
[1]JD Edwards EnterpriseOne
Application Interface Services Client Java API Developer's
Guide

Release 9.1.5

E62368-05

December 2015

Describes how to work with the Application Interface
Services (AIS) Client Java API which provides classes and
methods for creating custom applications that work with
EnterpriseOne.

JD Edwards EnterpriseOne Application Interface Services Client Java API Developer's Guide, Release 9.1.5

E62368-05

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

iii

Contents

Preface ... v

Audience... v
Documentation Accessibility ... v
Related Documents ... v
Conventions ... v

1 Understanding the AIS Client Java API

1.1 Overview.. 1-1
1.2 Accessing AIS Server Endpoints with the AIS Client Java API ... 1-1

2 Getting Started

2.1 Certifications (Formerly Known as Minimum Technical Requirements) 2-1
2.2 Prerequisites... 2-1
2.3 Installing the AIS Client Class Generator Extension for JDeveloper 2-2

3 Configuring the Login Environment

3.1 Configuring the Login.. 3-1
3.2 Configuring the Logout ... 3-2

4 Using the AIS Client Class Generator

4.1 Understanding Generating Objects with the AIS Client Class Generator.......................... 4-1
4.2 Configuring the AIS Client Class Generator Preferences ... 4-1
4.3 Generating Data Classes Based on a Form.. 4-2
4.4 Generating Data Classes Based on a Data Request (Available in

AIS Client Class Generator v1.6.2) ... 4-5

5 Performing AIS Form Service Calls

5.1 Understanding AIS Server Capabilities... 5-1
5.2 Understanding Form Service Requests.. 5-4
5.2.1 Overview... 5-4
5.2.2 Form Service Request Structure... 5-5
5.2.3 Control ID Notation for Return Control IDs ... 5-5
5.2.4 Reading Data .. 5-6
5.2.5 Adding Data ... 5-7

iv

5.2.6 Deleting Data.. 5-8
5.2.7 Placing Events in the Proper Order ... 5-10
5.2.8 Considering Hidden Filters and Hidden QBE ... 5-10
5.2.9 Available Actions or Events .. 5-10
5.3 Batch Form Service .. 5-11
5.4 Application Stack Service (Tools Release 9.1.5)... 5-15
5.5 Media Object Operations .. 5-17
5.5.1 Get Text .. 5-17
5.5.2 Update Text ... 5-18
5.5.3 List... 5-18
5.5.4 Upload .. 5-21
5.5.5 Download... 5-22
5.5.6 Add URL (Tools Release 9.1.5.2 and API Version 1.0) .. 5-23
5.5.7 Delete .. 5-23
5.6 Processing Option Service .. 5-24
5.7 Task Authorization Service .. 5-25
5.8 Logging Service .. 5-26
5.9 Query (Release 9.1.5.2) .. 5-27
5.9.1 Query Object Parameters... 5-28
5.10 Jargon Service (Release 9.1.5.3) .. 5-30
5.11 Data Service (API Release 1.1.0 and EnterpriseOne Tools Release 9.1.5.5) 5-31
5.12 Orchestration Support (API Release 1.1.0 and EnterpriseOne Tools Release 9.1.5.5).... 5-33

Glossary

v

Preface

Welcome to the JD Edwards EnterpriseOne Application Interface Services Client Java API
Developer's Guide. This guide has been updated for JD Edwards EnterpriseOne Tools
9.1 Update 5.2, 9.1 Update 5.3, and 9.1 Update 5.5.

Audience
This guide is intended for application developers who are responsible for creating
client applications that use the Application Interface Services (AIS) Server to interact
with JD Edwards EnterpriseOne web client applications.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Related Documents
See the following guide for related information:

■ JD Edwards EnterpriseOne Application Interface Services (AIS) Client API Reference,
available alongside this guide in the JD Edwards EnterpriseOne Tools
Documentation Library:

http://docs.oracle.com/cd/E24705_01/nav/development.htm

■ JD Edwards EnterpriseOne Tools Internet of Things Orchestrator Guide.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

vi

1

Understanding the AIS Client Java API 1-1

1Understanding the AIS Client Java API

This chapter contains the following topics:

■ Section 1.1, "Overview"

■ Section 1.2, "Accessing AIS Server Endpoints with the AIS Client Java API"

1.1 Overview
With the Application Interface Services (AIS) Client Java API, you can use any
development tool that works with Java APIs to create custom applications that interact
with EnterpriseOne. Whether you need a simplified kiosk application for your
warehouse, an application that composites features from multiple EnterpriseOne
applications into a single purpose-built interface, or an application for the latest
wearable device, the AIS Client Java API enables you to choose the development
platform that fits your needs.

The AIS Client Java API enables developers to create applications, referred to as AIS
clients, that communicate with the JD Edwards EnterpriseOne AIS Server. The AIS
Server is a REST services server that when configured with the EnterpriseOne HTML
Server, enables access to EnterpriseOne forms and data. The AIS Client Java API
provides classes and methods that enable AIS clients to manage (create, read, update,
delete) data in EnterpriseOne through REST services.

Note: The EnterpriseOne HTML Server also executes some Java
processing; therefore, it is sometimes referred to as the Java
Application Server (JAS). The terms HTML Server and JAS Server are
synonymous.

See Also:

■ "EnterpriseOne Application Interface Services (AIS) Server" in the
JD Edwards EnterpriseOne Tools System Overview Guide for an
overview and illustration of the AIS Server architecture.

1.2 Accessing AIS Server Endpoints with the AIS Client Java API
The AIS Server exposes endpoints that:

■ Enable access to EnterpriseOne data and applications.

■ Produce JSON responses.

Accessing AIS Server Endpoints with the AIS Client Java API

1-2 Application Interface Services Client Java API Developer's Guide

Each endpoint provides a particular service that AIS clients can use to interact with
EnterpriseOne applications. Table 1–1 describes the services that the AIS Server
endpoints provide.

The AIS Client Java API enables easy access to all endpoints; all of the communication
is handled for you. You can access AIS Server endpoints using this URL format:
http://<server>:<port>/jderest/<URI>

All POST calls expect JSON formatted request payloads.

When you use the API, you work with Java objects, not the JSON strings. But it is still
important to understand how the data is transmitted. The following chapters in this
guide describe in detail how to use the services the endpoints provide and the Java
objects required to use them:

■ Chapter 3, "Configuring the Login Environment"

■ Chapter 5, "Performing AIS Form Service Calls"

Table 1–1 Endpoint URIs for Accessing EnterpriseOne Applications and Data

Endpoint URI HTTP Method Description of Service

/defaultconfig GET The response will include information about the AIS Server
including the release level, JAS Server configuration, and
capabilities list. The AIS Server has different capabilities based on
the version of the EnterpriseOne Tools release applied to the AIS
Server. Therefore, even if the version of the AIS Client Java API
has the latest, up-to-date capabilities, the AIS Server may not. See
Understanding AIS Server Capabilities for a list of capabilities
available by EnterpriseOne Tools release.

/tokenrequest POST Based on the input, the response will contain login information
including a login token and user details.

/tokenrequest/logout POST Based on the input (AIS token), the response will be a code of 200
if successful and 500 if the logout fails.

/formservice POST Based on the input, the response will contain a JSON
representation of the form requested.

/batchformservice POST Based on the input, the response will contain a JSON
representation of all of the forms requested.

/file/gettext POST Based on the input, the response will contain the text for the first
text media object.

/file/updatetext POST Base on the input, the response will contain the status of the text
update.

/file/list POST Based on the input, the response will contain the list of media
objects for the structure and key requested.

/file/upload POST (Multi-Part
Form)

The response will contain the details of the uploaded file,
including the media object sequence number.

/file/download POST This response will contain a multi-part form including the data for
the attachment.

/file/addurl POST The response will contain the details of the URL media object,
including the URL text and the sequence number (Release 9.1.5.2).

/file/delete POST The response indicates the success or failure to delete the media
object for the sequence number passed in.

/appstack POST Based on the input, the response will contain the current form
open on the stack and any stack related information.

Accessing AIS Server Endpoints with the AIS Client Java API

Understanding the AIS Client Java API 1-3

/poservice POST Based on the input, the response will contain the processing
option values for the requested application and version.

/log POST Base on the input, the AIS Server will write a log entry with the
information passed to the log service.

/jargonservice POST Based on the input and the logged in users language, the correct
item description will be returned for each data item provided.

/dataservice POST Based on the input, the response will contain either a count or a
list of records matching a query of a table or view.

/orchestrator/<Name
>

POST Based on the input and the URI, the requested orchestration will
run. See the JD Edwards EnterpriseOne Tools IoT Orchestrator
Guide for more information about creating orchestrations that use
form service requests to invoke EnterpriseOne applications.

Table 1–1 (Cont.) Endpoint URIs for Accessing EnterpriseOne Applications and Data

Endpoint URI HTTP Method Description of Service

Accessing AIS Server Endpoints with the AIS Client Java API

1-4 Application Interface Services Client Java API Developer's Guide

2

Getting Started 2-1

2Getting Started

This chapter contains the following topics:

■ Section 2.1, "Certifications (Formerly Known as Minimum Technical
Requirements)"

■ Section 2.2, "Prerequisites"

■ Section 2.3, "Installing the AIS Client Class Generator Extension for JDeveloper"

2.1 Certifications (Formerly Known as Minimum Technical Requirements)
Customers must conform to the supported platforms for the release, which can be
found in the Certifications tab on My Oracle Support: https://support.oracle.com.

For more information about JD Edwards EnterpriseOne Minimum Technical
Requirements, see the following document on My Oracle Support: JD Edwards
EnterpriseOne Minimum Technical Requirements Reference (Doc ID 745831.1), which
is available here:

https://support.oracle.com/epmos/faces/DocumentDisplay?id=745831.1

2.2 Prerequisites
To develop AIS client applications, you must complete the following prerequisites:

■ You must be running a minimum of JD Edwards EnterpriseOne Tools release 9.1.5.

■ Deploy the Application Interface Service (AIS) Server configured with an
EnterpriseOne HTML Server. See "Create an Application Interface Services (AIS)
Server as a New Managed Instance" in the JD Edwards EnterpriseOne Tools Server
Manager Guide.

■ Download the latest AIS_Client_Java_API_1.x.x from the JD Edwards Update
Center on My Oracle Support (https://support.oracle.com/).

To locate the download on the JD Edwards Update Center, use the Type field to
search on "EnterpriseOne ADF."

The zip file contains:

– AIS_Client.jar, which contains the AIS Client Java API.

Click the following link to access the JD Edwards EnterpriseOne Application
Interface Services (AIS) Client API Reference Javadoc, which provides
descriptions of the AIS Client Java API classes and methods:

http://docs.oracle.com/cd/E24705_01/nav/development.htm

Installing the AIS Client Class Generator Extension for JDeveloper

2-2 Application Interface Services Client Java API Developer's Guide

– Jackson 2.2.4 library, which includes the jackson-databind, jackson-core, and
jackson-annotations jar files.

– AISCGE 12c_v1.6.x.zip (AIS Client Class Generator extension for JDeveloper).

The AIS Client Class Generator is compatible only with Jdeveloper 12.1.3 and
up. After you download it, see Installing the AIS Client Class Generator
Extension for JDeveloper.

Important: The AIS client and Jackson jar files must be in the
classpath of your AIS client.

2.3 Installing the AIS Client Class Generator Extension for JDeveloper
The AIS Client Class Generator extension for JDeveloper contains the AIS Client Class
Generator, a tool that supports the creation of Application Controller foundational
classes that are required by EnterpriseOne mobile applications.

For more information about the AIS Client Class Generator, see Understanding
Generating Objects with the AIS Client Class Generator in this guide.

