
[1]JD Edwards EnterpriseOne Tools
Developing and Customizing Mobile Enterprise Applications
Guide

Release 9.1.x

E56635-08

December 2015

Provides an overview of Oracle Mobile Application
Framework (Oracle MAF) and describes the JD Edwards
EnterpriseOne-specific tools and environment required to
support the development of mobile enterprise applications
for EnterpriseOne.

JD Edwards EnterpriseOne Tools Developing and Customizing Mobile Enterprise Applications Guide,
Release 9.1.x

E56635-08

Copyright © 2014, 2015, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

iii

Contents

Preface .. ix

Audience.. ix
Documentation Accessibility .. ix
Related Documents .. ix
Conventions ... x

1 Understanding This Guide

2 Introduction to Mobile Enterprise Application Development

2.1 About the Runtime Architecture for EnterpriseOne Mobile Enterprise Applications 2-1
2.2 About Oracle Mobile Application Framework... 2-2
2.3 Understanding Developing Custom Mobile Enterprise Applications

for EnterpriseOne ... 2-2
2.3.1 JDE Mobile Helpers ... 2-3
2.3.2 The Data Model.. 2-4
2.3.3 Form Service Requests .. 2-4
2.3.4 EnterpriseOne Rest Services Interface .. 2-4
2.4 Sample Application .. 2-5
2.5 Mobile Application Archives .. 2-5

3 Getting Started

3.1 Certifications (Formerly Known as Minimum Technical Requirements) 3-1
3.2 Prerequisites... 3-1
3.3 Installing the AIS Client Class Generator Extension for JDeveloper 3-2

4 Setting Up the Login and Logout

4.1 Before You Begin... 4-1
4.2 Setting Up the Login Module.. 4-1
4.2.1 Pointing to the Login.jar ... 4-2
4.2.2 Making the Login Module the First Feature in Your Mobile Application 4-2
4.2.3 Verifying the LifeCycleListenerImpl Activation... 4-2
4.2.4 Setting the defaultFeature .. 4-2
4.2.5 Overriding the Login Values from Your Mobile Application....................................... 4-3
4.3 Configuring the Logout ... 4-3

iv

5 Building the Data Model

5.1 Understanding the Data Model .. 5-1
5.2 Configuring the AIS Client Class Generator... 5-1
5.3 Generating Data Classes Based on a Form.. 5-2

6 Performing AIS Form Service Calls

6.1 Understanding JD Edwards EnterpriseOne Mobile Framework APIs 6-1
6.2 Understanding AIS Server Capabilities... 6-1
6.3 Understanding Form Service Requests.. 6-3
6.3.1 Overview... 6-4
6.3.2 Events Used in a Form Service Request ... 6-4
6.3.3 Using the Form Service Request Event in FDA... 6-5
6.3.4 Placing Events in the Proper Order .. 6-5
6.3.5 Considering Hidden Filters and Hidden QBE .. 6-5
6.3.6 Events on Power Forms .. 6-5
6.3.7 Control ID Notation for Return Control IDs ... 6-5
6.3.8 Example of JSON Code in a Form Service Request .. 6-6
6.3.9 Example of API Methods for a Form Service Request .. 6-10
6.3.10 Grid Action Events ... 6-11
6.3.10.1 Example of Grid Action Events .. 6-12
6.3.11 Query Events (Release 9.1 Update 5.2) .. 6-31
6.3.11.1 Query Object Parameters.. 6-32
6.3.11.2 Query Object Examples .. 6-33
6.4 Understanding Batch Form Service... 6-36
6.4.1 Batch Form Service - JSON Input and Output ... 6-36
6.4.2 Implementing the Batch Form Service... 6-41
6.4.2.1 Batch Request Parent Class .. 6-41
6.4.2.2 Performing a Batch Form Request .. 6-41
6.5 Working with the EnterpriseOne REST Services Interface.. 6-43
6.5.1 Using a REST Services Client to Interact with AIS .. 6-44
6.5.1.1 Form Request Attributes .. 6-46
6.5.1.2 Calling FormService on Local EnterpriseOne HTML (JAS) Server

through the AIS Server ... 6-48
6.6 Understanding Text Media Object Attachments... 6-49
6.6.1 gettext Service.. 6-49
6.6.2 updatetext Service... 6-50
6.6.3 JDEMobileFramework API Methods for Managing Text Media Objects................. 6-51
6.7 Understanding URL Media Object Attachments (Release 9.1 Update 5.2) 6-53
6.8 Understanding the Media Object API for Photo Media Object Attachments................. 6-55
6.8.1 List .. 6-55
6.8.2 Download... 6-57
6.8.3 Upload .. 6-58
6.8.4 Delete .. 6-60
6.9 Understanding Processing Options .. 6-60
6.9.1 Using the AIS Service for Processing Options in Your Mobile Application............ 6-61
6.10 Understanding the Application Stack Service (Tools Release 9.1 Update 5) 6-63
6.10.1 Service Endpoint ... 6-63

v

6.10.2 Capability... 6-63
6.10.3 Prerequisite .. 6-63
6.10.4 JSON Example of an Application Stack Request ... 6-63
6.10.4.1 Open Application: Request and Response... 6-64
6.10.4.2 Execute Actions on Application: Request and Response 6-65
6.10.4.3 Adding a Phone Number ... 6-66
6.10.4.4 Execute Close Application: Request and Response.. 6-67
6.10.4.5 Mobile Application Example ... 6-68
6.10.5 ApplicationStack Methods .. 6-73
6.10.6 ApplicationStackResponse Methods ... 6-73

A Creating a Sample Mobile Application

A.1 Before You Begin.. A-1
A.2 Creating the Sample Address Book Mobile Application ... A-2
A.2.1 Creating a New Mobile MAF Application.. A-2
A.2.2 Running the Mobile Application in the Simulator .. A-5
A.3 Using the JDE Mobile Helpers ... A-7
A.3.1 Including the JDEMobileFramework.jar ... A-7
A.3.2 Including the Login.jar... A-8
A.3.3 Including the Javascript and CSS ... A-10
A.3.4 Including the Resource Bundle... A-11
A.3.5 Including Logo Images .. A-12
A.3.6 Enabling the Custom Springboard... A-14
A.3.7 Including the about.properties ... A-15
A.3.8 Including an End User License Agreement (EULA) ... A-16
A.4 Connecting to the EnterpriseOne Application Interface Services (AIS) Server.............. A-20
A.5 AIS Client Class Generator ... A-21
A.6 Reading EnterpriseOne Data.. A-21
A.7 Implementing Filter Fields ... A-30
A.8 Page Navigation and Getting More Details ... A-32
A.9 Updating Data in EnterpriseOne... A-36
A.9.1 Handling Errors .. A-38
A.10 Device Integration.. A-40

B Extending Mobile Application Archives

B.1 Before You Begin.. B-1
B.2 Understanding Mobile Application Archives .. B-2
B.3 Generating a New Application from the Deployment Profile .. B-2
B.4 Customization Options ... B-7
B.4.1 Customizing the Application Icons and Splash Screens... B-8
B.4.2 Customizing the Brand Images .. B-10
B.4.3 Customizing the End User License Agreement (EULA)... B-11
B.4.4 Customizing the About Page .. B-11
B.4.5 Customizing the Pages... B-12
B.5 Extension Options.. B-12
B.5.1 Displaying Additional Data .. B-12

vi

B.5.2 Removing Data from Pages... B-19
B.5.3 Adding New Pages... B-19

vii

viii

List of Examples

6–1 Requesting fields and grid columns on a traditional form... 6-6
6–2 Requesting main form fields, subform fields, main form grid columns, and subform grid

columns. 6-6
6–3 Executing EnterpriseOne Actions - JSON ... 6-6
6–4 Executing EnterpriseOne Actions - JSON Response.. 6-7
6–5 API Methods for Setting Commands .. 6-10
6–6 Selecting Grid Rows - JSON ... 6-12
6–7 Selecting Grid Rows - JSON Response ... 6-13
6–8 Selecting Grid Rows - MAF Application Code.. 6-16
6–9 Insert Rows - JSON .. 6-17
6–10 Insert Rows - JSON Response .. 6-18
6–11 Insert Rows - MAF Application Code... 6-22
6–12 Update Rows - JSON ... 6-24
6–13 Update Rows - JSON Response ... 6-26
6–14 Update Rows - MAF Application Code.. 6-30
6–15 Example of Control ID and Business View Information Displayed under Advanced

Options in the EnterpriseOne Web Client Item Help 6-32
6–16 Query - JSON.. 6-33
6–17 Query - Mobile Framework API ... 6-35
6–18 JSON Input in a Batch Form Service ... 6-36
6–19 JSON Output in a Batch Form Service .. 6-37
6–20 Batch Request Parent Class... 6-41
6–21 Batch Form Request ... 6-42
6–22 Acceptable Input for the defaultconfig Service on JSON... 6-44
6–23 Acceptable Input for the tokenrequest Service in JSON .. 6-45
6–24 Acceptable Input for the tokenrequest Service in JSON Response................................... 6-46
6–25 Form Request.. 6-47
6–26 gettext Service Input .. 6-49
6–27 gettext Service Response... 6-50
6–28 Update Text Service Input .. 6-50
6–29 Update Text Service Response ... 6-51
6–30 Get Example.. 6-51
6–31 Append Example ... 6-52
6–32 Update Example... 6-52
6–33 URL Media Object - JSON Request and Response.. 6-54
6–34 URL Media Object - Mobile Framework API .. 6-54
6–35 Open Application - Request ... 6-64
6–36 Open Application - Response... 6-64
6–37 Execute Actions on Application - Request ... 6-65
6–38 Execute Actions on Application - Response .. 6-65
6–39 Adding a Phone Number - Request .. 6-66
6–40 Execute Close Application - Request .. 6-67
6–41 Execute Close Application - Response.. 6-67
A–1 Using the Verbatim Tag to Include HTML .. A-17
B–1 Adding Additional Data to the Supplier Search Mobile Application.............................. B-12

ix

Preface

Welcome to the JD Edwards EnterpriseOne Tools Developing and Customizing Mobile
Enterprise Applications Guide.

Note: This guide has been updated for JD Edwards EnterpriseOne
Tools Release 9.1 Update 5. For details on documentation updates,
refer to the JD Edwards EnterpriseOne Tools Net Change for Tools
Documentation Library.

Audience
This guide is intended for application developers who are responsible for creating or
customizing EnterpriseOne mobile enterprise applications.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Related Documents
For more information about Oracle MAF and EnterpriseOne mobile enterprise
applications, see the following documents:

■ Oracle Fusion Middleware Developing Mobile Applications with Oracle Mobile
Application Framework documentation:

http://docs.oracle.com/middleware/maf210/mobile/index.html

■ JD Edwards EnterpriseOne Application Interface Services Server for Mobile Enterprise
Applications Configuration Guide

■ JD Edwards EnterpriseOne Applications Mobile Enterprise Applications Implementation
Guide

x

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

1

Understanding This Guide 1-1

1Understanding This Guide

Use this guide as a companion guide to the Oracle Fusion Middleware Developing Mobile
Applications with Oracle Mobile Application Framework Guide, which describes how to
develop mobile applications using Oracle Mobile Application Framework (MAF).
Oracle MAF is the framework used to create mobile enterprise applications for JD
Edwards EnterpriseOne. You can access the Oracle MAF guide here:

http://docs.oracle.com/middleware/maf210/mobile/develop-maf/toc.htm

The JD Edwards EnterpriseOne Tools Developing and Customizing Mobile Enterprise
Applications Guide includes:

■ An overview of the environment required for developing EnterpriseOne mobile
enterprise applications, which includes Oracle MAF and JD Edwards
EnterpriseOne-specific extensions and tools, referred to as JDE Mobile Helpers.

See Chapter 2, "Introduction to Mobile Enterprise Application Development" for
more information.

■ How to use the JDE Mobile Helpers with Oracle MAF to create custom
EnterpriseOne mobile enterprise applications.

See the following chapters for more information:

– Chapter 3, "Getting Started"

– Chapter 4, "Setting Up the Login and Logout"

– Chapter 5, "Building the Data Model"

– Chapter 6, "Performing AIS Form Service Calls"

■ Step-by-step instructions on how to create a sample application, including how to
add features with JDE Mobile Helpers.

See Appendix A, "Creating a Sample Mobile Application."

■ How to use EnterpriseOne mobile application archives (MAAs) to generate mobile
application binaries for internal distribution.

See Appendix B, "Extending Mobile Application Archives."

This guide also references JD Edwards EnterpriseOne Mobile Framework Java APIs
for developing custom mobile enterprise applications. Descriptions of these APIs can
be found in a Javadoc entitled JD Edwards EnterpriseOne Mobile Framework Java API
Reference.

1-2 Developing and Customizing Mobile Enterprise Applications Guide

2

Introduction to Mobile Enterprise Application Development 2-1

2Introduction to Mobile Enterprise Application
Development

[2]This chapter provides an overview of Oracle Mobile Application Framework (Oracle
MAF) and the JD Edwards EnterpriseOne-specific tools and environment required to
support the development of mobile enterprise applications (also simply referred to as
mobile applications) for EnterpriseOne.

This chapter contains the following topics:

■ Section 2.1, "About the Runtime Architecture for EnterpriseOne Mobile Enterprise
Applications"

■ Section 2.2, "About Oracle Mobile Application Framework"

■ Section 2.3, "Understanding Developing Custom Mobile Enterprise Applications
for EnterpriseOne"

■ Section 2.4, "Sample Application"

■ Section 2.5, "Mobile Application Archives"

2.1 About the Runtime Architecture for EnterpriseOne Mobile Enterprise
Applications

EnterpriseOne mobile enterprise applications require a light interface to manage
EnterpriseOne data from mobile devices. The Application Interface Services (AIS)
Server provides a JSON over REST interface to EnterpriseOne applications and forms
through the EnterpriseOne HTML Server. The AIS Server exposes this interface to
enable communication between mobile applications and EnterpriseOne.

The AIS Server includes support for JSON representation of Form Service Requests so
mobile applications can easily format requests. The AIS Server submits these mobile
application requests to the EnterpriseOne HTML Server.

The AIS Server maintains sessions for mobile applications. You can configure the
session timeouts for the AIS Server through Server Manager.

The following illustration shows how the AIS Server functions as the interface
between mobile applications and the EnterpriseOne HTML Server.

About Oracle Mobile Application Framework

2-2 Developing and Customizing Mobile Enterprise Applications Guide

Figure 2–1 Runtime Architecture for Mobile Enterprise Applications

2.2 About Oracle Mobile Application Framework
Oracle Mobile Application Framework (MAF) is a solution that enables you to create
mobile applications that run natively on both iOS and Android phones and tablets.
EnterpriseOne mobile enterprise applications are built using Oracle MAF.

You should gain a thorough understanding of Oracle MAF before reading further. See
the Oracle Fusion Middleware Developing Mobile Applications with Oracle Mobile
Application Framework Guide, which you can access here:

http://docs.oracle.com/middleware/maf210/mobile/develop-maf/toc.htm

2.3 Understanding Developing Custom Mobile Enterprise Applications
for EnterpriseOne

While Oracle provides many out-of-the-box EnterpriseOne mobile enterprise
applications, the applications may not meet your specific business requirements.
Therefore, Oracle provides a mobile application framework with tools that enable you
to develop custom mobile applications for EnterpriseOne.

Also, if you have customized EnterpriseOne applications to meet your specific
business requirements, you can extend the functionality of the mobile applications to
interact with the customized EnterpriseOne applications. The mobile application
framework enables you to extend data from custom EnterpriseOne applications to
custom mobile applications by using existing business logic within your
EnterpriseOne applications.

Before you develop custom mobile applications, you should plan all aspects of the
process. The "About Developing Applications with Oracle Mobile Application
Framework" section in the Oracle Fusion Middleware Developing Mobile Applications with
Oracle Mobile Application Framework Guide provides a high-level description of activities
that you should perform when building an MAF application. These activities include
gathering requirements, designing, developing, deploying, testing and debugging,
securing, enabling access to the server-side data, redeploying, retesting and
debugging, and publishing. When developing custom EnterpriseOne mobile
applications, pay special attention to the following activities:

Understanding Developing Custom Mobile Enterprise Applications for EnterpriseOne

Introduction to Mobile Enterprise Application Development 2-3

■ Designing. Determine which forms in EnterpriseOne the mobile application will
access data from. If there are multiple forms, consider creating a batch request to
gather data from multiple forms.

■ Developing. Use the JD Edwards EnterpriseOne Mobile Framework APIs, Login
Module, and JDE Mobile Helpers to help expedite the development of your
mobile application. Refer to Appendix A, "Creating a Sample Mobile Application"
in this guide for an example of how to develop a custom mobile application for
EnterpriseOne using these utilities.

■ Securing. The Login Module handles the authentication of EnterpriseOne mobile
enterprise application users.

■ Publishing. This is an important aspect of your deployment plan, as it typically
involves publishing to an enterprise server, Apple App Store, or Google Play.

2.3.1 JDE Mobile Helpers
Oracle provides additional tools referred to as JDE Mobile Helpers that help simplify
the development of mobile enterprise applications. JDE Mobile Helpers include:

■ JDEMobileFramework.jar

This JAR file contains the JD Edwards EnterpriseOne Mobile Framework APIs, a
set of classes and API methods that enable the mobile application to manage
(create, read, update, delete) data in EnterpriseOne through REST services.

■ AIS Client Class Generator

The AIS Client Class Generator is a JDeveloper extension that enables you to
generate Application Controller foundational classes that are required by
EnterpriseOne mobile applications.

■ Login.jar

The Login.jar provides a configuration page, login page, and a springboard. The
springboard contains links to Legal Terms or the End User License Agreement
(EULA), About information, and the Logout.

■ about.properties

This file is for configuring information displayed on the About page, including the
application name, application version, and the application ID (which is part of
enabling the application with EnterpriseOne application security). If you enable
the springboard, you should provide these values so that they will appear on the
about page.

■ Resource Bundle

The Resource Bundle contains text resources for the pages provided in the
Login.jar.

■ Javascript (JS) files and CSS files

The Javascript and CSS files are dependencies of the JDEMobileFramwork.jar and
the Login.jar. The Javascript provides an animated icon to show that the mobile
application is processing while service calls are made. The CSS provides an
extension to the styling skin provided by Oracle MAF. It enables you to make
adjustments to the style of the configuration, login, and springboard pages of your
mobile application.

Understanding Developing Custom Mobile Enterprise Applications for EnterpriseOne

2-4 Developing and Customizing Mobile Enterprise Applications Guide

2.3.2 The Data Model
The data model for developing mobile enterprise applications includes foundation
classes that hold the data retrieved from AIS services. These classes are specific to the
EnterpriseOne applications accessed by a mobile enterprise application. In JDeveloper,
you can include the classes in the Application Controller or the View Controller.

You use the AIS Client Class Generator to generate classes for the Application
Controller and View Controller. To generate data classes for a form, in the AIS Client
Class Generator, you define the service request information by identifying the form
and the CRUD (create, read, update, delete) operation that you want the application
form to perform.

2.3.3 Form Service Requests
AIS Server calls are used to retrieve data from forms in the EnterpriseOne web client.
These calls are referred to as form service requests. Mobile applications use form
service requests to interact with EnterpriseOne web client forms. Form service
requests, formatted as REST service calls that use POST, contain form service events or
commands that invoke actions on an EnterpriseOne form.

By sending an ordered list of commands, a form service request can replicate the
actions taken by an EnterpriseOne web client user, including populating fields,
pressing buttons, and other actions. The form service request enables you to perform
various operations on a single form. The URL for the form service request is:

http://<aisserver>:<port>/jderest/formservice

2.3.4 EnterpriseOne Rest Services Interface
The following illustration shows JSON input and output over HTTP Post:

Figure 2–2 AIS Client and Server Communication

This illustration shows the communication from the client (which can be a mobile
device or other AIS client) to the AIS Server and the AIS Server's communication with
the EnterpriseOne HTML server, where the EnterpriseOne forms run and the data is
gathered. All client communication uses JSON formatted strings.

You can make REST calls directly to the AIS Server without using the JDE Mobile
Framework APIs. Use a REST service testing tool to call AIS services directly by

Mobile Application Archives

Introduction to Mobile Enterprise Application Development 2-5

sending JSON text to the URL for the service. All services are accessed using URLs
with this format: http://<aisserver>:port/jderest/<uri>, where uri is the path to
the various types of services such as formservice, file, defaultconfig, and poservice. For
a list of all services that are available on the AIS Server, see Working with the
EnterpriseOne REST Services Interface in this guide.

2.4 Sample Application
This guide includes an appendix that provides step-by-step instructions on how to
create a sample EnterpriseOne mobile application. As you read about the JDE Mobile
Helpers and other features in this guide, you can refer to the steps in this appendix to
see an example of how the features are used in the development of a mobile
application.

2.5 Mobile Application Archives
Oracle provides mobile applications archives, which you can use to create your own
iOS and Android artifacts. This enables you to integrate and control mobile
applications internally within your company rather than connecting to a public
application store.

You can create your own iOS or Android artifact by generating the mobile application
from a mobile application archive (MAA), customizing it, and then publishing it as
your own "new" mobile application.

Mobile Application Archives

2-6 Developing and Customizing Mobile Enterprise Applications Guide

3

Getting Started 3-1

3Getting Started

[3]This chapter refers to certifications (MTRs) and prerequisites for developing and
running EnterpriseOne mobile enterprise applications.

This chapter contains the following topics:

■ Section 3.1, "Certifications (Formerly Known as Minimum Technical
Requirements)"

■ Section 3.2, "Prerequisites"

■ Section 3.3, "Installing the AIS Client Class Generator Extension for JDeveloper"

3.1 Certifications (Formerly Known as Minimum Technical Requirements)
Customers must conform to the supported platforms for the release, which can be
found in the Certifications tab on My Oracle Support: https://support.oracle.com.

For more information about JD Edwards EnterpriseOne Minimum Technical
Requirements, see the following document on My Oracle Support: JD Edwards
EnterpriseOne Minimum Technical Requirements Reference (Doc ID 745831.1), which
is available here:

https://support.oracle.com/epmos/faces/DocumentDisplay?id=745831.1

3.2 Prerequisites
To develop custom mobile applications, you must complete the following
prerequisites:

■ You must be running a minimum of EnterpriseOne Tools release 9.1.4.6 with an
EnterpriseOne AIS Server configuration. The AIS Server enables communication
between mobile enterprise applications and EnterpriseOne.

See the JD Edwards EnterpriseOne Application Interface Services Server for Mobile
Enterprise Applications Configuration Guide.

■ Download the JDE_Mobile_Framework_2.1.0 package from the JD Edwards
Update Center on My Oracle Support (https://support.oracle.com/). In the
Update Center, enter "EnterpriseOne Mobile Enterprise Applications" in the Type
field to locate the package.

This package contains the JDE_MobileFramework_2.1.zip file, which contains the
following files:

– JDEMobileFramework.jar (JD Edwards EnterpriseOne Mobile Framework
APIs)

Installing the AIS Client Class Generator Extension for JDeveloper

3-2 Developing and Customizing Mobile Enterprise Applications Guide

– jdemfResourceBundle.xlf (resource bundle)

– Login.jar (Login Module)

– Javascript and CSS files.

– about.properties

– AISCGE 12c_v1.6.1.zip (AIS Client Class Generator extension for JDeveloper)

The package also contains the following files:

– maf-2.1100.20150325-1239-RELEASE.zip

This contains the Oracle MAF extension for JDeveloper, which is required to
develop and customize mobile enterprise applications. In JDeveloper, you can
install this file by selecting the "Install from Local File" option in the Check for
Updates Wizard.

– JDEMobileSampleApplication.zip

This is an optional file that contains the components for running a sample
mobile application. Appendix A, "Creating a Sample Mobile Application" in
this guide describes how to create this sample mobile application. You can use
this sample mobile application download for comparison purposes.

Important: The Update Center also contains the previous version of
this package, JDE_Mobile_Framework_2.0.1. If you previously
installed this version and plan on using the sample mobile application
or mobile application archives, see the "Before You Begin" in the
following appendixes for important component compatibility
information:

Appendix A, "Creating a Sample Mobile Application"

Appendix B, "Extending Mobile Application Archives"

■ Complete the prerequisites listed in the Oracle MAF guide, which include:

– Oracle JDeveloper 12.1.3

– Oracle JDeveloper extension for Oracle MAF. Note: This extension is included
in the JDE_Mobile_FrameWork package as well.

– Prerequisites specific to the iOS platform and Android platform

See "Setting Up Development Tools for iOS Platform" in the Oracle Fusion
Middleware Developing Mobile Applications with Oracle Mobile Application Framework
Guide.

3.3 Installing the AIS Client Class Generator Extension for JDeveloper
The AIS Client Class Generator extension for JDeveloper contains the AIS Client Class
Generator, a tool that supports the creation of Application Controller foundational
classes that are required by EnterpriseOne mobile applications.

For more information about the AIS Client Class Generator, see Chapter 5, "Building
the Data Model" in this guide.

To install the extension:

1. In JDeveloper, select the Help menu, Check for Updates.

2. Click Next.

Installing the AIS Client Class Generator Extension for JDeveloper

Getting Started 3-3

3. Select Install From Local File, and then enter the location of the
maf-2.1100.20150325-1239-RELEASE.zip file. This file is part of the JDE_Mobile_
Framework download package.

4. Click Next, and then click Finish.

JDeveloper closes automatically.

Installing the AIS Client Class Generator Extension for JDeveloper

3-4 Developing and Customizing Mobile Enterprise Applications Guide

4

Setting Up the Login and Logout 4-1

4Setting Up the Login and Logout

[4]This chapter describes how to use the Login Module to manually configure the user
login and logout for a mobile application.

This chapter contains the following topics:

■ Section 4.1, "Before You Begin"

■ Section 4.2, "Setting Up the Login Module"

■ Section 4.3, "Configuring the Logout"

4.1 Before You Begin
Before you can set up the Login Module for your mobile application, you have to:

■ Create the mobile application in JDeveloper.

The instructions on how to create a sample application include the steps for
creating a new mobile application. See Section A.2.1, "Creating a New Mobile
MAF Application."

■ Configure the JDEMobileFramework.jar for the mobile application.

The sample application instructions include the JDEMobileFramework.jar
configuration steps as well. See Section A.3.1, "Including the
JDEMobileFramework.jar."

4.2 Setting Up the Login Module
The Login Module is provided in the Login.jar file.

Important: An Oracle MAF license is required in order to use the
Login.jar (Login Module) in production-ready mobile applications.

Setting up the Login Module includes the following tasks:

■ Pointing to the Login.jar

■ Making the Login Module the First Feature in Your Mobile Application

■ Verifying the LifeCycleListenerImpl Activation

■ Setting the defaultFeature

■ Overriding the Login Values from Your Mobile Application

Setting Up the Login Module

4-2 Developing and Customizing Mobile Enterprise Applications Guide

4.2.1 Pointing to the Login.jar
To point to the Login.jar:

1. In JDeveloper, click the Application drop-down and select Application
Properties.

2. Select Libraries and Classpath and then click the Add JAR/Directory button to
locate the Login.jar file on your local file system.

The Login.jar is part of the JDE_Mobile_Framework_1.0.0 download.

3. After you locate the Login.jar, click Open.

4. Click OK to save the properties.

4.2.2 Making the Login Module the First Feature in Your Mobile Application
To make the Login Module the first feature in your mobile application:

1. In the Application Resources panel, double-click the maf-application.xml to open
it.

2. Select the Feature References tab, and then click the green plus sign to add a
feature reference.

3. In the Id drop-down menu, select com.oracle.e1.jdemf.login and click OK.

4. Use the blue arrow to the right to move the login feature to the top of the list.

4.2.3 Verifying the LifeCycleListenerImpl Activation
You must verify that the LifeCycleListenerImpl is activated before setting the
defaultFeature or overriding your login values.

