thu Mar 02 14:48:01 2000 294 [AR618238] Failed to Login to Environment
<ADEVHPO2>

Errors are written to the JobFile and trace messages are written to the Debug File.
When trace is enabled, error messages go into both trace and error logs.

You can change the jdeinterop.ini settings while the connector is running by
completing these the steps:

1. Modify the jdeinterop.ini file.
2. Right-click the Connector System Tray button.
3. Select the menu item ChangelniSettings.

If an option in the jdeinterop.ini file does not have an entry, the default value is
used.

4.9.1 Resolving Tracing Issues

Tracing affects performance. You do not need to use tracing unless you are debugging
an application. If performance is negatively affected, ensure that the tracing level is set
to zero.

4-10 JD Edwards EnterpriseOne Tools Connectors Guide

Using COM Tracing and Logging

If no logs are generated, complete these steps:

Ensure that you have specified the proper path in the ini file.
Verify that disk space and the permissions on the file system are correct.
Verify whether the default log files have been generated.

Check the interop.log to see if any errors corresponding to logging have been
generated.

Check the interop.log file to see if the ini settings that are being used are the same
as what you have specified elsewhere.

Deploying the COM Solution for Business Function Execution 4-11

Using COM Tracing and Logging

4-12 JD Edwards EnterpriseOne Tools Connectors Guide

O

Using COM Transactions

This chapter contains the following topics:

= Section 5.1, "Understanding COM Interoperability Transactions"
= Section 5.2, "Setting Up the COM+ Environment"

s Section 5.3, "Running COM+ Transactions"

= Section 5.4, "Running a Distributed Transaction"

5.1 Understanding COM Interoperability Transactions

COM interoperability transactions include COM connector prepare, commit, and
rollback functionality. The COM transaction interoperability solution supports these
types of transactions:

s Auto commit transactions
s Manual commit transactions

A transaction can be started as auto commit or manual commit. In auto commit, JD
Edwards EnterpriseOne automatically commits the transaction that has been started. If
a transaction is started in manual commit, you have to explicitly call prepare and
commit functionality for the transaction to be committed.

The COM connector also supports manual commit. Typically, a transaction is started in
manual commit by calling BeginTransaction with the flag set to 1. Subsequent calls to
prepare and commit commits the transaction. The COM connector prepare and
commit does not support distributed transactions that involve transactions other than
JD Edwards EnterpriseOne.

5.1.1 Outline for Calling Prepare and Commit

This table provides an outline for calling prepare and commit:

Function Description

Dim soeOWInterface As OneWorldInterface Declare the OneWorldInterface.

soeOWInterface.BeginTransaction Start the transaction in manual commit by
(accessNumber, connector, txMode) calling begin transaction and setting the
txMode to 1. 0 is for auto commit.

/ /execute all BSFNs like the After a call to Begin Transaction is made, do

all the transactions that you want to enclose
//enddoc and other BSFNs within this manual commit before calling
prepare.

Using COM Transactions 5-1

Setting Up the COM+ Environment

Function Description

soeOWInterface.Prepare Call prepare when all of the transactions are
done.

soeOWInterface.Commit Call Commit to commit the transaction

(or) (or)

soeOWInterface.RollBack Rollback to roll back the transaction if an error
occurs.

The default timeout value for a manual transaction is 5 minutes. If you do not commit
the transaction within 5 minutes, the transaction context is freed and the transaction is
rolled back. You can change the default timeout by setting the manual_timeout value
in the [INTEROP] section of the jdeinterop.ini file. The value is in milliseconds.

5.1.2 COM+ Two-Phase Commit Transaction

The COM connector can participate in distributed transactions. The COM connector's
ability to participate in distributed transactions enables any application that uses the
COM connector to participate in the two-phase commit transaction. Applications that
have the capability to participate in distributed transactions can also use the COM
connector.

5.2 Setting Up the COM+ Environment

Typically, when you use COM+ for two-phase commit, you must set up the
environment for these three computers:

s COM connector
= JD Edwards EnterpriseOne server
s Database server

A distributed transaction coordinator (DTC) is expected to run on each of the
machines. Before testing the COM+ two-phase commit, you must make sure that the
DTCs on each machine are correctly configured and that the DTCs talk to each other.

This illustration shows the physical configuration:

5-2 JD Edwards EnterpriseOne Tools Connectors Guide

Running COM+ Transactions

Figure 5-1 COM+ Environment Configuration

Interop EnterpriseOne
Server Server
DTC DTC
A A
DTC

Note: Typically, administrative rights are required for you to run the
examples, which talk to DTCs on different machines. For more
information about setting up DTC and various configurations, refer to
the Microsoft documentation.

5.3 Running COM+ Transactions

This section provides an overview of JD Edwards EnterpriseOne participating in a
COM+ transaction and discusses how to:

» Create a Transactional Object

s Create a Transactional Client

5.3.1 Understanding COM+ Transactions

This code outline explains how to develop code for COM connector and JD Edwards
EnterpriseOne participation in COM+ transactions:

Code Explanation
Dim ow As OneWorldTx Declare new OneWorldTx.
Set ow = New OneWorldTx Initialize the transaction by passing the access
1 number returned from a successful logon and the
ow.Initialize laccessNumber, connRole
connector.

Using COM Transactions 5-3

Running COM+ Transactions

Code Explanation

ow.BeginTransaction laccessNumber, Start a transaction in Manual Commit.

connRole, 1 1 Manual commit

0 Auto Commit

EditLine, EndDoc Do all the processing here like BeginDoc.

GetObjectContext().SetComplete Use SetComplete to commit the transaction through
DTC

or

GetObjectContext().SetAbort or

use SetAbort to abort the transaction.

Note: In COM+, an AutoCommit attribute exists that implicitly
commits a transaction if no errors exist. This attribute is in the
Component Services Administration tool. However, if an explicit call
to SetAbort is made, the transaction aborts.

These code examples illustrate how to create a sales order entry transactional object
(SOETxObject) and a sales order entry transactional client (SOETxClient). After you
create the transactional object and transactional client, you can run the transactions.
Use these steps to run a sales order entry transaction in COM+ where the COM
connector and JD Edwards EnterpriseOne participate:

1. Run the SOETxObject.

2. Run the SOETxClient.

3. Note the Sales Order Entry number that is displayed.

4. When the message box appears for Commit or Abort, select the appropriate action.
5

Verify in JD Edwards EnterpriseOne whether the sales order has been entered. The
sales order should be entered only when committed.

5.3.2 Creating a Transactional Object (SOEProj.vbp)

This sample code shows how to create a SalesOrderEntry transactional object
(SOETxObject => SOEClass2.cls).

Public Sub run()
On Error GoTo errorhandler
Dim ow As OneWorldTx

Dim bhvr As IOneWorldBHVRCOM

Dim conn As New Connector '// COM Connector
Dim connRole As IConnector2 '// Connector Interface with Roles

Dim soeObject As JDESalesOrderEntry '// SalesOrderEntry
Dim soeBeginDoc As D4200310H

Dim soeEndDoc As D4200310G

Dim soeEditLine As D4200310F

Dim soeClearWF As D4200310T

Dim s As String

Dim d As New MathNumeric

Dim mnQuanityOrdered As New MathNumeric

Dim mnUnitPrice As New MathNumeric

5-4 JD Edwards EnterpriseOne Tools Connectors Guide

Running COM+ Transactions

Dim response

Dim laccessNunber As Long

' Name Information

Dim strComputerName As String
Dim lngNameLength As Long

Const WRITE_FLAG = "2"

Dim i As Boolean
Set connRole = conn

laccessNumber = connRole.Login("UserID", "PWD", "ENV",

Set ow = New OneWorldTx

ow.Initialize laccessNumber, connRole
'oneworld transaction initialized to manual
ow.BeginTransaction laccessNumber, connRole, 1

Set bhvr = ow
bhvr.szApplication = "COM+"

"ROLE")

Set soeObject = connRole.CreateBusinessObject ("SalesOrderEntry.

JDESalesOrderEntry", laccessNumber)
' please change the progid to correct progId

Set soeBeginDoc = soeObject.CreateF4211FSBeginDocParameterset
Set soeEditLine = soeObject.CreateF4211FSEditLineParameterset
Set soeEndDoc = soeObject.CreateF4211FSEndDocParameterset

Set soeClearWF = soeObject.CreateF4211ClearWorkFileParameterset

' Get computer name for use later
strComputerName = Space(30)
IngNameLength = 30

p_ret = GetComputerName (strComputerName, lngNameLength)

If p_ret <> 1 Then
MsgBox (GetComputerName failed!)
'End

Else

strComputerName = Mid(strComputerName, 1, lngNameLength)

End If
' MsgBox (Create Biz Object Done!)

“////1///1777]//BEGIN DOC///////1///]]/
soeBeginDoc.Reset

soeBeginDoc.cCMDocAction = "A"
soeBeginDoc.cCMProcessEdits = "1"
soeBeginDoc.cCMUpdateWriteToWF = WRITE_FLAG
soeBeginDoc.szCMProgramID = "VB"
soeBeginDoc.szCMVersion = "ZJDE0OOOL"
soeBeginDoc.szOrderCo = "00200"
soeBeginDoc.szOrderType = "SO"

szBUnit = "M30"

soeBeginDoc.szBusinessUnit = Space(12 - Len(szBUnit)) + szBUnit

d = Vval("4242")

soeBeginDoc .mnAddressNumber = d
soeBeginDoc.mnShipToNo = d
soeBeginDoc.jdOrderDate = Date

soeBeginDoc.cMode = "F"
soeBeginDoc.szUserID = "JDE"
soeBeginDoc.cRetrieveOrderNo = "1"

Using COM Transactions 5-5

Running COM+ Transactions

If strComputerName <> "" Then
soeBeginDoc.szCMComputerID = strComputerName
End If

' MsgBox ("Before F4211FSBeginDoc")
soeObject.F4211FSBeginDoc soeBeginDoc, ow, connRole, laccessNumber

MsgBox Round (soeBeginDoc.mnOrderNo, 0)
v//////////EDIT LINE///////]/]/]/

soeEditLine.mnCMJobNo = soeBeginDoc.mnCMJobNumber
orderNum = soeBeginDoc.mnOrderNo

soeEditLine.mnOrderNo = soeBeginDoc.mnOrderNo
soeEditLine.szBusinessUnit = soeBeginDoc.szBusinessUnit
soeEditLine.szCMComputerID = soeBeginDoc.szCMComputerID
soeEditLine.cCMWriteToWFFlag = WRITE_FLAG

soeEditLine.szOrderType = soeBeginDoc.szOrderType
' Load items from UI into edit line structure
soeEditLine.szItemNo = "1001"

mnQuanlityOrdered = "2"

soeEditLine.mnQtyOrdered = mnQuanityOrdered

' MsgBox ("Before F4211FSEditLine.")

' Call business function
soeObject.F4211FSEditLine soeEditLine, ow, connRole, laccessNumber
' MsgBox ("After F4211FSEditLine.")

“//11177777711//ENDDOC//////1111111]

soeEndDoc .mnCMJobNo = soeBeginDoc.mnCMJobNumber
soeEndDoc.mnSalesOrderNo = soeBeginDoc.mnOrderNo
soeEndDoc.szOrderType = soeBeginDoc.szOrderType
soeEndDoc.szCMComputerID = strComputerName
soeEndDoc.cCMUseWorkFiles = WRITE_FLAG

'Call business function

'MsgBox ("Before F4211FSEndDoc.")
soeObject.F4211FSEndDoc soeEndDoc, ow, connRole, laccessNumber
'MsgBox ("After F4211FSEndDoc.")
MsgBoxRes = MsgBox ("Do you want to abort?", vbYesNo, "Transaction
Decision")
If MsgBoxRes = vbYes Then
GetObjectContext.SetAbort
Else
GetObjectContext.SetComplete
MsgBox ("Order Saved")
End If

“///////CLEAR WORK FILE//////////]]/]]]

soeClearWF.cClearDetailWF = WRITE_FLAG

soeClearWF.cClearHeaderWF = WRITE_FLAG

soeClearWF.mnJobNo = soeBeginDoc.mnCMJobNumber
soeClearWF.szComputerID = strComputerName

'Call business function

'MsgBox ("Before F4211ClearWorkFile.")

ow.BeginTransaction laccessNumber, connRole, 0
soeObject.F4211ClearWorkFile soeClearWF, ow, connRole, laccessNumber
'MsgBox ("After F4211ClearWorkFile.")

5-6 JD Edwards EnterpriseOne Tools Connectors Guide

Running a Distributed Transaction

Set soeObject = Nothing

Set soeBeginDoc = Nothing

Set soeEditLine = Nothing

Set soeEndDoc = Nothing

Set ow = Nothing
connRole.Logoff (laccessNumber)
Set connRole = Nothing

Exit Sub

errorhandler:
GetObjectContext () .SetAbort
connRole.Logoff (laccessNumber)
Set ow = Nothing

End Sub

5.3.2.1 Module1 : Modulei.bas

Create a module file and declare the GetComputerName function.

Public Declare Function GetComputerName Lib "kernel32" Alias
"GetComputerNameA" (ByVal lpBuffer As String, nSize As Long) As Long

5.3.3 Creating a Transactional Client

This sample code shows how to create a SalesOrderEntry transactional client
(SOETxClient => SOETxClient.vbp):

'////SOETxClient////

Private Sub Form Load()

Dim ¢ As SOEClass2 '// VB SOE transactional object
Set ¢ = New SOEClass2

c.run

Set ¢ = Nothing

End Sub

5.4 Running a Distributed Transaction

This section provides an overview of JD Edwards EnterpriseOne participating in a
distributed transaction and discusses how to:

» Create MTStest for a Distributed Transaction.
» Create ClientPrj for a Distributed Transaction.

= Register a New COM+ .dll.

5.4.1 Understanding COM+ Transaction

This sample code, called MTStest.vbp, shows how to create a distributed transaction
using COM+. This project contains these two classes:

s MTSTestClass, which queries and updates a test SQL database.
s OWTxClass, which runs the Sales Order Entry.

OWTxClass is almost identical to the previous SOETxObject, except that the message
box for commit or abort is no longer necessary.

Using COM Transactions 5-7

Running a Distributed Transaction

MTStest.dll must be registered in the COM+ Component Services, and the transaction
property should be set to required.

Create a sample SQL test database table SOE2PCTest. SOE2PCTest table has two
columns, SONum and LastSONum. The test selects the LastSONum and then updates
the table by incrementing the previous value by 1 when commit is called.

Sample code called ClientPrj.vbp will call the transactional object.

Both of the transactions are committed by the DTC when the SetComplete call is made.
The DTC aborts the transaction when the SetAbort call is made or if any part of the
transaction fails.

Use these steps to run a sales order entry as a distributed transaction in COM+ where
the COM connector, JD Edwards EnterpriseOne, and an SQL database participate.

1. Run the MTStest.vbp.

Run the ClientPrj.vbp.

Click the Call Database_ Test_ Method button.

Switch back to the MTStest and note the sales order number.

When a message box appears to Commit or Abort, select the appropriate action.

o g k& 0 b

Verify in JD Edwards EnterpriseOne whether the sales order has been entered.
When the transaction is aborted, the sales order should not be in JD Edwards
EnterpriseOne, and the test database should not increment the count.

5.4.2 Creating MTStest for a Distributed Transaction (MTStest.vbp)

This code sample provides detail code for creating MTStest.

Note: This sample code has message box statements to help better
understand the step-by-step flow of the code. Since DTC is managing
the transactions, it is necessary not to lock the tables for a long time.
When you use message boxes, you stop the program flow. When
regression testing, you must remove all of the message boxes. You can
write to a log file instead.

5.4.2.1 MTSTestClass : MTStest.bas

You can use this sample code to create MTStest:

Option Explicit
Public Function Database_Test_Method(_ByVal szConnect As String) As String

Dim stmt As String
On Error GoTo errhandler

Dim ctxObject As ObjectContext
Set ctxObject = GetObjectContext ()

Dim MsgBoxRes

Dim cn As ADODB.Connection

Dim rsSelect As ADODB.Recordset
Dim rs As ADODB.Recordset

Set cn = New ADODB.Connection
With cn

5-8 JD Edwards EnterpriseOne Tools Connectors Guide

Running a Distributed Transaction

.ConnectionTimeout = 10
.ConnectionString = szConnect
.Open

End With

' SONUM and LASTSONUM are columns created in a database called '

' COMPLUS.

' Database server is called soe2pctest. !

' LASTSONUM gets incremented when commit is used.

' Change these values according to Database created

Set rs = New ADODB.Recordset

Set rsSelect = New ADODB.Recordset

rsSelect.Open "SELECT LASTSONUM FROM soe2pctest", cn, adOpenDynamic,
_ adLockReadOnly

Dim i As Integer

For i = 1 To 3

stmt = "Update SOE2PCTest set LASTSONUM=" & rsSelect(0).Value + 1& &
" where SONUM = 1"

cn.Execute stmt, 1, -1

rsSelect.Close

Dim ¢ As OWTXClass
Set ¢ = New OWTXClass

c.run

Set ¢ = Nothing
cn.Close

Set rs = Nothing
Set cn = Nothing
MsgBoxRes = MsgBox("Do you want to Commit?", vbYesNo, "Transaction
Decision")
If MsgBoxRes = vbYes Then
ctxObject.SetComplete
Else
ctxObject.SetAbort
End If
Next I

Exit Function

errhandler:

Err.Raise vbObjectError, "MTSTest.MTStest.Database_Test_Method", _
Err.Description

ctxObject.SetAbort

Exit Function

End Function

5.4.2.2 Module1 : Modulei.bas

Create a module file and declare the GetComputerName function.

Public Declare Function GetComputerName Lib "kernel32" Alias
"GetComputerNameA" (ByVal lpBuffer As String, nSize As Long) As Long

Using COM Transactions 5-9

Running a Distributed Transaction

5.4.3 Creating ClientPrj for a Distributed Transaction

This code sample provides detail code for creating ClientPrj.vbp.

Note: This sample code has message box statements to help better
understand the step-by-step flow of the code. Since DTC is managing
the transactions, it is necessary not to lock the tables for a long time.
When you use message boxes, you stop the program flow. When
regression testing, you must remove all of the message boxes. You can
write to a log file instead.

Private Sub Command2_Click()

Dim szConnect As String
szConnect = "Driver={SQL Server};" & _

"Server=AServerName; Uid=UserID; Pwd=Passwd; Database=DBName"

' (NOTE: You may need to change the connection

information to connect to the database.)

Dim obj As Object
Set obj = CreateObject ("MTStest.MTSTestClass")

MsgBox obj.Database_Test_Method (szConnect)
Set obj = Nothing
Unload Me

End Sub

Private Sub Form_Load()

Command?2.Caption = "Call Database_Test_Method"

End Sub

5.4.4 Registering the COM+ .dlII

A new COM+ dll (OneWorldinterfaceTx.dll) is provided to be used along with the
COM connector to participate in a two-phase commit. OneWorldInterfaceTx.dll must
be registered with the COM+ component services.

Use these steps to register OneWorldInterfaceTx.dll:

1.

On the PC, navigate to COM+ Applications:

Control Panel > Administrative Tools > Component Services

Expand these buttons and folders:

Component Services > Computers > My Computer

Select COM+ Applications.

Right-click COM+ Applications, select New, and then select Application.
The COM Application Install Wizard appears.

On Install or Create a New Application, select Create an empty application and
then click Next.

On Create Empty Application, enter the name of the application
(OneWorldInterfaceTx) that you are registering.

Select an Activation type, and then press Next.

5-10 JD Edwards EnterpriseOne Tools Connectors Guide

Running a Distributed Transaction

8. On Set Application Identity, select Interactive User, and then click Next.
9. Click Finish to close the wizard.
10. On the PC, expand these folders:
COM+ Applications > OneWorldInterfaceTx
11. Select Components.
12. Right-click Components, select New, and then select Component.
13. The COM Component Install Wizard appears.

14. On Import or Install a Component, select Install New Component(s), and then
click Next.

15. On Select New Files to Install, browse to the application
(OneWorldInterfaceTx.dll) on the client install directory or the COM
interoperability server.

16. Add the application and then click Next.
17. Click Finish to close the wizard.
The application (OneWorldInterfaceTx.dll) is registered.

18. On the PC, expand the Components folder and then right-click the application
(OneWorldInterfaceTx.dll) you just registered.

19. Select Properties.

20. On OneWorldInterfaceTx Properties, click the Transactions tab.
21. For the Transaction support field, select the Required option.
22, Click OK.

23. Close the component servers.

The COM connector should be registered using the method described in the chapter
titled Installing COM Connector on a Non-JD Edwards EnterpriseOne Client
Environment.

The SalesOrderEntry and other wrapper dlls should be registered using the standard
RegSvr32 command.

A new transactional object that is going to participate in the COM+ transactions (for
example, SOEClass2.dll) must be created and registered through the COM+
component services of the administrative tools. The transactions property of this object
should be set to Required. This transactional object will use the new
OneWorldInterfaceTx.dll for starting a transaction, executing a business function, and
so on. The code outline is explained in Casel:]D Edwards EnterpriseOne Participates
in COM+ Transaction. Detail sample code for the SalesOrderEntry transaction object
(SOETxObject) is provided.

After the transactional object is created, open a new VB sample SalesOrderEntry client
and call the SOEClass2 object. The VB SOETxClient code is provided.

Two cases of the Sales Order Entry application are discussed. Case 1 is when JD
Edwards EnterpriseOne participates in the COM+ transaction. Case 2 is when JD
Edwards EnterpriseOne participates in a distributed transaction.

Using COM Transactions 5-11

Running a Distributed Transaction

5-12 JD Edwards EnterpriseOne Tools Connectors Guide

6

Using COM Connector Solution for Guaranteed

Events

This chapter contains the following topics:

= Section 6.1, "Understanding COM Connector Guaranteed Events"

= Section 6.2, "Setting Up the COM Connector for Guaranteed Events"
= Section 6.3, "Implementing JD Edwards EnterpriseOne Interfaces"

= Section 6.4, "Registering EventSink for Persistent Subscription"

6.1 Understanding COM Connector Guaranteed Events

Figure 6-1 COM

The COM connector events solution uses the Microsoft COM+ Events Service. COM+
Events Loosely Coupled Events, which matches and connects publishers and
subscribers, is part of the Microsoft Windows Component Services. The EventClass is a
COM+ component that contains interfaces and methods that are used by the publisher
to initiate events. The EventClass manages the connection between publisher and
subscribers. The EventClass.dll, which contains the IOWEvent interface, is provided.
The COM servers and COM clients must implement this interface so that when an
event is initiated, this interface is called by the COM+ Events Service and the
implementation is executed. The implementation decides what the delivered event
and the event data should do. This implementation is COM server or COM client
specific.