To install the AIS Client Class Generator extension:

1. In JDeveloper, select the Help menu, Check for Updates.

2. Click Next.

3. Select Install From Local File, and then enter the location of the zip file.

4. Click Next, and then click Finish.

JDeveloper closes automatically.

3

Configuring the Login Environment 3-1

3Configuring the Login Environment

This chapter contains the following topic:

■ Section 3.1, "Configuring the Login"

■ Section 3.2, "Configuring the Logout"

3.1 Configuring the Login
For an AIS client to call AIS services, the AIS client must first obtain a login
environment by passing the following information to the constructor in the
LoginEnvironment object:

■ EnterpriseOne login credentials. EnterpriseOne credentials include a user ID,
password, environment, and role. The AIS Server configuration uses a default
EnterpriseOne environment and role unless you specify a different environment
and role here.

■ AIS Server URL and the device name. The device name is a string that represents
the device on which the client is running. The device name serves as a unique
identifier for your client.

■ A list of required capabilities. (Optional) If the AIS client uses AIS Server
capabilities, then you have the option to pass a list of required capabilities to the
LoginEnvironment constructor. The LoginEnvironment constructor verifies that
the capabilities are available on the AIS Server. If they are available, access to the
AIS client is granted. If they are not available, access is denied.

This prevents an AIS client from running if the AIS Server capability that it
requires to properly function is not available in the version of the AIS Server. See
Understanding AIS Server Capabilities for a list of AIS Server capabilities available
by EnterpriseOne Tools release.

When the client requests a LoginEnvironment, the processing within the API uses the
defaultconfg and tokenrequest URI, the endpoints described in Table 1–1, " Endpoint
URIs for Accessing EnterpriseOne Applications and Data".

Example 3–1 Examples for Obtaining a Login Environment

//login with minimum required information
final String AIS_SERVER = "http://ais.company.com:7777";
final String USER_NAME = "jde";
final String PASSWORD = "jde";
final String DEVICE = "Java";
LoginEnvironment loginEnv = new LoginEnvironment(AIS_SERVER, USER_NAME, PASSWORD,
DEVICE);

Configuring the Logout

3-2 Application Interface Services Client Java API Developer's Guide

//login overrides default environment and role
final String ENVIRONMENT = "PROD";
final String ROLE = "PROLE";
LoginEnvironment loginEnv2 = new LoginEnvironment(AIS_SERVER, USER_NAME,
PASSWORD, ENVIRONMENT, ROLE, DEVICE);

//login with required capabilities
//A CapabilityException will be thrown if AIS doesn't have those in the list
final String REQ_CAPABILITIES = "grid, processingOption";
LoginEnvironment loginEnv3 = new LoginEnvironment(AIS_SERVER, USER_NAME,
PASSWORD, DEVICE, REQ_CAPABILITIES);

//login with token
String PS_TOKEN = "a ps token string";
LoginEnvironment loginEnv4 = new LoginEnvironment(AIS_SERVER, USER_NAME, null,
null, null, DEVICE, null, null, PS_TOKEN)

All calls to the AIS Server include the LoginEnvironment object. From this point
forward in this guide, references to the loginEnv variable assume that this step has
been performed and that the variable is available.

3.2 Configuring the Logout
When finished making calls to the AIS Server, you must include the following logout
call to end the user session:

AISClientUtilities.logout(loginEnv);

4

Using the AIS Client Class Generator 4-1

4Using the AIS Client Class Generator

This chapter contains the following topic:

■ Section 4.1, "Understanding Generating Objects with the AIS Client Class
Generator"

■ Section 4.2, "Configuring the AIS Client Class Generator Preferences"

■ Section 4.3, "Generating Data Classes Based on a Form"

■ Section 4.4, "Generating Data Classes Based on a Data Request (Available in AIS
Client Class Generator v1.6.2)"

Important: If you have not yet installed the AIS Client Class
Generator, see Installing the AIS Client Class Generator Extension for
JDeveloper in this guide.

4.1 Understanding Generating Objects with the AIS Client Class
Generator

A form service call to the AIS Server, otherwise referred to as a form service request,
results in a response that contains a string in JSON format. In JDeveloper, you can
access and use the AIS Client Class Generator to transform the response into object
form because objects are easier to work with than strings. The AIS Client Class
Generator generates classes matching the form.

4.2 Configuring the AIS Client Class Generator Preferences
The AIS Client Class Generator is available as a JDeveloper extension. You must install
the extension before you can configure the preferences. See Chapter 2, "Getting
Started" in this guide for instructions on how to install the extension.

To configure the AIS Client Class Generator:

1. In JDeveloper, access Preferences:

On Microsoft Windows, select the Tools menu, Preferences.

On Mac, select the JDeveloper menu, Preferences.

2. Select AIS Client Class Generator.

3. On Preferences, complete the following fields to specify the AIS Server location
and AIS Server information:

■ AIS Server URL. This is a fully qualified URL to the AIS Server that includes
the protocol, server, and port number. For example:

Generating Data Classes Based on a Form

4-2 Application Interface Services Client Java API Developer's Guide

http://myaisserver.com:8474

■ JAS Server URL. (Optional) This is the URL to the EnterpriseOne HTML
Server. Enter a URL only if you want to override the JAS Server URL
configured on the AIS Server.

■ Username. Enter a JD Edwards EnterpriseOne user name.

■ Password. Enter a JD Edwards EnterpriseOne user password.

■ Environment. (Optional) Enter a value only if you want to override the
environment configured on the AIS Server.

■ Role. (Optional) Enter a value only if you want to override the role configured
on the AIS Server.

■ JSON Files Folder. The folder for storing the JSON files. The default location
is the AISClientClassGenerator\input directory.

■ Default Java Classes Folder. The folder for storing generated Java files.

The AIS Client Class Generator uses this folder only when it is run without a
project open in JDeveloper. When a project is open in JDeveloper, the
generator stores the Java files in the source directory for the project at the
defined package path or the default package path which is
com.oracle.e1.formservicetypes.

■ Java Package. The Java package name for the generated classes. The default is
com.oracle.e1.formservicetypes.

4. Click OK.

4.3 Generating Data Classes Based on a Form
Use the AIS Client Class Generator to generate data classes for an EnterpriseOne form.
In the AIS Client Class Generator, you supply the service request information.

Note: The AIS Client Class Generator supports form interconnects
only; it does not support form events.

To use the AIS Client Class Generator to generate data classes:

1. In JDeveloper, select the ApplicationController project.

JDeveloper will save the classes generated by the AIS Client Class Generator in
this location.

2. Select the Tools menu, AIS Client Class Generator.

3. Click the Form Service radio button. (Available in AIS Client Class Generator
v1.6.2.)

4. On AIS Client Class Generator, complete the following fields to supply the service
request information:

■ Username. This contains the default value entered in the preferences.

■ Password. This contains the default value entered in the preferences.

■ Environment. This contains the default value entered in the preferences.

■ Role. This contains the default value entered in the preferences.

■ Application Name. Enter the name of the EnterpriseOne application.

Generating Data Classes Based on a Form

Using the AIS Client Class Generator 4-3

■ Form Name. Enter the name of the EnterpriseOne application form.

■ Version. (Optional) Enter the version name. If you leave it blank, the generator
will use ZJDE0001 by default.

■ MaxPageSize. (Optional)

■ ReturnControlIDs. (Optional) Use this field to specify the exact fields on the
form that you want generated. The return control IDs can specify hidden
fields or a subset of fields.

■ FormInputs. (Optional)

■ FormServiceAction. Enter the action to be performed. Valid values include:
Create, Read, Update, Delete.

■ FindOnEntry. (Optional)

■ DemoMode. (Optional, but recommended) This ensures at least one grid row
is present, so grid classes are generated even if there is no data in the database.

5. Make sure to select the Preview JSON Data and Keep JSON Files check boxes if
you want to preview and keep the JSON files.

6. Click the Generate button to generate the JSON, and then in the preview, verify
that it has the fields and records you need.

7. Click Continue to generate the Java files.

If successful, a confirmation message appears that shows the location of the JSON
and Java class files.

8. Click OK and close the generator.

9. Highlight the Application Controller project and then click the "refresh" button to
display the new files.

The AIS Client Class Generator displays a dialog box that shows where the classes
are saved.

Example 4–1 Example of Classes Generated from the AIS Client Class Generator

This example shows the generated classes for form W01012B in application P01012.

Generating Data Classes Based on a Form

4-4 Application Interface Services Client Java API Developer's Guide

Notice that the structure of the generated classes in JDeveloper represent the
EnterpriseOne form. The form fields are in the class P01012_W01012B_FormData; the
grid data is also within that form. Inside the P01012_W01012B_GridData class is a
rowset that contains the grid records. Each row in the rowset is from the P01012_
W01012B_GridRow class, which is where all the columns are listed.

JSON string responses for the P01012_W01012B form can now be de-serialized into
these classes.

If you need any fields on the form that have not been generated, you can add them
manually. The code in Example 4–2 shows an example of additional hidden grid
columns added to the _GridRow class.

Example 4–2 Additional Grid Columns Added to the _GridRow Class

Field sAddressLine1_40 = new Field();
Field sCity_44 = new Field();
Field SPrefix_81 = new Field();
Field sPhoneNumber_46 = new Field();

public void setsAddressLine1_40(Field sAddressLine1_40)
{
this.sAddressLine1_40 = sAddressLine1_40;
}
public Field getSAddressLine1_40()
{
return sAddressLine1_40;
}
public void setsCity_44(Field sCity_44)
{
this.sCity_44 = sCity_44;
}
public Field getSCity_44()
{

Generating Data Classes Based on a Data Request (Available in AIS Client Class Generator v1.6.2)

Using the AIS Client Class Generator 4-5

return sCity_44;
}
public void setsPrefix_81(Field SPrefix_81)
{
this.SPrefix_81 = SPrefix_81;
}
public Field getSPrefix_81()
{
return SPrefix_81;
}
public void setsPhoneNumber_46(Field sPhoneNumber_46)
{
this.sPhoneNumber_46 = sPhoneNumber_46;
}
public Field getSPhoneNumber_46()
{
return sPhoneNumber_46;
}

4.4 Generating Data Classes Based on a Data Request (Available in AIS
Client Class Generator v1.6.2)

Starting with EnterpriseOne Tools 9.1.5.5, the dataservice endpoint is available to
enable an AIS client to receive responses from EnterpriseOne that contain either a
count or a list of records matching a query of a table or view. You can use the AIS
Client Class Generator to generate data classes based on the data request.

To use the AIS Client Class Generator to generate data classes based on the data
request:

1. In JDeveloper, select the ApplicationController project.

JDeveloper will save the classes generated by the AIS Client Class Generator in
this location.

2. Select the Tools menu, AIS Client Class Generator.

3. Click the Data Service radio button. (Available in AIS Client Class Generator
v1.6.2.)

4. On AIS Client Class Generator, complete the following fields to supply the service
request information:

■ Username. This contains the default value entered in the preferences.

■ Password. This contains the default value entered in the preferences.

■ Environment. This contains the default value entered in the preferences.

■ Role. This contains the default value entered in the preferences.

■ Target Type. This is the table or view based on the object on which the query
is performed.

■ Target Name. The object name to be queried, for example F0101 or V0101A.

■ ReturnControlIDs. (Optional) Use this field to specify the exact fields on the
form that you want generated. Specify fields by Table.Column, for example
F0101.AN8 and F0101.ALPH.

■ MaxPageSize. (Optional)

■ FindOnEntry. (Optional)

Generating Data Classes Based on a Data Request (Available in AIS Client Class Generator v1.6.2)

4-6 Application Interface Services Client Java API Developer's Guide

■ DemoMode. (Optional, but recommended) This ensures at least one grid row
is present, so grid classes are generated even if there is no data in the database.

5. Make sure to select the Preview JSON Data and Keep JSON Files check boxes if
you want to preview and keep the JSON files.

