Performance and Tuning Guide
11g Release 1 (11.1.1)
E10108-04
February 2011
Oracle Fusion Middleware Performance and Tuning Guide 11g Release 1 (11.1.1)
E10108-04
Copyright © 2011, Oracle and/or its affiliates. All rights reserved.
Primary Author: Lisa Jamen
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.
This software is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software in dangerous applications.
Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.
This software and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
This guide describes how to monitor and optimize performance, review the key components that impact performance, use multiple components for optimal performance, and design applications for performance in the Oracle Fusion Middleware environment.
This preface contains these topics:
Oracle Fusion Middleware Performance and Tuning Guide is aimed at a target audience of Application developers, Oracle Fusion Middleware administrators, database administrators, and Web masters.
Our goal is to make Oracle products, services, and supporting documentation accessible to all users, including users that are disabled. To that end, our documentation includes features that make information available to users of assistive technology. This documentation is available in HTML format, and contains markup to facilitate access by the disabled community. Accessibility standards will continue to evolve over time, and Oracle is actively engaged with other market-leading technology vendors to address technical obstacles so that our documentation can be accessible to all of our customers. For more information, visit the Oracle Accessibility Program Web site at http://www.oracle.com/accessibility/
.
Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The conventions for writing code require that closing braces should appear on an otherwise empty line; however, some screen readers may not always read a line of text that consists solely of a bracket or brace.
Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or organizations that Oracle does not own or control. Oracle neither evaluates nor makes any representations regarding the accessibility of these Web sites.
Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/support/contact.html
or visit http://www.oracle.com/accessibility/support.html
if you are hearing impaired.
The following text conventions are used in this document:
Convention	Meaning
boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
monospace	Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.
This part describes basic performance concepts, how to measure performance, and designing applications for performance and scalability. It contains the following chapters:	
This section describes the contents and organization of this guide.	
Oracle Fusion Middleware Performance and Tuning Guide is for a target audience of Application developers, Oracle Fusion Middleware administrators, database administrators, and Web masters. This Guide assumes knowledge of Fusion Middleware Administration and hardware performance tuning fundamentals, WebLogic Server, XML, and the Java programming language.	
For more information, see the following documents in the Oracle Fusion Middleware 11g Release 1 (11.1.1) documentation set:	
For additional documentation resources, see Appendix A, "Related Reading and References".	
This chapter describes the top tuning areas for Oracle Fusion Middleware. It covers critical Oracle Fusion Middleware performance areas and provides a quick start for tuning Java EE applications in the following sections:	
One of the most challenging aspects of performance tuning is knowing where to begin. This chapter serves as a 'quick start' guide to performance tuning your Oracle Fusion Middleware applications.	
Table 2-1 provides a list of common performance considerations for Oracle Fusion Middleware. While the list is a useful tool in starting your performance tuning, it is not meant to be comprehensive list of areas to tune. You must monitor and track specific performance issues within your application to understand where tuning can improve performance. See Chapter 4, "Monitoring Oracle Fusion Middleware" for more information.	
Table 2-1 Top Performance Areas for Oracle Fusion Middleware	
Performance Area	Description and Reference
---	---
Hardware Resources	Ensure that your hardware resources meet or exceed the application's resource requirements to maximize performance. See Section 2.2, "Ensure the Hardware Resources are Sufficient" for information on how to determine if your hardware resources are sufficient.
Operating System	Each operating system has native tools and utilities that can be useful for monitoring purposes.
Java Virtual Machines (JVMs)	This section discusses best practices and provides practical tips to tune the JVM and improve the performance of a Java EE application. It also discusses heap size and JVM garbage collection options.
Database	For applications that access a database, ensure that your database is properly configured to support your application's requirements. See Section 2.6, "Tune Database Parameters" for more information on garbage collection.
WebLogic Server	If your Oracle Fusion Middleware applications are using the WebLogic Server, see Section 2.5, "Tune the WebLogic Server".
Database Connections	Pooling the connections so they are reused is an important tuning consideration.
Data Source Statement Caching	For applications that use a database, you can lower the performance impact of repeated statement parsing and creation by configuring statement caching properly.
Oracle HTTP Server	Tune the Oracle HTTP Server directives to set the level of concurrency by specifying the number of HTTP connections.
Concurrency	This section discusses ways to control concurrency with Oracle Fusion Middleware components.
Logging Levels	Logging levels are thresholds that a system administrator sets to control how much information is logged. Performance can be impacted by the amount of information that applications log therefore it is important to set the logging levels appropriately.
A key component of managing the performance of Oracle Fusion Middleware applications is to ensure that there are sufficient CPU, memory, and network resources to support the user and application requirements for your installation.	
No matter how well you tune your applications, if you do not have the appropriate hardware resources, your applications cannot reach optimal performance levels. Oracle Fusion Middleware has minimum hardware requirements for its applications and database tier. For details on Oracle Fusion Middleware supported configurations, see "System Requirements and Prerequisites" in the Oracle Fusion Middleware Installation Planning Guide for your platform.	
Sufficient hardware resources should meet or exceed the acceptable response times and throughputs for applications without becoming saturated. To verify that you have sufficient hardware resources, you should monitor resource utilization over an extended period to determine if (or when) you have occasional peaks of usage or whether a resource is consistently saturated. For more information on monitoring, see Chapter 4, "Monitoring Oracle Fusion Middleware".	
Tip: Your target CPU usage should not reach 100% utilization. You should determine a target CPU utilization based on your application needs, including CPU cycles for peak usage.If your CPU utilization is optimized at 100% during normal load hours, you have no capacity to handle a peak load. In applications that are latency sensitive and maintaining a fast response time is important, high CPU usage (approaching 100% utilization) can increase response times while throughput stays constant or even decreases. For such applications, a 70% - 80% CPU utilization is recommended. A good target for non-latency sensitive applications is about 90%.	
If any of the hardware resources are saturated (consistently at or near 100% utilization), one or more of the following conditions may exist:	
For a consistently saturated resource, the solutions are to reduce load or increase resources. For peak traffic periods when the increased response time is not acceptable, consider increasing resources or determine if there is traffic that can be rescheduled to reduce the peak load, such as scheduling batch or background operations during slower periods.	
Oracle Fusion Middleware provides a variety of mechanisms to help you control resource concurrency; this can limit the impact of bursts of traffic. However, for a consistently saturated system, these mechanisms should be viewed as temporary solutions. For more information see Section 2.9, "Control Concurrency".	
Each operating system has native tools and utilities that can be useful for monitoring and tuning purposes. Native operating system commands enable you to monitor CPU utilization, paging activity, swapping, and other system activity information.	
For details on operating system commands, and guidelines for performance tuning of the network or operating system, refer to the documentation provided by the operating system vendor.	
How you tune your JVM greatly affects the performance of Oracle Fusion Middleware and your applications.	
Note: To maximize performance from your JVM, be sure that you use only production JVMs on which your applications have been certified and that your operating system patches are up-to-date.The Supported Configurations pages at	
This section covers the following performance tuning areas for your JVM:	
See Also: The JVM provides a variety of parameters to enable you to more finely tune heap management and garbage collection behavior.For more information, see the references listed in Appendix A: Oracle JRockit Java Virtual Machine (JVM).	
Garbage collection is the JVM process of freeing up unused Java objects in the Java heap. JVM garbage collection can be a resource-intensive operation and may effect application performance. In some cases, inefficient garbage collection can severely degrade application performance. Therefore, it is important to understand how applications create and destroy objects.	
This section cover the following Garbage Collection tuning options:	
An acceptable rate for garbage collection is application-specific and should be adjusted after analyzing the actual time and frequency of garbage collections. If you set a large heap size, full garbage collection is slower, but it occurs less frequently. If you set your heap size in accordance with your memory needs, full garbage collection is faster, but occurs more frequently.	
To tune the JVM garbage collection options you must analyze garbage collection data and check for the frequency and type of garbage collections, the size of the memory pools, and the time spent on garbage collection.	
Before you configure JVM garbage collection, analyze the following data points:	
You can manually log garbage collection and memory pool sizes using verbose garbage collection logging:	
Look for "Full GC" to identify major collections.	
For more information on Sun's options, see http://java.sun.com/javase/technologies/hotspot/gc/index.jsp	
NOTE: Oracle provides other command-line options to improve the performance of your JRockit VM. For detailed information, see "JRockit JDK Command Line Options by Name" at http://download.oracle.com/docs/cd/E13150_01/jrockit_jvm/jrockit/webdocs/index.html	
The goal of tuning your heap size is to minimize the time that your JVM spends doing garbage collection while maximizing the number of clients that the Fusion Middleware stack can handle at a given time.	
Specifically the Java heap is where the objects of a Java program live. It is a repository for live objects, dead objects, and free memory. When an object can no longer be reached from any pointer in the running program, it is considered "garbage" and ready for collection. A best practice is to tune the time spent doing garbage collection to within 5% of execution time.	
The JVM heap size determines how often and how long the virtual machine spends collecting garbage. An acceptable rate for garbage collection is application-specific and should be adjusted after analyzing the actual time and frequency of garbage collections. If you set a large heap size, full garbage collection is slower, but it occurs less frequently. If you set your heap size in accordance with your memory needs, full garbage collection is faster, but occurs more frequently.	
In production environments, set the minimum heap size and the maximum heap size to the same value to prevent wasting virtual machine resources used to constantly grow and shrink the heap. Ensure that the sum of the maximum heap size of all the JVMs running on your system does not exceed the amount of available physical RAM. If this value is exceeded, the Operating System starts paging and performance degrades significantly. The virtual machine always uses more memory than the heap size. The memory required for internal virtual machine functionality, native libraries outside of the virtual machine, and permanent generation memory (memory required to store classes and methods) is allocated in addition to the heap size settings.	
For example, you can use the following JVM options to tune the heap:	
-Xmx	
. -Xmx	
. -Xns:<nursery size>	
to tune the size of the nursery. -Xmn	
to tune the size of the heap for the young generation. If you receive java.lang.OutOfMemoryError: PermGen space errors, you may also need to increase the permanent generation space.	
See Also: For more information on tuning the young generation see the "Young Generation" section of the Java SE 6 HotSpot Virtual Machine Garbage Collection Tuning athttp://java.sun.com/javase/technologies/hotspot/gc/gc_tuning_6.html#generation_sizing.young_gen For more information on Oracle JRockit heap configurations, see "Setting the Heap and Nursery Size" in Diagnostics Guide at For the Sun java virtual machine see the "Insufficient Memory" section of "Monitoring and Managing Java SE 6 Platform Applications" at "Out of Memory" Frequently Asked Questions section at	
Depending on which JVM you are using, you can choose from several garbage collection schemes to manage your system memory. Some garbage collection schemes are more appropriate for a given type of application. Once you have an understanding of the workload of the application and the different garbage collection algorithms utilized by the JVM, you can optimize the configuration of the garbage collection.	
Refer to the following links for garbage collection options for your JVM:	
http://java.sun.com/javase/technologies/hotspot/gc/gc_tuning_6.html	
. http://java.sun.com/j2se/reference/whitepapers/memorymanagement_whitepaper.pdf	
. http://download.oracle.com/docs/cd/E13150_01/jrockit_jvm/jrockit/webdocs/index.html	
. The following parameters are used to help diagnose whether explicit garbage collections are occurring. They can also be used to disable the explicit garbage collections if necessary until the code is fixed:	
-XX:+DisableExplicitGC	
For more information on using the explicit garbage collections, see "Java SE 6 HotSpot Virtual Machine Garbage Collection Tuning " at http://java.sun.com/javase/technologies/hotspot/gc/gc_tuning_6.html	
.	
-XXnoSystemGC	
For more information on tuning the Oracle JRockit, see at http://download.oracle.com/docs/cd/E13188_01/jrockit/geninfo/diagnos/bestpractices.html	
These parameters disable explicit garbage collection. Applications should avoid the use of system.gc() calls. If you suspect an application may be explicitly triggering garbage collection, set this parameter and observe the differences in your garbage collection behavior. If you detect that performance is affected by explicit collections, check the code to determine where explicit garbage collections are used and why, and the impact of disabling the calls. Application developers sometimes use system.gc() calls to trigger finalizers. This is not a recommended practice and can yield indeterminate behavior.	
WebLogic Server enables you to automatically log low memory conditions observed by the server. WebLogic Server detects low memory by sampling the available free memory a set number of times during a time interval. At the end of each interval, an average of the free memory is recorded and compared to the average obtained at the next interval. If the average drops by a user-configured amount after any sample interval, the server logs a low memory warning message in the log file and sets the server health state to "warning."	
See Also: For more information on using WebLogic Server to detect low memory conditions refer to the following:"Log low memory conditions" in Oracle Fusion Middleware Oracle WebLogic Server Administration Console Online Help. "Automatically Logging Low Memory Conditions" in Oracle Fusion Middleware Performance and Tuning for Oracle WebLogic Server	
Monitoring the performance of your JVM is crucial to achieving optimal performance. Depending on your platform, the following tools can be used to monitor and profile your JVM:	
Oracle JRockit Mission Control is a suite of tools designed to monitor, manage, profile, and eliminate memory leaks in your Java application without the performance impacts normally associated with these types of tools.	
For more information on the Oracle JRockit Mission Control see: http://download.oracle.com/docs/cd/E13188_01/jrockit/tools/index.html	
The Java™ Platform comes with the following monitoring facilities built-in:	
For more information on the Java platform monitoring tools, see: http://java.sun.com/developer/technicalArticles/J2SE/monitoring/	
If your Oracle Fusion Middleware applications are using the WebLogic Server, see "Top Tuning Recommendations for WebLogic Server" in Oracle Fusion Middleware Performance and Tuning for Oracle WebLogic Server.	
To achieve optimal performance for applications that use the Oracle database, the database tables you access must be designed with performance in mind. Monitoring and tuning the database ensures that you get the best performance from your applications.	
This section covers the following:	
Note: Always check the tuning guidelines in your database-specific vendor documentation. For more information on tuning the Oracle database, see the Oracle Database Performance Tuning Guide.	
The following tables provide common init.ora parameters and their descriptions. Consider following these guidelines to set the database parameters. Ultimately, however, the DBA should monitor the database health and tune parameters based on the need. See the following tables for more information:	
Consider applying Patch Set Release (PSR) 11.1.0.7 and upgrade the database prior to attempting the following modifications.	
The following table describes several performance-related database initialization parameters for Oracle 10g database.	
Table 2-2 Important init.ora Oracle 10g Database Tuning Parameters	
Database Parameter	Description
---	---
DB_BLOCK_SIZE	DB_BLOCK_SIZE specifies (in bytes) the size of Oracle database blocks. The default block size of 8K is optimal for most systems. Set this parameter at the time of database creation.
NLS_SORT	NLS_SORT specifies the collating sequence for ORDER BY queries. If the value is BINARY, then the collating sequence for ORDER BY queries is based on the numeric value of characters (a binary sort that requires fewer system resources). If the value is a named linguistic sort, sorting is based on the order of the defined linguistic sort. Most (but not all) languages supported by the NLS_LANGUAGE parameter also support a linguistic sort with the same name.
OPEN_CURSORS	OPEN_CURSORS specifies the maximum number of open cursors (handles to private SQL areas) a session can have at once. You can use this parameter to prevent a session from opening an excessive number of cursors. It is important to set the value of OPEN_CURSORS high enough to prevent your application from running out of open cursors. The number varies from one application to another. Assuming that a session does not open the number of cursors specified by OPEN_CURSORS, there is no added performance impact to setting this value higher than actually needed.
SESSION_CACHED_CURSORS	SESSION_CACHED_CURSORS specifies the number of session cursors to cache. Repeated parse calls of the same SQL statement cause the session cursor for that statement to be moved into the session cursor cache. Subsequent parse calls find the cursor in the cache and do not reopen the cursor. Oracle uses a least recently used algorithm to remove entries in the session cursor cache to make room for new entries when needed. This parameter also constrains the size of the PL/SQL cursor cache which PL/SQL uses to avoid having to re-parse as statements are re-executed by a user.
SESSION_MAX_OPEN_FILES	SESSION_MAX_OPEN_FILES specifies the maximum number of BFILEs that can be opened in any session. Once this number is reached, subsequent attempts to open more files in the session by using DBMS_LOB.FILEOPEN() or OCILobFileOpen() may fail. The maximum value for this parameter depends on the equivalent parameter defined for the underlying operating system.
JOB_QUEUE_PROCESSES	JOB_QUEUE_PROCESSES specifies the maximum number of processes that can be created for the execution of jobs. It specifies the number of job queue processes per instance.
LOG_BUFFER	LOG_BUFFER specifies the amount of memory (in bytes) that Oracle uses when buffering redo entries to a redo log file. Redo log entries contain a record of the changes that have been made to the database block buffers. The LGWR process writes redo log entries from the log buffer to a redo log file.
UNDO_MANAGEMENT	UNDO_MANAGEMENT specifies which undo space management mode the system should use. When set to AUTO, the instance starts in automatic undo management mode. In manual undo management mode, undo space is allocated externally as rollback segments.
PL_SQL_CODE_TYPE	PLSQL_CODE_TYPE specifies the compilation mode for PL/SQL library units. INTERPRETED: PL/SQL library units are compiled to PL/SQL bytecode format. Such modules are executed by the PL/SQL interpreter engine. NATIVE: PL/SQL library units are compiled to native (machine) code. Such modules are executed natively without incurring any interpreter impacts.
PROCESSES	Sets the maximum number of operating system processes that can be connected to Oracle concurrently. The value of this parameter must account for Oracle background processes. SESSIONS parameter is deduced from this value.
PGA_AGGREGATE_TARGET	Specifies the target aggregate PGA memory available to all server processes attached to the instance.
SGA_MAX_SIZE	This parameter is the maximum size of the SGA for a running instance. Set this parameter to the amount of memory that you want dedicated for the SGA, which includes the following memory pools:
Ensure that you regularly monitor the buffer cache hit ratio and size the SGA so that the buffer cache has an adequate number of frames for the workload. The buffer cache hit ratio may be calculated from data in the view	
SGA_TARGET	Setting this parameter to a nonzero value enables Automatic Shared Memory Management. Consider using automatic memory management, both to simplify configuration and to improve performance.
TRACE_ENABLED	TRACE_ENABLED controls tracing of the execution history, or code path, of Oracle. Oracle Support Services uses this information for debugging. Although the performance impacts incurred from processing is not excessive, you may improve performance by setting TRACE_ENABLED to FALSE.
The following table provides information on some important performance-related database initialization parameters for Oracle 11g database.	
Table 2-3 Important inti.ora Oracle 11g Database Tuning Parameters	
Database Parameter	Description
---	---
AUDIT_TRAIL	AUDIT_TRAIL enables or disables database auditing.
MEMORY_MAX_TARGET	MEMORY_MAX_TARGET specifies the maximum value to which a DBA can set the MEMORY_TARGET initialization parameter.
MEMORY_TARGET	MEMORY_TARGET specifies the Oracle system-wide usable memory. The database tunes memory to the MEMORY_TARGET value, reducing or enlarging the SGA and PGA as needed.
PGA_AGGREGATE_TARGET	Specifies the target aggregate PGA memory available to all server processes attached to the instance. In Oracle 11g, set MEMORY_TARGET instead of setting SGA and the PGA separately.
SGA_MAX_SIZE	Consider setting MEMORY_TARGET instead of setting SGA and the PGA separately.
SGA_TARGET	Consider setting MEMORY_TARGET instead of setting SGA and the PGA separately.
Managing the database I/O load balancing is a non-trivial task. However, tuning the redo log options can provide performance improvement for applications running in an Oracle Fusion Middleware environment, and in some cases, you can significantly improve I/O throughput by moving the redo logs to a separate disk.	
The size of the redo log files can also influence performance, because the behavior of the database writer and archiver processes depend on the redo log sizes. Generally, larger redo log files provide better performance by reducing checkpoint activity. It is not possible to provide a specific size recommendation for redo log files, but redo log files in the range of a hundred megabytes to a few gigabytes are considered reasonable. Size your online redo log files according to the amount of redo your system generates. A rough guide is to switch logs at most once every twenty minutes. Set the initialization parameter LOG_CHECKPOINTS_TO_ALERT = TRUE	
to have checkpoint times written to the alert file.	
The complete set of required redo log files can be created during database creation. After they are created, the size of a redo log size cannot be changed. New, larger files can be added later, however, and the original (smaller) ones can be dropped. For more information see the Oracle Database Performance Tuning Guide.	
For permanent tablespaces, consider using automatic segment-space management. Such tablespaces, often referred to as bitmap tablespaces, are locally managed tablespaces with bitmap segment space management.	
For backward compatibility, the default local tablespace segment-space management mode is MANUAL	
.	
For more information, see "Free Space Management" in Oracle Database Concepts, and "Specifying Segment Space Management in Locally Managed Tablespaces" in Oracle Database Administrator's Guide.	
Creating a database connection is a relatively resource intensive process in any environment. Typically, a connection pool starts with a small number of connections. As client demand for more connections grow, there may not be enough in the pool to satisfy the requests. WebLogic Server creates additional connections and adds them to the pool until the maximum pool size is reached.	
One way to avoid connection creation delays is to initialize all connections at server startup, rather than on-demand as clients need them. This may be appropriate if your load is predictable and even. Set the initial number of connections equal to the maximum number of connections in the Connection Pool tab of your data source configuration. Determine the optimal value for the Maximum Capacity as part of your pre-production performance testing.	
If your load is uneven, and has a much higher number of connections at peak load than at typical load, consider setting the initial number of connections equal to your typical load. In addition, consider setting the maximum number of connections based on your supported peak load. With these configurations, WebLogic server can free up some connections when they are not used for a period of time.	
For more information, see "Tuning Data Source Connection Pool Options" in Oracle Fusion Middleware Configuring and Managing JDBC for Oracle WebLogic Server.	
When you use a prepared statement or callable statement in an application or EJB, there may be a performance impact associated with the processing of the communication between the application server and the database server and on the database server. To minimize the processing impact, enable the data source to cache prepared and callable statements used in your applications. When an application or EJB calls any of the statements stored in the cache, the server reuses the statement stored in the cache. Reusing prepared and callable statements reduces CPU usage on the database server, improving performance for the current statement and leaving CPU cycles for other tasks.	
Each connection in a data source has its own individual cache of prepared and callable statements used on the connection. However, you configure statement cache options per data source. That is, the statement cache for each connection in a data source uses the statement cache options specified for the data source, but each connection caches it's own statements. Statement cache configuration options include:	
You can use the Administration Console to set statement cache options for a data source. See "Configure the statement cache for a JDBC data source" in the Oracle Fusion Middleware Oracle WebLogic Server Administration Console Online Help.	
For more information on using statement caching, see "Increasing Performance with the Statement Cache" in the Oracle Fusion Middleware Configuring and Managing JDBC for Oracle WebLogic Server.	
Limiting concurrency, at multiple layers of the system to match specific usage needs, can greatly improve performance. This section discusses a few of the areas within Oracle Fusion Middleware where concurrency can be controlled.	
When system capacity is reached, and a web server or application server continues to accept requests, application performance and stability can deteriorate. There are several places within Oracle Fusion Middleware where you can throttle the requests to avoid overloading the mid-tier or database tier systems and tune for best performance.	
Oracle HTTP Server uses directives in httpd.conf	
. This configuration file specifies the maximum number of HTTP requests that can be processed simultaneously, logging details, and certain limits and time outs.	
For more information on modifying the httpd.conf file, see "Configuring Oracle HTTP Server" in Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server.	
You can use the MaxClients	
and ThreadsPerChild	
directives to limit incoming requests to WebLogic instances from the Oracle HTTP Server based on your expected client load and system resources. The following sections describe some Oracle HTTP Server tuning parameters related to connection limits that you typically need to tune based on your expected client load. See Chapter 5, "Oracle HTTP Server Performance Tuning" for more information and a more complete list of tunable parameters.	
Note: TheMaxClients parameter is applicable only to UNIX platforms and on Microsoft Windows (mpm_winnt), the same is achieved through the ThreadsPerChild and ThreadLimit parameters.	
The MaxClients	
property specifies a limit on the total number of server threads running, that is, a limit on the number of clients who can simultaneously connect. If the number of client connections reaches this limit, then subsequent requests are queued in the TCP/IP system up to the limit specified (in the ListenBackLog directive).	
You can configure the MaxClients	
directive in the httpd.conf file up to a maximum of 8K (the default value is 150). If your system is not resource-saturated and you have a user population of more than 150 concurrent HTTP connections, you can improve your performance by increasing MaxClients	
to increase server concurrency. Increase MaxClients	
until your system becomes fully utilized (85% is a good threshold).	
When system resources are saturated, increasing MaxClients	
does not improve performance. In this case, the MaxClients	
value could be reduced as a throttle on the number of concurrent requests on the server.	
If the server handles persistent connections, then it may require sufficient concurrent httpd server processes to handle both active and idle connections. When you specify MaxClients	
to act as a throttle for system concurrency, you need to consider that persistent idle httpd connections also consume httpd processes. Specifically, the number of connections includes the currently active persistent and non-persistent connections and the idle persistent connections. When there are no httpd server threads available, connection requests are queued in the TCP/IP system until a thread becomes available, and eventually clients terminate connections.	
You can define a number of server processes and the threads per process (ThreadsPerChild	
) to handle the incoming connections to Oracle HTTP Server. The ThreadsPerChild	
property specifies the upper limit on the number of threads that can be created under a server (child) process.	
Note: ThreadsPerChild , StartServers , and ServerLimit properties are inter-related with the MaxClients setting. All of these properties must be set appropriately to achieve the number of connections as specified by MaxClients . See Table 5-1, "Oracle HTTP Server Configuration Properties" for a description of all the HTTP configuration properties.	
A persistent, KeepAlive	
, HTTP connection consumes an httpd child process, or thread, for the duration of the connection, even if no requests are currently being processed for the connection.	
If you have sufficient capacity, KeepAlive	
should be enabled; using persistent connections improves performance and prevents wasting CPU resources re-establishing HTTP connections. Normally, you should not need to change KeepAlive	
parameters.	
Note: The default maximum requests for a persistent connection is 100, as specified with theMaxKeepAliveRequests directive in httpd.conf. By default, the server waits for 15 seconds between requests from a client before closing a connection, as specified with the KeepAliveTimeout directive in httpd.conf.	
The Oracle HTTP Server (OHS) uses the mod_wl_ohs module to route requests to the underlying Weblogic server or the Weblogic Server cluster. The configuration details for mod_wl_ohs are available in the mod_wl_ohs.conf	
file in the config directory.	
For more information on the tuning parameters for mod_wl_ohs see, "Understanding Oracle HTTP Server Modules" in Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server.	
For applications that use a database, performance can improve when the connection pool associated with a data source limits the number of connections. You can use the MaxCapacity	
attribute to limit the database requests from Oracle Application Server so that incoming requests do not saturate the database, or to limit the database requests so that the database access does not overload the Oracle Application Server-tier resource.	
The connection pool MaxCapacity	
attribute specifies the maximum number of connections that a connection pool allows. By default, the value of MaxCapacity	
is set to 15. For best performance, you should specify a value for MaxCapacity	
that matches the number appropriate to your database performance characteristics.	
Limiting the total number of open database connections to a number your database can handle is an important tuning consideration. You should check to make sure that your database is configured to allow at least as large a number of open connections as the total of the values specified for all the data sources MaxCapacity	
option, as specified in all the applications that access the database.	
See Also: "JDBC Data Source: Configuration: Connection Pool" in the Oracle Fusion Middleware Oracle WebLogic Server Administration Console Online Help."Tuning Data Source Connection Pool Options" in Oracle Fusion Middleware Configuring and Managing JDBC for Oracle WebLogic Server.	
By default WebLogic Server uses a single thread pool, in which all types of work are executed. WebLogic Server uses Work Managers to prioritize work based on rules you can define, and run-time metrics, including the actual time it takes to execute a request and the rate at which requests are entering and leaving the pool. There is a default work manager that manages the common thread pool.	
The common thread pool changes its size automatically to maximize throughput. WebLogic Server monitors throughput over time and based on history, determines whether to adjust the thread count. For example, if historical throughput statistics indicate that a higher thread count increased throughput, WebLogic increases the thread count. Similarly, if statistics indicate that fewer threads did not reduce throughput, WebLogic decreases the thread count.	
Since the WebLogic Server thread pool by default is sized automatically, in most situations you do not need to tune this. However, for special requirements, an administrator can configure custom Work Managers to manage the thread pool at a more granular level for sets of requests that have similar performance, availability, or reliability requirements. With custom work managers, you can define priorities and guidelines for how to assign pending work (including specifying a min threads or max threads constraint, or a constraint on the total number of requests that can be queued or executing before WebLogic Server begins rejecting requests).	