To support guaranteed event delivery for JD Edwards EnterpriseOne, the COM
connector uses XML. This illustration shows the COM connector architecture for
guaranteed events:

connector architecture-guaranteed event delivery

Client Server

EnterpriseOne
XML
» COM Connector — over »| Transaction
HTTP Server

Using COM Connector Solution for Guaranteed Events 6-1

Setting Up the COM Connector for Guaranteed Events

Note: You should have a basic understanding of the COM+ Events
Service.

COM+ events supports Z events, real-time events, and XAPI events.
COM+ Events Service is not dependent on JD Edwards EnterpriseOne
setup for event generation.

See Also:

Microsoft MSDN, http: //www.msdn.microsoft.com.

"Using Guaranteed Events" in the D Edwards EnterpriseOne Tools
Interoperability Guide.

"Using Guaranteed Real-Time Events" in the /D Edwards
EnterpriseOne Tools Interoperability Guide.

"Using Guaranteed XAPI Events" in the |D Edwards EnterpriseOne
Tools Interoperability Guide.

6.2 Setting Up the COM Connector for Guaranteed Events

This section provides an overview of the process for setting up the COM connector to

receive guaranteed events.

6.2.1 Understanding COM Connector Setup for Guaranteed Events

Setting up the COM connector includes setting up security and setting up the identity
as an interactive user. After you install and set up the COM connector, you set up a
DCOM server on a JD Edwards EnterpriseOne server machine. DCOM enables COM
objects in a distributed environment. To ensure that the interoperability client works

properly, you must set up DCOM for both a server environment and for a client

environment. You also register the COM connector components, subscribe to events,

and log errors and messages.

6.2.2 Installing and Setting Up the COM Connector for Guaranteed Events
Use these steps to install and set up the COM connector:

1. Copy these files from the JD Edwards EnterpriseOne server (system\bin32) to a

Note: All of the COM connector required files will be installed with
the JD Edwards EnterpriseOne client. If you have the JD Edwards
EnterpriseOne client, ignore Step 1 and start with Step 2. If you do not
have the JD Edwards EnterpriseOne client and you want to set up the
COM connector on a third-party machine, start with Step 1.

directory on the desired machine. For example, copy the files in c:\program
files\]DEdwards to a non-JD Edwards EnterpriseOne client machine.

JDECOMConnector2.exe
JDECOMMN.dIL
callobject.dll

comlog.dll

6-2 JD Edwards EnterpriseOne Tools Connectors Guide

Setting Up the COM Connector for Guaranteed Events

- EventManager.dll

— OneWorldInterfaceTx.dll
- xmlinterop.dll

- jdeldll

- jdethread.dll

- jdeunicode.dll

— ustdio.dll

— icuil8n.dll

- jdeinterop.ini to c:\(root directory)
— checkver.exe

- ICUuUCdl

— Icu\data*.*

- IXXML4C2_3.dll

— EventClass.dll

— EventListener.dll

— EventHandler.dll

— ClientService.dll

Create a new directory Icu\data\ on the machine where the COM server is
located.

Copy all of the files from the JD Edwards EnterpriseOne server in folder
system\Locale\xml** into Icu\data\. Create a new system variable, ICU_DATA,
in the environment variables of the system properties and specify the path to the
Icu\data\ as the value.

Use these steps to register the COM Connector:
a. Run this command:

c:\programfiles\JDEdwards\JDECOMConnector2.exe /RegServer

b. Go to c:\programfiles\JDEdwards\ Or c:\b9\system\bin32 and run these
commands:

regsvr32 EventManager.dll
regsvr32 EventClass.dll

Create the JDEinterop.ini file by setting the JD Edwards EnterpriseOne server and
port values to the]D Edwards EnterpriseOne application server with which you
want the COM server to communicate.

The COM server is now ready:.
Use these steps to set up security on the COM server:
From the Start menu, select Run.

a
b. Enter Dcomcnfg.exe.

o

On Distributed COM Configuration Properties, click the Default Security tab.

e

Click the Edit Default Button in Default Access Permissions group.

Using COM Connector Solution for Guaranteed Events 6-3

Setting Up the COM Connector for Guaranteed Events

h.

The Registry Value Permissions form appears. Some entries might already be
present.

On Registry Value Permissions, click Add.

On Add Users and Groups, select the appropriate domain from the List
Names From option.

Click Everyone, and then click Add.Type of access should be Allow Access.
Click OK.

No setup is required for default configuration permissions.

6. Use these steps to set up the identity as an interactive user:

a.

b.

Run DCOMCnfg.

On Distributed COM Configuration Properties, select JDECOMConnector2,
and then click Properties.

On JDECOMConnector2Properties, click the Identity tab, and then select the
interactive user option.

Click Apply to apply the change.

Note: Every time you register the connector, you must set up the
identity as an interactive user. If you copy the
JDECOMConnector2.exe using Explorer, Explorer reruns the
registration, and you must set up the identity as an interactive user.

To use Callbacks (Connection Points) with the COM solution, repeat
these steps for setting up the identity as an interactive user on the
COM client machine. Most of the shipped examples use Callbacks and
require that you open the security on the client machine.

7. Use these steps to set up DCOM for a client environment:

From a DOS prompt on the DCOM client machine, run jdecomconnector2.exe
/RegServer.

At the prompt, enter oleview.exe.
From the menu bar, select oleview.
Click View and select Expert Mode.

In the oleview window under Object Classes, double-click All Objects, and
wait for all objects to appear.

Under All Objects, find and click Connector Class.

Click the Implementation tab on the right-side panel, and then click the local
server and remove anything that appears in the editing window.

On the Activation tab, select the Launch as Interactive User option.

In Remote Machine Name, enter the COM server machine name.

Repeat steps 5 through 8 for MathNumeric Class.Start the DCOM client application.

Start the DCOM client application.

6-4 JD Edwards EnterpriseOne Tools Connectors Guide

Implementing JD Edwards EnterpriseOne Interfaces

6.2.3 Registering Components for COM Connector

So that subscribers can find an event class and subscribe to it, the JD Edwards
EnterpriseOne event class must be registered with COM+. In addition, COM+ requires
a type library that describes the event interface and methods so that subscribers and
publishers can be properly matched and connected. The type library must reside in or
be accompanied by a self-registering DLL.

To register the JD Edwards EnterpriseOne Events Class with COM+ Services, you
must:

s Add anew COM-+ application for the JD Edwards EnterpriseOne event class.

s Install the JD Edwards EnterpriseOne event class.

Note: Before you register the JD Edwards EnterpriseOne Event Class
with COM+ Services, set up the COM server. The COM server can be
set up on either a JD Edwards EnterpriseOne machine or a non-JD
Edwards EnterpriseOne machine (third-party machine), or both.

See Also:

s Installing COM Connector

6.2.4 Subscribing to Events

The COM connector supports event subscriptions from JD Edwards EnterpriseOne (JD
Edwards EnterpriseOne server and Transaction server). The COM connector connects
to the JD Edwards EnterpriseOne Transaction server to receive its subscribed events.

6.2.5 Logging COM Events

Logging for COM events is entered in the interopDebug.log file. The error log is
interop.log.

6.3 Implementing JD Edwards EnterpriseOne Interfaces

This section provides an overview about implementing the JD Edwards EnterpriseOne
interface and discusses how to:

= Section 6.3.1, "Implementing a JD Edwards EnterpriseOne Interface"
= Section 6.3.2, "Creating a COM+ Component"

= Section 6.3.3, "Logging on to the COM Connector"

= Section 6.3.4, "Subscribing to an Event"

= Section 6.3.5, "Integrating with BizTalk"

= Section 6.3.6, "Adding a New Application"

= Section 6.3.7, "Installing the Event Class"

6.3.1 Implementing a JD Edwards EnterpriseOne Interface

You must develop an object that implements the IOWEvent interface. For further
discussion and for code samples in this document, the name EventSink is used as the
object name. The object that you develop to implement the IOWEvent can have a
different name. EventSink implements the IOWEvent interface and the method within

Using COM Connector Solution for Guaranteed Events 6-5

Implementing JD Edwards EnterpriseOne Interfaces

the interface, and then consumes the JD Edwards EnterpriseOne event. The EventSink
implementation is client specific. EventSink receives the event from JD Edwards
EnterpriseOne by implementing the interface specified in EventClass.

This code outline shows how to develop an EventSink component:

Option Explicit
Implements IOWEvent
Public Event OneWorldEvent (ByVal EventName As String, ByVal Data As String)

Public Sub IOWEvent_OneWorldEvent (ByVal EventName As String, ByVal Data
As String)
'// Add code specific to the client implementation here
RaiseEvent OneWorldEvent (EventName, Data)
End Sub

This list outlines the steps for you to follow to use the EventManager library and
MessageHandler Interface to subscribe to events.

1. Log on to the connector. Successful logon returns an access number.
2. Create the EventSink object.

3. Create the MessageHandler object.

4

Call methods on the MessageHandle for Subscribe, Unsubscribe, GetTemplate,
and GetEventList for the respective event.

5. To keep the session alive and not time out from receiving events, call the
UpdateOutBoundSessionTime method on the connector interface.

This method updates the user session time to the current time.

6. To subscribe to the events as persistent, register VB EventSink in the COM+
Component Services and add the subscription for the EventClass.

6.3.2 Creating a COM+ Component

This sample code is for creating a COM+ component named EventSink.dll. EventSink
implements the EventClass interface IOWEvent(). You can use a name other than
EventSink.

6.3.2.1 EventSink: OneWorldTransientEventSink.cls

This code illustrates how to create a COM+ component:

Option Strict Off
Option Explicit On
<System.Runtime.InteropServices.ProgId
("OneWorldTransientEventSink NET.OneWorldTransientEventSink")>
Public Class OneWorldTransientEventSink

Implements EventClass.IOWEvent

Public Event OneWorldEvent (ByVal EventName As String, ByVal
Data As String)

Public Sub IOWEvent_OneWorldEvent (ByVal EventName As String,
ByVal Data As String) Implements EventClass.IOWEvent.OneWorldEvent
Dim flsObject As New Scripting.FileSystemObject

Dim varEventFile As Scripting.TextStream

Dim strEventFile As String

strEventFile = "C:\temp\eventDataPer.xml"
'UPGRADE_WARNING: Dir has a new behavior. Click for more:

6-6 JD Edwards EnterpriseOne Tools Connectors Guide

Implementing JD Edwards EnterpriseOne Interfaces

'ms-help://MS.VSCC.2003/commoner/redir/redirect.htm?keyword=
"vbupl041""'
If Dir(strEventFile) = "" Then
varEventFile = flsObject.CreateTextFile(strEventFile,
False, False)
Else
varEventFile = flsObject.OpenTextFile(strEventFile,
Scripting.IOMode.ForWriting, False)
End If

varEventFile.WriteLine (Data)
varEventFile.Close()
RaiseEvent OneWorldEvent (EventName, Data)
End Sub
End Class

6.3.3 Logging on to the COM Connector

This sample code logs on to the COM connector, creates the MessageHandler object,
and performs Subscribe, Unsubscribe, GetTemplate, and GetList. Before executing the
subscriber, use the Regsvr32 command to register COMConnector.dlL

6.3.3.1 COMConnector: frmLogin.frm

This code sample shows logging on to the COM connector:

Option Strict Off
Option Explicit On

Friend Class frmLogin
Inherits System.Windows.Forms.Form

Public bLoginEnv As Boolean

Private Sub cmdCancel_Click(ByVal eventSender As System.Object,
ByVal eventArgs As System.EventArgs) Handles cmdCancel.Click
'set the global var to false
'to denote a failed login
bLoginEnv = False
Me.Hide()
End Sub

Private Sub cmdOK_Click(ByVal eventSender As System.Object,
ByVal eventArgs As System.EventArgs) Handles cmdOK.Click
'check for correct password
If txtUserName.Text = "" Or txtenvironment.Text = "" Then
bLoginEnv = False
MsgBox ("Must Enter User Name and Environment to

continue")
Else
bLoginEnv = True
Me.Hide()
End If
End Sub
End Class

Using COM Connector Solution for Guaranteed Events 6-7

Implementing JD Edwards EnterpriseOne Interfaces

6.3.3.2 COMConnector Common.bas

This code sample shows creating the message handler:

Option Strict Off
Option Explicit On
Module Common
Dim conn As New JDECOMCONNECTOR2Lib.Connector
Dim connRole As JDECOMCONNECTOR2Lib.IConnector?2
'Dim messageHandler As New messageHandler
'Dim mHandlerInterface As ImessageHandler
Dim lngAccessNumber As Integer
Public Sub comm_Initialize()
connRole = conn
On Error GoTo errorHandler
frmLogin.DefInstance.bLoginEnv = False
frmLogin.DefInstance.Show ()
While Not frmLogin.DefInstance.bLoginEnv
System.Windows.Forms.Application.DoEvents ()
End While
IngAccessNumber = connRole.El_Event_Login (frmLogin.
DefInstance.
txtUserName.Text, frmLogin.DefInstance.txtPassword.Text, frmLogin.
DefInstance.txtenvironment.Text, frmLogin.DeflInstance.txtrole.Text)
'Debugging Purpose
'IngAccessNumber = connRole.El_Event_Login("JP6849777",
"PASSWORD", "TDEVNIS2", "*ALL")
connRole = conn
Exit Sub
errorHandler:
MsgBox ("Login Failed. You can't Use this Application")

End Sub

' NOTE: the code in this module is particular to this prototype.
' Different code is used in a production version to send messages to
' JD Edwards EnterpriseOne using JD Edwards communication protocols.

Public Sub SendSubscriptionToOneWorld (ByRef eventName As String,
ByRef oneworldevent As EventClass.IOWEvent, ByRef mode As Integer)
'mHandlerInterface.SubscribeEvent lngAccessNumber, conn,
eventName, oneworldevent, mode
On Error GoTo errorHandler
connRole.El_Event_Subscribe (1ngAccessNumber, oneworldevent)
Exit Sub
errorHandler:
MsgBox ("Subscirbe Method Failed. You can't Use this
Application")
End Sub
Public Sub SendUnSubscribeToOneWorld (ByRef eventName As String,
ByRef oneworldevent As EventClass.IOWEvent, ByRef mode As Integer)
On Error GoTo errorHandler
'mHandlerInterface.UnSubscribeEvent lngAccessNumber, conn,
eventName, oneworldevent, mode
connRole.El_Event_UnSubscribe (1ngAccessNumber)
Exit Sub
errorHandler:
MsgBox ("UnSubscirbe Method Failed. You can't Use this
Application")
End Sub
Public Sub SendLogoffToOneWorld()

6-8 JD Edwards EnterpriseOne Tools Connectors Guide

Implementing JD Edwards EnterpriseOne Interfaces

'mHandlerInterface.SubscribeEvent lngAccessNumber, conn,
eventName, oneworldevent, mode
On Error GoTo errorHandler
connRole.El_Event_Logoff (1ngAccessNumber)
Exit Sub
errorHandler:
MsgBox ("LogOff Method Failed. Terminate ComConnector
Process and End the Application")
End Sub
Public Sub getEventListFromOneWorld(ByRef eventList As String)
On Error GoTo errorHandler
'mHandlerInterface.GetEventList lngAccessNumber, conn,
eventList
eventList = connRole.El_Event_GetEventList (1ngAccessNumber)
Exit Sub
errorHandler:
MsgBox ("GetEventList Method Failed. You can't Use this
Application")
End Sub
Public Sub getEventTemplateFromOneWorld (ByRef eventName As
String, ByRef eventTemplate As String)
On Error GoTo errorHandler
'mHandlerInterface.GetEventTemplate lngAccessNumber,
eventName, conn, eventTemplate
Exit Sub
errorHandler:
MsgBox ("GetEventTemplate Method Failed. You can't Use this
Application")
End Sub
End Module

6.3.3.3 COMConnector: SubscriptionManager

This code sample shows event subscription and unsubscribe:

Option Strict Off

Option Explicit On
<System.Runtime.InteropServices.ProgId("SubscriptionManager_ NET.
SubscriptionManager")> Public Class SubscriptionManager

'Private Const m_OneWorldEventCLSID = "{1E645180-6C93-4704-85C6-
57775E2ED2FC}"
Private m_SubscribedEvents As Collection

'UPGRADE_NOTE: Class_Initialize was upgraded to Class_Initialize_
Renamed. Click for more: 'ms-help://MS.VSCC.2003/commoner/redir/
redirect.htm?keyword="vbupl061""'

Private Sub Class_Initialize_Renamed()

m_SubscribedEvents = New Collection
comm_Initialize()

End Sub

Public Sub New ()

MyBase.New ()
Class_Initialize_Renamed ()

End Sub

Public Sub GetEventList (ByRef eventList As String)

getEventListFromOneWorld (eventList)

End Sub

Public Sub Logoff ()

Using COM Connector Solution for Guaranteed Events 6-9

Implementing JD Edwards EnterpriseOne Interfaces

SendLogoffToOneWorld ()
End Sub

Public Sub CreateTransientSubscription (ByRef eventName As String,
ByRef oneworldevent As EventClass.IOWEvent)
SubscribeToOneWorldEvent (eventName, oneworldevent, 0)
End Sub
Public Sub CreatePersistentSubscription(ByRef eventName As
String, ByRef oneworldevent As EventClass.IOWEvent)
SubscribeToOneWorldEvent (eventName, oneworldevent, 1)
End Sub
Public Sub RemoveTransientSubscription(ByRef eventName As String,
ByRef oneworldevent As EventClass.IOWEvent)
UnSubscribeToOneWorldEvent (eventName, oneworldevent, 0)
End Sub
Public Sub RemovePersistentSubscription (ByRef eventName As
String, ByRef oneworldevent As EventClass.IOWEvent)
UnSubscribeToOneWorldEvent (eventName, oneworldevent, 1)
End Sub
Public Sub GetEventTemplate (ByRef eventName As String, ByRef
eventTemplate As String)
getEventTemplateFromOneWorld (eventName, eventTemplate)
End Sub
Public Sub SubscribeToOneWorldEvent (ByRef eventName As String,
ByRef oneworldevent As EventClass.IOWEvent, ByRef mode As Integer)
'Private Function SubscribeToOneWorldEvent (EventName As
String) As Boolean
' we've already subscribed if the subscription is in our

list

Dim alreadySubscribed As Boolean

'UPGRADE_WARNING: Couldn't resolve default property of
object CollectionContainsString(). Click for more: 'ms-help:
//MS.VSCC.2003/commoner/redir/redirect.htm?keyword="vbupl037""'

alreadySubscribed = (CollectionContainsString
(m_SubscribedEvents, eventName) = True)

' now do the right thing...

If (alreadySubscribed = False) Then
' this instance of the COMConnector has not seen this
' event before, so add it to our list...
m_SubscribedEvents.Add ((eventName))

' ...and go ahead and subscribe to the event from
JD Edwards EnterpriseOne
SendSubscriptionToOneWorld (eventName,
oneworldevent, mode)
End If

'SubscribeToOneWorldEvent = alreadySubscribed
End Sub

'UPGRADE_NOTE: str was upgraded to str_Renamed. Click for more:
'ms-help://MS.VSCC.2003/commoner/redir/redirect.htm?keyword="vbupl061""'
Private Function CollectionContainsString (ByRef col As
Collection, ByRef str_Renamed As String) As Object
Dim colItem As Object
For Each colItem In col
'UPGRADE_WARNING: Couldn't resolve default
property of object colItem. Click for more: 'ms-help:
//MS.VSCC.2003/commoner/redir/redirect.htm?keyword="vbupl037""'

6-10 JD Edwards EnterpriseOne Tools Connectors Guide

Implementing JD Edwards EnterpriseOne Interfaces

If (colItem = str_Renamed) Then
'"UPGRADE_WARNING: Couldn't resolve default
property of object CollectionContainsString. Click for more:
'ms-help://MS.VSCC.2003/commoner/redir/redirect.htm?keyword="vbupl037""'
CollectionContainsString = True
Exit Function
End If
Next colItem
'UPGRADE_WARNING: Couldn't resolve default property of
object CollectionContainsString. Click for more:
'ms-help://MS.VSCC.2003/commoner/redir/redirect.htm?keyword="vbupl037""'
CollectionContainsString = False
End Function

Public Sub UnSubscribeToOneWorldEvent (ByRef eventName As String,
ByRef oneworldevent As EventClass.IOWEvent, ByRef mode As Integer)
Dim alreadySubscribed As Boolean
'alreadySubscribed = (CollectionContainsString
(m_SubscribedEvents.Item, eventName))

' now do the right thing...
'If (alreadySubscribed = True) Then
' this instance of the COMConnector has not seen this

event before, so
' remove it from the list...
alreadySubscribed = (RemoveFromCollection
(m_SubscribedEvents, eventName))
If (alreadySubscribed = False) Then
MsgBox ("Event Not Subscribed")
Else

'm_SubscribedEvents.Remove ()

' ...and go ahead and subscribe to the event from
JD Edwards EnterpriseOne
SendUnSubscribeToOneWorld (eventName, oneworldevent,
mode)
End If
' End If
End Sub
'UPGRADE_NOTE: str was upgraded to str_Renamed. Click for more:
'ms-help://MS.VSCC.2003/commoner/redir/redirect.htm?keyword="vbupl061""'
Private Function RemoveFromCollection(ByRef col As Collection,
ByRef str_Renamed As String) As Object
Dim colItem As Object
Dim count As Short
count = 0
For Each colItem In col
count = count + 1
'UPGRADE_WARNING: Couldn't resolve default
property of object colItem. Click for more: 'ms-help:
//MS.VSCC.2003/commoner/redir/redirect.htm?keyword="vbupl037""'
If (colItem = str_Renamed) Then

col.Remove (count)

'UPGRADE_WARNING: Couldn't resolve default
property of object RemoveFromCollection. Click for more:
'ms-help://MS.VSCC.2003/commoner/redir/redirect.htm?keyword="vbupl037""'

RemoveFromCollection = True

Exit Function

Using COM Connector Solution for Guaranteed Events 6-11

Implementing JD Edwards EnterpriseOne Interfaces

End If

Next colItem

'UPGRADE_WARNING: Couldn't resolve default property of
object RemoveFromCollection. Click for more: 'ms-help:
//MS.VSCC.2003/commoner/redir/redirect.htm?keyword="vbupl037""'

RemoveFromCollection = False

End Function

End Class

6.3.4 Subscribing to an Event

Subscriber is the GUI that gets the EventsList, EventTemplate, Subscribe, and
Unsubscribe. Subscriber is built as a VB executable. Typical usage is to get the
EventList first, which populates the list of options with the events that are supported
by the JD Edwards EnterpriseOne server. Select the event that needs to be subscribed
from the JD Edwards EnterpriseOne server and the type of subscription. Click
Subscribe to add a Subscription, or click Unsubscribe to unsubscribe from the JD
Edwards EnterpriseOne server. The Subscribed events and the Received events are in
separate boxes. The received event is displayed in the window on the right. The event
received can be integrated with BizTalk by choosing the Enable BizTalk Integration
option. You should have previously set up BizTalk; if not already installed, install the
BizTalk Server 2000 Developer. If the Module 1 tutorial in the BizTalk Server
documentation runs properly, then the BizTalk Server is properly installed. Before
building the subscriber, you should use the Regsvr32 command to register
EventSink.dll and COMConnector.dll.