To do so:

1. In the Application Resources panel, under Descriptors > ADF META-INF, double
click maf-application.xml.

2. Select the Application tab and then click the magnifying glass next to Lifecycle
Event Listener.

3. Navigate to LifeCycleListenerImpl in the hierarchy, which should be:

application.LifeCycleListenerImpl

4. Click OK.

4.2.4 Setting the defaultFeature
You must set the default feature in your application so that the Login page can
successfully navigate to your default page.

To do so:

1. In the Projects panel, expand ApplicationController > Application Sources >
application, and double-click LifeCycleListenrImpl.java.

2. Locate a method that looks like the following method:

public void start()
{

// Add code here...
}

Configuring the Logout

Setting Up the Login and Logout 4-3

3. Replace the code in the method with the following code, where the value in quotes
is the Feature ID of your applications main feature:

public void start()
{

LoginConfiguration.setDefaultFeature("myfeatureId");
}

4.2.5 Overriding the Login Values from Your Mobile Application
While developing your mobile application, you typically run the mobile application
multiple times for testing. To make the testing process easier, you can override the
login values.

To do so:

1. On the LifeCycleListenrImpl.java page, locate a method that looks like the
following method:

public void start()
{

// Add code here...
}

2. Replace the code in the method with the following code, where the value in quotes
is the Feature ID of your applications main feature:

public void start()
{

LoginConfiguration.setCredentials("jde", "jde");

This code will override the user name and password on the login screen.
Depending on the values that you need to override, use one of the following
parameters to invoke this method:

■ LoginConfiguration.setCredentials(username, password);

■ LoginConfiguration.setCredentials(username, password, environment,
role);

■ LoginConfiguration.setCredentials(username, password, environment,
role, jasserver);

4.3 Configuring the Logout
This section describes how to manually configure the logout if you are not using the
springboard for the logout. The steps on how to use the springboard are located in the
section that describes how to create a sample mobile application. See Appendix A,
"Creating a Sample Mobile Application" for more information.

To configure the mobile application logout, you call the JDEmfUtilities.logout()
method. To enable your mobile application to call it, place this call in a method of your
DC class. This method returns the user to the login screen. When the default feature is
invoked after logging in again, it will be in a new state.

public static void logout(){
JDEmfUtilities.logout();
}

Configuring the Logout

4-4 Developing and Customizing Mobile Enterprise Applications Guide

To place a Logout button on your screen, regenerate your data control from your DC
class. You can now drag the item logout() onto your form.

5

Building the Data Model 5-1

5Building the Data Model

This chapter contains the following topics:

■ Section 5.1, "Understanding the Data Model"

■ Section 5.2, "Configuring the AIS Client Class Generator"

■ Section 5.3, "Generating Data Classes Based on a Form"

5.1 Understanding the Data Model
The data model for developing a mobile enterprise application includes foundation
classes that hold the data retrieved from AIS services. These classes are specific to the
EnterpriseOne applications accessed by a mobile enterprise application. You can
include the classes in the Application Controller or the View Controller.

You use the AIS Client Class Generator to generate classes for the Application
Controller and View Controller.

5.2 Configuring the AIS Client Class Generator
The AIS Client Class Generator is available as a JDeveloper extension. Before you
configure it, you must install the extension. See Chapter 3, "Getting Started" in this
guide for instructions on how to install the extension.

To configure the AIS Client Class Generator:

1. In JDeveloper, access Preferences:

On Microsoft Windows, select the Tools menu, Preferences.

On Mac, select the JDeveloper menu, Preferences.

2. Select AIS Client Class Generator.

3. On Preferences, complete the following fields to specify the AIS Server location
and AIS Server information:

■ AIS Server URL. This is a fully qualified URL to the AIS Server. Make sure it
ends with the port number of the AIS Server.

■ JAS Server URL. (Optional) Only enter a value if you want to override the
value configured on the AIS Server.

■ Username. Enter a JD Edwards EnterpriseOne user name.

■ Password. Enter a JD Edwards EnterpriseOne user password.

Generating Data Classes Based on a Form

5-2 Developing and Customizing Mobile Enterprise Applications Guide

■ Environment. (Optional) Enter a value only if you want to override the value
configured on the AIS Server.

■ Role. This is optional. Enter a value only if you want to override the value
configured on the AIS Server.

■ JSON Files Folder.

■ Default Java Classes Folder. The folder for storing generated Java files.

The AIS Client Class Generator uses this folder only when it is run without a
project open in JDeveloper. When a project is open in JDeveloper, the
generator stores the Java files in the source directory for the project at the
defined package path or the default package path which is
com.oracle.e1.formservicetypes.

■ Java Package. The Java package name for the generated classes. The default is
com.oracle.e1.formservicetypes.

4. Click OK.

5.3 Generating Data Classes Based on a Form
Use the AIS Client Class Generator to generate data classes for an EnterpriseOne form.
In the AIS Client Class Generator, you supply the service request information.

Note: The AIS Client Class Generator supports form interconnects
only; it does not support form events.

To use the AIS Client Class Generator to generate data classes:

1. In JDeveloper, in the mobile application that you created, select the
ApplicationController project.

JDeveloper will save the classes generated by the AIS Client Class Generator in
this location.

2. Select the Tools menu, AIS Client Class Generator.

3. On AIS Client Class Generator, complete the following fields to supply the service
request information:

■ Username. This contains the default value entered in the preferences.

■ Password. This contains the default value entered in the preferences.

■ Environment. This contains the default value entered in the preferences.

■ Role. This contains the default value entered in the preferences.

■ Application Name. Enter the name of the EnterpriseOne application.

■ Form Name. Enter the name of the EnterpriseOne application form.

■ Version. (Optional) Enter the version name. If you leave it blank, the generator
will use ZJDE0001 by default.

■ MaxPageSize. (Optional)

■ ReturnControlIDs. (Optional) Use this field to specify the exact fields on the
form that you want generated. The return control IDs can specify hidden
fields or a subset of fields.

■ FormInputs. (Optional)

Generating Data Classes Based on a Form

Building the Data Model 5-3

■ FormServiceAction. Enter the action to be performed. Valid values include:
Create, Read, Update, Delete.

■ FindOnEntry. (Optional)

■ DemoMode. (Optional, but recommended) This ensures at least one grid row
is present, so grid classes are generated even if there is no data in the database.

4. Make sure to select the Preview JSON Data and Keep JSON Files check boxes if
you want to preview and keep the JSON files.

5. Click the Generate button to generate the JSON, and then verify that it has the
fields and records you need.

6. Continue to generate the Java files. If successful, a confirmation message appears
that shows the location of the JSON files.

7. Highlight the Application Controller project and then click the "refresh" button to
display the new files.

The AIS Client Class Generator displays a dialog box that shows where the classes
are saved.

Generating Data Classes Based on a Form

5-4 Developing and Customizing Mobile Enterprise Applications Guide

6

Performing AIS Form Service Calls 6-1

6Performing AIS Form Service Calls

This chapter contains the following topics:

■ Section 6.1, "Understanding JD Edwards EnterpriseOne Mobile Framework APIs"

■ Section 6.2, "Understanding AIS Server Capabilities"

■ Section 6.3, "Understanding Form Service Requests"

■ Section 6.4, "Understanding Batch Form Service"

■ Section 6.5, "Working with the EnterpriseOne REST Services Interface"

■ Section 6.6, "Understanding Text Media Object Attachments"

■ Section 6.7, "Understanding URL Media Object Attachments (Release 9.1 Update
5.2)"

■ Section 6.8, "Understanding the Media Object API for Photo Media Object
Attachments"

■ Section 6.9, "Understanding Processing Options"

■ Section 6.10, "Understanding the Application Stack Service (Tools Release 9.1
Update 5)"

6.1 Understanding JD Edwards EnterpriseOne Mobile Framework APIs
The JD Edwards EnterpriseOne Mobile Framework APIs provide Java classes and
methods that enable users to call the REST services on the AIS Server. There are APIs
that handle login authentication and authorization with the AIS Server, APIs for form
service requests and media objects, as well as APIs for retrieving processing option
values.

The JD Edwards EnterpriseOne Mobile Framework APIs have a dependency on Oracle
MAF. They do not function outside of an Oracle MAF environment.

See the Prerequisites section in this guide for information on how to obtain the APIs
and the JD Edwards EnterpriseOne Mobile Framework Java API Reference Javadoc.

6.2 Understanding AIS Server Capabilities
The AIS Server exposes various capabilities that client applications may or may not
depend on. If your mobile application requires a certain capability, you must include it
in the list of required capabilities in the about.properties file.

If you indicated in the about.properties file that you have a required capability, the
Login module verifies that capability is available when the mobile application

Understanding AIS Server Capabilities

6-2 Developing and Customizing Mobile Enterprise Applications Guide

launches. If the capability is not available, the application returns an error message. If
the capability is available, the application continues to the login screen.

You can access the AIS Server capabilities using the following URL:

http://<AIS Server>:<Port>/jderest/defaultconfig

The following code shows the available capabilities along with a description of each
capability:

"capabilityList": [
{

"name": "grid",
"shortDescription": "Grid Actions",
"longDescription": "Ability to update, insert and delete grid

records.",
"asOfRelease": "9.1.4.4"

},
{

"name": "editable",
"shortDescription": "Enabled/Disabled",
"longDescription": "Ability to indicate if form field or grid cell is

editable (enabled) or not (disabled).",
"asOfRelease": "9.1.4.4"

},
{

"name": "log",
"shortDescription": "Logging",
"longDescription": "Endpoint exposed for logging to AIS server log

from client",
"asOfRelease": "9.1.4.6"

},
{

"name": "processingOption",
"shortDescription": "Processing Options",
"longDescription": "Processing Option Service exposed for fetching PO

values from E1",
"asOfRelease": "9.1.4.6"

},
{

"name": "ignoreFDAFindOnEntry",
"shortDescription": "Ignore FDA Find On Entry",
"longDescription": "Ability to use the IgnoreFDAFindOnEntry flag",
"asOfRelease": "9.1.4.6"

}
{

"name": "selectAllGridRows",
"shortDescription": "Select or Unselect All Grid Rows",
"longDescription": "Ability to use select and unselect all grid rows,

or unselect a single row in an action event.",
"asOfRelease": "9.1.5"

},
{

"name": "applicationStack",
"shortDescription": "Operations on a Stack of E1 Applications",
"longDescription": "Ability to maintain a statck of open E1

applications and operate forms that are called",
"asOfRelease": "9.1.5"

},
{

"name": "thumbnailSize",
"shortDescription": "Specify desired thumbnail size for MO List",

Understanding Form Service Requests

Performing AIS Form Service Calls 6-3

"longDescription": "Ability to request a specific sized thumbnail
images in a Media Object List Request",

"asOfRelease": "9.1.5"
},
{

"name": "gridCellClick",
"shortDescription": "Click Grid Cell Hyperlink",
"longDescription": "Ability to use GridCellClick event, to execute

hyperlink in grid.",
"asOfRelease": "9.1.5.2"

},
{

"name": "query",
"shortDescription": "Query",
"longDescription": "Ability to use Query on forms that support it",
"asOfRelease": "9.1.5.2"

},
{

"name": "urlMediaObjects",
"shortDescription": "URL Media Objects",
"longDescription": "Ability to view, add or delete url type media

objects",
"asOfRelease": "9.1.5.2"

}
],

The following example shows the grid and editable capabilities listed in the
about.properties:

6.3 Understanding Form Service Requests
This section contains the following topics:

■ Overview

■ Events Used in a Form Service Request

■ Using the Form Service Request Event in FDA

■ Placing Events in the Proper Order

■ Considering Hidden Filters and Hidden QBE

■ Events on Power Forms

■ Example of JSON Code in a Form Service Request

■ Example of API Methods for a Form Service Request

■ Grid Action Events

■ Query Events (Release 9.1 Update 5.2)

Understanding Form Service Requests

6-4 Developing and Customizing Mobile Enterprise Applications Guide

6.3.1 Overview
AIS Server calls that retrieve data from forms in the EnterpriseOne web client are
referred to as form service requests. Mobile applications use form service requests to
interact with EnterpriseOne web client forms. Form service requests, formatted as
REST service calls that use POST, contain form service events or commands that
invoke actions on an EnterpriseOne form.

A form service request enables you to perform various operations on a single form. By
sending an ordered list of commands, a form service request can replicate the actions
taken by an EnterpriseOne web client user, including populating fields, pressing
buttons, and other actions.

To send a form service request to the AIS Server, send a POST to the following URL
and send JSON in the body:

http://<AIS Server>:<Port>/formservice

If testing with a REST testing tool, you can send JSON directly. If using the JDE Mobile
Helpers in a mobile application, you need to specify only the URI when calling the
jdeRestServiceCall. The URI is "formservice" and you can use the static variable, for
example:

JDERestServiceProvider.FORM_SERVICE_URI

6.3.2 Events Used in a Form Service Request
The following table lists the events that you can include in a form service request and
describes the action that each event performs.

Event Description Parameters (and example values)

Set Control value Sets the value of a control on a form,
like filter fields or any other form
control.

controlID ("25")

value ("Bob" or "01/01/2015")

Set QBE Value Sets the value of a QBE column. controlID ("1[42]" or "1_2[25]")

value ("Jill" or "55")

Set Checkbox Value Sets the value of a check box. controlID ("77")

value ("on" or "off")

Set Radio Button Sets the value of the radio button. controllID ("87")

value ("87")

Set Combo Value Sets the value of a combo box entry. contolID ("125")

value (2) - Index of the entry.

Do Action Presses a button or Hyper Item. controlID ("156")

Select Row Selects the specified row in a grid. controlID ("1.30") - ID of the grid, dot (.),
row index (zero based).

Select All Rows (Release
9.1 Update 5)*

Select all rows in the specified grid (if
multiple selection is allowed).

controlID ("1") - ID of the grid.

Un Select All Rows
(Release 9.1 Update 5)*

Deselects all rows in the specified grid
(if multiple selection is allowed).

controlID ("1") - ID of the grid.

Un Select Row (Release
9.1 Update 5)*

Deselects the specified row in a grid. controlID ("1.30") - ID of the grid, dot (.),
row index (zero based).

Click Grid Cell** (Release
9.1 Update 5.2)

Clicks the hyperlink in a grid cell if the
cell is enabled as a link.

controlID ("1.5.22") - ID of the grid, dot (.),
row index, dot (.), grid column ID.

Understanding Form Service Requests

Performing AIS Form Service Calls 6-5

*These events are available only with the selectAllGridRows capability which is
available starting with EnterpriseOne Tools 9.1 Update 5. The JDEMobileFramework
API requires these events to be in a try block because they throw a Capability
Exception.

**This event is available only with the gridCellClick capability, which is available
starting with EnterpriseOne Tools 9.1 Update 5.2.

6.3.3 Using the Form Service Request Event in FDA
Starting with EnterpriseOne Tools release 9.1.4, the Form Service Request event is
available within FDA for each form. This event occurs after the Post Dialog Initialized
event, but before any of the form actions requested in the form service call execute.
This event enables you to perform some operations, or business logic, when you know
the form that is being called from a form service request.

This event also provides access to the requested form service actions, referred to as
CRUD (Create, Read, Update, or Delete) actions, by using the "Get Form Service
Request Action" system function. This enables you to create additional logic based on
the value sent in the form service request.

Using the Form Service Request event in FDA should be secondary to using events
(actions) provided in the Form Service Request from the mobile application. Oracle
recommends that you only use the FDA event if you cannot accomplish a desired
result with the form action events.

6.3.4 Placing Events in the Proper Order
Place the events in the form service request in the order you want them to execute, for
example, populate a filter field value and then press the Find button. Remember that
the FDA Form Service Request event occurs before the events you add to this list. Do
not set the "Find On Entry" option when using the event model; the extra "find" is not
necessary because it executes before the events you requested.

6.3.5 Considering Hidden Filters and Hidden QBE
By default, values are not written to hidden filter fields or hidden QBE columns. You
must use the Form Service Request event to show the fields and columns first. Then
values can be written to these fields and subsequently applied to the query.

6.3.6 Events on Power Forms
The Form Service Request event and other events that perform actions in a form are
also available on power forms so that you can populate a subform value or press a
button on a subform.

6.3.7 Control ID Notation for Return Control IDs
You can use the Property Browser in FDA to identify control IDs for fields on each
EnterpriseOne form. You can also find control IDs using the Item Help option in the
form in the EnterpriseOne web client. In the EnterpriseOne web client form, click the
Help button (question mark in the upper right corner of a form) and then click the
Item Help option to access field-level help. With the field level help activated, you can
click in a field or column to access the control ID and business view information,
which is displayed under the Advanced Options section.

For fields on the main form, the control ID will be a single value, such as 25.

Understanding Form Service Requests

6-6 Developing and Customizing Mobile Enterprise Applications Guide

Grids also have control IDs. For a traditional form, the grid ID is usually 1. For power
forms, subforms, and reusable subforms the grid ID is typically a value other than 1.

The columns within a grid also have unique IDs and are often referenced in
conjunction with the grid ID. For example column 28 and 29 in grid 1 would be
1[28,29].

Power forms have more complex IDs. The fields on the main power form are
represented with single values. The fields on a subform are complex with an
underscore separating them. So field 6 on subform 12 is 12_6. The ID of a re-usable
subform is available when viewing the power form that the subform is used on. The
IDs of individual fields, a grid, or columns on a re-usable subform is shown in FDA
when viewing the subform directly; you cannot get these values when viewing the
subform alias.

The returnControlIDs string is bar delimited, without a starting or ending bar.

Example 6–1 Requesting fields and grid columns on a traditional form.

formRequest.setReturnControlIDs("19|20|60|125|1[45,49,88]");

In this example, 19|20|60|125 represent field control IDs.

1[45,49,88] represents columns in the grid.

Example 6–2 Requesting main form fields, subform fields, main form grid columns, and
subform grid columns.

formRequest.setReturnControlIDs("33|34|17[24,26,28]|50_45|50_53|50_
9[35,39,41]");

In this example, 33|34 represent fields on the main form.

50_45|50_53 represent fields on the subform.

17[24,26,28] represent main form grid columns.

50_9[35,39,41] represent subform grid columns.

6.3.8 Example of JSON Code in a Form Service Request
The sample code in Example 6–3 is an example of JSON code in a form service request
that executes EnterpriseOne actions in the following order:

1. Open the Find/Browse form in P01012.

2. Enter a value in a QBE field.

3. Enter a value in a field control.

4. Select two check boxes.

5. Click the Find button.

Example 6–3 Executing EnterpriseOne Actions - JSON

{
"token":

"044BlLYkCUcjQGRxvR3r+LH27liC6l6psFHOTp9whmkPxE=MDE4MDA2MTYxMDIwOTQ1MDU2NTc0NDY0U2
9hcFVJMTM4NDQ0NjU2NTUwNQ==",

"version": "ZJDE0001",
"formActions": [

{

Understanding Form Service Requests

Performing AIS Form Service Calls 6-7

"command": "SetQBEValue",
"value": "E",
"controlID": "1[50]"

},
{

"command": "SetControlValue",
"value": "Al*",
"controlID": "58"

},
{

"command": "SetCheckboxValue",
"value": "on",
"controlID": "62"

},
{

"command": "SetCheckboxValue",
"value": "on",
"controlID": "63"

},
{

"command": "DoAction",
"controlID": "15"

}
],
"deviceName": "REST Service Testing Tool",
"formName": "P01012_W01012B"

}

Example 6–4 Executing EnterpriseOne Actions - JSON Response

{
"fs_P01012_W01012B": {

"title": "Work With Addresses",
"data": {

"lblSearchType_53": {
"id": 53,
"editable": false,
"value": "Search Type",
"title": "Search Type",
"dataType": 2

},
"txtSearchType_54": {

"id": 54,
"editable": true,
"value": "*",
"internalValue": "null",
"title": "Search Type",
"assocDesc": "",
"staticText": "Search Type",
"dataType": 2

},
"lblAlphaName_57": {

"id": 57,
"editable": false,
"value": "Alpha Name",
"title": "Alpha Name",
"dataType": 2

},
"txtAlphaName_58": {

Understanding Form Service Requests

6-8 Developing and Customizing Mobile Enterprise Applications Guide

"id": 58,
"editable": true,
"value": "Allen*",
"internalValue": "Allen*",
"title": "Alpha Name",
"staticText": "Alpha Name",
"dataType": 2

},
"lblDL01_66": {

"id": 66,
"editable": false,
"value": "",
"title": "",
"dataType": 2

},
"chkDisplayAddress_63": {

"id": 63,
"editable": true,
"value": "on",
"internalValue": "1",
"title": "Display Address",
"dataType": 1

},
"chkDisplayPhone_62": {

"id": 62,
"editable": true,
"value": "on",
"internalValue": "1",
"title": "Display Phone",
"dataType": 1

},
"gridData": {

"titles": {
"col_19": "Address Number",
"col_20": "Alpha Name",
"col_40": "Address Line 1",
"col_44": "City",
"col_81": "Prefix",
"col_46": "Phone Number",
"col_47": "Phone Type",
"col_48": "Long Address",
"col_49": "Industry Class",
"col_50": "Sch Typ",
"col_51": "Tax ID"

},
"rowset": [

{
"rowIndex": 0,
"MOExist": false,
"mnAddressNumber_19": {

"id": 19,
"editable": false,
"value": "576",
"internalValue": 576,
"title": "Address Number",
"dataType": 9

},
"sAlphaName_20": {

"id": 20,
"editable": false,

Understanding Form Service Requests

Performing AIS Form Service Calls 6-9

"value": "Allen",
"internalValue": "Allen",
"title": "Alpha Name",
"dataType": 2

},
"sAddressLine1_40": {

"id": 40,
"editable": false,
"value": " ",
"internalValue": " ",
"title": "Address Line 1",
"dataType": 2

},
"sCity_44": {

"id": 44,
"editable": false,
"value": " ",
"internalValue": " ",
"title": "City",
"dataType": 2

},
"sPrefix_81": {

"id": 81,
"editable": false,
"value": "",
"internalValue": "",
"title": "Prefix",
"dataType": 2

},
"sPhoneNumber_46": {

"id": 46,
"editable": false,
"value": "",
"internalValue": "",
"title": "Phone Number",
"dataType": 2

},
"sPhoneType_47": {

"id": 47,
"editable": false,
"value": "",
"internalValue": "",
"title": "Phone Type",
"dataType": 2

},
"sLongAddress_48": {

"id": 48,
"editable": false,
"value": " ",
"internalValue": " ",
"title": "Long Address",
"dataType": 2

},
"sIndustryClass_49": {

"id": 49,
"editable": false,
"value": " ",
"internalValue": " ",
"title": "Industry Class",
"dataType": 2

Understanding Form Service Requests

6-10 Developing and Customizing Mobile Enterprise Applications Guide

},
"sSchTyp_50": {

"id": 50,
"editable": false,
"value": "E",
"internalValue": "E",
"title": "Sch Typ",
"dataType": 2

},
"sTaxID_51": {

"id": 51,
"editable": false,
"value": " ",
"internalValue": " ",
"title": "Tax ID",
"dataType": 2

}
}

],
"summary": {

"records": 1,
"moreRecords": false

}
}

},
"errors": [],
"warnings": []

},
"stackId": 2,
"stateId": 1,
"rid": "f199d7dd4210b9af",
"currentApp": "P01012_W01012B_ZJDE0001",
"sysErrors": []

}

6.3.9 Example of API Methods for a Form Service Request
Oracle provides API methods that you can use to set the commands when coding
mobile applications.

Important: When setting a date field value, use the form field or QBE
Date methods that use the java.util.Date for input. These methods
format the date value into the proper format for data entry in
EnterpriseOne.

Example 6–5 API Methods for Setting Commands

FormRequest formRequest = new FormRequest();

formRequest.setFormName("P01012_W01012B");
formRequest.setVersion("ZJDE0001");

//create event holder
FSREvent myFSREvent = new FSREvent();

//add actions in order
myFSREvent.setQBEValue("1[50]", searchType);
myFSREvent.setFieldValue("58", name);

Understanding Form Service Requests

Performing AIS Form Service Calls 6-11

myFSREvent.checkBoxChecked ("62");
myFSREvent.checkBoxChecked ("63");
myFSREvent.doControlAction("15");

//add event holder to the form request
formRequest.addFSREvent(myFSREvent);

// Execute SEND and RECEIVE operation
try {

JSONObject jsonObject =
(JSONObject)JSONBeanSerializationHelper.toJSON(formRequest);

String postData = jsonObject.toString();

String response = JDERestServiceProvider.jdeRestServiceCall(postData,
JDERestServiceProvider.POST, JDERestServiceProvider.FORM_SERVICE_URI);

P01012_W01012B_FormParent newFormParent =
((P01012_W01012B_

FormParent)JSONBeanSerializationHelper.fromJSON(P01012_W01012B_FormParent.class,

response));
}

6.3.10 Grid Action Events
In addition to interacting with fields on the form, you can interact with grids using
grid action events. If you use a grid action event, you must include "grid" as a required
capability in the about.properties. See Section 6.2, "Understanding AIS Server
Capabilities" for more information.

The types of grid action events include:

■ Selecting grid rows

This action enables you to delete records in the grid by sending a row select event,
followed by a delete button press event, and then finally an OK button press
event. This is the exact sequence that a user would follow to delete a record in an
EnterpriseOne application.

■ Inserting grid rows

This action enables you to insert one or more rows into a grid, setting the column
value for each row. This includes text entry columns, drop-down columns, or
check box columns. You must include an OK button pressed event to commit the
inserts.

■ Updating grid rows

This action enables you to update one or more existing grid rows by setting the
column values for each row. This includes text entry columns, drop-down
columns, or check box columns. You must include an OK button pressed event to
commit the updates.

The following table describes the commands that you can use in grid column events to
set values for a cell in a grid insert or update event:

Grid Column Event Description Parameters

Set Grid Cell Value Sets the value of a cell in a grid. "value": "720",

"command": "SetGridCellValue",

"columnID": "28"

Set Grid Combo Value Sets the value of a drop-down
column in a grid. The value that you
send is in the "Code" for the UDC
associated with the column.

"value": "ABC"

"command": "SetGridComboValue",

"columnID": "43"

Understanding Form Service Requests

6-12 Developing and Customizing Mobile Enterprise Applications Guide

6.3.10.1 Example of Grid Action Events
This section provides examples of grid action events in both JSON and Oracle MAF
code.

The sample code in Example 6–6 is an example of JSON that deletes a phone number
in the third row of a grid. It is important to note:

■ The row index is zero based.

■ You must get the row index based on a previous fetch (since rows may be hidden
and the index may not be consecutive).

■ By sending 3 form actions, first select row 3, then selecting the Delete button, and
then selecting the OK button.

■ The form inputs will get the correct set of phone records for address number 6001,
who's who line 0.

■ The formServiceAction code is a U for update, so the form is in update mode.

