
[1]JD Edwards EnterpriseOne Tools
Internet of Things Orchestrator Guide

Release 9.1.5.x

E64166-04

September 2015

Provides an overview of the JD Edwards EnterpriseOne
Orchestrator and describes how to design and configure
orchestrations to enable the immediate, real-time
transformation of raw data from third-party devices to
valuable and transaction-capable information in JD Edwards
EnterpriseOne.



JD Edwards EnterpriseOne Tools Internet of Things Orchestrator Guide, Release 9.1.5.x

E64166-04

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.



iii

Contents

Preface ................................................................................................................................................................ vii

Audience...................................................................................................................................................... vii
Documentation Accessibility .................................................................................................................... vii
Related Documents .................................................................................................................................... vii
Conventions ............................................................................................................................................... viii

1 Understanding the JD Edwards EnterpriseOne Internet of Things (IoT)
Orchestrator

1.1 Overview...................................................................................................................................... 1-1
1.2 How It Works .............................................................................................................................. 1-1
1.3 EnterpriseOne Architecture for IoT.......................................................................................... 1-2

2 Getting Started

2.1 Certifications (Formerly Known as Minimum Technical Requirements) .......................... 2-1
2.2 Prerequisites................................................................................................................................. 2-1
2.3 Installing and Configuring the EnterpriseOne IoT Components ........................................ 2-2
2.4 Testing the EnterpriseOne IoT Implementation..................................................................... 2-3

3 Designing an Orchestration

3.1 Understanding the Orchestration Design Process ................................................................. 3-1
3.2 Identifying the Problem and Solution...................................................................................... 3-2
3.3 Identifying the Data for the Orchestration.............................................................................. 3-2
3.4 Identifying the Rules for the Orchestration ............................................................................ 3-3
3.5 Identifying the Cross-Reference Information for the Orchestration ................................... 3-3
3.6 Identifying the Service Request Information for the Orchestration .................................... 3-3

4 Configuring an Orchestration

4.1 Understanding Orchestrations and the Orchestration Directory Structure....................... 4-1
4.2 Configuring Service Request XMLs ......................................................................................... 4-2
4.2.1 Understanding Service Request XMLs............................................................................. 4-3
4.2.2 Understanding the Service Request XML Structure....................................................... 4-3
4.2.3 Defining the Service Request Metadata for the Orchestration...................................... 4-4
4.2.4 Example of a Service Request XML .................................................................................. 4-7
4.3 Configuring Rules XMLs ........................................................................................................... 4-8



iv

4.3.1 Understanding Rule XMLs................................................................................................. 4-9
4.3.2 Understanding the Rule XML Structure .......................................................................... 4-9
4.3.3 Defining the Rule Metadata for the Orchestration ...................................................... 4-10
4.3.4 Example of a Rule XML ................................................................................................... 4-10
4.4 Configuring Cross-Reference XMLs ..................................................................................... 4-11
4.4.1 Understanding Cross-Reference XMLs ......................................................................... 4-11
4.4.2 Understanding the Cross-Reference XML Structure................................................... 4-11
4.4.3 Defining the Cross-Reference Metadata........................................................................ 4-12
4.4.4 Examples of Cross-Reference XML and Cross-Reference Records

in EnterpriseOne ............................................................................................................... 4-12
4.5 Configuring White List XMLs................................................................................................ 4-13
4.5.1 Understanding White List XMLs.................................................................................... 4-13
4.5.2 Understanding the White List XML Structure ............................................................. 4-14
4.5.3 Defining the White List Metadata for an Orchestration ............................................. 4-14
4.5.4 Examples of White List XML and White List Records in EnterpriseOne................. 4-14
4.6 Configuring Orchestration XMLs.......................................................................................... 4-15
4.6.1 Understanding Orchestration XMLs.............................................................................. 4-15
4.6.2 Understanding the Orchestration XML Structure ....................................................... 4-15
4.6.3 Defining the Metadata for the Orchestration................................................................ 4-16
4.6.4 Example of an Orchestration XML................................................................................. 4-17
4.7 Supported Input Message Formats ....................................................................................... 4-18
4.8 Setting Up Cross-References and White Lists in EnterpriseOne (P952000) .................... 4-20
4.8.1 Creating the "AIS" User Defined Code for IoT Cross Reference and

White List Records............................................................................................................ 4-21
4.9 Setting up Orchestration Security.......................................................................................... 4-22
4.10 Using the EnterpriseOne Orchestrator Client to Build the Input Message

and Test the Orchestration...................................................................................................... 4-22

5 Creating Custom Java for Orchestrations

5.1 Understanding Custom Java for Orchestrations .................................................................... 5-1
5.2 Creating Custom Java................................................................................................................. 5-1
5.2.1 Using Custom Java for the Orchestration Service Request ........................................... 5-2
5.2.2 Using Custom Java for the Orchestration Rule ............................................................... 5-2
5.3 Deploying Custom Java ............................................................................................................. 5-2
5.3.1 Deploying Custom Java on AIS Server on Oracle WebLogic Server ........................... 5-2
5.3.2 Deploying Custom Java on AIS Server on IBM WebSphere Application Server....... 5-3

6 Managing IoT Orchestrations

6.1 Using Server Manager to Manage IoT Orchestrations .......................................................... 6-1
6.2 Managing the Life Cycle of IoT Orchestrations...................................................................... 6-1
6.3 Managing IoT Orchestration Modifications Using the AIS Administration Service ........ 6-2

A Sample Orchestrations

A.1 Prerequisite ................................................................................................................................. A-1
A.2 Running the Sample Orchestrations ....................................................................................... A-1
A.3 Add Conditioned Based Maintenance Alert Sample Orchestration .................................. A-1



v

A.3.1 Sample Input ....................................................................................................................... A-2
A.4 Update Equipment Location Sample Orchestration............................................................. A-2
A.4.1 Sample Input ....................................................................................................................... A-3
A.5 Update Meter Reading Sample Orchestration....................................................................... A-3
A.5.1 Sample Input ....................................................................................................................... A-4

B Troubleshooting

B.1 Enable Debugging on the AIS Server...................................................................................... B-1
B.2 Troubleshooting Orchestration Runtime Issues.................................................................... B-1



vi



vii

Preface

Welcome to the JD Edwards EnterpriseOne Tools Internet of Things Orchestrator Guide.
This guide describes how to design and create IoT orchestrations for the JD Edwards
EnterpriseOne Internet of Things (IoT) Orchestrator. The IoT Orchestrator processes
orchestrations to enable the immediate, real-time transformation of raw data from
devices to valuable and transaction-capable information in JD Edwards
EnterpriseOne.

Audience
This guide is intended for business analysts and project managers who are responsible
for analyzing and managing the design process for an Internet of Things data
integration with JD Edwards EnterpriseOne. It is also intended for developers who are
responsible for configuring the orchestration XML files that comprise an IoT
orchestration.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Related Documents
This guide references related information in the following guides:

■ JD Edwards EnterpriseOne Tools System Overview Guide

■ JD Edwards EnterpriseOne Tools Server Manager Guide

■ JD Edwards EnterpriseOne Tools Interoperability Guide

■ JD Edwards EnterpriseOne Application Interface Services Client Java API Developer's
Guide



viii

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.



1

Understanding the JD Edwards EnterpriseOne Internet of Things (IoT) Orchestrator 1-1

1Understanding the JD Edwards EnterpriseOne
Internet of Things (IoT) Orchestrator

This chapter contains the following topics:

■ Section 1.1, "Overview"

■ Section 1.2, "How It Works"

■ Section 1.3, "EnterpriseOne Architecture for IoT"

1.1 Overview
Companies use devices such as sensors and beacons ("things") to monitor everything
from the performance of machinery, temperatures of refrigerated units, on-time
averages of commuter trains, and so forth. Capturing the data from these devices
traditionally involves a complex integration using specialized hardware, expensive
network connectivity, and high system integration expenditure to build the machine
information into an enterprise business process. Even with a complex integration in
place, an operations manager or controller still might have to manually enter the data
into a spreadsheet, a software program, or an application in an ERP system.
Regardless of the method used, it takes time to transfer the raw data into information
that can be acted upon in a way that provides value to the business.

For JD Edwards EnterpriseOne, you can devise processes called orchestrations that
consume raw data from disparate devices and transform the data into actionable
business processes in JD Edwards EnterpriseOne. The EnterpriseOne IoT Orchestrator
processes these orchestrations to enable the immediate, real-time transformation of
raw data to valuable and transaction-capable information in JD Edwards
EnterpriseOne. For examples, you can create orchestrations that enable EnterpriseOne
to:

■ Alert users to a required activity.

■ Alert users to perform preventative maintenance to reduce equipment downtime.

■ Provide audit data for safety compliance and security.

1.2 How It Works
The illustration in Figure 1–1 shows how the IoT Orchestrator processes data from
external devices and transforms it into data that can be consumed by EnterpriseOne.



EnterpriseOne Architecture for IoT

1-2 JD Edwards EnterpriseOne Tools Internet of Things Orchestrator Guide

Figure 1–1 EnterpriseOne IoT Orchestration Processing

This illustration depicts how third-party devices and a gateway collect and process
information from one or more devices, converts the information to a
platform-independent format and communicates this information over the internet.
The gateway usually deploys intelligence to filter sensor data, secure data transfer,
automate software updating, run diagnostics, start or stop the device, and support
other features.

The IoT Orchestrator uses the five components described in the following list to
transform raw data into data that can be used by EnterpriseOne. To create an
orchestration, you define each of these components in separate XML files and then
place them in an IoT orchestration directory.:

■ Orchestration. The master process that provides a unique name for the
orchestration process in the IoT Orchestrator. The orchestration uses the next four
components in this list to run a single orchestration instance.

■ White List. An initial rudimentary pass/fail check of the incoming message's
device signature against a predefined list of signatures. A white list provides an
additional layer of security to the IoT Orchestrator security.

■ Rules Engine. A set of conditions against which the input from the IoT devices is
evaluated to produce a true or false state. Rules can be nested to produce complex
evaluations. You design the rules that the engine uses to determine how to act
upon the data at runtime. You can also use custom Java to define additional rules.

■ Cross-Reference. A set of data relationships defined by the designer of the
orchestration that enriches the minimal input from devices. For example, a cross
reference can convert an incoming ID into an EnterpriseOne value for use in
service requests.

■ Service Request. An invocation of a JD Edwards EnterpriseOne interactive
application or a Java application via a REST service call to the EnterpriseOne
Application Interface Services (AIS) Server.

Also, you can use custom Java to create custom client applications (that run on the AIS
Server) for viewing and working with the filtered IoT data. You can create a custom
Java application to perform a specific business process or a process for storing the data
in another database outside of EnterpriseOne.

1.3 EnterpriseOne Architecture for IoT
The IoT Orchestrator uses the Application Interface Services (AIS) Server as its
foundation. The AIS Server is a REST services server that when configured with the
EnterpriseOne HTML Server, enables access to EnterpriseOne forms and data.

For an illustration of the AIS Server architecture, see "AIS Server Architecture" in the
JD Edwards EnterpriseOne Tools System Overview Guide.