6. Click the Generate button to generate the JSON, and then in the preview, verify
that it has the fields and records you need.

7. Click Continue to generate the Java files.

If successful, a confirmation message appears that shows the location of the JSON
and Java class files.

8. Click OK and close the generator.

9. Highlight the Application Controller project and then click the "refresh" button to
display the new files.

The AIS Client Class Generator displays a dialog box that shows where the classes
are saved.

Example 4–3 Example of Classes Generated from the AIS Client Class Generator Data
Request

This example shows the generated classes for data in the F0101_AN8 and F0101_
ALPH columns.

5

Performing AIS Form Service Calls 5-1

5Performing AIS Form Service Calls

This chapter contains the following topics:

■ Section 5.1, "Understanding AIS Server Capabilities"

■ Section 5.2, "Understanding Form Service Requests"

■ Section 5.3, "Batch Form Service"

■ Section 5.4, "Application Stack Service (Tools Release 9.1.5)"

■ Section 5.5, "Media Object Operations"

■ Section 5.6, "Processing Option Service"

■ Section 5.7, "Task Authorization Service"

■ Section 5.8, "Logging Service"

■ Section 5.9, "Query (Release 9.1.5.2)"

■ Section 5.10, "Jargon Service (Release 9.1.5.3)"

■ Section 5.11, "Data Service (API Release 1.1.0 and EnterpriseOne Tools Release
9.1.5.5)"

■ Section 5.12, "Orchestration Support (API Release 1.1.0 and EnterpriseOne Tools
Release 9.1.5.5)"

5.1 Understanding AIS Server Capabilities
The AIS Server exposes various capabilities that AIS client applications may or may
not depend on. If your application requires a certain capability, you must include it in
the list of required capabilities in the LoginEnvironment constructor.

If you included a capability in the list, the Login module verifies that capability is
available when the application launches. If the capability is not available, the
application returns an error message. If the capability is available, the application
continues to the login screen. See Chapter 3, "Configuring the Login Environment" for
more information.

You can access the AIS Server capabilities using the following URL:

http://<AIS Server>:<Port>/jderest/defaultconfig

The following code shows the available capabilities along with a description of each
capability:

"capabilityList": [
{

"name": "grid",

Understanding AIS Server Capabilities

5-2 Application Interface Services Client Java API Developer's Guide

"shortDescription": "Grid Actions",
"longDescription": "Ability to update, insert and delete grid

records.",
"asOfRelease": "9.1.4.4"

},
{

"name": "editable",
"shortDescription": "Enabled/Disabled",
"longDescription": "Ability to indicate if form field or grid cell is

editable (enabled) or not (disabled).",
"asOfRelease": "9.1.4.4"

},
{

"name": "log",
"shortDescription": "Logging",
"longDescription": "Endpoint exposed for logging to AIS server log

from client",
"asOfRelease": "9.1.4.6"

},
{

"name": "processingOption",
"shortDescription": "Processing Options",
"longDescription": "Processing Option Service exposed for fetching PO

values from E1",
"asOfRelease": "9.1.4.6"

},
{

"name": "ignoreFDAFindOnEntry",
"shortDescription": "Ignore FDA Find On Entry",
"longDescription": "Ability to use the IgnoreFDAFindOnEntry flag",
"asOfRelease": "9.1.4.6"

}
{

"name": "selectAllGridRows",
"shortDescription": "Select or Unselect All Grid Rows",
"longDescription": "Ability to use select and unselect all grid rows,

or unselect a single row in an action event.",
"asOfRelease": "9.1.5"

},
{

"name": "applicationStack",
"shortDescription": "Operations on a Stack of E1 Applications",
"longDescription": "Ability to maintain a stack of open E1

applications and operate forms that are called",
"asOfRelease": "9.1.5"

},
{

"name": "thumbnailSize",
"shortDescription": "Specify desired thumbnail size for MO List",
"longDescription": "Ability to request a specific sized thumbnail

images in a Media Object List Request",
"asOfRelease": "9.1.5"

},
{

"name": "gridCellClick",
"shortDescription": "Click Grid Cell Hyperlink",
"longDescription": "Ability to use GridCellClick event, to execute

hyperlink in grid.",
"asOfRelease": "9.1.5.2"

},

Understanding AIS Server Capabilities

Performing AIS Form Service Calls 5-3

{
"name": "query",
"shortDescription": "Query",
"longDescription": "Ability to use Query on forms that support it",
"asOfRelease": "9.1.5.2"

},
{

"name" : "taskAuthorization",
"shortDescription" : "Task Authorization",
"longDescription" : "Ability to receive a list of authorized tasks

based on a task view id, or task id and parent id with in a task view",
"asOfRelease" : "9.1.5.2"

},
{

"name": "urlMediaObjects",
"shortDescription": "URL Media Objects",
"longDescription": "Ability to view, add or delete url type media

objects",
"asOfRelease": "9.1.5.2"

}
{

"name" : "jargon",
"shortDescription" : "Data Item Jargon Service",
"longDescription" : "Ability to request data item descriptions based

on users language and jargon (system) code",
"asOfRelease" : "9.1.5.3"

},
{

"name" : "aliasNaming",
"shortDescription" : "Alias Naming",
"longDescription" : "Ability receive form service responses with

fields named by Data Dictionary alias",
"asOfRelease" : "9.1.5.3"

},
{

"name" : "orchestrator",
"shortDescription" : "Orchestrator",
"longDescription" : "Ability process multiple service requests, rules,

cross references in a single call based on defined orchestration metadata",
"asOfRelease" : "9.1.5.5"

},
{

"name" : "basicAuth",
"shortDescription" : "Basic Authorization",
"longDescription" : "Ability receive basic authorization credentials

for the token request service",
"asOfRelease" : "9.1.5.5"

},
{

"name" : "oAuth",
"shortDescription" : "OAM OAuth 2-Legged",
"longDescription" : "Ability support 2-Legged OAM oAuth flow and

validate OAM Access Tokens supplied by a client",
"asOfRelease" : "9.1.5.5"

},
{

"name" : "dataservice",
"shortDescription" : "Data Service",
"longDescription" : "Ability to execute queries directly against

tables and views",

Understanding Form Service Requests

5-4 Application Interface Services Client Java API Developer's Guide

"asOfRelease" : "9.1.5.5"
}

],

The code in Example 5–1 shows the grid and editable capabilities listed in the
LoginEnvironment constructor.

Example 5–1 Capabilities in LoginEnvironment Constructor

final String REQUIRED_CAP_LIST = "grid,query";
th.loginEnv = new LoginEnvironment(AIS_SERVER, USER_NAME, PASSWORD,

ENVIRONMENT, ROLE, DEVICE, REQUIRED_CAP_LIST, JAS_SERVER);

If the list includes a capability that is not available on the AIS Server, it throws a
CapabilityException, as shown in Example 5–2.

Example 5–2 Capability Exception

com.oracle.e1.aisclient.CapabilityException: Required Capabilities [grid,
somethingelse] Available Capabilities: [grid, editable, log, processingOption,
ignoreFDAFindOnEntry, selectAllGridRows, applicationStack, thumbnailSize,
gridCellClick, query, taskAuthorization, urlMediaObjects, jargon, aliasNaming]

5.2 Understanding Form Service Requests
This section contains the following topics:

■ Section 5.2.1, "Overview"

■ Section 5.2.2, "Form Service Request Structure"

■ Section 5.2.3, "Control ID Notation for Return Control IDs"

■ Section 5.2.4, "Reading Data"

■ Section 5.2.5, "Adding Data"

■ Section 5.2.6, "Deleting Data"

■ Section 5.2.7, "Placing Events in the Proper Order"

■ Section 5.2.8, "Considering Hidden Filters and Hidden QBE"

■ Section 5.2.9, "Available Actions or Events"

5.2.1 Overview
AIS Server calls that retrieve data from forms in the EnterpriseOne web client are
referred to as form service requests. AIS client applications use form service requests
to interact with EnterpriseOne web client forms. Form service requests, formatted as
REST service calls that use POST, contain form service events or commands that
invoke actions on an EnterpriseOne form.

A form service request enables you to perform various operations on a single form. By
sending an ordered list of commands, a form service request can replicate the actions
taken by an EnterpriseOne web client user, including populating fields, pressing
buttons, and other actions.

To send a form service request to the AIS Server, send a POST to the following URL
and send JSON in the body:

http://<AIS Server>:<Port>/formservice

Understanding Form Service Requests

Performing AIS Form Service Calls 5-5

If testing with a REST testing tool, you can send JSON directly.

The following list is an example of the operations required to perform a query in the
find/browse form of the Address Book application (P01012_W01012B):

1. Enter a value into the Search Type field and into the QBE field for address number.

2. Click the check boxes to show the extra grid columns and press the Find button.

This populates the grid with the data matching the query.

The form service returns the form parent object representing the form after it is
populated with the data.

5.2.2 Form Service Request Structure
The class diagram in Figure 5–1 represents the basic structure of a form service
request. The collections under FormRequest are optional (0 to many); you do not have
to have FIStructures, FormActions, GridActions, and so forth. A form service request
(FSR) event is a set of FormActions that you first compile into an FSR event and then
add to the FormRequest using the add method.

Figure 5–1 Form Service Request Structure Diagram

5.2.3 Control ID Notation for Return Control IDs
You can use the Property Browser in FDA to identify control IDs for fields on each
EnterpriseOne form. You can also find control IDs using the Item Help option in the
form in the EnterpriseOne web client. In the EnterpriseOne web client form, click the

Understanding Form Service Requests

5-6 Application Interface Services Client Java API Developer's Guide

Help button (question mark in the upper right corner of a form) and then click the
Item Help option to access field-level help. With the field level help activated, you can
click in a field or column to access the control ID and business view information,
which is displayed under the Advanced Options section.

For fields on the main form, the control ID will be a single value, such as 25.

Grids also have control IDs. For a traditional form, the grid ID is usually 1. For power
forms, subforms, and reusable subforms the grid ID is typically a value other than 1.

The columns within a grid also have unique IDs and are often referenced in
conjunction with the grid ID. For example column 28 and 29 in grid 1 would be
1[28,29].

Power forms have more complex IDs. The fields on the main power form are
represented with single values. The fields on a subform are complex with an
underscore separating them. So field 6 on subform 12 is 12_6. The ID of a re-usable
subform is available when viewing the power form that the subform is used on. The
IDs of individual fields, a grid, or columns on a re-usable subform is shown in FDA
when viewing the subform directly; you cannot get these values when viewing the
subform alias.

The returnControlIDs string is bar delimited, without a starting or ending bar.

Example 5–3 Requesting fields and grid columns on a traditional form.

formRequest.setReturnControlIDs("19|20|60|125|1[45,49,88]");

In this example, 19|20|60|125 represent field control IDs.

1[45,49,88] represents columns in the grid.

Example 5–4 Requesting main form fields, subform fields, main form grid columns, and
subform grid columns.

formRequest.setReturnControlIDs("33|34|17[24,26,28]|50_45|50_53|50_
9[35,39,41]");

In this example, 33|34 represent fields on the main form.

50_45|50_53 represent fields on the subform.

17[24,26,28] represent main form grid columns.

50_9[35,39,41] represent subform grid columns.

5.2.4 Reading Data
The code in Example 5–5 shows an example of a form service request that reads data
from and EnterpriseOne form. In this example, the code results in populating the
P01012 form parent object with data that can be displayed or manipulated.