Example 6–6 Selecting Grid Rows - JSON

{
"token":

"0443HC90ZH4pq9CScdvJ+nkecflSJI9q+YGbc7lXrGZ7So=MDE5MDA2ODQ4MjcyMDk2MTUwMjg0NDkyOF
NvYXBVSTEzOTIwNzE5NzY4NzE=",

"formActions": [

{
"command": "SelectRow",
"controlID": "1.3"

}
,
{

"command": "DoAction",
"controlID": "59"

},
{

"command": "DoAction",
"controlID": "4"

}
],
"formInputs": [

{
"value": "6001",
"id": "4"

},
{

"value": "0",

Understanding Form Service Requests

Performing AIS Form Service Calls 6-13

"id": "5"
}

],

"formServiceAction": "U",
"deviceName": "RESTclient",
"formName": "P0115_W0115A"

}

Example 6–7 Selecting Grid Rows - JSON Response

{
"fs_P0115_W0115A": {

"title": "Phone Numbers",
"data": {

"lblDL01_71": {
"id": 71,
"editable": false,
"value": "Ray Allen",
"title": "Ray Allen",
"dataType": 2

},
"lblWhosWhoLine_52": {

"id": 52,
"editable": false,
"value": "Who's Who Line",
"title": "Who's Who Line",
"dataType": 2

},
"txtAddressNumber_7": {

"id": 7,
"editable": false,
"value": "6001",
"internalValue": 6001,
"title": "Address Number",
"assocDesc": "Allen, Ray",
"staticText": "Address Number",
"dataType": 9

},
"lblDL01_54": {

"id": 54,
"editable": false,
"value": "Allen, Ray",
"title": "Allen, Ray",
"dataType": 2

},
"gridData": {

"titles": {
"col_28": "Prefix",
"col_29": "Phone Number",
"col_27": "Phone Type",
"col_66": "Phone Type Description",
"col_26": "Line Number"

},
"rowset": [

{
"rowIndex": 0,
"MOExist": false,
"sPrefix_28": {

Understanding Form Service Requests

6-14 Developing and Customizing Mobile Enterprise Applications Guide

"id": 28,
"editable": true,
"value": "303",
"internalValue": "303",
"title": "Prefix",
"dataType": 2

},
"sPhoneNumber_29": {

"id": 29,
"editable": true,
"value": "334-4000",
"internalValue": "334-4000",
"title": "Phone Number",
"dataType": 2

},
"sPhoneType_27": {

"id": 27,
"editable": true,
"value": "HOM",
"internalValue": "HOM",
"title": "Phone Type",
"dataType": 2

},
"sPhoneTypeDescription_66": {

"id": 66,
"editable": false,
"value": "Home",
"internalValue": "Home",
"title": "Phone Type Description",
"dataType": 2

},
"mnLineNumber_26": {

"id": 26,
"editable": false,
"value": "1",
"internalValue": 1,
"title": "Line Number",
"dataType": 9

}
},
{

"rowIndex": 1,
"MOExist": false,
"sPrefix_28": {

"id": 28,
"editable": true,
"value": "303",
"internalValue": "303",
"title": "Prefix",
"dataType": 2

},
"sPhoneNumber_29": {

"id": 29,
"editable": true,
"value": "555-1212",
"internalValue": "555-1212",
"title": "Phone Number",
"dataType": 2

},
"sPhoneType_27": {

Understanding Form Service Requests

Performing AIS Form Service Calls 6-15

"id": 27,
"editable": true,
"value": "CAR",
"internalValue": "CAR",
"title": "Phone Type",
"dataType": 2

},
"sPhoneTypeDescription_66": {

"id": 66,
"editable": false,
"value": "Car or Mobile",
"internalValue": "Car or Mobile",
"title": "Phone Type Description",
"dataType": 2

},
"mnLineNumber_26": {

"id": 26,
"editable": false,
"value": "2",
"internalValue": 2,
"title": "Line Number",
"dataType": 9

}
}

],
"summary": {

"records": 2,
"moreRecords": false

}
},
"lblAddressNumber_6": {

"id": 6,
"editable": false,
"value": "Address Number",
"title": "Address Number",
"dataType": 9

},
"txtWhosWhoLine_32": {

"id": 32,
"editable": false,
"value": "0",
"internalValue": 0,
"title": "Who's Who Line",
"assocDesc": "Ray Allen",
"dataType": 9a

}
},
"errors": [],
"warnings": []

},
"stackId": 5,
"stateId": 1,
"rid": "c2a9c1c93a6874f0",
"currentApp": "P0115_W0115A",
"sysErrors": []

}

Understanding Form Service Requests

6-16 Developing and Customizing Mobile Enterprise Applications Guide

Example 6–8 Selecting Grid Rows - MAF Application Code

This sample code performs the same delete operation as the JSON request example in
the preceding section; it deletes a single phone number in a grid of phone numbers.

public void deletePhone(int key) {

AdfmfJavaUtilities.setELValue("#{pageFlowScope.errors}", "false");
FormRequest formRequest = new FormRequest();

formRequest.setFormName("P0115_W0115A");
formRequest.setFormServiceAction("U");

formRequest.addToFISet("4", addressNumber);
formRequest.addToFISet("5", "0");

FSREvent fsrEvent = new FSREvent();

//get currently selected row
P0115_W0115A_GridRow selectedRow = getSelectedPhonebyKey(key);

fsrEvent.selectRow("1", selectedRow.getRowIndex());

//press Delete button
fsrEvent.doControlAction("59");

//press OK button
fsrEvent.doControlAction("4");

//add the FSR event to the request
formRequest.addFSREvent(fsrEvent);

// Execute SEND and RECEIVE operation
try {

// For POST request, set data payload is header delimited with | and
service input class

JSONObject jsonObject =
(JSONObject)JSONBeanSerializationHelper.toJSON(formRequest);

String postData = jsonObject.toString();

String response = JDERestServiceProvider.jdeRestServiceCall(postData,
JDERestServiceProvider.POST, JDERestServiceProvider.FORM_SERVICE_URI);

P0115_W0115A_FormParent tempFormParent =
((P0115_W0115A_

FormParent)JSONBeanSerializationHelper.fromJSON(P0115_W0115A_FormParent.class,

response));

if(tempFormParent.getFs_P0115_W0115A().getErrors() != null &&
tempFormParent.getFs_P0115_W0115A().getErrors().length>0){

AdfmfJavaUtilities.setELValue("#{pageFlowScope.errors}", "true");
}else{

p0115_W0115A_FormParent.getFs_P0115_
W0115A().getData().getGridData().setRowsetList(tempFormParent.getFs_P0115_
W0115A().getData().getGridData().retrieveRowsetList());

Understanding Form Service Requests

Performing AIS Form Service Calls 6-17

p0115_W0115A_FormParent.getFs_P0115_
W0115A().getData().getGridData().setSummary(tempFormParent.getFs_P0115_
W0115A().getData().getGridData().getSummary());

}

} catch (JDERestServiceException e) {
JDERestServiceProvider.handleServiceException(e);

} catch (Exception e) {
AdfException adfe = new AdfException(e.getMessage(),

AdfException.ERROR);
throw adfe;

}

}

Example 6–9 Insert Rows - JSON

This sample code is an example of adding two phone numbers with two form actions:
a grid action that adds two rows followed by an OK button selection. The form inputs
will get the correct set of phone records for address number 6001, who's who line 0.
Also, it is important to note that the formServiceAction code is a U for update, which
indicates that the form is in update mode.

{ "token":
"044bO2/lCT8FViW5A0Sm5GqcqU3P8BB2kwUv0bZzG84YYU=MDE4MDA2NTIyNTk1NjQyNTc1MjQ2MzM2U2
9hcFVJMTM5MjE0OTA4MjYyMA==",

"formInputs": [
{

"value": "6001",
"id": "4"

},
{

"value": "0",
"id": "5"

}
],
"formServiceAction": "U",

"formActions": [
{

"gridAction":
{

"gridID": "1",
"gridRowInsertEvents": [

{
"gridColumnEvents": [

{
"value": "720",
"command": "SetGridCellValue",
"columnID": "28"

},
{

"value": "331-4014",
"command": "SetGridCellValue",
"columnID": "29"

},

Understanding Form Service Requests

6-18 Developing and Customizing Mobile Enterprise Applications Guide

{
"value": "CAR",
"command": "SetGridCellValue",
"columnID": "27"

}
]

},
{

"gridColumnEvents": [
{

"value": "303",
"command": "SetGridCellValue",
"columnID": "28"

},
{

"value": "421-1010",
"command": "SetGridCellValue",
"columnID": "29"

},
{

"value": "HOM",
"command": "SetGridCellValue",
"columnID": "27"

}
]

}
]

}
},
{

"command": "DoAction",
"controlID": "4"

}

],
"deviceName": "RESTclient",
"formName": "P0115_W0115A"

}

Example 6–10 Insert Rows - JSON Response

{
"fs_P0115_W0115A": {

"title": "Phone Numbers",
"data": {

"lblDL01_71": {
"id": 71,
"editable": false,
"value": "Ray Allen",
"title": "Ray Allen",
"dataType": 2

},
"lblWhosWhoLine_52": {

"id": 52,
"editable": false,
"value": "Who's Who Line",
"title": "Who's Who Line",

Understanding Form Service Requests

Performing AIS Form Service Calls 6-19

"dataType": 2
},
"txtAddressNumber_7": {

"id": 7,
"editable": false,
"value": "6001",
"internalValue": 6001,
"title": "Address Number",
"assocDesc": "Allen, Ray",
"staticText": "Address Number",
"dataType": 9

},
"lblDL01_54": {

"id": 54,
"editable": false,
"value": "Allen, Ray",
"title": "Allen, Ray",
"dataType": 2

},
"gridData": {

"titles": {
"col_28": "Prefix",
"col_29": "Phone Number",
"col_27": "Phone Type",
"col_66": "Phone Type Description",
"col_26": "Line Number"

},
"rowset": [

{
"rowIndex": 0,
"MOExist": false,
"sPrefix_28": {

"id": 28,
"editable": true,
"value": "303",
"internalValue": "303",
"title": "Prefix",
"dataType": 2

},
"sPhoneNumber_29": {

"id": 29,
"editable": true,
"value": "334-4000",
"internalValue": "334-4000",
"title": "Phone Number",
"dataType": 2

},
"sPhoneType_27": {

"id": 27,
"editable": true,
"value": "HOM",
"internalValue": "HOM",
"title": "Phone Type",
"dataType": 2

},
"sPhoneTypeDescription_66": {

"id": 66,
"editable": false,
"value": "Home",
"internalValue": "Home",

Understanding Form Service Requests

6-20 Developing and Customizing Mobile Enterprise Applications Guide

"title": "Phone Type Description",
"dataType": 2

},
"mnLineNumber_26": {

"id": 26,
"editable": false,
"value": "1",
"internalValue": 1,
"title": "Line Number",
"dataType": 9

}
},

{
"rowIndex": 1,
"MOExist": false,
"sPrefix_28": {

"id": 28,
"editable": true,
"value": "303",
"internalValue": "303",
"title": "Prefix",
"dataType": 2

},
"sPhoneNumber_29": {

"id": 29,
"editable": true,
"value": "555-1212",
"internalValue": "555-1212",
"title": "Phone Number",
"dataType": 2

},
"sPhoneType_27": {

"id": 27,
"editable": true,
"value": "CAR",
"internalValue": "CAR",
"title": "Phone Type",
"dataType": 2

},
"sPhoneTypeDescription_66": {

"id": 66,
"editable": false,
"value": "Car or Mobile",
"internalValue": "Car or Mobile",
"title": "Phone Type Description",
"dataType": 2

},
"mnLineNumber_26": {

"id": 26,
"editable": false,
"value": "2",
"internalValue": 2,
"title": "Line Number",
"dataType": 9

}
},

{
"rowIndex": 2,
"MOExist": false,
"sPrefix_28": {

Understanding Form Service Requests

Performing AIS Form Service Calls 6-21

"id": 28,
"editable": true,
"value": "720",
"internalValue": "720",
"title": "Prefix",
"dataType": 2

},
"sPhoneNumber_29": {

"id": 29,
"editable": true,
"value": "331-4014",
"internalValue": "331-4014",
"title": "Phone Number",
"dataType": 2

},
"sPhoneType_27": {

"id": 27,
"editable": true,
"value": "CAR",
"internalValue": "CAR",
"title": "Phone Type",
"dataType": 2

},
"sPhoneTypeDescription_66": {

"id": 66,
"editable": false,
"value": "Car or Mobile",
"internalValue": "Car or Mobile",
"title": "Phone Type Description",
"dataType": 2

},
"mnLineNumber_26": {

"id": 26,
"editable": false,
"value": "3",
"internalValue": 3,
"title": "Line Number",
"dataType": 9

}
},

{
"rowIndex": 3,
"MOExist": false,
"sPrefix_28": {

"id": 28,
"editable": true,
"value": "303",
"internalValue": "303",
"title": "Prefix",
"dataType": 2

},
"sPhoneNumber_29": {

"id": 29,
"editable": true,
"value": "421-1010",
"internalValue": "421-1010",
"title": "Phone Number",
"dataType": 2

},
"sPhoneType_27": {

Understanding Form Service Requests

6-22 Developing and Customizing Mobile Enterprise Applications Guide

"id": 27,
"editable": true,
"value": "HOM",
"internalValue": "HOM",
"title": "Phone Type",
"dataType": 2

},
"sPhoneTypeDescription_66": {

"id": 66,
"editable": false,
"value": "Home",
"internalValue": "Home",
"title": "Phone Type Description",
"dataType": 2

},
"mnLineNumber_26": {

"id": 26,
"editable": false,
"value": "4",
"internalValue": 4,
"title": "Line Number",
"dataType": 9

}
}

],
"summary": {

"records": 4,
"moreRecords": false

}
},
"lblAddressNumber_6": {

"id": 6,
"editable": false,
"value": "Address Number",
"title": "Address Number",
"dataType": 9

},
"txtWhosWhoLine_32": {

"id": 32,
"editable": false,
"value": "0",
"internalValue": 0,
"title": "Who's Who Line",
"assocDesc": "Ray Allen",
"dataType": 9

}
},
"errors": [],
"warnings": []

},
"stackId": 1,
"stateId": 1,
"rid": "b7ebc0f0832cfbb",
"currentApp": "P0115_W0115A",
"sysErrors": []

}

Example 6–11 Insert Rows - MAF Application Code

This sample code is an example of adding one new phone number using grid actions.

Understanding Form Service Requests

Performing AIS Form Service Calls 6-23

Important: Your mobile application should allow adding records only when the record
count is below the maximum. You can determine this by checking the moreRecords
field in the grid summary when you fetch existing records. You will not receive an
error message if you attempt to add a record beyond the maximum allowed. The
record will simply not be added.

public void addPhone() {

AdfmfJavaUtilities.setELValue("#{pageFlowScope.errors}", "false");

FormRequest formRequest = new FormRequest();

formRequest.setFormName("P0115_W0115A");
formRequest.setFormServiceAction("U");

formRequest.addToFISet("4", addressNumber);
formRequest.addToFISet("5", "0");

FSREvent fsrEvent = new FSREvent();
GridAction gridAction = new GridAction();

GridRowInsertEvent gri = new GridRowInsertEvent();

//set the column values
gri.setGridColumnValue("27", addPhoneType);
gri.setGridColumnValue("28", addPhonePrefix);
gri.setGridColumnValue("29", addPhoneNumber);

//add the row
gridAction.insertGridRow("1", gri);

//add the grid action to the events
fsrEvent.addGridAction(gridAction);

//press OK button
fsrEvent.doControlAction("4");

//add the FSR event to the request
formRequest.addFSREvent(fsrEvent);

// Execute SEND and RECEIVE operation
try {

// For POST request, set data payload is header delimited with | and
service input class

JSONObject jsonObject =
(JSONObject)JSONBeanSerializationHelper.toJSON(formRequest);

String postData = jsonObject.toString();

String response = JDERestServiceProvider.jdeRestServiceCall(postData,
JDERestServiceProvider.POST, JDERestServiceProvider.FORM_SERVICE_URI);

P0115_W0115A_FormParent tempFormParent =
((P0115_W0115A_

FormParent)JSONBeanSerializationHelper.fromJSON(P0115_W0115A_FormParent.class,

response));

Understanding Form Service Requests

6-24 Developing and Customizing Mobile Enterprise Applications Guide

if(tempFormParent.getFs_P0115_W0115A().getErrors() != null &&
tempFormParent.getFs_P0115_W0115A().getErrors().length>0){

AdfmfJavaUtilities.setELValue("#{pageFlowScope.errors}", "true");
}else{

p0115_W0115A_FormParent.getFs_P0115_
W0115A().getData().getGridData().setRowsetList(tempFormParent.getFs_P0115_
W0115A().getData().getGridData().retrieveRowsetList());

p0115_W0115A_FormParent.getFs_P0115_
W0115A().getData().getGridData().setSummary(tempFormParent.getFs_P0115_
W0115A().getData().getGridData().getSummary());

AdfmfJavaUtilities.setELValue("#{pageFlowScope.addready}", "true");

} catch (JDERestServiceException e) {
JDERestServiceProvider.handleServiceException(e);

} catch (Exception e) {
AdfException adfe = new AdfException(e.getMessage(),

AdfException.ERROR);
throw adfe;

}

}

Example 6–12 Update Rows - JSON

This sample code is an example of updating two phone numbers. You must specify the
index of the row you want to update. The row index is included in the information
returned when you query the grid. Therefore, you must perform a query before you
update a row. In this example, the JSON code updates rows 2 and 4 and sets values in
each of the three columns for these rows.

This sample code also includes syntax that shows a column that contains a drop-down
selection. The value should be the 'code' value, not the description.

"gridColumnEvents": [
{

"value": "30",
"command": "SetGridComboValue",
"columnID": "43"

}
]

This sample code shows the phones update request:

{ "token":
"044t+mf8cq2gxqvAlH1SziE9EnBfs5QYNlj3ZQpmFAW9tc=MDE5MDA2ODQ0NjQ4MjI5OTYxODQ5MjQxNl
NvYXBVSTEzOTIwNzI3MjAzMTM=",

"formInputs": [
{

"value": "6001",
"id": "4"

},
{

"value": "0",
"id": "5"

}
],

Understanding Form Service Requests

Performing AIS Form Service Calls 6-25

"formActions": [
{

"gridAction":
{

"gridID": "1",
"gridRowUpdateEvents": [

{
"rowNumber": 2,
"gridColumnEvents": [

{
"value": "720",
"command": "SetGridCellValue",
"columnID": "28"

},
{

"value": "111-1111",
"command": "SetGridCellValue",
"columnID": "29"

},
{

"value": "CAR",
"command": "SetGridCellValue",
"columnID": "27"

}
]

},
{

"rowNumber": 4,
"gridColumnEvents": [

{
"value": "303",
"command": "SetGridCellValue",
"columnID": "28"

},
{

"value": "22233333",
"command": "SetGridCellValue",
"columnID": "29"

},
{

"value": "CAR",
"command": "SetGridCellValue",
"columnID": "27"

}
]

}
]

}
},
{

"command": "DoAction",
"controlID": "4"

}

],
"deviceName": "RESTclient",
"formName": "P0115_W0115A"

}

Understanding Form Service Requests

6-26 Developing and Customizing Mobile Enterprise Applications Guide

Example 6–13 Update Rows - JSON Response

{
"fs_P0115_W0115A": {

"title": "Phone Numbers",
"data": {

"lblDL01_71": {
"id": 71,
"editable": false,
"value": "Ray Allen",
"title": "Ray Allen",
"dataType": 2

},
"lblWhosWhoLine_52": {

"id": 52,
"editable": false,
"value": "Who's Who Line",
"title": "Who's Who Line",
"dataType": 2

},
"txtAddressNumber_7": {

"id": 7,
"editable": false,
"value": "6001",
"internalValue": 6001,
"title": "Address Number",
"assocDesc": "Allen, Ray",
"staticText": "Address Number",
"dataType": 9

},
"lblDL01_54": {

"id": 54,
"editable": false,
"value": "Allen, Ray",
"title": "Allen, Ray",
"dataType": 2

},
"gridData": {

"titles": {
"col_28": "Prefix",
"col_29": "Phone Number",
"col_27": "Phone Type",
"col_66": "Phone Type Description",
"col_26": "Line Number"

},
"rowset": [

{
"rowIndex": 0,
"MOExist": false,
"sPrefix_28": {

"id": 28,
"editable": true,
"value": "303",
"internalValue": "303",
"title": "Prefix",
"dataType": 2

},
"sPhoneNumber_29": {

"id": 29,
"editable": true,
"value": "334-4000",

Understanding Form Service Requests

Performing AIS Form Service Calls 6-27

"internalValue": "334-4000",
"title": "Phone Number",
"dataType": 2

},
"sPhoneType_27": {

"id": 27,
"editable": true,
"value": "HOM",
"internalValue": "HOM",
"title": "Phone Type",
"dataType": 2

},
"sPhoneTypeDescription_66": {

"id": 66,
"editable": false,
"value": "Home",
"internalValue": "Home",
"title": "Phone Type Description",
"dataType": 2

},
"mnLineNumber_26": {

"id": 26,
"editable": false,
"value": "1",
"internalValue": 1,
"title": "Line Number",
"dataType": 9

}
},

{
"rowIndex": 1,
"MOExist": false,
"sPrefix_28": {

"id": 28,
"editable": true,
"value": "303",
"internalValue": "303",
"title": "Prefix",
"dataType": 2

},
"sPhoneNumber_29": {

"id": 29,
"editable": true,
"value": "555-1212",
"internalValue": "555-1212",
"title": "Phone Number",
"dataType": 2

},
"sPhoneType_27": {

"id": 27,
"editable": true,
"value": "CAR",
"internalValue": "CAR",
"title": "Phone Type",
"dataType": 2

},
"sPhoneTypeDescription_66": {

"id": 66,
"editable": false,
"value": "Car or Mobile",

Understanding Form Service Requests

6-28 Developing and Customizing Mobile Enterprise Applications Guide

"internalValue": "Car or Mobile",
"title": "Phone Type Description",
"dataType": 2

},
"mnLineNumber_26": {

"id": 26,
"editable": false,
"value": "2",
"internalValue": 2,
"title": "Line Number",
"dataType": 9

}
},

{
"rowIndex": 2,
"MOExist": false,
"sPrefix_28": {

"id": 28,
"editable": true,
"value": "720",
"internalValue": "720",
"title": "Prefix",
"dataType": 2

},
"sPhoneNumber_29": {

"id": 29,
"editable": true,
"value": "111-1111",
"internalValue": "111-1111",
"title": "Phone Number",
"dataType": 2

},
"sPhoneType_27": {

"id": 27,
"editable": true,
"value": "CAR",
"internalValue": "CAR",
"title": "Phone Type",
"dataType": 2

},
"sPhoneTypeDescription_66": {

"id": 66,
"editable": false,
"value": "Car or Mobile",
"internalValue": "Car or Mobile",
"title": "Phone Type Description",
"dataType": 2

},
"mnLineNumber_26": {

"id": 26,
"editable": false,
"value": "3",
"internalValue": 3,
"title": "Line Number",
"dataType": 9

}
},

{
"rowIndex": 3,
"MOExist": false,

Understanding Form Service Requests

Performing AIS Form Service Calls 6-29

"sPrefix_28": {
"id": 28,
"editable": true,
"value": "303",
"internalValue": "303",
"title": "Prefix",
"dataType": 2

},
"sPhoneNumber_29": {

"id": 29,
"editable": true,
"value": "22233333",
"internalValue": "22233333",
"title": "Phone Number",
"dataType": 2

},
"sPhoneType_27": {

"id": 27,
"editable": true,
"value": "CAR",
"internalValue": "CAR",
"title": "Phone Type",
"dataType": 2

},
"sPhoneTypeDescription_66": {

"id": 66,
"editable": false,
"value": "Car or Mobile",
"internalValue": "Car or Mobile",
"title": "Phone Type Description",
"dataType": 2

},
"mnLineNumber_26": {

"id": 26,
"editable": false,
"value": "4",
"internalValue": 4,
"title": "Line Number",
"dataType": 9

}
}

],
"summary": {

"records": 4,
"moreRecords": false

}
},
"lblAddressNumber_6": {

"id": 6,
"editable": false,
"value": "Address Number",
"title": "Address Number",
"dataType": 9

},
"txtWhosWhoLine_32": {

"id": 32,
"editable": false,
"value": "0",
"internalValue": 0,
"title": "Who's Who Line",

Understanding Form Service Requests

6-30 Developing and Customizing Mobile Enterprise Applications Guide

"assocDesc": "Ray Allen",
"dataType": 9

}
},
"errors": [],
"warnings": []

},
"stackId": 2,
"stateId": 1,
"rid": "b7ebc0f0832cfbb",
"currentApp": "P0115_W0115A",
"sysErrors": []

}

Example 6–14 Update Rows - MAF Application Code

This sample code is an example of updating a single phone row from an MAF
application.

public void updatePhone(int key) {

AdfmfJavaUtilities.setELValue("#{pageFlowScope.errors}", "false");

FormRequest formRequest = new FormRequest();

formRequest.setFormName("P0115_W0115A");
formRequest.setFormServiceAction("U");

formRequest.addToFISet("4", addressNumber);
formRequest.addToFISet("5", "0");

FSREvent fsrEvent = new FSREvent();
GridAction gridAction = new GridAction();

GridRowUpdateEvent gru = new GridRowUpdateEvent();

//get currently selected row
P0115_W0115A_GridRow selectedRow = getSelectedPhonebyKey(key);

//set the column values
gru.setGridColumnValue("27", selectedRow.getSPhoneType_27().getValue());
gru.setGridColumnValue("28", selectedRow.getSPrefix_28().getValue());
gru.setGridColumnValue("29", selectedRow.getSPhoneNumber_29().getValue());

//update the row based on it's index - zero based
gridAction.updateGridRow("1",

selectedRow.getRowIndex(),
gru);

//add the grid action to the events
fsrEvent.addGridAction(gridAction);

//press OK button
fsrEvent.doControlAction("4");

//add the FSR event to the request
formRequest.addFSREvent(fsrEvent);

Understanding Form Service Requests

Performing AIS Form Service Calls 6-31

// Execute SEND and RECEIVE operation
try {

// For POST request, set data payload is header delimited with | and
service input class

JSONObject jsonObject =
(JSONObject)JSONBeanSerializationHelper.toJSON(formRequest);

String postData = jsonObject.toString();

String response = JDERestServiceProvider.jdeRestServiceCall(postData,
JDERestServiceProvider.POST, JDERestServiceProvider.FORM_SERVICE_URI);

P0115_W0115A_FormParent tempFormParent =
((P0115_W0115A_

FormParent)JSONBeanSerializationHelper.fromJSON(P0115_W0115A_FormParent.class,

response));

if(tempFormParent.getFs_P0115_W0115A().getErrors() != null &&
tempFormParent.getFs_P0115_W0115A().getErrors().length>0){

AdfmfJavaUtilities.setELValue("#{pageFlowScope.errors}", "true");

}else{

p0115_W0115A_FormParent.getFs_P0115_
W0115A().getData().getGridData().setRowsetList(tempFormParent.getFs_P0115_
W0115A().getData().getGridData().retrieveRowsetList());

p0115_W0115A_FormParent.getFs_P0115_
W0115A().getData().getGridData().setSummary(tempFormParent.getFs_P0115_
W0115A().getData().getGridData().getSummary());

}

} catch (JDERestServiceException e) {
JDERestServiceProvider.handleServiceException(e);

} catch (Exception e) {
AdfException adfe = new AdfException(e.getMessage(),

AdfException.ERROR);
throw adfe;

}

}

6.3.11 Query Events (Release 9.1 Update 5.2)
You can configure a form service request to send ad hoc queries to EnterpriseOne web
client application forms that support the query control.

To add a query, you include a single query object in the form service request. A query
object includes parameters that contain the same query criteria that you would use to
set up a query in EnterpriseOne. The parameters determine:

■ How the query runs. You can configure query option parameters to load grid
records in the form or clear all other fields in the form before the query runs. You
can also specify whether the results of the query should match all (AND) or any
(OR) of the conditions specified in the query.

Understanding Form Service Requests

6-32 Developing and Customizing Mobile Enterprise Applications Guide

■ The conditions of the query. The query object includes condition parameters that
specify the control ID of the columns or fields that you want to query and an
operator for filtering results that are equal to, greater than, or less than a particular
value.

Important: Queries will work only if the field or columns identified
in the query are part of the business view.

■ The value used for the search criteria in the query. The query object includes
value parameters that specify the value or range of values that you want displayed
in the query results.

Before you add a query object to a form service request, access the form in the
EnterpriseOne web client and use the query control to gather the criteria for the query
object parameters. For more information about setting up a query, see "Understanding
the Query Control" in the JD Edwards EnterpriseOne Tools Foundation Guide.

Also, in the EnterpriseOne form, you need to identify the control ID of the field or
column that you want to query, and verify that the field or column is part of the
business view. To do so, click the Help button (question mark in the upper right corner
of a form) and then click the Item Help option to access field-level help. With the field
level help activated, you can click in a field or column to access the control ID and
business view information, which is displayed under the Advanced Options section as
shown in Example 6–15.

Example 6–15 Example of Control ID and Business View Information Displayed under
Advanced Options in the EnterpriseOne Web Client Item Help

In the Item Help, the syntax of the control ID is 1.20 with 1 representing the grid ID
and 20 representing the column ID, which are separated by a dot (.). In the parameter
for the query request, the same control ID must be presented with the following
syntax: 1[20]. See the Table 6–2, " Query Condition Parameters" for more information.