EnterpriseOne Architecture for IoT

Understanding the JD Edwards EnterpriseOne Internet of Things (IoT) Orchestrator 1-3

For instruction on how to deploy the AIS Server through Server Manager, see "Create
an Application Interface Services (AIS) Server as a New Managed Instance" in the JD
Edwards EnterpriseOne Tools Server Manager Guide.

This guide contains information about Server Manager AIS Server settings that are
used to manage an IoT configuration. See "Managing IoT Orchestrations".



EnterpriseOne Architecture for IoT

1-4 JD Edwards EnterpriseOne Tools Internet of Things Orchestrator Guide



2

Getting Started 2-1

2Getting Started

This chapter contains the tasks that you need to perform before designing and
configuring an orchestration. It contains the following topics:

■ Section 2.1, "Certifications (Formerly Known as Minimum Technical
Requirements)"

■ Section 2.2, "Prerequisites"

■ Section 2.3, "Installing and Configuring the EnterpriseOne IoT Components"

■ Section 2.4, "Testing the EnterpriseOne IoT Implementation"

2.1 Certifications (Formerly Known as Minimum Technical Requirements)
Customers must conform to the supported platforms for the release, which can be
found in the Certifications tab on My Oracle Support: https://support.oracle.com.

For more information about JD Edwards EnterpriseOne Minimum Technical
Requirements, see the following document on My Oracle Support: JD Edwards
EnterpriseOne Minimum Technical Requirements Reference (Doc ID 745831.1), which
is available here:

https://support.oracle.com/epmos/faces/DocumentDisplay?id=745831.1

2.2 Prerequisites
Before you can use the IoT Orchestrator, you must complete the following
prerequisites:

■ You must be running EnterpriseOne Tools Release 9.1.5.5.

■ Deploy an Application Interface Services (AIS) Server.

You can use an existing AIS Server or deploy a new AIS Server instance through
Server Manager for the sole purpose of running IoT orchestrations. For
instructions on how to deploy an AIS Server instance, see "Create an Application
Interface Services (AIS) Server as a New Managed Instance" in the JD Edwards
EnterpriseOne Tools Server Manager Guide.

Server Manager contains specific AIS Server settings that you must configure for
an IoT configuration. See "Managing IoT Orchestrations" in this guide for more
information.

If you are using an AIS Server deployed on Oracle WebLogic Server, see
"Configuring Oracle WebLogic Server Domain for AIS Basic Authentication" in the



Installing and Configuring the EnterpriseOne IoT Components

2-2 JD Edwards EnterpriseOne Tools Internet of Things Orchestrator Guide

JD Edwards EnterpriseOne Application Interface Services Server for Mobile Enterprise
Applications Configuration Guide for additional configuration instructions.

■ Download IoT_Orchestrator_Components_1.0.0 from the Update Center on My
Oracle Support: https://support.oracle.com. This download is also available on
the Oracle Software Delivery Cloud.

To locate the download in the Update Center, in the Type field select
EnterpriseOne IoT Orchestrator.

The download contains these files for developing custom Java, which is optional:

– AIS_Client_Java_API_1.2.1. This is the API for developing custom Java.

– OrchestratorCustomJava.jar. This file contains the definition of the interfaces
for developing custom Java.

See Chapter 5, "Creating Custom Java for Orchestrations" for more
information.

■ Download Orchestration_Samples_1.0.1 from the Update Center on My Oracle
Support: https://updatecenter.oracle.com/. In the Update Center, select
EnterpriseOne IoT Orchestrator in the Type field to locate the download.

The download contains:

■ Sample orchestration XML files for:

– Add Condition Based Maintenance Alert

– Update Equipment Locations

– Update Meter Readings

Use these sample orchestrations to test running orchestrations in an
EnterpriseOne environment with Pristine data. You can also use them as a
template for creating your own orchestrations. See Appendix A, "Sample
Orchestrations" for more information.

■ Data Pack for EnterpriseOne Applications 9.1.

■ Download the JD Edwards EnterpriseOne IoT Orchestrator ESU for Applications
[9.0] [9.1].

To locate the ESU in the Update Center, in the Type field select Electronic
Software Update; in the Object field enter P952000. The ESU bug number is
20539214 for 9.1 and 20983552 for 9.0. The ESU is also available on the Oracle
Software Delivery Cloud.

2.3 Installing and Configuring the EnterpriseOne IoT Components
After downloading the components listed in the Prerequisites, follow these
configuration steps.

1. Use the Change Assistant in EnterpriseOne to apply the data pack included in the
Sample Orchestration download.

See "Working with Packages" in the JD Edwards EnterpriseOne Tools Software
Updates Guide on how to apply updates through the Change Assistant.

2. Create the orchestration directory structure on the application server machine
running the AIS Server. To do so:

a. Unzip the Orchestration_Samples_1.0.0 par file and locate the JDE_IOT_
Orchestrator_XML directory:



Testing the EnterpriseOne IoT Implementation

Getting Started 2-3

\Orchestration_Samples_1.0.0_26_99\SampleOrchestrations\JDE_IOT_
Orchestrator_XML

b. Copy the JDE_IOT_Orchestrator_XML directory and paste it to a location on
the AIS Server machine.

c. Make sure the directory is read/writable by the Java virtual machine (JVM) so
that the AIS Server can access it.

Note: As you create orchestrations, you will place your orchestration
XML files in this same directory. See Understanding Orchestrations
and the Orchestration Directory Structure for more information.

3. In Server Manager, in the General section of AIS Server Configuration group
settings, enter the fully qualified path to the XML directory, for example:

/slot/jsmith/oracle/JDE_IOT_Orchestrator_XML

Make sure the path contains forward slashes (/). If the host is a Windows machine,
replace the backslashes with forward slashes.

4. Oracle recommends to select the Enable Admin Service option on the General tab
as well, and define the users allowed to run the admin service.

This enables users to run the admin service, which registers modifications to
orchestration XML files to the AIS Server. See Managing IoT Orchestration
Modifications Using the AIS Administration Service for more information.

5. Make sure that you set up Basic Authentication, which is required for the
Orchestrator Client (the client used to test orchestrations). See "Configuring Oracle
WebLogic Server Domain for HTTP Basic Authentication" in the JD Edwards
EnterpriseOne Application Interface Services Server for Mobile Enterprise Applications
Configuration Guide

6. Apply the ESU listed in the Prerequisites section to EnterpriseOne.

2.4 Testing the EnterpriseOne IoT Implementation
Use the EnterpriseOne Orchestrator Client, a standalone web application available on
the AIS Server, to test your EnterpriseOne IoT implementation.

Note: The Orchestrator Client is also used for testing custom
orchestrations that you create before deploying them in a production
environment. See Using the EnterpriseOne Orchestrator Client to
Build the Input Message and Test the Orchestration in this guide for
more information.

The steps in this section use the JDE_ORCH_Sample_UpdateMeterReadings sample
orchestration in the JDE_IOT_Orchestrator_XML directory to test your



Testing the EnterpriseOne IoT Implementation

2-4 JD Edwards EnterpriseOne Tools Internet of Things Orchestrator Guide

implementation. The JDE_ORCH_Sample_UpdateMeterReadings sample
orchestration is designed to update a meter reading record in the Meter Readings
program (P12120) in EnterpriseOne.

Before performing the test:

1. Access P12120 in EnterpriseOne.

2. In the Skip to Equipment field, enter 34665.

3. Select the Fuel Meter and Hour Meter check boxes.

4. Click the Find button.

In the record for equipment number 34665, notice the values in the Fuel Meter
Current Reading and Hour Meter Current Reading.

Next, test the IoT implementation by running the JDE_ORCH_Sample_
UpdateMeterReadings sample orchestration in the Orchestrator Client, which if
successful, updates the Fuel Meter and Hour Meter with inputs sent through the
sample orchestration.

To test your EnterpriseOne IoT implementation:

Caution: You must perform this test in an environment with
EnterpriseOne pristine data because sample orchestrations are
designed to work with pristine data only.

1. Access the Orchestrator Client by entering the following URL in a Web browser
address bar:

http://<ais_server>:<port>/jderest/client

2. On the Orchestrator Client Sign In screen, enter your EnterpriseOne User
credentials, environment, and role. It is highly recommended that you enter an
EnterpriseOne environment used for testing, not a production environment.

3. Click the Login button.

4. In the Orchestrator Client, in the Orchestration Name field, enter JDE_ORCH_
Sample_UpdateMeterReadings.

5. In the left panel, click the add icon (plus symbol) to add the following name-value
pair inputs in the Name and Value columns:

Name Value

EquipmentNumber 34665



Testing the EnterpriseOne IoT Implementation

Getting Started 2-5

These name-value pairs should already be defined in the orchestration as the
expected input for the orchestration.

6. Click the Run button to test the orchestration.

The Input area shows the input message in JSON format.

The Output area shows the result of the orchestration. If successful, it shows the
resulting forms from each form service call in JSON format. If unsuccessful, it
shows an error response in JSON format. A warning may appear even if the
update is successful.

To verify that the orchestration invoked the transaction in EnterpriseOne, access the
Meter Readings program (P12120) and perform a search for equipment number 34665.
Make sure to select the Fuel Meter and Hour Meter check boxes.

If the results in the grid show the record with the new values as shown in the
following screenshot, then your EnterpriseOne IoT implementation is successful.

If the orchestration fails, verify that you properly followed the prerequisites and
installation steps in this chapter. Also, make sure the test was performed in an
environment with pristine data. In this environment, the equipment number 34665
that is referenced by the cross references in P952000 should be in the database.

NewFuelMeterReading 11.2

NewHourMeterReading 110.15

Name Value



Testing the EnterpriseOne IoT Implementation

2-6 JD Edwards EnterpriseOne Tools Internet of Things Orchestrator Guide



3

Designing an Orchestration 3-1

3Designing an Orchestration

This chapter contains the following topics:

■ Section 3.1, "Understanding the Orchestration Design Process"

■ Section 3.2, "Identifying the Problem and Solution"

■ Section 3.3, "Identifying the Data for the Orchestration"

■ Section 3.4, "Identifying the Rules for the Orchestration"

■ Section 3.5, "Identifying the Cross-Reference Information for the Orchestration"

■ Section 3.6, "Identifying the Service Request Information for the Orchestration"

3.1 Understanding the Orchestration Design Process
You might already have a business process in EnterpriseOne that involves manually
entering data into EnterpriseOne from a device that collects data. Or you might use a
non-EnterpriseOne system to record data from various devices. Or you might not
understand how data from these devices can be used by JD Edwards EnterpriseOne
applications.

Before you can create an orchestration, you need to perform an analysis to:

■ Identify the problem and the solution.

■ Identify the data that you want to collect.

■ Define the rules and conditions that determine how to process the data.

■ Identify the EnterpriseOne application inputs (fields and grid columns).

■ Identify additional applications in which to work with the data, such as a custom
Java application to perform a specific business process or a process for storing the
data in another database.