Example 5–5 Form Service Request for Reading Data

public P01012_W01012B_FormParent P01012()
{
P01012_W01012B_FormParent p01012form = null;

try{
//populate the request information
FormRequest formRequest = new FormRequest(loginEnv);
formRequest.setFormName("P01012_W01012B");
formRequest.setFormServiceAction("R");

Understanding Form Service Requests

Performing AIS Form Service Calls 5-7

formRequest.setMaxPageSize("30"); //only get 30 records
formRequest.setReturnControlIDs("54|1[19,20]");

FSREvent fsrEvent = new FSREvent();

fsrEvent.setFieldValue("54", "E"); //customers
//include >= operator in QBE
fsrEvent.setQBEValue("1[19]", ">=" + "6001");
fsrEvent.checkBoxChecked("62"); //show address
fsrEvent.checkBoxChecked("63"); //show phone
fsrEvent.doControlAction("15"); //find

formRequest.addFSREvent(fsrEvent); //add the events to the request
String response = JDERestServiceProvider.jdeRestServiceCall(loginEnv, formRequest,
JDERestServiceProvider.POST_METHOD, JDERestServiceProvider.FORM_SERVICE_URI);

//de-serialize the JSON string into the form parent object
p01012form = loginEnv.getObjectMapper().readValue(response, P01012_W01012B_
FormParent.class);

}
catch(JDERestServiceException e)
{

//get more specific error string
String error = JDERestServiceProvider.handleServiceException(e);

System.out.println(error);
}
catch(Exception e)
{

//handle other exceptions
System.out.println(e.getMessage());

}

return p01012form;
}

5.2.5 Adding Data
The code in Example 5–6 shows an example of a form service request that adds a new
phone number in the EnterpriseOne phones application and saves it. After saving the
phone number, the form service sends a response with the new number in the grid.

Example 5–6 Form Service Request for Adding Data

public P0115_W0115A_FormParent addPhone(){
P0115_W0115A_FormParent p0115_W0115A = null;

//indicate using grid capability
//(alternatively could use required capability)
loginEnv.getUsedCapabilities().add("grid");

if (AISClientCapability.isCapabilityAvailable(loginEnv, "grid"))
{

try{

FormRequest formRequest = new FormRequest(loginEnv);
formRequest.setFormName("P0115_W0115A");

Understanding Form Service Requests

5-8 Application Interface Services Client Java API Developer's Guide

formRequest.setFormServiceAction("U");

//open this form with specific record for AB 7500, contact 0
formRequest.addToFISet("4", "7500");
formRequest.addToFISet("5", "0");

FSREvent fsrEvent = new FSREvent();
//create grid action
GridAction gridAction = new GridAction(loginEnv);
//create grid row insert event
GridRowInsertEvent gri = new GridRowInsertEvent();

//set the column values
gri.setGridColumnValue("27", "HOM");
gri.setGridColumnValue("28", "303");
gri.setGridColumnValue("29", "123-4567");

//add the row to grid ID "1"
gridAction.insertGridRow("1", gri);

//add the grid action to the events
fsrEvent.addGridAction(gridAction);

//press OK button
fsrEvent.doControlAction("4");

//add the FSR event to the request
formRequest.addFSREvent(fsrEvent);

String response = JDERestServiceProvider.jdeRestServiceCall(loginEnv, formRequest,
JDERestServiceProvider.POST_METHOD, JDERestServiceProvider.FORM_SERVICE_URI);

//de-serialize the JSON string into the form parent object
p0115_W0115A = loginEnv.getObjectMapper().readValue(response, P0115_W0115A_
FormParent.class);

}
catch(CapabilityException e)
{

//handle capability exception
System.out.println(e.getMessage());

}
catch(JDERestServiceException e)
{

//get more specific error string
String error = JDERestServiceProvider.handleServiceException(e);
System.out.println(error);

}
}

return p0115_W0115A;
}

5.2.6 Deleting Data
The code in Example 5–7 shows an example of a form service request that deletes the
phone at index 0 and returns a response with a set of records without the removed
phone number record.

Understanding Form Service Requests

Performing AIS Form Service Calls 5-9

Example 5–7 Form Service Request for Deleting Data

public P0115_W0115A _FormParent deletePhone(){

P0115_W0115A _FormParent p0115_W0115A = null;
try{

FormRequest formRequest = new FormRequest(loginEnv);
formRequest.setFormName("P0115_W0115A");
formRequest.setFormServiceAction(formRequest.ACTION_UPDATE);

//open form with record for AB 7500 contact 0
formRequest.addToFISet("4", "7500");
formRequest.addToFISet("5", "0");

FSREvent fsrEvent = new FSREvent();

//select the row to delete from grid with ID "1", based on row index 0
fsrEvent.selectRow("1", 0);

//press Delete button
fsrEvent.doControlAction("59");

//press OK button
fsrEvent.doControlAction("4");

//add the FSR event to the request
formRequest.addFSREvent(fsrEvent);

String response = JDERestServiceProvider.jdeRestServiceCall(loginEnv, formRequest,
JDERestServiceProvider.POST_METHOD, JDERestServiceProvider.FORM_SERVICE_URI);

//de-serialize the JSON string into the form parent object
p0115_W0115A = loginEnv.getObjectMapper().readValue(response, P0115_W0115A_
FormParent.class);

}
catch(JDERestServiceException e)
{

//get more specific error string
String error = JDERestServiceProvider.handleServiceException(e);

System.out.println(error);
}
catch(Exception e)
{

//handle other exceptions
System.out.println(e.getMessage());

}

return p0115_W0115A;

}

Understanding Form Service Requests

5-10 Application Interface Services Client Java API Developer's Guide

5.2.7 Placing Events in the Proper Order
Place the events in the request in the order you want them to execute, for example,
populate a filter field value and then press the Find button. Remember that the FDA
Form Service Request event occurs before the events you add to this list. Do not set the
Find On Entry option when using the event model; the extra "find" is not necessary
because it executes before the events you requested.

5.2.8 Considering Hidden Filters and Hidden QBE
By default, values are not written to hidden filter fields or hidden QBE columns. You
must use the Form Service Event in FDA to show the fields and columns first. Then
you can add values to these fields and subsequently run the query.

5.2.9 Available Actions or Events
The preceding examples in this chapter only show some of the operations you can
perform in a form service request. The tables in this section describe other operations
you may want to perform.

Table 5–1 Form Service Request Events

Action or Event Description Parameters

Set Control Value Sets the value of a control on a form, like
filter fields or any other form control.

controlID ("25")

value("Bob" or "01/01/2015"

Set QBE Value Sets the value of a QBE column controlID ("1[42]" or "1_2[25]")

value ("Jill" or "55")

Set Checkbox Value Sets the value of a check box controlID ("77")

value ("on" or "off")

Set Radio Button Sets the value of a radio button controlID ("87")

value ("87")

Set Combo Value Sets the value of a combo box entry controlID ("125")

value (2) - index of the entry

Do Action Presses a button or Hyper Item controlID ("156")

Select Row Selects the specified row in a grid controlID ("1.30") - ID of the Grid dot
then row index (zero based).

Select All Rows* Select all rows in the specified grid (if
multiple selection is allowed)

controlID ("1") - ID of the Grid

Un Select All Rows* Un-selects all rows in the specified grid
(if multiple selection is allowed)

controlID ("1") - ID of the Grid

Un Select Row* Un-selects the specified row in a grid controlID ("1.30") - ID of the Grid dot
then row index (zero based).

Click Grid Cell** Clicks the hyperlink in a grid cell (if the
cell is enabled as a link)

controlID ("1.5.22") - ID of the g Grid dot
then row index dot grid column id.

*New event available in 9.1.5.

**New event available in 9.1.5.2.

In addition to interacting with fields on the form, you can interact with grids using
grid action events. If you use a grid action event, you must include "grid" as a required
capability in the LoginEnvironment constructor. See Understanding AIS Server

Batch Form Service

Performing AIS Form Service Calls 5-11

Capabilities for more information.

The types of grid action events include:

■ Selecting grid rows

This action enables you to delete records in the grid by sending a row select event,
followed by a delete button press event, and then finally an OK button press
event. This is the exact sequence that a user would follow to delete a record in an
EnterpriseOne application.

■ Inserting grid rows

This action enables you to insert one or more rows into a grid, setting the column
value for each row. This includes text entry columns, drop-down columns, or
check box columns. You must include an OK button pressed event to commit the
inserts.

■ Updating grid rows

This action enables you to update one or more existing grid rows by setting the
column values for each row. This includes text entry columns, drop-down
columns, or check box columns. You must include an OK button pressed event to
commit the updates.

The following table describes the commands that you can use in grid column events to
set values for a cell in a grid insert or update event:

Table 5–2 Grid Column Events in a Form Service Request

Grid Column Events Description Parameters

Set Grid Cell Value Sets the value of a cell in a grid. "value": "720",

"command": "SetGridCellValue",

"columnID": "28"

Set Grid Combo Value Sets the value of a dropdown column in
a grid. The value you send is the 'Code'
for the UDC associated with that
column.

"value": "ABC",

"command": "SetGridComboValue",

"columnID": "43"

5.3 Batch Form Service
If you make several sequential calls to forms without any data dependencies between
them, consider using the Batch Form Service. Batch form service requests are used to
execute multiple EnterpriseOne forms during a single request, which improves your
AIS client's performance.

Use the AIS Client Class Generator to generate the classes for all the forms that you
need to call in the batch request. Then declare a parent class that contains all of the
same forms in the order in which they appear in the batch request (including an index
number).

Example 5–8 shows a batch form service request that calls the same form three times
with different inputs each time, followed by a call to another form.

Example 5–8 Batch Form Service Request

public class BatchRequestParent {

private P54HS220_W54HS220A fs_0_P54HS220_W54HS220A;
private P54HS220_W54HS220A fs_1_P54HS220_W54HS220A;
private P54HS220_W54HS220A fs_2_P54HS220_W54HS220A;

Batch Form Service

5-12 Application Interface Services Client Java API Developer's Guide

private P54HSPT_S54HSPTA fs_3_P54HSPT_S54HSPTA;

public BatchRequestParent() {
super();

}

public void setFs_0_P54HS220_W54HS220A(P54HS220_W54HS220A fs_0_P54HS220_
W54HS220A) {

this.fs_0_P54HS220_W54HS220A = fs_0_P54HS220_W54HS220A;
}

public P54HS220_W54HS220A getFs_0_P54HS220_W54HS220A() {
return fs_0_P54HS220_W54HS220A;

}

public void setFs_1_P54HS220_W54HS220A(P54HS220_W54HS220A fs_1_P54HS220_
W54HS220A) {

this.fs_1_P54HS220_W54HS220A = fs_1_P54HS220_W54HS220A;
}

public P54HS220_W54HS220A getFs_1_P54HS220_W54HS220A() {
return fs_1_P54HS220_W54HS220A;

}

public void setFs_2_P54HS220_W54HS220A(P54HS220_W54HS220A fs_2_P54HS220_
W54HS220A) {

this.fs_2_P54HS220_W54HS220A = fs_2_P54HS220_W54HS220A;
}

public P54HS220_W54HS220A getFs_2_P54HS220_W54HS220A() {
return fs_2_P54HS220_W54HS220A;

}

public void setFs_3_P54HS230_W54HS230A(P54HS230_W54HS230A fs_3_P54HS230_
W54HS230A) {

this.fs_3_P54HS230_W54HS230A = fs_3_P54HS230_W54HS230A;
}

public P54HS230_W54HS230A getFs_3_P54HS230_W54HS230A() {
return fs_3_P54HS230_W54HS230A;

}

public void setFs_4_P54HS240_W54HS240A(P54HS240_W54HS240A fs_4_P54HS240_
W54HS240A) {

this.fs_4_P54HS240_W54HS240A = fs_4_P54HS240_W54HS240A;
}

public P54HS240_W54HS240A getFs_4_P54HS240_W54HS240A() {
return fs_4_P54HS240_W54HS240A;

}

public void setFs_3_P54HSPT_S54HSPTA(P54HSPT_S54HSPTA fs_3_P54HSPT_S54HSPTA) {
this.fs_3_P54HSPT_S54HSPTA = fs_3_P54HSPT_S54HSPTA;

