

JD Edwards EnterpriseOne Tools
APIs and Business Functions Guide

Release 9.1

E24234-01

December 2011

JD Edwards EnterpriseOne Tools APIs and Business Functions Guide, Release 9.1

E24234-01

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Contents

Preface .. vii

Audience.. vii
Documentation Accessibility .. vii
Related Documents .. vii
Conventions ... viii

1 Introduction to JD Edwards EnterpriseOne Tools: APIs and Business
Functions

1.1 APIs and Business Functions Overview... 1-1
1.2 APIs and Business Functions Implementation... 1-1

2 Working with APIs

2.1 Understanding APIs ... 2-1
2.1.1 API Fundamentals ... 2-1
2.1.2 Common Library APIs.. 2-1
2.1.2.1 MATH_NUMERIC Data Type ... 2-2
2.1.2.2 JDEDATE Data Type.. 2-2
2.1.3 Database APIs .. 2-3
2.1.3.1 Standards and Portability.. 2-3
2.1.3.2 JD Edwards EnterpriseOne ODBC .. 2-3
2.1.3.3 Standard JDEBASE API Categories ... 2-4
2.1.3.4 Connecting to a Database .. 2-4
2.1.3.5 Understanding Database Communication Steps... 2-4
2.2 Calling APIs ... 2-5
2.2.1 Calling an API from an External Business Function .. 2-5
2.2.1.1 Stdcall Calling Convention ... 2-6
2.2.1.2 Cdecl Calling Convention ... 2-6
2.2.2 Calling a Visual Basic Program from JD Edwards EnterpriseOne Software 2-7
2.3 Using the SAX Parser ... 2-7
2.3.1 Understanding the SAX Parser.. 2-7
2.3.2 Examples of SAX Parser Usage.. 2-8
2.3.2.1 Example Context Data Structure.. 2-9
2.3.2.2 Example Main Function... 2-9
2.3.2.3 Example Callback Functions.. 2-11
2.3.3 Example of a SAX Parsing Sequence ... 2-15

iv

2.4 Working with JDECACHE ... 2-16
2.4.1 Understanding Caching... 2-16
2.4.1.1 When to Use JDECACHE... 2-17
2.4.1.2 Performance Considerations.. 2-17
2.4.2 Understanding the JDECACHE API Set ... 2-17
2.4.2.1 JDECACHE Management APIs... 2-17
2.4.2.2 JDECACHE Manipulation APIs.. 2-18
2.4.3 Understanding JDECACHE Standards ... 2-19
2.4.3.1 Cache Business Function Source Description.. 2-19
2.4.3.2 Cache Programming Standards... 2-19
2.4.4 Prerequisites .. 2-20
2.4.5 Calling JDECACHE APIs .. 2-20
2.4.6 Setting Up Indexes.. 2-20
2.4.7 Initializing the Cache.. 2-22
2.4.7.1 Example: Index Definition Structure .. 2-23
2.4.8 Using an Index to Access the Cache .. 2-23
2.4.8.1 Example: JDECACHE Internal Index Definition Structure................................. 2-24
2.4.9 Using the jdeCacheInit/jdeCacheTerminate Rule ... 2-24
2.4.10 Using the Same Cache in Multiple Business Functions or Forms 2-25
2.5 Working with JDECACHE Cursors .. 2-25
2.5.1 Opening a JDECACHE Cursor ... 2-26
2.5.2 Using the JDECACHE Data Set .. 2-26
2.5.2.1 Cursor-Advancing APIs ... 2-27
2.5.2.2 Non-Cursor-Advancing APIs .. 2-28
2.5.3 Updating Records ... 2-28
2.5.4 Deleting Records... 2-28
2.5.5 Using the jdeCacheFetchPosition API ... 2-29
2.5.6 Using the jdeCacheFetchPositionByRef API... 2-29
2.5.7 Resetting the Cursor ... 2-29
2.5.8 Closing the Cursor.. 2-29
2.5.9 Using JDECACHE Multiple Cursor Support ... 2-29
2.5.10 Using JDECACHE Partial Keys .. 2-30

3 Using Business Functions

3.1 Understanding Business Functions.. 3-1
3.1.1 Components of a Business Function ... 3-2
3.1.2 How Distributed Business Functions Work .. 3-4
3.1.3 C Business Functions... 3-5
3.1.3.1 Header File Sections ... 3-5
3.1.3.2 Example: Business Function Header File.. 3-7
3.1.3.3 Source File Sections ... 3-10
3.1.3.4 Example: Business Function Source File .. 3-11
3.1.4 Business Function Event Rules ... 3-14
3.2 Understanding Transaction Master Business Functions.. 3-16
3.3 Building Transaction Master Business Functions ... 3-19
3.3.1 Understanding Building Transaction Master Business Functions 3-19
3.3.2 Begin Document.. 3-20

v

3.3.2.1 Special Logic or Processing Required... 3-21
3.3.2.2 Hook Up Tips... 3-21
3.3.2.3 Common Parameters... 3-21
3.3.2.4 Application-Specific Parameters ... 3-23
3.3.3 Edit Line ... 3-23
3.3.3.1 Special Logic or Processing Required... 3-24
3.3.3.2 Typical Uses and Hookup.. 3-24
3.3.3.3 Common Parameters... 3-24
3.3.4 Edit Document .. 3-25
3.3.4.1 Special Logic or Processing Required... 3-26
3.3.4.2 Hook Up Tips... 3-26
3.3.4.3 Common Parameters... 3-26
3.3.4.4 Application-Specific Parameters ... 3-26
3.3.5 End Document .. 3-26
3.3.5.1 Hook-Up Tips... 3-27
3.3.5.2 Common Parameters... 3-27
3.3.5.3 Application-Specific Parameters ... 3-27
3.3.6 Clear Cache.. 3-27
3.3.6.1 Special Logic or Processing Required... 3-28
3.3.6.2 Common Parameters... 3-28
3.3.7 Cancel Document.. 3-28
3.3.7.1 Special Logic or Processing Required... 3-28
3.3.7.2 Common Parameter .. 3-29
3.4 Implementing Transaction Master Business Functions ... 3-29
3.4.1 Single-Record Processing .. 3-29
3.4.1.1 Interactive Program Flow Example .. 3-29
3.4.1.2 Batch Program Flow Example ... 3-30
3.4.2 Document Processing... 3-30
3.4.2.1 Program Flow Example .. 3-30
3.5 Working with Master File Master Business Functions... 3-30
3.5.1 MBF Information Structure ... 3-32
3.5.1.1 Standard Parameters for Single-Record Master Business Functions 3-32
3.5.1.2 Application-Specific Control Parameters (Example: Address Book) 3-33
3.5.1.3 Application Parameters (Example: Address Book) .. 3-33
3.5.2 Master Business Function Impact on Performance ... 3-33
3.6 Working with Business Functions... 3-34
3.6.1 Prerequisite .. 3-34
3.6.2 Creating a Custom DLL... 3-34
3.6.3 Specifying a Custom DLL for a Custom Business Function....................................... 3-34
3.7 Working with Business Function Builder .. 3-35
3.7.1 Setting Build Options ... 3-35
3.7.2 Reading Build Output.. 3-36
3.7.2.1 Makefile Section... 3-36
3.7.2.2 Begin DLL Section ... 3-36
3.7.2.3 Compile Section ... 3-36
3.7.2.4 Link Section .. 3-37
3.7.2.5 Rebase Section.. 3-37

vi

3.7.2.6 Summary Section... 3-37
3.7.3 Building All Business Functions... 3-37
3.7.4 Using the Utility Programs.. 3-40
3.7.4.1 Resolving Errors with JDEBLC, Dumpbin, and PDB... 3-40
3.7.4.2 Customizing the Tools Menu... 3-41
3.7.4.3 Threadsafe Code .. 3-42
3.7.4.4 Safety Check Usage ... 3-45
3.7.4.5 Safety Check Output ... 3-46
3.7.4.6 Safety Check Limitations.. 3-47
3.7.5 Understanding Business Function Processing Failovers .. 3-47
3.8 Working with Business Function Documentation .. 3-48
3.8.1 Understanding Business Function Documentation... 3-48
3.8.2 Creating Business Function Documentation .. 3-48
3.8.3 Viewing Documentation from Business Function Documentation Viewer............. 3-49

4 Understanding Record Locking

4.1 Record Locking.. 4-1
4.2 Optimistic Locking ... 4-1
4.3 Pessimistic Locking... 4-2
4.3.1 Using Pessimistic Locking Within a Transaction Boundary ... 4-2
4.3.2 Business Functions and Pessimistic Locking... 4-3

5 Debugging Business Functions

5.1 Debugging.. 5-1
5.2 Debugging Strategies ... 5-1
5.2.1 Is the Program Ending Unexpectedly?... 5-1
5.2.2 Is the Output of the Program Incorrect?... 5-2
5.2.3 Where Else Could the Problem Be Coming From?... 5-2
5.3 Debug Logs .. 5-2
5.4 Debugging Business Functions with Microsoft Visual C++... 5-2
5.4.1 Understanding the Visual C++ Debugger ... 5-3
5.4.1.1 The Go Command .. 5-3
5.4.1.2 The Step Command.. 5-3
5.4.1.3 The Step Into Command.. 5-3
5.4.1.4 Setting Breakpoints .. 5-4
5.4.1.5 Using Watch .. 5-4
5.4.1.6 Locals Window ... 5-4
5.4.2 Understanding Visual C++ Debugger Tracing Utilities .. 5-4
5.4.3 Debugging Business Functions Attached to Interactive Applications 5-4
5.4.4 Using SQL Log Tracing... 5-5
5.4.5 Using Debug Tracing .. 5-5

Glossary

Index

vii

Preface

Welcome to the JD Edwards EnterpriseOne Tools Development Tools: APIs and
Business Functions Guide.

Audience
This guide is intended for developers and technical consultants who are responsible
for working with APIs and business functions.

This guide assumes you have a working knowledge of the following:

• C++ programming language

• JD Edwards EnterpriseOne event rules

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or
visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Related Documents
You can access related documents from the JD Edwards EnterpriseOne Release
Documentation Overview pages on My Oracle Support. Access the main
documentation overview page by searching for the document ID, which is 876932.1, or
by using this link:

https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=876932.1

To navigate to this page from the My Oracle Support home page, click the Knowledge
tab, and then click the Tools and Training menu, JD Edwards EnterpriseOne, Welcome
Center, Release Information Overview.

This guide contains references to server configuration settings that JD Edwards
EnterpriseOne stores in configuration files (such as jde.ini, jas.ini, jdbj.ini,
jdelog.properties, and so on). Beginning with the JD Edwards EnterpriseOne Tools
Release 8.97, it is highly recommended that you only access and manage these settings

https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=876932.1

viii

for the supported server types using the Server Manager program. See the Server
Manager Guide.

Conventions
The following text conventions are used in this document:

Convention Meaning

Bold Indicates field values.

Italics Indicates emphasis and JD Edwards EnterpriseOne or other
book-length publication titles.

Monospace Indicates a JD Edwards EnterpriseOne program, other code
example, or URL.

1

Introduction to JD Edwards EnterpriseOne Tools: APIs and Business Functions 1-1

1Introduction to JD Edwards EnterpriseOne
Tools: APIs and Business Functions

This chapter contains the following topics:

■ Section 1.1, "APIs and Business Functions Overview"

■ Section 1.2, "APIs and Business Functions Implementation"

1.1 APIs and Business Functions Overview
JD Edwards EnterpriseOne Tools APIs and business functions are used to create
complex, reusable routines in C. Business functions can call APIs directly and can in
turn be invoked from event rules (ER).

1.2 APIs and Business Functions Implementation
The following implementations steps need to be performed before working with JD
Edwards EnterpriseOne Tools APIs and business functions:

1. Configure Object Management Workbench.

See "Configuring JD Edwards EnterpriseOne OMW" in the JD Edwards
EnterpriseOne Tools Object Management Workbench Guide.

2. Configure Object Management Workbench user roles and allowed actions.

See "Configuring User Roles and Allowed Actions" in the JD Edwards
EnterpriseOne Tools Object Management Workbench Guide.

3. Configure Object Management Workbench functions.

See "Configuring JD Edwards EnterpriseOne OMW Functions" in the JD Edwards
EnterpriseOne Tools Object Management Workbench Guide.

4. Configure Object Management Workbench activity rules.

See "Configuring Activity Rules" in the JD Edwards EnterpriseOne Tools Object
Management Workbench Guide.

5. Configure Object Management Workbench save locations.

See "Configuring Object Save Locations" in the JD Edwards EnterpriseOne Tools
Object Management Workbench Guide.

6. Set up default location and printers.

See JD Edwards EnterpriseOne Tools Report Printing Administration Technologies
Guide.

APIs and Business Functions Implementation

1-2 JD Edwards EnterpriseOne Tools APIs and Business Functions Guide

2

Working with APIs 2-1

2Working with APIs

This chapter contains the following topics:

■ Section 2.1, "Understanding APIs"

■ Section 2.2, "Calling APIs"

■ Section 2.3, "Using the SAX Parser"

■ Section 2.4, "Working with JDECACHE"

■ Section 2.5, "Working with JDECACHE Cursors"

2.1 Understanding APIs
This section discusses:

■ API fundamentals

■ Common library APIs

■ Database APIs

2.1.1 API Fundamentals
APIs are routines that perform predefined tasks. JD Edwards EnterpriseOne APIs
make it easier for third-party applications to interact with JD Edwards EnterpriseOne
software. These APIs are functions that you can use to manipulate JD Edwards
EnterpriseOne data types, provide common functionality, and access the database.
Several categories of APIs exist, including the Common Library Routines and JD
Edwards EnterpriseOne Database (JDEBASE) APIs.

Programing with APIs is useful for these reasons:

■ No code modifications are required as functionality is upgraded.

■ When a data structure changes, source modifications are minimal to nonexistent.

■ Common functionality is provided through the APIs, and they are less prone to
error.

When the code in an API changes, business functions typically only need to be
recompiled and relinked.

2.1.2 Common Library APIs
The Common Library APIs, such as determining whether foreign currency is enabled,
manipulating the date format, retrieving link list information, or retrieving math
numeric and date information are specific to JD Edwards EnterpriseOne functionality.

Understanding APIs

2-2 JD Edwards EnterpriseOne Tools APIs and Business Functions Guide

You can use these APIs to set up data by calling APIs and modifying data after API
calls. Some of the more commonly used categories of APIs include MATH_NUMERIC,
JDEDATE, and LINKLIST. Other miscellaneous Common Library APIs are also
available.

JD Edwards EnterpriseOne provides the data types, MATH_NUMERIC and
JDEDATE, for use when creating business functions. Because these data types might
change, you must use the Common Library APIs provided by JD Edwards
EnterpriseOne to manipulate the variables of these data types.

2.1.2.1 MATH_NUMERIC Data Type
The MATH_NUMERIC data type exclusively represents all numeric values in JD
Edwards EnterpriseOne software. The values of all numeric fields on a form or batch
process are communicated to business functions in the form of pointers to MATH_
NUMERIC data structures. MATH_NUMERIC is used as a data dictionary (DD) data
type.

The data type is defined as follows:

struct tagMATH_NUMERIC
{
 ZCHAR String[MAXLEN_MATH_NUMERIC+1];/* Just the digits - no separators */
 BYTE Sign; /* - if negative, 0x00 otherwise */
 ZCHAR EditCode; /* The Data Dictionary edit code to Format for display */
 short nDecimalPosition; /* # of digits from right end of string to decimal
point⇒
 */
 short nLength; /* The number of digits in s */
 WORD wFlags; /* Processing Flags */
 ZCHAR szCurrency[CURRENCY_CODE_SIZE];/* The Currency Code */
 short nCurrencyDecimals; /* The Number of Currency Decimals */
 short nPrecision; /* The Data Dictionary Size */
};

This table lists various elements:

2.1.2.2 JDEDATE Data Type
The JDEDATE data type exclusively represents all dates in JD Edwards EnterpriseOne
software. The values of all date fields on a form or batch process are communicated to
business functions in the form of pointers to JDEDATE data structures. JDEDATE is
used as a data dictionary data type.

MATH_NUMERIC Element Description

String Digits without separators

Sign A minus sign indicates the number is negative, otherwise the
value is 0x00

EditCode Data dictionary edit code that formats the number for display

nDecimalPosition Number of digits from the right to place the decimal

nLength Number of digits in the string

wFlags Processing flags

szCurrency Currency code

nCurrencyDecimals Number of currency decimals

nPrecision Data dictionary size

Understanding APIs

Working with APIs 2-3

This code sample illustrates defining the data type:

struct tagJDEDATE
{
 short nYear;;
 short nMonth;;
 short nDay;
};
typedef struct tagJDEDATE JDEDATE, FAR *LPJDEDATE;

This table lists the elements in the JDEDATE data type:

2.1.3 Database APIs
JD Edwards EnterpriseOne software supports multiple databases. An application can
access data from a number of databases.

2.1.3.1 Standards and Portability
These standards affect the development of relational databases:

■ ANSI (American National Standards Institute) standard.

■ X/OPEN (European body) standard.

■ ISO (International Standards Institute) SQL standard.

Ideally, industry standards enable users to work identically with different relational
database systems. Although each major vendor supports industry standards, it also
offers extensions to enhance the functionality of the SQL language. Vendors also
periodically release upgrades and new versions of their products.

These extensions and upgrades affect portability. Due to the industry impact of
software development, applications need a standard interface to databases that is not
affected by differences between database vendors. When a vendor provides a new
release, the affect on existing applications should be minimal. To solve many of these
portability issues, many organizations use standard database interfaces called open
database connectivity (ODBC).

2.1.3.2 JD Edwards EnterpriseOne ODBC
JD Edwards EnterpriseOne ODBC enables you to use one set of functions to access
multiple relational database management systems. Consequently, you can develop
and compile applications knowing that they can run on a variety of database types
with the correct database driver. Database drivers are installed that enable the JD
Edwards EnterpriseOne ODBC interface to communicate with a specific database
system using a database driver.

The driver handles the I/O buffers to the database, which enables a programmer to
write an application that communicates with a generic data source. The database
driver is responsible for processing the API request and communicating with the
correct data source. The application does not have to be recompiled to work with other
databases. If the application must perform the same operation with another database,
a new driver is loaded.

JDEDATE Element Description

nYear Year (4 digits)

nMonth Month

nDay Day

Understanding APIs

2-4 JD Edwards EnterpriseOne Tools APIs and Business Functions Guide

A driver manager handles all application requests to the JD Edwards EnterpriseOne
database function call. The driver manager processes the request or passes it to an
appropriate driver.

JD Edwards EnterpriseOne applications access data from heterogeneous databases,
using the JDB API to interface between the applications and multiple databases.
Applications and business functions use the JDB API to dynamically generate
platform-specific SQL statements. JDB also supports additional features, such as
replication and cross-data source joins.

2.1.3.3 Standard JDEBASE API Categories
You can use control and request level APIs to develop and test business functions.
This table lists the categories of JDEBASE APIs:

2.1.3.4 Connecting to a Database
To perform a request, the driver manager and driver must manage the information for
the development environment, each application connection, and the SQL statement.
The pointers that return this information to the application are called handles. The
APIs must include these handles in each function call. Handles used by the
development environment include these handles:

2.1.3.5 Understanding Database Communication Steps
Several APIs called in succession can perform these steps for database communication:

Category Description

Control Level Provides functions for initializing and terminating the database
connection.

Request Level Provides functions for performing database transactions. The
request level functions perform these tasks:

■ Connect to and disconnect from tables and business views in
the database.

■ Perform data manipulation operations of select, insert, update,
and delete.

■ Retrieve data with fetch commands.

Column Level Performs and modifies information for columns and tables.

Global Table/Column
Specifications

Provides the capability to create and manipulate column
specifications.

Handle Purpose

HENV The environment handle contains information related to the current
database connection and valid connection handles. Every application
connecting to the database must have an environment handle. This
handle is required to connect to a data source.

HUSER The user handle contains information related to a specific connection.
Each user handle has an associated environment handle with it. A
connection handle is required to connect to a data source. If you are
using transaction processing, initializing HUSER indicates the beginning
of a transaction.

HREQUEST The request handle contains information related to a specific request to a
data source. An application must have a request handle before executing
SQL statements. Each request handle is associated with a user handle.

Calling APIs

Working with APIs 2-5

■ Initialize communication with the database.

■ Establish a connection to the specific data to access.

■ Execute statements on the database.

■ Release the connection to the database.

■ Terminate communication with the database.

This table lists some of the API levels and the communication handles and API names
that are associated with them:

2.2 Calling APIs
This section discusses how to:

■ Call an API from an external business function.

■ Call a Visual Basic program from JD Edwards EnterpriseOne software.

2.2.1 Calling an API from an External Business Function
You can call APIs from external business functions. To call an API from an external
business function, you must first determine the function-calling convention of the .dll
that you are going to use. It can be either cdecl or stdcall. The code might change
slightly depending on the calling convention. This information should be included in
the documentation for the .dll. If you do not know the calling convention of the .dll,
you can execute the dumpbin command to determine the calling convention. Execute
this command from the MSDOS prompt window:

 dumpbin /EXPORTS ExternalDll.DLL.

Dumpbin displays information about the dll. If the output contains function names
preceded by _ and followed by an @ sign with additional digits, the dll uses the stdcall
calling convention; otherwise, it uses cdecl.