You can use a simple worksheet for your analysis or you could use a storyboard, flow
chart, or a combination of methods depending on the complexity of your
orchestration. Use the information captured from your analysis to configure each of
the XML files used in the orchestration as described in the next chapter, "Configuring
an Orchestration".

Example: Company A's Orchestration Design Process
Company A used a storyboard as part of their orchestration design process to illustrate
the design of a simple orchestration. Figure 3–1 shows an illustration of the overall
result of Company A's design process. The remaining sections in this chapter contain



Identifying the Problem and Solution

3-2 JD Edwards EnterpriseOne Tools Internet of Things Orchestrator Guide

additional details about each part of the design process and examples of how
Company A identified the information required for the orchestration.

Figure 3–1 Example of an Orchestration Design Process

3.2 Identifying the Problem and Solution
Begin the analysis by identifying the problem or the data gap, and then identify how
you want to use the data in EnterpriseOne, or in other words, determine which
EnterpriseOne business process or transaction you want to invoke.

Example: Company A's Problem and Solution
Problem

Company A currently uses sensors to detect issues in certain assets to prevent
potential breakdowns. Specifically, the company uses vibration and temperature
sensors on various pieces of equipment. The data read from the sensors is not tied into
their EnterpriseOne system; instead, it is integrated with a third-party software
program that an operations manager has to access several times a day to monitor
equipment. It would be ideal if the company could eliminate the need to use a
disparate software program to manually oversee the performance of its equipment.

Solution

Company A wants to design a process that uses the EnterpriseOne Condition-Based
Maintenance program for monitoring. With the IoT Orchestrator, Company A can
design an orchestration with rules and conditions that:

■ Invoke a transaction in EnterpriseOne Condition-Based Maintenance that sends a
warning message if vibration or temperature levels are within a certain range
above normal operating levels.

■ Invoke a transaction in EnterpriseOne Condition-Based Maintenance that sends an
alarm message if vibration or temperature levels exceed a certain level.

3.3 Identifying the Data for the Orchestration
After you identify the problem and determine the EnterpriseOne applications or
processes that you want to invoke, you need to identify the device data or payload to
use in the orchestration. For example, a reading from a sensor might include a
vibration measurement, a temperature measurement, and the date and time of the
readings.



Identifying the Service Request Information for the Orchestration

Designing an Orchestration 3-3

Example: Company A's Data Analysis
The "Input - Data" area in Figure 3–1 highlights the data that Company A identified for
their orchestration.

3.4 Identifying the Rules for the Orchestration
Next, identify the rules and conditions to determine how to process data from the
sensors.

You will use the information from this part of the analysis to configure the rules XML
as described in the Section 4.3, "Configuring Rules XMLs" section in this guide.

Example: Company A's Rules Analysis
In this part of the analysis, Company A identified the following conditions:

■ A vibration reading greater than or equal to 90 and a temperature greater than or
equal to 250 will trigger an alarm message.

■ A vibration reading greater than or equal to 30 and a temperature greater than or
equal to 520 will trigger an alarm message.

■ A vibration reading greater than or equal to 60 will trigger a warning message.

■ A temperature reading greater than or equal to 350 will trigger a warning
message.

The "Rules" area in Figure 3–1 shows the rules and conditions that Company A is
using to determine which data should be processed by the orchestration.

3.5 Identifying the Cross-Reference Information for the Orchestration
This process entails identifying and mapping each piece of data to a value or data item
in an EnterpriseOne form field or grid column.

Use the information from this part of the analysis to configure the cross-reference XML
as described in the "Configuring Cross-Reference XMLs" section in this guide.

Also, in this phase you can decide if you want to incorporate a white list into the
orchestration by configuring a white list XML as described in the "Configuring White
List XMLs" section in this guide.

Example: Company A's Cross-Reference Analysis
Company A used this phase of the analysis to map the following IoT inputs to
EnterpriseOne fields:

■ sensor ID -> equipment number|measurement location

■ equipment number -> warning recipient|alarm recipient

The "Cross-Reference" area in Figure 3–1 highlights the cross-references Company A is
using in the orchestration.

3.6 Identifying the Service Request Information for the Orchestration
Next, you need to identify how the data is used to invoke a business process or
transaction in EnterpriseOne. You identify the EnterpriseOne applications and inputs
including the control IDs for EnterpriseOne buttons, fields, and so forth.



Identifying the Service Request Information for the Orchestration

3-4 JD Edwards EnterpriseOne Tools Internet of Things Orchestrator Guide

You can also determine if you want to use custom Java to execute a custom process or
to route IoT data into another database.

Use the information gathered from this phase of the analysis to design the services
request XMLs as described in the "Configuring Service Request XMLs" section in this
guide.

Example: Company A's Service Request Analysis
The "Service Request" area in Figure 3–1 highlights the data Company A is using for
the service request.



4

Configuring an Orchestration 4-1

4Configuring an Orchestration

This chapter describes how to take the data from analysis to implementation. It
contains the following topics:

■ Section 4.1, "Understanding Orchestrations and the Orchestration Directory
Structure"

■ Section 4.2, "Configuring Service Request XMLs"

■ Section 4.3, "Configuring Rules XMLs"

■ Section 4.4, "Configuring Cross-Reference XMLs"

■ Section 4.5, "Configuring White List XMLs"

■ Section 4.6, "Configuring Orchestration XMLs"

■ Section 4.7, "Supported Input Message Formats"

■ Section 4.8, "Setting Up Cross-References and White Lists in EnterpriseOne
(P952000)"

■ Section 4.9, "Setting up Orchestration Security"

■ Section 4.10, "Using the EnterpriseOne Orchestrator Client to Build the Input
Message and Test the Orchestration"

4.1 Understanding Orchestrations and the Orchestration Directory
Structure

An orchestration is a process that enables the transformation of raw data from
disparate devices into actionable business processes in JD Edwards EnterpriseOne. An
orchestration can be comprised of four components: service requests, rules,
cross-references, and white lists. You define the metadata for each component in XML
files, and then place each component's XML file in the appropriate folder for that
component. The IoT Orchestrator processes an orchestration using the XML files in
these folders:

■ Orchestrations. This folder contains orchestration XML files that provide the
master information for an orchestration. An orchestration XML file contains one or
more orchestration steps. Each orchestration step points to a service request, rule,
cross-reference, or white list XML files located in the other folders.

■ ServiceRequests. This folder contains XML files with the service request
information. The AIS Server uses this information to interact with EnterpriseOne
applications.



Configuring Service Request XMLs

4-2 JD Edwards EnterpriseOne Tools Internet of Things Orchestrator Guide

■ Rules. This folder contains XML files with the conditions to be evaluated, such as
true or false conditions that control the orchestration flow. With rules, a false
outcome or true outcome can invoke further orchestration steps.

■ CrossReferences. This folder contains XML files with cross-references that map
the third-party values to EnterpriseOne values.

■ WhiteLists. This folder contains XML files with an inclusive list of values
permitted in the orchestration and terminates the orchestration process if
incoming data is not recognized.

In most cases, the IoT Orchestrator enables you to use the orchestration metadata to
perform AIS Server calls that invoke EnterpriseOne transactions; Java is not required.
The AIS Server exposes each orchestration as an endpoint at:

http://<server>:<host>/jderest/orchestrator/<orchestrationName>

The orchestration name is the file name of the orchestration XML file. The file name
must NOT include any spaces.

The orchestration requires a properly formatted JSON message for processing.

Figure 4–1 shows an example of the folders and files in an orchestration directory:

Figure 4–1 Orchestration Directory Folders and Files

4.2 Configuring Service Request XMLs
This section contains the following topics:

■ Section 4.2.1, "Understanding Service Request XMLs"

■ Section 4.2.2, "Understanding the Service Request XML Structure"

■ Section 4.2.3, "Defining the Service Request Metadata for the Orchestration"



Configuring Service Request XMLs

Configuring an Orchestration 4-3

■ Section 4.2.4, "Example of a Service Request XML"

4.2.1 Understanding Service Request XMLs
Service request XMLs provide the metadata that the IoT Orchestrator uses to invoke
AIS endpoints on the AIS Server. AIS endpoints provide services for interacting with
EnterpriseOne applications. The IoT Orchestrator converts the metadata into Java code
that automatically calls the AIS service. See "Table 1-1 Endpoint URIs for Accessing
EnterpriseOne Applications and Data" in the JD Edwards EnterpriseOne Application
Interface Services Client Java API Developer's Guide for a description of the AIS
endpoints.

The service request XML must conform to the service request .xsd file included with
the project. Do not use any spaces when naming a service request XML file.

Not all AIS services can be invoked by metadata in the service request XML. For
orchestrations that require EnterpriseOne actions not supported by the metadata
definitions, you can create a custom Java class. See Chapter 5, "Creating Custom Java
for Orchestrations."

4.2.2 Understanding the Service Request XML Structure
The ServiceRequest element contains secondary and tertiary child elements and
attributes that provide the metadata for the orchestration. Figure 4–2 shows the basic
XML structure of a service request:



Configuring Service Request XMLs

4-4 JD Edwards EnterpriseOne Tools Internet of Things Orchestrator Guide

Figure 4–2 Service Request XML Structure

4.2.3 Defining the Service Request Metadata for the Orchestration
A service request XML file contains a parent or container serviceRequest element. The
following list describes the child elements and attributes that comprise a
serviceRequest element:

■ appStack. This element contains a boolean value of true or false, indicating if the
service request follows the Application Stack Service pattern for calling service
requests. To use this service, you must make sure that every form listed as a
serviceRequestStep is included in the application stack flow as well. Also, each
serviceRequestStep must match the form that was returned after the previous step.



Configuring Service Request XMLs

Configuring an Orchestration 4-5

For more information, see "Application Stack Service" in the JD Edwards
EnterpriseOne Application Interface Services Client Java API Developer's Guide.

■ serviceRequestSteps. This element contains one or more child
serviceRequestSteps elements. A child serviceRequestSteps element provides the
service request metadata for a single AIS call. It contains five attributes for the
service request. See Table 4–1 for descriptions of the attributes. It also contains
these child elements:

– formInterconnects. An optional element that contains a list of
formInterconnects elements. See Table 4–2 for a description of the elements
and attributes in a formInterconnects element.

– formActions. This element contains a list of formActions elements. A
formActions element contains a type attribute that you set to input, detail, or
action. The value in the type attribute determines the additional elements to
complete for the formAction. See Table 4–3 for a description of each
formActions type.

– returnControlIDs. This element contains the control IDs in the form that
contains the data you want returned. If left blank, all data on the form is
returned.

For example, 13|15|18|1[38,40,42] would return the values in the form
controls with ID 13, 15 and 18 and grid columns 38, 40 and 42 corresponding
to the grid with ID 1.

– returnValueHeaderNames. Allows the returned data to be named to be used
in subsequent service request steps. For example:

A value of OrderNumber|OrderType|Description used with the
returnControlIDs element would add the contents of control ID 18 to a value
called OrderNumber; the contents of control ID 15 to a value called
OrderType; and the contents of control ID 18 to a value called Description.
OrderNumber, OrderType and Description can be used in subsequent service
request steps of the same service request.