}

public P54HSPT_S54HSPTA getFs_3_P54HSPT_S54HSPTA() {
return fs_3_P54HSPT_S54HSPTA;

}
}

Batch Form Service

Performing AIS Form Service Calls 5-13

Example 5–9 Deserialize the Response to the BatchRequestParent

This sample code shows how after calling forms, you can call the service and
deserialize the response to the BatchRequestParent.

public BatchRequestParent batcRequest(){

BatchRequestParent batchParent = null;
try{

// Get resource bundle for incident category text
BatchFormRequest batchFormRequest = new BatchFormRequest(loginEnv);

//recentIncidents - Index 0
SingleFormRequest formRequest = new SingleFormRequest();
//formRequest.setFindOnEntry("TRUE");

formRequest.setReturnControlIDs("1[19,20,21,27,28,41,45,46,47,48,49,50,51,52,54,55
,92,174,177,178,181]");

formRequest.setFormName("P54HS220_W54HS220A");

//create event holder
FSREvent recentFSREvent = new FSREvent();
//add filter actions in order
// Incident From Date
recentFSREvent.setFieldValueDate(loginEnv, "150", cal.getTime());
// Potential Incident
recentFSREvent.setQBEValue("1[30]", "0");
// Exclude from Safety Statistics
recentFSREvent.setQBEValue("1[39]", "0");
// Press Find Button
recentFSREvent.doControlAction("15");
//add event holder to the form request
formRequest.addFSREvent(recentFSREvent);

batchFormRequest.getFormRequests().add(formRequest);

//recentInjuryIllnessIncidents - Index 1
formRequest = new SingleFormRequest();
//formRequest.setFindOnEntry("TRUE");

formRequest.setReturnControlIDs("1[19,20,21,27,28,41,45,46,47,48,49,50,51,52,54,55
,92,174,177,178,181]");

formRequest.setFormName("P54HS220_W54HS220A");

//create event holder
FSREvent injuryFSREvent = new FSREvent();
//add filter actions in order
// Incident From Date
injuryFSREvent.setFieldValueDate(loginEnv, "150", cal.getTime());
// Potential Incident
injuryFSREvent.setQBEValue("1[30]", "0");
// Exclude from Safety Statistics
injuryFSREvent.setQBEValue("1[39]", "0");
// Injury/Illness checkbox
injuryFSREvent.setQBEValue("1[33]", "1");
// Press Find Button
injuryFSREvent.doControlAction("15");
//add event holder to the form request
formRequest.addFSREvent(injuryFSREvent);

Batch Form Service

5-14 Application Interface Services Client Java API Developer's Guide

batchFormRequest.getFormRequests().add(formRequest);

// recentEnvironmentalIncidents - Index 2
formRequest = new SingleFormRequest();
//formRequest.setFindOnEntry("TRUE");

formRequest.setReturnControlIDs("1[19,20,21,27,28,41,45,46,47,48,49,50,51,52,54,55
,92,174,177,178,181]");

formRequest.setFormName("P54HS220_W54HS220A");

//create event holder
FSREvent environFSREvent = new FSREvent();
//add filter actions in order
// Incident From Date
environFSREvent.setFieldValueDate(loginEnv, "150", cal.getTime());
// Potential Incident
environFSREvent.setQBEValue("1[30]", "0");
// Exclude from Safety Statistics
environFSREvent.setQBEValue("1[39]", "0");
// Environmental checkbox
environFSREvent.setQBEValue("1[34]", "1");
// Press Find Button
environFSREvent.doControlAction("15");
//add event holder to the form request
formRequest.addFSREvent(environFSREvent);

batchFormRequest.getFormRequests().add(formRequest);

// scoreboard - Index 3
formRequest = new SingleFormRequest();
formRequest.setFindOnEntry("TRUE");
formRequest.setReturnControlIDs("1_20|1_22");
formRequest.setFormName("P54HSPT_S54HSPTA");
batchFormRequest.getFormRequests().add(formRequest);

String response = JDERestServiceProvider.jdeRestServiceCall(loginEnv,
batchFormRequest, JDERestServiceProvider.POST_METHOD,
JDERestServiceProvider.BATCH_FORM_SERVICE_URI);

//de-serialize the JSON string into the batchParent object
batchParent = loginEnv.getObjectMapper().readValue(response,
BatchRequestParent.class);

}
catch(JDERestServiceException e)
{

//get more specific error string
String error = JDERestServiceProvider.handleServiceException(e);

System.out.println(error);
}
catch(Exception e)
{

//handle other exceptions
System.out.println(e.getMessage());

}

Application Stack Service (Tools Release 9.1.5)

Performing AIS Form Service Calls 5-15

return batchParent;
}

5.4 Application Stack Service (Tools Release 9.1.5)
The application stack service enables an AIS client to interact with multiple
applications running in an ongoing EnterpriseOne web client session. The application
stack service enables more complex interactions with applications that have cross-form
transaction boundaries, for example where you do not want to save the header until
the details are added.

The application stack service supports form interconnects in EnterpriseOne to receive
data from the resulting form. For example, you may want to use an existing sequence
of tasks in EnterpriseOne that involves interacting with multiple forms to perform a
transaction: open an initial form; select a record and navigation to a second form;
perform an update that might automatically flow to a third form where you enter
more data; and then finally complete the transaction. The application stack service
allows for this type of interaction with EnterpriseOne forms.

To use the application stack service, you must first create an ApplicationStack object,
which contains these three types of operations:

■ Open. Open starts a new stack, opening the first form and performing any
operations included in the FormRequest.

■ Execute. Subsequent actions on that application stack must use the Execute
operation, where you can pass an ActionRequest with any actions to be performed
on the currently open form.

■ Close. You can pass a Close operation to close the stack and any open forms on it.

Each response to a stack request includes the current form which might be the form
originally requested, or it could be a new form if navigation to a new form occurred.

Make sure that you are executing actions on the right form. You should use the
getLastAppStackResponse().checkSuccess method before executing actions so you can
be sure of the current form. You must include the form in the request for actions. If the
form in the request does not match the current form on the stack, the actions will not
execute.

The sample code in Example 5–10 performs operations in a stack of applications in this
order:

1. Opens the stack first with the Address Book find/browse form (P01012_W0101B).

2. Executes an action to select a record on that form.

3. Executes another action on the P01012_W01012A form and updates the Name
field.

4. Executes another action to press the OK button.

5. Executes another action to press the Close button on W01012A to close the form.

6. Closes the stack.

Example 5–10 Application Stack

public void appStack() throws Exception
{

loginEnv.getUsedCapabilities().add("applicationStack");

Application Stack Service (Tools Release 9.1.5)

5-16 Application Interface Services Client Java API Developer's Guide

ApplicationStack appStackAddress = new ApplicationStack();
FormRequest formRequest = new FormRequest(loginEnv);
formRequest.setReturnControlIDs("1");
formRequest.setFormName("P01012_W01012B");

formRequest.setReturnControlIDs("54|1[19,20]");
formRequest.setFormServiceAction("R");
formRequest.setMaxPageSize("5");
FSREvent findFSREvent = new FSREvent();

findFSREvent.setFieldValue("54", "E");
findFSREvent.doControlAction("15"); // Find button
formRequest.addFSREvent(findFSREvent);

ObjectWriter writer = loginEnv.getObjectMapper().writerWithDefaultPrettyPrinter();
out.println(writer.writeValueAsString(formRequest));

//open P01012_W01012B
String response = appStackAddress.open(loginEnv, formRequest);
out.println(writer.writeValueAsString(loginEnv.getObjectMapper().readTree(response
)));

//check if in find browse
if (appStackAddress.getLastAppStackResponse().checkSuccess("P01012_W01012B"))
{
//select a record
ActionRequest actionRequest = new ActionRequest();
actionRequest.setReturnControlIDs("28"); //the form changes these return control
IDs are for the next form
actionRequest.setFormOID("W01012B");
FSREvent selectFSREvent = new FSREvent();
selectFSREvent.selectRow("1", 3);
selectFSREvent.doControlAction("14"); //select button
actionRequest.addFSREvent(selectFSREvent);

response = appStackAddress.executeActions(loginEnv, actionRequest);
out.println(writer.writeValueAsString(loginEnv.getObjectMapper().readTree(response
)));

//check if in fix inspect
if (appStackAddress.getLastAppStackResponse().checkSuccess("P01012_W01012A"))
{
//Change name - now on form A
ActionRequest actionRequestName = new ActionRequest();
actionRequestName.setReturnControlIDs("54|1[19,20]"); //form is going to change
again these are for the next form
actionRequestName.setFormOID("W01012A");
FSREvent updateFSREvent = new FSREvent();

updateFSREvent.setFieldValue("28", "AIS APP Stack TEST"); //change name field
updateFSREvent.doControlAction("11"); //ok

actionRequestName.addFSREvent(updateFSREvent);

response = appStackAddress.executeActions(loginEnv, actionRequestName);
out.println(writer.writeValueAsString(loginEnv.getObjectMapper().readTree(response
)));

//IMPORTANT: here you would have to de-serialize the response to check if there

Media Object Operations

Performing AIS Form Service Calls 5-17

were errors on the form after pressing okay, if so you could continue to close the
A form and go back to the B form
if (appStackAddress.getLastAppStackResponse().checkSuccess("P01012_W01012A"))
{
//press find again (to see name change) then close the stack
ActionRequest actionRequestClose = new ActionRequest();
FSREvent closeFSREvent = new FSREvent();
actionRequestClose.setReturnControlIDs("54|1[19,20]"); //form is changing these
are the controls of the returned form
actionRequestClose.setFormOID("W01012A");
closeFSREvent.doControlAction("12"); //close
actionRequestClose.addFSREvent(closeFSREvent);

response = appStackAddress.close(loginEnv, actionRequestClose);
out.println(writer.writeValueAsString(loginEnv.getObjectMapper().readTree(response
)));
}
}

}

}

5.5 Media Object Operations
Media objects in EnterpriseOne store file attachments and text attachments. The media
object operations in the AIS Client Java API use the following items to identify
individual media object attachments for a record:

■ Media object name, for example GT00202.

■ Media object key to identify the record. This is a bar delimited key string, for
example 6540|3|1.

■ Sequence number to identify the individual attachment for a record.

5.5.1 Get Text
This operation returns the text in the first text attachment, as shown in the code in
Example 5–11:

Example 5–11 Media Object Get Text Operation

try{
MediaObjectGetTextRequest moGetText = new MediaObjectGetTextRequest(loginEnv);

moGetText.setFormName("P01012_W01012B");
moGetText.setVersion("ZJDE0001");
moGetText.setMoStructure("ABGT");

//set mo key - in this case it's just AB number
moGetText.addMoKeyValue("7");

MediaObjectGetTextResponse response =
MediaObjectOperations.getTextMediaObject(loginEnv, moGetText);

System.out.println(response.getText());
}
catch (Exception e){

Media Object Operations

5-18 Application Interface Services Client Java API Developer's Guide

//handle exception
}

5.5.2 Update Text
This operation updates (replaces or appends to) the first text media object, as shown in
the code in Example 5–12:

Example 5–12 Media Object Update Text Operation

try{
MediaObjectUpdateTextRequest moSetText = new
MediaObjectUpdateTextRequest(loginEnv);
moSetText.setFormName("P01012_W01012B");
moSetText.setVersion("ZJDE0001");
moSetText.setMoStructure("ABGT");

//set mo key
moSetText.addMoKeyValue("7");
moSetText.setAppendText(true);
//set text
moSetText.setInputText("Append This text");

MediaObjectUpdateTextResponse response =
MediaObjectOperations.updateTextMediaObject(loginEnv, moSetText);

System.out.println("Status " + response.getUpdateTextStatus());
}
catch (Exception e){
//handle exception
}

5.5.3 List
MediaObjectListRequest is the input to the media object getMediaObjectList operation.
The following table describes the attributes in the request that control the list that is
returned:

Field Type Description

includeURLs boolean Valid values are:

■ True

■ False

When true, includes the URL for downloading
the media object, which can be used in
conjunction with a download request at a later
time. This only applies to the media object file
type.

includeData boolean Valid values are:

■ True

■ False

When true, if the file is an image, it includes the
base64 encoded data for a thumbnail sized
image.