API Level Communication Handles API Name

Control level (application or
test driver)

Environment handle JDB_InitEnv

Control level (application or
test driver)

User handle (created) JDB_InitUser

Request level (business
function)

User handle (retrieved) JDB_InitBhvr

Request level (business
function)

Request handle JDB_OpenTable

Request level (business
function)

Request handle JDB_FetchKeyed()

Request level (business
function)

Request handle JDB_CloseTable

Request level (business
function)

User handle JDB_FreeBhvr

Control level (application or
test driver)

User handle JDB_FreeUser

Control level (application or
test driver)

Environment handle JDB_FreeEnv

Calling APIs

2-6 JD Edwards EnterpriseOne Tools APIs and Business Functions Guide

2.2.1.1 Stdcall Calling Convention
This example is standard code for Windows programs and is not specific to JD
Edwards EnterpriseOne software:

ifdef JDENV_PC
HINSTANCE hLibrary = LoadLibrary(_TEXT(YOUR_LIBRARY.DLL)); // substitute the name⇒
 of the external dll
if(hLibrary)
{
// create a typedef for the function pointer based on the parameters and return⇒
 type of the function to be called. This information can be obtained
// from the header file of the external dll. The name of the function to be
called⇒
 in the following code is StartInstallEngine. We create a typedef for
// a function pointer named PFNSTARTINSTALLENGINE. Its return type is BOOL. Its⇒
 parameters are HUSER, LPCTSTR, LPCTSTR, LPTSTR & LPTSTR.
// Substitute these with parameter and return types for the particular API.
typedef BOOL (*PFNSTARTINSTALLENGINE) (HUSER, LPCTSTR, LPCTSTR, LPTSTR, LPTSTR);
// Now create a variable for the function pointer of the type you just created.⇒
 Then make call to GetProcAddress function with the first
// parameter as the handle to the library you just loaded. The second parameter⇒
 should be the name of the function you want to call prepended
// with an _, and appended with an @ followed by the total number of bytes for
the⇒
 parameters. In this example, the total number of bytes in the
// parameters for StartInstallEngine is 20 (4 bytes for each parameter). The
Get⇒
ProcAddress API will return a pointer to the function that you need to
// call.
PFNSTARTINSTALLENGINE lpfnStartInstallEngine = (PFNSTARTINSTALLENGINE) GetProc⇒
Address(hLibrary, _StartInstallEngine@20);
if (lpfnStartInstallEngine)
{
// Now call the API by passing in the requisite parameters.
lpfnStartInstallEngine(hUser, szObjectName, szVersionName, pszObjectText,
szObject⇒
Type);
}
#endif

2.2.1.2 Cdecl Calling Convention
The process for using the cdecl calling convention is similar to the process for using
the std calling convention. They differ principally in the second parameter for
GetProcAddress. Note the comments that precede that call.

ifdef JDENV_PC
HINSTANCE hLibrary = LoadLibrary(_TEXT(YOUR_LIBRARY.DLL)); // substitute the name⇒
 of the external dll
if(hLibrary)
{
// create a typedef for the function pointer based on the parameters and return⇒
 type of the function to be called. This information can be obtained
// from the header file of the external dll. The name of the function to be
called⇒
 in the following code is StartInstallEngine. We create a typedef for
// a function pointer named PFNSTARTINSTALLENGINE. Its return type is BOOL. Its⇒
 parameters are HUSER, LPCTSTR, LPCTSTR, LPTSTR & LPTSTR.
// Substitute these with parameter and return types for the particular API.
typedef BOOL (*PFNSTARTINSTALLENGINE) (HUSER, LPCTSTR, LPCTSTR, LPTSTR, LPTSTR);

Using the SAX Parser

Working with APIs 2-7

// Now create a variable for the function pointer of the type you just created.⇒
 Then make call to GetProcAddress function with the first
// parameter as the handle to the library you just loaded. The second parameter⇒
 should be the name of the function you want to call. In this
// case it will be StartInstallEngine only. The GetProcAddress API will return a⇒
 pointer to the function that you need to call.
PFNSTARTINSTALLENGINE lpfnStartInstallEngine = (PFNSTARTINSTALLENGINE) GetProc⇒
Address(hLibrary, StartInstallEngine);
if (lpfnStartInstallEngine)
{
// Now call the API by passing in the requisite parameters.
lpfnStartInstallEngine(hUser, szObjectName, szVersionName, pszObjectText,
szObject⇒
Type);
}
#endif

2.2.2 Calling a Visual Basic Program from JD Edwards EnterpriseOne Software
You can call a Visual Basic program from a JD Edwards EnterpriseOne business
function and pass a parameter from the Visual Basic program to the JD Edwards
EnterpriseOne business function using this process:

1. Write the Visual Basic program into a Visual Basic .dll that exports the function
name of the program and returns a parameter to the JD Edwards EnterpriseOne
business function.

2. Write a business function that loads the Visual Basic .dll using the win32 function
LoadLibrary.

3. In the business function that you create, call the win32 function GetProcAddress to
get the Visual Basic function and call it.

2.3 Using the SAX Parser
This section provides an overview of the SAX parser and of examples for its use.

2.3.1 Understanding the SAX Parser
The SAX parser is one of two main parsers used for XML data. It is an events-based
parser, as opposed to the other XML parser, DOM, which is a tree-based parser. The
Xerces product, from the Apache organization, provides both XML parsers. The Xerces
code is written in C++. To make XML parsing available to business functions, a C-API
interface, XercesWrapper, exists to provide access to both parsers. The design of the
parsers is quite different, and that provides advantages for each parser, depending on
the intended usage.

The DOM parser reads the XML file and builds an internal model (DOM document
tree) of that file in memory. This has the advantage of enabling you to traverse the
tree, retrieve parent-child relationships, and revisit the same data multiple times. The
disadvantages include high memory requirements for large XML files. Also, the entire
XML file must be read into memory before any of the data in the DOM document tree
can begin to be processed. The DOM parser can also be used to programmatically

Note: These calls work only on a Windows client machine.
LoadLibrary and GetProcAddress are Windows APIs. If the business
function is compiled on a server, the compile will fail.

Using the SAX Parser

2-8 JD Edwards EnterpriseOne Tools APIs and Business Functions Guide

build a DOM document tree in memory, and then write that tree to a file, in XML
format.

The SAX parser reads an XML file and as each item is read, the parser passes that piece
of data to callback functions. This methodology has the advantage of enabling fast
processing with minimal memory usage. Also, the parsing can be stopped after a
specific item has been found. The disadvantages include that the current state of
parsing must be maintained by the callback functions, and previous data items can not
be revisited without rereading the XML file. Finally, the SAX parser is a read-only
parser.

This is a typical sequence used for parsing an XML data file using the DOM parser:

1. Initialize the XercesWrapper, which in turn, initializes the Xerces code.

2. Initialize the DOM parser.

3. Parse the XML data file.

4. Retrieve a pointer to the root element of the DOM document tree.

5. Retrieve additional elements and data, by traversing the DOM document tree.

The callback functions are called whenever the specified events in the XML file are
parsed.

6. Free all DOM elements that have been retrieved.

7. Free the DOM document tree.

8. Free the DOM parser.

9. Terminate the XercesWrapper interface, which in turn, closes the Xerces code.

This is a typical sequence used for parsing an XML data file, using the SAX parser:

1. Initialize the XercesWrapper, which in turn, initializes the Xerces code.

2. Initialize the SAX parser.

3. Set up various callback functions for specific parsing events.

4. Parse the XML data file.

5. Call the callback functions as each event in the XML file is parsed.

6. Within the callback functions, process the retrieved data and maintain a context
for coordination between callback functions.

7. Free the SAX parser.

8. Terminate the XercesWrapper interface, which in turn, closes the Xerces code.

2.3.2 Examples of SAX Parser Usage
Many of the initialization, parsing, and termination functions are the same for both
SAX and DOM parsers. The major difference is that the DOM parser returns a
document handle which is then used with the traversing and data retrieval functions.
Those functions are not used with SAX. SAX does all of the data processing within the
user-defined callback functions. The callback functions are not used with DOM.

The processing of SAX-parsed data items occurs within the callback functions.
Typically, each callback function maintains a context. The context can be passed to all
callback functions and can be implemented as a data structure. The context, plus the
other data passed to the callback functions, enables each data item to be processed
appropriately.

Using the SAX Parser

Working with APIs 2-9

2.3.2.1 Example Context Data Structure
This is a sample function which uses the SAX parser:

typedef struct tagParserCallbackValues {
 FILE *fp;
 JCHAR *szIndentString;
 int nIndentLevel;
} ZCALLBACK_VALUES, *PCALLBACK_VALUES;

2.3.2.2 Example Main Function
This is a sample context data structure:

/* SAX callbacks - display callback events into file */
int testcase_read_15(JCHAR *m_infile, JCHAR *m_outfile)
{
 XRCS_Status XRCSStatus;
 XRCS_hParser hParser;
 ZCALLBACK_VALUES zCbValues;
 PCALLBACK_VALUES pCbValues = &zCbValues;

 /* initialize context structure */
 pCbValues->fp = NULL;
 pCbValues->szIndentString = _J(" ");
 pCbValues->nIndentLevel = 0;

 /* open display file */
 pCbValues->fp = jdeFopen(m_outfile, _J("w"));

 if (pCbValues->fp != NULL)
 {
 XRCSStatus = XRCS_initEngine();
 if(XRCSStatus != XRCS_SUCCESS) {
 return -1;
 }

 XRCSStatus = XRCS_getParserByType(&hParser, XRCS_SAX_PARSER_TYPE);
 if(XRCSStatus != XRCS_SUCCESS) {
 return -1;
 }

 XRCSStatus = XRCS_setCallback(hParser, XRCS_CALLBACK_START_DOC,
 (void *) cb_startDoc_Display, (void *) pCbValues);
 if(XRCSStatus != XRCS_SUCCESS) {
 return -1;
 }

 /* set up callbacks for the SAX parser */
 XRCSStatus = XRCS_setCallback(hParser, XRCS_CALLBACK_END_DOC,
 (void *) cb_endDoc_Display, (void *) pCbValues);
 if(XRCSStatus != XRCS_SUCCESS) {
 return -1;
 }

 XRCSStatus = XRCS_setCallback(hParser, XRCS_CALLBACK_START_ELEM,
 (void *) cb_startElement_Display, (void *) pCbValues);
 if(XRCSStatus != XRCS_SUCCESS) {
 return -1;
 }

Using the SAX Parser

2-10 JD Edwards EnterpriseOne Tools APIs and Business Functions Guide

 XRCSStatus = XRCS_setCallback(hParser, XRCS_CALLBACK_END_ELEM,
 (void *) cb_endElement_Display, (void *) pCbValues);
 if(XRCSStatus != XRCS_SUCCESS) {
 return -1;
 }

 XRCSStatus = XRCS_setCallback(hParser, XRCS_CALLBACK_CHARACTERS,
 (void *) cb_characters_Display, (void *) pCbValues);
 if(XRCSStatus != XRCS_SUCCESS) {
 return -1;
 }

 XRCSStatus = XRCS_setCallback(hParser,
 XRCS_CALLBACK_IGNORABLE_WHITESPACE,
 (void *) cb_ignorableWhitespace_Display, (void *) pCbValues);
 if(XRCSStatus != XRCS_SUCCESS) {
 return -1;
 }

 XRCSStatus = XRCS_setCallback(hParser, XRCS_CALLBACK_FATAL_ERROR,
 (void *) cb_fatalError_Display, (void *) pCbValues);
 if(XRCSStatus != XRCS_SUCCESS) {
 return -1;
 }

 XRCSStatus = XRCS_setCallback(hParser, XRCS_CALLBACK_ERROR,
 (void *) cb_error_Display, (void *) pCbValues);
 if(XRCSStatus != XRCS_SUCCESS) {
 return -1;
 }

 XRCSStatus = XRCS_setCallback(hParser, XRCS_CALLBACK_WARNING,
 (void *) cb_warning_Display, (void *) pCbValues);
 if(XRCSStatus != XRCS_SUCCESS) {
 return -1;
 }

 /* now do the actual parsing */
 XRCSStatus = XRCS_parseXMLFile(hParser,m_infile, NULL);
 if(XRCSStatus != XRCS_SUCCESS) {
 return -1;
 }

 XRCSStatus = XRCS_freeParser(hParser);
 XRCSStatus = XRCS_terminateEngine();

 /* close display file */
 jdeFclose(pCbValues->fp);
 }
 else
 {
 /* could not open display file */
 return -1; }

 return 0;
}

Using the SAX Parser

Working with APIs 2-11

2.3.2.3 Example Callback Functions
These are sample callback functions:

/* callbacks for display of SAX parser events */
XRCS_CallbackStatus cb_startDoc_Display(void *pContext)
{
 PCALLBACK_VALUES pCbValues = (PCALLBACK_VALUES) pContext;

 indentNewLine(pCbValues);
 jdeFprintf(pCbValues->fp, _J("START DOCUMENT"));
 return(XRCS_CB_CONTINUE);
}

XRCS_CallbackStatus cb_endDoc_Display(void *pContext)
{
 PCALLBACK_VALUES pCbValues = (PCALLBACK_VALUES) pContext;

 indentNewLine(pCbValues);
 jdeFprintf(pCbValues->fp, _J("END DOCUMENT"));
 indentNewLine(pCbValues);
 return(XRCS_CB_CONTINUE);
}

XRCS_CallbackStatus cb_startElement_Display(void *pContext,
 const JCHAR *szUri,
 const JCHAR *szLocalname,
 const JCHAR *szQname,
 unsigned int nNumAttrs,
 const XRCS_ATTR_INFO *pAttributes)
{
 PCALLBACK_VALUES pCbValues = (PCALLBACK_VALUES) pContext;
 unsigned int nAttrNum;
 const XRCS_ATTR_INFO * thisAttr = NULL;

 pCbValues->nIndentLevel++;
 /* display element name */
 indentNewLine(pCbValues);
 jdeFprintf(pCbValues->fp, _J("ELEMENT: "));
 if (jdeStrlen(szLocalname) != 0)
 {
 jdeFprintf(pCbValues->fp, _J("<%ls"), szLocalname);
 }
 else
 {
 jdeFprintf(pCbValues->fp, _J("<%ls"), szQname);
 }
 /* display attributes */
 if (nNumAttrs > 0U)
 {
 for (nAttrNum = 0U; nAttrNum < nNumAttrs; nAttrNum++)
 {
 thisAttr = &pAttributes[nAttrNum];
 /* display attrribute name */
 indentNewLine(pCbValues);
 jdeFprintf(pCbValues->fp, _J(" ATTR: "));
 if (jdeStrlen(thisAttr->szAttrLocalname) != 0)
 {
 jdeFprintf(pCbValues->fp, _J("%ls"),
 thisAttr->szAttrLocalname);
 }

Using the SAX Parser

2-12 JD Edwards EnterpriseOne Tools APIs and Business Functions Guide

 else
 {
 jdeFprintf(pCbValues->fp, _J("%ls"), thisAttr->szAttrQname);
 }
 /* display attribute value */
 jdeFprintf(pCbValues->fp, _J(" \""));
 jdeFprintf(pCbValues->fp, _J("%ls"), thisAttr->szAttrValue);
 jdeFprintf(pCbValues->fp, _J("\""));
 }
 indentNewLine(pCbValues);
 }
 /* display close of element name */
 jdeFprintf(pCbValues->fp, _J(">"));
 return(XRCS_CB_CONTINUE);
}

XRCS_CallbackStatus cb_endElement_Display_Terminate(void *pContext,
 const JCHAR *szUri,
 const JCHAR *szLocalname,
 const JCHAR *szQname)
{
 PCALLBACK_VALUES pCbValues = (PCALLBACK_VALUES) pContext;

 indentNewLine(pCbValues);
 jdeFprintf(pCbValues->fp, _J("END_ELM: "));
 if (jdeStrlen(szLocalname) != 0)
 {
 jdeFprintf(pCbValues->fp, _J("</%ls>"), szLocalname);
 }
 else
 {
 jdeFprintf(pCbValues->fp, _J("</%ls>"), szQname);
 }
 pCbValues->nIndentLevel--;
 return(XRCS_CB_TERMINATE);
}

XRCS_CallbackStatus cb_endElement_Display(void *pContext,
 const JCHAR *szUri,
 const JCHAR *szLocalname,
 const JCHAR *szQname)
{
 PCALLBACK_VALUES pCbValues = (PCALLBACK_VALUES) pContext;

 indentNewLine(pCbValues);
 jdeFprintf(pCbValues->fp, _J("END_ELM: "));
 if (jdeStrlen(szLocalname) != 0)
 {
 jdeFprintf(pCbValues->fp, _J("</%ls>"), szLocalname);
 }
 else
 {
 jdeFprintf(pCbValues->fp, _J("</%ls>"), szQname);
 }
 pCbValues->nIndentLevel--;
 return(XRCS_CB_CONTINUE);
}

XRCS_CallbackStatus cb_warning_Display(void *pContext,
 XRCS_CallbackType eCallbackType,

Using the SAX Parser

Working with APIs 2-13

 int nLineNum,
 int nColNum,
 const JCHAR *szPublicId,
 const JCHAR *szSystemId,
 const JCHAR *szMessage)
{
 PCALLBACK_VALUES pCbValues = (PCALLBACK_VALUES) pContext;

 indentNewLine(pCbValues);
 jdeFprintf(pCbValues->fp, _J("Warning: "));
 jdeFprintf(pCbValues->fp, _J(" %ls (%ls) - %ls found at Column %d
 Line %d"), szSystemId, szPublicId, szMessage, nColNum, nLineNum);
 return(XRCS_CB_CONTINUE);
}

XRCS_CallbackStatus cb_error_Display(void *pContext,
 XRCS_CallbackType eCallbackType,
 int nLineNum,
 int nColNum,
 const JCHAR *szPublicId,
 const JCHAR *szSystemId,
 const JCHAR *szMessage)
{
 PCALLBACK_VALUES pCbValues = (PCALLBACK_VALUES) pContext;

 indentNewLine(pCbValues);
 jdeFprintf(pCbValues->fp, _J("Error: "));
 jdeFprintf(pCbValues->fp, _J(" %ls (%ls) - %ls found at Column %d
 Line %d"), szSystemId, szPublicId, szMessage, nColNum, nLineNum);
 return(XRCS_CB_CONTINUE);
}

XRCS_CallbackStatus cb_fatalError_Display(void *pContext,
 XRCS_CallbackType eCallbackType,
 int nLineNum,
 int nColNum,
 const JCHAR *szPublicId,
 const JCHAR *szSystemId,
 const JCHAR *szMessage)
{
 PCALLBACK_VALUES pCbValues = (PCALLBACK_VALUES) pContext;

 indentNewLine(pCbValues);
 jdeFprintf(pCbValues->fp, _J("Fatal Error: "));
 jdeFprintf(pCbValues->fp, _J(" %ls (%ls) - %ls found at Column %d Line %d"),
 szSystemId, szPublicId, szMessage, nColNum, nLineNum);
 return(XRCS_CB_TERMINATE);
}

XRCS_CallbackStatus cb_characters_Display(void *pContext,
 const JCHAR *szText)
{
 PCALLBACK_VALUES pCbValues = (PCALLBACK_VALUES) pContext;
 int nTextLen;
 int nTextRemaining;
 int nTextPieceLen;
 int nTextStartPosition;

 nTextLen = jdeStrlen(szText);
 indentNewLine(pCbValues);

Using the SAX Parser

2-14 JD Edwards EnterpriseOne Tools APIs and Business Functions Guide

 jdeFprintf(pCbValues->fp, _J("CHARS: "));
 if (hasPrintingChars(szText, nTextLen) == TRUE)
 {
 /* initial quote */
 jdeFprintf(pCbValues->fp, _J("\""), szText);
 /* actual text, output in blocks of 10000 characters */
 /* jdeFprintf will not work with very large strings */
 nTextRemaining = nTextLen;
 nTextStartPosition = 0;
 while (nTextRemaining > 0)
 {
 if (nTextRemaining > 10000)
 {
 nTextPieceLen = 10000;
 }
 else
 {
 nTextPieceLen = nTextRemaining;
 }
 jdeFprintf(pCbValues->fp, _J("%.*ls"), nTextPieceLen,
 (JCHAR *) &(szText[nTextStartPosition]));
 nTextRemaining -= nTextPieceLen;
 nTextStartPosition += nTextPieceLen;
 }
 /* trailing quote */
 jdeFprintf(pCbValues->fp, _J("\""), szText);
 }
 return(XRCS_CB_CONTINUE);
}

XRCS_CallbackStatus cb_ignorableWhitespace_Display(void *pContext,
 const JCHAR *szText)
{
 PCALLBACK_VALUES pCbValues = (PCALLBACK_VALUES) pContext;
 int nTextLen;

 nTextLen = jdeStrlen(szText);
 indentNewLine(pCbValues);
 jdeFprintf(pCbValues->fp, _J("IGNORABLE WHITESPACE: "));
 if (hasPrintingChars(szText, nTextLen) == TRUE)
 {
 jdeFprintf(pCbValues->fp, _J("\"%ls\""), szText);
 }
 return(XRCS_CB_CONTINUE);
}

void indentNewLine(PCALLBACK_VALUES pCbValues)
{
 int nIndent = 0;

 jdeFprintf(pCbValues->fp,
 _J("\n"));

 while (nIndent < pCbValues->nIndentLevel)
 {
 jdeFprintf(pCbValues->fp, _J("%ls"), pCbValues->szIndentString);
 nIndent++;
 }
}

Using the SAX Parser

Working with APIs 2-15

BOOL hasPrintingChars(const JCHAR *szText, int nTextLen)
{
 BOOL bHasPrinting = FALSE;
 int nText = 0;

 /* true if contains any printing characters */
 /* false if all blanks or control characters */
 while (nText < nTextLen)
 {
 if (szText[nText] > _J(' '))
 {
 bHasPrinting = TRUE;
 break;
 }
 nText++;
 }
 return(bHasPrinting);
}

2.3.3 Example of a SAX Parsing Sequence
This is an example of the sequence of callback functions called, for an example string
of XML data. Before parsing, these callback functions were set up:

■ cb_startAllElements for start-of-element event type.

■ cb_endAllElements for end-of-element event type.

■ cb_startElement1 for start-of-element, with optional name specified as
"elapsedTime."

■ cb_endElement1 for end-of-element, with optional name specified as
"elapsedTime."

■ cb_chars for characters event type.

■ cb_allCharacters for characters, with optional setting for characters after elements.

■ cb_fatalError for fatal-error event type.

The example XML string to be parsed is:

<main>startMain<elapsedTime>123</elapsedTime>endMain</main>

This callback sequence results from parsing this XML string:

■ cb_startAllElements for main.

■ cb_chars for startMain.

■ cb_allCharacters for startMain.

■ cb_startAllElements for elapsedTime.

■ cb_startElement1 for elapsedTime.

■ cb_chars for 123.

■ cb_allCharacters for 123.

■ cb_endAllElements for elapsedTime.

■ cb_endElement1 for elapsedTime.

■ cb_allCharacters for endMain.

Working with JDECACHE

2-16 JD Edwards EnterpriseOne Tools APIs and Business Functions Guide

■ cb_endAllElements for main.

■ cb_fatalError is not called while parsing this example XML string.

2.4 Working with JDECACHE
This section provides overviews of caching, JDECACHE standards, and the
JDECACHE API set, and discusses how to:

■ Call JDECACHE APIs.

■ Set up indices.

■ Initialize the cache.

■ Use an index to access the cache.

■ Use the jdeCacheInit/jdeCacheTerminate rule.

■ Use the same cache in multiple business functions or forms.

2.4.1 Understanding Caching
Caching is a process that stores a local copy of frequently accessed content of remote
objects. Caching can improve performance. JD Edwards EnterpriseOne software
caches information in these ways:

■ The system automatically caches some tables, such as those associated with
constants, when it reads them from the database at startup.

It caches these tables to a user's workstation or to a server for faster data access
and retrieval.

■ Individual applications can be enabled to use cache.

JDECACHE APIs enable the server or workstation memory to be used as
temporary storage.

JDECACHE is a component of JDEKRNL that can hold any type of indexed data that
the application needs to store in memory, regardless of the platform on which the
application is running; therefore, an entire table can be read from a database and
stored in memory. No limitations exist regarding the type of data, size of data, or
number of data caches that an application can have, other than the limitations of the
computer on which it is running. Both fixed-length and variable-length records are
supported. To use JDECACHE on any supported platform, you need to know only a
simple set of API calls.

Data handled by JDECACHE is in RAM. Therefore, ensure that you really need to use
JDECACHE. If you use JDECACHE, design the records and indices carefully.
Minimize the number of records that you store in JDECACHE because JD Edwards
EnterpriseOne software and various other applications need this memory as well.

JDECACHE supports multiple cursors, multiple indexes, and partial keys processing.
JDECACHE is flexible in terms of positioning within the cache for data manipulation,
which improves performance by reducing searching within the cache.

The JDB environment creates, manages, and destroys the JDECACHE environment.
Each cache that you use within the JDECACHE environment is associated with a JDB
user. Therefore, you must call JDB_InitBhvr API before you call any of the JDECACHE
APIs.

Working with JDECACHE

Working with APIs 2-17

2.4.1.1 When to Use JDECACHE
Here is a scenario that highlights when an application might use the JDECACHE APIs.

You use workfiles when an application must store records that a user enters in a detail
area until OK processing is activated upon the Button Clicked event. On OK processing,
all records must be simultaneously updated to the database. This is similar to
transaction processing. For example, in the detail area of purchase order detail, if a
user enters 30 lines of information and then decides to cancel the transaction, all
records in the workfile are deleted and nothing is written to the database. As the user
exits each detail row, editing takes place for each field, and then that record is written
to the workfile.