– returnValueRow1Names. Allows the returned data of the first row of a grid to
be used in subsequent service request steps. For example:

Table 4–1 Description of serviceRequestSteps Attributes

Attribute Description

type Valid values are:

■ formRequest

■ customServiceRequest

If you enter customServiceRequest, you must also define the
following items:

■ className attribute. See the description below in this table.

■ attributesToSet. This element contains a list of
attributeToSet elements. See Table 4–4 for a description of
these elements.

appOID The application and form name to be called, for example P01012_
W01012B.

version The version of the application, for example XJDE0019.



Configuring Service Request XMLs

4-6 JD Edwards EnterpriseOne Tools Internet of Things Orchestrator Guide

bypassFormServiceEREvent This is used to skip the form service request event on the form.
Valid values are:

true (default)

or

false

className Used only if type=customServiceRequest. This contains the
package and Java class with the custom service request
implementation, for example:

com.oracle.e1.rest.orchestrator.customjava.CustomServic
eRequest

Table 4–2 Description of formInterconnects Elements

Element Description

dataItemID The ID found in the Form Data Structure definition of the form
being called.

input The name of the input field to map into the form data structure
element.

defaultValue To be used if the input field is not specified or not found.

defaultValue has one element called "value" which holds the
value to be defaulted.

defaultValue can have type and dateFormat attributes.

Table 4–3 Description of formActions Types

Type Description

input Use this type to set form controls and QBE values using these
elements:

■ input. (optional) The name of a value coming from the
input message, cross-reference or named return value from
a prior form service request

■ mappedTo. Contains the control ID of the form control or
QBE column, for a QBE column, the value will be the grid
ID with the column ID in square braces, for example 1[32].

■ action. Contains either SetControlValue or SetQBEValue

■ defaultValue. (optional) Has a value element along with
type and dateFormat attributes if needed.

■ textSubstitution. (optional) Contains a string element and
elements which contain the named values for the text
substitutions. For example, you might have a string with
"Temp was {0} at {1}" and two elements, the first element
containing a temperature input value and the second
element containing a time input value.

Table 4–1 (Cont.) Description of serviceRequestSteps Attributes

Attribute Description



Configuring Service Request XMLs

Configuring an Orchestration 4-7

4.2.4 Example of a Service Request XML
Example 4–1 shows the service request XML in the "Add Condition Based
Maintenance Alert" sample orchestration.

Example 4–1 Service Request XML in the "Add Condition Based Maintenance Alert"
Sample Orchestration

<?xml version="1.0" encoding="UTF-8" ?>
<ServiceRequest xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="JDE_ServiceRequest.xsd">

<serviceRequestSteps>
<serviceRequestSteps type="formRequest" appOID="P1311_W1311B"

version="ZJDE0001">
<formActions>

<formActions type="input">
<input>EquipmentNumber</input>
<mappedTo>20</mappedTo>
<action>SetControlValue</action>

detail Use this type to populate rows of a grid. It contains the
following elements:

■ inputGrid. Contains the name of the repeating input from
the input message used to load multiple rows of data.

■ mappedTo. Contains the control ID of the grid.

■ rowData. Contains a list of rowData which represent the
grid columns to populate and each rowData has four
elements: input, mappedTo, action, defaultValue, and
textSubstitution are the same as the input for formAction;
action can contain SetGridCellValue or
SetGridComboValue.

action Use this type to invoke push buttons, set check box values, and
set combo box values. It contains the following elements:

■ controlID. References the control that the action will affect.

■ action. Can contain the following values:
SetCheckBoxValue, DoAction, SetComboValue, SelectRow,
UnSelectRow, SelectAllRows, UnSelectAllRows, or
ClickGridCell.

■ value. Used by SetCheckBoxValue and SetComboValue.

For SetCheckBoxValue, it can be on or off.

For SetComboValue, the value corresponds to the value to
be selected.

Table 4–4 Description of attributesToSet Elements and Attribute

Element or Attribute Description

name (attribute) The value for this attribute should match the attribute name in
the custom Java class.

input (element) This element can have an input element with the name of a
value from the input message.

defaultValue (element) This element has one element, a value, and two attributes: type
and dateFormat. See Table 4–10 in the Orchestration section for
dateFormat definition.

Table 4–3 (Cont.) Description of formActions Types

Type Description



Configuring Service Request XMLs

4-8 JD Edwards EnterpriseOne Tools Internet of Things Orchestrator Guide

</formActions>
<formActions type="input">

<input>MeasurementLocation</input>
<mappedTo>31</mappedTo>
<action>SetControlValue</action>

</formActions>
<formActions type="input">

<textSubstitution>
<string>Temp: {0}; Vibration: {1}</string>
<elements>

<elements>TemperatureReading</elements>
<elements>VibrationReading</elements>

</elements>
</textSubstitution>
<mappedTo>29</mappedTo>
<action>SetControlValue</action>

</formActions>
<!-- Alert Level -->
<formActions type="input">

<mappedTo>33</mappedTo>
<action>SetControlValue</action>
<defaultValue>

<value>1</value>
</defaultValue>

</formActions>
<formActions type="input">

<input>Date</input>
<mappedTo>35</mappedTo>
<action>SetControlValue</action>

</formActions>
<formActions type="input">

<input>Time</input>
<mappedTo>48</mappedTo>
<action>SetControlValue</action>

</formActions>
<formActions type="input">

<input>WarningRecipient</input>
<mappedTo>66</mappedTo>
<action>SetControlValue</action>

</formActions>
<!-- Automated Response Type -->
<formActions type="input">

<mappedTo>40</mappedTo>
<action>SetControlValue</action>
<defaultValue>

<value>1</value>
</defaultValue>

</formActions>
<formActions type="action">

<controlID>11</controlID>
<action>DoAction</action>

</formActions>
</formActions>

</serviceRequestSteps>
</serviceRequestSteps>

</ServiceRequest>



Configuring Rules XMLs

Configuring an Orchestration 4-9

4.3 Configuring Rules XMLs
This section contains the following topics:

■ Section 4.3.1, "Understanding Rule XMLs"

■ Section 4.3.2, "Understanding the Rule XML Structure"

■ Section 4.3.3, "Defining the Rule Metadata for the Orchestration"

■ Section 4.3.4, "Example of a Rule XML"

4.3.1 Understanding Rule XMLs
Rule XMLs contain conditional logic that the IoT Orchestrator uses to evaluate
conditions, such as true or false conditions that determine how the orchestration
processes the incoming data. You can define a rule with a list of conditions or you can
define a more complex rule using a custom Java class. For more information about
using a custom Java class for rules, see Chapter 5, "Creating Custom Java for
Orchestrations."

An orchestration rule functions similar to an EnterpriseOne query in that each rule
has:

■ A "Match Any" or "Match All" setting.

■ One or more conditions defined, each being a binary operation on two values.

Each rule XML file must conform to the rules .xsd file included with the project. Do
not use any spaces when naming a rule XML file.

4.3.2 Understanding the Rule XML Structure
The Rule element in a rule XML file provides the metadata for the rule. Figure 4–3
shows the basic structure of a rule XML file.

Figure 4–3 Rule XML Structure



Configuring Rules XMLs

4-10 JD Edwards EnterpriseOne Tools Internet of Things Orchestrator Guide

4.3.3 Defining the Rule Metadata for the Orchestration
Table 4–5 provides a description of the Rule element attributes.

The following list describes the secondary and tertiary child elements that comprise a
Rule element:

■ conditions. This container element can include one or more child conditions
elements. A child conditions element provides the definition of the comparison.
See Table 4–6 for a description of the attributes for the conditions element. The
conditions element also contains these child elements:

– value1. See Table 4–7 for a list of the child elements and attributes for this
element.

– value2. This element has the same child elements and attributes as the value1
element. See Table 4–7.

■ attributesToSet. Custom rules have an attributesToSet element with a list of child
attributesToSet elements just like the custom service request. See Table 4–4.

Table 4–5 Description of Rule Attributes

Attribute Description

matchType Valid values are:

■ matchAll. (default) Requires that all conditions return true
before the rule returns true.

■ matchAny. Returns true if any conditions return true.

className Identifies the custom Java class for a custom rule.

Table 4–6 Description of the conditions Element Attributes

Attribute Description

operator Valid values are:

=, !=, >, >=, &lt;, &lt;=, startsWith, endsWith, contains,
between or inList

type Valid values are:

String, Numeric or Date

Table 4–7 Description of Elements and Attributes in Value1 and Value2 Elements

Element or Attribute Description

value (element) Contains either a literal value or a named value.

literalValue (attribute) Boolean type attribute used to indicate the value is literal.

dateFormat (attribute) Identifies the format of the date if it is a literal value.

4.3.4 Example of a Rule XML
Example 4–2 shows the rule XML in the "Add Condition Based Maintenance Alert"
sample orchestration.

Example 4–2 Rule XML in the "Add Condition Based Maintenance Alert " Sample
Orchestration

<?xml version="1.0" encoding="UTF-8"?>
<Rule xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"



Configuring Cross-Reference XMLs

Configuring an Orchestration 4-11

xsi:noNamespaceSchemaLocation="JDE_Rule.xsd">
<matchType>matchAll</matchType>
<conditions>

<conditions operator=">=" type="Numeric">
<value1>

<value>VibrationReading</value>
</value1>
<value2 literalValue="true">

<value>90</value>
</value2>

</conditions>
<conditions operator=">=" type="Numeric">

<value1>
<value>TemperatureReading</value>

</value1>
<value2 literalValue="true">

<value>250</value>
</value2>

</conditions>
</conditions>

</Rule>

4.4 Configuring Cross-Reference XMLs
This section contains the following topics:

■ Section 4.4.1, "Understanding Cross-Reference XMLs"

■ Section 4.4.2, "Understanding the Cross-Reference XML Structure"

■ Section 4.4.3, "Defining the Cross-Reference Metadata"

■ Section 4.4.4, "Examples of Cross-Reference XML and Cross-Reference Records in
EnterpriseOne"

4.4.1 Understanding Cross-Reference XMLs
Cross-referencing converts third-party IDs into EnterpriseOne values for use in
EnterpriseOne applications. You define the cross-references used in an orchestration in
two places:

■ P952000 in EnterpriseOne.

In this application, you define the cross-references using "AIS" as the
cross-reference type. The application supports many to many lookups using |
delimited strings in the Third Party Value and EnterpriseOne value columns. For
more information, see Setting Up Cross-References and White Lists in
EnterpriseOne (P952000) in this guide.

■ Metadata stored in a cross-reference XML file.

Cross-reference XML files contain elements that identify the cross-reference
metadata for an orchestration. The cross-reference XML must conform to the
cross-reference .xsd file included with the project. Do not use any spaces when
naming a cross-reference XML file.

If a cross-reference lookup fails in an orchestration, the orchestration is terminated.