Media Object Operations

Performing AIS Form Service Calls 5-19

The code in Example 5–13 shows an example of saving the set of thumbnail images for
image media object attachments. It includes specified extensions for the first file type
attachments. The includeData value is set to include the thumbnail data. If the file is
not a PDF (a non-image type), the thumbnail data is saved to a local file.

Example 5–13 Saving Thumbnail Images for Image Media Object Attachments

import Java.awt.image.BufferedImage;
import sun.misc.BASE64Decoder;

public void listMediaObject() throws Exception
{
final String MO_STRUCTURE = "ABGT";
final String MO_APP = "P01012_W01012B";
final String MO_VERSION = "ZJDE0001";
final String MO_KEY = "479";
final int MO_THUMBSIZE = 50;
final String FILE_LOCATION = "C:\\temp\\AISClientDownloads\\";

//set request info include URLs so they don't have to be fetched later
MediaObjectListRequest mediaObjectListRequest = new
MediaObjectListRequest(loginEnv);
mediaObjectListRequest.setFormName(MO_APP);
mediaObjectListRequest.setVersion(MO_VERSION);
mediaObjectListRequest.setIncludeURLs(false);
mediaObjectListRequest.setIncludeData(true);
mediaObjectListRequest.setMoStructure(MO_STRUCTURE);
mediaObjectListRequest.setThumbnailSize(MO_THUMBSIZE); //available in tools 9.1.5+
only

//set the moKey
mediaObjectListRequest.addMoKeyValue(MO_KEY);

// - Date Example, if MO key includes a date value -
//mediaObjectListRequest.addMoKeyValue(AISClientUtilities.convertMillisecondsToYMD
String(mydate.getTime()));

//I only want filesmediaObjectListRequest.addMoType(mediaObjectListRequest.MO_
TYPE_FILE);mediaObjectListRequest.addMoType(mediaObjectListRequest.MO_TYPE_QUEUE);

//I only want these types

moTypes String Use a constant defined in
MediaObjectListRequestValid, which includes
these constants:

■ MediaObjectListRequest.MO_TYPE_TEXT

■ MediaObjectListRequest.MO_TYPE_FILE

■ MediaObjectListRequest.MO_TYPE_
QUEUE

■ MediaObjectListRequest.MO_TYPE_URL

extensions String File extensions to include in the response, which
enables you to filter out undesired extensions.

thumbnailSize <String> int Size of the thumbnail image returned as base64
data.

Field Type Description

Media Object Operations

5-20 Application Interface Services Client Java API Developer's Guide

mediaObjectListRequest.addExtension("jpg");
mediaObjectListRequest.addExtension("gif");
mediaObjectListRequest.addExtension("jpeg");
mediaObjectListRequest.addExtension("pdf");

//get the list of available files for this media object
MediaObjectListResponse mediaObjectListResponse =
MediaObjectOperations.getMediaObjectList(loginEnv, mediaObjectListRequest);

if (mediaObjectListResponse != null)
{

for (int i = 0; i < mediaObjectListResponse.getMediaObjects().length; i++)
{

FileAttachment fileAt = new FileAttachment();
fileAt.setThumbFileLocation(mediaObjectListResponse.getMediaObjects()[i].getThumbF
ileLocation());
fileAt.setItemName(mediaObjectListResponse.getMediaObjects()[i].getItemName());
fileAt.setFileName(mediaObjectListResponse.getMediaObjects()[i].getFile());
fileAt.setDownloadUrl(mediaObjectListResponse.getMediaObjects()[i].getDownloadUrl(
));
fileAt.setSequence(mediaObjectListResponse.getMediaObjects()[i].getSequence());

//if it's an image, save the thumnail data to a file
if (!fileAt.getFileName().contains("pdf"))
{
BufferedImage image =
decodeToImage(mediaObjectListResponse.getMediaObjects()[i].getData());
if (image != null)
{
File file = new File(fileAt.getFileName());

File outputfile = new File(FILE_LOCATION + "thumb_" + file.getName());
ImageIO.write(image, "jpg", outputfile);
}

}
}

}
}

public static BufferedImage decodeToImage(String imageString)
{

BufferedImage image = null;
byte[] imageByte;
try
{

BASE64Decoder decoder = new BASE64Decoder();
imageByte = decoder.decodeBuffer(imageString);
ByteArrayInputStream bis = new ByteArrayInputStream(imageByte);
image = ImageIO.read(bis);
bis.close();

}
catch (Exception e)
{

e.printStackTrace();
}

Media Object Operations

Performing AIS Form Service Calls 5-21

return image;
}

5.5.4 Upload
To upload a file, you need to provide the media object data structure key information:

■ A string with the location of the local file to be uploaded.

■ A name for the item. If you do not supply a name, the file name is used.

The code in Example 5–14 uploads a file to the Address Book media object for address
book number 479. The response to the upload request will print the name and
sequence number of the new record.

Example 5–14 Media Object Upload

public void uploadFile(String fileLocation, String itemName) throws Exception
{

final String MO_STRUCTURE = "ABGT";
final String MO_APP = "P01012_W01012B";
final String MO_VERSION = "ZJDE0001";
final String MO_KEY = "479";

MediaObjectUploadRequest mediaObjectUploadRequest = new
MediaObjectUploadRequest(loginEnv);
mediaObjectUploadRequest.setFormName(MO_APP);
mediaObjectUploadRequest.setVersion(MO_VERSION);
mediaObjectUploadRequest.setMoStructure(MO_STRUCTURE);

//set the moKey
mediaObjectUploadRequest.addMoKeyValue(MO_KEY);

String fileLocation = "C:\\temp\\images\\IMG_20001.jpg";
String itemName = "Joe's Photo";
FileAttachment newFileAttachment = new FileAttachment();
newFileAttachment.setFileLocation(fileLocation);
newFileAttachment.setItemName(itemName);

//set the file to the new one they just saved
mediaObjectUploadRequest.setFile(newFileAttachment);

//Upload to Server
MediaObjectUploadResponse response =
MediaObjectOperations.uploadMediaObject(loginEnv, mediaObjectUploadRequest);

out.println("NEW MO: " + response.getItemName());
out.println("NEW MO SEQ: " + response.getSequence());

}

5.5.5 Download
To download a file, you can provide the following input:

■ downloadURL. (String) (Optional) If you requested this value from the list
request, send it to the server and it will save the step of fetching this URL. If you
do not pass a value, the URL will be fetched by AIS.

Media Object Operations

5-22 Application Interface Services Client Java API Developer's Guide

■ sequence. (int) (Required) The sequence number of the attachment for this media
object record.

■ height. (int) (Optional) If the file you are downloading is an image, the AIS Server
will scale the image to the requested height.

■ width. (int) (Optional) If the file you are downloading is an image, the AIS Server
will scale the image to the requested width.

■ fileName. (String) (Required) Provide a name for the downloaded file, if desired
you can use the same name returned in the list response.

The code inExample 5–15 is an example of downloading a media object attachment.
Executing the getMediaObjectList operation produces a FileAttachment object that
contains the sequence and media object file name. It passes the FileAttachment object
into this method where a call is made to downloadMediaObject operation (passing a
desired file location). The response will include the location of the saved file.

Example 5–15 Media Object Download

public void downloadFile(FileAttachment fileAt) throws Exception
{

final String MO_STRUCTURE = "ABGT";
final String MO_APP = "P01012_W01012B";
final String MO_VERSION = "ZJDE0001";
final String MO_KEY = "479";
final String FILE_LOCATION = "C:\\temp\\AISClientDownloads\\";

//set the download request info - don't need mo key because we have the list
already
MediaObjectDownloadRequest mediaObjecDownloadRequest = new
MediaObjectDownloadRequest(loginEnv);

mediaObjecDownloadRequest.setFormName(MO_APP);
mediaObjecDownloadRequest.setVersion(MO_VERSION);
mediaObjecDownloadRequest.setMoStructure(MO_STRUCTURE);
mediaObjecDownloadRequest.setWidth(700);
mediaObjecDownloadRequest.addMoKeyValue(MO_KEY);
mediaObjecDownloadRequest.setSequence(fileAt.getSequence());
mediaObjecDownloadRequest.setFileName(fileAt.getFileName());

// download the file and save to file location
MediaObjectDownloadResponse mediaObjecDownloadResponse =
MediaObjectOperations.downloadMediaObject(loginEnv, mediaObjecDownloadRequest,
FILE_LOCATION);

out.println("Downloaded File: " +
mediaObjecDownloadResponse.getFile().getFileLocation());

}

5.5.6 Add URL (Tools Release 9.1.5.2 and API Version 1.0)
To add a URL type media object, provide the media object keys as well as the URL
text, such as:

http://www.domainname.com.

Media Object Operations

Performing AIS Form Service Calls 5-23

The code in Example 5–16 shows an example of adding a URL type media object:

Example 5–16 Adding a URL Media Object

public void addURL() throws Exception {

final String MO_STRUCTURE = "ABGT";
final String MO_APP = "P01012_W01012B";
final String MO_VERSION = "ZJDE0001";
final String MO_KEY = "479";
final String URL_TEXT = "http://www.google.com";

//set request info include URLs so they don't have to be fetched later
MediaObjectAddUrlRequest mediaObjectAddUrlRequest = new

MediaObjectAddUrlRequest(loginEnv);

mediaObjectAddUrlRequest.setFormName(MO_APP);
mediaObjectAddUrlRequest.setVersion(MO_VERSION);
mediaObjectAddUrlRequest.setMoStructure(MO_STRUCTURE);

mediaObjectAddUrlRequest.addMoKeyValue(MO_KEY);
mediaObjectAddUrlRequest.setUrlText(URL_TEXT);

MediaObjectAddUrlResponse mediaObjectAddUrlResponse = new
MediaObjectAddUrlResponse();

mediaObjectAddUrlResponse = MediaObjectOperations.addUrlMediaObject(loginEnv,
mediaObjectAddUrlRequest);

System.out.println("Saved URL: " + mediaObjectAddUrlResponse.getSaveURL());
System.out.println("Sequence: " + mediaObjectAddUrlResponse.getSequence());

}

5.5.7 Delete
To delete a media object file, provide the media object keys and the individual
sequence of the attachment you want to delete.

The code in Example 5–17 shows an example of deleting a media object file. This
example assumes the FileAttachment object has already been created. It uses the
sequence and location values from that object to request the delete operation.

Example 5–17 Deleting a Media Object

public void deleteFile(FileAttachment fileAt) throws Exception
{

MediaObjectDeleteRequest mediaObjectDelete = new
MediaObjectDeleteRequest(loginEnv);

//set request info
mediaObjectDelete.setFormName(MO_APP);
mediaObjectDelete.setVersion(MO_VERSION);
mediaObjectDelete.setMoStructure(MO_STRUCTURE);

//set mo key
mediaObjectDelete.addMoKeyValue(MO_KEY);

Processing Option Service

5-24 Application Interface Services Client Java API Developer's Guide

mediaObjectDelete.setSequence(fileAt.getSequence());
mediaObjectDelete.setFileLocation(fileAt.getFileLocation());

//call delete operation to remove from E1 server and remove from local file system
MediaObjectDeleteResponse response =
MediaObjectOperations.deleteMediaObject(loginEnv, mediaObjectDelete);

System.out.println("MO Delete Response Status " + response.getDeleteStatus());

}

5.6 Processing Option Service
The AIS Server provides a processing option service that enables you to retrieve the
processing option fields and values for an application and version in EnterpriseOne.