6.3.11.1 Query Object Parameters
The following tables describe the parameters for a query object.

Table 6–1 Query Option Parameters

Parameter Description Values

autoFind Directs the query to automatically press
Find on the form to populate the grid
records. You do not need to include
events to press the Find button if you use
autoFind.

true, false

Understanding Form Service Requests

Performing AIS Form Service Calls 6-33

6.3.11.2 Query Object Examples
This section contains JSON and API code examples of the query object.

Example 6–16 Query - JSON

This is an example of JSON code that executes a query on the W42101C form in
EnterpriseOne.

{
"token":

"044mK8eBlupO2jaE4BAvXzaRXsMAM7edfHybw26zSZga1w=MDE5MDA2MjUyMTQ1MDE0Njg1NzMwODE2MF

matchType Determines if you want the query to
search for records that match all (AND)
or any (OR) of the specified conditions.

MATCH_ALL, MATCH_ANY

autoClear Do you want to clear all other fields on
the form (for example default filter
fields).

true, false

Table 6–2 Query Condition Parameters

Parameter Description Value

controlId The control ID that the condition applies
to. This is the field that you add to the
query from the form when using the web
client to create a Query. It is either a filter
field or a grid column that is associated
with the business view.

Example of control IDs:

"28", "1[34]"

operator The comparison operation to use with the
query.

For all types, valid values are:

BETWEEN, LIST, EQUAL,
NOT_EQUAL, LESS, LESS_
EQUAL, GREATER,
GREATER_EQUAL

For strings, valid values are:

STR_START_WITH, STR_
END_WITH, STR_CONTAIN,
STR_BLANK, STR_NOT_
BLANK

Table 6–3 Query Value Parameters

Parameter Description Value

content This is either a literal value to be used in
the comparison operation, or it relates to
a special value ID.

Examples of values are:

"23", "Joe", "2"

specialValueId This is a special value, mostly for dates
that may be today, or calculated dates
from today. For calculated dates, the
content field is used in the calculation.

Valid values are:

LITERAL, TODAY, TODAY_
PLUS_DAY, TODAY_
MINUS_DAY, TODAY_
PLUS_MONTH, TODAY_
MINUS_MONTH, TODAY_
PLUS_YEAR, TODAY_
MINUS_YEAR

Table 6–1 (Cont.) Query Option Parameters

Parameter Description Values

Understanding Form Service Requests

6-34 Developing and Customizing Mobile Enterprise Applications Guide

NvYXBVSTE0MTIzNTc1MDkwMTc=",

"maxPageSize":"20",
"formServiceAction": "R",

"returnControlIDs": "350|360|41[129,130,116,125,132,123]",
"query":{
"condition": [

{
"value": [

{
"content": "2",
"specialValueId": "LITERAL"

}
],
"controlId": "41[129]",
"operator": "EQUAL"

},
{

"value": [
{

"content": "2",
"specialValueId": "TODAY_MINUS_YEAR"

}
],
"controlId": "41[116]",
"operator": "GREATER"

},
{

"value": [
{

"content": "7000",
"specialValueId": "LITERAL"

},
{

"content": "8000",
"specialValueId": "LITERAL"

}
],
"controlId": "41[125]",
"operator": "BETWEEN"

},
{

"value": [
{

"content": "00070",
"specialValueId": "LITERAL"

},
{

"content": "00001",
"specialValueId": "LITERAL"

},
{

"content": "00077",
"specialValueId": "LITERAL"

}
],
"controlId": "360",
"operator": "LIST"

}
],

Understanding Form Service Requests

Performing AIS Form Service Calls 6-35

"autoFind": true,
"matchType": "MATCH_ALL",
"autoClear": false

},

"deviceName": "RESTclient",
"formName": "P42101_W42101C"

}

Example 6–17 Query - Mobile Framework API

This is an example of API code that executes a query on the W42101C form in
EnterpriseOne.

public void executeQuery() {

FormRequest formRequest = new FormRequest();

formRequest.setReturnControlIDs("350|360|41[129,130,116,125,132,123]");
formRequest.setFormName("P42101_W42101C");
formRequest.setVersion("ZJDE0001");
formRequest.setFormServiceAction("R");

// Execute SEND and RECEIVE operation
try {

Query query = new Query();
query.setAutoFind(true); //automatically presses find button (don't

need to use form action to find)
query.setMatchType(Query.MATCH_ALL); //this is an AND operation on

all of the conditions
query.setAutoClear(false); //clears any existing filter values on the

form

//find all line numbers matching
NumberCondition numCon = query.addNumberCondition("41[129]",

NumericOperator.EQUAL());
numCon.setValue(linNo);

//and requested date within num years from today
DateCondition dateCon = query.addDateCondition("41[116]",

DateOperator.GREATER());
dateCon.setSpecialDateValue(DateSpecialValue.TODAY_MINUS_YEAR(),

years);

//and sold to between
BetweenCondition betCon = query.addBetweenCondition("41[125]");
betCon.setValues(soldTo1, soltTo2);

//and company in list
ListCondition listCon = query.addListCondition("360");
addValuesToList(listCon);

//add the query object to the request
formRequest.setQuery(query);

formRequest.setMaxPageSize("20");
// For POST request, set data payload is header delimited with | and

service input class

Understanding Batch Form Service

6-36 Developing and Customizing Mobile Enterprise Applications Guide

JSONObject jsonObject = (JSONObject)
JSONBeanSerializationHelper.toJSON(formRequest);

String postData = jsonObject.toString();

//Call to JDERestServiceProvider with parameters json string, method
(POST), URI (formservice)

String response = JDERestServiceProvider.jdeRestServiceCall(postData,
JDERestServiceProvider.POST, JDERestServiceProvider.FORM_SERVICE_URI);

p41010_W42101C_FormParent=
(P42101_W42101C_FormParent)

JSONBeanSerializationHelper.fromJSON(P42101_W42101C_FormParent.class,

response);

} catch (JDERestServiceException e) {
JDERestServiceProvider.handleServiceException(e);

} catch (Exception e) {
AdfException adfe = new AdfException(e.getMessage(),

AdfException.ERROR);
throw adfe;

}
}

6.4 Understanding Batch Form Service
If you make several sequential calls to forms without any data dependencies between
them, consider using the Batch Form Service. The Batch Form Service will improve
your mobile application's performance.

6.4.1 Batch Form Service - JSON Input and Output
The Batch Form Service requires JSON input and output.

The request URL is: POST http://aisserver:port/jderest/batchformservice

You can use this URL in a REST testing tool. In the preceding URL, batchformservice
represents the URI, which you define when you perform the jdeRestServiceCall from
the API.

The following examples show JSON input and JSON output in a Batch Form Service.

Example 6–18 JSON Input in a Batch Form Service

The JSON consists of an array of form requests along with other single form request
fields such as token, environment, role, and so forth. You may send as many requests
as desired to the same or different form. Each request is executed individually by the
EnterpriseOne HTML (JAS) Server and all responses are compiled into a single
response.

This example shows a request for two form executions: W54GS220A and W54HS230A.
Each have different form interconnect sets, control sets, and so forth. They are
completely independent requests.

{
"formRequests": [

{

Understanding Batch Form Service

Performing AIS Form Service Calls 6-37

"formInputs": [
{

"value": "09/17/2013",
"id": "3"

},
{

"value": "1",
"id": "4"

}
],
"returnControlIDs": "1[19,20,21,27,28,92,174,177,178]|324",
"findOnEntry": "TRUE",
"formName": "P54HS220_W54HS220A"

},
{

"formInputs": [
{

"value": "09/17/2013",
"id": "2"

},
{

"value": "1",
"id": "3"

}
],
"returnControlIDs": "1[35,36,37,44,102,105,200,201,277]|368",
"findOnEntry": "TRUE",
"formName": "P54HS230_W54HS230A"

}],
"token": "jkfdjfkd"

}

Example 6–19 JSON Output in a Batch Form Service

The JSON output contains one form element for each form that is called. The forms are
numbered in the order they were requested. This is not an array of elements; they are
individually defined.

The following sample code is an example of JSON output. For fs_0_P54HS220_
W54HS220A, the 0 indicates it was the first form requested. For fs_1_P54HS230_
W54HS230A, the 1 indicates it was the second form requested.

{
"fs_0_P54HS220_W54HS220A": {

"title": "One View Incident Summary Inquiry",
"data": {

"txtAlertDescription": {
"id": 324,
"value": "Recent Incidents",
"internalValue": "Recent Incidents",
"title": "Alert Description",
"dataType": 2

},
"gridData": {

"titles": {
"col_19": "Incident Number",
"col_20": "Incident Description",
"col_21": "Incident Date",
"col_27": "Incident Status",

Understanding Batch Form Service

6-38 Developing and Customizing Mobile Enterprise Applications Guide

"col_28": "Incident Severity",
"col_92": "Incident Handler Address",
"col_174": "Incident Handler Name",
"col_177": "Incident Status Description",
"col_178": "Incident Severity Description"

},
"rowset": [

{
"mnIncidentNumber": {

"id": 19,
"value": "113",
"internalValue": 113,
"title": "Incident Number",
"dataType": 9

},
"sIncidentDescription": {

"id": 20,
"value": "Gallon drums exposed to sea water rusted and leaked

motor oil and coolant",
"internalValue": "Gallon drums exposed to sea water rusted

and leaked motor oil and coolant",
"title": "Incident Description",
"dataType": 2

},
"dtIncidentDate": {

"id": 21,
"value": "09/17/2013",
"internalValue": 1379397600000,
"title": "Incident Date",
"dataType": 11

},
"sIncidentStatus": {

"id": 27,
"value": "01",
"internalValue": "01",
"title": "Incident Status",
"dataType": 2

},
"sIncidentSeverity": {

"id": 28,
"value": "03",
"internalValue": "03",
"title": "Incident Severity",
"dataType": 2

},
"mnIncidentHandlerAddress": {

"id": 92,
"value": "6001",
"internalValue": 6001,
"title": "Incident Handler Address",
"dataType": 9

},
"sIncidentHandlerName": {

"id": 174,
"value": "Allen, Ray ",
"internalValue": "Allen, Ray ",
"title": "Incident Handler Name",
"dataType": 2

},
"sIncidentStatusDescription": {

Understanding Batch Form Service

Performing AIS Form Service Calls 6-39

"id": 177,
"value": "Active",
"internalValue": "Active",
"title": "Incident Status Description",
"dataType": 2

},
"sIncidentSeverityDescription": {

"id": 178,
"value": "Medium",
"internalValue": "Medium",
"title": "Incident Severity Description",
"dataType": 2

}
},

{
"mnIncidentNumber": {

"id": 19,
"value": "117",
"internalValue": 117,
"title": "Incident Number",
"dataType": 9

},
"sIncidentDescription": {

"id": 20,
"value": " ",
"internalValue": " ",
"title": "Incident Description",
"dataType": 2

},
"dtIncidentDate": {

"id": 21,
"value": "10/01/2013",
"internalValue": 1380607200000,
"title": "Incident Date",
"dataType": 11

},
"sIncidentStatus": {

"id": 27,
"value": " ",
"internalValue": " ",
"title": "Incident Status",
"dataType": 2

},
"sIncidentSeverity": {

"id": 28,
"value": " ",
"internalValue": " ",
"title": "Incident Severity",
"dataType": 2

},
"mnIncidentHandlerAddress": {

"id": 92,
"value": "0",
"internalValue": 0,
"title": "Incident Handler Address",
"dataType": 9

},
"sIncidentHandlerName": {

"id": 174,
"value": "",

Understanding Batch Form Service

6-40 Developing and Customizing Mobile Enterprise Applications Guide

"internalValue": "null",
"title": "Incident Handler Name",
"dataType": 2

},
"sIncidentStatusDescription": {

"id": 177,
"value": "Default",
"internalValue": "Default",
"title": "Incident Status Description",
"dataType": 2

},
"sIncidentSeverityDescription": {

"id": 178,
"value": "Default",
"internalValue": "Default",
"title": "Incident Severity Description",
"dataType": 2

}
}

],
"summary": {

"records": 2,
"moreRecords": false

}
}

},
"errors": [],
"warnings": []

},
"fs_1_P54HS230_W54HS230A": {

"title": "One View Incident People Inquiry",
"data": {

"txtAlertDescription": {
"id": 368,
"value": "Recent Reportable Incidents",
"internalValue": "Recent Reportable Incidents",
"title": "Alert Description",
"dataType": 2

},
"gridData": {

"titles": {
"col_35": "Incident Number",
"col_36": "Incident Description",
"col_37": "Incident Date",
"col_44": "Incident Status",
"col_102": "Incident Handler Address",
"col_105": "Incident Severity",
"col_200": "Incident Status Description",
"col_201": "Incident Severity Description"

},
"rowset": [],
"summary": {

"records": 0,
"moreRecords": false

}
}

},
"errors": [],
"warnings": []

}

Understanding Batch Form Service

Performing AIS Form Service Calls 6-41

}

6.4.2 Implementing the Batch Form Service
This section describes how to implement the Batch Form Service in your mobile
application.

6.4.2.1 Batch Request Parent Class
To consume the JSON response, the mobile application must have a class that matches
the response. You must manually code this class because you have to provide the
forms in the order in which they are being called.

Example 6–20 Batch Request Parent Class

The following sample code is an example of what the new class looks like with one
member defined, with the form level type for each of the forms called. Notice that the
names of the class members match the names returned by the JSON response. This is
the most important aspect of the class, to enable the deserialization from JSON to this
object.

The form objects, which are P54HS220_W54HS220A and P54HS230_W54HS230A in
the following sample code, are the same ones generated by the AIS Client Class
Generator and are used for a single form request.

package com.oracle.e1.formservicetypes

public class BatchRequestParent {

private P54HS220_W54HS220A fs_0_P54HS220_W54HS220A;
private P54HS230_W54HS230A fs_1_P54HS230_W54HS230A;

public BatchRequestParent() {
super();

}

//getters and setters for everything

}

6.4.2.2 Performing a Batch Form Request
In the data control class, create a method for performing the batch form request. An
example of a method named batchFormRequest() follows the steps below.

To create this method:

1. Create a BatchFormRequest object.

2. Add each form request to the list of requests. Each form request is an object called
SingleFormRequest.

3. Populate these requests in the same manner that you would use for a single form
request.

4. Call the service with uri JDERestServiceProvider.BATCH_FORM_SERVICE_URI
and marshal the JSON response to an instance of BatchRequestParent class.

Understanding Batch Form Service

6-42 Developing and Customizing Mobile Enterprise Applications Guide

Example 6–21 Batch Form Request

You can use each member of the BatchRequestParent class the same way you would
use the response from a single form request. In the following sample code, each form
in the batch is saved to a member variable of the main data control class.

public void batchFormRequest() {

BatchFormRequest batchFormRequest = new BatchFormRequest();
//Date used for all
// Format Incident Date to send to E1
SimpleDateFormat dateFormat = new SimpleDateFormat("MM/dd/yyyy");
String sDate = dateFormat.format(getSearchDate());

//recentIncidents
SingleFormRequest formRequest = new SingleFormRequest();
formRequest.setFindOnEntry("TRUE");
formRequest.setReturnControlIDs("1[19,20,21,27,28,92,174,177,178]|324");
formRequest.setFormName("P54HS220_W54HS220A");
formRequest.addToFISet("3", sDate);
formRequest.addToFISet("4", "1");
batchFormRequest.getFormRequests().add(formRequest);

// recentReportableIncidents
formRequest = new SingleFormRequest();
formRequest.setFindOnEntry("TRUE");
formRequest.setReturnControlIDs("1[35,36,37,44,102,105,200,201,277]|368");
formRequest.setFormName("P54HS230_W54HS230A");
formRequest.addToFISet("2", sDate);
formRequest.addToFISet("3", "1");
batchFormRequest.getFormRequests().add(formRequest);
try {

// For POST request, set data payload is header delimited with | and
service input class

JSONObject jsonObject =
(JSONObject)JSONBeanSerializationHelper.toJSON(batchFormRequest);

String postData = jsonObject.toString();

String response = JDERestServiceProvider.jdeRestServiceCall(postData,
JDERestServiceProvider.POST, JDERestServiceProvider.BATCH_FORM_SERVICE_URI);

BatchRequestParent batchParent =

(BatchRequestParent)JSONBeanSerializationHelper.fromJSON(BatchRequestParent.class,
response);

if(batchParent != null){

//recentIncidents
this.p54hs220_formIncidents = new P54HS220_W54HS220A_FormParent();
this.p54hs220_formIncidents.setFs_P54HS220_

W54HS220A(batchParent.getFs_0_P54HS220_W54HS220A());

IncidentCount ic = new IncidentCount();
ic.setCount(p54hs220_formIncidents.getFs_P54HS220_

W54HS220A().getData().getGridData().getSummary().getRecords());

Working with the EnterpriseOne REST Services Interface

Performing AIS Form Service Calls 6-43

ic.setTitle("Recent");
ic.setScoreboardNumber("1");
incidentCounts.add(ic);

// recentReportableIncidents
this.p54hs230_formParent = new P54HS230_W54HS230A_FormParent();
this.p54hs230_formParent.setFs_P54HS230_

W54HS230A(batchParent.getFs_3_P54HS230_W54HS230A());
ic = new IncidentCount();
ic.setCount(p54hs230_formParent.getFs_P54HS230_

W54HS230A().getData().getGridData().getSummary().getRecords());
ic.setTitle("Reportable");
ic.setScoreboardNumber("4");
incidentCounts.add(ic);

}

} catch (Exception e) {
AdfException adfe = new AdfException("Rest Call Failed" +

e.getMessage(), AdfException.ERROR);
throw adfe;

}

}

6.5 Working with the EnterpriseOne REST Services Interface
You can make REST calls directly to the AIS Server without using APIs from the
JDEMobileFramework.jar. To do so, use a REST service testing tool to send JSON text
to AIS Server endpoints. Each endpoint provides a particular service that the mobile
application can use to interact with EnterpriseOne applications. You can access AIS
Server endpoints using this URL format:

http://<server>:<port>/jderest/<URI>

See Section 2.3.4, "EnterpriseOne Rest Services Interface" for an illustration of JSON
input and output communication between a mobile device and the AIS Server and
between the AIS Server and the EnterpriseOne HTML Server.

Table 6–4 provides a description of the available endpoints on the AIS Server along
with the HTTP method used to access them. Unless otherwise stated, the request and
response are in the form of JSON strings.

Table 6–4 AIS Server Endpoints

Endpoint URI HTTP Method Description of Service

/defaultconfig GET Response includes information about the AIS Server including the
release level, JAS configuration and capabilities list. Different
versions of AIS have different capabilities, even if the client API you
are using is up to date with the latest capabilities, the AIS Server
may not be.

/tokenrequest POST Based on the input, the response will contain login information
including a login token and user details.

/tokenrequest/logout POST Based on the input (AIS token), the response will be a code of 200 if
successful and 500 if the logout fails.

/formservice POST Based on the input, the response will contain a JSON representation
of the form requested.

/batchformservice POST Based on the input, the response will contain a JSON representation
of all of the forms requested.

/file/gettext POST Base on the input, the response will contain the text for the first text
media object.

/file/updatetext POST Base on the input, the response will contain the status of the text
update.

/file/list POST Base on the input, the response will contain the list of media objects
for the structure and key requested.

/file/upload POST (Multi-part
Form)

The response will contain the details of the uploaded file, including
the media object sequence number

/file/download POST This response is a Multi-Part form including the data for the
attachment.

/file/delete POST The response indicates the success or failure to delete the media
object for the sequence number passed in.

/poservice POST Based on the input, the response will contain the processing option
values for the requested application and version.

/log POST Base on the input, the AIS Server will write a log entry with the
information passed to the log service.

/appstack POST This service is available starting with the Tools 9.1 Update 5 release.

Based on the input, the response will contain the current form open
on the stack and any stack related information.

Working with the EnterpriseOne REST Services Interface

6-44 Developing and Customizing Mobile Enterprise Applications Guide

6.5.1 Using a REST Services Client to Interact with AIS
In the text area in the bottom left of the form, enter the JSON string that is the input to
the tokenrequest service. Entering an environment and role is optional. Include them
only if you want to override the default values.

Example 6–22 Acceptable Input for the defaultconfig Service on JSON

The defaultconfig service is the only service that uses an HTTP GET operation. It
accepts one parameter for the required capabilities in the client application. If any
required capabilities listed in that parameter are missing, the response will indicate the
missing capabilities in the "requiredCapabilityMissing" field.

{
"jasHost": "jasserver.domain.com",
"jasPort": "8412",
"jasProtocol": "http",
"defaultEnvironment": "DV910",

Working with the EnterpriseOne REST Services Interface

Performing AIS Form Service Calls 6-45

"defaultRole": "*ALL",
"displayEnvironment": true,
"displayRole": true,
"displayJasServer": false,
"defaultJasServer": "http://jasserver.domain.com:port",
"ssoAllowed": true,
"allowSelfSignedSsl": false,
"sessionTimeout": "30",
"timeToLive": "720",
"aisVersion": "EnterpriseOne 9.1.4.6",
"capabilityList": [

{
"name": "grid",
"shortDescription": "Grid Actions",
"longDescription": "Ability to update, insert and delete grid records.",
"asOfRelease": "9.1.4.4"

},
{

"name": "editable",
"shortDescription": "Enabled/Disabled",
"longDescription": "Ability to indicate if form field or grid cell is

editable (enabled) or not (disabled).",
"asOfRelease": "9.1.4.4"

},
{

"name": "log",
"shortDescription": "Logging",
"longDescription": "Endpoint exposed for logging to AIS server log from

client",
"asOfRelease": "9.1.4.6"

},
{

"name": "processingOption",
"shortDescription": "Processing Options",
"longDescription": "Processing Option Service exposed for fetching PO

values from E1",
"asOfRelease": "9.1.4.6"

},
{

"name": "ignoreFDAFindOnEntry",
"shortDescription": "Ignore FDA Find On Entry",
"longDescription": "Ability to use the IgnoreFDAFindOnEntry flag",
"asOfRelease": "9.1.4.6"

}
],
"requiredCapabilityMissing": false,
"keepJasSessionOpen": true,
"jasSessionCookieName": "JSESSIONID"

}

Example 6–23 Acceptable Input for the tokenrequest Service in JSON

{
"username":"jde",
"password":"jde",
"deviceName":"RESTclient",
"environment":"JDV910",
"role":"*ALL"
}

Working with the EnterpriseOne REST Services Interface

6-46 Developing and Customizing Mobile Enterprise Applications Guide

Example 6–24 Acceptable Input for the tokenrequest Service in JSON Response

{
"username": "jde",
"environment": "JDV910",
"role": "*ALL",
"jasserver": "http://jasserver.domain.com:port",
"userInfo": {

"token":
"044kbwMICIsL8P4jttMj/VtpnEhrSK17i7fa2q8V+hVDlc=MDE4MDEwNjA1NTMwODkwMzQ1ODY0MTkyUk
VTVGNsaWVudDE0MTI2MDg3MDgzODY=",

"langPref": " ",
"locale": "en",
"dateFormat": "MDE",
"dateSeperator": "/",
"simpleDateFormat": "MM/dd/yyyy",
"decimalFormat": ".",
"addressNumber": 2111,
"alphaName": "Ingram, Paul"

},
"userAuthorized": false,
"version": null,
"poStringJSON": null,
"altPoStringJSON": null,
"aisSessionCookie": "W3XmCk8k6vhb3H-dwxSdBpCGZWAb7kh5D4gzemFoqoFqcoWgwqF_

!-1217528743!1412608708388"
}

6.5.1.1 Form Request Attributes
The following list contains a description of the form request attributes. For an example
of a form request, see Example 6–25.

■ maxPageSize. (optional) Maximum number of rows to return to the grid. The
default is 100 if not passed, the maximum is 500.

The value in the "Watchlists: Upper Limit on Max Records to Return" setting in the
Web Object Settings section of the EnterpriseOne HTML Server configuration file
(jas.ini) supersedes the maxPageSize setting. The "Watchlists: Upper Limit on Max
Records to Return" setting is typically set to a higher value (500 is the default), but
you might have to modify it if your results are not as expected. See "Configuration
Groups" in the JD Edwards EnterpriseOne Tools Server Manager Guide for more
information on how to modify server configuration settings.

Important: Starting with EnterpriseOne Tools release 9.1 Update 5.3,
the EnterpriseOne HTML Server uses a different setting—DB Fetch
Limit in the Web Runtime Interactivity section—to determine
maximum numbers of rows returned to the grid. The default value for
DB Fetch Limit is 2000.

■ returnControlIDs. (optional) Indicates which form and grid fields the service
passes back. Grid is always 1 and has an array of fields. Form fields are bar
delimited after grid, for example 1[19,20,50,48]|54|55. For power forms, indicate
the control ID of the subform and then underscore and the control within the
subform, for example 1_20|1_22[23,34].

■ formInputs. (optional) Collection of ID value pairs that represent the form
interconnect input to the form. Associate a string for the FI ID with the value to be
passed into that FI.

Working with the EnterpriseOne REST Services Interface

Performing AIS Form Service Calls 6-47

■ version. The version of the application, for example ZJDE0001.

■ formName. (required) Application and form name, for example P01012_W01012B.

■ formServiceAction. (optional) The CRUD operation the form will perform.

■ token. (required) The EnterpriseOne token that was returned from the
tokenrequest service.

■ environment. (optional) EnterpriseOne environment that was used to request the
token.

■ role. (optional) The EnterpriseOne role used to request the token.

■ findOnEntry. (optional) Valid values are TRUE or FALSE. Performs a find
automatically when the EnterpriseOne application launches. In the EnterpriseOne
application this autofind event occurs after post dialog initialized.

■ ignoreFDAFindOnEntry. (optional) Valid values are TRUE or FALSE. Applies to
applications that have the box checked for "Automatically Find on Entry" in the
gird in FDA. Allows the form service caller to control if that flag is used or not.

■ formActions. (optional) A set of actions to be performed on the form, in the order
listed. The actions can include entering a value into a form field, QBE field,
selecting a radio button, pressing a button, and selecting a check box value.

Example 6–25 Form Request

{
"token":

"044RnByWbW3FbLzpxWjSg55QzZWguAGnYqUNMlyB30IgyU=MDE5MDA2ODg0MDE5NjYwNzM1ODcyNDA5Nl
NvYXBVSTEzODc0ODc4OTEzNTc=",

"maxPageSize": "10",
"returnControlIDs": "1[19,20]58|62",
"version": "ZJDE0001",
"formInputs": [

{
"value": "E",
"id": "2"

}
],
"formActions": [

{
"value": "E",
"command": "SetQBEValue",
"controlID": "1[50]"

},
{

"value": "Al*",
"command": "SetControlValue",
"controlID": "58"

},
{

"value": "on",
"command": "SetCheckboxValue",
"controlID": "62"

},
{

"value": "on",
"command": "SetCheckboxValue",
"controlID": "63"

},
{

Working with the EnterpriseOne REST Services Interface

6-48 Developing and Customizing Mobile Enterprise Applications Guide

"command": "DoAction",
"controlID": "15"

}
],

"role": "*ALL",
"environment": "JDV910",

"formsServiceAction":"R",
"deviceName": "RESTclient",
"formName": "P01012_W01012B"

}

6.5.1.2 Calling FormService on Local EnterpriseOne HTML (JAS) Server through
the AIS Server
You have the option to use this technique if you have FDA changes locally and want to
test the JSON output while still accessing the AIS Server. This is the closest
approximation of how the mobile application will call the REST services.

Configure your local EnterpriseOne HTML Server to accept requests from the AIS
Server. To do so:

1. Locate the jas.ini file on the local EnterpriseOne Windows client (development
client) machine:

C:\E910_
1\system\OC4J\j2ee\home\applications\webclient.ear\webclient\WEB-INF\c
lasses\jas.ini

2. Add or modify the form service section like this:

#specify hosts allowed to call the form service and media object service
[FORMSERVICE]
allowedhosts=127.0.0.1|10.123.456.7

The two preceding entries are the local host IP address and the IP address of the
AIS Server. This enables you to make calls through the AIS Server to your local
EnterpriseOne HTML Server. For the AIS Server, you can also use allowedhosts=*
if you do not know the AIS Server IP address or want to allow access for any AIS
Server.