If you implement this situation without using workfiles, irreversible updates to
database tables occur when the user exits each row. Using workfiles enables you to
limit updates to tables so that they only occur on OK button processing, and they are
included in a transaction boundary. The workfile defines a data boundary for the grid
for processing purposes. This is useful when multiple applications or processes (such
as business functions) must access the data in the workfile for updates and
calculations.

Using cache might increase performance in some cases. You can use JDECACHE to
store in memory the records that the user enters in one purchase order. The number of
records that you store depends on the cache buffer size for each record, the local
memory size, the location in which the business function that you use runs (for
example, server or workstation), and so on. Typically, you should not store more than
1000 records. For example, do not cache the entire Address Book table in memory.

2.4.1.2 Performance Considerations
Follow these guidelines to get the best JDECACHE performance:

■ Cache as few records as possible.

■ The fewer columns (segments) that you use, the faster the search, insert, and
delete actions occur.

In some cases, the system might have to compare each column before it
determines whether to go further in the cache.

■ The fewer records in the cache, the faster all operations proceed.

2.4.2 Understanding the JDECACHE API Set
You use a set of public APIs to interact with JDECACHE. You must understand how
the JDECACHE APIs are organized to implement them effectively.

2.4.2.1 JDECACHE Management APIs
You can manage cache using the JDECACHE management APIs for these purposes:

■ Setting up the cache.

■ Clearing the cache.

■ Terminating the cache.

Use the jdeCacheGetNumRecords and jdeCacheGetNumCursors APIs to retrieve
cache statistics. They are only passed the HCACHE handle. All other JDECACHE
management APIs should always be passed these handles:

■ HUSER

Working with JDECACHE

2-18 JD Edwards EnterpriseOne Tools APIs and Business Functions Guide

■ HCACHE

These two handles are essential for cache identification and cache management.

The set of JDECACHE management APIs consist of these APIs:

■ jdeCacheInit

■ jdeCacheInitEx

■ jdeCacheInitMultipleIndex

■ jdeCacheInitMultipleIndexEx

■ jdeCacheInitUser

■ jdeCacheInitMultipleIndexUser

■ jdeCacheGetNumRecords

■ jdeCacheGetNumCursors

■ jdeCacheClear

■ jdeCacheTerminate

■ jdeCacheTerminateAll

The jdeCacheInit and jdeCacheInitMultipleIndex APIs initialize the cache uniquely
per user. Therefore, if a user logs in to the software and then runs two sessions of the
same application simultaneously, the two application sessions will share the same
cache. Consequently, if the first application deletes a record from the cache, the second
application cannot access the record. Conversely, if two users log in to the software
and then run the same application simultaneously, the two application sessions have
different caches. Consequently, if the first application deletes a record from its cache,
the second application will still be able to access the record in its own cache. The
jdeCacheInitEx and jdeCacheInitMultipleIndexEx APIs function exactly the same,
but they additionally enable you to define the maximum number of cursors that can be
opened by the cache.

The jdeCacheInitUser and jdeCacheInitMultipleIndexUser APIs initialize the cache
uniquely per application. Therefore, if a user logs in to the software and then runs two
sessions of the same application simultaneously, the two application sessions will have
different caches. Consequently, if the first application deletes a record from its cache,
the second application can still access the record in its own cache.

2.4.2.2 JDECACHE Manipulation APIs
You can use the JDECACHE manipulation APIs for retrieving and manipulating the
data in the cache. Each API implements a cursor that acts as pointer to a record that is
currently being manipulated. This cursor is essential for navigation within the cache.
JDECACHE manipulation APIs should be passed handles of these types:

■ HCACHE

Identifies the cache that is being worked.

■ HJDECURSOR

Identifies the position in the cache that is being worked.

The set of JDECACHE manipulation APIs contain these APIs:

■ jdeCacheOpenCursor

■ jdeCacheResetCursor

Working with JDECACHE

Working with APIs 2-19

■ jdeCacheAdd

■ jdeCacheFetch

■ jdeCacheFetchPosition

■ jdeCacheUpdate

■ jdeCacheDelete

■ jdeCacheDeleteAll

■ jdeCacheCloseCursor

■ jdeCacheFetchPositionByRef

■ jdeCacheSetIndex

■ jdeCacheGetIndex

2.4.3 Understanding JDECACHE Standards
It is recommended that you apply several standards when using JDECACHE. This
section discusses the standards for business functions and programming.

The cache business function name should follow the standard naming convention for
business functions.

2.4.3.1 Cache Business Function Source Description
These standards apply to source descriptions for cache business functions:

■ The cache business function description must follow the business function
description standards.

■ The first word must be the noun, Cache.

■ The second word must be the verb, Process.

■ For an individual cache function, the words following Process should describe the
cache. For a common cache function, the words following Process should describe
the group to which the individual cache functions belong.

These standards apply to cache business function descriptions:

■ If the source file contains an individual function, the function name must match
the source name.

■ If the source file contains a group of cache functions, the individual function
names must follow the same standards as the Cache Business Function Source
Description standards.

2.4.3.2 Cache Programming Standards
A variety of cache programming standards apply:

■ General standards.

■ Cache termination instead of clearing.

■ Cache name.

■ Cache data structure definition.

■ Data structure standard data items.

■ Cache action code standards.

Working with JDECACHE

2-20 JD Edwards EnterpriseOne Tools APIs and Business Functions Guide

■ Group cache business function header file.

■ Individual cache business function header file.

2.4.4 Prerequisites
Before you can use JDECACHE, you must:

■ Define an index

The index specifies to the cache the fields in a record that are used to uniquely
identify a cache record.

■ Initialize a cache

Each group of data that an index references requires a separate cache.

2.4.5 Calling JDECACHE APIs
JDECHACHE APIs must be called in a certain order. This list defines the order in
which the JDECACHE-related APIs must be called:

1. Call JDB_InitBhvr.

2. Create index or indices.

3. Call jdeCacheInit, jdeCacheInitEx, jdeCacheInitMultipleIndex, or
jdeCacheInitMultipleIndexEx.

4. Call jdeCacheAdd.

5. Call jdeCacheOpenCursor.

6. Call JDECACHE Operations.

At JDECACHE Operations, the actual JDECACHE APIs can be called in any order.
The operations in this list of JDECACHE operations can occur in any order:

■ jdeCacheFetch

■ jdeCacheOpenCursor (the second cursor)

■ jdeCacheFetchPosition

■ jdeCacheUpdate

■ jdeCacheDelete

■ jdeCacheDeleteAll

■ jdeCacheResetCursor

■ jdeCacheCloseCursor (if the second cursor is opened)

■ jdeCacheCloseCursor

■ jdeCacheTerminate

■ JDB_FreeBhvr

2.4.6 Setting Up Indexes
To store or retrieve any data in JDECACHE, you must set up at least one index that
consists of at least one column. The index is limited to a maximum of 25 columns
(which are called segments) in the index structure. Use the data type provided to tell
the cache manager what the index looks like. You must provide the number of

Working with JDECACHE

Working with APIs 2-21

columns (segments) in the index and the offset and size of each column in the data
structure. To maximize performance, minimize the number of segments.

This code is the definition of the structure that holds index information:

#define JDECM_MAX_UM_SEGMENTS 25
struct _JDECMKeySegment
{
 short int nOffset; /* Offset from beginning of structure in bytes */
 short int nSize; /* Size of data item in bytes */
 int idDataType; /* EVDT_MATH_NUMERIC or EVDT_STRING*/
} JDECMKEYSEGMENT;
struct _JDECMKeyStruct
{
 short int nNumSegments;
 JDECMKEYSEGMENT CacheKey[JDECM_MAX_NUM_SEGMENTS];
} JDECMINDEXSTRUCT;

Observe these rules when you create indices in JDECACHE:

■ Always declare the index structure as an array that holds one element for single
indexes.

Declare the index structure as an array that holds more than one element for
multiple indexes. You can create an unlimited number of indexes.

■ Always use memset() for the index structure.

When you use memset() for multiple indexes, multiply the size of the index
structure by the total number of indexes.

■ Always assign as elements the number of segments that correspond to the number
of columns that you have in the CacheKey array.

■ Always use offsetof () to indicate the offset of a column in the structure that
contains the columns.

This example illustrates a single index with multiple fields:

/* Example of single index with multiple fields.*/
JDECMINDEXSTRUCT Index[1] = {0};
memset(&dsCache,0x00,sizeof(dsCache));
/* Initialize cache. */
Index->nNumSegments=5;
Index->CacheKey[0].nOffset=offsetof(DSCACHE,szEdiUserId);
Index->CacheKey[0].nSize=DIM(dsCache.szEdiUserId);
Index->CacheKey[0].idDataType=EVDT_STRING;
Index->CacheKey[1].nOffset=offsetof(DSCACHE,szEdiBatchNumber);
Index->CacheKey[1].nSize=DIM(dsCache.szEdiBatchNumber);
Index->CacheKey[1].idDataType=EVDT_STRING;
Index->CacheKey[2].nOffset=offsetof(DSCACHE,szEdiTransactNumber);
Index->CacheKey[2].nSize=DIM(dsCache.szEdiTransactNumber);
Index->CacheKey[2].idDataType=EVDT_STRING;
Index->CacheKey[3].nOffset=offsetof(DSCACHE,mnEdiLineNumber);
Index->CacheKey[3].nSize=sizeof(dsCache.mnEdiLineNumber);
Index->CacheKey[3].idDataType=EVDT_MATH_NUMERIC;
Index->CacheKey[4].nOffset=offsetof(DSCACHE.cErrorCode);
Index->CacheKey[4].nSize = 1;
Index->CacheKey[4].idDataType=EVDT_CHAR

The flag, idDataType, indicates the data type of the particular key.

This example illustrates a cache with multiple indices and multiple fields:

Working with JDECACHE

2-22 JD Edwards EnterpriseOne Tools APIs and Business Functions Guide

Memset(jdecmIndex,0x00,sizeof(JDECMINDEXSTRUCT)*2);
jdecmIndex[0].nKeyID=1;
jdecmIndex[0].nNumSegments=6;
jdecmIndex[0].CacheKey[0].nOffset=offsetof(I1000042,szCostCenter);
jdecmIndex[0].CacheKey[0].nSize=DIM(dsI1000042.szCostCenter);
jdecmIndex[0].CacheKey[0].idDataType=EVDT_STRING;
jdecmIndex[0].CacheKey[1].nOffset=offsetof(I1000042,szObjectAccount);
jdecmIndex[0].CacheKey[1].nSize=DIM(dsI1000042.szObjectAccount);
jdecmIndex[0].CacheKey[1].idDataType=EVDT_STRING;
jdecmIndex[0].CacheKey[2].nOffset=offsetof(I1000042,szSubsidiary);
jdecmIndex[0].CacheKey[2].nSize=DIM(dsI1000042.szSubsidiary);
jdecmIndex[0].CacheKey[2].idDataType=EVDT_STRING;
jdecmIndex[0].CacheKey[3].nOffset=offsetof(I1000042,szSubledger);
jdecmIndex[0].CacheKey[3].nSize=DIM(dsI1000042.szSubledger);
jdecmIndex[0].CacheKey[3].idDataType=EVDT_STRING;
jdecmIndex[0].CacheKey[4].nOffset=offsetof(I1000042,szSubledgerType);
jdecmIndex[0].CacheKey[4].nSize=1;
jdecmIndex[0].CacheKey[4].idDataType=EVDT_STRING;
jdecmIndex[0].CacheKey[5].nOffset=offsetof(I1000042,szCurrencyCodeFrom);
jdecmIndex[0].CacheKey[5].nSize=DIM(dsI1000042.szCurrencyCodeFrom);
jdecmIndex[0].CacheKey[5].idDataType=EVDT_STRING;
************************ KEY 2 *******************************
jdecmIndex[1].nKeyID=2;
jdecmIndex[1].nNumSegments=7;
jdecmIndex[1].CacheKey[0].nOffset=offsetof(I1000042,szEliminationGroup);
jdecmIndex[1].CacheKey[0].nSize=DIM(dsI1000042.szEliminationGroup);
jdecmIndex[1].CacheKey[0].idDataType=EVDT_STRING;
jdecmIndex[1].CacheKey[1].nOffset=offsetof(I1000042,szCostCenter);
jdecmIndex[1].CacheKey[1].nSize=DIM(dsI1000042.szCostCenter);
jdecmIndex[1].CacheKey[1].idDataType=EVDT_STRING;
jdecmIndex[1].CacheKey[2].nOffset=offsetof(I1000042,szObjectAccout);
jdecmIndex[1].CacheKey[2].nSize=DIM(dsI1000042.szObjectAccount);
jdecmIndex[0].CacheKey[2].idDataType=EVDT_STRING;
jdecmIndex[1].CacheKey[3].nOffset=offsetof(I1000042,szSubsidiary);
jdecmIndex[1].CacheKey[3].nSize=DIM(dsI1000042.szSubsidiary);
jdecmIndex[1].CacheKey[3].idDataType=EVDT_STRING;
jdecmIndex[1].CacheKey[4].nOffset=offsetof(I1000042,szSubledger);
jdecmIndex[1].CacheKey[4].nSize=DIM(dsI1000042.szSubledger);
jdecmIndex[1].CacheKey[4].idDataType=EVDT_STRING;
jdecmIndex[1].CacheKey[5].nOffset=offsetof(I1000042,szSubledgerType);
jdecmIndex[1].CacheKey[5].nSize=1;
jdecmIndex[1].CacheKey[5].idDataType=EVDT_STRING;
jdecmIndex[1].CacheKey[6].nOffset=offsetof(I1000042,szCurrencyCodeFrom);
jdecmIndex[0].CacheKey[6].nSize=DIM(dsI1000042.szCurrencyCodeFrom);
jdecmIndex[0].CacheKey[6].idDataType=EVDT_STRING;

2.4.7 Initializing the Cache
After you set up the index or indices, call jdeCacheInit, jdeCacheInitEx,
jdeCacheInitMultipleIndex, or jdeCacheInitMultipleIndexEx. to initialize (create)
the cache. Pass a unique cache name so that JDECACHE can identify the cache. Pass
the index to this API so that the JDECACHE knows how to reference the data that will
be stored in the cache. Because each cache must be associated with a user, you must
also pass the user handle obtained from the call to JDB_InitUser. This API returns an
HCACHE handle to the cache that JDECACHE creates. This handle appears in every
subsequent JDECACHE API to identify the cache.

Working with JDECACHE

Working with APIs 2-23

The keys in the index must be identical for every jdeCacheInit, jdeCacheInitEx,
jdeCacheInitMultipleIndex, and jdeCacheInitMultipleIndexEx call for that cache
until it is terminated. The keys in the index must correspond in number, order, and
type for that index each time that it is used.

After the cache has been initialized successfully, JDECACHE operations can take place
using the JDECACHE APIs. The cache handle obtained from jdeCacheInit or
jdeCacheInitEx must be passed for every JDECACHE operation. JDECACHE makes
an internal Index Definition Structure that accesses the cache when it is populated.

2.4.7.1 Example: Index Definition Structure
In this scenario, assume that each record that the cache stores has this structure:

int nlnt1
JCHAR cLetter1
JCHAR cLetter2
JCHAR cLetter3
JCHAR szArray(5)

The next step is to determine which values to use to index each record in the cache
uniquely. In this example, assume that these values are required:

■ nInt1

■ cLetter1

■ cLetter3

Pass that information to jdeCacheInit or jdeCacheInitEx, and JDECACHE creates this
Index Definition Structure for internal use. This table lists Index Definition Structure is
for STRUCT letters:

2.4.8 Using an Index to Access the Cache
When you use an index to access the cache, the keys in the index that are sent to the
API must correspond to the keys of the index used in the call to jdeCacheInit or
jdeCacheInitEx for that cache in number, order, offset positions, and type. Therefore,
if a field that was used in the index passed to jdeCacheInit or jdeCacheInitEx offsets
position 99, it must also offset position 99 in the index structure that passed to
JDECACHE access API.

You should use the same index structure that was used for the call to jdeCacheInit or
jdeCacheInitEx whenever you call an API that requires an index structure.

The next example illustrates why the index offsets must be specified for the
jdeCacheInit or jdeCacheInitEx and how they are used when a record is to be
retrieved from the cache. It describes how the passed key is used in conjunction with
the JDECACHE internal index definition structure to access cache records.

Index Key No. Index Key Offset
Index Key Offset
INTEGER

Index Key #1 0 INTEGER

Index Key #2 4 JCHAR

Index Key #3 6 JCHAR

Working with JDECACHE

2-24 JD Edwards EnterpriseOne Tools APIs and Business Functions Guide

2.4.8.1 Example: JDECACHE Internal Index Definition Structure
In this example, assume that the user is looking for a record that matches these index
key values:

■ 1

■ c

■ i

JDECACHE accesses the values that you pass in the structure at the byte offsets that
were defined in the call to jdeCacheInit or jdeCacheInitEx.

JDECACHE compares the values 1, c, and i that it retrieves from the passed structure
to the corresponding values in each of the cache records at the corresponding byte
offset. The cache records are stored as the structures that were inserted into the cache
by jdeCacheAdd, which is the same structure as the one you pass first. The structure
that matches the passed key is the second structure to which HCUR1 points.

You should never create a smaller structure that contains just the key to access the
cache. Unlike most indexing systems, JDECACHE does not store a cache record's
index separately from the actual cache record. This is because JDECACHE deals with
memory-resident data and is designed to be as memory-conservative as possible.
Therefore, JDECACHE does not waste memory by storing an extra structure for the
sole purpose of indexing. Instead, a JDECACHE record has a dual purpose of index
storage and data storage. This means that, when you retrieve a record from
JDECACHE using a key, the key should be contained in a structure that is of the same
type as the structure that is used to store the record in the cache.

Do not use any key structure to access the cache other than the one for which offsets
that were defined in the index passed to jdeCacheInit or jdeCacheInitEx. The
structure that contains the keys when accessing a cache should be the same structure
that is used to store the cache records.

If jdeCacheInit or jdeCacheInitEx is called twice with the same cache name and the
same user handle without an intermediate call to jdeCacheTerminate, the cache that
was initialized using the first jdeCacheInit or jdeCacheInitEx will be retained.
Always call jdeCacheInit or jdeCacheInitEx with the same index each time that you
call it with the same cache name. If you call jdeCacheInit or jdeCacheInitEx for the
same cache with a different index, none of the JDECACHE APIs will work.

The key for searches must always use the same structure type that stores cache
records.

2.4.9 Using the jdeCacheInit/jdeCacheTerminate Rule
For every jdeCacheInit, jdeCacheInitEx, jdeCacheInitMultipleIndex, or
jdeCacheInitMultipleIndexEx, a corresponding jdeCacheTerminate must exist,
except instances in which the same cache is used across business functions or forms. In
this case, all unterminated jdeCacheInit, jdeCacheInitEx,
jdeCacheInitMultipleIndex, or jdeCacheInitMultipleIndexEx calls must be
terminated with a jdeCacheTerminateAll.

A jdeCacheTerminate call terminates the most recent corresponding jdeCacheInit or
jdeCacheInitEx. This means that the same cache can be used in nested business
functions. In each function, perform a jdeCacheInit or jdeCacheInitEx or
jdeCacheInitEx that passes the cache name. Before exiting that function, call
jdeCacheTerminate. This does not destroy the cache. Instead, it destroys the
association between the cache and the passed HCACHE handle. The cache is
completely destroyed from memory only when the number of jdeCacheTerminate

Working with JDECACHE Cursors

Working with APIs 2-25

calls matches the number of jdeCacheInit or jdeCacheInitEx calls. In contrast, one call
to jdeCacheTerminateAll destroys the cache from memory regardless of the number
of jdeCacheInit, jdeCacheInitEx, jdeCacheInitMultipleIndex, or
jdeCacheInitMultipleIndexEx calls or jdeCacheTerminate calls.

2.4.10 Using the Same Cache in Multiple Business Functions or Forms
If the same cache is required for two or more business functions or forms, call
jdeCacheInit or jdeCacheInitEx in the first business function or form, and add data to
it. After exiting that business function or form, do not call jdeCacheTerminate because
this removes the cache from memory. Instead, in the subsequent business functions or
forms, call jdeCacheInit or jdeCacheInitEx again with the same index and cache name
as in the initial call to jdeCacheInit or jdeCacheInitEx. Because the cache was not
terminated the first time, JDECACHE looks for a cache with the same name and
assigns that to you. Because the cache already has records in it, you do not need to
refresh it. You can proceed with normal cache operations on that cache.

If a cache is initialized multiple times across business functions or forms, use
jdeCacheTerminateAll to terminate all instances of the cache that were initialized. The
name of the cache that corresponds to the HCACHE passed to this API will be used to
determine the cache to destroy. Use this API when you do not want to call
jdeCacheTerminate for the number of times that jdeCacheInit or jdeCacheInitEx was
called. If you move from one form or business function to another when you initialize
the same cache across business functions or forms, you will lose the HCACHE because
it is a local variable. To share the same cache across business functions or forms, do not
call jdeCacheTerminate when you exit a form or business function if you intend to
use the same cache in another form or business function.

2.5 Working with JDECACHE Cursors
JDECACHE Cursors (JDECACHE Cursor Manager) is a component of JDECACHE
that implements a JDECACHE cursor for record retrieval and update. A JDECACHE
cursor is a pointer to a record in a user's cache. The record after the record in which the
cursor is currently pointing is the next record that will be retrieved from the cache
upon calling a cache fetch API.

This section discusses how to:

■ Open a JDECACHE cursor.

■ Use the JDECACHE data set.

■ Update records.

■ Delete records.

■ Use the jdeCacheFetchPosition API.

■ Use the jdeCacheFetchPostionByRef API.

■ Reset the cursor.

■ Close the cursor.

■ Use JDECACHE multiple cursor support.

■ Use JDECACHE partial keys.

Working with JDECACHE Cursors

2-26 JD Edwards EnterpriseOne Tools APIs and Business Functions Guide

2.5.1 Opening a JDECACHE Cursor
Manipulating the JDECACHE data is cursor-dependent. Before the JDECACHE data
manipulation APIs will work, a cursor must be opened. A cursor must be opened to
obtain a cursor handle of the type HJDECURSOR, which must, in turn, be passed to all
of the JDECACHE data manipulation APIs (with the exception of the jdeCacheAdd
API). HJDECURSOR is the data type for the cursor handle. It must be passed to every
API for JDECACHE data manipulation except jdeCacheAdd.

To open the cursor, call the jdeCacheOpenCursor API. A call to this API also makes
possible the calls to all the data manipulation APIs (except for jdeCacheAdd). If you
do not open the cursor, these APIs will not work. With this call, the cursor opens a
JDECACHE data set, within which it will work. This API opens the data set, but does
not fetch any data. This means that the cache must be initialized by a call to
jdeCacheInit or jdeCacheInitEx and populated by a call to jdeCacheAdd before a
cursor can be opened.

You can obtain multiple cursors to a cache by calling jdeCacheOpenCursor and
passing different HJDECURSOR handles. In a multiple cursor environment, all the
cursors are independent of each other.

When you are finished working with the cursor, you must deactivate it or close it by
calling the jdeCacheCloseCursor API, and passing an HJDECURSOR handle that
corresponds to the HJDECURSOR handle that was passed to the
jdeCacheOpenCursor. When a cursor is closed, it cannot be used again until it is
opened by a call to jdeCacheOpenCursor.

