Developer's Guide
11g Release 1 (11.1.2)
E15524-02
October 2011
Documentation for external Oracle Fusion Applications developers that describes Oracle Fusion Middleware components, installing JDeveloper, deploying applications on WebLogic Server (WLS), using Applications Core Technology (ApplCore), customization, security, Flexfields, developing web applications with the UI Shell page template and patterns, Enterprise Crawl and Search (ECSF), database schema deployment, seed data, and use cases.
Oracle Fusion Applications Developer's Guide 11g Release 1 (11.1.2)
E15524-02
Copyright © 2011, Oracle and/or its affiliates. All rights reserved.
Primary Author: Shelly Butcher, Richard Gugeler, Karen Ram, Karen Summerly, Chris Kutler, Ralph Gordon, Peter Jew
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.
This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.
This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
Welcome to the Developer's Guide! This guide describes the Oracle Middleware Extensions for Applications for developing Oracle Fusion Applications using the Oracle Fusion Middleware components. This guide includes guidelines on how to set up your development environment and build, test, and deploy Oracle Fusion Applications. It includes specific feature details needed by developers when using the Oracle Middleware Extensions to create applications.
This document is intended for Oracle Applications Developers and assumes familiarity with Java and SQL.
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
.
Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.
For more information, see the following documents in the Oracle 11g Fusion Middleware documentation set:
The following text conventions are used in this document:
Convention	Meaning
boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
monospace	Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.
This chapter provides information about what is new in the Oracle Fusion Applications Developer's Guide11g Release 1 (11.1.2) since Release 1 (11.1.1.5) was released in August 2011.	
For Release 11.1.2, this guide has been updated in several ways. The following table lists the sections that have been added or changed.	
For changes made to Oracle JDeveloper and Oracle Application Development Framework (Oracle ADF) for this release, see the What's New page on the Oracle Technology Network at http://www.oracle.com/technetwork/developer-tools/jdev/documentation/index.html	
.	
Sections	Changes Made
---	---
Chapter 2 Setting Up Your Development Environment	
Section 2.2.1.3, "Installing JDeveloper"	Section revised with the current procedure to install JDeveloper.
Section 2.2.1.5, "Setting Up the JDeveloper-based Development Environment"	Section updated with current instructions for adding the extensions bundle.
Section 2.2.2, "How to Use the Oracle Fusion Domain Wizard"	Section updated with current images and descriptions of wizard parameters.
Chapter 7 Defining Defaulting and Derivation Logic	
Section 6.3, "Using Oracle ADF Validators and Convertor Hints"	Section revised to include information about how to override an Oracle ADF validator or converter message with new text.
Chapter 16 Implementing Applications Panels, Master-Detail, Hover, and Dialog Details	
Section 16.1.2.1, "Adding Applications Panels Using the Applications Panel Wizard"	Section revised with expanded information for using the customSaveDropButton facet in description of Figure 16-7 Select Page-Level Buttons Dialog.
Chapter 23 Using Extensible Flexfields	
Section 24.9, "Customizing the Extensible Flexfield Runtime User Interface Modeler"	Section added that describes how to customize the extensible flexfield runtime user interface modeler.
Chapter 25 Testing and Deploying Flexfields	
Section 25.3, "Using the WLST Flexfield Commands"	Section revised to include new deleteFlexPatchingLabels WLST command for inquiring about or deleting MDS flexfield patching labels.
Chapter 23 Implementing Attachments	
Section 18.2.4, "How to Delete the Business Object"	Section added describing how to delete a business object and its Attachments.
Chapter 27 Creating Searchable Objects	
Section 27.4.4.4, "Defining A Facet to Use A Child View Object Attribute"	Section added describing new feature of being able to search on a child View Object.
Section 27.2.10.1, "Checking for Stored Attribute Conflicts"	Section added describing how ECSF now checks for stored attribute conflicts when defining a search.
Section 27.2.6.1, "Making View Object Attributes Searchable"	Section revised with expanded information of Crawl Date Column in Table 27-1 Searchable Attribute Properties to explain that ECSF will pick the most recent Crawl Date column value to use as the LastModifiedDate value.
This part of the Developer's Guide discusses how to set up and configure your development environment to build your Oracle Fusion Applications using Oracle JDeveloper.	
Getting Started with Oracle Fusion Applications describes how to design and build your Oracle Fusion Applications using the Oracle standards and guidelines.	
Setting Up Your Development Environment describes how to configure and test your 11g development environment. It includes the steps for setting up your JDeveloper environment and Oracle Application Development Framework (Oracle ADF) installation, running and deploying applications on Oracle Integrated WebLogic Server and Oracle Standalone WebLogic Server, and the basic steps for setting up your service-oriented architecture (SOA) development environment.	
Setting Up Your JDeveloper Workspace and Projects describes how to create an application so that the system automatically creates your Model and user interface projects. Also included are instructions about how to set up your projects including manually adding the Applications Core library to the data model project and the Applications Core Tag library to the user interface project.	
This part contains the following chapters:	
This chapter describes how to design and build your Oracle Fusion Applications using Oracle standards and guidelines. It includes an overview of Oracle Fusion technologies and using Oracle Application Development Framework (ADF) functional patterns.	
This chapter includes the following sections:	
Oracle Fusion web applications are a set of business-related applications developed with the help of various technologies. This section describes the various technologies with which an Oracle Fusion web application developer works when developing the applications.	
The following is a list of the various categories of technologies that, as an Oracle Fusion web application developer, you will encounter. This section does not go into the details about why the specified technologies have been chosen, the main intention is to give you an overview of the various technologies that are used to develop Oracle Fusion web applications.	
UI Technologies	
Technologies that are used to create user interfaces fall into this category. The technologies that must be used in Oracle Fusion to create these user interfaces are:	
The ADF Faces rich client technology is used to create browser-based user interfaces. It provides a set of UI components, which can be dragged and dropped to create UIs. Among these ADF components are other components called the data visualization tools, which are a set of rich interactive components that provide graphical and tabular capabilities for visualizing and analyzing data.	
For more information about ADF Faces, see the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.	
For more information about ADF Faces rich client components, see the Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework.	
This technology is used to create interfaces accessed through Microsoft Excel.	
For more information about ADF Desktop Integration, see the Oracle Fusion Middleware Desktop Integration Developer's Guide for Oracle Application Development Framework.	
This technology is used to create interfaces that can be accessed through browsers in mobile devices.	
For more information about ADF Mobile, see the Oracle Fusion Middleware Mobile Browser Developer's Guide for Oracle Application Development Framework.	
Model Technologies	
Technologies that are used to represent the business logic and the data on which the business logic is based fall into this category. The UI technologies discussed previously can be based on any model technology such as Enterprise JavaBeans (EJB), Oracle Toplink, and so on. In Oracle Fusion, ADF Business Components is the model technology that is used in all applications.	
Backend Technologies	
These technologies are the set of storage technologies that are used to store the transactional and relational data. The primary technologies used in Oracle Fusion to store and retrieve data are:	
For more information see Oracle Database Administrator's Guide.	
Orchestration Technologies	
These are the technologies that are used in the service-oriented architecture (SOA) world. The primary purpose of these technologies is to assemble various services together to provide comprehensive functionality.	
In Oracle Fusion, many product applications provide their functionality in the form of web services. OracleAS BPEL Process Manager is used to assemble these web services together to provide end-to-end functionality.	
For more information about SOA, see the Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.	
Security	
Security is an integral part of all of the technologies previously mentioned. The technology used to provide security for Oracle Fusion Applications is Oracle Platform Security Services (OPSS).	
For more information about OPSS, see the Oracle Fusion Middleware Oracle Platform Security Services (OPSS) & Oracle Authorization Policy Manager (OAPM) Frequently Asked Questions.	
Customization-Related Technologies	
Customization-related technologies give customers the tools they need to customize the artifacts that developers have created. For example, the customer requires more information on the Invoices Entry UI that the developer created. They want to customize the UI by adding this extra information. To perform this type of customization, Metadata Services (MDS) technology is used.	
Another level of customization, which is used to customize the UI pages at runtime, is called Design Time at Runtime (DTRT) customization. This type of customization is performed using the WebCenter technologies. (This uses Oracle Metadata Services (MDS) internally).	
In addition to customization, WebCenter provides many other services. For more information about WebCenter technologies, see the Oracle Fusion Middleware Developer's Guide for Oracle WebCenter.	
Additional Technologies	
In addition to the technologies previously discussed, there are many others that Oracle Fusion web application developers may encounter. These include:	
For more information about Oracle Enterprise Scheduler Service, see the Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler.	
For more information about Oracle Enterprise Crawl and Search Framework, see Chapter 26, "Getting Started with Oracle Enterprise Crawl and Search Framework."	
For more information about Oracle Business Rules, see the Oracle Fusion Middleware User's Guide for Oracle Business Rules.	
For more information about Oracle Data Integrator, see the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator.	
The Oracle ADF Functional Patterns and Best Practices web site contains documents that describe and demonstrate functional patterns and best practices for specific tasks in development when utilizing the Oracle Application Development Framework (Oracle ADF) within JDeveloper. New functional patterns and best practices will appear on a regular basis. Also remember to check JDeveloper's online help and search the Web for more information that might be published on blogs.	
The functional patterns and best practices discussed on the web site include:	
This chapter describes how to configure and test your development environment. It includes the steps for setting up your JDeveloper environment and Oracle Application Development Framework (Oracle ADF) installation, running and deploying applications on Integrated WebLogic Server, and the basic steps for setting up your Oracle SOA Suite development environment.	
This chapter includes these sections:	
Note: This chapter assumes that you are using a 64-bit operating system.	
Oracle Fusion Applications provisioning involves installing, patching, configuring, and deploying all the enterprise components. At the end of the provisioning process, the system will be operational. An application administrator will be able to log in to the application and begin the process of configuring the functional (application specific) components.	
On-site, the administrator uses eDelivery or the DVD media to kick-start the provisioning processes to create the test environment and the production environment. These environments are completely isolated from one another and set up in an identical manner. There is no reuse of, for example, the database from the production environment in the test environment, or reuse of the Identity Store across the environments.	
These environments need to be extremely stable and should not be affected by development projects. Typical development projects include creating new customizations for existing Oracle Fusion applications, developing new in-house Oracle Fusion applications, and extending Oracle Fusion applications with additional functionality. These development projects will typically involve a team of developers that needs to reuse certain parts, but still needs the isolation to run, test, and debug without affecting other team members.	
As a developer, you will work with one development environment that has two parts:	
The shared environment plus the personal environment form the complete development environment.	
The shared environment normally will be set up by an administrator. This environment is completely provisioned and set up on a machine that is more powerful than the normal developer's machine, which often is a laptop. It is called the shared environment because developers will share its resources.	
When it is provisioned, the shared environment contains:	
When provisioning installs and configures the database, it makes sure that all the necessary schemas are created in it. Provisioning also ensures that the Functional Setup is run, the taxonomy tables are populated, and the FlexFields are defined. The same database also contains the ApplicationDB schema that contains the data that developers see when working with the applications.	
Provisioning creates a complete Middleware home while creating the shared environment. Middleware home contains individual Oracle homes for product families, Oracle Business Intelligence, Oracle Fusion applications, WebLogic Server, and so on. Middleware home contains the exploded EAR (archive) directories of the deployed applications. The provisioning processes update and modify the connections.xml and the adf-config.xml files in the exploded EAR directories of all the deployed applications to point to the correct host, port, and endpoint details, based on where the database and the WebLogic Server domains have been provisioned in the shared environment.	
The shared environment has one or more Weblogic Server domains running with Oracle Fusion applications deployed. Each domain will have one AdminServer and at most three ManagedServers. One of the applications may use web services from another application. As a result, the connections.xml will have references to the endpoint defined in other app. These domains will be useful in performing system tests.	
The Identity Store and the Policy Store are not provisioned by the provisioning process. The administrator follows the Identity Management documentation and processes to set up LDAP/Oracle Internet Directory-based Identity and Policy Stores for authentication and authorization purposes. These stores in the Shared Environment are used by multiple personal environments set up on developers' laptops. Like the exploded EAR directories of the deployed applications in the Middleware home, these stores from the shared environment are not intended to be modified by the personal environments that are using them.	
Properties and features of the shared environment include:	
For more information about provisioning an environment, see "Creating a New Provisioning Plan" and "Provisioning a New Applications Environment" in the Oracle Fusion Applications Installation Guide, and the Oracle Fusion Applications release notes.	
Typically, and particularly in a test environment and a production environment, this schema is in the Oracle Identity Manager (IDM) database. In the case of a development environment, being able to access the Oracle Web Services Manager_Metadata Services (OWSM_MDS) schema provides the same options that Oracle Fusion Applications developers at Oracle have.	
There are two options by which the OWSM_MDS schema can be made available to developers:	
This section provides detailed snapshots on how to create the OWSM_MDS schema using the Repository Creation Utility (RCU).	
In a production environment, the OWSM_MDS schema is in the IDM database. The IDM is typically locked down so information such as schema passwords are not handed out. But, to configure the domain, the schema and the password are required to set up the mds-owsm datasource. The starter transaction database correctly does not contain the OWSM_MDS schema. This is correct and the base template to create the starter transaction database should not be changed to include it. To avoid widely disseminating the schema password of the IDM database, an extra MDS should be added to the development's transaction database using the Repository Creation Utility (RCU) with a prefix of OWSM.	
You do not have to do anything else apart from adding this schema. The schema will be correctly populated when your domain starts, if it does not already contain the correct data.	
There may be a number of RCUs available. To provision Oracle Fusion Applications, you will have created an installer repository. In this repository, you will see the following:	
Copy the appropriate .zip file to your system from the installers/apps_rcu	
directory.	
Once you get the zip file to your machine, follow these steps:	
Linux system	
Windows system	
The RCU starts and displays the Create Repository dialog, shown in Figure 2-1.	
Select Create and click Next to display the Database Connection Details dialog, shown in Figure 2-2.	
Enter your database connection details and click Next to display the Checking Global Prerequisites dialog, shown in Figure 2-3.	
Click OK to display the Select Components dialog, shown in Figure 2-4.	
Select Create a new Prefix and enter OWSM as the name.	
Expand AS Common Schemas and select Metadata Services.	
Click Next to display the Checking Component Prerequisites dialog, shown in Figure 2-5.	
Click OK to display the Schema Passwords dialog, shown in Figure 2-6.	
Select Use same passwords for all schemas and enter the password for the OWSM_MDS schema in the Password and Confirm Password fields.	
Click Next to display the Map Tablespaces dialog, shown in Figure 2-7.	
In the Default Tablespace field, select FUSION_TS_TOOLS.	
In the Temp Tablespace field, select either FUSION_TEMP or TEMP3.	
Click Next to display the Validating and Creating Tablespaces dialog, shown in Figure 2-8.	
Click OK to display the Summary dialog, shown in Figure 2-9.	
Verify the information and click Create.	
When the operation has completed successfully, the Completion Summary dialog, shown in Figure 2-10, displays.	
Click Close.	
The OWSM_MDS schema now can be used to configure the mds_owsm datasource in the domain.	
Each developer has this environment, which uses the database, Middleware home, and the Identity and Policy stores from the shared environment. The shared environment is made available by using NFS mount or a mapped drive in the personal environment. In this environment, developers can use JDeveloper to run, test, and debug their changes without affecting other team members.	
The personal environment consists of two parts:	
Manually Deploying the oracle.apps.common.resource Shared Library	
Once an Integrated or a Standalone Weblogic Server has been launched, you will need to deploy the oracle.apps.common.resource.ear shared library. You may need to get the location of the file from an administrator and then use the WebLogic Server Console to deploy it as a shared library using oracle.apps.common.resource as the name. See Section 2.2.3.1, "Managing Integrated WebLogic Server."	
You assemble this environment on your machine by performing these steps in this order:	
Using JDeveloper and the Oracle Fusion Domain wizard, you can create the fusion_apps_wls.properties file and a credential store. You will enter the host, port, and other details for the database and Identity Store from the shared environment. Eventually, the wizard will do the following:	
DefaultDomain is run as part of Integrated WebLogic Server from within JDeveloper. To create customizations for a shipped Oracle Fusion application, you can use JDeveloper to point to the exploded EAR directory of the application in the shared environment's Middleware home. A customization workspace will be created in JDeveloper with the adf-config.xml file being modified such that the Metadata Services (MDS) metadata store points to the filesystem. However, the DefaultDomain is configured with the ApplicationDB datasource that points to the fusion runtime schema that is installed in the database from the shared environment. Since the MDS namespace has been altered while incorporating the exploded EAR directory, the customizations that are created on the filesystem are picked up when the application is run within Integrated WebLogic Server.	
Before you can use JDeveloper, there are several things you need to do.	
Note: This step is not applicable if you are running a Windows environment.	
If you are using your own workstation, you probably have a process called SCIM running. This process may prevent you from entering a password in the Oracle Fusion Domain wizard or anywhere a JPasswordField occurs. You can remove SCIM from your system by executing this command.	
You also can just kill the processes by executing the following command. However, if you just kill the processes instead of removing SCIM, you must kill them each time you reboot your system.	
You then can kill -9	
all those processes.	
This system configuration change is required on local Linux servers to increase the open file limit and resolve a number of JDeveloper, WebLogic Server and other "Too many files" errors when doing a build or merge.	
JDeveloper is supplied on the Oracle JDeveloper 11g and Oracle Application Development Framework 11g (11.1.1.5.3) disk. JDeveloper support files, such as extensions, are supplied on the Oracle Fusion Applications Companion 11g (11.1.1.5.3) disk. Your administrator may choose to make the contents of the disks available on a shared directory that will have the same directory structure as the disks. We strongly recommend that the administrator make the contents of the Oracle Fusion Applications Companion 11g (11.1.1.5.3) disk available on a shared directory. The directions in this section assume that you are installing from the disk.	
Install the Studio edition of JDeveloper from the top-level directory of the Oracle JDeveloper 11g and Oracle Application Development Framework 11g (11.1.1.5.3) disk.	
For Windows, you can use the jdevstudio11115install.exe installer. For Linux, you can use the jdevstudio11115install.bin installer. If you decide to use the generic jdevstudio11115install.jar installer, you must first install JDK 6 Update 24 from the Oracle Technical Network and then install JDeveloper using the generic installer.	
The installation will let you specify the directory into which to install JDeveloper. This installation directory is MW_HOME.	
When you have started JDeveloper, you will need to install the extension bundles from the fusion_apps_extensions	
directory on the Oracle Fusion Applications Companion 11g (11.1.1.5.3) disk. See Section 2.2.1.5, "Setting Up the JDeveloper-based Development Environment."	
For more installation information, see the Oracle Fusion Middleware Installation Guide for Oracle JDeveloper (Oracle Fusion Applications Edition).	
You must set this option before starting to customize an application if your application contains product-specific customization classes.	
In $MW_HOME/jdeveloper/jdev/bin	
, open the jdev.conf file in a text editor and add this line:	
/path/to/customization/bundles/directory1:/path/to/customization/bundles/directory2	
where -Dide.extension.extra.search.path /path/to/customization/bundles/directory1:/path/to/customization/bundles/directory2	
is the fully-qualified path or paths to the directory or directories in which the JAR files containing the product-specific customization classes are located. Paths already exist as part of the provisioned environment. You will have to get one or more paths from an administrator. The administrator can use these steps to locate the JAR files:	
APP-INF/lib	
under the exploded EAR for all JAR files that start with Ext. APP_INF/lib/Ext*.jar	
, look at all JAR files under the EarContents to find it. Follow these steps to create a development environment based on Integrated WebLogic Server:	
python -V	
to see if you have Python 2.4.3 or later on your machine. If you do not, install Python version 2.4.3 or newer. csh commands:	
bash commands:	
Windows command prompt commands:	
$MW_HOME/jdeveloper/jdev/bin	
. If necessary, add other options from Table 2-1.	
Save and close jdev.conf.	
Table 2-1 VMOptions in jdev.conf	
Name	Value
---	---
/x/y/z	Fully qualified path or paths to the directory or directories where Customization Extension Bundles are located. You probably will need to get this information from an administrator.
true	Optional.
true	Optional.
/usr/bin/firefox	Location of the browser executable specific to the environment at the customer's site.
true	
recreate	
true	
true	
false	
HOME,JDEV_USER_HOME	These are sanctioned environment variables that will be allowed for use in WebLogic Server Scripting Tool (WLST) scripts. Environment variables that are not in this list will be ignored by the script. You can add variables to this list.
512M	
If you require more details about the JDeveloper startup, you can set the VERBOSE environment variable. If you are using csh, the command is setenv VERBOSE TRUE	
. If you are using bash, the command is export VERBOSE=TRUE	
.	
When prompted, select the Default Role, as shown in Figure 2-11.	
Because you will need to select a different role later, you should make sure you select the Always prompt for role selection on startup option.	
The JDeveloper environment can be tailored based on the role you select. The modified environment removes unneeded items from JDeveloper, including menus, preferences, New Gallery, and even individual fields on dialogs. The JDeveloper role you select determines which technologies and options are available to you as you work in JDeveloper.	
Table 2-2 provides a brief explanation of the available roles.	
Table 2-2 JDeveloper Roles	
Role	Description
---	---
Default Role	This role allows you to access all of JDeveloper's features. The other roles provide subsets of these features.
Oracle Fusion Applications Administrator Customization	This is the main customization role for Oracle Fusion Applications customers. Important: You must use this Role for customizing SOA Composites.
Oracle Fusion Applications Developer	This is for Oracle Fusion Applications developers to use to build new applications.
Database Edition	This gives you access to just the core database development tools.
Java EE Edition	This includes only features for core Java EE development.
Java Edition	This includes only features for core Java development.
Click OK. As JDeveloper loads, the Migrate User Settings prompt may display. If it does and you are not sure whether or not to migrate settings, you should click No.	
Install the Fusion Apps Development Environment extension bundle, an all-encompassing JDeveloper bundle that is specific for Oracle Fusion Applications. To install the bundle:	
Ignore any error messages that might be displayed when you click the Test Proxy button.	
fusion_apps_extensions	
directory, or on a shared directory provided by the administrator. Note that only the new Update Center should be selected.	
When the download finishes, the Summary dialog, similar to that shown in Figure 2-19, displays automatically.	
Note: If you are using JDeveloper on Windows the prompt will ask if you want to restart JDeveloper. If you click Yes, JDeveloper is automatically restarted.	
If you do not have an administrator-supplied fusion_apps_wls.properties file in the default location, you will be prompted to configure WebLogic Server (launch the Oracle Fusion Domain wizard) as shown in Figure 2-22. Click Yes. See Section 2.2.2, "How to Use the Oracle Fusion Domain Wizard."	
Note that if you do have an administrator-supplied fusion_apps_wls.properties file, the administrator also must supply the entire o.jdevimpl.rescat2 folder from his $JDEV_USER_HOME/system11.1.1.xx.yy.zz folder. See Section 2.2.1.7, "Distributing the fusion_apps_wls.properties and cwallet.sso Files."	
Once JDeveloper is up, the environment should have all the components in the correct locations. You should be able to create new, or customize existing, Oracle Fusion applications.	
There are two options for how a developer can use the OWSM_MDS schema.	
Instead of each developer creating the properties file and the credential store using the Oracle Fusion Domain wizard, the administrator can create them once and distribute them to the entire development team. The administrator can use the wizard and enter the property values, which include connect strings to the database and to the Identity Store. These values are captured in the fusion_apps_wls.properties file and the passwords are stored in an encrypted form using the credential store. Both the fusion_apps_wls.properties file and the cwallet.sso file, which is the credential store, are created in the o.jdevimpl.rescat2 sub-folder under the $JDEV_USER_HOME/system11.1.1.5.xx.yy.zz folder. The administrator can distribute the entire o.jdevimpl.rescat2 sub-folder to the development team. The developers can install JDeveloper and install the bundles. The developers then can copy the entire o.jdevimpl.rescat2 sub-folder under their own $JDEV_USER_HOME/system.11.1.1.5.xx.yy.zz folder. This way, the administrator can enforce uniformity and the developers will not have to go through the wizard to create the properties file.	
Now, if developers need to use their own SOAINFRA or MDS_SOA schemas, they can manually launch the wizard and provide connect strings specifically for those schemas.	
Note: Although the Oracle Fusion Domain wizard includes additional properties for Standalone WebLogic Server, the same fusion_apps_wls.properties and cwallet.sso files are used for both Integrated WebLogic Server and Standalone WebLogic Server creation and configuration.	
The wizard helps you to create and update a fusion_apps_wls.properties file and a cwallet.sso file that are used to set up the Oracle WebLogic Server domain for Oracle Fusion Applications development. The wizard incorporates two main paths: one for configuring an Integrated WebLogic Server domain (in which JDeveloper manages the server) and one for setting up a remote Standalone WebLogic Server domain.	
In the case of Integrated WebLogic Server, completion of the wizard will create the domain. For Standalone WebLogic Server, you will have to create the domain from the command line, using a Python script and the fusion_apps_wls.properties and cwallet.sso files that were populated using the wizard. Note that the properties file and the cwallet.sso file must be in the same location.	
The wizard can be run multiple times to change properties in the file. If certain critical properties are changed, the domain may have to be re-created. This will be done automatically for the Integrated WebLogic Server domain, but will be a manual step for a Standalone WebLogic Server domain.	
The wizard can be launched automatically or manually. It will be launched automatically under either of these conditions:	
system11.1.1.xx.yy.zz/o.jdevimpl.rescat2	
directory. To start the wizard manually from within JDeveloper:	
The properties that can be captured in the wizard are shown in Table 2-3. The properties are defined under section headers that are surrounded by [square brackets], for example:	
Table 2-3 Properties to be Captured in the Oracle Fusion Domain Wizard	
Property Name	Standalone/ Integrated
---	---
Standalone	Yes
Standalone	Yes
Standalone	Yes
Standalone	Yes
Standalone	Yes
Standalone	Yes, only when domainType is adminsoa/adminall.
Standalone	Yes, only when domainType is adminess.
Both	Yes
Both	Yes
Both	Yes
Both	Yes
Both	Yes
Both	Yes
Both	Yes
Both	Yes
Both	No
Standalone	No
Standalone	No
Standalone	No
Standalone	No
Standalone	No
Standalone	No
Standalone	No
Both	Yes
Both	Yes
This is applicable to these schemas:	
Both	No
Both	No
Both	No
Both	No
Both	Yes, but the database connection is the same as for fusionDb.
Both	Yes, but the database connection is the same as for fusionDb.
Both	Yes, but the database connection is the same as for fusionDb.
Both	No
Both	No
Both	No
Both	No
Both	No
Both	No
Both	No
Note: The wizard requires considerable information about the network and various servers, such as LDAP and database. In normal situations, the administrator will disseminate his entire o.jdevimpl.rescat2 folder from his $JDEV_USER_HOME/system11.1.1.xx.yy.zz folder to developers who will copy the folder into the correct directory. See Section 2.2.1.7, "Distributing the fusion_apps_wls.properties and cwallet.sso Files."	
The wizard will start automatically if the fusion_apps_wls.properties file is not found when you start JDeveloper. You also can start the wizard manually. See Section 2.2.2, "How to Use the Oracle Fusion Domain Wizard."	
If the fusion_apps_wls.properties file is not found when you start JDeveloper, the prompt shown in Figure 2-25 displays.	
Click Yes to launch the wizard and display the Usage page, as shown in Figure 2-26.	
Select this option, the default, to configure and create a server that will be controlled by JDeveloper. This is the normal choice for development work. When the wizard finishes, an Integrated WebLogic Server domain will be created and can be used to run and test your applications.	
Selecting this option only creates or updates the fusion_apps_wls.properties and cwallet.sso files. See Section 2.2.2.2, "Completing the Oracle Fusion Domain Wizard for Standalone Server" for the dialogs that are specific to creating the fusion_apps_wls.properties file for a Standalone WebLogic Server domain. Creating a Standalone WebLogic Server domain must be done from the command line using the fusion_apps_wls.properties file as input. See Section 2.3, "Setting Up the Personal Environment for Standalone WebLogic Server."	
A message is displayed in this field if any errors occur in the definition. These errors must be corrected before you continue.	
Further wizard pages depend on the selected Usage. The flow for the Default Integrated Server selection is covered first.	
When you select the Default Integrated Server Usage option and click Next, the Domain dialog, shown in Figure 2-27, displays.	
If the fusion_apps_wls.properties file already exists and is in place, the fields will show the values that are in the file.	
This value defaults to weblogic. Change it if necessary.	
The password requires at least one numeral. It defaults to weblogic1.You can change it if necessary. Note that the password is not stored in the fusion_apps_wls.properties file. It is encrypted and stored in the cwallet.sso file.	
The default is Common to signify the common domain. If necessary, from the drop down list, select the Fusion Family Name, such as Customer Relationship Management or Financials.	
A message is displayed in this field if any errors occur in the definition. These errors must be corrected before you continue.	
Click Next to display the Database dialog, shown in Figure 2-28	
If the fusion_apps_wls.properties file already exists and is in place, the fields will show the values that are in the file.	
Notes:	
This schema name comes from the database installation. fusion_runtime is a recommended standard name.	
Enter the password. You probably will need to get this from an administrator if the cwallet.sso file was not provided to you. (Passwords are encrypted and stored in that file.)	
Enter the host, port, and the SID information using a colon (:) delimiter, such as a.your.company.com:1234:xyzzyon	
. You probably will need to get this from an administrator if the fusion_apps_wls.properties file was not prepared for you.	
A number of credentials are supplied with Oracle Fusion Applications and are included in the fusion_apps_wls.properties file. When you click a credential, the three fields to the right will display the default values. The Password field will remain blank because any passwords are encrypted and stored in the cwallet.sso file.	
If OWSM_MDS is selected, and the administrator has chosen to open up the IDM database in which the schema already exists, you will need to enter all the necessary information in this dialog. However, if the administrator has created the OWSM_MDS schema in the transaction database, you may not need to enter any data here. For more information about the owsm_mds schema, see Section 2.1.1.1, "Creating the OWSM_MDS Schema."	
You can change the default values of almost all the credentials, if necessary.	
This field corresponds to the Fusion Database User field.	
This field corresponds to the Fusion Database Password field.	
This field corresponds to the Fusion Database field.	
A message is displayed in this field if any errors occur in the definition. These errors must be corrected before you continue.	
Click Next to display the Security dialog, shown in Figure 2-29.	
If the fusion_apps_wls.properties file already exists and is in place, the fields will show the values that are in the file.	
This field cannot be edited directly. Click the edit icon to display the Edit LDAP Server dialog shown in Figure 2-30.	
Enter the name of your LDAP host, such as ldap_server.your_company.com	
.	
Enter the port number, such as 1066	
.	
This is the internal LDAP user name by which you connect to LDAP, such as cn=wlsproxyuser	
.	
Enter the password used by the Principal. The password will be encrypted and stored in the cwallet.sso file, and not in the fusion_apps_wls.properties file.	
This value defaults to LDAP (not checked). Select this check box if you want to use LDAPS.	
Enter the User DN based your LDAP. A sample User DN resembles cn=users,dc=us,dc=your_company,dc=com	
.	
The DN (Distinguished Name) is the LDAP attribute that uniquely defines an object. Each DN must have a different name and location from all other objects in Active Directory.	
The components include cn=common name, ou=organizational unit, and dc=domain content. DC often is listed with two entries, dc=cp and dc=com.	
Enter the Group DN based your LDAP. A sample Group DN resembles cn=groups,dc=us,dc=your_company,dc=com	
.	
A message is displayed in this field if any errors occur in the definition. These errors must be corrected before you continue.	
Click Next to display the Finish dialog shown in Figure 2-31.	
This value cannot be edited. The field simply shows the name of the fusion_apps_wls.properties file and the directory in which it will be created or updated.	
This defaults to Yes (checked). When selected and you click Finish, the Integrated WebLogic Server domain will be created so you can test your applications by selecting one of the JDeveloper Run options.	
Note: Creating the domain involves a great deal of background work to correctly set up the environment. This process can take several minutes.	
When you select the Standalone Server Usage option and click Next, the Domain dialog, shown in Figure 2-32, displays.	
If the fusion_apps_wls.properties file already exists and is in place, the fields will show the values that are in the file.	
Note: If an administrator has not created the fusion_apps_wls.properties file for you, with this information, you will need to get most of this information from an administrator.	
This is the type of domain you wish to create. It can be:	
The name of your domain. If you have more than one domain, you need to change this value and the domainDir value.	
domainName=Domain1	
and domainDir=$MW_HOME/user_projects/Domain1	
. $JDEV_USER_HOME/system11.1.1.*/o.jdevimpl.rescat2	
directory. FADevCreateDomain.py -p $JDEV_USER_HOME/system11.1.1.*/o.jdevimpl.rescat2/fusion_apps_wls_Domain1.properties	
to create Domain1. domainName=Domain2	
and domainDir=$MW_HOME/user_projects/Domain2	
. $JDEV_USER_HOME/system11.1.1.*/o.jdevimpl.rescat2	
directory. FADevCreateDomain.py -p $JDEV_USER_HOME/system11.1.1.*/o.jdevimpl.rescat2/fusion_apps_wls_Domain2.properties	
to create Domain2. You now have two properties files in the o.jdevimpl.rescat2	
folder and two domains.	
This is the location of the Oracle Fusion Applications installer files, usually on a central server.	
The location in the file system in which the domain will be created.	
If it is not specified, it will be created in the default location, which is $MW_HOME/user_projects/<domain_name>	
.	
This can be changed by setting the domainDir property in the fusion_apps_wls.properties file. If you have more than one domain, you need to change this value. See the description of domainName.	
Listen Port is the adminserver listen-port you want to use.	
This field, which displays only if the Domain Type is adminall or adminsoa, is the port number for your Oracle SOA Suite managed server (soa_server1) if you are using Oracle SOA Suite. If you are not using Oracle SOA Suite, you can leave this blank.	
This is the host:port where the BI Publisher server is running. The format for the value for this field is hostname:port	
, such as my.domain.com:9999	
. You may need to get this value from your administrator.	
This value defaults to weblogic. Change it if necessary.	
The password requires at least one numeral. It defaults to weblogic1.You can change it if necessary. Note that the password is not stored in the fusion_apps_wls.properties file. It is encrypted and stored in the cwallet.sso file.	
The default is Common to signify the common domain. If necessary, from the drop down list, select the Fusion Family Name, such as Customer Relationship Management or Financials.	
A message is displayed in this field if any errors occur in the definition. These errors must be corrected before you continue.	
Click Next to display the Database dialog, shown in Figure 2-33	
If the fusion_apps_wls.properties file already exists and is in place, the fields will show the values that are in the file.	
Notes:	
This schema name comes from the database installation. A recommended standard name is fusion_runtime.	
Enter the password. You probably will need to get this from an administrator if the cwallet.sso file was not provided to you. (Passwords are encrypted and stored in that file.)	
Enter the host, port, and the SID information using a colon (:) delimiter, such as a.your.company.com:1234:xyzzyon	
. You probably will need to get this from an administrator if the fusion_apps_wls.properties file was not prepared for you.	
A number of credentials are supplied with Oracle Fusion Applications and are included in the fusion_apps_wls.properties file. When you click a credential, the three fields to the right will display the default values. The Password field will remain blank because any passwords are encrypted and stored in the cwallet.sso file.	
If OWSM_MDS is selected, and the administrator has chosen to open up the IDM database in which the schema already exists, you will need to enter all the necessary information in this dialog. However, if the administrator has created the OWSM_MDS schema in the transaction database, you may not need to enter any data here. For more information about the owsm_mds schema, see Section 2.1.1.1, "Creating the OWSM_MDS Schema."	
You can change the default values of almost all the credentials, if necessary.	
This field corresponds to the Fusion Database User field.	
This field corresponds to the Fusion Database Password field.	
This field corresponds to the Fusion Database field.	
A message is displayed in this field if any errors occur in the definition. These errors must be corrected before you continue.	
Click Next to display the Security dialog shown in Figure 2-34.	
If the fusion_apps_wls.properties file already exists and is in place, the fields will show the values that are in the file.	
This field cannot be edited directly. Click the edit icon to display the Edit LDAP Server dialog shown in Figure 2-35.	
Enter the name of your LDAP host, such as ldap_server.your_company.com	
.	
Enter the port number, such as 1066	
.	
This is the internal LDAP user name by which you connect to LDAP, such as cn=wlsproxyuser	
.	
Enter the password used by the Principal. The password will be encrypted and stored in the cwallet.sso file, and not in the fusion_apps_wls.properties file.	
This value defaults to LDAP (not checked). Select this check box if you want to use LDAPS.	
Enter the User DN based your LDAP. A sample User DN resembles cn=users,dc=us,dc=your_company,dc=com	
.	
The DN (Distinguished Name) is the LDAP attribute that uniquely defines an object. Each DN must have a different name and location from all other objects in Active Directory.	
The components include cn=common name, ou=organizational unit, and dc=domain content. DC often is listed with two entries, dc=cp and dc=com.	
Enter the Group DN based your LDAP. A sample Group DN resembles cn=groups,dc=us,dc=your_company,dc=com	
.	
Defining the Oracle Platform Security Services (OPSS) Server is optional. Define this if its policy store is in a different location than your LDAP policy store. If OPSS-related properties are not specified, the domain is configured to use the XML-based Policy Store, such as system-jazn-data.xml.	
Figure 2-36 Editing the OPSS Server	
Enter the name of your LDAP host, such as ldap_server.your_company.com	
.	
Enter the port number, such as 1066	
.	
This is the internal LDAP user name by which you connect to LDAP, such as cn=wlsproxyuser1	
.	
Enter the password used by the Principal. The password will be encrypted and stored in the cwallet.sso file, and not in the fusion_apps_wls.properties file.	
This value defaults to not enabled. Select this check box if you want to enable SSL.	
Enter the JPS Root Distinguished Name, which is the top-level (outermost) node that contains OPSS data in an LDAP directory, such as cn=FAPolicies.	
Click Next to display the Finish dialog shown in Figure 2-37.	
This value cannot be edited. The field simply shows the name of the fusion_apps_wls.properties file and the directory in which it will be created or updated.	
This value cannot be edited. The field simply shows the directory in which the script file will be created, and the name of the script file, FADevCreateDomain.py, you will need to run at the command line. See Section 2.3.1, "How to Create a Domain for Standalone WebLogic Server."	
A message is displayed in this field if any errors occur in the definition. These errors must be corrected before you continue.	
Integrated WebLogic Server and the deployed applications are separate entities. You can start Integrated WebLogic Server before running or deploying any applications.	
Starting Integrated WebLogic Server	
There are two ways to start Integrated WebLogic Server.	
Stopping Integrated WebLogic Server and the Application	
To stop Integrated WebLogic Server or the application from either the Integrated Server window or from the JDeveloper menu bar, click the red stop button and select either the IntegratedWebLogicServer or the connection option, as shown in Figure 2-39.	
If you select the connection option, the application will be undeployed and the server will remain running.	
If you select the IntegratedWebLogicServer option, the deployed application will be undeployed and the server shut down. Wait for the application to be undeployed and the server to stop.	
If the shutdown of Integrated WebLogic Server did not respond or shut down the server, click the red shutdown button again to kill the process, as shown in Figure 2-40.	
If you still do not see the Process Exited message when you terminate Integrated WebLogic Server, you will have to manually kill the process.	
Manually killing the process	
Note: 7101 is the Integrated WebLogic Server port. It may be different.	
The WebLogic Server Console can be deployed and accessed to manage Integrated WebLogic Server. To access the WebLogic Server Console, enter the following URL in your web browser: http://<hostname.domainname>:<port>/console	
, such as http://localhost:7101/console	
.	
The default username and password for the Integrated WebLogic Server Console application are weblogic / weblogic1.	
While the JDeveloper-based environment with Integrated Weblogic Server is useful in creating and validating customizations to the ADF artifacts, it cannot be used to validate SOA customizations. Also, anything that relies on SOA, such as BPM and ESS, will need the standalone environment.	
To create this environment, you need Python scripts that are part of the JDeveloper-based environment and the repository of installer files that are used to create the shared environment. You first will have to create the JDeveloper-based environment, create or update the fusion_apps_wls.properties file, and then execute the scripts that are packaged with the fa_dev_bundle.zip extension bundle to create the standalone environment. One of the inputs to the Python script is the location of the repository that contains the installer files. You can use the Oracle Fusion Domain wizard from the JDeveloper-based environment to update the fusion_apps_wls.properties file such that it can be used in the standalone environment. So, the same properties file can be used to create both the JDeveloper-based environment and the standalone environment.	
When the Python scripts are executed, they automatically do the following:	
Typically in this environment, you have to deploy the exploded EAR directory of the application from the Middleware home of the shared environment using the Weblogic Server Console. As a result, the adf-config.xml descriptor contains an MDS metadata store that points to the database in the shared environment and the customizations are picked up from the MDS repository. If you have created customizations on the filesystem using the JDeveloper-based environment, you should import those customizations to the MDS schema in the database that is running as part of the shared environment to test and validate them. When you import the customizations to the repository and database in the shared environment, it will affect all the developers who are using the shared environment. You will be able to test and validate the customizations by exercising all the applications that have a touch-point with the customized application, to ensure that things outside the application are working as expected.	
Because Standalone WebLogic Server for SOA points to a separate SOAINFRA MDS schema, the customizations need to be exported and imported into the shared environment once they are successfully tested by developers.	
See "Managing the Metadata Repository" in the Oracle Fusion Middleware Administrator's Guide.	
Even though the Standalone WebLogic Server domain that is created as part of this environment is used to deploy the application from the same APPL_TOP and is configured to point to the same data sources, the Identity Store, and the Policy Store as the domains that are part of the shared environment, you have the flexibility in setting up the domain that is part of the standalone environment in a way that it can work on a laptop or desktop without requiring excess resources. The domains that are created in the shared environment by the provisioning processes has one AdminServer and three ManagedServers. But, the domain in the standalone environment has just one AdminServer and one ManagedServer. You can decide whether to target SOA or ESS or various technologies at the ManagedServer based on the project.	
Installer files are used to create and run Standalone WebLogic Server domains. You may need to obtain the files from an administrator.	
Notes:	
This install also allows Oracle SOA Suite developers to create their domains without extra installs or steps.	
If you are creating a SOA customization, a special SOAINFRA schema that is in the database in the shared environment may need to be created so your work does not interfere with the normal database.	
Important: You must use the Oracle Fusion Applications Administrator Customization role for customizing SOA Composites.	
Because the existing composites reference Web Service Description Language (WSDL) and schemas in MDS, when new SOAINFRA and MDS_SOA schemas are created for the standalone environment, all the WSDLs and schemas needed by the composites to be customized need to be exported from the shared MDS_SOA and imported into the new standalone MDS_SOA schema.	
See "Managing the Metadata Repository" in the Oracle Fusion Middleware Administrator's Guide.	
Follow these steps to create a Standalone WebLogic Server environment. These steps assume that you already have downloaded and installed JDeveloper and the Fusion Apps Development Environment extension bundle.	
Set Domain Location appropriately, such as /path_to_domain/FAStandaloneDomain. Make sure that the directory name you enter does not exist.	
csh commands:	
bash commands:	
Windows command prompt commands:	
Example 2-1 FADevInstallMwHome.py Options	
For the standalone domain creation to succeed, you must patch the atgpf	
directory in the standalone MW_HOME using the patches from the installer repository before executing the script to create the standalone domain. Otherwise, the standalone domain creation will not be complete and trying to deploy Oracle Fusion applications to the standalone domain will result in issues.	
Follow these steps to patch the atgpf	
directory in the standalone MW_HOME using all the opatches that are in the repository:	
Linux system	
Windows system	
FADevCreateDomain.py options	
If you execute FADevCreateDomain.py -help	
, the help shown in Example 2-2 will be displayed.	
Example 2-2 FADevCreateDomain.py Options	
There will be times when you want change the properties in fusion_apps_wls.properties, or point to a different Identity Store, or you may want to delete the domain and start from scratch. To do these, you will have to stop the running server, remove the domain directory, edit the properties file using the wizard, and recreate the domain. Follow these steps to accomplish the tasks. Remember to change any example directory names to the names you have used.	
When you stop the server, use the same xterm that was used to create the domain and execute these commands:	
If you had started the ManagedServer, you should kill it, too.	
You may want to start over by removing the domain. Use the same xterm that was used to create the Standalone WebLogic Server domain and execute these commands:	
There may be times when you have to use a different Identity Store or modify some properties. In such an event, restart JDeveloper and follow these steps:	
To do so, execute these commands. Note that the options have been placed on separate lines for clarity. When you run the FADevCreateDomain.py script, all must be on the same line.	
This section discusses configuration options for the Oracle Service Oriented Architecture Suite and Oracle Enterprise Manager Fusion Middleware Control servers.	
Note: Only Oracle SOA Suite applications developers need to perform these steps.	
To use the Application Logging Service, complete these steps.	
Example 2-3 Updating the oracle.soa.bpel.jar	
Example 2-4 Updating soa-infra-wls.ear	
Example 2-5 Updating config.xml	
The main reason to use an alternate database is to improve performance. For instance, if the main database is remote, you can improve performance by installing the dehydration store, EDN, MDS and OraSDPM on your local machine.	
To use an alternate database schema, follow these steps.	
Note: These steps need the number of processes in the database to be set to at least 200. If needed, log in as sysdba, run this command, and restart the database.alter system set processes=200 scope=SPFILE;	
Example 2-7 Dropping the repository	
If the -silent	
switch is omitted, a wizard will be launched. It will ask you to enter the same values as shown in Example 2-6.	
Example 2-8 Recreating the repository	
Note: You will need to supply passwords for the different users. You should make the username and the password for that user the same, such as jmaus/jmaus. You will have to remember all the passwords. You will need them when you configure the DataSources.	
When creating an ADF library deployment profile, you can include connection information. When a project attaches that ADF library, the connection information is merged with its own connection information. This provides runtime consistency. The ADF library, by including the connection information, can ensure that all of the resources that it needs (the connections) are properly propagated to the consumers.	
When creating an ADF library deployment profile, the default is to include all connection details for every connection in the connections.xml	
, which is a workspace level file. Subsequently, when the ADF library is attached to a project, all of the connections are merged with the connections.xml	
for that project's workspace. This causes a proliferation of the connections across Oracle Fusion Applications. While the propagation of the connections is desirable, it is propagating much more than is really needed.	
Example of Connections Propagation	
A Financials project creates an ADF library with the defaults. All of the connection information for that Financials workspace is included in the ADF library. HCM picks up that ADF library. HCM's workspace now contains all connections that HCM needs, and all of the connections from the Financials workspace. If the defaults are retained, all of HCM's projects contain connection information from Financials plus HCM. If CRM picks up any of those HCM ADF libraries, it merges the connection information into the CRM workspace; which now contains all of Financials plus HCM plus CRM.	
Cleanup	
Developers should audit the current deployment profiles for all of Oracle Fusion applications to make sure they are not including all of the connection information. Developers need to make sure their deployment profiles only include the connections that are truly needed directly by that project.	
Developers also need to remove any unnecessary connections from the connections.xml files from each workspace. The connections.xml file should be a superset of all of these connections and not include unnecessary connections.	
A project that contains an ADF Business Components-based service can have two purposes. The ADF Business Components code can be invoked as a service or it can be used as a regular ADF Business Components object. ADF provides two different deployment profiles to handle each of these cases.	
For the service scenario, the BC Service Profile creates two JAR files. One is the Common one that contains information that is needed by the service invoker (Web Service Description Language (WSDL), XML schema definition (XSD), Service Interface). The MiddleTier one is an EJB JAR file that contains the actual implementation.	
For use as an ADF Business Components object, consumers must get an ADF library. That is the only way the ADF Business Components objects are exposed to consumers in the ADF Business Components design time wizards. ADF library also has no option for filtering, so it includes all the artifacts from the project including the WSDL, XSD, and Service Interface. Additionally, the ADF library includes the connection information for invoking the service. Because of this, developers inherit extra connection information if they want to use a service-enabled application module, not as a service, but as an application module.	
Common needs to be an ADF library because consumers of this need a connection entry to be injected into the consumers' connection.xml. This does not happen with ordinary JAR files.	
All ADF library deployment profiles should be updated to selectively include connections that are important to that one project. Common scenarios include:	
In the Edit ADF Library JAR Deployment Profile Properties dialog, choose to include Connection Name Only, as shown in Figure 2-41	
This section covers how to configure your runtime environment to support Oracle Enterprise Scheduler functionality.	
For information about using the Oracle Enterprise Scheduler, see the Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler.	
For information about setting up cross-domain security, see Enabling Trust Between WebLogic Server Domains.	
Important: The ESS and Fusion schema must be located in the same database and must be linked to each other.	
Section 2.3, "Setting Up the Personal Environment for Standalone WebLogic Server" shows how to configure the fusion_apps_wls.properties file and run FADevConfigDomain.py to stage and deploy the necessary infrastructure. For Oracle Enterprise Scheduler, you must ensure that you have configured the domainType property in the fusion_apps_wls.properties file to standalone, adminall or adminessadf. Example 2-9 shows correctly configured Oracle Enterprise Scheduler database and schema information, and ESS-related settings.	
Example 2-9 Sample Showing Correctly-Configured Oracle ESS Database and Schema Information, and ESS-related Settings	
After provisioning the runtime, you should create the supporting database schema before starting the managed servers which is covered in Section 2.6.2, "How to Create Supporting Database Schema."	
There are two approaches to creating the database schema: using the RCU tool or creating the schema using SQL scripts. The latter allows greater flexibility in the naming of the schema and user, but requires use of SQL*Plus.	
For pre-requisite steps and configuration of the Oracle Enterprise Scheduler schema using the RCU tool, see Section 2.4.2, "How to Use Alternate Database Schemas." Example 2-10 shows how to configure the Oracle Enterprise Scheduler schema using the RCU schema.	
Example 2-10 Configuring Oracle Enterprise Scheduler Schema Using the RCU Schema	
Alternatively, creating the schema by running scripts in SQL*Plus can be performed as shown in Example 2-11	
Note: You should determine the appropriate TEMP tablespace by reviewing the entries in dba_tablespaces before attempting to run these scripts.	
Perform these steps to make sure the ESS installation was successful.	
The ESSAPP (also known as the ESS Base application) is the deployed infrastructure that supports the deployment of the product team Oracle Enterprise Scheduler applications, known as hosted applications. By default, this application writes all request log and output to a directory path known as the userFileDir, which is configured in the ess.xml file.	
The ESS application defaults to file persistence mode and writes all the request log and output to a directory path known as the RequestFileDirectory, which is configured in the ESSAPP connections.xml	
file. By default, the temp directory will point to /tmp/ess/requestFileDirectory. Ensure that the directory exists and, if not, create it as the user who will start the ESS managed server.	
To test your JDeveloper and ADF installation, perform the following steps to create both a data model project and a user interface project, create an ApplicationDB database connection, and create and run a simple page.	
Tip: The name of the wizard changes according to the application template that is selected.	
Application Name: Enter Setuptest	
Application Package Prefix: Enter oracle.apps.test	
Application Template: Choose Fusion Web Application (ADF)	
Note: The system automatically will create data model and user interface projects for you. The default names for these projects that JDeveloper provides areModel and ViewController	
You can enter a new name for your data model project or you can keep the default name Model.	
Note: The Project Technologies are automatically selected based on the application template that was chosen. You can select additional technologies if required.	
This dialog displays the Java settings for your data model project. See Figure 2-44.	
You can enter a new name for your user interface project or you can keep the default name ViewController. See Figure 2-45.	
Note: The Project Technologies are automatically selected based on the application template that was chosen. You can select additional technologies if required.	
This dialog displays the Java settings for your user interface project. See Figure 2-46.	
Click Finish to create your new application.	
Connection Type: Choose Oracle (JDBC)	
Username / Password: Enter the username and password for your team's database.	
Deploy Password: Select this option.	
Host Name: Enter the host name, such as my.hostcom	
JDBC Port: Enter the port number for your database.	
SID: Enter the database name, such as mydb.	
Note: The results of your search displays in the Available column.	
This is required for your application module to run on the WebLogic Server.	
To update your application module configuration:	
In the Navigator tree, right-click the application module and select Run, as shown in Figure 2-49.	
If your installation is set up correctly, a dialog similar to that shown in Figure 2-50 displays. If an error message displays, you will need to re-check that the previous steps have been performed correctly.	
In this example, right-click FndDemoEmp1 and select Show to display data, as shown in Figure 2-51.	
Note: Make sure the URL uses the full host name. For instance, if the displayed URL ishttp://127.0.0.1:7101/ApplCoreCRMDemo/faces/Region6UIShellPage , you should edit it manually so it appears similar to http://myhost.name.com:7101/ApplCoreCRMDemo/faces/Region6UIShellPage .	
When your page is displayed, you can use the buttons that appear at the bottom of your page to view next and previous employees.	
Implementing these best practices when using JDeveloper will significantly reduce problems.	
These recommendations are specific to improving the performance of JDeveloper.	
Increase the Number of Lines in the Log Message Window	
The default of 3000 lines generally is insufficient for Oracle Fusion applications, and important errors and exceptions may be removed too quickly. The solution is to increase the number of lines, such as to 30000. Whenever you create a new view and run JDeveloper for the first time, increase the limit. Open Tools > Preferences Environment > Log and edit the Maximum Log Lines setting.	
Running JDeveloper in Verbose Mode	
You can run JDeveloper in its default non-verbose mode, or in its verbose mode.	
Increase the minimum / maximum heap size for JDeveloper (and other Java parameters)	
This is specifically about increasing the heap size for JDeveloper, since JDeveloper itself is a Java executable and runs in its own Java Virtual Machine (JVM). This will not affect Integrated WebLogic Server; for that you set USER_MEM_ARGS, since it's a separate process and therefore a separate JVM.	
To change the values for minimum and maximum Java heap, modify the corresponding parameters in $jdev_install/ide/bin/ide.conf.	
Other parameters can be set in $jdev_install/jdev/bin/jdev.conf.	
Do not set Xms or Xmx in jdev.conf because it will just result in duplicating the parameter on the command line because it already is set in ide.conf. You can add any other parameter than is not already passed on the command line in this file, using the same format as the existing parameters.	
Enable the JDeveloper Java heap meter	
You can enable the JDeveloper heap monitor (that is, the heap, permgen, and dustbin icon that forces garbage collection on the status bar of the main jdev window). Add this line to $jdev_install/jdev/bin/jdev.conf.	
The heap monitor shows the current size of the heap; not necessarily the maximum size. The heap is originally created at the specified minimum size. When additional space is required, and if garbage collection cannot free up enough space, the heap size is increased. If the heap reaches its maximum and there still is not enough space after garbage collection, an OutOfMemoryException is thrown.	
The ADF Library Dependencies library is refreshed by doing the Refresh ADF Library Dependencies.	
The domain for Integrated WebLogic Server is generated from the information in fusion_apps_wls.properties. This file is created by the wizard described in Section 2.2.2, "How to Use the Oracle Fusion Domain Wizard."	
If you do not have a valid fusion_apps_wls.properties in the extension directory, domain creation probably will fail. So, if your domain creation fails, the fusion_apps_wls.properties file should be the first thing you check.	
The fusion_apps_wls.properties file also is used for Standalone WebLogic Server.	
Some properties may become a source of problems if not configured properly.	
useCentralLdap: This property should be set to Yes if the environment needs to use the central LDAP.	
The new fusion_apps_wls.properties will not take effect until the Integrated WebLogic Server domain is recreated. The domain is created automatically when you run Integrated WebLogic Server from JDeveloper for the first time in a new view.	
The domain is created under your JDeveloper system directory, so that each view has its own domain.	
If you delete the DefaultDomain directory from under the system directory, the next time you start Integrated WebLogic Server, it will be recreated from the latest fusion_apps_wls.properties.	
When you use Integrated WebLogic Server, make sure the USER_MEM_ARGS environment variable is set before starting JDeveloper.	
setenv USER_MEM_ARGS "-Xms256m -Xmx1024m -XX:MaxPermSize=512m -XX:CompileThreshold=8000"	
export USER_MEM_ARGS="-Xms256m -Xmx1024m -XX:MaxPermSize=512m -XX:CompileThreshold=8000"	
Verify that it is set correctly.	
$USER_MEM_ARGS is read by the WebLogic Server startup scripts, and is used to override the default JVM memory settings. If using the default MaxPermSize=256M, you will regularly get outOfMemoryExceptions due to exhausted permGen. Setting permGen higher doesn't completely fix the problem, but it does mean you can work longer before deployment fails with a permGen-related outOfMemoryException.	
In the JDeveloper message log window, you will see this line when Integrated WebLogic Server is started. Make sure it reflects the overridden values defined in $USER_MEM_ARGS.	
Remember that overriding the Java memory arguments is a balancing act, and if you set them too high for your machine resources, either JDeveloper or WebLogic Server may fail to start, may hang, or may fail with a resource-related exception. For example, setting XX:MaxPermSize=1024m may be too high. If you experience problems after increasing the permanent generation size, try unsetting $USER_MEM_ARGS to see if it could be the cause. Session servers and workstations may respond differently.	
Example exceptions	
Sometimes deployment just becomes very slow before it eventually fails.	
Once you hit OutOfMemoryExceptions, if you then try and close Integrated WebLogic Server, the first attempt may fail because it is in a bad state. If you try a second time, JDeveloper now does a kill -9, which should clear it. You should no longer need to kill WebLogic Server by manually issuing the kill command from another terminal session. However, if you ever do need to, try identifying the WebLogic Server process. This command assumes that you are using the default port 7101.	
If you have another instance of WebLogic Server running, and the port is already in use, JDeveloper will use another port. Also, you may have changed the port in fusion_apps_wls.properties.	
This command lists the Java processes with the full command line, which should help you to identify the WebLogic Server process.	
Every data model or user interface project should have an ADF library deployment profile. Service projects are the exception.	
ADF libraries should be added to your project using the Resource Catalog by creating a File connection. From there, you can right-click any of the libraries and select Add to Project. Then all ADF libraries get managed under a Library called ADF Libraries. Mixing and matching different methods of adding ADF libraries can cause them to appear under different Libraries and sometimes under multiple libraries. That makes it hard to manage.	
All references to components contained in ADF libraries are resolved when the workspace is loaded in JDeveloper. If a reference to a component or Java class in an ADF library cannot be resolved because, for instance, it does not exist or is incompatible with the existing reference, you probably will receive a compilation error.	
Closing and restarting JDeveloper with a workspace open does not refresh the references to ADF libraries. Closing the workspace, and re-opening it does.	
If you have a specific project selected in the JDeveloper navigator pane, select View > Refresh ADF Library Dependencies for *.jpr to refresh the references to ADF libraries.	
When you make any changes to the components in a project, where the components are being referenced as an ADF library by your user interface project, you need to redeploy the ADF library and refresh the ADF library dependencies for your user interface project. The same applies to one model project referencing from another model project.	
If you are developing or debugging code in a data model project while running the referencing user interface project to test it, it may be easier to add the model project as a build output dependency, so you do not have to go through the cycle of redeploying the ADF library / refreshing ADF library references each time you make a change.	
Human Capital Management (HCM) maintains complex hierarchies and uses web services to retrieve this information. These services are known as service extensions. One of these extensions is the hierarchy provider, which allows you to walk up a hierarchy to retrieve information about a manager or subordinate. A simple example would be you, your manager, your manager's manager, and so on.	
See "Using Approval Management" in Oracle Fusion Middleware Modeling and Implementation Guide for Oracle Business Process Management.	
Before you begin	
Before you can configure hierarchy providers, you need to update the credential store using the WebLogic Scripting Tool. Follow these steps:	
t3://localhost:7101 with userid weblogic ...	
After running the commands, a message similar to this displays:	
There are three types of hierarchy providers.	
Each list builder may have a corresponding hierarchy provider.	
A hierarchy principal is something that participates in the hierarchy. It has certain parameters that the hierarchy provider uses to determine which hierarchy to walk up to. These parameters are:	
Note: Integration with Oracle HCM is native. That is, you provide the WSDL URL for each hierarchy provider.	
Service extension is defined in the workflow-identity-config.xml	
file under $ORACLE_HOME/user_projects/domains/soainfra/config/soa-infra/configuration	
.	
The file location also may come from MetaData Services (MDS). The file could be updated at the MDS location by using a WebLogic Scripting Tool command, such as importMetadata and exportmetaData. For example:	
oracle.bpel.services.identity.hierarchy.providers.hcm.HCMHierarchyProvider	
. The position-lookup provider allows you to look up the members of a position and all the positions that belong to a user. The position-display-name provider allows you to retrieve the display names of a list of positions for a particular language.	
The sample Identity Service Configuration XML code shown in Example 2-12 specifies a service extension, HCMIdentityServiceExtention, for JpsProvider. It then specifies the providers in the service extension.	
Note: Within each provider, the attributeclassname points to a Java implementation of the service provider. The parameter wsdlURL points to the URL of the concrete Web Service Description Language (WSDL) for the provider's web service. You should replace this value with the actual URL.	
Example 2-12 Sample workflow-identity-config.xml File for Specifying HCM Providers	
This chapter describes how to set up your JDeveloper workspace and projects, add libraries to projects, integrate Oracle Fusion Middleware extensions, create a database connection, implement Oracle Enterprise Crawl and Search (ECSF), and deploy Oracle SOA Suite.	
Whenever you create new projects, you must first create an Application using the Fusion Web Application (Oracle ADF) template. The system will then automatically create the data model and user interface projects for you. The default names that JDeveloper provides for these projects are Model	
and ViewController	
.	
After your projects have been created, you must manually add the Applications Core library to the data model project and the Applications Core Tag library to the user interface project.	
This chapter discusses:	
Technology scopes are attributes on the project that can be used to identify the different technologies used for that particular project. These attributes are used only within JDeveloper to assist you as you work. With technology scopes, the choices presented to you in the New Gallery and in the menus and palettes are filtered so that you see only those items that are most relevant to you as you work. Technology scopes have no effect on the data in the project itself.	
The JDeveloper online Help has more information.	
The application's Enterprise Archive (EAR) will be available for developers to pick up when creating a custom workspace. An administrator that provisions the environment will be responsible for providing developers with the following:	
In addition, the Oracle Fusion Applications Customization Application Wizard will create a complete development environment for customizing existing Oracle Fusion applications. See the online Help in the wizard, and "Using JDeveloper for Customizations" in Oracle Fusion Applications Extensibility Guide.	
Use these directions to add the Applications Core and Applications Core (Attachments Model) libraries to the data model project. The default name, provided by JDeveloper, for this project is Model	
.	
To add the Applications Core and Applications Core (Attachments Model) libraries to a data model project:	
The libraries are now displayed in the Classpath Entries region of the Libraries and Classpath dialog, as shown in Figure 3-1.	
Use these directions to add the Applications Core Tag Library to the user interface project. The default name provided by JDeveloper for this project is ViewController	
.	
To add the Applications Core Tag library to the user interface project:	
The Applications Core (ViewController) 11.1.1.0.0 is now displayed under the Distributed libraries folder on the JSP Tag Libraries dialog, as shown in Figure 3-2.	
Choose the Dependencies category and select the Model.jpr.	
Note: Even if you are only using the user interface project you must still initialize the data model project as they are dependent on each other.	
The most common use of Applications Core setup UIs is through Oracle Fusion Functional Setup Manager tasks that invoke the UIs running on the Applications Core Setup J2EE application. Applications Core setup UIs are part of the Applications Core (Setup UI) shared library, which is hosted centrally in the Applications Core Setup J2EE application. As a result, product teams typically will not need to include the shared library in their own J2EE applications.	
Every Oracle Fusion application registers ADF task flows with the Functional Setup Manager, which provides a single, unified user interface that allows implementers and administrators to configure all applications by creating set up data.	
For example, a Human Resource application can register setup activities such as "Create Employees" and "Manage Employee Tree Structure." See Oracle Fusion Applications Information Technology Management, Implement Applications Guide.	
To make these task flows available to developers, implementers or administrators, a developer integrates the desired Applications Core setup UI task flows with Functional Setup Manager. For information about specific task flows, see:	
The most common use of setup UIs is through Oracle Fusion Functional Setup Manager tasks. This is true even for product-specific tasks that invoke the task flows with parameters that restrict the results to a single object or set of objects.	
To determine your product team's requirements, familiarize yourself with these three scenarios and decide which one best fits your team's needs. The first two patterns are the typical use cases. The third is for approved exceptions only.	
Follow the instructions in Table 3-1 that are relevant to your scenario to integrate Applications Core setup UIs into Functional Setup Manager.	