6.3.4.1 Subscriber: MainForm.frm

This code sample is for the GUI and the control buttons on the GUI. This code should
be built along with the BizTalk.cls, after registering the COMConnector.dll and
MyEventSink.dll.

VERSION 5.00

Object = "{EAB22AC0-30C1-11CF-A7EB-0000C05BAEOB}#1.1#0"; "shdocvw.dll"
Object = "{831FDD16-0C5C-11D2-A9FC-0000F8754DA1}#2.0#0"; "mscomctl.ocx"
Begin VB.Form MainForm

Caption = "Subscriber Client"
ClientHeight = 7470
ClientLeft = 3555
ClientTop = 2820
ClientWidth = 11655
LinkTopic = "Forml"
ScaleHeight = 7470
ScaleWidth = 11655
Begin VB.Frame grpSubscribedEvents
Caption = "Subscribed Events"
Height = 2895
Index = 1
Left = 120
TabIndex = 17
Top = 2160
width = 2775
Begin VB.CommandButton Commandl
Caption = "Clear"
Height = 375
Left = 4560
TabIndex = 18
Top = 2280

6-12 JD Edwards EnterpriseOne Tools Connectors Guide

Implementing JD Edwards EnterpriseOne Interfaces

width
End

975

Begin MSComctlLib.ListView lvwSubscribedEvents

Height

Left
TabIndex
Top

width
_ExtentX
_ExtentY
View
LabelWrap
HideSelection
_Version
ForeColor
BackColor
BorderStyle
Appearance
NumItems

BeginProperty ColumnHeader (1)

00CO0F0283628}
Key
Text
Object.Width
EndProperty

BeginProperty ColumnHeader (2)

00C0F0283628}
SubItemIndex
Key
Text
Object.Width
EndProperty
End
End
Begin VB.CommandButton
Caption =
Height
Left
TabIndex
Top
Width
End
Begin VB.CommandButton
Caption =
Height
Left
TabIndex
Top
Width
End

1695

120

19

360

2535

4471

2990

2

-1 'True
-1 'True
393217
-2147483640
-2147483643
1

1

2
{BDD1F052-858B-11D1-B16A-

"colEventName"
"Event Name"
= 2540

{BDD1F052-858B-11D1-B16A-

= 1
"colData"
"Data"

= 6174

btnGetEventTemplate
"Get Template"

375

3720

14

120

1455

btnGetEventList
"Get Event List"
375

600

13

120

1455

Begin SHDocVwCtl.WebBrowser wbEventData

Height
Left
TabIndex
Top
Width
ExtentX
ExtentY
ViewMode
Offline

6375
6240
12
360
5175
9128
11245
0

0

Using COM Connector Solution for Guaranteed Events

Implementing JD Edwards EnterpriseOne Interfaces

Silent = 0
RegisterAsBrowser= 0
RegisterAsDropTarget= 1
AutoArrange = 0 'False
NoClientEdge = 0 'False
AlignLeft = 0 'False
NoWebView = 0 'False
HideFileNames = 0 'False
SingleClick = 0 'False
SingleSelection = 0 'False
NoFolders = 0 'False
Transparent = 0 'False
ViewID = "{0057D0E0-3573-11CF-AE69-08002B2E1262}"
Location = e
End
Begin VB.CheckBox chkEnableBizTalkIntegration
Caption = "Enable BizTalk Integration"
Height = 255
Left 240
TabIndex = 8
Top = 5280
width = 2535
End
Begin VB.Frame grpEnableBizTalkIntegration
Height = 975
Left = 120
TabIndex = 7
Top = 5640
wWidth = 5775
Begin VB.TextBox txtScheduleFile
Height = 375
Left = 1440
TabIndex = 10
Text = "sked:///\vbeventsdemo\Products\
VBCOMConnector\BizTalk\Buyerl.skx"
Top = 360
width = 4095
End
Begin VB.Label 1blScheduleFile
Alignment = 1 'Right Justify
Caption = "Schedule File:"
Height = 255
Left = 240
TabIndex = 9
Top = 480
width = 1095
End
End
Begin VB.CommandButton btnClose
Caption = "Close"
Height = 375
Left = 5760
TabIndex = 3
Top = 6960
width = 975
End
Begin VB.Frame grpReceivedEvents
Caption = "Received Events"
Height = 2895
Index = 0

6-14 JD Edwards EnterpriseOne Tools Connectors Guide

Implementing JD Edwards EnterpriseOne Interfaces

Left = 3000
TabIndex = 6
Top = 2160
width = 2895
Begin VB.CommandButton btnClear
Caption = "Clear"
Height = 375
Index = 0
Left = 1680
TabIndex = 2
Top = 2280
width = 975
End
Begin MSComctlLib.ListView lvwReceivedEvents
Height = 1695
Left = 120
TabIndex = 1
Top = 360
width = 2655
_ExtentX = 4683
_ExtentY = 2990
View = 2
LabelWrap = -1 'True
HideSelection = -1 'True
_Version = 393217
ForeColor = -2147483640
BackColor = -2147483643
BorderStyle = 1
Appearance = 1
NumItems = 2
BeginProperty ColumnHeader (1) {BDD1F052-858B-11D1-B16A-
00C0F0283628}
Key = "colEventName"
Text = "Event Name"
Object.Width = 2540
EndProperty
BeginProperty ColumnHeader (2) {BDD1F052-858B-11D1-B16A-
00C0F0283628}
SubItemIndex = 1
Key = "colData"
Text = "Data"
Object.Width = 6174
EndProperty
End
End
Begin VB.Frame grpSubscriptions
Caption = "Subscriptions"
Height = 1215
Left = 120
TabIndex = 4
Top = 720
width = 5775
Begin VB.CheckBox chkPersist
Caption = "Persist"
Height = 255
Left = 1560
TabIndex = 16
Top = 840
width = 975
End

Using COM Connector Solution for Guaranteed Events

Implementing JD Edwards EnterpriseOne Interfaces

Begin VB.ComboBox cEventList

Height = 315
Left = 1560
Sorted = -1 'True
TabIndex = 15
Top = 360
width = 2295

End

Begin VB.CommandButton btnUnsubscribe
Caption = "UnSubscribe"
Height = 375
Left = 4200
TabIndex = 11
Top = 720
width = 1095

End

Begin VB.CommandButton btnSubscribe
Caption = "Subscribe"
Height = 375
Left = 4200
TabIndex = 0
Top = 240
width = 1095

End

Begin VB.Label 1lblEventName
Alignment = 1 'Right Justify
Caption = "Event Name:"
Height = 255
Left = 360
TabIndex = 5
Top = 360
width = 1095

End

End
End

Attribute VB_Name = "MainForm"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = False
Attribute VB_PredeclaredId = True
Attribute VB_Exposed = False

Option Explicit

Private m_SubscriptionManager As SubscriptionManager
Private WithEvents m_OneWorldTransientEventSink As
OneWorldTransientEventSink

Attribute m_OneWorldTransientEventSink.VB_VarHelpID = -1
Private Sub Combol_Change()

End Sub
Private Sub Checkl_Click()

End Sub
Private Sub btnClear_ Click(Index As Integer)

lvwReceivedEvents.ListItems.Clear
End Sub

6-16 JD Edwards EnterpriseOne Tools Connectors Guide

Implementing JD Edwards EnterpriseOne Interfaces

e KK o

Private Sub btnGetEventTemplate Click()
Dim EventName As String
Dim EventTemplate As String
EventName = cEventList.List (cEventList.ListIndex)
'm_SubscriptionManager.GetEventTemplate EventName, EventTemplate
Dim flsObject As New Scripting.FileSystemObject
Dim varTemplateFile As TextStream
Dim strTemplateFile As String
strTemplateFile = "C:\temp\event_template.xml"
If Dir(strTemplateFile) = "" Then
Set varTemplateFile = flsObject.CreateTextFile
(strTemplateFile, False, False)
Else
Set varTemplateFile = flsObject.OpenTextFile
(strTemplateFile,ForWriting, False)
End If

varTemplateFile.WriteLine EventTemplate
varTemplateFile.Close

wbEventData.Navigate "c:\temp\event_template.xml"
End Sub

1 * %

Private Sub Form_Load()
Set m_SubscriptionManager = New SubscriptionManager
Set m_OneWorldTransientEventSink = New OneWorldTransientEventSink

'EnableBizTalkIntegrationGroup
End Sub

Private Sub m_OneWorldTransientEventSink_OneWorldEvent (ByVal EventName
As String, ByVal Data As String)
' add the event name and payload to the list
Dim mTempItem As ListItem
Set mTempItem = lvwReceivedEvents.ListItems.Add()
mTempItem.Text = EventName
'mTempItem.SubItems (1) = Data
Dim flsObject As New Scripting.FileSystemObject
Dim varEventFile As TextStream
Dim strEventFile As String
strEventFile = "C:\temp\eventData.xml"
If Dir(strEventFile) = "" Then
Set varEventFile = flsObject.CreateTextFile(strEventFile,
False, False)
Else
Set varEventFile = flsObject.OpenTextFile(strEventFile,
ForWriting, False)
End If

varEventFile.WriteLine Data

varEventFile.Close
wbEventData.Navigate "c:\temp\eventdata.xml"

Using COM Connector Solution for Guaranteed Events 6-17

Implementing JD Edwards EnterpriseOne Interfaces

' send the event to BizTalk (if it is enabled)
'If (chkEnableBizTalkIntegration.Value = Checked) Then
'Dim oBizTalk As BizTalk
'Set oBizTalk = New BizTalk
'oBizTalk.RunSchedule txtScheduleFile.Text, Data
' End If
End Sub

L PR * %

Private Sub btnGetEventList_Click()
Dim events As String
Dim myValue As String
Dim myString As String
Set m_SubscriptionManager = New SubscriptionManager
m_SubscriptionManager.GetEventList events

cEventList.Clear
events = "RTSOOUT"
myString = events

'Do Until events = ""

'If InStr(l, myString, ":") > 0 Then

' myValue = Left(myString, InStr(l, myString, ":") - 1)
' myString = Mid(myString, InStr(l, myString, ":") + 1)
'Else

' myValue = myString

! events = ""

'"End If

'cEventList.AddItem myValue
' Loop
cEventList.AddItem myString
cEventList.ListIndex = 0
End Sub

Ve * %

Private Sub btnSubscribe_Click()
' subscribe to the named event.
Dim EventName As String
EventName = cEventList.List (cEventList.ListIndex)
If (chkPersist.Value = Checked) Then
m_SubscriptionManager.CreatePersistentSubscription EventName,
m_OneWorldTransientEventSink
Else
m_SubscriptionManager.CreateTransientSubscription EventName,
m_OneWorldTransientEventSink
End If
Dim mTempItem As ListItem
Set mTempItem = lvwSubscribedEvents.ListItems.Add()
mTempItem.Text = EventName
End Sub

Private Sub btnUnsubscribe_Click()

6-18 JD Edwards EnterpriseOne Tools Connectors Guide

Implementing JD Edwards EnterpriseOne Interfaces

Dim EventName As String
EventName = cEventList.List (cEventList.ListIndex)
Dim lstItem As ListItem
Dim count As Integer
Dim found As Boolean
count = 0
found = False
For Each lstItem In lvwSubscribedEvents.ListItems
count = count + 1
If lstItem = EventName Then
lvwSubscribedEvents.ListItems.remove (count)
GoTo remove
found = True
End If
Next
If found = False Then
MsgBox "Event Not Subscribed"
End If
remove: If (chkPersist.Value = Checked) Then
m_SubscriptionManager.RemovePersistentSubscription EventName,
m_OneWorldTransientEventSink
Else
m_SubscriptionManager.RemoveTransientSubscription EventName,
m_OneWorldTransientEventSink
End If

End Sub

Private Sub chkEnableBizTalkIntegration_Click()
'EnableBizTalkIntegrationGroup
End Sub

Private Sub btnClear0_Click()
' clear the events from the list
lvwReceivedEvents.ListItems.Clear
End Sub

Private Sub btnClose Click()
m_SubscriptionManager.Logoff
Unload Me
End

End Sub

1 * %

Private Sub Initialize()

' Create the event sink

Set m_OneWorldTransientEventSink = New OneWorldTransientEventSink
End Sub

Private Sub EnableBizTalkIntegrationGroup ()
'Dim blnEnable As Boolean
'blnEnable = (chkEnableBizTalkIntegration.Value = Checked)
'1blScheduleFile.Enabled = blnEnable
'txtScheduleFile.Enabled = blnEnable

End Sub

Using COM Connector Solution for Guaranteed Events 6-19

Implementing JD Edwards EnterpriseOne Interfaces

6.3.5 Integrating with BizTalk

This co

6.3.5.1
This co

de is for the BizTalk integration for the received event.

Subscriber: BizTalk.cls
de sample shows BizTalk subscription:

VERSION 1.0 CLASS

BEGIN
Multi
Persi

Use = -1 'True
stable = 0 'NotPersistable

DataBindingBehavior = 0 'vbNone
DataSourceBehavior = 0 'vbNone
MTSTransactionMode = 0 'NotAnMTSObject

END

Attribute VB_Name = "BizTalk"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = True
Attribute VB_PredeclaredId = False
Attribute VB_Exposed = False

Option

Thkk%x*x%x
Thkk k%
Thkkkkk
T kK kKK
T hkk kK%
Tk*x k%%
Thkkk k%
Thkk k%
T k) kkk
T kK kKK
T hkk kK%
Tk*x k%%
Thkkk k%
Thkkx%x
Thkkkkk
T kK kK%
T hkk kK%
Tx%x k%%
Thkk k%
Thkkk k%
k) kkk
T hkk kK%
T kK kK%
Tk*x k%%
Thkkk k%
Thkkk k%
k) kkk

T kK kK%

Private
Private
Private
Private
Private

Private

Explicit

khkkkkkhkhkhhhhhkdkdhkrhhhhhhkhhhhhhhhhhkdhkrhrrhrhhhhkhkxxxkxx

ExecuteTutorial

Purpose: This component is used to exercise
the XLANG schedule portion of tutorial accompanying
BizTalk Server (this is the Module 1 Tutorial).
The component launches the specified schedule
file and passes the data file specified
to it using MSMQ.

NOTE: the source code in this component is a direct
adoption of the code found in the Module 1

Tutorial in the BizTalk Server 2000 documentation.
The default location for the original version of this
source is found in: C:\Program Files\Microsoft
BizTalk Server\Tutorial\Schedule\Solution\
ExecuteTutorial .vbp

Inputs:
Schedule File - Contains the Moniker used to
launch the schedule
Data File - Contains the location of the
XML document to be passed to
the schedule for processing.

Outputs:
Data File - Data file is passed to MSMQ
for later retrieval by the schedule.

g_MSMTxDisp As MSMQ.MSMQTransactionDispenser
g_MSMQQueue As MSMQ.MSMQQueue

g_MSMQInfo As MSMQ.MSMQQueueInfo
g_CurSkedDir As String

g_CurDataDir As String

Sub Class_Initialize()

6-20 JD Edwards EnterpriseOne Tools Connectors Guide

Implementing JD Edwards EnterpriseOne Interfaces

Set g_MSMQInfo = CreateObject ("MSMQ.MSMQQueueInfo")
Set g_MSMTxDisp = CreateObject ("MSMQ.MSMQTransactionDispenser")
End Sub

Public Sub RunSchedule(ByVal strScheduleFile As String, ByVal
strData As String)

Dim objfs As New FileSystemObject

On Error GoTo cmdRunSked_Click_err

'Connect To MSMQ and Remove Any Existing Messages
PurgeMSMQ "DIRECT=0S:.\private$\ReceivePoReq"

'Send Selected message to MSMQ
ExecuteMSMQ "DIRECT=0S:.\private$\ReceivePoReq", strData

'Start Schedule which reads message from MSMQ
ExecuteSchedule strScheduleFile

Exit Sub
cmdRunSked_Click_err:
MsgBox Err.Description & vbCrLf & "Error: " & Err.Number & "
(0x" & Hex(Err.Number) & ")", vbCritical, "Error " & Err.Source
Err.Clear

End Sub

Private Sub PurgeMSMQ (ByVal strQueuePath As String)
Dim 1_MSMQMsg As MSMQMessage

On Error GoTo Err_ConnectMSMQ
g_MSMQInfo.FormatName = strQueuePath
Set g_MSMQQueue = g_MSMQInfo.Open(MQ_RECEIVE_ACCESS, MQ_DENY_NONE)

On Error GoTo Err_PurgeMSMQ

Do

Set 1_MSMQMsg = g_MSMQQueue.Receive(, , , 1)
Loop While Not 1_MSMQMsg Is Nothing
Exit Sub

Err_ConnectMSMQ:

Err.Raise Err.Number, "Connecting To MSMQ", "Could Not Open the
MSMQ Queue """ & strQueuePath & """." & vbCrLf & vbCrLf &
Err.Description

Exit Sub
Err_PurgeMSMQ:
Err.Raise Err.Number, "Cleaning MSMQ", "Could Not Remove

Existing Messages from MSMQ Queue """ & strQueuePath & """." &
vbCrLf & vbCrLf & Err.Description

Exit Sub
End Sub

Private Sub ExecuteMSMQ (ByVal strQueuePath As String, DataToQueue
As String)
Dim QueueMsg As New MSMQMessage

Dim strData As String

Dim fSend As Boolean
Dim txt As TextStream

Using COM Connector Solution for Guaranteed Events 6-21

Implementing JD Edwards EnterpriseOne Interfaces

Dim mybyte() As Byte

On Error GoTo Err_SendMSMQ

g_MSMQInfo.FormatName = strQueuePath

Set g_MSMQQueue = g_MSMQInfo.Open (MQ SEND_ACCESS, MQ_DENY_NONE)
mybyte = StrConv(DataToQueue, vbFromUnicode)

QueueMsg.Body = DataToQueue

Dim MSMQTx As Object

Set MSMQTx = g_MSMTxDisp.BeginTransaction
QueueMsg.Send g_MSMQQueue, MSMQTx
MSMQTx . Commit

Set QueueMsg = Nothing
Set MSMQTx = Nothing
Exit Sub

Err_SendMSMQ:

Err.Raise Err.Number, "Sending Message To MSMQ", "Could Not
Send Message To MSMQ Queue """ & strQueuePath & """." & vbCrLf &
vbCrLf & Err.Description

Exit Sub
End Sub

Private Sub ExecuteSchedule (ByVal strSchedule)
Dim SendPAQ As Object
On Error GoTo Err_ExecSched

Set SendPAQ = GetObject (strSchedule)
If SendPAQ Is Nothing Then

Err.Raise vbObjectError + 1, , "Invalid Schedule Handle
Returned."
End If
Set SendPAQ = Nothing
Exit Sub

Err_ExecSched:

Err.Raise Err.Number, "Starting Schedule", "Could Not Launch
the XLANG Schedule" & vbCrLf & "Please verify the path to the SKX
file and the path to the data are correct. Also make sure the private
queues have been created." & vbCrLf & vbCrLf & Err.Description

Exit Sub
End Sub

6.3.6 Adding a New Application

From the Microsoft Windows machine, navigate to COM+ Applications (Control Panel
> Administrative Tools > Component Services), and then expand these buttons and
folders:

Component Services > Computers > My Computer > COM+ Applications
To add a new application:
1. On Component Services, select COM+ Applications.
2. Right-click COM+ Applications, select New, and then select Application.
The COM Application Install Wizard appears. These steps apply to the wizard.

3. On Install or Create a New Application, select Create an empty application.

6-22 JD Edwards EnterpriseOne Tools Connectors Guide

Registering EventSink for Persistent Subscription

4. On Create Empty Application, enter the name of the application (for example,
JDECOMConnectorEvents).

5. Select an option for Activation Type, and then click Next.
6. On Set Application Identity, select the Interactive User option, and then click Next.
7. Click Finish.

A new application, with the name you entered in Step 4, is added to COM+
Applications.

6.3.7 Installing the Event Class

On Component Services, expand the folder for the new application (for example,
JDECOMConnectorEvents).

To install the event class:
1. On Component Services, select Components.
2. Right-click Components, select New, and then select Component.
The COM Component Install Wizard appears. These steps apply to the wizard.
3. OnImport or Install a Component, select Install new event class(es).

4. On Select Files to Install, browse to the EventClass.dll on the Microsoft Windows
machine.

5. Select EventClass.dll, and then click Open.
Install new event class appears with information in these fields:
- Files to install
- Event classes found

6. Click Next, and then click Finish.

EventClass.dll is successfully added to Component Services.

6.4 Registering EventSink for Persistent Subscription

After you register an event class in the COM+ catalog, you can add subscribers to the
event class and subscriptions to the subscribers. For persistent event subscription:

= Add anew application for EventSink.
= Install the type library component for EventSink.
= Add a subscription.

Note: To add EventSink, follow the steps in the task named To add a
new application. The name of the application is EventSink, or a name
that you prefer.

See Adding a New Application

To install the EventSink component:

On Component Services, expand the folder for the new application (for example,
EventSink).

1. Select Components.

Using COM Connector Solution for Guaranteed Events 6-23

Registering EventSink for Persistent Subscription

6.

Right-click Components, select New, and then select Component.
The COM Component Install Wizard appears. These steps are for the wizard.
On Import or Install a Component, select Install new component(s).

On Select Files to Install, browse to the EventSink.dll that you previously
developed.

Select EventSink.dll, and then click Open.

Install new component appears with information in these fields:
- Files to install

- Event classes found

Click Next, and then click Finish.

EventSink.dll is successfully added to Component Services.

To add a subscription:

In COM+ Applications, expand these folders:

JDECOMConnectorEvents > Components > EventSink.OneWorldTransientEventSink

1.
2.

10.
11.
12.

Select Subscription.

Right-click Subscription, select New, and then select Subscription.

The COM New Subscription Wizard appears. These steps apply to the wizard.
On Select Subscription Method(s), chose IOWEvent, and then click Next.

If appropriate, select the Use all interfaces for this component option.

On Select Event Class, select the event class (for example,
JDEdwards.EventClass.OneWorldEventClass.1), and then click Next.

If multiple EventSink classes have implemented the event interface, then use all
event classes that implement that specified interface. If only one EventSink class
has implemented the event interface, then just select that specific class.