2.5.2 Using the JDECACHE Data Set
The JDECACHE data set includes all of the records from the current position of the
cursor to the end of the set of sequenced records. Thus, if a cursor is in the middle of
the data set, none of the records in the cache prior to the current position of the cursor
is considered part of the data set. The JDECACHE data set consists of the cache
records sequenced in ascending order of the given index keys. This means that the
order in which the records have been placed in JDECACHE is not necessarily the
order in which JDECACHE Cursors retrieves them. JDECACHE Cursors retrieves
records in a sequential ascending order of the index keys. A forward movement by the
cursor reduces the size of the data set during sequential retrievals. When the cursor
advances past the last record in the data set, a failure is returned.

This example illustrates the creation of a JDECACHE cache and a JDECACHE data set:

Working with JDECACHE Cursors

Working with APIs 2-27

Figure 2–1 Example of JDECACHE cache and data set creation

2.5.2.1 Cursor-Advancing APIs
Cursor-advancing JDECACHE fetch APIs implement the fundamental concepts of a
cursor. The cursor-advancing API set consists of APIs that advance the cursor to the
next record in the JDECACHE data set before fetching a record from JDECACHE.
jdeCacheFetch and jdeCacheFetchPosition are examples of cursor-advancing fetch
APIs.

ADC

ADC

BAC

AAC

ADC

BAC

AAC

ADA

ADC

BAC

AAC

ADA

ADC

BAC

CACHE1

CACHE1

CACHE1

CACHE1

CACHE1

CACHE1

jdeCacheinit(HCACHE1,...,"CACHE",..)=

jdeCacheAdd(HCACHE1,"ADC",..)=

jdeCacheAdd(HCACHE1,"BAC",..)=

jdeCacheAdd(HCACHE1,"ADC",..)=

jdeCacheAdd(HCACHE1,...,"ADA",..)=

jdeCacheOpenCursor(HCACHE1,&HCUR1,..)=

HCUR1

Working with JDECACHE Cursors

2-28 JD Edwards EnterpriseOne Tools APIs and Business Functions Guide

A call to jdeCacheFetch first positions the cursor at the next record in the JDECACHE
data set before retrieving it. JDECACHE Cursors also enable calls to position the
cursor at a specific record within the data set. To do this, you call the
jdeCacheFetchPosition API, which advances the cursor to the record that matches the
given key before retrieving it.

You can use a combination of cursor-advancing fetch APIs if you need a sequential
fetch of records starting from a certain position. Call jdeCacheFetchPosition, passing
the key of the record from which you want to start retrieving. This advances the cursor
to the desired location in the data set and retrieves the record. All subsequent calls to
jdeCacheFetch will fetch records starting from the current cursor position in the data
set until the end of the data set, or until the program stops for another reason.

2.5.2.2 Non-Cursor-Advancing APIs
Non-cursor-advancing JDECACHE cursor APIs do not advance the cursor before
retrieving a record. Instead, they keep the cursor pointing to the retrieved record.
jdeCacheUpdate and jdeCacheDelete are examples of non-cursor-advancing fetch
APIs.

2.5.3 Updating Records
If you want to update a specific record with a key that you know, call
jdeCacheFetchPosition, passing the known key, to position the cursor at the location
of the record that matches the key. Because the cursor is already pointing to the
desired location, call jdeCacheUpdate, passing the same HJDECURSOR that you used
in the call to jdeCacheFetchPosition.

If the index key changes, cache resorts the records, and the cursor points to the
updated location. However, when you call jdeCacheFetch, the system retrieves the
next record in the updated set. Consequently, the system might not retrieve the correct
record because the changed index key caused the order of the records to change.

To update a sequential number of records, make a call to jdeCacheFetchPosition to
return to the beginning of the sequence, if necessary. Then call jdeCacheUpdate,
passing the same HJDECURSOR that you used in the call to jdeCacheFetchPosition.
This call updates only the record to which the cursor is pointing. To update the rest of
the records in the sequence, call jdeCacheFetch repeatedly, passing the same
HJDECURSOR that you used in the call to jdeCacheFetchPosition, until you get to the
end of the sequence. A sequential update will not work correctly if you have changed
any index key value. However, a sequential update will work correctly if you are
updating a value that is not an index key.

2.5.4 Deleting Records
If you want to delete a specific record with a known key, first call
jdeCacheFetchPosition to point the cursor to the location of the record that matches
the key. Next, call jdeCacheDelete, to remove the record from cache. Pass
jdeCacheDelete the same HJDECURSOR that you used when you called
jdeCacheFetchPosition. After deleting a record, use jdeCacheFetch to retrieve the
record that followed the now-deleted record. This process works only when you call
jdeCacheDelete.

You can also delete a specific record by calling jdeCacheDeleteAll and passing it the
full key with the specific record to be deleted. In this case, jdeCacheFetch will not
work following jdeCacheDeleteAll, although you can work around this condition
with jdeCacheFetchPosition or jdeCacheResetCursor.

Working with JDECACHE Cursors

Working with APIs 2-29

To delete a sequential set of records, first call jdeCacheFetchPosition to point the
cursor to the first record in the set or call jdeCacheDeleteAll to delete the first record
in the set. Then, call jdeCacheDelete sequentially. In this case, jdeCacheFetch will not
work following jdeCacheDeleteAll, although you can work around this condition
with jdeCacheFetchPosition or jdeCacheResetCursor.

If you want to delete records that match a partial key, call jdeCacheDeleteAll and
pass it a partial key. The system deletes all of the records that match the partial key.
After you call this API, jdeCacheFetch does not work.

2.5.5 Using the jdeCacheFetchPosition API
The jdeCacheFetchPosition API searches for a specific record in the data set;
therefore, it requires a specific key. This API can perform full and partial key searches.

2.5.6 Using the jdeCacheFetchPositionByRef API
The jdeCacheFetchPositionByRef API returns the address of a data set. The API finds
the one record in cache and returns a reference (pointer) to the data.
jdeCacheFetchPositionByRef retrieves a single, large block of data that is stored in
cache. If the cache is empty or has more than one record, this API fails.

2.5.7 Resetting the Cursor
JDECACHE cursors supports multiple cursors, as well as an unlimited number of
cursor oscillations within the data set. This means that the cursor can shuttle from
beginning to end for an unlimited number of times. The cursor moves forward only.
To reset the cursor (move the cursor back to the beginning of the data set), you must
make a call to the jdeCacheResetCursor API to get a fresh JDECACHE data set.

You can also reset a cursor to a specific position that is outside of the current data set
by calling the jdeCacheFetchPosition API.

2.5.8 Closing the Cursor
When you no longer need the cursor, call jdeCacheCloseCursor to close it. This call
closes both the data set and the cursor. Any subsequent call to any JDECACHE API
passing the closed HJDECURSOR without having called jdeCacheOpenCursor will
fail.

Although opening a JDECACHE Cursor for a long period of time requires no
overhead, to release the memory that it requires, you should close the cursor as soon
as you no longer need it.

2.5.9 Using JDECACHE Multiple Cursor Support
JDECACHE supports multiple open cursors. Each cache that you initialize with
jdeCacheInit or jdeCacheInitMultipleIndex enables up to 100 open cursors to access
it at the same time. When you initialize a cache with jdeCacheInitEx or
jdeCacheInitMultipleIndexEx, you can enable any number of cursors, between one
and 100, to access it at the same time.

JDECACHE multiple cursors are designed to enable two or more asynchronously
processing business functions to use one cache. Asynchronously processing business

Note: If you pass 0 for the number of keys, the system assumes that
you want to perform a full key search.

Working with JDECACHE Cursors

2-30 JD Edwards EnterpriseOne Tools APIs and Business Functions Guide

functions can open cursors to access the cache with relative positions within the cache
that are independent of each other. A cursor movement by one business function does
not affect any other open cursor.

Some JD Edwards EnterpriseOne software applications groups restrict the use of
multiple cursors. For example, use multiple cursors only if you have a need for them.
Additionally, do not use two cursors to point to the same record at the same time
unless both cursors are fetching the record.

2.5.10 Using JDECACHE Partial Keys
A JDECACHE partial key is a subset of a JDECACHE key that is ordered in the same
way as the defined index, beginning with the first key in the defined index. For
example, for a defined index of N keys, the partial key is the subset of the keys 1, 2, 3,
4...N-1 in that specific order. The order is critical. Partial key components must appear
in the same order as the key components in the index. (The index is passed to
jdeCacheInit or jdeCacheInitEx.)

For example, suppose that an index is defined as a structure containing the fields in
this order: A, B, C, D, E. The partial keys that can be synthesized from this index are
this, in order: A, AB, ABC, ABCD. The previous set is the only set of partial keys that
can be synthesized for the defined index: A, B, C, D, E.

A JDECACHE partial key implements the JDECACHE cursor. When you implement
the JDECACHE partial key, consider that the JDECACHE cursor works within a
JDECACHE data set, which comprises the records within the cache ordered by the
defined index, the full index. If you call a jdeCacheFetchPosition API and pass the
partial key, the JDECACHE cursor activates and points to the first record in the
JDECACHE data set that matches the partial key. If a jdeCacheFetchPosition API was
called, subsequent calls to jdeCacheFetch will fetch all of the records in the data set
that succeed the fetched record to the end of the data set. The cursor does not stop on the
last record that matches the partial key, but continues on to fetch the next record using
the next call to jdeCacheFetch, even if it does not match the partial key. When a partial
key is sent to jdeCacheFetchPosition, it merely indicates from where the JDECACHE
begins fetching. Because the records in the JDECACHE data set are always ordered,
the fetch always retrieves all of the records that satisfy the partial key first.

JDECACHE knows that you are passing a partial key because the fourth parameter to
jdeCacheFetchPosition indicates the number of key fields that are in the key being
sent to the API. If the number of key fields is less than the keys that were indicated
when jdeCacheInit or jdeCacheInitEx was called, then it is a partial key. Suppose the
number of keys is N so that JDECACHE uses the first N key fields to make
comparisons in order to achieve the partial key functionality. If
jdeCacheFetchPosition is called with a number of keys that is greater than the number
specified on the call to jdeCacheInit or jdeCacheInitEx, an error is returned.

To delete a partial key, you must make a call to jdeCacheDeleteAll. This call deletes
all of the records that match the partial key. To indicate to JDECACHE the partial keys
that you are using, pass the number of key fields to this API.

Verify that the actual number of key fields in the structure corresponds to the numeric
value that describes the number of keys that must be sent to either
jdeCacheFetchPosition or jdeCacheDeleteAll.

3

Using Business Functions 3-1

3Using Business Functions

This chapter contains the following topics:

■ Section 3.1, "Understanding Business Functions"

■ Section 3.2, "Understanding Transaction Master Business Functions"

■ Section 3.3, "Building Transaction Master Business Functions"

■ Section 3.4, "Implementing Transaction Master Business Functions"

■ Section 3.5, "Working with Master File Master Business Functions"

■ Section 3.6, "Working with Business Functions"

■ Section 3.7, "Working with Business Function Builder"

■ Section 3.8, "Working with Business Function Documentation"

3.1 Understanding Business Functions
You can use business functions to enhance JD Edwards EnterpriseOne applications by
grouping related business logic. Journal Entry Transactions, Calculating Depreciation,
and Sales Order Transactions are examples of business functions.

You can create business functions using one of these methods:

■ Event rules scripting language.

The business functions that you create using the event rules scripting language are
referred to as Business Function Event Rules (also called Named Event Rules
(NERs)). If possible, use NERs for the business functions. In some instances, C
business functions might better suit your needs.

■ C programming code.

JD Edwards EnterpriseOne software creates a shell into which you insert logic
using C. You use C business functions mainly for caching, but they can also be
used for these objects:

– Batch error level messaging.

– Large functions.

C business functions work better for large functions (as determined by the
group). If you have a large function, you can break the code up into smaller
individual functions and call them from the larger function.

– Functions for which performance is critical.

– Complex select statements.

Understanding Business Functions

3-2 JD Edwards EnterpriseOne Tools APIs and Business Functions Guide

After you create business functions, you can attach them to JD Edwards EnterpriseOne
applications to provide additional power, flexibility, and control. You can attach tables
and functions to a business function. You must add related tables and functions to the
business function object to generate the code for the source and header files. Because
the source code for NERs is generated into C, you use the same procedures for
debugging both C and NERs.

This section discusses:

■ The components of a business function.

■ How distributed business functions work.

■ C business functions.

■ Business function event rules.

3.1.1 Components of a Business Function
The process of creating a business function produces several components. The Object
Management Workbench (OMW) is the entry point for the tools that create the
components. These components are created:

The DLLs are divided into categories. This distribution provides better separation
between the major functional groups, such as tools, financials, manufacturing,
distribution, and so on. Most business functions are organized into a consolidated DLL
based on their system code. For example, a financials business function with system
code 01 belongs in CFIN.DLL.

Follow these guidelines when you add or modify business functions:

■ Create a custom parent DLL unless you are adding a JD Edwards EnterpriseOne
business function.

Assign a parent DLL to the business functions based on the system code defined in
UDC table H92/PL. If no DLL is assigned for the system code in which the
business function is created, use CCUSTOM, where CUSTOM is the 7-character
version of the company name. You can change the DLL after the business function
is created.

■ When you write business function code, ensure that all calls to other business
functions use the jdeCallObject protocol.

Linker errors might occur if you do not use jdeCallObject and you attempt to call
a business function in a different DLL. A linker error prevents the function call
from working.

Component Where Created

Business Function Specifications OMW

Business Function Design

Data Structure Specifications OMW

Data Structure Design Tool

.C file Generated in Business Function Design

Modified with the IDE

.H file Generated in Business Function Design

Modified with the IDE

Understanding Business Functions

Using Business Functions 3-3

This table lists some of the DLLs for which Business Function Builder manages the
builds:

Note: If you change the DLL for a business function, go to
C:\B9\System\Bin32\BusBuild.exe, select the old DLL file where the
business function was, and select Build from the Build menu to
rebuild the file.

DLL Name Functional Group

CAEC Architecture

CALLBSFN Consolidate BSFN Library

CBUSPART Business Partner

CCONVERT Conversion Business Functions

CCORE Core Business Functions

CCRIN Cross Industry Application

CDBASE Tools - Database

CDDICT Tools - Data Dictionary

CDESIGN Design Business Functions

CDIST Distribution

CFIN Financials

CHRM Human Resources

CINSTALL Tools Install

CINV Inventory

CLOC Localization

CLOG Logistics Functions

CMFG Manufacturing

CMFG1 Manufacturing - Modification BFs

CMFGBASE Manufacturing Base Functions

COBJLIB Tools - Object Librarian

COBLIB Busbuild Functions

COPBASE Distribution/Logistic Base Functions

CRES Resource Scheduling

CRUNTIME Tools - Run Time

CSALES Sales Order

CTOOL Tools - Design Tools

CTRAN Transportation

CTRANS Tools - Translations

CWARE Warehouse

CWRKFLOW Tools - Workflow

JDBTRG1 Table Trigger Library 1

Understanding Business Functions

3-4 JD Edwards EnterpriseOne Tools APIs and Business Functions Guide

3.1.2 How Distributed Business Functions Work
OMW manages these three main components that make up NERs or business
functions:

■ Object Name

The Object Name is the actual source file.

■ Function Name

The name of the business function or event rule.

■ DLL Name

The DLL is a dynamic link library.

When a business function is called, the Object Configuration Manager (OCM)
determines where to run the business function. After the system maps a business
function to a server, calls from that business function cannot be mapped back to the
workstation.

This flowchart illustrates how distributed business functions work:

JDBTRG2 Table Trigger Library 2

JDBTRG3 Table Trigger Library 3

JDBTRG4 Table Trigger Library 4

JDBTRIG Parent DLL for Database Triggers

Note: Do not use table triggers for regular business functions.

Note: Any business function, whether it uses C or NERs as its source
language, must have a defined data structure to send or receive
parameters to or from applications. You can create a DSTR data
structure object, or select an existing object type to work with in
OMW. You can also create data structures for text substitution
messages. Additionally, you can attach notes, such as an explanation
of use, to any data structure or data item within the structure.

DLL Name Functional Group

Understanding Business Functions

Using Business Functions 3-5

Figure 3–1 Distributed business function

3.1.3 C Business Functions
JD Edwards EnterpriseOne software contains two types of business functions: NERs
and C business functions. C business functions are written in C programming
language and are used to perform functions that are not available in NERs. C business
functions include both a header file (.h) and a source file (.c).

3.1.3.1 Header File Sections
This table describes the major sections of a business function header file:

Validate_AAI
_completely
.
.
Return
Validate_AAI
.
.
Return
I_SET_ERROR
.
.
Return

OCM
Map by object name

Objects Names.C.DLL Function Names
Function
Function

I-Function

CFIN.DLL

B000001.C
B01.....
B03.....
B04.....
B09.....

B000064.C
Validate_AAI
_completely

Validate_AAI
_completely

Validate_AAI

.C

Understanding Business Functions

3-6 JD Edwards EnterpriseOne Tools APIs and Business Functions Guide

Section What It Includes Description and Guidelines

Header File Comment ■ Header file name

■ Description

■ History

■ Programmer

■ SAR number

■ Copyright information

Comments that the input
process of the Business
Function Source Librarian
builds.

The programmer name and
SAR number are manually
updated by the programmer.

Table Header Inclusions Include statements for header
files associated with tables
that are directly accessed by
this business function.

Table header files include
definitions for the fields in a
table and the ID of the table
itself.

External Business Function
Header Inclusions

Include statements for
headers associated with
externally defined business
functions that are directly
accessed by this business
function.

External function calls with
jdeCallObject are included to
use the predefined data
structures.

Global Definitions Global constants used by the
business function.

Use global definitions
sparingly. They include
symbolic names that you enter
in uppercase; words are
separated by an underscore
character.

Structure Type Definitions Data structure definitions for
internal processing.

To prevent naming conflicts,
define this structure using
structure names that are
prefixed by the source file
name.

DS Template Type Definition Data structure type definitions
generated by Business
Function Design.

Symbolic constants for the
data structure generated by
Business Function Design.

Modify this structure through
OMW.

Source Preprocessor ■ Undefines JDEBFRTN if it
is already defined.

■ Checks for how to define
JDEBFRTN.

■ Defines JDEBFRTN.

Ensures that the business
function declaration and
prototype are properly
defined for the environment
and source file, including this
header.

Business Function Prototype Prototypes for all business
functions in the source file.

Defines the business functions
in the source file, the
parameters that are passed to
them, and the type of value
that they return.

Internal Function Prototype Prototypes for all internal
functions that are required to
support business functions
within this source file.

Defines the internal functions
that are associated with the
business functions in the
source file, the parameters
that are passed to each
internal function, and the type
of value that they return.

Understanding Business Functions

Using Business Functions 3-7

3.1.3.2 Example: Business Function Header File
Assume that Business Function Design created this header file. This file contains only
the required components in a business function header file:

Header File Begin
/***
* Header File: B99TEST.h
*
* Description: test Header File
*
* History:
* Date Programmer SAR# - Description
* ---------- ---------- --
* Author 10/14/2003 DEMO Unknown - Created
*
*
* Copyright (c) 1994 Oracle 2003
*
* This unpublished material is proprietary to Oracle.
* All rights reserved. The methods and techniques described
* herein are considered trade secrets and/or confidential. Reproduction
* or distribution, in whole or in part, is forbidden except by express
* written permission of Oracle.
**/
#ifndef __B99TEST_H
#define __B99TEST_H
/***
* Table Header Inclusions
**/
/***
* External Business Function Header Inclusions
**/
/***
* Global Definitions
**/
/***
* Structure Definitions
**/
/***
* DS Template Type Definitions
**/
/***
* TYPEDEF for Data Structure
* Template Name: Test Data Structure
* Template ID: D59TEST
* Generated: Tue Oct 14 16:53:08 2003
*
* DO NOT EDIT THE FOLLOWING TYPEDEF
* To make modifications, use the EnterpriseOne Data Structure
* Tool to Generate a revised version, and paste from
* the clipboard.
*
**************************************/
#ifndef DATASTRUCTURE_D59TEST
#define DATASTRUCTURE_D59TEST
typedef struct tagDSD59TEST
{
 JCHAR cEverestEventPoint01;
 JCHAR szNameAlpha[41];
 MATH_NUMERIC mnAmountField;

Understanding Business Functions

3-8 JD Edwards EnterpriseOne Tools APIs and Business Functions Guide

} DSD59TEST, *LPDSD59TEST;
#define IDERRcEverestEventPoint01_1 1L
#define IDERRszNameAlpha_2 2L
#define IDERRmnAmountField_3 3L
#endif
/***
* Source Preprocessor Definitions
**/
#if defined (JDEBFRTN)
 #undef JDEBFRTN
#endif
#if defined (WIN32)
 #if defined (WIN32)
 #define JDEBFRTN(r) __declspec(dllexport) r
 #else
 #define JDEBFRTN(r) __declspec(dllimport) r
 #endif
#else
 #define JDEBFRTN(r) r
#endif
/***
* Business Function Prototypes
**/
JDEBFRTN(ID) JDEBFWINAPI F0101Test
 (LPBHVRCOM lpBhvrCom, LPVOID lpVoid, LPDSD0100018 lpDS);
/***
* Internal Function Prototypes
**/
#endif /* __B99TEST_H */
Header File End

This table describes the contents of the various lines in the header file:

Header File Line Where Input Description

Header File OMW Verify the name of the
business function header file.

Description OMW Verify the description.

History IDE Manually update the
modification log with the
programmer name and the
appropriate SAR number.

#ifndef Business Function Design Symbolic constant prevents
the contents from being
included multiple times.

Table Header Inclusion Business Function Design When business functions
access tables, related tables
are input and Business
Function Design generates an
include statement for the table
header file.

External Business Function
Header Inclusions

Business Function Design No external business
functions for this application.

Understanding Business Functions

Using Business Functions 3-9

Global Definitions IDE Constants and definitions for
the business function. It is not
recommended that you use
this block. Global variables
are not recommended. Global
definitions go in .c not .h.

Structure Definitions IDE Data structures for passing
information between business
functions, internal functions,
and database APIs.

TYPEDEF for Data Structure Business Function Design Data structure type definition.
Used to pass information
between an application or
report and a business
function. The programmer
places it on the clipboard and
pastes it in the header file. Its
components include:

■ Comment Block, which
describes the data
structure.

■ Preprocessor Directives,
which ensure that the
data type is defined only
once.

■ Typedef, which defines
the new data type.

■ #define, which contains
the ID to be used in
processing if the related
data structure element is
in error.

■ #endif, which ends the
definition of the data
structure type definition
and its related
information.

Source Preprocessor
Definitions

Business Function Design All business function header
files contain this section to
ensure that the business
function is prototyped and
declared based on where this
header is included.

Business Function Prototype Business Function Design Used for prototypes of the
business function.

Header File Line Where Input Description

Understanding Business Functions

3-10 JD Edwards EnterpriseOne Tools APIs and Business Functions Guide

3.1.3.3 Source File Sections
OMW builds a template for the business function source file. The business function
source file consists of several major sections, as described in this table:

JDEBFRTN(ID)
JDEBFWINAPI
CheckForInAddMode

Business Function Design Business Function Standard

All business functions share
the same return type and
parameter data types. Only
the function name and the
data structure number vary
between business functions.

Parameters include:

■ LPBHVRCOM

Pointer to a data structure
used for communicating
with business functions.
Values include an
environment handle.