Table 3-1 Instructions for Each Scenario	
Step	Scenario 1
---	---
Follow Functional Setup Manager guidelines to create product-specific setup tasks in the Application Design Repository. Tailor the behavior of the setup UI by passing allowed values to the task flow parameters. Decide what Applications Core setup UI task flows that you want to incorporate and locate the chapter (see Section 3.5.1, "What You May Need to Know About Setup UIs in Oracle Fusion Functional Setup Manager") that describes each task flow and its parameter values.	X
Product teams should set the value of the Enterprise Application field (in the Application Design Repository) to the appropriate J2EE application for any of their product-specific Functional Setup Manager tasks that use Applications Core setup task flows. Typically, this should be set to the Applications Core Setup J2EE application.	X
Ensure product team roles inherit the appropriate Applications Core duty role. The duty roles support securing the setup tasks so only authorized users have access.	X
If you intend to integrate a product-team specific setup UI and it will run in your product team's own J2EE application, your application will need to include the Applications Core shared library.	X
For any of the duty roles and their associated privileges that your application inherits, include permissions for those privileges in your application's	X
A connection to a valid database is necessary to run most, if not all, applications.	
To create a database connection:	
Connection Name: The value for the connection name must be ApplicationDB.	
Connection Type: Choose Oracle (JDBC)	
Username and Password: Enter the database username and password.	
Deploy Password: Select this checkbox.	
Host Name: This is the default host name if the database is on the same machine as JDeveloper. If the database is on another machine, type the name (or IP address) of the computer where the database is located.	
JDBC Port: This is the default value for the port used to access the database. If you do not know this value, check with your database administrator.	
SID: This is the default value for the SID that is used to connect to the database. If you do not know this value, check with your database administrator.	
ECSF provides developers a set of tools and a framework to quickly and efficiently integrate Oracle Secure Enterprise Search (SES) into enterprise applications to expose business objects for full text search.	
For more information about ECSF, see Part V, "Using Oracle Enterprise Crawl and Search Framework"	
Developers use ECSF to integrate search functionality in Oracle Fusion applications by defining searchable objects and searchable attributes. Defining searchable objects and searchable attributes enables the corresponding view objects and view object attributes for search, and creates the necessary metadata for ECSF. However, before you can define searchable objects and searchable attributes, you must add the Search navigation tab to the overview editor in JDeveloper.	
For more information about defining searchable objects, see Chapter 27, "Creating Searchable Objects."	
To add the Search navigation tab to the overview editor in JDeveloper, download the JDeveloper extension for ECSF.	
To download the JDeveloper extension for ECSF:	
Note: If you have trouble initializing Java Virtual Machine (JVM), launch JDeveloper by enteringjdeveloper.exe -J-Xmx125m at a command prompt.	
Once the Search navigation tab is added, the oracle.ecsf.dt.jar file appears in the oracle_home/jdev/extensions	
directory and the following files appear in the oracle_home/ecsf/lib directory	
:	
The Search navigation tab appears in the overview editor of JDeveloper, as shown in Figure 27-3.	
Use the Search navigation tab to configure the search-related properties.	
For more information, see Chapter 27, "Creating Searchable Objects."	
For information about deploying SOA, see:	
Oracle Enterprise Scheduler Service applications, also known as Oracle Enterprise Scheduler Service hosting applications, are deployed to an Oracle Enterprise Scheduler Service-configured runtime/cluster that has been pre-deployed with the base ESSAPP infrastructure J2EE application. Following standards, Oracle Enterprise Scheduler Service workspaces exist one per product family and are responsible for containing these supporting projects:	
Note: All the projects in an Oracle Enterprise Scheduler Service application, regardless of their content type, should have an ADF Business Components Shared Library deployment profile.	
A typical Oracle Enterprise Scheduler Service workspace structure resembles Figure 3-5.	
In Oracle Fusion Applications, all Oracle Enterprise Scheduler Service workspaces must contain a SuperEss project that contains the EJB deployment descriptors to register the hosted application with the ESSAPP base application, and to register both the MetadataService and RuntimeService EJBs. This technique avoids having multiple projects with conflicting deployment descriptors in a single deployment archive (EAR).	
RuntimeService/MetadataService beans are hosted by the ADF UI application and the Oracle Enterprise Scheduler Service hosting application.	
If you are creating a new Oracle Enterprise Scheduler Service workspace or your Oracle Enterprise Scheduler Service workspace does not already have a SuperEss project, create one using these steps:	
ejb-jar.xml	
and weblogic-ejb.jar.xml	
files. See "Assembling the Scheduler Sample Application" in the Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler. Save the files in the src/META-INF directory. After completing these steps, the SuperEss project will be complete. Follow Section 3.9.2, "How to Build the EAR/MAR Profiles" to build the EAR/MAR deployment profiles.	
Oracle Enterprise Scheduler Service-hosted applications are built into EAR files and deployed as J2EE applications. The EAR archive must contain the SuperEss EJB JAR, the MAR archive containing all Oracle Enterprise Scheduler Service metadata, and all the Job and Job-related classfiles via JARs in the APP-INF/lib directory. Follow these steps to create the appropriate deployment profiles.	
Note: Oracle Enterprise Scheduler Service is used in the instructions because it is the primary, but not only, use case.	
To simplify patching of Oracle Enterprise Scheduler Service metadata artifacts and align with code-level patching, having project-level deployment artifacts is essential. To support this requirement, EARs with multiple metadata archive (MAR) files can be deployed. This section describes what needs to be done to properly build Oracle Enterprise Scheduler Service workspaces to support project-level MARs.	
In contrast to standard MAR deployment, in which a single .mar file is created as a metadata aggregate from contributors defined from one or more projects in the workspace, this approach focuses on the creation of a JAR-based deployment profile in each project where the target file is named with a .mar extension. The resultant .mar files are then deployed into the workspace's jlib folder, which is added to the top-level directory of the EAR by the EAR deployment profile.	
Follow these steps to implement the project-level MAR deployment.	
These steps will need to be repeated if you have multiple EAR deployments for development or test purposes.	
Include *.mar	
Exclude *.*	
These steps will need to be repeated if you have multiple projects containing Oracle Enterprise Scheduler Service metadata.	
These steps will need to be repeated if you have multiple EAR deployments for test or development purposes.	
The EAR profile pulls together all of the previously-created EJB and MAR profiles to build the Oracle Enterprise Scheduler Service-hosted application. All the Oracle Enterprise Scheduler Service workspace projects should have ADF library JAR deployment profiles, and those with Job-supporting implementation classes should be deployed to a directory that can be added to the Oracle Enterprise Scheduler Service EAR's contributor list.	
To create the EAR profile, follow these steps:	
Note that the EAR profile should contain only the SuperEss EJB JAR, the MAR, and the JAR files for the Job implementation classes. Under no circumstances should the Oracle Enterprise Scheduler Service hosting application's EAR file contain JARs, descriptors or other artifacts for UI, data model or services functionality. Should your application contain projects with servlet or UI task flows for development testing, they must be bundled into a separate, UI-specific, set of EAR/MAR deployment profiles.	
When deploying an Oracle Enterprise Scheduler Service hosting application, the target managed server must have the ESSAPP base application pre-deployed and configured to run against a working Oracle Enterprise Scheduler Service database schema.	
For deployment from JDeveloper, you will need to create an Application Server connection in the JDeveloper resources palette before or as part of the deployment activity using the New Connection feature. Once your Oracle Enterprise Scheduler Service application is ready for deployment, including all requisite project and application-level profiles, you can initiate deployment by following these steps:	
JDeveloper should build the EJB JAR and the MAR, and bundle those archives, along with the JAR files, in the APP-INF/lib contributor location. This packaged archive will be sent to the managed server for deployment. During deployment, the Oracle Enterprise Scheduler Service hosting application will register itself through the ESSAPP base application using the ESSAppEndpoint descriptor in your ejb-jar.xml.	
Once deployment is finished, jobs can be submitted programmatically or through the Oracle Enterprise Scheduler Service UI submission task flows. These methods are documented in the Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler. This completes the deployment discussion for Oracle Enterprise Scheduler Service hosting applications.	
Before you can actually deploy your web project, there are a number of preliminary steps that you need to accomplish. These include setting up your web project and configuring your user interface project; creating the SuperESS project; creating the appropriate deployment profiles; and creating and setting up Oracle WebLogic Server.	
When you choose the Oracle Fusion Applications Developer role when starting JDeveloper, many settings are automatically defaulted for you. However, there are still certain options that you need to manually set to configure your project.	
This section discusses the specific options that need to be set manually to configure your user interface project. The default name for this project that JDeveloper provides is ViewController	
.	
This section describes how to configure your user interface project in JDeveloper.	
To configure your user interface project:	
Many objects are generated automatically and are stored in the default package.	
The location for all the ADF Metadata sources is the location that is entered in the ADFm Source Directory field. You should not have to change the default location.	
The location for all the HTML content is the location that is entered in the HTML Root Directory field. You should not have to change the default location.	
The location of the page definition files are based on a combination of the PageDef sub-package value, the default package location, and the ADFm Sources directory.	
Enter the Name as Adf<projName>	
in accordance with the Package Structure and Naming Standards.	
Note: The new deployment profile is now listed on the Deployment dialog.	
Verify that you have the following tag libraries listed under the Distributed libraries folder:	
Note: You may have to include additional tag libraries for other features, such as Data Visualization Tools (DVT) and WebCenter. For more information about adding tag libraries to your user interface project, see Section 3.4, "Adding the Applications Core Tag Library to Your User Interface Project.".	
Verify that the libraries listed in Figure 3-12 have been attached to your user interface project. As with tag libraries, you may have to add additional libraries.	
Verify that the Resource Bundle Type is set to Xliff.	
Note: The default settings will be correct when you start JDeveloper using the Oracle Fusion Applications Developer role.	
Verify that the technology scopes that are selected in Figure 3-14 are selected for your project.	
Note: This selection is limited to what is available, by default, in the New Gallery. To see other types of objects, choose All technologies from the New Gallery.	
Follow the steps in Section 3.9.1, "How to Create the SuperEss Project". The differences are that the ejb-jar.xml file will have no ESSAppEndpoint MDB and the weblogic-ejb.jar.xml file will be empty.	
Deployment is the process of packaging application files and artifacts and transferring them to a target application server to be run. During application development using JDeveloper, developers can test the application using Integrated WebLogic Server that is built into the JDeveloper installation, or they can use JDeveloper to directly deploy to a standalone application server.	
After the application has been developed, administrators can deploy it to production application servers.	
Note: This section assumes that you are deploying a web project to Standalone WebLogic Server. Creating deployment profiles is not necessary if you are running the project in Integrated WebLogic Server from within JDeveloper. In this case, JDeveloper, behind the scenes, creates an in-memory deployment profile.For other deployment options, see "Deployment Techniques for Development or Production Environments" in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.	
To deploy the web project to Standalone Weblogic Server, you must:	
This part of the Developer's Guide discusses business services and service-oriented development, defaulting and derivation logic, creating validation rules, and using messages in Oracle Fusion Applications. It provides information about the Oracle Fusion Middleware extensions for Oracle Applications base classes and describes how to share reference data across organizations by using set IDs to partition the data into different sets of values. Also included is how to implement lookups and simple lookups.	
The Getting Started with Business Services chapter provides overviews of ADF Business Components, services, validators, list of values (LOVs), and data types. It also discusses migrating PL/SQL to Java, batch processing, and extensibility and reusability.	
Service-oriented development is based on the concept of services. It is the realization of business functionality via software that customers can use to compose new business applications by using existing services in the context of new or modified business processes. The Developing Services chapter describes how to design the service interface, how to develop and invoke services. It also provides information about service versioning.	
Defaulting logic means assigning attribute values when a row or entity object is first created or refreshed and is achieved either declaratively in the attribute's default field or programmatically by adding code to the EOImpl	
file. Derivation logic means assigning attribute values when some other attributes have changed. Derivation is achieved either declaratively in the transient attribute's default field or by using a validator, or programmatically by adding code to the EOImpl	
file. This chapter provides the information you need to determine whether to implement defaulting or derivation logic.	
The Message Dictionary and Messages Resource Bundles are used to store messages for display from your application without hard-coding them into your forms and programs. By using the Message Dictionary and resource bundles you can define standard messages that you can use in all your applications, provide a consistent look and feel for messages within and across all your applications, define flexible messages that can include context-sensitive variable text, and change or translate the text of your messages without regenerating or recompiling your application code. The Defining and Using Message Dictionary Messages chapter provides an overview of Message Dictionary messages and discusses how to use them in Oracle Fusion Applications.	
Oracle Fusion Middleware Extensions for Oracle Applications Base Classes provide additional features that are not part of the standard ADF Business Components core entity objects, view objects, and application modules. The Middleware extensions support Oracle Applications features such as TL (translatable) table, WHO column, PL/SQL entity, FND services, Unique ID, and document sequencing. In JDeveloper, selecting the Oracle Fusion Applications Developer role automatically sets the Middleware extensions for Oracle Applications base classes as the default classes for ADF Business Components objects. The base classes become available when you add the Applications Core library. This chapter describes the Oracle Fusion Middleware extensions for Oracle Applications base classes that extend the features of standard ADF Business Components classes.	
Unique ID generation provides a mechanism to manage the key-generation process and to ensure that it runs without interruption. The process efficiently generates distinct sets of IDs in different databases for the same table, ensuring that the same key is never used for two different records created in different systems.	
SetIDs enable different organizations within a single company to use different sets of reference data to serve the same purpose. For example, the job codes for one country might be different from the job codes for another country. Each organization can maintain its job code data in the same table, using a set of values that is specific to that organization. You use set IDs to partition the table into different sets of values so that each organization can identify and access its own data. In addition to tables, other sources of reference data such as lookup types and views can also be partitioned and shared using set IDs. These are all generically referred to as reference entities. This chapter describes how to share reference data across organizations by using set IDs to partition the data, implement shared reference entities, extract and expose set ID metadata, and implement shared lookups.	
Lookups in applications are used to represent a set of codes and their translated meanings. For example, a product team might store the values 'Y	
' and 'N	
' in a column in a table, but when displaying those values they would want to display "Yes" or "No" (or their translated equivalents) instead. Each set of related codes is identified as a lookup type. There are many different examples of these across Oracle applications.	
A document sequence uniquely numbers documents generated by an Oracle Applications product. Using Oracle Applications, you initiate a transaction by entering data through a form and generating a document, for example, an invoice. A document sequence generates an audit trail that identifies the application that created the transaction, for example, Oracle Receivables, and the original document that was generated, for example, invoice number 1234.	
Implementing Audit Trail Reporting describes how to track the history of the changes that have been made to data in Oracle Fusion Applications. Audit Trail includes information such as who has accessed an item, what operation was performed on it, when it was performed, and how the value was changed.	
This part contains the following chapters:	
This chapter provides an overview of ADF Business Components, validators, list of values (LOVs), and data types. It also discusses migrating PL/SQL to Java, batch processing, and extensibility and reusability. Also included is an overview of services.	
This chapter includes the following sections:	
The core business logic is implemented in one or more business components that are provided in ADF Business Components. Entity objects, view objects, and application modules are the key business components that are discussed in this section.	
An entity object represents a row in a database table. It encapsulates the business logic and database storage details of your business entities. It simplifies modifying its data by handling Data Manipulation Language (DML) operations automatically. There are two general classifications of business logic that are placed on the entity object:	
An entity has a life cycle; customized business rules can be added to an entity object at various places to be executed in different phases of its life cycle.	
The entity object should contain all logic that is invoked during entity object life cycle events. This comprises logic for create, initDefaults, all validation (including attribute validation, entity validation and cross entity validation), DML, and so on. In other words, the entity object encapsulates the rules that ensure the entity object is created and remains in a valid state.	
Note: All logic existing in one entity object Java class not required. It's valid for the entity object to call utility classes for code modularity purposes.	
If a business rule can be defined declaratively, you should always use the declarative approach. For example, if an attribute has a constant default value, then you should specify it in the Entity Object wizard rather than coding it. You should also first consider using declarative validators for your validation logic, which is explained in Section 4.2, "Understanding Validators".	
The life cycle of an entity object begins with being created as a new entity object or fetched from the database as an unmodified entity object. The entity object can then be modified or removed. Only new, modified, or removed entity objects are in the transaction pending change list and are posted to the database when the transaction is committed.	
For more information about the key events in the entity objects life cycle and where you can add entity object business logic programmatically, see the Introduction to Programmatic Business Rules section in the "Implementing Validation and Business Rules Programmatically" chapter in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.	
The entity object is the core business object that is used to encapsulate task-level business logic. It is shared by both user interfaces (UIs) and services. Core business functions and tasks should be placed on the entity object as custom methods for maximum reusability. Corresponding methods on the view object and application modules should delegate to these functions on the entity object. Examples of business functions are approvePurchaseOrder	
and hireApplicant	
. Internally, these custom methods can be implemented using Java or may invoke legacy PL/SQL.	
Custom business functions that are not invoked during entity object life cycle events should be placed in either the entity object or model application module. Generally these are the custom business functions that are required by the UI and Service application module.	
A view object represents a SQL query and also collaborates with entity objects to consistently validate and save the changes when end users modify data in the UI. The relationships between view objects are captured using view links. View objects are used to present your business data for the specific needs of a given application scenario or task, and generally don't contain business logic.	
However, view objects may have additional attributes that do not exist in the underlying entity objects, which are used to store some calculated values. Usually you define different view objects for supporting services and UIs:	
SupplierID	
, but it does not contain foreign key reference attributes such as SupplierName	
. Note: A service view object must be versioned to support service versioning. However, there is no versioning requirement for an internal UI view object.	
An application module encapsulates an active data model and the business functions for a logical unit of work related to an end-user task. The active data model is defined as a collection of view object instances.	
The methods on the application module are used to encapsulate task-level business logic, although these methods should delegate to the methods on entity objects whenever possible. If you have an option to put your business logic either on an entity object or an application module, then you should always put it on the entity object. This is because the entity object owns the business object and also for better reusability. The task-level validations that span multiple related parent-child entities, such as purchase order header and lines, should be put on the parent entity. It is also important that the entity object should not trust the incoming data and always perform all validations.	
Application modules can be used to support UIs or define services. Usually you want to have two separate application modules for the two different purposes because:	
UI application modules and service application modules share the underlying entity objects as shown in Figure 4-1. A UI application module can also call a service.	
In Fusion, you should use validators to implement the validation logic. Validators are added declaratively, which provides visibility and personalizability to customers as well as the benefit of being easy to use and maintain. Validation view objects can be attached to entity objects declaratively as view accessors, which can then be used in declarative validators.	
For more information about how to use validators and Groovy (a Java-like scripting language), see Chapter 6, "Defining Defaulting and Derivation Logic."	
List of Values (LOV) is the mechanism to specify a list of valid values for an attribute in a view object. There are basically two parts involved when a LOV is defined: the base object and the LOV object. The base object is a view object, which contains the attribute whose list of valid values need to be defined, such as a PurchaseOrder	
view object containing a BuyerId	
attribute. The LOV object is a normal view object that contains the list of valid values, such as a Buyer view object containing all the valid buyers. You should use the view object design time wizard to add a List Value on the BuyerId	
attribute to associate with the Buyer view object.	
In Fusion, the LOV metadata is defined on the server using ADF Business Components, and this drives and defaults the UI controls to automatically render the LOV bound items accordingly when you define a page, such as LOV and poplist controls.	
It's important to define the LOV and entity validators to share the same view object instance to avoid redundant database round-trips for validation. To achieve this, the LOV view object should be added as a view accessor in the entity object, and the view accessor should be used to define entity level validators. The same view accessor is available at the view object level and should be used to define the LOV. When the user picks up a row from LOV on the UI, the row is placed on the LOV view object cache. The entity object validation then hits the cache instead of going against the database. A LOV/validation view object can also be defined as a global data source that is shared among all the users.	
For more information, see the "Sharing Application Module View Instances" chapter, in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.	
Depending on the use case, different approaches should be considered to achieve the best performance.	
For the use case of complicated bulk processing, such as very high volume or multiple step processing, then a combination of multiple techniques needs to be considered. For example, ADF Business Components, C, PL/SQL, SOA, Oracle Enterprise Scheduler (ESS), and so on.	
For the other use cases, such as integration with third- parties or data migration, if the data volume is low to medium, then ADF Business Components service should be used. Internally, a combination of interface table and PL/SQL can be used to handle large amount of data, complicated processing, and validation logic. The inbound data is loaded into an interface table through a service and then the PL/SQL API is executed to process the data	
Note: You should still provide services for all objects, and double code the high performance alternatives when necessary.	
Fusion web applications are extensible applications, which can be tailored to fit the business practices specific to a customer, locale or an industry. Adaptation through Business Editor enables you to extend Oracle applications declaratively, which satisfies most of the extensibility requirements. You can also use the programmatic extensibility feature to address additional use cases.	
A service is a set of operations defined by an interface that can be used by other components. In Fusion, applications use both ADF Business Components services and SOA services. ADF Business Components services should be created to manage business objects and SOA services are for orchestration and business processes.	
In Fusion, you make your data and business logic available via UIs and services. For more information about services, see Chapter 5, "Developing Services."	
When building your model objects, you should use the declarative approach whenever possible. For example, when defining your view objects, use declarative SQL mode whenever possible, base your view objects on entity objects, and utilize view criteria.	
When you define your view objects, use declarative SQL mode wherever possible. The next option is to use normal SQL mode.	
When building your view objects, use declarative SQL mode wherever possible. Reasons for not using declarative SQL include:	
WHERE	
clause cannot be implemented using view criteria. If you are unable to use declarative SQL mode, you should try and use normal SQL mode, which gives you full control over the WHERE	
clause. Only use expert mode if other modes do not work. However, you should still base the view object on an entity object when the query supports it.	
Non-expert mode view objects are metadata based and more declarative instead of SQL based. The declarative approach gives you benefits such as:	
Declarative SQL mode is recommended because it is an even more declarative approach to defining the view object than normal mode.	
For more information about how to set the SQL mode, see the Working with View Objects in Declarative SQL Mode section of the "Defining SQL Queries Using View Objects" chapter in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.	
All view objects (including read-only view objects) should be based on entity objects unless:	
Even if you have to use expert mode view object, you should still base your view object on top of entity objects because:	
findByKey	
doesn't work for view objects with no entity usage unless you turn on the key management at the view object level (and this will add significant resources and CPU time). The findByKey	
method is a frequently invoked by any operation that involves setting the current row, such as clicking a row on an ADF Faces rich client table: findByKey	
does not find the matching view row in the view object cache if the key management is not enabled. findByKey	
adds the row fetched from the database into view object cache even if the view object already has the same row in cache if the key management is not enabled. Instead of directly setting the WHERE	
clause, use declarative named view criteria whenever possible. Named criteria can be re-used in the UI and in the service interface. Also, it supports customization better and is required for declarative SQL mode.	
In parallel, always use named bind parameters. Define the named bind parameters during design time if possible. Otherwise, add the named bind parameters programmatically. Named bind parameters are much easier to understand and manage than the indexed bind parameters so therefore, the code is easier to develop and maintain. If the same bind parameter appear multiple times in the WHERE	
clause, you only need to bind it once.	
This chapter describes how customers can develop new business applications using existing services in the context of new or modified business processes.	
This chapter contains the following sections:	
Service-oriented development is based on the concept of services. A service is defined in terms of its interface, which is the way the service is exposed to the outside world. This includes a set of parameters (defining data required for interaction with the service) and communication protocol used for data transfer and actual service invocation. The service interface is defined by a service name and a set of operations the service supports. Grouping of the methods in the service interface is defined by business functionality of the service.	
The following characteristics are typical for services and should be reflected in the service interface:	
In Oracle Fusion, applications use both ADF Business Components services and service-oriented architecture (SOA) services. ADF Business Components services should be created to manage business objects and SOA services are for orchestration and business processes. SOA services use business object services to encapsulate business processes as illustrated in Figure 5-1:	
This chapter focuses on business object services that are implemented using ADF Business Components services.	
In Oracle Fusion, you make business objects and related business logic available via user interfaces (UIs) and services. A single general-purpose service can satisfy multiple use cases such as:	
Designing services from the service provider perspective include: how to identify business objects, service operations on business objects, and services, as well as how to define service exceptions and information.	
Identify which business objects that you want to expose from the service interface.	
These are the actions that can be performed on business objects, such as create and delete. These operations are used to identify the service operations.	
Standard operations and Custom operations are the two types of service operations that are supported by ADF Business Components service.	
Standard Operations	
The primary purpose of standard service operations is to locate a business object and handle its persistence. This includes storage, manipulation and retrieval of data, locking, transaction management, business rule validation, and bulk processing. ADF Business Components auto-generates the following groups of standard service operations:	
get<businessObjectName>	
: get a single business object by primary key. create<businessObjectName>	
: create a single business object. update<businessObjectName>	
: update a single business object. delete<businessObjectName>	
: delete a single business object by primary key. merge<businessObjectName>	
: update a business object if exists, otherwise create new one. ind<businessObjectName>	
: find and return a list of business objects by find criteria. process<businessObjectName>	
: process a list of business objects via a CRUD command. processCS<businessObjectName>	
: process a list of business objects via a change summary. List<AttrCtrlHints>	
getDfltCtrlHints(String viewName, String localeName)	
: takes the view object name and a locale and returns the base UI hints for that locale. This group of operations are mainly used by the ADF Business Components Service framework for service based entity object and view object support. For more information about service-based entity objects and view objects, see Section 5.4.1, "How to Invoke a Synchronous Service."	
Custom Operations	
Custom service operations encapsulate complex business rules and may coordinate execution of two or more data-centric operations within one atomic transaction.	
All core business functions should be exposed in services. When developing a list of business object operations, consider the entire application life cycle from creation to deletion. Also, consider potential use cases that are required by others. For example, the following list includes many of the operations associated with requisitions and purchase orders:	
Typically, you should include all the standard operations, although the delete operation should only be included if supported by the business object. If you only need to delete a child object, then you must have specific delete operations on the child objects. This is because you are not able to delete a child object using the delete method on its parent object. For example, deletePurchaseOrder	
will delete a purchase order and all of its lines, but won't only delete a specific line or lines.	
There are general guidelines you must follow when defining service operations.	
Be generic where it makes sense	
Since most Oracle Fusion services serve multiple use cases as listed in Section 5.2.2.2, services should not be designed narrowly for only one use case at the exclusion of others. Instead, services should be designed from the start to be general purpose and contain APIs that can serve the widest use cases. This is especially important to consider for common business functions that are initially required for the UI or to meet enhancement requests from other products. It should be the conceptual essence of the use case that drives the interface, not the fine-grained specifics of one consumer. A consumer can be seen as a representative of a specific use case, but the provider should always apply well-measured foresight when defining the interface details. Creating general purpose APIs from the beginning will:	
For example:	
For GetPersonName()	
operation: The provider, at a minimum, requires the primary keys to access a person's name as input. However, the output could be either a formatted name in a form of a simple String or a complex document representing Name object. The list of returned attributes must be determined by the consumers' business requirements. If the first consumer of an interface only requires FirstName	
and LastName	
to be returned, it would be possible to only return these two values. However, it is likely that a popular service operation such as GetPersonName()	
will soon be adopted by more consumers, which will require other attributes of a name. In this example, it makes sense to include Title	
, RoyalPrefix	
, LegalName	
, and so on into the first specification of the service interface. This will avoid the creation of a new interface version in the foreseeable future.	
Leverage standards wherever possible	
Enterprise Business Object (EBO) standards, introduced by the AIA (Application Integration Architecture), are canonical forms of interfaces, which represent an abstract intermediary shape that integration parties go from and to in the integration. If existing Enterprise Business Object shapes are a good fit for the business requirements of your specific use case, they should be leveraged. Even if the EBO shape is not identical, the names of the EBO objects and attributes should be reused as much as possible. If your service needs to be consumed by either an internal stakeholder or an outside party, using a standard is definitely recommended to avoid costly negotiation of proprietary interfaces.	
However, in many situations either no standard exists or the standard does not optimally support your business need. In this case you should make the interface as generic as possible for your given group of consumers. This will make sure that the interface stays stable as more consumers adopt it, while being highly useful for your given business processes. With good strategic planning it is possible to define generic interfaces for a defined subset of stakeholders.	
Service operation granularity	
Because it is possible to call services across a network, the service operations should be generally coarse-grained. That is, a service operation should wrap a substantial body of application logic, delivering value that justifies the latency cost of a network request. Similarly, services should expose coarse-grained operations. Rather than expose many operations that each manipulate small amounts of state, services should expose fewer operations that allow a single request to perform a complete function.	
Service operation naming convention	
Service operations should follow a consistent naming convention. A verbNoun	
syntax has proven ideal to express the behavioral aspect of a business object. Operation names should be meaningful and clearly express the function performed. They should not be generic or ambiguous. For example: A Person service operation name should not be get()	
or invoke()	
, but should be getPersonName()	
.	
Service operation versioning	
Changes to an interface can be either compatible or incompatible. If, for example, only optional attributes are added to an existing parameter, current consumers are not impacted. If however the parameter list changes, then this is an incompatible change.	
Compensating service operations	
For operations that involve data manipulation, a clear strategy for compensation must be defined. Services are frequently distributed remotely and there is no central transaction coordinator with sufficient control over all resources. This is inherent in Simple Object Access Protocol (SOAP), which is predominantly used in the web services space and therefore, a two-phase commit protocol cannot be enforced. Also, two-phase commit implies resource locking, which may lead to scalability and availability issues if locks are held for longer periods.	
In order to allow for service operations to be undone, in certain business scenarios it may be possible to offer compensating service operations. These operations are used to revert the system back to the state before the original operation was invoked. Providers and consumers must agree on the conditions under which an original operation can be undone and what information is required to achieve the compensating effect.	
In most cases, the decision to provide a compensating operation is primarily functional. It might technically be possible to delete an existing purchase order, but functionally it is only correct to cancel it once it has been submitted for approval. Not all operations should, by default, be paired with a compensating operation. Compensating operations should be provided only if the business process demands that the system can be rolled back into the original state.	
Service operation parameters	
Each service operation can have zero or more parameters. Each parameter can be a primitive type (String, Date, and so on), a complex type represented as a Service Data Object (SDO), or a List of a primitive type or SDO. Complex types can in turn contain nested complex types.	
You should consider using complex types in a service operation instead of using a long list of individual parameters unless the parameter list can be reduced to a short list of simple types (3-5).	
For example:	
A service operation updatePerson()	
takes a compound complex type of Person, which includes several individual attributes such as BirthDate	
, a collection of PersonName	
, and a collection of PersonAddress	
, and so on. The reasons are:	
Example 5-1 Service Operation on a List of Parameters	
updatePerson	
example, if the person's email address needs to be updated, the operation that takes a Person can stay unchanged. As an alternative to complex types, business object Primary Keys can be used in operation signatures in certain cases.	
Auto-generated data-centric standard operations, such as create, update, delete, merge, and Bulk Processing take complex business object types as parameters. Auto-generated get()	
takes primary keys.	
Most custom methods may take business object primary keys as parameters. Complex business object documents should be passed primarily to the data-centric custom methods: validatePersonName()	
, promoteEmployee()	
, formatPersonAddress()	
, and so on. Primary keys should be passed only if you need the primary key information to look up the business object in the database, such as terminateEmployee()	
that takes an employee Id.	
A service is a grouping of operations. Often this grouping is by the business object it maintains, which is especially true for the CRUD operations. In most cases, one service per business object provides a more manageable hierarchy. For example, the business object Person could be offering all operations that can be performed on it as a service called PersonService	
.	
After you have identified your services and what business object(s) they include, the list(s) of the corresponding operations that were identified in Section 5.2.2.2 provide the list of candidate methods for each service.	
Services from other products that may compliment this list are not included. For example, a SupplierService	
and InvoiceService	
provide detailed information about suppliers and invoices respectively. The procurement services should identify only who the supplier is in various transactions and provide information on procurement-specific supplier data such as, supplier price, quality and on-time delivery performance. It should not provide core supplier operations like creating, updating, deleting, and so on because that is the responsibility of the SupplierService	
.	
It's important that the Oracle Fusion services compliment one other. Therefore, once you've identified your working list of services, coordinate with related products to ensure that you have not duplicated efforts or created confusing and conflicting APIs. Also, communicate any expectations that you have of their services.	
You can define service exceptions, partial failure and bulk processing, and informal messages.	
Once the required criteria for successful execution of a service operation is agreed upon, all stakeholders must then define a complete set of error conditions. You must define which exceptions can happen and which information should be reported back to the consumer due to an exception. Exception processing should be consistently implemented across all operations in the application. If one operation throws an exception while another returns an empty collection, the consumers perceive the services as unstable and unpredictable. The reported exception should contain as much information as possible so that the consumers can pinpoint the problem easily.	
All service operations are delegated to the underlying ADF Business Components objects and their methods. As a service provider, you just need to implement your validation logic and business rules in your server side objects, define appropriate error messages declaratively, or throw appropriate JboExceptions	
programmatically.	
Oracle ADF has one generic exception or fault to handle all ADF Business Components exceptions. Whenever an exception is thrown from the underlying ADF Business Components object for one of the service standard or custom methods, the exception is thrown as a Service Exception, which contains all of the information available from the original thrown exception. This also includes support for bundled exceptions.	
Services can support partial failure during bulk processing of data, which can be very useful. For example, if the client loads a large amount of data using batch load applications, the occurrence of one or more failures does not prevent the continued posting of other unrelated data.	
During design of your services, you need to decide whether partial failure should be enabled for a business object including details. For example, a purchase order business object includes a header, lines for each header, and shipments for each line. The partial failure switch is set on each level including header, line, and shipment. Usually the top level object should allow partial failure, but the decision on the detail level depends on whether it make sense to simply skip that object if it fails. You must ask yourself the question: "Does it make sense to still post the other lines and the header if one line fails?" In some cases, you may need to preserve the integrity of the business object and not allow the object to be posted with partially populated children.	
Caution: The partial failure mode is only used in theprocessXXX API and this API also uses a runtime partial failure flag in the ProcessControl parameter. This means the partial failure feature is only enabled when both the design time flag and the runtime flag are enabled.	
Informational messages are not exceptions and won't affect the current transaction. However, these messages may be useful to the clients. For example, you may want to know when the system automatically transfers money from your saving account to your checking account because there may not enough funds in your checking account when your check is cashed out.	
The service provider needs to define a complete list of informational messages as well as the conditions that these messages should be returned.	
After you design the service interface, you now must implement those services.	
Note: This is from the service provider perspective.	
In Oracle Fusion, service data objects (SDOs) are used to expose business objects in services. Each SDO must be backed by a view object. For more information about how to generate a service data object out of a view object, see the "How to Service-Enable Individual View Objects" section of the "Integrating Service-Enabled Application Modules" chapter in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.	
It is recommended that you have a separate view object for the service, rather than using the same view object in the UI. The dedicated service view object should represent the shape of your business object.	
Parent-Child Relationships	
For parent-child relationships, you should define two view objects, one for the parent and one for the child, and then define a view link between them. You must also have the destination accessor generated so that the service framework is unable to query or post the child along with the parent.	
For composite object, you should create a composite association between the parent entity object and the child entity object, and base the view link on the association. However, in cases where composite associations cannot be defined you must add a custom property, SERVICE_PROCESS_CHILDREN=true	
, to the entity association or view link. This allows for the child objects to be processed along with the parent object (in createXXX	
, updateXXX	
, mergeXXX	
, deleteXXX	
, and processXXX	
). Reasons for cases where composite associations cannot be defined include:	
When there is an entity association and the association has the destination accessor generated, then you should add the custom property in the association. When an association doesn't exist such as flexfield or the association doesn't have the destination accessor generated, then you must add the same property to the view link.	
Enabling Partial Failure	
The default setting for partial failure is not enabled. To enable partial failure, add the PARTIAL_FAILURE_ALLOWED	
custom property on the view object and set the value to true.	
To determine if you should enable partial failure, see Section 5.2.4.2, "Defining Partial Failure and Bulk Processing."	
Enabling Support Warnings	
There is a design time flag to indicate whether the informational messages are enabled or not for each view object and service data object. The default setting for this flag is off, and you need to go to the view object editor's Java tab and select the Support Warnings field.	
Note: Signatures of the service operations that ADF Business Components generate vary depending on this Support Warnings flag. If you change this flag in a future release, your service will no longer be backward compatible. In addition, when partial failure is on, the exceptions are not thrown from the service invocation. Instead, the exceptions are reported as warnings, and the caller can only receive these warnings if the Support Warnings flag on the service view object is turned on. Therefore, you must turn on the Support Warnings flag for the top-level service data objects that are exposed directly in the process methods.	
For the purchase order header, line, and shipment example, if your service includes the processPurchaseOrders	
API that takes a list of purchase order headers, then you must enable Support Warnings in the purchase order header view object. If your service also includes the processLines	
API that takes a list of purchase order lines, then you also need to enable Support Warnings in the line view object. For the other detail level service data objects, you should take a more proactive approach and define your business object as supporting informational messages if you think you will need this feature in the future.	
The service interface is generated from an ADF application module. For more information, see "Integrating Service-Enabled Application Modules" in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.	
Oracle recommends that you have a separate application module for the service, which is different from the application module used in the UI.	
This section discusses what happens during design time with application modules and the runtime object.	
No Service Data Object in the Application Module	
The custom methods in the Application Module do not take Data Object or a Data Object list as parameters. Instead, the Application Module's custom methods take ViewRowImpl	
/AttributeList	
or a list of ViewRowImpl	
/AttributeList	
as parameters. When you publish these methods in the service interface, ADF Business Components service will convert these to Data Object or a list of Data Object in the service interface during design time, and then performs conversion between Data Object and ViewRowImpl	
/AttributeList	
during runtime.	
Return Object	
The informational messages (and warnings) are reported as part of the return object. ADF Business Components generates appropriate wrappers as the return objects when necessary, and the wrappers contain the actual method return as well as the informational messages. Table 5-1 lists some examples:	
Table 5-1 Return Objects Examples	
Operation without Informational Messages (Support Warnings Flag is off)	Operation with Informational Messages (Support Warnings Flag is on)
---	---
The list of	
The	
If the Support Warnings design time flag is off, no informational messages are returned (the first column in the above table). If the flag is on (the second column in the above table), then:	
getXXX	
returns the original object create	
, update	
, mergeXXX	
, findXXX	
, and processXXX	
returns the wrapper object that contains a list of the original object and a list of information messages deleteXXX	
returns the informational message Each service method can be exposed as both synchronous version and asynchronous version.	
To generate synchronous and asynchronous service methods:	
All ADF Business Components services have both synchronous and asynchronous versions for the same method. The service consumer must decide which version of the service method to use.	
A service method can be invoked synchronously if all of the following conditions are met:	
The consumer should consider invoking the method asynchronously if one of the following conditions is met:	
You can invoke a synchronous service using service factory, service-based entity object and view object, Java API for XML Web Services (JAX-WS) client, or from SOA.	
Using Service Factory	
If you need to invoke a synchronous service from a Java client, including an ADF Business Components component, UI, or Oracle Enterprise Scheduler (ESS), then using a service factory is recommended. It is easier to write a service client using service factory than using JAX-WS. If the service is co-located, the service invocation is more performant because it does not invoke XML serialization and de-serialization.	
For more information about invoking a service using service factory, see Chapter 41, "Synchronously Invoking an ADF Business Components Service from an Oracle ADF Application."	
Using Service-Based Entity Object and View Object	
When you need to work with output from a service in the format of an ADF Business Components component, such as rendering the data in a UI table or creating a view link to it, then you should consider using service-based entity objects and view objects.	
For more information about working with data from a remote ADF Business Components service, see Chapter 39, "Working with Data from a Remote ADF Business Components Service."	
Using JAX-WS Client	
Generally, you should not use JAX-WS or Java APIs for XML-Based Remote Procedure Call (JAX-RPC) client to access an ADF Business Components service. You can use JAX-WS to access BPEL or a third-party service.	
Using SOA	
When you invoke an ADF Business Components service from BPEL, you usually use the asynchronous version unless you are sure the service satisfies the synchronous invocation condition that was discussed previously.	
For more information, see Part VI, "Common Service Use Cases and Design Patterns".	
Caution: For more information, see the "How to Create Service-Enabled Entity Objects and View Objects" section in the Integrating Service-Enabled Application Modules chapter of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.PL/SQL calling Web Service is also an anti-pattern that is not allowed because of security issues.	
If you need to invoke an asynchronous service, then you must use BPEL. Invoking an asynchronous service from Java is not allowed. If you need to invoke an ADF Business Components service from Java that does not meet the synchronous condition, then you must use one of the following alternate approaches:	
Asynchronous Invocation (The caller-side must wait for response)	
For information about how to enable the UI for dynamic update via Active Data Service, see Chapter 42, "Implementing an Asynchronous Service Initiation with Dynamic UI Update."	
One-way Invocation (The caller fires and forgets)	
This chapter describes how to define your defaulting and derivation logic, how to use Groovy (a Java-like scripting language), and how to use Oracle Application Development Framework (Oracle ADF) validators and convertor hints instead of using messages.	
This chapter includes the following sections:	
Defaulting logic means assigning attribute values when a row or entity object is first created or refreshed. (The logic is not re-applied when the entity object is changed.) Defaulting is achieved either declaratively in the default field of the attribute or programmatically by adding code to the EOImpl	
.	
Derivation logic means assigning attribute values when some other attributes have changed. Derivation is achieved either declaratively in the default field of the transient attribute or by using a validator, or programmatically by adding code to the EOImpl	
.	
Figure 6-1, illustrates what you need to consider when determining whether to implement defaulting or derivation logic.	
When implementing defaulting or derivation logic, you should also consider the following factors:	
You should know what the valid values are and there is no reason why you would want to assign invalid values. The end users do not set these values and would have no idea why they would be invalid.	
initDefaultExpressionAttribute	
for calculations that cross containerships. Use initDefault	
for literal or statically computed values. When you want the derivation logic to be customizable, the validator approach is preferable. When using this approach the validation result should always be true because this is not really a validation logic. You should also make sure that the attribute avoids an infinite loop due to validation.	
setAttribute(setter)	
or populateAttribute	
to assign the default or derived value to an attribute. When you call setAttribute(setter)	
, the logic in the setter is fired and the validation logic is also executed. This does not happen when you call populateAttribute	
.	
In most cases, using populateAttribute	
is sufficient because you should always assign a valid value and therefore do not need to fire validation logic. However, you may want to call the setter if there is additional logic such as cascading derivation in the setter.	
Tip: When you callsetAttribute(setter) make sure that you do not cause an infinite loop. This may happen due to the attribute and the entity becoming invalid and causing the validation logic to refire.	
beforeCommit	
as well as setAttribute(setter)	
, validateEntity	
, and prepareForDML	
if your derivation logic involves multiple entities that are not composite. For composite object, you can just put your logic either in validateEntity	
or prepareForDML	
of the parent EOImpl	
.	
Similarly, if there is a view link between two view objects, the framework also handles the foreign key propagation when the child view row is created via the view link accessor of the parent view row.	
A LOV should only be used on the user interface (UI) to show a list of valid values or as a service to derive the foreign key ID based on the foreign alternate key.	
ADF Business Components now provide integrated support for Groovy (a Java-like scripting language), which is dynamically compiled and evaluated at run-time. Because it is dynamically compiled, Groovy script can be stored inline in the XML and is eligible for customization. Groovy also supports object access via dot-separated notation, which means you can now use syntax such as empno	
instead of getAttribute(EMPNO)	
.	
You can embed Groovy script into various declarative areas, including:	
As with the original Script implementation, the current object is passed into the script as "this" object. Therefore, to refer to any attribute inside the current object simply use the attribute name. For example, in an attribute or validator expression for an entity, to refer to an attribute named Ename	
, the script may say return Ename	
.	
There is one top-level reserved name, adf	
, which is used to get to objects that the framework makes available to the Groovy script. Currently, these objects are:	
ADFContext	
(adf.context	
) adf.object	
) adf.error	
) All other names come from the context in which the script is applied:	
structureDef	
in which it is contained via getStructureDef	
method on VariableImpl	
. Tip: Only public methods on the entity are available to call.	
You also need to call the method using the "object" keyword, such as adf.object.createUnqualifiedRowSet()	
. The "object" keyword is equivalent to the "this" keyword in Java. Without it, in transient expressions, the method is assumed to exist on the script object itself, which it does not.	
JboValidatorContext	
merged with the Entity on which the validator is applied. This is done so that you can use: newValue	
and oldValue	
to get to the values being validated sourceRow	
to get to the Entity or ViewRow on which the validator is applied Groovy scripting logic is similar to Expression Language (EL) because you can use a . separated path to get to a value inside an object. Note that if a Java object implements Map, only the map lookup is performed instead of the bean style property lookup. However, for Maps that extend JboAbstractMap	
you get the same EL behavior, which is map first followed by bean lookup. This is due to the implementation of get	
in JboAbstractMap	
.	
Consider the following information:	
sum(expr)	
, count(expr)	
, or avg(expr)	
on a RowSet	
object where expr	
can be any Groovy expression that returns a numeric value or number domain. defaultRowSet	
reserved keyword has been removed. The method EntityImpl.createUnqualifiedRowSet()	
replaces EntityImpl.getDefaultRowSet()	
and can be accessed like any other public method in EntityImpl	
. "Sal + Comm"	
or "Sal > 0"	
. oracle.jbo.Row	
, oracle.jbo.RowSet	
, or oracle.jbo.ExprValueSupplier	
is wrapped into a Groovy Expando	
object. This is to extend the properties available for those objects to beyond the bean properties and also as a way to avoid introspection for most used names. The following are some examples of Groovy.	
Instead of using the following SQL to achieve this:	
Create a bind variable and base its default value on the adf.context.locale.language	
expression:	
To get the attribute new value and label:	
The above example uses the following two Groovy expressions:	
and	
Example 6-1 is an example of an Object graph, custom error, and a warning:	
Example 6-1 Object Graph, Custom Error, and a Warning	
Example 6-2 is an example of how to average a collection.	
Example 6-2 Averaging a Collection	
Example 6-3 is an example of a built-in or custom method call on the sourceObject	
of this validator (sourcObject	
being the Entity on which this validator is being run). isAttributeChanged(String)	
is a public method on the EntityImpl	
:	
Example 6-3 Built-in or Custom method Call	
Example 6-4 is an example of getting to oldValue / newValue of an attribute on which this validator is applied:	
Example 6-4 Getting to Old Value and New Value of an Attribute	
Example 6-5 is an example of accessing the Entity state relative to the database and relative to the last post operation.	
Use adf.object.entityState	
or adf.object.postState	
.	
To get the old value of an attribute (this works in the context of a transient Entity Object attribute):	
Example 6-5 Getting the Old Value of a Transient Entity Object Attribute	
Example 6-6 is an example of the WHILE	
construct as well as calling an accessor (Emp):	
Example 6-7, Example 6-8, and Example 6-9 are examples of a simple transient attribute, how to sum or count a collection, and how to create a complex calculation of a bind variable value.	
Example 6-7 Simple Transient Attribute	
Example 6-8 Sum or Count a Collection	
Example 6-9 Complex Calculation of a Bind Variable Value	
Example 6-10 is of an entity-attribute XML fragment where a transient expression is used to provide a default value for that attribute. This expression is evaluated before the protected create	
method of the entity is called. Example 6-11 is an example of an attribute defaulting with a transient attribute calculation expression.	
Example 6-10 Attribute Value Defaulting	
This chapter provides a detailed overview of Message Dictionary messages and discusses how to use them in Oracle Fusion Applications.	
This chapter contains the following sections:	
The Message Dictionary stores translatable Error and Warning messages for Oracle Fusion Applications. These types of messages provide information about business rule errors, such as missing or incorrect data, and how to resolve them, warn about the consequences of intended actions, inform about the status of an application, pages, or business objects, and indicate that processes and actions are performing or are completed.	
All other messages can be stored in resource bundles, with the exception of strings and messages that need to be accessed by C or PL/SQL programs (resource bundles only can be accessed by Java programs). These exceptions can be stored in the Message Dictionary as Informational and UI String messages. Resource bundles also can be used to store job output or log file messages for Oracle Enterprise Scheduler (ESS) Java programs and test output messages for Java Diagnostic Testing Framework tests.	
The Error, Warning, Information, and UI String message types are described in detail in Section 7.2, "Understanding Message Types."	
Note: Because the messages are stored in Application Object Library FND_MESSAGE_% tables, these types of messages are sometimes referred to as FND messages.	
By using the messages in the Message Dictionary, you can define standard messages that you can use in all your applications, provide consistency for messages within and across all your applications, define flexible messages, and change or translate the text of your messages without regenerating or recompiling your application code.	
Note: Non-message strings, such as labels, report headings, and message fragments are typically stored in Oracle Application Development Framework (ADF) resource bundles. However, because Oracle ADF resource bundles only can be accessed by Java programs, you can store these types of strings in the Message Dictionary if C or PL/SQL programs need to access them.	
Message Dictionary messages are composed of several message components, which enable you to author different messages for different audiences, such as the end user or help desk personnel, and for different conditions, such as when an action must be performed before the user can continue. For more information, see Section 7.3.4, "About Message Components."	
Messages can be displayed to the UI and written to logs and incidents. Incidents are collections of information about system errors for which end users might require assistance from help desk personnel. An incident contains information about the state of the system at the time the problem occurred. Help desk personnel can use incidents to supply internal support personnel or Oracle support personnel with information about problems that need to be resolved.	
You can set up a Message Dictionary message such that an incident and an associated log entry are created automatically. This is referred to as implicit incident creation.	
For information on to how to generate incidents and log entries from Message Dictionary messages, see Section 7.5, "Understanding Incidents and Diagnostic Logs with Message Dictionary." For information about how incidents and log entries can be used, see the "Managing Oracle Fusion Applications Log Files and Diagnostic Tests" chapter and the "Introduction to Troubleshooting Using Incidents, Logs, QuickTrace, and Diagnostic Tests" chapter in the Oracle Fusion Applications Administrator's Guide.	
You use the Manage Messages task in the application's Setup and Maintenance work area to create and maintain Message Dictionary messages. For more information, see the Oracle Fusion Applications Common Implementation Guide.	
Oracle Fusion Applications provide some common messages in the Message Dictionary with message names that begin with FND_CMN_	
. You should ensure that you do not modify or replace these messages.	
All messages must have a message type. The message type indicates which message components are applicable, determines whether implicit logging and incident creation occurs, and determines the logging level if the message is logged. For information about message components, see Section 7.3.4, "About Message Components." For information about logging and incident creation, see Section 7.5, "Understanding Incidents and Diagnostic Logs with Message Dictionary." For information about the standard log settings and about logging profile options see the "Default System Log Settings" section in the Oracle Fusion Applications Administrator's Guide.	
The valid values for message types are fixed and therefore cannot be customized.	
Error Messages	
Use the Error message type for messages that alert the user to data inaccuracies when completing a field, submitting or saving a page, navigating from the page, or when an application or unknown failure occurs. An error message requires attention or correction before the user can continue with their task.	
Warning Messages	
Use the Warning message type for messages that inform users about an application condition or a situation that might require their decision before they can continue. Warning messages describe the reason for the warning and potential consequence of the selected or intended action by users. The warning requires the attention of users, and a standard question might be posed with the warning, or the warning can take the form of a statement.	
Information Messages	
The Information message type is intended for the following types of strings:	
An example of such a string is the completion text for an ESS program or process.	
UI String Messages	
Use the UI String message type for non-error and non-warning strings that need to be stored in the Message Dictionary but are not complete messages, such as prompts, titles, or translated fragments. For example, "Upload Process Parameters." Note that UI String messages are processed exactly as Information messages.	
You either can use the Information type for all non-error and non-warning messages, or you can choose to store complete messages as Information messages and fragments as UI String messages. For example, if your messages must pass a review process, you might choose to use the UI String message type for messages that do not need to conform to message guidelines.	
Messages must have unique message names. Although message numbers are not required, you should use them for error messages in order to make it easier for users to identify the precise error in logs, and to enable users to find more information about the error in various help sources, including those in different languages.	
Translation Notes are not required, but can be used to store notes about context and use of the message. Translation notes can also be used to provide information to help translators understand how the message is used and thus provide a more accurate translation.	
Different combinations of information are provided depending on the nature of the message and the intended audience, such as end user or help desk personnel. This is accomplished using message components.	
Tokens are also an important part of messages. Tokens are the programmatic parts of message text that allow the substitution of other text or values into the message at run time. They are used as a way include variable information in the same message. In Oracle Fusion Applications, tokens are used for dates, numbers, and specific types of text.	
Every message must have a unique name. You should include a unique prefix that makes it easier to find your custom messages and that helps to avoid name conflicts with non-custom messages. Names that begin with FND_CMN_	
are reserved for Oracle Fusion Applications common messages.	
A unique and persistent message number can be included with each message. The message range 10,000,000 to 10,999,999 has been allocated for customers' own messages.	
When displayed, the number takes the format of (Application Shortname-Number). For example:	
Descriptive flexfields do not support unit of measure enabled segments. (FND-2774)	
If the message does not have a message number, the formatted number is not displayed.	
A translation note (message context) is a descriptive note to developers, translators, and message customizers describing where and how the message is used. The note is not translated and cannot contain tokens. It is never displayed to end users or help desk personnel. The maximum size of this field is 4000 characters.	
Message components enable you to define messages for different audiences and address additional information needs. All messages require a value for the Message Text component, the other components are optional.	
Both help desk personnel and end users see the message text and cause components. For the other components, you can use the Message Mode profile option, which has a code of FND_MESSAGE_MODE	
, to configure whether the end user or help desk personnel (or both) see each type of component. For example, you can set the profile option to enable a particular user to see the Message Admin Detail component. You use the Manage Administrator Profile Values task in the Oracle Fusion Applications Setup and Maintenance work area to set the Message Mode profile option to Administrator or User at the Site, Product, and User levels.	
Note: Incidents contain all message components. For more information about incidents, see Section 7.5, "Understanding Incidents and Diagnostic Logs with Message Dictionary."	
Message Text	
Message text is required. This is a brief statement of the operation attempted and the problem that occurred as a result, or information that the user needs to know. The text is included in log and incident creation messages. The content in this field is customizable and the text can contain tokens. The maximum field size for messages stored in the Message Dictionary is 240 characters.	
If the entire message, after tokens have been substituted, exceeds the 240 character limit, the message text is truncated. To allow room for expansion in other languages, the US version of any translated column should be no more than 70% of the maximum possible length. (For example, 240 character short text becomes 160 characters in US).	
Caution: Tokens are just values substituted into the message at runtime. Tokens must come from a translated source unless it is a number, seed data, technical information, or a name that is not translated. Extreme care must be taken with tokens when substituting translatable data. You must make sure that it makes sense at run-time For more information, see Section 7.3.5, "About Tokens."	
The text appears in bold at the top of the message window region. In addition, the message text is the only message component displayed in limited real estate UIs, such as pagers and phones. Therefore, the message text should be clear enough to be understood alone when used in this context.This is a required field for all message types.	
Message User Detail	
This is a more detailed explanation of the problem identified in the short message and its audience is the end user. This field includes the details that are appropriate and meaningful to the end user and should outline exactly what caused the error to occur. For example, in the case of an incident creation error message, this field can be used to provide the user with information about the type of error. The content in this field is customizable and the text can contain numerous tokens. The maximum field size is 4000 characters.	
The text appears in normal letters just below the short message. This field is optional.	
Message Admin Detail	
Message Admin Detail text provides a detailed explanation of the problem identified in the short message. This information is never seen by the end user. This field is for technical details that are not meaningful to an end user. The content in this field is customizable and the text can contain numerous tokens. The maximum field size is 4000 characters.	
Although this component is optional, it should be used for errors that require help desk processing, and should contain information to assist the help desk personnel to resolve the issue, such as the technical background.	
Message Cause	
The message cause text provides for the end user a concise explanation of why the error occurred. It lists reasons for the failure such as a prerequisite that is not met, incorrect inputs, an anticipated but incorrect action, and so on. The content in this field is customizable and the text can contain numerous tokens. The maximum field size is 4000 characters.	
The word Cause (in bold) is prefixed automatically to the beginning of the cause text. This text appears below the user detail, if available. This component is optional and is only applicable for messages of type Error and Warning. The components Cause and User Action are mutually required, meaning if you enter one you must enter both.	
Message User Action	
This component is for messages that state the action that the user must perform in order to continue and complete the task. This is intended for and seen by the end user. The content in this field is customizable and the text can contain tokens. The maximum field size is 4000 characters.	
The word Action (in bold) is prefixed automatically to the beginning of the action text. This text appears below the cause text. This component is optional and is only applicable for messages of type Error and Warning.	
Message Admin Action	
Message Admin Action messages state the action that must be performed in order to resolve the error condition. This should contain the information that the help desk personnel requires to resolve the error. The content in this component is customizable and the text can contain tokens. The maximum field size is 4000 characters.	
The word Action: (in bold) is prefixed automatically to the beginning of the action text. This text appears below the cause text and is only applicable for messages of type Error and Warning. This component is only enabled if Cause and User Action are entered. If this is NULL and User Action information is available, then the User Action information is displayed.	
Tokens are identified in the message text by their use of curly brackets and all uppercase letters. The token values are supplied at runtime by the code that raises the message. For example, the following token {MATURITY_DATE}	
is replaced by a date when the user receives the error message on their screen:	
"Enter an effective date that is the same as or later than {MATURITY_DATE}	
".	
Becomes:	
"Enter an effective date that is the same as or later than 25-APR-2010".	
You can group messages by category and by severity. These groups are used to define logging and incident policies. Otherwise, category and severity have no affect. Category and severity values do not appear in logging entries, incidents, or the UI.	
This is an optional field, but it must have a value to enable implicit incident creation.	
Message categories are defined by lookups (of type extensible) so that they can be customized by an administrator. The maximum size of this field is 30 characters. The following are seeded values, but you can add more if required.	
Valid message severity values are defined by lookups (of type extensible) so that they can be customized by an administrator. The maximum size of this field is 30 characters.	
Incidents are collections of information about system errors for which the customer might require assistance from help desk personnel. An incident contains information about the state of the system at the time the problem occurred. Help desk personnel can monitor and respond to incidents and send them to Oracle if further assistance is necessary. For more information about how customers use incidents, see the "Managing Oracle Fusion Applications Log Files and Diagnostic Tests" chapter and the "Introduction to Troubleshooting Using Incidents, Logs, QuickTrace, and Diagnostic Tests" appendix in the Oracle Fusion Applications Administrator's Guide.	
Implicit incident creation and logging occurs when the Message Dictionary message is retrieved in PL/SQL and C code, or when it is formatted in Java code, and the message has the following settings:	
loggable_alertable	
): YNote: Implicit incident creation occurs when logging is enabled. Implicit logging only occurs if the SEVERE log level is enabled.	
You use the Message Dictionary APIs to retrieve a Message Dictionary message. The PL/SQL methods are in the FND_MESSAGE	
package and the Java methods are in the messageService	
package. For C code, you use methods in the fddutl	
package.	
For more information about the Message Dictionary APIs, see the "Message Dictionary" chapter in the Oracle E-Business Suite Developer's Guide. You can download this soft-copy documentation as a PDF file from the Oracle Technology Network at http://www.oracle.com/technetwork/indexes/documentation/	
For Java code, implicit incident creation and logging occurs for qualifying messages when the appropriate formatting methods are called from the MessageServiceAMImpl	
class and the MessageServiceAM	
interface, such as the getUserXML(..)	
, formatMap(..)	
, formatUserTextMap(..)	
, or formatAdminTextMap(..)	
methods. See the MessageServiceAM	
and MessageServiceImpl	
Javadoc for information about which methods to call for implicit logging.	
When implicit logging and incident creation occurs, additional information is appended to the message, as follows:	
An application error has occurred. Your help desk was notified. For more information your help desk may refer to incident {incident number}, {application server name}, {application server domain name}.	
An application error has occurred. Your help desk was notified. For more information your help desk may refer to incident {incident number_SID}, {database server name}, {database instance name}.	
To learn more about the information that is included with incidents and associated log entries, see the "How the Diagnostic Framework Works" section in the Oracle Fusion Middleware Administrator's Guide.	
You can use messages in the Message Dictionary in Java code to raise exceptions using Oracle Fusion Middleware Extensions for Applications exception classes. You can also retrieve the message text programmatically.	
Exceptions from messages in the Message Dictionary should be raised using wrapper classes that are provided in the oracle.apps.fnd.applcore.message	
package. Wrappers that are provided correspond to the most commonly used Oracle ADF exception classes. See Table 7-1.	
Table 7-1 Oracle ADF Exception Classes vs. Message Dictionary Classes	
Exception Class	Message Dictionary Class
---	---
JboException	oracle.apps.fnd.applcore.messages.ApplcoreException
RowValException	oracle.apps.fnd.applcore.messages.ApplcoreRowValException
AttrValException	oracle.apps.fnd.applcore.messages.ApplcoreAttrValException
In each of these classes, the message name is expected to be passed in the format: APP_NAME:::MESSAGE_NAME	
(application short name, followed by exactly 3 colons, followed by the message name). For example: "FND:::FND_CMN_POSITIVE	
".	
Message tokens passed to most Message Dictionary Java APIs are expected to be supplied as Map<String, Object>	
or as an array of alternating String/Object	
pairs. With either style, the String	
is the name of the message token and the following Object	
is an object representing the value of that token. The type of the Object	
is expected to match the type of the token as shown in Table 7-2.	
Table 7-2 Message Tokens and Data Types	
Token Type	Token Value Object Type
---	---
TEXT	java.lang.String
NUMBER	java.math.BigDecimal
DATE	java.sql.Timestamp
Exceptions that are raised using JboException	
or one of its subclasses with a severity level of SEVERITY_ERROR	
, which is the default, or any java.lang.RuntimeException	
, are treated as system errors, and the following occurs:	
If you do not want the JboException	
to be treated as a system error, do one of the following:	
ApplcoreException	
SEVERITY_ERROR	
, such as SEVERITY_RECOVERABLE_ERROR	
.Tip: If you need to see the original error message, you can run the application with the -DAFERROR_MODE=debug parameter, as described in Section 7.9, "Diagnosing Generic System Error Messages."	
You should use the wrappers wherever possible. However, it is possible to also use native Oracle ADF exceptions directly if there isn't a wrapper that exactly suits your needs. If you do this, you must specify the FndMapResourceBundle	
resource bundle class, and format tokens correctly.	
Example 7-1 shows sample code that raises an ApplcoreException	
exception. Example 7-2 shows an example of raising ApplcoreRowValException	
exception. Use of the ApplcoreAttrValException	
exception is shown in Example 7-3. Example 7-4 illustrates how to throw a native JBOException	
.	
Example 7-1 ApplcoreException	
Example 7-2 ApplcoreRowValException	
Example 7-3 ApplcoreAttrValException	
Example 7-4 Native JBOException	
You can use static methods in the oracle.apps.fnd.applcore.messages.Message	
class to retrieve translated, token substituted message text without raising exceptions. APIs are provided to retrieve the fully formatted text of the user message, the administrator message, or to retrieve the parts of the message (short message, cause, action, and so on) individually, as shown in Example 7-5.	
Example 7-5 Retrieving Messages	
The easiest way to create and manage validation rules is through declarative validation rules. Declarative validation rules are defined using the overview editor for the entity object, and once created, are stored in the entity object's XML file. These are known as declarative validation rules on entity objects.	
For information about defining validation rules on entity objects, see the "Defining Validation and Business Rules Declaratively" chapter in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.	
Oracle ADF provides built-in declarative validation rules that satisfy many of your needs. You can also base validation on a Groovy expression, as described in Section 6.2, "Using Groovy Scripting Language".	
When you add a validation rule, you supply an appropriate error message. You can also define how validation is triggered and set the severity level.	
These messages can contain named message tokens for retrieving and displaying context sensitive values.	
Tip: When raising exceptions with the ADF Business Components validation rules, the tokens must be formatted as {TOKEN_NAME} and not (TOKEN_NAME) .	
To associate an error message with your validation rule:	
FND_VIEW	
.Note: You can only search messages by the message key. All other types of searches have been disabled. Also notice from the results that message keys are prepended with the application short name.	
Note: If the selected message contains tokens, a row for each token is added into the Error Message Expressions table.	
A validation rule's error message can contain embedded expressions that are resolved by the server at runtime. To access this feature, simply enter a named token delimited by curly braces (for example, {TOKEN_NAME}	
or {ERRORPARAM}	
) in the error message text where you want the result of the Groovy expression to appear.	
The Token Message Expressions table at the bottom of the dialog displays a row that allows you to enter a Groovy expression for the token. Figure 7-2 shows the failure message for a validation rule in the PaymentOptionEO	
entity object that contains message tokens.	
Declarative validation is different from programmatic validation, which is stored in an entity object's Java file. For more information about programmatic validation, see the "Implementing Validation and Business Rules Programmatically" chapter in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.	