3. Restart the EnterpriseOne Windows client.

4. Test the configuration by repeating the preceding steps, but include the following
change to the JSON requests:

For tokenrequest: Indicate the JAS server, which is your local EnterpriseOne
HTML Server. Also, Oracle recommends that you always include the environment
and role because the defaults stored on the AIS Server may not work with a local
instance (such as JDV910 vs DV910).

{"username":"JDE",
"password":"jde",
"deviceName":"RESTclient",
"jasserver":"http://dnnlaurentvm1:8888",
"environment":"DV910",
"role":"*ALL"
}

Understanding Text Media Object Attachments

Performing AIS Form Service Calls 6-49

6.6 Understanding Text Media Object Attachments
The AIS Server provides a method to get and update the first text attachment stored
for a particular media object data structure key in EnterpriseOne.

The JDEMobileFramework API provides the following two services for managing text
media object attachments in mobile applications:

■ gettext Service

■ updatetext Service

See Also:

■ "User-Generated Data Structures" in the JD Edwards EnterpriseOne
Tools Data Structure Design Guide for more information about the
function of media object data structures in EnterpriseOne

6.6.1 gettext Service
The URL for getting text media objects is:

http://<ais-server>:<port>/jderest/file/gettext

When Only the first text media object is returned; it does not handle multiple text
attachments. Only plain text is supported. While the original text media object is
stored in HTML or RTF format (based on the settings on the EnterpriseOne HTML
Server), the tags will be removed and the response will be in plain text with line breaks
in Unicode format.

The following table describes the expected JSON input for the gettext service:

Field Value Description Example

token (String) The token you received when you
executed a token request.

"044TqjlQVSNHKvokvhWFKa8MYc
kPgG…"

moStructure (String) The Media Object Structure "ABGT" or "GT0801A"

moKey (Array of Strings) The key to that media object
structure.

["7"] or ["2015","283", "2"]

formName (String) The form where this media object is
used.

"P01012_W01012B"

version (String) The version of the app where this
media object is used.

"ZJDE0001"

deviceName (String) The device making the call to the
service.

"FUSE" or "iPhoneSimulator"

Example 6–26 gettext Service Input

{
"token":

"044TqjlQVSNHKvokvhWFKa8MYckPgGJdrd3CEDkzz2YjLQ=MDE5MDA2Nzg3NjEzOTA2MTY1MzIwMTkyMF
NvYXBVSTEzOTk1ODA5MzQ0OTg=",

"moStructure": "ABGT",
"moKey": [

"7"
],
"formName": "P01012_W01012B",
"version": "ZJDE0001",
"deviceName": "RESTclient"

}

Understanding Text Media Object Attachments

6-50 Developing and Customizing Mobile Enterprise Applications Guide

Example 6–27 gettext Service Response

{
"text": "9.1.4.6 \\u000aFirst Line \\u000aSecond Line \\u000aThird Line

\\u000aFourth Line \\u000aFifth line",
"isRTF": false

}

6.6.2 updatetext Service
The URL for updating text media objects is:

http://<ais-server>:<port>/jderest/file/updatetext

Only plain text is supported.

The following table describes the expected JSON input for the updatetext service:

Field Value Description Example

token (String) The token you received when you
executed a token request.

"044TqjlQVSNHKvokvhWFKa8MYc
kPgG…"

moStructure (String) The media object structure. "ABGT" or "GT0801A"

moKey (Array of Strings) The key to the media object
structure.

["7"] or ["2015","283", "2"]

formName (String) The form where this media object is
used.

"P01012_W01012B"

version (String) The version of the application where
the media object is used.

"ZJDE0001"

deviceName (String) The device making the call to the
service.

"RESTClient" or "iPhoneSimulator"

inputText (String) The text you are updating for the
first text media object.

"Update Text"

appendText (Boolean) A flag to indicate if the text should
append to (true) or replace (false) the
existing first text attachment.

true or false

Example 6–28 Update Text Service Input

{
"token":

"044X9NgLP5VHqIW0zJcWseFjMtjrnZ35TUFmVV3NW9a9g4=MDE5MDA2NDY5MzQ1NjkzNDM1MjE3NjEyOF
NvYXBVSTE0MDE3MTc4MDkzNTk=",

"moStructure": "ABGT",
"moKey": [

"7"
],
"formName": "P09E2011_W09E2011A",
"version": "ZJDE0001",
"inputText": "\nFirst Line \nSecond Line \nThird Line \nFourth Line \nFifth

line",
"appendText": false,
"deviceName": "RESTclient"

}

Understanding Text Media Object Attachments

Performing AIS Form Service Calls 6-51

Example 6–29 Update Text Service Response

{
"updateTextStatus": "Success"

}

6.6.3 JDEMobileFramework API Methods for Managing Text Media Objects
The MediaObjectOperations class in the JDEMobileFramework API provide methods
for managing text media objects from mobile applications. The same two methods
described in the preceding sections, getText and updateText, are exposed in this API.

MediaObjectOperations Class
The following table describes the methods in the MediaObjectOperations class:

Return Method Description

MediaObjectGetTextResponse getTextMediaObject(MediaObjectG
etTextRequest
mediaObgetTextRequest) throws
Exception

Takes a MediaObjectGetTextRequest,
calls the get text service, replaces
unicode returns and line feeds with
system line separator and returns a
MediaObjectGetTextResponse with the
resulting text attachment value.

MediaObjectUpdateTextResponse updateTextMediaObject(MediaObje
ctUpdateTextRequest
mediaObgetUpdateTextRequest)
throws Exception

Takes a MediaObjectUpdateTextRequest,
calls the update text service and returns
result in
MediaObjectUpdateTextResponse.

Example 6–30 Get Example

public void getText() {
MediaObjectGetTextRequest moGetText = new MediaObjectGetTextRequest();

moGetText.setFormName(formName);
moGetText.setVersion(version);
moGetText.setMoStructure(moStructure);

//set mo key
moGetText.addMoKeyValue(mokey);

try {

MediaObjectGetTextResponse response =
MediaObjectOperations.getTextMediaObject(moGetText);

this.setFirstText(response.getText());

} catch (JDERestServiceException e) {
JDERestServiceProvider.handleServiceException(e);

} catch (Exception e) {
AdfException adfe = new AdfException(e, AdfException.ERROR);
throw adfe;

}

}

Understanding Text Media Object Attachments

6-52 Developing and Customizing Mobile Enterprise Applications Guide

Example 6–31 Append Example

public void appendText() {
MediaObjectUpdateTextRequest moUpdateText = new

MediaObjectUpdateTextRequest();

moUpdateText.setFormName(formName);
moUpdateText.setVersion(version);
moUpdateText.setMoStructure(moStructure);

//set mo key
moUpdateText.addMoKeyValue(mokey);
moUpdateText.setAppendText(true);
moUpdateText.setInputText(this.getFirstText());

try {

MediaObjectUpdateTextResponse response =
MediaObjectOperations.updateTextMediaObject(moUpdateText);

} catch (JDERestServiceException e) {
JDERestServiceProvider.handleServiceException(e);

} catch (Exception e) {
AdfException adfe = new AdfException(e, AdfException.ERROR);
throw adfe;

}

}

Example 6–32 Update Example

public void updateText() {
MediaObjectUpdateTextRequest moUpdateText = new

MediaObjectUpdateTextRequest();
moUpdateText.setFormName(formName);
moUpdateText.setVersion(version);
moUpdateText.setMoStructure(moStructure);

//set mo key
moUpdateText.addMoKeyValue(mokey);
moUpdateText.setAppendText(false);
moUpdateText.setInputText(this.getFirstText());

try {

MediaObjectUpdateTextResponse response =
MediaObjectOperations.updateTextMediaObject(moUpdateText);

} catch (JDERestServiceException e) {
JDERestServiceProvider.handleServiceException(e);

} catch (Exception e) {
AdfException adfe = new AdfException(e, AdfException.ERROR);
throw adfe;

}

Understanding URL Media Object Attachments (Release 9.1 Update 5.2)

Performing AIS Form Service Calls 6-53

}

6.7 Understanding URL Media Object Attachments (Release 9.1 Update
5.2)

You can use the addURLMediaObject method to include URL media object
attachments in a mobile application. A URL media object attachment provides a link to
a web page or a file located on a server. In EnterpriseOne, a URL media object displays
the target of a URL in the Media Object Viewer.

The addURLMediaObject method uses a media object data structure key to identify
the record to which the attachment belongs.

The following is a description of the method and the fields that make up the request
and the response of the method:

Method - addURLMediaObject
Description - Adds a media object of the type URL.
Returns - MediaObjectAddUrlResponse
Parameters - MediaObjectAddUrlRequest

MediaObjectAddUrlRequest

Field Type Description

moStructure String The media object structure ID, for example
GT0801, GT48100.

moKey ArrayList <String> The set of key values, as strings, that is the key
of the media object. The API will handle
formatting into a bar delimited set. Use the
JDEmfUtilities.convertMillisecondsToYMDStrin
g() method to pass dates.

formName String The application and form usually associated
with this media object structure, for example
P01012_W01012B. This is for security purposes.
Security for media objects is based on the form
being used.

version String The version of the application noted in the
formName. This is for security purposes.
Security for media objects is based on the form
being used.

urlText String The text of the URL, for example
www.oracle.com or http://www.oracle.com

MediaObjectAddUrlResponse

Field Type Description

urlText String The text of the url, for
example
www.oracle.com or
http://www.oracle.c
om

saveUrl String The url as it was
saved in the media
object table F00165.

Understanding URL Media Object Attachments (Release 9.1 Update 5.2)

6-54 Developing and Customizing Mobile Enterprise Applications Guide

Example 6–33 URL Media Object - JSON Request and Response

The following code is an example of a JSON request:

{
"moStructure": "ABGT",
"moKey": [

"4242"
],
"formName": "P01012_W01012B",
"version": "ZJDE0001",
"token": "044BPeneep/jkkldafjdkla",
"urlText": "http://www.oracle.com",
"deviceName": "RESTclient"

}

The following code is an example of a JSON response:

{
"saveURL": "http://www.oracle.com",
"urlText": "http://www.oracle.com",
"sequence": 5

}

Example 6–34 URL Media Object - Mobile Framework API

The following is an example of API code for a URL media object.

public void addURL() throws Exception {

//set request info include URLs so they don't have to be fetched later
MediaObjectAddUrlRequest mediaObjectAddUrlRequest = new

MediaObjectAddUrlRequest();

mediaObjectAddUrlRequest.setFormName("P01012_W01012B");
mediaObjectAddUrlRequest.setVersion("ZJDE00001");
mediaObjectAddUrlRequest.setMoStructure("ABGT");
mediaObjectAddUrlRequest.addMoKeyValue("4242");

mediaObjectAddUrlRequest.setUrlText("http://www.oracle.com");

MediaObjectAddUrlResponse mediaObjectAddUrlResponse = new
MediaObjectAddUrlResponse();

try {
//get the list of available files for this media object

mediaObjectAddUrlResponse =
MediaObjectOperations.addUrlMediaObject(mediaObjectAddUrlRequest);

} catch (JDERestServiceException e) {
JDERestServiceProvider.handleServiceException(e);

} catch (Exception e) {
AdfException adfe = new AdfException("Media Object addURL Failed " + "

" + e, AdfException.ERROR);

sequence int The sequence
number for the newly
added url type media
object.

Field Type Description

Understanding the Media Object API for Photo Media Object Attachments

Performing AIS Form Service Calls 6-55

throw adfe;
}

}

6.8 Understanding the Media Object API for Photo Media Object
Attachments

You can incorporate photo attachments into native Oracle MAF mobile applications
using the JDEMobileFramework.jar, which is a JDE Mobile Helper. The
JDEMobileFramework.jar contains a Media Object API that provides classes and
methods that enable access to media objects from EnterpriseOne. It works in
conjunction with the AIS Server and the MediaObjectRequest capability of the
EnterpriseOne HTML Server.

MediaObjectOperations is an abstract class that contains all of the static methods
needed to manage media objects. This section describes the following four main
operations:

■ List

■ Download

■ Upload

■ Delete

6.8.1 List
Method - getMediaObjectList
Description - Returns a list of Media Object details based on the information provided
in the request.
Returns - MediaObjectListResponse
Parameters - MediaObjectListRequest

MediaObjectListRequest

Field Type Description

moStructure String The Media Object structure ID (such as GT0801,
GT48100)

moKey ArrayList <String> The set of key values, as strings, that is the key
of the media object. The API will handle
formatting into a bar delimited set. Use the
JDEmfUtilities.convertMillisecondsToYMDStri
ng() method to pass dates.

formName String The application and form usually associated
with this media object structure (e.g. P01012_
W01012B). This is for security purposes.
Security for media objects is based on the form
being used.

version String The version of the application noted in the
formName. This is for security purposes.
Security for media objects is based on the form
being used.

includeURLs boolean When true, the response will include the JAS
URL for each file type media object.

Understanding the Media Object API for Photo Media Object Attachments

6-56 Developing and Customizing Mobile Enterprise Applications Guide

MediaObjectListResponse

Field Type Description

mediaObjects MediaObjectListItem [} An array of media object list items.

MediaObjectListItem

includeData boolean When true, the response will include the Base64
encoded data for a 40 X 40 size of the image in
the data field of the response.

moTypes ArrayList <String> Valid types are 1 and 5, which are the two file
type media objects. Type 1 file attachments are
from a Media Object Queue. Type 5
attachments are files uploaded individually to
the EnterpriseOne HTML Server.

extensions ArrayList Use this field to further reduce the data set by
indicating the extensions of the files you want
to be included in the response (such as
"jpg","gif","png","pdf").

thumbnailSize <String> int This field is available with the Tools 9.1 Update
5 release. Use this in conjunction with the
includeData flag. When data is included in the
response you can pass an integer value in this
field to control the size of the thumbnail
returned in the data field. A value of 0 will
return the default size of 40x40. The maximum
size is 200, any value over 200 will return
images 200x200.

Field Type Description

downloadUrl String When true, the response will include the JAS
URL for each file type media object.

file String When true, the response will include the
Base64 encoded data for any image file in the
data field of the response. For text type media
objects the text will be include in the data field
of the response.

itemName String A user given name for the media object item.
When viewing media objects on JAS this is the
name shown directly under each media object
item in the left panel of the MO control.

link String

moType int Type 1 file attachments are from a Media
Object Queue. Type 5 attachments are files
uploaded individually to the JAS server.

queue String For type 1 file attachments from a Media
Object Queue the name of the queue.

sequence int The sequence the number of that individual
attachment in the set of attachments.

updateDate String The date that the media object was last
updated.

Field Type Description

Understanding the Media Object API for Photo Media Object Attachments

Performing AIS Form Service Calls 6-57

6.8.2 Download
Method - downloadMediaObject
Description - Downloads a full sized media object to a file on the device, based on the
key information provided in the request.
Returns - MediaObjectDownloadResponse
Parameters - MediaObjectDownloadRequest

MediaObjectDownloadRequest

updateHourOfDay int The hour that the media object was last
updated.

updateMinuteOfHour int The minute that the media object was last
updated.

updateSecondOfMinute int The second that the media object was last
updated.

updateUserID String The user that last updated that media object.

hasValidTimestamp boolean Indicates if time stamp was valid.

isDefaultImage boolean Indicates if image is default image.

isMisc boolean <unknown>

isOLE boolean Is an OLE attachment.

isShortCut boolean <unknown>

isText boolean Is a text type attachment.

isUpdated boolean <unknown>

isURL boolean Is a URL type attachment.

data String For an image file this is the Base64 encoded
string of the image data for a 40x40 size of the
image.

thumbFileLocation String The location of the thumbnail (40x40) saved
on the device. A file is written for each image
that has Base64 data included. Files are only
written if data is requested.

Field Type Description

moStructure String The Media Object structure ID, for example
GT0801, GT48100.

moKey ArrayList <String> The set of key values, as strings, that is the key
of the media object. The API will handle
formatting into a bar delimited set. Use the
JDEmfUtilities.convertMillisecondsToYMDStrin
g() method to pass dates.

formName String The application and form usually associated
with this media object structure, for example
P01012_W01012B. This is for security purposes.
Security for media objects is based on the form
being used.

Field Type Description

Understanding the Media Object API for Photo Media Object Attachments

6-58 Developing and Customizing Mobile Enterprise Applications Guide

FileAttachment

Field Type Description

fileName String The name of the file as stored in the database.

fileLocation String The location of the file saved to the device file
system. This includes the "file://" prefix so it
can be directly used in image tags in an amx
page.

itemName String A string value the user may provide as the
name of the attachment (if not supplied the file
name will be used.)

sequence int The sequence number of this individual
attachment.

thumbFileLocation String The file location of the thumbnail image (this
value is not updated when the download
method is called).

downloadUrl String The JAS URL of the file attachment (this value is
not populated when the download method is
called).

6.8.3 Upload
Method - uploadMediaObject
Description - Uploads a single file to the media object database based on key values
provided in the request.
Returns - MediaObjectUploadResponse
Parameters - MediaObjectUploadRequest

version String The version of the application noted in the
formName. This is for security purposes.
Security for media objects is based on the form
being used.

downloadURL String The downloadURL provided in the list
response. When this value is already known,
provide it so the service will not do the extra
work of getting the URL.

fileName String This will be the name of the file saved on the
device file system. It is easiest (and uniqueness
is guaranteed) to pass the file provided in the
list response.

sequence int The sequence number of this individual file in
the set of attachments.

height int When a value is passed in this field, the image
will be scaled to this size before it is returned. If
you provide only height, the width will be
scaled to maintain the aspect ratio.

width int When a value is passed in this field, the image
will be scaled to his size before it is returned. If
you provide only width, the height will be
scaled to maintain the aspect ratio.

Field Type Description

Understanding the Media Object API for Photo Media Object Attachments

Performing AIS Form Service Calls 6-59

MediaObjectUploadRequest

Field Type Description

moStructure String The Media Object structure ID (such as GT0801,
GT48100).

moKey ArrayList <String> The set of key values, as strings, that is the key
of the media object. The API will handle
formatting into a bar delimited set. Use the
JDEmfUtilities.convertMillisecondsToYMDStrin
g() method to pass dates.

formName String The application and form usually associated
with this media object data structure (such as
P01012_W01012B). This is for security purposes.
Security for media objects is based on the form
being used.

version String The version of the application noted in the
formName. This is for security purposes.
Security for media objects is based on the form
being used.

file FileAttachment The resulting downloaded file with the name,
fileLocation, sequence and itemName fields
updated.

FileAttachment

Field Type Description

fileName String The name of the file as stored in the database.
(This value is not required for upload.)

fileLocation String The location of the file saved to the device file
system. This includes the "file://" prefix so it
can be directly used in image tags in an amx
page.

itemName String A descriptive name. If not passed, the filename
will be used. The extension will be added
automatically.

sequence int The sequence number of this individual
attachment (this value is not required for
upload).

thumbFileLocation String The file location of the thumbnail image (this
value is not required for upload).

downloadUrl String The JAS URL of the file attachment (this value is
not required for upload).

MediaObjectUploadResponse

Field Type Description

itemName String A user given name for the media object item.
When viewing media objects on JAS, this is the
name shown directly under each media object
item in the left panel of the MO control. The
extension will be added automatically. If not
passed, the file name is used.

Understanding Processing Options

6-60 Developing and Customizing Mobile Enterprise Applications Guide

6.8.4 Delete
Method - deleteMediaObject
Description - Deletes the file in the media object database based on key values
provided in the request. Deletes the file on the device file system also.
Returns - MediaObjectDeleteResponse
Parameters - MediaObjectDeleteRequest

MediaObjectDeleteRequest

Field Type Description

moStructure String The Media Object structure ID (e.g. GT0801,
GT48100).

moKey ArrayList <String> The set of key values, as strings, that is the key
of the media object. The API will handle
formatting into a bar delimited set. Use the
JDEmfUtilities.convertMillisecondsToYMDStrin
g() method to pass dates.

formName String The application and form usually associated
with this media object structure (e.g. P01012_
W01012B). This is for security purposes.
Security for media objects is based on the form
being used.

version String The version of the application noted in the
formName. This is for security purposes.
Security for media objects is based on the form
being used.

sequence int The sequence number of this individual file in
the set of attachments.

fileLocation String The location of the file on the device file system.

MediaObjectDeleteResponse

Field Type Description

deleteStatus String The value 'Success' will be returned for
successful deletes. Any other value is a failure.

error String In the case of failure details of the error will be
included here.

6.9 Understanding Processing Options
Starting with EnterpriseOne Tools release 9.1.4.4, an AIS service is available for
handling processing options.

The URI for the service is:

http://<AIS Server>:<port>/jderest/poservice

The input JSON is:

sequence int The sequence number of this individual
attachment (assigned during the upload).

Field Type Description

Understanding Processing Options

Performing AIS Form Service Calls 6-61

{
"token":

"044uZUG2Uk1Vd6hzmAhPfILitA2pVLDVKLOYdh4HR71D7s=MDE5MDA2ODM3NTQ3NzU4MDMwNTg2MzY4MF
NvYXBVSTEzOTcwNTYxMTIxMTE=",

"applicationName":"P01012",
"version":"ZJDE0001",
"deviceName":"RESTclient"

}

The response JSON is like this:

{
"application": "P01012",
"version": "ZJDE0001",
"processingOptions": {

"GoToSupplierMaster_5": {
"type": 1,
"value": " "

},
"GoToCustomerMaster_6": {

"type": 1,
"value": " "

},
"GoToCSMS_8": {

"type": 1,
"value": " "

},
"HideTax_4": {

"type": 1,
"value": " "

},
"SearchTypeDefault_7": {

"type": 2,
"value": " "

},
"cTypeCode_11": {

"type": 1,
"value": "A"

}

},
"errors": ""

}

6.9.1 Using the AIS Service for Processing Options in Your Mobile Application
You can call the service passing an application and version. You can obtain the version
from the mobile application processing options, which specify the version of the
EnterpriseOne application the mobile application uses. For more information about
the processing options for mobile applications, see the JD Edwards EnterpriseOne
Applications Functionality for Mobile Devices Implementation Guide.

If you use this service, you must add "processingOption" to the list of required
capabilities in the about.properties. If you do not do this, you will receive an error at
runtime. See Section 6.2, "Understanding AIS Server Capabilities" for more
information.

Understanding Processing Options

6-62 Developing and Customizing Mobile Enterprise Applications Guide

ProcessingOptionRequestpoRequest = new ProcessingOptionRequest();
poRequest.setEnvironment(ApplicationGlobals.getInstance.getLoginResponse().getEnvi
ronment());
poRequest.setRole(ApplicationGlobals.getInstance.getLoginResponse().getRole());
poRequest.setJasserver(ApplicationGlobals.getInstance.getLoginResponse().getJasser
ver());
poRequest.setToken(ApplicationGlobals.getInstance.getLoginResponse().getUserInfo()
.getToken());
poRequest.setApplicationName("P5648203");
poRequest.setVersion("GNJ001");

try {

JSONObject jsonObject = (JSONObject) JSONBeanSerializationHelper.toJSON
(poRequest);
String postData = jsonObject.toString();

//send in po Request json, POST and poservice
String response =

JDERestServiceProvider.jdeRestServiceCall(postData,
poRequest.POST, poRequest.PO_SERVICE);

//response can be serialized to ProcessingOptionSet class
ProcessingOptionsSet poSet =

(ProcessingOptionsSet) JSONBeanSerializationHelper. fromJSON
(ProcessingOptionsSet.class, response);

if (poSet != null) {
//get the individual option and cast it to a variable of matching type
String attachmentAllowed = (String)poSet.getOptionValue ("szAttachmentAllowed_
1"));
}

Remember to inspect the "errors" element of the response in case an error was
encountered when trying to fetch the processing options you requested.

There are six supported data types. These are based on the data item used in the
Processing Option Design Aid for each option.

You can get the type of the option before attempting to cast it, which is the
recommended method. Or you can just cast it to the type you expect, because it is
unlikely to change. The default is String, so you will always be able to get to a string
version of the option value.

Type Code Type Constant Java Type JDE DD Type

1 STRING_TYPE String String

2 CHAR_TYPE String Character

9 BIG_DECIMAL_TYPE BIG Decimal Math Numeric

11 DATE_TYPE Date Date

15 INTEGER_TYPE Integer Integer

55 CALENDAR_TYPE Calendar Utime

Understanding the Application Stack Service (Tools Release 9.1 Update 5)

Performing AIS Form Service Calls 6-63

6.10 Understanding the Application Stack Service (Tools Release 9.1
Update 5)

The application stack is a service that enables interactive communication with
applications running on the EnterpriseOne web client. By using the application stack
service, you can perform form interconnects to receive data from the resulting form.
You can perform more complex interactions with applications that have cross-form
transaction boundaries, for example where you do not want the header saved until the
details are added and so forth. Also, with the application stack, you can implement a
record reservation in mobile applications that corresponds to a record reservation in
the web application.

The purpose of application stack processing is that it enables you to establish a session
for a specific application and maintain that session across calls. So you initiate a
session or 'open' it with one service call, then you can have any number of service calls
to 'execute' actions against the currently running application. Finally, you 'close' the
session with a service call.

To accomplish this stateful model, some additional data is managed for each service
call, including stack ID, state ID, and rid. Also, each request to execute actions against
the running application must be sent with the formOID to ensure the form you are
expecting is indeed the currently running form.

Note: You can execute actions on only one form during a stack
request. So if your request performs a form interconnect, you will
have to submit a subsequent request to operate on the second form
running after the interconnect.

6.10.1 Service Endpoint
The application stack service is exposed by the AIS Server at the endpoint:

http://<aishost>:<port>/jderest/appstack

6.10.2 Capability
The application stack capability is exposed in the default configuration as
"applicationStack." You must add this to your used or required capability lists within
your mobile application to use this capability.

6.10.3 Prerequisite
The AIS Server must be configured to "Keep JAS Sessions Open" so that the session
can be maintained across service calls.

6.10.4 JSON Example of an Application Stack Request
This section shows an example of JSON code that performs the following actions:

■ Accessing the Address Book application to find a record.

See Open Application: Request and Response.

■ Taking the row exit to the Phones form.

See Execute Actions on Application: Request and Response.

■ Adding a phone number.

Understanding the Application Stack Service (Tools Release 9.1 Update 5)

6-64 Developing and Customizing Mobile Enterprise Applications Guide

See Adding a Phone Number.

■ Saving and closing the application stack.

See Execute Close Application: Request and Response.

6.10.4.1 Open Application: Request and Response
Example 6–35 shows an example of the application stack request. It contains all of the
other environment and credential information that is included in a form service
request. After this information, it contains a single instance of a form service request
called formRequest. You can use this to include any action you want to take on this
original form, just like a normal form service request. Most important is the action,
which is "open" in this case. This tells the EnterpriseOne web client to keep the form
open so that you can interact with it on future requests.

So for this request with the Address Book (P01012), the search type is set to "E to
perform a "find" and retrieve the first five records.

Important: The maxPageSize indicated in this originating request
will be the max page size for all requests in this stack. If you do not
specify a maxPageSize, it uses the form service request default of 100.

Example 6–35 Open Application - Request

{
"token":

"044J57pHCCB3AzH7/W6Vetm0+yVG6pnKOPl823587SfY6o=MDE5MDA2MTYxOTE0NTE0NjE2OTEyNTg4OF
NvYXBVSTE0MDEyMTA5MDE1MDM=",

"action": "open",
"formRequest": {

"returnControlIDs": "54|1[19,20]",
"maxPageSize": "5",
"formName": "P01012_W01012B",
"version": "ZJDE0001",
"findOnEntry": "TRUE",
"formInputs": [

{
"value": "E",
"id": "2"

}
]

},
"deviceName": "RESTclient"

}

Example 6–36 Open Application - Response

{
"fs_P01012_W01012B": {

"title": "Work With Addresses",
"data": {

… condensed….
},
"errors": [],
"warnings": []

},
"stackId": 1,
"stateId": 1,
"rid": "e51b593df7a884ea",

Understanding the Application Stack Service (Tools Release 9.1 Update 5)

Performing AIS Form Service Calls 6-65

"currentApp": "P01012_W01012B_ZJDE0001",
"sysErrors": []

}

The response contains the data (including the 5 rows, which are not shown), along
with additional information used for all subsequent interactions with the open
application.