The key strings can be derived by creating a type definition on the PO Data Structure
in Object Management Workbench (OMW). The italicized portion of the #define below
shows the key string for the example.

#define IDERRmnNetQuebecTaxCredit_27 27L

There are six supported data types. These are based on the data item used in the
Processing Option Design Aid for each option.

You can get the type of the option before attempting to cast it, which is the
recommended method. Or you can just cast it to the type you expect, because it is
unlikely to change. The default is String, so you will always be able to get to a string
version of the option value.

Type Code Type Constant Java Type JDE DD Type

1 STRING_TYPE String String

2 CHAR_TYPE String Character

9 BIG_DECIMAL_TYPE BIG Decimal Math Numeric

11 DATE_TYPE Date Date

15 INTEGER_TYPE Integer Integer

55 CALENDAR_TYPE Calendar Utime

The code in Example 5–18 shows an example of retrieving the processing options for
P0801, version ZJDE0001. First it populates the request values and calls the poRequest
service. After deserializing the response to a ProcessingOptionSet object, it uses the
getOptionValue method to retrieve the value for a specific processing option based on
the key string.

Example 5–18 Retrieving Processing Options with the Processing Option Service

public void processingOption()throws Exception{

//add capability to used (or add during login to required)
loginEnv.getUsedCapabilities().add("processingOption");
ProcessingOptionRequest poRequest = new ProcessingOptionRequest(loginEnv);
poRequest.setApplicationName("P0801"); //application
poRequest.setVersion("ZJDE0001"); //version

Task Authorization Service

Performing AIS Form Service Calls 5-25

String response =
JDERestServiceProvider.jdeRestServiceCall(loginEnv, poRequest,
JDERestServiceProvider.POST_METHOD, JDERestServiceProvider.PO_SERVICE);

//response can be serialized to ProcessingOptionSet class
ProcessingOptionsSet poSet = loginEnv.getObjectMapper().readValue(response,
ProcessingOptionsSet.class);

//get the value for quebec tax credit using key string
BigDecimal quebecTaxCred = (BigDecimal)poSet.getOptionValue("mnNetQuebecTaxCredit_
27");

System.out.println("mnNetQuebecTaxCredit_27 value: " + quebecTaxCred);
}

5.7 Task Authorization Service
The task authorization service enables you to retrieve the authorized tasks in a specific
EnterpriseOne task view or under a specific task within a task view.

The code in Example 5–19 shows an example of retrieving the tasks under task view
18.

Example 5–19 Retrieving Tasks with the Task Authorization Service

public void taskAuthorization() throws Exception
{

String taskViewId = "18";
loginEnv.getRequiredCapabilities().add("taskAuthorization");
TaskAuthorizationRequest taksAuthReq = new TaskAuthorizationRequest(loginEnv);
taksAuthReq.setTaskViewId(taskViewId);

String response = JDERestServiceProvider.jdeRestServiceCall(loginEnv, taksAuthReq,
JDERestServiceProvider.POST_METHOD, JDERestServiceProvider.TASK_AUTHORIZATION);

//response can be serialized to TaskAuthorizationResponse class
TaskAuthorizationResponse taskAuthResp =
loginEnv.getObjectMapper().readValue(response, TaskAuthorizationResponse.class);
System.out.println(writer.writeValueAsString(taskAuthResp));

}

The TaskAuthorizationResponse object contains and array of Task type object, each
with its own array of Task type objects. Although the structure supports an "infinite"
number of levels, the service returns only two levels below the top task view or menu
requested. You may call the service again to drill down two more levels, and so on.

Logging Service

5-26 Application Interface Services Client Java API Developer's Guide

To drill down another two levels, pass values in for taskViewId, taskId, and
parentTaskId (which you received from the original request). The results will include
children two levels down from the taskViewId passed.

See Also:

■ JD Edwards EnterpriseOne Tools Solution Explorer Guide for
information about tasks and task views in EnterpriseOne.

5.8 Logging Service
The logging service enables the AIS client to log a message in the AIS Server log. The
code in Example 5–20 shows an example of using the logging service:

Example 5–20 Logging Service Code

//do this once and it will be stored in the login environment to be used over and
over, values are optional, they will just show as null in the log if you don't set
them
loginEnv.setApplicationName("My Client Application");
loginEnv.setApplicationVersion("Client Version");

//do this every time you want to send a log to AIS
AISClientLogger.log(loginEnv, "Warn Log sent from Client to AIS
Server",AISClientLogger.WARN);

In this example, the log entry in the AIS Server log would be:

AIS LOG REQUEST: --Level 2 --Application: My Client Application --Application
Version: Client Version --User: jde --Device Name: javaclient --Log Message: Warn
Log sent from Client to AIS Server

Query (Release 9.1.5.2)

Performing AIS Form Service Calls 5-27

5.9 Query (Release 9.1.5.2)
You can configure a form service request to send ad hoc queries to EnterpriseOne web
client application forms that support the query control.

To add a query, you include a single query object in the form service request. A query
object includes parameters that contain the same query criteria that you would use to
set up a query in EnterpriseOne. The parameters determine:

■ How the query runs.

You can configure query option parameters to load grid records in the form or
clear all other fields in the form before the query runs. You can also specify
whether the results of the query should match all (AND) or any (OR) of the
conditions specified in the query.

■ The conditions of the query.

The query object includes condition parameters that specify the control ID of the
columns or fields that you want to query and an operator for filtering results that
are equal to, greater than, or less than a particular value.

Important: Queries will work only if the field or columns identified
in the query are part of the business view.

■ The value used for the search criteria in the query.

The query object includes value parameters that specify the value or range of
values that you want displayed in the query results.

Before you add a query object to a form service request, access the form in the
EnterpriseOne web client and use the query control to gather the criteria for the query
object parameters. For more information about setting up a query, see "Understanding
the Query Control" in the JD Edwards EnterpriseOne Tools Foundation Guide.

Also, in the EnterpriseOne form, you need to identify the control ID of the field or
column that you want to query, and verify that the field or column is part of the
business view. To do so, click the Help button (question mark in the upper right corner
of a form) and then click the Item Help option to access field-level help. With the field
level help activated, you can click in a field or column to access the control ID and
business view information, which is displayed under the Advanced Options section as
shown in Example 5–21.

Example 5–21 Example of Control ID and Business View Information Displayed under
Advanced Options in the EnterpriseOne Web Client Item Help

In the Item Help, the syntax of the control ID is 1.20 with 1 representing the grid ID
and 20 representing the column ID, which are separated by a dot (.). In the parameter

Query (Release 9.1.5.2)

5-28 Application Interface Services Client Java API Developer's Guide

for the query request, the same control ID must be presented with the following
syntax: 1[20]. See Table 5–4 for more information.

5.9.1 Query Object Parameters
The following tables provide descriptions of the option, condition, and value
parameters for a query object.

Table 5–3 Query Option Parameters

Parameter Description Values

autoFind Directs the query to automatically press
Find on the form to populate the grid
records. You do not need to include
events to press the Find button if you use
autoFind.

true, false

matchType Determines if you want the query to
search for records that match all (AND)
or any (OR) of the specified conditions.

MATCH_ALL, MATCH_ANY

autoClear Determines if you want to clear all other
fields on the form (for example default
filter fields).

true, false

Table 5–4 Query Condition Parameters

Parameter Description Value

controlId The control ID that the condition applies
to. This is the field that you add to the
query from the form when using the web
client to create a Query. It is either a filter
field or a grid column that is associated
with the business view.

Example of control IDs:

"28", "1[34]"

operator The comparison operation to use with the
query.

For all types, valid values are:

BETWEEN, LIST, EQUAL,
NOT_EQUAL, LESS, LESS_
EQUAL, GREATER,
GREATER_EQUAL

For strings, valid values are:

STR_START_WITH, STR_
END_WITH, STR_CONTAIN,
STR_BLANK, STR_NOT_
BLANK

Table 5–5 Query Value Parameters

Parameter Description Value

content This is either a literal value to be used in
the comparison operation, or it relates to
a special value ID.

Examples of values are:

"23", "Joe", "2"

Query (Release 9.1.5.2)

Performing AIS Form Service Calls 5-29

Example 5–22 Query - Java API

The sample code shows a query executed in the W42101C form. This query attempts to
match the following specified conditions:

■ Line Number equal to 2.

■ Requested Date within the last 2 years.

■ Sold To between 7000 and 8000

■ Company is one of the values in the list "00070,00077".

■ The response will contain the JSON for the form with the matching records in the
grid.

public void queryP42101() throws Exception
{

loginEnv.getUsedCapabilities().add("query");
FormRequest formRequest = new FormRequest(loginEnv);
formRequest.setFormName("P42101_W42101C");
formRequest.setReturnControlIDs("350|360|41[129,130,116,125]");
formRequest.setFormServiceAction(formRequest.ACTION_READ);
formRequest.setFindOnEntry("TRUE");
formRequest.setMaxPageSize("20");
Query query = new Query(loginEnv);

//auto find
query.setAutoFind(true);

//match all
query.setMatchType(Query.MATCH_ALL);

//clear any defaulted filters
query.setAutoClear(false);

//line number equals 2
NumberCondition condN = query.addNumberCondition("41[129]",

NumericOperator.EQUAL());
condN.setValue(2);

//Requested Date within two years from today
DateCondition condD = query.addDateCondition("41[116]",

DateOperator.GREATER());
condD.setSpecialDateValue(DateSpecialValue.TODAY_MINUS_YEAR(), 2);

specialValueId This is a special value, mostly for dates
that might be the current day (TODAY),
or calculated dates from the current day.
For calculated dates, the content field is
used in the calculation.

Valid values are:

LITERAL, TODAY, TODAY_
PLUS_DAY, TODAY_
MINUS_DAY, TODAY_
PLUS_MONTH, TODAY_
MINUS_MONTH, TODAY_
PLUS_YEAR, TODAY_
MINUS_YEAR

Table 5–5 (Cont.) Query Value Parameters

Parameter Description Value

Jargon Service (Release 9.1.5.3)

5-30 Application Interface Services Client Java API Developer's Guide

//Sold To 125
BetweenCondition condST = query.addBetweenCondition("41[125]");
condST.setValues("7000", "8000");

//company in list
ListCondition list1 = query.addListCondition("360");
list1.addValue("00070");
list1.addValue("00077");

//set it in the request
formRequest.setQuery(query);

ObjectWriter writer =
loginEnv.getObjectMapper().writerWithDefaultPrettyPrinter();

out.println(writer.writeValueAsString(formRequest));

String response = JDERestServiceProvider.jdeRestServiceCall(loginEnv,
formRequest, JDERestServiceProvider.POST_METHOD, JDERestServiceProvider.FORM_
SERVICE_URI);

}

5.10 Jargon Service (Release 9.1.5.3)
The jargon service enables you to retrieve data item descriptions for any
EnterpriseOne data dictionary item based on the users language and jargon (system)
code. This service depends on language packs applied to the EnterpriseOne system as
well as data item description overrides entered with jargon codes. If there is no
language pack or overrides, the base data item description is returned.

The capability name for the jargon service is "jargon". The AIS Server must have this
capability to be able to process jargon service requests.