On Subscription Options, enter the name of the subscription (for example,
MySubscription).

In the Options area, select the Enable this subscription immediately option, and
then click Next.

Click Finish.

A new subscription, with the name you entered in Step 6, is added to COM+
Services. You must define the name of the event for the subscription.

Right-click the subscription (for example, MySubscription), and then select
Properties.

On MySubscription Properties, click the Options tab.
Chose the Enabled option.

In the Filter criteria field, enter the name of the event for which you want a
subscription.

Enter all of the events for which you want to subscribe. The filter criteria string
supports relational operations (=, ==, !, |=, ~, ~=, <>), nested parentheses, and
logical words (AND, OR, and NOT); for example:

EventName=="RTSOOUT' OR EventName==RTPOOUT"

6-24 JD Edwards EnterpriseOne Tools Connectors Guide

Registering EventSink for Persistent Subscription

13. Click OK.

Using COM Connector Solution for Guaranteed Events 6-25

Registering EventSink for Persistent Subscription

6-26 JD Edwards EnterpriseOne Tools Connectors Guide

7

Understanding jdeinterop.ini for COM
Connector

This chapter contains the following topic:

= Section 7.1, "Settings for jdeinterop.ini File for the COM Connector"

7.1 Settings for jdeinterop.ini File for the COM Connector

7.1.1 [OCM]

The jdeinterop.ini file includes settings the server might need. The default location for
the file is ¢ : \; however, you can configure this location. Information is organized by
section, for example [JDENET].

These sections are configured for the COM connector:

= OCM
s JDENET
s Server

= Security

s Debug
= Interop
= Events

Configure these [OCM] settings for the COM connector:

Setting and Typical Value Purpose

DSN=ODA ITTND17 The data source name from the system DSN of the ODBC
setting.

OCM Datasource=COM OCM System data source for JD Edwards EnterpriseOne client.

DB User=jde User for the data source connection.

DB Pwd=jde Password for the data source connection.

Object Owner=sysb9 For UNIX platforms, this is the object owner in the [DB
SYSTEM SETTINGS].

Seperator=. Separator used in SQL query.

For Oracle, SQL, and UDB databases, the separator is period
(.); for IBM i, the separator is a slash (/).

Understanding jdeinterop.ini for COM Connector 7-1

Settings for jdeinterop.ini File for the COM Connector

7.1.2 [JDENET]
Configure these [JDENET] settings for the COM connector:

Setting and Typical Value Purpose

enterpriseServerTimeout=90000 Timeout value for a request to the JD Edwards EnterpriseOne
enterprise server.

maxPoolSize=30 JDENET socket connection pool size.

7.1.3 [SERVER]
Configure these [SERVER] settings for the COM connector:

Setting and Typical Value Purpose

glossaryTextServer=]JDED:6010 The JD Edwards EnterpriseOne enterprise server and port
that provide glossary text information.

codePage=1252 The encoding scheme, such as:
1252 English and Western European.
932 Japanese.
950 Traditional Chinese.
936 Simplified Chinese.
949 Korean.

7.1.4 [SECURITY]
Configure this [SECURITY] setting for the COM connector.

Setting and Typical Value Purpose

NumServers=1 Number of security servers set.

7.1.5 [DEBUG]
Configure these [DEBUG] settings for the COM connector:

Setting and Typical Value Purpose

JobFile=c:\Interop.log Location of error file.

DebugFile=c:\InteropDebug.log Location of debug file.

log=c:\net.log Location of log file.

7-2 JD Edwards EnterpriseOne Tools Connectors Guide

Settings for jdeinterop.ini File for the COM Connector

Setting and Typical Value Purpose

debugLevel=0 - 12

Defines the level of tracing provided by the COM connector
and the CallObject component in the specified log file, in the
COM server only.

0 None: Logging is turned off and only errors are written to
the JobFile.

2 Errors (error messages).
4 System Errors (exception messages).
6 Warning Information.

8 Min Trace (Key operations; for example, Login, Logoff,
Business Function calls).

10 Trouble Shooting Information (Help).
12 Complete Debug Information (Logs everything).

Note: The odd values are reserved for future levels to be
added.

You typically do not need to use tracing. However, tracing is
useful for debugging.

netTraceLevel=0

Defines the level of tracing provided by the ThinNet
component in the specified log file, in the COM server only.

0 No trace.

1 Record process ID, thread ID, and the available socket
status when a new connection is added and the socket pool
is searched.

2 Includes the information in trace level 1 and also traces
every call made in the Connection Manager class.

3 Includes all information in trace level 2, and also traces
getPort calls and getHost calls.

Note: You typically do not need to use tracing. However,
tracing is useful for debugging.

7.1.6 [INTEROP]

Configure these [[INTEROP] settings for the COM connector:

Setting and Typical
Value

Purpose

Setting Time=60000

Enables the connector to access and retrieve event information from
the F90703 and F90704 tables. Defines the time for the connector
applications to start up before the connector starts recovering an
event.

This value is milliseconds.

RecoveryInterval=10000

Enables the connector to access and retrieve event information from
the F90703 and F90704 tables. Defines the time for the connector
applications to start up before the connector starts recovering an
event.

This value is milliseconds.

enterpriseServer=JDED

The JD Edwards EnterpriseOne server.

port=6010

The port number of the JD Edwards EnterpriseOne server.

manual_timout=300000

The time-out value for a transaction in manual commit mode.

Understanding jdeinterop.ini for COM Connector 7-3

Settings for jdeinterop.ini File for the COM Connector

Setting and Typical

Value Purpose

Repository=c:\JDEdwar
ds\ Interop\repository

Points to the location of the repository directory containing business
object libraries (generated JAR files).

7.1.7 [EVENTS]

Configure these [EVENTS] settings for the COM connector:

Setting and Typical Value

Purpose

UseGuaranteedEvents System= True

Indicates guaranteed event delivery.
Values are true and false. Must be set to
True to use guaranteed event delivery.

Transport=HTTP

Defines the event transport mechanism.
Valid values are HTTP and JMS. The
default value is HTTP.

eventServiceURL=http:/ /<HOST>:<PORT>/
elevents/EventClientService

For a clustered transaction server:

eventServiceURL=http://<HOST1>:<PORT1>/
elevents/EventClientService | http:/ /<HOST2>:
<PORT2>/elevents/ EventClientService

If there are more servers in a cluster, then the
eventServiceURL can be appended with | as a
delimiter; for example:

http://<HOST1>:<PORT1>/elevents/
EventClientService | http:/ /<HOST2>:<PORT2>/
elevents/ EventClientService | http://<HOST3>:
<PORT3>/elevents/ EventClientService

Locates the event service. If the value for
the Transport= setting is HTTP, then this
setting must be configured.

For WebLogic, these ports are the Listen
Port.

For WebSphere, these ports are the
default http ports found under Server >
Communication > Ports > WC_
defaulthost.

jndiProviderURL=

For WebLogic:
jndiProviderURL=t3//<HOST>:<PORT>
For a clustered transaction server:

t3:/ /<HOST1>:<PORT1>;<HOST2>:<port3>

If there are more servers in a cluster, then the
jndiProviderURL can be appended with ; as a
delimiter; for example:

t3://<HOST1>:<PORT1>;<HOST2>:<PORT2>;
<HOST3>;<PORT3>

For WebSphere:

jndiProviderURL=corbaloc::<HOST>:<PORT>/
NameServiceServerRoot

For a clustered transaction server:

corbaloc::<HOST1>:<PORT1>,:
<HOST2>:<PORT2>/NameServiceServerRoot

If there are more servers in a cluster, then the
jndiProviderURL can be appended with ,; as a
delimiter; for example:

corbaloc::/ /<HOST1>:<PORT1>;<HOST2>:<PORT
2>;
<HOST3>;<PORT3>/NameServiceServerRoot

Locates the event service. If the value for
the Transport= setting is JMS, then this
setting must be configured.

For WebLogic, these ports are the Listen
Port.

for WebSphere, these ports are the
Bootstrap ports.

7-4 JD Edwards EnterpriseOne Tools Connectors Guide

Settings for jdeinterop.ini File for the COM Connector

Setting and Typical Value

Purpose

eventReceiveTimeout=60000

Maximum number of milliseconds that
the event receiver waits before
unsubscribing the event from the JD
Edwards EnterpriseOne server.

initialContextFactory=
For WebLogic:

initialContextFactory=weblogic.jndi.WLInitial Cont
extFactory

For WebSphere:

initialContextFactory=com.ibm.websphere.naming.
WsnlnitialContextFactory

Initial Context Factory

port=6002

The socket port number where the
EventListener receives the events from
the JD Edwards EnterpriseOne server.
This port should not be used by any other
resource. Also, the port should not be
changed dynamically when the connector
is running, as this causes subsequent
subscriptions to be lost.

ListenerMaxConnection=10

The maximum number of connections
allowed by the EventListener. The default
number of connections is 10, but you can
change this number. The maximum
number of connections allowed is 64.

ListenerMaxQueueEntry=10

The maximum number of events that the
EventListener can hold before processing
by the EventManager. The default
number of events for the queue is 10, but
you can change this number. The
maximum number of events that can be
held in the queue is 100.

Outbound_timeout=1200000

Maximum number of milliseconds that
the EventManager waits before
unsubscribing the transient event from
the JD Edwards EnterpriseOne server.

7.1.8 [UMSEVENTS]

This section has a single setting, CLASSPATH. Note that you must include the full
directory path of each file, separating each file by a semicolon. For example,
CLASSPATH=connector.jar;EventProcessor_JAR jar;System_JAR jar.

Note:]D Edwards EnterpriseOne Tools Release 9.1 Update 4 and
later releases require a different set of jar files.

For Tools Releases prior to JD Edwards EnterpriseOne Tools Release 9.1 Update 4,
copy these files from the JD Edwards EnterpriseOne server to a directory on the
machine that you want to use. Unless otherwise noted, the following files can be found
in the <JD Edwards EnterpriseOne Windows client installation

directory>\system\classes folder:
= ApplicationAPIs_JAR jar
= ApplicationLogic_JAR jar

Understanding jdeinterop.ini for COM Connector 7-5

Settings for jdeinterop.ini File for the COM Connector

s Base JARjar

= BizLogicContainer_JAR jar
s BizLogicContainerClient_JAR jar
= BusinessLogicServices_JAR jar
= castorjar

= commons-httpclient-3.0.jar
= commons-logging jar

= Connectorjar

s EventProcessor_JAR jar

= Generatorjar

= j2eel_3jar

= JdbjBase_JARjar

s JdbjInterfaces_JAR jar

s JdeNet_JARjar

= jmxremote.jar

= jmxremote_optional.jar

m jmxrijar

= ManagementAgent_JAR jar
= Metadata jar

s Metadatalnterface jar

= PMApi_JARjar

= Spec_JARjar

= System_JARjar

= SystemlInterfaces_JARjar

= xalanjar

= Xerces.jar

= xmlparserv2.jar

The path to the directory where the jdeinterop.ini, jdbj.ini, and jdelog.properties files
exist, which must all be in one directory.

The full path to the JDBC driver files, including the filenames.

The CLASSPATH entry must end with a slash (\), which indicates it is a directory
name and not a file name.

If you are using JD Edwards EnterpriseOne Tools Release 9.1 Update 4 or a later
release, copy the following files from the <JD Edwards EnterpriseOne Windows client
installation directory>\system\class folder:

= ApplicationAPIs_JAR jar
= ApplicationLogic_JARjar
= Base JARjar

7-6 JD Edwards EnterpriseOne Tools Connectors Guide

Settings for jdeinterop.ini File for the COM Connector

BizLogicContainer_JAR jar
BizLogicContainerClient_JAR jar
BusinessLogicServices_JAR.jar
castor.jar
commons-codec.jar
commons-lang?2.6 jar
commons-logging jar
Connector.jar
EventProcessor_JAR jar
Generator_JAR jar
httpclient.jar

httpcore. jar

httpmime jar

j2eel_3.jar

JdbjBase_JAR jar
JdbjInterfaces_JAR jar
JdeNet_JAR jar
jmxremote.jar
jmxremote_optional.jar
jmxri.jar
ManagementAgent_JAR jar
Metadata.jar
Metadatalnterface jar
PMApi_JARjar

Spec_JAR jar
System_JAR jar
SystemlInterfaces_JAR jar
xerces.jar

xml-apis.jar

xmlparserv2.jar

The path to the directory where the jdeinterop.ini, jdbj.ini, and jdelog.properties files
exist, which must all be in one directory.

The full path to the JDBC driver files, including the filenames.

The CLASSPATH entry must end with a slash (\), which indicates it is a directory
name and not a file name.

Understanding jdeinterop.ini for COM Connector

7-7

Settings for jdeinterop.ini File for the COM Connector

Note: For all releases, the files on the client side and Transaction
server side must always match. This is important if the Transaction
server is updated.

7.1.8.1 WebSphere

Normally IBM WebSphere MQ is included as part of other WebSphere applications,
including the WebSphere Application Client. If you use WebSphere for the Java
connection, you must include these additional files.

= com.ibm.mgjms.jar

Normally located in the <IBM WebSphere MQ installation directory>/Java/lib
folder.

= com.ibm.mgqjar

Normally located in the <IBM WebSphere MQ installation directory>/Java/lib
folder.

= com.ibm.ws.ejb.thinclient_7.0.0.jar

Normally located in the <WebSphere installation directory>\runtime fold.
= com.ibm.ws.sib.client.thin.jms_7.0.0jar

Normally located in the <WebSphere installation directory>\runtime folder.
= com.ibm.ws.orb_7.0.0jar

Normally located in the <WebSphere installation directory>\runtime folder.

Note: The files on the client side and Transaction server side must
always match. This is important if the Transaction server is updated.

7.1.8.2 Oracle WebLogic Application Server

If you use WebLogic Application Server for the Java connection, you must include
additional files. These files are normally located in the Oracle installation directories in
the weblogic.jar folder.

7-8 JD Edwards EnterpriseOne Tools Connectors Guide

8

Understanding iJDEScript

This chapter contains the following topics:

8.1 iJDEScript

Section 8.1, "iJDEScript"
Section 8.2, "iJDEScript Commands"

GenCOM uses a scripting language called iJDEScript that enables you to script code
generation activities. You can use iJDEScript to:

Rename business function libraries or select different business functions to create a
custom interface; for example:

library MyTestLibrary

interface MytestInterface

import B4200310 F4211FSEditLine
import B000042

This example selects the single business functions B4200310 F4211FSEditLine and
B000042 for exposure.

Use JD Edwards EnterpriseOne object aliases for more meaningful names.
Select business functions to expose; for example:

library MyAnotherLibrary

importlib CAEC

importlib CRUNTIME 1

This example selects all of the business functions in the CAEC and CRUNTIME 1
libraries for exposure.

iJDEScript scripts have a simple syntax:

comments begin with # and proceed to the end of line

whitespace is ignored

login

importlib CAEC

build

Understanding iJDEScript 8-1

iJDEScript Commands

8.2 iJDEScript Commands

iJDEScript supports a standard set of commands.

8.2.1 Build Command

The build command tells the generator to generate code for all defined interfaces and
to build the appropriate libraries.

When the build command is complete, the interface definitions are released. Using the
build command again generates code for interfaces defined after the last build
command.

8.2.1.1 Syntax

This is an example of the syntax:

build

8.2.2 Call Command

The call command tells the generator to evaluate a subroutine with the given
parameters. Parameters appear within the subroutine in order as special macros
named %1%, %2%, and so on.

8.2.2.1 Syntax

This is an example of the syntax:

call sub [param [...]]

8.2.2.2 Example

This is an example:

login

call GenerateLib CAEC
call GenerateLib CALLBSFN
build

logout

8.2.3 Define Command

The define command tells the generator to optionally define a macro expansion. The
value is expanded first, and then stored as the expansion of macro name. If name
already has an expansion, the generator ignores this command.

8.2.3.1 Syntax

This is an example of the syntax:

define name value

8-2 JD Edwards EnterpriseOne Tools Connectors Guide

iJDEScript Commands

8.2.3.2 Example

This is an example:

define vall This is a test
define val2 %$vall%!

define val2 This is ignored
say %val2%

generates the output

This is a test

8.2.4 Define! Command

The define! command tells the generator to define a macro expansion. The value is
expanded first, and then stored as the expansion of macro name. If name already has
an expansion, the generator replaces the current expansion with the new expansion.

8.2.4.1 Syntax

This is an example of the syntax:

define name value

8.2.4.2 Example

This is an example:

define vall This is a test
define val2 %vall%!

define! val2 This is not ignored
say %val2%

generates the output

This is not ignored

8.2.5 Exit Command

The exit command tells the generator to exit the current subroutine or command file.

8.2.5.1 Syntax

This is an example of the syntax:

exit

Understanding iJDEScript 8-3

iJDEScript Commands

8.2.6 Help Command

The help command requests help information from the generator on all available
commands. Syntax information and a brief description are presented for each
command. If command is specified, only help for command is provided.

8.2.6.1 Syntax

This is an example of the syntax:

help [command]

8.2.7 Import Command

The import command tells the generator to retrieve the specification of a function or
group of business functions from the database and add them to the current interface
definition. If only the business function name is specified, all functions from the
specified business-function are retrieved and added to the current interface definition.
If a function name is specified, only that function is retrieved and added to the current
interface definition.

The alias option enables you to rename the function within the interface definition.
The implementation still uses the original name when invoking the business function;
however, the function is exposed as name through the interface.

8.2.7.1 Syntax

This is an example of the syntax:

import business-function [function [alias name]]

8.2.7.2 Example

This is an example:

library General

interface ReleaseMgmt

Load GetReleaseAndVersion from B9800890; call it GetRV in
ReleaseMgmt

import B4200310 F4211FSEditLine alias GetRV

Load all functions from B000042

import B000042

8.2.8 Importlib Command

The importlib command tells the generator to import all business functions from the
specified JD Edwards EnterpriseOne library, such as CAEC or CALLBSEN, into the
current library definition. Each business function group results in the definition of an
interface with the same name as the business function group and exposes as methods
the functions within that group.

8-4 JD Edwards EnterpriseOne Tools Connectors Guide

iJDEScript Commands

The category parameters enable you to restrict the import to one or more specific
categories (1, 2, 3 and -; see the /Cat command line option).

8.2.8.1 Syntax

This is an example of the syntax:

importlib library [category [...]]

8.2.8.2 Example

This is an example:

library JDECOMInterfaceCAECCatl
Load all category 1 functions from CAEC
importlib CAEC 1

build

8.2.9 Interface Command

The interface command tells the generator to begin the definition of an interface. All
business functions retrieved using subsequent import commands become members of
this interface.

8.2.9.1 Syntax for COM

This is an example of the syntax:

interface interface [ProgID prog-id] [vi-prog-id]

8.2.9.2 COM Example

This is an example:

interface ReleaseMgmt ProgID SOA.ReleaseMgmt.5 SOA.ReleaseMgmt

import B4200310 F4211FSEditLine

8.2.10 Library Command

The library command tells the generator that subsequent interface and import
commands will generate definitions that belong in the library (DLL) named name. If
the parameterset tag is also supplied, the library is used solely for parameterset
definitions.

Note: When the library command without the parameter set tag is
evaluated, parametersets for subsequent interface and import
commands appear in that library until a library command with the
parameterset tag is evaluated.

8.2.10.1 Syntax

This is an example of the syntax:

Understanding iJDEScript 8-5

iJDEScript Commands

library name [parameterset]

8.2.10.2 Example

This is an example:

library Libl

library LiblParams parameterset

Parametersets for CALLBSFN go in LiblParams, but the
business function interfaces go in Libl

importlib CALLBSFN 2 3

8.2.11 Login Command

The login command tells the generator to log on to JD Edwards EnterpriseOne. If user,
password, environment, and role are not specified, the user is prompted for the
information.

8.2.11.1 Syntax

This is an example of the syntax:

login [user password environment role]

8.2.11.2 Example

This is an example:

login me mypassword demo

8.2.12 Logout Command

The logout command tells the generator to log off of JD Edwards EnterpriseOne.

8.2.12.1 Syntax

This is an example of the syntax:

logout

8.2.13 Opt Command

The opt command tells the generator to set the value of a generator command line
parameter. The option parameter should not begin with the usual /. The value
parameter does not undergo macro expansion.

8.2.13.1 Syntax

This is an example of the syntax:

opt option value

8-6 JD Edwards EnterpriseOne Tools Connectors Guide

iJDEScript Commands

8.2.13.2 Example

This is an example:

Do not generate business function interfaces, only
parameterset interfaces

opt NoBSFN

8.2.14 Rename Command

The rename command tells the generator to rename an interface or a method within an
interface. If a method is renamed, the correct business function is still called to build
the implementation, but the method is exposed through the interface with a different
name.

8.2.14.1 Syntax

This is an example of the syntax:

rename interface new

rename interface method new

8.2.14.2 Example

This is an example:

library Libl

importlib CALLBSFN

rename B000042 BatchControl

rename BatchControl FSOpenBatch Open

rename BatchControl FSCloseBatch Close

8.2.15 Say Command

The say command tells the generator to display a message on the console.

8.2.15.1 Syntax

This is an example of the syntax:

say message

8.2.15.2 Example

This is an example:

say This is a test (%OwRelease%)
generate the output

This is a test (B9)

Understanding iJDEScript 8-7

iJDEScript Commands

8.2.16 Sub Command

The sub command creates a subroutine definition. The call command may be used to
invoke the subroutine. Parameters passed to the subroutine are as special macros
named %1%, %2%, and so on.

8.2.16.1 Syntax

This is an example of the syntax:

sub name
commands

end

8.2.16.2 Example

This is an example:

sub GenerateLibrary
define source %1%
library JDECOMInterface%source%Catl
importlib %source$ 1
Create a library of category 2 business functions in source
opt NOBSFN
library JDECOMInterface%source%Cat2
importlib %source$ 2
Create a library of category 3 business functions in source
library JDECOMInterface%source%Cat3
importlib %source% 3
system del /g c:\temp*.*
build
Move the libraries to a staging area
system mkdir d:\build
system mkdir d:\build\Catl
system mkdir d:\build\Cat2
system mkdir d:\build\Cat3
system move JDECOMInterface%source%Catl.* d:\build\Catl

system move JDECOMInterface%$source%Cat2.* d:\build\Cat2

8-8 JD Edwards EnterpriseOne Tools Connectors Guide

iJDEScript Commands

system move JDECOMInterface%source$Cat3.* d:\build\Cat3
end

call GenerateLibrary CAEC

8.2.17 System Command

The system command tells the generator to evaluate a command in the shell.