■ LPVOID

Pointer to a void data
structure. Currently used
for error processing; will
be used for security in the
future.

■ LPDS#####

Pointer to a data structure
containing information
that is passed between
the business function and
the application or report
that invoked it. This
number is generated
through Object Librarian.

■ JDEBFRTN(ID)JDEBFWINA
PI

All business functions
will be declared with this
return type. It ensures
that they are exported
and imported properly.

Parameter names
(lpBhvrCom, lpVoid, and
lpDS) will be the same for all
business functions.

Internal Function Prototypes Business Function Design Internal function prototypes
required to support the
business functions in this
source file.

Header File Line Where Input Description

Understanding Business Functions

Using Business Functions 3-11

3.1.3.4 Example: Business Function Source File
Assume that Business Function Design created this source file called Check for In Add
Mode. It contains the minimum components required in a business function source
file. The source code in the Main Processing section is entered manually, and varies
from business function to business function. All other components are generated by
Business Function Design.

#include <jde.h>

#define b98sa001_c

/***
 * Source File: B98SA001.c
 *
 * Description: Check for In Add Mode Source File
 **/
 **/

#include <b98sa001.h>

/**

Section What It Includes Description

Source File Comment Block ■ Source file name

■ Description

■ History

■ Programmer

■ Date

■ SAR Number

■ Description

■ Copyright information

Built from the information in
the Business Function Design
Tool.

The programmer manually
updates the programmer
name and SAR number.

Notes Comment Block Any additional relevant notes
concerning the business
function source.

Document complex
algorithms used, how the
business functions in the
source relate to each other,
and so on.

Business Function Comment
Block

■ Business function name

■ Description

■ Description list of the
parameters

n/a

Business Function Source
Code

Source code for the business
function.

n/a

Internal Function Comment
Block

■ Function name

■ Notes

■ Returns

■ Parameters

Copy these blocks and place
the values in the specified
sections to describe the
internal function. Follow the
comment block with internal
function source code.

Internal Function Source Code Source code for the internal
function described in the
comment block.

The business function
developer enters this code as
needed. A populated internal
function comment block must
precede this code.

Understanding Business Functions

3-12 JD Edwards EnterpriseOne Tools APIs and Business Functions Guide

 * Business Function: CheckForInAddMode
 *
 * Description: Check for In Add Mode
 *
 * Parameters:
 * LPBHVRCOM lpBhvrCom Business Function Communications
 * LPVOID lpVoid Void Parameter - DO NOT USE!
 * LPDSD98SA0011 lpDS Parameter Data Structure Pointer
 *
 ***/

JDEBFRTN(ID) JDEBFWINAPI CheckForInAddMode (LPBHVRCOM lpBhvrCom, LPVOID lpVoid,⇒
 LPDSD98SA0011 lpDS)
{
 /**
 * Variable declarations
 **/

 /**
 * Declare structures
 **/

 /**
 * Declare pointers
 **/

 /**
 * Check for NULL pointers
 **/
 if ((lpBhvrCom == NULL) ||
 (lpVoid == NULL) ||
 (lpDS == NULL))
 {
 jdeSetGBRError (lpBhvrCom, lpVoid, (ID) 0, _J("4363"));
 return CONTINUE_GBR;
 }

 /**
 * Set pointers
 **/

 /**
 * Main Processing
 **/

if (lpBhvrCom->iBobMode == BOB_MODE_ADD)
{
 lpDS->cEverestEventPoint01 = _J('1');
}
else

{
 lpDS->cEverestEventPoint01 = _J('0');
}

 return (BHVR_SUCCESS);
}

/* Internal function comment block */
/**

Understanding Business Functions

Using Business Functions 3-13

 * Function: Ixxxxxxx_a // Replace "xxxxxxx" with source file number
 * // and "a" with the function name
 * Notes:
 *
 * Returns:
 *
 * Parameters:
 **/

The lines that appear in the source file are described in this table:

Source File Line Where Input Description and Guidelines

#include <jde.h> Business Function Design Includes all base JD Edwards
EnterpriseOne definitions.

#define b98sa001_c Business Function Design Ensures that related header
file definitions are correctly
created for this source file.

Source File OMW Verifies the information in the
file comment section. Enter
the programmer's name, SAR
number, and description.

#include <B98SA001.h> OMW Includes the header file for
this application.

Business Function Business Function Design Verifies the name and
description in the business
function comment block.

JDEBFRTN(ID)
JDEBFWINAPI
CheckForInAddMode
(LPBHVRCOM lpBhvrCom,
LPVOID lpVoid,

LPDS104438 lpDS)

Business Function Design Includes the header of a
business function declaration.

Variable declarations IDE Declares variables that are
local to the business function.

Declare structures IDE Declares local data structures
to communicate between
business functions, internal
functions, and the database.

Declare pointers IDE Declares pointers.

Check for NULL pointers Business Function Design Business Function Standard

Verifies that all
communication structures
between an application and
the business function are
valid.

jdeErrorSet (lpBhvrCom,
lpVoid, (ID) 0, _J("4363"),
LPVOID) NULL);

return ER_ERROR;

Business Function Design Sets the standard error to be
returned to the calling
application when any of the
communication data
structures are invalid.

Set pointers IDE Declares and assigns
appropriate values to
pointers.

Understanding Business Functions

3-14 JD Edwards EnterpriseOne Tools APIs and Business Functions Guide

Use the MATH_NUMERIC data type exclusively to represent all numeric values in JD
Edwards EnterpriseOne software. The values of all numeric fields on a form or batch
process are communicated to business functions in the form of pointers to MATH_
NUMERIC data structures. MATH_NUMERIC is used as a data dictionary (DD) data
type.

3.1.4 Business Function Event Rules
A NER is a business function object for which the source language is event rules
instead of C. You create a NER using the event rules scripting language. This scripting
language is platform-independent and is stored in a database as a JD Edwards
EnterpriseOne software object. NERs are modular. That is, they can be reused in
multiple places by multiple programs. This modularity reduces rework and enables
you to reuse code.

Not all chunks of code should be packaged in a business function module. For
example, when code is so specific that it applies only to a particular program, and it is
not reused by any other programs, you should leave it in one place instead of
packaging it in a business function. You can attach all the logic on a hidden control
(Button Clicked event) and use a system function to process the logic as needed.

An example of a NER is N3201030. This business function creates generic text and
Work Order detail records (for the F4802 table) for a configured work order. Based on
the structure of the sales order in the F3296 table, the configured segments for the item
on the passed work order and all lower level segments are included in the generic text.

This example illustrates the function as it appears in Event Rules Design:

Named Event Rule Begin
//
// Convert the related sales order number into a math numeric. If that fails
// exit the function
//
String, Convert String to Numeric
If VA evt_cErrorCode is equal to "1"
//
// Validate that the work order item is a configured item.
//
F4102 Get Item Manufacturing Information
If VA evt_cStockingType is not equal to "C"
 And BF cSsuppressErrorMessages is not equal to "1"
BF szErrorMessageID = "3743"
Else
BF szErrorMessageID = " "

Main Processing IDE Provides main functionality
for a business function.

Function Clean Up IDE Frees any dynamically
allocated memory.

Internal function comment
block

IDE Defines internal functions that
are required to support the
business function. They
should follow the same C
coding standards. A comment
block is required for each
internal function and should
be formatted correctly.

Source File Line Where Input Description and Guidelines

Understanding Business Functions

Using Business Functions 3-15

//
// Delete all existing "A" records from F4802 for this work order.
//
VA evt_cWODetailRecordType = "A"
F4802.Delete
F4802.Close
//
// Get the segment delimiter from configurator constants.
//
F3293 Get Configurator Constant Row
If VA evt_cSegmentDelimiter is less than or equal to <Blank>
VA evt_cSegmentDelimiter - /
End If
//
F3296.Open
F3296.Select
If SV File_IO_Status is equal to CO SUCCESS
F3296.FetchNext
//
// Retrieve the F3296 record of the work order item. and determine its key
// sequence by parsing ATSQ looking for the last occurrence of "1". The substring
// of ATSQ to this point becomes the key for finding the lower level configured
// strings
//
If VA evt_mnCurrentSOLine is equal to BF mnRelatedSalesOrderLineNumber
// Get the corresponding record from F32943. Process the results of that fetch
// through B3200600 to add the parent work order configuration to the work order
// generic text.
F32943.FetchSingle
If SV File_IO_Status is equal to CO SUCCESS
VA evt_szConfiguredString = concat([VA evt_ConfiguredStringSegment01],
[VA evt_ConfiguredStringSegment02])
Confg String Format Segments Cache
End If
//
// Find the last level in ATSQ that is not "00". Note that the first three
// characters represent the SO Line Number to the left of the decimal.
Example:
// SO Line 13.001 will have the ATSQ characters "013". Each configured item can⇒
 have
// 99 lower-level P-Rule items and a total of ten levels. Therefore every pair
// thereafter is tested.
//
VA evt_mnSequencePosition - 1
While VA evt_mnSequencePosition is less than "23"
And VA evt_szCharacterPair is not equal to "00"
VA evt_mnSequencePosition - [VA evt_mnSequencePosition] + 2
VA evt_szCharacterPair = substr([VA evt_szTempATSQ],[VA evt_mnSequencePostion],2)
End While
VA evt_szParentATSQ = substr([VA evt_szTempATSQ],0,[VA evt_mnSequencePosition])
//
// For each record in F3296 for the related sales order, find those with the same
// key substring of ATSQ. Retrieve the associated record from F32943 if
// available and pass the configured string to N3200600 for addition to the work
// order generic text.
//
F3296.FetchNext
Wile SV File_IO_Status is equal to CO SUCCESS
VA evt_szChildATSQ = substr([VA evt_szTempATSQ],0,[VA evt_mnSequencePosition]}
If VA evt_szChildATSQ is equal to VA evt_szParentATSQ

Understanding Transaction Master Business Functions

3-16 JD Edwards EnterpriseOne Tools APIs and Business Functions Guide

F32943.FetchSingle
If SV File_IO_Status is equal to CO SUCCESS
VA evt_szCongifuredString = concat([VA evt_ConfiguredStringSegment01],
[VA evt_ConfiguredStringSegment02])
Confg String Format Segments Cache
End If
End If
F3296.FetchNext
End Whil
F32943.Close
//
// Unload segments cache into the work order generic text. B3200600 Mode 6
Confg String Format Segments Cache
//
End If
End If
F3296.Close
//
End If
Else
// The related sales order number is invalid. Return an error.
If BF cSuppressErrorMessages is not equal to "1"
Set NER Error ("0002", BF SzRelatedSalesOrderNumber)
End If
End Ir
Named Event Rule End

3.2 Understanding Transaction Master Business Functions
Transaction master business functions provide a common set of functions that contain
all of the necessary default values and editing for a transaction table in which records
depend on each other. Transaction master business functions contain logic that
ensures the integrity of the transaction being inserted, updated, or deleted from the
database. Event flow breaks up logic. You use cache APIs to store records that are
being processed. You should consider using a transaction master business function in
these situations:

■ You accept transaction file records from a non-JD Edwards EnterpriseOne source.

■ Multiple applications update the same transaction file.

These transaction tables are examples of candidates for transaction master business
functions:

■ The F0911 table accepts updates across application suites, as well as external
sources.

■ The F06116 table accepts updates from batch, interactive, and external sources.

A master business function (MBF) can be called from several different applications.
Rather than duplicating the processing options for the MBF on each application, you
typically create a separate processing option template for these processing options.
You can use interactive versions to set up different versions of the MBF processing
options. Various calling programs then pass the version name to the version
parameter of BeginDoc.

From within BeginDoc, the business function AllocatePOVersionData can be called
to retrieve the processing options by version name. The processing options needed by
other modules can be written to the header cache and accessed later, rather than
calling AllocatePOVersionData multiple times.

Understanding Transaction Master Business Functions

Using Business Functions 3-17

The cache structure stores all lines of the transaction. Transaction lines are written to
the cache after they have been edited. The EndDoc module then reads the cache to
update the database.

This table describes the components of the header section:

This table explains the fields:

Field
Description Field Key Type Size

Job Number JOBS X Num N/A

Document Action ACTN N/A Char 1

Processing
Options

N/A N/A N/A N/A

Currency Flag CYCR N/A Char 1

Business View
Fields

N/A N/A N/A N/A

Work Fields N/A N/A N/A N/A

Field Description Purpose

Job Number A unique system-assigned number assigned
when the BeginDoc module starts the job. This
distinguishes transactions in the cache for
each job on the workstation that is using the
cache. Use next number 00/4 for the job
number. If you are using a unique cache name
(Dxxxxxxxxx[job number]), you do not
necessarily need the job number field stored in
the cache for a key because you would only be
working with one transaction per cache. You
can, therefore, use any field as the key to the
cache.

Document Action The action for the document. Values are:

■ A or 1 = Add

■ C or 2 = Change

■ D = Delete

Processing Options Processing option values were read in using
AllocatePOVersionData, and are needed in
other modules of the MBF.

Currency Flag A system value that indicates whether
currency is on and what method of currency
conversion is used (N, Y, or Z).

Business View Fields The fields required for processing the
transaction and writing it to the database. All
fields in the record format that are not saved
in the header cache will be initialized when
the record is added to the database using the
APIs.

Understanding Transaction Master Business Functions

3-18 JD Edwards EnterpriseOne Tools APIs and Business Functions Guide

This table describes the components of the detail section:

This table explains the fields:

Work Fields Fields that are not part of the business view
(BV), but are needed for editing and updating
the transaction.

For example, Last Line Number is the last line
number written to the detail cache. It will be
stored at the header level, and retrieved and
incremented by the MBF. The incremented
line number will be passed to the header cache
and stored for the next transaction.

Field
Description Field Key Type Size

Job Number JOBS X Char 8

Line Number (Application-spec
ific)

X Num N/A

Line Action ACTN N/A Char 1

Business View
Fields

N/A N/A N/A N/A

Work Fields N/A N/A N/A N/A

Field Description Purpose

Job Number A unique number assigned when the
BeginDoc module starts the job. This
distinguishes transactions in the cache for
each job on the client that is using the cache. If
you are using a unique cache name
(Dxxxxxxxxx[job number]), you do not
necessarily need to store the job number field
in the cache for a key because you work with
only one transaction per cache. You can,
therefore, use line number only as the key to
the cache.

Line Number The number used to uniquely identify lines in
the detail cache. This line number can also
eventually be assigned to the transaction
when it is written to the database. The
transaction lines are written to the detail cache
only if they are error-free.

Line Action The action for the transaction line. Values are:

■ A or 1 = Add

■ C or 2 = Change

■ D = Delete

Business View Fields Fields required for processing the transaction
that will be written to the database. All fields
in the record format that are not saved in the
detail cache will be initialized when the record
is added to database using the APIs.

Field Description Purpose

Building Transaction Master Business Functions

Using Business Functions 3-19

3.3 Building Transaction Master Business Functions
This section provides an overview of building transaction master business functions,
and discusses the component used to build such a business function:

■ Begin document

■ Edit line

■ Edit document

■ End document

■ Clear cache

■ Cancel document

3.3.1 Understanding Building Transaction Master Business Functions
These flowcharts illustrate how transaction master business functions are built.

First, you create the individual business functions using several basic components:

Figure 3–2 Building transaction master business functions

Next, you combine the business functions into a DLL:

Work Fields Fields that are not part of the business view,
but are needed for editing and updating the
transaction line.

Field Description Purpose

BxxYYYYY.C

FxxYYYYYBeginDoc

FxxYYYYYEditLine

FxxYYYYYEditDoc

FxxYYYYYEndDocDoc

FxxYYYYYClearCache

I_BxxYYYEditXXXXX

Building Transaction Master Business Functions

3-20 JD Edwards EnterpriseOne Tools APIs and Business Functions Guide

Figure 3–3 Combining business functions into a .DLL

You typically use these basic components to create a master business function as
described by this table:

3.3.2 Begin Document
Begin Document has this format:

FxxxxxBeginDocument

The Begin Document component performs these tasks:

■ Inserts default information and edits information in the header, including data
dictionary defaults and UDC editing.

■ Fetches information from the database, if necessary, to ensure that the selected
document action can take place.

■ Validates and processes information that is common to all records.

■ Writes the record to header cache if no errors exist.

■ Contains all header cache information that is common to all detail records. This
improves performance by eliminating the need to use all the detail records to
perform the same validations and table I/O.

Component Purpose

Begin Document Called when all header information has been entered. Creates
initial header if it has not already been created. Can also include
default values, editing, and processing options (POs).

Edit Line Called when all line information has been entered. Creates cache
for detail information if it has not already been created.

Edit Document Called when ready to commit the transaction. Processes any
remaining document edits and verifies that all records are valid to
commit.

End Document Called when you need to commit the transaction. Processes all
records in the header and detail cache, performs I/O, and deletes
caches.

Clear Cache Called when you are ready to delete all cache records. Deletes
header and detail cache records.

Czzzzzzz.DLL

BxxYYYYY1.c

BxxYYYYY2.c

BxzYYYYY.c

BzzYYYYY.c

Building Transaction Master Business Functions

Using Business Functions 3-21

■ Updates the header cache with the new information when information in the
header fields changes and Begin Document has previously been called.

3.3.2.1 Special Logic or Processing Required
On the initial call, the function assigns the job number. To retrieve the job number, this
function calls X0010GetNextNumber with a system code of 00 and an index number of
04. If called again, Begin Document passes the job number that was previously
assigned; therefore, it does not need to assign another job number.

3.3.2.2 Hook Up Tips
Keep these tips in mind when calling Begin Document:

■ You must call a function at least once before calling Edit Line.

■ If errors occur during validation of the header field when the function is called,
call the function again to verify that errors have been cleared before calling Edit
Line.

■ If this function might be called multiple times from different events, include it on a
hidden button on an application to reduce duplicate code and ensure consistency.
This button might then be called from focus on grid because the user is then
adding or deleting detail records, and is finished adding header information. In
case of a Copy in which the user does not use the grid, this button might also be
called on OK button.

■ Calling a button from an asynchronous event breaks the asynchronous flow and
forces the button to be processed in synchronous mode (inline).

3.3.2.3 Common Parameters
This table describes the common parameters for Begin Document:

Name Alias I/O Description

Job Number JOBS I/O Pass Job Number
created in Begin
Document, if
previously called;
otherwise, pass zeros
and assign a job
number.

Document Action ACTN I A or 1 = Add

C or 2 = Change

D = Delete

This is the action of
the entire Document,
not the individual
detail lines. For
example, you might
modify a few detail
lines in Edit Line, add
a few detail lines in
Edit Line, and delete a
few detail lines in Edit
Line, but the
Document Action in
Begin Document
would be Change.

Building Transaction Master Business Functions

3-22 JD Edwards EnterpriseOne Tools APIs and Business Functions Guide

Process Edits EV01 I Optional

0 = No Edits

Any Other = Full
Edits

Note: The GUI
interface usually uses
the partial edit, and
the batch interface
uses the full edit. If
you leave this
parameter blank, the
default option is full
edits.

ErrorConditions EV02 O Blank = No Errors

1 = Warning

2 = Error

Version VERS I This field is required
if this MBF is using
versions.

Header Field One **** I/O Pass in all the header
fields that are
common to the entire
document. Begin
Document processes
all of these fields and
validates them, data
dictionary edits, UDC
editing, default
values, and so on.
Begin document
might also fetch to the
table to validate that
records matching
these header fields
exist for Delete and
Change, or do not
exist for Add.

Header Field Two **** I/O N/A

.

.

.

**** I/O N/A

Header Field XX **** I/O N/A

Name Alias I/O Description

Building Transaction Master Business Functions

Using Business Functions 3-23

3.3.2.4 Application-Specific Parameters
Application-specific parameters must perform these tasks:

■ List the fields that are needed to process header-level information.

■ List any work fields that are needed to perform edits.

■ List all POs that are needed to process header-level information.

3.3.3 Edit Line
Edit Line has this format:

FxxxxxEditLine

The Edit Line component performs these tasks:

■ Validates all user input, performs calculations, and retrieves default information.

Edit Line is normally called for every record that is fetched. It performs the edits
for that one record in the file.

■ Reads header cache records for default values.

■ On an ADD, enters default information in blank columns, such as address book
information.

The default values might come from any of these objects:

– Another column in the line.

– A process performed on a column sent in the line.

– A PO.

– A saved value from the header record that was determined in the Begin
Document module.

– A DD default value.

Work Field /
Processing Flag One

**** I List any work fields
that the program
needs. These could be
flags for processing,
dates to validate, and
so on. These fields
might or might not be
used. For example,
currency control
might be saved in the
header cache so that
all detail records
would either use
currency or not.

Work Field /
Processing Flag One

**** I N/A

.

.

.

N/A I N/A

Work Field /
Processing Flag One

N/A I N/A

Name Alias I/O Description

Building Transaction Master Business Functions

3-24 JD Edwards EnterpriseOne Tools APIs and Business Functions Guide

■ Edits columns for correct information.

This includes interdependent editing between columns. Also performs UDC and
DD edits.

■ Writes record to the detail cache if no errors occurred.

If the record already exists in the work file, the line in the work file will be
retrieved and updated with the changes. If a record is deleted from the grid in
direct mode, and the record does not exist in the database, the record will be
removed from the detail cache. If the record exists in the database, the action code
for the record will be changed to delete, and the record will be stored in the detail
cache until file processing in End Doc.

3.3.3.1 Special Logic or Processing Required
Depending on the type of document being processed, different editing and inserting of
default values takes place. An example would be vouchers and invoices processed
through the journal entry MBF. The tax calculator is only called for vouchers.
Depending on the event processing required, the process edit flag determines the
editing that occurs. For example, in an interactive program, when the Grid Record is
Fetched event runs, Partial Edits might be performed to retrieve descriptions, default
values, and so on. When the Row is Exited and Changed event runs, Full Edits might be
performed to validate all user input.

3.3.3.2 Typical Uses and Hookup
In interactive applications, Edit Line is typically called on Grid Record is Fetched or
Row is Exited and Change (Asynch). In batch applications, Edit Line is typically called
in the Do section of the group, columnar, or tabular section.

3.3.3.3 Common Parameters
This table describes the common parameters for Edit Line:

Name Alias I/O Description

Job Number JOBS I Used as key or to
create a unique name
for the cache or work
file. Retrieved from
Begin Document.

Line Number LNID I/O The unique number
identifying the
transaction line. Can
also be used as the
line number in the
Detail Cache.

Line Action ACTN I A or 1 = Add

C or 2 = Change

D or 3 = Delete

Building Transaction Master Business Functions

Using Business Functions 3-25

3.3.4 Edit Document
The Edit Document component performs these tasks:

■ Reads cache records if multiple line editing is required.

■ Reads header cache record if header information is needed.

Process Edits
(optional)

EV01 I 0 = No Edits

1 = Full Edits

2 = Partial Edits

Note: GUI interface
typically uses the
partial edit, and the
batch interface
typically uses the full
edit. If you leave this
parameter blank, the
default edit is Full.

Error Conditions ERRC O 0 = No Errors

1 = Warning

2 = Error

Update Or Write to
Work File

EV02 I 1 = Write or update
records to the work
file, or do both.

Record Written to
Work File

EV03 I/O 1 = A record is written
to the work file. This
reduces I/O calls to
the work file.

Blank = No record is
written to the work
file.

Detail Field One **** I/O Pass in all the Detail
fields that will be
edited. Typically,
these are the grid
record fields. Edit
Line provides
validation, data
dictionary edits, UDC
editing, default
values, and so on.