Use the following guidelines to help you determine when to use Work Managers to customize thread management:	
This usually occurs in situations where one application needs to be given a higher priority over another.	
To ensure MDBs use a well-defined share of server thread resources, and to tune MDB concurrency, most MDBs should be modified to reference a custom work manager that has a max-threads-constraint. In general, a custom work manager is useful when you have multiple MDB deployments, or if you determine that a particular MDB needs more threads.	
See Also: For more information on how to use custom Work Managers to customize thread management, and when to use custom work managers, see the following:	
You can use Oracle WebLogic Administration Console to view general information about the status of the thread pool (such as active thread count, total thread count, and queue length.) You can also use the Console to view each application's scoped work manager metrics from the Workload tab on the Monitoring page. The metrics provided include the number of pending requests and number of completed requests. For more information, see "Servers: Monitoring: Threads" and "Deployments: Monitoring: Workload" in the Oracle Fusion Middleware Oracle WebLogic Server Administration Console Online Help. The work manager and thread pool metrics can also be viewed from the Oracle Fusion Middleware Control. For more information, see Section 4.2.1, "Viewing Performance Metrics Using Fusion Middleware Control".	
Oracle WebCenter has its own controls for managing concurrency. See "Configuring Concurrency Management" in Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter.	
The Oracle BPEL Process Manager has its own thread controls and specialized tuning. See Section 13.2.1, "BPEL Threading Model".	
The amount of information that applications log depends on how the environment is configured and how the application code is instrumented. To maximize performance it is recommended that the logging level is not set higher than the default INFO level logging. If the logging setting does not match the default level, reset the logging level to the default for best performance.	
Once the application and server logging levels are set appropriately, ensure that the debugging properties or other application level debugging flags are also set to appropriate levels or disabled. To avoid performance impacts, do not set log levels to levels that produce more diagnostic messages, including the FINE	
or TRACE	
levels.	
This chapter discusses performance and tuning concepts for Oracle Fusion Middleware. This chapter contains the following sections:	
To maximize Oracle Fusion Middleware performance, you must monitor, analyze, and tune all the components that are used by your applications. This guide describes the tools that you can use to monitor performance and the techniques for optimizing the performance of Oracle Fusion Middleware components.	
Performance tuning usually involves a series of trade-offs. After you have determined what is causing the bottlenecks, you may have to modify performance in some other areas to achieve the expected results. However, if you have a clearly defined plan for achieving your performance objectives, the decision on what to trade for higher performance is easier because you have identified the most important areas.	
If you are new to Oracle Fusion Middleware, or if you would like more information on the Oracle Fusion Middleware components, refer to documentation listed in Appendix A, "Related Reading and References".	
The Fusion Middleware components are built for performance and scalability. To maximize the performance capabilities of your applications, you must build performance and scalability into your design. The performance plan should address the current performance requirements, the existing issues (such as bottlenecks or insufficient hardware resources) and any anticipated variances in load, users or processes. The performance plan should also address how the components scale during peak usage without impacting performance.	
The following sections of this chapter discuss the steps you should take to help create a plan to tune your application environment and optimize performance:	
Before you can begin performance tuning your applications, you must first identify the performance objectives you hope to achieve. To determine your performance objectives, you must understand the applications deployed and the environmental constraints placed on the system.	
To understand what your performance objectives are, you must complete the following steps:	
Performance objectives are limited by constraints, such as:	
There is no single formula for determining your hardware requirements. The process of determining what type of hardware and software configuration is required to meet application needs adequately is called capacity planning.	
Capacity planning requires assessment of your system performance goals and an understanding of your application. Capacity planning for server hardware should focus on maximum performance requirements. For more information on capacity planning, see Chapter 27, "Capacity Planning".	
Understanding these constraints - and their impacts - ensure that you set realistic performance objectives for your application environment, such as response times, throughput, and load on specific hardware.	
Before you begin to deploy and tune your application on Oracle Fusion Middleware, it is important to clearly define the operational environment. The operational environment is determined by high-level constraints and requirements such as:	
Whether you are designing a new system or maintaining an existing system, you should set specific performance goals so that you know how and what to optimize. To determine your performance objectives, you must understand the application deployed and the environmental constraints placed on the system.	
Gather information about the levels of activity that components of the application are expected to meet, such as:	
Application developers, database administrators, and system administrators must be careful to set appropriate performance expectations for users. When the system carries out a particularly complicated operation, response time may be slower than when it is performing a simple operation. Users should be made aware of which operations might take longer.	
For example, you might want to ensure that 90% of the users experience response times no greater than 5 seconds and the maximum response time for all users is 20 seconds. Usually, it's not that simple. Your application may include a variety of operations with differing characteristics and acceptable response times. You need to set measurable goals for each of these.	
You also need to determine how variances in the load can affect the response time. For example, users might access the system heavily between 9:00am and 10:00am and then again between 1:00pm and 2:00pm, as illustrated by the graph in Figure 3-1. If your peak load occurs on a regular basis, for example, daily or weekly, the conventional wisdom is to configure and tune systems to meet your peak load requirements. The lucky users who access the application in off-time can experience better response times than your peak-time users. If your peak load is infrequent, you may be willing to tolerate higher response times at peak loads for the cost savings of smaller hardware configurations.	
With clearly defined performance goals and performance expectations, you can readily determine when performance tuning has been successful. Success depends on the functional objectives you have established with the user community, your ability to measure whether the criteria are being met, and your ability to take corrective action to overcome any exceptions.	
Ongoing performance monitoring enables you to maintain a well-tuned system. Keeping a history of the application's performance over time enables you to make useful comparisons. With data about actual resource consumption for a range of loads, you can conduct objective scalability studies and from these predict the resource requirements for anticipated load volumes. For more information on evaluating performance, see Chapter 4, "Monitoring Oracle Fusion Middleware".	
The key to good performance is good design. The design phase of the application development cycle should be an on-going process. Cycling through the planning, monitoring and tuning phases of the application development cycle is critical to achieving optimal performance across Fusion Middleware deployments. Using an iterative design methodology enables you to accommodate changes in your work loads without impacting your performance objectives.	
See the following Oracle Fusion Middleware developer's documentation for more information on recommended design techniques:	
Oracle Fusion Middleware provides a variety of technologies and tools that can be used to monitor Server and Application performance. Monitoring enables you to evaluate Server activity, watch trends, diagnose system bottlenecks, debug applications with performance problems and gather data that can assist you in tuning the system. For more information, see Chapter 4, "Monitoring Oracle Fusion Middleware.".	
Performance tuning is specific to the applications and resources that you have deployed on your system. Some common tuning areas are included in Chapter 2, "Top Performance Areas."	
Oracle Fusion Middleware provides a variety of technologies and tools that can be used to monitor Server and Application performance. Monitoring is an important step in performance tuning and enables you to evaluate server activity, watch trends, diagnose system bottlenecks, debug applications with performance problems and gather data that can assist you in tuning the system.	
This chapter contains the following sections:	
After you install and configure Oracle Fusion Middleware, you can use the graphical user interfaces or command-line tools to manage your environment.	
You can use the following tools to manage your Oracle Fusion Middleware installations:	
Use these tools, rather than directly editing configuration files, to perform all administrative tasks unless a specific procedure requires you to edit a file. Editing a file may cause the settings to be inconsistent and generate problems.	
Both Fusion Middleware Control and Oracle WebLogic Server Administration Console are graphical user interfaces that you can use to monitor and administer your Oracle Fusion Middleware environment. You can perform some tasks with either tool, but, for other tasks, you can only use one of the tools.	
For more information on using WebLogic Server Administration Console for monitoring your domain, see the Oracle Fusion Middleware Administrator's Guide.	
Metrics are the criteria you use to measure your scenarios against your performance objectives. You can use performance metrics to help locate bottlenecks, identify resource availability issues, or help tune your components to improve throughput and response times. After you have determined your performance criteria, take measurements of the metrics used to quantify your performance objectives.	
For example, you might use response time, throughput, and resource utilization as your metrics. The performance objective for each metric is the value that is acceptable. You match the actual value of the metrics to your objectives to verify that you are meeting, exceeding, or failing to meet your performance objectives.	
When you manage or monitor an Oracle Fusion Middleware component or application with Fusion Middleware Control, you may see performance metrics that provide insight into the current performance of the component or application. In many cases, these metrics are shown in interactive charts; other times they are presented in tabular format. The best way to use and correlate the performance metrics is from the Performance Summary page for the component or application you are monitoring.	
The next sections of this chapter provide an overview of the Oracle Fusion Middleware technologies and tools that can be used to monitor Server and Application performance. If you are new to Oracle Fusion Middleware or if you need additional information about monitoring your environment using the Performance Summary pages, see "Viewing the Performance of Oracle Fusion Middleware" in the Oracle Fusion Middleware Administrator's Guide. In addition, the Fusion Middleware Control online help provides definitions and other information about specific performance metrics that are available on its management and monitoring pages. See Section 4.2.1, "Viewing Performance Metrics Using Fusion Middleware Control".	
Fusion Middleware Control is a Web browser-based, graphical user interface that you can use to monitor and administer a farm. Fusion Middleware Control organizes a wide variety of performance data and administrative functions into distinct, Web-based home pages for the farm, domain, servers, components, and applications. The Fusion Middleware Control home pages make it easy to locate the most important monitoring data and the most commonly used administrative functions—all from your Web browser.	
In addition, Fusion Middleware Control provides a set of MBean browsers that allow you to browse the MBeans for a WebLogic Server or for a selected application and perform specific monitoring and configuration tasks from the MBean browser.	
See Also: "Getting Started Using Oracle Enterprise Manager Fusion Middleware Control" in Oracle Fusion Middleware Administrator's Guide	
Use Fusion Middleware Control to:	
See Also: For more information about monitoring your environment using the Performance Summary pages, see "Viewing the Performance of Oracle Fusion Middleware" in Oracle Fusion Middleware Administrator's Guide.	
When you manage or monitor an Oracle Fusion Middleware component or application with Fusion Middleware Control, you often see performance metrics that provide insight into the current performance of the component or application. In many cases, these metrics are shown in interactive charts; other times they are presented in tabular format. The best way to use and correlate the performance metrics is from the Performance Summary page for the component or application you are monitoring.	
Use the Fusion Middleware Control online help to obtain a definition of a specific performance metric. There are two ways to access this information:	
If you encounter a problem, such as an application that is running slowly or is hanging, you can view more detailed performance information, including performance metrics for a particular target, to find out more information about the problem.	
Oracle Fusion Middleware automatically and continuously measures run-time performance. The performance metrics are automatically enabled; you do not need to set options or perform any extra configuration to collect them. If you are interested in viewing historical data, consider using Oracle Enterprise Manager Grid Control. For more information see "Middleware Management" in Oracle Enterprise Manager Concepts.	
Oracle WebLogic Server Administration Console is a Web browser-based, graphical user interface that you use to manage an Oracle WebLogic Server domain. It is accessible from any supported Web browser with network access to the Administration Server.	
See Also: For general information on using the WebLogic Server console, see "Getting Started Using Oracle WebLogic Server Administration Console" in Oracle Fusion Middleware Administrator's Guide.	
Use the WebLogic Server Administration Console to:	
Oracle WebLogic Server contains a Java Management Extensions (JMX) server implementation and provides its own set of Management Beans (MBeans). Oracle management tools described in this chapter use the MBeans provided by WebLogic Server to allow you to configure, monitor, and manage WebLogic Server resources.	
Additional WebLogic Server Console Resources:	
For details on the content contained in each summary table, see "Monitor Servers" in WebLogic Administration Console Online Help.	
For detailed information on using the WebLogic Server to monitor your domain, see the Oracle Fusion Middleware Performance and Tuning for Oracle WebLogic Server.	
The Oracle Technology Network at http://www.oracle.com/technology/index.html	
provides product downloads, articles, sample code, product documentation, tutorials, white papers, news groups, and other key content for WebLogic Server.	
The WebLogic Diagnostic Framework (WLDF) is a monitoring and diagnostic framework that can collect diagnostic data that servers and applications generate. The WLDF can be configured to collect the data and store it in various sources, including log records, data events, and harvested metrics.	
WLDF includes several components for collecting and analyzing data:	
The relationship among these components is shown in Figure 4-1.	
All of the framework components operate at the server level and are only aware of server scope. All the components exist entirely within the server process and participate in the standard server lifecycle. All artifacts of the framework are configured and stored on a per server basis.	
Note: For more information on the WebLogic Diagnostics Framework and how it can be leveraged for monitoring Oracle Fusion Middleware components, see Oracle Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server.	
The Oracle WebLogic Scripting Tool (WLST) is a command-line scripting environment that you can use to create, manage, and monitor Oracle WebLogic Server domains. It is based on the Java scripting interpreter, Jython. In addition to supporting standard Jython features such as local variables, conditional variables, and flow control statements, WLST provides a set of scripting functions (commands) that are specific to WebLogic Server. You can extend the WebLogic scripting language to suit your needs by following the Jython language syntax.	
You can use any of the following techniques to invoke WLST commands:	
Many components, such as Oracle SOA Suite, Oracle Platform Security Services (OPSS), Oracle Fusion Middleware Audit Framework, and MDS, and services such as SSL and logging, supply custom WLST commands.	
To use these custom WLST commands, you must invoke WLST from the Oracle home in which the component has been installed. See "Using Custom WLST Commands" in the Oracle Fusion Middleware Administrator's Guide for more information.	
In addition to the commands provided by WLST for Oracle WebLogic Server, WLST provides a subset of commands to monitor and manage system components. These commands are:	
startproc	
(componentName [, componentType] [, componentSet): Starts the specified component. stopproc	
(componentName [, componentType] [, componentSet): Stops the specified component. status	
(componentName [, componentType] [, componentSet): Obtains the status of the specified component. proclist()	
: Obtains the list of components. dumpMetrics	
([servers,] [format]): Displays available metrics in the internal format, PDML, or in XML. displayMetricTables	
([metricTable_1], [metricTable_2], [...,] [servers] [variables]): Displays the content of the DMS metric tables. displayMetricTableNames	
([servers]): Displays the names of the available DMS metric tables. The returned value is a string array containing metric table names. Note: Thedmstool command has been replaced with the following commands: dumpMetrics , displayMetricTables , displayMetricTableNames . For more information on DMS WLST commands, see "DMS Custom WLST Commands" in Oracle Fusion Middleware WebLogic Scripting Tool Command Reference	
The DMS Spy servlet provides access to DMS metric data from a web browser. Data that is created and updated by DMS-enabled applications and components is accessible through the DMS Spy Servlet.	
The DMS Spy Servlet is part of the DMS web application. The DMS web application's web archive file is dms.war, and can be found in the same directory as dms.jar	
: <ORACLE_HOME>/modules/oracle.dms_11.1.1/dms.war	
.	
The DMS web application is deployed by default as part of a JRF-enabled server instance. The URL is: http://host:port/dms/Spy	
.	
Only users who have Administrator role access can view this URL as access is controlled by standard Java EE elements in web.xml	
.	
Figure 4-2 shows the initial page of the Spy servlet: both sides show the same list of metric tables.	
Note that the Spy servlet can display metric tables for WebLogic Server and also for non-Java EE components that are deployed.	
For metric tables to appear in the Spy servlet, the component that creates and updates that table must be installed and running. Metric tables for components that are not running are not displayed. Metric tables with ":" in their name (for example, weblogic_j2eeserver:app_overview) are aggregated metric tables generated by metric rules.	
To view the contents of a metric table, click the table name. For example, Figure 4-3 shows the MDS_Partition table.	
To get a description of the fields in a metric table, click the Metric Definitions link below the table.	
Oracle Process Manager and Notification Server (OPMN) monitors the status of Oracle Fusion Middleware components. You can also start and stop system components, monitor system components, and perform many other tasks related to process management. For example, you can use OPMN to start and stop OPMN-managed processes, such as Oracle HTTP Server and Oracle Web Cache. For more information on OPMN commands, see "Section 5.5.4, "Monitoring Oracle HTTP Server".	
Note: For more information on using OPMN, refer to Oracle Fusion Middleware Oracle Process Manager and Notification Server Administrator's Guide.	
While Fusion Middleware Control provides real-time performance monitoring for a single Fusion Middleware Farm, Oracle Enterprise Manager 11g Grid Control enables you to centrally manage multiple farms, in addition to the rest of your data center (such as the underlying host and operating system, databases, packaged applications such as Oracle E-Business Suite and Siebel, and third party products such as F5 BIG_IP Local Traffic Manager).	
Note: Grid Control is not provided out-of-box with the Fusion Middleware installation; it requires a separate installation. Refer to the Oracle Enterprise Manager 11g Grid Control Installation and Advanced Configuration Guide for further details on how to install Grid Control.	
Key features available from Grid Control that are applicable to and relevant in monitoring Fusion Middleware performance include the following:	
Key features of AD4J include the following:	
Key features of CAMM include the following:	
Key features of RUEI include the following:	
Note: For more information on the monitoring features available in Oracle Enterprise Manager 10g Grid Control, refer to the Oracle Enterprise Manager 10g Grid Control documentation available on the Oracle Technology Network here:http://www.oracle.com/technology/documentation/oem.html .	
Each operating system has native tools and utilities that can be useful for monitoring purposes. Native operating system commands enable you to gather and monitor for example CPU utilization, paging activity, swapping, and other system activity information.	
For details on operating system commands, refer to the documentation provided by the operating system vendor.	
Your operating system's network monitoring tools can be used to monitor utilization, verify that the network is not becoming a bottleneck, or detect packet loss or other network performance issues. For details on network performance monitoring, refer to your operating system documentation.	
This part describes configuring core components to improve performance. It contains the following chapters:	
Note: For information on performance tuning the Oracle WebLogic Server, see Oracle Fusion Middleware Performance and Tuning for Oracle WebLogic Server.	
This chapter discusses the techniques for optimizing Oracle HTTP Server performance. This chapter contains the following sections:	
Note: The configuration examples and recommended settings described in this chapter are for illustrative purposes only. Consult your own use case scenarios to determine which configuration options can provide performance improvements.	
Oracle HTTP Server (OHS) is the Web server component for Oracle Fusion Middleware. It provides a listener for Oracle WebLogic Server and the framework for hosting static pages, dynamic pages, and applications over the Web. Oracle HTTP Server is based on the Apache 2.2.x infrastructure, and includes modules developed specifically by Oracle. The features of single sign-on, clustered deployment, and high availability enhance the operation of the Oracle HTTP Server.	
For more information see Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server.	
For more information on the Apache open-source software infrastructure, see the Apache Software Foundation web site at http://www.apache.org/	
.	
Oracle HTTP Server uses directives in httpd.conf	
. This configuration file specifies the maximum number of HTTP requests that can be processed simultaneously, logging details, and certain limits and time outs.	
More information on configuring the Oracle HTTP Server, see "Management Tools for Oracle HTTP Server" in Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server.	
Oracle HTTP Server supports three different Multi-Processing Modules (MPMs) by default. The MPMs supported are:	
The directives for each MPM type are defined in the ORACLE_INSTANCE/config/OHSComponent/<ohsname>/httpd.conf file	
. The default MPM type is Worker MPM. To use a different MPM (such as Prefork MPM), edit the ORACLE_HOME/ohs/bin/apachectl	
file.	
Note: The information in this chapter is based on the use of Worker and WinNT MPMs, which use threads. The directives listed below may not be applicable if you are using the prefork MPM. If you are using Oracle HTTP Server based on Apache 1.3.x or Apache 2.2 with prefork MPM, refer to the Oracle Application Server 10g Release 3 documentation athttp://www.oracle.com/technology/documentation/appserver10132.html .	
Table 5-1 Oracle HTTP Server Configuration Properties	
Directive	Description
---	---
This directive maps to the Maximum Queue Length field on the Performance Directives screen.	Specifies the maximum length of the queue of pending connections. Generally no tuning is needed. Note that some operating systems do not use exactly what is specified as the backlog, but use a number based on, but normally larger than, what is set. Default Value: 511
This directive maps to the Maximum Requests field on the Performance Directives screen. Note that this parameter is not available in mod_winnt (Microsoft Windows). Winnt uses a single process, multi-threaded model and is controlled by	Specifies a limit on the total number of servers running, that is, a limit on the number of clients who can simultaneously connect. If the number of client connections reaches this limit, then subsequent requests are queued in the TCP/IP system up to the limit specified with the You can configure the Conversely, when system resources are saturated, increasing If the server handles persistent connections, then it may require sufficient concurrent httpd or thread server processes to handle both active and idle connections. When you specify If you have sufficient capacity, The maximum allowed value for Default Value: 150
This directive maps to the Initial Child Server Processes field on the Performance Directives screen.	Specifies the number of child server processes created on startup. If you expect a sudden load after restart, set this value based on the number child servers required. Note that the following parameters are inter-related and applicable only on UNIX platforms (worker_mpm):
On the Windows platform (mpm_winnt), as well as UNIX platforms, the following parameters are important to tune:	
Note that each child process has a set of child threads defined for them and that can actually handle the requests. Use The values of Default Value: 2	
Note that this parameter is not available in mod_winnt (Microsoft Windows). Winnt uses a single process, multi-threaded model	Specifies an upper limit on the number of server (child) processes that can exist or be created. This value overrides the Default Value: 16
Specifies the upper limit on the number of threads that can be created under a server (child) process. This value overrides the Default Values:	
This directive maps to the Threads Per Child Server Process field on the Performance Directives screen.	Sets the number of threads created by each server (child) process at startup. Default Value: 64 when mpm_winnt is used and 25 when Worker MPM is used. The At startup, Oracle HTTP Server creates a parent process, which creates several child (server) processes as defined by the After startup, based on load conditions, the number of server processes and server threads (children of server processes) in the system are controlled by The following directives control the limit on the above directives. Note that the directives below should be defined before the directives above for them to take effect.
This directive maps to the Max Requests Per Child Server Process field on the Performance Directives screen.	Specifies the number of requests each child process is allowed to process before the child process dies. The child process ends to avoid problems after prolonged use when Apache (and any other libraries it uses) leak memory or other resources. On most systems, this is not needed, but some UNIX systems have notable leaks in the libraries. For these platforms, set This value does not include Default Value: 0 Note: On Windows systems
These directives map to the Maximum Idle Threads and Minimum Idle Threads fields on the Performance Directives screen. Note that these parameters are not available in mod_winnt (Windows platform).	Controls the server-pool size. Rather than estimating how many server threads you need, Oracle HTTP Server dynamically adapts to the actual load. The server tries to maintain enough server threads to handle the current load, plus a few additional server threads to handle transient load increases such as multiple simultaneous requests from a single browser. The server does this by periodically checking how many server threads are waiting for a request. If there are fewer than Default Values: MaxSpareThreads: 75 MinSpareThreads: 25
This directive maps to the Request Timeout field on the Performance Directives screen.	The number of seconds before incoming receives and outgoing sends time out. Default Value: 300
This directive maps to the Multiple Requests Per Connection field on the Performance Directives screen.	Whether or not to allow persistent connections (more than one request per connection). Set to Off to deactivate. Default Value: On
The maximum number of requests to allow during a persistent connection. Set to 0 to allow an unlimited amount. If you have long client sessions, consider increasing this value. Default Value: 100	
This directive maps to the Allow With Connection Timeout (seconds) field, which is located under the Multiple Requests Per Connection field, on the Performance Directives screen.	Number of seconds to wait for the next request from the same client on the same connection. Default Value: 5 seconds
If your browser supports persistent connections, you can support them on the server using the KeepAlive	
directives in the Oracle HTTP Server. Persistent Connections can improve performance by reducing the work load on the server. With Persistent Connections enabled, the server does not have to repeat the work to set up the connections with a client.	
The default settings for the KeepAlive	
directives are:	
These settings allow enough requests per connection and time between requests to reap the benefits of the persistent connections, while minimizing the drawbacks. You should consider the size and behavior of your own user population when setting these values. For example, if you have a large user population and the users make small infrequent requests, you may want to reduce the keepAlive	
directive default settings, or even set KeepAlive	
to off. If you have a small population of users that return to your site frequently, you may want to increase the settings.	
KeepAlive	
option should be used judiciously along with MaxClients	
directive. KeepAlive	
option would tie a worker thread to an established connection until it times out or the number of requests reaches the limit specified by MaxKeepAliveRequests	
. This means that the connections or users in the ListenBacklog	
queue would be starving for a worker until the worker is relinquished by the keep-alive user. The starvation for resources happens on the KeepAlive	
user load with user population consistently higher than that specified in the MaxClients	
.	
Note: TheMaxclients property is applicable only to UNIX platforms. On Windows, the same functionality is achieved through the ThreadLimit and ThreadsPerChild parameters.	
Increasing MaxClients	
may impact performance in the following ways:	
MaxClients	
can overload the system resources and may lead to poor performance. MaxClients	
to support KeepAlive	
connections to avoid starvation. Note that this can impact overall performance if the user concurrency increases. System performance is impacted by increased concurrency and can possibly cause the system to fail. MaxClients	
should always be set to a value where the system would be stable or performing optimally (~85% CPU).	
Typically for high user population with less frequent requests, consider turning the KeepAlive	
option off or reduce it to a very low value to avoid starvation.	
Disabling the KeepAlive	
connection may impact performance in the following ways:	
time_wait	
interval before it can close the socket connection and open file descriptors for every connection. The default time_wait	
value is 60 seconds and each connection can take 60 seconds to close, even after it is relinquished by the server. WARNING: To avoid potential performance issues, values for any parameters should be set only after considering the nature of the workload and the system capacity.	
This section discusses types of logging, log levels, and the performance implications for using logging.	
Access logs are generally enabled to track who accessed what. The access_log file, available in the ORACLE_INSTANCE/diagnostics/logs/OHS/ohsname directory, contains an entry for each request that is processed. This file grows as time passes and can consume disk space. Depending on the nature of the workload, the access_log has little impact on performance. If you notice that performance is becoming an issue, the file can be disabled if some other proxy or load balancer is used and gives the same information.	
By default, the HostNameLookups directive is set to Off. The server writes the IP addresses of incoming requests to the log files. When HostNameLookups is set to On, the server queries the DNS system on the Internet to find the host name associated with the IP address of each request, then writes the host names to the log. Depending on the server load and the network connectivity to your DNS server, the performance impact of the DNS HostNameLookup may be high. When possible, consider logging only IP addresses. On UNIX systems, you can resolve IP addresses to host names off-line, with the	
logresolve	
utility found in the ORACLE_HOME/Apache/Apache/bin/	
directory.	
The server notes unusual activity in an error log. The ohsname.log file, available in ORACLE_INSTANCE/diagnostics/logs/OHS/ohsname directory, contains errors, warnings, system information, and notifications (depending on the log-level setting).	
The httpd.conf file contains the error log configuration for OHS. The logging mode is defined by the "OraLogMode" directive. The default is "odl-text", which produces the Oracle diagnostic logging format in a text file. Alternatively, change this to "odl-xml" to produce the Oracle diagnostic logging format in an XML file.	
For Oracle diagnostic-style logging, "OraLogSeverity" directive is used for setting the log level.	
For Apache-style logging, the ErrorLog and LogLevel directives identify the log file and the level of detail of the messages recorded. The default debug level is Warn.	
Excessive logging can have some performance cost and may also fill disk space. The log level control should be used based on need. For requests that use dynamic resources, for example, requests that use mod_osso	
or mod_plsql	
, there is a performance cost associated with setting higher debugging levels, such as the debug level.	
This section covers the following topics:	
Secure Sockets Layer (SSL) is a protocol developed by Netscape Communications Corporation that provides authentication and encrypted communication over the Internet. Conceptually, SSL resides between the application layer and the transport layer on the protocol stack. While SSL is technically an application-independent protocol, it has become a standard for providing security over HTTP, and all major web browsers support SSL.	
SSL can become a bottleneck in both the responsiveness and the scalability of a web-based application. Where SSL is required, the performance challenges of the protocol should be carefully considered. Session management, in particular session creation and initialization, is generally the most costly part of using the SSL protocol, in terms of performance.	
This section covers the following SSL performance-related information:	
When an SSL connection is initialized, a session-based handshake between client and server occurs that involves the negotiation of a cipher suite, the exchange of a private key for data encryption, and server and, optionally, client, authentication through digitally-signed certificates.	
After the SSL session state has been initiated between a client and a server, the server can avoid the session creation handshake in subsequent SSL requests by saving and reusing the session state. The Oracle HTTP Server caches a client's SSL session information by default. With session caching, only the first connection to the server incurs high latency.	