4.4.2 Understanding the Cross-Reference XML Structure
Figure 4–4 shows the structure of the cross-reference XML.



Configuring Cross-Reference XMLs

4-12 JD Edwards EnterpriseOne Tools Internet of Things Orchestrator Guide

Figure 4–4 Cross-Reference XML Structure

4.4.3 Defining the Cross-Reference Metadata
Use the elements in a cross-reference XML file to define the cross-reference metadata
for an orchestration. A cross-reference XML file contains a parent or container
CrossReference element. Table 4–8 describes the child elements in the CrossReference
element. You use the child elements to define the cross-reference metadata for the
orchestration.

Table 4–8 Description of CrossReference Elements

Element Description

objectType The value in this element must correspond to the cross-reference object
type in P952000.

inputKeys This element contains a list of inputKey elements in which inputKey is a
named value.

If more than one inputKey value is present, the values are joined with a |
separator.

After all inputKey values are read, the entire value is used to query the
F952000 table in EnterpriseOne.

outputKeys This element contains a list of outputKey elements in which outputKey is
a string value that becomes a named value for use in subsequent
orchestration steps.

If more than one outputKey value is present, the EnterpriseOne value
returned from the P952000 lookup is parsed into multiple strings using |
as the separator.

4.4.4 Examples of Cross-Reference XML and Cross-Reference Records in
EnterpriseOne

Example 4–3 shows the cross-reference XML in the "Add Condition Based
Maintenance Alert" sample orchestration.

Example 4–4 shows the required cross-reference records in EnterpriseOne that
correspond to the cross-reference XML defined in Example 4–3.



Configuring White List XMLs

Configuring an Orchestration 4-13

Example 4–3 Cross-Reference XML in the "Add Condition Based Maintenance Alert "
Sample Orchestration

<?xml version="1.0" encoding="UTF-8"?>
<CrossReference xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="JDE_CrossReference.xsd">
<objectType>SENSOR_LOCATION</objectType>
<inputKeys>
<inputKeys>SensorID</inputKeys>

</inputKeys>
<outputKeys>
<outputKeys>EquipmentNumber</outputKeys>
<outputKeys>MeasurementLocation</outputKeys>

</outputKeys>
</CrossReference>

Example 4–4 Cross-Reference Record in EnterpriseOne for the "Add Condition Based
Maintenance Alert" Sample Orchestration

4.5 Configuring White List XMLs
This section contains the following topics:

■ Section 4.5.1, "Understanding White List XMLs"

■ Section 4.5.2, "Understanding the White List XML Structure"

■ Section 4.5.3, "Defining the White List Metadata for an Orchestration"

■ Section 4.5.4, "Examples of White List XML and White List Records in
EnterpriseOne"

4.5.1 Understanding White List XMLs
A white list contains a list of IDs permitted in the IoT Orchestrator. If you use a white
list in your orchestration, any data not represented by an ID in the white list is not
permitted in the IoT Orchestrator. You set up the white list in two places:

■ P952000 in EnterpriseOne.

This is the same application that is used to set up and store orchestration
cross-references. As with cross-references, use the "AIS" cross-reference type in
P952000 for a white list. The Third Party App ID should have a value of
WHITELIST. The EnterpriseOne value is not used for white lists and will default to
NA.

For more information, see "Setting Up Cross-References and White Lists in
EnterpriseOne (P952000)" in this guide.

■ Metadata stored in a white list XML file.



Configuring White List XMLs

4-14 JD Edwards EnterpriseOne Tools Internet of Things Orchestrator Guide

All white list metadata is stored in a white list XML. The white list XMLs must
conform to the white list .xsd file included with the project. Do not use any spaces
when naming a white list XML file.

If a white list lookup fails in an orchestration, the orchestration is terminated.

4.5.2 Understanding the White List XML Structure
Figure 4–5 shows the basic structure of the white list XML.

Figure 4–5 White List XML Structure

4.5.3 Defining the White List Metadata for an Orchestration
You use the elements in a white list XML file to define the white list metadata for the
orchestration. A white list XML file contains a parent WhiteList element. Table 4–9
describes the elements in the WhiteList element.

Table 4–9 Description of WhiteList Elements

Element Description

objectType The value in this element must correspond to the cross-reference
object type in P952000.

inputKeys This element contains a list of inputKey elements in which inputKey
is a named value.

If more than one inputKey value is present, the values are joined
with a | separator.

After all inputKey values are read, the entire value is used to query
the F952000 table in EnterpriseOne.

4.5.4 Examples of White List XML and White List Records in EnterpriseOne
Example 4–5 shows the white list XML in the "Add Condition Based Maintenance
Alert" sample orchestration.

Example 4–6 shows the required white list records in EnterpriseOne that correspond to
the white list entries defined in the "Add Condition Based Maintenance Alert"
cross-reference XML in Example 4–7.

Example 4–5 White List XML in the "Add Condition Based Maintenance Alert" Sample
Orchestration

<?xml version="1.0" encoding="UTF-8" ?>
<WhiteList xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"



Configuring Orchestration XMLs

Configuring an Orchestration 4-15

xsi:noNamespaceSchemaLocation="JDE_WhiteList.xsd">
<objectType>EQUIPMENT</objectType>
<inputKeys>
<inputKeys>EquipmentNumber</inputKeys>

</inputKeys>
</WhiteList>

Example 4–6 White List Record in EnterpriseOne for the "Add Condition Based
Maintenance Alert" Sample Orchestration

4.6 Configuring Orchestration XMLs
This section contains the following topics:

■ Section 4.6.1, "Understanding Orchestration XMLs"

■ Section 4.6.2, "Understanding the Orchestration XML Structure"

■ Section 4.6.3, "Defining the Metadata for the Orchestration"

■ Section 4.6.4, "Example of an Orchestration XML"

4.6.1 Understanding Orchestration XMLs
An orchestration XML file contains a series of orchestration steps that tie together the
service request, rule, cross-reference, and white list metadata for an orchestration. The
orchestration metadata is stored in an orchestration XML file. Orchestration XMLs
must conform to the orchestration .xsd file included with the project.

The name of orchestration XML file is used to define an endpoint which is used to run
the orchestration. The endpoint URL is:

http://<server>:<port>/jderest/orchestrator/<orchestrationname>

Do not use any spaces when naming an orchestration XML file.

4.6.2 Understanding the Orchestration XML Structure
Figure 4–6 shows the basic structure of an orchestration XML:



Configuring Orchestration XMLs

4-16 JD Edwards EnterpriseOne Tools Internet of Things Orchestrator Guide

Figure 4–6 Orchestration XML Structure

4.6.3 Defining the Metadata for the Orchestration
The following list describes the attributes and secondary and tertiary child elements
that comprise an orchestration element. Use the following elements and attributes to
define the metadata for the orchestration:

■ inputFormat element. Valid values include: JDE Standard (default), Generic.

■ inputTypes element. This element contains a list of inputTypes elements. See
Table 4–10 for a description of the child elements and attributes of the inputTypes
element.

■ orchestrationSteps element. This element contains a list of orchestrationSteps
elements. See Table 4–11 for a description of the child elements and attributes of
the orchestrationSteps element.

Table 4–10 Description of inputTypes Element and Attributes

Element or Attribute Description

name (element) Identifies the input value.

type (attribute) Valid values are:

String

Numeric

Date



Configuring Orchestration XMLs

Configuring an Orchestration 4-17

dateFormat (attribute) Valid values are:

■ dd/MM/yyyy

■ dd/MM/yy

■ yyyy/MM/dd

■ MM/dd/yyyy

■ MM/dd/yy

■ yy/MM/dd

■ Milliseconds - When Milliseconds is used, the incoming
value is converted to a date in the users date format and the
following two additional values are available for use:

<name>_time will contain the time portion of the incoming
value in HH:mm:ss format.

<name>_uTime will contain the incoming value converted so it
can be used in a UTime field in EnterpriseOne.

■ yyyy-MM-dd'T'HH:mm:ss.SSSZ - When this date format is
used, the following three additional values are available for
use:

<name>_date will contain the date portion of the incoming
value converted to the users date format.

<name>_time will contain the time portion of the incoming
value in HH:mm:ss format.

<name>_uTime will contain the incoming value converted so
it can be used in a UTime field in EnterpriseOne.

Table 4–11 Description of OrchestrationSteps Element and Attributes

Element or Attribute Description

type (attribute) Valid values are:

CrossReference

WhiteList

Rule

ServiceRequest

If an orchestrationSteps element has a type=Rule, then it can
contain the following elements:

■ trueActions element that contains a list of orchestrationSteps
elements.

■ falseActions element that contains a list of
orchestrationSteps elements.

Rules can be nested as deeply as needed by defining more Rule
orchestration steps in the trueActions of falseActions of a parent
rule.

iterateOver (attribute) You can include the name of a repeating structure in the input
message. The orchestration step will be repeated for each
occurrence of the structure in the input message.

name (element) This value should correspond to a name in one of the other XML
files based on the specified type.

Table 4–10 (Cont.) Description of inputTypes Element and Attributes

Element or Attribute Description



Configuring Orchestration XMLs

4-18 JD Edwards EnterpriseOne Tools Internet of Things Orchestrator Guide

4.6.4 Example of an Orchestration XML
Example 4–7 shows the orchestration XML in the "Add Condition Based Maintenance
Alert" sample orchestration.

Example 4–7 Orchestration XML in the "Add Condition Based Maintenance Alert"
Sample Orchestration

<?xml version="1.0" encoding="UTF-8" ?>
<Orchestration xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="JDE_Orchestration.xsd">

<inputTypes>
<inputTypes type="Date" dateFormat="Milliseconds">

<name>Date</name>
</inputTypes>

</inputTypes>
<orchestrationSteps>

<orchestrationSteps type="Rule">
<name>JDE_RULE_Sample_VibrationAlarm</name>
<trueActions>

<orchestrationSteps type="CrossReference">
<name>JDE_XREF_Sample_SensorLocation</name>

</orchestrationSteps>
<orchestrationSteps type="CrossReference">

<name>JDE_XREF_Sample_AlertNotificationRecipients</name>
</orchestrationSteps>
<orchestrationSteps type="ServiceRequest">

<name>JDE_SREQ_Sample_AddCBAlert_Alarm</name>
</orchestrationSteps>

</trueActions>
<falseActions>

<orchestrationSteps type="Rule">
<name>JDE_RULE_Sample_VibrationWarning</name>
<trueActions>

<orchestrationSteps type="CrossReference">
<name>JDE_XREF_Sample_SensorLocation</name>

</orchestrationSteps>
<orchestrationSteps type="CrossReference">

<name>JDE_XREF_Sample_
AlertNotificationRecipients</name>

</orchestrationSteps>
<orchestrationSteps type="ServiceRequest">

transformations (element) Use this element to change the name of input values. If you have
an existing orchestration step such as a service request that you
want to reuse, but the name of the incoming input does not match
the name the orchestration step is expecting, use this element to
change the name of the input value.

The transformations element has repeating transformations child
elements, each with an input and output attribute. The input
value matching the input element will be available for the
orchestration step as the output element name.

transformations are specific to an orchestration step. The output
names are not available in subsequent orchestration steps.
However, if the transformations are on a rule orchestration step,
the output names are available for all of the true actions and false
actions of that rule.