Detail Field Two **** I/O N/A

Detail Field XX **** I/O N/A

Work Field /
Processing Flag One

**** I List any work fields
that the program
needs. These fields
could be flags for
processing, dates to
validate, and so on.

Work Field /
Processing Flag One

**** I N/A

Work Field /
Processing Flag One

**** I N/A

Name Alias I/O Description

Building Transaction Master Business Functions

3-26 JD Edwards EnterpriseOne Tools APIs and Business Functions Guide

■ Performs cross-dependency edits involving multiple lines in a document. For
example, Edit Document processes all records to ensure that percentages total 100
percent, and it ensures that the last record does not contain certain information.

3.3.4.1 Special Logic or Processing Required
Depending on the type of document that you are processing, different logic is
executed. For example, vouchers and invoices are processed through the journal entry
edit object, although the balancing is different for these document types.

3.3.4.2 Hook Up Tips
Edit Document is typically used in this fashion:

■ Call the function at least once after calling Edit Line and before End Document.

■ If errors occur during validation, call the function again to verify that errors have
been cleared before calling End Document.

■ Call this function on the OK Button Clicked event so that, if errors do occur, they
are corrected before the user exits the application.

3.3.4.3 Common Parameters
This table describes the common parameters for Edit Document:

3.3.4.4 Application-Specific Parameters
Because all records have been added in Begin Document or Edit Line, and because any
information needed to process the entire document is in cache, few parameters are
needed in this function.

3.3.5 End Document
End Document has this format:

FxxxxxEndDocument

The End Document component performs these tasks:

■ Assigns a next number to the document.

For vouchers, you should do this before calling journal entry edit object, but not
before the voucher has been balanced and is ready to be added to the database. By
placing this module on the before add/delete/update events, the document
passes all edits before running this event.

■ Reads cache records.

■ On an ADD, writes new rows to the table.

■ On a CHG, retrieves and updates existing rows.

■ On a DEL, deletes rows from the table.

Name Alias I/O Description

Job Number JOBS I Retrieved from Begin
Document

ErrorConditions EV01 O Blank = No Errors

1 = Warning

2 = Error

Building Transaction Master Business Functions

Using Business Functions 3-27

■ Adds information and updates associated tables.

For example, it adds and updates these objects:

– Manual checks associated with vouchers.

– Address Book vouchered YTD columns in Address Book.

– Address, phones, and who's who information for Address Book.

– Batch header.

■ Clears the cache for that document and any work fields after all updates are
completed successfully.

■ Summarizes documents, if designated in a processing option, as it writes to the
database.

■ Reads work file through an alternate means and writes the records at a control
break.

■ Performs currency conversion.

3.3.5.1 Hook-Up Tips
This function is typically called on OK button Post Button Clicked, and it is hooked
up Asynch. In the C code, after the insert or update to the database is successful, call
Clear Cache to clear the cache.

3.3.5.2 Common Parameters
This table describes the common parameters for End Document:

3.3.5.3 Application-Specific Parameters
Use application-specific parameters in End Document to perform these tasks:

■ List the fields that are needed to process update or writes, such as Time and Date
Stamp fields.

■ List any work fields that are needed to perform updates or writes.

■ List all POs that are needed to process updates or writes.

3.3.6 Clear Cache
Clear Cache has this format:

FxxxxxClearCache

Name Alias I/O Description

Job Number JOBS I Retrieved from Begin
Document

Computer ID CTID I Retrieved from
GetAuditInfo(B980010
0) in application
(optional)

Error Conditions EV01 O Blank = No errors

1 = Warning

2 = Error

Program ID PID I Usually hard-coded

Building Transaction Master Business Functions

3-28 JD Edwards EnterpriseOne Tools APIs and Business Functions Guide

The Clear Cache component removes the records from the header and detail cache.

3.3.6.1 Special Logic or Processing Required
If a unique cache name is selected as the naming convention for the cache
(Dxxxxxxxx[Job Number]), then use the cache API jdeCacheTerminateAll to destroy
the cache.

3.3.6.2 Common Parameters
This table describes the common parameters for Clear Cache:

3.3.7 Cancel Document
Cancel Document has this format:

FxxxxxxCancelDoc

The optional Cancel Document component is used primarily with the Cancel button to
close files, clear the cache, and so on. Cancel Document is an application-specific
function that provides basic function cleanup.

3.3.7.1 Special Logic or Processing Required
This function is application-specific.

Name Alias I/O Description

Job Number JOBS I Indicates the job
number of the
transaction that you
want to clear. This job
number should have
been returned from
BeginDoc.

Clear Header EV01 I Indicates whether the
header cache should
be cleared.

1 = clear cache

Clear Detail EV02 I Indicates whether the
detail cache should be
cleared

1 = clear cache

Line Number From
(Optional)

LNID I Indicates where to
begin clearing records
in the detail cache. If
this line is blank, the
system begins
clearing from the first
record.

Line Number Thru
(Optional)

NLIN I Indicates where to
stop clearing records
in the detail cache. If
this line is blank, the
system deletes to the
end of the cache.

Implementing Transaction Master Business Functions

Using Business Functions 3-29

3.3.7.2 Common Parameter
This table describes the common parameter for Cancel Document:

3.4 Implementing Transaction Master Business Functions
This section discusses using single-record processing and document processing to
implement transaction master business functions.

3.4.1 Single-Record Processing
This section provides an interactive and a batch program flow example for
single-record processing.

3.4.1.1 Interactive Program Flow Example
This is an example of an implementing transaction master business functions during
single-record processing in an interactive application:

1. Post Dialog is Initialized (optional)

Call Begin Document.

2. Set Focus on Grid

3. Row is Exited and Changed or Row is Exited and Changed ASYNC

Call Edit Line.

4. Delete Grid Record Verify- After

Call Edit Line to perform delete for one record.

Call Edit Document to perform deletes on a group of records.

5. OK Button Clicked

Call Begin Doc.

Call Edit Document.

6. OK Post Button Clicked

Call End Document.

Master Business Functions usually perform all table I/O for the given table. Therefore,
these actions must be disabled:

■ Add Grid Record to DB - before

Suppress Add.

■ Update Grid Record to DB - before

Suppress Update.

■ Delete Grid Record to DB - before

Name Alias I/O Description

Job Number JOBS I The job number of the
transaction that you
want to clear. This
number should have
been returned from
BeginDoc.

Working with Master File Master Business Functions

3-30 JD Edwards EnterpriseOne Tools APIs and Business Functions Guide

Suppress Delete.

3.4.1.2 Batch Program Flow Example
This is an example of an implementing transaction master business functions during
single-record processing in a batch application:

1. Do Section of Report Header.

Call Begin Document.

2. Do Section of the Group Section.

Call Edit Line.

3. Do Section of a Conditional Section (optional).

Call Edit Document.

4. Do Section of Report Footer.

Call End Document.

3.4.2 Document Processing
This section provides an interactive program flow example for document processing.

3.4.2.1 Program Flow Example
This is an example of an implementing transaction master business functions during
document processing in an interactive application:

1. Dialog is Initialized

Call Open Batch Edit Object module.

2. Grid is Entered

Call Begin Document Edit Object module.

3. Row is Exited

Call Edit Line Edit Object module.

4. OK Button Clicked

Call Edit Document Edit Object module.

5. Before Add from Database or Before Delete from Database

Suppress Add/Delete.

Call End Document Edit Object module.

6. Cancel Button Clicked

Call Close Batch Edit Object module.

3.5 Working with Master File Master Business Functions
Master business functions (MBFs) enable calling programs to process certain
predefined transactions. An MBF encapsulates the required logic, enforces data
integrity, and insulates the calling programs from the database structures. Use MBFs
for these reasons:

■ To create reusable, application-specific code.

Working with Master File Master Business Functions

Using Business Functions 3-31

■ To reduce duplicated code.

■ To ensure that hookup is consistent.

■ To support interoperability models.

■ To enable processing to be distributed through OCM.

■ To design event-driven architecture.

MBFs are typically used for multiline business transactions such as journal entries or
purchase orders. However, certain master files also require MBF support due to their
complexity, importance, or maintenance requirements from external parties. The
requirements for maintaining master files are different from those for multiline
business transactions.

Generally, master file MBFs are much simpler than multiline business transaction
MBFs. Transaction MBFs are specific to a program, while master file MBFs access a
table multiple times.

For interoperability, master file MBFs can be used instead of table I/O. This enables
you to perform updates to related tables using the business function instead of table
event rules. Multiple records are not used; instead, all edits and actions are performed
with one call.

In their basic form, master file MBFs have these characteristics:

Master file applications use the system to process all I/O for find/browse forms. This
enables you to use all of the search capabilities of the software.

You should design all master file applications so that all fix/inspect forms are
independent of each other. Each fix/inspect form can use the system to fetch the
record, and all edits and updates occur using the master file MBF. This independent
design has these major benefits:

Characteristic Description

Single call Generally, you can make one call to an MBF to edit, add, update,
or delete a master file record. An edit-only option is available also.

Single data structure The fields required to make the request and provide all the
necessary values are in one data structure. The data fields should
correspond directly with columns in the associated master file.

No cache Because each master file record is independent of the others,
caching is unnecessary. The information provided with each call
and the current condition of the database provides all of the
information that the MBF needs to perform the requested function.

Normal error handling As with other MBFs, master file MBFs must be capable of
executing both in interactive and batch environments. Therefore,
the calling program must determine the delivery mechanism of
the errors.

Inquiry feature To enable external systems to be insulated from the JD Edwards
EnterpriseOne database, an inquiry option is included. This
enables an external system to use the same interface to access
descriptive information about a master file key as it uses to
maintain it.

Effect on applications For JD Edwards EnterpriseOne applications, the effect of
implementing a master file MBF should be minimal. Consider and
follow several standards before implementing a master file MBF.

Working with Master File Master Business Functions

3-32 JD Edwards EnterpriseOne Tools APIs and Business Functions Guide

■ It organizes the application in a way that simplifies edits involving dependent
fields across multiple forms.

■ It enables consistent implementation of modeless processing for all master file
applications and all forms within these applications.

Certain circumstances might justify deviation from this simple model. These
circumstances are:

■ Extremely large file formats

When the number of columns in the master file plus the required control fields in
the call data structure exceed technical limitations for data structures, the MBF can
be split. You can split the MBF into one MBF that handles base data and performs
all adds and deletes, and one or more MBFs that enable the calling program to
update additional data when the base data has been established. In this case, it is
usually logical to split it, regardless of the technical limitation. For example,
assuming that the customer master file exceeded the data structure limitation, you
would use these two MBFs to process the file:

■ F0301ProcessMasterData

■ F0301ProcessBillingData

In this example, the F0301ProcessMasterData function processes the base data, and
the F0301ProcessBillingData function updates additional data.

■ Subordinate detail files

Information can exist in addition to the primary master file that has been
normalized to enable for a one-to-many relationship. Designing the Master File
MBF strictly on the basis of how the database is designed translates into three
calls. Including at least one occurrence of a detail relationship in the data structure
of a Master File MBF is valid. This inclusion enables users to establish reasonably
complete master file information using a simple interface to meet simple needs.
Street addresses and phone numbers within Address Book are a good example.
Customers expect that they can create an address book record by calling a simple
address book API with basic identifying information, the street address, and a
phone number.

3.5.1 MBF Information Structure
This section discusses the parameters of the MBF information structure.

3.5.1.1 Standard Parameters for Single-Record Master Business Functions
This table describes the standard parameters for single-record MBFs:

Name Alias I/O Required/Optional Description

Action Code ACTN I Required A = Add.

I = Inquiry.

C = Change.

D = Delete.

S = Same as except (the record is the
same except for what the user
changes).

Update Master
File

EV01 I Optional 0 = No update; edit only (default).

1 = Update performed.

Working with Master File Master Business Functions

Using Business Functions 3-33

3.5.1.2 Application-Specific Control Parameters (Example: Address Book)
This table describes the application-specific parameters for Address Book:

3.5.1.3 Application Parameters (Example: Address Book)
This table describes the application parameters for Address Book:

3.5.2 Master Business Function Impact on Performance
Performance issues might occur regardless of how you handle large-format tables.
Two options for improving performance are:

■ Group data logically to enable data structures to be smaller and easier for the user
to implement.

This configuration does, however, force the user to make multiple calls to add or
update an entire record in a table.

■ Use a data structure that enables 300 fields.

This configuration is cumbersome to implement, and the user can choose not to
apply all of the fields.

Process Edits EV02 I Optional 1 = All Edits (default).

2 = Partial Edits (no data dictionary
(DD)).

Suppress Error
Messages

SUPPS I Optional 1 = Error messages are suppressed.

0 = Process errors normally (default).

Error Message
ID

DTAI O Optional Returns error code.

Version VERS I Future The default value is XJDE0001.

Name Alias I/O
Required/
Optional Description

Address Book
Number

AN8 I/O Optional For additions, AN8 is optional. For all other
action codes, this parameter is required.

Same as except AN8 I Optional Required for S = Action Code. The record is the
same except for what the user changes.

Name Alias I/O Required/Optional

Alpha Name ALPH I/O Required

Long Address Number ALKY I/O Optional

Search Type AT1 I Required

Mailing Name MLMN I Required

Address Line 1 ADD1 I Optional

City CTY1 I Optional

State ADDS I Optional

Postal Code ADDZ I Optional

Name Alias I/O Required/Optional Description

Working with Business Functions

3-34 JD Edwards EnterpriseOne Tools APIs and Business Functions Guide

Through different interfaces, the user can add additional data later. Most processes
dictate that part of the data be added immediately, while related data can be added
later. For example, the user might define a customer master record but wait until a
later date to define the customer's billing instructions. Therefore, you should select the
first option of splitting MBFs so that one MBF handles base data and one MBF handles
additional data.

3.6 Working with Business Functions
Every business function must follow a defined structure and form. Every line of code
must conform to the JD Edwards EnterpriseOne business function programming
standards. Creating a business function involves these overall tasks:

■ Use JD Edwards EnterpriseOne Object Management Workbench (OMW) to build
business function data structures.

■ Use OMW to build business function source and header files.

■ Build and add type definitions for data structures to the header file.

Business function DLLs are consolidated. Therefore, you need to build each of the
custom business functions into a custom DLL that you create. This process ensures
that the custom business functions remain separate from JD Edwards EnterpriseOne
business functions. The build program reviews the F9860 table to verify that the
custom DLL exists.

When you create a custom business function, you need to specify one of the custom
DLLs. If you do not, the build process builds the custom business function into the JD
Edwards EnterpriseOne CCUSTOM.DLL, where CCUSTOM is the seven-character
name of the company, which is the default.

3.6.1 Prerequisite
Create a data structure.

3.6.2 Creating a Custom DLL
To create a custom DLL:

1. In OMW, create a new Business Function Library.

2. In Windows, run BusBuild.exe.

Typically, this file is located in ..\B9\System\Bin32\.

3. Rebuild all libraries by selecting Build, Rebuild Libraries in OMW.

This process takes several minutes.

3.6.3 Specifying a Custom DLL for a Custom Business Function
To specify a custom DLL for a custom business function :

1. In Business Function Design Aid, enter the custom DLL name in the Parent DLL
field.

Note: You can also change the business function location if
necessary.

Working with Business Function Builder

Using Business Functions 3-35

2. Run the build for the business function.

3.7 Working with Business Function Builder
Use JD Edwards EnterpriseOne Business Function Builder to build business function
code into a DLL. You can build C business functions, Named Event Rules (NERs), and
table event rules. The process that occurs when you run JD Edwards EnterpriseOne
Business Function Builder to build business functions includes compiling and linking.
Compiling involves creating a business function object. Linking makes the object part
of a DLL.

You usually use JD Edwards EnterpriseOne Business Function Builder to build a
single business function. Whenever you create source code changes to a business
function, you must build the business function to test it.

Build Output displays the results of the build. When the build is finished, the message
Build Finished appears at the bottom of Build Output. The text after this line
indicates whether the build was successful. If the build was successful, you can test the
business function. Otherwise, you must correct any problems and rerun the build
process.

The system creates a work directory when any object is built. This directory is in the
destination directory that you specified, such as C:\b7\appl_pgf\work\buildlog.txt.
This directory contains error and information logs. The build log contains the same
information as the Build Output form in JD Edwards EnterpriseOne Business Function
Builder.

3.7.1 Setting Build Options
Use options on the Build menu to control how and when the consolidated business
function is built. This table describes the available options:

Note: Link All does not compile any business functions; it only links
each DLL.

Option Result

Build Generates a makefile, compiles the selected business functions, and links
the functions into the current consolidated DLL. Rebuilds only those
components that are out of date.

Compile Generates a makefile and compiles the selected business functions. The
application does not link the functions into the current consolidated DLL.

ANSI Check Reviews the selected business function for ANSI compatibility.

Link Generates a makefile for each consolidated DLL and then builds each
consolidated DLL. The application does not compile any of the selected
business functions.

Link All Generates a makefile for each consolidated DLL and then builds each
consolidated DLL and links it to all business functions that are called. The
application does not compile any of the selected business functions.

Rebuild Libraries Rebuilds the consolidated DLL and static libraries from the .obj files.

Build All Links and compiles all objects within each DLL.

Stop Build Stops the build from finishing. The existing consolidated DLL remains
intact.

Working with Business Function Builder

3-36 JD Edwards EnterpriseOne Tools APIs and Business Functions Guide

3.7.2 Reading Build Output
Build Output consists of a series of sections that display important information about
the status of a build. You can use this information to determine whether the build
completed successfully and to troubleshoot problems if errors occurred during the
build.

3.7.2.1 Makefile Section
The makefile section indicates where Business Function Builder generated the
makefile for a particular build. JD Edwards EnterpriseOne Business Function Builder
generates one makefile for each DLL that it builds. A Generating Makefile statement
should always appears for each DLL that you are building. If the makefile statement
does not appear, then an error occurred. To resolve the error, you must complete these
tasks:

■ Verify that the local object directory exists.

■ Verify that the permissions for the local object directory and the makefile are
correct.

3.7.2.2 Begin DLL Section
Begin DLL indicates that Business Function Builder is building a particular DLL. For
example, assume that the previous section begins with*****CDIST*****. A Begin DLL
section appears for each DLL that you are building.

3.7.2.3 Compile Section
Before it build DLLs, Business Function Builder compiles the business functions in the
DLLs first. The system displays a sequential list of each business function that the
Business Function Builder attempts to compile. During the compilation process, these
events might occur:

■ Compiler Warning

When a compiler warning occurs, JD Edwards EnterpriseOne Business Function
Builder displays warning CXXXX (where XXXX is a number) and a brief
description of the warning. To review information about the warning, search for
the CXXXX value in Visual C++ online help. Warnings usually do not prevent the
business function from compiling successfully. However, you can select the
Warnings As Errors option in the Global Build form so that the business function
will not build if any warnings occur.

■ Compiler Error

Suppress Output Limits the text that appears in Build Output.

Browse Info Generates browse information when compiling business functions. Clear
this option to expedite the build.

Precompiled
Header

Creates a precompiled header when compiling a business function. When
compiling multiple business functions, the Business Function Builder
generally compiles faster if it uses a precompiled header.

Debug Info Generates debug information when compiling. The Visual C++ can
debug any function that was built with debug information. Clear this
option to expedite the build.

Full Bind Resolves all of the external runtime references for each JD Edwards
EnterpriseOne consolidated DLL.

Option Result

Working with Business Function Builder

Using Business Functions 3-37

When a compiler error occurs, JD Edwards EnterpriseOne Business Function
Builder displays error CXXXX (where XXXX is a number) and a brief description
of the error. To review extended information about the error, search for the CXXXX
value in Visual C++ online help. Because errors prevent the business function
from compiling successfully, you must resolve them.

3.7.2.4 Link Section
After Business Function Builder has compiled the business functions for a DLL, it links
them. This linking process creates the .lib and .dll files for the DLL. During linking,
these events might occur:

■ Linker Warning

When a linker warning occurs, JD Edwards EnterpriseOne Business Function
Builder displays warning LNKXXXX (where XXXX is a number) and a brief
description of the warning. To review information about the warning, search for
the LNKXXXX value in the Visual C++ helps. Warnings usually do not prevent the
business function from linking successfully. You can select the Warnings As Errors
option in the Global Build form so that the DLL will not build if it has any
warnings occur.

■ Linker Error

When a linker error occurs, JD Edwards EnterpriseOne Business Function Builder
displays error LNKXXXX (where XXXX is a number) and a brief description of the
error. To review extended information about the error, search for the LNKXXXX
value in the Visual C++ helps. If a nonfatal error occurs, Business Function Builder
still creates the DLL. However, JD Edwards EnterpriseOne Business Function
Builder notes that the DLL was built with errors. If a fatal error occurs, JD
Edwards EnterpriseOne Business Function Builder does not build the DLL.

3.7.2.5 Rebase Section
The Rebase Section displays information about rebasing. Rebase fine-tunes the
performance of DLLs so that they load faster. Rebase does this by changing the desired
load address for the DLL so that the system loader does not have to relocate the image.
The system automatically reads the entire DLL and also updates fixes, debug
information, checksum information, and time stamp values.

3.7.2.6 Summary Section
The Summary Section contains the most important information about the build. This
section indicates whether the build is successful. The summary section begins with
*****Build Finished*****. JD Edwards EnterpriseOne Business Function Builder also
displays a summary report for each DLL that you attempted to build. This report
includes this information:

■ The number of warnings.

■ The number of errors.

■ Whether the DLL build is successful.

3.7.3 Building All Business Functions
You can use Build All to build all business functions. Build All performs the same
operations as global link, and it recompiles all of the objects within each DLL. A
system administrator usually runs Build All. Build All processes can take a long time.
To run Build All, you must access BusBuild.

Working with Business Function Builder

3-38 JD Edwards EnterpriseOne Tools APIs and Business Functions Guide

To build all business functions:

1. In Windows, run BusBuild.exe.

Typically, this file is located in ..\B9\system\Bin32\.

2. In BusBuild, start the mass build by selecting Build, Build All.

3. Select one of these options for Build Mode:

– Debug

A build that includes debug information. After you perform a build, you can
debug the built business function using the Visual C debugger.

– Optimize

A build that does not include debug information. Optimized builds generally
cannot be debugged using the Visual C debugger.

– Performance Build

A build that is the same as an optimized build except that it includes
information that helps developers measure the performance of business
functions. Only JD Edwards developers should select this option.

4. Complete the Source Directory field.

Use this field to specify where the business function source resides. Business
function source includes all .c, .h, named event rules, and table event rules. Full
packages usually have all business function sources. These are the options for
location:

– Local

All business function source is on the local machine.

– Path Code

All business function source is in the path specified by the selected path code.

– Package

The All business function source is in the path specified by the selected
package. If a package is built correctly, it typically contains all required
business function sources. Generally, you should use Package for the location.

– Pick Directory

All business function source is stored in another directory on the file server.
You specify the directory.

5. Complete the Foundation Directory field.

Use this field to specify the foundation to use for this build. The foundation that
you select is the foundation on which you expect these business functions to run.
These are the options for this field:

– Local

The recommended foundation is the local JD Edwards EnterpriseOne
foundation.

– Foundation

The foundation table lists all registered JD Edwards EnterpriseOne
foundations. Select a foundation from this table.

– Pick Directory

Working with Business Function Builder

Using Business Functions 3-39

The JD Edwards EnterpriseOne foundation exists in a directory on the file
server. You specify the directory. JD Edwards EnterpriseOne recommends this
location.