Because they make calls to the database, both PL/SQL and C code require that the message is stored in the Message Dictionary. PL/SQL and C code cannot reference Java-based resource bundles. You can use PL/SQL to:	
There are three packages that you can use to handle errors in PL/SQL using messages in the Message Dictionary:	
FND_MESSAGE	
— This package includes basic APIs to set messages on the error stack, set tokens, retrieve token substituted message text, and so on.APP_EXCEPTION	
— This package includes utilities to raise SQL exceptions with messages in the Message Dictionary as the exception text.FND_MSG_PUB	
— This package includes utilities to set messages on the error stack. In Oracle Fusion Applications, the error stack also exists natively in the FND_MESSAGE	
package; this package is primarily used for backward compatibility with existing code. PL/SQL code that in EBS was primarily called from Framework usually uses this method.For more information about these packages, see the package headers.	
The FND_MESSAGE	
PL/SQL package allows you to set one message and its tokens, as shown in Example 7-6. It also allows you to set multiple messages in the stack by explicitly pushing the current message onto the stack, as shown in Example 7-7. When you need to retrieve the message from the stack, an explicit pop()	
is required, as shown in Example 7-8.	
Example 7-6 Getting Message and its Tokens	
Example 7-7 Receiving a Message Record and Clearing Message	
Example 7-8 Retrieving message from the Stack	
You can use the OAExceptionUtil.CheckErrors()	
API to check for error messages after calling PL/SQL from Java. The CheckErrors()	
API looks for errors on both the new FND_MESSAGE	
and FND_MSG_PUB	
stacks, raises a bundled exception for each error found on both stacks, and then clears both PL/SQL error stacks.	
Where the call to OAExceptionUtil.CheckErrors()	
depends on which style of error handling your PL/SQL code uses:	
FND_MESSAGE	
with FND_MSG_PUB	
, then errors will be left on the PL/SQL error stack without raising any exceptions. The call to OAExceptionUtil	
should go immediately after the PL/SQL call.APP_EXCEPTION.RAISE_EXCEPTION	
, or FND_MESSAGE.RAISE	
, then errors will cause SQL exceptions to be raised. The call to OAExceptionUtil.CheckErrors()	
should be in a SQLException catch block.OAExceptionUtils.CheckError()	
in both places, as shown in Example 7-9.Example 7-9 Calls to OAExceptionUtils.CheckError() — Unknown Error Handling Style	
If you see an error message similar to one the following messages, it is because a system error was raised and the original error message was replaced with a generic message:	
When you receive these types of errors, you can look at the log file entry to find the original error message.	
Note: When generic errors are raised, you will see oracle.apps.fnd.applcore.messages.ExceptionHandlerUtil class information at the top of the call stack. This is the code that is replaced the unhandled exception with the generic error and should not be mistaken for the original error from the Message Dictionary.	
You can also set one of the following debug options to allow you to see the error more directly, without having to view the log file entry:	
-DAFERROR_MODE=debug	
: Causes the original error to be displayed in the UI-DAFLOG_ECHOED=true	
: Sends logging output to the console, as well as the log fileFor information about finding the cause of an error and its corrective action and for information about viewing and managing log files, see the "Managing Log Files and Diagnostic Data" chapter and the "Introduction to Troubleshooting Using Incidents, Logs, QuickTrace, and Diagnostic Tests" appendix in the Oracle Fusion Middleware Administrator's Guide.	
When raising an exception or attribute validation error by retrieving a message from the Message Dictionary using a resource bundle interface, the exception message returns in XML format.	
You can convert XML formatted messages to HTML or plain text for display in Oracle ADF applications, as shown in Figure 7-3.	
This can be done in one of two ways:	
DataBindings.cpx	
fileWhen directly handling Oracle Fusion Applications resource bundle exceptions in Java code, you can convert XML messages to HTML or plain text using utility APIs. The utility APIs are found in oracle.apps.fnd.applcore.messages.model.util.Util	
.	
Sample code is shown in Example 7-10.	
Example 7-10 Converting XML Messages to HTML or Plain Text	
You can convert XML messages to HTML or plain text by configuring the error format handler in the DataBindings.cpx	
file.	
To convert XML messages to HTML by configuring the error format handler:	
DataBindings.cpx	
file.Tip: JDeveloper names the user interface project ViewController by default.	
Example 7-11 The Value of the ErrorHandlerClass	
Field	
Every Oracle Fusion application registers task flows with a product called Oracle Fusion Functional Setup Manager. These task flows are available from the application's Setup and Maintenance work area and enable customers and implementers to set up and configure business processes and products. For more information, see the Oracle Fusion Applications Common Implementation Guide.	
Function Security controls your privileges to a specific task flow, and users who do not have the required privilege cannot view the task flow. For more information about how to implement function security privileges and roles, see Chapter 49, "Implementing Function Security."	
Table 7-3 lists the task flows and their parameters.	
Table 7-3 Messages Task Flows and Parameters	
Task Flow Name	Task Flow XML
---	---
Manage Messages	/WEB-INF/oracle/apps/fnd/applcore/messages/ui/flow/ManageMessagesTF.xml#ManageMessagesTF
This chapter describes how to share reference data across organizations by using setIDs to partition the data into different sets of values. Each organization can then maintain its data in a common table, using a set of values specific to that organization.	
This chapter includes the following sections:	
Different organizations within a single company often need to use different sets of reference data to serve the same purpose. For example, the job codes for one country might be different from the job codes for another country. Different Oracle Fusion Applications customers should be able to make their own decisions about how to define the job codes, and be able to define a separate set for each organizational section of the enterprise. They should also be able to define a common set or sets and instruct the system which set should be used by which organizations. For example, job codes for software engineers might be MTS, SMTS, PMTS; job codes for managers might be M1, M2, M3. SetIDs enable them to accomplish this easily.	
For information about set-enabling lookups, see Chapter 10, "Implementing Lookups".	
SetID Implementation	
Once you have completed the development process as discussed in this chapter, and delivered your application with the ability to use set-enabled reference data, application implementers and administrators must then be able to define and maintain reference data sets and set assignments that are appropriate to the organization which will use the application. They can accomplish these tasks using the Manage Reference Data Sets and Manage Reference Data Set Assignments applications, respectively.	
You make these setup applications available to implementers and administrators by incorporating their task flows into Oracle Functional Setup Manager. For more information, see Section 8.3, "Integrating SetID Task Flows into Oracle Fusion Functional Setup Manager".	
For information about how to use the setID setup applications, see the Oracle Fusion Applications Common Implementation Guide	
SetIDs enable you to share a set of reference data across many organizations. Sharing reference data is a method of limiting the set of available values to those that are appropriate for a validated attribute. Some benefits of this include:	
The end goal is to save customers some effort in maintaining reference data by enabling it to be shared between different parts of the organization that implements applications. Reference data should not need to be maintained in multiple places at multiple times. Reference data is data in tables that you do not regard as transactional and high volume; for example, payment terms that can be used on a customer invoice.	
By dividing the reference data into partitions appropriate to the organizational entities that will use the data, setIDs enable you to share control table information and processing options among business units. The goal is to minimize redundant data and system maintenance tasks. For example, you can define a group of common job codes that are shared between several business units. Each business unit that shares the job codes is assigned the same setID for that record group.	
SetIDs can be thought of as a striping technology to partition referenced data. All shared reference tables can be striped with a setID column to enable partitions (or sets). This does not require you to change the tables' primary keys.	
With partitioning, a customer can choose to have reference data sets specific to each organizational unit mapped one-to-one, or have several different organizational units use the same set of reference data. Customers, rather than development, will have the choice in determining what level of sharing or exclusivity they would like to maintain in the reference data.	
A setID is the means by which applications can filter reference data into subsets when they are referenced by different transactional entities. The filtering is driven, indirectly, by contextual values available in the referring transactional entity.	
Use of the shared data partitions is facilitated by a context setting called the determinant, which is usually a column on the referring transactional entity. The purpose of the determinant is to identify an organizational subset; you use it to specify which reference data is valid for use in a given business context. The determinant is the value of a transactional column that is one of several designated determinant types. If at least one column of the transactional table is a setID determinant type, data sharing may make sense for the transaction.	
For example, different business units may use the same office supply vendor, but have different requirements for which supplies can be purchased. The determinant type and value provide part of the criteria for selecting the appropriate office supply reference data set.	
In addition to the presence of a determinant on the transactional entity, the data that you want to reference must be set-enabled as described later in this documentation.	
The setID determinant type can be one of the following existing fields:	
Cost organization will likely map into a company's enterprise structure as a cost department.	
Some Criteria for Selecting a Determinant Type	
To help decide what determinant type to use for a given application, consider the following:	
Examples of data suitable for partitioning include (but are not limited to) units of measure, currency codes, country codes, or anything else governed by a standard.	
For more information about setID determinant types, see Section 8.2.3, "How to Annotate Transactional Entity Objects for SetID".	
SetID Machinery is the collection of Applications Core Technology software elements that act in concert to facilitate the use of setIDs to partition, access and maintain reference data. At a high level, the machinery is comprised of:	
The following sections introduce the elements of setID machinery and the ways in which they can be used to implement data sharing.	
There are three setID partitioning patterns. Choose one of these patterns based on your business requirements:	
ROWSTRIPE	
) — This is the simplest pattern, and the default. In this pattern the SET_ID column is just a striping column, and is not part of the set of unique keys for the table. You can filter as follows:COMMON	
) — This is exactly the same as the row striping pattern, with the addition of a COMMON partition. You filter as follows:Note: The set with setID of 0 is seeded as the common set. This set will be available for assignment only if you select Row Striping With Common Rows for the reference entity.	
SUBSCRIPTION	
) — The drawback of the first two patterns is that if reference data needs to be in two different partitions (other than the common one), it has to be copied and placed in both sets. To avoid that, a setID subscription table can be introduced and used to list which sets include each row. This will allow the same reference data to be in two different sets without the need to copy the data for each set. You join your reference entity with the setID subscription table and filter as follows:For more information about partitioning patterns, see Section 8.2.1, "How to Annotate Reference Entity Objects for Sharing".	
In addition to tables, other sources of reference data such as lookup types and views can also be shared using setIDs. These are all generically referred to as reference entities. Reference entities are generally considered to be setup data, and they may be implementing business policies and legal rules. Reference entities in your application are grouped into logical units called reference groups, based on the functional area and the partitioning requirements they have in common. For example, all tables and views that define Sales Order Type details might be part of the same reference group.	
Figure 8-1 illustrates an example of a Worker Assignment transaction table with two set-enabled references: a reference to Salary Codes with partitions determined by Business Unit, and another reference to Labor Agreement with partitions determined by Cost Organization.	
There are five types of set configuration tables:	
Sets Table	
The sets table, FND_SETID_SETS, lists all of the sets defined for Oracle Applications, plus any new sets that you define. It includes the columns SET_ID and SET_NAME, which enable you to select the proper SET_CODE.	
Sets listed in this table include:	
Reference Groups Table	
The reference groups table, FND_SETID_REFERENCE_GROUPS_B, captures the default determinant type for all reference entities in each group. This table uses the primary key of REFERENCE_GROUP_NAME. It also includes the APPLICATION_ID column, which is used for filtering and managing ownership.	
The available reference groups defined in the reference groups table will be populated before you start creating entity objects. Reference group definitions are owned by the application that owns the reference entities in that group. Application development teams are ultimately responsible for defining and delivering reference groups.	
Note: Only reference entities that might be referenced as setID targets need to be captured here; this is not intended to be an exhaustive inventory of all tables in the applications. For more information about reference groups, see Section 8.1.3.2, "Reference Groups".	
SetID Assignments Table	
A transactional entity may have multiple sets of reference data that are treated in the same manner. For this reason, reference data sets are assigned to a reference group, then the setID assignment is configured for each determinant value, determinant type, and reference group.	
The setID assignments table, FND_SETID_ASSIGNMENTS, records which set to use in every reference table for every determinant value. It is a SQL-joinable entity that can be used to convert available context information into a setIDentifier suitable for filtering rows from referenced entities. The context information serves as the table's primary keys:	
Based on these keys, you can determine a setID.	
Note: Although development may seed this table with default values, it will be accessed by customers to implement set-enabled reference entities specific to their organizations.	
Reference Entities Table	
The reference entities table, FND_SETID_REFERENCE_ENTITIES, contains the list of all setID enabled non-lookup reference entities. The SET_ID_PATTERN column indicates which setID pattern is being used by each reference entity. If the value of this field is SUBSCRIBE	
(setID subscription), the column SET_ID_CHILD_TABLE will be populated with the setID subscription table name.	
Note: For customers, this table is read-only.	
The setID PL/SQL utilities are APIs that include the following packages:	
Fnd_setid_sets_pkg package	
This package contains table handlers for fnd_setid_sets	
table.	
Fnd_setid_assignments package	
This package contains table handlers for fnd_setid_assignments	
table.	
Fnd_setid_reference_groups package	
This package contains table handlers for fnd_setid_reference_groups	
table.	
Fnd_setid_ref_entities_pkg package	
This package contains table handlers for fnd_setid_reference_entities	
table.	
Fnd_setid_set_groups package	
This package contains table handlers for fnd_setid_set_groups	
and fnd_setid_set_group_members	
tables.	
Fnd_setid_utility package	
This package contains the following utilities:	
isValid	
getSetId	
getReferenceGroupName	
isValidSet	
You define the following information to implement shared (that is, set-enabled) reference entities:	
SetId	
, and specify the determinant type as SET	
.SetId	
attribute.For more information about setID partitioning patterns, see Section 8.1.3.1, "Partitioning Patterns".	
Before you begin:	
Following are the activities that you should complete before you engage in set-enabling references or lookups:	
For more information, see the "Creating a Business Domain Layer Using Entity Objects" chapter in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.	
The following setID metadata will be saved in ADF Business Components metadata as properties:	
For more information, see Section 8.1.3, "Understanding SetID Machinery".	
Note: These annotations are required only for set-enabled non-lookup reference entities. Lookup references and set-enabled lookup references use a predefined lookups pattern; the reference group name is retrieved directly from database by the lookup code and the view application ID that are set on the foreign key reference of the transactional reference.	
After building an entity object for a shared reference entity, you annotate the entity object.	
To annotate the reference entity object:	
For more information, see Section 8.1.3.2, "Reference Groups".	
Row Striping	
(this is the default value)Striping With Common Rows	
Subscription	
When you select the SUBSCRIPTION	
pattern, the SetID Reference Table Pattern field appears. Specify the subscription table to use.	
Important: The primary key columns of the setID subscription table must be named exactly the same as those in the reference entity, and the setID column must be named SET_ID .	
For more information about these options, see Section 8.1.3.1, "Partitioning Patterns".	
SetId	
, as shown in Figure 8-3.Caution: If you cannot use the SET_ID column as your setID attribute, you must ensure that the attribute you use is named SetId , even if the database column is named differently. This applies to both entity objects and view objects.	
After building an entity object for a transactional entity, you must create entity associations for all foreign references, including FND lookups. Because SET_ID must not be part of the primary key for any shared reference table (except FND_LOOKUP_VALUES), there is nothing unusual about associations for shared references.	
Follow these guidelines when creating the associations:	
After you create entity associations for foreign references, you annotate the transactional entity object.	
To annotate the transactional entity object:	
For every attribute that you want to use as a setID determinant, specify the corresponding determinant type.	
To access setID determinant types programatically, use the following codes:	
Table 8-1 SetID Determinant Type Codes	
Code	Determinant Type
---	---
Asset Book	
Business Unit	
Cost Organization	
Project Unit	
Reference Data Set	
Notes:	
The default value of the setID determinant attribute is the default determinant type of the reference entity group targeted by the association that is defined for the foreign key.
Note: If the determinant value is not directly available on the transaction table, you must create a transient attribute to model it, and ensure that the attribute is correctly populated. |
Attention: If the reference data has a composite key, you must specify the SetId Determinant Attribute property for the first attribute of the composite key. |
Create a view accessor from the transaction entity to the reference entity.
The key exists validator will include the mapping of the foreign key attributes in the transactional entity to the corresponding attributes in the reference view accessor.
Caution: If an attribute in your transactional entity was defined with null values allowed, the validator that you create will skip that attribute, and the end user will receive no indication of any problem. To ensure that the attribute is validated, you must edit the attribute and select the Mandatory checkbox in the attribute properties. |
To define a key exists validator:
Key Exists
.ViewAccessor
as the validation target type.Because the validation should be executed every time the determinant value changes, it should be specified as a triggering attribute.
Note: The foreign key attributes that were mapped on the Rule Definition tab are by default added as triggering attributes. |
To create a transient setID attribute:
Long
.Never
, then click OK to create the transient attribute.Open the transactional EOImpl class and edit the getter method of your transient setID attribute to pass in the corresponding foreign key attribute name. For example:
In this example, you open the WorkerAssignmentsImpl.java
class and edit getTransientSetIdAttr()
to pass in the attribute name "SalaryCode"
so its value will be returned at runtime.
ADF Business Components supports defining LOVs at the attribute level in view objects.
To build a lookups LOV for a set-enabled reference entity:
The default LOV name is typically kept as LOV_
attribute_name
, as shown in Figure 8-9.
Typically you will choose the same view accessor which was defined for the underlying entity object and used for the Key Exists validator.
Every application registers task flows with a product called Oracle Fusion Functional Setup Manager. Functional Setup Manager provides a single, unified user interface that enables implementers and administrators to configure all Oracle Fusion applications by defining custom configuration templates or tasks based on their business needs.
The Functional Setup Manager UI enables customers and implementers to select the business processes or products that they want to implement. For example, an HR application can register setup activities like "Create Employees" and "Manage Employee Tree Structure" with Functional Setup Manager.
There is an application task flow for managing reference data sets, and one for managing reference data set assignments. To make these task flows available to application developers, implementers or administrators, you can register the appropriate task flow with Functional Setup Manager, using the parameters listed for each task flow in Table 8-2.
Table 8-2 SetID Task Flows and Parameters
Task Flow Name | Task Flow XML | Parameters Passed | Behavior |
---|---|---|---|
Manage Reference Data Sets | /WEB-INF/oracle/apps/fnd/applcore/setid/publicUi/flow/ManageSetIdSetsTF.xml#ManageSetIdSetsTF | To optionally specify a page heading for the task flow: pageTitle='titlestring' | This task flow enables you to create and update reference data sets (setIDs and codes). |
Manage Reference Data Set Assignments | /WEB-INF/oracle/apps/fnd/applcore/setid/publicUi/flow/ManageSetIdAssignmentsTF.xml#ManageSetIdAssignmentsTF | To invoke the task flow: determinantType=type To optionally restrict the page to assignments for a single reference group: referenceGroupName=name To optionally specify a page heading for the task flow: pageTitle='titlestring' | This task flow enables you to manage reference data set assignments for a particular determinant type. |
For more information about task flows, see the Oracle Fusion Applications Common Implementation Guide.
This chapter describes the Fusion Middleware extensions for Oracle Applications base classes that extend the features of standard ADF Business Components classes.
The chapter includes the following sections:
Fusion Middleware extensions for Oracle Applications base classes provide additional features that are not part of the standard ADF Business Components core entity objects, view objects, and application modules.
The Fusion Middleware extensions support the following standard Oracle Applications features:
The base classes extend ADF Business Components Entity, EntityDef, ViewObject, ViewRow, and ApplicationModule implementation classes.
The base classes provided by Fusion Middleware extensions are the following:
OAApplicationModuleImpl
OAEntityImpl
OAEntityDefImpl
OAViewObjectImpl
OAViewRowImpl
OAViewCriteriaAdapter
They are found in oracle.apps.fnd.applcore.oaext.model.package
and extend the JBO classes with the same name (but without the OA prefix) in oracle.jbo.server.package
.
In Oracle JDeveloper, selecting the Oracle Fusion Applications Developer role automatically sets the Fusion Middleware extensions for Oracle Applications base classes as the default classes for ADF Business Components objects. The base classes become available when you add the Applications Core library. For more information, see Chapter 2, "Setting Up Your Development Environment."
Multi-language support (MLS) gives Oracle the ability to ship its products in multiple languages by setting standards and guidelines for translation.
In JDeveloper, multi-language entities are those that maintain one or more translated attributes and require the storage of all relevant translations of these attributes. Such entities have a base table that has attributes that are not translated and do not vary by language (such as codes and IDs) and a TL table that has, in addition to the base table primary key, the translatable attributes for that entity (such as Display Name, and Application Name). Figure 9-1 illustrates this concept.
For each row in the base table, there will be as many rows in the translation table as there are installed languages. The translation table's primary key is made up of the foreign key to the base table and a language column, which may be viewed as a foreign key to the FND_LANGUAGES table.
The translation table is fully populated. This means that rows for all installed languages are inserted even if the actual translations for these languages are not yet available. The logic, which maintains multi-language entities, is responsible for ensuring that the translation rows are inserted, updated, or deleted as required to meet the "fully populated" requirement. Translations, which have not been supplied, must be defaulted from one of the available translations. As updates occur to supply missing translations, the default values will be converted to true translations.
Since applications are run in a single language for any given user session, a convenient view is provided for the multi-language entities, which joins the base table and translation table and filters translations to the runtime language. This is the Multi-language View. This view uses the userenv ('LANG') expression to select the correct translation based on the session language, which usually comes from the NLS_LANG environment variable.
The following extensions support TL tables:
OAEntityImpl
OAViewRowImpl
As a developer, you can use multi-language extensions to deal with only one entity that contains both translatable and non-translatable attributes, instead of having to deal with two entities, one for the base table and one for the translation table.
Whenever an entity is created, the extensions ensure that the TL entities are also created for every installed language in the environment.
Whenever an insert is made into the base table or the table is updated, the same operations must also be performed on the corresponding TL table. Behind the scenes, the extensions override the appropriate ADF Business Components methods, such as create()
and setAttribute()
, to ensure that the TL table is populated correctly.
The extensions also enable you to work with only one ADF Business Components entity object at runtime for a multi-language database entity, and shield you from the two underlying tables (base and multi-language) that hold the data. You will see no inherent difference between a multi-language entity and a standard one. In addition, the extensions allow you to define an entity as multi-language in a JDeveloper design time environment, and provide any additional metadata for such that entity.
In addition, the following utility APIs are provided in OAEntityImpl
:
public boolean isTranslatable ()
- Returns true if this entity is a translatable entity.public boolean isTranslated ()
- Returns true if there is at least one translated language other than the base language for this entity.public String [] getTranslatedLanguages ()
- Returns an array of Language codes for which actual translations exist. The list always returns the base language as one of the translated languages. A record is considered translated if the LANGUAGE and SOURCE_LANG columns are equal.The same set of APIs also will be provided on the AViewRowImpl
object, since it also would have the same characteristics of a row.
Creating a multi-language ADF Business Components entity object consists of four tasks:
To create an entity object for translatable (_TL) tables, perform the following procedure.
Note: This procedure does not apply to a _VL view. For information about creating an entity object for a _VL view, see Task 2, "Create an entity object for a base table". |
For example, for a table named FND_ITEMS_DEMO_TL, you can name the entity ItemsDemoTranslationEO.
Make sure the attribute for the LANGUAGE
column is named Language, and the attribute for the SOURCE_LANG
column is named SourceLang.
If your TL table columns for LANGUAGE
and SOURCE_LANG
are named differently, it is important that you still name the attributes Language and SourceLang.
LANGUAGE
column.OAEntityImpl
like any other entity object.The translatable values are unlikely to need any special validation.
Overriding the default attribute behavior:
By default, all the attributes in the _TL table will be considered translatable if they are:
Note: SourceLang and Language are special attributes and are handled by Oracle Fusion Middleware Extensions for Applications. |
To create an entity object for a base table, perform the following procedure.
Use the regular entity object naming convention. For example, for the FND_ITEMS_DEMO table, the corresponding entity would be named ItemsDemoEO. The entity should be based on the _VL view.
RowId
pseudo-column in the view.For example, for the FND_ITEMS_DEMO_VL view, this value would be set to FND_ITEMS_DEMO_B.
You could use the entity Property Inspector to set this property, as shown in Figure 9-2.
Oracle Fusion Middleware Extensions for Applications automatically overrides the entity's doDML()
method to ensure that all inserts, updates, and deletes are actually performed on the base table identified by this property. All reads will be done against the _VL view.
To create the association between the _VL view and _TL table entity objects, perform the following procedure.
When you select Composition Association, be sure to uncheck Implement Cascade Delete and Cascade Update Key Attributes if they are selected.
Since the Applications Core OAEntityImpl
class overrides the remove()
method on the EntityImpl
class to handle Translation rows deletion, Cascade Delete is not required.
Configure Source Accessor and Destination Accessor, as shown in Figure 9-4.
When creating the view objects that will access your translatable tables, keep in mind the following:
For a _TL table with no corresponding _B table:
There may be a rare case where you have a _TL table and _VL view and no _B table, because all of the attributes are translatable. If this occurs, do the following:
doDML()
for the base entity to do nothing. This is going to be a virtual entity that does not have an underlying database table.The Translation EO in this scenario alone must also include the non-translatable attributes because the base entity's doDML()
does nothing. If the translation entity does not include non-translatable attributes, you might get exceptions saying the attribute is not populated
true
in the Applications section of the Property Inspector, as shown in Figure 9-5.By default, only string fields (VARCHAR2 and its variants) are identified as translatable automatically by the parent. Primary key changes on the entity are also handled automatically by the framework. This means any numeric, date, or other data type attributes that are not primary key need to have the OA Translatable property set explicitly to true
.
There is a slight downside to this approach as non-translatable columns (like numbers and dates), technically, are being marked as translatable. However, this approach is required in order to ensure attributes set on the base entity are propagated to the TL entity; otherwise, you will get an "attribute not populated" exception. This is needed because the base entity is virtual and the doDML()
method on the base entity is empty.
If you happen to override the create(AttributeList attributeList)
method on your entity, do not forget to call super.create(attributeList)
in the override method before invoking custom code. This is true in all scenarios.
The WHO feature reports information about who created or updated rows in Oracle Applications tables. Oracle Applications upgrade technology relies on WHO information to detect and preserve customizations. ADF Business Components provides the ability to track the creation of an entity or the changes made to one.
The OAEntityImpl
populates the WHO columns automatically. In addition to the standard history columns supported by ADF Business Components, the extension provides support for Last Update Login field.
All WHO columns are updated based on the current User Session. Table 9-1 lists the WHO columns and their descriptions.
Table 9-1 WHO Column Summary
Column Name | Type | Null? | Description |
---|---|---|---|
CREATED_BY | VARCHAR2(64) | NOT NULL | Keeps track of which user created each row. |
CREATION_DATE | DATE | NOT NULL | Stores the date on which each row was created. |
LAST_UPDATED_BY | VARCHAR2(64) | NOT NULL | Keeps track of who last updated each row. |
LAST_UPDATE_DATE | DATE | NOT NULL | Stores the date on which each row was last updated. |
LAST_UPDATE_LOGIN | VARCHAR2(32) | Stores the Session ID of the user who last updated the row. |
In order for Oracle Fusion Middleware Extensions for Applications to populate your WHO columns automatically, ensure that your WHO column attributes are of the appropriate History Column type by using the Entity Attribute Wizard, as shown in Figure 9-6.
In the example entity, the WHO column LastUpdateDate is identified as a modified on
History Column type.
Similarly, identify the following attributes as indicated:
modified by
created on
created by
Ensure that the LAST_UPDATE_DATE and CREATION_DATE WHO columns have the Type as Timestamp (java.sql.Timestamp), as shown in Figure 9-7.
WHO column features provide the following design time and runtime support:
OAEntityImpl.getWhoUser()
.PL/SQL entities are those that depend on PL/SQL packages to handle their Data Manipulation Language (DML) operations (insert, delete, update, and lock). Since Oracle Applications has a large amount of their business logic in PL/SQL and a lot of teams still use it, they need a mechanism that will allow them to use their PL/SQL code when building ADF Business Components entities. The Fusion Middleware extensions provide the following:
In addition, the following APIs are provided in the OAEntityImpl
class to facilitate the insert, update, and delete DML operations in PL/SQL:
protected void insertRow ();
protected void updateRow ();
protected void deleteRow ();
The default implementations of these methods delegate to super.doDML (operation)
, which will result in SQL insert/update/delete being called for the entity.
A PL/SQL-based entity object provides an object representation of the data from a table or view and routes the DML operations to stored procedures in the database.
To identify an entity as a PL/SQL one, a custom attribute, OA_PLSQL_ENTITY
, must be set to Y
(Yes). This allows the framework to identify this entity as PL/SQL based.
To identify an entity as a PL/SQL one:
Y
from the OA PLSQL Entity dropdown menu, as shown in Figure 9-8.void insertRow();
void updateRow();
void deleteRow();
Use the PL/SQL entity objects only if you have legacy PL/SQL code that maintains all your transactions and validations. If you are working on a new product and/or do not have a lot of PL/SQL legacy code, Applications Core recommends the use of Java entity objects over PL/SQL entity objects.
void insertRow();
, void updateRow();
, or void deleteRow();
method without calling super()
.insertRow()
or updateRow()
methods: Perform your validation in Java in either of these two methods, or in PL/SQL stored procedures called from the methods.validateEntity()
method: If validations are done in a separate stored procedure in PL/SQL, you can call that stored procedure in this method.The extensions provide the following design time and runtime support:
Fusion Middleware extensions for Oracle Applications provide the following services:
Fusion Middleware extensions provide an easy way to access these services and to invoke them. Typically, the services are provided as application modules. An application module serves as a container for the various view objects and provides business-service-specific functionality.
The services listed above are provided as a service-specific application module. For example, Profile functionality is made available in ProfileService.
Access to these services is provided as a getFNDNestedService (String service)
method in the OAApplicationModuleImpl
class. The OAApplicationModuleImpl
extension is used to support access to the services.
See Section 9.5.1, "How to Use the Extension," for implementation information.
The code in Example 9-1 shows how to provide access to an FND service. In this case, it is ProfileService.
Example 9-1 Accessing an FND Service
OAConstants
exposes the various service names as a constant.
Note that the getFNDNestedService ()
is just a utility method that looks up the rootAM and checks to see if an instance of the requested service already exists in the rootAM as a nested AM. If one exists, it will return it; if it does not, it will instantiate a new AM for that service that will be nested inside the rootAM and return it.
In order to avoid primary key collision issues when synchronizing with disconnected clients, Oracle Applications standards require that an ADF Business Components entity object's primary key be populated with a Unique ID.
Fusion Middleware extensions support Unique ID by allowing an entity attribute to be populated with a globally unique value. The Fusion Unique ID Generator provided by ADF Business Components does this. The Unique ID can be used to populate an entity attribute of the BigDecimal
and Long
data types. The Unique IDs generated are of the BigDecimal
type and meet certain criteria for uniqueness across database instances.
Notes: The database table column data type that corresponds to the entity attribute requiring a Unique ID must be large enough to hold the uniquely generated value. Typically, it should be of type NUMBER(18) . NUMBER(15) may not be sufficient to hold the uniquely generated values.In addition, Oracle Applications coding standards require that the entity attribute populated with a Unique ID be of type |
Fusion Middleware extensions provide both design time and runtime support for Unique ID.
At design time, Fusion Middleware extensions provide the ability to identify if an entity attribute needs a globally Unique ID. This is accomplished by setting Application Unique ID to true
in the entity attribute's Property Inspector section, as shown in Figure 9-9.
Based on the design time setting, the framework populates the entity attribute with a globally unique value at runtime. This is accomplished by setting the following transient expression on the entity attribute's definition:
Any custom view criteria adapter created by a product team will need to extend the OAViewCriteriaAdapter
class in order for Data Security to work correctly.
By setting custom ADF Business Components properties at runtime, the OAApplicationModuleImpl
class establishes the OAViewCriteriaAdapter
class as the standard view criteria adapter for the ADF Business Components container.
Product teams can do the following to create and use a custom view criteria adapter:
OAViewCriteriaAdapter
and invoke super methods for use cases not handled by the custom view criteria adapter.setViewCriteriaAdapter()
method in the create()
method of the custom ViewObjectImpl
class.Document sequencing is a way to uniquely identify all business documents and business events belonging to a legal entity.
Document-sequence numbering has many country-specific requirements. It is a legal requirement in many EMEA, Asia Pacific, and Latin American countries. In the United States and the United Kingdom, it is used for internal control purposes and for financial-statement and other audits.
For more information about ADF Business Components integration of this feature provided by Fusion Middleware extensions, see Chapter 11, "Setting Up Document Sequences."
This chapter discusses how to use lookups for providing lists of values (LOVs) for application end users to select from, and for performing validation of newly entered data. It also discusses how to share lookup data across organizations by using setIDs to partition the data into different sets of LOVs. Each organization can then maintain its lookups in a common table, using LOVs specific to that organization.
This chapter includes the following sections:
Lookups in applications are used to represent a set of codes and their translated meanings. For example, a product team might store the values 'Y
' and 'N
' in a column in a table, but when displaying those values they would want to display "Yes" or "No" (or their translated equivalents) instead. Each set of related codes is identified as a lookup type. There are many different examples of these across Oracle Fusion applications.
Lookups Implementation
Once you have completed the development process as discussed in this chapter, and delivered your application with the ability to use lookups, application implementers and administrators must then be able to define and maintain lookups that are appropriate to the organization that will use the application. They can accomplish these tasks using the Manage Standard Lookups, Manage Set-Enabled Lookups and Manage Common Lookups applications.
You make these setup applications available to implementers and administrators by incorporating their task flows into Oracle Fusion Functional Setup Manager. For more information, see Section 10.6, "Integrating Lookups Task Flows into Oracle Fusion Functional Setup Manager".
Lookups are codes that are defined in the global FND_LOOKUP_VALUES table, which is striped into multiple virtual tables using a VIEW_APPLICATION_ID column. Each of these virtual tables is thus identified as a view application. Each view application is exposed as a database view, and all have separate ADF Business Components. It is the responsibility of the team who owns a particular view application to provide both the database view and the necessary ADF Business Components objects. Only these view definitions, and any validation code supporting them, should access the underlying lookups tables directly. All other code that references lookups should always go through the database views and their supporting ADF Business Components objects, never directly referencing either the lookups tables or their base classes.
Note: If you have a custom view application, you need to prepare a custom lookup view. For more information, see Section 10.2.1, "How to Prepare Custom Lookup Views." |
Lookup codes are identified in an application by the following keys:
Each lookup view is accessed through its own view, and may have different attributes or different validation, almost as if it were a separate table.
COLORS
.Within each lookup type, multiple lookup codes can be defined. Example 10-1 shows sample code for defining multiple lookup codes.
Example 10-1 Defining Multiple Lookup Codes
RED
.For more information about setIDs, see Chapter 8, "Managing Reference Data with SetIDs".
The FND_LOOKUP_TYPES table defines the lookup types available.
Note: When you register a lookup view application, you set a SET_ENABLED flag to indicate that the lookup view is set enabled. For this to be valid, every lookup type within that lookup view must have a reference group defined. The reference group is part of the lookup definition, and was defined when the lookup was defined. How that happens is beyond the scope of this documentation. |
A reference to a non set-enabled lookup can be implemented exactly like any other foreign key reference, by specifying the lookup type in the view criteria. For set enabled lookups, you must specify the following additional properties, but only to add the indirection through the setID metadata:
The use of setID metadata allows for the use of generic lookup entity objects, because the lookup type is automatically bound based on the metadata that you provide.
All lookups business objects exist in the publicEntity subpackage of the oracle.apps.fnd.applcore.lookups.model package. They can be imported into any Oracle JDeveloper application through Lookups-Model.jar
. They are as follows:
Lookup Types
LookupTypePEO
LookupTypePVO
FND_LOOKUP_TYPES_VL
Each lookup type defines a set of lookup codes, and describes the intended usage of that set of codes. Note the FND_LOOKUP_TYPES_VL
table and ADF Business Components objects are only meaningful when a VIEW_APPLICATION_ID
is specified to choose the view application. You should never use either the table or the view without supplying the VIEW_APPLICATION_ID
.
Product teams that own a view application must expose a pre-defined view for lookup types, exposing only the lookup types appropriate to their view application.
Note: Product teams that own a view application also are responsible for providing the service, the loader, the UI, and the database view. |
If your product has no special validation requirements, you can place your lookups in one of the central lookup views such as FND_LOOKUPS. However, if you define your own view application, you must supply a database view to match it.
Lookup Values
LookupValuePEO
FND_LOOKUP_VALUES_VL
The FND_LOOKUP_VALUES_B
table (along with FND_LOOKUP_VALUES_TL
) is the primary table that stores all the different lookup codes.
The FND_LOOKUP_VALUES_VL
view is extended by the views in the three following listings (FND_LOOKUPS
, FND_COMMON_LOOKUPS
, and FND_SETID_LOOKUPS
). If you want to define your own product specific lookups, you should extend this view as well. This object contains the subset of columns that are expected to be common to all views that extend from this, with any additional columns required being added on an as-needed basis.
These objects should only be referenced by lookup view application owners when defining their own views and ADF Business Components objects. All other references should go through the objects created for that lookup view. The three standard ones that Oracle ships are FND lookups, common lookups, and setID lookups. If other products have lookup views, you should use the entity objects and view objects provided for them by the owning team.
(FND) Lookups
LookupPEO
LookupPVO
FND_LOOKUPS
The naming of the lookup objects can get confusing; the Lookups object is intended to refer specifically to FND lookups. The Lookup Values object in the previous listing is the generic object. The FND_LOOKUPS
view is primarily used to store FND-specific lookup values but is also used to store lookup values that are common across multiple applications. For example. the "Yes/No" example given in the overview might be used by multiple product teams, so to avoid duplication that code can be stored centrally in FND_LOOKUPS
.
This view extends from the FND_LOOKUP_VALUES_VL
view, but only selects rows that have VIEW_APPLICATION_ID = 0
and SET_ID = 0
.
Common Lookups
CommonLookupPEO
CommonLookupPVO
FND_COMMON_LOOKUPS
Note: This view also was used to store lookup codes that were common to multiple applications, but it now exists only for the purpose of backward compatibility. |
This view extends from the FND_LOOKUP_VALUES_VL
view, but only selects rows that have VIEW_APPLICATION_ID = 3
and SET_ID = 0
.
SetID Lookups
SetIdLookupPEO
SetIdLookupPVO
FND_SETID_LOOKUPS
This view is used to store lookup codes that are set-enabled. The meanings corresponding to the given lookup code will vary depending on the value of the setID determinant.
This view extends from the FND_LOOKUP_VALUES_VL
view, but only selects rows that have VIEW_APPLICATION_ID = 2
.
Customization levels are defined on lookup types and can be used to enforce pre-defined data security policies that restrict how and by whom lookup types and their codes can be edited.
Valid values for CUSTOMIZATION_LEVEL are defined in the standard lookup type 'CUSTOMIZATION_LEVEL'. Table 10-1 lists these values.
At runtime, the customization levels are interpreted as follows:
User
Extensible
System
In each of these scenarios, 'seed data' means LAST_UPDATED_BY = 'SEED_DATA_FROM_APPLICATION'. Also, to allow seed data to be edited, these rules are not enforced if the current user is 'SEED_DATA_FROM_APPLICATION'.
It is expected that the owner of a lookup view will produce entity objects and view objects based on the entity objects for standard lookups database objects; for example, HR_LOOKUPS, GL_LOOKUPS, OE_LOOKUPS and so on. These view objects will typically be used for lookup validation as well as LOVs. If you put your lookups in the standard lookup views, you do not have to define anything, but simply reference the objects that are already provided.
Additionally, multiple ViewCriteria may be exposed on the lookups view object to take care of date ranging the lookup by supplying bind parameters for start and end active dates.
For a description of lookups tables and views provided by Oracle Fusion Middleware Extensions for Applications and their corresponding public business objects, see Section 10.1.2, "Standard, Set-Enabled, and Common Lookup Views".
If you have a simple lookup with no special requirements, you are free to define it in the centrally provided lookup views. You do not have to create your own lookup view just because you have lookups. However, if you have special validation requirements that are not satisfied by the central lookup views, you might want to create a private lookup view. If you do choose to create your own lookup view, you must take responsibility for the additional work required to support your lookup view as described in the following sections.
In preparing lookup views, you must perform several decision-based tasks.
To prepare lookup views:
If you have no need for special attributes, special validation, or a private namespace for lookup types, you can use one of the centrally defined lookup views (FND_LOOKUPS, FND_COMMON_LOOKUPS, and FND_SETID_LOOKUPS). All of these lookup views are available for any product to use. If none of the central views meet your needs, you may define your own.
Note: If you are using any of the three central lookup types (FND_LOOKUPS, FND_COMMON_LOOKUPS, and FND_SETID_LOOKUPS), you can skip the rest of this section. |
Lookup views are owned by applications (as determined by the view_application_id). There can be only one lookup view per view_application_id. It is up to the owner of the lookup view to make the view available for other applications to use, or to designate the lookup view as private.
If so, you must expose set_id as part of the "primary key" of your lookup view, and all references to it will have to include, either directly or indirectly, the set_id to use.
At a minimum your view must select from the base FND_LOOKUP_TYPES_VL view, expose the internal name and the display name, and include "where VIEW_APPLICATION_ID =
my_application_id
" in the where clause. In addition, if your view is set enabled, the lookup types view must include the REFERENCE_GROUP_NAME column. You are free to join additional tables, add additional attributes, or add additional filters to the where clause as desired. A template for the view might be:
At a minimum your view must select from the base FND_LOOKUP_VALUES_VL view, expose the lookup type, the lookup code internal name, and the lookup code display name, and include "where VIEW_APPLICATION_ID =
my_application_id
" in the where clause. In addition, if your view is set enabled, the lookup values view must include the SET_ID column as part of the primary key. You are free to join additional tables, add additional attributes, or add additional filters to the where clause as desired. A template for the view might be:
All view applications and the views used to reference them must be registered in the FND_LOOKUP_VIEWS metadata table. To register your lookup views, write a SQL script that calls the FND_LOOKUPS_UTIL.REGISTER_LOOKUP_VIEWS
PL/SQL API. For example:
This script registers required seed data, and must be run on every database instance.
Each lookup view should have a separate entity object and view object (or PEO and PVO) for both lookup types and lookup codes, extending from the base entity object and view object provided for FND_LOOKUP_TYPES and FND_LOOKUP_VALUES.
For more information, see Section 10.1.2, "Standard, Set-Enabled, and Common Lookup Views".
You must create view accessors for all lookups data sources (FND_COMMON_LOOKUPS, FND_SETID_LOOKUPS, HR_LOOKUPS, and so on) that are referenced in the entity object.
Lookups that are referenced in the entity object must have view accessors.
To reference lookups:
Note: All set-enabled view accessors are row sensitive (the determinant on the master or transactional row affects the query); therefore the Row-level bind values exist check box must always be selected for set-enabled view accessors. For example, view accessors to FND_SETID_LOOKUPS (set-enabled lookups cases) must have Row-level bind values exist selected because the setID value may change row by row and affect the validation result. Hence, the ViewAccessor Row Set will need to be refreshed row by row. |
You must create a validator for every foreign reference in an entity object. For set-enabled reference entities, the validator must be created at the entity object level, not at the attribute level, because it has dependencies on other attribute values such as the setID determinant attribute.
The type of validator to use depends on the expected size of the rowset for a given lookup type:
Caution: If an attribute in your transactional entity was defined with null values allowed, the validator that you create will skip that attribute, and the end user will receive no indication of any problem. To ensure that the attribute is validated, you must edit the attribute and select the Mandatory checkbox in the attribute properties. |
You define a list validator for lookup definitions where the rowset returned for a lookup type or lookup code is expected to be less than 100 rows.
To define a list validator:
List
.SalaryCode
) as the attribute.In
as the operator.View Accessor Attribute
as the list type.LookupCode
as the view accessor validation target lookup code attribute.Because the validation should be executed every time the determinant value changes, it should be specified as a triggering attribute.
Note: The foreign key attributes that were mapped on the Rule Definition tab are by default added as triggering attributes. |
The key exists validator will include the mapping of the foreign key attributes in the transactional entity to the corresponding attributes in the reference view accessor. There must be a foreign key attribute on the transactional entity for each primary key attribute on the reference entity. First, you must provide missing foreign key attributes in the form of transient attributes. Next, you can create the validator that uses those attributes.
To define a transient lookup type:
String
.Expression
, and provide a constant value for the attribute.Never
, then click OK to create the transient attribute.To create a key exists validator:
Key Exists
.View Accessor
.Click Add to include the attribute pair on the mapping list.
Click Add to include the attribute pair on the mapping list.
Click Add to include the attribute pair on the mapping list.
Because the validation should be executed every time the determinant value changes, it should be specified as a triggering attribute.
Note: The foreign key attributes (including transient atributes) that were mapped on the Rule Definition tab are by default added as triggering attributes. |
These properties are used only for set-enabled lookups, and only to do setID indirection. The setID lookup type LOV will show only those lookup types that are defined in your specified view application ID.
Do the following to annotate lookup code reference attributes:
To specify an attribute for use as a lookup code reference, select the attribute in the entity object editor. On the Applications tab of the Property Inspector.
Every Oracle application registers task flows with a product called Oracle Fusion Functional Setup Manager. Functional Setup Manager provides a single, unified user interface that enables implementers and administrators to configure all Oracle Fusion applications by defining custom configuration templates or tasks based on their business needs.
The Functional Setup Manager UI enables customers and implementers to select the business processes or products that they want to implement. For example, an HR application can register setup activities like "Create Employees" and "Manage Employee Tree Structure" with Functional Setup Manager.
There are application task flows for managing common lookups, set-enabled lookups, and standard lookups. To make these task flows available to application developers, implementers or administrators, you can register the appropriate task flow with Functional Setup Manager, using the parameters listed for each task flow in Table 10-2. These taskflows can be used to manage lookups in the centrally defined lookup views (FND_LOOKUPS, FND_COMMON_LOOKUPS, and FND_SETID_LOOKUPS). All other lookup views (and any associated taskflows) are owned by applications (as determined by the VIEW_APPLICATION_ID
). Contact the owning application for instructions on managing lookups in their lookup views.
Table 10-2 Lookups Task Flows and Parameters
Task Flow Name | Task Flow XML | Parameters Passed | Behavior |
---|---|---|---|
Manage Standard Lookups | /WEB-INF/oracle/apps/fnd/applcore /lookups/publicUi/flow/ ManageStandardLookupsTF.xml# ManageStandardLookupsTF | To invoke search mode to query and edit lookup types and their codes in the Standard Lookups view: mode='search' To restrict search mode to Standard lookups belonging to a particular product module: mode='search' moduleType='moduletype' moduleKey='modulekey' To invoke edit mode for a single lookup type and its lookup codes: mode='edit' lookupType='lookuptype' To optionally specify a page heading for the task flow: pageTitle='titlestring' | This task flow enables you to create and edit lookups in the centrally owned Standard view (view application = |
Manage Set-Enabled Lookups | /WEB-INF/oracle/apps/fnd/applcore /lookups/publicUi/flow/ ManageSetEnabledLookupsTF.xml# ManageSetEnabledLookupsTF | To invoke search mode to query and edit lookup types and their codes in the Set Enabled Lookups view: mode='search' To restrict search mode to Set Enabled lookups belonging to a particular product module: mode='search' moduleType='moduletype' moduleKey='modulekey' To invoke edit mode for a single lookup type and its lookup codes: mode='edit' lookupType='lookuptype' To optionally specify a page heading for the task flow: pageTitle='titlestring' | This task flow enables you to create and edit lookups in the centrally owned Set Enabled view (view application = |
Manage Common Lookups | /WEB-INF/oracle/apps/fnd/applcore /lookups/publicUi/flow/ ManageCommonLookupsTF.xml# ManageCommonLookupsTF | To invoke search mode to query and edit lookup types and their codes in the Common Lookups view: mode='search' To restrict search mode to Common lookups belonging to a particular product module: mode='search' moduleType='moduletype' moduleKey='modulekey' To invoke edit mode for a single lookup type and its lookup codes: mode='edit' lookupType='lookuptype' To optionally specify a page heading for the task flow: pageTitle='titlestring' | This task flow enables you to create and edit lookups in the centrally owned Common Lookups view (view application = |
For more information about task flows, see the Oracle Fusion Applications Common Implementation Guide.
This chapter describes how to set up document sequences, which uniquely number documents, provide proof of completeness, and create audit trails.
This chapter contains the following sections:
A document sequence uniquely numbers documents generated by an Oracle Fusion application. Using Oracle Fusion applications, you initiate a transaction by entering data through a form and generating a document, for example, an invoice. A document sequence generates an audit trail that identifies the application that created the transaction, for example, Oracle Receivables, and the original document that was generated, for example, invoice number 1234.
Document sequences can provide proof of completeness. For example, document sequences can be used to account for every transaction, even transactions that fail. Document sequences generate audit data, so even if documents are deleted, their audit records remain.
Document sequences can also provide an audit trail. For example, a document sequence can provide an audit trail from the general ledger into the subsidiary ledger, and to the document that originally affected the account balance.
There are three types of document sequence numbering:
Note: It is recommend that you choose this type only when gapless numbering is essential, as it may affect the performance of your system. |
Table 11-1 defines document-sequence terminology.
Table 11-1 Document Sequence Terminology
Term | Description |
---|---|
Document Sequences | Document sequences are owned by a product and can be assigned to categories that belong to the same product as the sequence. Sequences can be automatic, manual, or gapless, and are effective within a date range. |
Document Sequence Categories | A document sequence category belongs to a table, which is owned by a product. Document sequence categories are entered with either the System Administrator form (Payables and Cash Management) or product forms (General Ledger and Receivables). |
Sequence Assignments | The user assigns a sequence for each category. The assignments are owned by a set of books and are effective within a date range. Manual document entry through a form and automatic document creation through a batch process can have separate sequence assignments. Currently, legal entities for the same set of books must share document sequences. If each legal entity requires its own numbering sequence, a separate set of books must be created for each legal entity. |
Document sequence categories organize documents into logical groups.
A document sequence category identifies the database table that stores documents resulting from transactions your users enter. When you assign a sequence to a category, the sequence numbers the documents that are stored in a particular table.
Before you can assign a sequence to number documents, you must define which documents are to be numbered.
Defining a sequence is different from assigning a sequence to a series of documents.
Each time a C or PL/SQL call is made to request the next document sequence value, this audit data is inserted into the corresponding product team's document sequence audit table.
Product teams using FND Document Sequence need to create an audit table with a name whose format is application_short_name_DOC_SEQUENCE_AUDIT, where application_short_name is the name of the application. For example, "AR_DOC_SEQUENCE_AUDIT."
The audit table must contain the columns and types shown in Table 11-2.
Table 11-2 Audit Table Columns and Types
Name | Null? | Type |
---|---|---|
DOC_SEQUENCE_ID | NOT NULL | NUMBER(18) |
DOC_SEQUENCE_VALUE | NOT NULL | NUMBER(15) |
DOC_SEQUENCE_ASSIGNMENT_ID | NOT NULL | NUMBER(18) |
CREATION_DATE | NOT NULL | TIMESTAMP(6) |
CREATED_BY | NOT NULL | VARCHAR2(64 CHAR) |
LAST_UPDATE_DATE | NOT NULL | TIMESTAMP(6) |
LAST_UPDATED_BY | NOT NULL | VARCHAR2(64 CHAR) |
LAST_UPDATE_LOGIN | VARCHAR2(32 CHAR) | |
ENTERPRISE_ID | NOT NULL | NUMBER(18) |
This section focuses on ADF Business Components integration of document sequences provided by Fusion Middleware extensions for Oracle Applications base classes.
The document sequence is generated and validated in the postChanges()
method of the OAEntityImpl
class. In automatic mode, it is generated by calling the public API Long getDocSequence(Long appId, String categoryCode, Long sobId, String methodCode, Timestamp txnDate, Long seqVal, String suppressWarn, String suppressError)
in the OAEntityImpl
class. In manual mode, it is validated by calling public void validateDocSequence(Long appId, String categoryCode, Long sobId, String methodCode, Timestamp txnDate, Long seqVal, String suppressWarn, String suppressError)
in the same class.
You do not need to do anything in order to get the default behavior of generation and validation of a document sequence. However, if you require some special behavior, such as additional validation or adding an additional prefix or suffix, you can override these methods.
The Javadoc for the key methods in OAEntityImpl
is shown in Example 11-1.
Example 11-1 Javadoc for OAEntityImpl
Fusion Middleware extensions provide the ability to identify if an entity attribute needs a document sequence. This is accomplished by setting Document Sequence to true
in the entity attribute's Property Inspector window, as shown in Figure 11-1.
By default, the entity attribute property is not set because it is not a document sequence field.
Fusion Middleware extensions also capture the additional metadata (as Groovy expressions) needed to generate a document sequence. Table 11-3 lists the metadata fields in the Property Inspector window and their descriptions.
Table 11-3 Additional Metadata
Field | Description |
---|---|
Application Id | The application ID. The Groovy expression should return an object of type |
Category Code | The document sequence category code. The Groovy expression should return an object of type |
Method Code | The document sequence method code. Select from the following: |
Ledger Id | The ledger ID to use for this document sequence. The Groovy expression should return an object of type |
Transaction Date | The document transaction date. The Groovy expression should return an object of type |
Based on the design time setting and additional metadata, Fusion Middleware extensions invoke document sequencing APIs and populate the attribute with a document sequence (in automatic mode) and validate the document sequence (in manual mode) in the postChanges()
phase of the entity in ADF Business Components lifecycle. Document sequence processing is done at this phase so that the document sequence generation can be delayed as much as possible when in automatic mode. This is to avoid the potential wasting of document sequence if generated earlier.
If Document Sequence is not set or is set to false
, nothing is done. If Document Sequence is set to true
, Fusion Middleware extensions populate the entity attribute with a document sequence value if the method code is automatic.
This is accomplished by doing the following.
Document sequence public PL/SQL APIs can be found in the FND_SEQNUM package. The package can be used to retrieve information about document sequences and assignments, create new document sequences or assignments, and to verify or retrieve the next sequence value for a particular document sequence assignment. Sample APIs are shown in the examples that follow. For complete documentation, see comments in the package header.
Example 11-2 Define a New Document Sequence
Example 11-3 Retrieve the Next Sequence Value for an Automatic Sequence
Example 11-4 Verify a Sequence Value for a Manual Sequence
Every Oracle application registers task flows with a product called Oracle Fusion Functional Setup Manager. Functional Setup Manager provides a single, unified user interface that allows customers and implementers to configure all Oracle applications by defining custom configuration templates or tasks based on their business needs.
The Functional Setup Manager UI enables customers and implementers to select the business processes or products that they want to implement. For example, an Accounts Payable application can register a setup activity like "Create Invoice" with Functional Setup Manager. After you define a category, for example, "Invoices," in the Categories task flow, document sequence task flows then provide the mechanism that allows you to define a sequence and specify its properties. You then can assign the sequence to the "Invoices" category in the Assignments region in the same flow.
Table 11-4 lists the task flows and their parameters.
Table 11-4 Task Flow Parameters
Task Flow Name | Task Flow XML | Parameters Passed | Behavior | Comments |
---|---|---|---|---|
Manage Document Sequence Categories | /WEB-INF/oracle/apps/fnd/applcore/docseq/ui/flow/ManageDocSeqCategoriesTF.xml#ManageDocSeqCategoriesTF | mode='search' | Allows you to create and edit document sequence categories. Search mode allows you to search and edit categories. The moduleType and moduleKey parameters are optional, and if passed restrict the categories that can be queried and edited. Edit mode allows you to query and edit a single category. The applicationId and code parameters are required, and specify the category to edit. | Search and edit document sequence categories. |
Manage Document Sequences | /WEB-INF/oracle/apps/fnd/applcore/docseq/ui/flow/ManageDocSequencesTF.xml#ManageDocSequencesTF | mode='search' mode='edit' [pageTitle] | Allows you to search and edit document sequences, and assignments of those sequences. Search mode allows you to query and edit sequences. The moduleType and moduleKey parameters are optional; if passed they restrict the sequences that can be queried. Edit mode allows you to edit a single document sequence and its assignments. The name parameter is required, and specifies the sequence to edit. | Search and edit document sequences (and the assignments belonging to a sequence). |
For more information about task flows, see Oracle Fusion Applications Common Implementation Guide.
This chapter describes how to implement Audit Trail Reporting in Oracle Fusion Applications.
This chapter contains the following sections:
Audit Trail is a history of the changes that have been made to data in Oracle Fusion Applications. Audit Trail includes information such as who has accessed an item, what operation was performed on it, when it was performed, and how the value was changed. The audit information is logged without any interaction from the end user.
Database auditing involves observing a database to be aware of the actions of database users. This is often for security purposes, such as to ensure that information is not accessed by those without the permission to access it. Audit setup provides a user interface mechanism for administrators to choose and select the objects and the specific attributes that need to be audited. When an object has been set to be audited using the audit setup user interface, any DML actions on this object, that is, its underlying database schema objects, are captured and stored for reporting purposes.
The Audit Setup UI page is a public taskflow that is made available through the Oracle Middleware Extensions for Applications library. This taskflow can be included in an application that is accessible by the administrator. The UI consists of an Applications Tree Table that holds the structure of the auditable application modules, the children application modules, if present, and all the auditable view objects and their children. The administrator selects the view object on which to start auditing and in the Applications Table components below the tree table, the administrator chooses to add the attributes that need to be audited.
The Audit application holds all code for the Audit Setup and Audit Reporting taskflows.
The user interface, shown in Figure 12-1:
Metadata
Two database schema tables, FND_AUDIT_WEBAPP_AM and FND_AUDIT_ATTRIBUTES, hold metadata information that is required for Auditing.
WEBAPP | APPLICATION_MODULE |
---|---|
VARCHAR2(80) | VARCHAR2(240) |
WEBAPP | VIEW_OBJECT | VIEW_ATTRIBUTE | ENABLED_FLAG | TABLE_NAME | COLUMN_NAME |
---|---|---|---|---|---|
VARCHAR2(80) | VARCHAR2(240) | VARCHAR2(80) | VARCHAR2(1) | VARCHAR2(30) | VARCHAR2(30) |
Important Code Components
The important code components involved in creating the user interface are:
fnd_audit_webapp_am
for the given application and its children.This section covers the steps needed to populate and define metadata needed to run the Audit taskflows.
To populate and define metadata:
webApp
defined and set. This is done by populating the ASK tables.This link will be protected to be visible to only those with the correct privileges.
fnd_audit_webapp_am
) for audit purposes. You can use the AuditServiceAM
to register these Applications Modules. This service allows data to be extracted and uploaded.This section covers how to use the Audit taskflows and their taskFlowIDs.
Audit Setup Taskflow - For Administrator Use Only
Product teams should create a control flow for the Done outcome to go back to the original page from which the setup page was accessed. To use the public taskflow for Setup, the package structure is /WEB-INF/oracle/apps/fnd/applcore/audit/ui/flow/AuditSetupAdminTF.xml#AuditSetupAdminTF
. This flow provides the Done button.
Audit Reporting Taskflow - For Administrator Use Only
To use the public taskflow for "Admin reporting" the package structure is /WEB-INF/oracle/apps/fnd/applcore/audit/ui/flow/AuditReportAdminTF.xml#AuditReportAdminTF
.
Audit Reporting Taskflow Business Object Specific
To use the public taskflow for "Object specific reporting" the package structure is /WEB-INF/oracle/apps/fnd/applcore/audit/ui/flow/AuditReportObjectSpecificTF.xml#AuditReportObjectSpecificTF
.
These parameters need to be passed:
This part of the Developer's Guide discusses some of the Oracle Application Development Framework (Oracle ADF) user interface features that you can incorporate into your Oracle Fusion Applications.
The Getting Started with your Web Interface chapter provides information about how to create a page and what the wizard settings should be. It also presents the basic information that is necessary before creating the Application User Interface.
The Implementing the UI Shell chapter provides information about the UI Shell and Navigator Menu components used to implement user interface features in JDeveloper. The UI Shell is a page template whose contents are determined by the menu metadata held in the Navigator Menu.
The Implementing UIs in JDeveloper with Applications Tables, Trees, and Tree Tables chapter discusses the Applications Tables, Trees and Tree Tables components used to implement user interface features in JDeveloper. Applications tables are UI components that already contain an ADF table, a menu bar, a toolbar, and related popups. Developers do not need to create and assemble all these components separately. The Applications Tree component provides the basic capabilities that satisfy the requirements specified in the Application UX designs. These include tree toolbar with default buttons, facets for adding ADF tree, custom toolbar buttons, and so on, and default implementations for tree actions. The Applications Tree Table can be added to a page or page fragment using either the Component First or the Data First approach. Both approaches launch a wizard that is intended to help you quickly define the appropriate tree layout that adheres to the Applications UX standards.
The Implementing Applications Panels, Master-Detail, Hover, and Dialog Details chapter discusses the Applications Panels, Master-Detail, Detail on Demand, and Dialog Details components used to implement user interface features in JDeveloper. Applications panels help you create specific UI components as part of the UI Applications patterns. You must use Applications panels to standardize layout and appearance for all your page forms and buttons, including read-only pages. The Master-Detail composite is used in situations where the information is too large, dynamic or complex to show in a flat table. The user can see the Master, or summary, information in one area, and the corresponding details in a separate area. Dialog details are appropriate for use when information needs to be accessed quickly and then dismissed. The details are shown in a modeless dialog window.
Implementing Skinning describes how to change the look and feel of your application by changing the skin, without changing the content. The chapter deals specifically with skinning as applied to Oracle Fusion applications and the UI Shell.
The Implementing Attachments chapter provides guidelines for implementing Attachments at design time in a quick and simple manner using Oracle Fusion Middleware components. The Attachment component provides a declarative and simple programming mechanism for you to add attachments to the UI pages that you create for web applications. Once added to a UI page, the component gives users the ability to associate a URL, desktop file, repository file or folder, or text with a business object, such as an expense report, contract, or purchase order.
The Organizing Hierarchical Data with Tree Structures chapter describes how to create, update, and delete tree structures, trees, and tree versions, and how to develop applications using trees. Oracle Fusion tree management allows data in Oracle Applications to be organized into a hierarchical fashion, and allows Oracle Applications customers to create tree hierarchies based on their specific data.
The Working with Localization Formatting chapter describes the Oracle applications standards and guidelines for working with localization formatting. When developing applications for international users, it is often necessary to format the display of certain location-dependent data. In the context of JDeveloper and ADF, localization requires implementing formatting patterns so as to properly display the data according to local standards.
This part contains the following chapters:
This chapter provides information that you may need before you begin developing your web pages. It introduces the UI Shell page template and UI patterns and features that are available in JDeveloper.
This chapter includes the following sections:
To help you get started with your web interface, this chapter discusses information about how to create a page, what the wizard settings should be, as well as information about patterns, such as UI Shell.
For more information about how to get started with your web interface, see the Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework.
There are some basic guidelines for defining how an Oracle Fusion application's web interface is constructed. These guidelines are universally shared by all pages built for Oracle Fusion Applications. There are two types of pages - Dashboards and Work Areas. A dashboard is a collection of information summaries (high-level data views) that enable users to monitor different objects and data within a subdomain or functional area of interest. A Work Area is the complete set of tasks, reports, business intelligence, searches and other content that a user needs to accomplish the tasks associated with a business goal. Depending on the type of page you have, the construction can differ.
For more information about Standards and Guidelines, see Chapter 1, "Getting Started with Oracle Fusion Applications."
Dashboards and Workareas define the basic structure of a page. Oracle Fusion Guidelines, Patters and Standards (GPS) defines a set of design patterns. Design patterns are common flow or page designs that are used across all product families. By using design patterns in all phases of product development, valuable development time may be spent innovating other areas in the product, consistency is ensured across the entire enterprise, and users only have to learn the interaction once with the expectation that their experience will be the same in any product they encounter.
Dashboard
There are two types of dashboards: Home Based Dashboards and Transaction Dashboards. A Home Based Dashboard consists of one or more tabs. Each tab is a container for a set of configurable regions displaying content that a user may want to monitor. Transaction Dashboards are built with a specific role in mind. The basic building blocks are the individual regions. Every dashboard can choose which regions it wants to include. In Figure 13-1, these are the Watchlist, Reports and Analytics, Worklist, and Gallery. Each of these is built as Oracle Application Development Framework (Oracle ADF) Bounded Task Flows.
Work Area
A Work Area, as shown in Figure 13-2, consists of a Regional Area, a Local Area and a Contextual Area. Each area is intended to have content for a specific purpose.
The Regional Area is the collapsible region on the left of the page that contains a column of panels that provides information and actions that drive the business process that a work area supports. The Local Area is the focus of the users work. The contents of it should contain all of the information and actions required to accomplish the task.
The Contextual Area is the collapsible region on the right-hand side of the page that is filled with a column of panels. It provides additional space above the fold of the page to present actions and information, based on the information and state of the local area, that can assist the user in the task.