The SSLSessionCacheTimeout	
directive in ssl.conf	
determines how long the server keeps a saved SSL session (the default is 300 seconds). Session state is discarded if it is not used after the specified time period, and any subsequent SSL request must establish a new SSL session and begin the handshake again. The SSLSessionCache	
directive specifies the location for saved SSL session information (the default location is the following directory):	
$ORACLE_INSTANCE/diagnostics/logs/$COMPONENT_ TYPE/$COMPONENT_NAME	
Note that multiple Oracle HTTP Server processes can use a saved session cache file.	
Saving SSL session state can significantly improve performance for applications using SSL. For example, in a simple test to connect and disconnect to an SSL-enabled server, the elapsed time for 5 connections was 11.4 seconds without SSL session caching. With SSL session caching enabled, the elapsed time for 5 round trips was 1.9 seconds.	
The reuse of saved SSL session state has some performance costs. When SSL session state is stored to disk, reuse of the saved state normally requires locating and retrieving the relevant state from disk. This cost can be reduced when using HTTP persistent connections. Oracle HTTP Server uses persistent HTTP connections by default, assuming they are supported on the client side. In HTTP over SSL as implemented by Oracle HTTP Server, SSL session state is kept in memory while the associated HTTP connection is persisted, a process which essentially eliminates the performance impacts associated with SSL session reuse (conceptually, the SSL connection is kept open along with the HTTP connection). For more information see Section 5.2.1, "How Persistent Connections Can Reduce Httpd Process Availability".	
In most applications using SSL, the data encryption cost is small compared with the cost of SSL session management. Encryption costs can be significant where the volume of encrypted data is large, and in such cases the data encryption algorithm and key size chosen for an SSL session can be significant. In general there is a trade-off between security level and performance.	
Oracle HTTP Server negotiates a cipher suite with a client based on the SSLCipherSuite attribute specified in ssl.conf. OHS 11g uses 128 bit Encryption algorithm by default and no longer supports lower encryption. Note that the previous release [10.1.3x] used 64 bit encryption for Windows. For UNIX, the 10.x releases had 128 bit encryption used by default.	
See Also: Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server for information on using supported cipher suites.	
The following recommendations can assist you with determining performance requirements when working with Oracle HTTP Server and SSL.	
SSLSessionCacheTimeout	
directive in ssl.conf	
). A trade-off exists between the cost of maintaining an SSL session cache and the cost of establishing a new SSL session. As a rule, any secured business process, or conceptual grouping of SSL exchanges, should be completed without incurring session creation more than once. The default value for the SSLSessionCacheTimeout	
attribute is 300 seconds. It is a good idea to test an application's usability to help tune this setting. SSLCipherSuite	
directive specified in ssl.conf	
controls the cipher suite. If lower levels of security are acceptable, use a less-secure protocol using a smaller key size (this may improve performance significantly). Finally, test the application using each available cipher suite for the specified security level to find the optimal suite. When OracleAS Port Tunneling is configured, every request processed passes through the OracleAS Port Tunneling infrastructure. Thus, using OracleAS Port Tunneling can have an impact on the overall Oracle HTTP Server request handling performance and scalability.	
With the exception of the number of OracleAS Port Tunneling processes to run, the performance of OracleAS Port Tunneling is self-tuning. The only performance control available is to start more OracleAS Port Tunneling processes; this increases the number of available connections and the scalability of the system.	
The number of OracleAS Port Tunneling processes is based on the degree of availability required, and the number of anticipated connections. This number cannot be automatically determined because for each additional process a new port must be opened through the firewall between the DMZ and the intranet. You cannot start more processes than you have open ports, and you do not want less processes than open ports, since in this case ports would not have any process bound to them.	
To measure the OracleAS Port Tunneling performance, determine the request time for servlet requests that pass through the OracleAS Port Tunneling infrastructure. The response time running with OracleAS Port Tunneling should be compared with a system without OracleAS Port Tunneling to determine whether your performance requirements can be met using OracleAS Port Tunneling.	
See Also: Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server for information on configuring OracleAS Port Tunneling	
The following tips can enable you to avoid or debug potential Oracle HTTP Server performance problems:	
It is important to understand where your server is spending resources so you can focus your tuning efforts in the areas where the most stands to be gained. In configuring your system, it can be useful to know what percentage of the incoming requests are static and what percentage are dynamic.	
Generally, you want to concentrate your tuning effort on dynamic pages because dynamic pages can be costly to generate. Also, by monitoring and tuning your application, you may find that much of the dynamically generated content, such as catalog data, can be cached, sparing significant resource usage.	
You can get unrepresentative results when data outliers appear. This can sometimes occur at start-up. To simulate a simple example, assume that you ran a PL/SQL "Hello, World" application for about 30 seconds. Examining the results, you can see that the work was all done in mod_plsql.c	
:	
Note that handle.maxTime	
is much higher than handle.avg	
for this module. This is probably because when the first request is received, a database connection must be opened. Later requests can make use of the established connection. In this case, to obtain a better estimate of the average service time for a PL/SQL module, that does not include the database connection open time which causes the handle.maxTime	
to be very large, recalculate the average as in the following:	
For example:	
Oracle HTTP Server, which is now based on Apache 2.2, has a slight change in architecture in the way the requests are handled, compared to the previous release of Oracle HTTP Server, which was based on Apache 1.3.	
In the new architecture, Oracle HTTP Server invokes the service function of each module that is loaded (in the order of definition in httpd.conf	
file) until the request is serviced. This indicates that there is some cost associated with invoking the service function of each module, to know if the service is accepted or declined.	
Because of this change in architecture, consider placing the most frequently hit modules above the others in the httpd.conf	
file.	
Finally, for the static page requests, which are directly deployed to Oracle HTTP Server and served by the default handler, the request has to go through all the modules before the default handler is invoked. This process can impact performance of the request so consider enabling only the modules that are required by the deployed application. Example, if "mod_plsql" is never used by the deployed application, disable it to maintain performance.	
In addition, there are a few modules that register their hooks to do some work during the URL translation phase, which would add to the cost of request processing time. Example: mod_security, when enabled, has a cost of about 10% on CPU Cost per Transaction for the specweb benchmark. Again, you should enable only those modules that are required by your deployed applications to save CPU time.	
Oracle Fusion Middleware automatically and continuously measures run-time performance for Oracle HTTP Server. The performance metrics are automatically enabled; you do not need to set options or perform any extra configuration to collect them. If you encounter a problem, such as an application that is running slowly or is hanging, you can view particular metrics to find out more information about the problem.	
Note: Fusion Middleware Control provides real-time data. For more information on using Fusion Middleware Control to view performance metrics for HTTP Server, see "Monitoring Oracle HTTP Server Performance" in Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server.If you are interested in viewing historical data, consider using Grid Control. See Section 4.8, "Oracle Enterprise Manager 11g Grid Control".	
In addition to the Fusion Middleware Control, Oracle HTTP Server also has Dynamic Monitoring Service (DMS), which collects metrics for every functional piece. You can review these metrics as needed to understand system behavior at a given point of time. This displays memory, CPU information and the min, max, average times for the request processing at every layer in Oracle HTTP Server. The metrics also display details about load level, number of threads, number of active connections, and so on, which can help in tuning the system based on real usage.	
You can use Oracle Enterprise Manager or SpyServlet to monitor the metrics. See Chapter 4, "Monitoring Oracle Fusion Middleware". Another way to view DMS metrics for OHS is shown in the following example:	
cd $INSTANCE_HOME/bin	
./opmnctl metric op=query COMPONENT_NAME=<component_name> dmsarg=[name=/OHS/Modules/<module_name>.c	
Examples:	
./opmnctl metric op=query COMPONENT_NAME=ohs1 dmsarg=[name=/OHS/Modules/mod_cgi.c	
./opmnctl metric op=query COMPONENT_NAME=ohs1 dmsarg=[name=*]	
This chapter provides an overview and features available in the Oracle Dynamic Monitoring Service (DMS).	
The Oracle Dynamic Monitoring Service (DMS) enables Oracle Fusion Middleware components to provide administration tools, such as Oracle Enterprise Manager, with data regarding the component's performance, state and on-going behavior. Fusion Middleware Components push data to DMS and in turn DMS publishes that data through a range of different components. Specifically, DMS is used by Oracle WebCache, Oracle HTTP Server (OHS), Oracle Application Development Framework (ADF), WebLogic Diagnostic Framework (WLDF), and JDBC. DMS measures and reports metrics, trace events and system performance and provides a context correlation service for these components.	
This section defines common DMS terms and concepts related to the following:	
Table 6-1 provides a list of DMS tracing and event terminology.	
Table 6-1 DMS Tracing and Event Terminology	
DMS Term	Definition
---	---
Condition	A condition is the logic behind a condition filter. It determines which events may pass through a filter, based on the rules defined in the condition. Every condition filter has zero or one root condition, but conditions may include AND or OR arguments together to create compound conditions. The single root condition can describe a relatively complex rule. Two types of condition exist:
For more information on using conditions, see Section 6.7, "DMS Tracing and Events".	
Destination	A destination implements a mechanism for reacting to events that are passed to it. For example, a destination could log events to a file, another could send transformed copies of event to the JRockit Flight Recorder, yet another might render information gleaned from incoming events as data in an MBean.
Event Route	An event route connects a filter to a destination. Event routes may be enabled or disabled. For event tracing to be activated for a specific filter, one or more event routes must exist for that filter and must be enabled.
Filter	An event tracing filter selectively passes a subset of all possible DMS runtime events. Filters can be configured with rules that determine which events are passed and which are blocked. For example it is possible to define filters to:
For more information on using filters, see Section 6.7, "DMS Tracing and Events".	
Listener	A DMS listener is also known as the destination. See Section 6.7.2, "Configuring Destinations" for more information.
DMS nouns organize performance data. Sensors, with their associated metrics, are organized in an hierarchy according to nouns. Nouns enable you to organize DMS metrics in a manner comparable to a directory structure in a file system. For example, nouns can represent classes, methods, objects, queues, connections, applications, databases, or other objects that you want to measure.	
A noun type is a name that reflects the set of metrics being collected.	
A noun name is a simple string, not including a delimiter. For example, BasicBinomial	
is a noun name. A noun full name consists of the noun name, preceded by the full name of its parent, and a delimiter. For example /dmsDemo/BasicBinomial	
is a noun full name.	
A sensor name is a simple string, not including the ".	
" or the derivation. For example, computeSeries	
, loops	
, and lastComputed	
are sensor names.	
A sensor full name consists of the sensor name, preceded by the name of its associated noun, and a delimiter. Examples: /dmsDemo/BasicBinomial/computeSeries	
, /dmsDemo/BasicBinomial/loops	
, /dmsDemo/BasicBinomial/lastComputed	
.	
A DMS metric name consists of a sensor name plus the ".	
" character plus the metric. For example, computeSeries.time	
, loops.count	
, and lastComputed.value	
are valid DMS metric names.	
Note: The suffixes .time, .count, and .value are immutable. Sensor and noun names, however, can be modified as needed.	
DMS names should be as compact as possible. Whenever possible, when you define noun and sensor names, avoid special characters such as white space, slashes, periods, parenthesis, commas, and control characters.	
Table 6-2 shows DMS replacement for special characters in names.	
Table 6-2 Replacement for Special Characters in DMS Names	
Character	DMS Replacement Character
---	---
Space character	Underscore character:
Period character:	Underscore character:
Control character	Underscore character:
Less than character:	Open parenthesis:
Greater than character:	Close parenthesis:
Ampersand:	Caret:
Double quote:	Backquote:
Single quote:	Backquote:
Note: Oracle Fusion Middleware includes several built-in metrics. The Oracle Fusion Middleware built-in metrics do not always follow the DMS naming conventions.	
The following conventions are used when naming noun and noun types:	
DMS sensors measure performance data and enable DMS to define and collect a set of metrics. Certain metrics are always included with a sensor and other metrics are optionally included with a sensor.	
DMS has three different kinds of sensors:	
A DMS PhaseEvent sensor measures the time spent in a specific section of code that has a beginning and an end. Use a PhaseEvent sensor to track time in a method or in a block of code.	
DMS can calculate optional metrics associated with a PhaseEvent, including the average, maximum, and minimum time that is spent in the PhaseEvent sensor.	
Table 6-3 lists the metrics available with PhaseEvent sensors.	
Table 6-3 DMS PhaseEvent Sensor Metrics	
Metric	Description
---	---
Specifies the total time spent in the phase Default metric:	
Specifies the number of times the phase Optional metric	
Specifies the minimum time spent in the phase Optional metric	
Specifies the maximum time spent in the phase Optional metric	
Specifies the average time spent in the phase Optional metric	
Specifies the number of threads in the phase Optional metric	
Specifies the maximum number of concurrent threads in the phase Optional metric	
A DMS event sensor counts system events. Use a DMS event sensor to track system events that have a short duration, or where the duration of the event is not of interest but the occurrence of the event is of interest.	
Table 6-4 describes the metric that is associated with an event sensor.	
Table 6-4 DMS Event Sensor Metrics	
Metric	Description
---	---
Specifies the number of times the event has occurred since the process started, where Default:	
A DMS state sensor tracks the value of Java primitives or the content of a Java object. Supported types include integer, double, long, and object. Use a state sensor when you want to track system status information or when you need a metric that is not associated with an event. For example, use state sensors to track queue lengths, pool sizes, buffer sizes, or host names. You assign a precomputed value to a state sensor.	
Table 6-5 describes the state sensor metrics. State sensors support a default metric value	
, as well as optional metrics. The optional minValue	
and maxValue	
metrics only apply for state sensors if the state sensor represents a numeric Java primitive (of type integer, double, or long).	
Table 6-5 DMS State Sensor Metrics	
Metric	Description
---	---
Specifies the metric value for Default:	
Specifies the number of times Optional metric	
Specifies the minimum value for Optional metric	
Specifies the maximum value this Optional metric	
The following list describes DMS sensor naming conventions:	
computeSeries	
/	
" character in a sensor name. However, there are cases where it makes sense to use a name that contains "/	
" . If a "/	
" is used in a noun or sensor name, then when you use the sensor in a string with DMS methods, you need to use an alternative delimiter, such as "," or "_", which does not appear anywhere in the path; this enables the "/" to be properly understood as part of the noun or sensor name rather than as a delimiter. For example, a child noun can have a name such as:	
and you can look this up using the string:	
where the delimiter is the "," character.	
activateInstance	
and runMethod	
. When a PhaseEvent monitors a function, method, or code block, it should be named to reflect the task performed as clearly as possible. lastComputed	
, totalMemory	
, port	
, availableThreads, activeInstances	
DMS functionality is available on all certified Java EE servers. This includes both the runtime features and supporting commands. Also, several features of DMS will operate in JSE applications and standalone C applications.	
For more information, see the Oracle Fusion Middleware Certification Matrix at http://www.oracle.com/technology/software/products/ias/files/fusion_certification.html	
.	
DMS consists of the following features:	
Figure 6-1 shows the components of DMS and how they interact with other Oracle Fusion Middleware components. Arrows show the direction in which information flows from one component to the next.	
Oracle Fusion Middleware components are instrumented with DMS metrics in order to collect information that developers, system administrators, and support analysts can use to analyze system performance or monitor system status. The Fusion Middleware Control online help provides information on each of the specific metrics. See Section 4.2.1, "Viewing Performance Metrics Using Fusion Middleware Control" for information on accessing metric information.	
The Oracle Fusion Middleware metrics come from various sources and locations. They include MBean attributes and DMS metrics. They also come from non-Java EE servers, such as Oracle HTTP servers and Oracle WebCache.	
The following sections describe how to use various tools to view the DMS metrics:	
The Spy Servlet is part of the DMS Application that is deployed by default on JRF-extended installations. The Spy Servlet is launched from http://<host>:<port>/dms/Spy	
. The default port for WebLogic is 7001.	
The DMS Application's web archive file is dms.war, and can be found in the same directory as dms.jar: oracle_common/modules/oracle.dms_11.1.1/dms.war	
.	
For more information see Section 4.6, "DMS Spy Servlet".	
Note: The Spy Servlet is secured using standard Java EE declarative security in the web-application'sweb.xml file, and will only grant access to the Spy Servlet to members of the Administrator's group.	
You can use WebLogic Diagnostic Framework (WLDF) to harvest DMS metrics from DMS metric MBeans. You can also use WLDF to monitor changes to the attribute value of an MBean. For more information see "Configuring the Harvester for Metric Collection" in Oracle Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server.	
DMS provides three commands to view metrics in WLST:	
Use this command...	To do this...
---	---
displayMetricTableNames	List the names of the available metric tables. Its return value is the names of the available metric tables in a string array.
displayMetricTables	Show the content of the DMS metric tables. It returns an array of JMX javax.management.openmbean.CompositeData objects.
dumpMetrics	Display metrics in the internal format. The return value is a text document.
As well as displaying textual output, theses commands also return a structured object or single value that you can use in a script to process.	
For more information on using these commands, see the following:	
To provide a standards-based way to access metrics, DMS exposes them through MBeans. An MBean will be created and registered for each typed noun with the runtime MBean Server. The DMS sensors contained by the noun are exposed as the attributes of the MBean. Exposing the DMS metrics as MBeans allows administrators to use tools such as JConsole (the Java monitoring and management console), and other Java Management Extension (JMX) clients, to access the DMS metrics.	
MBeans also allow for integration with other Oracle diagnostics software such as WLDF (WebLogic Diagnostics Framework), which is described in Section 6.5. The noun name and noun type are exposed as the name and type properties of the metric MBean object name. The MBean domain name is "oracle.dms". The object name also reflects the DMS noun hierarchy.	
Note: You can use JConsole to view DMS generated MBeans on a Java EE server either locally or remotely. DMS generates an MBean for each Java DMS noun that has a valid noun type. It does not generate MBeans for the non-Java EE component's metrics and the DMS nouns that have no noun types. Each DMS metric contained under the noun is mapped to an attribute in the metric MBean.	
Oracle Fusion Middleware automatically and continuously measures data regarding the component's performance, state and on-going behavior. The metrics are automatically enabled; there is no need to set options or perform any extra configuration to collect them. For more information see Section 4.2.1, "Viewing Performance Metrics Using Fusion Middleware Control".	
The following commands can be used with IBM WebSphere to display the following:	
Use this command...	To do this...
---	---
OracleDMS.displayMetricTableNames()	List the names of the available metric tables. Its return value is the names of the available metric tables in a string array.
OracleDMS.displayMetricTables()	Show the content of the DMS metric tables. It returns an array of JMX javax.management.openmbean.CompositeData objects.
OracleDMS.dumpMetrics()	Display metrics in the internal format. The return value is a text document.
For more information on using IBM WebSphere, see "Managing Oracle Fusion Middleware on IBM WebSphere" in the Oracle Fusion Middleware Third-Party Application Server Guide.	
The WebLogic Diagnostics Framework (WLDF) provides a diagnostic feature that allows MBean attributes to be harvested and monitored for specific conditions. This provides a proactive way of monitoring activity in your environment and creating E-mail and JMX notifications when a condition is triggered.	
The following steps describe how to configure WLDF to send an E-mail notification using the WebLogic Administration Console:	
It is also possible to configure WLDF to collect the MBean data for offline storage and analysis. This is achieved by configuring a WLDF Diagnostic Module to collect specific MBean attributes, and can be done so using the WebLogic Administration Console.	
For more information on using WLDF to harvest and monitor MBean data see Oracle Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server.	
The DMS execution context is the mechanism by which requests (such as HTTP or RMI requests) can be uniquely identified and thus tracked as they flow through the system. It also provides a means by which context information can be communicated between cooperating Fusion Middleware components involved in fulfilling requests.	
The DMS execution context has been developed with the understanding that a single request (or task) may form the root of a tree of sub-tasks that are coordinated to complete the request or root task. Consider the following examples of requests and their associated sub-tasks:	
A DMS execution context is composed of the following:	
The Execution Context ID (ECID) is unique for each new root task and is shared across the tree of tasks associated with the root task.	
The Relationship ID (RID) is an ordered set of numbers that describes the location of each task in the tree of tasks. The leading number is usually a zero. A leading number of 1 indicates that it has not been possible to track the location of the sub-task within the overall sub-task tree.	
The following three scenarios illustrate how ECID and RID are used when an HTTP request is sent from Oracle HTTP Server (acting as a reverse proxy) to an Oracle WebLogic Server and the server requires invocation of two remote web services from Oracle WebLogic Server.	
Same ECID = B5C094FA...BE4AE8	
Sub-task RID = 0:1:1	
Same ECID = B5C094FA...BE4AE8	
Sub-task RID = 0:1:2	
The most immediate benefits of the DMS execution context are realized when attempting to correlate log messages between servers. The Oracle standard format for logging involves a field dedicated to the ECID. Once the ECID is known, when its read from an ERROR level log message for example, it is possible to locate all other log messages associated with that task by querying the log files for messages containing that ECID.	
The following example shows a very specific case of using the command:	
In this example, any log files with messages that contain the ECID B5C094FA...BE4AE8	
will be displayed.	
Figure 6-2 shows the components that cooperate in order to communicate the DMS execution context between each other. Arrows pointing to a component indicate the protocols that are inspected for incoming context information. Outgoing arrows show protocols to which context information is added. It is possible for a single component to send requests to itself, passing context information in that request.	
Starting with Oracle Fusion Middleware 11g Release 1 (11.1.1.3.0), DMS can selectively trace the following:	
The configuration that controls which of these types of events are traced, and how those events are processed, is recorded in the dms_config.xml file. The DMS trace configuration is split into three parts:	
Defines the rules that select the events that are of interest	
Defines how the events are used	
Defines which filters are wired to which destinations	
A filter can be associated with one or more destinations thus granting the administrator the ability to define a filter rule once and have the resulting subset of all possible events processed on one or more different destinations.	
The configuration can be modified using the DMS configuration MBean or WLST commands at runtime; this makes the DMS tracing feature invaluable for diagnosing issues within a specific time period or collecting specific data at a specific time for a specific set of criteria.	
The following types of filter rules are supported:	
Used to identify if an event was triggered from the START or STOP of a PHASE_SENSOR	
Used to identify if the event was generated from a unit of work whose context contains a value (for example, "USER")	
Used to identify if the event was triggered from a sensor whose noun is of a specific type (for example, JDBC_CONNECTION	
AND	
and OR	
combinations of the above conditions Configuration is recorded in each server's dms_config.xml file. MBean updates can be made at runtime using command line interface (CLI) commands and through the Event Configuration Mbean. Configuration updates are applied to the running system in a thread safe, but non-atomic, manner.	
The object name of the DMS Event configuration MBean is: oracle.dms.event.config:name=DMSEventConfigMBean,type=JMXEventConfig	
To review the current state of your system's DMS event configuration, use the following command:	
The resulting output will look similar to this:	
Filters define the rules that select which events are considered for tracing.	
The following example shows how to add a filter that selects all events related to JDBC operations:	
This filter assumes that all DMS sensor updates associated with JDBC operations are performed on nouns of types whose names begin "JDBC_".	
If the rule must be modified, the filter may be updated as shown in the following example:	
For more information about the syntax used to describe a filter's rule (the condition property), refer to the WebLogic Scripting Tool Command Reference or the command help.	
Destinations encapsulate logic for responding to events. For example, a basic destination will log the event, a different destination may transform an event and pass it to another system for further processing.	
The following example shows how to add a destination that will log events:	
Note that merely adding the destination is not sufficient for events to be logged; to log the events, you must associate a filter with a destination using an eventRoute, and the eventRoute must be enabled (default).	
The types of destination available, and their configuration options, are described in Section 6.7.2. The following example shows how to edit an existing destination:	
The following example shows how to join the filter and destination created above:	
Note that you can invoke addDMSEventRoute	
without an explicit filterId. In these scenarios, all events are passed to the destination without filtering.	
To remove a filter or destination, you must first remove the event routes associated with the filter or destination (even if the event route is disabled). For example, if you wanted to remove myJDBCFilter	
, you would first need to remove the eventRoute created in the previous example, and then remove the filter as shown in the following example:	
It is possible to create a filter and an eventRoute based on that filter using a single command (rather than using two separate commands as shown in Section 6.7.1.3). Note however that the destination to be used by the event route must already be defined:	
In the example above, enableDMSEventTrace	
automatically creates a filter with the specified condition, and also creates and enables an event route using the new filter and the nominated destination. The output is shown in the following example:	
DMS offers the following types of destinations:	
Description	The LoggerDestination writes each event to the associated logger.
Implementing Class	oracle.dms.trace2.runtime.LoggerDestination
Properties	
loggerName	The name of the ODL logger to which events will be written.
Instances of logger destinations write events to the named logger at a log level of FINER.	
The loggerName	
property specifies the name of a logger, but the logger does not necessarily have to be described in logging.xml, though it can be. If the logger name refers to a logger that is explicitly named in logging.xml, then the logger is referred to as a static logger (see Section 6.7.2.1.1). If the logger name refers to a logger that is not explicitly named in logging.xml, then the logger is referred to as a dynamic logger (see Section 6.7.2.1.2).	
Use in the default configuration: the default configuration defines a logger destination, with an identification of LoggerDestination. This particular instance does not form part of any eventRoute and therefore is not active. It is provided for convenience, and uses a dynamic logger.	
Loggers are the objects to which log records are presented. Log handlers are the objects through which log records are written to log files.	
For complete control over the log file to which DMS trace data is written, define the logger named in the logger destination in logging.xml. Doing this allows you to explicitly define the name of the log file, the maximum size, format, file rotation and policies.	
Oracle recommends using commands (like the example below) to update the configuration.	
For more information on logging configuration, see "Managing Log Files and Diagnostic Data" in the Oracle Fusion Middleware Administrator's Guide.]	
The use of the optional property useSourceClassandMethod	
set to FALSE	
prevents the 'SRC_CLASS' and "SRC_METHOD' from appearing in every message and will marginally improve performance by reducing file output times.	
For static loggers, consider setting the useParentHandlers	
parameter to FALSE	
, otherwise duplicate event messages will be logged to [server]-diagnostics.log, and shown in a log query.	
See Section 6.7.3, "Understanding DMS Event Output" for more information about interpreting logger output.	
If the named logger has no associated handler defined in logging.xml, then the logger destination will dynamically create a handler object that will write to a file in the server's default log output directory. (Instances of logger destinations write events to the named logger at a log level of FINER.) The file name will be the logger's name followed by "-event.log". For instance, in the example in Section 6.7.2.1.1, DMS events would be written to "myTraceLogger-event.log".	
The logging.xml file can typically be found in one of the following platform locations:	
Platform	Server
---	---
Oracle WebLogic Server	AdminServer
WAS ND	OracleAdminServer
If the logger destination's logger and handler are defined in logging.xml then you can take advantage of the displayLogs()	
command to conveniently access logged trace data without having to manually locate or search for it.	
Examples:	
Description	The MBean creator destination make nouns accessible as MBeans, exposing their metrics as attributes, for access via WLDF, JConsole, etc.
Implementing Class	oracle.dms.jmx.MetricMBeanFactory
Use in the default configuration: An instance of the MBean Creator destination is configured and active by default, and will create MBeans for all nouns created in the server.	
By associating an instance of this destination type with a filter based on a noun-type rule, it is possible to expose (as MBeans) only those noun types that are of interest to the administrator.	
Although it is possible to modify the configuration associated with an MBean creator destination at runtime, it must be understood that the reinitialization process for this type of destination may impact performance. Frequent runtime reconfiguration is therefore discouraged.	
Note that WebLogic Diagnostic Framework (WLDF) can be used to harvest DMS metrics exposed by the MBean creator destination. For more information about WLDF, see Oracle Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server.	
The noun name and noun type are exposed as the name and type properties of the metric MBean object name. The MBean domain name is "oracle.dms". The object name also reflects the DMS noun hierarchy.	
For example if the noun's full path name is:	
/oracle/dfw/ofm/base_domain/AdminServer	
and the noun type is DFW_Incident, the object name of the MBean representing the noun is	
oracle.dms:Location=AdminServer,name=/oracle/dfw/ofm/base_domain/AdminServer,type=DFW_Incident	
.	
Description	The HTTP Request Tracker destinations maintains a list of active HTTP requests, and makes the requests accessible to other Diagnostic Framework (DFW) components.
Implementing Class	oracle.dms.event.HTTPRequestTrackerDestination
Properties	
excludeHeaderNames	Comma separated list of header names to exclude from tracking
Use in the default configuration: An instance of the HTTP request tracker destination is enable by default. In the case of a DFW incident being generated the active HTTP request list will be dumped automatically, allowing an administrator to correlate the failure with a specific request.	