6.10.4.2 Execute Actions on Application: Request and Response
Next, the JSON code should contain commands to select one of the records returned
and access the row exit to Phones (through a form interconnect). With this service call,
make sure to pass in the values for stack ID, state ID and rid from the last call, along
with the token. Also, indicate an action of "execute," so it knows you are interacting
with an open application.

This execute type request contains an actionRequest which can include
returnControlIDs for the form you expect to end on and an array of formActions to
execute on the form indicated by formOID.

Example 6–37 Execute Actions on Application - Request

{
"token":

"044DCcituJDHbxBhPcgOuhCb0Av/xnNiUFxqPTVD6hDfnU=MDE5MDA2MTc1NjYwMzYwMzk0MTE0OTY5Nl
NvYXBVSTE0MDEyMTkzOTIxMzA=",

"stackId": 1,
"stateId": 1,
"rid": "e51b593df7a884ea",
"action": "execute",
"actionRequest": {

"returnControlIDs": "32|7|1[28,29,66]",
"maxPageSize": "4",
"formOID": "W01012B",
"formActions": [

{
".type": "com.oracle.e1.jdemf.FormAction",
"command": "SelectRow",
"controlID": "1.0"

},
{

".type": "com.oracle.e1.jdemf.FormAction",
"command": "DoAction",
"controlID": "65"

}
]

},
"deviceName": "RESTclient"

}

Example 6–38 Execute Actions on Application - Response

{
"fs_P0115_W0115A": {

"title": "Phone Numbers",
"data": {

….condensed..
"summary": {

Understanding the Application Stack Service (Tools Release 9.1 Update 5)

6-66 Developing and Customizing Mobile Enterprise Applications Guide

"records": 3,
"moreRecords": false

}
}

},
"errors": [],
"warnings": []

},
"stackId": 1,
"stateId": 2,
"rid": "e51b593df7a884ea",
"currentApp": "P0115_W0115A_ZJDE0001",
"sysErrors": []

}

Notice that the state ID has increased after each service call. Also notice that the
"currentApp" has changed, and the JSON is representing the Phones application.

6.10.4.3 Adding a Phone Number
Example 6–39 shows how to execute an additional action on this stack that adds a
phone number. You can do this as many times as you want, incrementing the state ID
each time. The action does not include saving the information; it only populates the
grid.

Example 6–39 Adding a Phone Number - Request

{
"token":

"044DCcituJDHbxBhPcgOuhCb0Av/xnNiUFxqPTVD6hDfnU=MDE5MDA2MTc1NjYwMzYwMzk0MTE0OTY5Nl
NvYXBVSTE0MDEyMTkzOTIxMzA=",

"stackId": 1,
"stateId": 2,
"rid": "e51b593df7a884ea",
"action": "execute",
"actionRequest": {

"formOID": "W0115A",
"formActions": [

{
"gridAction": {

"gridID": "1",
"gridRowInsertEvents": [

{
"gridColumnEvents": [

{
"value": "720",
"command": "SetGridCellValue",
"columnID": "28"

},
{

"value": "12345",
"command": "SetGridCellValue",
"columnID": "29"

},
{

"value": "CAR",
"command": "SetGridCellValue",
"columnID": "27"

}
]

Understanding the Application Stack Service (Tools Release 9.1 Update 5)

Performing AIS Form Service Calls 6-67

}
]

}
}

]
},
"deviceName": "RESTclient",
"ssoEnabled": true

}

6.10.4.4 Execute Close Application: Request and Response
Lastly, the JSON code should contain commands to press the Save button and close the
application stack. This saves all phone records that were added to the grid.

Example 6–40 Execute Close Application - Request

{
"token":

"044DCcituJDHbxBhPcgOuhCb0Av/xnNiUFxqPTVD6hDfnU=MDE5MDA2MTc1NjYwMzYwMzk0MTE0OTY5Nl
NvYXBVSTE0MDEyMTkzOTIxMzA=",

"stackId": 1,
"stateId": 3,
"rid": "e51b593df7a884ea",
"action": "close",
"actionRequest": {

"formOID": "W0115A",
"formActions": [

{
"command": "DoAction",
"controlID": "4"

}
]

},
"deviceName": "RESTclient",
"ssoEnabled": true

}

Example 6–41 Execute Close Application - Response

{
"fs_P0115_W0115A": {

"title": "Phone Numbers",
"data": {

….condensed…
],
"summary": {

"records": 4,
"moreRecords": false

}
}

},
"errors": [],
"warnings": []

},
"stackId": 0,
"stateId": 0,
"rid": "",
"currentApp": "P0115_W0115A_ZJDE0001",

Understanding the Application Stack Service (Tools Release 9.1 Update 5)

6-68 Developing and Customizing Mobile Enterprise Applications Guide

"sysErrors": []
}

When the stack is closed, the stack ID, state ID, and rid are cleared, indicating you can
no longer interact with that stack.

6.10.4.5 Mobile Application Example
The application manages the alternate addresses for the 0 contact of an address
number. It lists the first 10 "E" type records in the Address Book, and allows the user to
select a record where they can add, update, or delete alternate addresses. Notice that
the framework handles all of the stack maintenance for you within the
ApplicationStack object. You do not need to manually manage the rid, stack ID, or
state ID in your mobile application. The API does that for you.

An ApplicationStack variable is defined in the main DC class. You should define one
of these for each stack you want to maintain. For example:

ApplicationStack appStackAddress = new ApplicationStack();

When the mobile application opens, it retrieves the Address Book records and saves
the response in a data control variable for the P01012_W01102B form.

public void getABRecords() {

// Retrieve a list of customers from the P03013_W03013A form.
LoginResponse lr = getLoginResponse();

FormRequest formRequest = new FormRequest();
formRequest.setReturnControlIDs("1");
formRequest.setFormName("P01012_W01012B");
formRequest.setReturnControlIDs("54|1[19,20]");
formRequest.setFormServiceAction("R");
formRequest.setMaxPageSize("10");
FSREvent findFSREvent = new FSREvent();
String name = lr.getUsername();
findFSREvent.setFieldValue("54", "E");
findFSREvent.doControlAction("15"); // Find button
formRequest.addFSREvent(findFSREvent);

try {
//open P01012_W01012B
String response = appStackAddress.open(formRequest);

p01012_W01012B_FormParent =
(P01012_W01012B_

FormParent)JSONBeanSerializationHelper.fromJSON(P01012_W01012B_FormParent.class,

response);

} catch (JDERestServiceException e) {
JDERestServiceProvider.handleServiceException(e);

} catch (Exception e) {
throw new AdfException(e.getMessage(), AdfException.ERROR);

}

}

Understanding the Application Stack Service (Tools Release 9.1 Update 5)

Performing AIS Form Service Calls 6-69

When an Address Book record is selected in the mobile application, the mobile
application performs a service call to perform the row exit on the open application. It
checks to make sure the interconnect happened, and then performs a second
interconnect to Work with Alternate Addresses form. Finally, it checks that it is on the
addresses form and then deserializes the response to the data control variable for the
addresses form. The Address Book application has a multi-select grid, and taking a
row exit when multiple records are selected causes issues; therefore the action is to
deselect all, and then select the correct one.

public String goToAltAddress() {

String nav = "";
ActionRequest getAddressAction = new ActionRequest();
FSREvent selectEvent = new FSREvent();
try {

getAddressAction.setFormOID("W01012B");
Integer rowIndex =

(Integer)AdfmfJavaUtilities.evaluateELExpression("#{pageFlowScope.selectedABIndex}
");

if (rowIndex != null) {
selectEvent.unselectAllGridRows("1");

//select the row they chose
selectEvent.selectRow("1", rowIndex.intValue());

//deselect the previous row (W01012B has multi select grid and we are only viewing
one at a time

selectEvent.doControlAction("67"); //whos who exit
getAddressAction.addFSREvent(selectEvent);
String response =

appStackAddress.executeActions(getAddressAction);
if (appStackAddress.getLastAppStackResponse().checkSuccess("P0111_

W0111A")) {
selectWhosWho();
if

(appStackAddress.getLastAppStackResponse().checkSuccess("P01111_W01111E")){
nav = "to_Addresses";

}

}
}

} catch (JDERestServiceException e) {
JDERestServiceProvider.handleServiceException(e);

} catch (Exception e) {
throw new AdfException(e.getMessage(), AdfException.ERROR);

}

public void selectWhosWho() {

if (appStackAddress.getLastAppStackResponse().checkSuccess("P0111_
W0111A")) {

try {
//send another request to go to alt address
ActionRequest selectAction = new ActionRequest();
FSREvent findEvent = new FSREvent();
//findAction.setReturnControlIDs("32|7|1[28,29,66]");
selectAction.setFormOID("W0111A");
findEvent.selectRow("1", 0); //first whos who row
findEvent.doControlAction("148");
selectAction.addFSREvent(findEvent);
String response = appStackAddress.executeActions(selectAction);

Understanding the Application Stack Service (Tools Release 9.1 Update 5)

6-70 Developing and Customizing Mobile Enterprise Applications Guide

if
(appStackAddress.getLastAppStackResponse().checkSuccess("P01111_W01111E")) {

p01111_W01111E_FormParent =
(P01111_W01111E_

FormParent)JSONBeanSerializationHelper.fromJSON(P01111_W01111E_FormParent.class,
response);

}

} catch (JDERestServiceException e) {
JDERestServiceProvider.handleServiceException(e);

} catch (Exception e) {
throw new AdfException(e.getMessage(), AdfException.ERROR);

}
}

} new AdfException(e.getMessage(), AdfException.ERROR);
}

return nav;
}

The user can then navigate to an individual address to change or delete it. They can
also add a new one.

This method handles saving an existing address or adding a new one. It also handles
any errors that were returned from the service.

public String saveAddress() {
String nav = "";
String formMode =

(String)AdfmfJavaUtilities.evaluateELExpression("#{pageFlowScope.formMode}");
ActionRequest addAction = new ActionRequest();
FSREvent saveEvent = new FSREvent();
Integer rowIndex = null;

if (formMode.equals("A") && this.getArrayError().size() > 0) {
//there was an error on a previously added one, it may be at the form

level so we can't easily identify the record to fix, close the form and open it
again

cancelAddress();
}

//clear errors each time to try again
setArrayError(new ArrayList());

try {

addAction.setFormOID("W01111E");
GridAction gridAction = new GridAction();

if (formMode.equals("A")) {
GridRowInsertEvent gri = new GridRowInsertEvent();
//set the column values
gri.setGridColumnValue("34", singleAddressRow.getSAddressType_

34().getValue());
gri.setGridColumnValue("26", singleAddressRow.getSAddressLine1_

Understanding the Application Stack Service (Tools Release 9.1 Update 5)

Performing AIS Form Service Calls 6-71

26().getValue());
gri.setGridColumnValue("22", singleAddressRow.getSCity_

22().getValue());
gri.setGridColumnValueDate("18", singleAddressRow.getDtBeginDate_

18().getDate());

//add the row
gridAction.insertGridRow("1", gri);

} else {
if (rowIndex == null) {

rowIndex =

(Integer)AdfmfJavaUtilities.evaluateELExpression("#{pageFlowScope.selectedAddressI
ndex}");

}
GridRowUpdateEvent gru = new GridRowUpdateEvent();
//set the column values
gru.setGridColumnValue("34", singleAddressRow.getSAddressType_

34().getValue());
gru.setGridColumnValue("26", singleAddressRow.getSAddressLine1_

26().getValue());
gru.setGridColumnValue("22", singleAddressRow.getSCity_

22().getValue());
gru.setGridColumnValueDate("18", singleAddressRow.getDtBeginDate_

18().getDate());

//update the row
gridAction.updateGridRow("1", rowIndex.intValue(), gru);

}
//add the grid action to the events
saveEvent.addGridAction(gridAction);

saveEvent.doControlAction("12"); //OK
//addAction.setReturnControlIDs("32|7|1[28,29,66]");
addAction.addFSREvent(saveEvent);
String response = appStackAddress.executeActions(addAction);

//after save it returns to whos who, open it again to get final list

if (appStackAddress.getLastAppStackResponse().checkSuccess("P0111_
W0111A")) {

selectWhosWho();
if

(appStackAddress.getLastAppStackResponse().checkSuccess("P01111_W01111E")) {
nav = "__back";

}

} else {
if

(appStackAddress.getLastAppStackResponse().checkSuccess("P01111_W01111E")) {

P01111_W01111E_FormParent tempW0111E =
(P01111_W01111E_

FormParent)JSONBeanSerializationHelper.fromJSON(P01111_W01111E_FormParent.class,

response);
//check for errors on the form
if (tempW0111E.getFs_P01111_W01111E() != null &&

tempW0111E.getFs_P01111_W01111E().getErrors() != null &&

Understanding the Application Stack Service (Tools Release 9.1 Update 5)

6-72 Developing and Customizing Mobile Enterprise Applications Guide

tempW0111E.getFs_P01111_W01111E().getErrors().length > 0)
{

//show error
addErrors(tempW0111E.getFs_P01111_W01111E().getErrors());

}
}

}

} catch (JDERestServiceException e) {
JDERestServiceProvider.handleServiceException(e);

} catch (Exception e) {
throw new AdfException(e.getMessage(), AdfException.ERROR);

}

return nav;
}

The following sample code shows an example of the method to delete the address.
After deleting and saving, the EnterpriseOne form closes, so you have to open it again
with the selectWhosWho method.

public String deleteAddress(int key) {

String nav = "";

ActionRequest deleteActionRequest = new ActionRequest();
FSREvent deleteEvent = new FSREvent();
deleteActionRequest.setFormOID("W01111E");
//deleteActionRequest.setReturnControlIDs("32|7|1[28,29,66]");
deleteEvent.selectRow("1", key);
//press Delete button
deleteEvent.doControlAction("41");
//press OK button
deleteEvent.doControlAction("12");
//add the FSR event to the request
deleteActionRequest.addFSREvent(deleteEvent);

try {
String response = appStackAddress.executeActions(deleteActionRequest);

if (appStackAddress.getLastAppStackResponse().checkSuccess("P0111_
W0111A")) {

selectWhosWho();
if

(appStackAddress.getLastAppStackResponse().checkSuccess("P01111_W01111E")) {
nav = "__back";

} else {
//erors on delete?

}

} else if
(appStackAddress.getLastAppStackResponse().checkSuccess("P01012_W01012B")) {

nav = "to_AB";
}

} catch (JDERestServiceException e) {
JDERestServiceProvider.handleServiceException(e);

Understanding the Application Stack Service (Tools Release 9.1 Update 5)

Performing AIS Form Service Calls 6-73

} catch (Exception e) {
AdfException adfe = new AdfException(e.getMessage(),

AdfException.ERROR);
throw adfe;

}

return nav;
}

6.10.5 ApplicationStack Methods
The following table describes the ApplicationStack methods:

Modifier and Type Method Description

String open(FormRequest formRequest) Opens a form, allowing further interactions
with subsequent service calls.

String executeActions(ActionRequest
actionRequest)

Executes actions on an already open form.

String close(ActionRequest
actionRequest)

Closes all applications in the application
stack, after executing the actions requested

String close () Closes all applications in the application
stack, without doing any further actions

void setOverrideDefaultFeature(Stri
ng overrideDefaultFeature)

Use this to set the default feature if you are
using an ApplicationStack from a re-usable
component. Similar to how you have to
override the default feature for a form
service call. Do this call before other
requests.

ApplicationStackResponse getLastAppStackResponse() Returns the last response which includes the
stack ID, state ID, rid and system errors.

6.10.6 ApplicationStackResponse Methods
The following table describes the ApplicationStackResponse methods:

Modifier and Type Method Description

boolean checkSuccess (String
appForm)

Returns true if the last response was for the
appForm (for example P01012_W01012B) if the
form does not match it returns false.

Understanding the Application Stack Service (Tools Release 9.1 Update 5)

6-74 Developing and Customizing Mobile Enterprise Applications Guide

A

Creating a Sample Mobile Application A-1

ACreating a Sample Mobile Application

[5]This appendix guides you through the steps to create a sample EnterpriseOne mobile
enterprise application using Oracle Mobile Application Framework (MAF).

This appendix contains the following topics:

■ Section A.1, "Before You Begin"

■ Section A.2, "Creating the Sample Address Book Mobile Application"

■ Section A.3, "Using the JDE Mobile Helpers"

■ Section A.4, "Connecting to the EnterpriseOne Application Interface Services (AIS)
Server"

■ Section A.5, "AIS Client Class Generator"

■ Section A.6, "Reading EnterpriseOne Data"

■ Section A.7, "Implementing Filter Fields"

■ Section A.8, "Page Navigation and Getting More Details"

■ Section A.9, "Updating Data in EnterpriseOne"

■ Section A.10, "Device Integration"

A.1 Before You Begin
Before following the instructions in this section, see Section 3.2, "Prerequisites" in this
guide to ensure you have completed the required prerequisites.

The prerequisites include the JDEMobileSampleApplication.zip. This zip file contains
the components for running the same sample mobile application that this appendix
describes how to create. You can use this sample for comparison purposes. To run this
sample application, you must configure it with the JDEMobileFramework.jar and
Login.jar as described in Section A.3.1 and Section A.3.2.

Remember, the files in the JDEMobileSampleApplication.zip are intended for reference
purposes only.

Important: To run the sample mobile application, you must make
sure that the JDEMobileSampleApplication and the Oracle MAF
extension are from the same JDE_Mobile_Framework package. In
other words, if you installed the 2.0.1 MAF extension from the JDE_
Mobile_Framework_2.0.1 package, then you will need to run the
JDEMobileSampleApplication that is included in that package.

To verify the version of the Oracle MAF extension:

1. In JDeveloper click the Help menu, About, and then click the Extensions
tab.

2. In the "find" field, type maf and then press Enter. Scroll to the right to
check the version.

Creating the Sample Address Book Mobile Application

A-2 Developing and Customizing Mobile Enterprise Applications Guide

A.2 Creating the Sample Address Book Mobile Application
This section contains the following topics:

■ Section A.2.1, "Creating a New Mobile MAF Application"

■ Section A.2.2, "Running the Mobile Application in the Simulator"

A.2.1 Creating a New Mobile MAF Application
This section describes how to create a new sample mobile application entitled Address
Book.

1. Launch JDeveloper.

2. Select the File menu > New > Application.

3. In the New Gallery, select Mobile Application Framework Application and click
OK.

Creating the Sample Address Book Mobile Application

Creating a Sample Mobile Application A-3

4. On "Name your application," enter AddressBook in the Application Name field,
and then click Finish to skip the rest of the steps.

The application displays the Features list.

5. In the Features section, click the green plus sign to add a new feature to the list.

6. On Create MAF Feature, enter ABList in the Feature Name and Feature ID fields.

Creating the Sample Address Book Mobile Application

A-4 Developing and Customizing Mobile Enterprise Applications Guide

7. Click OK.

8. Select the Content tab.

9. Change the Content Type to MAF Task Flow.

10. Click the add button next to the File field.

11. On Create MAF Task Flow, use the default name in the File Name field for the task
flow and click OK.

JDeveloper displays the new task flow.

12. In the Components window on the right, click the View button to add a new view
to the task flow.

13. Name the new view ablist.

Creating the Sample Address Book Mobile Application

Creating a Sample Mobile Application A-5

14. On the ViewController-task-flow.xml tab, double-click the new ablist view
element to create the view page.

The new page opens automatically.

15. On the ablist.amx tab, change the outputText value to "Address Book" as shown
in the preceding example. This is the title for the first page of the sample mobile
application.

16. Save your application.

A.2.2 Running the Mobile Application in the Simulator
To run the mobile application in the simulator:

Creating the Sample Address Book Mobile Application

A-6 Developing and Customizing Mobile Enterprise Applications Guide

1. From the application drop-down, select Deploy > iOS1.

2. On Deployment Action, select Deploy application to simulator and click Finish.

Deployment details can be viewed in the deployment log. Wait for it to finish.

The simulator displays the application on the second page of the home screen.

3. Click the application icon to launch it.

The page that you created appears with the header text "Address Book," as shown
in the following example:

Using the JDE Mobile Helpers

Creating a Sample Mobile Application A-7

If your mobile application failed to build or deploy at this point, please refer to the
Oracle Fusion Middleware Developing Mobile Applications with Oracle Mobile Application
Framework documentation for more information:

http://docs.oracle.com/middleware/mobile200/mobile/develop/index.html

A.3 Using the JDE Mobile Helpers
This section describes how to incorporate the JDE Mobile Helpers into the sample
mobile application.

See Section 2.3.1, "JDE Mobile Helpers" for more information about the JDE Mobile
Helpers.

A.3.1 Including the JDEMobileFramework.jar
The JDEMobileFramework.jar provides a set of classes and API methods that enable
the mobile application to manage (create, read, update, delete) data in EnterpriseOne
through REST services.

To include the JDEMobileFramework.jar:

1. In JDeveloper, in the Projects panel, right-click the ApplicationController project
and select Project Properties.

2. On Project Properties, select Libraries and Classpath.

Using the JDE Mobile Helpers

A-8 Developing and Customizing Mobile Enterprise Applications Guide

3. Click the Add JAR/Directory button and select the JDEMobileFramework.jar that
you downloaded to your local file system, and click Open.

If you do not have JDEMobileFramework.jar, see Prerequisites in this guide.

4. Click OK to save the properties. If you receive an error message, ignore it and click
Cancel.

A.3.2 Including the Login.jar
The Login.jar provides a configuration page, login page, and a springboard. The
springboard contains links to Legal Terms or the End User License Agreement (EULA),
About, and Logout.

To include the Login.jar:

1. In JDeveloper, click the Applications drop-down menu and select Application
Properties.

Using the JDE Mobile Helpers

Creating a Sample Mobile Application A-9

2. On Application Properties, select Libraries and Classpath, and then click the Add
JAR/Directory button to add the Login.jar.

3. Click OK to save the properties.

4. In the Application Resources section, expand Descriptors > ADF META-INF, and
double-click maf-application.xml to open it.

5. Click the Feature References tab, and then click the green plus sign to add a
feature reference.

6. Click the Id drop-down menu and select com.oracle.e1.jdemf.login. If you receive
an error message, ignore it and click Cancel.

7. Use the blue arrow on the right to move the login feature to the top of the list.

8. On the Application tab, clear the Show Navigation Bar on Application Launch
check box.

Using the JDE Mobile Helpers

A-10 Developing and Customizing Mobile Enterprise Applications Guide

9. In the Projects panel, expand ApplicationController > Application Sources >
application and double-click LifeCycleListener.java to open it.

10. On the LifeCycleListener.java tab, place the following line of code in the existing
start() method, as shown in the preceding example:

LoginConfiguration.setDefaultFeature("ABList");

This code directs the Login feature to navigate to the appropriate page after a
successful login.

11. Save the LifeCycleListener.java.

A.3.3 Including the Javascript and CSS
The Javascript and CSS files are dependencies of the JDEMobileFramwork.jar and the
Login.jar. The Javascript provides an animated icon to show that the mobile
application is processing while making service calls. The CSS provides an extension to
the styling skin provided by Oracle MAF. It enables you to make adjustments to the
style of the configuration, login, and springboard pages of your mobile application.

To include the Javascript and CSS:

1. In the file system, copy the js folder provided in the JDEMobileFramework zip file,
and save it to the ViewController/public_html directory.

2. In the file system, copy the css folder provided in the JDEMobileFramework zip
file, and save it to the ApplicationController/public_html directory.

3. In the Projects panel in JDeveloper, expand ViewController > Application
Sources >META_INF, and double-click the maf-feature.xml to open it.

4. Select the ABList feature, click the Content tab, and click the plus sign in the
Includes section to add the jdemafJavascript.js file. This file is located in js folder.

5. Under ApplicationController > Application Sources > META-INF, open the
maf-skins.xml and copy the following code into the file:

Note: Remove any code lines that might exist before you copy the
following code into the file.

Using the JDE Mobile Helpers

Creating a Sample Mobile Application A-11

<?xml version="1.0" encoding="UTF-8" ?>
<adfmf-skins xmlns="http://xmlns.oracle.com/adf/mf/skin">

<skin id="s1">
<family>jdeCustomSkinFamily</family>
<id>jdeCustomSkinFamily-v1.Android</id>
<extends>jdeCustomSkinFamily</extends>
<style-sheet-name>css/jdemfCustomStyles-Android.css</style-sheet-name>
<version>

<name>v1</name>
<default>true</default>

</version>
</skin>
<skin id="s2">

<family>jdeCustomSkinFamily</family>
<id>jdeCustomSkinFamily-v1.iOS</id>
<extends>jdeCustomSkinFamily</extends>
<style-sheet-name>css/jdemfCustomStyles-iOS.css</style-sheet-name>
<version>

<name>v1</name>
<default>true</default>

</version>
</skin>
<skin id="s3">

<family>jdeCustomSkinFamily</family>
<id>jdeCustomSkinFamily</id>
<extends>mobileAlta-v1.1</extends>
<style-sheet-name>css/jdemfCustomStyles-Base.css</style-sheet-name>
<version>

<name>v1</name>
<default>true</default>

</version>
</skin>

</adfmf-skins>

6. In the Application Resources panel, expand Descriptors > ADF META-INF, and
open the maf-config.xml.

7. Enter jdeCustomSkinFamily for the <skin-family> and enter v1 for the
<skin-version>, as show in the following example:

A.3.4 Including the Resource Bundle
The Resource Bundle contains text resources for the pages provided in the Login.jar.

Using the JDE Mobile Helpers

A-12 Developing and Customizing Mobile Enterprise Applications Guide

To include the Resource Bundle:

1. Copy the jdemfResourceBundle.xlf file provided in the JDEMobileFramework zip
file and save it to the following directory:

ApplicationController/src/com/oracle/e1/jdemf/bundle

You must add each directory in the path if it does not exist.

Note: The ViewController project is dependent on the
ApplicationController project. Adding the bundle to the
ApplicationController project will also make it available to the
ViewController project.

2. In JDeveloper, click the "refresh" button for the bundle to appear under
com.oracle.e1.

3. Right-click ViewController and select Project Properties.

4. On Project Properties, select Resource Bundle.

5. Set the Default Project Bundle Name to:
com.oracle.e1.jdemf.bundle.jdemfResourceBundle

6. Click OK to save the properties. If a warning message appears, ignore it and click
Ok or Cancel to proceed.

A.3.5 Including Logo Images
You should include a logo image for the pages in the Login.jar. If you do not insert
one, a question mark (?) appears in place of the image. Oracle provides the following

Using the JDE Mobile Helpers

Creating a Sample Mobile Application A-13

image files as examples of the recommended size, quality, and color of images that you
should use in your mobile application:

■ jde_transparent_no_jde_small.png

This is a 242 x 87 transparent image for the login page, intended for a white
background.

■ jde_transparent_springboard.png

This is a 242 x 87 transparent image for the springboard, intended for a dark
background.

You can use any image as long as it has the same dimensions as the example images.
You can use the same name for the images and place them in the same location as
instructed in the following steps.

Important: Do not use the logo image examples provided by Oracle;
they are provided for example purposes only.

To include logo images:

1. In the file system, copy the jde_transparent_no_jde_small.png file to the
ViewController/public_html/images directory.

2. Copy the jde_transparent_springboard.png to the ViewController/public_
html/images directory.

3. In JDeveloper, deploy the application.

You should see the configuration screen and login screen. After logging in, it
should take you to your ABList feature with the page with the "Address Book"
title.

The Login.jar also provides information screens if configuration or connection
issues arise during login, for example:

Note: If you receive an error, under the Application Resources panel
in JDeveloper, double-click maf-application.xml. In the
maf.application.xml tab, make sure the Files and Network options are
selected.