Designing Your UI
Your web user interface will be designed using the Oracle Fusion GPS concepts and design patterns. Many of these designs are delivered through the Oracle Fusion Middleware Extensions for Applications (Applications Core). Dashboards and Workareas are built using the UI Shell. A set of design-time wizards and components that help support many of the Oracle Fusion GPS design patterns is also provided. These components, in conjunction with those provided by Oracle ADF and WebCenter, provide the basis for all web interfaces.
The UI Shell is a page template containing default information, such as a logo, menus and facets. To supplement the UIShell template, there also is a UIShellMainArea template. Because you can load information into dynamic tabs, the Main area cannot be a part of the page itself since it is loaded dynamically. The UIShellMainArea template helps you create the flows that run within the tabs.
The UI Shell design supports task-based and user-based navigation and way-finding, and organizes screen real estate more effectively by collating tasks, providing dedicated spaces for primary-task supporting information, and maintains general order and appropriate hierarchy between various elements on the screen.
The UI Shell for Applications User Experience (Applications UX) patterns provides a system of containers that fulfill common layout and navigational requirements in a structured, consistent manner. The UI Shell focuses on providing detailed design for defining and organizing various types of navigation and other functionality such as search and auxiliary information for Oracle Fusion alone.
In particular, the UI Shell template supports:
For more information, see Chapter 14, "Implementing the UI Shell."
Applications UI Patterns are high-level UI composite components that encapsulate standards and guidelines for common layouts, behaviors and flows across Oracle Fusion Applications, as set forth by the Applications User Experience group. The objective is to provide applications development teams with a higher level starting point and reduce duplication of effort in building the UI for their applications, while adhering to Oracle Fusion standards. The standards and guidelines are tightly integrated with JDeveloper.
Patterns can be implemented as custom components, declarative components or task flows. Patterns that are implemented as declarative components wrap the mandatory and pattern-specific UI components within the declarative component.
The UI patterns components provide several key benefits for developers when they are building pages and fragments:
Supported patterns are:
Applications Tables
Applications tables are UI components that already contain an ADF table, a menu bar, a toolbar, and related popups. Developers do not need to create and assemble all these components separately.
Applications Panels
Applications Panels help you create the following UI components as part of the UI applications patterns:
You must use Applications Panels to standardize layout and appearance for all your page forms and buttons, including read-only pages.
Applications Master-Detail
Master-Detail refers to the interaction of selecting an object from a master list, and refreshing the details in an adjacent area. It is not the relationship of the data.
The Master-Detail composite is used in situations where the information is too large, dynamic, or complex to show in a flat table. The user can see the Master, or summary, information in one area, and the corresponding details in a separate area. This can be achieved using different master and detail components, such as table, tree table, and tree.
For instance, when the user selects an employee from the master table, the corresponding employee details are displayed in the region below in a label/data format.
Applications Detail On Demand
Dialog details are appropriate for use when information needs to be accessed quickly and then dismissed. The details are shown in a modeless dialog window.
Dialog details are accessed by clicking a details icon in a row in a table.
Applications Tree
The Applications Tree component provides these basic capabilities:
Applications Dialog Details
The Applications Dialog Details component provides a user interface for launching a popup that contains detail information. Popups are an option when editing rows. The UI can be a detail icon, a link, or a button.
Using the Custom Wizard with Applications Popups
af:popup is a generic function documented in the Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework.
While the standard af:popup component does not provide buttons or data binding, the Applications Popup wizard provides the base af:popup with:
Popups can be used as standalone components or with certain patterns.
Applications Tree Tables
The Application Tree Table component provides these basic capabilities:
For more information, see:
This chapter discusses the UI Shell page template used to build web pages, and the components used to implement user interface features in JDeveloper, such as menus, task flows, security, search, navigation, and the home page UI.
This chapter includes the following sections:
For basic information and detailed information of the features, see:
The UI Shell is a page template containing default information, such as a logo, menus and facets. To supplement the UI Shell template, there also is a UIShellMainArea template. Because you can load information into dynamic tabs, the Main area (the center and the right as shown in Figure 14-1) cannot be a part of the page itself since it is loaded dynamically.
The UI Shell design supports task-based and user-based navigation and way-finding, and organizes screen real estate more effectively by collating tasks, providing dedicated spaces for primary-task supporting information, and maintains general order and appropriate hierarchy between various elements on the screen.
The UI Shell for Applications User Experience (Applications UX) patterns provides a system of containers that fulfill common layout and navigational requirements in a structured, consistent manner. The UI Shell focuses on providing detailed design for defining and organizing various types of navigation and other functionality such as search and auxiliary information for Oracle Fusion Middleware alone.
Before you begin:
You should be familiar with JDeveloper, be able to create and run JSF pages, and be able to create an Oracle Application Development Framework (Oracle ADF) task flow.
Almost all shipped Oracle Fusion Applications pages are built using the UIShell page template. Exceptions include the login page, and the password preferences page.
The UI Shell is composed of four default, mandatory areas: global, regional, local, and contextual, as shown in Figure 14-1.
The Global Area incorporates a number of built-in indicators and links.
Click this link to return to the defined Home page. See Section 14.18, "Implementing the Oracle Fusion Home Page UI."
The Navigator menu, shown in Figure 14-18, is rendered when the Navigator link is clicked on the UI Shell. See Section 14.5.1.2, "Displaying the Navigator Menu."
Recent Items tracks a list of the last 20 task flows visited by a user. See Section 14.11, "Implementing Recent Items."
Add to Favorites takes the most recent Recent Item (see Section 14.11, "Implementing Recent Items") and persists it into the Favorites list.
Tagging is a service that allows users to add tags to arbitrary resources in Oracle Fusion Applications so they may collectively contribute to the overall taxonomy and discovery of resources others have visited. See Section 14.10, "Implementing Tagging Integration."
Watchlist is a user-accessible UI that provides a summary of items the user can track with drilldown shortcuts. See Section 14.12, "Implementing the Watchlist."
Group Spaces bundle all the collaboration tools and provide an easy way for users to create their own ad hoc collaborative groups around a project or business artifact. See Section 14.13, "Implementing Group Spaces."
The Personalization menu options let you set your preferences, edit the current page, and reset the content and layout. See Section 14.6, "Using the Personalization Menu."
The Accessibility link appears on pages that can be accessed without logging in. It will allow users to set their accessibility preferences because the Personalization menu, which includes preferences, is hidden for anonymous users.
The Administration menu options allow you to customize the current page at a multi-user level, allows you to manage sandboxes, and allows you access to the setup applications. See Section 14.8, "Using the Administration Menu."
The Help menu options let you control trace levels, run diagnostics, and provide an About page that lists information about the application. See Section 14.9, "Using the Help Menu."
Note: When signing in, users always are directed to the application's home page. |
There are two possible scenarios during run-time:
If the user is Logged In:
If the user is Logged Out. (The only way for an unauthenticated user to view a page is if a page either has no databinding (no pagedef) or has databinding but is granted to the anonymous role.)
When the Sign Out link is clicked, the page is always redirected to the application's home page. On clicking the Sign Out link, the user session is cleared from the cookie and terminated. If the home page is secured, the login prompt will first appear. If the home page is not secured, the page will appear and the Sign In link will be enabled.
The UIShell is a page template with some facets for content that may be placed directly on the page, but it usually has its content inserted dynamically. The dynamic insertion happens by reading metadata in the form of a menu metadata. This informs it of which taskflows to load and where. The UIShell also can create a list of tasks, from the same metadata, that, when clicked, can load into the Main Area. All task flows and the page built by the UIShell template follow the normal ADF Security framework.
When you create an application using the Fusion Web Application (ADF) template, two projects automatically are created for you: the data model and the user interface projects. The default names for these projects that JDeveloper provides are Model
and ViewController
. You then add the Applications Core (ViewController) tag library to the user interface project.
Creating a page also creates your application's workspace, where you will later place your page fragments and task flows. For more information about task flows, see the "Getting Started with ADF Task Flows" section of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
For more information about starting JDeveloper, see Chapter 2, "Setting Up Your Development Environment."
To create a JSF page:
The Create JSF Page dialog is displayed, as shown in Figure 14-2.
The filename should follow these patterns:
Note: The af:skipLinkTarget tag has been incorporated in the UIShell.jspx template so developers do not need to code this required accessibility feature in each page.Specifically, <af:panelGroupLayout inlineStyle="width:100%;" id="soContextParent"> <af:skipLinkTarget/> <af:facetRef facetName="SingleObjectContextArea"/> </af:panelGroupLayout> |
Note: This JSPX page is just the container for the UI Shell template. All other page content, such as the regional, local, and contextual area flows, and the dynamic task flows, are defined independently. At runtime, the menu definition assembles the various parts. All task flows are loaded into a page created with the UI Shell template by configuring the Menu file. This is done to control the behavior and for dynamic loading of task flows at runtime. It also creates the Navigator Menu and Task List Menu. See Section 14.5, "Working with the Global Menu Model" and Section 14.2.1.1, "Working with the Applications Menu Model." |
Now you can add components to the page. Table 14-1 lists the itemNode
properties that can be used for a JSF page. See Section 14.2.1.1, "Working with the Applications Menu Model" for how to add a menu to the page.
Table 14-1 itemNode Properties of a JSF Page
ItemNode Property | Property Value | Description |
---|---|---|
| Name that has been assigned to the action. | Navigate to the page defined by the action. |
| string | Values are shared (the default) or isolated. This is set at the page level itemNode. When dataControlScope is set to "isolated", the UI Shell loads the Main Area and Regional Area task flows with dataControlScope set to "isolated". When dataControlScope is set to "shared", the UI Shell loads the Main Area and Regional Area task flows with dataControlScope set to "shared". For example: <itemNode id="itemNode_AppsPanelTests_TabsWA" label="label_AppsPanelTests_TabsWA" action="AppsPanelTests_TabsWA" focusViewId="/AppsPanelTests_TabsWA" dataControlScope="isolated"> |
|
| Provides an option to suppress dynamic tab navigation and just display one main area at a time. To do this, add the following property and value to the itemNode that represents your JSPX:
Other menu metadata stay the same. Tasks List will continue to render. Clicking a Tasks Link will replace the current main area task flow with the new one. Multiple defaultMain definitions are allowed and will open multiple tabs on page load. The first one with If the property value is not defined, it defaults to true. |
| Unique identifier. | |
| string | What appears in the work area title. Note: For all UIShell work area pages with Data Visualization Tool (DVT) components in the default Main flow, and for Home pages with DVT components, you must create the <af:document id="d1" title="#{adfBundle['oracle.apps...resource.xyzGenBundle']['Header.DefaultMain']} - #{adfBundle['oracle.apps...resource.xyzGenBundle']['Header.WorkAreaLabel']} - #{adfBundle['oracle.apps.common.acr.resource.ResourcesGenBundle']['Header.OracleApplications']}" > For UIShell pages with DVT components in their dynamic Main flows, the title is set on the |
| Name of the View Activity. | |
| True or False. Default is False. | To set the UI Shell's af:form uses Upload value to "true," product teams need to add the |
| Numeric value | See Section 14.4.2, "How to Control Regional Area Task Flows". |
| True or False | See Section 14.4.2, "How to Control Regional Area Task Flows". |
Page and task flow information are local to a particular JDeveloper application or project and are exposed using the Applications Menu Model.
An Applications Menu is related to a local JSPX file and includes the tasks list, defaultMain, and defaultRegional. A menu is created for each J2EE application.
To create an ADF menu to access page elements through the Navigator menu on JSF pages or task flows that are based on the UI Shell template:
Select the JSPX page in the Application Navigator, then right-click and select the Create Application Menu option.
This step creates the menu file with one itemNode. The menu file will be named <view id>_taskmenu.xml
. For example, if there is a PageA.jspx
, its view id in adfc-config.xml
is PageA, and the menu file name is PageA_taskmenu.xml. This step also should add the ApplicationsMenuModel managed bean entry into adfc-config.xml
. The managed bean entry should not have the topRootModel managed bean property set. Example 14-1 shows a sample of the generated content in PageA_taskmenu.xml
.
Example 14-1 Example of Generated Content in a taskmenu.xml
Creating ADF Menus for Multiple JSF Pages
Use this alternate method to create menus for multiple pages at once. This will create an empty menu on each page.
adfc-config.xml
file and choose Open to display it in the JDeveloper editor.The adfc-config.xml
file is located in the following location: <project_name> > WEB INF.
adfc-config.xml
file in the editor.View nodes that represent the pages or task flows are displayed in the editor.
When you drag the pages or task flows, they automatically are grouped into the same menu.
adfc-config.xml
file and choose Create Applications Menus. An empty panel, as shown in Figure 14-3, displays.adfc_config.xml
. As shown in Figure 14-4, pages that do not yet have a menu associated with them will have a checkbox that defaults to being selected, and pages that already have an associated menu are shown with a checkmark to the right.Note: Menu files will follow the <focusViewId>_taskmenu.xml naming standard. For example, the menu file for Example.jspx will be /WEB-INF/menus/Example_taskmenu.xml . |
When you create this menu file, the following occurs:
ViewController/public_html/WEB-INF/menus
.adfc-config.xml
file:The new menu that contains your pages is now accessible from the Navigator panel.
When a user opens an application, he or she expects something to be displayed automatically. A task flow in the default main area accomplishes this.
To add a task flow to the default main area:
The Create JSF Page Fragment dialog shown in Figure 14-5 is displayed.
def_main.jsff.
The filename should follow these patterns:
<Object><Function>.jsff
<Object>.jsff
The page name should convey the object it presents (an employee, a supplier, an item, a purchase order, an applicant, and so on), and the function being performed (search, promote, hire, approve, view). For some pages, the object is sufficient.
For update/create pages, just the object should be used (unless the create and update pages are different as shown in the examples).
Never give pages step number names, such as PoCreateStep1.jsff or PoCreateStep2.jsff. Always describe the page function, such as PoDesc.jsff or PoLines.jsff.
Note: The UIShellMainArea template is only for main-area task flows, not regional area task flows. |
The local and contextual area facets of the page fragment appear in the editor.
Note: Most applications will have multiple task flows for the Regional, Local and Contextual areas. For instance, Figure 14-1, "UI Shell Areas" shows 10 task flows. |
The Create ADF Task Flow dialog shown in Figure 14-6 is displayed.
<f:facet name="localArea"/>
.<f:facet name="localArea"/>
.The <f:facet name="localArea"/>
changes to <f:facet name="localArea">
and code resembling that shown in Example 14-2 will be inserted after it.
Example 14-2 Creating Region localArea Facet Added Code
In the Structure window, an af:region
entry is added following the f:facet - localArea
entry.
contextualArea
, skip to Step 6.In the Structure window, select f:facet - contextualArea
.
af:showDetailItem
entry is created automatically under af:panelAccordian
.<af:showDetailItem ...>
entry.Code resembling that shown in Example 14-3 will be inserted after <af:showDetailItem ...>
and the page fragment in the editor will resemble Figure 14-7.
Example 14-3 Example Edit Task Flow Binding Code
Now that you have created the Main Area page fragment, you must wrap it in an ADF task flow.
In the Create ADF Task Flow dialog:
For example, enter def_main_task-flow-definition.xml.
Do not change the other default settings.
The new task flow is displayed as a blank visual editor in the JDeveloper middle section.
.jsff
file), and drag and drop it onto the editor.The page fragment itemNode appears in the editor, as shown in Figure 14-8.
Note: The menu data accomplishes several important jobs for you:
|
test_menu_taskmenu.xml
file that you created using the ADF Menu Model dialog. For details about creating the menu, see Section 14.2.1.1.1, "How to Create an Applications Menu."test_menu_taskmenu.xml
structure view menu tree, shown in Figure 14-9, right-click the itemNode item and choose Insert inside itemNode <task_flow_name> > itemNode.The Insert itemNode - Common Properties dialog, shown in Figure 14-10, is displayed.
To the right of the focusViewId field, click the ellipsis to display the Edit Property dialog.
In the dialog, choose the ADFc View Activity id of the page under which you are registering the task flow, then click OK.
<pageID>_<taskFlowName>
This ID example consists of the concatenated page ID (or page name), an underscore, and the task flow name. For example, ExpenseWorkArea_CreateExpense.
The new item node is displayed in the structure view, under the menu tree.
This label will be the title of the tab that is opened by the Task Type defaultMain.
Note: Do not leave this field null. This is the label that will appear in the tab header when in a tabs page. Even if you are in a no-tabs page (see Section 14.2.3.4, "Supporting No-Tab Workareas"), do not leave it blank because this label will be used in other ways, such as Add to Favorites, or when the system tracks the Recent Items. |
test_menu_taskmenu.xml
in the Project Navigator tree, and your task flow in the structure view to display its Property Inspector, or select the Property Inspector tab.In the Advanced section of the Property Inspector, enter the following values:
The Data Control Scope should have been set to isolated
, inside the task flow definition for any taskflow in the menu (defaultMain
or dynamicMain
) or any call from openMainTask
. See dataControlScope
in Table 14-1.
To enter the ID, click the ellipsis to display the Select Task Flow Id dialog, shown in Figure 14-12, and browse to the task-flow definition location. By default, following the standard naming structure, the location will be in path_to_application directory
\ViewController\public_html\WEB-INF
.
Click Open to automatically enter the location in the Task Flow field. The task flow ID is a concatenation of the file location for the task-flow definition and the task-flow name. It typically resembles /WEB-INF/MyTaskFlow.xml#
MyTaskFlow.
The Property Inspector for the itemNode should resemble the example shown in Figure 14-11, "Task Flow Property Inspector".
The new page, shown in Figure 14-13, is displayed in a web browser.
The available itemNode properties for Main and Regional task flows for application menus are shown in Table 14-2.
Table 14-2 itemNode Properties for Main and Regional Task Flows for Application Menus
itemNode Property | Property Value | What Happens on the Rendered Page |
---|---|---|
| Note:
|
|
| String | Note: When passing parameters, do not leave the label field null. This is the label that would appear in the tab header when in a tabs page. Even if you are in a no-tabs page (see Section 14.2.3.4, "Supporting No-Tab Workareas"), do not leave it blank because this label will be used in other ways, such as Add to Favorites, or when the system tracks the Recent Items. |
| ID of the task flow to be loaded. The task flow ID is a concatenation of the file location for the task-flow definition, and the task-flow name. For example:
| |
|
| If A However, if the no-tabs model is used, no new tab is opened. Rather, the current main area contents are replaced. (See Section 14.2.3.4, "Supporting No-Tab Workareas.") |
| String | Important:
The keyList parameter has been implemented for the following FndUIShellController DataControl methods:
In dynamic tabs mode, when looking for a match of a existing tab, these APIs will first look for any instances of the task flow that is already open, which has the same task flow ID as the one passed into them as the parameter. In addition, it will compare the keyList values, such that the existing task flow will be picked only if its keyList values match the ones specified in the keyList parameter. It does not matter if the task flow parameters are the same or different. If the keylist is not set in the menu metadata, you can only reuse a tab if you pass in a null keylist. |
loadPopup |
| See Section 14.2.3.5, "Implementing the Task Popup." Provides a way to load the task flow into a Popup when the user clicks one of the Tasks List links. |
| True or False | No-tab navigation mode can load a main flow and a dependent flow simultaneously, while displaying only one flow at a time. (See Section 14.2.3.4, "Supporting No-Tab Workareas.") The UI Shell is limited to 12 flows: 10 tabs in tab mode; 1 tab in no-tab mode and 1 dependent in no-tab mode. Dependent Flow is applicable only to no-tab navigation model. Instead of having only one region for the no-tab navigation model, there are two regions: one for the main flow and another for the dependent flow. These regions are in a switcher, so that only one is visible at a time. If a dependent flow is loaded, only the dependent flow region is shown, and the main flow region is hidden. When the dependent flow is closed, the main flow region is redisplayed, with its state preserved. When loadDependentFlow is "true," the openMainTask API will load the target task flow in the dependent region. Loading a new task flow in the main flow will close both the existing main flow and, if any, the existing dependent flow. Loading a new task flow in the dependent flow will replace only the existing dependent flow, if any, and leave the main flow intact. |
| True or False | If forceRefresh = true, the contents are refreshed. If forceRefresh is set to false, if the task flow parameters are identical, no refresh will occur, but if they are different, the task flow is refreshed using the new parameters. |
| True (default) or False | When the UIShellMainArea |
|
| All the task flows will render in the Main area. The task flow that has More than one defaultRegional task can have a True disclosed value, because more than one detail item may be disclosed at a time under a panelAccordion component. If the disclosed value is true, the regional area is expanded. If the disclosed value is false, the regional area is collapsed. |
|
| Default is Task flow definitions use conditional activation. There are a number of cases in which Oracle Fusion Applications run with the regional area collapsed by default. Unless the user expands it, there is no need to activate the task flows for the regional area. However, some use cases depend on the task flow that is under the regional area being active even when collapsed. In this case, the
If you require that your task flows be activated or run even though they are not displayed, you will need to change the |
| The Tasks List is exposed as a task flow. See Section 14.2.4, "How to Pass Parameters into Task Flows from Tasks List." | |
| String | The <itemNode id="__ServiceRequest_itemNode_externalUrl" destination="http://www.yahoo.com"/> |
Unless otherwise noted, follow the procedure outlined in Section 14.2.2, "How to Add Default Main Area Task Flows to a Page," to insert the appropriate itemNode properties listed inTable 14-2.
taskType="dynamicMain"
.taskType="defaultRegional"
.A tasks list is not a default widget as part of the UI Shell Regional Area. A tasks list is packaged as an ADF Controller task flow. You must manually add this task flow as you would any other defaultRegional Task.
You need to specify the tasks list task flow as a defaultRegional Task explicitly. If you do not do this, the tasks list does not render.
Add the following entry to your menu.xml
file prior to the item node of tree structure and tree versions:
Note: The taskFlowId value path must appear in a single line to avoid an exception during runtime.
where:
taskType
should be defaultRegional
.taskFlowId
should point to the tasks list task flow provided by Applications Core.disclosed
attribute is usually set to true. Although, it can be set to false if you do not want to disclose Tasks List by default.parametersList
should set fndPageParams
as shown above so that this object is available in the pageFlowScope of the tasks list task flow. This context is necessary for Single Object WorkArea. For more information, see Section 14.19, "Using the Single Object Context Workarea."The Task Category is a label that is used to group tasks in a task list.
itemNode
whose taskType
value is dynamicMain and choose Surround with... .The Surround dialog is displayed.
itemNode
and click OK.The Insert Item Node dialog page opens to the Common properties tab.
pageId_categoryName
For example, you might enter: ExpenseWorkArea_NewExpense
.
Select the focusViewId
of the page.
itemNode - ExpenseWorkArea_NewExpense
, enter these values:Do not leave this field null. This is the label that would appear in the tab header when in a tabs page. Even if you are in a no-tabs page (see Section 14.2.3.4, "Supporting No-Tab Workareas"), do not leave it blank because this label will be used in other ways, such as Add to Favorites, or when the system tracks the Recent Items.
Note: The label should be defined in a resource bundle so it can be translated more readily. |
taskCategory
To run the page, right-click the JSPX page file in the Projects tree view and choose Run.
Check that the page contains task links arranged by category. The Task List is in the left Regional Area of the page. Items in the Task List are bulleted to make it clear when a line wraps.
The Tasks Pane can link to a task flow in a different JSPX. It can pass page-level and task-level parameters.
The navigateViewId
attribute supports this feature.
Example 14-4 shows a sample of the metadata for a link in a Task list that links to another page:
Example 14-4 Example Metadata for a Link in a Task List that Links to Another Page
Product teams can suppress dynamic tab navigation and just display one main area at a time. To do this, add isDynamicTabNavigation="false"
to the itemNode that represents your JSPX page, as shown in Example 14-5.
Example 14-5 Implementing No-Tab Workarea
Note that the default value of isDynamicTabNavigation
is true.
You also can set no-tab mode declaratively in the Property Inspector:
Other menu metadata stay the same. Tasks List will continue to render. Clicking a Tasks Link will replace the current main area task flow with the new one.
The Task Popup provides a way for product teams to:
Implementation Notes
The UI Shell provides an af:popup
component with a modal af:panelWindow
as its immediate child, which would again contain a dynamic region defined in it. On user click, the UI Shell will load the product team's task flow into the dynamic region, and show the modal af:popup
panelWindow without any buttons. Therefore, the product team's task flow must include the OK and Cancel buttons that are used to launch a dynamic tab and dismiss the popup, respectively. The dialog title will be set according to the label mentioned in the menu meta data of the dynamic task link. There is a refresh condition set on the dynamic region that refreshes the task flow and reloads it each time the popup is launched.
Developer Implementation
There are several considerations to keep in mind when you implement the Task Popup:
loadPopup
property as true. For example, as shown in Example 14-6, the ChooseSR Task Flow would be loaded in a popup when the user clicks its link in the Tasks List. The label that is mentioned will be displayed as the dialog title of the popup that launches the task flow.Example 14-6 Example Use of loadPopup Property
af:popup
and its child components, such as af:dialog
, af:panelWindow
, and af:menu.
itemNodes with taskType of dynamicMain, defaultMain, and defaultRegional have parameter support. In addition to specifying the taskFlowId to load when the user clicks a Task link, developers can specify which parameters to pass into that task flow. This is accomplished with the parametersList and methodParameters properties on the itemNode.
For the itemNode where you would like to specify parameter passing, add the parametersList property. The value of this property is a delimited list of parameter name-value pairs that will resemble Example 14-7.
Example 14-7 Using the parametersList Property
methodParameters can be used for passing a Java object into the task flow that is specified in the taskFlowId parameter. Use the setCustomObject() API in FndMethodParameters for setting the Java object.
Example of Passing a Java Object Using openMainTask
Bind the methodParameters parameter value to a managed bean property. Example 14-8 shows the method action binding in the page definition of the page fragment that calls openMainTask. Also see Table 14-2, "itemNode Properties for Main and Regional Task Flows for Application Menus".
Example 14-8 Method Action Binding to Call openMainTask
Code in the managed bean for passing a hashmap to the task flow would resemble Example 14-9.
Example 14-9 Example Code for Passing a Hashmap
Then, in the managed bean of the task flow, the Java object can be read, as shown in Example 14-10.
Example 14-10 Reading Java Object in Managed Bean
where testValue is bound to an af:outputText
value attribute, such as <af:outputText value="#{TestPanelSplitter1MBean.testValue}"/>
, in the page fragment of the task flow.
The UI Shell implements this feature by using the URLView activity that is a task flow component of ADF. URLView generally is used to redirect the current request state of the application to an external or internal URL. With UI Shell, this URLView activity is only being used to launch files that are internal to the current web application.
Therefore, the only input that the task list link will need is the internal path (within the webApp) of the file. Once the path is provided to UI Shell, it will determine the current contextual root of the application and append it to the internal path of the file. Once the URI for the file is generated, this is set on the URLView activity and an action expression is set on the task link to launch the URL view. UI Shell also needs to call an actionEvent javascript method on the client side that will not allow the page to lose its current state upon redirection from the URLView activity.
Limitations
Product teams can only launch data files that are part of their webApp, such as /oracle/apps/fin/acc/file1.xls
. This feature only supports the launch of data files through the task list. Any other URI paths, such as a JSPX or a JSF page, are not supported.
Developer Implementation
For a dynamicMain
task item that you would like to use to launch the data file, there is a property called filePath
in the Menu Panel for the UI Shell page XML file. To enable this property in the Menu panel, during design time, the task type of the itemNode must be dynamicMain. The file URI path then should be specified against the filePath
attribute in the Menu panel, as shown in Example 14-11.
Example 14-11 Specifying the File URI Path
You can specify any file type, such as xls, doc, pdf, txt, rtf, and ppt, that is within the application.
Security of menus has two parts: actual access to the page or task flow, and the rendering of the menu itself. Any page or task flow is protected to only run for a user if that user has access to run the page or task flow. Directions for setting this up are in the "Adding Security to an Oracle Fusion Web Application" chapter in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
Application menus and taskList menus will automatically have their page security checked by the menu utilities. If the user does not have access, the menu entry will not be rendered. If these three conditions are true, security checks if a logged-in user has view privilege for a given task flow.
taskType
is dynamicMain
for the itemNodetaskFlowId
attribute is defined in the itemNodeIf any of these conditions are not true, security is not checked and the itemNode will be protected only by the rendered attribute.
Application menus can have a security Expression Language expression on the rendered attribute that, if it returns false, will not render the menu entry. To do this, set the rendered
attribute of the menu entry to an expression that evaluates anything. For instance, if the task list is to edit certain tax forms, this could be a business rule to hide or show links based on whether or not the customer is a non-profit company. If it evaluates to false, the menu will not appear. For more information on all the security expressions, see the "Adding Security to an Oracle Fusion Web Application" chapter in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
If your UI Shell pages are secured by ADF Security, you must add a policy, similar to Example 14-12, to the jazn-data.xml file and the system-jazn-data.xml file.
Example 14-12 Adding a Security Policy to the jazn-data.xml File
Task Flow Example
Bounded task flows are secure by default, and require the policy shown in Example 14-13.
Example 14-13 Required Policy for Bounded Task Flows
If the policy is missing, then framework level checks will prevent access to the task flow (typically by throwing an error).
But how would a menu item or command link disable or hide itself based on a pre-check of the same permission? That's where an Expression Language expression comes in.
Example 14-14 shows the generic Expression Language expression being used to perform a pre-check of the Task Flow Permission. Note that this is only needed for an itemNode with taskType="defaultMain" or "defaultRegional". The security check is performed automatically for an itemNode with taskType="dynamicMain" (that is, what is in the tasks list).
Example 14-14 Generic Expression Language Expression Used for Task Flow Permission Pre-check
Example 14-15 shows the task flow-specific Expression Language.
Example 14-15 Task Flow-specific Expression Language Expression Used for Task Flow Permission Pre-check
Note that both of these checks actually go directly against the policy store; that is, they don't interrogate the task flow definition. This avoids the overhead of loading a large number of ADF artifacts to render links and menus.
UI Shell tasks to open up or close a Main Area tab are exposed as data control methods so that you easily can create such UI artifacts through drag and drop. You do not need to create your own data control methods and manually raise Contextual Events.
Data control APIs are:
Note: When passing parameters, do not leave the label field null. This is the label that would appear in the tab header when in a tabs page. Even if you are in a no-tabs page (see Section 14.2.3.4, "Supporting No-Tab Workareas"), do not leave it blank because this label will be used in other ways, such as Add to Favorites, or when the system tracks the Recent Items. |
For example, to open or close a Main Area tab, drag and drop the appropriate data control method to create the UI affordance. Having specified the parameter values into these methods, user clicks will prompt UI Shell to react accordingly.
To use the openMainTask data control method:
To use the closeMainTask data control method:
Two APIs, shown in Example 14-16, are exposed to open and close a Main Area tab.
Example 14-16 APIs Exposed to Open and Close a Main Area Tab
Bind the methodParameters
parameter value to a managed bean property. Example 14-17 shows the method action binding in the page definition of the page fragment that calls openMainTask
.
Example 14-17 Method Action Binding in Page Definition of Page Fragment That Calls openMainTask
Example 14-18 shows code in a managed bean for passing a hashmap to the task flow.
Example 14-18 Sample Code in a Managed Bean for Passing a Hashmap to the Task Flow
Then, in the managed bean of the task flow, the Java object can be read, as shown in Example 14-19.
Example 14-19 Reading Java Object in a Managed Bean
Where testValue is bound to an af:outputText value attribute, such as <af:outputText value="#{TestPanelSplitter1MBean.testValue}"/>
, in the page fragment of the task flow.
Dynamic tabs mode tracks the last tab that was displayed before the current tab. When the current tab is closed, that last tab is brought back into focus.
In no-tabs mode, a stack of all the task flows that were opened is maintained, along with the parameter values. When the current task is closed, the task flow, with its original parameters, that was open before the current one, is reinitialized.
There are two ways in which the previous tab information is set for a given tab. When a new tab is opened, the tab that was in focus is the new tab's previous tab. When the user clicks a tab UI, the last tab that had the focus becomes the current tab's previous tab.
MainAreaHandler.handleOpenMainTaskEvent
has a mechanism to handle the new tab. The managed bean for the tab adds an additional property for the previous tab. When a new tab is configured to be launched, the current tab is set as the previous tab for the managed bean for the new tab.
A disclosure listener, MainAreaBackingBean.setLastDisclosedItem
, handles user clicks in the tab UI. When the user clicks a tab, two events fire: one for the tab that is going out of focus, and one for the tab that is coming into focus. First, during the out-of-focus event, the tab that is going out of focus is captured in the managed bean's instance variable. Then, during the in-focus event, that instance variable's value is set as the previous tab in the managed bean for the newly-focused tab.
Through user clicks, it is possible to end up in a circular dependency, in which TabA's previous tab is TabB, whose previous tab is TabA. In this case, when TabA is closed, TabB would come into focus. However, when TabB is consequently closed, TabA would have to be focused, but it has already been closed. This corner case is handled by moving the focus to the first tab in the Main Area.
No-Tab Navigation
To keep track of all task flows that have been opened, a Stack instance variable is introduced in the MainAreaHandler
. When a new task flow is opened, the task flow ID and its associated parameter values are pushed onto the stack.
Having this information, the call to closeMainTask
pops the stack to get the last task flow ID and its parameter values that were displayed, and reinitializes the Main Area with that task flow and parameter information.
See also Section 14.2.3.4, "Supporting No-Tab Workareas."
The UI Shell exposes the means to control the disclosure state of the Regional Area as a whole, and the disclosure state of individual panels within the Regional Area panelAccordian.
Declarative support: (to allow the developer to specify the initial state of the following on loading a Work Area JSPX page)
Programmatic support: (to allow the developer to control the initial or subsequent state of the following within a Work Area JSPX page)
Declarative support is provided using attributes exposed on the respective item node in the Menu Model.
For regional panels:
There are separate APIs that expose parameters to refresh the task flow and set the disclosure state for the showDetail items in the panel accordian. The showDetail items are identified by the task flow id specified.
Developer Implementation
Example 14-20 Sample Menu File Entry
Two APIs, shown in Example 14-21, are exposed as data control methods under FndUIShellController.
Example 14-21 APIs Exposed as Data Control Methods Under FndUIShellController
Limitations
inflexibleHeight
property to control the pixel height of the Regional panel. Programmatic support does not have this allowance.forceRefresh
property to make it possible to refresh a Task without passing in any parameters. Declarative support does not have this allowance.This section discusses the declarative and programmatic means of controlling the state of the Contextual Area splitter.
The UI Shell must expose the means to control the disclosure state of the Contextual Area.
Declarative support lets the developer specify the initial state when loading a Work Area JSPX page. It determines whether or not the Contextual Area (as a whole) is collapsed or disclosed.
Programmatic support lets the developer control the initial or subsequent state of the Contextual Area within a Work Area JSPX page.
Samples of Expected Behavior
Example 14-22 Extending the Task Flow Template
contextualAreaWidth
and contextualAreaCollapsed
properties. A sample entry in the menu file will resemble Example 14-23.Example 14-23 Example of contextualAreaWidth and contextualAreaCollapsed Properties
collapseContextualArea
contextualAreaWidthSelection
openMainTask
method from FndUIShellController and pass in the contextualAreaWidth
and contextualAreaCollapsed
parameters through "methodsParameters > NamedData" as shown in Example 14-24.Set the method in the page managed bean to set the contextualAreaWidth
and contextualAreaCollapsed
values, as shown in Example 14-24.
Example 14-24 Setting the contextualAreaWidth and contextualAreaCollapsed Values for openMainTask
navigate
method from FndUIShellController and pass in the contextualAreaWidth
and contextualAreaCollapsed
parameters through "methodsParameters > NamedData" as shown in Example 14-25.Set the method in the page managed bean to set the contextualAreaWidth
and contextualAreaCollapsed
values, as shown in Example 14-25.
Example 14-25 Setting the contextualAreaWidth and contextualAreaCollapsed Values for navigate
Multiple Regional Area panels will be open at the same time, instead of showing only one panel at a time.
Because the desired size of each panel will be different for each panel, developers can set the pixel height for each of the panels by specifying the inflexibleHeight
property in the itemNode that represents a Regional Area panel, as shown in Example 14-26.
Example 14-26 Using inflexibleHeight to Set Panel Height
Menu metadata used in Oracle Fusion Applications is divided into global menu data, consisting of the Home Page tabs, the Navigator Menu (also known as the main menu), and the Preferences Menu.
The Navigator Menu and Home Page tabs contain information from different applications, yet each application must be able to be developed independently. To bring this information together, a Global Menu Model is provided.
Navigation to a page is accomplished by constructing and executing a URL. Matching the application name from the distributed menu metadata to its deployment information will dynamically create the host/port portion of the URL. Other page parameters are held in the existing page-level menu metadata.
The Task Menu, create URL, and navigation API allow other declarative and programmatic access to page navigation. The UI Shell global area also will support a Home link for page navigations.
Global Menu Model Service
This model:
Example of Global Menus
The global menu model presents a cascading appearance, shown in Example 14-31.
Global Menu Behavior
Note: Before you create menus, you first must create JSF pages using the UI Shell template. |
These Global Menus span J2EE applications.
Table 14-3, Table 14-4, and Table 14-15 list the menu attributes added by Applications Core to the menu XML above what is provided by Oracle ADF.
Table 14-3 <groupNode> Attributes
Attribute | Data Type | Required | Description |
---|---|---|---|
| xsd:string | N | Bundle key used for label; the key will be looked up in the resource bundle specified by the resourceBundle attribute of <menu>. |
Table 14-4 <itemNode> Attributes for Global Menus
Attribute | Data Type | Required | Description |
---|---|---|---|
| xsd:string | Y | The webApp attribute is used to look up the host and port of the associated Workarea or Dashboard from the ASK deployment tables. These tables are populated at deployment time through Oracle Fusion Functional Setup Manager tasks. |
| xsd:string | N | This is the page Id. This can be found by looking in the |
| xsd:string | N | The resource name that is used for securing the item node. |
| string | (This attribute is used for pages.) Check security of the page against the policies that are located in LDAP. The applicationStripe name must be the same as the stripe name of the LDAP policy store, which is the same as the web.xml application.name attribute. | |
| string | This is a task-level itemNode attribute that is a parameters list to pass in to the task flow to open in the target workspace. This is a semicolon-delimited string of name value pairs. For example, "param1=value1;param2=value2." | |
| string | This is a page-level itemNode attribute that is the parameters list for the page. This is a semicolon-delimited string of name value pairs. For example, "param1=value1;param2=value2". If the Expression Language expression evaluates to an Object, the toString value of that Object will be passed as the value of the parameter. | |
| string | The <itemNode id="itemNode_otn" destination="http://www.oracle.com/technology/index.html"/> |
The Navigator menu, shown in Figure 14-18, is rendered when the Navigator link is clicked on the UI Shell.
Note: The Navigator menu is used as the example for how a developer implements a Global Menu, but the steps will be similar for the Preferences and Home menus. |
The Navigator menu metadata may be pointing to target workarea pages in various applications. To simplify the runtime behavior, one XML file contains all the menu entries. An Applications Core application will deploy these menus to MDS. Each application will read these directly from MDS.
Each application must be configured so that the shared library can read the menus from MDS.
To implement a Global Menu:
web.xml
of the application has the correct Java Authentication and Authorization Service (JAAS) filter to enable checking menu security against Oracle Platform Security Services (OPSS), as shown in Example 14-27.Example 14-27 Sample JAAS Filter
application.name, as shown in the example, in web.xml
is the application family value. The choices are crm, fscm, and hcm. This value is used to create the stripe in LDAP.
weblogic-application.xml
. As shown in Example 14-28, set the application-param that has the param-name jps.policystore.migration to OFF.Example 14-28 Setting jps.policystore.migration to OFF
weblogic-application.xml
, make sure the application-param that has the param-name jps.policystore.applicationid is set to the correct stripe, as shown in Example 14-29. This is the same as the application.name property of web.xml
.Example 14-29 Setting jps.policystore.applicationid to the Correct Stripe
Global Menu security depends on applications using a standalone LDAP server.
Note: Global security only works with standalone WebLogic Server. |
ADF Menu Security is enabled by default. If you need to disable menu security, such as for testing, launch WebLogic Server after setting the JAVA_OPTIONS environmental variable in the setDomainEnv.sh
file:
Before you enforce user actions, you should already have defined roles, principals, and actions in the database.
Functional security will always prevent a user from accessing a page or task flow that the user does not have access to. To improve the user experience, global menus can be hidden if the user does not have access to that page. There are two different security features for this:
securedResourceName
attribute, which should be the value of the page resource against which security can be checked. For pages, this is the page definition file.rendered="false"
(false being the outcome of the expression), the menu item will be hidden even if the user has access to the page. There are certain times you would want to do this. For instance, consider a person working in HR as a consultant, not an Employee. You might want a menu entry for editing employee data under an HR category, but not to show an entry under the Employee Self-Service category that also led to the same page. See Example 14-30.Example 14-30 Expression Language Expression to Evaluate a User's Access Rights
The Expression Language expression should never check the pageDef. However, you can use the Expression Language expression to check security of a person's role since that is in LDAP.
applicationStripe
attribute determines which LDAP stripe is checked for the securedResourceName
.Menu files will be references through MDS. This means they can be located in a table or in a file system directory. Determine where this directory will be now. This is where your root_menu.xml
and other menu files will be located. For Global Menu attributes, see Section 14.5.1.1, "Menu Attributes Added by Oracle Fusion Middleware Extensions for Applications (Applications Core)."
Example 14-31 shows a sample root menu.
Example 14-31 Example of a Navigator Menu
The next files in the menu hierarchy can contain groupNodes that appear as non-clickable categories, itemNodes that are clickable to launch a page, or references to more menu files. If itemNodes were included that were not deployed, they will not appear since a check is done against the deployment tables of what was deployed. Applications Core requires that if a groupNode has no children, which could happen through security enforcement, the groupNode itself will not be rendered.
There are situations, particularly with more simple applications, when the default enterprise-level menu structure is not suitable. In these cases, you may want to display the Navigator menu as a series of pull-down buttons.
To switch the UI Shell rendering so the Navigator menu renders as pull-down buttons in a horizontal row, set the isSelfService
attribute to "true" on the .jspx page that extends the UI Shell template. That is, inside the <af:pageTemplate>
tag, add the following:
<f:attribute name="isSelfService" value="true"/>
The Personalization menu options, shown in Figure 14-19, let you set your preferences, edit the current page, and reset the content and layout. The menu is supplied automatically by the UI Shell and requires no developer work.
The Preference Menu only appears if you have the ApplSession filter and mapping set up. See Section 47.2, "Configuring Your Project to Use Application User Sessions.".
Set Preferences
The actual Preferences dialog, such as shown in Figure 14-22, is created by developers. See Section 14.7 for the details of how to implement the menu.
Edit Current Page
This option displays only if the displayed page has been marked as able to be user-edited (if the isPersonalizableInComposer
attribute in af:pageTemplate
is set to true). Selecting this option will start the editing feature and the page will resemble Figure 14-20. Click Close to return to the page. Click Customization Manager to change the displayed page in Composer. For more information about the Customization Manager, see the "Customization Manager" section in the "Extending Runtime Editing Capabilities Using Oracle Composer" chapter, and the "Manage Customizations" section of the "Introduction to Oracle Composer" chapter of the Oracle Fusion Middleware Developer's Guide for Oracle WebCenter. Note that changes are for just this user and therefore are called personalization. See Chapter 61, "Creating Customizable Applications".
Reset Content and Layout
Select this option to discard any personalization changes and return to the default settings. Note that resetting layout and content is for that page. In particular, if any taskflows are personalized on that page via Composer, they are not reset by this menu item.
Set Preferences, shown in Figure 14-21, is a link in the global area for easy access to setting preferences for the current application, general user preferences, or for any other application preference in Oracle Fusion Middleware. For more information about this global menu, see Section 14.5, "Working with the Global Menu Model."
Preferences are pages that can set system-wide settings that applications can access. There are general preferences that affect all applications, and there can be application-specific preferences. General preferences include language, date format, and currency. General preferences are stored in LDAP so they can be accessed from any application. Application preferences are usually stored in the applications on database tables but can be stored in LDAP.
The Preferences link from the global area will launch a Workarea that shows the preferences related to the currently-displayed page.
Links in the left hand side will allow navigation to any Preferences Workarea page within the entire Oracle Fusion product. This menu will be rendered using Applications Core menu federation abilities. Development teams will own the menu files.
If an application is not installed, or the user does not have access, the entry in the tasklist menu should not appear. If a user does not have access to a particular setting within a page, application teams need to use the rendered
property with a security expression behind it.
For each application, there should be a preferences page. The preferences page will be found by looking for a page using the same path of the current application, but with a page name of preferences.jspx.
If no associated preferences page exists, a default General Preferences page will be shown. This page shows global Applications Core most-used preferences.
If there are several preference pages associated to an application, such as a Common Setting page and more specific pages, only one preferences page as a target from the global preferences link can be defined per application. (There will be a default name for the target focusViewID
of the preferences page for an application.) Once in the preferences workarea, other links are available from the tasklist to more specific pages or task flows. (Links in the tasklist can contain other focusViewIDs
that belong to the same application as the default preference page.)
When the first application is deployed, it should become the location of the General Preferences page.
Several pages of an application can all point to the same preferences page.
More than one application cannot point to the same preferences page. This implies that each application can have its own preferences page, and if two applications want to share a common preferences page, they can, but it can only be navigated to from the task list. Therefore, from the Preferences link, the user always displays the more specific preferences page of that application.
A Preferences page will be like any other Workarea page. Preference values are not supported in integrated WLS LDAP, only an external LDAP is supported. The Tasks list will be loaded as a defaultRegional flow and the main area will be a defaultMain flow.
Workarea Title
Each Preferences page should display a title similar to {Category_name:Page_name}. This can be done though Expression Language and will not be created automatically from the framework.
The name that appears in the tasklist can be different from the page title. This is allowed since the tasklist name is generated from the tasklist preference distributed menu metadata, while the page title will be from the local page level menu metadata.
Tasklist / Navigation Pane
Each page needs its Application Menu metadata to specify that it wants the Preferences tasklist menu in the defaultRegional area as well as the defaultMain flow.
This menu can be a two-level menu having categories with links under each category.
Tasklist Federation
The tasklist will be a task flow that will contain links to all Preference pages throughout Oracle Fusion Middleware.
Each application will provide the preference menu files that contain tasklist links to preference pages delivered by that application. The preferences tasklist should follow the Navigator Menu architecture recommendations where it uses sharedNode references to bring in menus from each application so they can be patched independently. Applications Core will automatically federate the menu metadata so the tasklist that renders will contain all the entries from all applications (filtered by security).
Individual menu files will be versioned like other distributed menu files, so any application can apply a patch and the new menu will take precedence over an older version when federated.
Tasklist Only Can Link to Full Pages (not specific task flows)
The tasklist will not launch task flows dynamically, but will load a Preferences workarea page. This is because the tasklist menu needs to be federated and only page-level entries are allowed in a federated menu.
No-tabs Mode
The Preferences page should use a no-tabs mode. This is a standard, not controlled through any code. Teams could use tabs if all flows are defaultMain if desired. See also Section 14.2.3.4, "Supporting No-Tab Workareas."
Tasklist Security
The tasklist will be filtered by functional page level security for that user. If all entries in a category are restricted then the category should not appear either.
Preference Settings
Settings will be a view activity in a task flow. It will follow other UX standards so it should be built using an Applications Panel. This means the action buttons will appear at the top.
Different Preference pages can change the same back end setting. This is up to Applications design. If this is needed, it should be stored in a common area, such as LDAP, or be in the General Preferences page.
Application preferences pages are deployed with the corresponding product pages.
The design should be similar to that shown in Figure 14-22.
This section discusses how to set up and configure Preferences.
Once the WebLogic Server console is configured, create an Oracle Fusion web application that uses UI Shell pages.
isDynamicTabNavigation
to false for the PreferencesUI page entry in the menu."/WEB-INF/oracle/apps/fnd/applcore/pref/ui/mainflow/GeneralPreferencesFlow.xml#GeneralPreferencesFlow"
Example 14-32 Sample General Preferences Menu Entries
This should display the basic Preferences in the default regional area that can be launched to display sub-flows for each preference sub task (for instance, Accessibility and Appearance).
The General Preferences flow that is exposed also renders the Preferences Menu Model links by using a call to the Menu Service API.
The Preferences menu will be part of a central Utility application (Menu web service) that will be deployed in the server. The Preferences menu will be maintained by the development team.
On any UI Shell page, the Global Area contains a Personalization menu that contains a Set Preferences link. This Preference link will redirect the user to a webApp-specific Preference page, depending upon the entry in Menu data.
Example 14-33 shows sample preferences menu data.
Example 14-33 Example Preferences Menu Data
In the example menu XML file, each parent item node represents a Preferences UIShell page. Its child nodes refer to the webApp-specific flow in which the Preference page exists.
For example, the first itemNode refers to the preferencesA page that is part of the FND webApp. The ServiceFlow child node is a task flow that belongs to FND webApp.
For each parent itemNode, there is an attribute called prefForApps
that contains a list of webApp names. This means that the itemNode is a common preference page for those listed webApps.
For example, the Preferences page is common for two webApps -- gl and hr. This essentially means that all the DashBoards and Workarea UI Shell pages in gl and hr webApps will be redirected to this preferencesA page, which is in webApp FND, when the Set Preferences link is clicked.
All the task flows under each preference page itemNode will display in the General Preferences Flow as navigate links. Therefore, all preference pages will have access to these flows.
To test the general preferences flows, you need to configure user session and ADF Security for the test application. See Chapter 47, "Implementing Application User Sessions."
When configuring ADF Security, there is no need to define users, because you already are using an OID store that will authenticate the users existing in the store.
See Chapter 20, "Working with Localization Formatting."
A use case exists where the UI needs to use an Expression Language expression to check whether the accessibility mode is set to screenReader to render screen reader-friendly components in screenReader mode. The recommended method to do this uses #{requestContext.accessibilityMode}
and is documented in "How to Configure Accessibility Support in trinidad-config.xml" in "Developing Accessible ADF Faces Pages" in Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework.
The Password link on the General Preferences page will point to the Password Management page from the Oracle Identity Management administration application. This page is maintained by the OIM team. For the Password link to redirect to the pwdmgmt.jspx
page, the deployment information of the current application and the OIM administration application must be populated correctly in the ASK tables.
The Administration Menu, shown in Figure 14-23, is displayed only if the logged-in user has the appropriate privileges. See Section 14.8.1, "How to Secure the Administration Menu". The menu is supplied automatically by the UI Shell and requires no developer work.
Customize Case List Table Pages ...
Select this option to customize the current page for multiple users using the customization layer picker dialog.For information about customization, see Chapter 61, "Creating Customizable Applications" and the "Customizing Applications with MDS" chapter in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
Customization Manager ...
Select this option to launch the Customization Manager.
For information about customization, see Chapter 61, "Creating Customizable Applications" and the "Customizing Applications with MDS" chapter in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework. For more information about the Customization Manager, see the "Customization Manager" section in the "Extending Runtime Editing Capabilities Using Oracle Composer" chapter, and the "Manage Customizations" section of the "Introduction to Oracle Composer" chapter of the Oracle Fusion Middleware Developer's Guide for Oracle WebCenter.
For information about defining and configuring namespaces when promoting a page fragment to a label, see "Updating Your Application's adf-config.xml File" in the "Performing Oracle Composer-Specific MDS Configurations" chapter of Oracle Fusion Middleware Developer's Guide for Oracle WebCenter.
Manage Sandboxes ...
Select this option to manage sandboxes on your system.
The Sandbox is built on top of the standard Sandbox feature from Oracle Metadata Services. See "Using the Sandbox Manager" in the "Understanding the Customization Development Lifecycle" chapter of the Oracle Fusion Applications Extensibility Guide.
Setup and Maintenance ...
Select this option to launch the Oracle Fusion Functional Setup Manager application. See the Oracle Fusion Applications Common Implementation Guide.
All teams that need the Administration link need to include the privilege and the permission in their JAZN file as defined in Example 14-34. All Administrator Roles must inherit the Applications Core "Administration Link View Duty" duty role. This duty role gives access to the "View Administration Link" privilege.
Example 14-34 Required Privilege and Permission in JAZN File
The Help Menu, shown in Figure 14-24, provides user access to the standard help system and to troubleshooting and diagnostic tools. The menu is supplied automatically by the UI Shell and requires no developer work.
User Productivity Kit
The User Productivity Kit (UPK) option will be available when the UPK has been purchased, installed and configured.
This context-param entry must be added to the web.xml file:
Also, "upk" needs to be provisioned by the System Administrator. That is, an entry with DEPLOYED_MODULE_NAME = "upk"
needs to be added in the ASK deployment tables. These tables are populated at deployment time through Oracle Fusion Functional Setup Manager tasks. Without the entry, the menu item "User Productivity Kit ..." would not be shown in the Help menu.
Applications Help
Select this option to launch the help system in a separate window.
Troubleshooting
When you select the Troubleshooting option, an additional menu, similar to Figure 14-25, displays.
Select this option to display the Options dialog, as shown in Figure 14-26.
Applications logging, severity level and modules are stored as user-level profile options in profile tables. The corresponding profile option names are AFLOG_ENABLED, AFLOG_LEVEL, and AFLOG_MODULE. See "Configuring Settings for Log Files and Incidents" in Oracle Fusion Applications Administrator's Guide for information.
Because applications logging, severity level, and modules are profiles, when users click Save and Close, it will insert user-specific profile values to the profiles. If users decide to revert the setting to the default site profile, they will need to use the Functional Setup Manager to remove their own profile.
After making changes to any one of the options for applications logging, severity level, or modules, the user needs to log out of the Oracle Fusion application, close the browser session, and log back in for the new options to take effect. These logging profiles are cached in user session and initialized when a user logs into an Oracle Fusion application.
This option enables SQL trace for all database connections used by the current user session. See "Understanding SQL Trace and TKPROF" in the Oracle Database Performance Tuning Guide.
For SQL trace, the trace file will have the FND session id appended to the end. For example, mysid_ora_4473_881497BF7770BEEEE040E40A0D807BB1.trc
.
The trace file can be found on the database host in the directory specified by the user_dump_dest init.ora
parameter.
Select this option to also enable the SQL trace option to capture bind variables.
Select this option to also enable the SQL trace option to capture wait events.
This option enables the PL/SQL hierarchical profiler for all the connections used by the current user session. See "Using the PL/SQL Hierarchical Profiler" in the Oracle Database Advanced Application Developer's Guide.
For PL/SQL profiler, the output will be in the directory defined by APPLLOG_DIR
. The exact path for APPLLOG_DIR
can be found on the database host by using the SQL command:
select directory_name, directory_path from dba_directories where directory_name like 'APPLLOG%'
The file names would be PLS_<some number>_<FND session id>_<timestamp>.txt, such as PLS_49774696_88740EC94E3AAD2CE040E40A0D8036D8_100607104716.txt.
To process the collected PL/SQL profiles and view results, run plshprof
under $ORACLE_HOME/bin.
Applications Logging is selected by default. Disabling logging will warn users that no logging will take place.
Use this option to set what types of information to log, and how much of it to log.
For more information, see "Managing Oracle Fusion Applications Log Files and Diagnostics Information" and "Troubleshooting for Oracle Fusion Applications Using Logs and Diagnostic Tests" in Oracle Fusion Applications Administrator's Guide.
Module filter for logging. This is a comma-separated list of modules to be logged. The percent sign (%) is used as a wild card. For example, % or %financial%. The percent sign (%) is the default value and, if no other value is specified, means everything will be logged.
When a customer logs a service request with Oracle, the support person will help the customer enter the values necessary to filter the diagnostic logs for the needed information.
Selecting this option opens the Diagnostics Dashboard user interface in a new window. For more information, see "Managing Oracle Fusion Applications Log Files and Diagnostics Information" and "Troubleshooting for Oracle Fusion Applications Using Logs and Diagnostic Tests" in Oracle Fusion Applications Administrator's Guide.
Privacy Statement
Select this option to display the privacy statement, which will appear in a new browser window. This option is always inactive until it is implemented. To set up the privacy statement, enter a fully-qualified URL in the PRIVACY_PAGE profile option. See Section 54.3, "Setting and Accessing Profile Values."
About Applications
Select this option to display the Oracle copyright statement and information about the application.
Tagging is a service that allows users to add tags to arbitrary resources in the Oracle WebCenter so they may collectively contribute to the overall taxonomy and discovery of resources others have visited.
Tagging is a component of Oracle WebCenter. For complete information, see the Oracle Fusion Middleware Developer's Guide for Oracle WebCenter. Specific information about tagging that you will need is in these chapters:
This section assumes that:
Important Considerations
Preliminary Setup
The following steps are condensed from the Oracle Fusion Middleware Developer's Guide for Oracle WebCenter.
WebCenter
. Tagging looks for this connection to access the data.Note: You should now see at least two connections in your connections.xml : WebCenter and ApplicationDB. |
You now can enable Tagging for your business objects.
Three pieces of information are needed to define Tagging to a business object:
(VARCHAR2(200)): This is what will be displayed as the resource that is tagged in the Tag Center, and that will be visible to the end users when they search for a tagged item. Give it a meaningful name, such as <PO Number>+<PO Title> or Invoice Description or Customer Name.
Note: All fields are varchar2(200). Make sure that you are not violating the constraint. Also note that if, for instance, your product has three business objects that you are planning to tag, you will build three different services with the proper business object name as the service id. |
Follow these steps to tag a resource:
Example 14-35 Entering Property Information for Tagging Button
Note: Make sure all the values are of type String. |
Note: If placing tags within rows of a table, this region must be dropped outside of the table. Otherwise, it is instantiated for every row, which will not work. |
The ability to tag an object is now enabled on the page. The code will look similar to that shown in Example 14-36.
Example 14-36 Enabling Tagging
If you have multiple objects to tag, there will be multiple tag buttons you will drop on your page, whereas there will be only one tagging dialog.
Tagging is enabled, but to see the Tagged resource in the Tag Center, you must create a service definition.
To create a service definition:
service-definition.xml
file, open it. Otherwise, create the service-definition.xml
file. Important fields are:customDelimiter
attribute.Region
and a taskflow parameter called InvoiceType
. It is assumed an object will always need both composite keys to be identified as a unique entity. So, the resourceParamList will always contain the same number of parameter names as the composite keys. The taskflow must take both EastCoast and C45 as parameters. But the page level parameters can be called out in the pageParametersList
. For example:pageParametersList = "Campaign=Sales"
For ease of deployment, service definition files will be stored in Oracle Metadata Services (MDS). Add the service-definition.xml
file to the Metadata Archive (MAR) file definition.
A sample service-definition.xml
is provided in Example 14-37.
Example 14-37 Sample service-definition.xml
You want to put the service-definition.xml
file in a standardized location so there are no conflicts. Create or copy the file, which by default is located at .adf/META_INF/service-definition.xml
, to the new standardized location. There are two goals for where to put the service-definition.xml
:
meta/oracle/apps/meta
. The /oracle/apps/meta
makes the location specific to Oracle applications. The parent meta/
directory is used for MAR selection. The directory structure and contents then resemble:If you use an application-level or project-level service-definition.xml
file, you do not need to make any changes so long as your name will be unique to other applications and projects. You should never have two entries for the same SERVICE_ID, whether within the same service-definition.xml
file or in separate service-definition.xml
files.
That is, the service-definition.xml
file should be under the data model project that contains the entity objects and view objects used for the detail page. If the view object is:
oracle.apps.scm.receiving.receipts.receiptSummary.protectedUiModel.view.ReceiptSummaryHeaderVO
,
the service-definition.xml
location will be:
oracle.apps.scm.receiving.receipts.receiptSummary.protectedUiModel.meta.oracle.apps.meta.scm.receiving.receipts.receiptSummary.service-definition.xml
.
meta/oracle/apps/meta/<lba>/<product>/
, into the MAR.oracle/apps/
) and click OK./oracle/apps/meta
to adf-config.xml
, as shown in Example 14-38.Example 14-38 Adding the Namespace Path to adf-config.xml
adf-config.xml
to enable the default resource action handler from Applications Core:Example 14-39 Enabling the Default Resource Action Handler
Add this instruction in the header:
xmlns:wpsC="http://xmlns.oracle.com/webcenter/framework/service"
Searchable and taggable objects are defined at the view object/logical business object level. The same view object/business object can be viewed and tagged in more than one workarea and taskflow. The requirement is that all users must be able to navigate from TagCenter to a detail taskflow for which they have privileges. If this taskflow is available in the current workarea, use this target before any other.
This is implemented by supplying multiple navigation targets in the current service-definition.xml
. Each target will have its parameter separated by a caret (^).
Example 14-40 shows how to define a list of three targets:
Example 14-40 Defining a List of Three Targets
The lists of taskFlowId
, viewId
, webApp
, and so on, are specified as a delimited string, with each value delimited by a caret. Two parameters, applicationStripe
and pageDefinitionName
, are available for checking security when the target is in a different webApp.
If the current view id matches any one of the viewId values in the target list, you take the corresponding task flow (that is, if the third viewId value matches the current view id, you take the third taskFlowId value) and launch it in the current page, if the user has view access to that task flow, which overrides the order of the list. Otherwise, you check a list of link targets for the first target to which the current user has access. Application teams are responsible for making sure that all users who can access this object have at least one match to a target taskflow defined in the service-definition.xml
.
When the target is in a different webApp, the security check is performed by calling checkBulkAuthorization API
. Therefore, using a standalone WebLogic Server and LDAP policy store are required. This requirement is optional when the lists of targets are within the same webApp.
To add row-level tagging to a table, add a new empty column to hold the tag button/link.
All other steps remain the same as described in Section 14.10.1.1, "Tagging a Resource (Business Object).".
The Applications Standard recommends that you do not add the Tag Search in your page. The standard way is to launch the Tag Center UI by clicking the Tag icon, or from Tags in the UI Shell global area and do the search there.
It can be handy for a user to be able to click a tag and open a document. To do this, Web Center Tagging needs to know a resource viewer (a task flow) where it should take the user to show the required information.
Each development team will build a task flow where they can take the user for that resource and show the desired additional information.
Note that the value for resourceId is set automatically when clicking a tagged item link in TagCenter.
service-definition.xml
file. You will register the resource viewer for a particular service (business object) to its section in the service definition file. See Example 14-37 for samples of the service-definition and resource-view entries.Basically, you have defined a task flow that takes the resource id as input. Use the resource id to uniquely identify the business object and display any desired extra detail. Note that clicking a tagged item in TagCenter displays the details/information page for the tagged item in the local area of the workarea page for that task flow.
By default, tagging does not provide any security. To avoid this problem, the development teams will implement security for each service (business object) for which tagging is enabled.
authorizerClass
and the dataSecurityObjectName
parameter to the service-definition.xml
file, as shown in Example 14-41.Example 14-41 Registering a New Class in service-definition.xml
FND_CRM_CASES is the object you want to secure that is found in the FND_OBJECTS table. This is normally the object's main table name.
If the dataSecurityPrivilegeName
parameter is not set, it defaults to read privilege. This attribute is used in cases where a single table has different privileges for different users.
This section presents examples of how tagging appears in the UI Shell.
Recent Items tracks a list of the last 20 task flows visited by a user. The Recent Items list is persistent across user sessions and a task can be relaunched from the Recent Items list. The feature is automatically turned on and will be available automatically in pages using the UI Shell template. Security must be disabled to turn Recent items off.
Before you begin:
For the Recent Items feature to work, product teams must configure the user session and ADF Security. See Chapter 47, "Implementing Application User Sessions." Without security enabled, recent items will not be captured, because the data is recorded for each authenticated user.
Recent Items records the task flow labels for a launched task flow. Therefore, product teams must carefully choose the labels for task flows, and must provide task flow labels for all task flows, even if they are meant to be used in no-tab mode (see Section 14.2.3.4, "Supporting No-Tab Workareas").
openMainTask
is used to open a new task in the Main Area of Oracle Fusion web applications that use UIShell templates. Besides opening a new tab, openMainTask
also pushes a new task flow history object onto a stack, which is used to keep track of all task flows that have been opened. The task flow ID and its associated parameter values are encapsulated in the task flow history object.
Having this information, the call to closeMainTask
pops the stack to get the last task flow ID and its parameter values that were displayed, and reinitializes the Main Area with that task flow and parameter information.
When a task flow is called from the local area task flow using task flow call activity, it is called a sub-flow. By default, sub-flows will not be recorded on the stack as described. Two new APIs are exposed in FndUIShellController
data control for registering sub-flows: openSubTask
and closeSubTask
.