For each HTTP request the following information will be dumped:	
/webcenter/home	
) When the HTTP request tracker is not enabled the HTTP Request Dump will output the following:	
The information being maintained by the HTTP request tracker can be accessed manually. In order to execute the dump that reports the HTTP request information the WLST executeDump	
command can be used, when connected to a server, as follows:	
The JRockit Flight Recorder (JFR) records information regarding the runtime status and behavior of the JRockit JVM. JFR also exposes an API through which third party events can be reported. JFR is available in JRockit R28 and beyond.	
By themselves DMS traces and JFR traces only show part of the picture of the actions being performed in the server. DMS integration with JFR enhances the diagnostic information available to administrators and developers as follows:	
A DMS noun type will be associated with a JFR InstantEvent event type:	
Table 6-6 Values of the JFR Event for a Noun Type	
Value Name	Description
---	---
ECID	The Execution Context ID (ECID) associated with the action.
RID	The RID associated with the action.
<noun type> name	The full path of the noun.
<state-sensor-name>	The value of the state sensor.
event name	The name of the event sensor that was updated, left null otherwise.
A DMS phase sensor will be associated with a JFR DurationEvent event type:	
Several DMS objects allow integrators to add descriptions. Descriptions from DMS objects will be used as follows:	
Table 6-7 provides examples for the rules described in Section 6.7.2.4.1:	
Table 6-7 Examples of Dynamically Derived Producers and Events	
DMS	JRockit Flight Recorder (JFR)
---	---
Noun type:	
Noun path:	
Sensors:	
Where: P: Phase Sensor S : State Sensor E : Event Sensor	Producer Name: JDBC The Producer Name is based on the leading component of the noun path. Event Type 1 Event Type Name: <noun type> State Event Type Path: dms/<leading component of noun path>/<noun type>/_State Fields:
Producer Name: JDBC Event Type 2 Event Type Name: Event Type Path:	
Fields:	
Producer Name: JDBC Event Type 3 Event Type Name: Event Type Path:	
Fields:	
Producer Name: JDBC Event Type 4 Event Type Name: Event Type Path:	
Fields:	
Noun type: webcenter_lifecycle Noun path:	
Sensors:	
Where: P: Phase Sensor S : State Sensor E : Event Sensor	Producer Name: webcenter Event Type 1 Event Type Name: Fields:
Producer Name: webcenter Event Type 2 Event Type Name: Fields:	
Table 6-8 describes the fields that make up a DMS event. Field elements are separated by ":" (with a few exceptions). Sample events are provided to illustrate the position of the field within an actual event string.	
Table 6-8 Event Formatting Descriptions	
Applicable Events	Field Number
---	---
All	1
All	2
All	3
For example: v1:1280737384058:HTTP_REQUEST:STOP:/MyWebApp/emp	
All	4
For example: v1:1280737384058:HTTP_REQUEST:STOP:/MyWebApp/emp	
Nouns	5
6	Noun path
All Sensor Types	5
6	Sensor name
7	Noun path
Phase Sensor Types	8
9	Stop token
State Sensor Types	8
For example: v1:1280503318973:STATE_SENSOR:UPDATE:JDBC_Connection:LogicalConnection:/JDBC/JDBC Data Source-0/CONNECTION_1:State.ANY:LogicalConnection@13bed086	
9	State value
HTTP Requests	5
Execution Context	5
Table 6-9 shows the action types that can be performed on source object types.	
The use of DMS metrics can have an impact on application performance. When adding metrics, consider the following:	
By default DMS uses the system clock for measuring time intervals during a PhaseEvent	
. The default clock reports microsecond precision in C processes such as Apache and reports millisecond precision in Java processes. Optionally, DMS supports a high resolution clock to increase the precision of performance measurements and lets you select the values for reporting time intervals. You can use a high resolution clock when you need to time phase events more accurately than is possible using the default clock or when the system's default clock does not provide the resolution needed for your requirements.	
System clocks are not necessarily as accurate as their precision implies. For example, a system clock that reports time in milliseconds may not tick (change) once per millisecond. Instead, it may take up to 15ms to tick as shown in the following example:	
Table 6-10 Default System Clock Time versus Actual Time (in milliseconds)	
Actual Time	System Time
---	---
12:00:00.000	12:00:00.000
12:00:00.001	12:00:00.000
12:00:00.002	12:00:00.000
[...]	
12:00:00.014	12:00:00.000
12:00:00.015	12:00:00.015
12:00:00.016	12:00:00.015
Table 6-10 shows a phase with a 12ms duration that runs from actual time 12:00:00.002 to 12:00:00.014 would be calculated in system time as having a duration of zero. Similarly, a phase with a 2ms duration running from 12:00:00.014 to 12:00:00.016 would be reported in system time as having a duration of 15ms.	
Note: These behaviors are more evident on some operating systems than others. Use caution when analyzing individual periods of time that are shorter than the tick period of the system clock. Configuring DMS to use a higher resolution clock will cause DMS to record phase sensor activations with higher resolution, but the accuracy will still be limited by the underlying system.	
Selecting the high resolution clock changes clocks for all applications running on the server where the clock is changed. You set the DMS clock and the reporting values globally using the oracle.dms.clock	
and oracle.dms.clock.units	
properties, which control process startup options.	
For example, to use the high resolution clock with the default values, set the following property on the Java command line:	
Caution: If you use the high resolution clock, the default values are different from the value that Fusion Middleware Control expects (msecs). If you need the Fusion Middleware Control displays to be correct when using the high resolution clock, then you need to set the units property as follows:-Doracle.dms.clock.units=msecs	
Table 6-11 shows supported values for the oracle.dms.clock	
property.	
Table 6-12 shows supported values for the oracle.dms.clock.units	
property.	
Table 6-11 oracle.dms.clock Property Values	
Value	Description
---	---
DEFAULT	Specifies that DMS use the default clock. With the default clock, DMS uses the Java call The default value for the units for the default clock is MSECS.
HIGHRES	The Java Highres clock uses
Table 6-12 oracle.dms.clock.units Property Values	
Value	Description
---	---
MSECS	Specifies that the time be converted to milliseconds and reported as "msecs". A millisecond is 10-3 seconds. Note: This is the default value for the default clock.
USECS	Specifies that the time be converted to microseconds and reported as "usecs". A microsecond is 10-6 seconds.
NSECS	Specifies that the time be converted to nanoseconds and reported as "nsecs". A nanosecond is 10-9 seconds. Note: This is the default value for the high resolution clock.
Note the following when using the high resolution DMS clock:	
oracle.dms.clock	
and the oracle.dms.clock.units	
properties, any combination of upper and lower case characters is valid for the value that you select (case is not significant). For example, any of the following values are valid to select the high resolution clock: highres, HIGHRES, HighRes. oracle.dms.clock	
property is not set, DMS uses the default clock. This chapter provides tuning tips for Oracle Metadata Service (MDS).	
Oracle Metadata Services (MDS) is an application server and Oracle relational database that keeps metadata in these areas: a file-based repository data, dictionary tables (accessed by built-in functions) and a metadata registry. One of the primary uses of MDS is to store customizations and persisted personalization for Oracle applications. Oracle Metadata Services (MDS) is used by components such as Oracle WebCenter Framework and Oracle Application Development Framework (ADF) to manage metadata. Examples of metadata objects managed by MDS are: JSP pages and page fragments, ADF page definitions and task flows, and customized variants of those objects.	
Note: Most of the Oracle Metadata Service configuration parameters are immutable and cannot be changed at run time unless otherwise specified.	
For optimal performance of MDS APIs, the database schema for the MDS repository must be monitored and tuned by the database administrator. This section lists some recommended actions to tune the database repository:	
For additional information on tuning the database, see "Optimizing Instance Performance" in Oracle Database Performance Tuning Guide.	
While MDS provides database indexes, they may not be used as expected due to a lack of schema statistics. If performance is an issue with MDS operations such as accessing or updating metadata in database repository, the database administrator must ensure that the statistics are available and current.	
The following example shows one way that the Oracle database schema statistics can be collected:	
For additional information on gathering statistics, see 'Automatic Performance Statistics" in Oracle Database Performance Tuning Guide.	
The size of the redo log files can influence performance, because the behavior of the database writer and archiver processes depend on the redo log sizes. Generally, larger redo log files provide better performance. Undersized log files increase checkpoint activity and reduce performance.	
For more information see "Sizing Redo Log Files" in Oracle Database Performance Tuning Guide.	
While manual and auto purge operations delete the metadata content from the repository, the database may not immediately reclaim the space held by tables and indexes. This may result in the disk space consumed by MDS schema growing. Database administrators can manually rebuild the indexes and shrink the tables to increase performance and to reclaim disk space.	
For more information see "Reclaiming Unused Space" in Oracle Database Performance Tuning Guide.	
Database administrators must monitor the database (for example, by generating automatic workload repository (AWR) reports for Oracle database) to observe lock contention, I/O usage and take appropriate action to address the issues.	
For more information see:	
MDS keeps document version history in the database's metadata store. As version history accumulates, it requires more disk space and degrades read/write performance. Assuming the document versions are not part of an active label, there are two ways to purge version history:	
Note: Purging version history manually may impact performance depending on the number of metadata updates that have been made since the last purge.	
The auto-purge interval can be configured or changed post deployment through MBeans. This element maps to the AutoPurgeTimeToLive	
attribute of the MDSAppConfig	
MBean. If your application uses the database store for MDS, you can set auto-purge by adding this entry in adf-config.xml prior to packaging the EAR:	
In the example above, the auto-purge interval removes versions that are older than the specified time T (in seconds). For more information, see "Changing MDS Configuration Attributes for Deployed Applications" in Oracle Fusion Middleware Administrator's Guide.	
Tip: Adjust the auto-purge interval based on document versions created in your application. Purging can take longer based on number of versions created. See also "Setting MDS Cache Size and Purge Rate" in Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter.	
When you suspect that the database is running out of space or performance is becoming slower, you can manually purge existing version history using WLST	
command or through Oracle Enterprise Manager. Manual purging may impact performance, so plan to purge in a maintenance window or when the system is not busy.	
For more information about manually purging version history, see "Purging Metadata Version History" in Oracle Fusion Middleware Administrator's Guide.	
MDS employs a polling thread which queries the database to gauge if the data in the MDS in-memory cache is out of sync with data in the database. This can happen when metadata is updated in another JVM. If it is out of sync, MDS clears any out of date-cached data so subsequent operations see the latest versions of the metadata. MDS invalidates the document cache, as well as MDS cache, so subsequent operations have the latest version of the metadata.	
The polling interval can be configured or changed post deployment through MBeans. The element maps to the ExternalChangeDetection	
and ExternalChangeDetectionInterval	
attributes of the MDSAppConfig	
MBean. Prior to packaging the Enterprise ARchive (EAR) file, you can configure the polling interval by adding this entry in adf-config.xml:	
In the example above, 'T' specifies the polling interval in seconds. The minimum value is 1. Lower values cause metadata updates, that are made in other JVMs, to be seen more quickly. It is important to note, however, that a lower value can also create increased middle tier and database CPU consumption due to the frequent queries. By default, polling is enabled ('true') and the default value of 30 seconds should be suitable for most purposes. For more information, see "Changing MDS Configuration Attributes for Deployed Applications" in Oracle Fusion Middleware Administrator's Guide ".	
Note: When setting the polling interval, consider the following: if you poll too frequently, the database is queried for out-of-date versions; too infrequently, and those versions may stack up and polling can take longer to process.	
MDS uses a cache to store metadata objects and related objects (such as XML content) in memory. MDS Cache is a shared cache that is accessible to all users of the application (on the same JVM). If a metadata object is requested repeatedly, with the same customizations, that object may be retrieved more quickly from the cache (a “warm” read). If the metadata object is not found in the cache (a “cold” read), then MDS may cache that object to facilitate subsequent read operations depending on the cache configuration, the type of metadata object and the frequency of access.	
Cache can be configured or changed post deployment through MBeans. This element maps to the MaximumCacheSize	
attribute of the MDSAppConfig	
MBean. For more information see "Changing MDS Configuration Attributes for Deployed Applications" in Oracle Fusion Middleware Administrator's Guide.	
Note: MDS Metrics, visible in Enterprise Manager, are useful for tuning the MDS cache. In particular, "IOs Per MO Content Get " or "IOs Per Metadata Object Get " should be less than 1. If not, consider increasing the size of the MDS cache. For more information on viewing DMS metric information, see Section 7.7, "Understanding DMS metrics and Characteristics".	
Having a correctly sized cache can significantly improve throughput for repeated reading of metadata objects. The optimal cache size depends on the number of metadata objects used and the individual sizes of these objects. Prior to packaging the Enterprise ARchive (EAR) file, you can manually update the cache-config in adf-config.xml, by adding the following entry:	
Note: MDS cache grows in size as metadata objects are accessed until it hitsmax-size-kb . After that, objects are removed from the cache to make room as needed on a least recently used (LRU) basis to make room for new objects. Unless time-to-live (TTL) is set, the MDS cache continues to occupy the max-size-kb of memory.	
In addition to the main MDS cache, MDS uses a document cache in conjunction with each metadata store to store thumbnail information about metadata documents (base document and customization documents) in memory. The entry for each document is small (<100 bytes) and the cache size limit is specified in terms of the number of document entries. MDS calculates an appropriate default size limit for the document cache based on the configured maximum size of the MDS Cache, as follows:	
In general, the defaults should be sufficient in most cases. However, insufficient document cache size may impact performance. Prior to packaging the Enterprise ARchive (EAR) file, you can explicitly set document cache size by adding this entry to adf-config.xml:	
Note: Document cache is cleared when it exceeds the document-cache max-entries value. To avoid performance issues, consider increasing the document cache size if you receive a notification like the following for example:	
The DMS metric "IOs Per Document Get	
" (visible in Enterprise Manager, see Section 7.7) should be less than 1. If not, consider increasing the document cache size.	
MDS customization may impact performance at run time.The impact from customization depends on many factors including:	
There are two main types of customization:	
getCacheHint	
method returns ALL_USERS	
or MULTI_USER	
, meaning the layer applies to all or multiple users. Shared customizations are cached in the (shared) MDS cache. getCacheHint	
method returns SINGLE_USER	
, meaning the layer applies to just one user. User customizations are generally cached on the user's session (HttpSession) until the user logs out. For more information about customization concepts, writing customization classes, and configuring customization classes, see "Customizing Applications with MDS" in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.	
MDS uses DMS sensors to provide tuning and diagnostic information which can be viewed using Enterprise Manager. This information is useful, for example, to see if the MDS caches are large enough.	
Information on DMS metrics can be found in the Fusion Middleware Control Console. Click Help at the top of the page to get more information. In most cases, the Help window displays a help topic about the current page. Click Contents in the Help window to browse the list of help topics, or click Search to search for a particular word or phrase.	
This part describes configuring Oracle Fusion Middleware server components to improve performance. It contains the following chapters:	
This chapter provides basic guidelines on how to maximize the performance and scalability of the Oracle Application Development Framework (ADF). This chapter covers design, configuration, and deployment performance considerations in the following sections:	
This chapter assumes that you are familiar with building ADF applications. To learn about ADF, see the following guides:	
Oracle Application Development Framework (Oracle ADF) is an end-to-end application framework that builds on Java Platform, Enterprise Edition (Java EE) standards and open-source technologies to simplify and accelerate implementing service-oriented applications. Oracle ADF is suitable for enterprise developers who want to create applications that search, display, create, modify, and validate data using web, wireless, desktop, or web services interfaces. If you develop enterprise solutions that search, display, create, modify, and validate data using web, wireless, desktop, or web services interfaces, Oracle ADF can simplify your job. Used in tandem, Oracle JDeveloper 11g and Oracle ADF give you an environment that covers the full development lifecycle from design to deployment, with drag-and-drop data binding, visual UI design, and team development features built-in.	
For more information see "Introduction to Oracle ADF" in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.	
Oracle ADF Faces Rich Client (RC) is a set of standard JSF components that includes Ajax (Asynchronous JavaScript and XML) functionality.	
While Ajax enables rich client-like applications to run on standard internet technologies, JSF provides server-side control, which reduces the dependency on an abundance of JavaScript often found in typical Ajax applications. Using Apache MyFaces Trinidad as the foundation, Oracle ADF Faces RC adds Ajax functionality, bringing rich Internet application (RIA) capabilities to JSF applications.	
Before building, configuring, and deploying ADF applications, review the following topics to achieve optimal performance:	
This section discusses the configuration and profiling concepts of the ADF Faces. Configuration options for Oracle ADF Faces are set in the web.xml	
file. Most of these have default values that are tuned for performance. Table 8-1 describes some of these configuration options.	
Table 8-1 ADF Configuration Options	
Parameter	Description
---	---
Controls whether output should be enhanced for debugging or not. This parameter should be removed or set to	
Controls whether ADF faces check for modification date of JSP pages and discard any saved state if the file is changed. This parameter should be removed or set to	
Specifies which type of saving (
Sets the log level on the client side. The default value is	
Specifies whether to process assertions on the client side. The default value is	
Note: When you are profiling or measuring client response time using the Firefox browser, ensure that the Firebug plug-in is disabled. While this plug-in is very useful for getting information about the page and for debugging JavaScript code on the page, it can impact the total response time.For more information on disabling the Firefox Firebug plug-in, see the Firefox Support Home Page at	
Table 8-2 provides configuration recommendations that may improve performance of ADF Faces:	
Table 8-2 Configuration Parameters for ADF Faces	
Configuration Recommendation	Description
---	---
Use partial page navigation.	Partial Page Navigation is a feature of the ADF Faces framework that enables navigating from one ADF Faces page to another without a full page transition in the browser.The new page is sent to the client using Partial Page Rendering (PPR)/Ajax channel. The main advantage of partial page navigation over traditional full page navigation is improved performance: the browser no longer re-interprets and re-executes Javascript libraries, and does not spend time for cleanup/initialization of the full page. The performance benefit from this optimization is very big; it should be enabled whenever possible. Some known limitations of this feature are:
Use page templates.	Page templates enable developers to build reusable, data-bound templates that can be used as a shell for any page. A developer can build one or more templates that provide structure and consistency for other developers building web pages. The templates have both static areas on them that cannot be changed when they are used and dynamic areas on them where the developer can place content specific to the page they are building. There are some important considerations when using templates:
Enable ADF rich client geometry management.	ADF Rich Client supports geometry management of the browser layout where parent components are in the UI explicitly. The children components are sized to stretch and fill up available space in the browser. While this feature makes the UI look better, it has a cost. The impact is on the client side where the browser must spend time resizing the components. The components that have geometry management by default are: PanelAccordion PanelStretchLayout PanelTabbed BreadCrumbs NavigationPane PanelSplitter Toolbar Toolbox Table Train Notes:
Use the ADF rich client overflow feature.	ADF Rich Client supports overflow feature. This feature moves the child components to the non-visible overflow area if they cannot fit the page. The components that have built-in support for overflow are: PanelTabbed, BreadCrumbs, NavigationPane, PanelAccordion, Toolbar, and Train. Toolbar should be contained in a Toolbox to handle the overflow. While there were several optimizations done to reduce the cost of overflow, it is necessary to pay special attention to the number of child components and complexity of each of them in the overflow component. Sometimes it is a good practice to set a big enough initial size of the overflow component such that overflow does not happen in most cases.
Use ADF Rich Client Partial Page Rendering (PPR).	ADF Rich Client is based on Asynchronous JavaScript and XML (Ajax) development technique. Ajax is a web development technique for creating interactive web applications, where web pages feel more responsive by exchanging small amounts of data with the server behind the scenes, without the whole web page being reloaded. The effect is to improve a web page's interactivity, speed, and usability. With ADF Faces, the feature that delivers the Ajax partial page refresh behavior is called partial page rendering (PPR). PPR enables small areas of a page to be refreshed without having to redraw the entire page. For example, an output component can display what a user has chosen or entered in an input component or a command link or button can cause another component on the page to be refreshed. Two main Ajax patterns are implemented with partial page rendering (PPR):
While the framework builds in native component refresh, cross-component refresh has to be done by developers in certain cases. Cross-component refresh is implemented declaratively or programmatically by the application developer defining which components are to trigger a partial update and which other components are to act as partial listeners, and so be updated. Using cross-component refresh and implementing it correctly is one of the best ways to improve client-side response time. While designing the UI page always think about what should happen when the use clicks a command button. Is it needed for the whole page to be refreshed or just an output text field? What should happen if the value in some field is updated? For more information, refer to Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework). Consider a typical situation in which a page includes an	
The steps above achieve PPR using a command button to trigger the partial page refresh. The main reason why partial page rendering can significantly boost the performance is that full page refresh does not happen and the framework artifacts (such as ADF Rich Client JS library, and style sheets) are not reloaded and only a small part of page is refreshed. In several cases, this means no extra data is fetched or no geometry management. The ADF Rich Client has shown that partial page rendering results in the best client-side performance. Besides the impact on the client side, server-side processing can be faster and can have better server-side throughput and scalability.	
Use ADF rich client navigation.	ADF Rich Client has an extensive support for navigation. One of the common use cases is tabbed navigation. This is currently supported by components like navigationPane which can bind to xmlMenuModel to easily define navigation. There is one drawback in this approach, however. It results in a full page refresh every time the user switches the tab. One option is to use panelTabbed instead. panelTabbed has built-in support for partial page rendering of the tabbed content without requiring any developer work. However, panelTabbed cannot bind to any navigational model and the content has to be available from within the page, so it has limited applicability.
Cache resources.	Developers are strongly encouraged to ensure that any resources that can be cached (images, CSS, JavaScript) have their cache headers specified appropriately. Also, client requests for missing resources on the server result in addition round trips to the server. To avoid this, make sure all the resources are present on the server.
Reduce the size of state token cache	Property defined in web.xml org.apache.myfaces.trinidad.CLIENT_STATE_MAX_TOKENS in "token"-based client-side state saving, chooses how many tokens should be preserved at any one time. The default value is 15. When this is exceeded, state will have effectively been "forgotten" for the least recently viewed pages, which can impact users that actively use the Back button or that have multiple windows open simultaneously. In order to reduce live memory per session, consider reducing this value to 2. Reducing the state token cache to 2 means one Back button click is supported. For applications without support for Back button this value should be set to 1.
Define custom styles at the top of the page.	A common developer task is to define custom styles inside a regular page or template page. Since most browsers use progressive scanning of the page, a late introduction of styles forces the browser to recompute the page. This impacts the page layout performance. For better performance, define styles at the top of the page and possibly wrap them inside the ADF group tag. An HTML page basically has two parts, the "head" and the "body". When you put an To get a component (or static CDATA content) to display in the "head", use the "metaContainer" facet as follows: <af:document title="#{attrs.documentTitle}" theme="dark"> <f:facet name="metaContainer"> 9 Oracle TopLink (EclipseLink) JPA Performance TuningThis chapter describes some of the available performance tuning features for EclipseLink, an open-source persistence framework used with Oracle TopLink. The chapter includes the following topics:
9.1 About Oracle TopLink and EclipseLinkOracle TopLink includes the open source EclipseLink as the Java Persistence API (JPA) implementation. Oracle TopLink extends EclipseLink with advanced integration into the Oracle Application Server. The Java Persistence API (JPA) is a specification for persistence in Java EE and Java SE applications. In JPA, a persistent class is referred to as an entity. An entity is a plain old Java object (POJO) class that is mapped to the database and configured for usage through JPA using annotations, persistence XML, or both. This chapter focuses on tuning JPA in the context of EJB3.0 and a Java EE environment. The information in this chapter assumes that you are familiar with the basic functionality of EclipseLink. Before you begin tuning, consider reviewing the introductory information found at the following:	
For more information on Oracle TopLink, see the TopLink page on OTN	
9.2 Efficient SQL Statements and QueriesThis section covers using efficient SQL statements and SQL querying. Table 9-1 and Table 9-2 show tuning parameters and performance recommendations related to SQL statements and querying. Table 9-1 EJB/JPA Using Efficient SQL Statements and Querying	
9.2.1 Entity Relationships Query Parameter TuningTable 9-2 shows the Entity relationship query parameters for performance tuning. Table 9-2 EJB3.0 Entity Relationship Query Performance Options	
9.3 Cache Configuration TuningThis section describes tuning the default internal cache that is provided by EclipseLink. Oracle Toplink/EclipseLink can also be integrated with Oracle Coherence. For information on configuring and tuning an EclipseLink Entity Cache using Oracle Coherence, see Section 9.4, "Coherence Integration". The default settings for EJB3.0/JPA used with the EclipseLink persistence manager and cache are no locking, no cache refresh, and cache-usage	
Table 9-3 EJB3.0 JPA Entities and Cache Configuration Options	
9.3.1 Cache Refreshing ScenariosThere are a few scenarios to consider for data refreshing in the cache, all with performance implications:	
9.3.2 Locking ModesThe locking modes, as shown in Table 9-4, along with EclipseLink cache-usage and query refreshing options, ensures data consistency for EJB entities using JPA. The different combinations have both functional and performance implications, but often the functional requirements for up-to-date data and data consistency lead to the settings for these options, even when it may be at the expense of performance. For more information see "Configuring Locking" at Table 9-4 Locking Mode Policies	
9.4 Coherence IntegrationOracle Toplink can be integrated with Oracle Coherence. This integration is provided through the Oracle TopLink Grid feature. With TopLink Grid, there are several types of integration with EclipseLink JPA features. For example:	
For more information on using EclipseLink JPA with a Coherence Cache, see "JPA on the Grid" Approach at For more information on Oracle Toplink integration with Oracle Coherence, see "Oracle TopLink Integration with Coherence Grid Guide" at 9.5 Mapping and Descriptor ConfigurationsEclipseLink can transform data between an object representation and a representation specific to a data source. This transformation is called mapping and it is the core of a EclipseLink project. A mapping corresponds to a single data member of a domain object. It associates the object data member with its data source representation and defines the means of performing the two-way conversion between object and data source. For information on Mapping see, "Optimizing Mappings and Descriptors" in the EclipseLink User Guide at For more information on Descriptors see, "Configuring Common Descriptor Options" at 9.6 Analyzing EclipseLink JPA Entity PerformanceThis section lists a few features in EclipseLink that can help you analyze your JPA application performance:	
10 Oracle Web Cache Performance TuningThis chapter provides guidelines for improving the performance of Oracle Web Cache.	
10.1 About Oracle Web CacheOracle Web Cache is a content-aware server accelerator, or a reverse proxy, for the Web tier. Oracle Web Cache is the primary caching mechanism provided with Oracle Fusion Middleware. Caching improves the performance, scalability, and availability of Web sites that run on Oracle Fusion Middleware by storing frequently accessed URLs in memory. It can also improve the performance, scalability, and availability of Web sites that run on any Web server or application server, such as Oracle HTTP Server and Oracle WebLogic Server. For more information, see the Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache. 10.2 Optimizing Hardware Resources10.2.1 Hardware ResourcesOracle Web Cache performs best with one very powerful CPU or two CPUs. Because Oracle Web Cache is an in-memory cache, it is rarely limited by CPU cycles. Additional CPUs do not increase performance significantly. However, the speed of the processors is critical-use the fastest CPUs you can afford. Use more CPUs if Web Cache is sharing the system with other Oracle application server components or other applications. Note that Oracle Web Cache is limited by the available addressable memory. Additional memory can increase performance and scalability. For information about the amount of memory needed, see Section 10.2.2, "Memory Configuration". Oracle Web Cache has two processes: one for the administration server and one for the cache server.	