Table 4–11 (Cont.) Description of OrchestrationSteps Element and Attributes

Element or Attribute Description



Supported Input Message Formats

Configuring an Orchestration 4-19

<name>JDE_SREQ_Sample_AddCBAlert_Warning</name>
</orchestrationSteps>

</trueActions>
</orchestrationSteps>

</falseActions>
</orchestrationSteps>

</orchestrationSteps>
</Orchestration>

4.7 Supported Input Message Formats
The IoT Orchestrator supports two input message formats for orchestrations: a
standard JD Edwards EnterpriseOne format and generic format. Example 4–8 and
Example 4–9 show an example of the code for each format.

Example 4–8 Standard JD Edwards EnterpriseOne Input Message Format

{
"inputs": [

{
"name": "equipmentNumber",
"value": "41419"

},
{

"name": "description",
"value": "test"

},
{

"name": "date",
"value": "1427774400000"

},
{

"name": "time",
"value": "12:15:15"

},
{

"name": "temperature",
"value": "99"

}
]

}

Example 4–9 Generic Input Message Format

{
"equipmentNumber": "41419",
"description": "test",
"date": "1427774400000",
"time": "12:15:15",
"temperature": "99"

}



Note: Additional Supported Input Message Formats

Additional formats are supported when using the generic input
format, as long as the orchestration input values are defined using the
full path to the elements used. You may have a deeper JSON structure
like this.

{
"equipmentNumber": "41419",
"equipementDetail": {

"type": "thermometer",
"readingDetail": {

"temperature": 200,
"units": "F"

}
}

}

To reference the temperature within the orchestration you can use the
full path delimited by periods, for example:

equipmentDetail.readingDetail.temperature

Supported Input Message Formats

4-20 JD Edwards EnterpriseOne Tools Internet of Things Orchestrator Guide

One difference between the two formats is the iterateOver attribute for the
orchestrationStep element, which is supported only by the standard JD Edwards
EnterpriseOne input message format. Also, when using the "detail" form action type
with the standard format, it will automatically iterate over all detailInputs and
repeatingInputs in order to add multiple rows to a grid. If the generic format is used,
only a single grid row can be added.

As shown in Example 4–10, "detailInputs" would correspond to grid data;
"repeatingInputs" would correspond to individual rows that contain "inputs" that
correspond to columns.

If you have a power form with two grids, you could populate both grids using two
"detailInputs" structures with different "name" values that correspond to the different
grids. "repeatingInputs" would contain a list of rows and for each row you would
define a list of "inputs".

You could also define a CrossReference orchestration step with
iterateOver="GridData" that converts the item value into an EnterpriseOne specific
item number. For example, if A123=220 and A124=230, the single orchestration step
would convert both.

Example 4–10

{
"inputs": [

{
"name": "BranchPlant",
"value": "30"

},
{

"name": "customer",
"value": "4242"

}
],
"detailInputs": [

{



Setting Up Cross-References and White Lists in EnterpriseOne (P952000)

Configuring an Orchestration 4-21

"name": "GridData",
"repeatingInputs": [

{
"inputs": [

{
"name": "item",
"value": "A123"

},
{

"name": "Quantity",
"value": "3"

}
]

},
{

"inputs": [
{

"name": "item",
"value": "A124"

}
]

}
]

}
]

}

4.8 Setting Up Cross-References and White Lists in EnterpriseOne
(P952000)

Use the EnterpriseOne Business Service Cross Reference (P952000) application to
create and manage cross-reference and white list records for EnterpriseOne IoT
orchestrations. Orchestration cross-references and white lists contain key-value data
pairs used by the IoT Orchestrator. You must add records for all IoT orchestration
key-value data pairs in P952000.

For example, an IoT device might provide a machine ID that equates to the Equipment
Number field in EnterpriseOne. After including this in the cross-reference XML, you
also have to add a record for this cross-reference to P952000 in order for the
orchestration to invoke and perform the intended transaction in EnterpriseOne.

P952000 is generally used to set up cross-references for EnterpriseOne business
services. Before you can use it for IoT orchestration cross-references and white lists,
you must create a new user defined code (UDC) with which to associate the records
for use with IoT orchestrations. See Creating the "AIS" User Defined Code for IoT
Cross Reference and White List Records in this guide for details.

For instructions on how to add cross-reference and white list records, see the "Setting
Up Orchestration Cross-References" in the JD Edwards EnterpriseOne Tools
Interoperability Guide. When following the steps, make sure to perform these specific
steps when creating records for IoT cross-references and white lists:

1. When creating a cross-reference or white list record, you must select the AIS
option for the Cross Reference Type, which specifies that these records are for use
with IoT orchestrations.



Setting Up Cross-References and White Lists in EnterpriseOne (P952000)

4-22 JD Edwards EnterpriseOne Tools Internet of Things Orchestrator Guide

2. When you add a white list record, you must enter WHITELIST for the Third Party
App ID. This automatically changes the EOneValue column value to NA because
the EOneValue column is not applicable to a white list.

3. When setting up cross-references, you can enter multiple key cross-references by
delimiting the values with a pipe (|). These will be consumed based on the
cross-reference definition XML in the orchestration.

4.8.1 Creating the "AIS" User Defined Code for IoT Cross Reference and White List
Records

Before you can create cross-reference and white list records in EnterpriseOne, you
must create a user defined code (UDC) named "AIS" for these types of records.

Note: You do not have to create this UDC if you applied the
EnterpriseOne Applications ESU described in the Prerequisites section
in this guide. The UDC is installed with the ESU.

To create a UDC for AIS:

1. In EnterpriseOne, access Work With User Defined Codes (P0004A).

2. On Work With User Defined Codes, enter H95 in the Product Code field and enter
CT in the User Defined Codes field and click Find.

3. On the Work With User Defined Codes form, click Add.

4. On the User Defined Codes form, scroll to the last empty row of the detail area
and complete each column with the values listed here:



Using the EnterpriseOne Orchestrator Client to Build the Input Message and Test the Orchestration

Configuring an Orchestration 4-23

■ Codes = AIS

■ Description 1 = AIS Type Cross Reference

■ Hard Coded = N

5. Click the OK to save the new UDC.

See Also: "Working with User Defined Codes" in the JD Edwards
EnterpriseOne Tools Foundation Guide for more information about
setting up UDCs.

4.9 Setting up Orchestration Security
Before the EnterpriseOne Orchestrator can process an orchestration, authentication of
the JD Edwards EnterpriseOne user ID and password must take place. It is the
responsibility of the originator of the service request to tell the orchestration about the
user. The user's credentials must be supplied in a basic authorization header or in the
JSON body of the request. The user must also have authorized access to the
EnterpriseOne application in which the resulting transaction takes place.

The AIS service used with orchestrations is stateless; each call passes credentials to
establish a separate EnterpriseOne session. After the transaction is complete, the
session closes.

In addition to passing credentials for authentication, you can employ a second level of
security for the IoT Orchestrator through whitelisting. Whitelisting enables an initial
rudimentary pass/fail check of the incoming device signature against a predefined list
of signatures. A white list provides an additional layer of security to the IoT
Orchestrator security. If a value passed to the IoT Orchestrator is not a valid value
included in the orchestration's white list, the IoT Orchestrator rejects the input. For
more information, see Configuring White List XMLs in this guide.

4.10 Using the EnterpriseOne Orchestrator Client to Build the Input
Message and Test the Orchestration

The EnterpriseOne Orchestrator Client is a standalone web application that enables
you to build input JSON messages and test your orchestrations. In the Orchestration
Client, you can input a set of name-value pairs that represent the expected input of the
orchestration, and then execute a call to the orchestration with this input. The
Orchestrator Client works with the AIS Server and EnterpriseOne to test an
orchestration configuration.

The Orchestrator Client is available with a deployed AIS Server and runs in a Web
browser.

In the Orchestrator Client, you identify inputs that you defined in the XML, and then
you enter values for these inputs that you want the orchestration to pass into
EnterpriseOne. The Orchestrator Client invokes the orchestration, passing the test
values to the orchestration, which in turn uses the orchestration's service request
information to invoke an EnterpriseOne transaction through the AIS Server.

Oracle recommends that you use the Orchestrator Client with an EnterpriseOne test
environment, as the test results in an EnterpriseOne transaction that adds data to the
database.

To access the Orchestrator Client:



Using the EnterpriseOne Orchestrator Client to Build the Input Message and Test the Orchestration

4-24 JD Edwards EnterpriseOne Tools Internet of Things Orchestrator Guide

1. Enter the following URL in the Web browser's address bar:

http://<ais_server>:<port>/jderest/client

2. On the Orchestrator Client Sign In screen, enter your EnterpriseOne user
credentials, environment, and role. It is highly recommended that you enter an
EnterpriseOne environment used for testing, not a production environment.

3. Click the Login button.

To use the Orchestrator Client:

Note: Oracle recommends upgrading to EnterpriseOne Tools 9.1.5.6
before using the Orchestrator Client. If using Tools 9.1.5.5., you have
to manually enter the name of the orchestration in the Orchestration
Name field and manually enter the name of the inputs.

1. In the Orchestrator Client, click in the Orchestration Name field, and then select
an orchestration from the list of available orchestrations on the AIS Server.
Depending on the browser you are using, you might have to double-click in the
field to display the orchestration list.

2. After selecting the orchestration, tab out of the field or click anywhere else on the
form.

The Orchestrator Client displays the inputs or name-value pairs, which should be
defined in the orchestration.xml as the expected input for the orchestration. If the
inputs do not appear, then they are not defined in the orchestration.xml. You need
to update the orchestration.xml with a list of inputs before continuing.

3. In the Value column, enter a value for each input.

4. Click the add icon (plus symbol) to add and define additional inputs as necessary.

5. As an alternative to using the input fields, click the JSON Input check box if you
want to enter the input in JSON format directly in the Input area. (Available with
EnterpriseOne Tools release 9.1.5.6.)

6. Click the Generic Inputs check box if the orchestration uses the generic format for
inputs. If this check box is cleared or left unchecked, it indicates that the
orchestration uses the standard JD Edwards EnterpriseOne format.

For more information about input formats, see Supported Input Message Formats
in this guide.

7. Click the Run button to test the orchestration.

The Input area shows the input message in JSON format.

The Output area shows the result of the orchestration. If successful, it shows the
resulting forms from each form service call in JSON format. If unsuccessful, it
shows an error response in JSON format.

To verify the orchestration invoked the transaction in EnterpriseOne, access the
EnterpriseOne application and perform a search. If the results in the grid show
records with the new values, then the orchestration test was successful.

If the orchestration fails, you might have to modify the XML files on the server.
Make sure to click the XML Cache Refresh button to ensure the modified XMLs
are used on the next run.



Using the EnterpriseOne Orchestrator Client to Build the Input Message and Test the Orchestration

Configuring an Orchestration 4-25

8. To test another orchestration or start over, click the Clear button to reset the
Orchestration Client, which clears all values in the form.