8.2.17.1 Syntax

This is an example of the syntax:

system command

8.2.17.2 Example

This is an example:

say This is a test
generates the output

This is a test

Understanding iJDEScript 8-9

iJDEScript Commands

8-10 JD Edwards EnterpriseOne Tools Connectors Guide

9

Understanding Java Interoperability Solution

This chapter contains the following topic:

= Section 9.1, "Java Interoperability Solution"

9.1 Java Interoperability Solution

The JD Edwards EnterpriseOne Java interoperability solution enables you to write
Java applications that interact with the JD Edwards EnterpriseOne system. The JD
Edwards EnterpriseOne solution uses the dynamic Java Connector.

The dynamic Java connector enables Java applications to dynamically call business
functions without generating business function wrappers. The dynamic Java connector
ensures that the Java business function is compatible with the server spec. The
dynamic Java connector makes it easy for the Java application to switch between JD
Edwards EnterpriseOne environments.

This diagram shows how a Java application interacts with JD Edwards EnterpriseOne
through a connector:

Understanding Java Interoperability Solution 9-1

Java Interoperability Solution

Figure 9-1 Java Application Interaction with JD Edwards EnterpriseOne

The dynamic Java connector provides public interfaces (or APIs) for these services that
can be used by a Java application:

Service Description

Security Management Handles security access to the JD Edwards EnterpriseOne
system.

User Session Management Manages the user session pooling.

Business Function Calls How the Java application calls business functions.

Transaction Management Manages the transaction process to the JD Edwards

EnterpriseOne system.

Error Handling Provides the appropriate exceptions to the connector user
to easily handle error scenarios.

The dynamic Java connector supports the processing of outbound events.

9-2 JD Edwards EnterpriseOne Tools Connectors Guide

10

Working with the Dynamic Java Connector

This chapter contains the following topics:

Section 10.1, "Understanding the Dynamic Java Connector"

Section 10.2, "Designing the Dynamic Java Connector"

Section 10.3, "Installing the Dynamic Java Connector"

Section 10.4, "Running the Dynamic Java Connector"

Section 10.5, "Managing the User Session for the Dynamic Java Connector"

Section 10.6, "Using Sample Applications"

10.1 Understanding the Dynamic Java Connector

The dynamic Java connector enables a Java application to call a business function. The
dynamic Java connector has these distinguishing features:

Dynamically introspects business function metadata.

The business function metadata is introspected from the JD Edwards
EnterpriseOne server during application design time by using connector APIs
without pre-generating business function wrappers.

Dynamically calls business functions without pre-generating business function
wrappers.

Because there is no local storage of business function specification metadata, the
business function used by the dynamic Java connector is always compatible with
the server specification metadata.

Easily switches from one environment to another environment.

The Java application can run on any environment that is compatible to the
environment on which the Java application was designed.

The dynamic Java connector provides these services:

For application design, the dynamic Java connector permits client programs to
introspect business function specification metadata.

For application deployment, the dynamic Java connector validates whether a
client application can run through a certain JD Edwards EnterpriseOne server.

For application runtime, the dynamic Java connector provides an interface that
permits the connector client to call the business function on the JD Edwards
EnterpriseOne server.

Each server is described in detail in corresponding sections of this guide.

Working with the Dynamic Java Connector 10-1

Designing the Dynamic Java Connector

10.2 Designing the Dynamic Java Connector

This section provides considerations for designing the dynamic Java connector and
discusses:

= Business function spec metadata introspection.
= Business function spec metadata validation.

= Speclmage console.

10.2.1 Business Function Spec Metadata Introspection

To call a business function method, you need to know the business function methods
that are available to be called, and you need to know about the business function
metadata. This list provides examples of metadata:

= Business function method (such as F4211BeginDoc).

s The module name (C file name) to which a business function method belongs
(such as B123456).

s Description of the business function method (such as sales order).

= Data structure template name that is associated with a business function method
(such as D123456).

» The attributes for all of the data items (parameters) in a business function method,
such as name=szMnAddressbookNumber, itemID=1, data type=Math_Numeric,
length=48, required Type="Yes", IOType="INOUT".

In the dynamic Java connector, metadata is represented by the BSFNMethod and
BSFNParameter interfaces.

10.2.1.1 BSFNMethod

The BSFNMethod interface defines APIs that enable you to retrieve metadata related
to the business function method. The BSFNMethod interface defines these APIs:

= public String getName();

= public String getDSTemplateName();

= public String getBSFNName();

= public String getDescription();

= public BSFNParameter getParameter(String paraName);
= public BSFNParameter[] getParameters();

= public String getFormatString|();

= public ExecutableMethod createExecutable();

= public boolean equals(Object anotherBSFNMethod);

= public void setEqualTo(BSENMethod anotherBSFNMethod);
= public String getVersion();

= public void setVersion(String version);

10-2 JD Edwards EnterpriseOne Tools Connectors Guide

Designing the Dynamic Java Connector

10.2.1.2 BSFNParameter

The BSENParameter interface defines APIs that enable you to retrieve metadata
related to the data structure of the business function. The BSFNParameter interface
defines these APIs:

= public int getltemlID();

= public String getName();

= public int getLength();

= public IOType getlOType();

= public RequiredType getRequiredType();
= public BSFNDataType get DataType();

10.2.1.3 BSFNSpecSource
You can write a program to retrieve business function method metadata through an
interface called BSFNSpecSource. The BSFNSpecSource interface defines these APIs:

s Public BSFNMethod getBSFNMethod(String methodName) throws
SpecFailureException

» Public BSFNMethod[] getBSFNMethods() throws SpecFailureException

The class that implements the BSFNSpecSource interface reads the business function
method metadata from an external physical repository and creates the BSFNMethod
object. AbstractBSFNSpecSource is an abstract implementation of BSFNSpecSource
provided by the dynamic Java connector. All customized implementations of
BSFNSpecSource should be a subclass of this class. OneWorldBSFNSpecSource is the
default implementation of AbstractBSFNSpecSource.

See Installing the Dynamic Java Connector.

This illustration shows the BSFNSpecSource, BSFNMethod, and BSFNParameter
relationships:

Working with the Dynamic Java Connector 10-3

Designing the Dynamic Java Connector

Figure 10-1 Relationships among BSFNSpecSource, BSFNMethod, and BSFNParameter

getBSFNMethod (bsfnMethodName)

Spec Source
Image (XML)

EnterpriseOne
Server

Client
listBSFNMethods() Dynamic Connector
1 Image 1
! ~| BSFNSpecSource |
3 Y ! BSNFMethod
| <<Interface>> ! getName();
| BSFNSpecSource ! getDSTemplate();
| l getBSFNName();
| O O O« | getFormatString();
’ | OneWorld | getParameters();
| BSFNSpecSource y l ,
BSNFParameter
getName();
getltemID();
getDataType();
getLength();
getlOType();
getRequiredType();

This code example shows how to retrieve the BSFN spec from BSFNSpecSource:

import com.jdedwards.system.connector.dynamic.spec.source.BSFNSpecSource;

import com.jdedwards.system.connector.dynamic.spec.source.OneworldBSFNSpecSource;
import com.jdedwards.system.connector.dynamic.Connector;

import com.jdedwards.system.connector.dynamic.spec.source.*;

import com.jdedwards.system.connector.dynamic.spec.SpecFailureException;

import com.jdedwards.system.connector.dynamic.ServerFailureException;

//Declare class
}
public void execMethod() throws SpecFailureException,ServerFailureException
{
BSFNSpecSource specSource = null;
int sessionID = Connector.getInstance().login("user", "pwd", "env", "role");
//specSource = new OneWorldBSFNSpecSource (sessionID); Problem in this
line. World should be small
specSource = new OneworldBSFNSpecSource (sessionID) ;
// or specSource = new ImageBSFNSpecSource("SSI.xml");
//Step 2: Get BSFNMethod by name from specSource
BSFNMethod method = specSource.getBSFNMethod ("GetEffectiveAddress");
String methodName = method.getName () ;
System.out.println("Method name is "+methodName) ;
BSFNParameter[] paralist = method.getParameters();

for (int i=0; i<paralList.length;i++)
{

BSFNParameter para = paraList[i];

10-4 JD Edwards EnterpriseOne Tools Connectors Guide

Designing the Dynamic Java Connector

String name=para.getName () ;
System.out.println("Name is "+name);
}

}

10.2.1.4 SpecDictionary

A BSFNSpecSource can contain thousands of business function methods. The dynamic
Java connector provides an interface to properly categorize and organize business
function methods. Without proper categorization and organization, it is difficult to
navigate and find the proper business function method. To solve this problem, the
dynamic Java connector provides an interface called SpecDictionary, which provides
these services:

= Categorizes business function methods in a hierarchy.

= Masks the BSFNSpecSource and limits the number of business function methods a
client can view.

The entry of SpecDictionary is called a context. A context is a set of name-to-object
bindings. Every context has an associated naming convention. A context provides a
lookup operation that returns the object. The dynamic Java connector provides these
two concrete classes that implement the SpecDictionary:

= OneWorldSpecDictionary, which gets the hierarchy information from the JD
Edwards EnterpriseOne database.

OneWorldSpecDictionary categorizes business function methods as DLL library -
C file name - C function name.

= ImagespecDictionary, which gets the hierarchy information from Spec Dictionary
Image, which is an XML file.

Like BSFNSpecSource, third-party programs can store the spec dictionary information
in their proprietary format, but they need to implement their own specDictionary to
read the proprietary spec.

This diagram shows the relationship between SpecDictionary and BSFNSpecSource:

Working with the Dynamic Java Connector 10-5

Designing the Dynamic Java Conn

ector

Figure 10-2 Relationship between SpecDictionary and BSFNSpecSource

Customized .| Customized
Dictionary "1 SpecDictionary
SpecDictionary | 1 . Image
Image (XML) '"| SpecDictionary
| OneWorld
! SpecDictionary
EnterpriseOne i _ OneWorld
Server .~ | BSFNSpecSource
SpecSource Image| . Image
(XML) ~ | BSFNSpecSource

Client

getinitialContext ()
lookupContext("CFIN")
lookupSpec("CFIN.B123.F123")
getspecs();

Dynamic
Connector

<<Interface>>
SpecDictionary

Context
getName();

_ get Description()
Q CP h | getSubContext("F42

bindSpecSource()

11BeginDoc")

BSNFMethod
getName();
getDSTemplate();
getBSFNName(

Y

<Interface>
BSFNSpecSource

getFormatString();
getParameters();

This example code shows how to use SpecDictionary and BSFNSpecSource to browse
and lookup information:

import com.
import com.
import com.
import com.
import com.
import com.
import com.

jdedwards.
jdedwards.
jdedwards.
jdedwards.
jdedwards.
jdedwards.
jdedwards.

system.
system.
system.
system.
system.
system.
system.

connector.
connector.
connector.
connector.
connector.

connector

connector.

dynamic.
dynamic.
dynamic.
dynamic.
dynamic.
.dynamic.
dynamic.

spec.source.BSFNSpecSource;
spec.source.Onewor1dBSFNSpecSource;
Connector;

spec.source.*;
spec.SpecFailureException;
ServerFailureException;
spec.dictionary.Context;

//import com.jdedwards.system.connector.dynamic.spec.dictionary.
InvalidBindingException;
import com.jdedwards.system.connector.dynamic.spec.dictionary.SpecDictionary;
import com.jdedwards.system.connector.dynamic.spec.dictionary.

OneworldSpecDictionary;

. //Declare Class

}

public void execMethod() throws SpecFailureException, ServerFailureException

{

10-6 JD Edwards EnterpriseOne Tools Connectors Guide

Designing the Dynamic Java Connector

BSFNSpecSource specSource = null;
SpecDictionary specDictionary = null;

//Step 1: Create a SpecDictionary

int sessionID = Connector.getInstance().login("user", "pwd", "env","role");
specDictionary = new OneworldSpecDictionary (sessionID) ;

// or specDictionary = new ImagespecDictionary("dict.xml");

//Step 2: Bind the SpecDictionary to a SpecSource
specDictionary.bindSpecSource (specSource) ;

//Step 3a: Lookup the BSFNMethod by giving the full path

//Problem in this line. Extra braces // BSFNMethod method =(BSFNMEthod)
specDictionary.getSpec ("CFIN.F4211.F4211BeginDoc")) ;

//Class name is wrongBSFNMethod method =(BSFNMethod) specDictionary.
getSpec ("CFIN.F4211.F4211BeginDoc") ;

BSFNMethod method =(BSFNMethod) specDictionary.getSpec("CFIN.F4211.
F4211BeginDoc") ;

//Step 3b: or navigate through the dictionary and get the context attributes
Context initContext = specDictionary.getInitialContext();

Context[] subContextList = initContext.getSubcontexts();

//Illegal expression // for (int I=0;I<subContextList>.length; I++)
for (int I=0;I<subContextList.length; I++)

{

Context subContext=subContextList[I];

subContext.getName () ;

subContext.getDescription();

method= (BSFNMethod) subContext .getBoundSpec () ;

}

}

10.2.2 Business Function Spec Metadata Validation

If the dynamic Java connector program calls a business function from
OneWorldBSFNSpecSource, you do not need to validate the business function
metadata. The business function metadata in OneWorldBSFNSpecSource is always the
same as the business function metadata that is on the JD Edwards EnterpriseOne
server where the business function runs. You must ensure that all input parameters are
set correctly, according to OneWorldBSFNSpecSource.

If the dynamic Java connector program calls a business function from a spec source
other than OneWorldBSFNSpecSource (such as ImageBSFNSpecSource or a custom
business function spec source), the business function metadata that is in the local spec
source might not be compatible with the business function metadata that is on the JD
Edwards EnterpriseOne server where the business function runs. Local business
function spec metadata can be validated during these conditions:

Condition Explanation

Deploy Time The dynamic Java connector program validates the local spec source against
the JD Edwards EnterpriseOne server spec source before run time. You should
perform this validation, as all business functions in the local spec source are
validated. The program can be redesigned before it is shipped.

Run Time The dynamic Java connector validates the program based on the local spec
design when running business functions. During this condition, only the
business function that is called is validated. Run time validations should be
treated as error handling when incompatible business function specs are found.

Working with the Dynamic Java Connector 10-7

Designing the Dynamic Java Connector

The dynamic Java connector provides two ways to validate business function spec
metadata during deploy time: SpecImageValidator APIs and SpecImageConsole
command line.

The APIs for SpecImageValidator are:
= public SpecImageValidator(BSFNSpecSource srcSpecSource).

= public ValidationResultSet validate(SpecDictionary dictionary) throws
SpecFailureException.

= public ValidationResultSet validate(SpecDictionary dictionary, String path) throws
SpecFailureException.

= public ValidationResultSet validate(BSFNSpecSource dstSpecSource) throws
SpecFailureException.

= public ValidationResultSet validate(BSFNSpecSource dstSpecSource, String
bsfnMethodName).

Note: If the SpecimageConsole command line is used, the dynamic
Java connector can validate only business function spec metadata
from ImageBSFNSpecSource; custom business function spec sources
cannot be validated.

10.2.3 SpeclmageConsole

You can use the SpecimageConsole command line to generate, update, validate and
synchronize spec images.

10.2.3.1 Generate Spec Image

You use the spec image console to generate or regenerate a spec image. This
information is useful for generating or regenerating a spec image.

10.2.3.2 Usage

java com.jdedwards.system.connector.dynamic.util.SpecimageConsole /Generate
[Other Options]

10.2.3.3 Options

/UserName <user> (required)

/Password <pwd> (required)

/Env <environment> (required)

/Role <role> (required)

/ImageStub <stub file> (required)

/ImageType <image type [SSI|SDI| ALL]> (optional, default is ALL)
/ErrorFile <error file> (optional, default is System.err)

/OutputFile <output file> (optional, default is System.out)
10.2.3.4 Explanation

Log on to JD Edwards EnterpriseOne with <user>, <pwd>, <environment>, and
<role>.

10-8 JD Edwards EnterpriseOne Tools Connectors Guide

Designing the Dynamic Java Connector

Load the spec image stub from <stub file>.
Generate the spec image with the image type <image type>.

The spec image is written to the <output file> (or System.out if /OutputFile not
present).

Error messages are written to the <error file> (or System.err if /ErrorFile not present).

10.2.3.5 Example

This shows example code:

java com.jdedwards.system.connector.dynamic.util.SpecImageConsole
/Generate /ImageStub image_stub.xml /ImageType SDI /OutputFile
image.xml /ErrorFile err.log

10.2.3.6 Update Spec Image

You use the spec image console to update or change a spec image. This information is
useful for updating a spec image.

10.2.3.7 Usage

java com.jdedwards.system.connector.dynamic.util. SpecimageConsole /Update
[Other Options]

10.2.3.8 Options

/UserName <user> (required)

/Password <pwd> (required)

/Env <environment> (required)

/Role <role> (required)

/SSI <SSl file> (required)

/SDI <SDI file> (optional)

/AddSpec <BSFNSpec name> (for example, F4211BeginDoc; optional)

/AddContext <full Context name> (for example, CFIN.B3100010 or
CFIN.B3100010.F4211BeginDoc; optional)

/RemoveSpec <BSFNSpec name> (for example, F4211BeginDoc; optional)

/RemoveContext <full Context name> (for example, CFIN.B3100010 or
CFIN.B3100010.F4211BeginDoc; optional)

10.2.3.9 Explanation

Log on to JD Edwards EnterpriseOne with <user>, <pwd>, <environment>, and
<role>.

Load the <SDI file> (If option /SDI not present, then load <SSI file>) add /remove the
context and BSFEN spec that is specified as <full Context name> and <BSFNSpec
name>.

Working with the Dynamic Java Connector 10-9

Designing the Dynamic Java Connector

10.2.3.10 Example

This example shows how to update the Spec Dictionary Image (sdi.xml) and the Spec
Content Image (SSI.xml). The example adds Context CFIN.B00100, removes Context
CFIN.B001002, adds Spec F4211BeginDoc, and removes Spec F4311BeginDoc.

java com.jdedwards.system.connector.dynamic.util.SpecImageConsole
/Update /SDI sdi.xml /SSI ssi.xml /addContext CFIN.B001001
/removeContext CFIN.B001002 /addSpec F4211BeginDoc /removeSpec
F4311BeginDoc

10.2.3.11 Validate Spec Image

You use the spec image console to validate the spec image against the JD Edwards
EnterpriseOne server. This information is useful for validating a spec image.

10.2.3.12 Usage

java com.jdedwards.system.connector.dynamic.util.SpecImageConsole /Validate
[Other Options]

10.2.3.13 Options

/UserName <user> (required)

/Password <pwd> (required)

/Env <environment> (required)

/Role <role> (required)

/SSI <SSl file> (required)

/SDI <SDI file> (optional)

/OutputFile (optional, default to System.out)

10.2.3.14 Explanation
Log on to JD Edwards EnterpriseOne with <user>, <pwd>, <environment>, and
<role>.

If option /SDI is present, validate all the BSFNSpec that bind to the <SDI file>. If /SDI
is not present, validate all the BSFNSpec in the <SSI file>.

The spec image is written to the <output file> (or System.out if /OutputFile is not
present).

10.2.3.15 Example

This example shows how to validate spec image using ssi.xml as the SpecDictionary
and sdi.xml as the SpecSource. The example writes the validation result to
validateResult.log.

java com.jdedwards.system.connector.dynamic.util.SpecImageConsole
/Validate /SDI sdi.xml /SSI ssi.xml /OutputFile validateResult.log

10.2.3.16 Synchronize Spec Image

You use the spec image console to synchronize the spec image with the JD Edwards
EnterpriseOne server. This information is useful for validating a spec image.

10-10 JD Edwards EnterpriseOne Tools Connectors Guide

Installing the Dynamic Java Connector

10.2.3.17 Usage

java com.jdedwards.system.connector.dynamic.util.SpecimageConsole /Synchronize
[Other Options]

10.2.3.18 Options

/UserName <user> (required)
/Password <pwd> (required)
/Env <environment> (required)
/Role <role> (required)

/SSI <SSl file> (required)

/SDI <SDI file> (optional)

/ErrorFile <err file>(optional, default to System.err)

10.2.3.19 Explanation

Log on to JD Edwards EnterpriseOne with <user>, <pwd>, <environment>, and
<role>.

If option /SDI present, synchronize all the BSFNSpec that bind to the <SDI file>. If
/SDl is not present, synchronize all the BSFNSpec in the <SSI file>.

The new spec image is written to the <SSI file>. Error messages are written to <err
file> (or System.err if /ErrorFile is not present).

10.2.3.20 Example

This example shows how to synchronize the spec source image, ssi.xml:

java com.jdedwards.system.connector.dynamic.util.SpecImageConsole
/Synchronize /SSI ssi.xml

10.3 Installing the Dynamic Java Connector

This section explains how to install dynamic connector components so that you can
run a dynamic Java connector application.

Note:]D Edwards EnterpriseOne tools Release 9.1 Update 4 and
later releases require a different set of jar files.

For Tools Releases prior to JD Edwards EnterpriseOne Tools Release 9.1 Update 4,
copy these files from the JD Edwards EnterpriseOne server to a directory on the
machine that you want to use (for example, C:\JDEdwards\Interop):

= ApplicationAPIs_JAR jar

= ApplicationLogic_JARjar

= Base JARjar

= BizLogicContainer_JARjar

» BizLogicContainerClient_JAR jar

» BusinessLogicServices_JARjar

Working with the Dynamic Java Connector 10-11

Installing the Dynamic Java Connector

castor.jar
commons-httpclient-3.0.jar
commons-logging jar
Connector.jar
EventProcessor_JAR jar
Generator.jar
JdbjBase_JAR jar
JdbjInterfaces_JAR jar
JdeNet_JAR jar
jmxremote.jar
jmxremote_optional.jar
jmxri.jar
ManagementAgent_JAR jar
Metadata.jar
Metadatalnterface jar
PMApi_JARjar
Spec_JAR jar
System_JAR jar
SystemlInterfaces_JAR jar
xalan.jar

xerces.jar

xmlparserv2.jar
jdeinterop.ini

jdbj.ini

jdelog.properties

JDBC drivers (obtain the JDBC drivers from the database vendor)

Add all of the copied files to the CLASSPATH.