For a cost-effective way to use Oracle Web Cache, run it on a fast two-CPU dedicated computer with lots of memory. See the Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache for information about various deployment scenarios. For a Web site with more than one Oracle Web Cache instance, consider installing each instance on a separate two-CPU node, either as part of a cache cluster or as a standalone instance. When Oracle Web Cache instances are on separate nodes, you are less likely to encounter operating system limitations, particularly in network throughput. For example, two caches on two separate two-CPU nodes are less likely to encounter operating system limitations than two caches on one four-CPU node. Of course, if other resources are competing with Oracle Web Cache for CPU usage, you should take the requirements of those resources into account when determining the number of CPUs needed. Although a separate node for Oracle Web Cache is optimal, you can also derive a significant performance benefit from Oracle Web Cache running on the same node as the rest of the application Web server. 10.2.2 Memory ConfigurationTo avoid swapping documents in and out of the cache, configure enough memory for the cache. Generally, the amount of memory (maximum cache size) for Oracle Web Cache should be set to at least 512 MB. Your application's memory requirements can vary based upon factors such document size, number of documents, the number of HTTP headers returned, and whether ESI is present. To get a close approximation on the maximum amount of memory required, you may apply the formula provided below. If your application uses ESI then all templates and document fragments must be accounted for when figuring the TotalDocs and the AvgDocSize. Estimated Cache size in bytes = 1.25 *(TotalDocs * ((AvgDocSize/8192+1) *8192+ 16384))	
The memory formula presented above was verified against actual memory usage measurements and it showed very close results as can be seen in the table below:	
10.2.2.1 Configuring WebCache MemoryThe cache is empty when Oracle Web Cache starts. For monitoring to be valid, ensure that the cache is fully populated. That is, ensure that the cache has received enough requests so that a representative number of documents are cached. The Oracle Web Cache Statistics page (Monitoring > Web Cache Statistics) provides information about the current memory use, the maximum memory use and the total documents currently resident in Oracle Web Cache. Note the following metrics in the Cache Overview table:	
If the Current Allocated Memory is greater than the Current Action Limit, Oracle Web Cache begins to use allocated but unused memory, and may begin garbage collection to free more memory. During garbage collection, Oracle Web Cache removes the less popular and less valid documents from the cache in favor of the more popular and more valid documents to obtain space for new HTTP responses without exceeding the maximum cache size. If the Current Allocated Memory is close to or greater than the Current Action Limit, increase the maximum cache size to avoid swapping documents in and out of the cache. For more information, see "Specifying Properties for an Oracle Web Cache System Component" in Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache. 10.3 Optimizing Network Connections10.3.1 Network BandwidthWhen you use Oracle Web Cache, ensure that each system has sufficient network bandwidth to accommodate the throughput load. Otherwise, the network may be saturated but Oracle Web Cache has additional capacity. For example, if an application generates 100 megabits of data or more per second, 10/100 Megabit Ethernet can be saturated. If the network is saturated, consider using Gigabit Ethernet rather than 10/100 Megabit Ethernet. Gigabit Ethernet provides the most efficient deployment scenario to avoid network collisions, retransmissions, and bandwidth starvation. Additionally, consider using two separate network cards: one for incoming client requests and one for requests from the cache to the application Web server. Use network-monitoring utilities that show network bandwidth usage. If the network is under utilized and throughput is less than expected, check whether the CPUs are saturated. 10.3.2 Network ConnectionsIt is important to specify a reasonable number for the maximum connection limit for the Oracle Web Cache server. If you set a number that is too high, performance can be affected, resulting in slower response time. If you set a number that is too low, fewer requests can be satisfied. Strike a balance between response time and the number of requests processed concurrently. To help determine a reasonable number, consider the following factors:	
Use various tools, such as those available with the operating system and with Oracle Web Cache, to help determine the maximum number of connections. For example, the For detailed instructions on how to set the maximum number of incoming connections, see "Specifying Properties for an Oracle Web Cache System Component" in Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache. 10.3.3 Network-Related ParametersBesides the number of network connections, other network-related parameters for Oracle Web Cache, the application Web server, and the operating system can affect response time. In most situations, the default settings are sufficient. If response time is slow, you should tune Oracle Web Cache, the application Web server, and operating system parameters that affect connections, as explained in this section. For Oracle Web Cache, check the values of the following settings:	
10.4 Optimizing Platform Connections10.4.1 UNIX ConnectionsOn most UNIX platforms, each client connection requires a separate file descriptor. The Oracle Web Cache server attempts to reserve the maximum number of file descriptors when it starts. If you have root privileges, you can increase this number. For example, for the LINUX Operating System you can increase the maximum number of file descriptors by modifying Oracle Web Cache users file descriptors limits in /etc/security/limits.conf. For example to allow the user "WC_USER" to have 4092 connections, in the /etc/security/limits.conf file add the following entries: WC_User soft nofile 4092 WC_User hard nofile 4092 Ensure that there are adequate file descriptors available to any process on the host by increasing the On Solaris Operating System you can increase the maximum number of file descriptors by setting the 10.4.2 Windows ConnectionsOn Windows, only available kernel resources limit the number of file handles as well as socket handles - the size of paged and non-paged pools. However, the number of TCP ports the system can open restricts the number of active TCP/IP connections. For more information on establishing connections, see "Set Resource Limits and Network Thresholds" in Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache. 10.5 Increasing Cache Hit RatesA cache hit is a web browser request that can be satisfied from documents stored in the cache. A cache miss is a web browser request that cannot be satisfied from documents stored in the cache and must be forwarded to the application web server. If the ratio of cache hits to cache misses is low, consider the following ways to raise the cache hit rate:	
10.6 Optimizing Response TimeIf you have not configured the application Web server or the cache correctly, response time may be slower than anticipated. This section summarizes much of the information presented in this chapter. If the application Web server is responding more slowly than expected or if the application Web server is not responding to requests from the cache because it has reached its capacity, check the application Web server and Oracle Web Cache settings. First, check the following:	
Then, check the following: The application Web server configuration, particularly the The The application Web server capacity as set using the Origin Servers page (Origin Servers, Sites, and Load Balancing > Origin Servers) of the Oracle Web Cache Manager. See the Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache for information about setting application Web server capacity. Then, if the application Web server is still busier than anticipated, it may mean that the cache cannot process the requests and is routing more requests to the application Web server. Check the following Oracle Web Cache settings in the Oracle Web Cache Manager:	
If the settings for the application Web server and Oracle Web Cache are set correctly, but the response times are still higher than expected, check system resources, especially:	
10.7 Optimizing Performance with Oracle ADFConsider the following configuration options for optimizing Oracle Web Cache performance with Oracle ADF Rich Client Applications:	
For more detail on setting cache and compression rules, see "Caching and Compressing Content," in Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache. Part IVSOA Suite ComponentsThis part describes configuring Oracle Service-Oriented Architecture (SOA) Suite components to improve performance. Oracle SOA Suite is a component of Oracle Fusion Middleware. Oracle SOA Suite provides a complete set of service infrastructure components for designing, deploying, and managing SOA composite applications. The image below shows the Oracle SOA Platform. Oracle SOA Suite enables services to be created, managed, and orchestrated into SOA composite applications. Composites enable you to easily assemble multiple technology components into one SOA composite application. SOA composite applications consist of:	
The SOA Suite Components are documented in the following chapters:	
11 Cross Component Tuning for SOA SuiteThis chapter describes tuning configurations that can apply to multiple SOA Suite applications.	
For more information on any of the SOA Suite Applications, see Section 10, "SOA Suite Components" for a list of the application-specific documentation provided in this guide. 11.1 About SOA Suite Configuration PropertiesRefer to the Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite for more information on configuring the SOA Applications. 11.2 SOA Infrastructure ConfigurationsSOA Infrastructure configuration parameters impact the entire SOA Infrastructure. The following configurations are modified through the SOA-INFRA component:	
For more information on SOA configuration, see "Configuring SOA Infrastructure Properties" in Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite. 11.2.1 Audit LevelThe Audit Level property enables you to select the level of information to be collected by the message tracking infrastructure. This information is collected in the instance data store (database) associated with the SOA Infrastructure. This setting has no impact on what is written to log files.	
11.2.2 Composite Instance StateYou can use the 11.2.3 Logging LevelThe default logging level is "NOTIFICATION". For stress testing and production environments, consider using the lowest acceptable logging level, such as "ERROR" or "WARNING" whenever possible. For more information on setting the logging levels for your applications, see "Configuring Log File" in Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite. 11.3 Modifying SOA Configuration ParametersSOA and SOA-INFRA configurations are modifiable either through WLST or Oracle Enterprise Manager. To use WLST, use the following location: <WLST_ ROOT> /oracle.as.soainfra.config/oracle.as.soainfra.config:name=Component,type=ComponentConfig,Application=soa-infra,ApplicationVersion=11.1.1 The Component names for the SOA Suite configuration parameters are: To use custom WLST commands, you must invoke WLST from the Oracle home in which the component has been installed. See "Using Custom WLST Commands" in the Oracle Fusion Middleware Administrator's Guide for more information. 11.4 JVM Tuning ParametersJVM parameters can have an impact on SOA performance. The major factors that impact a SOA component's performance relate to the heap size. For more information on tuning the JVM for performance, see Section 2.4, "Tune Java Virtual Machines (JVMs)". 11.5 Database SettingsTuning your database configurations may be useful with the SOA Suite of applications. Configurations and specific settings may vary for different use cases. See your database-specific administration manuals for more information on tuning database properties. For additional basic database tuning guidelines, see Section 2.6, "Tune Database Parameters". 11.5.1 Configuring Data Sources for SOASOA obtains database connections using an application server managed data source. You can use the WebLogic Server Console to configure SOA data source. For more information on using the WebLogic Server Console, seethe Oracle Fusion Middleware Administrator's Guide. Consider the following data source configurations when performance is an issue:	
For more information, see "Tuning JDBC Stores" in Oracle Fusion Middleware Performance and Tuning for Oracle WebLogic Server. 11.5.2 Weblogic Server Performance TuningFor complete performance tuning of Weblogic Server, refer to Oracle Fusion Middleware Performance and Tuning for Oracle WebLogic Server. 12 Oracle Business Rules Performance TuningOracle Business Rules technology enables automation of business rules; it also enables extraction of business rules from procedural logic such as Java code or BPEL processes. The chapter includes the following sections: 12.1 About Oracle Business RulesOracle Business Rules provides high performance and easy to use implementation of Business Rules technology. It provides easy to use authoring environment as well as a very high performance inference capable rules engine. Oracle Business Rules is part of the Oracle Fusion Middleware stack and will be a core component of many Oracle products including both middleware and applications. 12.2 Basic Tuning ConsiderationsIn most cases, writing of Rules should not require a focus on performance. However, as in any technology, there are tips and tricks that can be used to maximize performance when needed. Most of the considerations are focused on the initial configuration of the data model.	
12.2.1 Use Java BeansThe rule engine is most efficient when the facts it is reasoning on are Java Beans (or RL classes) and the associated tests involve bean properties. The beans should expose get and set methods (if set is allowed) for each bean property. If application data is not directly available in Java Beans, flatten the data to a collection of Java Beans that will be asserted as facts (and used in the rules). 12.2.2 Assert Child Facts instead of Multiple DereferencesExpressions like 12.2.3 Avoid Side Affects in Rule ConditionsMethods or functions that have side affects such as changing a value or state should not be used in a rule condition. Due to the optimizations performed when the rule engine builds the Rete network, and the Rete network operations that are performed as facts are asserted, modified (and re-asserted), or retracted, the tests in a rule condition may be evaluated a greater or lesser number of times than would occur in a procedural program. If a method or function has side effects, those side effects may be performed an unexpected number of times. 12.2.4 Avoid Expensive Operations in Rule ConditionsExpensive operations should be avoided in rule conditions. Expensive operations would include any operation that involves I/O (disk or network) or even intensive computations. In general, consider avoiding I/O or DBMS access from the rules engine directly. These operations should be done external to the rules engine. For other expensive operations or calculations, consider performing the computations and assert the results as a Java or RL fact. These facts are used in the rule conditions instead of the expensive operations. 12.2.5 Consider Pattern OrderingReordering rule patterns can improve the performance of rule evaluation in time, memory use, or both. There are two main guidelines for ordering fact clauses (patterns) within a rule condition.	
Sometimes these two guidelines conflict and it may require some experimentation to arrive at the best ordering. 12.2.6 Consider the Ordering of Tests in Rule ConditionsSimilar to the recommendations for fact clauses, the tests in a rule condition should be ordered such that a test that will be more restrictive is placed before a test that is less restrictive. This can reduce the amount of computation required for facts that do not satisfy the rule condition. If the degree of restrictiveness is not known, or estimated to be equal for a collection of tests, then the simpler tests should be placed before more expensive tests. 12.2.7 Use Functions Instead of AssertXPath and Supports XPathMost of the work done by the rules engine is done during assert, retract, or modify operations. In particular, the Instead of using assertXPath the following example uses a function to assert function assertAllObjectsFromList(java.util.List objList) { java.util.Iterator iter = objList.iterator(); while (iter.hasNext()) { assert(iter.next()); } } function assertExpenseReport (demo.ExpenseReport expenseReport) { assert(expenseReport); assertAllObjectsFromList(expenseReport.getExpenseLineItem()); } To improve performance of assertXPath, select the "Enable improved assertXPath support for performance" check box in the Dictionary Properties page in Rule Author. Taking advantage of this will require that the following conditions are met:	
13 Oracle BPEL Process Manager Performance TuningOracle Business Process Execution Language (BPEL) Process Manager provides several property settings that can be configured to optimize performance at the composite, fabric, application and server levels. This chapter describes these property settings and provides recommendations on how to use them. This chapter contains the following sections:	
13.1 About BPEL Process ManagerBPEL is the standard for assembling a set of discrete services into an end-to-end process flow, radically reducing the cost and complexity of process integration initiatives. Oracle BPEL Process Manager offers a comprehensive and easy-to-use infrastructure for creating, deploying and managing BPEL business processes. For more information, see "Configuring BPEL Process Service Components and Engines" in Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and "Using the BPEL Process Service Component" in Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite. 13.2 Basic Tuning ConsiderationsThis section describes the basic BPEL Process Manager performance tuning properties that are configured either through WLST or Oracle Enterprise Manager. To modify properties through WLST, see Section 11.3, "Modifying SOA Configuration Parameters".	
13.2.1 BPEL Threading ModelWhen the dispatcher must schedule a dispatch message for execution, it can enqueue the message into a thread pool. Each dispatch set can contain a thread pool (java.util.concurrent.ThreadPoolExecutor). The BPEL thread pool implementation notifies the threads when a message has been enqueued and ensures the appropriate number of threads are instantiated in the pool. The following thread properties can be tuned:	
13.2.1.1 Dispatcher Invoke ThreadsThe The minimum number of threads for this thread pool is 1 and it cannot be set to 0 a or negative number. The default value is 20 threads. Any value less than 1 thread is changed to the default. 13.2.1.2 Dispatcher Engine ThreadsThe The minimum number of threads for this thread pool is 1 and it cannot be set to 0 a or negative number. The default value is 30 threads. Any value less than 1 thread is changed to the default. 13.2.1.3 Dispatcher System ThreadsThe The minimum number of threads for this thread pool is 1 and it cannot be set to 0 a or negative number. The default value is 13.2.1.4 Dispatcher Maximum Request DepthThe If the request depth is too large, the total request time can exceed the application server transaction time out limit.This process is applicable to durable processes. The default value is 600 activities.	
13.2.2 Audit LevelThe Use the Off value if you do not want to store any audit information. Always choose the audit level according to your business requirements and use cases. For more information on setting the audit level, see "Understanding the Order of Precedence for Audit Level Settings" in Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite.	
13.2.3 OneWayDeliveryPolicyThe The new configuration property name is	
The If you set the One-way invocation messages are stored in the delivery cache until delivered. If the rate at which one-way messages arrive is much higher than the rate at which Oracle BPEL Server delivers them, or if the server fails, messages may be lost.	
13.2.4 StatsLastNThe This property is applicable to both durable and transient processes. The default value is -1. 13.2.5 AuditDetailThresholdThe The details string typically contains the contents of a BPEL variable. In cases where the variable is very large, performance can be severely impacted by logging it to the audit trail. The default value is 50000 (50 kilobytes). 13.2.6 LargeDocumentThresholdThe This property is applicable to both durable and transient processes. Large XML documents impact the performance of the entire Oracle BPEL Server if they are constantly read in and written out whenever processing on an instance must be performed. The default value is 10000 (100 kilobytes). 13.2.7 Validate XMLThe This property is applicable to both durable and transient processes. The default value is False. 13.2.8 SyncMaxWaitTimeThe This property is applicable to transient processes. The default value is 45 seconds. 13.2.9 InstanceKeyBlockSizeThe For example, if The default value is 10000. 13.3 BPEL Properties Set Inside a CompositeThis section lists the config properties of some sections of the deployment descriptor. For each configuration property parameter, a description is given, as well as the expected behavior of the engine when it is changed. All the properties set in this section affect the behavior of the component containing the BPEL process only. Each BPEL process can be created as a component of a composite. These properties are modified through WLST. 13.3.1 Component PropertiesThe following component properties can be tuned for performance: 13.3.1.1 inMemoryOptimizationThis property indicates to Oracle BPEL Server that this process is a transient process and dehydration of the instance is not required. When set to True, the completionPersistPolicy is used to determine persistence behavior. This property can only be set to True for transient processes or processes that do not contain any dehydration points such as receive, wait, onMessage and onAlarm activities. The inMemoryOptimization property is set at the BPEL component level. When set to False, dehydration is disabled which can improve performance in some use cases. Values: This property has the following values:	
13.3.1.2 completionPersistPolicyThis property configures how the instance data is saved. It can only be set at the BPEL component level. The completionPersistPolicy property can only be used when inMemoryOptimization is set to be True (transient processes). Note that this parameter may affect database growth and throughput (due to reduced I/O).	
13.3.2 Partner Link PropertyYou can dynamically configure a partner link at runtime in BPEL. This is useful for scenarios in which the target service that BPEL wants to invoke is not known until runtime. The following Partner Link properties can be tuned for performance: 13.3.2.1 idempotentAn idempotent activity is an activity that can be retried (for example, an assign activity or an invoke activity). Oracle BPEL Server saves the instance after a nonidempotent activity. This property is applicable to both durable and transient processes. Values: This property has the following values:	
13.3.2.2 nonBlockingInvokeBy default, Oracle BPEL Process Manager executes in a single thread, executing the branches sequentially instead of in parallel. When this property is set to True, the process manager creates a new thread to perform each branch's invoke activity in parallel. This property is applicable to both durable and transient processes. Consider setting this property to True if you have invoke activities in multiple flow or flow n branches. This is especially effective if the parallel invoke activities are two-way, but some benefits can be realized for parallel one-way invokes as well. Values: This property has the following values:	
13.3.2.3 validateXMLEnables message boundary validation. Note that additional validation can impact performance by consuming extra CPU and memory resources. Values:	
13.4 Tables Impacted By Instance Data GrowthInstance data occupies space in Oracle BPEL Process Manager schema tables. Data growth from auditing and dehydration can have a significant impact on database performance and throughput. See Section 13.2.2, "Audit Level" for audit configuration and Section 13.3.1.1, "inMemoryOptimization" for dehydration configuration. The table below describes the tables that are impacted by instance data growth. A brief description is provided of each table. Table 13-1 Oracle BPEL Process Manager Tables Impacted by Instance Data Growth	
14 Oracle Mediator Performance TuningThis chapter describes how to tune Oracle Mediator for optimal performance. It contains the following topics:	
14.1 About Oracle MediatorMediator is a component of Oracle SOA offering that provides mediation capabilities like selective routing, transformation and validation capabilities, along with various message exchange patterns, like synchronous, asynchronous and event publishing or subscription. Oracle Mediator provides the framework to mediate between various providers and consumers of services and events. The Mediator service engine runs with the SOA Service Infrastructure Java EE application.	
14.2 Basic Tuning ConsiderationsIn most business environments, customer data resides in disparate sources including business partners, legacy applications, enterprise applications, databases, and custom applications. The challenge of integrating this data efficiently can be met by using Oracle Mediator to deliver real-time data access to all applications that update or have a common interest in the same data.	
This section provides details about setting common Oracle Mediator properties such as: 14.2.1 metricsLevelThis property controls DMS metrics tracking level. By default, DMS metrics collections is enabled. If you do not need to collect DMA metrics data, consider setting the 14.2.2 Domain-Value MapsWhen performance is an issue, consider using domain-value maps instead of database lookup within XSL transformations to minimize file I/O. For more information on using domain value maps, see "Working with Domain Value Maps" in Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite. 14.2.3 Deferred Routing RulesThe following performance configuration parameters can be used for tuning components with parallel routing rules deployed:	
14.2.4 Error and Retry ParametersConsider increasing the The For more information on routing, see "Creating Mediator Routing Rules" in Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite. 14.2.5 Audit LevelThe Use the Off value if you do not want to store any audit information. This value can improve performance in some use cases. Always choose the audit level according to your business requirements and use cases. For more information on setting the audit level, see "Understanding the Order of Precedence for Audit Level Settings" in Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite.	
14.2.6 ResequencerA Resequencer is used to rearrange a stream of related but out-of-sequence messages back into order. It sequences the incoming messages that arrive in a random order and then send them to the target services in an orderly manner. For more information about Resequencers, refer to "Resequencing Messages" in the Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite. You can fine tune Resequencer by setting the value of the following properties in the Mediator Service Engine Properties page:	
14.3 Event Delivery Network (EDN) TuningThe Event Delivery Network (EDN) delivers events published by Oracle Mediator, Oracle BPEL Process Manager components, and external publishers such as Oracle Application Development Framework entity objects. To improve performance of the Event Delivery Network, consider increasing the thread count (default is 3.) This property can be modified through WLST. For more information, see Section 11.3, "Modifying SOA Configuration Parameters". 15 Oracle Business Process Management TuningThe Oracle Business Process Management (BPM) Suite provides a seamless integration of all stages of the application development life cycle from design-time and implementation to run-time and application management. This chapter contains the following sections:	
15.1 About Oracle Business Process ManagementThe Oracle BPM Suite provides an integrated environment for developing, administering, and using business applications centered around business processes. BPM is layered on the Oracle SOA Suite and shares many of the same product components, including Business Rules, Human Workflow, and Oracle Adapter Framework for Integration. For more information on on using BPM, see the Oracle Fusion Middleware User's Guide for Oracle Business Process Management. 15.2 Basic Tuning ConsiderationsThis section describes the following basic BPM performance tuning properties:	
15.2.1 Audit LevelThe Use the Off value if you do not want to store any audit information. Always choose the audit level according to your business requirements and use cases. For more information on setting the audit level, see "Understanding the Order of Precedence for Audit Level Settings" in Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite.	
15.2.2 LargeDocumentThresholdThe This property is applicable to both durable and transient processes. Large XML documents impact the performance of the entire Oracle BPM Runtime if they are constantly read in and written out whenever processing on an instance must be performed. The default value is 10000 (100 kilobytes). 15.2.3 Dispatcher System ThreadsThe The minimum number of threads for this thread pool is 1 and it cannot be set to 0 a or negative number. The default value is 15.2.4 Dispatcher Engine ThreadsThe The minimum number of threads for this thread pool is 1 and it cannot be set to 0 a or negative number. The default value is 30 threads. Any value less than 1 thread is changed to the default. 15.2.5 Dispatcher Invoke ThreadsThe The minimum number of threads for this thread pool is 1 and it cannot be set to 0 a or negative number. The default value is 20 threads. Any value less than 1 thread is changed to the default. 15.3 Tuning Oracle Workspace and Worklist ApplicationsThe following settings can be used to tune Oracle Workspace and Worklist applications:	
15.4 Tuning Process AnalyticsTuning Process Analytics includes the following: 15.4.1 Process MeasurementProcess Analytics uses measurement events to sample the process and publish measurements to registered consumers. These measurements can be disabled using the BPMN Configuration "Disable Sensors". Specific consumers for these measurements can be disabled by setting the BPMN Configuration "Disable Actions". For more information, see the Oracle Fusion Middleware Administrator's Guide. Measurement events are published on the JMS Topic: MeasurementTopic, and consumed by registered Action MDBs. In order to tune JMS for Measurements, consider changing the following, as needed, in a high volume environment:	
15.4.2 Tuning Process CubesProcess Cubes perform periodic aggregations to compute workload information. The frequency of these computations is determined by the Process Cube Aggregator uses the DELETE FROM BPM_CUBE_AUDITINSTANCE A WHERE EXISTS (SELECT 1 FROM BPM_CUBE_AUDITINSTANCE B WHERE A.COMPONENTINSTANCEID = B.COMPONENTINSTANCEID AND B.OPERATION='INSTANCE_CREATED' AND B.ACTIVITYSTATUS='PROCESSED') 16 Oracle Human Workflow Performance TuningThis chapter describes how to tune Oracle Human Workflow for optimal performance. You can tune Oracle Human Workflow in these areas:	
16.1 About Oracle Human WorkflowOracle Human Workflow is a service engine running in Oracle SOA Service Infrastructure that allows the execution of interactive human driven processes. A human workflow provides the human interaction support such as approve, reject, and reassign actions within a process or outside of any process. The Human Workflow service consists of a number of services that handle various aspects of human interaction with a business process. For more information, see "Using the Human Workflow Service Component" in Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite. See also the Oracle Human Workflow web site at 16.2 Basic Tuning ConsiderationsThis section discusses the various options available to address performance issues:	
16.2.1 Minimize Client Response TimeSince workflow client applications are interactive, it is important to have good response time at the client. Some of the factors that affect the response time include service call performance impacts, querying time to determine the set of qualifying tasks for the request, and the amount of additional information to be retrieved for each qualifying task. 16.2.2 Choose the Right Workflow Service ClientWorkflow services support two major types of clients: SOAP and EJB clients. EJB clients can be further separated into local EJB clients and remote EJB clients. If the client application is based on .Net technologies, then only the SOAP workflow services can be used. However, if the client application is based on Java EE technology, then consider which client should be used based on your use case scenarios. The options are listed below:	
For more information, see Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite. 16.2.3 Narrow Qualifying Tasks Using Precise FiltersUsing precise filters is one of the most important factors in improving response time. When a task list is retrieved, the query should be as precise as possible so the maximum filtering can be done at the database level. For example, when the inbox view is requested for a user, the tasks are filtered mainly based on whether they are assigned to the current user or to the groups the user belongs to. By specifying additional predicate filters on the inbox view, the overall response time for the query can be reduced since lesser number of tasks qualify. Alternatively, you can define views by specifying predicate filters and the overall response time for such views is reduced since lesser number of tasks qualify. All predicates passed to the query APIs (or defined in the views) are directly pushed to the database level SQL queries. With this information, the database optimizer can use the best indexes to create an optimal execution plan. The additional filters can be based on task attributes or promoted flex fields. For example, instead of listing all PO approval tasks, views can be defined to present tasks to the user based on priority, date, category, or amount range. Example: To retrieve all assigned tasks for a user with priority = 1, you can use the following API call: Predicate pred = new Predicate(TableConstants.WFTASK_STATE_COLUMN, Predicate.OP_EQ, IWorkflowConstants.TASK_STATE_ASSIGNED); pred.addClause(Predicate.AND, TableConstants.WFTASK_PRIORITY_COLUMN, Predicate.OP_EQ, 1); List tasks = querySvc.queryTasks(ctx, queryColumns, null, ITaskQueryService.AssignmentFilter.MY ITaskQueryService.AssignmentFilter.MY, null, pred, null, startRow, endRow); 16.2.4 Retrieve Subset of Qualifying Tasks (Paging)Once the task list has been narrowed down to meet a specific criteria as discussed in the previous section, the next level of filtering is based on how many tasks are to be presented to the user. You want to avoid fetching too many rows, which not only increases the query time but also increases the application process time and the amount of data returned to client. The query API has paging parameters that control the number of qualifying rows returned to the user and the start row. For example, in the List tasks = querySvc.queryTasks(ctx, queryColumns, null, ITaskQueryService.AssignmentFilter.MY, null, pred, null, startRow, endRow); Consider setting the 16.2.5 Fetch Only the Information That Is Needed for a Qualifying TaskWhen using the queryTask service, consider reducing the amount of optional information retrieved for each task returned in the list. This may reduce the performance impacts from additional SQL query and Java logic. For example, in the following List<ITaskQueryService.OptionalInfo> optionalInfo = new ArrayList<ITaskQueryService.OptionalInfo>(); optionalInfo.add(ITaskQueryService.OptionalInfo.GROUP_ACTIONS); // optionalInfo.add(ITaskQueryService.OptionalInfo.ATTACHMENTS); // optionalInfo.add(ITaskQueryService.OptionalInfo.PAYLOAD); List tasks = querySvc.queryTasks(ctx, queryColumns, optionalInfo, ITaskQueryService.AssignmentFilter.MY, null, pred, null, startRow, endRow); In rare cases where the entire payload is needed, then the payload information can be requested. Typically only some of the payload fields are needed for displaying the task list. For example, for PO Tasks, the PO amount may be a column that must be displayed. Rather than fetching the payload as additional information and then retrieving the amount using an xpath expression and displaying it in the listing, consider mapping the amount column from the payload to a flex field. The flex field can then be directly retrieved during SQL querying which may significantly reduce the processing time. Similarly, for attachments where the name of the attachment is to be displayed in the listing and the document itself is stored in an external repository, consider capturing the attachment name in the payload and mapping it to a flex field, so that processing time is optimized. While constructing the listing information, the link to the attachment can be constructed by fetching the appropriate flex field. 16.2.6 Reduce the Number of Return Query ColumnsWhen using the For example, in the following List queryColumns = new ArrayList(); queryColumns.add("TASKNUMBER"); queryColumns.add("TITLE"); ... List tasks = querySvc.queryTasks(ctx, null, ITaskQueryService.AssignmentFilter.MY, null, pred, null, startRow, endRow); 16.2.7 Use the Aggregate API for Charting Task StatisticsSometimes it is necessary to display charts or statistics to summarize task information. Rather than fetching all the tasks using the query API, and computing the statistics at the client layer, consider using the new aggregate APIs to compute the statistics at the database level. For example, the following call illustrates the use of the API to get summarized statistics based on state for tasks assigned to a user: List taskCounts = querySvc.queryAggregatedTasks(ctx, Column.getColumn(WFTaskConstants.STATE_COLUMN), ITaskQueryService.AssignmentFilter.MY, keyWordFilter, filterPredicate, false, false); 16.2.8 Use the Count API Methods for Counting the Number of TasksSometimes it is only necessary to count how many tasks exist that match certain criteria. Rather than calling the For example, the following call illustrates the use of the API to get the total number of tasks assigned to a user: int numberOfTasks = querySvc.countTasks(ctx, ITaskQueryService.AssignmentFilter.MY, keyWordFilter, filterPredicate); 16.2.9 Create Indexes On Demand for FlexfieldsThe workflow schema table WFTASK contains several flexfield attribute columns that can be used for storing task payload values in the workflow schema. Because there are numerous columns, and their use is optional, the installed schema does not contain indexes for these columns. In certain use-cases, for example, where certain mapped flexfield columns are frequently used in query predicates, performance can be improved if you create indexes on these columns. For example, to create an index on the TEXTATTRIBUTE1 column, the following SQL command should be run: create index WFTASKTEXTATTRIBUTE1_I on WFTASK(TEXTATTRIBUTE1);	
16.2.10 Use the doesTaskExist MethodSometimes it is necessary to check whether any tasks exist that match particular query criteria. Rather than calling the For example, the following call illustrates the use of the API method to determine if a user owns any task instances: boolean userOwnsTask = querySvc.doesTaskExist(ctx, ITaskQueryService.AssignmentFilter.OWNER,null,null); 16.3 Improving Server PerformanceServer performance essentially determines the scalability of the system under heavily loaded conditions. Section 16.2.1, "Minimize Client Response Time" lists several ways in which client response times can be minimized by fetching the right of amount of information and reducing the potential performance impact associated with querying. These techniques also reduce the database and service logic performance impacts at the server and can improve server performance. In addition, a few other configuration changes can be made to improve server performance:	
16.3.1 Archive Completed Instances PeriodicallyThe database scalability of a system is largely dependent on the amount of data in the system. Since business processes and workflows are temporal in nature, once they are processed, they are not queried frequently. Having numerous completed instances in the system can slow the system. Consider using an archival scheme to periodically move completed instances to another system that can be used to query historical data. Archival should be done carefully to avoid orphan task instances. 16.3.2 Select the Appropriate Workflow Callback FunctionalityThe workflow callback functionality can be used to query or update external systems after any significant workflow event, such as assignment or completion of task. While this functionality is very useful, it has to be implemented correctly to avoid impacting performance. When performance is critical, ensure that there are sufficient resources to update the external system after the task is completed instead of after every workflow event. For example, instead of using a callback, the service can be invoked once after the completion of the task. If a callback cannot be avoided, then consider using a Java callback instead of a BPEL callback. Java callbacks do not have the performance impact associated with a BPEL callback since the callback method is executed in the same thread. In contrast, a BPEL callback may impact performance when sending a message to the BPEL engine, which in turn must be correlated so that it is delivered to the correct process instance. The workflow service has to be called by the BPEL engine after the invocation of the service. 16.3.3 Minimize Performance Impacts from NotificationNotifications are useful for alerting users that they have a task to execute. In environments where most approvals happen through email, actionable notifications are especially useful. This also implies that there is not much load in terms of worklist usage. However if most users interact through the Worklist, and notifications serve a secondary purpose, then notifications should be used judiciously. Consider minimizing the notification to just alert a user when a task is assigned instead of sending out notifications for each workflow event. Also, if the task content is also mailed in the notification there may be an impact to performance. To minimize the impact, consider making the notifications secure in which case only a link to the task is sent in the notification and not the task content itself. 16.3.4 Deploy Clustered NodesAll workflow instances and state information are stored in the dehydration database. Workflow services are stateless which means they can be used concurrently on a cluster of nodes. When performance is critical and a highly scalable system is needed, a clustered environment can be used for supporting workflow. For more information on clustered architecture, see Section 28.2, "Using Clusters with Oracle Fusion Middleware". 16.4 Completing Workflows FasterThe time it takes for a workflow to complete depends on the routing type specified for the workflow. The workflow functionality provides some options that can be used to improve the amount of time it takes to complete workflows. Some of these options are discussed in this section:	
16.4.1 Use Workflow Reports to Monitor ProgressSeveral workflow reports (and corresponding views) are available that can make monitoring and proactively fixing problems easier. A few of these reports are listed below:	
All of these reports can be used effectively to fix problems. By checking unattended tasks report, you can assign tasks that have been in the queue for a long time to specific users. By monitoring cycle time and other statistics, you can add staff to groups that are overloaded or take a longer time to complete. Thus reports can be used effectively to ensure workflows complete faster. 16.4.2 Specify Escalation RulesTo ensure that tasks do not get stuck at any user, you can specify escalation rules. For example, you can move a task to a manager if a certain amount of time passes without any action being taken on the task. Custom escalation rules can also be plugged in if the task must be escalated to some other user based on alternative routing logic. By specifying proper escalation rules, you can reduce workflow completion times. 16.4.3 Specify User and Group Rules for Automated AssignmentInstead of manually reassigning tasks to other users or members of a group, you can use user and group rules to perform automated reassignment. This ensures that workflows get timely attention. For example, a user can set up a user rule such that workflows of a specific type and matching a certain filter criteria are automatically reassigned to another user in a specified time window. Similarly, a group rule can be used to automatically reassign workflows to a member of the group based on different routing criteria such as round robin or most productive. Thus rules can help significantly reduce workflow waiting time, which results in faster workflow completion. 16.4.4 Use Task Views to Prioritize WorkA user's inbox can contain tasks of various types with various due dates. The user has to manually sift through the tasks or sort them to find out which one he or she should work on next. Instead, by creating task views where tasks are filtered based on due dates or priority, users can get their work prioritized automatically so they can focus on completing their tasks instead of wasting their time on deciding which tasks to work on. This also results in faster completion of workflows. 16.5 Tuning Identity ProviderThe workflow service uses information from the identity provider in constructing the SQL query to determine the tasks qualifying for a user based on his or her role/group membership. The identity provider is also queried for determining role information to determine privileges of a user when fetching the details of a task and determining what actions can the user perform on a task. There are a few ways to speed up requests made to the identity provider.	