Use the openSubFlow
and closeSubFlow
APIs to record sub-flows to Recent Items. Whenever an ADF Controller task flow call takes place, no notification is raised to Applications Core or UI Shell. So, unlike launching a task from a tasks list, product teams need to explicitly notify the UI Shell for sub-flow calls.
When openSubTask
is called before a sub-flow is launched, the sub-flow ID and its parameter values are pushed onto the stack. Applications Core also notifies the Recent Items implementation with recorded task flow information. This essentially makes a sub-flow able to be bookmarked by Recent Items, and can be launched directly from the selection of menu items on Recent Items.
Note that registering sub-flows to Recent Items is optional. The decision is up to a product team's product manager.
Implementation
This API is exposed as the Data Control methods FndUIShellController.openSubTask
and FndUIShellController.closeSubTask
that developers will drag and drop to their page fragments to create links to notify UI Shell. The FndUIShellController Data Control is automatically available to all Oracle Fusion applications that reference Applications Core libraries.
Example 14-42 shows the signature and Javadoc of the method.
Example 14-42 Recent Items API
All the parameters required to be passed in openSubTask
are exactly same as used by the Section 14.16, "Introducing the Navigate API.".
The openSubTask
API accepts the same set of parameters as used by the Section 14.16, "Introducing the Navigate API." If no label is specified in the openSubTask
API, Recent Items will register it with the name of the parent task flow's label. You should set a different label based on the business use case in the openSubTask
API. Failing to do so will register this flow with the same label as the parent task flow's label and, therefore, will make it impossible to distinguish between the parent flow and the sub-flow entry in the Recent Items list.
Whatever task flow details are registered while invoking the openSubTask
API will be used by Recent Items to launch it. Recent Items takes care of launching the task flow in the right work area and web application. Product teams do not need to do anything for that. Because the openSubTask
API supports parametersList
, product teams can pass some requirement-specific values to it while registering their task flow to Recent Items. On launching, those passed values are available in the pageFlowScope
. So, product teams can analyze these values and make decisions, such as if they need to first initialize the parent flow, or if they need to set Visible
to False
on some of the actions on the page.
To record sub-flows into the Recent Items list, applications need to call the openSubTask
API right before sub-flows are launched. openSubTask
takes parameters similar to the Navigate
API. One of these is task flow ID. For this, you need to specify the parent flow's ID (or main task's ID). In other words, sub-flows need to be executed via parent flow, even though they are launched from the Recent Items menu.
If your sub-flow does not need to be bookmarked by Recent Items, you do not need to change anything. Otherwise, you need to modify your parent flow and sub-flow as described in this section. After the changes, sub-flows can be launched in two ways:
Both will start the execution in the parent flow. Because the sub-flow needs to be piggybacked on the parent flow when it is launched from the Recent Items menu, you need to change the parent flow following these directions:
openSubTask
to the command component (such as a link or button) which causes the flow to navigate to the task flow call activity in the original parent flow. The openSubTask
API registers the parent flow details and input parameters to the sub-flow (to be launched as a sub-flow later) to the Applications Core task flow history stack.Usually, you do not need to modify your sub-flow for this task. However, you can consolidate the initialization steps from two execution paths in this way:
initsubflow
) at the beginning of the sub-flow to initialize states in the parent flow (for example, parent table) so that the sub-flow can be launched in the appropriate context.Note that the design pattern also requires the application to be able to navigate back to the parent flow from the sub-flow. The initialization code should take this into consideration, such as by setting up states to allow the sub-flow to navigate back.
In this example, you will use an Employee sample implementation to demonstrate the details of this design pattern.
Sub-flow Sample Application
As shown in Figure 14-33, users select Subflow Design Pattern from the task list. They then specify some criteria to search for a specific employee or employees. From the list, they can choose the employee for whom they want to show the details.
The Ename column in the search result table is a link that can be used to navigate to the employee detail page of a specific employee. When this link is clicked, a sub-flow (or nested bounded task flow) is called to display the Employee Complete Detail page, as shown in Figure 14-34.
If users would like to add this Employee Complete Detail page of a specific employee to their Recent Items, product teams need to set up something extra to make this happen. If this page (actually a bounded task flow whose default page is displayed) has been bookmarked, the next time users can click it on the Recent Items list and launch it directly by skipping the search step.
The parent task flow named ToParentSFFlow
is shown in Figure 14-35.
decideFlow
is the router activity that decides whether the control flow should go to the original parent flow path (initParent
) or to the sub-flow path (toChild
). The condition used is defined as:
The test checks whether or not the Empno
variable in the parent flow's pageFlowScope is null. #{pageFlowScope.Empno}
is set using its input parameter Empno
when the parent flow is called. The input parameters on the parent flow (that is, ToParentSFFlow
) is defined as:
When the parent flow is launched from the task List, the Empno
parameter is not set (that is, it is not defined in the application menu's itemNode). Therefore, it is null and the router will route it to the initParent
path.
When the sub-flow is recorded through the openSubTask
API, Empno
is set on the parametersList
as:
You also set up:
taskFlowId
to be the parent flow's, not the sub-flow'slabel
to be the sub-flow'sWhen end users click the link (the Ename) to which the openSubTask
method is bound, openSubTask
will be called. This link component is defined as:
Note that when the link is clicked:
actionListener
and the action
specified on the link are executed, in that order.openSubTask
needs to be called only from the original parent flow path (that is, initParent
), not from the sub-flow path (that is, toChild
).EmployeeDetails
activity in Figure 14-35 is a Task Flow Call activity that invokes the ToChildSFFlow
sub-flow. Before the sub-flow is executed, you need to add initialization steps. These initialization steps could include, but are not limited to:
There are two approaches to set up the initialization steps:
For the first approach, you can add logic to initialize both paths before the task flow call activity in the parent flow. For the second approach, you initialize states in the sub-flow by using input parameters of the sub-flow. For example, the sub-flow will take an input parameter named Empno
. In effect, the second approach just postpones the initialization to the sub-flow.
The definition of input parameters in the Task Flow Call activity is:
Note that this means that the calling task flow needs to store the value of Empno
in #{pageFlowScope.Empno}
. For example, from the original parent flow path, it is set to be #{row.Empno}
using the setActionListener
tag. For the sub-flow path, it is set using the parent flow's input parameter Empno. On the sub-flow, you need to specify its input parameters as:
Note that the name of the input parameter (Empno
) needs to be the same as the parameter name defined on the Task Flow Call activity. When the parameter is available, ADF will place it in #{pageFlowScope.Empno}
to be used within the sub-flow. However, this pageFlowScope
is different from the one defined in the Task Flow Call activity because they have a different owning task flow (that is, parent task flow versus sub-flow).
The definition of the sub-flow is shown in Figure 14-36:
In the sample implementation, you chose to implement the initialization step in the sub-flow. Empno
is passed as a parameter to the sub-flow and used to initialize the parent state. When the sub-flow is launched, the default view activity (ToChildSFPF
) displays. Before it renders, the initPage
method on the ChildSFBean will be executed. The page definition of the default page is defined as:
initPage
is specified in the executables tag and will be invoked when the page is refreshed. The initPage
method itself is defined as:
initPage
takes the input parameter Empno
from #{pageFlowScope.Empno}
as a key to select a row and set it to be the current row in the master Employee table.
The openSubTask
API has additional capabilities. For example, consider an employee search page in which you enter parameters such as department number and manager id, and search for the matching employee records. This is a case that a user may have to perform often. You can use the openSubTask
API to register a search page with search parameters. The next time the user can see the search results by just launching it from Recent Items. This is similar to using parametersList
to specify search parameters while registering the search flow. While launching, a little programming can be done to retrieve the search parameters and execute the query with the parameter values.
Once tasks are recorded on the Recent Items list, they are eligible for Favorites. The Favorites menu is implemented on top of Recent Items. Any current task on the Recent Items list can be bookmarked and placed in Favorites' folders. Currently, only a one-level folder is supported. Similar to Recent Items, tasks on the Favorites list can be launched directly from the menu. So, the description in this section for Recent items applies similarly to the Favorites implementation. For example, sub-flows based on the design pattern described in this section can be registered on the Favorites list as well as the Recent Items list.
The Watchlist is a portlet/menu, accessible to Oracle Fusion Applications users, that provides a summary of items that a user wants to track. The Watchlist includes seeded items (items that are provided out of the box) categorized by functional areas, and items created by the user. Technically, the Watchlist presents a list of pre-queried searches (saved searches or standard queries) of things the user needs to track. Each item is comprised of descriptive text followed by a count. Each item also is linked to a page in a workarea where the individual items of interest are listed.
The Watchlist is available both as a dashboard region in the Welcome tab of the Home dashboard, and as a global menu. These are two views of the same content. The dashboard region is available to the users as soon as they login, while the global menu is accessible as they navigate through the suite.
The Watchlist will be refreshed to fetch new counts and items whenever the user navigates to the Home page. The Watchlist can refresh the entire watchlist or individual categories as needed. Users will be able to personalize the Watchlist to hide or show items.
Figure 14-37 shows an example of the Watchlist portlet and menu.
Implementing teams have these high-level tasks:
Product teams will seed data into the ATK_WATCHLIST_CATEGORIES and ATK_WATCHLIST_SETUP tables. Rows in the ATK_WATCHLIST_ITEMS will be managed by Watchlist code, but developers will query it for testing verification.
The only other data model effect will be in the creation of summary tables. These summary tables help with retrieving the count of Watchlist items with data security. See Section 14.12.4.3.1, "Summary Tables."
The Watchlist data model is supported by ATK. The tables are:
Table 14-5 ATK_WATCHLIST_CATEGORIES
Column Name | Datatype | Required | Comments |
---|---|---|---|
| VARCHAR2(100) | Yes | PK - Unique code based on Product code Prefix. Ensure that this code begins with <PRODUCT SHORT CODE>_, so that it does not overlap with other others. |
| VARCHAR2(30) | Yes | Reference to FND_STANDARD_LOOKUP_TYPES.LOOKUP_TYPE Product teams to seed lookup type with meaning for category (VIEW_APPLICATION_ID = 0 and SET_ID = 0). The translated lookup type meaning is shown in the Watchlist UI for category. |
| VARCHAR2(4000) | Yes | Reference to FND_APPL_TAXONOMY.MODULE_NAME for the owning product/module. This is used for seed data purposes. |
| VARCHAR2(32) | Yes | Reference to FND_APPL_TAXONOMY.MODULE_ID for the owning product/module. This is used for seed data purposes. |
| NUMBER | Yes | Reference to FND_APPL_TAXONOMY.ALTERNATIVE_ID for the owning product/module. This is used for seed data purposes. |
| VARCHAR2(60) | Yes | This is the key to determine the host, port, context root, etc. to construct the URL for service endpoint (wsdl location). This will be based on the Applications Core lookup API that will be used for determining the end point. |
| VARCHAR2(400) | Yes | This is the service that needs to be invoked for count calculation (for refreshing this category). |
| VARCHAR2(400) | Yes | This column is obsoleted. The hard-coded method name will be |
| VARCHAR2(1) | Yes | Defaults to Y. This defines if this Watchlist category is enabled/active. |
| VARCHAR2(64) | Yes | Standard WHO Column |
| TIMESTAMP | Yes | Standard WHO Column |
| VARCHAR2(64) | Yes | Standard WHO Column |
| TIMESTAMP | Yes | Standard WHO Column |
| VARCHAR2(32) | Yes | Standard WHO Column |
Table 14-6 ATK_WATCHLIST_SETUP
Column Name | Datatype | Required | Comments |
---|---|---|---|
| VARCHAR2(100) | Yes | PK - Needs to use Category Code Prefix |
| VARCHAR2(30) | Yes if WATCHLIST_ITEM_TYPE != USER_SAVED_SEARCH | Reference to FND_LOOKUPS.LOOKUP_CODE Product teams to seed lookup code with meaning for the parent category lookup type. The translated lookup meaning is shown in the Watchlist UI with the count appended. |
| VARCHAR2(30) | Yes | |
| VARCHAR2(1) | Yes | Specifies if this Watchlist item is created against a security action instead of a specific user. |
| Yes if PRIVILEGE_BASED = Y | Defines if this item is created against a security action - users that have this action will be able to view this item. Required if PRIVILEGE_BASED = Y | |
| VARCHAR2(400) | Defines the region action for this item's drilldown workarea. This is the page definition for the drilldown view/jspx that is part of your jazn-data.xml. The user needs to have this permission policy to view the item in the Watchlist UI. | |
| VARCHAR2(30) | Yes | Defines the Watchlist item type - maps to lookup. Valid values are: SEEDED_QUERY (Seeded Query) SEEDED_SAVED_SEARCH (Seeded Saved Search) USER_SAVED_SEARCH (User-created Saved Search) HUMAN_TASK (Worklist item) |
| VARCHAR2(200) | Yes if WATCHLIST_ITEM_TYPE = HUMAN_TASK | Human Task Definition Identifier. Required if WATCHLIST_ITEM_TYPE = HUMAN_TASK |
| VARCHAR2(100) | Yes if WATCHLIST_ITEM_TYPE = HUMAN_TASK | Human Task State Identifier. Required if WATCHLIST_ITEM_TYPE = HUMAN_TASK |
| NUMBER(9) | Yes if WATCHLIST_ITEM_TYPE != HUMAN_TASK | Defines the age for count in seconds. After this many seconds have passed since the last refresh time, the Watchlist UI would issue a count recalculation request Required if WATCHLIST_ITEM_TYPE != HUMAN_TASK |
| VARCHAR2(400) | Yes if WATCHLIST_ITEM_TYPE != HUMAN_TASK | Complete path of the view object that needs to be executed for count calculation. Required if WATCHLIST_ITEM_TYPE != HUMAN_TASK |
| VARCHAR2(400) | Yes if WATCHLIST_ITEM_TYPE != HUMAN_TASK and this is a summary view object | Indicates the view object attribute name if using a summary view object for Watchlist count calculation. On execution, this view object returns only one row with the Watchlist item count. Required if WATCHLIST_ITEM_TYPE != HUMAN_TASK and this is a summary view object. |
| VARCHAR2(400) | Yes if WATCHLIST_ITEM_TYPE != HUMAN_TASK | Complete path of the application module that contains the view object instance that needs to be executed for count calculation. Required if WATCHLIST_ITEM_TYPE != HUMAN_TASK |
| VARCHAR2(400) | Yes if WATCHLIST_ITEM_TYPE != HUMAN_TASK | The application module Configuration Name for creating an instance of the application module from code. This is typically AMLOCAL. Required if WATCHLIST_ITEM_TYPE != HUMAN_TASK |
| VARCHAR2(400) | Yes if WATCHLIST_ITEM_TYPE != HUMAN_TASK | The Instance Name for the view object in the application module. Required if WATCHLIST_ITEM_TYPE != HUMAN_TASK |
| VARCHAR2(400) | Yes if WATCHLIST_ITEM_TYPE = SEEDED_SAVED_SEARCH | The View Criteria that needs to be applied when executing the view object. Required if WATCHLIST_ITEM_TYPE != HUMAN_TASK |
| VARCHAR2(60) | Yes | This is the key to determine the host, port, and context root to construct the URL for the UI drilldown for Watchlist item. This will be based on the Applications Core lookup API that will be used for UI navigation across J2EE applications. |
| VARCHAR2(400) | Yes | The view id (as per the UI Shell menu) for the workarea/page that contains the task flow for this Watchlist item's drilldown from the Watchlist UI. |
| VARCHAR2(400) | No | Parameters list for the page. If the target workarea page accepts page parameters, this is a semicolon-delimited String of name value pairs. |
| VARCHAR2(400) | Yes | The task flow for this Watchlist item's drilldown from the Watchlist UI. |
| VARCHAR2(400) | No | Key list to pass into the task flow to open in the target workspace. This is a semicolon-delimited keys or key-value pairs. For example, "key1;key2=value2" |
| VARCHAR2(400) | Yes if WATCHLIST_ITEM_TYPE IN (SEEDED_SAVED_SEARCH, USER_SAVED_SEARCH) | Parameters list to pass in to the task flow to open in the target workspace. This is a semicolon-delimited String of name value pairs. For example, "param1=value1;param2=value2" For user created saved search, the view criteria id will be appended to this string (the string will need to end with |
| VARCHAR2(400) | Yes | Label for the task flow to open in the target workspace. |
| VARCHAR2(1) | Yes | Defaults to Y. This defines if this Watchlist category is enabled/active. |
| VARCHAR2(64) | Yes | Standard WHO Column |
| TIMESTAMP | Yes | Standard WHO Column |
| VARCHAR2(64) | Yes | Standard WHO Column |
| TIMESTAMP | Yes | Standard WHO Column |
| VARCHAR2(32) | Yes | Standard WHO Column |
Supported Watchlist items are all asynchronous (that is, queries are executed on demand when the user requests a refresh or just before the Watchlist UI is shown). There are four types of asynchronous Watchlist items (watchlist_item_type
):
For asynchronous Watchlist items, the count is only updated upon request. For example, in Expenses, there is an expense reports search panel from which users can make searches and save them in MDS for future use. Users should be able to promote their saved searches to the Watchlist for tracking. This Watchlist item (of type USER_SAVED_SEARCH) is asynchronous in that the Watchlist count will only be updated upon request, and events that change the count will not simultaneously be updating the Watchlist. In this case, Watchlist code is responsible for querying the count of an asynchronous Watchlist item on demand. Figure 14-38 shows the flow of an asynchronous Watchlist item.
For the Expense report saved search panel example:
At a high-level, for asynchronous Watchlist items, the developer tasks are:
For example, most view objects seeded for the Watchlist would need to filter by user to show counts specific to the logged-in user. You could create a view criteria with a bind variable called userId and specify the default value as a groovy expression to determine the current user id from the security context. You then would seed this view criteria id in the setup table along with the view object. The Watchlist API would execute the view object by applying this view criteria to get the row count. Example 14-43 shows a code snippet from the view object xml for bind variable with default value.
Example 14-43 Example Code from the View Object XML for Bind Variable with Default Value
This chapter discusses the Applications Tables, Trees and Tree Tables components used to implement user interface features in JDeveloper.
This chapter includes the following sections:
For basic information, see:
Applications tables are UI components that already contain an Oracle ADF table, a menu bar, a toolbar, and related popups. Developers do not need to create and assemble all these components separately.
Tables include the following:
You must use Applications tables to standardize layout and appearance consistency for all your page tables, including read-only pages. Once you create an Applications table, you can add table components that allow users to select the table's contents.
Before you begin:
Before you can use Applications tables, you must be familiar with JDeveloper and be able to create JSF pages.
Each table has properties and facets. Properties include table qualities, such as the unique identification number and the type of pattern exposed in the table. Facets are locations for table data, such as locations where you can add toolbars or menu bars. This section describes Applications table properties and facets.
Note: Any buttons or menu items added in a facet render with a separator because adding more than one component to a facet requires having <af:group> around the element. By default, having a group component introduces a separator as an ADF rule. |
Table 15-1 describes Applications table facets and facet contents.
Table 15-1 Applications Table Facets
Facet Name | Description | Values |
---|---|---|
| Holds ADF table. | ADF Table |
| Holds toolbar buttons. | ADF command toolbar buttons under an ADF toolbar |
| Holds menu items to be added to default Action pulldown menu items. | ADF menu item component |
| Facet for adding more commandToolbar button components to secondary toolbar. (Adds more icons.) Icons usually perform the same actions as menus, but you put the most common as icons so you do not need to pull down the menu. | ADF Command Toolbar Buttons |
| Holds components that contain status bar items. These status bar items are merged with standard items provided by the panelCollection property. | ADF menu item component |
| Holds menu items to be added to default View pulldown menu items of the panelCollection. To add multiple menu items to the view menu, add | ADF menu item component |
| Facet for adding more commandToolbar button components after toolbar. In this facet, any toolbar buttons added appear in a separate row below the normal group of toolbars. | af:toolbar or af:groups of af:toolbars |
| Holds popups. See Section 15.4, "Using the Custom Wizard with Applications Popups." Important: When a popup is used to create or duplicate a row in an Applications Table, you need to write your own logic behind the popup's Cancel button (Action/ActionListener) to remove the newly-created row. This can be done by either:
| Popups under a layout component. |
Table 15-2 describes Applications table properties (including properties that are part of the default managed bean), their allowable values, and default actions.
Table 15-2 Applications Table Properties
Property | Description | Values |
---|---|---|
| Unique identification number for this applications table. |
|
| Whether the applications table is rendered (that is, converted from an object-based description into a graphical image for display). |
|
| Unique identification number of the underlying ADF table corresponding to this applications table. |
|
| Whether a Create pattern is enabled and, if so, which pattern. User action: Click Create. |
In addition, you must create the popup UI that shows input fields.
|
| Whether an Edit pattern is enabled and, if so, which pattern. User action: Click Edit. |
|
| Whether a Duplicate pattern is enabled and, if so, which pattern. This pattern lets you create an object by duplicating an existing object. The duplication helps you by pre-filling some values. You have full control and can change any of the values during the creation process. User action: Click Duplicate. |
If the applications table is part of an applications panel, set the
|
| Whether a Delete pattern is enabled. User action: Click Delete. |
Selected row is deleted. |
| Action binding for the Create button. |
If defined, this property can be used to supplement the default action specified by the Pattern Type property or completely override it. |
| Action binding for the Edit button. |
If defined, this property can be used to supplement the default action specified by the Pattern Type property or completely override it. |
| Action binding for the Duplicate button. |
If defined, this property can be used to supplement the default action specified by the Pattern Type property or completely override it. |
| Action binding for the Delete button. |
If defined, this property can be used to supplement the default action or completely override it. |
| Id assigned to the popup to be invoked when users click the Create button. |
|
| Id assigned to the popup to be invoked when users click the Edit button. |
|
| Id assigned to the popup to be invoked when users click the Duplicate button. |
|
| Value that overrides the default label for Create menu item. It also will be shown as the short description for the Create button. |
|
| Value that overrides the default label for Edit menu item. It also will be shown as the short description for the Edit button. |
|
| Value that overrides the default label for Duplicate menu item. It also will be shown as the short description for the Duplicate button. |
|
| Value that overrides the default label for Delete menu item. It also will be shown as the short description for the Delete button. |
|
| Value that overrides the default label for Attach menu item. This attribute is deprecated. |
|
| List of default features to turn off for the panelCollection |
|
| The CSS styles to use for the panelCollection component inside Applications Table component. This is intended for basic style changes. Note: Do not set the width using the inlineStyle attribute on either Applications Table or panelStretchLayout. Applications Table can be stretched by placing it in the center facet of an ADF panelStretchLayout component. | string |
| styleClass to use for the panelCollection component inside Applications Table component. | string |
| Rendered attribute for Export button and menu item. | boolean / expression |
| Sets immediate attribute value of "Create" toolbar button and "Create" menu item. | boolean / expression |
| Sets immediate attribute value of "Delete" toolbar button and "Delete" menu item. | boolean / expression |
| Sets immediate attribute value of "Duplicate" toolbar button and "Duplicate" menu item. | boolean / expression |
| Sets immediate attribute value of "Delete" toolbar button and "Delete" menu item. | boolean / expression |
| Sets immediate attribute value of "Attach" toolbar button and "Attach" menu item. Note: This attribute is deprecated. | boolean / expression |
| Sets the rendered attribute value of the primary toolbar. When Create, Duplicate, Update, Delete actions, attach, export are not turned on, the primaryToolbarRendered should be set to false so that an empty toolbar will not be displayed. | boolean / expression |
| Sets rendered attribute value of the secondary toolbar. When no | boolean / expression |
For example: | Partial triggers attribute for the <button_name> toolbar button. The partial triggers property of the Create, Edit, Duplicate and Delete buttons, and menu items are exposed. Users can enable and disable buttons according to rows selected or other actions carried out on the page. The same partialTrigger attribute for each one is used both for the commandToolbarButton and the menu item. For example, when the createPartialTriggers is set in the Applications Table, the value for this attribute is set on the partialTrigger property of both the create command toolbar button and create menu item. | String of IDs. Important: The PartialTriggers attribute must be entered manually by the developer. This is because, at design time, the JDeveloper Property Inspector can:
Example 1: To disable the Edit, Delete and Duplicate buttons when the table is empty, set this property on the editDiabled, deleteDisabled or duplicateDisabled property of the Applications Table. #{bindings.VOiterator.estimatedRowCount == 0 ? true: false} where VOiterator is your iterator name Example 2: Disable any of the buttons in the Applications Table according to the functional rules or by setting disable=false once create is selected on an empty table (considering these buttons were disabled following Example 1). To do this, create an attribute binding on the view object attribute that will decide whether or not the row can be deleted/edited/duplicated. For example, you can use a binding similar to this example on the disable property of a button: #{bindings.MyAtttrBinding.inputValue == 'compare value' ? true : false} Add Partial Page Refresh (PPR) on the button to the table ID of the af:table. This does not require any change in the selectionListener of the table. Keep the default one. |
| Action binding for the Create icon. | method expression |
| Action binding for the Edit icon. | method expression |
| Action binding for the Duplicate icon. | method expression |
| Action binding for the Delete icon. | method expression |
| Rendered attribute for create | Boolean value or EL Expression |
| Rendered attribute for duplicate | Boolean value or EL Expression |
| Rendered attribute for edit | Boolean value or EL Expression |
| PartialSubmit attribute for create | Boolean value or EL Expression |
| Disabled attribute for create | Boolean value or EL Expression |
| Disabled attribute for edit | Boolean value or EL Expression |
| Disabled attribute for duplicate | Boolean value or EL Expression |
| Disabled attribute for delete | Boolean value or EL Expression |
| Set this value if you want delete confirmation to be displayed. The default message is The selected record(s) will be deleted. Do you want to continue? To change this, use the | Boolean value or EL Expression |
| Provide a customized delete confirmation message that can be shown in the popup. | String value or EL Expression |
| Rendered attribute for Actions menu | Boolean value or EL Expression |
| ContentDelivery attribute for Actions menu. This attribute can take two values.
The default value is immediate. Setting the attribute value to lazy:
| String value |
| The toggleEditRendered feature is used to render the editAll or clickToEdit choices for Applications Table. See Section 15.1.2.2.3, "Toggle Click to Edit / Edit All in Applications Table." | Boolean. Default value is False. |
Note: If you choose secondaryWindow as the pattern type for any property, and you have set the popup Id for that button, selecting the button invokes the popup. |
Model
The Applications Table does not expose any bindings to the model. However, components within the Applications Table, like the ADF table, will be bound to the model.
Controller
The Applications Table component ships a default managed bean that performs the following functions that only work with rowSelection="single"
on the ADF table:
To allow Applications developers access to some of the implementation, the Applications Table exposes a public class oracle.apps.fnd.applcore.patterns.ApplicationsTableEventHandler that contains default event handlers for all the buttons. The button methods are named as process<buttonName>, such as processCreate and processEdit. Application developers writing custom action handlers can also use the default implementation by calling these methods.
Use
For example, to attach a custom button handler to the Create button, follow these steps:
Example 15-1 Defining a Managed Bean Class to Attach a Custom Handler to a Button
#{CustomEventHandler.processCreate}
as the expression for the property.You can create and add Applications tables to pages or page fragments. Using the wizard will create a working table without you having to hand-code every step. Once the table is created, you can change any parameters from the Property Inspector.
You create Applications tables in the Applications Tables wizard, which is displayed when you add the tables to your JSF pages (or page fragments) from the Component Palette or the Data Controls panel.
To start the Applications Table wizard from the Component Palette:
The Applications Table wizard is displayed.
To start the Applications Table wizard using the Data First method:
The Applications Table wizard is displayed.
This section explains how to use the Applications Table wizard to add components to your table.
In the Applications Table wizard you can:
The Applications Table wizard has two dialogs. Click Cancel in either dialog to cancel your actions and exit the wizard. Click Next to accept the defaults.
To add an Applications Table using the Applications Table wizard:
When the Applications Table wizard is launched, the Create Applications Table dialog is displayed, as shown in Figure 15-1.
This step might take a few minutes.
The Select Table Data Collection dialog is displayed, as shown in Figure 15-2.
When you bind the data, the table creates placeholder columns that can be used for layout purposes.
Row Selection
Select None to disable row selection by users.
Select Single to allow users to be able to select individual rows in the table. This will set the rowSelection attribute to single. Selecting this option means that instead of the UI component determining the selected row, the iterator binding will access the iterator to determine the selected row. This is recommended when using ADF Model data binding.
Select Multiple to allow users to be able to select multiple table rows.
Sorting
Select to allow users to be able to sort columns. Selecting this option means that the iterator binding will access the iterator which will perform an order-by query to determine the order. This is recommended when using ADF Model data binding. Only keep this checkbox unselected if you do not want to allow column sorting.
Filtering
Select to allow users to be able to filter the table based on given criteria. Selecting this option allows the user to enter criteria in text fields above each column. That criteria is then used to build a query-by-example search on the collection, so that the table will display only the results returned by the query.
Group
Select two or more columns then click this link to group the columns together in the table. The selected columns will be grouped together under a parent column.
Ungroup
Select columns that are grouped then click this link to ungroup the columns.
Display Label
By default, the label is bound to the labels property for the attribute on the table binding. You can instead enter text or an EL expression to bind the label value to something else, for example, a key in a resource file.
Value Binding
Shows the attribute to which the value is bound. Use the drop-down list to choose a different attribute. If you simply want to rearrange the columns, you should use the order buttons. If you do change the attribute binding for a column, the label for the column also changes.
Component to Use
Shows the component used to display the value. Use the drop-down list to choose a different component. By default, output text components are selected for read only tables. Input text components are selected for all other tables. Input date components are used for attributes that are dates. If you want to use a different component, such as a command link or button, you need to use this dialog to select the outputText component, and then in the Structure window, replace the component with the desired UI component (such as a command link). By default, only ADF Faces components are shown in the menu. You can allow JSF Implementation components to also be chosen.
Add Column
Select a column name from the attributes list and click + to add the column name to your table. Repeat this step for all your table column names.
Delete Column
Click X to delete a column name.
Sort Column Order
Click the up or down arrows to sort the order of the columns.
The Configure Table Patterns dialog is displayed, as shown in Figure 15-3.
Confirm Delete: Select this option so that the default The selected record(s) will be deleted. Do you want to continue? prompt displays in a popup when the delete row function is used.
When you set the confirmDelete
attribute to true, the confirmation popup displays and the row is deleted when you click Yes. For this to work correctly, the partialTriggers
on the af:table
inside the fnd:applicationsTable
should include ::confirm
, and the ::delete
and ::deleteConfirm
ids must be removed so the partialRefresh happens only when you click Yes in the popup. Developers can choose to set the immediate
property on the Yes button by using the deleteImmediate
attribute. The No button has immediate
set to true by default. See Section 15.1.2.2.1, "Manually Enabling Delete Confirmation."
Confirmation Message: If you want to replace the default confirmation message with a custom one, enter the string here. The string will be converted to a text resource and added to the default resource bundle.
If you already have a confirmation message defined in a resource bundle, click the ellipsis and choose from the list, as shown in Figure 15-4.
If you need to manually create or edit the Delete Confirmation parameter, see Section 15.1.2.2.1, "Manually Enabling Delete Confirmation."
For more information on pattern types, see Table 15-2, "Applications Table Properties".
This section describes how to enable Delete Confirmation, or add or edit the custom confirmation message, if you have an existing table.
When you set the confirmDelete attribute to true, the confirmation popup displays and the row is deleted when you click Ok. For this to work correctly, the partialTriggers
on the af:table
inside the fnd:applicationsTable
should include ::confirm
, and the ::delete
and ::deleteConfirm
ids must be removed so the partialRefresh happens only when you click Ok in the popup. Setting deleteImmediate="true" when enabling delete confirmation sets the immediate attribute of the Ok button in the confirmation popup to true. The Cancel button of the delete confirmation popup has immediate set to true by default.
See Example 15-2 for sample code that shows both the delete confirmation enabled and the custom message.
Example 15-2 Sample Code Showing Delete Confirmation and Custom Message
With af:table selected in the Structure view, Figure 15-6 shows the PartialTriggers entries in the Property Inspector view.
With fnd:applicationsTable
selected in the Structure view in JDeveloper, the Property Inspector showing the custom message settings will appear similar to Figure 15-7.
If multiple row selection is enabled, editing functions will behave as shown in Table 15-3.
Table 15-3 Function Behavior with Multiple Row Selection Enabled
Function | Behavior |
---|---|
Delete | Selecting more than one row and selecting Delete deletes all the selected rows. |
Create | Selecting more than one row and selecting Create will create a new row as the first row. |
Edit | Selecting more than one row and selecting Edit will show an alert window asking you to select a single row to edit. |
Duplicate | Selecting more than one row and selecting Duplicate will show an alert window asking you to select a single row to duplicate. |
Enabling Multiple Row Selection Manually
If multiple row selection is selected in the Create Applications Table wizard (see Figure 15-1), this step is not required.
You can not change pages created with single row selection to multiple row selection by just changing the rowselection
attribute on the ADF table inside the Applications Table. This is because multiple row selection does not work with the selectedrowkeys
attribute. To enable multiple row selection on existing tables, set rowselection="multiple"
and remove the selectedrowkeys
attribute, as shown in Example 15-3.
Example 15-3 Example of Enabling Multiple Row Selection
The Applications Table toolbar has an icon that can be clicked to toggle the Click to Edit and Edit All functions, and the View Menu on the toolbar includes the same toggle feature. Figure 15-8 shows the Edit All menu option and icon when the table is in the Click to Edit mode.
Figure 15-9 shows the Click to Edit menu option and icon when the table is in the Edit All mode.
The toggle mode should only display if the table is editable. If it contains only output components, there should be no toggle button. This is a true/false property (see toggleEditRendered in Table 15-2) on the Applications Table and does not happen automatically.
When a table is added to a page, code similar to that shown in Example 15-4 is inserted and displayed in the Source view.
Example 15-4 Sample Code Added When a Table Is Added
Many of these settings are easily changed using the Table Property Inspector, which contains these sub-sections: Common, Patterns, Style, Customization, and Other. This section discusses certain selected settings.
The Common properties section of the Table Property Inspector resembles Figure 15-10.
The selected Common settings are:
The Patterns properties section of the Table Property Inspector resembles Figure 15-11. The properties for Create, Duplicate, Edit, and Delete are the same.
The selected Patterns settings are:
Example 15-5 Example of a Partial Trigger
The Patterns properties section of the Table Property Inspector resembles Figure 15-12.
Once you create an Applications table in the Applications Table wizard, you can add data controls to the table and icons and menu actions to the table menu bar.
To add Data Controls to tables:
Use the context menu that is displayed when you drag to the Design view to choose which component to use for this attribute.
For example, you might drag and drop the data control component TimezoneServiceAMDataControl > Timezone > Name, then choose Create > Texts > ADF Input Text w/ Label from the context menu, as shown in Figure 15-13.
For example, to add a field from a data source to a table, drag the field from the data source to this path: fnd:applicationsTable > f:facet – table > af:table <tableId>. When you drop the field on the component, you are prompted to choose which component to use for this attribute. Using the example in Figure 15-14, you would choose either the ADF Read-only Column, or the ADF Column, depending on whether the fields need to be read-only or not.
To add buttons, icons and menu items to the table menu bar, in the Component Palette, drag and drop any component (such as an icon component) to the menuBar facet to add the component.
If you have multiple buttons added to the additionalToolbarButton facet, they may display vertically, instead of horizontally, at runtime. To correct this display, surround the toolbar buttons with an af:toolbar, as shown in Example 15-6:
Example 15-6 Surrounding the Toolbar Buttons with af:toolbar
Note: The Format menu is part of Applications Table. It provides several functions, including move rows and sort selection. Rows have to be selectable to enable this. For tables and treeTables with selectable columns, the default top level menu items are View and Format. To turn off the Format menu, the |
Applications Table can be stretched by placing it in the center facet of an ADF panelStretchLayout
component. Do not set the width using the inlineStyle
attribute on either Applications Table or panelStretchLayout. For more information about basic page layout and the inlineStyle
attribute, see "Organizing Content on Web Pages" and "Customizing the Appearance Using Styles and Skins" in Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework.
Note: If you use just the ApplicationTable ID in the resultComponentId of the ADF Query component, the underlying table is not refreshed with the results of the search. |
When using an Applications Table as a resultant table that shows the results from a search on a query component, follow these steps to set the resultComponentId
attribute on af:query:
resultComponentId
property and then Edit.af:table
(the ADF table that is present in the "table" facet of the Applications Table).The resultComponentId
would follow this format:
::<applicationsTableId>:_ATp:<tableId>
and would appear similar to:
resultComponentId="::AT1:_ATp:ATt7"
When you add an Applications Table to your JSF page, components of the Applications Table, such as the ADF table, are bound to the model.
The Applications Tree component provides the following basic capabilities that satisfy the requirements specified in the user experience designs:
You can add an Applications Tree to your page in two ways.
The facets shown in Table 15-4 are exposed on the Applications Tree.
Table 15-4 Applications Tree Facets
Facet | Description | Allowed Children |
---|---|---|
| Facet for holding the ADF tree | ADF Tree |
| Facet for adding toolbar button icons by the developer. | ADF Command Toolbar Buttons |
| Facet for adding more menu items to default menu items. | ADF menu item component |
| Facet for adding more commandToolbar components to secondary toolbar. | ADF Command Toolbar Button component |
| Facet for adding component containing statusbar item(s). These statusbar items are merged with standard items provided by the panelCollection. | ADF component |
| Facet for adding Menu Item(s) to added to the default view menu of the panelCollection. To add multiple menuItems into the view menu please add af:group component containing af:menuItems. | ADF menu item component |
| Facet for adding more commandToolbar button components to after toolbar. In this facet any toolbar buttons added appear in a separate row below the normal group of toolbars. | "af:toolbar" or "af:groups" of "af:toolbars" |
| Facet for adding popups. See Section 15.4, "Using the Custom Wizard with Applications Popups." Important: When a popup is used to create or duplicate a row in an Applications Tree, you need to write your own logic behind the popup's Cancel button (Action/ActionListener) to remove the newly-created row. This can be done by either:
| Any number of popups under a layout component |
The properties shown in Table 15-5 are exposed on the Applications Tree.
Table 15-5 Exposed Applications Tree Properties
Property | Description | Allowed Values |
---|---|---|
| The unique ID for this Applications Tree | string |
| Whether the Applications Tree is rendered or not | boolean / expression |
| The unique ID of the ADF tree underneath this Applications Tree | string |
| Whether any Create pattern is enabled, and if yes, which pattern | none, secondaryWindow (then Create Popup Id must also be set), page |
| Whether any Edit pattern is enabled, and if yes, which pattern | none, secondaryWindow (then Edit Popup Id must also be set), page |
| Whether any Duplicate pattern is enabled, and if yes, which pattern | none, inline (see "Inline Duplicate Pattern Type"), secondaryWindow (then Duplicate Popup Id must also be set), page |
| Rendered attribute for create | string |
| Rendered attribute for edit | boolean value or Expression Language expression |
| Rendered attribute for duplicate | boolean value or Expression Language expression |
| Rendered attribute for delete | boolean value or Expression Language expression |
| Action binding for the Create icon | method expression |
| Action binding for the Edit icon | method expression |
| Action binding for the Duplicate icon | method expression |
| Action binding for the Delete icon | method expression |
| Action listener binding for the Create icon | method expression If defined, this property can be used to supplement the default action specified by the Pattern Type property or completely override it. |
| Action listener binding for the Edit icon | method expression If defined, this property can be used to supplement the default action specified by the Pattern Type property or completely override it. |
| Action listener binding for the Duplicate icon | method expression If defined, this property can be used to supplement the default action specified by the Pattern Type property or completely override it. |
| Action listener binding for the Delete icon | method expression If defined, this property can be used to supplement or override the default action. |
| ID of the popup to be invoked when Create button is clicked | string |
| ID of the popup to be invoked when Edit button is clicked | string |
| ID of the popup to be invoked when Duplicate button is clicked | string |
| Overrides default label for Create menu item. This value will also be shown as the short description for the Create button. | expression |
| Overrides default label for Edit menu item. This value will also be shown as the short description for the Edit button. | expression |
| Overrides default label for Duplicate menu item. This value will also be shown as the short description for the Duplicate button. | expression |
| Overrides default label for Delete menu item. This value will also be shown as the short description for the Delete button. | expression |
| Whether export is enabled | boolean / expression |
| A list of default features to turn off for the panelCollection, such as detach (see featuresOff attribute of panelCollection for more details) | string |
| The CSS styles to use for the panelCollection component inside the Applications Tree component. This is intended for basic style changes. Note: Do not set the width using the inlineStyle attribute on either Applications Tree or panelStretchLayout. Applications Tree can be stretched by placing it in the center facet of an ADF panelStretchLayout component. | string |
| styleClass to use for the panelCollection component inside Applications Tree component. | string |
| Sets immediate attribute value of "Create" toolbar button and "Create" menu item. | boolean / expression |
| Sets immediate attribute value of "Delete" toolbar button and "Delete" menu item. | boolean / expression |
| Sets immediate attribute value of "Duplicate" toolbar button and "Duplicate" menu item. | boolean / expression |
| Sets immediate attribute value of "Edit" toolbar button and "Edit" menu item. | boolean / expression |
| Sets rendered attribute value of the Actions menu. When CRUD actions are not turned on, and no af:commandMenuItem is added to the additionalActionItems facet, then actionsMenuRendered should be set to false so that an empty Actions menu would not be displayed. | boolean / expression |
| Sets rendered attribute value of the primary toolbar. When CRUD actions, attach, export are not turned on, and no af:commandToolbarButton is added to additionalToolbarButtons facet, then primaryToolbarRendered should be set to false so that an empty toolbar would not be displayed. | boolean / expression |
| Sets rendered attribute value of the secondary toolbar. When no af:commandToolbarButton is added to appsTableSecondaryToolbar facet, then secondaryToolbarRendered should be set to false so that an empty toolbar would not be displayed. | boolean / expression |
| Disabled attribute for create | Boolean value or EL Expression |
| Disabled attribute for edit | Boolean value or EL Expression |
| Disabled attribute for duplicate | Boolean value or EL Expression |
| Disabled attribute for delete | Boolean value or EL Expression |
| Set this value if you want delete confirmation to come up. The default message is The selected record(s) will be deleted. Do you want to continue? To change this, use the deleteMsg attribute. | Boolean value or EL Expression |
| Provide a customized delete confirmation message that can be shown in the popup. | String value or EL Expression |
Inline Duplicate Pattern Type
For inline patterns, the ADF tree underneath the Applications Tree should get refreshed once the icon or the menu item is clicked. For this to happen, the ADF tree needs to know that it should partially refresh itself. For this, set the partialTriggers attribute on the ADF tree to the ids of the menu item and the icon. For example, to refresh the tree when the Delete menu item or icon is clicked, set partialTriggers="delete deleteMenuItem" on the ADF tree. The partialTriggers attribute is set by the Applications Tree Creation wizard automatically; Applications developers should not need to set it explicitly. Example 15-7 shows a sample markup that is generated by the Applications Tree Creation wizard.
Example 15-7 Sample Markup Generated by the Applications Tree Creation Wizard
Model
The Applications Tree does not expose any bindings to the model. However, components within the Applications Tree, like the ADF tree, will be bound to the model.
Controller
The Applications Tree component ships a default managed bean that performs the following functions:
selectionListener="#{ApplicationsTreeBean.treeSelectionHandler}"
). If the developer needs to add custom logic to selection listener, the developer should call this default selection listener from the custom logic. treeSelectionHandler method of ApplicationsTreeBean provides the following behavior:xxxxPatternType="secondaryWindow"
and when there is no popup configured for the level where the node needs to be created, the icon and the menu item are disabled by default. But this behavior can be overridden by the xxxxDisabled attribute, where "xxxx" could be create, edit or duplicate.#{bindings.xxxx.treeModel.makeCurrent}
Example 15-8 shows sample code for calling the default selection listener from the custom selection listener.
Example 15-8 Calling the Default Selection Listener from the Custom Selection Listener
To allow developers access to some of the implementation, the Applications Tree exposes a public class, oracle.apps.fnd.applcore.patterns.ApplicationsTreeEventHandler, that contains default event handlers for all the buttons. The button methods are named as process<buttonName>, such as processCreate and processEdit. Applications developers writing custom action handlers can also use the default implementation by calling these methods.
Use
For example, to attach a custom button handler to the Create button, follow these steps.
Example 15-9 Defining Managed Bean Class to Attach Custom Handler to a Button
faces-config
of the project.#{CustomEventHandler.processCreate}
as the expression for the property.The Applications Tree can be added to a page or page fragment using either the Component First or the Data First approach. Valid drop locations in the page or page fragment include ADF Form, and ADF Layout components and the Applications Panel (jsp:root, af:form, af:root, fnd:applicationsPanel, af:group, af:panelBorderLayout, af:panelBox, af:panelCollection, af:panelFormLayout, af:panelGroupLayout, af:panelHeader, af:panelStretchLayout, af:showDetailItem, af:panelWindow, af:popup, af:showDetail, af:subform, f:facet, f:panelGrid, f:panelGroup, af:pageTemplateDef, af:pageTemplate#<localArea_Facet>
).
The Applications Tree can be added to a page or page fragment using either the Component First or the Data First approach. Both approaches launch a wizard that helps you quickly define the appropriate tree layout which adhere to the Apps UX standards. Once you complete this wizard, you can further refine the tree definition by editing the resulting tree component as needed.
Component First
Navigate to the Component Palette. Click the list of libraries and select Applications. Drag the Applications Tree from the list of components and drop it onto the page. The wizard will launch after dropping the Applications Tree on the page.
Data First
Navigate to the Data Controls panel of the Application Navigator. Open the panel by clicking its bar, then navigate through the hierarchy to locate the data source that you would like to include in the Applications Tree. Select that data source and drag it on to the page. A context menu will appear with a list of components. Move the mouse over the Applications category list. Select Tree under the Applications menu to launch the Applications Tree wizard, as shown in Figure 15-15.
The Applications Tree Create wizard consists of two panels: Create Applications Tree and Configure Tree Patterns.
Create Applications Tree Panel
The Create Applications Tree panel will vary depending on the approach used to launch the Applications Tree creation process.
Using the Data First approach the Bind Data Now properties are hidden. The selected data source is automatically bound to the tree.
With the Component First approach, it is up to the developer to decide whether to bind a Data Collection to the tree component. You can skip the data control binding step when creating the Applications Tree. In this case, the Applications Tree will create an ADF tree without data binding.
If you wish to bind a data control to the tree component using the Component First approach, check the Bind Data Now checkbox. This will enable the Browse button for the Data Source property. Click the Browse button to display a list of data sources available for binding. Navigate through the list, select the desired data source, and click OK, as shown in Figure 15-16.
Once the Data Source is selected, you can configure the ADF tree. Use the Add icon to add one of the children of the selected Data Source to be the next level of the tree, as shown in Figure 15-17.
You also can use the EL expression #{node.accessorLabel} to obtain information that allows you to traverse up and down a tree of data, not necessarily starting at the logical root node of the tree. This is useful if you want to access a parent node rather than the root node of the tree.
Configure Tree Patterns Panel
Use the Configure Tree Patterns panel to select the default actions offered by your Applications Tree. See Figure 15-18.
You may select any or all of the following five actions for your Applications Tree: Create, Duplicate, Edit, Delete and Export. If you enable Create, Duplicate, or Edit, you must choose the appropriate pattern that will be used to invoke that action (Inline, Secondary Window, or Page).
The Add button for configuring the Popup button is enabled when the Secondary Window pattern is selected. When you click the Add button, a dropdown of the data collection name of each tree level is displayed. You need to choose the tree level that needs the popup to be configured. When a data collection name is selected, the Applications Popup wizard is displayed. (See Section 15.4, "Using the Custom Wizard with Applications Popups.") This same data collection will automatically be bound to the Applications Popup. The Popup will also be defaulted as having Editable Content on the Window Buttons page in the wizard.
Export: Export the data to a Microsoft Excel-compatible file.
Delete: Allows users to delete the row.
When you set the confirmDelete
attribute to true, the confirmation popup displays and the row is deleted when you click Ok. For this to work correctly, the partialTriggers
on the af:tree
inside the fnd:applicationsTree
should include ::confirm
, and the ::delete
and ::deleteConfirm
ids must be removed so the partialRefresh happens only when you click Ok in the popup. See Section 15.1.2.2.1, "Manually Enabling Delete Confirmation."
If you already have a confirmation message defined in a resource bundle, click the ellipsis and choose from the list, as shown in Figure 15-4.
When finished, click OK to complete creation of the Applications Tree. Selecting Cancel will abort the creation of the Applications Tree.
This section discusses modifying settings in the JDeveloper Property Inspector. For more information, see Section 15.1.3, "Introduction to Selected Elements in the Table Property Inspector."
Editing - Properties
Once you have created the Applications Tree, you can modify the property values by using the Property Inspector. You can select the Applications Tree in one of three ways:
<fnd:applicationsTree ...>
line in the Source view of the page.fnd:applicationTree
from the hierarchy in the Structure View.All the components created as part of the Applications Tree are editable using this same approach, as shown in Figure 15-19.
Adding a Data Source
Once you have created the Applications Tree, you can add data controls to the facets / content containers within that tree using the following steps:
Adding UI Content
To achieve the final goals for a page design, you will likely need to add other components to the Applications Tree. Common facets are provided to help you achieve these goals. The facet names and use are documented in the Facet tree of the Component Structure and Functions. For example, your tree may require an additional action beyond the standard actions that are provided by the Applications Tree. You can navigate to the Component Palette and drag and drop a commandToolbarButton component on to the additionalToolbarButtons facet to add a new icon to the Tree toolbar.
Increasing Tree Width to Fill 100% of Its Container
An Applications Tree can be stretched by placing it in the center facet of an ADF panelStretchLayout
component. Do not set the inlineStylewidth
on panelStretchLayout
. For more information about basic page layout and the inlineStyle attribute, see "Organizing Content on Web Pages" and "Customizing the Appearance Using Styles and Skins" in Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework.
The Application Tree Table component implements the tree table portion of the user experience pattern.
The Application Tree Table component provides these basic capabilities to satisfy the requirements specified in the user experience designs:
Adding an Application Tree Table to Your Page
You can add the Application Tree Table to your page in two ways.
The properties shown in Table 15-6 are exposed on the Applications Tree Table:
Table 15-6 Applications Tree Table Properties
Property | Description | Allowed Values |
---|---|---|
| Unique ID for this Applications Tree Table. | string |
| Whether the Applications Tree Table is rendered or not. | boolean / expression |
| Unique ID of the ADF tree table underneath this Applications Tree Table. | string |
| Whether any Create pattern is enabled, and if yes, which pattern. | none, inline, secondaryWindow (then Create Popup Id must also be set), page |
| Whether any Edit pattern is enabled, and if yes, which pattern. | none, inline, secondaryWindow (then Edit Popup Id must also be set), page |
| Whether any Duplicate pattern is enabled, and if yes, which pattern. | none, inline (see Note), secondaryWindow (then Duplicate Popup Id must also be set), page |
| Provide a customized delete confirmation message that can be shown in the popup. | Boolean value or EL Expression |
| Whether any Delete pattern is enabled. | boolean |
| Whether any Create pattern is enabled. | boolean |
| Whether any Duplicate pattern is enabled. | boolean |
| Whether any Edit pattern is enabled. | boolean |
| Set this value if you want delete confirmation to come up. The default message is The selected record(s) will be deleted. Do you want to continue? To change this, use the deleteMsg attribute. | Boolean value or EL Expression |
| Action binding for the Create icon. | method expression |
| Action binding for the Edit icon. | method expression |
| Action binding for the Duplicate icon. | method expression |
| Action binding for the Delete icon. | method expression |
| Action listener binding for the Create icon. | method expression |
| Action listener binding for the Edit icon. | method expression |
| Action listener binding for the Duplicate icon. | method expression |
| Action listener binding for the Delete icon. | method expression |
| ID of the popup to be invoked when the Create button is clicked. | string |
| ID of the popup to be invoked when the Edit button is clicked. | string |
| ID of the popup to be invoked when the Duplicate button is clicked. | string |
| ID of the popup to be invoked when the Delete button is clicked. | string |
| Overrides the default label for the Create menu item. | expression |
| Overrides the default label for Edit menu item. | expression |
| Overrides the default label for Duplicate menu item. | expression |
| Overrides the default label for Delete menu item. | expression |
| Whether export is enabled. | boolean / expression |
| A list of default features to turn off for the panelCollection, for instance detach (see featuresOff attribute of panelCollection for more details) | string |
| The CSS styles to use for the panelCollection component inside the Applications Tree Table component. This is intended for basic style changes. Note: Do not set the width using the inlineStyle attribute on either Applications Tree Table or panelStretchLayout. Applications Tree Table can be stretched by placing it in the center facet of an ADF panelStretchLayout component. | string |
| styleClass to use for the panelCollection component inside the Applications Tree Table component. | string |
| Sets immediate attribute value of Create toolbar button and Create menu item. | boolean / expression |
| Sets immediate attribute value of Delete toolbar button and Delete menu item. | boolean / expression |
| Sets immediate attribute value of Duplicate toolbar button and Duplicate menu item. | boolean / expression |
| Sets immediate attribute value of Delete toolbar button and Delete menu item. | boolean / expression |
createDisabled | Disabled attribute for Create. | Boolean value or EL Expression |
deleteDisabled | Disabled attribute for Delete. | Boolean value or EL Expression |
editDisabled | Disabled attribute for Edit. | Boolean value or EL Expression |
duplicateDisabled | Disabled attribute for Duplicate. | Boolean value or EL Expression |
| Sets the rendered attribute value of the Actions menu. When CRUD actions are not turned on, and no af:commandMenuItem is added to the additionalActionItems facet, actionsMenuRendered should be set to False so that an empty Actions menu will not be displayed. | boolean / expression |
| Sets the rendered attribute value of the primary toolbar. When CRUD actions, attach, export are not turned on, and no af:commandToolbarButton is added to the additionalToolbarButtons facet, primaryToolbarRendered should be set to False so that an empty toolbar will not be displayed. | boolean / expression |
| Sets the rendered attribute value of the secondary toolbar. When no af:commandToolbarButton is added to the appsTableSecondaryToolbar facet, secondaryToolbarRendered should be set to False so that an empty toolbar will not be displayed. | boolean / expression |
| The toggleEditRendered feature is used to render the editAll or clickToEdit choices for Applications Tree Table. See Section 15.3.1.2.4, "Toggle Click to Edit / Edit All in Applications Tree Table." | Boolean. Default value is False. |
For example: | Partial triggers attribute for the <button_name> toolbar button. The partial triggers property of the Create, Edit, Duplicate and Delete buttons, and menu items are exposed. Users can enable and disable buttons according to rows selected or other actions carried out on the page. The same partialTrigger attribute for each one is used both for the commandToolbarButton and the menu item. For example, when the createPartialTriggers is set in the Applications Tree Table, the value for this attribute is set on the partialTrigger property of both the create command toolbar button and create menu item. | String of IDs. Important: The PartialTriggers attribute must be entered manually by the developer. This is because, at design time, the JDeveloper Property Inspector can:
Example 1: To disable the Edit, Delete and Duplicate buttons when the table is empty, set this property on the editDiabled, deleteDisabled or duplicateDisabled property of the Applications Tree Table. #{bindings.VOiterator.estimatedRowCount == 0 ? true: false} where VOiterator is your iterator name Example 2: Disable any of the buttons in the Applications Tree Table according to the functional rules or by setting disable=false once create is selected on an empty table (considering these buttons were disabled following Example 1). To do this, create an attribute binding on the view object attribute that will decide whether or not the row can be deleted/edited/duplicated. For example, you can use a binding similar to this example on the disable property of a button: #{bindings.MyAtttrBinding.inputValue == 'compare value' ? true : false} Add Partial Page Refresh (PPR) on the button to the table ID of the af:table. This does not require any change in the selectionListener of the table. Keep the default one. |
Note: For inline patterns, the ADF tree table beneath the Applications Tree Table should be refreshed once the icon or the menu item is clicked. For this to happen, the ADF tree table needs to know that it should partially refresh itself. To do this, set the partialTriggers attribute on the ADF tree table to the Ids of the menu item and icon. For example, to refresh the tree table when the Delete menu item is selected or the icon is clicked, set partialTriggers="delete deleteMenuItem" on the ADF tree table. The partialTriggers attribute is set by the Applications Tree Table Creation wizard automatically. Applications developers should not need to set it explicitly. Example 15-10 shows a sample markup that is generated by the Applications Tree Table Creation wizard. |
Example 15-10 Sample Markup Generated by the Applications Tree Table Creation Wizard
Table 15-7 shows the facets that are exposed on the Applications Tree Table.
Table 15-7 Applications Tree Table Facets
Facet | Description | Allowed Children |
---|---|---|
| Facet for holding the ADF tree table. | ADF Tree Table |
| Facet for adding toolbar icons by the developer. | ADF Command Toolbar Buttons |
| Facet for adding more menu items to default menu items. | ADF menu item component |
| Facet for adding an af:toolbar or af:groups of af:toolbars that appear in a separate row below the normal group of toolbars. | ADF Toolbar or ADF Groups of Toolbar |
| Facet for adding more commandToolbar components to the secondary toolbar. | ADF Command Toolbar Button component |
| Facet for adding component containing statusbar items. These statusbar items are merged with standard items provided by the panelCollection. | ADF component |
| Facet for adding Menu Items to the default view menu of the panelCollection. To add multiple menuItems to the view menu, add an af:group component containing af:menuItems. | ADF menu item component |
| Facet for adding popups. See Section 15.4, "Using the Custom Wizard with Applications Popups." Important: When a popup is used to create or duplicate a row in an Applications Tree Table, you need to write your own logic behind the popup's Cancel button (Action/ActionListener) to remove the newly-created row. This can be done by either:
| Any number of popups under a layout component. |
Model
The Applications Tree Table does not expose any bindings to the model. However, components within the Applications Tree Table, such as the ADF tree table, will be bound to the model.
Controller
The Applications Tree Table component ships a default managed bean (internal to the Oracle Fusion Middleware Extensions for Applications team) that performs the following functions that will only work with rowSelection="single"
on the ADF tree table:
selectionListener="#{ApplicationsTreeBean.treeSelectionHandler}"
). If a developer needs to add custom logic to selection listener, the developer should call this default selection listener from the custom logic. The treeSelectionHandler
method of ApplicationsTreeBean provides the following behavior:#{bindings.xxxx.treeModel.makeCurrent}
See Example 15-11.Example 15-11 Sample Code for Calling the Default Selection Listener from a Custom Selection Listener
To allow Applications developers access to some of the implementation, the Applications Tree Table exposes a public class oracle.apps.fnd.applcore.patterns.ApplicationsTreeEventHandler
that contains default event handlers for all the buttons. The button methods are named as process<buttonName>, such as processCreate and processEdit. Application developers writing custom action handlers can also use the default implementation by calling these methods.
Example
To attach a custom button handler to the Create button:
Example 15-12 Define a Managed Bean Class to Attach Custom Handler to a Button
faces-config
of the project.#{CustomEventHandler.processCreate}
as the expression for the property.The Applications Tree Table can be added to a page or page fragment using either the Component First or the Data First approach. Both approaches launch a wizard that is intended to help you quickly define the appropriate tree layout that adheres to the user experience standards. Once you complete this wizard, you can further refine the tree definition by editing the resulting tree component as needed.
Valid drop locations in the page or page fragment include: ADF Form, ADF Layout components and the Applications Panel (jsp:root, af:form, af:root, fnd:applicationsPanel, af:group, af:panelBorderLayout, af:panelBox, af:panelCollection, af:panelFormLayout, af:panelGroupLayout, af:panelHeader, af:panelStretchLayout, af:showDetailItem, af:panelWindow, af:popup, af:showDetail, af:subform, f:facet, f:panelGrid, f:panelGroup, af:pageTemplateDef, and af:pageTemplate#<localArea_Facet>
).
Component First
Navigate to the Component Palette. Click the list of libraries and select Applications. Drag the Applications Tree Table from the list of components and drop it onto the page to launch the wizard.
Data First
Navigate to the Data Controls panel of the Application Navigator. Open the panel and navigate through the hierarchy to locate the data source that you would like to include in the Applications Tree Table. Select that data source and drag it to the page. A context menu will display a list of components. Select Tree under the Applications menu to launch the Applications Tree Table wizard, as shown in Figure 15-20.
The Applications Tree Table Create wizard consists of four panels: Create Applications Tree Table, Select Tree Table Columns, Configure Tree Table Patterns, and Summary.
Create Applications Tree Table Panel
This step creates a tree binding and node definitions of the tree. The Create Applications Tree Table Panel will vary depending on the approach used to launch the Applications Tree Table creation process.
Using the Data First approach, the Bind Data Now properties are hidden. The selected data source is automatically bound to the tree.
With the Component First approach, the developer must decide whether to bind a Data Collection to the tree table component. You can skip the data control binding step when creating the Applications Tree Table. In this case the Applications Tree Table will create an adf tree table without data binding.
If you wish to bind a data control to the tree component using the Component First approach, select the Bind Data Now checkbox. This will enable the Browse button for the Data Source property. Click the Browse button to display a list of data sources available for binding. Navigate through the list and select the desired data source. Click the OK button, as shown in Figure 15-21.
Once the Data Source is selected, you can configure the ADF tree. Click the Add icon to add one of the children of the selected Data Source to be the next level of the tree, as shown in Figure 15-22.
The shuttle at the bottom of the Create Applications Tree Table panel allows you to select the attributes at each tree level you wish to display as tree node or columns in the tree table, as shown in Figure 15-23.
When finished, click Next to proceed to the Select Tree Table Columns panel. Select Cancel to abort the creation of the Applications Tree Table.
Select Tree Table Columns Panel
The Select Tree Table Columns panel shown in Figure 15-24 allows you to select an attribute for displaying as node stamp and select an attribute for displaying as path stamp. You can also configure the columns to be displayed inside the tree table here. When finished, click Next to proceed to the Configure Tree Table Patterns Dialog. Selecting Cancel will abort the creation of the Applications Tree Table.
Configure Tree Table Patterns Panel
The Configure Tree Table Patterns panel allows you to select the default actions offered by your Applications Tree Table, shown in Figure 15-25.
You may select any or all of the following five actions for your Applications Tree Table: Create, Duplicate, Edit, Delete and Export. If you enable Create, Duplicate, or Edit, you must choose the appropriate pattern that will be used to invoke that action (Inline, Secondary Window, Page).
The Add button for configuring the Popup button is enabled when the Secondary Window pattern is selected. When you click Add, a dropdown of the data collection name of each tree level is displayed. You need to choose the tree level that needs the popup to be configured. When a data collection name is selected, the Applications Popup Wizard is displayed. (See Section 15.4, "Using the Custom Wizard with Applications Popups.")This same data collection will automatically be bound to the Applications Popup. The Popup will also be defaulted as having Editable Content on the Window Buttons page in the wizard. Refer to Section 15.4, "Using the Custom Wizard with Applications Popups."
Export: Export the data to a Microsoft Excel-compatible file.
Delete: Allows users to delete the row.
When you set the confirmDelete
attribute to true, the confirmation popup displays and the row is deleted when you click Ok. For this to work correctly, the partialTriggers
on the af:treetable
inside the fnd:applicationsTreeTable
should include ::confirm
, and the ::delete
and ::deleteConfirm
ids must be removed so the partialRefresh happens only when you click Ok in the popup. See Section 15.1.2.2.1, "Manually Enabling Delete Confirmation."
If you already have a confirmation message defined in a resource bundle, click the ellipsis and choose from the list, as shown in Figure 15-4.
Click Finish to complete creation of the Applications Tree Table. Select Cancel to abort the creation of the Applications Tree Table.
Once you have created the Applications Tree Table, you can modify the property values by using the Property Inspector editor. The Property Inspector for the Applications Tree Table component can be viewed by selecting the component in the page. You can select the Applications Tree Table in one of three ways:
<fnd:applicationsTreeTable...>
line in the Source view of the page.fnd:applicationTreeTable
from the hierarchy in the Structure View. All of the components created as part of the Applications Tree Table are editable using this same approach, as shown in Figure 15-26.Once you have created the Applications Tree Table, you can add data controls to the facets / content containers within that tree table using the following steps:
To achieve the final goals for a page design, you probably will need to add other components to the Applications Tree Table. Common facets are provided to help you achieve these goals. The facet names and use are documented in the Facet table of the Component Structure and Functions. For example, the tree table may require additional actions beyond the standard actions that are provided by the Applications Tree Table. You can open the Component Palette and drag and drop a commandToolbarButton component onto the additionalToolbarButtons facet to add a new icon to the Tree Table toolbar.