For JD Edwards EnterpriseOne Tools Release 9.1 Update 4 and later releases, copy the
following files from the JD Edwards EnterpriseOne server to a directory on the
machine that you want to use (for example, C:\]JDEdwards\Interop):

ApplicationAPIs_JAR jar
ApplicationLogic_JARjar
Base_JARjar
BizLogicContainer_JAR jar
BizLogicContainerClient_JAR jar
BusinessLogicServices_JAR.jar
castor.jar

commons-codec.jar

10-12 JD Edwards EnterpriseOne Tools Connectors Guide

Installing the Dynamic Java Connector

commons-lang?2.6 jar
commons-logging jar
Connector.jar
EventProcessor_JAR jar
Generator_JAR jar
httpclient.jar
httpcore.jar
httpmime jar
j2eel_3.jar
JdbjBase_JAR jar
JdbjInterfaces_JAR jar
JdeNet_JARjar
jmxremote.jar
jmxremote_optional.jar

jmxri.jar

ManagementAgent_JAR jar

Metadata jar
Metadatalnterface jar
PMApi_JARjar
Spec_JAR jar
System_JAR jar

SystemlInterfaces_JAR jar

xerces.jar
xml-apis.jar
xmlparserv2 jar
jdeinterop.ini
jdbj.ini
jdelog.properties

JDBC drivers (obtain the JDBC drivers from the database vendor)
Add all of the copied files to the CLASSPATH.

After you copy the appropriate jar files onto your interoperability machine, do the
following:

1.

2.

Add the path where the jdelog.properties, jdeinterop.ini, and jdbj.ini files are
located into CLASSPATH.

Edit jdeinterop.ini, jdelog.properties, and jdbj.ini for proper settings.

Note: The ptf.log file contains version information for the Java
Connector. The ptf.log file is located in the Connector.jar file.

Working with the Dynamic Java Connector

10-13

Running the Dynamic Java Connector

See Also:
s Understanding jdeinterop.ini for Java Connector.

s Understanding jdelog.properties File.

10.4 Running the Dynamic Java Connector
This section discusses:
» Calling a business function.
= BSEN cache.
» Transaction using the dynamic Java connector.

s OCM support for the dynamic Java connector.

10.4.1 Calling a Business Function

If you know the business function name and the parameters (data items) associated
with the business function, you can use the dynamic Java connector to call the
business function. The dynamic Java connector does not require pre-generated
wrappers. This code sample shows you how to use the dynamic Java connector to call
a business function:

import com.jdedwards.system.connector.dynamic.spec.SpecFailureException;
import com.jdedwards.system.connector.dynamic.ServerFailureException;
import com.jdedwards.system.connector.dynamic.Connector;

import com.jdedwards.system.connector.dynamic.spec.source. *;

import com.jdedwards.system.connector.dynamic.SystemException;

import com.jdedwards.system.connector.dynamic.ApplicationException;
import com.jdedwards.system.connector.dynamic.callmethod.*;

...//Declare Class

public void execMethod() throws SpecFailureException,ServerFailureException
{

BSFNSpecSource specSource = null;

// Step 1: Login

int sessionID = Connector.getInstance().login("user", "pwd", "env","role");

// Pre-condition: create the SpecDictionary or BSFNSpecSource
specSource = new OneworldBSFNSpecSource (sessionID) ;

// Step 2: Lookup the BSFN method from SpecDictionary or BSFNSpecSource
BSFNMethod bsfnMethod = (BSFNMethod)specSource.getBSFNMethod
("GetEffectiveAddress") ;

// Step 3: create the executable method from the BSFN metadata
ExecutableMethod addressbook = bsfnMethod.createExecutable() ;
try

{

// Step 4: Set parameter values
addressbook.setValue ("mnAddressNumber", "105");

// Step 5: Execute the business function
BSFNExecutionWarning warning = addressbook.execute(sessionID);

// Step 6: Get return parameter values

10-14 JD Edwards EnterpriseOne Tools Connectors Guide

Running the Dynamic Java Connector

System.out.println("szNamealpha= " + addressbook.getValueString
("szNamealpha")) ;

System.out.println("mnAddressNumber= " + addressbook.getValueString
("mnAddressNumber")) ;

}

catch (SystemException e)

{

//SystemException is thrown when system crash, this is a fatal
//error and must be caught

System.exit (1) ;

}

catch (ApplicationException e)

{

// BpplicationException is thrown when business function
// execution fail, this is RuntimeException and thus can be
// unchecked. But it is strongly recommend to catch this
// exception

}

finally

{

//Log off and shut down connector if necessary
Connector.getInstance().logoff (sessionID);
Connector.getInstance () .shutDown () ;

}

}

The dynamic Java connector permits you to use hash tables to input parameter values.
This example code illustrates how to use the Hashtable class to input parameter
values:

Map input = new Hashtable();
input.put ("mnAddressNumber", String.valueOf (addressNo));
addressbook.setValues (input) ;

The dynamic Java connector permits you to use hash tables to retrieve output values.
This example code illustrates how to use the Hashtable class to retrieve output values:

Map output = addressbook.getValues();
System.out.println("szNamealpha=" + output.getValueString("szNamealpha"));

10.4.2 BSFN Cache

The dynamic Java connector fetches a business function spec from a SpecSource (JD
Edwards EnterpriseOne server or an XML repository) to create an executable method.
To reduce some of the overhead for creating executable methods during run business
functions, the Java connector caches the executable methods after they are created.

If OneWorldSpecSource is used as SpecSource, the dynamic Java connector gets the
most current business function spec from the JD Edwards EnterpriseOne server the
first time the business function is called. The cache is destructed after the connector is
shutdown. This cache mechanism expedites business function execution by
eliminating the overhead of retrieving the business function spec for every business
function call.

The duration of the cache can be configured in the jdeinterop.ini file. You can
configure the setting to balance the speed of the business function execution and the
update of the business function spec.

Working with the Dynamic Java Connector 10-15

Running the Dynamic Java Connector

10.4.3 Transaction Using the Dynamic Java Connector

You use the dynamic Java connector to do a JD Edwards EnterpriseOne transaction in
either automatic or manual mode. This example code for a purchase order entry
transaction shows the steps for using the dynamic Java connector in manual mode.

int sessionID = Connector.getInstance().login("user", "pwd", "env",
"role");

UserSession userSession = Connector.getInstance().getUserSession
(sessionID) ;

boolean isManulCommit;

//set isManualCommit as true or false

//Step 1: create OneWorldTransaction
OneworldTransaction transaction = userSession.createOneworldTransaction
(isManualCommit) ;

// Step2: create the Purchase Order Entry executable methods (such as
// poeBeginDoc, poeEditLine, poeEndDoc) from the BSFN metadata.

//Step 3: begin the transaction
transaction.begin() ;

//Step 4: run BSFNs in this transaction

//set poeBeginDoc input parameters (code not provided)
BSFNExecutionWarning warning = poeBeginDoc.execute (transaction);
//set poeEditLine input parameters (code not provided)
BSFNExecutionWarning warning = poeEditLine.execute(transaction);
//set poeEndDocinput parameters (code not provided)
BSFNExecutionWarning warning = poeEndDoc.execute (transaction);

//Step 5: Commit or rollback transaction
transaction.commit () ;
//or transaction.rollback();

10.4.4 OCM Support for the Dynamic Java Connector

You use Object Configuration Manager (OCM) to map business functions to an
enterprise server so that the dynamic Java connector can access OCM to run business
functions. You no longer configure the jdeinterop.ini file to define the enterprise server
from which you want to execute business functions. Using OCM support should result
in an increase in performance, scalability, and load balancing. The Java interoperability
server distributes the processes of the Java client to various enterprise servers
depending on user, environment, and role. To take advantage of dynamic Java
connector OCM support:

= Configure the OCM and map the business function on different enterprise servers.
= Set OCMEnabled=true in jdeinterop.ini.

= Configure the settings in jdeinterop.ini regarding the bootstrap data source with
the OCM configuration.

Ensure that OCMEnabled is set in the OCM section of the jdeinterop.ini configuration
file.

See Also:

s Understanding jdeinterop.ini for Java Connector.

10-16 JD Edwards EnterpriseOne Tools Connectors Guide

Managing the User Session for the Dynamic Java Connector

10.5 Managing the User Session for the Dynamic Java Connector
This section discusses:
= User session management for the dynamic Java connector.
= Inbound XML request using the dynamic Java connector.
= Logging for the dynamic Java connector.

= Exception handling for the dynamic Java connector.

10.5.1 User Session Management for the Dynamic Java Connector

When the connector user successfully signs on, a valid user session is allocated to that
user signon. The user session has status for two types of connector operations, one is
for inbound business function calls, and the other is for outbound real-time events.
The connector monitors the status of the user session and uses the time out settings in
the jdeinterop.ini file to stop the user session when a time out setting has been
reached. The connector looks at the these settings:

jdeinterop.ini File Section Setting Explanation

[CACHE] UserSession The maximum connector idle time for an
inbound business function call.

[INTEROP] manual_timeout The maximum idle time for a manual
transaction.

[EVENTS] outbound_timeout The maximum value of connector idle time

for receiving outbound events.

The values for the settings are in milliseconds. A value of zero (0) indicates infinite
time out. The settings are defined in the jdeinterop.ini section of this guide.

If an inbound user session times out, that user session cannot be used to execute a
business function call. Likewise, if an outbound user session times out, that user
session cannot be used for events. When both inbound and outbound sessions time
out, the user session is removed from the connector. Since each user session has a
corresponding handle in the JD Edwards EnterpriseOne server, you should explicitly
call a connector API to log off the user session. The API log off releases the handle in
the JD Edwards EnterpriseOne server when the user session is no longer used.

This sample code shows how to retrieve and manage a user session:

import com.jdedwards.system.connector.dynamic.Connector;
import com.jdedwards.system.connector.dynamic.*;
import com.jdedwards.system.connector.dynamic.ServerFailureException;

. // Declare Class
public void execMethod() throws ServerFailureException
{
// Login
int sessionID = Connector.getInstance().login("user", "pwd", "env","role");

// Use the sessionID. If InvalidSessionException is caught, user session
is not valid any more

//Check the status of the usersession

UserSession session=null;

try

{

session=Connector.getInstance() .getUserSession (sessionID);

Working with the Dynamic Java Connector 10-17

Managing the User Session for the Dynamic Java Connector

}

catch(InvalidSessionException ex)

{

System.out.println("Invalid user session");

}

if (session.isInboundTimedout ())

{

System.out.println("User session inbound is timed out");
}

if (session.isOutboundTimedout ())

{

System.out.println("User session outbound is timed out");
}

//Log off and shut down connector to release user session from the server
Connector.getInstance().logoff (sessionID);
Connector.getInstance () .shutDown () ;

}

10.5.2 Inbound XML Request Using the Dynamic Java Connector

You use the dynamic Java connector to send inbound synchronous XML requests (such
as XML CallObject, XML List, and XML UBE) to the]D Edwards EnterpriseOne server.

See Also
= "Submit a UBE from XML" in the JD Edwards EnterpriseOne Tools Interoperability
Guide.

s "Understanding XML CallObject" in the JD Edwards EnterpriseOne Tools
Interoperability Guide.

= "Understanding XML List" in the JD Edwards EnterpriseOne Tools Interoperability
Guide.

This sample code shows how to use the dynamic Java connector to execute an inbound
XML request:

import com.jdedwards.system.xml.XMLRequest;

/... //Declare Class
xmlInteropTest.EstablishSession(args);

public void EstablishSession(String[] args) throws Exception {
String xmlDoc = new String();
xmlDoc += "<?xml version='1.0' ?> <jdeRequest type='callmethod' user='user' ";
xmlDoc += "pwd='pwd' environment='env' role='role' session='"' ";
xmlDoc += "sessionidle='1800'> </jdeRequest>";

String requestResult;

try {

XMLRequest xmlRequest = new XMLRequest ("ElServer", 6014, xmlDoc);
requestResult = xmlRequest.execute();

System.out.println("Test Successful");

} catch (Exception e) {

System.out.println("Error in XML request");
System.out.println(e.getMessage());

}

10-18 JD Edwards EnterpriseOne Tools Connectors Guide

Managing the User Session for the Dynamic Java Connector

10.5.3 Logging for the Dynamic Java Connector

Dynamic Java connector logging is built on top java logging. Java logging supports
five levels of logging, as listed in order of severity, from less to more:

DEBUG
INFO
WARNING
ERROR
FATAL

The dynamic Java connector provides these APIs, located in ConnectorLog.java, to
support logging information:

public static void debug(Object source).

public static void info(Object source).

public static void warn(Object source).

public static void warn(Object source, Throwable err).
public static void error(Object source, Throwable err).
public static void error(Object source).

public static void fatal(Object source).

public static void fatal(Object source, Throwable err).

Log properties (such as log file location, level of log messages to include in log file,
and so on) are set in jdelog.properties. The jdelog.properties settings provide flexibility
for dynamic Java connector applications to log messages. For example, you might set
log level to ERROR or FATAL for a production environment or to DEBUG for a
development or test environment.

10.5.4 Exception Handling for the Dynamic Java Connector

The dynamic Java connector error handling design provides flexibility for you to
decide how to handle application-level errors. The dynamic Java connector provides
these two types of exceptions to handle errors:

ApplicationException

This is the super class of all exceptions that result from application errors, such as
InvalidConfigurationException (invalid INI settings), InvalidLoginException
(invalid login), InvalidDataTypeException (invalid BSFN data type), and so on.
The ApplicationException is a runtime exception. It is up to the client program to
catch this type of exception.

SystemException

This is the super class of all exceptions that result from system errors, such as
ServerFailureException (server down or connection failure),
BSFNLookupFailureException (unable to find BSFN information in JD Edwards
EnterpriseOne tables), and SpecFailureException (unable to connect to Spec
Source). It is up to the client program to catch this type of exception.

Working with the Dynamic Java Connector 10-19

Using Sample Applications

10.6 Using Sample Applications

This section discusses:

Sample applications.
Setting up sample applications.

Running the sample applications.

10.6.1 Sample Applications

These applications are shipped with the dynamic Java connector in their Java source

form:

Application Description

Address Book Queries an AddressBook entry.

Events Subscribes to events.

Manual Commit Performs a local transaction using a Purchase Order Entry application.
Purchase Order Enters a purchase order.

Sales Order Enters a sales order.

Before you use the sample applications:

Create a directory for the sample applications (for example, C:\connectorsamples).

Install a Java Development Kit (JDK) version 1.6 or higher. Be sure to install a full
JDK and not the Java Runtime Environment (JRE).

See Installing the Dynamic Java Connector.
Set the JAVA_HOME environment variable to the JDK parent directory.

Configure the jdeinterop.ini, jdelog.properties, and jdbj.ini files and place the files
in the directory you created for the sample applications (for example,
C:\connectorsamples).

Note: You can download the JDK from this Oracle website
(http://www.oracle.com/technetwork/java/javase/overview/inde
x.html).

10.6.2 Setting Up Sample Applications

The sample applications are shipped in their Java source form, which provides the
usage of the dynamic Java connector API. You must set up these sample applications
in the environment before you can run them. Use these steps to set up the sample
applications:

1.

Locate the connector_samples_src.jar and connectorsamples.zip files.

These files are on the JD Edwards EnterpriseOne Java Server CD, under the
system/classes/samples directory.

Unzip the entire contents of the connector_samples_src jar file and
connectorsamples.zip into the directory you created (for example,
C:\connectorsamples).

10-20 JD Edwards EnterpriseOne Tools Connectors Guide

http://www.oracle.com/technetwork/java/javase/overview/index.html
http://www.oracle.com/technetwork/java/javase/overview/index.html

Using Sample Applications

The jar file is a traditional .zip file with the Java .jar extension. The jar file
contains all of the sample application source files (,java files). All of the jar files
that you need for both setting up and running the sample applications are in the
system/classes directory on the JD Edwards EnterpriseOne Java Server CD.

3. Open each bat file in the samples directory and change the value of JAVA_HOME
to the path where JDK is installed on the system.

4. Configure the jdeinterop.ini, jdelog.ini, and jdbj.ini files and place them in the
samples directory.

You can use .tmpl files as a guide for doing this.

10.6.3 Running the Sample Applications

To run each application, run the .bat file for that application.

Sample Application Bat File name

Address Book runDynConAddressBook.bat
Events runDynConNewEventDriver.bat
Manual Commit runDynConPOEManualCommit.bat
Purchase Order runDynConPOE.bat

Sales Order runDynConSOE.bat

Note: If you are running on a non-windows platform, you can open
the bat file that corresponds to the sample application that you want
to use in a text editor and copy the JAVA command in the bat file. This
command can then be run from the console of your platform. The
correct version of JAVA must be in the system path for you to run the
application.

Working with the Dynamic Java Connector 10-21

Using Sample Applications

10-22 JD Edwards EnterpriseOne Tools Connectors Guide

11

Using Java Connector Guaranteed Events

This chapter contains the following topics:
= Section 11.1, "Understanding Java Connector Events"
= Section 11.2, "Developing a Java Connector Events Application"

= Section 11.3, "Using the Sample Connector Events Client"

11.1 Understanding Java Connector Events

The Java connector provides a set of APIs that you can use to receive events when you
establish a subscriber in JD Edwards EnterpriseOne with a JAVACONN transport
type. When using the events portion of the Java connector, you connect directly to the
JD Edwards EnterpriseOne Transaction server to receive events that have been placed
in the subscriber queue.

Note: For the JD Edwards EnterpriseOne 9.1 Tools Release, the terms
Java connector and dynamic Java connector refer to the dynamic Java
connector.

The APIs and the sample code reside in subpackages underneath the
com.jdedwards.system.connector.dynamic package. All classes for the
dynamic Java connector (not including the sample applications) reside
in the Connectorjar file. Putting the Connector.jar file on the
CLASSPATH is sufficient for working with the dynamic Java
connector and the events operations.

11.1.1 Prerequisites

Whether you are developing a Java connector events application or using the sample
Java connector events client, these prerequisites must exist on the machine running the
events application or client sample:

= A Java Development Kit (JDK) that corresponds to the version of the JDK under
which the JD Edwards EnterpriseOne Transaction server is running.

For example, when connecting to a JD Edwards EnterpriseOne Transaction server
hosted on WebSphere, you must run the Java connector events client or
application using the same IBM JDK. Generally, the IBM JDK is located in
<WebSphere installation directory>/java).

= Aninstallation of IBM WebSphere MQ, if the JD Edwards EnterpriseOne
Transaction Server is hosted on WebSphere.

Using Java Connector Guaranteed Events 11-1

Understanding Java Connector Events

This software comes installed as part of the installation of many different
WebSphere-related software, including the WebSphere Application Client.

= A completed set of configured files for the environment:
- jdeinterop.ini
- jdbj.ini
- jdelog.properties
= A JAVA_HOME environment variable that points to this JDK.

= A PATH environment variable that includes the entry, %JAVA_HOME%\bin,
which assumes that JAVA_HOME has already been defined.

You must copy jar files to the CLASSPATH.

Note:]D Edwards EnterpriseOne Tools Release 9.1 Update 4 and
later releases require a different set of jar files.

= If your system uses a Tools Release prior to JD Edwards Tools Release 9.1 Update
4, the following jar files must be in the CLASSPATH:

- ApplicationAPIs_JARjar

- ApplicationLogic_JAR jar

- Base_JARjar

- BizLogicContainer_JAR jar
- BizLogicContainerClient_JAR jar
— BusinessLogicServices_JAR jar
— castorjar

- commons-httpclient-3.0.jar
- commons-logging jar

- Connectorjar

- EventProcessor_]JAR jar

- Generator.jar

- j2eel_3jar

- JdbjBase_JARjar

- JdbjInterfaces_JAR jar

- JdeNet_JARjar

— jmxremote.jar

- jmxremote_optional.jar

- jmxrijar

- ManagementAgent_JARjar
- Metadata.jar

- Metadatalnterface jar

- PMApi_JARjar

11-2 JD Edwards EnterpriseOne Tools Connectors Guide

Understanding Java Connector Events

- Spec_JARjar
- System_JARjar

- SystemlInterfaces_JARjar

- xalanjar
- Xxercesjar

- xmlparserv2.jar

If your system uses JD Edwards Tools Release 9.1 Update 4 or a later release, the
following jar files must be in the CLASSPATH:

ApplicationAPIs_JAR jar
ApplicationLogic_JARjar
Base_JAR jar
BizLogicContainer_JAR jar

BizLogicContainerClient_JAR jar

BusinessLogicServices_JARjar

castor.jar
commons-codec.jar
commons-lang?2.6 jar
commons-logging jar
Connector.jar
EventProcessor_JAR jar
Generator_JAR jar
httpclient.jar

httpcore. jar
httpmime jar
j2eel_3.jar
JdbjBase_JAR jar
JdbjInterfaces_JAR jar
JdeNet_JAR jar
jmxremote.jar
jmxremote_optional.jar
jmxri.jar
ManagementAgent_JAR jar
Metadata.jar
Metadatalnterface jar
PMApi_JARjar
Spec_JAR jar
System_JAR jar

Using Java Connector Guaranteed Events 11-3

Understanding Java Connector Events

s SystemlInterfaces_JARjar
= Xerces.jar

= xml-apis.jar

= xmlparserv2.jar

For all releases, the following items are required to compile and run the application or
client:

The JDBC driver files that correspond to the database to which you are connecting.
The directory location for these files:

= jdeinterop.ini

n jdbj.ini

= jdelog.properties

The files must all be in the same directory. It is important to note that you put the
directory in the CLASSPATH without the file names, so there is just one entry for
these three files. Also, this entry must end in a slash (/), indicating that it is a
directory entry and not a file name.

If you connect to a Transaction server hosted on WebSphere, you also need these files:
= com.ibm.ws.ejb.thinclient_7.0.0.jar
= com.ibm.ws.sib.client.thin.jms_7.0.0.jar

= com.ibm.ws.orb_7.0.0jar

Note: These files can be found at <Windows client installation
directory>\system\classes on the generation machine that is used for
the JD Edwards EnterpriseOne environment to which you are
connecting.

The files that you place on the CLASSPATH must be the exact same
files that are on the Transaction server installation directory.

= com.ibm.ws.orb_7.0.0jar

Typically this jar file is located in the <Websphere installation directory>/runtime
folder.

If you connect to a Transaction Server hosted on Oracle WebLogic Server, you also
need these files:

= wiclientjar
= wljmsclient.jar

These files can be found in the WebLogic server directory, <WebLogic_
Directory>\server\lib.

Note: Newer versions of the WebLogic server include a new
lightweight library called wlthint3client.jar (located at <WebLogic_
Directory>\server\lib) that you can use instead of wiclient.jar and
wljmsclient jar.

11-4 JD Edwards EnterpriseOne Tools Connectors Guide

Developing a Java Connector Events Application

11.2 Developing a Java Connector Events Application

This section provides an overview of Java connector events application development
and discusses:

= Introspection operations
= Asynchronous event sessions

= Synchronous event sessions

11.2.1 Understanding Java Connector Events Application Development

This list identifies the steps that you use when you write a Java class that serves as a
Java connector subscriber. The steps are further explained in the code samples in this
section.

» Instantiate a connector object.

= Login through the connector to the JD Edwards EnterpriseOne system.

= Instantiate an EventService object (not required for introspection operations).
s Perform introspection operations (optional).

= Create a session and receive events (optional).