6. Complete the Output Destination Directory field.

Use this field to specify the location for the output of the build. The build output
includes the file types: DLL, .LIB, .OBJ, and LOG. The location options are the
same as those for Source Directory. Generally, you should select Package because
it is a more stable snapshot of business function source.

7. Select any of these options:

– Treat Warnings As Errors

If you select this option, JD Edwards EnterpriseOne Business Function Builder
does not build a business function if it encounters any warnings.

– Clear Output Destination Before Build

If you select this option, JD Edwards EnterpriseOne Business Function Builder
deletes the contents of the bin32, lib32 and obj output directories before it
builds all business functions.

– Select Which DLLs to Build

If you clear this option, JD Edwards EnterpriseOne Business Function Builder
builds all DLLs. If you select this option, you can click the Select button and
select which business function DLLs you want to build. Select this option if
you want to build one or two DLLs. If you build only a subset of all DLLs,
verify that the Clear Output Destination Before Build option is cleared.

– Stop Level

You can select the error level at which the build stops. You can ignore errors if
you want to continue building despite them. You can specify that the build
process stop if a DLL contains errors. You can stop on the first compile error.

– Generate Missing Source Report

If you select this option, v Business Function Builder generates a report in the
work directory of the destination. This report is called NoSource.txt. It
contains business function source file names that do not have a .c file but do
have a record in the F9860 table. To resolve the information in this report, you
can produce the correct .c file for the business function, or you can delete the
source file from the F9860 table. It is recommended that you select this option.

– Generate ER Source

If you select this option, v Business Function Builder generates NER and table
event rule source before building business functions.

– Verify Check-in

If you select this option, the system builds only objects checked in to a
specified path code. A log file, Notchkdn.txt, is written to the same directory
as Nosource.txt. Objects that are not checked in to the path code will be listed
in this log and in Buildlog.txt.

Select the From RDB option to generate work from any path code. If this option is
cleared, the business function builder assumes that the event rules source can be
generated from the source directory specification files.

Working with Business Function Builder

3-40 JD Edwards EnterpriseOne Tools APIs and Business Functions Guide

If you are troubleshooting a build initiated by Package Build, then the previous
settings should already be set to the correct values. In this case, click Build to rebuild
the problem DLLs.

3.7.4 Using the Utility Programs
The Tools menu contains several utility programs that assist in the build process. This
table lists those utilities:

3.7.4.1 Resolving Errors with JDEBLC, Dumpbin, and PDB
You use JD Edwards EnterpriseOne Business Function Builder tools to help you
resolve errors. If you notice any unresolved external errors during a business function
build, the consolidated DLL still builds, and the software should run normally.
However, it cannot execute any unresolved business function.

Use the dumpbin tool to verify that a particular business function is present in a
consolidated DLL. If a business function is present, its name appears in the dumpbin
output, followed by a nonzero number in parentheses.

Use the PDB scan to resolve the CVPACK fatal error. The CVPACK error occurs when
the Business Function Builder attempts to link an object file that was built with PDB
(Program DeBug file) information. The PDB scan finds the problem object file. You

Note: You can also run this build by selecting the Build BSFN option
on in a package build.

Utility Purpose

Synchronize JDEBLC You run the Synchronize JDEBLC program to reorganize JD
Edwards EnterpriseOne business functions into new DLL
groupings. This program synchronizes DLL field for the local
JDEBLC parent specification table with the parent DLL in the F9860
table. Use this program with caution. You typically use this
program only if you have manually dragged business function
DLLs from a recent package build and you are experiencing failures
in the business function load library.

Dumpbin You run the Dumpbin program to verify whether a particular
business function built successfully. This program displays all the
business functions that were built into the selected consolidated
DLL.

PDB (Program DeBug
file) Scan

You receive a CVPACK fatal error when one of the object files that
you are trying to link is incorrectly compiled with PDB information.
To resolve this problem, you can use the PDB Scan to identify any
object fields that were built with PDB information. Recompile any
business functions that the PDB Scan reports.

Customize You use Customize to add programs to the Tools menu. For
example, you could add the programming tool and pass that tool a
file name as a parameter when it opens.

Safety Check You use Safety Check to check selected files (.c, .h or both) for:

■ global variables

■ static variables

■ extern declarations

■ non-"threadsafe" ANSI C APIs

Safety Check-Check All You use Safety Check-Check All to check all files (.c, .h or both) in a
directory for the same conditions as for Safety Check.

Working with Business Function Builder

Using Business Functions 3-41

must then recompile the problem object file on the machine with the JD Edwards
EnterpriseOne Business Function Builder.

If a business function is compiled using Visual C++, it will not work properly. You can
use PDB scan to identify any business functions that have been built outside of JD
Edwards EnterpriseOne Business Function Builder. Use JD Edwards EnterpriseOne
Business Function Builder to rebuild these functions so that they work properly.

If one of the DLLs is out of synch, you must rebuild it using the Build option. This
generates a makefile and then relinks all the business functions within it.

The Synchronize JDEBLC option from the JD Edwards EnterpriseOne Business
Function Builder Tools menu corrects any misplaced or incorrectly-built business
functions. This option reviews the server DLLs and determines whether the local
workstation specifications match those of the server. If they do not, then JD Edwards
EnterpriseOne Business Function Builder will rebuild the business functions in the
correct DLL on the server and relink them.

The Build Log contains these sections:

3.7.4.2 Customizing the Tools Menu
This table lists the sections of the Customize menu option:

Section Description

Build Header This section defines the configuration for a specific build, including the
source path, foundation path, and destination path.

Build Messages This section displays the compile and link activity. During a compile, a
line is output for each business function that was compiled Any compile
errors are reported as error cxxxx. During the link part, business
function builder outputs the text Creating library This text
might be followed by linker warnings or errors.

Build Summary The last section of the build summarizes the build for each DLL. This
summary is in the form x error(s), x warnings (y). The summary
indicates the status of the build. If you have no warnings and no errors,
then the build was successful. If the summary reports an error, search
the log for the word error to determine the source of the error. Typical
build errors are syntax errors and missing files.

Menu Option Usage

Menu Contents Review all current tools menu customizations.

Menu Text Enter the text to display in the menu.

Command Enter the executable to run. You must supply a full path for any
program that does not reside in system\bin32 or that is not defined in
Initial Directory.

Arguments Specify any command line arguments to pass to the executable.

Initial Directory Specify the initial directory that should be used by the executable, if it
is not system\bin32.

Include in Build Select to display output from the program as part of the build
process.

Note: This option is only valid and will only appear for Release 8.11
SP1 or later. If you are running an earlier version, this option is not
available, and Safety Check does not run during build. You must,
instead, run Safety Check manually from the menu.

Working with Business Function Builder

3-42 JD Edwards EnterpriseOne Tools APIs and Business Functions Guide

This table lists the buttons in the Customize menu option:

3.7.4.3 Threadsafe Code
All BSFNs created for JD Edwards EnterpriseOne 8.11 Applications Release and earlier
Applications releases are designed to run in a single-threaded environment. BSFNs
designed for JD Edwards EnterpriseOne 8.11 SP1 Applications Release and later
Applications releases that also run with JD Edwards EnterpriseOne Tools Release 8.96
and later Tools releases are designed to run in a multi-threaded environment. To be
considered threadsafe, BSFNs cannot use:

■ Global variables.

■ Static variables.

■ External declarations.

■ Non-threadsafe ANSI C APIs.

Safety Check is a source code analysis tool that scans C source code and header files
for non-threadsafe behaviors. Given a source or header file, Safety Check finds all
instances of non-threadsafe code, returning line numbers and code fragments.

Several non-threadsafe APIs have a JD Edwards EnterpriseOne replacement. These
replacement APIs have the same parameters as the non-threadsafe C APIs, except
where noted. Most non-threadsafe APIs do not have a JD Edwards EnterpriseOne
replacement. These APIs and their replacements do not necessarily have the same
parameters. Use care when using these APIs.

This table lists the non-threadsafe C APIs for which SafetyCheck searches, the
threadsafe standard C replacements, and the threadsafe JD Edwards EnterpriseOne
replacements (if applicable):

Hide Window Select to hide command windows. The functionality remains the
same.

Button Usage

Add Select to enter new programs to appear in the pull-down menu.

Remove Select to remove the selected item from the menu.

Move Up Select to move the selected item up in the menu.

Move Down Select to move the selected item down in the menu.

Ellipsis Select to open a file or directory dialog so that you can browse for a
file or directory.

Question Mark Select to display a list of substitutions you can use as part of
command line arguments. In our SafetyCheck example, one of the
command line arguments is: --F <source_file>. By specifying
<source_file>, you are telling SafetyCheck to use as its input file the
selected source file. When BusBuild starts the build process, it can
determine which file is being built and substitute that name in place
of the text <source_file>.

Non-Threadsafe
Standard C API

Threadsafe Standard
C API

Threadsafe JD Edwards EnterpriseOne
API

acltostr acltostr_r None

Menu Option Usage

Working with Business Function Builder

Using Business Functions 3-43

asctime asctime_r jdeJAsctime

crypt crypt_r None

ctime ctime_r jdeJCtime

drand48 drand48_r None

ecvt ecvt_r None

encrypt encrypt_r None

endgrent endgrent_r None

endhostent endhostent_r None

endnetent endnetent_r None

endprotoent endprotoent_r None

endpwent endpwent_r None

endservent endservent_r None

endspwent endspwent_r None

endusershell endusershell_r None

endutent endutent_r None

erand48 erand48_r None

fcvt fcvt_r None

fgetgrent fgetgrent_r None

fgetpwent fgetpwent_r None

getdate getdate_r None

getdiskbyname getdiskbyname_r None

getgrent getgrent_r None

getgrgid getgrgid_r None

getgrnam getgrnam_r None

gethostbyaddr gethostbyaddr_r jdeGetHostByAddr_r

gethostbyname gethostbyname_r jdeGetHostByName_r

gethostent gethostent_r None

getlocale getlocale_r None

getlogin getlogin_r None

getnmtent getmntent_r None

getnetbyaddr getnetbyaddr_r None

getnetbyname getnetbyname_r None

getnetent getnetent_r None

getprotobyname getprotobyname_r jdeGetProtoByName_r

getprotobynumber getprotobynumber_r None

getprotoent getprotoent_r None

getpwent getpwent_r None

Non-Threadsafe
Standard C API

Threadsafe Standard
C API

Threadsafe JD Edwards EnterpriseOne
API

Working with Business Function Builder

3-44 JD Edwards EnterpriseOne Tools APIs and Business Functions Guide

getpwnam getpwnam_r None

getpwuid getpwuid_r None

getservbyname getservbyname_r None

getservbyport getservbyport_r None

getservent getservent_r None

getspwaid getspwaid_r None

getspwnam getspwnam_r None

getspwuid getspwuid_r None

getusershell getusershell_r None

getutent getutent_r None

getutid getutid_r None

getutline getutline_r None

gmtime gmtime_r jdeGmtime

inet_ntoa inet_ntoa_r jde_inet_ntoa_r

jrand48 jrand48_r None

l64a l64a_r None

lcong48 lcong48_r None

localtime localtime_r jdeLocaltime

Note: The parameters changed on this due to
the need to send a location to store the value.
The standard C call stores it in a global static
variable, which is not threadsafe.

lrand48 lrand48_r None

ltoa ltoa_r None

ltostr ltostr_r None

mrand48 mrand48_r None

nrand48 nrand48_r None

ptsname ptsname_r None

pututline pututline_r None

rand rand_r jdePPRand

Note: Must be used in conjunction with
jdePPSRand to seed the random number
generator correctly. Existing calls to srand
should be replaced with jdePPSRand.

readdir readdir_r None

seed48 seed48_r None

setgrent setgrent_r None

sethostent sethostent_r None

setkey setkey_r None

setlocale setlocale_r jdeSetLocale

Non-Threadsafe
Standard C API

Threadsafe Standard
C API

Threadsafe JD Edwards EnterpriseOne
API

Working with Business Function Builder

Using Business Functions 3-45

3.7.4.4 Safety Check Usage
During the course of development, there may be times when a non-threadsafe type of
code must be used. You can mark source code with an explanation about why the
non-threadsafe code exists. Safety Check will then display this information as part of
its run. To mark source code with an exception, include a comment in this format: /*_
LRBF <comment text */. The comment must begin with "/*_LRBF." The remainder of
the comment can span multiple lines and include any other necessary text. The entire
comment will print as part of Safety Check output.

You control Safety Check functionality through several options, at least one of which
must be supplied. Multiple options are supported. Quotation marks are required only
when the path specified contains spaces. For example, if the single C source file
b1234.c is stored in the "c:\source" directory, you could call SafetyCheck in one of two
ways: SafetyCheck --F c:\source\b1234.c or SafetyCheck --F "c:\source\b1234.c"
However, if the same C source file is stored in the "c:\test files", you must enclose the
path/filename in quotations: SafetyCheck --F "c:\test files\b1234.c"

setnetent setnetent_r None

setprotoent setprotoent_r None

setpwent setpwent_r None

setservent setservent_r None

setspwent setspwent_r None

setusershell setusershell_r None

setutent setutent_r None

srand srand_r jdePPSRand

srand48 srand48_r None

strerror strerror_r None

strtoacl strtoacl_r None

strtoaclpatt strtoaclpatt_r None

strtok strtok_r None

ttyname ttyname_r None

ultoa ultoa_r None

ultostr ultostr_r None

utmpname utmpname_r None

wcstok wcstok_r None

Argument Usage

--F<C source file> Use to check a single C source file, for example, --F
c:\test\b1234.c

--I<Header file> Use to check a single header file, for example, --I
c:\include\b1234.h

Non-Threadsafe
Standard C API

Threadsafe Standard
C API

Threadsafe JD Edwards EnterpriseOne
API

Working with Business Function Builder

3-46 JD Edwards EnterpriseOne Tools APIs and Business Functions Guide

3.7.4.5 Safety Check Output
A "clean" Safety Check run will produce output of this format:

---------------- SafetyCheck Started ---------------

Scanning d:\safetychecktestrun\source\b03b0011.c...

--FD<C source directory> Use to check all C source files in a given directory, for example,
--FD c:\my project\source.

Note: Do not include a trailing slash as part of the directory
argument.

--ID<Header file directory> Use to check all header files in a given directory, for example
--ID c:\my project\include

Note: Do not include a trailing slash as part of the directory
argument.

--P<Project file> Use to create a text file that contains a list of files, each of which
will be scanned by Safety Check. The project file should
contain multiple lines of the form: SOURCE=<fully qualified
file name>

Note: Do not use quotation marks in the project file.

For example, a project file that specifies three files to scan
could look like this:

SOURCE=c:\my project\source\b1111.c

SOURCE=c:\my project\source\b2222.c

SOURCE=c:\my project\include\main.h

--csv Use to produce output in a comma-delimited format. The
output will contain these elements:

■ File (the fully qualified file name)

■ Line (the line number of the erroneous code)

■ Global (1 if a global was found, 0 if not.)

■ Static (1 if a static was found, 0 if not.)

■ Extern (1 if an external declaration was found, 0 if not.)

■ API (1 if a non-threadsafe API was found, 0 if not.)

■ BraceMismatch (1 if scanning could not completedue to a
brace mismatch)

■ Exception (1 if an exception comment was found, 0 if not.)

■ CouldNotOpen (1 if the file could not be opened, 0 if it
could.)

■ NotCSource (1 if the file name did not end in either ".c" or
".h")

■ C++Comment (1 if a C++ style comment was found)

■ CapInclude (1 if a capital letter was used in a #include)

■ LastChar (1 if the last character was not a new line
character)

■ CommentInComment (1 if a comment was found inside a
comment)

--X Select to print a warning message when a file to check is
specified that does not end in "c" or "h". By default, these
warning messages are hidden.

Argument Usage

Working with Business Function Builder

Using Business Functions 3-47

---------------------- Done ----------------------

1 Files Processed 0 Errors 0 Warnings

"Files processed" indicates how many files were scanned. "Errors" reports the number
of file-based errors encountered. "Warnings" reports the number of problems found
while scanning the specified files.

A "dirty" Safety Check run will produce output of this format:

---------------- SafetyCheck Started ---------------

Scanning d:\safetychecktestrun\source\b03b0011.c...

d:\safetychecktestrun\source\b03b0011.c(186): Global variable found

int iGlobal = 0;

---------------------- Done ----------------------

1 Files Processed 0 Errors 1 Warnings

In this case, the output indicates:

■ A problem was found in d:\safetychecktestrun\source\b03b0011.c

■ The problem occurred on line 186.

■ The problem found was the presence of a global variable.

■ The section of code that caused the problem is "int iGlobal = 0;"

Note that the global variable was specified as a "Warning" and not an "Error".

3.7.4.6 Safety Check Limitations
Following are limitations for safety check:

1. Safety Check is a static code analysis tool that does not perform preprocessing of
source code. Therefore, macro substitutions may introduce non-threadsafe
behaviors that cannot be detected by Safety Check.

2. Safety Check does not know which compile-time flags may be set. Problems will
occur in code that looks like this because the number of open braces does not
match the number of close braces:

int FunctionOne(int i) { if (i == 0) #ifdef FLAG1 { ++i; #else { --i;
#endif } }

3. Non-threadsafe code may still exist even though Safety Check reports no
warnings. Safety Check is looking for the presence of only four specific code
elements (globals, variables, externs and non-threadsafe ANSI C APIs). Do not
rely solely on a "clean" run of Safety Check as the only test of whether the code is
threadsafe.

3.7.5 Understanding Business Function Processing Failovers
In some instances in which a business function fails to process correctly, the software
can attempt to recover and reprocess the transaction. The system recognizes two
principle failure states: process failure and system failure.

A process failure occurs when a jdenet_k process aborts abnormally. For a process
failure, the software server processing launches a new jdenet_k process and continues
processing.

Working with Business Function Documentation

3-48 JD Edwards EnterpriseOne Tools APIs and Business Functions Guide

A system failure occurs when all the server processing fails, the machine itself is
down, or the client cannot reach the server because of network problems. For a system
failure, business function processing must be rerouted either to a secondary server or
to the local client. The system uses this process to attempt to recover from this state:

■ When the call to the server fails, the system attempts to reconnect to the server.

■ If reconnect succeeds and no cache exists, the system reruns the business function
on the server.

If a cache does exist, the system forces the user out of the application.

■ If reconnect fails and no cache exists, the system switches to a secondary server or
to the local client.

If a cache does exist, the system forces the user out of the application.

After one module switches, all subsequent modules switch to the new location.

3.8 Working with Business Function Documentation
This section provides an overview of business function documentation, and discusses
how to:

■ Create business function documentation.

■ View documentation from the Business Function Documentation Viewer.

3.8.1 Understanding Business Function Documentation
Business function documentation explains what individual business functions do and
how they should be used. The documentation for a business function should include
this type of information:

■ Purpose.

■ Parameters (the data structure used).

■ Descriptions for each parameter that indicate required input and output, and
explain return values.

■ Related tables (the table accessed).

■ Related business functions (business functions called from within the function
itself).

■ Special handling instructions.

You use Business Function Design and Data Structure Design to document the
business functions.

3.8.2 Creating Business Function Documentation
You can create business function documentation for several levels, including these:

■ Business Function Notes

Documentation for the specific business function that you are using.

■ Data Structure Notes

Notes about the data structure for the business function.

■ Parameter Notes

Working with Business Function Documentation

Using Business Functions 3-49

Notes about the actual parameters in the data structure.

Generating business function documentation provides you with an online list of
information about business functions that you can view through the Business Function
Documentation Viewer (P98ABSFN). Typically, the system administrator performs
this task because generating the business function documentation for all business
functions takes considerable time. If you create new business function documentation,
you need to regenerate the business function documentation for that business function
only.

Run UBE R98ABSFN, batch version XJDE0001 to generate all business function
documentation. The system creates a hypertext markup language (HTML) link for
each business function for which you generated documentation. It also creates an
Index HTML file. These HTML files appear in the output queue directory.

3.8.3 Viewing Documentation from Business Function Documentation Viewer
You can use Business Function Documentation Viewer to view documentation for all
business functions or selected business functions. After you generate the report, use
the Business Function Documentation Viewer (P98ABSFN) to display the information.
It is suggested that you use this method to view business function documentation.

The Business Function Documentation form contains the HTML index that you
generated. To view the entire index or select specific functions, click the appropriate
letter in the index. Double-click a business function to view documentation that is
specific to that function.

The media object loads the HTML index of the business functions based on a media
object queue. In the media object queue table, a queue named Business Function Doc is
defined.

This queue must point to the directory in which the business function HTML files are
located. The system administrator usually generates the documentation for all
business functions. Because the generation process places the documentation files in
the local directory, the administrator must then copy the files to a central directory on
the deployment server. The files must be copied to the media object queue for media
object business function notes. If you are using the standalone version of the software,
this path is usually the output directory from the Network Queue Settings section of
the jde.ini file. If this entry is not in the jde.ini file, it is in the print queue directory in
the JD Edwards EnterpriseOne software directory.

Working with Business Function Documentation

3-50 JD Edwards EnterpriseOne Tools APIs and Business Functions Guide

4

Understanding Record Locking 4-1

4Understanding Record Locking

This chapter contains the following topics:

■ Section 4.1, "Record Locking"

■ Section 4.2, "Optimistic Locking"

■ Section 4.3, "Pessimistic Locking"

4.1 Record Locking

JD Edwards EnterpriseOne does not implement any record-locking techniques. It
relies on the native locking strategy of the vendor database management system.

In specific situations, the vendor database does not automatically lock as needed. In
these situations, you can instruct JD Edwards EnterpriseOne to control record locking.
For example, you can mandate record locking on the Next Numbers table to ensure
the integrity of the Next Numbers feature.

You can lock JD Edwards EnterpriseOne records using one of the following methods:

■ Optimistic locking

Use optimistic locking (sometimes referred to as record change detection) to
prevent a user from updating a record if it has changed between the time the user
inquired on the record and the time user updates the record.

■ Pessimistic locking

Use pessimistic locking to prevent attempts to update the same record at the same
time by different applications or users. The record is locked before it is updated.

4.2 Optimistic Locking

You can set optimistic locking in the workstation jde.ini file. This type of database
locking prevents a user from updating a record that changed since the user has
inquired about it. If the record has changed, the user must select the record again and
then make the change. This feature is available for business functions, table I/O, and
Named Event Rules.

For example, assume that two users are working in the Address Book application The
following table illustrates the optimistic locking process:

Pessimistic Locking

4-2 JD Edwards EnterpriseOne Tools APIs and Business Functions Guide

When the system detects that a record change has occurred, it displays a message
indicating that the record has been changed since it was retrieved.

4.3 Pessimistic Locking

Pessimistic locking is sometimes referred to as record locking. You can use pessimistic
locking to prevent multiple users or applications from updating the same record at the
same time. For example, suppose a user enters a transaction that uses Next Numbers.
When the user clicks OK, the Next Numbers feature selects the appropriate Next
Numbers record, verifies that this number is not already in the transaction file, and
then updates the Next Numbers record by incrementing the number. If another
process tries to access the same Next Numbers record before the first process has
successfully updated the record, the Next Numbers function waits until the record is
unlocked and then completes the second process.

Pessimistic locking in JD Edwards EnterpriseOne is implemented by calling published
JDEBase APIs. When you use pessimistic locking, you should consider the time
required to select and update a record because the record is locked until the update is
complete. Transaction processing uses a special set of locking APIs. A locked record
might or might not be part of a transaction. Record locking APIs are independent of
the transaction and its boundaries. They always lock, regardless of whether you are in
manual or auto commit mode.