Applications Tree Table can be stretched by placing it in the center facet of an ADF panelStretchLayout component. Do not set the inlineStylewidth on panelStretchLayout. For more information about basic page layout and the inlineStyle attribute, see "Organizing Content on Web Pages" and "Customizing the Appearance Using Styles and Skins" in Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework.
The Applications Tree Table toolbar has an icon that can be clicked to toggle the Click to Edit and Edit All functions, and the View Menu on the toolbar includes the same toggle feature. This functions the same as described for the Applications Table in Section 15.1.2.2.3, "Toggle Click to Edit / Edit All in Applications Table."
Note: af:popup is a generic function documented in the Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework. This section discusses using the Popup wizard in JDeveloper Oracle Fusion design time. |
Popups are an option when editing rows. While the standard af:popup
component does not provide buttons or data binding, the Applications Popup wizard provides the base af:popup
with:
Popups can be used as standalone components or with the patterns shown in Table 15-8.
Table 15-8 Patterns That Require Popups
Pattern Set | Patterns | Description/User Action |
---|---|---|
Attachments | Attachments Field, Attachments Column | When users display attachments, the resulting popup displays the current attachment, and also allows users to add new attachments to an entity. |
Compare Objects | Configure Comparison, One to Many, Configure and Compare | When users select objects to compare and click Compare, the resulting popup display allows users to choose comparison criteria and the objects to be compared. Users can change comparison criteria after each comparison is displayed. |
Create | Create Multiple Objects | When users click Create Multiple Objects or make a choice from a menu or toolbar, the resulting popup allows users to create multiple objects. |
Detail On Demand | Popup Details | When users select a table row and click an information button, the resulting popup displays information about the selected row. |
Edit | Secondary Window Edit | When users select records and click Edit on a table toolbar, the resulting popup allows users to edit those records. |
Information Entry Form | Secondary Window | When users click a button, the resulting popup allows users to enter data into the popup. |
Record Navigation | Secondary Window Detail | When users navigate through data records, the resulting popup allows users to edit the records. |
Transactional Search/Results | Popup Window | When users click Search within an application and enter search criteria, the popup displays the search results. |
You create Applications Popups in the wizard that is displayed when you add the popups to your previously-created JavaServer Faces (JSF) pages (or page fragments) from the Data Controls panel. You also can create popups from within other applications component wizards, such as Applications Table.
Before you can add popup components, you must add the Applications Popup to your pages from the Data Controls panel.
To add a Popup using a data control:
The Popup wizard is displayed.
To add an applications popup from a table:
Note: The data source for the table becomes the default data source for the popup. |
This section explains how to use the Popup wizard to add components to your popups.
In the Popup wizard you can:
All mandatory fields in the wizard contain default values, allowing you to accept the defaults and work through the steps quickly. Clicking Cancel on any of the dialogs cancels the popup creation and discards any values you entered.
Clicking Finish on any of the dialogs has the following effects:
Caution: Each wizard dialog contains a Messages field that displays errors for that step. Do not proceed to the next wizard step without correcting the errors in the present step. |
Using the Applications Popup Wizard:
When the Popup wizard launches, the Set Title and Panel Layout dialog is displayed, as shown in Figure 15-28.
The title is prepopulated with the Oracle Fusion Applications Standard for the title, which is a combination of the action of the task, the type of object, and the specific object name:
[Action] [Object Type]: [Object Name]
The title should be a reference to a single message with appropriate tokens, because, according to Oracle internationalization standards, you should not concatenate translatable messages in the code. See "Internationalizing and Localizing Pages" in the Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework, and the expanded information in "To add an Applications Table using the Applications Table wizard:" .
So, in this example, the title reference in the JSF page fragment source would resemble: #{af:formatNamed(bundle.EDIT_INVOICE,'INVOICE_NUMBER',bindings.Invoices.InvoiceNumber)}
but in the resource bundle, it would be defined as:
<trans-unit id="EDIT_INVOICE"> <source>Edit Invoice: {INVOICE_NUMBER}</source> <target/></trans-unit>
Dept. Number
instead of DeptNo
.See the description of "Components to Use" in Using Attributes to Create Text Fields in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
When you choose View Only Content, you automatically enable Slots 1 and 2. When you choose Editable Content, you automatically enable Slots 1, 2, and 3, as shown in Figure 15-32.
In the dialog:
af:popup
component is displayed in the page, as shown in Figure 15-34.This section describes how to bind data sources to the popup, and edit popup components and properties after you create the popup in the Popup wizard.
Before you can edit the popup components and properties or bind the popup to a data source, you must access the popup in the Property Inspector section of your JSF page.
To Access the Popup on a JSF Page
af:popup
component in the Design view.<af:popup...>
line in the Source view.af:popup
entry in the Structure view hierarchy.When you select the popup, the Popup - Property Inspector is displayed below the page.
This section describes how to add a data source after you have created a popup in the Popup wizard.
To add a data source to an existing popup:
af:popup
.Data-source fields are bound to popup components. Components are stored in the contents facet under the af:panelFormLayout
hierarchy.
To add components to an existing popup, drop the new components into facets.
To add UI content to existing popups:
For example, to add a new button, drag and drop the icon to the buttonBar
facet.
Either method bindings or managed bean methods can be assigned to the action and actionListener attributes to provide functionality for the buttons that were selected for the popup at design time.
This chapter discusses the Applications Panels, Master-Detail, Hover and Dialog Details components used to implement user interface features in JDeveloper.
This chapter includes the following sections:
For basic information, see:
Applications panels help you create the following user interface (UI) components as part of the UI Applications patterns:
You must use Applications panels to standardize layout and appearance for all your page forms and buttons, including read-only pages.
Before you begin:
Before you can use Applications panels, you must be familiar with JDeveloper and be able to create JavaServer Faces (JSF) pages.
Applications panels provide a button bar containing these buttons:
The buttons are organized into four slots, as shown in Figure 16-7.
All panel buttons have attributes, and some buttons have facets. Button attributes include button qualities, such as the title string and the button name. Button facets are locations that contain panel data, such as content locations and button information locations.
Table 16-1 contains attributes that are exposed for the buttons.
Table 16-1 Attributes of Standard Panel Buttons
Property | Description | Data Type |
---|---|---|
| Unique identification number for the panel. |
|
| Whether the panel is rendered (that is, converted from an object-based description into a graphical image for display). |
|
| Panel title. |
|
| Type of navigation for that panel. | Navigation types:
|
For example: | Whether the button is visible in the UI. |
|
For example: | Whether the button is rendered in the UI (that is, converted from an object-based description into a graphical image for display). |
|
| Type of action that the button performs. |
|
For example: | ID of the popup that appears when users press the button. |
|
For example: | Tooltip text for the button. |
|
For example: | Next and Previous buttons only: Whether the button should be disabled in the UI. |
|
| Submit button text: Text associated with the OK button. |
|
| Sets to true when scroll bar needs to be enabled. When scrollable is set to true, it sets |
|
| Sets the appearance of the Save button. The Save button can be rendered as a normal button, or as a drop button, depending on the value of this attribute. When it is set to |
|
| The instructionText attribute places instruction text for the Applications Panel title. This instruction text appears right below the title if the | The instructionText="#{adfFacesContext.helpProvider'helpTopicId'].instructions}" or instructionText="#{adfFacesContext.helpProvider['helpTopicId'].definition}" or instructionText="#{adfFacesContext.helpProvider['helpTopicId'].externalUrl}" |
| If no default buttons that are provided by the Applications Panel are used, set this value to false to avoid displaying unnecessary separators. | Boolean |
| Sets the immediate attribute on the Revert button. Sets whether or not data validation - client-side or server-side - should take place when events are generated by this component. When immediate is true, the default ActionListener provided by the JavaServer Faces implementation should be executed during the Apply Request Values phase of the request processing lifecycle, rather than waiting until the Invoke Application phase. | Boolean. Default is false. |
| Sets the appearance of the Submit button. The Submit button can be rendered as a normal button, or as a drop button, depending on the value of this attribute. When it's set to | String. The two values are button (the default) and dropButton. |
| Sets the | True or false (default) |
| Sets the | True or false (default) |
| Sets the text that is displayed on the saveAndCreateAnother button. | String |
| Sets the text that displays on the createAnother button. | String |
| Sets the action attribute on the button with <button_name>. Users must provide their own action; there is no default action. | String or EL Expression. |
| Sets the actionListener attribute on the button with <button_name>. Users must provide their own | EL Expression. |
For example: |
| String or EL Expression. Important: The
|
By default, a managed bean that ships with the Applications Panel enables certain actions when certain conditions exist. For example, default actions occur when users click buttons, and when developers set certain Applications Property values. These default actions are overridden if you change the value of the default button action property.
Table 16-2 contains facets that are exposed for each panel button.
Table 16-2 Facets of Standard Panel Buttons
Facet | Description | Allowed Children |
---|---|---|
| Facet for holding developer-defined content or content generated at design time. | Any ADF component. |
| Facet for holding the navigation choice list if the chosen Record Navigation Type is non-linear. |
|
| Facet for holding custom action buttons. |
|
| Facet for holding the custom menu and menu items for the Save button. |
|
| Facet for holding the custom menu and menu items of the Submit button. | None | |
| Facet for holding any popups required for any of the buttons. | Applications popups under some ADF layout components. |
| Facet for displaying legend information on the header. | |
| Facet for displaying context information next to the header. The contextual information is displayed next to the header text. | |
| Facet for adding custom Save drop button. | This facet should contain |
| Facet for adding content into local context region. | |
| Facet for adding a task stamp. There are three styles: one applied to the right side of the data, one to the left, and one to the container having these values. (Example: <af:panelGroupLayout layout="vertical" valign="top" styleClass="AFStampContainer" id="ptpgl5"> <af:panelGroupLayout layout="horizontal" halign="end" id="ptpgl6"> <af:outputText value="Last Updated" styleClass="TaskStampTextLabel" id="ptot8"/> <af:outputText value="08-Nov-2007" styleClass="AFTaskStampTextValue" id="ptot9"/> </af:panelGroupLayout> <af:panelGroupLayout layout="horizontal" halign="right" id="ptpgl7"> <af:outputText value="Budget Remaining" styleClass="TaskStampTextLabel" id="ptot10"/> <af:outputText value="$20,000.00" styleClass="AFTaskStampTextValue" id="ptot11"/> </af:panelGroupLayout> </af:panelGroupLayout> | |
| Facet for adding collaboration toolbar buttons. | Example: <f:facet name="collaborationToolbar"> <af:toolbox> <af:toolbar> < af:commandImageLink text="One" icon="/image1" id="mycmd1"/> < af:commandImageLink text="Two" icon="/image2" id="mycmd2"/> < af:commandImageLink text="Three" icon="/image3" id="mycmd3"/> </af:toolbar> </af:toolbox> </f:facet> |
| Facet for adding scaling information. | Example: <af:panelGroupLayout layout="vertical" styleClass="AFStampContainer" id="pgl3"> <af:outputText value="AUD = Australian Dollar" id="ot5"/> </af:panelGroupLayout> Example for scalingInfo with more than one value: <af:panelGroupLayout layout="vertical" styleClass="AFStampContainer" id="pgl3"> <af:outputText value="AUD = Australian Dollar | Amounts in thousands" id="ot5"/> </af:panelGroupLayout> |
| Facet for holding the custom menu and menu items for the Submit button. | af: |
| The contents facet is a child of the The Note: The Applications Panel can be stretched by placing it in the center facet of an ADF To use this facet, place your components inside the A switcher reads the Example: <fnd:applicationsPanel id="AP1" title="#{viewcontrollerBundle.APPLICATIONS_PANEL__STRETCH_FA}" scrollable="true" navigationType="none" cancelVisible="true" cancelRendered="true" submitVisible="true" submitRendered="true" contentsFacet="stretch"> <f:facet name="contentsStretch"> <af:panelStretchLayout id="psl1"> <f:facet name="bottom"/> <f:facet name="center"> <fnd:applicationsTable tableId="ATt2" id="AT2" deleteEnabled="true" createPatternType="inline" duplicatePatternType="inline" editPatternType="inline" createText= "#{viewcontrollerBundle.NEW}"> | Scroll (the default) or Stretch. |
| Facet for adding a horizontal train above header. | |
| This can be either |
Model
The Applications panel does not expose any bindings to the model. However, components within the panel can be bound to the model.
Controller
The Applications Panel component ships with a default managed bean (internal to the Oracle Fusion Middleware Extensions for Applications team) that performs the following functions:
To allow developers access to some of the implementation, the Applications Panel exposes a public class oracle.apps.fnd.applcore.patterns.ApplicationsPanelEventHandler that contains default event handlers for all the buttons. The button methods are named as process
<buttonName
> such as processSave
and processCancel
. Application developers writing custom action handlers can also use the default implementation by calling these methods.
Custom Button Handling
Follow these steps to attach a custom button handler to the Cancel button.
Example 16-1 Example of Attaching a Custom Handler to a Button
#{CustomeEventHandler.processCancel}
as the expression for the property.You create Applications panels in the Applications Panel wizard, which is displayed when you add panels to your JSF pages (or page fragments) from the Component Palette or the Data Controls panel.
To Add an Applications Panel Using the Component Palette:
The Applications Panel wizard is displayed.
To Add an Applications Panel Using the Data Control Dialog:
The Applications Panel wizard is displayed.
This section explains how to use the Applications Panel wizard to add panels to your page.
In the Applications Panel wizard you can:
In any Applications Panel wizard dialog, click Cancel to cancel your actions and exit the wizard. Click Finish on any dialog to accept the defaults and exit the wizard.
To Add an Applications Table Using the Applications Panel Wizard:
When the Applications Panel wizard is launched, the Title and Subsections dialog is displayed, as shown in Figure 16-2.
"Edit Journal: ID {OBJ_ID}"
.The title is prepopulated with the Oracle Fusion Applications Standard for the title, which is a combination of the action of the task, the type of object, and the specific object name:
[Action] [Object Type]: [Object Name]
The Object Name usually is something specific so you can identify a specific object. For instance, if you were dealing with part numbers, the Object Name could be a specific part number; if you were dealing with customer information, it could be the customer's name.
The title should be a reference to a single message with appropriate tokens, because, according to Oracle internationalization standards, you should not concatenate translatable messages in the code. See "Internationalizing and Localizing Pages" in the Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework.
Each subsection has editable title fields, panel type fields (Panel Header for a basic view or Show Detail Header for a more detailed view), and number of columns (1-3) fields.
The Panel Subsections is used to divide the Applications Panel facet (contents) with other layout components, such as panelHeader
, show detail header, and panelGroupLayout. This lets the developer decide the layout during Design Time without needing to add each of these layouts manually after the panel creation. Of course, the user can add more or new layouts as needed after the panel is created.
Use the up or down arrows to change row order.
The Select an initial set of panel components dialog is displayed, as shown in Figure 16-3.
Select the data source, then click OK to add it to the component. Optionally, you can bind the component to a data source at a later time.
When you choose a data source, the component fields in the dialog are automatically populated with the data source fields, which contain panel-component information.
Linear sends users to an adjacent or contiguous window. This commonly is used when a series of actions or steps need to be followed in a sequential order.
Non-Linear sends users to a non-adjacent or non-contiguous window. This is used when an action does not need to take place in a specific sequence.
Note that Slot 3 defaults to Continue. However, as shown in Figure 16-7, if you select Submit, a text input field displays to the right. You can enter alternate text that makes more sense in your application for the submit action, such as OK or Purchase.
You can create a Save or Submit pull down menu. When you choose Save in Slot 2, or Save and Close in Slot 3, an Add Menu option will appear. Click it to display a list similar to Figure 16-8.
These are options that can appear in a pull down menu at runtime under Save. To select, click the option you want. To add more than one, select Add Menu again and choose a second option. As they are chosen, check marks will appear next to each selected item, shown in Figure 16-9.
When an item is selected from the Add Menu of Slot 3, the selection of the drop-down in Slot 3 will become the label of af:commandToolbarButton
and the selections in the Add Menu will become the af:commandMenuItem
under af:menu in the popup facet of the af:commandToolbarButton
. The af:commandToolbarButton
will be added to the customSaveDropButton facet
(see Table 16-2).
If an option is chosen in the Add Menu of Slot 2, it will be grayed-out as an option for Slot 3 to prevent you from making the same choice multiple times, as shown in Figure 16-10.
This section describes how to edit Applications Panel properties and components, how to add a data source to the panel, and how to add more UI content.
The Applications Panel can be stretched by placing it in the center facet of an ADF panelStretchLayout
component. Do not set the width using the inlineStyle
attribute on either Applications Panel or panelStretchLayout
. For more information about basic page layout and the inlineStyle attribute, see "Organizing Content on Web Pages" and "Customizing the Appearance Using Styles and Skins" in Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework.
Before you can edit the panel properties and components or bind the panel to a data source, you must access the panel in the Property Inspector section of your JSF page.
To access the panel on a JSF page:
fnd:applicationsPanel...
fnd:applicationsPanel
When you select the panel as described in this section, the Applications Panel - Property Inspector is displayed.
This section describes how to edit Applications Panel properties and components.
To edit an application panel property:
To edit an application panel component:
af:panelHeader
in the Source view.For example, to edit a subsection display name, select the subsection and edit the Text property in the Property Inspector for that subsection.
This section describes how to add a data source after you create a panel in the Application Panel wizard.
To add a data source to an existing panel:
Data-source fields are bound to panel components. Components are stored in the contents facet as af:panelFormLayout
components, and in the various subsections.
For example, Figure 16-13 shows a panel's Structure view, which contains added components.
To create an additional field in a subsection, drag an attribute from the data source to the corresponding container. For example, drag the attribute to fnd:applicationsPanel > f:facet - contents > af:panelGroupLayout > af:panelFormLayout. When prompted for the component to associate with the attribute, choose ADF Input Text w/Label.
Although Applications panels already provide common layout components, your JSF page might require additional UI elements, such as additional action buttons. When you add new components to a panel, you drop the new components into facets.
To add UI content to existing panels:
For example, to add a new button, drag and drop the button to the actionButtonBar
facet.
For more information on facets, see Table 16-2, "Facets of Standard Panel Buttons".
Note: Master-Detail refers to the interaction of selecting an object from a master list, and refreshing the details in an adjacent area. It is not the relationship of the data. |
The Master-Detail composite is used in situations where the information is too large, dynamic or complex to show in a flat table. The user can see the Master, or summary, information in one area, and the corresponding details in a separate area. This can be achieved using different master and detail components, such as table, tree table, and tree.
For instance, when the user selects an Employee from the master table, the corresponding employee details are displayed in the region below in a label/data format.
For more information, see the "Displaying Master-Detail Data" section in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
You should review and understand the Applications Table before proceeding to implement the Applications Master-Detail in your development pages.
Facets
Table 16-3 shows the facets that are exposed on the Applications Master-Detail.
Table 16-3 Applications Master-Detail Facets
Facet | Description | Allowed Children |
---|---|---|
| facet for holding the Applications table | formLayout and Applications Table |
| facet for holding the Applications Table | Applications Table |
View Properties
See Table 15-2, "Applications Table Properties" in Section 15.1, "Implementing Applications Tables" for a list of properties exposed on the Applications Table. These properties can be used to configure the Applications Table under either the Master or Detail section of the Applications Master-Detail component.
Model
The Applications Master-Detail does not expose any bindings to the model on its own, but the ADF tables or formLayout components that are encapsulated within the Applications Table under the master or detail section will be bound to the model.
Controller
The Applications Master-Detail ships a default managed-bean (internal to the Oracle Fusion Middleware Extensions for Applications (Applications Core) team) that currently supports translation functions. You can access the implementation of the Applications Table managed bean which will be exposed as either the Master or the Detail section of the component. For use and implementation information, see Controller in Section 15.1, "Implementing Applications Tables."
The Master-Detail can exist at the page level, or at the subheader level in a page. The Master-Detail component will support these layouts:
Tables are the most common master component. When a table row is selected, the details appear in the area below the table. A table is also a very common detail component.
A Tree Table is a layout option in a Master-Detail composite for either a Master or a Detail (not both). When a Tree Table row is selected, the details appear in the area below the Tree Table.
Sub tabs are a detail layout option in a Master-Detail composite.
Form Layout is a detail layout option in a Master-Detail composite.
The Applications Master-Detail can be added to a page or page fragment using the Data First approach. Valid drop locations in the page or page fragment include ADF Form, and ADF Layout components and the Applications Panel (jsp:root, af:form, af:root, fnd:applicationsPanel, af:group, af:panelBorderLayout, af:panelBox, af:panelCollection, af:panelFormLayout, af:panelGroupLayout, af:panelHeader, af:showDetailItem, af:panelWindow, af:popup, af:showDetail, af:subform, f:facet, f:panelGrid, f:panelGroup, af:pageTemplateDef, af:pageTemplate#<localArea_Facet>
.
For more information on creating a JSF page, see the Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework.
Be sure to save your work after you create each component.
You create a Master-Detail in the Applications Master-Detail wizard, which is displayed when you add the details to your JSF pages (or page fragments) from the Data Controls panel.
To add a Master-Detail from the Data Control panel:
For Master-Detail to work, you need to define the model-layer such that the Master and Detail are linked by a ViewLink that establishes a relationship from the Master to the Detail.
The Applications Master-Detail wizard is displayed.
This section explains how to use the Applications Master-Detail wizard to add Master-Details to your pages.
All mandatory fields in the wizard contain default values, allowing you to accept the defaults and work through the steps quickly. Clicking Cancel on any of the dialogs cancels the creation of the Master-Detail and does not save the values you entered.
When you click Finish on any of the dialogs, the software:
Caution: Each wizard dialog contains a Messages field that displays errors for that step. Do not proceed to the next wizard step without correcting any errors in the present step. |
Creating a Master-Detail Using Tables
When the Create Applications Master-Detail wizard launches, the Select Pattern Type dialog displays, shown in Figure 16-15.
Enclose Master Detail in
If the Pattern Type supports either the Panel Splitter or the Master Header Label, this option becomes active and a list, shown in Figure 16-16,offers these choices.
In the example in Figure 16-18, the Edit Element Entries text is the Panel Header and the Basic Information text with the expand/collapse icon is the Show Detail Header. The picture, Name and Social Security Number are the content, which is enclosed by the Show Detail Header. Then everything is enclosed by the Panel Header, shown in Figure 16-18.
Select the Pattern Type (the example uses Table/Table) and any options and click Next.
The Configure Master dialog displays, shown in Figure 16-19.
To create your Master-Detail for your Master table columns:
Click Next to display the Configure Master Table Patterns dialog, shown in Figure 16-20.
Configuring the Details table is the same as configuring the Master table; see Figure 16-19 and steps 1 through 4.
Configuring the Details Table Patterns is the same as configuring the Master Table Patterns; see Figure 16-20 and step 5.
When you click Finish, the Table/Table Master-Detail is added to the editor, and appears similar to Figure 16-23 in Design mode.
Creating a Master-Detail Using Forms
When the Create Applications Master-Detail wizard launches, the Select Pattern Type dialog displays, shown in Figure 16-15.
To create your Master-Detail for your Master form fields or Detail table columns:
This configure dialog is the same as the one for creating a Table, except that it does not have the Enable ADF Behavior settings, as shown in Figure 16-19.
Select the navigation buttons you want to appear on the Main form.
Use this dialog to create as many tabs on the Details form as you need. To create a new tab, enter a name in the Name field and click the Add icon. The tab is added in the area beneath the Name field.
Each tab is the same as the dialog for creating a Table, except that it does not have the Enable ADF Behavior settings, shown in Figure 16-19.
Your new Master-Detail displays in the JSF Page editor, shown in Figure 16-27.
Developers should follow these guidelines to use the updatable Master-Detail task flow and to investigate some solutions for creating a detail record for a newly-created master record. Several cases have been identified for using Master-Detail. The master and the detail can be a form, table, tree, or tree table.
If you have a Master-Detail in your page and the primary key for the master is not generated using a sequence, the best way to create a detail row for a freshly-created master row is to have a page-level Submit or Save button that needs to be clicked to save the master data before creating detail data.
In this case there are two solutions:
autoSubmit="true"
on all the components inside the af:column
.In this case, you need to provide a page-level Submit or Save button and click it to commit the master record before creating a detail record.
The preferred solution is to have a page-level Submit or Save button that can commit the master record before creating a detail record.
To modify Master-Detail components and properties, double-click a Master-Detail component in the page editor.
Hover is a subset of Detail On Demand that presents the same information when the user hovers over a link.
This is a Design Time (DT) only pattern, no component has been created. For this reason there is no UI First creation option.
The Design Time works when dragging a collection from the Component palette onto an allowed drop component, shown in Figure 16-28.
The allowed drop components are:
af:commandLink
af:commandImageLink
af:commandToolbarButton
The DT will check to see whether the component is in a table already bound, and if that binding is for the collection being dropped.
If it is not dragged into an allowed table component, it will create additional bindings for that collection.
If the allowed component already has a showPopupBehavior component child, the menu option will not show. This behavior helps prevent double adding of hovers.
A dialog displays so you can select the attributes to see in the hover popup, and the alignment of the popup over the "hovered" component, shown in Figure 16-29.
The valid values for alignment are:
All JSF components created in the popup will be read-only.
When the OK button is clicked:
<af:showPopupBehavior>
component added as a child.<af:popup>
) will be added as the previous sibling of the drop component, shown in Example 16-2 for the sample markup, and Figure 16-30 for a sample of the result.Example 16-2 Example Markup for a Form-based Layout
Example 16-3 shows the sample markup for a table-based layout and Figure 16-31 shows an example of how the result appears.
Example 16-3 Example Markup for a Table-based Layout
Links in the Popup
It is possible to add command links / buttons into the popup so the user can navigate to a separate page/page flow. Adding these links is up to the developer, because it is not a valid option in the Design Time, as command links are not an available component in any binder GUI. The developer must ensure the popup is closed after navigation in this case, although the default behavior may do this.
The Applications Dialog Details component provides a user interface for launching a popup that contains detail information. The UI can be a detail icon, a link, or a button.
You can add the Applications Dialog Details to your page in two ways:
View
Table 16-4 shows the properties that are exposed on the Applications Dialog Details.
Table 16-4 Applications Dialog Details Properties
Property | Description | Allowed Values |
---|---|---|
| The unique ID for this Applications Table | string |
| Whether the Applications Table is rendered or not | boolean / expression |
| Detail pattern type | image, link or button |
| ID of the popup to be invoked when Detail image/link/button is clicked | string |
| Overrides default label for Detail button, or defines link text for Detail link | expression |
| Overrides default roll-over text for detail image/button | expression |
| Sets whether the component needs to be disabled | boolean / expression |
Model
The Applications Dialog Details does not expose any bindings to the model. However, components within the Applications Dialog Details, like the layout inside ADF popup, will be bound to the model.
Controller
The Applications Dialog Details component does not ship a default managed bean.
The Applications Dialog Details can be added to a page or page fragment using either the Component First or the Data First approach. Valid drop locations in the page or page fragment include ADF Form, and ADF Layout components and the Applications Panel (jsp:root, af:form, af:root, fnd:applicationsPanel, af:column, af:form, af:group, af:panelBox, af:panelFormLayout, af:panelGroupLayout, af:panelHeader, af:showDetailItem, af:panelWindow, af:showDetail, f:facet, f:panelGrid, f:panelGroup, af:pageTemplateDef, af:pageTemplate#<localArea_Facet>
).
The Applications Dialog Details can be added to a page or page fragment using either the Component First or the Data First approach. Both approaches launch a wizard which helps you to quickly define the appropriate attribute values. Once you complete this wizard, you can further refine the dialog details definition by editing the resulting component as needed.
Component First
Navigate to the Component Palette. Click the list of libraries and select Applications. Drag the Applications Dialog Details from the list of components and drop it onto the page. The wizard will launch after dropping the Applications Dialog Details on the page.
Data First
Navigate to the Data Controls panel of the Application Navigator. Open the panel by clicking its bar, then navigate through the hierarchy to locate the data source that you would like to include in the Applications Dialog Details. Select that data source and drag it on to the page. A context menu will appear with a list of components. Move the mouse over the Applications category list. Select Applications > Dialog Details to launch the Applications Dialog Details wizard, shown in Figure 16-32.
Applications Dialog Details Create Wizard
The Applications Dialog Details Create wizard consists of only one panel.
Create Applications Dialog Details Panel
The Create Applications Dialog Details Panel will vary depending on the approach used to launch the Applications Dialog Details creation process.
Using the Data First approach, the Bind Data Now and Data Source properties are hidden. The selected data source is automatically bound to the components in the formLayout of the popup.
Using the Component First approach, it is up to the developer to decide whether to bind a Data Source to the dialog details component, shown in Figure 16-33.
You can skip the data control binding step when creating the Applications Dialog Details. In this case, the Applications Dialog Details will create several default placeholder outputText
fields that you can use for layout purposes in the popup. You can decide how many placeholder columns you wish to display. Once you have selected the appropriate number of fields, click OK to finish the creation process.
If you wish to bind a data control to the table component using the Component First approach, check the Bind Data Now checkbox. This will enable the Browse button for the Data Source property. Click the Browse button to display a list of data sources available for binding. Navigate through the list, select the desired data source, and click OK.
Once the Data Source is selected, the developer can enter the title for the popup and choose the Detail Pattern Type.
When link is selected for the Detail Pattern Type, you will need to select an attribute of the data source that binds to the Text attribute. This is the displayed text of the link. When image or button is selected for Detail Pattern Type, choosing an attribute is not needed, as shown in Figure 16-34.
Title
The format should be <Object Type> <Object Name>
(such as Expense Report WBJ3008D)
The format should be <Action> <Object Type>: <Object Name>
(such as Approve Expense Report: WBJ3008D)
If you want a new Title, enter the string here. The string will be converted to a text resource and added to the default resource bundle.
If you already have a Title defined in a resource bundle, click the ellipsis and choose from the list, as shown in Figure 16-35.
When a title is selected from the list, the Title field will appear similar to Figure 16-36.
Detail Pattern Type
The Detail Pattern Type is how the data control is shown; it can be an image, a link or a button.
Use of a specific pattern type is your choice and does not affect the way Dialog Details behaves.
Text Attribute
This setting is available only if the Detail Pattern Type is link. The text entered here is shown as the Dialog Details link. This helps give the user an idea about the data contained in the popup.
Read-only Form
If this option is not selected; that is, the form can be edited by the user, two buttons automatically are added to the form: Save and Close, and Cancel. Figure 16-37 shows the default buttons in the form in the JDeveloper Design view.
If this option is selected; that is, the form cannot be edited by the user, only an OK button automatically is added to the form, as shown inFigure 16-38.
Fields
This section discusses how to edit Dialog Details properties.
Editing - Properties
Once you have created the Applications Dialog Details, you can modify the property values by using the Property Inspector. There are three ways to select the Applications Dialog Details:
<fnd:applicationsDialogDetails ... >
line in the Source view of the page.fnd:applicationDialogDetails
from the hierarchy in the Structure View.All components created as part of the Applications Dialog Details are editable using this same approach, shown in Figure 16-39.
Adding a Data Source
Once you have created the Applications Dialog Details, you can see that an af:popup
has also been created above fnd:applicationsDialogDetails
. You can add data controls to the facets / content containers within that popup using the following steps:
For example, inside the popup that the Applications Dialog Details wizard generates, the fields of the data source are bound to components. Figure 16-40 shows the Structure view of a page with components already added.
To add a field from a data source to the af:panelFormLayout
inside the popup, drag the field from the data source to the following path: up > af:dialog > af:panelFormLayout. As is the case with the data first approach, you will be prompted to choose which ADF component to use for this attribute.
Note: This example uses the Structure view because it provides an efficient overview of the page. The field could also be dropped onto the page in Design or Source view to achieve the same result. |
Adding UI Content
To achieve the final goals for a page design, you will likely need to add other components to the af:dialog
inside af:popup
.
A product team's task flow must include the OK and Cancel buttons that are used to launch a dynamic tab and dismiss the popup, respectively. Once the buttons have been added, create a managed bean to set each button's action listener. Use the method in Example 16-4 as the Cancel button's action listener.
Example 16-4 Example Method to Create a Managed Bean to Be the Cancel Button's Action Listener
Note: Although the closePopup() implementation shown in Example 16-4 closes the popup properly, if you reopen the popup by clicking the tasklist link, it shows the previously-entered values. If you do not want to show previously-entered values, you need to add a taskflow return activity, navigate to it, and then close the popup. However, after adding this taskflow return activity to the example closePopup() implementation, the popup is closed only partially. This is a side effect of the Javascript hide that is used. A solution is to use this closePopup() method, which works whether or not you have the taskflow return activity.public void closePopup() { FacesContext facesCtx = FacesContext.getCurrentInstance(); String taskPopupId = PatternsUtil.findComponentById(facesCtx.getViewRoot(), "TaskPopup").getClientId(facesCtx); PatternsPublicUtil.hidePopup(taskPopupId); } |
Create another method for the OK button that calls the method in Example 16-4, and any additional processing logic. The common use case would be opening a new task in the Main Area by using the openMainTask API. For example, you can bind the OK button to a managed bean and add your own action listeners, as shown in Example 16-5.
Example 16-5 Example Method to Create a Managed Bean to Be the OK Button's Action Listener
This chapter describes how to change the look and feel of your application by changing the skin. This chapter deals specifically with skinning as applied to Oracle Fusion applications and the UI Shell.
This chapter includes the following sections:
For general information about skinning, see "Customizing the Appearance Using Styles and Skins" in the Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework.
For information about the UI Shell, see Chapter 14, "Implementing the UI Shell."
Skinning lets you change the look and feel of your application without changing the content.
The goals of skinning include:
Before you can implement skinning, you need to accomplish these actions:
The first time you run, you may be prompted to locate the path to your Java executable:
Note: If the Java executable is in the bin
subdirectory, do not add bin
to the path you enter. /bin
is added automatically to the end of the string you enter.
Follow these basic steps to create a custom skin and implement it in your application.
The first step to create a custom skin is to create the skin project. Follow these steps.
Enter a name for the application. By default, an application name in the form Applicationn is shown, where n is a number that increases sequentially from 1. This is the filename that will be used for the application control file within the file system. The extension .jws is assumed, but not displayed.
Enter a directory for the application or click Browse to locate one. The default directory location is its own subdirectory beneath skineditor/, such as skineditor/Application_Name.
Click Next to display the ADF Skin Project dialog, shown in Figure 17-2.
Enter a name for the project. By default, a project name in the form Projectn is shown, where n is a number that increases sequentially from 1. This is the filename that will be used for the project within the file system. The extension .jpr is assumed, but not displayed.
Enter a directory for the application or click Browse to locate one. The default directory location is skineditor/Application_Name/Project_Name.
Choose 11.1.1.5.0, or whatever is the Fusion Applications release you are running (choose Help > About to see the release number). This determines which skin families are available for your release and the values that will be available for the Extends option when you create a new ADF Skin file, as shown in Figure 17-3.
Click Finish.
An ADF skin is a type of CSS file that you can use to define the look and feel of your application. Oracle Application Development Framework (ADF) provides a number of ADF skins that you can extend when you create a new ADF skin. The recommended ADF skin to extend depends on the release of Oracle ADF that you use.
Enter a file name for the new ADF skin. The example uses GPS.
Enter the directory path to the CSS source file for the ADF skin. You can accept the default path shown in the Directory field specify a different path.
This value automatically is populated with the root of the File Name you entered.
If necessary, enter a different value for the family name of your ADF skin. Later, you will set this value in your application's configuration file (for example, the trinidad-config.xml file) to apply the ADF skin to the application.
Clear this checkbox if you do not want to make the ADF skin the default for your project. Later, you can set a value in your project's configuration file to make the ADF skin the default.
This field lets you select from the list of available skin families. The selection depends on the value selected for the Target Application Release, as shown in Figure 17-2.
From the drop-down list, select fusionFx-simple-v1.1.desktop. Newer releases of software may use different styles. See release notes.
Compared to the complex Oracle-specific skin, this skin is optimized to make it easy to create a new style.
The difference between extending and adding is that, by adding, you are still referencing the base skin family (such as Fusion-Fx in the Trinidad-config file) but the styles in the addition also are picked up. Extending is when you extend and then override.
This read-only value automatically is populated with the root of the File Name you entered and the extension of the value selected in the Extends field.
The trinidad-skins.xml file uses the value of Skin Id to identify ADF skins.
Click OK to create the .css file (GPS.css in this example).
When you click to display the Design view, the styles display in the Style Classes list and a sample view is displayed, as shown inFigure 17-4.
Click another Theme tab, such as Medium Theme, to show how the text display changes, as shown in Figure 17-5.
To customize the colors of the CSS style, click the Images tab. The display will change to resemble Figure 17-6.
To change a style's color, click the icon to the right of the style name to display the color picker, shown in Figure 17-7.
You need to deploy the skin project to a JAR file that can be included in an application. There are three steps to deploying the skin project:
To deploy the skin project:
Select ADF Library JAR File.
The name must begin with Xx_. The example uses Xx_ plus the name of the project.
The skin profile JAR now is ready to be added to an application's Libraries and Classpath.
The logo to be used can be located through a URL where all applications point to a single location, or packaged within a JAR file and placed in the class path of each application. The trade-offs are that setting up a single location is easier, but if the server where the logo is located is down, the logo will not appear. A logo located within each application always will be available for that application.
To create a JAR file with a logo:
The reference in the template to the image is just the name of the logo file:
If your logo height is greater than 30 pixels, change the height to fit the logo. To achieve this, change the topHeight in 2 locations from 30px to your logo height. Depending on padding in the skin style, you may need to add a couple pixels to prevent a scroll bar from appearing.
You also need to change the height of the UIShellBrandingBarItemTop:
You can change the skin of an existing deployed application or you can add a skin within JDeveloper to a development project.
To change the skin of a deployed application:
WEB-INF/Lib
directory:To use a skin within JDeveloper:
Set your profile option (PO) to the new skin. (You can create a PO for the skin associated to a single user when developing a skin so others are not affected.) After changing the PO, reload a page using the PO and you should see your changes immediately.
To change the PO:
If you log out of the fndSetup application and then back in, you'll see that the simple Xx_GPS skin has changed how the application looks, as shown in Figure 17-12.
This chapter provides guidelines for implementing attachments at design time in a quick and simple manner using Oracle Fusion Middleware components.
This chapter includes the following sections:
For general information about Oracle Fusion Middleware user interface (UI) components, see:
The Attachment component provides a declarative programming mechanism for you to add attachments to the user interface (UI) pages that you create for Fusion web applications. Once added to a UI page, the component gives users the ability to associate a URL, desktop file, repository file or folder, or text with a business object, such as an expense report, contract, or purchase order. The component can be displayed in a UI page in any of the following ways:
The following elements are rendered on the page or page segment:
When clicked, the link opens the attachment in a new browser tab or window depending on the browser settings.
If there are no attachments the value of this field will be None.
Hovering over this link will display a small dialog with a list of up to the next three most recent attachments. When clicked, these links opens the attachment in a new browser tab or window depending on the browser settings. If there are more than four attachments the last bullet is a link with the format " <# of remaining attachments> more...". The number of attachments shown in the small dialog list is configurable. Clicking this link opens the Attachments window, which displays the full list of attachments in a table.
Figure 18-1 shows an example of an attachment field in a page or page segment with attachments.
Note: The Attachment label originates from outside the Attachment component to allow the Attachment component to correctly align with the other components in the page layout. |
The following elements are rendered in the table:
When clicked, the link opens the attachment in a new browser tab or window depending on the browser settings.
If there are no attachments the value of this field will be None.
Hovering over this link will display a small dialog with a list of up to the next three most recent attachments. When clicked, these links opens the attachment in a new browser tab or window depending on the browser settings. If there are more than four attachments the last bullet is a link with the format " <# of remaining attachments> more...". The number of attachments shown in the small dialog list is configurable. Clicking this link opens the Attachments window, which displays the full list of attachments in a table.
Figure 18-2 shows an example of an attachment column in a table.
The Attachment table can be shown in:
This occurs when you choose to display all attachments for the current record in a table.
This occurs when the user clicks the Manage Attachments icon associated with an attachment field either on a page or page segment, or an attachment column in a table.
The following elements are rendered in the Attachment table:
Category values are defined at implementation time. Make sure to use functionally relevant category names. If two or more categories are defined, the category column is displayed. If only one category is defined, the column is not displayed.
If the value is an existing attachment, a link is shown that opens the attachment when selected. The link opens in a new browser tab or window depending on the browser settings. For new rows:
The user name for the attachment, as the file name or URL may not adequately convey the contents of the attachment. If users do not enter a title, it defaults to the value in the File Name or URL field.
The field to include additional information on the attachment.
Shows the name of the user that last updated the attachment relationship.
Shows the date on which the attachment relationship was updated.
Figure 18-3 is an example of an Attachments table with the repositoryMode
attribute set to false.
This section provides information about creating attachments and describes how to set up your model project for attachments, how to create an attachment field or an attachments table, and an attachments column in an Applications table. Also included is how to set up required properties, as well as information about what happens when you implement attachments and what happens at runtime.
Before you begin:
jazn-data.xml
file:Example 18-1 Snippet for jazn-data.xml File
Note: Be aware that the URLs and <class> entries cannot contain any spaces or line breaks. |
Notes: Attachments can support multiple Content servers. Attachments stores the name of the Content Repository connection used when creating a new attachment. This value is then used when retrieving the attachments. It is important to co-ordinate the naming and registration of Content Repository connections. So that the Attachments code can connect to the correct server to retrieve the requested file. Developers need to create a Content Repository connection with the name "FusionAppsContentRepository". This connection should used jaxws as the socket type and Identity Propgagtion for Authentication. |
For information about how to create a Content Repository connection in JDeveloper, see Section 53.1, "Creating a Content Repository Connection".
For additional information see the "Integrating Content" chapter of the Oracle Fusion Middleware Developer's Guide for Oracle WebCenter.
Note: This setup is required for Attachments to function correctly. You must log in to the Content Server as a user with System Administrator privileges in order to see the above information. If you cannot see these details in your Content Server, please contact your system administrator to ensure that they have enabled the FusionAppsAttachments component in the Content Server. For more information, see "Internal Security: Security Groups, Roles, and Permissions " in Oracle Universal Content Management: Managing Security and User Access, 10g Release 3 (10.1.3.3.1). |
The Model project must be set up correctly before you can add attachments to your page.
Part of the Model setup involves creating an attachment view link between the business object view object and the attachments view object. When defining this attachment view link, you must select Primary Key values and enter an Attachment Entity Name. This unique name is used to identify all attachments for your business object.
The first time you create an attachment view link for your business object, the unique attachment entity name is stored in the database. If you need to link the same set of attachments to another view object on a different page, reselect the existing attachment entity name when creating the attachment view link.
After creating the attachment view link, you will need to assign a set of categories to your attachment entity. When creating the attachment view link, you can choose to show all of the categories assigned to your entity in your UI, or a subset of these categories. If you do not need to reduce the list of categories that will be displayed in your UI, you can select to "Show All Categories" on the Categories step in the Attachment View Link Wizard. This will make all categories that are assigned to your attachment entity available in your UI. For more information, see Section 18.2.2, "How to Create Attachment View Links."
Once you have finished setting up your model project, you must decide how you would like to display the attachments in your page: As an attachment field, as a table of attachments, or as an attachment column in an applications table. This design-time setup is performed in your ViewController project. For more information about setting up your ViewController project for attachments, see Section 18.2.6, "How to Create an Attachments Field or an Attachments Table," Section 18.2.8, "How to Create an Attachments Column in an Applications Table," and Section 18.3, "Displaying Attachments for Multiple Entities in the Same Table."
After adding attachments to your UI page, you must complete the required steps to ensure that the attachments functionality works correctly at runtime. For more information about these setup steps, see Section 18.2.7, "What Happens When You Implement Attachments" and Section 18.2.10, "What Happens at Runtime."
Attachment view links are used to establish master-detail relationships between your view objects and the attachments view object. Attachment view links are created using the Attachment View Link wizard.
To create an attachment view link:
Tip: There is no need for you to select a destination view object because the Attachment view link always uses the Attachments view object as the destination view object. |
Use Existing Attachment Entity: When checked, the Available / Selected columns are automatically populated with the stored primary key values for the selected entity. When unchecked, the new entity is created in the FND_DOCUMENT_ENTITIES
and FND_DOCUMENT_ENTITIES_TL
tables.
Entity Name: Enter a unique name for the entity you are adding attachments to.
Note: The entity name is used to map a business object to its attachments. |
Available / Selected: Select only those columns that make up the primary key of the entity object by shuttling them from the Available column to the Selected column.
Click Next to access Step 4. The Categories dialog appears, as shown in Figure 18-8. (The Display All Available Categories checkbox is not selected when you first enter this page.)
Choose the categories that will be made available to the user in the Attachments runtime UI. The categories you select here must be assigned to your attachment entity. If they are not, they will not be visible in your UI.
Categories that you create using this wizard are inserted into the FND_DOCUMENT_CATEGORIES
and FND_DOCUMENT_CATEGORIES_TL
tables against the Application that you selected in Step 1 of the Attachment View Link wizard. Categories that you edit are updated in the FND_DOCUMENT_CATEGORIES
and FND_DOCUMENT_CATEGORIES_TL
tables.
Notes:
|
Select the categories to be made available for this entity in the runtime UI.
Note: Use the Add, Edit, and Delete buttons to add, edit, or delete existing categories for the Application that you selected in Step 1. You are not able to edit or delete the seeded Miscellaneous FND category. |
Tip: The end-user display name for the Category (USER_NAME from the FND_DOCUMENT_CATEGORIES_TL table) is shown in the shuttle. |
Select Display All Available Categories to show all categories that are assigned to your attachment entity.
When you select Display All Available Categories, all other fields are automatically removed from the dialog. You will no longer see a list of categories and therefore, you will not be able to add, edit, or delete them. This selection, however, does not override the document category to entity mapping.
You should select this option if you want Categories, assigned to your attachment entity in the future, to appear in the Categories dropdown list at runtime. Selecting this option will ensure that customers can create and use their own Categories in your UI with minimal effort.
Deselect the Display All Available Categories checkbox to select a subset of categories that are used to further restrict the list of Attachments returned in the UI. Only the Attachments that are assigned to the selected categories will be retrieved in the UI. To select the required categories, highlight them in the Available column and shuttle them over to the Selected column.
Note: If you did not select the Display All Available Categories checkbox, you must select at least one category before proceeding to the final step in the wizard. |
The selected list of categories will be stored as a custom property on the newly created attachment view link. The value will consist of a concatenated string of values. All the selected categories are concatenated in a comma-separated list.
Note: It is recommended that you choose the Display All Available Categories option to allow for customization of the Category list without code changes. Additionally, please be aware that the list of available categories, and the list of Attachments displayed can be further controlled using Category data security. For more information, see Section 18.7.1, "Attachment Category Data Security." |
Once you have completed all the steps in the wizard by clicking Finish to create your Attachment view link:
FND_DOCUMENT_CATEGORIES
and FND_DOCUMENT_CATEGORIES_TL
tables.OAF_ATTACHMENT_CATEGORY
) is created on the Attachments view link, which is a list of all the categories that you select in Step 4 of the wizard.The custom property stores an empty list when you select the Display All Available Categories checkbox. When this checkbox is not selected, the custom property stores a comma-separated list of categories (using the CATEGORY_NAME
from the FND_DOCUMENT_CATEGORIES
table) that you manually selected from the list of available categories.
AttachmentEntityName
transient attribute is created on the Entity view object. Its value is the entity name that you entered in Step 3 of the wizard.Note: This transient attribute should not be included in your UI. |
FND_DOCUMENT_ENTITIES
and FND_DOCUMENT_ENTITIES_TL
tables.The WHERE
clause that links the Entity view object to the Attachments view object is derived based on the selected entity primary key columns. For example, if the entity primary key for the PO_INVOICES
entity is made up of the columns INVOICE_HEADER_ID
and INVOICE_LINE_ID
then the view link query would be as follows:
Example 18-2 Source WHERE Clause
Example 18-3 Destination WHERE Clause
where PO_INVOICES
is the value that you entered in the Entity Name field in Step 3 of the wizard.
Deleting the business object from the database does not automatically apply to any of its Attachments. Subsequently, if your business functionality calls for the deletion of the business object (as opposed to a programmatic deletion, where the record is flagged as deleted but is kept around for auditing purposes), you also must delete all of its Attachments. Otherwise, these records will continue to persist in the Attachments tables. If another business object for your entity is created with the same primary key values, these Attachments will immediately be attached to the new record.
What you do depends on the method or methods you used to delete the business object in your own functionality. The programmatic method to delete the attachments will be the same. Typically, overriding the remove()
method of the business object view object will allow you to programmatically access the Attachments detail collection via the View Link Accessor. Once you have access to this collection, you can loop through calling the remove()
method of the collection, shown in Example 18-4.
Example 18-4 remove() Method
It is necessary to assign one or more attachment categories to your attachment entity.
The "Manage Attachment Categories" setup UI can be used to create and update the relationships between your categories and entities. You can search for a particular attachment category, then search and select the attachment entities to assign to the category. For more information, see Section 18.6, "Integrating Attachments Task Flows into Oracle Fusion Functional Setup Manager." Relationships between categories and entities can also be maintained using the Manage Attachment Entities setup UI.
The Entity-Category relationships are stored in the FND_DOC_CATEGORIES_TO_ENTITIES
table. There is a many-to-many relationship between Entities and Categories, allowing one category to be assigned to multiple Entities.
The relationships stored in this table are striped by MODULE_ID for seeding purposes, and the seed data loader can be used to seed this data for your product.
Note: It is important to ensure that you seed your attachment entities and attachment categories before you seed the data in the FND_DOC_CATEGORIES_TO_ENTITIES table when extracting and uploading the data. |
See the "Available Seed Data Loaders" table in Chapter 55 for information about Attachments Seed Data Loaders.
This section describes how to create an Attachments field or table.
To create an Attachments field or an Attachments table:
Choose either Attachment Field or Attachment Table. Click OK to display the Edit Taskflow Binding dialog.
The ConnectionName
parameter is automatically set to #(AttachmentsTaskflowListener.connectionName)
on the attachmentRepositoryBrowseTaskFow1
taskflow in the page bindings for your page. This parameter is used to derive the connection name of the content server connection to be used when the Document Picker taskflow is used in the Attachments UI at runtime.
Based on the selection that you made in Step 3, either an Attachment Field or an Attachment Table is created and bound to the Detail Data Collection. The mode attribute is automatically set to link or table on the Attachment Component.
When using attachments in link mode, the Attachment component must be displayed inside a panelLabelAndMessage
component and a partialTrigger
needs to be added as an attribute. You must then add the IDs for the appropriate events on the page to the partialTriggers
that cause the underlying business object record to change, which in turn requires the Attachments data to change. For example, the navigation buttons Next and Previous as shown here:
Example 18-5 Adding Event IDs to the PartialTriggers
The following are examples of the generated source code:
Example 18-6 Source Code for an Attachment Field
Example 18-7 Source Code for an Attachment Table
Example 18-8 Source Code for an Attachment Column
Note: The bindings, as shown above, only show when the Attachments are bound to a data control. |
You can create an attachments column in an applications table by dragging a Master Data Collection (your business object data collection) onto your drop target.
You can create an attachments column in an existing applications table by dragging a Detail Master Collection (the Attachments data collection) onto your drop target.
Note: The mode attribute is automatically set to columnLink on the Attachment component when creating an attachment column. |
To create an attachments column when creating your applications table:
An Applications Table is created with an Attachments column located in the rightmost position.
columnLinkTableModel
attribute to the attachments component. This attribute must be set to the value that identifies the Master Data Collection Model and must match the value set for the value property of the af:table component that contains the Attachment column. For example:To create an attachments column in an existing applications table:
columnLinkTableModel
attribute to the attachments component. This attribute must be set to the value that identifies the Master Data Collection Model and must match the value set for the value property of the af:table component that contains the Attachment column. For example:To implement your attachments successfully you must set the following required properties:
usesUpload
for a standard JSPX pageusesUpload
on the UI ShellRefreshCondition
for the task flowTo set the usesUpload property for a standard JSPX page:
To be able to upload files from the desktop to the Content Server, you must set the usesUpload
property to true.
For a standard JSPX page, you must set the usesUpload
property on the af:form that contains your attachment component. For example:
To set the usesUpload property on the UI Shell:
To set the usesUpload
property value on the UI Shell's af:form, you need to set the Form Uses Upload
property on the itemNode
that represents the JSPX in the appropriate menu XML file.
Form Uses Upload
property to true.To set the RefreshCondition property for the taskflow:
Setting the RefreshCondition
property is only required when the repositoryMode
property is set to true on the Attachment component. Setting this property for the taskflow allows the Document Picker to be used more than once within the Attachments table or popup in the same session.
attachmentRepositoryBrowseTaskFlow1
task flow from the list of Executables.RefreshCondition
property to #{AttachmentsTaskflowListener.refreshTaskflow}
.Users have the ability to associate a URL, desktop file, repository file or folder, or text with a business object, such as an expense report, contract, or purchase order.
Note: The ability to associate repository files or folders is available when the repositoryMode property is set to true. |
When a user chooses to attach a repository file or folder, they are presented with the Document Picker dialog from which they can select one or more repository files or folders. Once a repository file or folder has been attached, the type is displayed as either File or Folder.
The ability for a user to add, update, view, or delete an attachment is programmatically controlled using the addAllowed
, updateAllowed
, viewAllowed
, and deleteAllowed
attributes on the Attachment component.
The ability to control what type of attachments can be added in the Attachments UI is controlled by the following attributes on the Attachment component: fileTypeEnabled
, textTypeEnabled
, urlTypeEnabled
, and attachFolderAllowed
.
The type of attachment that is used determines how the attachment is displayed when the user clicks the attachment link. The browser and client configuration determines what desktop application is used to display the attachment.
Repository files are viewed in the same way as desktop files. However, if you click the link in the File Name/URL column in the Attachments table for an attached folder, a browser window/tab opens and displays the list of files and folders within the attached folder.
For a user interface that shows information for more than one business object, the Attachments component can be configured to display the attachments for two or more of these business objects.
For example, when opening up the Attachments from the Department section of your UI page, you might want to display attachments for all Employees that exist in that Department. This example will be used throughout this section to help clarify the instructions.
This configuration is only possible when the underlying view object for your page contains the primary keys for each of the business objects whose attachments you want to show in your page. For example, the DeptEmpVO
would need to include attributes for both the Department primary key and the Employee foreign key. In this example, the Department is considered to be the primary business object and the Employee is the secondary business object. The example uses only two business objects, but it is possible to display the attachments for more than two business objects using this feature.
Your primary business object is the one that you linked to the AttachmentsVO at design time, when you created your Attachment view link. Attachments can only be added to the primary business object when using this feature.
The actionEntity
property can be used to set the primary business object and controls which attachments can be updated and deleted. When set, any document attached to a different entity is displayed for reference purposes only. It cannot be updated or deleted.
The following steps provide details on how to configure your data model to display attachments for two or more business objects. These instructions assume that you have already created the Attachments view link between one business object view object and the Attachments view object, as described in Section 18.2.2, "How to Create Attachment View Links."
To configure your data model to display attachments for two or more business objects:
Navigate to the Attributes tab. Add a new transient attribute for the secondary business object for which you want to display attachments. Use the existing AttachmentEntityName
attribute as an example, naming the new attribute AttachmentEntityName1
.
ENTITY_NAME
as defined for your business object in the FND_DOCUMENT_ENTITIES
and FND_DOCUMENT_ENTITIES_TL
tablesClose the view object.
PknValue
column in the Attachments view object (starting with Pk1Vlaue
) from the Destination Attribute list. Click Add to add this pair.Repeat this for each column that makes up the foreign key, which identifies your secondary business object.
EntityName
attribute (created in Step 2) in the Attachments view object from the Destination Attribute list. Click Add to add this pair.Repeat this for each of the AttachmentEntityName
transient attributes.
AND
to an OR
in between each business object. Make sure your parentheses are matched correctly, as shown in examples Example 18-9 and Example 18-10.Example 18-9 Source Query
Example 18-10 Destination Query
The AttrArray
for the destEnd ViewLinkDefEnd
must map to the AttrArray
for the sourceEnd ViewLinkDefEnd
.
The design time code inserts an array of unique items where the runtime code needs a matching item list, as shown in Example 18-11. (The added items are in bold).
Example 18-11 Source and Destination Attribute Arrays
OAF_ATTACHMENT_CATEGORY
custom property to control the attachments that are displayed in your page, based on category and to control the Category droplist values.Note: This can be further controlled using data security. |
To configure your Attachments component to display attachments for two or more business objects:
actionEntity
property to the ENTITY_NAME
of the primary business object. By setting this property, you are allowing users to update and delete attachments belonging to the primary business object whilst disabling the ability for users to update and delete attachments for the secondary and all subsequent business objects.The default behavior of the Attachments component can be changed by setting the properties on the component using the Property Inspector.
Following is a list of some of the properties that are supported by the Attachment component. Refer to Table 18-1 for basic descriptions of why and how each property is used.
The most important properties to take note of are:
mode
- This property drives the UI that is rendered. It is automatically set when you add attachments to your page and should not be changed. Mode values include link, table, and columnLink.repositoryMode
- This property indicates whether or not a user is aware of the content repository. A more advanced UI is displayed to users who are aware of the content repository (repositoryMode=true
) allowing them to perform advanced functions such as selecting repository files and folders to attach to the business object, and checking in and checking out attached files.Table 18-1 Attachment Component Properties
Property | Description | Default Value |
---|---|---|
Mode | String. Acceptable values are link, columnLink, and table. | The |
RepositoryMode | Boolean: true / false. True: Repository related functionality is enabled, including: the ability to select and attach a document/folder from the Content Server, and version control. | False |
AttachFolderAllowed | Not used. | N/A |
AttachLatestVersion | Not used. | N/A |
ApprovalEnabled | Boolean: true / false. True: Adds the Status column to the Attachments table. | False |
DeleteMessage | String. Message to be displayed on Delete Attachment confirmation page. | Are you sure you want to delete the selected attachment(s)? |
Rows | Number. Maximum number of rows to display in a single range of rows in attachment table. Some ranges may have fewer than the number specified here, i.e. the last range when there is an insufficient number of rows. To display all rows at once, set this attribute value to 0. | 10 |
FileTypeEnabled | Boolean: true / false. True: Display attachment type of "File" in the Type choice list. False: the component is hidden. | True |
TextTypeEnabled | Boolean: true / false. True: Display attachment type of "Text" in the Type choice list. | True |
UrlTypeEnabled | Boolean: true / false. True: Display attachment type of "URL" in the Type choice list. | True |
NumAttachmentsDisplayed | Number. Maximum number of attachments displayed as links in the hover popup when mode is set to link or columnLink. | 3 |
AddAllowed | Boolean: true / false. Enables/disables the "Add" icon in the attachments table toolbar. True: enables the icon in the toolbar. False: disables the icon in the toolbar. | True |
AddEnabled | Boolean: true / false. True: shows the icon in the toolbar. False: hides the icon in the toolbar. | True |
ActionEntity | String. This must be an Attachment Entity Name. For use when showing the attachments for multiple entities in the Attachments table/popup. Setting this property indicates that update and delete actions will only be possible on this entity. | |
UpdateAllowed | Boolean: true / false. Enables/disables the update icons in the attachments table toolbar. These include the "Check In", "Check Out" and "Cancel Check Out" icons. This property also enables/disables the users' ability to update the Category, Title and Description of the Attachments. True: enables the icons and makes the Category, Title and Description columns editable for existing attachments. False: disables the update icons and makes the Category, Title and Description columns read-only for existing attachments. | True |
UpdateEnabled | Boolean: true / false. Controls show/hide of the update icons in the attachments table toolbar. These include the"Check In", "Check Out" and "Cancel Check Out" icons. True: shows the update icons in the toolbar. False: hides the update icons in the toolbar. | True |
InsertMultiple | Boolean: true / false. Determines whether more than one attachment can be assigned. False: User can only add a one attachment. | True |
DeleteAllowed | Boolean: true / false. Enables/disables the "Delete" icon in the attachments toolbar and inline for link and columnLink modes. True: Deleting attachments is allowed. True: enables the icon. False: disables the icon. | True |
DeleteEnabled | Boolean: true / false. Controls show/hide of the "Delete" icon in the attachments table toolbar. True: shows the icon in the toolbar. False: hides the icon in the toolbar preventing users from deleting attachments. | True |
ViewAllowed | Boolean: true / false. True: Viewing attachments is allowed. False: Links for viewing documents in Attachments tables are disabled. | True |
DefaultCategory | String. Value selected as the default in the Category poplist when adding new attachments. | |
Rendered | Boolean: true / false. True: Component is rendered in the page. False: the component is not rendered. | True |
Id | String. The identifier of the component. | Auto-generated |
Visible | Boolean: true / false. True: the component is displayed in the page. False: the component is hidden. | True |
ShortDesc | String. The short description of the component. This text is commonly used by user agents to display tooltip help text. | |
Label | String. Specifies the title for the Attachment popup. | Attachment |
AutoHeightRows | Number. Sets the maximum number of rows that the table height will automatically adjust to depending on the amount of data in the table. | 10 |
ContentDelivery | String. This property is only used in conjunction with the AutoHeightRows property. If AutoHeightRows is not set, this property should be not be set either. | Immediate |
RowBandingInterval | Number. The interval between which the row banding occurs. This value controls the display of the row banding in the table. For example, rowBandingInterval=1 would display alternately banded rows in the grid. | |
ColumnBandingInterval | Number. The interval between which the column banding occurs. This value controls the display of the column banding in the table. For example, columnBandingInterval=1 would display alternately banded columns in the grid. | |
ShowCategory | Boolean: true / false. Controls show/hide of the Category column in the Attachments table. | True |
UpdateCategoryList | String. Stores a comma-separated list of Category Names that will be used at run time to populate Category LOV when a user adds new attachments or attempts to update the Category of an existing attachment. This list must be a subset of the Categories that are assigned to your Entity. | |
SecondaryToolbarRendered | Boolean: true / false. True: shows the secondary toolbar. False: hides the icon in the toolbar. | False |
When the repositoryMode
property is set to true, the following features become available:
Four facets (placeholders) are provided on the Attachment component for product teams to add toolbar buttons to the toolbar and actions to the Action menu of the Attachments Table.
The facet tableAppsTableSecondaryToolbar
is provided to add toolbar buttons to the Attachments Table toolbar.
The facet linkAppsTableSecondaryToolbar
is provided for Link mode.
Note: When using the tableAppsTableSecondaryToolbar or linkAppsTableSecondaryToolbar facets, you must also set the SecondaryToolbarRendered property on the attachments component to true to expose this facet in the Attachments table. |
The facet tableAdditionalActionItems
is provided to add action items to the Action menu in the Attachments Table menus.
The facet linkAdditionalActionItems
is provided for Link mode.
Approval functions are added to the Attachments component using the Custom Actions feature, which is documented in the previous section of this chapter.
The approvalEnabled
property on the Attachments component can be used to control whether the Status column (from the FND_DOCUMENTS_TL
table) is displayed in the Attachments Table. This column indicates the status of the attachment relationship between the business object and the file, not the status of the file in the content repository.
Product teams are responsible for programmatically setting the status as necessary, but are required to set this value using a lookup code provided in the FND_ATTACHMENT_STATUSES
lookup. The following table has the full list of valid values found in this lookup table. (Null is also a valid value):
Lookup Code | Meaning |
---|---|
APPROVED | Approved |
REJECTED | Rejected |
REVIEWED | Reviewed |
SUBMITTED_FOR_APPROVAL | Submitted for Approval |
SUBMITTED_FOR_REVIEW | Submitted for Review |
UNAPPROVED | Unapproved |
Note: The Status column is a read-only column when displayed in the Attachments Table. |
Every application registers task flows with a product called Oracle Fusion Functional Setup Manager. The Functional Setup Manager provides a single, unified user interface that allows customers and implementers to configure all Oracle Fusion applications by defining custom configuration templates or tasks based on their business needs.
The Functional Setup Manager UI enables customers and implementers to select the business processes or products that they want to implement.
Function Security controls your privileges to a specific task flow, and users who do not have the required privilege cannot view the task flow. For more information about how to implement function security privileges and roles, see Chapter 49, "Implementing Function Security."
Table 18-2 lists the task flows and their parameters.
Table 18-2 Attachments Task Flows and Parameters
Task Flow Name | Task Flow XML | Parameters Passed | Behavior | Comments |
---|---|---|---|---|
Manage Attachment Entities | /WEB-INF/oracle/apps/fnd/applcore/attachments/publicUi/flow/ManageAttachmentEntities.xml#ManageAttachmentEntities | [moduleType] [moduleKey] [pageTitle] | Search and edit Attachment entities. | NA |
Manage Attachment Categories | /WEB-INF/oracle/apps/fnd/applcore/attachments/publicUi/flow/ManageAttachmentCategories.xml#ManageAttachmentCategories | [moduleType] [moduleKey] [pageTitle] | Search and edit Attachment categories. | NA |
For more information about task flows, see Oracle Fusion Applications Common Implementation Guide.