16.6 Tuning the DatabaseThe Human Workflow schema is shipped with several indexes defined on the most important columns for all the tables. Based on the type of request, different SQL queries are generated to fetch the task list for a user. The database optimizer evaluates the cost of different plan alternatives (for example, full table scan, access table by index) and decides on a plan that is lower in cost. For the optimizer to work correctly, the index statistics should be current at all times. As with any database usage, it is important to make sure the database statistics are updated at regular intervals and other tunable parameters such as memory, table space, and partitions are used effectively to get maximum performance. For more information on tuning the database, see Section 2.6, "Tune Database Parameters". 17 Oracle Adapters Performance TuningThis chapter describes how to tune Oracle Adapters for optimal performance. Oracle Adapters, a component of the Oracle SOA Suite of Applications, provide an integrated view of data and allow multiple applications to be integrated. This chapter contains the following sections:	
17.1 About Oracle AdaptersOracle technology adapters integrate Oracle Application Server and Oracle Fusion Middleware components such as Oracle BPEL Process Manager (Oracle BPEL PM) or Oracle Mediator components to file systems, FTP servers, database queues (advanced queues, or AQ), Java Message Services (JMS), database tables, and message queues (MQ Series). For more information on Oracle Adapters, see Oracle Fusion Middleware User's Guide for Technology Adapters. 17.2 Oracle JCA Adapters for Files/FTPThis section describes the various features available for scalability and performance tuning of Oracle File and FTP Adapters.The Oracle File and FTP Adapters provide knobs to throttle the inbound and outbound operations. The Oracle File and FTP Adapters also provide knobs that can be used to tune the performance of outbound operations. The Oracle File and FTP Adapters knobs are described in the following sections:	
17.2.1 Inbound Throttling Best PracticesThe Oracle File and FTP Adapters provide parameters that can be used to throttle the inbound operations. The table below describes the inbound throttling practices:	
17.2.2 Outbound Throttling Best PracticesThe Oracle File and FTP Adapters provide parameters that can be used to throttle the outbound operations. The table below describes the outbound throttling practices:	
17.2.3 Outbound Performance Best PracticesThe Oracle File and FTP Adapters provide parameters that can be used to tune the performance of outbound operations. The table below describes the outbound performance parameters:	
17.3 Oracle JCA Adapter for Database TuningThe Oracle Database Adapter is pre-configured with many performance optimizations. You can, however, make some changes to reduce the number of round trips to the database, as described in the following sections:	
17.3.1 JCA Adapter Basic Tuning ConsiderationsAdapter performance is directly related to the number of round-trips to the database, and the network cost of each trip. If performance becomes an issue, and making modifications is appropriate for your deployment, consider tuning the following parameters:	
17.3.2 Existence CheckingOne method of performance optimization for	
17.4 Oracle Socket Adapter TuningThis section describes performance tuning for Oracle Socket Adapter. Performance can be optimized for the Oracle Socket Adapter using Connection Pool if the socket server you are connecting to does not close the socket with each interaction. Connection pool lets you use a socket connection repeatedly, avoiding the overload of creating a new socket for each interaction.	
In order to enable the connection pool feature for the Oracle Socket Adapter, the For instructions on modifying the Oracle Socket Adapter connection pooling, see "Configuring Oracle Socket Adapter Connection Pooling" in Oracle Fusion Middleware User's Guide for Technology Adapters. 17.5 Oracle SOA JMS Adapter TuningThis section describes some of the properties that can be set for the Oracle SOA JMS Adapter to optimize performance. See "Introduction to the Oracle JMS Adapter" in the Oracle Fusion Middleware User's Guide for Technology Adapters for more information. 17.5.1 adapter.jms.receive.threads PropertyTo improve performance, the For example: <service name="dequeue" ui:wsdlLocation="dequeue.wsdl"> <interface.wsdl interface="http://xmlns.oracle.com/pcbpel/adapter/jms/textmessageusingqueues/textmessageusingqueues/dequeue%2F#wsdl.interface(Consume_Message_ptt)"/> <binding.jca config="dequeue_jms.jca"> <property name="adapter.jms.receive.threads" type="xs:string" many="false">10</property> </binding.jca"> </service> 17.6 Oracle AQ Adapter TuningThis section describes Oracle AQ Adapter tuning configurations. 17.6.1 adapter.aq.dequeue.threads PropertyTo improve dequeue performance 'adapter.aq.dequeue.threads' property can be set for an adapter service. Default value is 1 but multiple inbound threads can be used to improve performance. The value of property 'adapter.aq.dequeue.threads' is used to spawn multiple inbound poller threads. For example: <service name="dequeue" ui:wsdlLocation="dequeue.wsdl"> <interface.wsdl interface="http://xmlns.oracle.com/pcbpel/adapter/aq/raw/raw/dequeue/#wsdl.interface(Dequeue_ptt)"/> <binding.jca config="dequeue_aq.jca"> <property name="adapter.aq.dequeue.threads" type="xs:string" many="false">10</property> </binding.jca> </service> 17.7 Oracle MQ Adapter TuningThe Oracle MQ Series Adapter supports the scalability feature for inbound operations only. Oracle MQ Series Adapter provides the parameter to control the number of threads that dequeue the messages from the inbound queue.You must specify the following property in the.jca file: InboundThreadCount='N' In the example above N is the number of threads that you want to span to dequeue the messages from the inbound queue. 18 Oracle Business Activity Monitoring Performance TuningThis chapter describes how to tune the Oracle Business Activity Monitoring (BAM) dashboard application for optimal performance. Oracle BAM provides the tools for monitoring business services and processes in the enterprise. This chapter discusses useful parameters that can be modified to enhance the overall performance of BAM:	
18.1 About Oracle Business Activity MonitoringOracle Business Activity Monitoring (BAM) provides the tools for monitoring business services and processes in the enterprise. It allows correlating of market indicators to the actual business process and to changing business processes quickly or taking corrective actions if the business environment changes. Oracle BAM also provides the necessary tools and run-time services for creating dashboards that display real-time data inflow and define rules to send alerts under specified conditions. For more information see Oracle Fusion Middleware User's Guide for Oracle Business Activity Monitoring. 18.2 Basic Tuning ConsiderationsThe following sections provide Oracle BAM tuning considerations that can be used to address performance issues:	
18.2.1 BAM Server TuningThe following tuning configurations can be used to improve performance of the BAM Server: 18.2.1.1 Set the ViewSetSharing and ElementCountLimit ParametersThe Consider setting the If this parameter is turned on, it does not always guarantee that ADC can reuse the existing viewset. If there have been too many changes to the underlying snapshot for the existing viewset, ADC may choose to create new viewset instead. The ReportCache parameter used to determine if there have been too many changes is 18.2.1.2 Enable the Async ServletDuring periods of higher active data rates, the browser uses more memory. To prevent potential impacts to performance, consider providing more memory on the client machine. To do this, set the The BAM dashboard application uses the Async servlet feature so that the BAM server does not bind a specific thread to a specific user request. This provides for better server-side system resource usage. This parameter can be turned off by adding Otherwise this should always be turned on, which is the default. See "Creating the Dashboard View" in Oracle Fusion Middleware User's Guide for Oracle Business Activity Monitoring. 18.2.2 BAM Dashboard TuningThis section provides information on tuning the BAM dashboard for performance. 18.2.2.1 Tune the Active Data Retrieval IntervalThe Active Data Retrieval Interval parameter controls the rate in milliseconds at which the Oracle BAM Active Data Cache (ADC) pushes events to the Oracle BAM Report Server. This is one of the factors that can affect the frequency of viewing active events on the dashboard page. Increasing this interval reduces the load on the Oracle BAM Server. Note that larger intervals increase the likelihood of multiple updates in the dashboard collapsing into a single update. The default For more information on using Active Studio, see "Getting Started With Oracle BAM Active Studio" in Oracle Fusion Middleware User's Guide for Oracle Business Activity Monitoring. 18.2.3 BAM Database TuningTo achieve the best performance for Oracle Business Activity Monitoring, consider maintaining a database on its own hardware dedicated to the Oracle Business Activity Monitoring system. General database administration practices, as described in the Oracle Database Performance Tuning Guide, also apply to a database dedicated to Oracle Business Activity Monitoring. For more information on general database configurations, see Section 2.6, "Tune Database Parameters". 18.2.4 Internet Browser TuningThis section provides performance tuning configurations for Internet browsers: 18.2.4.1 Set iActiveDataScriptsCleanupFactorBAM sends active data in <script> blocks to the browser over a persistent connection. In some cases, the browser does not free up the memory used by the <script> blocks. This can impact dashboard performance over time. The If performance continues to be an issue, consider increasing the value for this parameter. For example, set the value to 2 or 3 times the default value if active data is predicted to increase. The default value for this parameter is 1048576 bytes. The default value often prevents frequent reconnects and prevents CPU/memory on the client machine from creeping up too high. 18.2.4.2 Set Browser Cache SettingsIf you are using Microsoft Internet Explorer, consider setting the Browsing History Settings to "Automatic." See the Microsoft Internet Explorer online help for more information. 18.2.5 Enterprise Message Source TuningBAM Enterprise Message Source (EMS) provides inbound JMS connectivity to BAM. After setup, a BAM EMS instance can monitor JMS queues/topics and read data from them. Each EMS instance is configured to publish data to a single Data Object in BAM Server. The Enterprise Message Source supports four types of operations: Insert, Update, Upsert, or Delete. Two types of JMS messages are supported: MapMessage and TextMessage. 18.2.5.1 Message BatchingThe EMS batching process clubs messages into one single message before it is sent to BAM EMS. This feature enables the sender to send all messages in one batch over JMS. The batching process can improve network performance by limiting the number of round trips from the sender to JMS server to BAM EMS. 19 User Messaging Service Performance TuningThis chapter describes tips for tuning the User Messaging Service. It contains the following sections:	
19.1 About Oracle User Messaging ServicesOracle User Messaging Service enables users to receive notifications sent from SOA applications that are developed and deployed to the Oracle WebLogic Server using Oracle JDeveloper. At the application level, there is notification activity for a specific delivery channel (such as SMS or E-Mail). For example, when you build a SOA application that sends e-mail notification, you drag and drop an Email Activity component from the JDeveloper Component Palette to the appropriate location within a workflow. The application connects then sends notifications. For more information on Oracle User Messaging Service, see Oracle WebLogic Communication Services Administrator's Guide, Oracle WebLogic Communication Services Developer's Guide, and the Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite. 19.2 Basic Tuning ConsiderationsDepending on your User Messaging usage and performance issues, you may consider tuning the following: 19.2.1 SMPP Driver Performance TuningShort Messaging Peer-Peer Protocol (SMPP) messaging drivers can be configured using Enterprise Manager. One of the key parameters for optimizing SMPP performance is To take advantage of an increased For more information, see "Configuring Oracle User Messaging Service" in Oracle WebLogic Communication Services Administrator's Guide. 19.2.2 Email Driver Polling FrequencyFor Email drivers, the " 19.3 Database Tuning for Optimal ThroughputUser Messaging Service stores messaging state such as sent and received messages and delivery status information in the database. Therefore, database and data source tuning may have an effect on messaging throughput. The connection pool size for the data sources can be tuned for higher load levels, but the defaults are sufficient for most cases. For general database tuning considerations, see Section 2.6, "Tune Database Parameters". 20 Oracle B2B Performance TuningThis chapter describes tips for tuning Oracle B2B performance. It contains the following sections:	
20.1 About Oracle B2BOracle B2B is an e-commerce gateway that enables the secure and reliable exchange of business documents between an enterprise and its trading partners. Oracle B2B supports business-to-business document standards, security, transports, messaging services, and trading partner management. With Oracle B2B used as a binding component within an Oracle SOA Suite composite application, end-to-end business processes can be implemented. For more information about Oracle SOA Suite, see Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite. 20.2 MDS Cache SizeChanging the value of the Metadata Service (MDS) instance cache size can improve performance. A ratio of 5:1 is recommended for the These settings can be modified using Oracle Enterprise Manager Fusion Middleware Control. For more information, see "Configuring Oracle B2B" in the Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite. 20.3 Number of ThreadsChanging the value of These settings can be modified using Oracle Enterprise Manager Fusion Middleware Control. For more information, see "Configuring Oracle B2B" in the Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite. 20.4 JMS Multiple Out Queues SettingThe JMS Out Queue component is the element that enables a client application to receive data from a JMS queue. To maximize performance, consider setting the Multiple JMS OUTQUEUES to 6. 21 Oracle Service Bus Performance TuningThis chapter describes tips for tuning Oracle Service Bus performance. It contains the following sections:	
21.1 About Oracle Service BusWithin a SOA framework, Oracle Service Bus (OSB) provides connectivity, routing, mediation, management and also some process orchestration capabilities. The design philosophy for OSB is to be a high performance and stateless (non-persistent state) intermediary between two or more applications. However, given the diversity in scale and functionality of SOA implementations, OSB applications are subject to large variety of usage patterns, message sizes and QOS requirements. In most SOA deployments, OSB is part of a larger system where it plays the role of an intermediary between two or more applications (servers). A typical OSB configuration involves a client invoking an OSB proxy which may make one or more service callouts to intermediate back-end services and then route the request to the destination back end system before routing the response back to the client. It is necessary, therefore, to understand that OSB is part of a larger system and the objective of tuning is the optimization of the overall system performance. This involves not only tuning OSB as a standalone application, but also using OSB to implement flow-control patterns such as throttling, request-buffering, caching, prioritization and parallelism. For more information about Oracle Service Bus, see the Oracle Fusion Middleware Administrator's Guide for Oracle Service Bus. 21.2 Basic Tuning ConsiderationsDepending on your OSB usage and performance issues, you may consider tuning the following: 21.2.1 JVM Memory TuningJVM parameters can have an impact on OSB performance. The two primary JVM tuning parameters to consider when optimizing OSB performance are heap size and garbage collection. For more information on tuning the JVM for performance, see Section 2.4, "Tune Java Virtual Machines (JVMs)". 21.2.2 WebLogic Server TuningTo optimize OSB, consider tuning the following WebLogic Server parameters: 21.2.2.1 Domain ModeFor production environments, create a domain in "Production" mode to maximize performance. The parameter is: -Dweblogic.ProductionModeEnabled=true To enable Weblogic server production mode through Weblogic Administration Console, see Oracle Fusion Middleware Understanding Domain Configuration for Oracle WebLogic Server. 21.2.2.2 WebLogic Server Logging LevelsFor OSB performance testing and production environments, consider using the lowest acceptable logging level, such as "ERROR" or "WARNING" whenever possible. For more information, see Section 2.10, "Set Logging Levels" 21.2.2.3 HTTP Access LoggingTo optimize OSB perfomance, consider turning off the HTTP access logging. For more information, see Section 5.3.1, "Access Logging". 21.2.2.4 JMS TuningEnsure that the right persistence level is set for the Java Message Service (JMS) destinations. Consider the following scenarios:	
For more information on JMS Server Tunings, see "Tuning WebLogic JMS" in the Oracle Fusion Middleware Performance and Tuning for Oracle WebLogic Server. 21.2.2.5 Connection Backlog BufferingYou can tune the number of connection requests that a WebLogic Server instance will accept before refusing additional requests. The Accept Backlog parameter specifies how many Transmission Control Protocol (TCP) connections can be buffered in a wait queue. This fixed-size queue is populated with requests for connections that the TCP stack has received, but the application has not accepted yet. This parameter should be tuned when dealing a large number of concurrent clients. For more information, see "Tuning Connection Backlog Buffering" in Oracle Fusion Middleware Performance and Tuning for Oracle WebLogic Server. 21.3 Tuning OSB Operational Settings21.3.1 OSB MonitoringThough the out-of-the-box monitoring subsystem has a very low overhead and scales well to a large number of services as well as to multiple nodes in a cluster, when dealing with thousands of services or a large scale cluster deployment, being selective about enabling monitoring can help reduce network traffic. When a business or proxy service is created, monitoring is disabled by default for that particular service. For more information, see "Configuring Operational Settings for Proxy Services" or "Configuring Operational Settings for Business Services" in the Oracle Fusion Middleware Administrator's Guide for Oracle Service Bus. To enable or disable monitoring of all services that have individually been enabled or disabled for monitoring, use the "Enable Monitoring" option on the Operations Global Settings page. For more information, see "Enabling Global Settings" in the Oracle Fusion Middleware Administrator's Guide for Oracle Service Bus. 21.3.2 OSB TracingOracle Service Bus has the option to trace messages without having to shutdown the server. This is an extremely useful feature both in a development and production environment for debugging, diagnosing and troubleshooting problems involving message flows in one or more proxy services. Tracing is disabled by default but can be enabled on a per service basis. When tracing is enabled, the entire message context is also printed including headers and message body. It is important to realize its impact for large message sizes and high throughput scenarios. For more information, see "How to Enable or Disable Tracing" in the Oracle Fusion Middleware Administrator's Guide for Oracle Service Bus. 21.3.3 Cache Tuning for Proxy Service Run-Time DataOSB caches proxy service runtime meta-data using a two-level cache with static and dynamic sections. The cache introduces a performance tradeoff between memory consumption and compilation cost. Note that caching proxy services may help throughput but could impact memory usage. The static section is an upper-bound Least Recently Used (LRU) cache that is never garbage collected. When a proxy service is bumped from the static section, it is demoted to the dynamic section where the cache can be garbage collected when there is memory pressure. The number of proxy services in the static portion of the cache can be tuned by setting its size using the system property This property value can be set in the setDomainEnv.sh file as an extra java argument as follows: -Dcom.bea.wli.sb.pipeline.RouterRuntimeCache.size={size} Example: EXTRA_JAVA_PROPERTIES="-Dcom.bea.wli.sb.pipeline.RouterRuntimeCache.size=3000 ${EXTRA_JAVA_PROPERTIES}" 21.4 Transport Tuning (WLS and OSB)Latency and throughput of poller based transports depends on the frequency with which a source is polled and the number of files and messages read per polling sweep. The following are the main transport configurations to tune: 21.4.1 Polling IntervalConsider using a smaller polling interval for high throughput scenarios where the message size is not very large and the CPU is not saturated. The primary polling interval defaults are listed below with links to additional information:	
21.4.2 Read LimitThe read limit determines the number of files or messages that are read per polling sweep. This defaults to 10 for the File and FTP transports. It can be set to 0 to specify no limit. Set this value to the desired concurrency. For more information, see " File Transport Configuration Page" in the Oracle Fusion Middleware Administrator's Guide for Oracle Service Bus.	
21.5 Design Time Considerations for Proxy ApplicationsConsider the following design configurations for proxy applications based on your OSB usage and use case scenarios:	
21.6 Design Considerations for XQuery TuningOSB uses XQuery and XPath extensively for various actions like Assign, Replace, and Routing Table. The following XML structure ($body) is used to explain XQuery and XPath tuning concepts: <soap-env:Body> <Order> <CtrlArea> <CustName>Mary</CustName> </CtrlArea> <ItemList> <Item name="ACE_Car" >20000 </Item> <Item name=" Ext_Warranty" >1500</Item> …. a large number of items </ItemList> <Summary> <Total>70000</Total> <Status>Shipped</Status> <Shipping>My Shipping Firm </Shipping> </Summary> </Order> </soap-env:Body>	
Part VIdentity Management Suite ComponentsThis part describes configuring Oracle Identity Management Suite components to improve performance. The Oracle Identity Management products enable you to configure and manage the identities of users, devices, and services across diverse servers, to delegate administration of these identities, and to provide end users with self-service privileges. These products also enable you to configure single sign-on across applications and to process users' credentials to ensure that only users with valid credentials can log into and access online resources. It contains the following chapters:	
22 Oracle Internet Directory Performance TuningThis chapter provides guidelines for tuning and sizing an Oracle Internet Directory installation. It contains these topics:	
22.1 About Oracle Internet DirectoryOracle Internet Directory is Oracle's Lightweight Directory Application Protocol (LDAP) version 3 Directory Server. Oracle Internet Directory is highly scalable, available, and manageable. It has a multi-threaded, multi-process, multi-instance process architecture with Oracle Database as the directory store. This unique physical architecture enables Oracle Internet Directory to be deployed on several hardware architectures including Symmetric Multi-Processor (SMP), Non-Uniform Memory Access (NUMA) and Cluster hardware. Oracle Internet Directory's physical architecture enables linear performance scalability with hardware resources and numerous high availability configurations. For more information see Oracle Fusion Middleware Administrator's Guide for Oracle Internet Directory. 22.2 Introduction to Tuning Oracle Internet Directory	
Many of the recommendations in this chapter require changes to Oracle Internet Directory system configuration attributes and replication configuration attributes.	
22.3 Basic Tuning ConsiderationsTuning is the adjustment of parameters to improve directory performance. The default Oracle Internet Directory configuration must be tuned in almost all deployments. Please review the requirements and recommendations in this section carefully. 22.3.1 Database ParametersThe suggested minimum values for Oracle Database instance parameters are described in Table 22-1: Table 22-1 Minimum Values for Oracle Database Instance Parameters See the Oracle Database Performance Tuning Guide for information on setting Oracle Database instance parameters. 22.3.2 LDAP Server AttributesThe recommendations in this section are summarized in Table 22-2.	
The following values are appropriate for most deployments: Table 22-2 LDAP Server Attributes to Tune	
For information about configuring For information about configuring For information about configuring these attributes, as well as 22.3.3 Database StatisticsIf you use LDAP commands to add a large number entries to Oracle Internet Directory, it can affect directory performance. If this occurs, update the database statistics. See Section 22.10, "Updating Database Statistics by Using oidstats.sql." Typically, you only need to do this when you add entries in bulk for the first time after Oracle Internet Directory installation. You do not need to do it again because the database statistics are updated nightly automatically. If, however, you suddenly experience slow LDAP operations, without a corresponding change in data footprint, consider running You do not need to update database statistics if you use the 22.4 Advanced ConfigurationsAfter you have performed the modifications recommended in the previous section, you can make additional changes that are specific to your deployment. Consider carefully whether the recommendations in this section are appropriate for your environment. 22.4.1 Replication or Oracle Directory Integration PlatformWhen you deploy Oracle Internet Directory with the Oracle Directory Integration Platform or with replication, you can improve performance by having a dedicated LDAP server instance for those two servers. This allows the default Oracle Internet Directory LDAP instance to serve the LDAP application traffic and the second instance to serve LDAP requests from the replication and Oracle Directory Integration Platform servers.	