Using the EnterpriseOne Orchestrator Client to Build the Input Message and Test the Orchestration

4-26 JD Edwards EnterpriseOne Tools Internet of Things Orchestrator Guide



5

Creating Custom Java for Orchestrations 5-1

5Creating Custom Java for Orchestrations

This chapter contains the following topics:

■ Section 5.1, "Understanding Custom Java for Orchestrations"

■ Section 5.2, "Creating Custom Java"

■ Section 5.3, "Deploying Custom Java"

5.1 Understanding Custom Java for Orchestrations
You can include a custom Java class for service requests and rules within an
orchestration. Within the custom Java classes, any number of private attributes can be
declared. As long as the accessor (get/set) methods are generated for the attributes, the
JD Edwards EnterpriseOne IoT Orchestrator can assign attributes from input values
from the orchestration. Then within the appropriate method, those values can be used
to make AIS calls into EnterpriseOne or any other logic to either evaluate a rule or
perform another action.

5.2 Creating Custom Java
When creating custom Java classes, you must reference these JAR files, which are
dependencies:

■ OrchestratorCustomJava.jar. This contains the definition of the interfaces.

■ AIS_Client.jar 1.1.0 or higher. This contains the loginEnvironment attribute and
enables AIS calls to JD Edwards EnterpriseOne.

It is not necessary to include these JARs with the deployment as they are already
deployed as part of the AIS Server deployment. After creating a custom Java class, you
deploy the Java class or Java classes to a JAR file.

A custom rule should implement the CustomRuleInterface class included with the
OrchestratorCustomJava.jar. The interface requires a loginEnvironment variable of
type com.oracle.e1.aisclient.LoginEnvironment and an evaluate() method that
takes no parameters and returns a Boolean value.

A custom service request should implement the CustomServiceRequestInterface class
also included with the OrchestratorCustomJava.jar. The interface will require a
loginEnvironment variable of type com.oracle.e1.aisclient.LoginEnvironment and
a process() method that takes no parameters and returns a
javax.ws.rs.core.Response.



Deploying Custom Java

5-2 JD Edwards EnterpriseOne Tools Internet of Things Orchestrator Guide

5.2.1 Using Custom Java for the Orchestration Service Request
Custom service request Java classes should implement the
com.oracle.e1.rest.orchestrator.customjava.CustomServiceRequstInterface
which requires the following methods:

■ setLoginEnvironment(com.oracle.e1.aisclient.LoginEnvironment
loginEnvironment). The method used to perform AIS calls.

■ process(). The method that returns javax.ws.rs.core.Response which is called
automatically after all the attributes are set.

5.2.2 Using Custom Java for the Orchestration Rule
Custom rule Java classes should implement the
com.oracle.e1.rest.orchestrator.customjava.CustomRuleInterface which
requries the following methods:

■ setLoginEnvironment(com.oracle.e1.aisclient.LoginEnvironment
loginEnvironment). The method used to perform AIS calls.

■ evaluate(). The method that returns Boolean and is called automatically after all
the attributes are set.

5.3 Deploying Custom Java
You must deploy the JAR file that contains the custom Java to the AIS Server. Follow
the instructions accordingly depending on the server on which the AIS Server is
installed:

■ Deploying Custom Java on AIS Server on Oracle WebLogic Server

■ Deploying Custom Java on AIS Server on IBM WebSphere Application Server

5.3.1 Deploying Custom Java on AIS Server on Oracle WebLogic Server
To deploy the custom Java JAR file to an AIS Server on Oracle WebLogic Server:

1. Deploy the JAR as a shared library on the same WebLogic Server on which the AIS
Server (otherwise referred to as the JDERestProxy) is deployed.

2. Restart the AIS Server using Server Manager.

3. Edit the weblogic.xml inside the JDERestProxy.war/WEB-INF to reference the
custom java shared library, for example:

<?xml version="1.0" encoding="UTF-8"?>
<weblogic-web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.bea.com/ns/weblogic/weblogic-web-app
http://www.bea.com/ns/weblogic/weblogic-web-app/1.0/weblogic-web-app.xsd"

xmlns="http://www.bea.com/ns/weblogic/weblogic-web-app">
<session-descriptor>

<cookie-path>/jderest</cookie-path>
<cookie-http-only>true</cookie-http-only>

</session-descriptor>
<context-root>jderest</context-root>
<library-ref>

<library-name>CustomJava</library-name>
</library-ref>

</weblogic-web-app>



Deploying Custom Java

Creating Custom Java for Orchestrations 5-3

4. Redeploy JDERestProxy from Server Manager.

5.3.2 Deploying Custom Java on AIS Server on IBM WebSphere Application Server
To deploy the custom Java JAR file to the AIS Server on Websphere Application Server:

1. Add the JAR as a shared library:

a. On WebSphere, expand Environment and select Shared Libraries.

b. In ClassPath, add the path to the JAR location on the server.

2. Associate the shared library with the JDERestProxy application:

a. In the left pane, expand Applications, Application Types, and then select
WebSphere enterprise applications.

b. Select the appropriate AIS deployment.

c. Under References, select Shared library references.



Deploying Custom Java

5-4 JD Edwards EnterpriseOne Tools Internet of Things Orchestrator Guide

d. Select the JDERestProxy check box and then select the Reference shared
libraries button.

e. Use the directional arrow to move the JAR file to the Selected group.

f. Click OK.

3. Synchronize Server Manager with the deployed application:

Saving the configuration in Websphere will redeploy the application, but you must
synchronize Server Manager to recognize the deployed application.

a. In Server Manager, locate the AIS Server and update a setting in the
Configuration section. This is required so that Server Manager detects a
change in the AIS Server when you click the Synchronize Configuration
button.

b. Apply the changes and then return to the AIS Server home page.

c. Click the Synchronize Configuration button to restart the AIS Server.



6

Managing IoT Orchestrations 6-1

6Managing IoT Orchestrations

This chapter contains the following topics:

■ Section 6.1, "Using Server Manager to Manage IoT Orchestrations"

■ Section 6.2, "Managing the Life Cycle of IoT Orchestrations"

■ Section 6.3, "Managing IoT Orchestration Modifications Using the AIS
Administration Service"

6.1 Using Server Manager to Manage IoT Orchestrations
Server Manager provides AIS Server settings for managing IoT orchestrations. These
settings include:

■ Full path to XML files. Enter the location of IoT orchestrations for processing by
the IoT Orchestrator. Make sure the path contains forward slashes (/). If the host is
a Windows machine, replace the backslashes with forward slashes.

■ Enable Admin Service. Click this option to activate the AIS Administration
Service, a service on the AIS Server that enables you to delete AIS Server cache
after modifying an orchestration. See Managing IoT Orchestration Modifications
Using the AIS Administration Service in this guide for more information.

■ AdminServiceUserList. Enter a comma delimited list of EnterpriseOne user IDs
for users allowed to run the AIS Administration Service. For example:

AdminServiceUserList=USR10,USR22, USR12

6.2 Managing the Life Cycle of IoT Orchestrations
Oracle recommends setting up different instances of the AIS Server: an instance for
designing and testing IoT orchestrations and another instance for production. This
enables you to test your orchestrations before making them available for runtime.

In Server Manager, for each AIS Server instance, make sure to include the path to the
orchestration XML files in the Full path to XML files field.

When your testing is complete, you can simply copy and paste the orchestration XML
files from the location identified in the test instance to the location used for
production.



Managing IoT Orchestration Modifications Using the AIS Administration Service

6-2 JD Edwards EnterpriseOne Tools Internet of Things Orchestrator Guide

6.3 Managing IoT Orchestration Modifications Using the AIS
Administration Service

The AIS Server caches all orchestration XML files processed by the IoT Orchestrator. If
you modify any orchestration XML files currently in use, you must clear the AIS
Server cache for the modified files to be used. Clearing the cache forces the AIS Server
to reload files from disk to cache, which is required for modifications to take effect.

Note: Clearing the cache is not necessary to run new orchestration
XML files.

You can clear the cache using either of the following methods:

■ Restarting the AIS Server. This method is not recommended because:

– If the IoT Orchestrator is currently running an orchestration, it will result in
invalid processing of that orchestration.

– It results in server downtime, which might affect other applications that use
the AIS Server.

■ Using the AIS Administration Service to clear the AIS Server cache
(recommended). The AIS Administration Service is a REST service on the AIS
Server that is exposed like any other service on the AIS Server.

Regardless of the method you use, Oracle recommends that you clear the cache only
on an AIS Server instance used for developing and testing orchestrations. Either
method clears the XML file cache for all orchestrations; you cannot clear the cache for
individual orchestrations.

Using the AIS Administration Service to Clear Cache
Before you can use the AIS Administrator Service, you have to activate the AIS Admin
Service option in the AIS Server instance's General settings in Server Manager.

You can run the service simply by placing a URL in a browser with valid
EnterpriseOne credentials. The AIS Administrator Service takes an EnterpriseOne
username and password as input. You can invoke the service using either a GET or a
POST HTTP method.

The URI is:

http://<ais_server>:<port>//jderest/adminservice

The AIS Administrator Service is able to take credentials in several forms.

For the GET call, you can either use Basic Authorization or you can provide the
username and password as URL parameters, for example:

http://<ais_
server>:<port>/jderest/adminservice?username=<userid>&password=<pwd>

For the POST operation you can use Basic Authorization, provide username and
password as parameters, or provide username and password as JSON input, for
example:

{
"username":"user",
"password":"pwd"
}



Managing IoT Orchestration Modifications Using the AIS Administration Service

Managing IoT Orchestrations 6-3

If the service succeeds, the response looks like this:

{"message":"All XML File Caches and X-Ref/Whitelist Caches have been
cleared and refreshed.","timeStamp":"2015-04-30:14.26.58"}

If the service fails, these are the possible reasons:

■ Invalid credentials, which is indicated by the following response:

{"message":"Error: Authorization Failure Server returned HTTP response
code: 403 for URL: http://<jas_
server>:<port>/jde/FormServiceRequest","exception":"com.oracle.e1.rest
.session.E1LoginException","timeStamp":"2015-04-30:14.28.59"}

■ Service disabled in settings, which is indicated by the following response:

{"message":"Error: Admin Service is disabled in configuration. No
action has been taken. ","timeStamp":"2015-04-30:14.31.41"}

■ User has not been added to the AIS Server's AdminServiceUserList setting in
Server Manager, which is indicated by the following response:

{"message":"User is not authorized to use the Admin
Service","timeStamp":"2015-07-07:14.23.25"}



Managing IoT Orchestration Modifications Using the AIS Administration Service

6-4 JD Edwards EnterpriseOne Tools Internet of Things Orchestrator Guide



A

Sample Orchestrations A-1

ASample Orchestrations

This appendix describes the prerequisite for using sample orchestrations and describes
how to use the following sample orchestrations which are intended for testing
purposes only:

■ Add Conditioned Based Maintenance Alert Sample Orchestration

■ Update Equipment Location Sample Orchestration

■ Update Meter Reading Sample Orchestration

A.1 Prerequisite
If you have not already done so, download the Sample Orchestrations package. See
Section 2.2, "Prerequisites" for download instructions.