All attachments users must be assigned the "AttachmentsUser" role in order to use attachments. This role gives users read access to all shared file attachments. Depending on the security defined for attachments, further access privileges will be assigned to users on a per-file basis at the time of accessing the attachments.
Attachments can be secured using the following two types of security:
A user can choose whether to Share a file when creating a file attachment. File sharing impacts the way in which files are secured. For more information, see Section 18.7.2, "File Sharing."
Attachments can be secured using attachments categories. This security determines which attachments a user has access to, and what actions they can perform on that attachment, based on the Category that is assigned to it. Uptaking this security is not a mandatory requirement for product teams.
Before uptaking category data security, ensure you have assigned one or more categories to the attachment entity defined for your business object. For more information, see Section 18.2.5, "How to Assign Categories to the Attachment Entity."
To incorporate category data security, you need to seed data security for your attachment categories to control which roles have access to each of the categories.
The following seed data has been provided and must be used when you set up category data security:
Table 18-3 Actions Seeded for Attachments
Action | FUNCTION_NAME | USER_FUNCTION_NAME |
---|---|---|
Seeded Read Action | FND_READ_APPLICATION_ATTACHMENT_DATA | Read Application Attachment |
Seeded Update Action | FND_UPDATE_APPLICATION_ATTACHMENT_DATA | Update Application Attachment |
Seeded Delete Action | FND_DELETE_APPLICATION_ATTACHMENT_DATA | Delete Application Attachment |
Do the following to set up category data security:
Define the conditions (object instance sets) that identify the category or set of categories you are securing. The CATEGORY_ID
, CATEGORY_NAME
, or USER_NAME
condition items can be used in your condition definitions.
Ensure the Roles to which you want to assign data security have been created in Oracle Platform Security Services (OPSS).
The "Manage Database Resources and Policies" setup UI in the FndSetup application can be used to create these grants once you have defined your conditions in the database.
(Optional) The "Applications Common Reference Data Review Duty" role (GUID: 7BC1484030A9EE43499AB0EBBE17B104) provides users with read, update, and delete actions for all attachments that are assigned the "Miscellaneous" category.
To setup your own category data security for the "Miscellaneous" category, you will need to follow Steps 1 to 4.
The following condition (object instance set) is seeded with Oracle Fusion attachments and can be reused by using the "Miscellaneous" category for your product:
For more information, see Chapter 48, "Implementing Oracle Fusion Data Security."
File sharing impacts the way in which your files are secured. Files are stored on the Content Server as either Shared or Not Shared. Users can choose which option to use when they attach files to their business objects. For more, see Section 18.8.1, "How to Use Attachments File-Level Security."
Shared files are files that are stored in virtual folders within the Content Server and are available to all attachments users. An attachments user is any user who has been assigned the "AttachmentsUser" role. Shared files are exempt from data security.
Unshared files are only available to those users who have access to the file via data security. Therefore, if an Oracle Fusion Applications user has privileges to access to an attachment through a business object instance and they have privileges to access attachments with a particular category, then they have access to the file in the Content Server.
Users are defined on a single Lightweight Directory Access Protocol (LDAP) server. Each of these users can log in to both Oracle Fusion Applications and Oracle Content Server using the same username and password. Users will be given appropriate privileges to each system based on their assigned roles.
Software as a Service (SaaS) support has been added for Oracle Fusion attachments to ensure that the attachments belonging to organizations using the same environment are all kept completely separate to each other.
This section discusses how to use Attachments file-level security, update attachments, use the Attachments update functions, and how to check file attachments out and in.
With Oracle Fusion Applications attachments, users have the ability to set attachments to be either Shared or Not Shared using the Shared option, as shown in Figure 18-12.
The Shared column is only shown in the Attachments table when the repositoryMode
property is set to true. The default state for this option is Not Shared for both Text and File type attachments.
Note: The option is not available for all URL and Folder type attachments, as shown in Figure 18-12. By default, all Folder type attachments are shared, and all URL type attachments are not shared. Therefore, the check box is hidden because these default values cannot be changed by the user. |
All repository File or Folder attachments are shared by default. This is because only shared files are visible in the Document Picker, which is used to select the Repository Files or Folders.
If the user hovers the mouse pointer over the Shared check box, the following hint displays: Checking this box will make this file available to other users.
If the user attempts to change a File type attachment from Shared to Not Shared, the system checks to see if the file is attached to any other business object instances. If the file is attached to other business object instances, the following message is displayed and the file attachment remains shared: This change cannot be made as this file is attached to other business objects.
Users have the ability to update attachments within the Attachments table or popup.
As well as being able to update the category, title, and description of an attachment, users can update existing URL and Text attachments and replace the file of existing File attachments with a new version of the file.
Note: Only one attachment can be updated at any one time. |
Icon | Function | File | Property |
---|---|---|---|
 | Check Out | versioncheckout_ena.png | repositoryMode = true |
 | Check In | versioncheckin_ena.png | repositoryMode = true |
 | Cancel Check Out | versionrollback_ena.png | repositoryMode = true |
The updateAllowed
and repositoryMode
properties on the Attachments component, and the Checked Out status of the Content Repository files, control how the update functionality works for a particular user.
The Attachments update functions are available in the Attachments table toolbar and Actions menu.
The rendering of the update buttons in the Attachments table toolbar and the corresponding actions in the Actions menu are controlled in the following way using the updateAllowed
property on the Attachments component:
updateAllowed
= true:
The title and description values are kept in sync with the corresponding values stored in the Content Server. When a user updates the title or description, the values are updated in the Content server when the changes are saved.
repositoryMode
= true:These buttons are enabled or disabled based on the type of attachment and the checked out status of File and Text type attachments.
repositoryMode
= false:Figure 18-14 Attachment Table with Update Functions set to False
updateAllowed
= false:
repositoryMode
= true:repositoryMode
= false:The Checked Out By column indicates the checked-out status in the Attachments table. this column is only rendered when the repositoryMode
is set to true.
This column is always empty for URL and Folder type attachments.
For File and Text attachments, this column is either:
The user name is derived from the Checked Out By value that is stored against the file in the Content server. The stored Content Server username is mapped to the appropriate Oracle Fusion Applications username. If the value cannot be mapped, the Content server username is displayed in the column. This value is never stored in the Attachments Table.
The update functions apply to a single selected row in the Attachments table. If no rows are selected or more than one row is selected in the Attachments table, all of the update buttons and the corresponding actions in the Actions menu are disabled.
When a single row is selected in the Attachments table, the enabling or disabling of the update buttons in the Attachments table toolbar and the corresponding actions in the Actions menu are controlled using the following rules when the updateAllowed
property is set to true:
URL attachments
The following rules apply regardless of the repositoryMode
value:
Folder attachments
If repostoryMode
= true:
Text and File attachments
If repositoryMode
= true:
This section describes how to check out and check in file attachments.
To check out and check in file attachments:
The file is immediately checked out in the Content Repository. The Checked Out By column is updated to show your user name.
Tip: Clicking the Cancel Check Out button cancels the check out without making any updates to the file. The check out is cancelled immediately in the Content Repository. |
The selected file is uploaded to the content server. The Checked Out By column is cleared.
Tip: If you cancel the entire transaction, the checked out status returns to the state that it was in before the transaction took place. |
This chapter describes how to create, edit, and delete tree structures, trees, and tree versions, and how to develop applications using trees.
The chapter includes the following sections:
Oracle Fusion tree management allows data in applications to be organized into a hierarchical fashion, and allows you to create tree hierarchies based on specific data.
Here are some of the advantages of how using tree hierarchies to develop applications can help you:
As a developer, you will work mostly with tree structures. The task of working with trees and tree versions normally will fall to customers. However, since you probably also will be required to work with trees and tree versions, both types of tasks are described in this chapter.
A tree structure is a way of describing a hierarchy. A tree is an instance of this hierarchy. Every tree structure contains a tree. Trees may have one or more versions. Each tree version contains at least one root node; that is, a member that has no superior. (Occasionally, a tree version may have more than one root node.) The lines connecting elements in a tree structure are branches; the elements themselves are nodes.
The names of relationships are modeled after family relations:
For example, in Figure 19-1, XYZ Corp. is the parent of Marketing and Finance, which are its children. Accounts Receivable and Accounts Payable are siblings, and are the children of Finance.
In Oracle Fusion tree management, a tree structure defines a group of common business rules for a family of trees, for example, Department, Account, or Project, and allows an application to select and enable a subset of trees to fulfill a specific purpose in that application.
A tree contains data that is organized in a hierarchy, allowing for the creation of groupings and rollups of information that already exist within an organization. A tree can have one or more tree versions. Typically, when changes are made to an existing tree, a new version is created and published.
A tree structure data source supplies the data for a tree by way of its nodes. Multiple data sources can be associated with a tree structure and can have well-defined relationships among them. Using the example in Figure 19-1, the Accounts Receivable data source is a child of the Finance data source. Data sources also support business rules that define how the data from a data source participates in a tree.
Table 19-1 lists other commonly used tree terms and their descriptions.
Table 19-1 Common Tree Terminology
Term | Description |
---|---|
Depth | The depth of a node is the length of the path from the root to the node. The root node is at depth zero. |
Label | Allows for a storage of "tags" that can be used on each tree node in a tree. There are three labeling schemes:
Labels can be stored in any table and the label data source is registered with the tree structure. |
Tree label | When a labeling scheme is used for trees, the selected labels are stored in the tree label entity and each tree node references a tree label. See "Label." |
Node | A logical term that refers to the actual data, whatever that may be. Technically, the node may be stored either in a product-specific table or in an entity that has been established by the Tree Management solution as the default storage mechanism. However, since all data in Oracle Applications usually already have a storage home, only customers should store the node in an entity. |
Tree node | A node that is included in a tree. |
Tree node type | A tree node has a node type. Node types can be any one of the following:
|
Tree levels | Provide a way to organize tree nodes. In most trees, all nodes at the same level represent the same kind of information. For example, in a tree that reflects the organizational hierarchy, all division nodes appear on one level and all department nodes on another. Similarly, in a tree that organizes a user's product catalog, the nodes representing individual products might appear on one level and the nodes representing product lines on the next higher level. When levels are not used, the nodes in the tree have no real hierarchy or reporting structure but do form a logical summarization structure. Strictly enforced levels mean that the named levels describe each node's position in the tree. This is natural for most hierarchies. Loosely enforced levels mean that the nodes at the same visual level of indentation do not all represent the same kind of information, or nodes representing the same kind of information appear at multiple levels. With loosely enforced levels, users assign a level to each node individually; the level is not tied to a particular visual position. |
Tree structure access | The set of rules that control access to a tree structure. |
Tree access | The set of rules that control access to a tree. |
Tree node access | The set of rules that control access to a particular node (and its subtree) within a given tree version. |
Effective dates | Enable users to specify new objects, departments, reporting relationships, or organizational structures in advance and have them take effect automatically. Users also can use trees with past, present, or future effective dates when reporting on current or historic data. |
Reference data set determinant (external) | A value that determines which reference data set will be used for each reference data object. Business units, regulatory regions, and reference data sets all can determine which reference data sets are valid for the creation of a transaction or reference data object. |
Audit | A process that runs a series of tests against tree metadata and tree data to validate its integrity. |
Before you can manage tree structures, trees, and tree versions using the web-browser-based trees application, you must create the application launch page in Oracle JDeveloper. The launch page contains links to the Tree Structures, Trees and Tree Versions, and Manage Labels applications, which contain the management task flows you will use.
You also will need to perform additional steps that are required to schedule the concurrent processes that the trees application uses for audit and flattening.
Before you begin:
Create an application initialized for use with Oracle Middleware Extensions for Applications. For more information, see Chapter 2, "Setting Up Your Development Environment."
To create the launch page:
Configure a UIShell launcher page for your ViewController project using the procedure described in Chapter 14, "Populating a UI Shell."
Add a taskflow entry in the ADF menu as a node with following properties:
/
<jspx file>
tree_
<jspx file>
Trees and Tree Versions
dynamicMain taskFlowId -/WEB-INF/oracle/apps/fnd/applcore/trees/ui/taskflow/TreeStructureSummary.xml#TreeStructureSummary
itemNode
with the following properties:/
<jspx file>
tree_
<jspx file>
Trees and Tree Versions
dynamicMain
/WEB-INF/oracle/apps/fnd/applcore/trees/ui/taskflow/TreeSummary.xml#TreeSummary
itemNode
with the following properties:/
<jspx file>
tree_
<jspx file>
Manage Labels
dynamicMain
/WEB-INF/oracle/apps/fnd/applcore/trees/ui/taskflow/FndLabelSummary.xml#FndLabelSummary
Ensure you have an itemNode
for defaultRegional
. If you do not, define one with the following properties:
/
<jspx file>
__
<jspx file>
_itemNode__FndTasksList
Note: Use double underscores where indicated. |
#{applcoreBundle.TASKS}
defaultRegional
/WEB-INF/oracle/apps/fnd/applcore/patterns/uishell/ui/publicFlow/TasksList.xml#TasksList
true
At the Set Run Configuration window, click OK.
The trees application launch page opens in a browser window, as shown in Figure 19-2.
Figure 19-3 shows the launch page with all applications open, and the Tree Structure application's summary page displayed.
Working with tree structures includes the following tasks:
Tree structure data sources provide the data items for a hierarchy. In the tree-management infrastructure, these are ADF Business Components view objects. You should define view objects for all the intended data sources before setting up a tree structure. For each view object attribute that is to be displayed in the hierarchy column of an ADF Faces Tree or ADF Faces TreeTable, the Application property HierarchyDisplay is set to true
, as shown in Figure 19-4.
Tree management provides a generic data source for holding nodes: oracle.apps.fnd.applcore.trees.model.view.FndNodeVO
. This data source may be used for tree-only nodes, that is, nodes that do not exist in any other entity in the system. Likewise, a generic label data source has also been provided: oracle.apps.fnd.applcore.trees.model.view.FndLabelVO
.
Tree data sources have optional data source parameters with defined view criteria and associated bind variables. You can specify view criteria as a data source parameter when creating a tree structure, and edit the parameters when creating a tree.
Note: Parameter values customized at the tree level will override the default values specified at the tree-structure level. |
The parameters will be applied when performing node operations, and the display of the nodes in the hierarchy, for any tree version under that data source. Data source parameters also provide an additional level of filtering for different tree structures.
Tree management supports three data source parameter types:
WHERE
clause supportIn addition to parameter values provided by the customer, tree management provides support for those special parameters whose values for any bind variable are seeded at runtime by tree management.
For example, to use the effectiveStartDate attribute of a tree version that a data source uses as one of the bind variables from which the value for the effectiveStartDate bind variable will be retrieved from the trees effective start date, you can specify a data source parameter effectiveStartDate
with the value #{treeVersion.effectiveStartDate}
. You would then you need to expose an effectiveStartDate bind variable for the data source view object either in view criteria or a WHERE
clause.
You can specify parameters using the syntax for value and name shown in Table 19-2.
Table 19-2 Parameter Syntax
Attribute | Syntax |
---|---|
Tree Structure | #{treeStructure.ATTR_NAME_WITH FIRSTCHAR_IN_LOWER CASE} For example, |
Tree | #{tree.ATTR_NAME_WITH FIRSTCHAR_IN_LOWER CASE} For example, |
Tree Version | #{treeVersion.ATTR_NAME_WITH FIRSTCHAR_IN_LOWER CASE} For example, |
Notes: Binding parameters are supported for String, Number, and Date data types only. In 11gR1, tree management does not support View Criteria and Variable when used in combination, or multiple View Criteria as data source parameters. |
This section includes an example use case and discusses basic use cases and their settings.
The data source DemoEmpVO has the view criteria DemoEmpVC1, which is based on the bound values DemoEmpBV1 and DemoEmpBV2. These are to be applied to the data source view object for tree versions under the DEMO_EMP_TS tree structure, with varying bound values DemoEmpBV1 and DemoEmpBV2 for trees under this tree structure.
When creating the tree structure FND_DEMO_EMP_TS, the following parameters must be added to the tree structure data source that corresponds to DemoEmpVO:
VIEW_CRITERIA_NAME
View Criteria
name of the view criteria to be applied
>, in this case DemoEmpVC1
The following two bindings also must be added:
DemoEmpBV1
and DemoEmpBV2
Bound Value
actual value, which can be overridden at tree level
>Note: Binding parameters are supported for String and Number data types only. |
The following are examples of use cases and settings that you can implement using the parameter infrastructure for tree structure data sources.
Data source having a view criteria defined with a bind variable:
Figure 19-5 View Object Setup Wizard
Figure 19-6 Parameters in Data Source Parameter UI
Data source has a WHERE clause using a bind variable:
Figure 19-7 View Object Setup Wizard
Figure 19-8 Parameters in Data Source Parameter UI
Data source has a view criteria defined with a bind variable for special parameters:
Figure 19-9 View Object Setup Wizard (View Criteria)
Figure 19-10 Parameters in Data Source Parameter UI
Data source has a WHERE clause using a bind variable for special parameters:
Figure 19-11 View Object Setup Wizard (WHERE Clause)
Figure 19-12 Parameters in Data Source Parameter UI
If you wish to duplicate, edit, or delete an existing tree structure and it is not currently visible in the results list, you can search for it using the following procedure. The procedure assumes that the Tree Structure summary page is open in your web browser.
To search for an existing tree structure:
All tree structures matching your search criteria appear in the Results area of the page.
Clicking Advanced enables you to perform an advanced search by specifying additional options, such as adding fields to search. You also can save your search criteria for future use.
Throughout the trees application you will see a search field located to the right of many field names, as shown in Figure 19-13.
Clicking the down arrow displays a search field dropdown list that contains the available values for that field. You can select from the list, or search for other values. For example, Figure 19-14 shows the dropdown list that displays when you click the down arrow associated with the Application search field found on the Create Tree Structure: Specify Definition page.
From each search field dropdown list, you can do one of the following:
If you select a value from the list, the dropdown closes and that value appears in the search field.
If you click the Search link, a search-and-select window similar to the one shown in Figure 19-15 opens:
You now can search for a value and then click OK to select it.
The following procedure explains how to create a new tree structure. The procedure assumes that the Tree Structure summary page is open in your web browser.
To create a tree structure:
The Create Tree Structure: Specify Definition page, shown in Figure 19-16, opens.
The code can be any combination of alphanumeric characters, but cannot contain more than 30 characters. Codes are used in APIs to work with trees, and uniquely identify the tree structure metadata.
The name is a user-friendly name for a tree structure. It appears only in graphical user interfaces (GUIs), and cannot contain more than 80 characters
The Create Tree Structure: Data Sources page, shown in Figure 19-17, opens.
If you choose a level-based, depth-based, or group-based labeling scheme, the Labeling Scheme area of the page changes, displaying additional options, as shown in Figure 19-18.
The Add Data Source window, shown in Figure 19-21, opens.
If you chose a level-based, depth-based, or group-based labeling scheme, the top portion of the page changes, displaying an additional Label Data Source field, as shown in Figure 19-22.
The view object oracle.apps.fnd.applcore.trees.model.view.FndLabelVO
can be used as an ad-hoc label data source. For more information about label data sources, see Section 19.6, "Managing Labels in the Generic Label Data Source."
Maximum depth specifies how many levels are allowed. For example, in Project[max depth=2] > Task[max depth=infinite], one project, one sub-project, and an infinite number of tasks are allowed.
If selected, the additional fields shown in Figure 19-23 display.
If you select this option, you also can select a View Link Accessor value from the dropdown list that displays, as shown in Figure 19-24.
The window now displays data source parameters text-entry fields, as shown in Figure 19-25.
When specified, a parameter applies to every version under that tree. Parameter values also can be overridden at the tree level. For more information, see Section 19.3.2, "How to Specify Data Source Parameters."
The Create Tree Structure: Specify Data Sources page refreshes, displaying the view object, as shown in Figure 19-26.
The Create Tree Structure: Specify Performance Options page opens, as shown in Figure 19-27.
The Create Tree Structure: Specify Access Rules page opens.
Note: The Create Tree Structure: Specify Access Rules page is not yet implemented. |
Duplicating a tree structure simply copies the metadata definition from an existing tree structure to the duplicate. This operation does not copy the underlying tree and tree versions defined for the source tree structure.
To duplicate a tree structure:
See Section 19.3.3, "How to Search for a Tree Structure," if the tree structure you want to duplicate is not in the current Results list.
The Create Tree Structure window opens, as shown in Figure 19-28:
When you edit an existing tree structure, you simply step through many of the same pages you used to create a tree structure.
To edit an existing tree structure:
See Section 19.3.3, "How to Search for a Tree Structure," if the tree structure you want to duplicate is not in the current Results list.
The Edit Tree Structure: Specify Access Rules page opens.
Note: The Edit Tree Structure: Specify Access Rules page is not yet implemented. |
Deleting a tree structure also deletes all associated tree and tree versions defined under that specific tree structure.
To delete a tree structure:
See Section 19.3.3, "How to Search for a Tree Structure," if the tree structure you want to delete is not in the current Results list.
The Delete Tree Structure warning window opens, as shown in Figure 19-29:
Changing the status of a tree structure also changes the status of the trees and tree versions contained in that tree structure. You can set the status of a tree structure to any one of the following:
Setting a tree structure's status to Active automatically triggers an audit of that tree structure. See Section 19.3.10, "How to Audit a Tree Structure," for more information about auditing.
To set the status of a tree structure:
See Section 19.3.3, "How to Search for a Tree Structure," if the tree structure is not in the current Results list.
Auditing tree-structure metadata verifies that it conforms to all rules and ensures data integrity. Running an audit allows you to view audit details and messages, and to correct any validation errors that the audit detects.
Setting a tree structure's status to Active automatically triggers an audit of that tree structure. You also can audit a tree structure manually.
Table 19-3 describes what each validator checks for, as well as possible reasons why each validator might fail.
Table 19-3 Validator Descriptions
Validator | Checks for... | Validation may have failed because... | To correct... |
---|---|---|---|
Restrict by SetID Validator | If the tree structure has Restrict Tree Node List of Values Based on SetID flag set to This restriction does not apply when the flag is set to | The tree structure has Restrict Tree Node List of Values Based on SetID flag = | Consult the owning developer. If SetID restriction is desired for this tree structure, ensure your developer has included a SetID attribute on all data sources. If SetID restriction is not desired, ensure your developer sets the flag to |
Row Flattened Table Name Validator | A valid "Row Flattened Table" should be specified for the tree structure on the "Specify Performance Options" page. It can be the standard row flattened table |
| Consult the owning developer to correct the row flattened table definition. |
Available Label Data Sources Validator | If the tree structure has a Labeling Scheme specified, the label data source view object specified for each data source must be accessible and the primary keys must be valid. This restriction does not apply when the Labeling Scheme has been set to |
|
|
Available Data Sources Validator | Each data source view object specified for the tree structure must be accessible and all its primary key attributes should be valid. |
|
|
Column Flattened Table Name Validator | A valid "Column Flattened Table" should be specified for the tree structure on the "Specify Performance Options" page. It can be the standard row flattened table |
| Consult the owning developer to correct the column flattened table definition. |
Restrict by Date Validator | If the tree structure has Restrict Tree Node List of Values Based on Date flag set to This restriction does not apply when the flag is set to | The tree structure has | Consult the owning developer. If the date restriction is desired for this tree structure, ensure your developer has included an EffectiveStartDate and EffectiveEndDate attribute on all data sources. If the date restriction is not desired, ensure your developer sets the flag to |
Tree Node Table Name Validator | A valid "Tree Node Table" should be specified for the tree structure on the "Specify Performance Options" page. It can be the standard row flattened table |
| Consult the owning developer to correct the tree node table definition. |
Allow Node Level Security Validator | If "Allow Node Level Security" flag is set to | "Allow Node Level Security" flag is set as | Consult the owning developer to correct the "Allow Node Level Security" flags in the tree structure and/or its data sources. |
To audit a tree structure manually:
See Section 19.3.3, "How to Search for a Tree Structure," if the tree structure is not in the current Results list.
The Tree Structure Audit Result page opens, as shown in Figure 19-30. The table displays a list of validations run against the selected tree structure.
The audit table contains the following columns:
When you work with trees, you can do any of the following:
You also can audit trees. For more information, see Section 19.5.8, "How to Audit Trees and Tree Versions."
If you wish to duplicate, edit, or delete an existing tree and it is not currently visible in the results list, you can search for it using the following procedure. The procedure assumes that the Tree summary page is open in your web browser.
To search for an existing tree:
All trees matching your search criteria appear in the Results area of the page.
Clicking Advanced enables you to perform an advanced search by specifying additional options, such as adding fields to search. You also can save your search criteria for future use.
The following procedure explains how to create a tree. You also will need to create a tree version with a root node. For more information, see Section 19.5.1, "How to Create a Tree Version."
To create a tree:
The Create Tree: Specify Definition page opens, as shown in Figure 19-31.
If the tree structure has data sources and parameters defined for it, the Data Source Parameters area also displays, allowing you to edit the parameter values at the tree level.
Note: Parameter values customized at the tree level will override the default values specified at the tree-structure level. |
The image appears in the Preview area.
Click Next.
The Create Tree: Specify Labels page displays. The information that appears on the page depends on whether or not a labeling scheme has been selected previously. Figure 19-32 and Figure 19-33 show examples of both pages.
If the page shown in Figure 19-32 opens, click Next and skip to Step 11.
If the page shown in Figure 19-33 opens, click Add in the Specify Labels area.
The Select and Add: Labels window opens, as shown in Figure 19-34.
Click OK to accept your selections and close the window.
Do one of the following:
Note: The Create Tree: Specify Access Rules page is not yet implemented. |
Duplicating a tree copies only the selected tree. The operation does not copy any of the underlying tree versions.
To duplicate a tree:
See Section 19.4.1, "How to Search for a Tree," if the tree you want to duplicate is not in the current Results list.
The Duplicate Tree window opens, as shown in Figure 19-35.
When you edit an existing tree, you simply step through many of the same pages you used to create a tree.
To edit a tree:
See Section 19.4.1, "How to Search for a Tree," if the tree you want to edit is not in the current Results list.
The Edit Tree: Specify Definition page opens.
Note: If you do change any parameter values, ensure that click Actions > Save before clicking Next. |
The Edit Tree: Specify Labels page opens. The page that displays depends on whether or not the tree structure used when creating the tree has a labeling scheme associated with it.
Note: This procedure assumes that a labeling scheme is present. Skip to Step 6 if the tree you are editing has no labeling scheme associated with it. |
Do either of the following:
For more information, see Section 19.4.2, "How to Create a Tree."
Click Next.
The Edit Tree: Specify Access Rules page opens.
Note: The Edit Tree: Access Rules page is not yet implemented. |
Follow the steps in Section 19.5.1, "How to Create a Tree Version," to create a new tree version.
When you delete a tree, you also delete the tree versions the tree contains.
To delete a tree:
See Section 19.4.1, "How to Search for a Tree," if the tree you want to delete is not in the current Results list.
When you work with tree versions, you can do any of the following:
Trees require tree versions. You can create a tree with no tree version, but you must add at least one tree version to the tree after it has been created. You either can create the tree version during the tree-creation process, or by editing an existing tree.
To create a tree version:
This procedure assumes you are editing an existing tree.
See Section 19.4.1, "How to Search for a Tree," if the tree is not in the current Results list.
The Create Tree Version: Specify Definition page, shown in Figure 19-36, opens.
Note: Since tree versions are time based, you must select a start date. Selecting an end date is optional. |
A tree version with no nodes is created automatically at this point. Procedures for adding nodes to the tree version are described in.
The Create Tree Version: Specify Nodes page displays, as shown in Figure 19-37.
The Add Tree Node window opens, as shown in Figure 19-38.
Note: This is the default window that opens when adding a node. |
Select a node type:
To configure this page's options, see Section 19.5.2.1, "How to Configure the Add Tree Node: Specific Values."
Note: This option appears only if Define Children By: Range has been selected on the Choose Data Source and Parameters window. If you are adding a root node that you want to specify as range-based node, make sure you have selected Allow Multiple Root Nodes for the underlying tree structure on the Create Tree Structure: Data Sources page. |
If you select this option, the window shown in Figure 19-40 replaces the default Add Tree Node window.
To configure this page's options, see Section 19.5.2.2, "How to Configure the Add Tree Node: Values Within a Range."
If you select this option, the window shown in Figure 19-40 replaces the default Add Tree Node window.
To configure referenced-tree options, see Section 19.5.2.3, "How to Configure the Add Tree Node: Referenced Hierarchy."
Tree nodes are elements in a tree structure. A tree version must contain at least one root node. If specified, a tree version also can contain multiple root nodes. A node can be the parent of another node if it is one step higher in the hierarchy and closer to the root node.
There are three types of tree nodes:
Each type of node has its own configuration options. In addition, can add tree nodes using a custom Search UI, use drag-and-drop to move nodes once they have been added, and edit existing nodes.
The procedures used to perform these tasks are described in the sections that follow.
The following procedure explains how to configure the Add Tree Node options when the Specific Value node type has been selected.
To configure specific values:
This procedure assumes that the Add Tree Node window shown in Figure 19-38 is open.
Note: If the tree structure allows multiple root nodes to be selected, use the single or double Move arrows to move additional nodes. |
The Add Tree Node window closes.
Figure 19-41 shows the root node that has been created.
The following procedure explains how to configure the Add Tree Node options when the Values within a range node type has been selected.
To configure values within a range:
This procedure assumes that the Add Tree Node window shown inFigure 19-39 is open.
The Add Tree Node window closes.
Figure 19-42 shows data based on a range of values.
The following procedure explains how to configure the Add Tree Node options when the Values from a referenced hierarchy node type has been selected.
To configure values from a referenced hierarchy:
This procedure assumes that the Add Tree Node window shown in Figure 19-40 is open.
Note: The referenced tree and tree version must belong to the same tree structure. |
The Add Tree Node window closes and the Create Tree Version: Specify Nodes page refreshes with the referenced-node data, as shown in Figure 19-44.
Once you have added value-based nodes to a tree version, you can move these nodes around simply by dragging and dropping them.
You can move individual nodes, an entire range of nodes, or an entire referenced node. You cannot, however, move a single node in a range of nodes or a single node in a referenced node.
If the Search UI is not registered for a data source, the default behavior for all nodes displayed in the Add Tree Node window will be used. However, if you register your own Search UI, it will be used to add and select value nodes instead of the default Search UI.
To add a node using a custom Search UI:
The procedures for adding a node using a custom Search UI are the same as those found in Section 19.5.2, "How to Add Tree Nodes to a Tree Version." However, the Add Tree Node window that displays will be the registered custom Search UI rather than the default UI. An example of such a UI is shown in Figure 19-45. Note that Select Value Nodes has replaced the default Node Navigator, Available Nodes, and Selected Nodes options.
You can edit any existing tree node's details.
To edit a tree node:
This procedure assumes that the Manage Trees and Tree Versions page is open.
Note: The window opens with the default Specific value tree node type selected. You also can edit the node using the other tree node types. For more information, see Section 19.5.2, "How to Add Tree Nodes to a Tree Version." |
Note: The actual name of the window depends on the node being edited. |
You can create a record for a data source "on the fly" and add it to the hierarchy. Doing so calls the custom UI you registered with the data source.
You can create a record either when creating a tree version or when editing an existing one.
To create a new data-source record:
This procedure assumes the following:
Note: The actual name of the window depends on the node being created. |
The Create Tree Node confirmation window, shown in Figure 19-50, displays.
The following procedure explains how to duplicate a tree version.
To duplicate a tree version:
The Duplicate Tree Version window, shown in Figure 19-51, opens.
The following procedure explains to edit a tree version.
To edit a tree version:
The Edit Tree Version: Specify Definition page, shown in Figure 19-52, opens:
The following procedure explains how to delete a tree version.
To delete a tree version:
The Delete Tree Version warning window, shown in Figure 19-53, opens.
Although trees do not have status, tree versions do. You can set tree version status to any one of the following:
In order to activate a tree version, the tree version's tree structure must already be in Active status.
Setting a tree version's status to Active automatically triggers an audit of that tree structure. For more information, see Section 19.5.8, "How to Audit Trees and Tree Versions."
To set the status of a tree version:
Auditing tree and tree version data verifies that it conforms to all rules and ensures data integrity. Running audits allow you to view audit details and messages, and to correct any validation errors that the audit detects. There are three ways to run an audit:
Table 19-4 describes what each validator checks for, as well as possible reasons why each validator might fail.
Table 19-4 Validator Descriptions
Validator | Checks for... | Validation may have failed because... | To correct... |
---|---|---|---|
Effective Date Validator | The effective start and end dates of the tree version should be valid. | Effective end date is set to a value that is not greater than effective start date. | Modify the effective start and/or end dates so that effective start date falls before effective end date. |
Root Node Validator | If Allow Multiple Root Nodes flag on the tree structure has been set to If the flag has been set to | Allow Multiple Root Nodes flag has been set to | Modify the tree version so that there is exactly one root node. |
Data Source Max Depth Validator | For each data source in the tree structure, if the data source is depth-limited, the data in the tree version must adhere to the specified depth limit. This restriction does not apply to data sources that have no depth restriction (depth = -1 means unlimited depth). | Tree version has data at a depth greater than the specified depth limit on one or more data sources. | Modify the tree version so that all nodes are at a depth that complies with the data source depth limit. |
Duplicate Node Validator | If Allow Duplicate Nodes flag on the data source has been set to If the flag has been set to | Your tree version contains duplicate nodes with the same primary key. | Remove any duplicate nodes from the tree version. |
Available Node Validator | All the nodes in the tree version should be valid and available in the underlying data source. |
|
|
Node Relationship Validator | All nodes should adhere to the relationships mandated by the data sources registered in the tree structure. | The tree structure has data sources arranged in a parent-child relationship, but the nodes in the tree do not adhere to the same parent-child relationship. For example, if the tree structure has a Project data source with a Task data source as its child, Task nodes should always be under Project nodes in the tree version. This validator will fail if there are instances where a Project node. has been added as a child of a Task node. | Modify the tree version so that the nodes adhere to the same parent-child relationships as the data sources. |
SetID Restricted Node Validator | For each data source that has Restrict Tree Node List of Values Based on SetID flag set to This restriction does not apply when the flag is set to | The data source has Restrict Tree Node List of Values Based on SetID flag set to | Modify the tree version so that all nodes in the tree have data sources with SetID matching that of the tree. |
Label Enabled Node Validator | If the tree structure has a Labeling Scheme specified, all nodes should have labels. This restriction does not apply when the Labeling Scheme is set to | The tree structure has a labeling scheme but the tree version has nodes without labels. | Assign labels to any nodes that do not have labels. |
Date Restricted Node Validator | If Restrict Tree Node List of Values Based on Date Range flag on the tree structure has been set to If the flag is set to | Restrict Tree Node List of Values Based on Date Range flag has been set to For example, if the tree version is effective from Jan-01-2012 to Dec-31-2012, all nodes in the tree version must be effective from Jan-01-2012 to Dec-31-2012 at a minimum. It is acceptable for the nodes to be effective for a date range that exceeds the tree version's effective date range (for example, the node data source value is effective from Dec-01-2011 to Mar-31-2012). It is not acceptable if the nodes are effective for none or only part of the tree version's effective date range (for example, the node data source value are only effective from Jan-01-2012 to June-30-2012). | Ensure that for all nodes in the tree version, they have date effectivity at least for the effective date range for the tree version. |
Multiple Active Tree Version Validator | If Allow Multiple Active Tree Versions Flag on the tree structure has been set to If Allow Multiple Active Tree Versions is set to | Allow Multiple Active Tree Versions has been set to | Make no more than one tree version Active within the same date range and set the others to Inactive or Draft. |
Range Based Node Validator | If Allow Range Children on the data source has been set to If the flag is set to | There are range-based nodes from a data source that has Allow Range Children set to | Ensure that any range nodes in your tree version are from a data source that has Allow Range Children set to |
Terminal Node Validator | If Allow Usage as Leaves flag is set to If Allow Usage as Leaves flag is set to | There are leaf nodes (terminal nodes) whose values come from a data source marked with Allow Usage as Leaves flag set to | Modify the tree version so that all terminal nodes come from data sources with Allow Usage as Leaves set to |
Usage Limit Validator | If Usage Limit is set to If Usage Limit is set to | The data source has Usage Limit set to | Add nodes to the tree version for each data source value that is not yet present. |
To run an immediate audit:
The following procedure assumes the Manage Trees and Tree Versions page is open.
Selecting a tree runs an audit on all tree versions in that tree. Selecting a specific tree version runs an audit only on that tree version.
The audit runs and the Trees Audit Result page, shown in Figure 19-54, opens.
The page contains two sections:
The Audit Results section contains the following columns:
The Validation Details section contains the following columns:
To schedule an audit:
The Schedule Audit window, shown in Figure 19-55, opens.
To trigger an audit through a service API:
Use the service API shown in Example 19-1.
Example 19-1 Audit Service API
The tree-flattening process filters an implicit tree structure into a simple sequence of leaves. It coalesces nodes so that each sub-tree has a single cache list representing all of its children at one transformed level. Figure 19-56 shows an example of a flattened tree structure.
Tables that store flattened data are either row or column flattened. By eliminating recursive queries, row flattening is particularly useful for efficiently performing operations across an entire sub-tree.
Understanding Row Flattening
Row flattening is a technique where parent-child information is optimized for run-time performance by storing additional rows in a table (as compared to just normalized parent-child rows) to instantly find all descendants to a parent value, without initiating a Connect By SQL statement.
Normalized data, for example, might be the following:
Corporation - Sales Division
Sales Division - Region
In a row flattened table, the above rows are still stored but one additional row is added:
Corporation - Region
In addition, it is common additional columns are added to store the "depth" from top parent.
Understanding Column Flattening
Column flattening is a technique where parent-child information is optimized for run-time performance by storing additional column in a table for all parents of a child.
Normalized data, for example, might be the following:
Corporation - Sales Division
Sales Division - Region
Sales Division
In a column-flattened table, the above data is converted to rows and columns, as shown in Table 19-5.
Table 19-5 Rows and Columns in a Column-Flattened Table
Column 1 | Column 2 | Column 3 |
---|---|---|
Region | Sales Division | Corporation |
Usually, the numbers of levels (possible parents) are pre-defined to a maximum number and may also have additional "dummy" values on levels where real values are missing.
To flatten a row or column:
The following procedure assumes the Manage Trees and Tree Versions page is open.
The Schedule Flattening page, shown in Figure 19-57, displays.
Note that the flattening process specified is the one that corresponds to your choice.
When a label is chosen for a tree structure, the label data source can be either of the following:
This section describes how to use the Central Labels tab of the trees application launch page to create, edit, and delete values in the generic label data source.
All procedures assume that the Manage Labels summary page is open in your web browser.
If you wish to edit or delete an existing label and it is not currently visible in the results list, you can search for it using the following procedure.
To search for a label:
All labels matching your search criteria appear in the Results area of the page.
Clicking Advanced enables you to perform an advanced search by specifying additional options, such as adding fields to search. You also can save your search criteria for future use.
The following procedure explains how to create a new label.
To create a label:
The Create Label page displays, as shown in Figure 19-59.
The page refreshes and the Data Source field populates with an appropriate value.
The Manage Labels summary page displays showing the new label in the Results list.
The following procedure explains how to edit an existing label.
To edit a label:
See Section 19.6.1, "How to Search for a Label," if the label is not in the current Results list.
The Edit Label page displays, shown in Figure 19-60.
The following procedure explains how to delete an existing label.
To delete a label:
See Section 19.6.1, "How to Search for a Label," if the label is not in the current Results list.
The warning page shown in Figure 19-61 displays.
Now that you have worked with tree structures, trees, and tree versions, you can start to develop applications in JDeveloper using the Applications Hierarchy component.
The Applications Hierarchy component is denoted by the fnd:hierarchy tag and contains two facets: hierarchy and toolbar. The hierarchy facet holds the af:tree
or af:treeTable
; the toolbar facet can hold action buttons used with items within the tree
or treeTable
.
Figure 19-62 shows an example of the Applications Hierarchy component in JDeveloper.
You can add any JSF or ADF Faces component to these facets, even with the generated af:tree or af:treeTable. The fnd:hierarchy tag supports the TreeCode and TreeVersionId properties to display specific trees or tree versions.
You can create two types of Hierarchy applications: Tree and Tree Table.
The following section explains how to create a tree application using the Applications Hierarchy component.
Before you begin:
Create an application initialized for use with Oracle Middleware Extensions for Applications. For more information, see Chapter 2, "Setting Up Your Development Environment."
To create a Tree application:
Create a new JSF/JSPX page.
.jspx
file's visual editor.The Initialize Applications Connection window opens, as shown in Figure 19-63:
If there is no existing connection, click Add to create a new one.
A second Initialize Applications Connection window, shown in Figure 19-64, opens.
Choose a tree structure from the dropdown list.
The tree appears in the visual editor, as shown in Figure 19-65.
.jspx
file from the Application Navigator..jspx
file from the visual editor.A browser window opens and the application runs. Figure 19-66 shows an example of a tree application.
The following section explains how to create a tree table application using the applications Hierarchy component.
Before you begin:
Create an application initialized for use with Oracle Middleware Extensions for Applications. For more information, see Chapter 2, "Setting Up Your Development Environment."
To create a Tree Table application:
The Initialize Applications Connection window redisplays with additional fields, as shown in Figure 19-67.
The tree table appears in the visual editor, as shown in Figure 19-68.
.jspx
from either the Application Navigator or the visual editor.A browser window opens and the application runs. Figure 19-69 shows an example of a tree table application.
The applications Hierarchy component supports six node operations – Add, Create, Duplicate, Edit, Remove, and Delete – which are performed in a standard popup window in the user interface. Since all nodes in a tree come from their data sources, you must create a custom task flow for each operation that requires one, and register it in your data source before you can use it.
Node operations that only manage data in the tree table do not require custom task flows. For example, adding a node affects only the data in the tree table. However, searching for a node requires access to the data source. Subsequently, you must create and register a custom task flow that will enable node searches.
In addition, since removing a node affects only the data in the tree table, you do not need to create and register a custom task flow for this operation.
For more information about task flows, see "Getting Started with ADF Task Flows" in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
You use the Property Inspector in Oracle JDeveloper to register custom task flows, as shown in Figure 19-70.
The full code used to register each custom task flow in the data-source view object is shown in the examples that follow.
Example 19-2 Search Task Flow for the Add Node Operation
Example 19-3 Create Task Flow
Example 19-4 Duplicate Task Flow
Example 19-5 Edit Task Flow
Example 19-6 Delete Task Flow
This section discusses how to create custom task flows for the Search, Create, Duplicate, Edit, and Delete node operations.
The Search task flow provides a shortcut to select nodes. In the task flow, you specify the Search page fragment, task-flow parameters, back-end Java bean, and task-flow activities.
To create the Search task flow:
Normally, Cancel is a free event. However, you must pass values back when Submit is triggered. Therefore, you can have a submit()
actionListener mapping to it.
For the Search task flow, you do not need any input parameters from the Hierarchy component. The only thing this task flow does is to return the search results. Therefore, after looking up tree nodes in Search task flow, you must pass back the primary keys of the selected nodes by calling the HierParamBean method setSelectedNodes(List)
when the Submit return activity is invoked:
The Create task flow is used to create a new node in the data-source table. In the task flow, you specify the Create page fragment, task-flow parameters, back-end Java bean, and task-flow activities.
To create the Create task flow:
Normally, Cancel is a free event. However, you must pass values back when Submit is triggered. Therefore, you can have a submit()
actionListener mapping to it.
For the Create task flow, you do not need any input parameters from the Hierarchy component. The only thing this task flow does is to return the new node. Therefore, you must pass back its primary keys by calling the HierParamBean method setNewPkValue()
after creating the node. The Hierarchy component will get the new node's primary keys after the Create task-flow is dismissed. For example, in the submit()
actionListener that maps to the Submit return activity, you pass new primary keys back:
The Duplicate task flow is used to duplicate a node in the data-source table. In the task flow, you specify the Duplicate page fragment, task-flow parameters, back-end Java bean, and task-flow activities.
To create the Duplicate task flow:
Normally, Cancel is a free event. However, you must pass values back when Submit is triggered. Therefore, you can have a submit()
actionListener mapping to it.
For the Duplicate task flow, you need to know the selected node from the Hierarchy component. In the Duplicate popup window, the selected node's attributes are shown by default so that users can create another tree node. After creating a new node, you pass back its primary key. You can perform all of these tasks by calling HierParamBean methods.
For example, in the task-flow initializer, you can use the following code to get the primary keys of the selected node:
In the submit()
actionListener that maps to the Submit return activity, you pass the new primary keys back:
The Edit task flow is used to edit an existing node in the data-source table. In the task flow, you specify the Edit page fragment, task-flow parameters, back-end Java bean, and task-flow activities.
To create the Edit task flow:
Normally, Cancel is a free event. However, you must pass values back when Submit is triggered. Therefore, you can have a submit()
actionListener mapping to it.
For the Edit task flow, you need to know the current node from the Hierarchy component. In the Edit popup window, the current node's attributes are shown by default so that users can update the tree node. After updating the node, you must indicate whether or not the update was successful. You can perform all of these tasks by calling HierParamBean methods.
For example, in the task-flow initializer, you can use the following code to get the primary keys of the selected node:
In the submit()
actionListener that maps to the Submit return activity, you specify the result:
The Delete task flow is used to delete an existing node in the data-source table. In the task flow, you specify the Delete page fragment, task-flow parameters, back-end Java bean, and task-flow activities.
To create the Delete task flow:
Normally, Cancel is a free event. However, you must pass values back when Submit is triggered. Therefore, you can have a submit()
actionListener mapping to it.
For the Delete task flow, you need to know the selected node from the Hierarchy component. In the Delete popup window, delete the node and confirm the deletion. After deleting the node, you must indicate whether or not the deletion was successful. You can perform all of these tasks by calling HierParamBean methods.
For example, in the task-flow initializer, you can use the following code to get the primary keys of the selected node:
In the submit()
actionListener that maps to the Submit return activity, you specify the result:
Using the Hierarchy component to develop applications in JDeveloper requires you to specify a tree structure in the Property Inspector.
To access the Hierarchy-Property Inspector, highlight fnd:hierarchy in the Structure window and select the Hierarchy-Property Inspector tab. Figure 19-71 shows the Hierarchy-Property Inspector.
The Hierarchy component has facets and properties, which are listed in Table 19-6 and Table 19-7.
Table 19-6 Hierarchy Facets
Facet | Description | Values |
---|---|---|
hierarchy | Holds ADF Tree or TreeTable | af:tree or af:treeTable |
toolbar | Additional toolbar buttons to be added for custom use | ADF command toolbar buttons under an ADF toolbar |
Table 19-7 Hierarchy Properties
Property | Description | Values |
---|---|---|
id | Unique identification number for hierarchy | string |
rendered | Indicates if the hierarchy is rendered | boolean |
readOnly | Indicates if the hierarchy will render in read-only mode | boolean |
treeStructureCode | Code for the tree structure to be used for the hierarchy | string |
tree Code | Code for the tree to be used for the hierarchy | string |
treeVersionId | ID for the tree version to be used for the hierarchy | string |
actionsMenuRendered | Controls if action menu needs to be rendered | boolean |
toolbarRendered | Controls if toolbar needs to be rendered | boolean |
addVisible | Controls if add action is visible | boolean |
addRendered | Controls if add action is rendered | boolean |
addDisabled | Controls if add action is disabled | boolean |
addText | Custom text to be used for add action | string |
createVisible | Controls if create action is visible | boolean |
createRendered | Controls if create action is rendered | boolean |
createDisabled | Controls if create action is disabled | boolean |
createText | Custom text to be used for create action | string |
duplicateVisible | Controls if duplicate action is visible | boolean |
duplicateRendered | Controls if duplicate action is rendered | boolean |
duplicateDisabled | Controls if duplicate action is disabled | boolean |
duplicateText | Custom text to be used for duplicate action | string |
editVisible | Controls if edit action is visible | boolean |
editRendered | Controls if edit action is rendered | boolean |
editDisabled | Controls if edit action is disabled | boolean |
editText | Custom text to be used for edit action | string |
removeVisible | Controls if remove action is visible | boolean |
removeRendered | Controls if remove action is rendered | boolean |
removeDisabled | Controls if remove action is disabled | boolean |
removeText | Custom text to be used for remove action | string |
deleteVisible | Controls if delete action is visible | boolean |
deleteRendered | Controls if delete action is rendered | boolean |
deleteDisabled | Controls if delete action is disabled | boolean |
deleteText | Custom text to be used for delete action | string |
registerTaskflow | Specifies whether to use task flow (For example: <fnd:hierarchy registerTaskflow="true" ... </fnd:hierarchy> | boolean |
Note: Since only customers create tree versions, you must use service APIs to generate lists of tree versions or active tree versions. |
The data that displays in your application depends on the tree structure you specify in the Property Inspector. The tree structure automatically determines the following at run time:
You also can use the Expression Builder to bind some of the properties mentioned in Section 19.9. They are the following:
TreeCode
TreeStructureCode
TreeVersionId
Use the following expressions:
TreeCode expression:
hierarchyId
].treeCode}TreeStructureCode expression:
hierarchyId
].treeStructureCode}TreeVersionId expression:
hierarchyId
].treeVersionId}Note: The hierarchyId variable is the ID of the Hierarchy component. |
Tree Picker is a reusable Oracle ADF task flow, similar to a date picker, that enables you to select tree data from a list of values. It is found in the Trees-View.jar section of the Component Palette.
To add a Tree Picker component to your user interface:
launch
.launch
and run-as-dialog set to true
.single
and multiple
. The default is single
.The Tree Picker returns a list of TreeNodes:
List<TreeNode> = selectedTreeNodes(List<TreeNode>)event.getReturnValue();
Map pageFlow = AdfFacesContext.getCurrentInstance().getPageFlowScope();List<TreeNode> selectedNodes = (List<TreeNode>) pageFlow.get("returnTreeNodes");
Figure 19-72 shows an example of a Tree Picker user interface.
Figure 19-73 shows the results window that displays when you enter a tree-structure-code value and click Select Tree Node.
Every data source requires a view object. If the data source view object has bind variables and view criteria that tree management needs to apply, you must set them manually in JDeveloper.
Use the following procedure to set bind variables and view criteria.
An application programming interface, or API, is a source code interface that a library provides to support requests for services to be made of it by computer programs. In other words, APIs provide the building blocks that make it easier to develop these programs. Although an API specifies an interface and the behavior of the identifiers specified in that interface, it does not specify how the behavior might be implemented.
There are three service application modules that you can use to interact with the tree management infrastructure:
Note: No Service Data Objects (SDOs) are provided and these application modules must be instantiated and invoked in a co-located mode. |
The TreeStructureService application module is defined in oracle.apps.fnd.applcore.trees.service.applicationModule.TreeStructureService
and allows access to tree structure metadata. This application module exposes the TreeStructureVO under the name "TreeStructure" as well as the hierarchy of ADF Business Components objects accessible through the TreeStructureVO. This application module does not include any of the tree or tree version entities. The Javadoc for the available APIs is included with JDeveloper. To access the Javadoc in JDeveloper, do the following:
The Go to Java Class window opens.
TreeStructureService
in the Name: field.This application module is considered a public API to work with tree structure metadata and exposes the APIs shown in Table 19-8.
Table 19-8 TreeStructureService APIs
API | Description |
---|---|
getTreeStructure | FndTreeStructureVORow getTreeStructure(String treeStructureCode) This API is used to retrieve the FndTreeStructureVORow corresponding to a particular tree structure code. |
getRootDataSourceRels | RowIterator getRootDataSourceRels(String treeStructureCode) This API gets a row iterator over FndTsDataSourceRelVORow rows representing the root data sources of the given tree structure. |
getAllTreeColumns | List<AttributeDef> getAllTreeColumns(String treeStructureCode) This API returns a list of VO attributes that are available for use from the various data sources associated with the tree structure. This is a cumulative list across all the data sources. |
getAllDataSources | oracle.jbo.RowIterator getAllDataSources(String treeStructureCode) Returns a row iterator over FndTsDataSourceVORow rows corresponding to all data sources for the given tree structure. |
getTreeNodeTable | String getTreeNodeTable(String treeStructureCode) Returns the name of the tree node table in use by a given tree structure. |
duplicateTreeStructure | void duplicateTreeStructure(String treeStructureCode, String duplicateTreeStructureCode) This API is a Java front end to the PL/SQL API FND_TREE_UTILS.duplicate_tree_structure and is used to duplicate a tree structure. It does not duplicate any underlying trees or tree versions associated with the tree structure. |
deleteTreeStructure | void deleteTreeStructure(String treeStructureCode) This API is a Java front end to the PL/SQL API FND_TREE_UTILS.delete_tree_structure and is used to delete a tree structure. This deletes all underlying trees and tree versions associated with this tree structure (including flattened data, if any). |
The TreeService application module is defined in oracle.apps.fnd.applcore.trees.service.applicationModule.TreeService
and provides access to trees and tree versions. TreeService also provides flattening APIs. The Javadoc for the available APIs is included with JDeveloper.
To access the Java Doc:
The Go to Java Class window opens.
TreeService
in the Name: field.This application module is considered a public API to work with trees and tree versions and exposes the APIs shown in Table 19-9.
Table 19-9 TreeService APIs
API | Description |
---|---|
get TreeRows | RowIterator getTreeRows(String treeStructureCode); This API returns all trees associated with a given tree structure. |
getTreeCodes | List<String> getTreeCodes(String treeStructureCode); This API returns a list of tree codes associated with a given tree structure. |
findTree | FndTreeVORow findTree(String treeStructureCode, String treeCode); This API is used to find a specific tree given its tree structure code and tree code. |
duplicateTree | void duplicateTree(String treeStructureCode, String treeCode, String duplicateTreeCode); This API duplicates a specific tree and assigns a specified tree code to the duplicate. It is a front end to the FND_TREE_UTILS.duplicate_tree PL/SQL API. |
deleteTree | void deleteTree(String treeStructureCode, String treeCode); This API deletes a tree, all its associated tree versions, including flattened data. It is a front end to the FND_TREE_UTILS.delete_tree PL/SQL API. |
getAllTreeVersions | List<String> getAllTreeVersions(String treeStructureCode, String treeCode); This API returns a list of all tree versions associated with a given tree. |
getTreeVersions | List<String> getTreeVersions(String treeStructureCode, String treeCode, Timestamp asOfDate); This API returns a list of tree versions associated with a given tree as of a particular date. |
getCurrentTreeVersions | List<String> getCurrentTreeVersions(String treeStructureCode, String treeCode); This API returns a list of tree versions associated with a given tree as of the current date. |
findTreeVersion | FndTreeVersionVORow findTreeVersion(String treeStructureCode, String treeCode, String treeVersionId); This API is used to locate a specific tree version given its tree structure code, tree code and tree version ID. |
duplicateTreeVersion | String duplicateTreeVersion(String treeStructureCode, String treeCode, String treeVersionId, String treeVersionName); This API is a front end to the PL/SQL API FND_TREE_UTILS.duplicate_tree_version and duplicates a specific tree version. The API returns the auto-generated ID of the duplicate tree version. |
deleteTreeVersion | void deleteTreeVersion(String treeStructureCode, String treeCode, String treeVersionId); This API is a front end to the PL/SQL API FND_TREE_UTILS.delete_tree_version and deletes a tree version including its flattened data (if any). |
rowFlatten | void rowFlatten(String treeStructureCode, String treeCode, String treeVersionId); This API row-flattens a specific tree version. |
columnFlatten | void columnFlatten(String treeStructureCode, String treeCode, String treeVersionId); This API column-flattens a specific tree version. |
The TreeNodeService application module is defined in oracle.apps.fnd.applcore.trees.service.applicationModule.TreeNodeService
and provides the core node operations such as adding and deleting nodes. The APIs support three types of nodes:
The Java APIs are covers to the PL/SQL APIs that are provided in the FND_TREE_UTILS PL/SQL package.
To access the Java Doc:
The Go to Java Class window opens.
TreeNodeService
in the Name: field.This application module is considered a public API to work with tree nodes and exposes the APIs shown in Table 19-10.
Table 19-10 TreeNodeService APIs
API | Description |
---|---|
addValueTreeNode | String addValueTreeNode(String treeStructureCode, String treeCode, String treeVersionId, String parentTreeNodeId, String dataSourceId, String pk1Value, String pk2Value, String pk3Value, String pk4Value, String pk5Value); String addValueTreeNode(String treeStructureCode, String treeCode, String treeVersionId, String parentTreeNodeId, String dataSourceId, String pk1Value, String pk2Value, String pk3Value, String pk4Value, String pk5Value, String treeLabelId); This API adds a value-based tree node to a specific tree version. It is a front end to the PL/SQL API FND_TREE_UTILS.add_value_tree_node. It returns the tree node ID of the newly added node. The API has two signatures - one that takes in a tree label to be associated with the tree node and one that does not. |
addRangeTreeNode | String addRangeTreeNode(String treeStructureCode, String treeCode, String treeVersionId, String parentTreeNodeId, String dataSourceId, String pk1StartValue, String pk2StartValue, String pk3StartValue, String pk4StartValue, String pk5StartValue, String pk1EndValue, String pk2EndValue, String pk3EndValue, String pk4EndValue, String pk5EndValue); String addRangeTreeNode(String treeStructureCode, String treeCode, String treeVersionId, String parentTreeNodeId, String dataSourceId, String pk1StartValue, String pk2StartValue, String pk3StartValue, String pk4StartValue, String pk5StartValue, String pk1EndValue, String pk2EndValue, String pk3EndValue, String pk4EndValue, String pk5EndValue, String treelabelId); This API adds a range-based tree node to a specific tree version. It is a front end to the PL/SQL API FND_TREE_UTILS.add_range_tree_node. It returns the tree node ID of the newly added node. The API has two signatures - one that takes in a tree label to be associated with the tree node and one that does not. |
addTreeTreeNode | String addTreeTreeNode(String treeStructureCode, String treeCode, String treeVersionId, String parentTreeNodeId, String referenceTreeCode, String referenceTreeVersionId); String addTreeTreeNode(String treeStructureCode, String treeCode, String treeVersionId, String parentTreeNodeId, String referenceTreeCode, String referenceTreeVersionId, String treeLabelId); This API adds a tree node that references another tree version. It is a front end to the PL/SQL API FND_TREE_UTILS.add_tree_tree_node. It returns the tree node ID of the newly added node. The API has two signatures - one that takes in a tree label to be associated with the tree node and one that does not. |
deleteTreeNode | void deleteTreeNode(String treeStructureCode, String treeCode, String treeVersionId, String treeNodeId); This API is a front end to the PL/SQL API FND_TREE_UTILS.delete_tree_node and deletes a specific tree node. Any children of that node are automatically promoted up the hierarchy. |
updateTreeNode | void updateTreeNode(String treeStructureCode, String treeCode, String treeVersionId, String treeNodeId, String parentTreeNodeId, String dataSourceId, String pk1StartValue, String pk2StartValue, String pk3StartValue, String pk4StartValue, String pk5StartValue, String pk1EndValue, String pk2EndValue, String pk3EndValue, String pk4EndValue, String pk5EndValue, String referenceTreeCode, String referenceTreeVersionId, String treeLabelId); This API is a front end to the PL/SQL API FND_TREE_UTILS.update_tree_node and is used to update the data associated with a specific tree node. It cannot be used to move the tree node. |
moveTreeNode | void moveTreeNode(String treeStructureCode, String treeCode, String treeVersionId, String treeNodeId, String destinationParentNodeId); This API is used to move a tree node within the hierarchy. The entire sub-tree rooted at the node being moved is moved. This API is a front end to the PL/SQL API FND_TREE_UTILS.move_tree_node. |
findValueTreeNodes | RowIterator findValueTreeNodes(String treeStructureCode, String treeCode, String treeVersionId, String[] pkValues); This API is used to find all value tree nodes with the specified primary key. |
findRangeTreeNodes | RowIterator findRangeTreeNodes(String treeStructureCode, String treeCode, String treeVersionId, String[] pkStartValues, String[] pkEndValues); This API is used to find all range tree nodes with the specified range. |
findRefTreeNodes | RowIterator findRefTreeNodes(String treeStructureCode, String treeCode, String treeVersionId, String refTreeCode, String refTreeVersionId); This API is used to find all tree nodes that reference the specified tree version. |
This section includes information about the following advanced topics:
The following are new or modified tables and views that are used by and relevant to the Tree Management infrastructure. They are set up in the FUSION schema.
Tables:
Views:
Tree Management provides public PL/SQL APIs to work with trees. You can find these APIs in the PL/SQL package FND_TREE_UTILS in the FUSION schema.
Note: The PL/SQL package FND_TREE_UTILS_PVT contains private APIs for internal use with Oracle Fusion tree management. No other use of these APIs is supported. |
Incremental flattening optimizes the process by starting with the results of a previous flattening instead of flattening the data from scratch, as shown in Figure 19-75.
To flatten incrementally, a delta of flattening operations that occurred between these two sets of start and end points is created, and information about what happened during those operations is stored in three tables:
These tables are described in the sections that follow.
This table records the flattening history for a specific tree version. For optimization, only the last process point is recorded. Process_Point records the time of the last tree-node operation that has been flattened.
Table 19-11 shows the contents of the FND_TREE_FLATENNING_HISTORY table.
Table 19-11 FND_TREE_FLATTENING_HISTORY
Column | Data Type | Nullable? |
---|---|---|
Tree_Structure_Code (Primary Key) | Varchar2(30) | No |
Tree_Code (Primary Key) | Varchar2(30) | No |
Tree_Version_ID (Primary Key) | Varchar2(32) | No |
Process_Point | Timestamp(6) | No |
Flattening_Type (Primary Key) | Varchar2(32) | No |
Created_By | Varchar2(64) | No |
Creation_Date | Timestamp(6) | No |
Last_Updated_By | Varchar2(64) | No |
Last_Update_Date | Timestamp(6) | No |
Last_Update_Login | Varchar2(32) | Yes |
FND_TREE_LOG is a log of all flattening operations for one tree version. The log enables database administrators (DBAs) to move data easily and efficiently to external systems such as a data warehouse, or from test to production systems.
FND_TREE_LOG stores tree-node operations. For each specific tree-version operation, a unique Log_Entry_ID is assigned and the operation type is logged.
There are three types of tree nodes:
There also are three types of tree-node operations:
Subsequently, there are nine types of operations:
Table 19-12 shows the contents of the FND_TREE_LOG table.
Table 19-12 FND_TREE_LOG
Column | Data Type | Nullable? |
---|---|---|
Log_Entry_ID (Primary Key) | Varchar2(32) | No |
Tree_Structure_Code | Varchar2(30) | No |
Tree_Code | Varchar2(30) | No |
Tree_Version_ID | Varchar2(32) | No |
Operation_Type | Varchar1(32) | No |
Created_By | Varchar2(64) | No |
Creation_Date | Timestamp(6) | No |
Last_Updated_By | Varchar2(64) | No |
Last_Update_Date | Timestamp(6) | No |
Last_Update_Login | Varchar2(32) | Yes |
Since the FND_TREE_LOG table does not record parameters for each operation, the FND_TREE_LOG_PARAMS table is used to log them. The two table are references by a foreign key, Log_Entry_ID. This design helps save space and clearly organizes the information.
Table 19-13 shows the contents of the FND_TREE_LOG_PARAMS table.
Table 19-13 FND_TREE_LOG_PARAMS
Column | Data Type | Nullable? |
---|---|---|
Log_Entry_ID (Primary Key) | Varchar2(32) | No |
Param_Name (Primary Key) | Varchar2(64) | No |
Param_Value | Varchar2(100) | No |
Created_By | Varchar2(64) | No |
Creation_Date | Timestamp(6) | No |
Last_Updated_By | Varchar2(64) | No |
Last_Udpate_Date | Timestamp(6) | No |
Last_Update_Login | Varchar2(32) | Yes |
Row-flattening results are stored in the table registered as the row-flattening table for the tree structure. If you register a custom row-flattening table for your tree structure, ensure it has the same schema as FND_TREE_NODE_RF.
IS_LEAF and DISTANCE are two important row-flattening-table columns. For more information, see Section 19.14.3.4.1 and Section 19.14.3.4.2.
This column provides information about whether or not a tree node is a leaf. In many instances, only a leaf contain meaningful information, while other nodes provide a structural purpose. IS_LEAF makes it easier to differentiate a leaf from other nodes, and makes it simpler to write simple queries and get faster responses. Valid values are Y (yes) and N (no).