To configure	
22.4.2 Replication Server ConfigurationThe following recommendations can be useful when replication traffic is heavy. Be sure you understand the trade-offs before making these changes. The recommended values are summarized in Table 22-3.	
Table 22-3 summarizes these recommendations. Table 22-3 Replication Attributes	
See Section 22.11, "Setting Performance-Related Replication Configuration Attributes" for information on setting these replication attributes. 22.4.3 Garbage Collection ConfigurationBy default, Oracle Internet Directory runs database jobs to purge change logs, server manageability statistics, and other data beginning at midnight, with each job starting 15 minutes after the previous one. You can change this configuration to suite your deployment needs by modifying the parameters shown in Table 22-4. Table 22-4 Garbage Collection Configuration Parameters	
You can modify these attributes by using 22.4.4 Oracle Internet Directory with Oracle RAC DatabaseAs described in Section 22.4.2, "Replication Server Configuration", you can have a dedicated LDAP server for Oracle Directory Integration Platform and replication, in addition to the default server. In an Oracle Internet Directory Cluster, start the default LDAP instance on all Oracle Internet Directory nodes, but start the dedicated instance only on the node where Oracle Directory Integration Platform and replication are running. Consider carefully which database instance Oracle Internet Directory should connect to:	
22.4.5 Password Policies and Verifier ProfilesOracle Internet Directory has password policies and password verifier profiles enabled out of box. If Oracle Internet Directory is not required to enforce password policies in a given deployment, then the password policies can be disabled. The password verifier profiles enabled out of box control the generation of certain password verifiers required by Oracle products like Enterprise User Security and Oracle Collaboration Suite. If Oracle Internet Directory is not being deployed for other Oracle products, you can disable all the password verifier profiles. You can disable password policies and password verifiers by using Oracle Directory Services Manager or	
22.4.6 Server Entry CacheThe Oracle Internet Directory server entry cache enables LDAP entries to be cached on the Oracle Internet Directory server process heap for better performance. Configuring the entry cache provides benefits if, and only if, all or most entries can be cached.	
22.4.6.1 When to Use the Entry CacheConsider using Oracle Internet Directory Server Entry Cache only under the following conditions:	
22.4.6.2 Benefits of Using the Entry CacheBenefits of using the entry cache include:	
These benefits apply only when all or most entries can be cached. A cache miss is more expensive than disabling the entry cache. 22.4.6.3 Values for Configuring the Entry CacheYou can configure and optimize the server entry cache by setting the values shown in Table 22-5. Table 22-5 Server Entry Cache Configuration	
For example, if the total size of the DIT is 300K and total size of 300K entries in LDIF format is 500M, you would set orclecacheenabled to 1, orclecachemaxsize to 1500000000, and orclecachemaxentries to 300000. If the size of the largest group entry or entry with binary value is 10M, you would set orclecachemaxentsize to 10000000. To configure the attributes, see Section 22.12.1, "Modifying Instance-Specific Attributes by Using Fusion Middleware Control" and Section 22.12.3, "Modifying Attributes by Using ldapmodify." 22.4.7 Tuning Security Event TrackingThe instance-specific configuration entry attributes The attribute The attribute	
If your deployment requires it, set the values for orcloptracknumelemcontainers only when security events collection is turned on. 22.5 Low-Priority Tuning ConsiderationsThis section describes attributes that can sometimes improve performance, but are considered low-priority. 22.5.1 Number of Entries to be Returned by a SearchThe attribute See Section 22.12.3, "Modifying Attributes by Using ldapmodify." 22.5.2 Enabling the Group CacheThe instance-specific subentry attribute Use the group cache when a privilege group membership does not change frequently. If a privilege group membership does change frequently, then it is best to turn off the group cache. It is important to note that computing a group cache may affect performance. The default is 1 (enabled). Change to 0 (zero) to disable. See Section 22.12.3, "Modifying Attributes by Using ldapmodify." 22.5.3 Timeout for Write OperationsWhen an LDAP client initiates an operation, then does not respond to the server for a configured number of seconds, the server closes the connection. The number of seconds is controlled by the You can modify 22.6 Specific Use CasesThis section describes some specific use cases that require additional tuning, in addition to Section 22.3, "Basic Tuning Considerations" 22.6.1 Bulk Load OperationIf you are planning a large	
22.6.2 Bulk Delete OperationIf you are planning a large	
22.6.3 High LDAP Write Operations LoadIf you have a high LDAP write operations load, or if you perform many	
Table 22-6 summarizes the redo log and undo tablespace recommendations provided in this section. Table 22-6 Redo Log and Undo Tablespace Values	
22.7 Optimizing SearchesThis section contains these topics:	
22.7.1 Optimizing Searches for Large Group EntriesSearches for group entries with several thousand attribute values for either the The simplest step is to reduce the number of attributes you are searching for. If you do not need to retrieve all the attributes of the group entry, specify required attributes in the search request to optimize the latency. 22.7.1.1 Entry Cache Enabled ConfigurationIf you still see unacceptable latency, even with required attributes specified, then you can try to cache the large group entry in the entry cache. To do this, increase the value of the cn=componentname,cn=osdldapd,cn=subconfigsubentry This attribute controls the maximum size of a cache entry. The default value is 1M. If the size of the large group entry is greater than the value of	
22.7.1.2 Entry Cache Disabled Configuration.No action is required. This configuration is enabled by default. 22.7.2 Optimizing Searches for Skewed AttributesTo service a typical search request, the Directory Server sends a SQL statement to the Oracle Database. If a given attribute has very different response times depending on its value, then the attribute is said to be skewed. For example, if searches for You can uniform the response times for searches for such an attribute by adding it as a value of the cn=dsaconfig,cn=configsets,cn=oracle internet directory By default, the You can change the value of 22.7.3 Optimizing Performance of Complex Search FiltersWhen Oracle Internet Directory receives an LDAP search filter from a client application, it sends the filter to the Oracle Database as an SQL query. Sometimes client applications send filters that include terms that match a large number of entries in the directory. For example, consider the following filter:	
The terms cn=dsaconfig,cn=configsets,cn=oracle internet directory When	
For example, suppose By default,	
You can change the value of Under some conditions, Oracle Internet Directory ignores	
The following cases illustrate those conditions. In all of the following cases, Examples Case A	
Oracle Internet Directory sends the filter Case B	
Oracle Internet Directory sends only Case C	
In this filter, the terms that match Case D	
Even though some of the terms in this filter match Case E	
In this filter, the terms that match Case F	
Even though this filter contains an OR operator, it is not applied to the terms that match Configuring Multiple Filters If the application is sending multiple filters, and the terms in one filter are a superset of the terms in the other, you must configure	
where	
Optimizing Performance for Search baseDN In the DIT, if all the users are under one baseDN, such as orclinmemfiltprocess;dn: cn=users,dc=acme,dc=com 22.8 Evaluating Performance on UNIX and Windows SystemsKnowledge of the following tools is recommended for Linux, Solaris, and other UNIX-like operating systems: Knowledge of the following tools is recommended for Microsoft Windows: Knowledge of the following tools is recommended for the Oracle Database:	
In addition to the operating system tools, the LDAP applications being used in a customer environment must be able to provide latency and throughput measurement. In addition, the Database Statistics Collection Tool (oidstats.sql), located at 22.9 Obtaining Recommendations by Using the Tuning and Sizing WizardOracle Enterprise Manager Fusion Middleware Control provides a convenient tool for tuning and sizing Oracle Internet Directory. Use the wizard to obtain tuning and sizing recommendations for your system. You can select Tuning, Sizing, or Both. If you select Sizing or Both, you can select Basic or Advanced Tuning	
Sizing	
Both	
22.10 Updating Database Statistics by Using oidstats.sqlDatabase statistics are updated automatically, OIDMON runs $ORACLE_HOME/bin/ldapmodify -p <oidPort> -h <oidHost> -D cn=orcladmin -w <adminPassword> << eof dn: cn=configset,cn=oidmon,cn=subconfigsubentry changetype: modify replace: orclstatsperiodicity orclstatsperiodicity: <desired_number> eof	
22.11 Setting Performance-Related Replication Configuration AttributesTo set the replication attributes, you can use either the Replication Wizard in Oracle Enterprise Manager Fusion Middleware Controlor the command line. The attributes	
The attributes	
22.12 Modifying Performance-Related System Configuration AttributesYou can set most performance-related system configuration attributes from Oracle Enterprise Manager Fusion Middleware Control or from the command line. This section describes how to do that. You can also use the Data Browser in Oracle Directory Services Manager to modify system configuration attributes.	
This section contains the following topics:	
22.12.1 Modifying Instance-Specific Attributes by Using Fusion Middleware ControlYou can configure performance attributes in the instance-specific configuration entry by using the Server Properties page of Oracle Enterprise Manager Fusion Middleware Control. Select Administration, then Server Properties from the Oracle Internet Directory menu, then select the Performance tab. Table 22-7 shows the relationship between fields on the page and configuration attributes. Table 22-7 Configuration Attributes on Server Properties Page, Performance Tab Restart the server after changing 22.12.2 Modifying Shared Attributes by Using Fusion Middleware ControlYou configure the performance-related shared attributes in the DSA configuration entry by using the General tab of the Oracle Internet Directory Shared Properties page of Oracle Enterprise Manager Fusion Middleware Control. Select Administration, then Shared Properties from the Oracle Internet Directory menu. Table 22-8 shows the relationship between fields on the page and the performance-related configuration attributes.	
Table 22-8 Performance-Related Attributes on Shared Properties Page, General Tab	
Restart the server after changing 22.12.3 Modifying Attributes by Using ldapmodifyMost attributes can be modified by using the LDAP command You use a command line such as: ldapmodify -D cn=orcladmin -q -p portNum -h hostname -f ldifFile where ldifFile is an LDIF file. 22.12.3.1 Modifying Performance-Related Instance-Specific Configuration Entry AttributesHere are some examples of LDIF files for modifying instance-specific configuration entry attributes. orclgeneratechangelog dn: cn=componentname,cn=osdldapd,cn=subconfigsubentry changetype: modify modify: orclgeneratechangelog orclgeneratechangelog: 0 orclsizelimit dn: cn=componentname,cn=osdldapd,cn=subconfigsubentry changetype: modify modify: orclsizelimit orclsizelimit: 10000 orclenablegroupcache dn: cn=componentname,cn=osdldapd,cn=subconfigsubentry changetype: modify modify: orclenablegroupcache orclenablegroupcache: 0 22.12.3.2 Modifying Performance-Related Shared System Configuration Attributes in the DSA Configuration EntryHere are some examples of LDIF files for modifying DSA configuration entry attributes. orclskiprefinsql dn: cn=dsaconfig,cn=configsets,cn=oracle internet directory changetype: modify replace: orclskiprefinsql orclskiprefinsql: 1 orclinmemfiltprocess: One Filter is a Superset of Another dn: cn=dsaconfig, cn=configsets, cn=oracle internet directory changetype: modify add: orclinmemfiltprocess orclinmemfiltprocess: (objectclass=inetorgperson)(orclisenabled=TRUE) orclskewedattribute dn: cn=dsaconfig,cn=configsets,cn=oracle internet directory changetype: modify add: orclskewedattribute orclskewedattribute: my_attribute ! Restart the server after changing 22.13 Setting Garbage Collection Configuration AttributesThe attributes 22.13.1 Modifying Changelog Purging Attributes by Using ldapmodifyThe following example is an LDIF file used to configure change log purging.	
This example configures time-based purging for 120 hours (5 days). Use an LDIF file similar to this: dn: cn=changelog purgeconfig,cn=purgeconfig,cn=subconfigsubentry changetype:modify replace: orclpurgetargetage orclpurgetargetage: 240 To apply the LDIF file ldapmodify -D "cn=orcladmin" -q -p port -h host -D dn -q -f mod.ldif	
22.13.2 Modifying Changelog Purging in Oracle Directory Services ManagerYou can modify	
23 Oracle Virtual Directory Performance TuningThis chapter provides tuning tips for Oracle Virtual Directory. It contains the following sections:	
23.1 About Oracle Virtual DirectoryOracle Virtual Directory is an LDAP Version 3-enabled service that provides an abstracted view of one or more enterprise data sources. Oracle Virtual Directory consolidates multiple data sources into a single directory view, enabling you to integrate LDAP-aware applications with diverse directory server data stores. The information in this chapter assumes that you have reviewed the concepts and administration information in the Oracle Fusion Middleware Administrator's Guide for Oracle Virtual Directory.	
23.2 Basic Tuning ConsiderationsThe tuning considerations in this section apply to most deployments and usage scenarios. It is highly recommended that you review these configurations and implement those that are appropriate for your use case scenarios. The tuning information is summarized in Table 23-1.	
Table 23-1 Basic Tuning Configurations	
23.3 Advanced Tuning ConfigurationsDepending on your Oracle Virtual Directory deployment's use case scenarios, the following tuning configurations may improve performance. 23.3.1 Database AdaptersThe Database Adapter is a fully featured LDAP-to-JDBC gateway supporting translation of all LDAP operations (add, bind, delete, baseSearch, modify, wildCardSearch) into equivalent SQL prepared statement code. The Database Adapter uses JDBC class libraries to form connections to databases for the purpose of performing LDAP searches. The database libraries are generally provided by the database vendor.	
For optimal performance, consider the following configuration options for the database schema against which the Oracle Virtual Directory database adapter is configured:	
Table 23-2 describes some additional Database Adapter settings: Table 23-2 Database Adapter Settings	
23.3.2 Join AdaptersIf you are using Join Adapters, join only appropriate sources. For example if a deployment requires only to link attributes in the primary source under "cn=users" branch, create a primary adapter that only exposes this branch. And then create the join rule with that adapter. This can reduce the need for Oracle Virtual Directory to try to join entries that may never have corresponding linked entries.	
23.3.3 General Filter TuningIf a known client search filter does not apply to certain adapters, apply the filter to all applicable "Exclude Filters" to improve performance and reduce network traffic. 23.3.4 Load Balancer Local Store Adapter TuningSome load balancers query an LDAP server to determine if it is up or down. If your load balancer uses this feature - consider creating a local store adapter with a separate namespace (for example dc=loadbalancer) that is used only for the load balancer. While the performance impact of the load-balancer is probably not noticeable, by keeping it in a separate namespace. it makes it easier to exclude the load-balancer 23.3.5 Cache Plug-In TuningThe CachePlug-in provides an in-memory cache for Oracle Virtual Directory. It has the ability to cache query results from any source for re-use by LDAP clients. This plug-in can improve performance for those applications where queries are highly repetitive. To review cache operation and configuration, set VE logging level to 'Dump' to see more details. Because the cache is a normal plug-in, the cache can be configured to run anywhere within Oracle Virtual Directory. It can be executed globally, or within the context of a single adapter. It can also be restricted to specific namespaces by using the namespace filtering available in standard plug-in configuration. 23.3.5.1 Cache Hit LogicThe cache works by storing query results and making them available for later use. If a query is repeated by the same user and the same attributes or a subset of attributes are requested, the cache can return its results instead of having Oracle Virtual Directory pull the information from the source. The plug-in can also be configured to allow cache hits to be shared between users. Sharing cache entries between users should not be used unless the pass credentials are not being passed to back-end sources and Oracle Virtual Directory is solely responsible for security enforcement. Careful consideration should be given when sharing cache hits between users as it would then be possible for one user to see something they should not, since they may have access to a cache result from a more privileged user. 23.3.5.2 Cache Plug-in Memory ManagementThis plug-in periodically reviews the cache and checks for expired results, or entries that have been invalidated by a previous modify transaction. In the event that the cache quota is exceeded, the plug-in attempts to trim memory by purging the queries that were least recently used (LRU). Table 23-3 describes some parameters used to tune the Memory Management Plug-in: Table 23-3 Memory Management Plug-in Settings	
23.3.6 LDAP Listener TuningTable 23-4 describes some parameters used to tune the LDAP Listener: Table 23-4 Listener Parameters	
23.3.7 Server TuningTable 23-5 describes some basic parameters used to tune the server: Table 23-5 Server Parameters	
24 Oracle Identity Federation Performance TuningOracle Identity Federation is a standalone, self-contained federation server that enables single sign-on and authentication in a multiple-domain identity network. It contains the following sections:	
24.1 About Oracle Identity FederationOracle Identity Federation is a standalone, self-contained federation server that enables single sign-on (SSO) and authentication in a multiple-domain identity network. The federation single sign-on capabilities are based on the SAML 1.x/SAML 2.0/WS-Fed protocols. The server is a Java EE Application deployed in a WebLogic Managed Server. This enables users to federate in heterogeneous environments and business associations, whether they have implemented other Oracle Identity Management products in their solution set. For more information see Oracle Fusion Middleware Administrator's Guide for Oracle Identity Federation. 24.2 LDAP TuningThis section provides configuration settings that can be used to tune LDAP such as: For the best performance, review the tuning configurations in Chapter 2, "Top Performance Areas" before tuning Oracle Identity Federation. 24.2.1 Connection Pool SettingsWhen Oracle Identity Federation is integrated with LDAP Servers as a user data store, federation data store, or authentication engine, the server keeps a pool of LDAP connections that can be re-used for subsequent requests. Oracle Identity Federation performs the following kind of operations to the LDAP Servers:	
See "Configuring Oracle Identity Federation" in Oracle Fusion Middleware Administrator's Guide for Oracle Identity Federation for more information on the User and Federation Stores as well as the LDAP Authentication Engine. 24.2.2 Connection SettingsWhen Oracle Identity Federation is integrated with LDAP Servers as a user data store, federation data store, or authentication engine, the LDAP run time connections can be configured. For more information, see "Configuring Oracle Identity Federation" in Oracle Fusion Middleware Administrator's Guide for Oracle Identity Federation. The LDAP Connections can be configured by:	
24.2.3 Federation Data Store SettingsWhen using Oracle Internet Directory as the Federation Data Store, Oracle Identity Federation creates, locates, updates and deletes federation records containing Account Linking Information. Oracle Identity Federation uses specific queries when interacting with Oracle Internet Directory, and the performance can be improved by creating filters in Oracle Internet Directory. If Oracle Internet Directory is used as the Federation Data Store, it is possible to tune the LDAP Server to improve the performance of the lookup operations. Oracle Identity Federation server can be configured to use a Federation Store to persist Federated Identities records. The Federation server uses this store to:	
In addition to the Oracle Identity Federation-related	
where A deployment can be configured to work with many remote SAML servers, so there can be several For example:	
24.3 Database TuningThis section provides configuration settings that can be used to tune the database. See "Additional RDBMS Configuration" in Oracle Fusion Middleware Administrator's Guide for Oracle Identity Federation. 24.3.1 Data SourcesOracle Identity Federation uses a Java EE data source to interact with a database for various operations, such as:	
When creating a data source in the WebLogic Administration Console that can be used by Oracle Identity Federation, the maximum and minimum connection settings should be tuned for better performance. Consult your use case scenarios to determine what the connections settings should be to improve performance in your application. 24.3.2 RDBMS Session CacheWhen Oracle Identity Federation is integrated with RDBMS for its Session Data Store, the server uses a caching mechanism to improve performance at run time. This enables the server to keep a reference to recently used session objects in memory to avoid read access to the database. To optimize RDBMS session caching, configure the following:	
See "Configuring RDBMS Session Cache" in Oracle Fusion Middleware Administrator's Guide for Oracle Identity Federation. 24.3.3 RDBMS CompressionTo decrease the amount of data to be stored in an RDBMS, Oracle Identity Federation provides the capability to compress the data before storing it to the database.There are three kinds of data that can be compressed:	
See "Configuring RDBMS Data Compression" in Oracle Fusion Middleware Administrator's Guide for Oracle Identity Federation. 24.4 Oracle HTTP Server TuningIf Oracle Identity Federation is fronted by Oracle HTTP Server (OHS), then the configuration of the HTTP Server can be tuned to increase performance. For more information on Oracle HTTP Server, see Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server. The following parameters can be changed in the httpd.conf file of the OHS. For additional Oracle HTTP tuning configurations, see Chapter 5, "Oracle HTTP Server Performance Tuning". Consult your use case scenarios to determine what your settings should be.	
After modifying these parameters, save and restart OHS. 24.5 SAML Protocol TuningThe Security Assertion Markup Language (SAML) protocol involves interacting with remote servers through the use of the Simple Object Access Protocol (SOAP). 24.5.1 SOAP ConnectionsThe Oracle Identity Federation server uses the SOAP protocol to send SAML Requests and to receive SAML Responses. To optimize performance, configure the following SOAP connections:	
For more information, see "SOAP Binding" in Oracle Fusion Middleware Administrator's Guide for Oracle Identity Federation. 24.5.2 XML Digital SignaturesThe SAML and WS-Fed protocols of Oracle Identity Federation rely on XML Digital Signatures to ensure the authenticity of messages and that messages are not tampered with. When possible, sign the Assertion and/or the Response to prevent any modifications. When no XML Digital Signature is present on the message, the audited message that is archived does not contain any data that proves the authenticity and integrity of the message. Configuring Oracle Identity Federation to not sign Assertion and/or Response may be appropriate if:	
24.5.3 POST and Artifact Single Sign-On ProfilesThere are two Single Sign-On profiles defined by the SAML specifications:	
25 Oracle Fusion Middleware Security Performance TuningOracle Fusion Middleware security services enable you to secure critical applications and sensitive data. This chapter describes how you can configure security services for optimal performance. This chapter contains the following topics:	
25.1 About Security ServicesOracle Fusion Middleware provides security services through Oracle Platform Security Services (OPSS) and Oracle Web Services.	
25.2 Detecting General Performance IssuesThis section offers some general guidelines on how to identify a performance bottleneck and how to approach addressing such problems. If you discover a performance bottleneck, you should first verify that you have addressed the expected traffic load throughout your Web services deployment. If there is a system in the critical path that is at 100% CPU usage, you may simply need to add one or more computers to the cluster. If there is a bottleneck in your deployment, it is likely to be within one of the following:	
For any of these problems, check the following potential sources:	
If you identify one of these as the cause of a bottleneck, you may need to change how you manage your database or LDAP connections or how you secure resources. 25.3 Oracle Platform Security Services TuningThis section provides the following basic tuning configurations for Oracle Platform Security Services (OPSS):	
25.3.1 JVM Tuning ParametersTuning the JVM parameters can greatly improve performance. For example, the JVM Heap size should be tuned depending upon the number of roles and permissions in the store. At run time, all roles and permissions are stored in the in-memory cache. For more JVM tuning information, see Section 2.4, "Tune Java Virtual Machines (JVMs)". 25.3.2 LDAP Tuning ParametersThis section covers Lightweight Directory Access Protocol (LDAP) tuning. Oracle supports the management of policies in file-based repositories: Oracle Internet Directory and Oracle Virtual Directory. If you encounter increased CPU usage due to high SQL execution times, see the following chapters for basic tuning configurations for large deployments:	
25.3.3 Authentication Tuning ParametersFor OPSS Authentication tuning, see "Improving the Performance of WebLogic and LDAP Authentication Providers" in the Oracle Fusion Middleware Securing Oracle WebLogic Server guide at the Oracle Technology Network 25.3.4 Authorization Tuning PropertiesThe following Java system properties can be used to optimize authorization: Table 25-1 Authorization Properties	
25.3.5 OPSS PDP Service Tuning ParametersTable 25-2 provides OPSS tuning parameters for policy store: Table 25-2 OPSS PDP Service Tuning Parameters	
25.4 Oracle Web Services Security TuningOracle Web Services Security provides a framework of authorization and authentication for interacting with a web service using XML-based messages. This section provides information on factors that might affect performance of the web service.	
25.4.1 Choosing the Right PolicyOracle Web Services Security supports many policies and the appropriate policies must be implemented based on the security need of the deployment. Careful consideration should be given to performance, since each additional policy can impact performance. For example Transport level security (SSL) is faster than Application level security, but transport level security can be vulnerable in multi-step transactions. Application level security has more performance implications, but provides end-to-end security. See "Configuring Policies" in Oracle Fusion Middleware Security and Administrator's Guide for Web Services to determine which security policies are required for a deployment. 25.4.2 Policy ManagerThere is an inherent performance impact when using the database-based policy enforcement. When database policy enforcement is chosen, careful consideration must be given to the "polling" frequency of the agent to the database. 25.4.3 Configuring the Log Assertion to Record SOAP MessagesThe request and response pipelines of the default policy include a log assertion that causes policy enforcement points (PEP) to record SOAP messages to either a database or a component-specific local file. There can be potential performance impacts to the logging level. To prevent performance issues, consider using the lowest logging level that is appropriate for your deployment. The following logging levels can be configured in the log step:	
Note: Typically, system performance improves when log files are located in topological proximity to the enforcement component. If possible, use multiple distributed logs in a highly distributed environment. 25.4.4 Monitoring the Performance of Web ServicesYou can monitor the performance on the following Oracle Web Services through the Web Services home page of Oracle Fusion Middleware Control:	
For general information on monitoring Oracle Fusion Middleware components, see Chapter 4, "Monitoring Oracle Fusion Middleware". For detailed information on using Oracle Fusion Middleware Control to monitor Oracle Web Services, see "Monitoring the Performance of Web Services" in Oracle Fusion Middleware Security and Administrator's Guide for Web Services. Part VIOracle WebCenter ComponentsThis part describes configuring Oracle WebCenter components to improve performance. It contains the following chapter: 26 Oracle WebCenter Performance TuningThis chapter outlines how to tune configuration properties for the operating system on which WebCenter applications are installed, WebCenter applications, and their back-end components.	