= Logoff from JD Edwards EnterpriseOne.

= Shut the connector down.

You can create two types of Event Sessions, asynchronous and synchronous, to receive
events through the Java connector.

11.2.2 Introspection Operations

The Java Connector Events API enables you to perform several introspection requests
as provided in the Event IntrospectionApp.java code sample.

11.2.2.1 EventintrospectionApp.java

This sample code shows example introspection requests:

import java.util.LinkedList;

import com.jdedwards.system.connector.dynamic.Connector;
import com.jdedwards.system.connector.dynamic.newevents.EventService;

Sample Java Connector Events Introspection application.

public class EventIntrospectionApp {
public static void main(String[] args) ({
try {

// Instantiate a Connector object
Connector con = Connector.getInstance();

// Login through the Connector

int sessionID = con.login("username", "password",
"environment", "role");

Get the list of all events in JD Edwards EnterpriseOne. This list is returned as a
LinkedList of Strings.

Using Java Connector Guaranteed Events 11-5

Developing a Java Connector Events Application

LinkedList list = EventService.getEventList (sessionID);

Get the template for a particular event type. This is returned as an XML template in a
single String object.

String template = EventService.getEventTemplate(sessionID, "category",
"type", "environment");

Get the list of all subscriptions for the user associated with the given sessionlD. This is
returned as a LinkedList of
com.jdedwards.pt.el.common.events.connectorsvc.Subscription objects. This
Subscription class is located in the Common_JAR jar file.

LinkedList subs = EventService.getSubscriptions (sessionID);

// Logoff the user from JD Edwards EnterpriseOne
con.logoff (sessionID);

// Shut the Connector down
con.shutDown () ;

} catch (Exception e) {

e.printStackTrace() ;
System.exit (-1);
}

System.exit (0);

11.2.3 Asynchronous Event Sessions

With an asynchronous event session, you must create a listener class to receive events
and process them according to the requirements for the event data. Once you create
the listener class, you register an instance of that class with the asynchronous event
session that you request. The details of these steps are listed in the MyListener.java and
EventAsyncApp.java sample programs.

Additionally, the MyListener.java sample code shows that since the Asynchronous
Event Session is created in CLIENT_ACKNOWLEDGE mode (illustrated in
EventAsyncApp.java), the EventObject must be acknowledged to let the Transaction
server know that you received the event.

11.2.3.1 MyListener.java

This sample code for the listener class not only shows the single onEvent(EventObject)
method that the listener must implement, but it also shows what data you can get
from the EventObject.

import javax.jms.IllegalStateException;

import com.jdedwards.base.datatypes.JDECalendar;

import com.jdedwards.system.connector.dynamic.SystemException;

import com.jdedwards.system.connector.dynamic.newevents.EventListener;

import com.jdedwards.system.connector.dynamic.newevents.EventObject;

Sample implementation of a Java Connector Asynchronous Event SessionListener.

11-6 JD Edwards EnterpriseOne Tools Connectors Guide

Developing a Java Connector Events Application

public class MyListener implements EventListener {

Permits the listener to receive an event when it has been delivered from the
Transaction Server.

@param event the event

public void onEvent (EventObject event) {

Do some processing here with the event that is sent by the Transaction Server. The
onEvent(EventObject) method is called once for every event that is delivered.

*The event category: "RTE", "XAPI", or "ZFILE".

String category = event.getCategory();

The event type, such as "RTSOOUT".

String type = event.getType();

The JD Edwards EnterpriseOne environment in which the event was generated.

String environment = event.getEnvironment () ;

The global sequence number of the event.

long sequenceNumber = event.getSequenceNumber () ;

The date and time stamp of the event.

JDECalendar date = event.getDateTime();

The XML content of the event as a single String object.*/

String xmlPayload = event.getXMLPayload();

If you created an EventSession with CLIENT_ACKNOWLEDGE mode, you must
acknowledge each message you receive. Otherwise the event will be redelivered
according to the Transaction Server JMS Provider's logic.

try {
event.acknowledge () ;

} catch (IllegalStateException e) {

This Exception will be thrown if the session associated with this event has already
been closed.

} catch (SystemException e) {

This Exception will be thrown if the original event could not be acknowledged
(duplicate event delivery is likely in this scenario).

}

Using Java Connector Guaranteed Events 11-7

Developing a Java Connector Events Application

11.2.3.2 EventAsyncApp.java

The asynchronous-specific calls in this asynchronous event application
(AsyncEventApp.java) are illustrated in this code sample. Between the
eventSession.start and the eventSession.stop method calls, you would normally solicit
user input or wait for some type of intervention to let the class know that event
delivery needs to stop.

import com.jdedwards.system.connector.dynamic.Connector;

import com.jdedwards.system.connector.dynamic.newevents.AsyncEventSession;
import com.jdedwards.system.connector.dynamic.newevents.EventService;
import com.jdedwards.system.connector.dynamic.newevents.EventSession;

Sample Java Connector Asynchronous Event application

public class EventAsyncApp {
public static void main(String[] args) ({

try {

Instantiate a Connector object.

Connector con = Connector.getInstance();

Login through the Connector to JD Edwards EnterpriseOne.

int sessionID = con.login("username", "password",
"environment", "role");

Instantiate an EventService object

EventService service = EventService.getInstance();

Create a synchronous event session in CLIENT_ACKNOWLEDGE mode.

AsyncEventSession eventSession = service.getAsyncEventSession
(sessionID, EventSession.CLIENT ACKNOWLEDGE) ;

Register a listener object which you have created

eventSession.registerListener (new MyListener());

Start the delivery of events to the listener.

eventSession.start();

Stop the delivery of events to the listener. Note that you can continuously alternate
between calls to start() and stop() as long as you do not call the close() method.

eventSession.stop();

Close the event session. No other operations on the event session are possible at this
point.

eventSession.close();

Logoff the user from JD Edwards EnterpriseOne.

con.logoff (sessionID) ;

Shut the Connector down.

con.shutDown () ;

11-8 JD Edwards EnterpriseOne Tools Connectors Guide

Developing a Java Connector Events Application

} catch (Exception e) {

e.printStackTrace() ;
System.exit (-1);

System.exit (0);

11.2.4 Synchronous Event Sessions

With synchronous event sessions, you receive only one event at a time. No listener
class is involved with this type of session.

11.2.4.1 EventSyncApp.java

The three ways to receive an event, along with an explanation of functionality, are
illustrated in this EventSyncApp.java class sample code. This sample code uses the
AUTO_ACKNOWLEDGE acknowledgement mode:

import com.jdedwards.system.connector.dynamic.Connector;

import com.jdedwards.system.connector.dynamic.newevents.EventObject;
import com.jdedwards.system.connector.dynamic.newevents.EventService;
import com.jdedwards.system.connector.dynamic.newevents.EventSession;
import com.jdedwards.system.connector.dynamic.newevents.SyncEventSession;

Sample Java Connector Synchronous Events application.

public class EventSyncApp {
public static void main(String[] args) {

try {

Instantiate a Connector object.

Connector con = Connector.getInstance();

Login from the Connector to JD Edwards EnterpriseOne.

int sessionID = con.login("username", "password",
"environment", "role");

Instantiate an EventService object.

EventService service = EventService.getInstance();

Create a synchronous event session in AUTO_ACKNOWLEDGE mode.

SyncEventSession eventSession =
service.getSyncEventSession(sessionID,
EventSession.AUTO_ACKNOWLEDGE) ;

Start the delivery of events.

eventSession.start();

Using Java Connector Guaranteed Events 11-9

Using the Sample Connector Events Client

The receive() method will not return control to the caller until an event is delivered.

EventObject eventl = eventSession.receive();

Do some processing of the event data here. Refer to the sample class (MyListener.java)
for a list of the methods that can be called on the EventObject class.

The receive(long timeout) method will return control to the caller if the timeout value
(in milliseconds) elapses without an event being delivered. Of course, if an event is
delivered before the timeout value elapses, the EventObject will be returned to the
caller.

EventObject event2 = eventSession.receive(5000);

Do some processing of the event data here. Refer to the sample 'MyListener.java' class
for a list of the methods that can be called on the EventObject class.

The receiveNoWait() method either immediately returns an EventObject to the caller if
an event is waiting to be delivered or returns null if no event is waiting.

EventObject event3 = eventSession.receiveNoWait();

Do some processing of the event data here. Refer to the sample 'MyListener.java' class
for a list of the methods that can be called on the EventObjectclass.

Stop the delivery of events. Note that you can continuously alternate between calls to
start() and stop() as long as you do not call the close() method.

eventSession.stop();

Close the event session. No other operations on the event session are possible at this
point.

eventSession.close();

Logoff the user from JD Edwards EnterpriseOne

con.logoff (sessionID);

Shut the Connector down.

con.shutDown () ;
} catch (Exception e) {

e.printStackTrace() ;
System.exit (-1);

}

System.exit (0);

11.3 Using the Sample Connector Events Client
This section provides an overview of connector events client tool and discusses:
1. Using the Connector Events Client tool.

2. Configuring the sample connector events client.

11-10 JD Edwards EnterpriseOne Tools Connectors Guide

Using the Sample Connector Events Client

3. Running the sample connector events client.

4. Resolving Connector Events Client tool issues.

11.3.1 Understanding Connector Events Client Tool

The connector events client is a Java-based graphical tool that enables you to log in to
JD Edwards EnterpriseOne and receive events that you have subscribed to from the JD
Edwards EnterpriseOne Transaction server. This tool enables all possible event
operations, including all of the introspection requests as well as the creation of both
asynchronous and synchronous event sessions.

11.3.2 Prerequisites for Using the Sample Connector Events Client

In addition to meeting the requirements listed in the Prerequisites for Understanding
Java Connector Events section, you must also verify:

s The Transaction server is running.

s The user ID that you use to log in to the tool is a user ID that is an active
subscriber with at least one active subscription.

s A Java Runtime Environment (JRE) version 1.6 or later is installed on the machine.

You can download a valid JRE from Oracle Technology Network (OTN) web site.

See Also:
s Prerequisites.
= Java SE Downloads,

http://www.oracle.com/technetwork/java/javase/downloads/1
ndex.html

11.3.3 Using the Connector Events Client Tool

You sign in to the connector events client tool through the login window. Once you
have successfully signed in, you can perform any of the introspection operations
without creating an event session. All error messages are displayed in the bottom
pane. If you receive an error message that is not explained sufficiently, you can look in
the debug log file of the tool to obtain more information.

The buttons that enable you to create a new event session prohibit you from entering
an invalid sequence or combination (such as starting event delivery without opening a
session). Once you start receiving events, the event sequence numbers for received
events appear in the Event List window. If you select an event sequence number, the
event details for that event appear in the Event Data window. Additionally, the XML
content for all received events is automatically created as an XML file in the tool's log
directory, regardless of whether you select the sequence number for the event.

To use the tool, you must build, configure, and then run the tool. The tool is shipped to
you as source code so that you can inspect the usage of the connector events APIs. You
can find the entire source code in a single jar file: connector_samples_src.jar. This file
should be located in the <Windows client generation machine installation
directory>/system/classes/samples folder.

11.3.4 Configuring the Sample Connector Events Client

This section provides steps for configuring the sample connector events client.

Using Java Connector Guaranteed Events 11-11

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Using the Sample Connector Events Client

11.3.4.1 To configure the Sample Connector Events Client
Use these steps to configure the sample connector events client:

1. Create a C:\ConnectorEventsClient directory.

If a directory with this name already exists, rename the existing directory before
you create a new directory.

2. Unzip the Connector Events Client.zip file to the newly created directory on the C
drive.

Make sure to unzip the file with the full path information for each file in the Zip
file.

3. Configure the files in the C:\ConnectorEventsClient\config directory.

Make sure that the configured files have the .templ file extension removed from
them. The proper file names for this directory are:

- jdbj.ini
- jdeinterop.ini
- jdelog.properties

Configure the jdbj.ini and jdelog.properties files according to your
environment. See your JD Edwards EnterpriseOne systems administrator if
you do not know the appropriate values for these files. You should name your
jdbj.ini file with the same file name that is configured on your Transaction
server.

Configure your jdeinterop.ini file with these values:

Section Setting Value
[EVENTS] eventServiceURL http:/ /<HOST>:<PORT>/elevents/EventClient
Service

For clustered transaction server, specify as:

eventServiceURL=http:/ /<HOST1>:<PORT1>/
elevents/EventClientService | http:/ /<HOST2>:
<PORT2>/elevents/EventClientService

For WebLogic, these ports are the Listen port; for
WebSphere, these ports are the default http ports found
under Server > Communication > Ports > WC_
defaulthost.

If additional servers are in the cluster, then the
eventServiceURL can be appended with | asa
delimiter; for example:

http://<HOST1>:<PORT1>/elevents/EventClient
Service | http:/ /<HOST2>:<PORT2>/elevents/Event
ClientService | http:/ /<HOST3>:<PORT3>/elevents/
EventClientService.

[SECURITY] SecurityServer Name of your JD Edwards EnterpriseOne Security
Server.

[JDENET] serviceNameConnect The port you are connecting to on your JD Edwards
EnterpriseOne Security Server.

4. Add the appropriate JDBC driver files to the C:\ConnectorEventsClient\lib
directory.

11-12 JD Edwards EnterpriseOne Tools Connectors Guide

Using the Sample Connector Events Client

See your JD Edwards EnterpriseOne systems administrator to determine which
driver file to use.

5. Edit the C:\ConnectorEventsClient\setDynConNewEventDriver.bat file, change it
to point to the location of your installed JRE.

11.3.5 Running the Sample Connector Events Client

Use these steps to run the sample Connector Events Client:
1. Navigate to the C:\ConnectorEventsClient directory.
2. Double-click the runDynConNewEventDriver.bat file.

3. On the Java Connector EnterpriseOne signon window, enter your JD Edwards
EnterpriseOne credentials, and then select the OK button.

4. Click Open Session and then click Start to receive events for which you have
subscribed.

The event numbers for any events that are waiting for you should appear in the Event
List window. If you select an event number, the event data for the selected event
appears in the Event Data window. The XML content for each event is also placed in
your C:\ConnectorEventsClient\logs directory.

11.3.6 Resolving Java Connector Events Client Tool Issues

This table discusses potential problems that you might encounter when using the Java
Connector Events Client tool, along with possible solutions.

Problem Possible Solution

I can't get past the sign-on screen. Try entering all of your credentials (username,
password, environment, and role) in all capital
letters.

My C:\ConnectorEventsClient\logs directory ~You may delete any files from this directory at
is full, and I would like to delete some of the = any time. However, if your Connector Events

Jog and .xml files. Client application is running, some of the files
might be locked.

Why are there orbtre...txt files in my These files are created by WebSphere runtime

C:\ConnectorEventsClient directory? code. You may delete these files at any time.

However, if your Connector Events Client
application is running, some of these files

might be locked.
An error message that I don't understand Look in your C:\ConnectorEventsClient\logs
appears in the Error Messages window. directory for the jasdebug_date.log file that

corresponds to the appropriate date. Often a
more explanatory error message can be found
in this file.

I clicked the ReceiveAndWait button, and now This happens when you click the

the interface is frozen. ReceiveAndWait button and there is no event
waiting for you on the Transaction Server.
ReceiveAndWait means that you are willing to
wait indefinitely for an event to be generated
and delivered to you. The interface freezes in
this instance until an event is delivered. If you
are not willing to wait, click the
ReceiveNoWait button.

Using Java Connector Guaranteed Events 11-13

Using the Sample Connector Events Client

11-14 JD Edwards EnterpriseOne Tools Connectors Guide

12

Understanding jdeinterop.ini for Java
Connector

This chapter contains the following topic:

» Section 12.1, "Settings for the jdeinterop.ini File for the Java Connector”

12.1 Settings for the jdeinterop.ini File for the Java Connector

The jdeinterop.ini file includes settings the server might need. The default location for
the file is ¢ : \; however, you can configure this location. This section provides details
about the jdeinterop.ini file settings for the Java and dynamic Java connectors.
Information is organized by section, for example [JDENET]. These settings are

discussed:

= OCM

» Cache

= JDENET
s Server

= Security
= Interop

s Events

Note: When you use Java interoperability connectors, you must also
set up jdbj.ini file sections.

See Also:
» /D Edwards EnterpriseOne HTML Server Reference Guide for your
platform.

12.1.1 [OCM]

Configure this [OCM] setting for the dynamic Java connector:

Setting and Typical Value Purpose

OCMEnabled=True Selects or clears OCM inside the dynamic Java connector. A value
of true indicates turned on.

Understanding jdeinterop.ini for Java Connector 12-1

Settings for the jdeinterop.ini File for the Java Connector

12.1.2 [CACHE]

Configure these [CACHE] settings for the dynamic Java connector:

Setting and Typical Value Purpose

UserSession=0 Time out value (in milliseconds) for the dynamic Java connector
user session. A zero (0) indicates infinite time out.

SpecExpire=30000000 Maximum time (in milliseconds) that the dynamic Java connector
keeps the fetched spec in the cache.

12.1.3 [JDENET]

Configure these [JDENET] settings for the Java and dynamic Java connectors:

Setting and Typical Value

Purpose

enterpriseServerTimeout=90000

Timeout value for a request to the JD Edwards
EnterpriseOne enterprise server.

maxPoolSize=30

JDENET socket connection pool size.

serviceNameConnect=6004

Port number used by the JD Edwards EnterpriseOne security
server.

12.1.4 [SERVER]

Configure these [SERVER] settings for Java and dynamic Java connectors:

Setting and Typical Value

Purpose

glossaryTextServer=]JDED:6010

The JD Edwards EnterpriseOne enterprise server and port that
provide glossary text information.

codePage=1252

The encoding scheme, such as:

1252 English and Western European.
932 Japanese.

950 Traditional Chinese.

936 Simplified Chinese.

949 Korean.

12.1.5 [SECURITY]

Configure these [SECURITY] settings for Java and dynamic Java connectors:

Setting and Typical Value Purpose

NumServers=1 Number of security servers set.

SecurityServer=]DED The JD Edwards EnterpriseOne security server.

12.1.6 [INTEROP]

Configure these INTEROP] settings for Java and dynamic Java connectors:

12-2 JD Edwards EnterpriseOne Tools Connectors Guide

Settings for the jdeinterop.ini File for the Java Connector

Setting and Typical Value Purpose

Setting Time=60000

Enables the connector to access and retrieve event information

from the F90703 and F90704 tables. Defines the time for the
connector applications to start up before the connector starts

recovering an event.

This value is milliseconds.

RecoverylInterval=10000

Enables the connector to access and retrieve event information

from the F90703 and F90704 tables. Defines the time for the
connector applications to start up before the connector starts

recovering an event.

This value is milliseconds.

enterpriseServer=]DED

The JD Edwards EnterpriseOne server.

port=6010

The port number of the JD Edwards EnterpriseOne server.

manual_timout=300000

The time-out value for a transaction in manual commit mode.

Repository=c:\jdedwards\ Points to the location of the repository directory containing

Interop \repository

business object libraries (generated JAR files).

12.1.7 [EVENTS]

Configure these [EVENTS] settings for Java and dynamic Java connectors:

Setting and Typical Value

Purpose

UseGuaranteedEvents System=True

Indicates guaranteed event delivery.
Values are true and false. Must be set to
True to use guaranteed event delivery.

Transport=HTTP

Defines the event transport mechanism.
Valued values are HTTP and JMS. The
default value is HTTP.

eventServiceURL=http:/ /<HOST>:<PORT>/
elevents/EventClientService

For a clustered transaction server:
eventServiceURL=http:/ /<HOST1>:<PORT1>/

elevents/EventClientService | http:/ /<HOST2>:

<PORT2>/elevents/ EventClientService

If there are more servers in a cluster, then the
eventServiceURL can be appended with | as a
delimiter; for example:

http:/ /<HOST1>:<PORT1>/elevents/

EventClientService | http:/ /<HOST2>:<PORT2>/

elevents/ EventClientService | http://<HOST3>:
<PORT3>/elevents/ EventClientService

Locates the event service. If the value for
the Transport= setting is HTTP, then this
setting must be configured.

For WebLogic, these ports are the Listen
Port.

For WebSphere, these ports are the
default http ports found under Server >
Communication > Ports > WC_
defaulthost.

Understanding jdeinterop.ini for Java Connector 12-3

Settings for the jdeinterop.ini File for the Java Connector

Setting and Typical Value

Purpose

jndiProviderURL=

For WebLogic:
jndiProviderURL=t3//<HOST>:<PORT>
For a clustered transaction server:

t3:/ /<HOST1>:<PORT1>;<HOST2>:<port3>

If there are more servers in a cluster, then the
jndiProviderURL can be appended with ; as a
delimiter; for example:

t3://<HOST1>:<PORT1>;<HOST2>:<PORT2>;
<HOST3>;<PORT3>

For WebSphere:

jndiProviderURL=corbaloc::<HOST>:<PORT>/
NameServiceServerRoot

For a clustered transaction server:

corbaloc::<HOST1>:<PORT1>,:
<HOST2>:<PORT2>/NameServiceServerRoot

If there are more servers in a cluster, then the
jndiProviderURL can be appended with ,; as a
delimiter; for example:

>;
<HOST3>;<PORT3>/NameServiceServerRoot

corbaloc::/ /<HOST1>:<PORT1>;<HOST2>:<PORT2

Locates the event service. If the value for
the Transport= setting is JMS, then this
setting must be configured.

For WebLogic, these ports are the Listen
Port.

for WebSphere, these ports are the
Bootstrap ports.

port=6002

The socket port number where the
EventListener receives the events from
the JD Edwards EnterpriseOne server.
This port should not be used by any
other resource. Also, the port should not
be changed dynamically when the
connector is running, as this causes
subsequent subscriptions to be lost.

ListenerMaxConnection=10

The maximum number of connections
allowed by the EventListener. The
default number of connections is 10, but
you can change this number. The
maximum number of connections
allowed is 64.

ListenerMaxQueueEntry=10

The maximum number of events that
the EventListener can hold before
processing by the EventManager. The
default number of events for the queue
is 10, but you can change this number.
The maximum number of events that
can be held in the queue is 100.

Outbound_timeout=1200000

Maximum number of milliseconds that
the EventManager waits before
unsubscribing the transient event from
the JD Edwards EnterpriseOne server.

12-4 JD Edwards EnterpriseOne Tools Connectors Guide

13

Understanding jdelog.properties File

This chapter contains the following topic:

» Section 13.1, "Settings for the jdelog.properties File"

13.1 Settings for the jdelog.properties File

The logging utility in the dynamic Java connector and the Java connector is built on
top of java logging. The jdelog.properties file defines the settings for the logging
configuration. The jdelog.properties file should be physically located in CLASSPATH.