Using the JDE Mobile Helpers

A-14 Developing and Customizing Mobile Enterprise Applications Guide

A.3.6 Enabling the Custom Springboard
The springboard provided in the Login.jar shows links to the About page, the EULA,
and the Logout.

To enable the springboard:

1. Open the maf-application.xml.

2. In the Navigation section on the Application tab, clear the Show Navigation Bar
on Application Launch check box.

3. For Springboard, select the Custom option

4. In the Feature drop-down menu, select com.oracle.e1.jdemf.springboard.

Using the JDE Mobile Helpers

Creating a Sample Mobile Application A-15

5. Select the Show Springboard Toggle Button check box.

6. For Springboard Animation, select the Slide option.

7. In the Slideout Width field, enter 150.

8. Clear any other check boxes and then click the Feature References tab.

9. In the Feature References section, click the green plus sign to add the springboard
feature, and then select false for both the "Show on Navigation Bar" and "Show on
Springboard" options.

A.3.7 Including the about.properties
The about.properties enables you to configure information displayed on the About
page, including the application name, application version, and the application ID
(which is used by EnterpriseOne application security for authorizing user access to the
mobile application). If you enable the springboard, you should provide these values so
that they appear on the About page.

To include the about.properties:

Using the JDE Mobile Helpers

A-16 Developing and Customizing Mobile Enterprise Applications Guide

1. Copy the about.properties file provided in the JDEMobileFramework zip file and
save it in the ApplicationController/src directory.

2. In the Projects panel, expand Application Controller > Application Sources, and
double-click about.properties to open it.

3. Modify the about.properties file with information for your application, as shown
in the preceding example.

4. Click the Feature References tab.

5. In the Feature References section, click the green plus sign to add the
com.oracle.e1.jdemf.about feature.

A.3.8 Including an End User License Agreement (EULA)
If you enable the springboard, you should include a EULA feature and EULA page so
the Legal Terms link has a page to access. You can provide a license agreement for
your application here.

To include a EULA:

1. Double-click the maf-feature.xml.

2. In the Features section, double-click the green plus sign to add a feature for the
EULA.

Using the JDE Mobile Helpers

Creating a Sample Mobile Application A-17

3. On Create MAF Feature, enter EULA in the Feature Name field, give it a unique
id, and then click OK.

4. After you create the EULA feature, select the Content tab.

5. Click the green plus sign next to the File field.

6. On Create MAF AMX Page, enter a name for the page in the File Name field.

7. Clear the Primary Action check box, and then click OK.

8. In the new eula.amx page, you can design your EULA page as needed, as shown
in Example A–1.

Example A–1 Using the Verbatim Tag to Include HTML

The following sample code is an example of a page that uses the verbatim tag to
include HTML. It also uses the configured resource bundle (loadBundle tag).

<?xml version="1.0" encoding="UTF-8" ?>
<amx:view xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:amx="http://xmlns.oracle.com/adf/mf/amx"

xmlns:dvtm="http://xmlns.oracle.com/adf/mf/amx/dvt">
<amx:loadBundle basename="com.oracle.e1.jdemf.bundle.jdemfResourceBundle"
var="jdeBundle" id="lb1"/>

<amx:panelPage id="pp1">
<amx:facet name="header">

<amx:outputText value="#{jdeBundle.LEGAL_TERMS}" id="ot1"/>
</amx:facet>
<amx:facet name="secondary">
<amx:commandButton text="#{jdeBundle.DONE}" id="cb1"

actionListener="#{eulaBean.doneEULA}"/>
</amx:facet>
<amx:verbatim id="v1">

<![CDATA[

<p class="MsoNormal"
style="margin-bottom: 0.0001pt; text-align: center; line-height:
normal;"><span
style="font-size: 12pt; font-family:
"Arial","sans-serif"; color: black;">MY END

Using the JDE Mobile Helpers

A-18 Developing and Customizing Mobile Enterprise Applications Guide

USER LICENSE
AGREEMENT
</p>

Legal....

]]>
</amx:verbatim>

</amx:panelPage>
</amx:view>

9. Save the EULA page.

10. In the Projects panel, right-click ViewController and select Project Properties.

11. On Project Properties, select Dependencies, select the ApplicationController.jpr,
and click the green plus sign button.

12. On Edit Dependencies, click the Build Output check box, click OK, and then click
OK again to close the Project Properties.

13. Add code for the Done button, which returns the user to the application after
viewing the EULA. To do so:

a. In the Projects panel, expand ViewController > Web Content, and
double-click the eula.amx.

b. In the eula.amx code, highlight the commandButton element.

c. In the Button - Done - Properties window on the right, hover over the Action
Listener field and click the "gear" button, and select Edit.

d. On "Edit Property: Action Listener," click the New button to create a new
managed bean.

e. On Create Managed Bean, complete the following fields and then click OK:

-Bean Name: eulaBean

-Class Name: EulaBean

-Scope: pageFlow

f. Click the New button next to the Method field to create a new method for the
bean.

g. On Create Method, enter doneEULA in the Method Name field and click OK.

h. On "Edit Property: Action Listener," click OK to accept the new bean and
method.

This adds the new bean method to the action listener.

i. In the code, right-click the doneEula method name and select Go to
Declaration.

j. In the new method, replace the //add event code here... comment with
this line of code:

JDEmfUtilities.goToDefaultFeature();

Your new method should look like this:

Using the JDE Mobile Helpers

Creating a Sample Mobile Application A-19

14. In the Projects panel, expand Application Controller > Application Sources >
application, and double-click the LifeCycleListenerImple.java.

15. Add the following line of code to the start() method to set the EULA Feature, and
make sure to use the feature ID that you used to create the feature. If you do not
remember it, you can find the ID in the maf-feature.xml.

LoginConfiguration.setEULAFeature("jdemf.example.EULA");

The following example shows the line in the LifeCycleListenerImple.java:

16. Deploy the application again. You should see a springboard launch icon.

The page displays the About, Legal Terms, and Logout links. The About page
shows the information in about.properties; the Legal Terms page shows the
eula.amx page:

Connecting to the EnterpriseOne Application Interface Services (AIS) Server

A-20 Developing and Customizing Mobile Enterprise Applications Guide

A.4 Connecting to the EnterpriseOne Application Interface Services (AIS)
Server

After you configure the Login.jar, the application displays a configuration screen for
connecting to the AIS Server.

To connect to the AIS Server:

1. On the first page in the mobile application, enter the URL to the AIS Server and
click OK:

2. If the connection is successful, enter your EnterpriseOne user name and password
in the following login page:

Reading EnterpriseOne Data

Creating a Sample Mobile Application A-21

Based on the AIS Server configuration, the Environment, Role, and JAS Server
fields, as well as the "Use Single Sign On" check box, may or may not be displayed
here.

3. Click Login.

If the application takes you to the ABList feature, you have successfully
established a session with the AIS Server. Your mobile application can make
service calls.

A.5 AIS Client Class Generator
The AIS Client Class Generator is a JDeveloper extension that generates Java classes to
store data returned from the REST service calls.

You must configure the AIS Client Class Generator before you can use it to generate
classes. See Section 5.2, "Configuring the AIS Client Class Generator" in this guide.

A.6 Reading EnterpriseOne Data
The JDEMobileFramework.jar includes APIs that enable the mobile application to
make service calls to EnterpriseOne and read data from EnterpriseOne.

You use the AIS Client Class Generator to generate classes to hold the data returned
from those calls. To do so, perform the following tasks:

■ Configure the AIS Client Class Generator to generate classes in a custom package.

■ Create a new Java class in the application package.

■ Call the AIS service for populating the data in the Data Control.

■ Create a UI for displaying the data.

To use the AIS Client Class Generator to generate classes in a custom package:

1. In JDeveloper, select the Tools menu > Preferences.

Reading EnterpriseOne Data

A-22 Developing and Customizing Mobile Enterprise Applications Guide

2. Select AIS Client Class Generator from the list on the left.

3. In the Java Package field, enter a valid package name, and then click OK.

4. In the Projects panel, click ApplicationController to highlight it. You must make
sure that this is highlighted before generating classes.

5. Select the Tools menu > AIS Client Class Generator to launch it.

6. In the AIS Client Class Generator, complete these fields to generate classes for the
W01012B form in the P01012 application:

■ Username. Enter an EnterpriseOne username.

■ Password. Enter the EnterpriseOne password.

■ Application Name. Enter P01012.

■ Form Name. Enter W01012B.

7. Make sure the following check boxes are selected, and then click the Generate
button.

■ DemoMode

■ Generate for Mobile Application

The Preview JSON Data and Keep JSON Files check boxes are optional. If you
select the Preview JSON Data check box, the JSON displays a preview of the
JSON, as shown in the following example:

Reading EnterpriseOne Data

Creating a Sample Mobile Application A-23

8. On JSON Data Preview, make sure the preview shows at least one grid record, and
then click Continue.

9. After receiving confirmation that the generation was a success, click OK.

10. In the Projects panel, click the "refresh" button so that the new classes appear in
the ApplicationController tree.

To create a new Java class in the application package:

1. In the Projects panel, expand ApplicationController > Application Sources,
right-click application, and then select New > Java Class.

Reading EnterpriseOne Data

A-24 Developing and Customizing Mobile Enterprise Applications Guide

2. On Create Java Class, enter AddressBookDC in the Name field and then click OK.

This will be the main data control for the application.

3. Add a member to the AddressBookDC class of the P01012_W01012B_FormParent
type. This will hold the data returned from the service call.

The placement of the following code for the member is shown in the image that
follows:

P01012_W01012B_FormParent p01012_W01012B_FormParent = new P01012_
W01012B_FormParent();

Reading EnterpriseOne Data

Creating a Sample Mobile Application A-25

4. Right-click on the page and select Generate Accessors to generate accessors for the
new member variable.

5. On Generate Accessors, select the check box next to the AddressBookDC method
and click OK.

6. Under Application Controller > Application Sources > application, right-click
AddressBookDC.java and select Create Data Control.

7. On Choose Bean Class, accept the defaults and click Next.

8. On Bean Data Control Options, accept the defaults and click Finish.

JDeveloper displays the new Data Control in the panel on the left.

Reading EnterpriseOne Data

A-26 Developing and Customizing Mobile Enterprise Applications Guide

To populate the data in the Data Control by calling the AIS service:

1. In the Projects panel, open the AddressBookDC.java class, and add the following
code, which adds a new method to call the service and put the data in the member
variable form parent:

public void getAddressBookList(){

FormRequest formRequest = new FormRequest();
formRequest.setFormName("P01012_W01012B");
formRequest.setVersion("ZJDE0001");
formRequest.setFormServiceAction("R");

FSREvent w01012BFSREvent = new FSREvent();
w01012BFSREvent.setFieldValue("54","C"); //set search type to customer

w01012BFSREvent.doControlAction("15"); // Trigger the Find Button
formRequest.addFSREvent(w01012BFSREvent); //add the events to the form

request

try
{

//Serialize the form request to JSON String
JSONObject jsonObject =

(JSONObject)JSONBeanSerializationHelper.toJSON(formRequest);
String postData = jsonObject.toString();

// Call to JDERestServiceProvider with parameters JSON string
String response =

JDERestServiceProvider.jdeRestServiceCall(postData,
JDERestServiceProvider.POST,JDERestServiceProvider.FORM_SERVICE_URI);

//deserialize the response to the class for the W01012B form
p01012_W01012B_FormParent = (P01012_W01012B_

FormParent)JSONBeanSerializationHelper.fromJSON(P01012_W01012B_
FormParent.class, response);

}
catch (JDERestServiceException e)
{

JDERestServiceProvider.handleServiceException(e);
}
catch(Exception e)
{

throw new AdfException(e.getMessage(), AdfException.ERROR);
}

}

2. Call this new method from the constructor (for now).

public AddressBookDC() {
super();
getAddressBookList();

}

To create a UI to display the data:

1. Under ViewController > Web Content, open the ablist.amx page.

Reading EnterpriseOne Data

Creating a Sample Mobile Application A-27

2. In the Data Controls panel, locate the rowset in the data control, which is located
under p01012_W01012B_FormParent > fs_P01012_W01012B > data > gridData.

3. Drag the rowset to the ablist.amx page after the </amx:facet> end tag.

4. Select MAF List View, and in the ListView Gallery, select the Start-End type of the
list view.

Reading EnterpriseOne Data

A-28 Developing and Customizing Mobile Enterprise Applications Guide

5. For the Start Text, select SAlphaName_20.value, and for the End Text, select
mnAddressNumber_19.value.

6. Click OK.

7. Locate the amx:cellFormat element and change the cell format that contains the
alpha name to 80%. Change the cell format that contains the address number to
20%. See Figure A–1 for an example.

8. In the Projects panel, expand ViewController > Application Sources >
mobile.pageDefs, open the ablistPageDef.xml, and select the Source tab.

Reading EnterpriseOne Data

Creating a Sample Mobile Application A-29

9. In the <AttrName> element, add the following line of code:

<Item Value="value"/>

10. Deploy and run the application.

After logging in, it should automatically populate the list with customer names as
shown in the following example:

Implementing Filter Fields

A-30 Developing and Customizing Mobile Enterprise Applications Guide

A.7 Implementing Filter Fields
Implement a Name (string) filter. To do so:

1. Select the AddressBookDC.java tab, and add the following code to add a member
variable:

String nameFilter;

2. Right-click on the page and select Generate Accessors.

3. Add the following code to the getAddressBookList() method to use the new filter
value:

if(nameFilter!=null && nameFilter.trim().length()>0){
//set filter name in QBE

w01012BFSREvent.setQBEValue("1[20]","*" + nameFilter.trim() +"*");
}

The following example shows the code in the method:

Implementing Filter Fields

Creating a Sample Mobile Application A-31

4. Remove the call to getAddressBookList() in the constructor. Later in these steps,
you will call this method from the search button instead.

5. Change the code after the response is retrieved. This will enable the data to refresh
after a new search is performed.

//deserialize the response to the class for the W01012B form
P01012_W01012B_FormParent temp_p01012_W01012B_FormParent =

(P01012_W01012B_FormParent)JSONBeanSerializationHelper.fromJSON(P01012_
W01012B_FormParent.class, response);

p01012_W01012B_FormParent.getFs_P01012_
W01012B().getData().getGridData().setRowsetWithList(temp_p01012_W01012B_
FormParent.getFs_P01012_
W01012B().getData().getGridData().retrieveRowsetList());

The following example shows the code:

6. Under ViewController > Web Content, open ablist.amx.

7. In the Data Controls panel, expand AddressBookDC and locate the new
nameFilter field.

Page Navigation and Getting More Details

A-32 Developing and Customizing Mobile Enterprise Applications Guide

8. Drag the nameFilter to the amx page before the start of the list view and after the
end of the secondary facet.

9. On the context menu, select Text > MAF Input Text w/Label.

10. Change the label to:

label= "Name"

11. Remove the existing button in the secondary facet.

12. In the Data Controls panel, locate the getAddressBookList() method in the
AddressBookDC data control.

13. Drag the method inside the secondary facet in the amx page, and click MAF
Button in the context menu to create a button.

14. To name the new button, change the text attribute to:

text="Search"

15. Add a panelFormLayout around the name input field, which will delineate it from
the list with a box, as shown in the following example:

<amx:panelFormLayout labelPosition="start" fieldHalign="start">
<amx:inputText value="#{bindings.nameFilter.inputValue}" label="Name"

id="it1"/>
</amx:panelFormLayout>

16. Deploy the application and perform a search by entering a value in the Name
field, which should return matching results, as shown here:

A.8 Page Navigation and Getting More Details
This section describes how to generate classes that enable the mobile application to
retrieve additional details from the Address Book application.

To generate the classes that will hold the additional details:

1. Select the Tools menu > AIS Client Class Generator to launch the AIS Client Class
Generator.

Page Navigation and Getting More Details

Creating a Sample Mobile Application A-33

By default, the AIS Client Class Generator should display the values and options
that you entered previously.

This time, you need to request the following five fields from the W01012A form in
EnterpriseOne, which you specify in the ReturnControlIDs field in the generator:

AlphaName(28), AddressLine1(40), City(52), State(54), PostalCode(50)

2. To generate classes, complete these fields and click the Generate button:

■ Application Name: P01012

■ Form Name: W01012A

■ ReturnControlIDs: 28|40|52|54|50

■ Demo Mode: Checked

JDeveloper displays the generated classes in the Projects panel, under
ApplicationController > Application Sources > application node.

3. Create a member variable in the AddressBookDC class, as shown in the following
example:

4. Right-click and select Generate Accessors.

5. On Generate Accessors, select the check box next to AddressBookDC and click
OK.

6. Under the ViewController > Web Content > ABList, open the
ViewController-task-flow.xml.

7. To add another view to the task flow, in the Components window, drag View onto
the page.

8. Enter abdetail for the view name.

9. Add a control flow by dragging it from the Components and extending it from
ablist icon to the abdetail icon.

10. Enter to_detail for the name.

11. Double-click the abdetail view to generate the amx. You can use the default values
on the Create MAF AMX Page dialog box.

12. In the abdetail.amx page, enter the following code to configure a back button:

<amx:facet name="primary">
<amx:commandButton id="cb1" action="__back" text="Back"/>

Page Navigation and Getting More Details

A-34 Developing and Customizing Mobile Enterprise Applications Guide

</amx:facet>

13. Open the ablist.amx page and set the action for a list item to use the "to_detail"
navigation, as shown in the following example:

Figure A–1 Example of setting page navigation action

14. Return to the abdetil.amx file and create a panelFormLayout after the last facet, as
shown in the following example:

15. In the Data Controls panel, locate the address number value within the W0102B
form, which is located under AddressBookDC > p01012_W01012B_FormParent >
fs_P01012_W01012B > data > gridData > rowset > mnAddressNumber_19.

16. Drag the value field under mnAddressNumber_19 to the page inside the
panelFormLayout, and in the context menu, select Text > MAF Output Text
w/Label.

17. Change the label to "Address Number" as shown in the following example:

18. Locate the data area of the W01012A form, which is under AddressBookDC >
p01012_W01012A_FormParent > fs_P01012_W01012A > data.

19. Drag the value that is within the txtAlphaName_28 data element of the
AlphaName to the page after the panelLabelAndMessage for AddressNumber.

20. In the context menu, select Text > MAF Input Text w/Label.

21. Repeat for the other detail fields, and set the labels with their names, as shown in
the following example:

Page Navigation and Getting More Details

Creating a Sample Mobile Application A-35

22. Open the AddressBookDC.java and create this new method:

public void getAddressBookDetail(String addressNumber) {
FormRequest formRequest = new FormRequest();
formRequest.setFormName("P01012_W01012A");
formRequest.setVersion("ZJDE0001");
formRequest.setFormServiceAction("R");
formRequest.addToFISet("12", addressNumber);

try {
//Serialize the form request to JSON String
JSONObject jsonObject = (JSONObject)

JSONBeanSerializationHelper.toJSON(formRequest);
String postData = jsonObject.toString();

// Call to JDERestServiceProvider with parameters JSON string
String response =

JDERestServiceProvider.jdeRestServiceCall(postData,
JDERestServiceProvider.POST,

JDERestServiceProvider.FORM_SERVICE_URI);

//deserialize the response to the class for the W01012A form
p01012_W01012A_FormParent =

(P01012_W01012A_FormParent)
JSONBeanSerializationHelper.fromJSON(P01012_W01012A_FormParent.class,

response);

} catch (JDERestServiceException e) {
JDERestServiceProvider.handleServiceException(e);

} catch (Exception e) {
throw new AdfException(e.getMessage(), AdfException.ERROR);

}
}

23. Configure the application so that the method is called when the user loads the
detail page.

a. Open the abdetail.amx and use the tabs at the bottom to open the Bindings.

b. Click the green plus sign to add a binding to the Bindings column.

c. On Insert Item, add a methodAction.

d. Select the getAddressBookDetails(String) method, and enter the following
value for the input. This is the value of the mnAddressNumber_19 field.

#{bindings.value.inputValue}

Updating Data in EnterpriseOne

A-36 Developing and Customizing Mobile Enterprise Applications Guide

e. In the Executables column, click the Add icon.

f. On Insert Item, select invokeAction and click OK.

g. On Insert invokeAction, enter getDetails for the id.

h. Select the getAddressBookDetail method and then click OK.

i. In the Executables page, select the getDetails action and drag it up in the list,
directly after mnAddressNumber_19Iterator.

j. Highlight getDetails, click the Pencil icon, and set Refresh to "always."

k. Click OK and then test the application in the simulator.

If successful, the simulator displays the Address Book details when you select a
record, as shown in the following illustration:

A.9 Updating Data in EnterpriseOne
Next, use the details form to update the values in the database.

To update the values:

1. In the AddressBookDC class, add the following new method to update the values:

public void updateAddressBookDetail(String addressNumber) {
FormRequest formRequest = new FormRequest();
formRequest.setFormName("P01012_W01012A");
formRequest.setVersion("ZJDE0001");
formRequest.setFormServiceAction("U");
formRequest.addToFISet("12", addressNumber);

Updating Data in EnterpriseOne

Creating a Sample Mobile Application A-37

FSREvent w01012AUpdateFSREvent = new FSREvent();//set all the field
values

w01012AUpdateFSREvent.setFieldValue("28", p01012_W01012A_
FormParent.getFs_P01012_W01012A().getData().getTxtAlphaName_28().getValue());

w01012AUpdateFSREvent.setFieldValue("40",p01012_W01012A_
FormParent.getFs_P01012_W01012A().getData().getTxtAddressLine1_40().getValue()
);

w01012AUpdateFSREvent.setFieldValue("52",p01012_W01012A_
FormParent.getFs_P01012_W01012A().getData().getTxtCity_52().getValue());

w01012AUpdateFSREvent.setFieldValue("54", p01012_W01012A_
FormParent.getFs_P01012_W01012A().getData().getTxtState_54().getValue());

w01012AUpdateFSREvent.setFieldValue("50", p01012_W01012A_
FormParent.getFs_P01012_W01012A().getData().getTxtPostalCode_50().getValue());

w01012AUpdateFSREvent.doControlAction("11"); // Trigger the OK
Button

formRequest.addFSREvent(w01012AUpdateFSREvent); //add the events to
the form request

try {
//Serialize the form request to JSON String
JSONObject jsonObject = (JSONObject)

JSONBeanSerializationHelper.toJSON(formRequest);
String postData = jsonObject.toString();

// Call to JDERestServiceProvider with parameters JSON string
String response =

JDERestServiceProvider.jdeRestServiceCall(postData,
JDERestServiceProvider.POST,

JDERestServiceProvider.FORM_SERVICE_URI);

//after the call navigate back to the list page
AdfmfContainerUtilities.invokeContainerJavaScriptFunction("ABList",
"adf.mf.api.amx.doNavigation", new Object[]{"__back"});

} catch (JDERestServiceException e) {
JDERestServiceProvider.handleServiceException(e);

} catch (Exception e) {
throw new AdfException(e.getMessage(), AdfException.ERROR);

}
}

2. Open the abdetail.amx page.

3. Select the updateAddressbookDetail(String) method from the data control.

4. Drag it between the secondary facet (remove the existing button first).

5. On Edit Action Binding, set the parameter value to: #{bindings.value.inputValue}

This is the binding value that corresponds to the address number.

6. Run the application in the simulator to test the following actions:

a. Change the values.

b. Click Save.

Updating Data in EnterpriseOne

A-38 Developing and Customizing Mobile Enterprise Applications Guide

c. Search on a new name.

A.9.1 Handling Errors
Some of the fields may potentially have errors such as an invalid state code. This
section describes how to handle those errors.

1. Add the following items to the AddressBookDC class:

■ An error array member variable.

■ A property change support member variable.

■ A provider change member variable.

■ Setters and getters.

■ Provider change support methods.

This code also provides a getter for an errorCount, which is set when the array is
set using the property change listener, as shown in the following code sample:

FormErrorWarningMobile[] errors;
private PropertyChangeSupport propertyChangeSupport = new

PropertyChangeSupport(this);
protected transient ProviderChangeSupport errorChangeSupport = new

ProviderChangeSupport(this);

public void addProviderChangeListener(ProviderChangeListener l)
{

errorChangeSupport.addProviderChangeListener(l);
}

public void removeProviderChangeListener(ProviderChangeListener l)
{

errorChangeSupport.removeProviderChangeListener(l);
}

public void setErrors(FormErrorWarningMobile[] errors) {
int oldCount = 0;
if(this.errors!=null){

oldCount = this.errors.length;
}
int newCount = 0;
if(errors != null){

newCount = errors.length;
}
this.errors = errors;
errorChangeSupport.fireProviderRefresh("errors");
propertyChangeSupport.firePropertyChange("errorCount",

oldCount,newCount);
}

public FormErrorWarningMobile[] getErrors() {
return errors;

}

public int getErrorCount()
{

if(errors != null){
return errors.length;

}else{
return 0;

Updating Data in EnterpriseOne

Creating a Sample Mobile Application A-39

}

}

public void addPropertyChangeListener(PropertyChangeListener l) {
propertyChangeSupport.addPropertyChangeListener(l);

}

public void removePropertyChangeListener(PropertyChangeListener l) {
propertyChangeSupport.removePropertyChangeListener(l);

}

2. Modify the code in the updateAddressBookDetail method of the AddressBookDC
class. Instead of always navigating back to the list first, check the errors and then
return to the list.

Replace this line:

//after the call navigate back to the list page
AdfmfContainerUtilities.invokeContainerJavaScriptFunction("ABList",
"adf.mf.api.amx.doNavigation", new Object[]{"__back"});

With this code:

//deserialize the response to the class for the W01012A form
P01012_W01012A_FormParent temp_p01012_W01012A_FormParent =

(P01012_W01012A_FormParent)
JSONBeanSerializationHelper.fromJSON(P01012_W01012A_FormParent.class,

response);

clearErrors();
if(temp_p01012_W01012A_FormParent.getFs_P01012_

W01012A().getErrors() != null
&& temp_p01012_W01012A_FormParent.getFs_P01012_

W01012A().getErrors().length > 0
){

//set error list
setErrors(temp_p01012_W01012A_FormParent.getFs_P01012_W01012A().getErrors());

}else{

//no errors navigate back
AdfmfContainerUtilities.invokeContainerJavaScriptFunction("ABList",
"adf.mf.api.amx.doNavigation", new Object[]{"__back"});

}
public void clearErrors(){

setErrors(null);
}

3. Open abdetail.amx.

4. In the Data Controls panel, select errors under AddressBookDC and drag it to the
page, placing it after the last facet to create a list view.

5. On the context menu, select MAF List View.

6. On ListView Gallery, select the default view.

7. On Edit List View, select MOBILE from the Text drop-down menu and click OK.

8. In the Data Control panel, locate the errorCount under AddressBookDC.

Device Integration

A-40 Developing and Customizing Mobile Enterprise Applications Guide

9. Drag errorCount onto the page and in the context menu, select Text > MAF
Output Text.

10. Remove the list view and output text that you previously added; they were just
added to create bindings.

11. After the last facet, insert the following list view code:

<amx:listView var="row" value="#{bindings.errors.collectionModel}"
fetchSize="#{bindings.errors.rangeSize}"

styleClass="adfmf-listView-insetList" id="lv1"
rendered="#{bindings.errorCount.inputValue gt 0}">

<amx:listItem showLinkIcon="false" id="li1">
<amx:panelGroupLayout>

<amx:inputText rows="3" value="#{row.MOBILE}"
id="ot3" inlineStyle="color:Red;word-wrap:break-word;"

readOnly="true"/>
</amx:panelGroupLayout>

</amx:listItem>
</amx:listView>

12. Run the application in the simulator and test the following tasks in the application:

a. Enter an invalid state code.

b. Click Save.

The simulator should display the "not found" error as shown in the following
example:

If you correct it with a valid value and click Save, the application will successfully
save the record.