Example 5–23 Jargon Service Java API

In this example, several data items are loaded into the JargonRequest object, the
service is called, and the descriptions in the response are printed out.

public void jargonService() throws Exception
{

//this uses the jargon capability
loginEnv.getRequiredCapabilities().add("jargon");

//create the request object, seeding it with a default system code of 01
JargonRequest jargonRequest = new JargonRequest(loginEnv, "01"); // with

default system code

//fill the list in the request with data items
jargonRequest.addDataItem("AN8"); //uses default system code
jargonRequest.addDataItem("MCU","04"); //use system code 04 for this one
jargonRequest.addDataItem("PAN8");
jargonRequest.addDataItem("ITM","55");

//call the jargon service
String response = JDERestServiceProvider.jdeRestServiceCall(loginEnv,

Data Service (API Release 1.1.0 and EnterpriseOne Tools Release 9.1.5.5)

Performing AIS Form Service Calls 5-31

jargonRequest, JDERestServiceProvider.POST_METHOD, JDERestServiceProvider.JARGON_
SERVICE);

//response can be serialized to JargonResponse class
JargonResponse jargonResponse =

loginEnv.getObjectMapper().readValue(response, JargonResponse.class);

//print the response
if(jargonResponse != null)
{

if(jargonResponse.getRequestedItems() != null &&
jargonResponse.getRequestedItems().size() >0)

{
for(JargonResponseItem item: jargonResponse.getRequestedItems())
{

System.out.println("Item " + item.getSzDict() + " " +
item.getRowDescription());

}
}

}
}

5.11 Data Service (API Release 1.1.0 and EnterpriseOne Tools Release
9.1.5.5)

Starting with EnterpriseOne Tools 9.1.5.5, the AIS Server provides an endpoint called
"dataservice" for data query or count requests over tables or business views.

Data service calls are made using the DataRequest object. If you use the data service,
you must include the "dataservice" capability in the required or used capabilities list.

Table 5–6 Data Service Request Required Parameters

Parameter Description Values

targetName The name of the table or view to count or query. Example values: F0101 or V4210A

targetType The object type to count or query: table or business
view.

DataRequest.TARGET_TABLE

DataRequest.TARGET_VIEW

dataServiceType The type of operation to be performed: count or
query (represented by the value BROWSE).

DataRequest.TYPE_COUNT

DataRequest.TYPE_BROWSE

Table 5–7 Data Service Request Optional Parameters

Parameter Description Values

findOnEntry This parameter determines if the service performs
an automatic find.

FormRequest.TRUE

FormRequest.FALSE

returnControlIDs The columns of the table or business view to be
returned in a query response (pipe delimited).

Example values:

F0101.AN8|F0101.PA8|F0101.ALP
H

query A query object which is built using column IDs for
the control IDs.

Data Service (API Release 1.1.0 and EnterpriseOne Tools Release 9.1.5.5)

5-32 Application Interface Services Client Java API Developer's Guide

Example 5–24 Data Service Java API

This example shows both a browse and a count of the F0101 table, including a query.
The response from the browse is assembled into a class (not included) that was
generated with the class generator for F0101 data service. The count response is
assembled into a simple HashMap and printed.

//add to the used capabilities
loginEnv.getUsedCapabilities().add(AISClientCapability.DATA_SERVICE);

//create a new DataReqeust
DataRequest f0101 = new DataRequest(loginEnv);

//Set table information, this is a browse of F0101
f0101.setDataServiceType(DataRequest.TYPE_BROWSE);
f0101.setTargetName("F0101");
f0101.setTargetType(DataRequest.TARGET_TABLE);
f0101.setFindOnEntry(FormRequest.TRUE);

//set return control ids, only these three columns will be in the response
f0101.setReturnControlIDs("F0101.AN8|F0101.ALPH|F0101.AT1");

//only return the first 10 records
f0101.setMaxPageSize("10");

//create a new query, for address numbers greater than 7000
Query greaterQ = new Query(loginEnv);
greaterQ.setAutoFind(true);
greaterQ.setMatchType(Query.MATCH_ALL);
greaterQ.addStringCondition("F0101.AN8", StringOperator.GREATER(), "7000");
f0101.setQuery(greaterQ);

//execute the data request
String response = JDERestServiceProvider.jdeRestServiceCall(loginEnv, f0101,
JDERestServiceProvider.POST_METHOD, JDERestServiceProvider.DATA_SERVICE_URI);

//marshal the response to a formparent class gernerated by the class generator
DATABROWSE_F0101_FormParent f010Data
=loginEnv.getObjectMapper().readValue(response,DATABROWSE_F0101_FormParent.class);

//modify the type to count, and get a count response for the same query
f0101.setDataServiceType(DataRequest.TYPE_COUNT);
String countresponse = JDERestServiceProvider.jdeRestServiceCall(loginEnv, f0101,
JDERestServiceProvider.POST_METHOD, JDERestServiceProvider.DATA_SERVICE_URI);

//loop through the records in the response printing out the values
ArrayList<DATABROWSE_F0101_GridRow> rowSet = f010Data.getFs_DATABROWSE_
F0101().getData().getGridData().getRowset();
if (rowSet.size() > 0)
{

for (DATABROWSE_F0101_GridRow row: rowSet)
{

System.out.println("Name: " + row.getSAlphaName_54().getValue());
System.out.println("Number: " + row.getMnAddressNumber_51().getValue());
System.out.println("Search Type: " + row.getSSchTyp_59().getValue());

System.out.println(" ");
}

}

Orchestration Support (API Release 1.1.0 and EnterpriseOne Tools Release 9.1.5.5)

Performing AIS Form Service Calls 5-33

else
{

fail("No Records in Reponse");
}

//marshal and print out the count response
HashMap countRespMap = loginEnv.getObjectMapper().readValue(countresponse,
HashMap.class);
HashMap countMap = (HashMap)countRespMap.get("ds_F0101");
System.out.println(countMap.get("count"));

5.12 Orchestration Support (API Release 1.1.0 and EnterpriseOne Tools
Release 9.1.5.5)

Starting with EnterpriseOne Tools 9.1.5.5, the AIS Server supports form service request
calls from orchestrations. The AIS Server must be configured to work with
orchestrations. See "Prerequisites" in the JD Edwards EnterpriseOne Tools Internet of
Things Orchestrator Guide for more information.

This section describes how to invoke the orchestration using the AIS Client API.

Orchestrator requests are stateless. The entire orchestration is executed in a single call
and returns the results of the orchestration.

Example 5–25 Using JDE Standard Input Format for an Orchestration

This example uses the JDE Standard input format. The orchestration must be
configured to accept this input format.

OrchestrationRequest req = new OrchestrationRequest(AIS_SERVER ,USER_NAME,
PASSWORD,DEVICE_NAME);

req.setOrchestration("GetAddressBook_Simple");
req.getInputs().add(new OrchestrationInputValue("AddressBookNumber", "7500"));
req.getInputs().add(new OrchestrationInputValue("SearchType", "E"));

try{

String output = req.executeOrchestrationRequest();

//consume output, you can deserialize it to a class generated by the AIS Class
Generator
}
catch(Exception e)
{

//handle exceptions
}

Example 5–26 Using Generic Input for an Orchestration

This example uses the Generic input format. The orchestration must be configured to
accept this input format.

OrchestrationRequest req = new OrchestrationRequest(AIS_SERVER ,USER_NAME,
PASSWORD,DEVICE_NAME);

orchRequest.setOrchestration("AddCBM");

Orchestration Support (API Release 1.1.0 and EnterpriseOne Tools Release 9.1.5.5)

5-34 Application Interface Services Client Java API Developer's Guide

//populate values to send from this instance, simple name value pairs hash map
HashMap<String,String> vals = new HashMap<String,String>();
vals.setSerialNumber("02a0bd30-d883-11e4-b9d6-1681e6b88ec1");
Date jDate = new Date();
vals.put("date",String.valueOf(jDate.getTime()));
SimpleDateFormat sdf = new SimpleDateFormat("hh:mm:ss");
vals.put("time",sdf.format(jDate));
vals.put("temperature","201");
vals.put("description","Temp 201");

try
{

String response = orchRequest.executeOrchestrationRequest(values);

//consume response, you can deserialize it to a class generated by the AIS Class
Generator
}
catch(Exception e)
{

//handle exceptions
}

Glossary-1

Glossary

AIS Server

A REST services server that when configured with an EnterpriseOne HTML Server,
enables access to EnterpriseOne forms and data.

AIS Server capability

A behavior of the AIS Server that an AIS client can use to perform a particular
EnterpriseOne task, such as update a grid record or fetch a processing option.

AIS client

An application that uses the AIS Server to communicate with EnterpriseOne.

AIS Server endpoint

An endpoint on the AIS Server that provides a service for the AIS client. An AIS client
can access an AIS Server endpoint through a URL. In turn, the endpoint performs a
particular service for the AIS client in EnterpriseOne.

AIS service

A service in an AIS Server endpoint. An AIS service interacts with EnterpriseOne
based on input from an AIS client and provides a response in JSON format.

form service request

An AIS Server call that retrieves data from a form in EnterpriseOne. Form service
requests, formatted as REST service calls that use POST, contain form service events or
commands that invoke actions on an EnterpriseOne form.

instantiate

A Java term meaning "to create." When a class is instantiated, a new instance is
created.

JDeveloper Project

An artifact that JDeveloper uses to categorize and compile source files.

JSON (JavaScript Object Notation)

A light-weight format used for the interchange of data between the AIS Server and
EnterpriseOne.

processing option

A data structure that enables users to supply parameters that regulate the running of a
batch program or report. For example, you can use processing options to specify
default values for certain fields, to determine how information appears or is printed,

QBE

Glossary-2

to specify date ranges, to supply runtime values that regulate program execution, and
so on.

QBE

An abbreviation for query by example. In JD Edwards EnterpriseOne, the QBE line is
the top line on a detail area that is used for filtering data.

serialize

The process of converting an object or data into a format for storage or transmission
across a network connection link with the ability to reconstruct the original data or
objects when needed.

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Understanding the AIS Client Java API
	1.1 Overview
	1.2 Accessing AIS Server Endpoints with the AIS Client Java API

	2 Getting Started
	2.1 Certifications (Formerly Known as Minimum Technical Requirements)
	2.2 Prerequisites
	2.3 Installing the AIS Client Class Generator Extension for JDeveloper

	3 Configuring the Login Environment
	3.1 Configuring the Login
	3.2 Configuring the Logout

	4 Using the AIS Client Class Generator
	4.1 Understanding Generating Objects with the AIS Client Class Generator
	4.2 Configuring the AIS Client Class Generator Preferences
	4.3 Generating Data Classes Based on a Form
	4.4 Generating Data Classes Based on a Data Request (Available in AIS Client Class Generator v1.6.2)

	5 Performing AIS Form Service Calls
	5.1 Understanding AIS Server Capabilities
	5.2 Understanding Form Service Requests
	5.2.1 Overview
	5.2.2 Form Service Request Structure
	5.2.3 Control ID Notation for Return Control IDs
	5.2.4 Reading Data
	5.2.5 Adding Data
	5.2.6 Deleting Data
	5.2.7 Placing Events in the Proper Order
	5.2.8 Considering Hidden Filters and Hidden QBE
	5.2.9 Available Actions or Events

	5.3 Batch Form Service
	5.4 Application Stack Service (Tools Release 9.1.5)
	5.5 Media Object Operations
	5.5.1 Get Text
	5.5.2 Update Text
	5.5.3 List
	5.5.4 Upload
	5.5.5 Download
	5.5.6 Add URL (Tools Release 9.1.5.2 and API Version 1.0)
	5.5.7 Delete

	5.6 Processing Option Service
	5.7 Task Authorization Service
	5.8 Logging Service
	5.9 Query (Release 9.1.5.2)
	5.9.1 Query Object Parameters

	5.10 Jargon Service (Release 9.1.5.3)
	5.11 Data Service (API Release 1.1.0 and EnterpriseOne Tools Release 9.1.5.5)
	5.12 Orchestration Support (API Release 1.1.0 and EnterpriseOne Tools Release 9.1.5.5)

	Glossary