26.1 About Oracle WebCenterOracle WebCenter11g is an integrated suite of products used to create social applications, enterprise portals, communities, composite applications, and internet or intranet Web sites on a standards-based, service-oriented architecture (SOA). Oracle WebCenter combines the development of rich internet applications, a multi-channel portal framework, and a suite of horizontal Enterprise 2.0 applications, which provide content, presence, and social networking capabilities to create a highly interactive user experience. Interacting with services such as instant messaging, blogs, wikis, RSS, tags, discussion forums, activities and social networks directly within the context of a portal or an application improves user and group productivity and enhances the return on IT investments.Oracle WebCenter Spaces is an out-of-the-box WebCenter application that brings you the latest technology in terms of social networking, communication, collaboration, and personal productivity with no development effort. Through the robust set of integrated services and applications provided by Oracle WebCenter Framework, Oracle WebCenter Composer and Business Dictionary, WebCenter Spaces enables you to deploy instant community portals, team sites and other collaborative applications. For more information about Oracle WebCenter, see Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter and Oracle Fusion Middleware Developer's Guide for Oracle WebCenter. 26.2 Tuning Environment ConfigurationThis section describes how to tune the operating system on which WebCenter applications are deployed. It provides information on configuring system limit, JDBC data source, and JRockit virtual machine (JVM) arguments. This section includes the following:	
26.2.1 Setting System LimitTo run a WebCenter application at moderate load, set the For example, on Linux, you can use this command: ulimit -n 8192 Refer to your operating system documentation to find out how to change this system limit. 26.2.2 Setting JDBC Data SourceThe following data source settings are recommended for <jdbc-connection-pool-params> <initial-capacity>10</initial-capacity> <max-capacity>50</max-capacity> <capacity-increment>1</capacity-increment> <shrink-frequency-seconds>0</shrink-frequency-seconds> <highest-num-waiters>2147483647</highest-num-waiters> <connection-creation-retry-frequency-seconds>0</connection-creation-retry-frequency-seconds> <connection-reserve-timeout-seconds>60</connection-reserve-timeout-seconds> <test-frequency-seconds>0</test-frequency-seconds> <test-connections-on-reserve>true</test-connections-on-reserve> <ignore-in-use-connections-enabled>true</ignore-in-use-connections-enabled> <inactive-connection-timeout-seconds>0</inactive-connection-timeout-seconds> <test-table-name>SQL SELECT 1 FROM DUAL</test-table-name> <login-delay-seconds>0</login-delay-seconds> <statement-cache-size>5</statement-cache-size> <statement-cache-type>LRU</statement-cache-type> <remove-infected-connections>true</remove-infected-connections> <seconds-to-trust-an-idle-pool-connection>60</seconds-to-trust-an-idle-pool-connection> <statement-timeout>-1</statement-timeout> <pinned-to-thread>false</pinned-to-thread> </jdbc-connection-pool-params> To edit JDBC data source settings:	
See also "Configuring JDBC Data Sources" in Oracle Fusion Middleware Configuring and Managing JDBC for Oracle WebLogic Server. 26.2.3 Setting JRockit Virtual Machine (JVM) ArgumentsJVM arguments are set in the	
26.2.4 Using Content Compression to Reduce DownloadsIf clients connect to your server using relatively slow connections, that is, using modems or VPN from remote locations, consider compressing content before it downloads to the client. While content compression increases the load on the server, the client's download experience is much improved. Several content compression methods are available. The following steps describe how to use the	
For more information about 26.3 Tuning WebCenter Application ConfigurationThis section describes parameters that enable administrators to tune performance of WebCenter applications. This section includes the following:	
26.3.1 Setting HTTP Session TimeoutTo manage overall resource usage, adjust the application's http session timeout value, in minutes, in the If you must modify this property, post deployment, you must edit The following is a sample snippet of <session-config> <session-timeout> 45 </session-timeout> </session-config> 26.3.2 Setting JSP Page TimeoutYou can specify an integer value, in seconds, after which any JSP page will be removed from memory if it has not been requested in the Increasing the value reduces user response time, and decreasing it reduces application memory foot print. The default value is 0, for no timeout. If you must modify this property, post deployment, you must edit The following is a sample snippet of <servlet> <servlet-name> oraclejsp <init-param> <param-name> jsp_timeout </param-name> <param-value> 600 </param-value> </init-param> 26.3.3 Setting ADF Client State TokenThrough this setting, you can control the number of pages users can navigate using the browser Back button without losing information. To reduce CPU and memory usage, you can decrease the value in the If you must modify this property, post deployment, you must edit The following is a sample code snippet of <context-param> <param-name> org.apache.myfaces.trinidad.CLIENT_STATE_MAX_TOKENS </param-name> <param-value> 3 </param-value> </context-param> 26.3.4 Setting ADF View State CompressionThrough this setting, you can control ADF View State Compression. When COMPRESS_VIEW_STATE is set to true, all non-current view states are compressed before saving in memory which reduces the heap usage. If you must modify this property, post deployment, you must edit web.xml manually. See "Editing web.xml Properties" in Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter The following is a sample code snippet of <context-param> <param-name> org.apache.myfaces.trinidad.COMPRESS_VIEW_STATE </param-name> <param-value> true </param-value> </context-param> 26.3.5 Setting MDS Cache Size and Purge RateThe default MDS cache size is 100MB. If you encounter the error message, JOC region full, then you can increase the MDS cache size in the Post deployment, modify these properties through the System MBeans Browser. For more information, see the section "Changing MDS Configuration Attributes for Deployed Applications" in Oracle Fusion Middleware Administrator's Guide. The following is a sample snippet of <cache-config> <max-size-kb>150000</max-size-kb> </cache-config> Consider setting the MDS purge thread parameter (as shown in the example below) to remove older versions of metadata automatically every hour. If excessive metadata is accumulated and each purge is very expensive, reduce this interval in the The following is a sample snippet of <auto-purge seconds-to-live="3600"/> To ensure the initial purge doesn't impact on going user activities, consider use following wlst command to induce MDS purge immediately before bulk of the user load hit the system: The following example shows how to purge all documents in application repository whose versions are older them 10 seconds: wls:/weblogic/serverConfig>purgeMetadata(application='[AppName]',server='[ServerName]',olderThan=10) 26.3.6 Configuring Concurrency ManagementConcurrency management includes global settings that impact entire WebCenter and service- and resource-specific settings that only impact a particular service. You can define deployment-specific overrides or additional configuration in the The following describes the format of the global, service, and resource entries in <concurrent:adf-service-config xmlns="http://xmlns.oracle.com/webcenter/concurrent/config"> <global queueSize="SIZE" poolCoreSize="SIZE" poolMaxSize="SIZE" poolKeepAlivePeriod="TIMEPERIOD" timeoutMinPeriod="TIMEPERIOD" timeoutMaxPeriod="TIMEPERIOD" timeoutDefaultPeriod="TIMEPERIOD" timeoutMonitorFrequency="TIMEPERIOD" hangMonitorFrequeny="TIMEPERIOD" hangAcceptableStopPeriod="TIMEPERIOD" /> <service service="SERVICENAME" timeoutMinPeriod="TIMEPERIOD" timeoutMaxPeriod="TIMEPERIOD" timeoutDefaultPeriod="TIMEPERIOD" /> <resource service="SERVICENAME" resource="RESOURCENAME" timeoutMinPeriod="TIMEPERIOD" timeoutMaxPeriod="TIMEPERIOD" timeoutDefaultPeriod="TIMEPERIOD" /> </concurrent:adf-service-config> Where:	
<concurrent:adf-service-config xmlns="http://xmlns.oracle.com/webcenter/concurrent/config"> <service service="oracle.webcenter.community" timeoutMinPeriod="2s" timeoutMaxPeriod="50s" timeoutDefaultPeriod="30s"/> <resource service="oracle.webcenter.community" resource="oracle.webcenter.doclib" timeoutMinPeriod="2s" timeoutMaxPeriod="10s" timeoutDefaultPeriod="5s"/> <resource service="oracle.webcenter.community" resource="oracle.webcenter.collab.calendar.community" timeoutMinPeriod="2s" timeoutMaxPeriod="10s" timeoutDefaultPeriod="5s"/> <resource service="oracle.webcenter.community" resource="oracle.webcenter.collab.rtc" timeoutMinPeriod="2s" timeoutMaxPeriod="10s" timeoutDefaultPeriod="5s"/> <resource service="oracle.webcenter.community" resource="oracle.webcenter.list" timeoutMinPeriod="2s" timeoutMaxPeriod="10s" timeoutDefaultPeriod="5s"/> <resource service="oracle.webcenter.community" resource="oracle.webcenter.collab.tasks" timeoutMinPeriod="2s" timeoutMaxPeriod="10s" timeoutDefaultPeriod="5s"/> </concurrent:adf-service-config>	
You can use the Enterprise Manager System MBean Browser to view, add, modify, and delete the concurrency configuration based on your usage pattern. To access the MBean Browser for your WebCenter application, see "Accessing the System MBean Browser" in Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter.	
26.4 Tuning Back-End Component ConfigurationThis section describes performance configuration for back-end services used by WebCenter applications. Performance of back-end servers, for example, Worklists, Oracle Content Server, and so on, should be tuned as described in guidelines for those back-ends. This section includes the following sub sections:	
26.4.1 Tuning Performance of the Announcements ServiceTo manage overall resource usage for the Announcements service, you can tune the Connection Timeout property:	
Post deployment, modify the Connection Timeout property through Fusion Middleware Control or using WLST. For details, see:	
The following is a sample snippet of <Reference name="Jive-7777" className="oracle.adf.mbean.share.connection.webcenter.Announcement. AnnouncementConnection"> <Factory className="oracle.adf.mbean.share.connection.webcenter.forum.ForumConnectionFactory"/> <StringRefAddr addrType="connection.time.out"> <Contents>5</Contents> </StringRefAddr> </RefAddresses> </Reference> 26.4.2 Tuning Performance of the Discussions ServiceTo manage overall resource usage for the Discussions service, you can tune the Connection Timeout property:	
Post deployment, modify the Connection Timeout property through Fusion Middleware Control or using WLST. For details, see:	
The following is a sample snippet of <Reference name="Jive-7777" className="oracle.adf.mbean.share.connection.webcenter.forum.ForumConnection"> <Factory className="oracle.adf.mbean.share.connection.webcenter.forum.ForumConnectionFactory"/> <RefAddresses> <StringRefAddr addrType="forum.url"> <Contents>http://[machine]:[port]/owc_discussions_5520</Contents> <StringRefAddr addrType="connection.time.out"> <Contents>5</Contents> </StringRefAddr> </RefAddresses> </Reference> 26.4.3 Tuning Performance of the Instant Messaging and Presence (IMP) ServiceTo manage overall resource usage for the IMP service, you can tune the Connection Timeout property:	
Post deployment, modify the Connection Timeout property through Fusion Middleware Control or using WLST. For details, see:	
The following is a sample snippet of <Reference name="IMPService-OWLCS" className="oracle.adf.mbean.share.connection.webcenter.rtc.RtcConnection"> <Factory className="oracle.adf.mbean.share.connection.webcenter.rtc.RtcConnectionFactory"/> <RefAddresses> <StringRefAddr addrType="connection.time.out"> <Contents>5</Contents> </StringRefAddr> </RefAddresses> </Reference> 26.4.4 Tuning Performance of the Mail ServiceTo manage overall resource usage for the Mail service, you can tune the Connection Timeout property:	
Post deployment, modify the Connection Timeout property through Fusion Middleware Control or using WLST. For details, see:	
The following is a sample snippet of <Reference name="MailConnection" className="oracle.adf.mbean.share.connection.webcenter.mail.MailConnection"> <StringRefAddr addrType="connection.time.out"> <Contents>5</Contents> </StringRefAddr> </Reference> 26.4.5 Tuning Performance of the Personal Events ServiceTo manage overall resource usage for the Personal Events, you can tune the Connection Timeout property:	
You can also set a cache expiration period:	
Post deployment, modify the Connection Timeout and Cache Expiration properties through Fusion Middleware Control or using WLST. For details, see:	
The following is a sample snippet of <Reference name="MSExchange-my-pc"className="oracle.adf.mbean.share.connection.webcenter.calendar.PersonalEventConnection"><Factory className="oracle.adf.mbean.share.connection.webcenter.calendar.PersonalEventConnectionFactory"/> <StringRefAddr addrType="eventservice.connection.timeout"> <Contents>10</Contents> </StringRefAddr> <StringRefAddr addrType="eventservice.cache.expiration.time"> <Contents>10</Contents> </StringRefAddr> </RefAddresses></Reference> 26.4.6 Tuning Performance of the RSS News Feed ServiceTo manage overall resource usage for the RSS News Feed service, you can adjust the refresh interval and timeout in the If you must modify these properties, post deployment, use the System MBeans Browser. The following is a sample snippet of <rssC:adf-rss-config> <rssC:RefreshSecs>3600</rssC:RefreshSecs> <rssC:TimeoutSecs>3</rssC:TimeoutSecs> <rssC:Configured>true</rssC:Configured> </rssC:adf-rss-config> 26.4.7 Tuning Performance of the Search ServiceTo manage overall resource usage and user response time for searching, you can adjust the number of saved searches displayed, the number of results displayed, and these timeout values:	
Post deployment, modify timeout properties through Fusion Middleware Control or using WLST. For details, see:	
The following is a sample snippet of <searchC:adf-search-config xmlns="http://xmlns.oracle.com/webcenter/search/config"> <display-properties> <common numSavedSearches="25"/> <region-specific> <usage id="simpleSearchResultUIMetadata" numServiceRows="5"/> <usage id="searchResultUIMetadata" numServiceRows="5"/> <usage id="localToolbarRegion" numServiceRows="5"/> </region-specific> </display-properties> <execution-properties prepareTimeoutMs="1000" timeoutMs="3000" showAllTimeoutMs="20000" /> </execution-properties> </searchC:adf-search-config> 26.4.8 Configuring Portlet Cache SizeYou can modify the portlet cache size in the If you must modify these properties, post deployment, you must edit The following is a sample snippet of <adf-portlet-config> <supportedLocales> <cacheSettings enabled="true"> <maxSize>10000000</maxSize> </cacheSettings> <adf-portlet-config> 26.5 Tuning Portlet ConfigurationThis section describes portlet performance-related configuration. This section includes the following sub sections:	
26.5.1 Tuning Performance of the Portlet ServiceTo manage overall resource usage and user response time, you can remove unnecessary locale support, modify portlet timeout and cache size in the For the Portlet service, 28 supported locales are defined out-of-the-box. You can remove the locales that are unnecessary for your application. If you must modify these properties, post deployment, you must edit The following is a sample snippet of <portletC:adf-portlet-config xmlns="http://xmlns.oracle.com/adf/portlet/config"> <supportedLocales> <value>es</value> <value>ko</value> <value>ru</value> <value>ar</value> <value>fi</value> <value>nl</value> <value>sk</value> <value>cs</value> <value>fr</value> <value>no</value> <value>sv</value> <value>da</value> <value>hu</value> <value>pl</value> <value>th</value> <value>de</value> <value>it</value> <value>pt</value> <value>tr</value> <value>el</value> <value>iw</value> <value>pt_BR</value> <value>zh_CN</value> <value>en</value> <value>ja</value> <value>ro</value> <value>zh_TW</value> </supportedLocales> <defaultTimeout>20</defaultTimeout> <minimumTimeout>1</minimumTimeout> <maximumTimeout>60</maximumTimeout> <parallelPoolSize>10</parallelPoolSize> <parallelQueueSize>20</parallelQueueSize> <cacheSettings enabled="true"> <maxSize>10000000</maxSize> </cacheSettings> </portletC:adf-portlet-config> 26.5.2 Enabling Java Object Cache for WSRP ProducersOracle recommends that you enable the Java Object Cache (JOC) for WSRP producers so that objects written to the persistent store are cached. The following is a sample snippet of <env-entry> <env-entry-name>oracle/portal/wsrp/server/enableJavaObjectCache</env-entry-name> <env-entry-type>java.lang.String</env-entry-type> <env-entry-value>false</env-entry-value> </env-entry> 26.5.3 Suppressing Optimistic Rendering for WSRP PortletsTo suppress the optimistic render of WSRP portlets after a WSRP	
Normally, if a WSRP portlet receives a WSRP This assumes that the portlet's render phase is idempotent, which is always a best practice. However, if the portlet expects to receive an event, or rendering the portlet is more costly than a second SOAP message for 26.5.4 Tuning Performance of Oracle PDK-Java ProducersTo manage overall resource usage for a Web producer, you can tune the Connection Timeout property:	
Post deployment, modify the Connection Timeout property through Fusion Middleware Control or using WLST. For details, see:	
The following is a sample snippet of <webproducerconnection producerName="wc-WebClipping" urlConnection="wc-WebClipping-urlconn" timeout="10000" establishSession="true" mapUser="false"/> 26.5.5 Setting ExcludedActionScopeRequestAttributes for PortletsSet the Portlet container runtime option (specified in portlet.xml) as follows: This is a multi-valued property, where each value is a regular expression. If using the Default values:	
26.5.6 Setting DefaultServedResourceRequiresWsrpRewrite for WSRP PortletsTo specify the default WSRP This setting is used for all ResourceURLs created by the portlet, unless overridden by the presence of the Valid values:	
26.5.7 Setting DefaultProxiedResourceRequiresWsrpRewrite for WSRP PortletsTo specify the default WSRP This setting is used for all URLs returned by the Valid values:	
26.5.8 Importing Consumer CSS Files in IFrame PortletsTo specify to a portal consumer that the CSS file is imported to an IFramed portlet, set the Portlet container runtime option (specified in portlet.xml) as follows: Valid values:	
26.5.9 Configuring Portlet TimeoutYou can modify the portlet timeout value in the If you must modify these properties, post deployment, you must edit The following is a sample snippet of <adf-portlet-config> <defaultTimeout>5</defaultTimeout> <minimumTimeout>2</minimumTimeout> <maximumTimeout>100</maximumTimeout> <adf-portlet-config> 26.5.10 Tuning Performance of OmniPortletTo manage overall resource usage for OmniPortlets, you can tune the Connection Timeout property:	
Post deployment, modify the Connection Timeout property through Fusion Middleware Control or using WLST. For details, see:	
The following is a sample snippet of <webproducerconnection producerName="wc-OmniPortlet" urlConnection="wc-OmniPortlet-urlconn" timeout="10000" establishSession="false" mapUser="false"/> Part VIICapacity Planning, Scalability, and AvailabilityThis part describes how to plan your site for high traffic, scalability, and availability. It contains the following chapters: 27 Capacity PlanningCapacity Planning is the process of determining what type of hardware and software configuration is required to meet application needs. Like performance planning, capacity planning is an iterative process. A good capacity management plan is based on monitoring and measuring load data over time and implementing flexible solutions to handle variances without impacting performance.	
The following sections provide an introduction to capacity planning:	
27.1 About Capacity Planning for Oracle Fusion MiddlewareWhile performance tuning can be defined as optimizing your existing system for better performance, capacity planning determines what your system needs (and when it needs it) to maintain performance in both steady-state and peak usage periods. Capacity Planning involves designing your solution and testing the configuration, as well as identifying business expectations, periodic fluctuations in demand, and application constraints. You need to plan carefully, test methodically, and incorporate design principles that focus on performance. Before deploying any application into a production environment, the application should be put through a rigorous performance testing cycle. Creating an effective Capacity Management plan includes some of the same steps as performance planning:	
27.1.1 Capacity Planning Factors to ConsiderBefore you can create a plan, you must have the data to support your deployment strategy. The following list of questions should be asked - and the information you receive should be analyzed carefully - to ensure a successful capacity management plan. Table 27-1 Capacity Planning Factors to Consider	
For more information, see Appendix A, "Related Reading and References". 27.2 Determining Performance Goals and ObjectivesThe first step in creating an effective capacity management plan is to determine your network load and performance objectives. You need to understand the applications deployed and the environmental constraints placed on the system. Ideally you have information about the levels of activity that components of the application are expected to meet, such as:	
Performance objectives are limited by constraints, such as	
27.3 Measuring Your Performance MetricsAfter you have determined your performance criteria in Section 27.2, "Determining Performance Goals and Objectives", take measurements of the metrics you can use to quantify your performance objectives. Benchmarking key performance indicators provides a performance baseline. See Chapter 4, "Monitoring Oracle Fusion Middleware" for information on measuring your performance metrics with Oracle Fusion Middleware applications. 27.4 Identifying Bottlenecks in Your SystemBottlenecks, or areas of marked performance degradation, should be addressed while developing your capacity management plan. If possible, profile your applications to pinpoint bottlenecks and improve application performance. Oracle provides the following profilers:	
The objective of identifying bottlenecks is to meet your performance goals, not eliminate all bottlenecks. Resources within a system are finite. By definition, at least one resource (CPU, memory, or I/O) can be a bottleneck in the system. Planning for anticipated peak usage, for example, may help minimize the impact of bottlenecks on your performance objectives. See Appendix A, "Related Reading and References". There are several ways to address system bottlenecks. Some common solutions include:	
27.4.1 Using Clustered ConfigurationsClustered configurations distribute work loads among multiple identical cluster member instances. This effectively multiplies the amount of resources available to the distributed process, and provides for seamless fail over for high availability. For more information see Chapter 28, "Using Clusters and High Availability Features". 27.4.2 Using Connection PoolingYou may be able to improve performance by using existing database connections. You can limit the number of connections, timing of the sessions and other parameters by modifying the connection strings. See Section 2.7, "Reuse Database Connections" for more information on configuring the database connection pools. 27.4.3 Setting the Max HeapSize on JVMThis is a application-specific tunable that enables a trade off between garbage collection times and the number of JVMs that can be run on the same hardware. Large heaps are used more efficiently and often result in fewer garbage collections. More JVM processes offer more fail over points. See Section 2.4, "Tune Java Virtual Machines (JVMs)" for more information. 27.4.4 Increasing Memory or CPUAggregating more memory and/or CPU on a single hardware resource allows localized communication between the instances sharing the same hardware. More physical memory and processing power on a single machine enables the JVMs to scale and run much larger and more powerful instances, especially 64-bit JVMs. Large JVMs tend to use the memory more efficiently, and Garbage Collections tend to occur less frequently. In some cases, adding more CPU means that the machine can have more instruction and data cache available to the processing units, which means even higher processing efficiency. See Section 2.2, "Ensure the Hardware Resources are Sufficient" for more information. 27.4.5 Segregation of Network TrafficNetwork-intensive applications can introduce significant performance issues for other applications using network. Segregating the network traffic of time-critical applications from network-intensive applications, so that they get routed to different network interfaces, may reduce performance impacts. It is also possible to assign different routing priorities to the traffic originating from different network interfaces. 27.4.6 Segregation of Processes and Hardware Interrupt HandlersWhen planning for the capacity that a specific hardware resource can handle, it is important to understand that the operating system may not be able to efficiently schedule the JVM processes as well as other system processes and hardware interrupt handlers. The JVM may experience performance impacts if it shares even a few of its CPU cores with the hardware interrupt handlers. For example, disk and network-intensive applications may induce performance impacts that are disproportionate to the load experienced by the CPU. In addition, hardware interrupts can prevent the active Java threads from reaching a "GC-safe point" efficiently. Separating frequent hardware interrupt handlers from the CPUs running the JVM process can reduce the wait for Garbage Collections to start. It may also be beneficial to dedicate sibling CPUs on a multi-core machine to a single JVM to increase the efficiency of its CPU cache. If multiple processes have to share the CPU, the data and instruction cache can be contaminated with the data and instructions from both processes, thus reducing the amount of the cache used effectively. Assigning the processes to specific CPU cores, however, can make it impossible to use other CPU cores during peak load bursts. The capacity management plan should include a determination on whether the CPUs should be used more efficiently for the nominal load, or should there be some extra capacity for a burst of activity. 27.5 Implementing a Capacity Management PlanOnce you have defined your performance objectives, measured your workload, and identified any bottlenecks, you must create and implement a capacity management plan. The goal of your plan should be to meet or exceed your performance objectives (especially during peak usage periods) and to allow for future workload increases. To achieve your performance objectives, you must implement your management plan and then continuously monitor the performance metrics as discussed in Chapter 4, "Monitoring Oracle Fusion Middleware". Since no two deployments are identical, its virtually impossible to illustrate how a capacity management plan would be implemented for all configurations. Capacity planning is an iterative process and your plan must be calibrated as changes in your workload or environment change. The following section provides key factors that should be addressed in the plan: 27.5.1 Hardware Configuration RequirementsThere is no single formula for determining your hardware requirements. The process of determining what type of hardware and software configuration involves assessment of your system performance goals and an understanding of your application. Capacity planning for server hardware should focus on maximum performance requirements. The hardware requirements you have today are likely to change. Your plan should allow for workload increases, environment changes (such as added servers or 3rd party services), software upgrades (operating systems, middleware or other applications), network connectivity and network protocols. 27.5.1.1 CPU RequirementsYour target CPU usage should not be 100%, you should determine a target CPU utilization based on your application needs, including CPU cycles for peak usage. If your CPU utilization is optimized at 100% during normal load hours, you have no capacity to handle a peak load. In applications that are latency sensitive and maintaining the ability for a fast response time is important, high CPU usage (approaching 100% utilization) can reduce response times while throughput stays constant or even increases because of work queuing up in the server. For such applications, a 70% - 80% CPU utilization recommended. A good target for non-latency sensitive applications is about 90%. 27.5.1.2 Memory RequirementsMemory requirements are determined by the optimal heap size for the applications you are going to use, for each JVM co-located on the same hardware. Each JVM needs up to 500MB in addition to the optimal heap size; the actual impact to performance depends on the JVM brand, and on the type of application being run. For example, applications with more Java classes loaded need more space for compiled classes. 32-bit JVMs normally cannot exceed a limit of approximately 3GB on some architecture when a limit is imposed by the hardware architecture and the Operating System. It is recommended to reserve some memory for the Operating System, IO buffers and shared-memory devices. 27.5.2 JVM RequirementsThe number of users/processes that a single Java Virtual Machine (JVM) can handle varies widely on the types of requests and the type of JVM you are running. As part of your performance monitoring and benchmarking procedures, you should determine how many and what kinds of processes are executed and determine if your hardware meets the requirements for your specific JVM. 27.5.3 Managed ServersUsing multiple managed servers across multiple nodes in a clustered configuration is recommended for both high performance and reliability. It is important to note, however, that having multiple managed servers may mean using more memory which can enable some applications to optimize certain operations in-memory, therefore reducing impact of disk, database and network latency. For more information on using clustered configurations, see "Understanding Managed Servers and Managed Server Clusters" in Oracle Fusion Middleware Administrator's Guide. 27.5.4 Database ConfigurationTo maintain sustained performance, you must ensure that your existing database can scale with the increases in capacity planned for the application server tier. Tuning the database parameters and monitoring database metrics during peak usage, can help you determine if the existing database resources can scale to handle increased loads. You may need to add additional memory or upgrade the database hardware configuration. For more information on tuning an Oracle database, see the Oracle Database Performance Tuning Guide. In some cases, however, you may find that the database is still not able to effectively manage increases in load, even after increasing the memory or upgrading the CPU. In these situations, consider deploying an Oracle Real Application Cluster (Oracle RAC) environment to handle the increases. Oracle RAC configurations not only provide enhanced performance, but they can also improve reliability and scalability. For more information on Oracle RAC, see Oracle Real Application Clusters Administration and Deployment Guide. 28 Using Clusters and High Availability FeaturesA high availability architecture is one of the key requirements for any Enterprise Deployment. Oracle Fusion Middleware has an extensive set of high availability features, which protect its components and applications from unplanned down time and minimize planned downtime. This chapter provides an overview of the architecture, interaction, and dependencies of Oracle Fusion Middleware components, and explains how they can be deployed in a high availability architecture to maximize performance. This chapter includes the following sections:	
28.1 About Clusters and High Availability FeaturesOne of the most important factors in both high availability and performance is the use of clusters. A cluster is a set of processes running on single or multiple computers that share the same workload. Using a clustered configuration promotes scalability, high availability, and performance. High availability refers to the ability of users to access a system without loss of service. Deploying a high availability system minimizes the time when the system is down, or unavailable and maximizes the time when it is running, or available. See Details about using clusters and other high availability features can be located in the application-specific guides listed in Table 28-1: Table 28-1 Clusters and High Availability Information in Oracle Fusion Middleware Documentation 28.2 Using Clusters with Oracle Fusion MiddlewareFor production environments that require increased application performance, throughput, or high availability, you can configure two or more Managed Servers to operate as a cluster. A cluster is a collection of multiple Oracle WebLogic Server server instances running simultaneously and working together to provide increased scalability and reliability. For more information on using clusters with Oracle Fusion Middleware, see the following:	
28.3 Using High Availability Features with Oracle Fusion MiddlewareIn addition to using a clustered architecture within your Fusion Middleware components, there are a number of high availability features built-in to ensure your applications are continuously accessible by the users. The following list provides a few options for setting up a comprehensive high availability system. The options that you integrate depend on your overall performance goals as well as your system architecture. This list is meant to provide examples only.	
For more information see the Oracle Fusion Middleware High Availability Guide. A Related Reading and ReferencesAll of the external documentation and web site references made in this book are listed in this appendix.	
A.1 Oracle Documentation	
A.1.1 Oracle Fusion Middleware Library	
A.1.1.1 Cross-Suite Administration GuidesOracle Fusion Middleware Security Guide Oracle Fusion Middleware Concepts Oracle Fusion Middleware Administrator's Guide Oracle Fusion Middleware High Availability Guide Oracle Fusion Middleware Enterprise Deployment Guide for Oracle Identity Management Oracle Fusion Middleware Enterprise Deployment Guide for Oracle SOA Suite Oracle Fusion Middleware Enterprise Deployment Guide for Oracle WebCenter Oracle Fusion Middleware Security Overview A.1.1.2 WebCenterOracle Fusion Middleware Developer's Guide for Oracle WebCenter Oracle Fusion Middleware User's Guide for Oracle WebCenter Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers Oracle Fusion Middleware Tutorial for Oracle WebCenter Spaces Users Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter A.1.1.3 Identity ManagementOracle Fusion Middleware Administrator's Guide for Oracle Internet Directory Oracle Fusion Middleware Integration Guide for Oracle Identity Management Oracle Fusion Middleware User Reference for Oracle Identity Management Oracle Fusion Middleware Getting Started with Oracle Identity Management Oracle Fusion Middleware Administrator's Guide for Oracle Virtual Directory Oracle Fusion Middleware Application Developer's Guide for Oracle Identity Management Oracle Fusion Middleware Tutorial for Oracle Identity Management Oracle Fusion Middleware Administrator's Guide for Oracle Identity Federation A.1.1.4 SOA SuiteOracle Fusion Middleware Getting Started with Oracle SOA Suite Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite Oracle Fusion Middleware User's Guide for Oracle Business Activity Monitoring Oracle Fusion Middleware User's Guide for Technology Adapters Oracle Fusion Middleware Tutorial for Running and Building an Application with Oracle SOA Suite A.1.2 Oracle Database	
Oracle Database Performance Tuning Guide Oracle Database Administrator's Guide A.1.3 Oracle JRockit Java Virtual Machine (JVM)"Welcome to Oracle JRockit" at "First Steps for Tuning the Oracle JRockit JVM " at "Tuning the Memory Management System" at "About Profiling and Performance Tuning" at IndexA B C D E F G H I J K L M N O P Q R S T U V W A	
B	
C	
D	
E	
FG	
H	
I	
J	
K	
L	
M	
NO	
P	
Q	
R	
S	
T	
U	
VW	