A.10 Device Integration
This example shows how to enable the mobile application user to add a record they
are viewing to the contacts list on the device. To do so:

1. Open the maf-application.xml and select the Plugins tab.

2. Select the check box next to Contacts to enable access to the Contacts on the
device.

Device Integration

Creating a Sample Mobile Application A-41

3. Add a member variable to the AddressBookDC.java class to hold the confirmation
message.

4. Generate accessors with property change support.

After defining the member variable and generating accessors, the resulting code
should look like this:

private String addContactResultMsg = null;

public String getAddContactResultMsg() {
return addContactResultMsg;

}

public void setAddContactResultMsg(String addContactResultMsg) {
String oldAddContactResultMsg = this.addContactResultMsg;
this.addContactResultMsg = addContactResultMsg;
propertyChangeSupport.firePropertyChange("addContactResultMsg",

oldAddContactResultMsg, addContactResultMsg);
}

5. Add the following new method, which enables the record to be added to the
device's contacts list:

public void createDeviceContact() {
String resultMessage = "Contact Exists";

// Call FindContacts to determine if the contact already exists on
device.

String contactSearchName =
p01012_W01012A_FormParent.getFs_P01012_

W01012A().getData().getTxtAlphaName_28().getValue();

try {
Contact[] foundContacts =

DeviceManagerFactory.getDeviceManager().findContacts("name",
contactSearchName, true);

if (foundContacts != null && foundContacts.length == 0) {
Contact newContact = new Contact();

// Assign contact name.
ContactName name = new ContactName();
name.setFormatted(contactSearchName);
name.setGivenName(contactSearchName);
newContact.setName(name);

// Assign address to contact.
ContactAddresses[] addresses = new ContactAddresses[1];
ContactAddresses address = new ContactAddresses();
address.setStreetAddress(p01012_W01012A_FormParent.getFs_

P01012_W01012A().getData().getTxtAddressLine1_40().getValue());
address.setLocality(p01012_W01012A_FormParent.getFs_P01012_

W01012A().getData().getTxtCity_52().getValue());
address.setPostalCode(p01012_W01012A_FormParent.getFs_P01012_

W01012A().getData().getTxtPostalCode_50().getValue());
address.setRegion(p01012_W01012A_FormParent.getFs_P01012_

W01012A().getData().getTxtState_54().getValue());
addresses[0] = address;
newContact.setAddresses(addresses);

Device Integration

A-42 Developing and Customizing Mobile Enterprise Applications Guide

try {
// Add contact to device.

DeviceManagerFactory.getDeviceManager().createContact(newContact);

// Device contact now exists.
resultMessage = "Contact Added";

} catch (Exception e) {
throw new AdfException(e.getMessage(),

AdfException.ERROR);
}

}
} catch (Exception e) {

// Unable to interact with device's contact list - display error.
resultMessage = "Unable to Add Contact";

}

setAddContactResultMsg(resultMessage);
}

6. Open the abdetail.amx page and locate the new method called
createDeviceContact under the AddressBookDC data control.

7. Drag the method to the page as a button, and then delete the button.

This creates the bindings.

8. Locate the addContactResultMsg under the AddressBookDC data control.

9. Drag it to the page as an output text, and then delete the output text.

This creates the bindings.

10. Enter the following code for the footer after the end of the panel form layout
(</amx:panelFormLayout>):

<amx:facet name="footer">
<amx:panelGroupLayout id="pgl6" layout="horizontal" halign="end">

<!-- Add Contact To Device-->
<amx:commandButton

actionListener="#{bindings.createDeviceContact.execute}" text="Create Device
Contact"

disabled="#{!bindings.createDeviceContact.enabled}" id="cb4">
<amx:showPopupBehavior id="spb1" popupId="p1"

align="overlapTopCenter" alignId="it2"/>
</amx:commandButton>

</amx:panelGroupLayout>
</amx:facet>

11. Enter the following code for the popup message after the end panel page tag
(</amx:panelPage>):

<!-- display add contact result message. -->
<amx:popup id="p1" autoDismiss="true">

<amx:panelGroupLayout id="pgl3" halign="center" valign="middle">
<amx:commandLink text="#{bindings.addContactResultMsg.inputValue}"

id="cl3"

inlineStyle="white-space:pre;font-size:larger;color:black;text-decoration:none

Device Integration

Creating a Sample Mobile Application A-43

;">
<amx:closePopupBehavior id="cpb1" popupId="p1"/>

</amx:commandLink>
</amx:panelGroupLayout>

</amx:popup>

12. Run the application in the simulator to test performing the following tasks in the
application:

a. Open a record and click the Create Device Contact button in the footer, which
displays the "Contact Added" message.

b. Go to the device's contacts and you can see the contact listed with the address,
as shown in the following example:

If you attempt to add it again, you get the contact exists message, as shown in the
following example:

Device Integration

A-44 Developing and Customizing Mobile Enterprise Applications Guide

B

Extending Mobile Application Archives B-1

BExtending Mobile Application Archives

This appendix contains the following topics:

■ Section B.1, "Before You Begin"

■ Section B.2, "Understanding Mobile Application Archives"

■ Section B.3, "Generating a New Application from the Deployment Profile"

■ Section B.4, "Customization Options"

■ Section B.5, "Extension Options"

B.1 Before You Begin
To use mobile application archives, in addition to the prerequisites described in
Section 3.2, "Prerequisites" in this guide, perform the following tasks.

■ Download the JD Edwards EnterpriseOne mobile application archive (.maa) files
from the JD Edwards Update Center on My Oracle Support
(https://support.oracle.com/). In the Update Center, enter "EnterpriseOne
Mobile Enterprise Applications" in the Type field to locate the MAAs.

■ Remember that to deploy to the Apple store or to your own enterprise store for
iOS, you will need an Apple development profile.

■ You must read the "JD Edwards EnterpriseOne Mobile Archive Restricted Use
Notice" in the JD Edwards EnterpriseOne Licensing Information User Manual before
using JD Edwards EnterpriseOne mobile archives.

Important: The Oracle MAF extension for JDeveloper must be the
same version that was used to create the mobile application archive.

■ MAA files developed with version 2.1 require the use of Oracle
MAF extension 2.1, which is included in the JDE_Mobile_
Framework_2.1 package on the Update Center.

■ MAA files created with version 2.0 require the use of Oracle MAF
extension 2.0, which is included in the JDE_Mobile_Framework_
2.0 package on the Update Center.

To verify the version of the Oracle MAF extension:

1. In JDeveloper click the Help menu, About, and then click the Extensions
tab.

2. In the "find" field, type maf and then press Enter. Scroll to the right to
check the version.

Understanding Mobile Application Archives

B-2 Developing and Customizing Mobile Enterprise Applications Guide

B.2 Understanding Mobile Application Archives
A mobile application archive (MAA) is a specially built JDeveloper project that enables
developers to take an existing MAF application and generate their own application
binary (apk or ipa) files. Developers can choose to customize the application and then
sign it and deploy it with their own distribution profile. You can use an archive to
generate a mobile application that you can deploy and manage locally in your
environment without having to download mobile applications from an online web
app store.

You can partially customize an MAA to suit your particular business needs. To do so,
you copy the archive, customize it, and then publish it as your own "new" application.
For iOS, you must publish it with a different application ID in order to install it with
your own iOS development profile.

B.3 Generating a New Application from the Deployment Profile
To create a custom copy of an MAA:

1. In JDeveloper, select the File menu > New > Application.

2. On New Gallery, select MAF Application from Archive File (Applications) and
click OK.

Generating a New Application from the Deployment Profile

Extending Mobile Application Archives B-3

3. On Select MAA File to Import, select the .maa file that you want to customize, and
then click Open.

4. On "MAF Application from Archive - Step 1 of 2," modify the name of the
application in the Application File field.

5. Click Next, and then click Finish.

Generating a New Application from the Deployment Profile

B-4 Developing and Customizing Mobile Enterprise Applications Guide

6. Click the drop-down menu next to the new application, and select Application
Properties.

7. Navigate to Libraries and Classpath.

8. On Libraries and Classpath, select the entries listed, and then click the Remove
button to delete them.

9. Click Add JAR/Directory.

10. On Add Archive or Directory, select the ExternalLibs folder.

11. Highlight all entries to add them, and then click Open.

This points both JAR files to the right location.

12. Click OK to save it.

13. Right-click ApplicationController and select Project Properties.

Generating a New Application from the Deployment Profile

Extending Mobile Application Archives B-5

14. On Libraries and Classpath, click the check box next to JDEMobileFramework.jar,
and then click the Remove button to remove it.

15. Select Add JAR/Directory.

16. On Add Archive or Directory, select the ExternalLibs folder, and then click Open.

17. Select JDEMobileFramework.jar and click Open.

This points the JDEMobileFramework.jar to the correct location.

18. Under Application Resources, open the maf-application.xml.

Generating a New Application from the Deployment Profile

B-6 Developing and Customizing Mobile Enterprise Applications Guide

19. Change the Name and Id of the application. Use the ID associated with your
Apple Distribution Profile.

This ensures that the application will not overwrite or interfere with the original
application when deployed.

20. Create a new deployment profile that will use the new name and Id. To do so:

a. Right-click the application and select Properties.

b. On Application Properties, select Deployment, and then click the "new" icon.

Customization Options

Extending Mobile Application Archives B-7

c. Select MAF for iOS (or MAF for Android) and give your profile a name, for
example iOS1_Custom. Click OK.

The Profile Properties dialog box displays the application and deployment
details:

d. Click OK.

21. Use the new deployment profile to deploy and test the application in the
simulator/emulator.

If simulator tests are successful, you can generate distribution packages to deploy
the application to devices or stores.

B.4 Customization Options
This section describes the features you can customize in an MAA.

Customization Options

B-8 Developing and Customizing Mobile Enterprise Applications Guide

B.4.1 Customizing the Application Icons and Splash Screens
The application icon represents the application on the home screen of the device. The
following diagram shows the icon size requirements for iOS 6 and iOS 7:

For Android, these are the size requirements for the application icon:

■ XHDPI: 96 x 96px

■ HDPI: 72 x 72px

■ MDPI: 48 x 48px

■ LDPI: 24 x 24px

The launch image or splash screen appears immediately after the application is
started.

The following diagram shows the sizes that are required to override the launch image
for iOS 6 and iOS 7:

Customization Options

Extending Mobile Application Archives B-9

For Android, these are the size requirements for the application splash screen:

■ LDPI: Portrait: 200 x 320px. Landscape: 320 x 200px.

■ MDPI: Portrait: 320 x 480px. Landscape: 480 x 320px.

■ HDPI: Portrait: 480 x 800px. Landscape: 800 x 480px.

■ XHDPI: Portrait: 720 x 1280px. Landscape: 1280 x 720px.

The deployment profile contains all the application and launch screen configurations.
Modify the definitions in the deployment profile to use your custom icons and deploy
with that profile.

The following example shows the iOS deployment profile properties for application
images:

Customization Options

B-10 Developing and Customizing Mobile Enterprise Applications Guide

The following example shows the Android deployment profile properties for
application images:

B.4.2 Customizing the Brand Images
An Oracle JD Edwards logo image will appear on the configuration screen, login
screen, and on error screens when there are connection issues. A second logo image
appears on the springboard.

Do not use the logo images provided by Oracle; they are provided for example
purposes only. If you do not insert an image, a question mark (?) appears where the
image should be.

To override the login logo in your custom application, replace the image in the
following location with an image of the same name and dimensions (242x87):

Customization Options

Extending Mobile Application Archives B-11

ViewController/public_html/images/jde_transparent_no_jde_small.png

To override the springboard logo in your custom application, replace the image in the
following location with an image of the same name and dimensions (242x87).

ViewController/public_html/images/jde_transparent_springboard.png

Tip: For the springboard, you should use a transparent image that
works well on a dark background.

Additionally, there might be other logo icons depending on the specific application
you are customizing. These icons are located in the ViewController/public_html
folder. To determine which image you need to replace, you must view the amx page
where it appears and determine the name and location of the image file.

B.4.3 Customizing the End User License Agreement (EULA)
Users can access the EULA from the Legal Terms link on the springboard. The EULA
is included in the application in a feature ending in EULA. To change the content of
the EULA, modify the eula.amx page within the EULA feature.

See "JD Edwards EnterpriseOne Mobile Archive Restricted Use Notice" in the JD
Edwards EnterpriseOne Licensing Information User Manual for a list of terms that must be
included in the EULA.

The delivered page includes HTML formatted text within a <![CDATA[tag. You can
use this structure to include your EULA if it is already formatted with HTML. Or you
can design this EULA page just like any other amx page and use amx formatting, as
shown in the following example:

B.4.4 Customizing the About Page
The About page is accessed from the About link on the springboard. The About page
contains the following information:

■ Application name and version (displayed on the General tab).

■ Mobile application ID (displayed on the Advanced tab).

The information on the About page is configured in the mobile application and is
stored in the about.properties file. In JDeveloper, you can open the about.properties
file, which is included in the mobile download files from Oracle Software Delivery
Cloud, and view the details of the About page.

Important: The mobile application ID is also part of the security
configuration for the application. This ID corresponds to an Object
Management Workbench (OMW) application object in EnterpriseOne.
The security for the mobile application is inherited from the
EnterpriseOne security configured for the OMW object of this name. If
you modify this value in the mobile application, you must:

■ Create a corresponding object in OMW.

■ Use Security Workbench to configure application security for the
new object.

Extension Options

B-12 Developing and Customizing Mobile Enterprise Applications Guide

B.4.5 Customizing the Pages
You can customize an amx page in the ViewController by reformatting, moving fields,
hiding fields (rendered=false), and changing the look of the page in general.

You can change labels on the page by directly entering a new text value for the label or
by modifying the associated translation string in the translation bundles. The bundles
are located in the com.oracle.e1.jdemf.bundle package of the Application Controller.

important: When performing these types of customizations, do not
remove any property listeners or action listeners, otherwise you risk
compromising the application functionality.

B.5 Extension Options
This section describes how you can extend an MAA to:

■ Display additional data.

■ Remove existing fields or data.

■ Include new pages.

B.5.1 Displaying Additional Data
To display additional data in an MAA, you have to configure additional service calls to
retrieve the data from EnterpriseOne. You use Java code to enable the MAA to perform
additional service calls.

Example B–1 Adding Additional Data to the Supplier Search Mobile Application

This is an example of the address, URL, and phones details for a supplier in the
Supplier Search application:

Extension Options

Extending Mobile Application Archives B-13

You can use Java code to add category code information from the EnterpriseOne
Address Book record to this Supplier details page.

The Address Number is the key to this information. When a record is selected, the
address number of that record is used to fetch the category codes. So in the
SupplierSearch.amx page, a new setPropertyListener is added when a list item is
selected. The new setPropertyListener is highlighted in bold in this example code:

<amx:listView var="row" value="#{bindings.rowset1.collectionModel}"
fetchSize="#{bindings.rowset1.rangeSize}"

inlineStyle="position:absolute; top:72px; bottom:0; left:0;
right:0; border-top:1px solid #BBBBBB;" id="lv1">

<amx:listItem id="li1" action="Detail">
<amx:tableLayout width="100%" id="tl2">
<amx:rowLayout id="rl3">
<amx:cellFormat width="10px" rowSpan="2" id="cf7"/>
<amx:cellFormat width="100%" height="28px" id="cf8">
<amx:outputText value="#{row.SAlphaName_

26.bindings.value.inputValue}" id="ot4" truncateAt="30"/>
</amx:cellFormat>

</amx:rowLayout>
<amx:rowLayout id="rl2">
<amx:cellFormat width="100%" height="12px" id="cf5">
<amx:outputText value="#{viewcontrollerBundle1.ADDRESS_NUMBER}

#{row.mnAddressNumber_25.bindings.value.inputValue}"
styleClass="adfmf-listItem-captionText" id="ot3"

truncateAt="30"/>
</amx:cellFormat>

</amx:rowLayout>
</amx:tableLayout>
<amx:setPropertyListener id="spl4" from="#{bindings.searchName.inputValue

ne '' ? 'true' : 'false'}"
to="#{pageFlowScope.searchExecuted}"/>

<amx:setPropertyListener id="spl5" from="#{row.rowKey}"
to="#{pageFlowScope.selectedRowKey}"/>

<amx:setPropertyListener id="spl6" from="#{row.mnAddressNumber_
25.bindings.value.inputValue}" to="#{pageFlowScope.selectedABNumber}"/>

<amx:actionListener id="al1"
binding="#{bindings.processSelectedSupplier.execute}"/>

Extension Options

B-14 Developing and Customizing Mobile Enterprise Applications Guide

</amx:listItem>

You must create objects for storing the category code data retrieved from the Address
Book. Use the AIS Client Class Generator to generate the classes necessary. If you have
not already installed and configured the AIS Client Class Generator, see Installing the
AIS Client Class Generator Extension for JDeveloper and Configuring the AIS Client
Class Generator in this guide.

When naming the package, make sure to use a custom package name in the
configuration so there are no conflicts with existing classes from the original
application:

Category code 4 and 5 will be retrieved from the Address Book. The field IDs for these
fields are 363 and 366, as shown here:

After verifying the JSON includes category codes 4 and 5, generate the classes.

Extension Options

Extending Mobile Application Archives B-15

After refreshing the project, the classes are displayed, as shown here:

After the objects are created to hold the category code data and the selectedABNumber
is set when the row is selected, the fetch for the category codes can be written. Add a
new class in the ApplicationController project, in the application package. See the code
example below for the content of the class. After the class is complete, create a Data
Control from it.

package com.oracle.e1.jdemf.M010010.application;

import com.oracle.e1.jdemf.FormRequest;
import com.oracle.e1.jdemf.JDERestServiceException;
import com.oracle.e1.jdemf.JDERestServiceProvider;

Extension Options

B-16 Developing and Customizing Mobile Enterprise Applications Guide

import com.oracle.e1.jdemf.M010010.formservicetypes.p04012.P04012_W04012D_
FormParent;
import maa.customize.types.p01012.P01012_W01012A_FormParent;
import oracle.adfmf.framework.api.AdfmfJavaUtilities;
import oracle.adfmf.framework.api.JSONBeanSerializationHelper;
import oracle.adfmf.framework.exception.AdfException;
import oracle.adfmf.java.beans.PropertyChangeListener;
import oracle.adfmf.java.beans.PropertyChangeSupport;
import oracle.adfmf.json.JSONObject;

public class ExtendAppDC {

private P01012_W01012A_FormParent catCodeParent = new P01012_W01012A_
FormParent();

private PropertyChangeSupport propertyChangeSupport = new
PropertyChangeSupport(this);

public ExtendAppDC() {
super();

}

public void setCatCodeParent(P01012_W01012A_FormParent catCodeParent) {
P01012_W01012A_FormParent oldCatCodeParent = this.catCodeParent;
this.catCodeParent = catCodeParent;
propertyChangeSupport.firePropertyChange("catCodeParent",

oldCatCodeParent, catCodeParent);
}

public P01012_W01012A_FormParent getCatCodeParent() {
return catCodeParent;

}

public void getCatCodesForSupplier(){

//value of selected address number is set in Supplier Search page when the
row is selected.

String selectedABNumber =
(String)AdfmfJavaUtilities.evaluateELExpression("#{pageFlowScope.selectedABNumber}
");

//call P01012_W01012A form to get category codes 4 and 5
FormRequest formRequest = new FormRequest();

formRequest.setReturnControlIDs("21|363|366");
formRequest.setFormName("P01012_W01012A");
formRequest.setFormServiceAction(formRequest.ACTION_READ);
formRequest.addToFISet("12",selectedABNumber);

try{

// For POST request, set data payload is header delimited with | and
service input class

JSONObject jsonObject =
(JSONObject)JSONBeanSerializationHelper.toJSON(formRequest);

String postData = jsonObject.toString();

String response = JDERestServiceProvider.jdeRestServiceCall(postData,
"POST", "formservice");

catCodeParent = (P01012_W01012A_

Extension Options

Extending Mobile Application Archives B-17

FormParent)JSONBeanSerializationHelper.fromJSON(P01012_W01012A_FormParent.class,
response);

//remove the associated description when it is a .
if(catCodeParent.getFs_P01012_W01012A().getData().getTxtCategoryCode04_
363().getAssocDesc() != null &&

catCodeParent.getFs_P01012_
W01012A().getData().getTxtCategoryCode04_363().getAssocDesc().trim().equals("."))

{
catCodeParent.getFs_P01012_

W01012A().getData().getTxtCategoryCode04_363().setAssocDesc("");
}

if(catCodeParent.getFs_P01012_
W01012A().getData().getTxtCategoryCode05_366().getAssocDesc() != null &&

catCodeParent.getFs_P01012_
W01012A().getData().getTxtCategoryCode05_366().getAssocDesc().trim().equals("."))

{
catCodeParent.getFs_P01012_

W01012A().getData().getTxtCategoryCode05_366().setAssocDesc("");
}

}
catch (JDERestServiceException e)
{

JDERestServiceProvider.handleServiceException(e);
}
catch(Exception e)
{

throw new AdfException(e.getMessage(), AdfException.ERROR);
}

}

public void addPropertyChangeListener(PropertyChangeListener l) {
propertyChangeSupport.addPropertyChangeListener(l);

}

public void removePropertyChangeListener(PropertyChangeListener l) {
propertyChangeSupport.removePropertyChangeListener(l);

}
}

Next, the getCatCodesForSupplier() method is invoked from the amx executable
bindings, as shown here:

Extension Options

B-18 Developing and Customizing Mobile Enterprise Applications Guide

The two fields from the DataControl are added to the detail page in a
panelFormLayout after the listview with the phones, as shown here:

</amx:listView>
<amx:panelFormLayout labelPosition="topStart" fieldHalign="start">
<amx:panelLabelAndMessage label="Category 4" id="plam2">
<amx:outputText value="#{bindings.assocDesc.inputValue}" id="ot3"/>

</amx:panelLabelAndMessage>
<amx:panelLabelAndMessage label="Category 5" id="plam3">
<amx:outputText value="#{bindings.assocDesc1.inputValue}" id="ot5"/>

</amx:panelLabelAndMessage>
</amx:panelFormLayout>

The associated description for each field in EnterpriseOne is used for each field value
in the mobile application. The following example shows the result of customizing the
mobile application to show the two category code values. The labels in this example
are generic, you can make the label appropriate for what the value is in your
customization:

Extension Options

Extending Mobile Application Archives B-19

B.5.2 Removing Data from Pages
For each field you want to remove, set the rendered property for that field to false in
the SupplierDetail.amx page. The field will not appear in the mobile application, and
the space for that field will be reclaimed as if the field was never there.

B.5.3 Adding New Pages
You can add new forms and navigation actions, as well as a new link or button to
navigate to the new forms. Refer to the Oracle MAF documentation for these types of
modifications:

http://docs.oracle.com/middleware/mobile200/mobile/index.html

Extension Options

B-20 Developing and Customizing Mobile Enterprise Applications Guide

	Contents
	List of Examples
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions
	1 Understanding This Guide
	2 Introduction to Mobile Enterprise Application Development
	2.1 About the Runtime Architecture for EnterpriseOne Mobile Enterprise Applications
	2.2 About Oracle Mobile Application Framework
	2.3 Understanding Developing Custom Mobile Enterprise Applications for EnterpriseOne
	2.3.1 JDE Mobile Helpers
	2.3.2 The Data Model
	2.3.3 Form Service Requests
	2.3.4 EnterpriseOne Rest Services Interface

	2.4 Sample Application
	2.5 Mobile Application Archives

	3 Getting Started
	3.1 Certifications (Formerly Known as Minimum Technical Requirements)
	3.2 Prerequisites
	3.3 Installing the AIS Client Class Generator Extension for JDeveloper

	4 Setting Up the Login and Logout
	4.1 Before You Begin
	4.2 Setting Up the Login Module
	4.2.1 Pointing to the Login.jar
	4.2.2 Making the Login Module the First Feature in Your Mobile Application
	4.2.3 Verifying the LifeCycleListenerImpl Activation
	4.2.4 Setting the defaultFeature
	4.2.5 Overriding the Login Values from Your Mobile Application

	4.3 Configuring the Logout

	5 Building the Data Model
	5.1 Understanding the Data Model
	5.2 Configuring the AIS Client Class Generator
	5.3 Generating Data Classes Based on a Form

	6 Performing AIS Form Service Calls
	6.1 Understanding JD Edwards EnterpriseOne Mobile Framework APIs
	6.2 Understanding AIS Server Capabilities
	6.3 Understanding Form Service Requests
	6.3.1 Overview
	6.3.2 Events Used in a Form Service Request
	6.3.3 Using the Form Service Request Event in FDA
	6.3.4 Placing Events in the Proper Order
	6.3.5 Considering Hidden Filters and Hidden QBE
	6.3.6 Events on Power Forms
	6.3.7 Control ID Notation for Return Control IDs
	6.3.8 Example of JSON Code in a Form Service Request
	6.3.9 Example of API Methods for a Form Service Request
	6.3.10 Grid Action Events
	6.3.10.1 Example of Grid Action Events

	6.3.11 Query Events (Release 9.1 Update 5.2)
	6.3.11.1 Query Object Parameters
	6.3.11.2 Query Object Examples

	6.4 Understanding Batch Form Service
	6.4.1 Batch Form Service - JSON Input and Output
	6.4.2 Implementing the Batch Form Service
	6.4.2.1 Batch Request Parent Class
	6.4.2.2 Performing a Batch Form Request

	6.5 Working with the EnterpriseOne REST Services Interface
	6.5.1 Using a REST Services Client to Interact with AIS
	6.5.1.1 Form Request Attributes
	6.5.1.2 Calling FormService on Local EnterpriseOne HTML (JAS) Server through the AIS Server

	6.6 Understanding Text Media Object Attachments
	6.6.1 gettext Service
	6.6.2 updatetext Service
	6.6.3 JDEMobileFramework API Methods for Managing Text Media Objects

	6.7 Understanding URL Media Object Attachments (Release 9.1 Update 5.2)
	6.8 Understanding the Media Object API for Photo Media Object Attachments
	6.8.1 List
	6.8.2 Download
	6.8.3 Upload
	6.8.4 Delete

	6.9 Understanding Processing Options
	6.9.1 Using the AIS Service for Processing Options in Your Mobile Application

	6.10 Understanding the Application Stack Service (Tools Release 9.1 Update 5)
	6.10.1 Service Endpoint
	6.10.2 Capability
	6.10.3 Prerequisite
	6.10.4 JSON Example of an Application Stack Request
	6.10.4.1 Open Application: Request and Response
	6.10.4.2 Execute Actions on Application: Request and Response
	6.10.4.3 Adding a Phone Number
	6.10.4.4 Execute Close Application: Request and Response
	6.10.4.5 Mobile Application Example

	6.10.5 ApplicationStack Methods
	6.10.6 ApplicationStackResponse Methods

	A Creating a Sample Mobile Application
	A.1 Before You Begin
	A.2 Creating the Sample Address Book Mobile Application
	A.2.1 Creating a New Mobile MAF Application
	A.2.2 Running the Mobile Application in the Simulator

	A.3 Using the JDE Mobile Helpers
	A.3.1 Including the JDEMobileFramework.jar
	A.3.2 Including the Login.jar
	A.3.3 Including the Javascript and CSS
	A.3.4 Including the Resource Bundle
	A.3.5 Including Logo Images
	A.3.6 Enabling the Custom Springboard
	A.3.7 Including the about.properties
	A.3.8 Including an End User License Agreement (EULA)

	A.4 Connecting to the EnterpriseOne Application Interface Services (AIS) Server
	A.5 AIS Client Class Generator
	A.6 Reading EnterpriseOne Data
	A.7 Implementing Filter Fields
	A.8 Page Navigation and Getting More Details
	A.9 Updating Data in EnterpriseOne
	A.9.1 Handling Errors

	A.10 Device Integration

	B Extending Mobile Application Archives
	B.1 Before You Begin
	B.2 Understanding Mobile Application Archives
	B.3 Generating a New Application from the Deployment Profile
	B.4 Customization Options
	B.4.1 Customizing the Application Icons and Splash Screens
	B.4.2 Customizing the Brand Images
	B.4.3 Customizing the End User License Agreement (EULA)
	B.4.4 Customizing the About Page
	B.4.5 Customizing the Pages

	B.5 Extension Options
	B.5.1 Displaying Additional Data
	B.5.2 Removing Data from Pages
	B.5.3 Adding New Pages