The jdelog.properties File consists of three log files:

« [EILOG]
= [LOGI]
= [LOG2]

The following table provides a description of the parameters in each of the log files:

Parameter Description
FILE Set this value to the location of the log file.
LEVEL Set this value to one of the following;:

= SEVERE

= WARN

= APP

=« DEBUG

Note: The levels are listed above in the order of their priority, with
SEVERE being the highest priority and DEBUG being the lowest
priority.

FORMAT Set this value to one of the following;:
= APPS
= TOOLS
« TOOLS_THREAD

Note: In a Production environment, the FORMAT parameter should be
set to APPS.

MAXFILESIZE Set this value to the maximum file size of the log file. The default
setting is 10MB. System performance can be affected if this value is set
too high.

Understanding jdelog.properties File 13-1

Settings for the jdelog.properties File

Parameter Description

MAXBACKUPINDEX Set this value to the maximum number of backups that need to be
maintained. The default value is 20. System performance can be
affected if this value is set too high.

COMPONENTS Identify the components that need to be logged in the file. Components
that you might use with a Java connector for interoperability include:
JDBC, RUNTIME, INTEROP, JDBJ, EVENTPROCESSOR.

The Tools Reference and HTML Web Server Reference guides provide information for
creating and managing jdelog.properties files.

See JD Edwards EnterpriseOne Deployment Server Reference Guide for your platform.
See JD Edwards EnterpriseOne HT ML Server Reference Guide for your platform.

13.1.1 [E1LOG]

13.1.2 [LOGI]

13.1.3 [LOG2]

This is the section name for the root log. The following sample configuration logs all
SEVERE and WARN messages to the jderoot.log file on the C drive.

[E1ILOG]

FILE=C:\\ConnectorEventsClient\ \log\ \jderoot.log
LEVEL=WARN

FORMAT=APPS

MAXFILESIZE=10MB

MAXBACKUPINDEX=20

COMPONENT=ALL

APPEND=TRUE

Logging RUNTIME and INTEROP components at the APP level is helpful for
application developers. Application developers can use this log to analyze the flow of
events in the web client. The following sample configuration logs all SEVERE, WARN,
and APP messages to the jas.log file on the C drive.

[LOG1]

FILE=C:\\ConnectorEventsClient\ \log\ \jas.log LEVEL=APP FORMAT=APPS
MAXFILESIZE=10MBMAXBACKUPINDEX=20 COMPONENT=RUNTIME |
INTEROP | JDBJ APPEND=TRUE

Logging RUNTIME and INTEROP components at the DEBUG level is helpful for tools
developers. Tools developers can use this log to debug tool level issues.

[LOG2]

FILE=C:\\ConnectorEventsClient\ \log\ \jasdebug.log LEVEL=DEBUG
FORMAT=TOOLS_THREAD MAXFILESIZE=10MBMBMAXBACKUPINDEX=20
COMPONENT=RUNTIME | INTEROP | JDB] APPEND=TRUE

13-2 JD Edwards EnterpriseOne Tools Connectors Guide

Glossary

connection mode

A term that applies only to the JDBC drivers and provides an indication of the type of
additional filtering and processing that the JD Edwards EnterpriseOne data that you
are accessing requires. Application code designates a connection mode when it
establishes each new connection.

connection properties

Properties that applications pass to the JDBC drivers when establishing a new
connection in order to configure a particular connection type. The concept of
connection properties is a standard JDBC mechanism, but each driver defines its own
set of recognized connection properties.

HTTP Adapter

A generic set of services that are used to do the basic HTTP operations, such as GET,
POST, PUT, DELETE, TRACE, HEAD, and OPTIONS with the provided URL.
instantiate

A Java term meaning “to create.” When a class is instantiated, a new instance is
created.

JMS Queue

A Java Messaging service queue used for point-to-point messaging.

messaging adapter

An interoperability model that enables third-party systems to connect to JD Edwards
EnterpriseOne to exchange information through the use of messaging queues.

messaging server

A server that handles messages that are sent for use by other programs using a
messaging APL Messaging servers typically employ a middleware program to
perform their functions.

real-time events

A message triggered from EnterpriseOne application logic that is intended for external
systems to consume.

XAPI events

A service that uses system calls to capture JD Edwards EnterpriseOne transactions as
they occur and then calls third-party software, end users, and other JD Edwards

Glossary-1

XML CallObject

Glossary-2

EnterpriseOne systems that have requested notification when the specified
transactions occur to return a response.

XML CallObject

An interoperability capability that enables you to call business functions.

XML Dispatch

An interoperability capability that provides a single point of entry for all XML
documents coming into JD Edwards EnterpriseOne for responses.

Z event

A service that uses interface table functionality to capture JD Edwards EnterpriseOne
transactions and provide notification to third-party software, end users, and other JD
Edwards EnterpriseOne systems that have requested to be notified when certain
transactions occur.

Z transaction

Third-party data that is properly formatted in interface tables for updating to the JD
Edwards EnterpriseOne database.

Symbols

)/ 7-5
) for WebSphere, 7-8

A

adding new application for COM guaranteed
events, 6-22
automatic transaction
dynamic Java connector, 10-16

B

BHVRCOM
COM, 4-6

BizTalk

guaranteed events, 6-20
BizTalk sample code, 6-20
BSEN cache

dynamic Java connector, 10-15
BSFNMethod

dynamic Java connector, 10-2
BSFNParameter

dynamic Java connector, 10-3
BSFNSpecSource

dynamic Java connector, 10-3
business function

dynamic Java connector, 10-14

validating spec metadata, 10-7
business function execution

COM, 3-1
business function metadata

dynamic Java connector, 10-2

Cc

jdeinterop.ini
section settings
, 122
cache
dynamic Java connector, 10-15
CheckVer
COM, 3-10
code sample
guaranteed events
BizTalk, 6-20

Index

COM connector log on, 6-7
COM+ component, 6-6
create message handler, 6-8
subscriber, 6-12
subscription, 6-9

CcoOM

BHVRCOM, 4-6
CheckVer, 3-10
running, 3-10
guaranteed events, 6-1
EnterpriseOne interface, 6-5, 6-6
installing event class, 6-23
new application, 6-22
registering a component, 6-23
subscribe to, 6-12
IJDETimeZone, 4-7
inbound XML request, 4-8
installation, 4-4
interoperability process flow, 2-2
logging
guaranteed events, 6-5
logging on to
guaranteed events, 6-7
objects, 2-2
OCM support, 4-5
overview, 2-1,2-2
prepare and commit transaction, 5-1
registering components
guaranteed events, 6-5
reliability, 4-10
server, 3-1,3-2
server deployment, 4-1
tracing
resolving issues, 4-10
tracing and logging, 4-10
COM connector
installation and set up for 8.95, 6-2
COM interoperability solution
business function execution, 3-1
COM transactions, 5-1
auto commit, 5-1
calling prepare and commit, 5-1
manual commit, 5-1
COM+
guaranteed events, 6-6
COM+ component creation sample code, 6-6

Index-1

Com+ two-phase commit transaction, 5-2
COMConnector login sample code, 6-7

D

DCOM
client environment, 4-3
identity, 4-3
server, 4-2
security, 4-3
DCOM server

setting up for guaranteed events 8.95, 6-2

jdeinterop.ini
section settings
, 72
design considerations
dynamic Java connector, 10-2
distributed transaction
COM+, 5-7

distributed transaction sample code, 5-8, 5-10

dynamic Java connector, 10-1
BSFN cache, 10-15
BSFNMethod, 10-2
BSFNParameter, 10-3
BSFNSpecSource, 10-3
business function, 10-14
business function metadata, 10-2
design considerations, 10-2
exception handling, 10-19
generate spec image, 10-8
inbound XML request, 10-18
installation, 10-11
logging, 10-19
OCM support, 10-16
overview, 10-1
running, 10-14
SpecDictionary, 10-5
synchronize spec image, 10-10
transactions, 10-16
update spec image, 10-9
user session management, 10-17
validate spec image, 10-10

E

EnterpriseOne interface
COM
guaranteed events, 6-5, 6-6
error handling
dynamic Java connector, 10-19
event subscription sample code, 6-9
jdeinterop.ini
section settings
, 7-4,12-3
events client tool
Java guaranteed events, 11-10, 11-11
prerequisites, 11-11
eventsguaranteed events, 6-1
exception handling
dynamic Java connector, 10-19

Index-2

G

GenCOM, 3-2,3-3
business function
using C++, 3-8
using Visual Basic, 3-7
environment
include directories, 3-5
lib directories, 3-5
paths, 3-5
environment setup

Microsoft Visual Studio 2005, 3-4

installation, 3-4
options, 3-6
output, 3-7
ProglD, 3-4
running, 3-6
syntax, 3-6
guaranteed events
asynchronous events, 11-6
BizTalk, 6-20
COM, 6-1
installing event class, 6-23
registering a component, 6-23
subscribe to, 6-12
COM component
new application, 6-22
COM+, 6-6
introspection operations for Java,
Java, 11-1
prerequisites, 11-1

11-5

Java events client tool, 11-10, 11-11

configuring, 11-11
running, 11-13
using, 11-11

Java events client tool prerequisites, 11-11
logging on to COM connector, 6-7

registering components
COM, 6-5

setting up Java client, 11-5

synchronous events, 11-9

identity
COM, 4-3

iJDEScript, 8-1

iJDEScript commands
build, 8-2
call, 8-2
define, 8-2
define!, 8-3
exit, 8-3
help, 84
import, 8-4
importlib, 8-4
interface, 8-5
library, 8-5
login, 8-6
logout, 8-6
opt, 8-6

rename, 8-7

say, 8-7

sub, 8-8

system, 8-9
[JDETimeZone

COM, 4-7
include directories

GenCOM, 3-5
installation

COM connector, 4-4

dynamic Java connector, 10-11

installing event class for COM guaranteed

events, 6-23

jdeinterop.ini

section settings

, 4-6,7-3,12-2

interoperability

COM process flow, 2-2

Java connector, 9-1

Java process flow, 9-1

J

Java connector

guaranteed events, 11-1

interoperability process flow, 9-1
jdeinterop.ini, 7-1,12-1
jdelog.properties, 13-1
jdeinterop.ini

section settings

, 7-2,12-2,7-5,7-8

L

lib directories
GenCOM, 3-5

logging
COM, 4-10
dynamic Java connector, 10-19

manual transaction

dynamic Java connector, 10-16
message handle sample code, 6-8
messages

dynamic Java connector, 10-19

(o)

jdeinterop.ini
section settings
, 4-6,7-1,12-1
OCM support
COM connector, 4-5
dynamic Java connector, 10-16
overview
COM, 2-1,2-2
dynamic Java connector, 10-1
iJDEScript, 8-1
jdeinterop.ini, 7-1,12-1

P

jdelog.properties, 13-1

paths

GenCOM, 3-5

prepare and commit transaction

R

CoM, 5-1

registering components

COM
guaranteed events, 6-5,6-23

reliability

COM, 4-10

resolving tracing issues

COM, 4-10

running CheckVer

CcOM, 3-10

running events client tool

S

Java guaranteed events, 11-13

sample applications

running, 10-21
setting up, 10-20
shipped, 10-20

sample code

COM business function wrapper, 3-7
COM IJDETimeZone, 4-7
COM query IBHVRCOM, 4-6
distributed transaction, 5-8

creating ClientPrj, 5-10
guaranteed events

introspection, 11-5

listener, 11-6

receive events, 11-9
sales order entry transactional client,
sales order entry transactional object,

jdeinterop.ini

section settings

, 72,122
security
COM, 4-3

jdeinterop.ini

section settings
, 7-2,12-2

server

CcOoM, 3-1
GenCOM, 3-3
COM connector, 3-2

DCOM, 4-2

spec image

dynamic Java connector, 10-8, 10-9, 10-10

SpecDictionary

dynamic Java connector, 10-5

5-7
5-4

Index-3

T

tracing
COM, 4-10
tracing and logging
CcoOM

guaranteed events, 6-5
transactional client sample code, 5-7
transactional object sample code, 5-4
transactions

COM connector, 5-1

COM+, 5-3

COM+ environment, 5-2
dynamic Java connector, 10-16
registering COM+, 5-10

U

user session management

dynamic Java connector, 10-17
using events client tool

Java guaranteed events, 11-11

w

WebSphere jdeinterop.ini additional files,

X

7-8

XML request
COM, 4-8
dynamic Java connector, 10-18

Index-4

	Contents
	Preface
	Documentation Accessibility
	Audience
	Related Documents
	Conventions

	1 Introduction to JD Edwards EnterpriseOne Tools Connectors
	1.1 JD Edwards EnterpriseOne Tools Connectors Overview
	1.2 Connectors Implementation

	2 Understanding COM Interoperability
	2.1 COM Interoperability
	2.2 JD Edwards EnterpriseOne COM Interoperability
	2.2.1 COM Objects
	2.2.2 COM Interoperability Usage

	3 Understanding the COM Solution for Business Function Execution
	3.1 JD Edwards EnterpriseOne COM Server
	3.2 COM Connector
	3.3 GenCOM Components
	3.3.1 Understanding GenCOM
	3.3.2 Installation Information
	3.3.3 ProgID
	3.3.4 Setting Up an Environment for GenCOM
	3.3.4.1 Example: Include Directories
	3.3.4.2 Example: Lib Directories
	3.3.4.3 Example: Paths
	3.3.4.4 Example: Basemake Directories
	3.3.4.5 Example: Bkoffice Directories
	3.3.4.6 Example: DXSDKROOT Directories
	3.3.4.7 INETSDK directory

	3.3.5 Running GenCOM
	3.3.6 Using GenCOM Output
	3.3.6.1 Visual Basic
	3.3.6.2 Visual C++

	3.4 COM Wrapper CheckVer
	3.4.1 Running CheckVer
	3.4.1.1 Syntax
	3.4.1.2 Example
	3.4.1.3 Options

	4 Deploying the COM Solution for Business Function Execution
	4.1 Understanding COM Server Deployment for Business Function Execution
	4.2 Setting Up the DCOM Server for Business Function Execution
	4.2.1 Understanding DCOM Server Set Up
	4.2.2 Setting Up DCOM for a Server Environment
	4.2.3 Setting Up Security on the COM Server
	4.2.4 Setting Up the Identity as Interactive User
	4.2.5 Setting Up DCOM for a Client Environment

	4.3 Installing COM Connector
	4.3.1 Installing COM Connector on a Non-JD Edwards EnterpriseOne Client Environment

	4.4 Using OCM Support with COM Connector
	4.4.1 [INTEROP]
	4.4.2 [OCM]

	4.5 Using BHVRCOM with COM
	4.6 Use IJDETimeZone Interface
	4.6.1 XML File generated by GenCOM for IJDETimeZone

	4.7 Requesting Inbound XML Using COM Server
	4.8 Using COM Reliability
	4.9 Using COM Tracing and Logging
	4.9.1 Resolving Tracing Issues

	5 Using COM Transactions
	5.1 Understanding COM Interoperability Transactions
	5.1.1 Outline for Calling Prepare and Commit
	5.1.2 COM+ Two-Phase Commit Transaction

	5.2 Setting Up the COM+ Environment
	5.3 Running COM+ Transactions
	5.3.1 Understanding COM+ Transactions
	5.3.2 Creating a Transactional Object (SOEProj.vbp)
	5.3.2.1 Module1 : Module1.bas

	5.3.3 Creating a Transactional Client

	5.4 Running a Distributed Transaction
	5.4.1 Understanding COM+ Transaction
	5.4.2 Creating MTStest for a Distributed Transaction (MTStest.vbp)
	5.4.2.1 MTSTestClass : MTStest.bas
	5.4.2.2 Module1 : Module1.bas

	5.4.3 Creating ClientPrj for a Distributed Transaction
	5.4.4 Registering the COM+ .dll

	6 Using COM Connector Solution for Guaranteed Events
	6.1 Understanding COM Connector Guaranteed Events
	6.2 Setting Up the COM Connector for Guaranteed Events
	6.2.1 Understanding COM Connector Setup for Guaranteed Events
	6.2.2 Installing and Setting Up the COM Connector for Guaranteed Events
	6.2.3 Registering Components for COM Connector
	6.2.4 Subscribing to Events
	6.2.5 Logging COM Events

	6.3 Implementing JD Edwards EnterpriseOne Interfaces
	6.3.1 Implementing a JD Edwards EnterpriseOne Interface
	6.3.2 Creating a COM+ Component
	6.3.2.1 EventSink: OneWorldTransientEventSink.cls

	6.3.3 Logging on to the COM Connector
	6.3.3.1 COMConnector: frmLogin.frm
	6.3.3.2 COMConnector Common.bas
	6.3.3.3 COMConnector: SubscriptionManager

	6.3.4 Subscribing to an Event
	6.3.4.1 Subscriber: MainForm.frm

	6.3.5 Integrating with BizTalk
	6.3.5.1 Subscriber: BizTalk.cls

	6.3.6 Adding a New Application
	6.3.7 Installing the Event Class

	6.4 Registering EventSink for Persistent Subscription

	7 Understanding jdeinterop.ini for COM Connector
	7.1 Settings for jdeinterop.ini File for the COM Connector
	7.1.1 [OCM]
	7.1.2 [JDENET]
	7.1.3 [SERVER]
	7.1.4 [SECURITY]
	7.1.5 [DEBUG]
	7.1.6 [INTEROP]
	7.1.7 [EVENTS]
	7.1.8 [JMSEVENTS]
	7.1.8.1 WebSphere
	7.1.8.2 Oracle WebLogic Application Server

	8 Understanding iJDEScript
	8.1 iJDEScript
	8.2 iJDEScript Commands
	8.2.1 Build Command
	8.2.1.1 Syntax

	8.2.2 Call Command
	8.2.2.1 Syntax
	8.2.2.2 Example

	8.2.3 Define Command
	8.2.3.1 Syntax
	8.2.3.2 Example

	8.2.4 Define! Command
	8.2.4.1 Syntax
	8.2.4.2 Example

	8.2.5 Exit Command
	8.2.5.1 Syntax

	8.2.6 Help Command
	8.2.6.1 Syntax

	8.2.7 Import Command
	8.2.7.1 Syntax
	8.2.7.2 Example

	8.2.8 Importlib Command
	8.2.8.1 Syntax
	8.2.8.2 Example

	8.2.9 Interface Command
	8.2.9.1 Syntax for COM
	8.2.9.2 COM Example

	8.2.10 Library Command
	8.2.10.1 Syntax
	8.2.10.2 Example

	8.2.11 Login Command
	8.2.11.1 Syntax
	8.2.11.2 Example

	8.2.12 Logout Command
	8.2.12.1 Syntax

	8.2.13 Opt Command
	8.2.13.1 Syntax
	8.2.13.2 Example

	8.2.14 Rename Command
	8.2.14.1 Syntax
	8.2.14.2 Example

	8.2.15 Say Command
	8.2.15.1 Syntax
	8.2.15.2 Example

	8.2.16 Sub Command
	8.2.16.1 Syntax
	8.2.16.2 Example

	8.2.17 System Command
	8.2.17.1 Syntax
	8.2.17.2 Example

	9 Understanding Java Interoperability Solution
	9.1 Java Interoperability Solution

	10 Working with the Dynamic Java Connector
	10.1 Understanding the Dynamic Java Connector
	10.2 Designing the Dynamic Java Connector
	10.2.1 Business Function Spec Metadata Introspection
	10.2.1.1 BSFNMethod
	10.2.1.2 BSFNParameter
	10.2.1.3 BSFNSpecSource
	10.2.1.4 SpecDictionary

	10.2.2 Business Function Spec Metadata Validation
	10.2.3 SpecImageConsole
	10.2.3.1 Generate Spec Image
	10.2.3.2 Usage
	10.2.3.3 Options
	10.2.3.4 Explanation
	10.2.3.5 Example
	10.2.3.6 Update Spec Image
	10.2.3.7 Usage
	10.2.3.8 Options
	10.2.3.9 Explanation
	10.2.3.10 Example
	10.2.3.11 Validate Spec Image
	10.2.3.12 Usage
	10.2.3.13 Options
	10.2.3.14 Explanation
	10.2.3.15 Example
	10.2.3.16 Synchronize Spec Image
	10.2.3.17 Usage
	10.2.3.18 Options
	10.2.3.19 Explanation
	10.2.3.20 Example

	10.3 Installing the Dynamic Java Connector
	10.4 Running the Dynamic Java Connector
	10.4.1 Calling a Business Function
	10.4.2 BSFN Cache
	10.4.3 Transaction Using the Dynamic Java Connector
	10.4.4 OCM Support for the Dynamic Java Connector

	10.5 Managing the User Session for the Dynamic Java Connector
	10.5.1 User Session Management for the Dynamic Java Connector
	10.5.2 Inbound XML Request Using the Dynamic Java Connector
	10.5.3 Logging for the Dynamic Java Connector
	10.5.4 Exception Handling for the Dynamic Java Connector

	10.6 Using Sample Applications
	10.6.1 Sample Applications
	10.6.2 Setting Up Sample Applications
	10.6.3 Running the Sample Applications

	11 Using Java Connector Guaranteed Events
	11.1 Understanding Java Connector Events
	11.1.1 Prerequisites

	11.2 Developing a Java Connector Events Application
	11.2.1 Understanding Java Connector Events Application Development
	11.2.2 Introspection Operations
	11.2.2.1 EventIntrospectionApp.java

	11.2.3 Asynchronous Event Sessions
	11.2.3.1 MyListener.java
	11.2.3.2 EventAsyncApp.java

	11.2.4 Synchronous Event Sessions
	11.2.4.1 EventSyncApp.java

	11.3 Using the Sample Connector Events Client
	11.3.1 Understanding Connector Events Client Tool
	11.3.2 Prerequisites for Using the Sample Connector Events Client
	11.3.3 Using the Connector Events Client Tool
	11.3.4 Configuring the Sample Connector Events Client
	11.3.4.1 To configure the Sample Connector Events Client

	11.3.5 Running the Sample Connector Events Client
	11.3.6 Resolving Java Connector Events Client Tool Issues

	12 Understanding jdeinterop.ini for Java Connector
	12.1 Settings for the jdeinterop.ini File for the Java Connector
	12.1.1 [OCM]
	12.1.2 [CACHE]
	12.1.3 [JDENET]
	12.1.4 [SERVER]
	12.1.5 [SECURITY]
	12.1.6 [INTEROP]
	12.1.7 [EVENTS]

	13 Understanding jdelog.properties File
	13.1 Settings for the jdelog.properties File
	13.1.1 [E1LOG]
	13.1.2 [LOG1]
	13.1.3 [LOG2]

	Glossary
	Index
	Symbols
	A
	B
	C
	D
	E
	G
	I
	J
	L
	M
	O
	P
	R
	S
	T
	U
	W
	X