A.2 Running the Sample Orchestrations
Use the EnterpriseOne Orchestrator Client to run each of the sample orchestrations.
Before you can run the sample orchestrations, copy the XML files for each sample to
the appropriate folder in the Orchestration directory. See Figure 4–1, "Orchestration
Directory Folders and Files".

After the XML files are in the directory, use the Orchestration Client to enter inputs
and test the sample orchestrations. The following sections in this appendix describe
the inputs, or name-value pairs, in the sample orchestration XML files. You enter these
inputs in the Orchestration Client to test the sample orchestrations. See Using the
EnterpriseOne Orchestrator Client to Build the Input Message and Test the
Orchestration for instructions on how to test the sample orchestrations.

A.3 Add Conditioned Based Maintenance Alert Sample Orchestration
The "Add Conditioned Based Maintenance Alert" sample orchestration conditionally
creates conditioned based alerts based on vibration and temperature readings from a
device. The orchestration is defined in the JDE_ORCH_Sample_
AddConditionBasedAlert.xml located in the Orchestrations folder. This sample
orchestration includes:

■ A cross-reference that converts the incoming SensorID into EquipmentNumber
and MeasurementLocation defined in the JDE_XREF_Sample_SensorLocation.xml
file in the CrossReferences folder.

■ An orchestration step to find the WarningRecipient and AlarmRecipient from the
EquipmentNumber, which is also a cross-reference defined in JDE_XREF_Sample_
AlertNotificationRecipients.xml.



Update Equipment Location Sample Orchestration

A-2 JD Edwards EnterpriseOne Tools Internet of Things Orchestrator Guide

■ A series of rules to determine if an alert is needed and if so, whether it is an alarm
or warning. The rules used for this orchestration are defined in the following XML
files in the Rules folder:

■ JDE_RULE_Sample_CBMAlarm_1.xml

■ JDE_RULE_Sample_CBMAlarm_2.xml

■ JDE_RULE_Sample_CBMAlarm_3.xml

■ JDE_RULE_Sample_CBMWarning.xml

■ If necessary, the alert is created using either the JDE_SREQ_Sample_AddCBAlert_
Alarm.xml or JDE_SREQ_Sample_AddCBAlert_Warning.xml defined in the
ServiceRequests folder. These service requests invoke the edit form (W1311B) of
P1311 application to create the conditioned based alert.

A.3.1 Sample Input
In the Orchestrator Client, use the following inputs to test the Add Conditioned Based
Maintenance Alert orchestration.

"inputs": [
{

"name": "SensorID",
"value": "1-345285J"

},
{

"name": "Date",
"value": "1433311200000"

},
{

"name": "Time",
"value": "12:15:15"

},
{

"name": "VibrationReading",
"value": "100"

},
{

"name": "TemperatureReading",
"value": "350"

}
]

}

A.4 Update Equipment Location Sample Orchestration
The "Update Equipment Location" sample orchestration creates a new equipment
location to store the current latitude and longitude of the asset. The orchestration is
defined in the JDE_ORCH_Sample_UpdateEquipmentLocation.xml file located in the
Orchestrations folder. This sample orchestration includes:

■ A cross-reference orchestration step that converts the incoming DeviceID into
EquipmentNumber. This cross-reference is defined in the JDE_XREF_Sample_
Equipment.xml file in the CrossReferences folder.

■ A final orchestration step that includes the service request JDE_SREQ_Sample_
UpdateEquipmentLocation.xml. This service request runs a series of applications



Update Meter Reading Sample Orchestration

Sample Orchestrations A-3

using the application stack service to create the equipment location details. The
application stack service flow performs the following tasks:

1. Accesses P1704 application - Work with Equipment Locations.

2. Invokes the Add button to create a new equipment location header record.

3. After the record is created, the record is queried back in the Work With
Equipment Locations form.

4. It then accesses the Details form and saves the latitude, longitude, and
elevation in this form.

A.4.1 Sample Input
{

"inputs": [
{

"name": "CustomerNumber",
"value": "4244"

},
{

"name": "SiteNumber",
"value": "4244"

},
{

"name": "DeviceID",
"value": "1-345213A"

},
{

"name": "Latitude",
"value": "39.649844"

},
{

"name": "Longitude",
"value": "-104.856342"

},
{

"name": "Elevation",
"value": "5642"

}
]

}

A.5 Update Meter Reading Sample Orchestration
The "Update Meter Reading" sample orchestration updates meter readings of a piece
of equipment. The orchestration is defined in the JDE_ORCH_Sample_
UpdateMeterReadings.xml file located in the Orchestrations folder. This sample
orchestration includes:

■ An initial white list orchestration step that validates that the incoming
EquipmentNumber is allowed to run the orchestration.

■ A final orchestration step that includes the service request JDE_SREQ_Sample_
UpdateMeterReadings.xml. This service request runs the Speed Meter Readings
application (P12120U) to update the fuel meter reading and the hour meter
reading of the passed in equipment number.



Update Meter Reading Sample Orchestration

A-4 JD Edwards EnterpriseOne Tools Internet of Things Orchestrator Guide

A.5.1 Sample Input
{

"inputs": [
{

"name": "EquipmentNumber",
"value": "34665"

},
{

"name": "NewFuelMeterReading",
"value": "13.2"

},
{

"name": "NewHourMeterReading",
"value": "101.7"

}
]

}



B

Troubleshooting B-1

BTroubleshooting

This appendix contains the following topics:

■ Section B.1, "Enable Debugging on the AIS Server"

■ Section B.2, "Troubleshooting Orchestration Runtime Issues"

B.1 Enable Debugging on the AIS Server
Turn on debugging on the AIS Server to generate an AIS Server log file. The log file
includes information for all orchestrations unless you activate user level logging. User
level logging generates logs based on the EnterpriseOne user ID. See "Available Log
Files" in the JD Edwards EnterpriseOne Tools Server Manager Guide for more information
about generating and managing log files.

The details in the log file can help you troubleshoot and resolve orchestration issues
and EnterpriseOne connection issues.

B.2 Troubleshooting Orchestration Runtime Issues

Interruption of EnterpriseOne Web Client When Running the JD Edwards
EnterpriseOne Orchestrator Client
If a user is signed in to the EnterpriseOne Web client and then opens the Orchestrator
Client in a new tab in the same browser, the user can no longer perform any actions in
the EnterpriseOne Web client. The EnterpriseOne Web client session is interrupted and
prompts the user to sign in again.

This issue is caused by an Orchestrator Client JSESSIONID cookie conflict with
WebSphere and occurs when both the EnterpriseOne AIS Server and EnterpriseOne
HTML Server are deployed on WebSphere on the same host. Both servers use the
JSESSIONID cookies for session management, which causes a conflict because both
JSESSIONID cookies are configured with a generic path.

To fix this issue, set up the cookie path of the AIS Server:

1. In the WebSphere administration console, navigate to the server: Application
servers, ais_server_name.

2. Under Container Settings, select Session Management.

3. Click Enable Cookies link.

4. Under Cookie path, make sure the "Set cookie path" option is selected and set the
cookie path to:

/jderest



Troubleshooting Orchestration Runtime Issues

B-2 JD Edwards EnterpriseOne Tools Internet of Things Orchestrator Guide

5. Restart the server.


	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Understanding the JD Edwards EnterpriseOne Internet of Things (IoT) Orchestrator
	1.1 Overview
	1.2 How It Works
	1.3 EnterpriseOne Architecture for IoT

	2 Getting Started
	2.1 Certifications (Formerly Known as Minimum Technical Requirements)
	2.2 Prerequisites
	2.3 Installing and Configuring the EnterpriseOne IoT Components
	2.4 Testing the EnterpriseOne IoT Implementation

	3 Designing an Orchestration
	3.1 Understanding the Orchestration Design Process
	3.2 Identifying the Problem and Solution
	3.3 Identifying the Data for the Orchestration
	3.4 Identifying the Rules for the Orchestration
	3.5 Identifying the Cross-Reference Information for the Orchestration
	3.6 Identifying the Service Request Information for the Orchestration

	4 Configuring an Orchestration
	4.1 Understanding Orchestrations and the Orchestration Directory Structure
	4.2 Configuring Service Request XMLs
	4.2.1 Understanding Service Request XMLs
	4.2.2 Understanding the Service Request XML Structure
	4.2.3 Defining the Service Request Metadata for the Orchestration
	4.2.4 Example of a Service Request XML

	4.3 Configuring Rules XMLs
	4.3.1 Understanding Rule XMLs
	4.3.2 Understanding the Rule XML Structure
	4.3.3 Defining the Rule Metadata for the Orchestration
	4.3.4 Example of a Rule XML

	4.4 Configuring Cross-Reference XMLs
	4.4.1 Understanding Cross-Reference XMLs
	4.4.2 Understanding the Cross-Reference XML Structure
	4.4.3 Defining the Cross-Reference Metadata
	4.4.4 Examples of Cross-Reference XML and Cross-Reference Records in EnterpriseOne

	4.5 Configuring White List XMLs
	4.5.1 Understanding White List XMLs
	4.5.2 Understanding the White List XML Structure
	4.5.3 Defining the White List Metadata for an Orchestration
	4.5.4 Examples of White List XML and White List Records in EnterpriseOne

	4.6 Configuring Orchestration XMLs
	4.6.1 Understanding Orchestration XMLs
	4.6.2 Understanding the Orchestration XML Structure
	4.6.3 Defining the Metadata for the Orchestration
	4.6.4 Example of an Orchestration XML

	4.7 Supported Input Message Formats
	4.8 Setting Up Cross-References and White Lists in EnterpriseOne (P952000)
	4.8.1 Creating the "AIS" User Defined Code for IoT Cross Reference and White List Records

	4.9 Setting up Orchestration Security
	4.10 Using the EnterpriseOne Orchestrator Client to Build the Input Message and Test the Orchestration

	5 Creating Custom Java for Orchestrations
	5.1 Understanding Custom Java for Orchestrations
	5.2 Creating Custom Java
	5.2.1 Using Custom Java for the Orchestration Service Request
	5.2.2 Using Custom Java for the Orchestration Rule

	5.3 Deploying Custom Java
	5.3.1 Deploying Custom Java on AIS Server on Oracle WebLogic Server
	5.3.2 Deploying Custom Java on AIS Server on IBM WebSphere Application Server


	6 Managing IoT Orchestrations
	6.1 Using Server Manager to Manage IoT Orchestrations
	6.2 Managing the Life Cycle of IoT Orchestrations
	6.3 Managing IoT Orchestration Modifications Using the AIS Administration Service
	A.1 Prerequisite
	A.2 Running the Sample Orchestrations
	A.3 Add Conditioned Based Maintenance Alert Sample Orchestration
	A.3.1 Sample Input

	A.4 Update Equipment Location Sample Orchestration
	A.4.1 Sample Input

	A.5 Update Meter Reading Sample Orchestration
	A.5.1 Sample Input

	B.1 Enable Debugging on the AIS Server
	B.2 Troubleshooting Orchestration Runtime Issues