Records that are updated using pessimistic locking APIs (such as JDB_FetchForUpdate
or JDB_UpdateCurrent) within a transaction boundary are locked from the time the
record is selected for update until the commit or rollback occurs. Records within the
transaction boundary that are updated without using pessimistic locking APIs are
locked from the time of the update until the commit or rollback occurs. This is also
true if you use a business function to define and activate transaction processing.

4.3.1 Using Pessimistic Locking Within a Transaction Boundary

You might need to use pessimistic locking in conjunction with transaction processing.
For example, if you want the system to lock records between the read operation and
the update, you must use pessimistic locking.

Time Action

10:00 User A selects Address Book record 1001 to inspect it.

10:05 User B selects Address Book record 1001 to inspect it.

Both users now have Address Book record 1001 open.

10:10 User B updates a field in Address Book record 1001 and clicks
OK.

JD Edwards EnterpriseOne updates Address Book record 1001
with the information entered by User B.

10:15 User A updates a field in Address Book record 1001 and clicks
OK.

JD Edwards EnterpriseOne does not update Address Book record
1001, and the system displays a message informing User A that
the record has changed during the time that User A was viewing
it. For User A to change the record, User A must re-select it and
then update it.

Pessimistic Locking

Understanding Record Locking 4-3

4.3.2 Business Functions and Pessimistic Locking

You might want to use pessimistic locking in a business function if the business
function updates a table. The table being updated should have a high potential for
record contention with another user or job. Remember that you should lock records for
as short a time as possible. Ensure that the select or fetch for an update occurs as
closely to the update as possible.

Pessimistic Locking

4-4 JD Edwards EnterpriseOne Tools APIs and Business Functions Guide

5

Debugging Business Functions 5-1

5Debugging Business Functions

This chapter contains the following topics:

■ Section 5.1, "Debugging"

■ Section 5.2, "Debugging Strategies"

■ Section 5.3, "Debug Logs"

■ Section 5.4, "Debugging Business Functions with Microsoft Visual C++"

5.1 Debugging
Debugging is the method you use to determine the state of your program at any point
of execution. Use debugging to help you solve problems and to test and confirm
program execution.

Use a debugger to stop program execution so you can see the state of the program at a
specific point. This enables you to view the values of input parameters, output
parameters, and variables at the specified point. When program execution is stopped,
you can review the code line-by-line to check such issues as flow of execution and data
integrity.

You use the Visual C++ Debugger to debug C business functions.

5.2 Debugging Strategies
You can use several strategies to make debugging faster and easier. Begin by
observing the nature of the problem.

5.2.1 Is the Program Ending Unexpectedly?
If the program is ending unexpectedly, the cause is likely an unhandled exception. An
unhandled exception is a failure to handle memory correctly. It is an easy problem to
track down if it is happening in the same place: simply set breakpoints at strategic
points throughout the code and run the program until you find the problem.

If other objects are missing, termination is more abrupt. Remember to transfer all
Media Object (also called Generic Text) objects correctly. If an application has a Row
exit to an application that does not exist, an unhandled exception in the program
occurs immediately.

Termination of the program is more abrupt and less helpful when other kinds of
objects are missing. You must review all of the pieces of the application to verify that
they are all present and correctly built. A common error is to overlook media objects. If
you cannot enter the program at all, a missing object is most likely the problem.

Debug Logs

5-2 JD Edwards EnterpriseOne Tools APIs and Business Functions Guide

Ensure that the program is terminating in the same place. If the program is failing to
restore memory after its use, the program might eventually have insufficient memory
to run. If so, you must reboot the workstation to restore memory.

5.2.2 Is the Output of the Program Incorrect?
Incorrect program output typically indicates a flaw within the logic of the code. To
help find the error:

■ Set a breakpoint in the code prior to the point where the bad output is produced.

■ Step through the ER line by line, while monitoring the values of relevant ER
variables.

At some point, a variable will probably take on an erroneous value that
subsequently produces incorrect output.

■ If that point occurs before your breakpoint, set another breakpoint earlier in the
code and restart the application.

■ Continue this process until you find the statement that is causing the wrong value
to be assigned to the variable.

5.2.3 Where Else Could the Problem Be Coming From?
Spend some time thinking about where the source of the problem might be. If you
don't know which ER event is causing an error, try to isolate it. For example, you
might be able to temporarily disable the ER one event at a time to see if the error still
happens. You can try to repeat the processing of a single event by doing unnatural
actions in the GUI, like toggling up and down between grid rows to force the
execution of the Row Is Exited event. There are no predefined debugging strategies
that will work in any given situation. Be creative and be persistent, until you narrow
down the problem to its source.

5.3 Debug Logs
You can output to a file a log of SQL statements and events by changing the line in the
jde.ini file under [DEBUG] from Output = NONE to Output = FILE, as in the following
sample. This is a useful debugging tool when you have narrowed a problem to a
specific issue involving the JDEDB APIs.

[DEBUG]
TAMMULTIUSERON=0
Output=FILE
ServerLog=0
LEVEL=BSFN,EVENTS
DebugFile=c:\jdedebug.log
JobFile=c:\jde.log
Frequency=10000
RepTrace=0

You can set breakpoints and examine the code.

5.4 Debugging Business Functions with Microsoft Visual C++
This section provides an overview of the Microsoft Visual C++ debugger and
describes how to:

■ Debug business functions attached to interactive applications.

Debugging Business Functions with Microsoft Visual C++

Debugging Business Functions 5-3

■ Use SQL log tracing.

■ Use debug tracing.

5.4.1 Understanding the Visual C++ Debugger
You can use Microsoft Visual C++ to debug business functions that are written in C.
You can debug business functions that are attached to interactive applications or to
batch applications. The business function must be configured to run locally.

If you are debugging ER for business functions and C business functions, you can use
the JD Edwards EnterpriseOne debugger and the Visual C++ debugger together.
Follow the process until you log into JD Edwards EnterpriseOne. At that point, follow
the steps for the JD Edwards EnterpriseOne debugger. Program execution stops if C
code is accessed. You can then use Visual C++ to continue debugging. This method is
useful if you are trying to locate a problem and are not sure whether the problem is in
a C business function or in the application that calls the business function.

You must use the Microsoft Visual C++ Debugger to debug business functions that
were written with the Event Rules scripting language and then interpreted as C code,
or that were originally written in C . You can run the entire JD Edwards EnterpriseOne
system through the Visual C++ debugger (that is, you can start the activeConsole.exe
or JD Edwards Solution Explorer file from within the Visual C++ Debugger). This
enables you to step out of the tool application code into the business functions that are
called in the ER.

You can use the debugger to debug a C program and interactively stop and start it as
needed. During debugging, you can check specific values of variables and parameters
to determine whether a program is running correctly. You can also step through the
code to see what code is actually being executed.

The debug commands are listed in the Debug menu. You can customize the tool bar to
contain debug buttons, which you can use instead of the menu.

The Visual C++ has many features in the Debug menu. The Visual C++ debugger
helps you efficiently solve real-world problems.

5.4.1.1 The Go Command
You can run a program using the Go command from the Debug menu. The program
runs until completion unless you set up breakpoints.

5.4.1.2 The Step Command
The Step command is available on the Debug menu and executes the current line of
code. When the line of code has been executed, the yellow arrow cursor appears on the
next line of code to be executed.

5.4.1.3 The Step Into Command
You can access the Step Into command from the Debug menu. Use this command
when the current line of code contains a function call. The debugger steps into the
function so that it can be debugged line by line. When the function is complete, the
debugger returns to the next line of code after the function call in the calling routine. If
the source code of the function to be stepped into does not exist on the workstation,
the debugger skips over the line of code as though the Step command was used.

Stepping into a standard C function takes you into the function, which you might not
want to do. If so, use the Step Over command to skip those functions.

Debugging Business Functions with Microsoft Visual C++

5-4 JD Edwards EnterpriseOne Tools APIs and Business Functions Guide

5.4.1.4 Setting Breakpoints
You use breakpoints to run the program until it reaches a certain line of code. If a
breakpoint is set, the Go command runs the program until it encounters that line of
code.

You can set a breakpoint by placing the cursor anywhere on the line of code. When
you select Debug, Breakpoints, a red octagon appears to the left of the line of code
where the breakpoint is set. When the program is run, all lines of code up to the
breakpoint are executed. To continue execution after the breakpoint, you can use Step,
Step Into, or Go .

5.4.1.5 Using Watch
You can use Watch to inspect what values variables are set to. To use Watch, click the
item that you want to watch and drag it to the Watch window.

5.4.1.6 Locals Window
All local variables and parameters to a function are listed with their data types and
values in the Locals window. You can modify the values of all items in the Locals
window during debugging. This is useful if you are debugging infinite loops.

5.4.2 Understanding Visual C++ Debugger Tracing Utilities
Visual C++ has two tracing utilities that you might find valuable: SQL Log Tracing
and debug tracing. You can use SQL Log Tracing to help you determine the exact SQL
statement that is generated and sent to the database.

5.4.3 Debugging Business Functions Attached to Interactive Applications
To debug a business function attached to an interactive application:

1. Close the application.

The application must be closed to debug in Visual C++.

2. Open Visual C++ and verify that all work spaces have been closed.

3. Select File, Open.

4. Select List Files of Type to accept executables (.exe).

5. Select activConsole.exe on path \b9\System\bin32 and click the OK button.

The system creates a project work space.

6. Select Project, Settings.

7. Click the Debug tab.

8. In the Category list, select Additional DLLs.

9. Click the Browse button to select the CALLBSFN.dll (which must be built in debug
mode) or other appropriate DLL on path \b9\path\bin32, where path varies,
depending on the path code.

10. Click the OK button.

11. Select the .h and .c files for the source that you want to debug from and then select
File, Open.

12. To set breakpoints in the code, select Edit, Breakpoints.

If this message appears, click the OK button:

Debugging Business Functions with Microsoft Visual C++

Debugging Business Functions 5-5

cannot open *.pdb

If a message appears notifying you that breakpoints have been moved to the next
valid lines, a source code and object mismatch might exist, and you might need to
rebuild the business function.

13. Select Build, Start Debug, Go.

The JD Edwards EnterpriseOne sign-in window appears.

14. Sign in to the application as you normally would sign in.

15. Run the application.

When the application reaches the business function in debug, the debugger opens
or displays the C code in Visual C so that you can step through it.

5.4.4 Using SQL Log Tracing
This task is useful only for ODBC connections.

To use SQL Log tracing:

1. From the Control Panel on the workstation, select Administrative Tools, and then
Data Sources (ODBC).

2. Select the 32 bit ODBC driver, and then click the Tracing tab.

3. Specify when you want the system to trace.

4. Specify the log output path in the Log file Path.

5.4.5 Using Debug Tracing
To use debug tracing:

1. In the jde.ini file under [DEBUG], set Output=FILE.

2. Change the value for Level= to suit the specific debugging needs.

Possible values for Level are contained in the comment line following the Level=
line. Any combination is acceptable. Use commas to separate values.

Debugging Business Functions with Microsoft Visual C++

5-6 JD Edwards EnterpriseOne Tools APIs and Business Functions Guide

Glossary-1

Glossary

business function

A named set of user-created, reusable business rules and logs that can be called
through event rules. Business functions can run a transaction or a subset of a
transaction (check inventory, issue work orders, and so on). Business functions also
contain the application programming interfaces (APIs) that enable them to be called
from a form, a database trigger, or a non-JD Edwards EnterpriseOne application.
Business functions can be combined with other business functions, forms, event rules,
and other components to make up an application. Business functions can be created
through event rules or third-generation languages, such as C. Examples of business
functions include Credit Check and Item Availability.

business function event rule

See named event rule (NER).

business view

A means for selecting specific columns from one or more JD Edwards EnterpriseOne
application tables whose data is used in an application or report. A business view does
not select specific rows, nor does it contain any actual data. It is strictly a view through
which you can manipulate data.

checksum

A fixed-size datum computed from an arbitrary block of digital data for the purpose of
detecting accidental errors that may have been introduced during its transmission or
storage. JD Edwards EnterpriseOne uses the checksum to verify the integrity of
packages that have been downloaded by recomputing the checksum of the
downloaded package and comparing it with the checksum of the original package.
The procedure that yields the checksum from the data is called a checksum function or
checksum algorithm. JD Edwards EnterpriseOne uses the MD5 and STA-1 checksum
algorithms.

deployment server

A server that is used to install, maintain, and distribute software to one or more
enterprise servers and client workstations.

driver manager

The JDBC class that manages multiple registered JDBC drivers and dispatches
connection initialization requests to them. The Java driver manager class is
java.sql.DriverManager.

named event rule (NER)

Glossary-2

named event rule (NER)

Encapsulated, reusable business logic created using event rules, rather that C
programming. NERs are also called business function event rules. NERs can be reused
in multiple places by multiple programs. This modularity lends itself to streamlining,
reusability of code, and less work.

Index-1

Index

A
additional features

record locking, 4-1
API, common library, 2-1
API, database, 2-3
API, JDEBASE, 2-4

B
Business Function Builder, DLLs, 3-3
business functions

calling APIs from, 2-5
creating C business functions, 3-5
creating event rule business functions, 3-14
pessimistic record locking, 4-3

C
caches

calling JDECACHE APIs, 2-20
retrieving data from, 2-20
using cache business functions, 2-19
using programming standards, 2-19

callback functions, 2-11
Cdecl, 2-6
cursor, cache

closing, 2-29
moving, 2-27
opening, 2-26
resetting, 2-29

D
data structures

JDEDATE, 2-2
MATH_NUMERIC, 2-2

database locking, 4-1
DLLs, 3-3
DOM parser, 2-7

H
handles, 2-4

J
JDB_InitUser API, 2-23
JDEB_InitBhvr API, 2-20
JDEBase APIs, locking records, 4-2
jdeCacheAdd API, 2-20, 2-24, 2-26
jdeCacheCloseCursor API, 2-26, 2-29
jdeCacheDelete API, 2-28
jdeCacheDeleteAll API, 2-28
jdeCacheFetch API, 2-27
jdeCacheFetchPosition API, 2-27, 2-28, 2-29
jdeCacheFetchPositionByRef API, 2-29
JdeCacheGETNumCursors API, 2-17
jdeCacheGetNumRecords API, 2-17
jdeCacheInit API, 2-18, 2-23, 2-25
jdeCacheInitEx API, 2-18
jdeCacheInitMultipleIndex, 2-23
jdeCACHEINITMultipleIndex API, 2-20
jdeCacheInitMultipleIndex API, 2-18, 2-23
jdeCACHEINITMultipleIndexEx API, 2-20
jdeCacheInitMultipleIndexEx API, 2-18
jdeCacheInitMultipleIndexUser API, 2-18
jdeCacheInitUser API, 2-18
jdeCacheOpenCursor API, 2-20, 2-26
jdeCacheResetCursor API, 2-29
jdeCacheTerminate API, 2-24, 2-25
jdeCacheTerminateALL API, 2-25
jdeCacheUpdate API, 2-28
jdeCachInit API, 2-20
jdeCachInitEx API, 2-20
JDEDATE, 2-2
jde.ini

detecting record change, 4-1
JDEKRNL, 2-16

M
MATH_NUMERIC, 2-2

N
native locking strategy, 4-1
null pointer errors, 5-2

O
ODBC, 2-3

Index-2

optimistic locking, 4-1
output errors, 5-2

P
parsers

DOM, 2-7
SAX, 2-7

pessimistic locking
business functions, 4-3
overview, 4-2
transaction boundary, 4-2

R
record locking

JDEBase APIs, 4-2
native locking strategy, 4-1
optimistic locking, 4-1
pessimistic locking, 4-2

S
SAX parser, 2-7
Stdcall, 2-6

T
transaction boundary, pessimistic locking, 4-2

U
unhandled exception, 5-1

V
Visual Basic program, 2-7

W
workstation jde.ini, record change detection, 4-1

X
XercesWrapper, 2-7

	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Introduction to JD Edwards EnterpriseOne Tools: APIs and Business Functions
	1.1 APIs and Business Functions Overview
	1.2 APIs and Business Functions Implementation

	2 Working with APIs
	2.1 Understanding APIs
	2.1.1 API Fundamentals
	2.1.2 Common Library APIs
	2.1.2.1 MATH_NUMERIC Data Type
	2.1.2.2 JDEDATE Data Type

	2.1.3 Database APIs
	2.1.3.1 Standards and Portability
	2.1.3.2 JD Edwards EnterpriseOne ODBC
	2.1.3.3 Standard JDEBASE API Categories
	2.1.3.4 Connecting to a Database
	2.1.3.5 Understanding Database Communication Steps

	2.2 Calling APIs
	2.2.1 Calling an API from an External Business Function
	2.2.1.1 Stdcall Calling Convention
	2.2.1.2 Cdecl Calling Convention

	2.2.2 Calling a Visual Basic Program from JD Edwards EnterpriseOne Software

	2.3 Using the SAX Parser
	2.3.1 Understanding the SAX Parser
	2.3.2 Examples of SAX Parser Usage
	2.3.2.1 Example Context Data Structure
	2.3.2.2 Example Main Function
	2.3.2.3 Example Callback Functions

	2.3.3 Example of a SAX Parsing Sequence

	2.4 Working with JDECACHE
	2.4.1 Understanding Caching
	2.4.1.1 When to Use JDECACHE
	2.4.1.2 Performance Considerations

	2.4.2 Understanding the JDECACHE API Set
	2.4.2.1 JDECACHE Management APIs
	2.4.2.2 JDECACHE Manipulation APIs

	2.4.3 Understanding JDECACHE Standards
	2.4.3.1 Cache Business Function Source Description
	2.4.3.2 Cache Programming Standards

	2.4.4 Prerequisites
	2.4.5 Calling JDECACHE APIs
	2.4.6 Setting Up Indexes
	2.4.7 Initializing the Cache
	2.4.7.1 Example: Index Definition Structure

	2.4.8 Using an Index to Access the Cache
	2.4.8.1 Example: JDECACHE Internal Index Definition Structure

	2.4.9 Using the jdeCacheInit/jdeCacheTerminate Rule
	2.4.10 Using the Same Cache in Multiple Business Functions or Forms

	2.5 Working with JDECACHE Cursors
	2.5.1 Opening a JDECACHE Cursor
	2.5.2 Using the JDECACHE Data Set
	2.5.2.1 Cursor-Advancing APIs
	2.5.2.2 Non-Cursor-Advancing APIs

	2.5.3 Updating Records
	2.5.4 Deleting Records
	2.5.5 Using the jdeCacheFetchPosition API
	2.5.6 Using the jdeCacheFetchPositionByRef API
	2.5.7 Resetting the Cursor
	2.5.8 Closing the Cursor
	2.5.9 Using JDECACHE Multiple Cursor Support
	2.5.10 Using JDECACHE Partial Keys

	3 Using Business Functions
	3.1 Understanding Business Functions
	3.1.1 Components of a Business Function
	3.1.2 How Distributed Business Functions Work
	3.1.3 C Business Functions
	3.1.3.1 Header File Sections
	3.1.3.2 Example: Business Function Header File
	3.1.3.3 Source File Sections
	3.1.3.4 Example: Business Function Source File

	3.1.4 Business Function Event Rules

	3.2 Understanding Transaction Master Business Functions
	3.3 Building Transaction Master Business Functions
	3.3.1 Understanding Building Transaction Master Business Functions
	3.3.2 Begin Document
	3.3.2.1 Special Logic or Processing Required
	3.3.2.2 Hook Up Tips
	3.3.2.3 Common Parameters
	3.3.2.4 Application-Specific Parameters

	3.3.3 Edit Line
	3.3.3.1 Special Logic or Processing Required
	3.3.3.2 Typical Uses and Hookup
	3.3.3.3 Common Parameters

	3.3.4 Edit Document
	3.3.4.1 Special Logic or Processing Required
	3.3.4.2 Hook Up Tips
	3.3.4.3 Common Parameters
	3.3.4.4 Application-Specific Parameters

	3.3.5 End Document
	3.3.5.1 Hook-Up Tips
	3.3.5.2 Common Parameters
	3.3.5.3 Application-Specific Parameters

	3.3.6 Clear Cache
	3.3.6.1 Special Logic or Processing Required
	3.3.6.2 Common Parameters

	3.3.7 Cancel Document
	3.3.7.1 Special Logic or Processing Required
	3.3.7.2 Common Parameter

	3.4 Implementing Transaction Master Business Functions
	3.4.1 Single-Record Processing
	3.4.1.1 Interactive Program Flow Example
	3.4.1.2 Batch Program Flow Example

	3.4.2 Document Processing
	3.4.2.1 Program Flow Example

	3.5 Working with Master File Master Business Functions
	3.5.1 MBF Information Structure
	3.5.1.1 Standard Parameters for Single-Record Master Business Functions
	3.5.1.2 Application-Specific Control Parameters (Example: Address Book)
	3.5.1.3 Application Parameters (Example: Address Book)

	3.5.2 Master Business Function Impact on Performance

	3.6 Working with Business Functions
	3.6.1 Prerequisite
	3.6.2 Creating a Custom DLL
	3.6.3 Specifying a Custom DLL for a Custom Business Function

	3.7 Working with Business Function Builder
	3.7.1 Setting Build Options
	3.7.2 Reading Build Output
	3.7.2.1 Makefile Section
	3.7.2.2 Begin DLL Section
	3.7.2.3 Compile Section
	3.7.2.4 Link Section
	3.7.2.5 Rebase Section
	3.7.2.6 Summary Section

	3.7.3 Building All Business Functions
	3.7.4 Using the Utility Programs
	3.7.4.1 Resolving Errors with JDEBLC, Dumpbin, and PDB
	3.7.4.2 Customizing the Tools Menu
	3.7.4.3 Threadsafe Code
	3.7.4.4 Safety Check Usage
	3.7.4.5 Safety Check Output
	3.7.4.6 Safety Check Limitations

	3.7.5 Understanding Business Function Processing Failovers

	3.8 Working with Business Function Documentation
	3.8.1 Understanding Business Function Documentation
	3.8.2 Creating Business Function Documentation
	3.8.3 Viewing Documentation from Business Function Documentation Viewer

	4 Understanding Record Locking
	4.1 Record Locking
	4.2 Optimistic Locking
	4.3 Pessimistic Locking
	4.3.1 Using Pessimistic Locking Within a Transaction Boundary
	4.3.2 Business Functions and Pessimistic Locking

	5 Debugging Business Functions
	5.1 Debugging
	5.2 Debugging Strategies
	5.2.1 Is the Program Ending Unexpectedly?
	5.2.2 Is the Output of the Program Incorrect?
	5.2.3 Where Else Could the Problem Be Coming From?

	5.3 Debug Logs
	5.4 Debugging Business Functions with Microsoft Visual C++
	5.4.1 Understanding the Visual C++ Debugger
	5.4.1.1 The Go Command
	5.4.1.2 The Step Command
	5.4.1.3 The Step Into Command
	5.4.1.4 Setting Breakpoints
	5.4.1.5 Using Watch
	5.4.1.6 Locals Window

	5.4.2 Understanding Visual C++ Debugger Tracing Utilities
	5.4.3 Debugging Business Functions Attached to Interactive Applications
	5.4.4 Using SQL Log Tracing
	5.4.5 Using Debug Tracing

	Glossary
	Index
	A
	B
	C
	D
	H
	J
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