This column indicates the distance between the node and its ancestor, which are specified in the row. For example, the distance between a node and its parent or children is 1, between a node and its grandparent or grandchildren is 2, and so on. DISTANCE, then, helps developers to get the entire path - from the root node to the intermediate leaf/node without having to perform any additional queries. A simple example is shown in Figure 19-76.
In the FND_TREE_NODE table, DISTANCE is stored in the form of an adjacency list, as shown in Table 19-14.
After flattening, DISTANCE is stored in the FND_TREE_NODE table, as shown in Table 19-15.
Note: The node ancestor also includes itself. |
Table 19-15 Flattened FND_TREE_NODE Table
Node | Ancestor | Distance | IS_LEAF? |
---|---|---|---|
A | Null | 1 | N |
A | A | 0 | N |
B | Null | 2 | Y |
B | A | 1 | Y |
B | B | 0 | Y |
C | Null | 2 | N |
C | A | 1 | N |
C | C | 0 | N |
D | Null | 3 | Y |
D | A | 2 | Y |
D | C | 1 | Y |
D | D | 0 | Y |
To find the path from the root of D, the query would be the following:
Column flattening generally applies only to level-based trees. In the case of a view object for Business Intelligence (BICVO), however, value-based trees also can be column-flattened. (For more information, see Chapter 59, "Designing and Securing View Objects for Oracle Business Intelligence Applications.")
For level-based trees, the maximum level of a tree version is 32. Subsequently, if a tree version is not level based or if it has a tree-version level that exceeds 32, only row flattening can be performed.
Column-flattening results are stored in the table specified in the tree structure, which has the same schema as FND_TREE_NODE_CF.
Each row in the FND_TREE_NODE_CF table represents a path in a tree, and can hold a maximum of 32 nodes. The rows are arranged from leaf to root, as shown in Figure 19-77.
Table 19-16 shows the results after flattening.
Table 19-16 Column-Flattening Results
Dep0 | Dep1 | Dep2 | Dep3 | Dep4 | ... | Dep31 |
---|---|---|---|---|---|---|
LA | CA | USA | North America | Null | ... | Null |
SF | CA | USA | North America | Null | ... | Null |
DC | Null | USA | North America | Null | ... | Null |
Note: All fields not containing nodes will be filled with Null. |
A business event typically is a one-way, fire-and-forget, asynchronous way to send a notification of a business occurrence. You can raise business events when a situation of interest occurs. The Tree Management infrastructure provides create, update, and delete business events on tree structures, trees and tree versions. The event definitions are available in $MW_HOME/jdeveloper/jdev/oaext/events/Trees-Model-Events.jar
.
Table 19-17 includes details of the create, update, and delete events.
Table 19-17 Trees Business Events
Entity | Event Name | Condition | Payload |
---|---|---|---|
Tree Structure | TreeStructureCreateEvent | Create | TreeStructureCode |
Tree Structure | TreeStructureUpdateEvent | Update | TreeStructureCode |
Tree Structure | TreeStructureDeleteEvent | Delete | TreeStructureCode |
Tree | TreeCreateEvent | Create | TreeStructureCode, TreeCode |
Tree | TreeUpdateEvent | Update | TreeStructureCode, TreeCode |
Tree | TreeDeleteEvent | Delete | TreeStructureCode, TreeCode |
Tree Version | TreeVersionCreateEvent | Create | TreeStructureCode, TreeCode, TreeVersionId |
Tree Version | TreeVersionUpdateEvent | Update | TreeStructureCode, TreeCode, TreeVersionId |
Tree Version | TreeVersionDeleteEvent | Delete | TreeStructureCode, TreeCode, TreeVersionId |
Tree Node | TreeNode Created | New node added to tree (includes value, range and referenced tree nodes) | TreeStructureCode, TreeCode, TreeVersionId, TreeNodeId |
Tree Node | TreeNode Deleted | Node removed from tree (includes value, range and referenced tree nodes) | TreeStructureCode, TreeCode, TreeVersionId, TreeNodeId |
Tree Node | TreeNode Updated | Node updated in tree (includes value, range and referenced tree nodes) | TreeStructureCode, TreeCode, TreeVersionId, TreeNodeId |
Tree Node | TreeNode Moved | Node moved within tree (includes value, range and referenced tree nodes) | TreeStructureCode, TreeCode, TreeVersionId, TreeNodeId |
For more information, see "Using Business Events and the Event Delivery Network" in Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.
This chapter describes the Oracle Fusion Applications standards and guidelines for working with localization formatting.
When developing applications for international users, it is often necessary to format the display of certain location-dependent data. In the context of Oracle JDeveloper and Oracle Application Development Framework, localization requires implementing formatting patterns so as to properly display the data according to local standards.
Currency, dates, numbers and time zones are localized using Oracle ADF Faces components that bind to the attribute to be localized. In some cases, Groovy or Expression Language methods are used to localize a particular UI component.
Currency values may be formatted differently, depending on the currency code associated with the value. Each currency code is associated with formatting such as precision, currency symbols, and so on.
You can format currency using the default formatting behavior, or by overriding the default formatting. Alternatively, you can format currency on the fly using partial page rendering.
To format currency, you must first set the view object custom attribute to type currency
and then select the currency code to be used in formatting the currency field. You can specify the currency code by entering its value explicitly, or by writing a Groovy expression in the transient attribute.
Before you begin:
Create an entity object and a view object.
To format currency using default formatting behavior:
A transient attribute called AttributeName
CurrencyCode
automatically displays, where AttributeName
is the name of the attribute you wish to display as currency.
Currency codes are stored in the FND_Currencies
table found in the Oracle Fusion Middleware Extensions for Applications (Applications Core) schema. The currency code determines the format mask for the currency field, including:
The Expression Language function fnd:currencyPattern()
determines formatting for the currency field using the default precision associated with the currency code. No currency symbol or code is displayed in the user interface.
For example, if the view object includes an attribute called currencyCode
, you could use the expression shown in Example 20-1 to identify the currency code.
Note: For more information about writing Groovy expressions, see the following link: |
Note: In any user interface (UI) component associated with currency, locate the convertNumber element in Source view. Manually remove the attribute type=currency and save the file. This allows supporting non-ISO standard currencies. |
You can change the default currency formatting behavior by editing the bindings and implementing a different Expression Language method from the one used in Section 20.2.1, "How to Format Currency Using Default Formatting Behavior."
To format currency, overriding the default formatting behavior:
fnd:currencyPatternWithPrecisionAndSymbol()
Expression Language method as shown in Example 20-2.Example 20-2 Bindings to the Number Converter with Specified Precision and Symbol Display
The currencySymbol
parameter can take the values symbol
, code
, or none
.
Note: The type and currency code are not specified as the formatting pattern is generated by the Oracle FND function, and not by Oracle ADF Faces. |
The Expression Language method fnd:currencyPatternWithPrecisionAndSymbol()
is to be used to return the currency code, currency symbol, and precision values for the value of the attribute.
For more information on the currencyPatternWithPrecisionAndSymbol
method, see the Javadoc for the oracle.apps.fnd.applcore.common.Preferences
class.
Partial page rendering (PPR) can be used to immediately format or validate a currency-based UI component on the client.
To immediately format currency using partial page rendering:
autoSubmit
attribute to true
.partialTriggers
attribute to the ID of the current UI component, as shown in Example 20-3.Example 20-3 Formatting Currency Using Partial Page Rendering
When formatting currency, Applications Core automatically generates a transient view object attribute with the name attributeName
CurrencyCode
. This transient attribute identifies the currency code to be used when formatting the currency field.
When dragging and dropping the view object onto a JSF page, Applications Core generates relevant bindings to the Oracle ADF Faces Number Converter attached to the user interface component as shown in Example 20-4.
Example 20-4 Bindings to the Number Converter
fnd:currencyPattern(bindingToAmountCurrencyCode)
}" />The bindings indicate that the Expression Language method fnd:currencyPattern()
is to be used to return the currency code for the value of the attribute.
At runtime, Applications Core evaluates the bindings generated during design time to generate the correct currency format mask for the value. The fnd:currencyPattern()
and fnd:currencyPatternWithPrecisionAndSymbol()
Expression Language methods return the format mask for a given currency code, accounting for currency precision, currency symbol, and so on.
Dates and numbers may be formatted differently, depending on local standards. For example, some regions may prefer to display the date first followed by the month, and use a decimal separator for numbers with four digits or more (for example, 1.234 to denote one thousand, two hundred and thirty four).
The first of January 2010 can be displayed as follows:
Similarly, the number one thousand two hundred and thirty four point five six can display in any of the following formats:
View objects and entity objects can be formatted so as to display date and number data in accordance with local standards. The ISO standard is typically used when it is not desirable to use local standards.
Before you begin:
Create an entity object and a view object with date and number fields, including any of the following attribute types:
java.math.BigDecimal
, java.lang.Integer
, or java.lang.Long
.java.sql.Date
.To format dates and numbers:
Date and number values are displayed in the default formatting patterns as follows:
dateFormatPattern
: dd-MMM-yyyy
(for example, 01-Jan-2010
)numberFormatPattern
: #,##0.###
(for example, 1,234.567
)You can customize the date and number formatting patterns by editing the pattern attribute of the af:convertDateTime
or af:convertNumber
tags.
Note: Date formatting is applicable only to view object attributes of data type java.sql.Date . |
Not all number values should be formatted using the numberFormatPattern
property. For example, a numeric identifier should always be a series of numbers with no locale-sensitive punctuation. The applCorePrefs
managed bean provides the numericCodeFormatPattern
property to format a numeric code in the same way for all users.
Example 20-5 shows the bindings to the property numericCodeFormatPattern
.
Example 20-5 Bindings to the numericCodeFormatPattern Property
The intergerFormatPattern
property enables formatting an integer, as shown in Example 20-6. No fractions are printed.
Example 20-6 Bindings to the integerFormatPattern Property
Applications often show the current date on the user interface. Correctly identifying the date requires the use of particular APIs.
A server date is calculated by truncating the time portion of the current time from the system clock. However, it may not be appropriate to display the server date to end users, if they are not located in the server time zone. For example, when creating an order, the order form may display with the order date filled out for the end user with the current date. In this case, the order date must be the end user's local date rather than the server date. A server in the US may be serving an end user in China, whose local date may be one day ahead due to time zone differences. It is therefore necessary to adjust the server date to the end user's local date.
Example 20-7 shows how to adjust the server date to the end user's local date.
Example 20-7 Adjusting the Server Date to the Local Date
Example 20-8 shows the af:inputDate
element on the page that sets the adjusted date. This correctly shows the default order date using the individual time zone of the end user.
Example 20-8 Populating the End-user Local Date on a Page
All dates and number formatting patterns default to the formats described in Section 20.3.1, "How to Format Dates and Numbers."
When dragging and dropping a view object containing an attribute of type java.math.BigDecimal
or java.lang.Integer
, or java.lang.Long
, Applications Core generates code which binds to the numberFormatPattern
property in the applCorePrefs
managed bean as shown in Example 20-9.
Example 20-9 Bindings to the numberFormatPattern Property
When dragging and dropping a view object containing an attribute of type java.sql.Date
, Applications Core generates code which binds to the dateFormatPattern
property in the applCorePrefs
managed bean as shown in Example 20-10.
Example 20-10 Bindings to the dateFormatPattern Property
Each code sample calls a date and number preference Applications Programming Interface (API), which obtains the property values from the Applications Session. The Applications Session, in turn, accesses the Oracle Fusion database and returns the correct date or number format.
At runtime, the bindings generated at design time are executed. Numbers and dates display according to user preferences for date and number formatting patterns (for example, 01/01/10 and 1,234.567).
The following standards and guidelines apply to formatting dates and numbers:
java.sql.Date
data types.java.sql.Date
, make sure not to set the time zone to af:convertDateTime
.As opposed to date fields, date and time fields display times within a specific time zone. Date and time fields can be formatted to display in the user-preferred time zone or other applicable time zones.
JSF pages can display two types of dates: those that denote a day and time (January 1, 2008 01:00), and those that denote only the day (January 1, 2008). Date values that include a time component can be displayed with a relevant time zone value, for example, January 1, 2008 01:00 PST. Attributes that hold time zone data allow you to format and display a date-time value in the associated time zone.
Oracle database does not assume any time zone information when storing date information with the data types Date
or Timestamp
. The Java object types java.util.Date
, java.sql.Date
, and java.sql.Timestamp
, on the other hand, use the UTC (Coordinated Universal Time) time zone. Oracle Java Database Connectivity (JDBC) reconciles the time zone values stored by these different data types by designating a Java Virtual Machine (JVM) default time zone for Oracle Date
and Timestamp
values. It then converts the values from JVM default time to UTC and vice versa.
According to development standards, developers must not change the JVM default time zone. This presents a challenge when developing an application that requires customized time zone values. The Date-Time Sensitive custom property enables you to properly handle time data while adhering to development standards. The default time zone is the corporate reporting time zone.
Note:
|
The Date-Time Sensitive custom property of a view object attribute is used to display time zone data in the relevant time zone—the user preferred time zone or other time zone. The user preferred time zone is retrieved from Oracle Applications Session, whereas the corporate reporting time zone is the default time zone of the server's operating system.
Note: Values are printed in UPTZ using the setting timeZone="#{applCorePrefs.UPTZ}" rather than the UPTZPattern attribute. The user preferences bean attribute UPTZPattern provides the user preferred formatting pattern for datetime values that do not explicitly print the time zone, such as 1/1/10 12:34 AM for an American user).Values are printed in LETZ by setting the legal entity time zone to the |
Before you begin:
Create an entity object and a view object.
To format time zones:
Figure 20-1 shows a selected attribute called Timestamp1
in the Attributes tab.
Note: Time zone sensitivity is applicable only to view object attributes of data type java.sql.Timestamp . |
Figure 20-2 shows the value UPTZ (User Preferred Time Zone) selected for the DateTime property of the Timestamp1
attribute.
Note: Do not use the Oracle ADF Faces date picker to enable end users to enter a date time value with a time zone. Instead, use a separate time zone selection UI component and use the date picker only for entering dates and times. |
The user preferred pattern for time formatting might include seconds. In some cases, it may be necessary for an application to display a time value with seconds under one set of circumstances, and without seconds under another.
By default, the display of seconds depends on the user preferred time format. Example 20-11 prints a datetime value in the user preferred format.
Example 20-11 Formatting in the User Preferred Datetime Pattern
Example 20-12 prints a datetime value in the user preferred format with seconds always included.
Example 20-12 Formatting in the User Preferred Datetime Pattern with Seconds
Example 20-13 prints a datetime value in the user preferred format without seconds.
Example 20-13 Formatting a Datetime Value in the User Preferred Datetime Pattern without Seconds
Some datetime values are not associated with a specific time zone. For example, an application may execute a job at 9 AM local time in every location across different time zones. Such values are called invariant or floating times. To print an invariant time zone value, use the default time zone such that no specific time zone is applied to the value.
When printing a datetime value for a specific time zone derived from an invariant time zone value, you may need to adjust the formatting so as to neutralize the effect of time zone conversion. This is because the corporate reporting time zone, the server default, is applied implicitly.
Depending on the selected time zone, Applications Core generates tags as shown in Example 20-14 and Example 20-15.
Example 20-14 Default (Corporate Reporting) Time Zone
Example 20-15 User Preferred Time Zone
At design time, Applications Core uses the Date-Time Sensitive custom property to generate bindings to the time zone attribute on the Oracle ADF Faces Date Time Converter. The attribute is bound to the applCorePrefs
managed bean.
At runtime, the Applications Core managed bean applCorePrefs
—implemented by oracle.apps.fnd.applecore.common.PreferencesBean
and registered with faces-config.xml
—retrieves the relevant formatting masks from Applications Session.
By default, date-time data may display as shown in Example 20-16.
The following standards and guidelines apply to formatting time zones:
java.sql.Timestamp
data types (used by default in time zone view object attributes).Expression Language functions provide an alternative to the formatting procedures described in Section 20.2, "Formatting Currency,", Section 20.3, "Formatting Dates and Numbers" and Section 20.4, "Formatting Time Zones."
Oracle ADF Faces Expression Language functions of the type af:formatNamed
and af:format
only support String
objects as parameters. Consequently, other object types such as Date
and BigDecimal
must be converted to the String
object type.
For example, when binding the date object dateValue
as shown in Example 20-17, the dateValue
object must be converted to a String
object by calling the toString()
method.
However, the toString()
method does not support Oracle Fusion Applications user preferences. Oracle Fusion Applications thus require the use of Expression Language format functions to convert the following data objects to String objects:
java.math.BigDecimal
java.lang.Integer
java.lang.Long
java.sql.Date
java.sql.Timestamp
You can format numbers, currency and dates using Expression Language functions.
Use the following Expression Language functions to format numbers.
The number Expression Language formatting function is shown in Example 20-18.
Returns the formatted number value using the user preferences for the number format mask, grouping separator and decimal separator.
This function produces the tag shown in Example 20-19.
Example 20-19 Tag Produced by the Function fnd:formatNumber(java.lang.Number value)
An additional Expression Language formatting function for numbers is shown in Example 20-20.
Example 20-20 formatNumber2(java.lang.Number value, int maxFractionDigit) Function
Returns the formatted number value using the user preferences for the number format mask, grouping separator and decimal separator.
Overrides the scale—the number of digits following the decimal point—of the user preferred number format pattern using the value assigned to maxFractionDigit
.
This function produces the tag shown in Example 20-21.
Example 20-21 Tag Produced by the Function fnd:formatNumber2(java.lang.Number value, int maxFractionDigit)
your scale here
"/>Use the Expression Language function shown in Example 20-22 to format currency.
Example 20-22 fnd:formatCurrency(java.lang.Number currencyAmount, java.lang.String currencyCode) Function
Returns the formatted currency amount value in numeric form along with the relevant currency code. Applications Core uses the currency code as defined in FND_CURRENCIES
to format the currencyAmount
value, rather than the number format mask preference. User preferences for grouping and decimal separators are used to format the value.
This function produces the tag shown in Example 20-23.
Example 20-23 Tag Produced by the Function fnd:formatCurrency(java.lang.Number currencyAmount, java.lang.String currencyCode)
Use the Expression Language function shown in Example 20-24 to format dates.
Example 20-24 fnd:formatDate(java.util.Date dateValue) Function
Returns the formatted date value based on the user preferred date format mask.
This function produces the tag shown in Example 20-25.
Example 20-25 Tag Produced by the Function fnd:formatDate(java.util.Date dateValue)
Use the Expression Language function shown in Example 20-26 to format date time values.
Example 20-26 fnd:formatDateTime(java.util.Date dateTimeValue) Function
Returns the formatted date time value using the user preferences for the date and time format masks and time zone.
This function produces the following tag as shown in Example 20-27.
Example 20-27 Tag Produced by the Function fnd:formatDateTime(java.util.Date dateTimeValue)
Use the Expression Language function shown in Example 20-28 to format date time values with user formatting masks and the user-specified time zone.
Example 20-28 fnd:formatDateTimeTZ(java.util.Date dateTimeValue, java.util.TimeZone timeZone) Function
Returns the formatted date time value using the user preferences for date and time format masks and the user-specified time zone.
This function produces the tag shown in Example 20-29.
Example 20-29 Tag Produced by the Function fnd:formatDate(java.util.Date dateTimeValue, java.util.TimeZone timeZone)
Applications Core formats the value as defined by the Expression Language function and produces the tags described in this section.
For example, the date formatting Expression Language function produces a tag such as the one shown in Example 20-30.
Example 20-30 Tag Produced by Expression Language Date Formatting Function
For more information about what happens at runtime when you format numbers, currency and dates using Expression Language functions, see Section 20.2, Section 20.3 and Section 20.4.
In Oracle Fusion Applications, National Language Support (NLS) refers to the ability to run an application instance in any single supported language, including specific regional or territorial number and date formats. Typically, in order to support a given language, only the customer-facing components of the software (user interface, lookup tables, online documentation, and so on) are translated. Translations are delivered via NLS patches.
Oracle Fusion Applications manage NLS attributes at the session level. At runtime, these attributes are initialized based on the user's profile, and are applied when needed by Applications Core. For example, the session date format mask is initialized based on the user's preferred date format mask. The date format mask is automatically applied when date is rendered and parsed. As such, it is unnecessary to manually specify NLS attributes in design time.
In certain situations, however, you may need to access the NLS attributes for the purposes of data formatting or parsing your code. To do so, use the managed bean ApplCorePrefs
.
Table 20-1 lists the Oracle Fusion Applications session NLS attributes, the profile used to set each attribute and the possible values for session attributes.
Table 20-1 Session NLS Attributes
Session Attribute | Profile | Values | Comments |
---|---|---|---|
|
|
Primary attribute used to represent the current language. Corresponds to the Looks up the corresponding | |
| Represents the two letter language code, which is derived using the | ||
| Represents the NLS language, which is derived from the | ||
|
|
| Setting this attribute results in an altered session in the database for the |
|
|
| |
|
|
| |
|
|
| |
|
|
| |
|
|
| This attribute specifies the preferred currency code. It has no corresponding database attribute. |
|
|
| This attribute specifies the preferred territory. This attribute differs from the database attribute |
|
|
| This attribute specifies the preferred time zone value. |
|
|
|
Table 20-2 lists language and territory values used with NLS attributes.
Table 20-2 Language and Territory Values
LANGUAGE_TAG | LANGUAGE_CODE | LANGUAGE_ID | NLS_LANGUAGE | NLS_TERRITORY | ISO_LANGUAGE | ISO_TERRITORY | NLS_CODESET | ISO_LANGUAGE_3 |
---|---|---|---|---|---|---|---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Oracle Fusion Applications does not use most of the database session NLS parameters. Instead, these are set to constant values such that typically, the user's preferred values are not reflected. This is true for most parameters except the following: NLS_LANGUAGE
which is set to view link view access, and NLS_SORT
, which is set to use the database linguistic sorting functionality.
The parameters TO_NUMBER
, TO_DATE
, TO_TIMESTAMP
and TO_CHAR
are used to format and parse SQL or PL/SQL statements. These parameters are based on constant values, the canonical format. The parameter FND_DATE
for PL/SQL packages also works with the canonical format. Formatting and parsing should be done at the presentation, rather than the model layer.
Oracle Fusion Applications session management controls database session parameters. As such, the database NLS session parameter values must not be altered.
Table 20-3 lists the following:
ALTER SESSION
in the database layer.init.ora
as the database default.ALTER SESSION
is created in the database. When an ALTER SESSION
initiates at session creation or attachment, execute NLS_LANGUAGE
and NLS_TERRITORY
first, as these may affect other attributes.ALTER SESSION
is created once, when the connection is first created.ALTER SESSION
updates when the session attaches, or whenever an associated attribute value changes mid-session.ALTER SESSION
is not created, and the default database value is unchanged.Table 20-3 Localization Database Attributes
Database Attribute | Default Value | Alter Session | Comments |
---|---|---|---|
| None | Never | This attribute need not be set as the default value is |
| None | Never | This attribute need not be set as the default value is |
| None | Never | Accept the default value. |
|
| Create | Fixed value. |
|
| Create | Fixed value. Does not require an attribute or profile. | |
| None | Never | Accept the default value. |
| None | Update | The value of this attribute is based on the |
|
| Create | The value of this attribute is fixed. See the |
|
| Create | Fixed value. Does not require an attribute or profile. |
| None | Never | Accept the default value. This parameter is not used. |
|
| Create | Fixed value. Choose group and decimal separators independently. |
| None | Update | In order to enable linguistic sorting, the |
|
| Create | Fixed value. Does not require an attribute or profile. |
|
| Create | Fixed value. Does not require an attribute or profile. |
|
| Create | Fixed value. Does not require an attribute or profile. |
|
| Create | Fixed value. Does not require an attribute or profile. |
| None | Never | Accept the default value. |
Note: As the language attributes tracked on the session reflect Java values, you cannot use them for formatting on the PL/SQL layer. |
The following standards and guidelines apply to localization formatting:
This part of the Developer's Guide discusses how to use descriptive, extensible, and key flexfields to develop Oracle Applications that can be customized by application implementers and administrators without programming.
Getting Started with Flexfields introduces flexfield concepts and features, including the development process, development roles, and how flexfields appear in the user interface.
Using Descriptive Flexfields discusses the descriptive flexfield concepts and features, the development process, how to incorporate descriptive flexfields in user interface (UI) tables, forms, and query panels, and how to utilize descriptive flexfields with Oracle Business Intelligence, Web Services, and ADF Desktop Integration.
Using Extensible Flexfields discusses the extensible flexfield concepts and features, the development process, contexts, dedicated tables and views, how to employ extensible flexfields on an application page, how to programmatically accessing business component information, and customizing the runtime modeler.
Using Key Flexfields discusses the key flexfield concepts and features, the development process, producer and consumer development activities, how to incorporate key flexfields in UI tables and forms, and how to define and access key flexfield combination filters.
Testing and Deploying Flexfields discusses how to test your flexfield business components using the Integrated WebLogic Server, how to deploy your flexfield application to a standalone WebLogic Server to in order to test the full lifecycle, how to regenerate flexfield business components programmatically, and how to make flexfield setup task flows accessible from Oracle Fusion Functional Setup Manager.
This part contains the following chapters:
This chapter discusses the basics of using flexfields to enable customers to add custom attributes to business objects in their Oracle Fusion applications.
This chapter includes the following sections:
As a developer, it is often impossible for you to anticipate all the database columns and UI fields your customers might need, or how each field should look as end user needs change. Flexfields enable customers to configure their applications to meet their business needs without having to perform custom development.
The basic premise of a flexfield is to encapsulate all of the pieces of information related to a specific purpose, such as the components of a student's contact information, or the features of a product in inventory, or a key identifying a particular purchase by a particular person for a particular company on a particular date. A flexfield is an "expandable" data field that is divided into segments. A segment captures a single atomic value, which is represented in the application database as a single column. In the application UI, a flexfield's segments can be presented as individual table columns, as separate fields, or as a concatenated string of values.
Customers configure a flexfield by specifying the prompt, length, and data type of each flexfield segment. Configuration includes the specification of valid values for each segment, and the meaning of each value. Configuration also involves defining structure and context. The concepts of structure and context are defined later in this section. For information about flexfield configuration, see the "Using Flexfields for Custom Attributes" chapter in the Oracle Fusion Applications Extensibility Guide.
There are three types of flexfields, all of which enable implementers to configure application features without programming, and these configurations are fully supported within Oracle Fusion Applications:
For more information, see Section 21.1.2, "Extensible Flexfields."
For more information, see Section 21.1.3, "Key Flexfields."
To better understand flexfields and the differences between descriptive flexfields, extensible flexfields, and key flexfields, it is important to understand flexfield structures and contexts.
Your flexfield can display different segments and prompts for different end users based on a data condition in your application data, such as the user's role or a value entered by the user. All types of flexfields allow for multiple structures. All the segments that you might need to use to create all the anticipated structures must be defined as part of the flexfield.
Segments are made available to an application as groups of attributes called contexts. Each context is defined as part of a flexfield, and is comprised of a set of context-sensitive segments that store a particular type of related information. The database columns on which segments are based can be reused in as many contexts as desired. For example, an implementer can define a Dimensions context which might consist of segments that represent height, width and depth. The implementer can also define a Measurements context that contains segments that reuse the same underlying height, width and depth columns, and which also includes segments for weight, volume and density.
Note: Segments that are always available, regardless of context, are often referred to as global segments. |
Descriptive flexfields provide a way for customers to add custom attributes to entities, to define how the attributes are validated, and display properties for the attributes. These attributes are generally standalone; they don't necessarily have anything to do with each other and are not treated together as a combination. The segments of a descriptive flexfield that are made available to end users are exposed in the UI as individual fields.
Descriptive flexfields are entirely optional; customers can choose to configure and expose them or not, as they wish. For example, one company could configure the parts flexfield to store depth, height, and width, and another company could configure the parts flexfield to store size and color. Some companies might not need any additional attributes.
You create a descriptive flexfield for one of two purposes:
In this case you define and register the descriptive flexfield in your application database, but all configuration is accomplished by the application implementer or administrator, including creating contexts, creating segments, and adding validation. End users see these additional attributes in the UI and can enter values for them. End users cannot modify the configuration; they can only enter values for attributes that are already configured.
For this purpose you define and register the descriptive flexfield, then create contexts and segments, and define value sets and validation to satisfy a specific purpose. The descriptive flexfield becomes part of your application, and you can code references to its seeded configuration. You might also enable implementers and administrators to extend the flexfield at your discretion, allowing them to configure it like a customer flexfield.
Even if administrators never change a flexfield once it has been configured, they can take advantage of useful flexfield features such as automatic segment validation, automatic segment cross validation, multiple segment structures, and more.
An extensible flexfield is similar to a descriptive flexfield, but with the added ability for customers to add as many context-sensitive segments to a flexfield as they need.
Another feature of extensible flexfields is that you can have more than one context associated with any particular row of data, and a row can have multiple occurrences of the same context. That is, extensible flexfields support a one-to-many relationship between the entity and its extended attribute rows.
Extensible flexfields also enable implementers to combine the contexts into groups known as pages, which serve to connect the contexts so they will always be presented together in the application user interface. Hierarchical categories for can be defined for extensible flexfields, and implementers associate any combination of contexts with a given category. For example, the Electronics and Computers category hierarchy might include a Home Entertainment category, which in turn might include an Audio category and a TV category, and so on. The Home Entertainment product might have contexts that specify voltage, dimensions, inputs and outputs. Contexts are reusable within a given extensible flexfield. For example, the dimensions context could be assigned to any category that needs to include dimensional information.
Key flexfields are configurable multi-part "intelligent" keys, where each element (segment) of the key may be individually meaningful, as well as the combination as a whole. For example, key flexfields can be implemented to represent part numbers and account numbers.
A key flexfield is implemented in the UI as a collection of fields that can be displayed in various UI formats. Key flexfields are never optional; customers must configure them for the product to operate correctly.
The ability to individually tailor key flexfield structures to the user can be essential. For example, Oracle General Ledger uses a key flexfield called the Accounting Flexfield to uniquely identify a general ledger account. It maintains the multiple accounting codes used throughout Oracle Fusion Applications, and provides different Accounting Flexfield structures for users of different sets of books. General Ledger determines which flexfield structure to use based on the value of a Set of Books user profile option.
Oracle has configured this flexfield to include six segments: company code, cost center, account, product, product line, and sub-account. Oracle has also defined valid values for each segment, as well as cross validation rules to describe valid segment combinations. However, other companies might structure their general ledger account fields differently. By including the Accounting Flexfield, General Ledger can accommodate the needs of different organizations. One company can configure the Accounting Flexfield structure to include six segments, while another company includes twelve segments, all without programming.
An end user enters a value into a flexfield segment while using your application. The flexfield validates each segment against a set of valid values — a value set — which is usually predefined by the application implementer or administrator. To "validate a segment" means that the flexfield compares the value that the user enters into the segment against the values that comprise the value set which is assigned to that segment.
Flexfield segments are usually validated, and typically each segment in a given flexfield uses a different value set. A value set can be assigned to more than one segment, value sets can be shared among different flexfields. For most value sets, when you enter values into a flexfield segment, you can enter only values that already exist in the value set assigned to that segment.
Value set metadata is mined and used by the business component modeler to create expert mode view objects. Value sets (and their view objects) are owned by a module, which can be an Application, a Logical Business Area (LBA), or a sub-LBA in the application taxonomy hierarchy.
For information about value set configuration, see the "Using Flexfields for Custom Attributes" chapter in the Oracle Fusion Applications Extensibility Guide. For more information about the taxonomy hierarchy, see Appendix A, "Working with the Application Taxonomy".
Oracle Business Intelligence is a comprehensive collection of enterprise business intelligence functionality that provides the full range of business intelligence capabilities including interactive dashboards, proactive intelligence and alerts, enterprise and financial reporting, real-time predictive intelligence, and more.
Flexfields can be included in Oracle Business Intelligence. However, because the polymorphic view objects used to model flexfields are not compatible with Oracle Business Intelligence, the flexfields must be flattened into a static form that Oracle Business Intelligence can work with. You accomplish this by slightly modifying the process when you register the flexfields and incorporate them into your application, and when the application implementer or administrator configures the flexfields.
For more information, see Section 22.12, "Preparing Descriptive Flexfield Business Components for Oracle Business Intelligence" and Section 23.4.3, "How to Prepare Key Flexfield Business Components for Oracle Business Intelligence".
Responsibility for flexfield development activities is allocated between owners and implementers. These are not formal development roles; they are used only in this documentation to clarify and group the flexfield development activities.
The flexfield owner is the developer (or development team) who determines that a particular flexfield is needed or would be useful within a particular Oracle Fusion application, and makes a flexfield of the appropriate design available. The owner then incorporates the flexfield into an application. With key flexfields, the owner can be either a producer or a consumer, or can assume both roles.
A flexfield implementer is an individual who sets up all or part of a flexfield-enabled application for deployment. Implementers typically work for or on behalf of customers to install, configure, or administer their applications. In the case of developer flexfields that have been created to support functionality that has been built into the application, the developer also plays the role of implementer.
The process of developing a flexfield and incorporating it into an application differs for each type of flexfield. In general, the process comprises the following activities:
Once you have completed the flexfield development process and delivered your application, implementers can use the Manage Flexfields task flows configure each flexfield. These task flows determine how the flexfield's segments will be populated, organized, and made available to end users within the application. For information about planning and implementing flexfield configuration, such as defining structures, contexts, attributes, labels, behavior, and associated value sets, see the "Using Flexfields for Custom Attributes" chapter in the Oracle Fusion Applications Extensibility Guide.
Note: You must use the specified tools throughout the development lifecycle to create and update the flexfield metadata and application tables. Do not use database tools unless you are instructed to do so. If you use database tools instead of the specified tools, you risk destroying data integrity and you lose the ability to audit changes to the data. Because Oracle Fusion Applications tables are interrelated, any changes that you make using the specified tools, such as building business components or UI forms, can update many tables at once. If you do not use the specified tools, you might not update all the necessary tables. In addition, most of these tools perform validation and change tracking. If tables are not properly synchronized, you risk unpredictable results throughout Oracle Fusion Applications products. |
Flexfields consist of label/widget pairs or table fields. Once configured, extensible flexfields appear in the UI as regions, and descriptive and key flexfields may appear in the UI in either a form layout, a tabular layout, or in a form or table layout in a popup component:
All segments of a single flexfield are grouped together by default. The layout of the form or table and the positions of the flexfield segments depend on where the developer places the flexfield on the page. Flexfields may also be presented in a separate section of the page, alone in a table, or on their own page.
The script content on this page is for navigation purposes only and does not alter the content in any way.
This chapter discusses how to use descriptive flexfields to enable customers to add additional attributes to business objects in their Oracle Fusion applications.
This chapter includes the following sections:
Descriptive flexfields provide a way for customers to add custom attributes to entities, and to define validation and display properties for them. A descriptive flexfield is a logical grouping of attributes (segments) that are mapped to a set of extension columns, which are shipped as part of Oracle Fusion Applications tables. The attributes in the group are of two types: global segments and context-sensitive segments. The global segments are for custom attributes that apply to all entity rows, while the context-sensitive segments are for custom attributes that apply to certain entity rows based on the value of a context segment. To learn more about global, context, and context-sensitive segments, see Chapter 21, "Getting Started with Flexfields."
You can define multiple usages for a descriptive flexfield. For example, you might have defined an address flexfield that the implementer may use to add attributes related to addresses. The implementer can define context-sensitive segments for the address that are based on a certain attribute, such as country code. You can reuse the address flexfield with any table for which you need address information, and the customer only needs to configure the flexfield once.
To complete the development tasks for descriptive flexfields:
See Section 22.2, "Developing Descriptive Flexfields".
See Section 22.3, "Creating Descriptive Flexfield Business Components".
Tip: After completing this step, you can regenerate the flexfield business components programmatically at runtime to update your descriptive flexfield implementation without manual intervention. For more information, see Section 25.4, "Regenerating Flexfield Business Components Programmatically". |
See Section 22.4, "Creating Descriptive Flexfield View Links".
See Section 22.6, "Adding a Descriptive Flexfield View Object to the Application Module".
See Section 22.7, "Adding Descriptive Flexfield UI Components to a Page".
See Section 22.8, "Configuring Descriptive Flexfield UI Components".
See Section 22.9, "Loading Seed Data."
After implementing a flexfield, you can define seed or test value sets for the flexfield, and you can create a model that you can use to test it. For more information, see Section 25.1.2, "How to Test Flexfields."
Once you have completed the flexfield development process and delivered your application, implementers can use the Manage Descriptive Flexfields task flows to define context values and to configure the segments for each flexfield. These task flows determine how the flexfield's segments will be populated, organized, and made available to end users within the application. For information about planning and implementing flexfield configuration, such as defining attributes, labels, behavior, and associated value sets, see the "Using Flexfields for Custom Attributes" chapter in the Oracle Fusion Applications Extensibility Guide.
To make the Manage Descriptive Flexfields task flows available to application implementers, you register them with the Oracle Fusion Functional Setup Manager. For more information, see Section 25.5, "Integrating Flexfield Task Flows into Oracle Fusion Functional Setup Manager".
Descriptive flexfields let you satisfy different groups of users without having to reprogram your application, by enabling you to provide customizable fields for non-key attributes. Descriptive flexfields also enable context-sensitive fields that appear only when needed. In essence, a descriptive flexfield enables customers to extend the data model without writing either XML or Java. A flexfield is presented as a set of fields on a page, much like the fields of the core application.
For example, consider a retail application that keeps track of customers. The customers form would normally include fields such as Name, Address, State, Customer Number, and so on. However, the page might not include fields to keep track of customer clothing size and color preferences, since these are attributes of the customer entity that can differ for each company that uses the application. For example, if the retail application is used for a tool company, a field for clothing size would be undesirable. Even if you initially provide all the fields that a company needs, the company might later identify even more customer attributes that it wants to keep track of. You can add a descriptive flexfield to the form to provide the desired expansion space. Companies also can take advantage of the fact that descriptive flexfields can be context sensitive, where the information that the application stores depends on other values that the users enter on other parts of the page.
You could use a descriptive flexfield in a fixed assets application that you build to allow further description of a fixed asset. You could let the structure of the assets flexfield depend on the value of an asset type field. For example, a company could configure the flexfield to store style, size, and wood type if the asset type was "desk", and store CPU chip and memory size if the asset type was "computer."
Oracle General Ledger includes a descriptive flexfield in its journal entry form that implementers can configure to allow users to add information of their own choosing. For example, end users might need to capture additional information about each journal entry, such as source document number or the name of the person who prepared the entry.
To maximize flexibility for customer implementers, consider defining a descriptive flexfield for every entity in your application to which a customer might need to add attributes.
Flexfields are modeled as a collection of Oracle Application Development Framework (ADF) polymorphic view rows. In a polymorphic collection, each view row can have its own set of attributes, and all rows have at least one common attribute, the discriminator. The discriminator determines which view row type should be used. Given a collection of polymorphic view rows, each row can be a different type.
The attribute sets associated with the discriminator are predefined. In fact, the Oracle Application Development Framework enables each view row to have its own view definition. When a polymorphic collection is created, the framework selects a view definition for the row to be added based on the value of the discriminator attribute.
With flexfields, this behavior is exposed using the terminology of segments and structures in place of attributes and view row types, respectively. The attributes in each view row definition are exposed as a set of segments with a predefined structure (or segment inclusion and ordering). The structure can include the discriminator attribute, common attributes that are unaffected by the discriminator value, and variable attributes that are included based on the discriminator value.
For descriptive flexfields, the context segment is the discriminator attribute, and the global segments are the common attributes.
Descriptive flexfields use a context switching mechanism similar to that of polymorphic view objects. You use a wizard to generate a flexfield polymorphic view object based on the descriptive flexfield definition, then create a view link to connect your product view object and the flexfield view object. You can then use the view object to add the flexfield to an application page.
Note: One distinction of the flexfield context switching mechanism is that during context switching, the context sensitive segments are initialized as follows:
|
For more information about polymorphic view rows, see the "Working with Polymorphic View Rows" section in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
Note: Because flexfield view objects are modeled as polymorphic view objects, you can use descriptive flexfield view objects in the same manner that you use any other polymorphic view objects, and they will behave in the same way. This includes support for flexfields in ADF Desktop Integration. For more information, see Section 22.14, "Accessing Descriptive Flexfields from an ADF Desktop Integration Excel Workbook" and the Oracle Fusion Middleware Desktop Integration Developer's Guide for Oracle Application Development Framework. |
Whenever you have an application table that you think customers might need to extend for their specific circumstances, you can add additional columns to the table and register those columns as flexfield segments. Once you have registered a flexfield, you have the ability to reuse the flexfield with other application tables.
To complete the process for developing a descriptive flexfield:
FND_FLEX_DF_SETUP_APIS
PL/SQL package.FND_FLEX_DF_SETUP_APIS
PL/SQL package.FND_FLEX_DF_SETUP_APIS
PL/SQL package.To implement a descriptive flexfield for an application table, you first add extension columns to that table. You need to add a context column, such as ATTRIBUTE_CATEGORY, and as many generic attribute (segment) columns of each type, such as ATTRIBUTE1_VARCHAR2
and ATTRIBUTE12_NUMBER
, that you think the customers will need. A segment column must be a VARCHAR2, NUMBER, DATE, or TIMESTAMP. When defining a flexfield attribute, the implementer will need to map the attribute to an available extension column.
Tip: There are no constraints on how to name the segment columns. However, these columns are typically named using the patterns ATTRIBUTEn_VARCHAR2, ATTRIBUTEn_NUMBER, ATTRIBUTEn_DATE, and ATTRIBUTEn_TIMESTAMP. This convention makes it easy to identify the flexfield segments. It also makes it easier to name the columns for other usages of the flexfield. |
The context column, which is required, must be of type VARCHAR2
. The context column's length determines the maximum length of the implementation-defined context codes.
Each implementer can configure as many of the segment columns as the customer requires and can choose whether to use the context column.
You must use the Database Schema Deployment Framework tools to create the application table and columns. Using these tools ensures that the table and its columns are registered in the Applications Core Data Dictionary. For more information, see Chapter 56, "Using the Database Schema Deployment Framework."
Before you can create business components for a descriptive flexfield, you must first define and register the descriptive flexfield.
The basic steps for defining and registering a descriptive flexfield are as follows:
You can define a descriptive flexfield using a registration task, which you access from the Oracle Fusion Applications Setup and Maintenance work area, or using the FND_FLEX_DF_SETUP_APIS
PL/SQL package.
You can use the Register Descriptive Flexfields task, which is accessed from the Oracle Fusion Applications Setup and Maintenance work area, to register and define a descriptive flexfield. First you add a descriptive flexfield entry, then you define the base table usage. This becomes the master usage for the flexfield. You next specify which base table column to use for the context segment, and you define the base table columns to be used for the flexfield segments. You can then specify the name of the entity object, the package name, and the prefix to use when generating the flexfield's business components, or you can complete that task at a later time.
Tip: You can also define and register a flexfield using the FND_FLEX_DF_SETUP_APIS PL/SQL package, as described in Section 22.2.2.2, "Registering and Defining Descriptive Flexfields Using the Setup APIs.". |
Before you begin:
Create the extension columns as described in Section 22.2.1, "How to Create Descriptive Flexfield Columns."
To register and define a descriptive flexfield using a registration task:
VARCHAR2
.Tip: The context segment database column is typically named ATTRIBUTE_CATEGORY. |
In addition to using a registration task, as described in Section 22.2.2.1, "Registering and Defining Descriptive Flexfields Using a Registration Task," you can define and register a descriptive flexfield using procedures from the FND_FLEX_DF_SETUP_APIS
PL/SQL package. This package also has procedures for updating, deleting, and querying about flexfield definitions.
To learn how to access documentation about using the FND_FLEX_DF_SETUP_APIS
PL/SQL package, see Section 22.2.2.2.1, "What You May Need to Know about the Descriptive Flexfield Setup API."
Before you begin:
Create the extension columns as described in Section 22.2.1, "How to Create Descriptive Flexfield Columns".
To register and define a descriptive flexfield using the setup APIs:
fnd_flex_df_setup_apis.create_flexfield(...)
procedure to register the descriptive flexfield, its context segment, and its master usage.fnd_flex_df_setup_apis.create_segment_column_usage(...)
procedure for each segment column to register the segment columns.In the descriptive flexfield development process, you use the FND_FLEX_DF_SETUP_APIS PL/SQL package to manage flexfield registration metadata.
You can learn about the FND_FLEX_DF_SETUP_APIS
PL/SQL package by running the following command, which outputs package documentation and usage examples to the <db_name>_<user_name>_FND_FLEX_DF_SETUP_APIS_<date>.plsqldoc
file.
A descriptive flexfield configuration can be shared with other application tables. To reuse a descriptive flexfield, you add the same set of extension columns to the application table for which you want to reuse the flexfield, and you register the reuse as described in Section 22.2.4, "How to Register the Reuse of a Descriptive Flexfield."
The application table that was used to first register the flexfield is referred to as the master application table, and it is the owner of the flexfield. A reuse of a flexfield is referred to as a secondary usage.
The secondary table must have the same number of extension columns as the master table. The secondary extension columns must have the same data type and size as the corresponding master table extension columns.
The column names must also be exactly the same as in the master usage, with the exception of an optional prefix. For example, if the column names are ATTRIBUTE1
and ATTRIBUTE2
in the master usage, then in the secondary table they could again be ATTRIBUTE1
and ATTRIBUTE2
, respectively, or with a prefix, they could be HOME_ATTRIBUTE1
and HOME_ATTRIBUTE2
. They cannot be ATTR1
and HOME_ATTR2
, or any variation that does not end in the names of the master usage columns.
You must use the Database Schema Deployment Framework tools when you create the application table and columns. Using these tools ensures that the table is registered in FND_TABLES
, and its columns are registered in FND_COLUMNS
.
After you add extension columns to a table for a reuse of a flexfield, you must register the usage before you can build a descriptive business component for the secondary usage.
You can register the reuse of a descriptive flexfield using a registration task or using procedures from the FND_FLEX_DF_SETUP_APIS
PL/SQL package.
You can use the Register Descriptive Flexfields task, which is accessed from the Oracle Fusion Applications Setup and Maintenance work area, to register the reuse of a descriptive flexfield by a secondary table. The registration task uses the master usage column mappings to determine how to map the secondary table's column names to the flexfield segments. If you specify a prefix, the task uses the prefix to determine the column mappings. For example, if the master table's ATTRIBUTE1 column is mapped to a segment, and you specify a prefix of HOME for the secondary usage, the task automatically maps its HOME_ATTRIBUTE1 column to a flexfield segment.
Tip: You can also register the reuse of a flexfield using the FND_FLEX_DF_SETUP_APIS PL/SQL package, as described in Section 22.2.4.2, "Registering the Reuse of a Descriptive Flexfield Using the Setup APIs.". |
Before you begin:
To register a secondary reuse using a registration task:
In addition to using the registration task, as described in Section 22.2.4.1, "Registering the Reuse of a Descriptive Flexfield Using a Registration Task," you can define and register the reuse of a descriptive flexfield using procedures from the FND_FLEX_DF_SETUP_APIS
PL/SQL package.
To learn how to access documentation about using the FND_FLEX_DF_SETUP_APIS
PL/SQL package, see Section 22.2.2.2.1, "What You May Need to Know about the Descriptive Flexfield Setup API."
The definition of a descriptive flexfield usage includes the following information:
ATTRIBUTE1
, and the secondary table column is HOME_ATTRIBUTE1
, then the prefix is HOME_.Before you begin:
To register a secondary reuse using the setup APIs:
fnd_flex_df_setup_apis.create_flex_table_usage(...)
procedure.When you build the flexfield business components and create flexfield-specific application module instances, the flexfield modeler requires the following information about the flexfield usage:
You can use a registration task or the FND_FLEX_DF_SETUP_APIS
PL/SQL package to register this information for a flexfield usage.
You can use the Register Descriptive Flexfields task, which is accessed from the Oracle Fusion Applications Setup and Maintenance work area, to register a flexfield usage's entity details.
Tip: You can also register entity details using the FND_FLEX_DF_SETUP_APIS PL/SQL package, as described in Section 22.2.4.2, "Registering the Reuse of a Descriptive Flexfield Using the Setup APIs." |
Before you begin:
To register the entity details using a registration task:
PartsDFF
. This prefix is used to derive the names of objects that are generated for the flexfield usage.Note: Each usage must have a unique package name. In addition, the package name must uniquely identify a usage. For example, if the root package for a usage is oracle.apps.hcm.payroll.flex.dff1 , then you cannot define the oracle.apps.hcm.payroll.flex package for another usage, because that package would then identify both usages. Instead, you could use oracle.apps.hcm.payroll.flex.dff2 . |
In addition to using the registration task, as described in Section 22.2.5.1, "Registering Entity Details Using a Registration Task," you can register entity details using procedures from the FND_FLEX_DF_SETUP_APIS
PL/SQL package.
To learn how to access documentation about using the FND_FLEX_DF_SETUP_APIS
PL/SQL package, see Section 22.2.2.2.1, "What You May Need to Know about the Descriptive Flexfield Setup API."
Before you begin:
To register the entity details using the setup APIs:
fnd_flex_df_setup_apis.create_adfbc_usage(...)
procedure to register the entity object, package name, and object name prefix for the flexfield usage.A flexfield parameter is a declared public variable, which can be used to designate which attributes of eligible entity objects that are related to the flexfield can be used to pass external reference data to flexfield segments. These entity object attributes could, in turn, take their values from column values, constant values, session attributes, and so forth.
A flexfield may have zero, one, or many flexfield parameters defined, each one representing a specific type of information that is useful to that flexfield. Implementers can use the parameters to define defaults and value set validation for the flexfield segments.
Some or all of these types of data sources can be referenced in the following ways:
Note: Although a flexfield parameter is associated with a flexfield in metadata, it is not connected with any specific segment in the flexfield. Rather, it serves as a "variable" through which flexfield segments can access reference data from other sources. |
Every flexfield parameter must be mapped to an appropriate entity object attribute at design time. In this way, application implementers are guaranteed that the parameters will always be mapped to entity object attributes, and they can use the parameters at will.
When you create business components for a descriptive flexfield, you will be required to map each parameter associated with that flexfield to an attribute of the entity object that you are creating. The values accessed from reference data sources by these parameters are then available for you to use in your application. Many of the core (non-flexfield) fields on a page can serve as reference fields.
Consider the example of an Expense Lines entity object with the core fields of Expense Line ID, Expense Date, Amount, Description, and Expense Type. If the flexfield has an ExpenseType parameter that is mapped to the Expense Type field, an implementer can configure the context segment to derive its value from the ExpenseType parameter.
To implement descriptive flexfield parameters, you must map them to the appropriate entity object attributes at design time and configure them. For more information, see Section 22.3, "Creating Descriptive Flexfield Business Components" and Section 22.8.3, "How to Configure Descriptive Flexfield Parameters".
You can use the Register Descriptive Flexfields task, which is accessed from the Oracle Fusion Applications Setup and Maintenance work area, to register a flexfield parameter.
Tip: You can also register parameters using the FND_FLEX_DF_SETUP_APIS PL/SQL package, as described in Section 22.2.6.1, "Registering a Flexfield Parameter Using a Registration Task." |
To register a parameter using a registration task:
In addition to using the registration task, as described in Section 22.2.6.1, "Registering a Flexfield Parameter Using a Registration Task," you can register a flexfield parameter using procedures from the FND_FLEX_DF_SETUP_APIS
PL/SQL package.
To learn how to access documentation about using the FND_FLEX_DF_SETUP_APIS
PL/SQL package, see Section 22.2.2.2.1, "What You May Need to Know about the Descriptive Flexfield Setup API."
Before you begin:
Define and register the flexfield as described in Section 22.2.2, "How to Register and Define Descriptive Flexfields."
To create a parameter using the setup APIs:
fnd_flex_df_setup_apis.create_parameter(...)
procedure and provide a parameter code and data type.Before you can use a descriptive flexfield in an application, you must generate flexfield Business Components for the flexfield. You generate these components by running a flexfield Business Component modeler. The modeler generates a base view object that is based on the information in the flexfield metadata. After the initial flexfield registration, and before any configuration is completed, the base view object has at least two attributes: the primary key attribute, which links the flexfield view object to the application view object, and the context attribute, which serves as the discriminator.
When implementers configure the flexfields by defining global and context-sensitive segments, the base view object is regenerated and additional flexfield view objects are generated. Figure 22-6 shows an example of the configured components. The application view object contains only the non-flexfield attributes. The base view object contains the primary key attribute, the context attribute, and global attributes. The base view object is extended to define view object rows based on the configured context values. Each context value requires a view object definition that represents the structure of the rows with that context value.
Note: The application view object might contain other attributes. However, the application view object must not include flexfield view object attributes. None of the flexfield view objects contains the fixed (non-flexfield) columns. |
No Java implementation classes are generated for descriptive flexfield view objects. The application view object may or may not have Java implementation classes.
You use the Create Flexfield Business Components wizard to create the flexfield business components for a flexfield's usage.
The business components generated will replace any existing ones that are based on the same flexfield usage.
Before you begin:
adf-config.xml
file. This inclusion serves to ensure correct application behavior. It does not matter which customization class you include.For information about customization layers, see the "Understanding Customization Layers" section in the Oracle Fusion Applications Extensibility Guide.
java.lang.String
.java.math.BigDecimal
.java.sql.Date
.java.sql.Timestamp
.To create descriptive flexfield business components:
Developer
— select this role if you are incorporating the flexfield into an application. The business components must be stored in one of your projects. Select the desired project location from the Project Source Path dropdown list.Tester
— select this role if you are planning to test your flexfield or a shared flexfield. In the Output Directory field, specify the path of your desired location for the generated business components.For more information about testing flexfields and importing shared flexfields, see Chapter 25, "Testing and Deploying Flexfields."
Note: This is not a role in the security sense. It exists only during this procedure, for the purpose of specifying where your generated flexfield business components should be stored. |
Descriptive
.You can browse for the name, and filter by ID, Short Name, or Name.
You can browse for and filter by Code.
(Reuse)
in the Description field.The entity object you select must include all of the attributes representing the columns that are reserved for the descriptive flexfield.
Descriptive flexfield attributes will be validated by the entity object along with its other attributes.
When a descriptive flexfield entity object attribute is transient, there is no matching underlying column name. When you select this checkbox, the system will match the entity object attribute names to the descriptive flexfield column names, and use the matching attributes to access the flexfield data. Make sure that the entity object has a full set of attributes with matching names before you select this option.
This entity object must be registered under the base table usage. There is no need to register another table for this purpose, even if the entity object is based on some other table. For more information, see Section 22.2.5, "How to Register Entity Details."
Note: If the entity object with transient descriptive flexfield attributes is not based on the base table usage, the transient attributes must be named using the same prefix as the other attributes of that entity object (and the corresponding table columns). For more information, see Section 22.2.3, "How to Reuse a Descriptive Flexfield on Another Table." |
Caution: The Create Flexfield Business Components wizard is case-sensitive. All column names — and the names of the flexfield entity object attributes associated with them — must be upper case. |
If the selected entity object is not registered with the flexfield usage, the Naming page displays a message to that effect. Take one of the following actions:
For information about registering the entity object with the flexfield usage, see Section 22.2.5, "How to Register Entity Details."
On the Parameters page shown in Figure 22-9, map each flexfield parameter to the entity object attribute that will be the data source for the parameter.
Parameters are not a requirement for descriptive flexfields. If no parameters are defined for the descriptive flexfield that you are working with, the Parameters page will display a message to that effect. However, if any parameters are defined and associated with a descriptive flexfield, you must map each parameter to an entity object attribute before you can use the flexfield in your application.
The names in the Parameter Code column represent parameters that have been defined for the descriptive flexfield. For each parameter listed, select the entity object attribute from the Entity Attribute Name dropdown list to use as the data source for that parameter.
The entity attributes on the dropdown list include the following:
Note: An entity attribute is available on this list only if all the accessors in the chain to the attribute have an underlying association cardinality of 1-to-1 or many-to-1. |
The path through the chain of accessors to each available entity attribute is displayed using the following notation:
Although it is not visible, the name of the previously selected flexfield entity object is implied as the first element in the chain, followed by zero or more accessor names, then the target entity attribute name. The names of the entity objects in this chain are also implied.
Caution: Flexfield parameters can be used only with segments of the same Java type. The data type of each entity attribute you select must match the data type shown for the parameter. |
Note: This wizard might fail with a "ClassNotFound" exception message. This indicates that one or more required libraries have not been automatically included in your application project. You can resolve this issue by manually adding any missing libraries; then you can complete this procedure successfully. |
A view link is needed whenever an application view object references your descriptive flexfield. The application view object and the flexfield base view object are linked through their primary keys.
You create a view link to connect your product view object with the flexfield view object. Once you have created the view link, you can use the view object to add the flexfield to an application page.
Before you begin:
To create a descriptive flexfield view link:
Caution: You cannot move the view link to a different package after you create it. Instead, you must delete the view link and recreate it with the new package name. |
For descriptive flexfields, the Source Attributes page is informational only. The wizard uses the primary key attributes of the source view object to define the view link.
Note: You can skip the Properties page because view link-specific properties are not supported. |
On the Summary page, review the summary, then click Finish.
You must nest the descriptive flexfield application module instance under the project application module before you can incorporate the descriptive flexfield usage into the UI.
You only need to nest one flexfield application module for a flexfield usage, even if two or more view links exist for the same flexfield usage.
You use the overview editor for your application module to nest the descriptive flexfield application module instance. The nested descriptive flexfield application module instance shares the same transaction and entity object caches as the application module.
Before you begin:
To nest the descriptive flexfield application module instance in the application module:
applicationModule
instance under the flexfield usage's package. This is the package that you specified when you defined the entity details, as described in Section 22.2.5, "How to Register Entity Details."This application module was created when you created the flexfield business component and was named using the prefix that you specified when you defined the usage's entity details, as described in Section 22.2.5, "How to Register Entity Details." For example, if you registered the CasesDFF prefix, the application module name is CasesDFFAM.
The New App Module Instance field under the list shows the name that will be used to identify instance. You can change this name.
You need to add a flexfield view object instance that reflects the hierarchy of the view link that you created in Section 22.4.1, "How to Create Descriptive Flexfield View Links" to the application module for your application.
You edit the project application module to add the flexfield view object.
Before you begin:
To add a descriptive flexfield view object to the application module:
To include a descriptive flexfield on an application page, you add the flexfield UI component to the page, and then configure the properties of the UI component.
Note: You can also use descriptive flexfields in the following ways:
|
To add a descriptive flexfield UI component, you add the component to a page in the one of the following configurations:
Note: You cannot use a descriptive flexfield in a tree table component. |
If your ADF Table component is wrapped in an Applications Table component, you must add the following functionality to the UI:
createInsert
method.Note: The following procedures assume that you are using the data-first method of adding flexfields to your application. The UI-first method is also available, but is not documented here. |
Use this procedure to incorporate your descriptive flexfield into a basic form.
Before you begin:
To add a descriptive flexfield UI component to a form:
Caution: You must use the flexfield view object child of the master view object. Do not use the flexfield view object from the flexfield's application module data control. |
Tip: If you place the flexfield in its own tab, header, or subheader, and you cannot provide a specific label for the region, consider using the label "Additional Information," which is the standard generic label in such a case for Oracle Fusion Applications. |
Tip: If a descriptive flexfield is in a region, such as a header, subheader, or tab, that does not contain core fields, there is a possibility that the customer will not use the flexfield segments and the region will be empty. To avoid the display of an empty region on the page, you should add controlling logic to hide the region if the customer has not defined the segments that appear in the region. For information about how to determine if a segment has been defined, see Section 22.10.2, "How to Determine Whether Descriptive Flexfield Segments Have Been Defined." For information about using an EL expression to hide the region, see the "Creating EL Expressions" section in the Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework |
Tip: You can place the segments in a multiple-column layout, such as a two or three column layout. You should use a multiple-column layout when the number of segments that will be added by the customer is unknown and you anticipate that a large number of segments will be used. Otherwise, a flexfield with several segments will take up a large amount of space and the user will have to scroll to see any fields that appear below the flexfield. |
Tip: You can configure the descriptive flexfield UI component to present multiple descriptive flexfield rows using the panelFormLayout component, with each row's content based on a different context value. For more information, see the "Arranging Content in Forms" section of the Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework. |
Use this procedure to allow for the full range of possible context segment values. Users will be able to expose or hide the context-sensitive segments of the flexfield separately for each row of data.
Before you begin:
To add an unrestricted descriptive flexfield UI component to a table:
Row Selection
option, and set the appropriate width.Caution: You must use the flexfield view object child of the master view object. Do not use the flexfield view object from the flexfield's application module data control. |
Caution: Do not drop the flexfield view object into an existing column. The displaying of descriptive flexfields in the cell of a table column is not supported. |
detailStamp
facet) if the table does not have one, as shown in Figure 22-16.detailStamp
facet if you do not already have one.Normally, context-sensitive segments in a table are visible only in a detailStamp
facet. This is because the flexfield context segment can contain a different value in each table row; therefore the set of associated context-sensitive segments that appear can vary from row to row. There is no way to present all of these varying results in a predefined column format within a single table.
However, if you can guarantee that a given context segment in every row of the table will always contain the same value for a given application page, the resulting combination of corresponding context-sensitive segments in each row will remain constant. In this circumstance the context-sensitive segments can be displayed as table columns.
For example, if the context segment is a country code, and the purpose of this application page is to manage only Italian tax data, then the context value should always be IT
. The table columns for the context-sensitive segments will always be displayed in the configuration appropriate to the Italian tax system.
Before you begin:
To add a descriptive flexfield UI component to a table as columns:
Row Selection
option, and set the appropriate width.Caution: You must use the flexfield view object child of the master view object. Do not use the flexfield view object from the flexfield's application module data control. |
Caution: Do not drop the flexfield view object into an existing column. The displaying of descriptive flexfields in the cell of a table column is not supported. |
<fnd:descriptiveFlexfield>
tag:See Table 22-1 for information about the mode attribute.
WHERE
clause or view criteria to the master view object to enforce the same predetermined context value for all rows of the table.If the context value segment will be visible on the page, be sure to configure the segment to be read-only so end users cannot modify it. For more information, see Section 22.8.2, "How to Configure Segment-Level UI Properties".
If your ADF Table component is wrapped in an Applications Table component, and if you are using your own CreateInsert
button to create new rows, you must complete the following steps.
You do not need to complete these steps if new rows are created using the Applications Table's New button or the New option on the Actions menu.
Caution: If you enable end users to add new flexfield rows to the UI table, you can permit them to enter their own unique key values for a new row; however, you must provide a programmatically generated primary key value for the new row, otherwise it will generate an error. |
To Add Create Row and Delete Row Functionality to the Page
CreateInsert
) onto the page.pageDef
entry. Example 22-1 shows an example of the pageDef
entry.Example 22-1 Executables Element of Page Definition Code
#{myBean.customCreateInsert}
.Example 22-1 shows how the executables
element of the page definition might look. Dff1RefInstanceIterator
is the iterator of the master view object.
STATUS_NEW
, as demonstrated in Example 22-2.Example 22-2 Code to Set New Table Row State to STATUS_NEW
createInsert
method to handle an empty table as described in Section 22.7.5, "How to Add a Row to an Empty Table in a Custom createInsert Method"Caution: Please keep the following caveats in mind:
|
If you are using a custom createInsert
method to add rows to an ApplicationTable component, you must include code similar to Example 22-3 to handle an empty table. Replace FirstRowInTable with logic to determine whether the table is empty and the new row is the first row in the table.
Example 22-3 Handling Empty Tables in a Custom createInsert Method
If your flexfield is in an ADF Table component that is wrapped in an Applications Table component that is refreshed by another component, such as a button or a query, then you must add functionality to dynamically refresh the flexfield segments.
To refresh the flexfield segments based on the current iterator rowset data, create a listener handler method in the flexfield's backing bean and bind the listener to the component that is initiating the table refresh. The listener must first call the default listener and then call DescriptiveFlexfield.updateFlexColumns(RichTable)
, where RichTable
is the binding for the table that contains the flexfield.
Example 22-4 shows an example of a custom flexfield handler for a query event. The method first calls invokeMethodExpression
to call the original query listener, and then calls updateFlexColumns
with the table component that contains the flexfield as the parameter. Example 22-5 shows the binding of the custom flexfield handler to the query component.
Example 22-4 Flexfield Listener
Example 22-5 Binding the Flexfield Listener to the Search Query
Note: You do not need to handle flexfield refresh for standard Applications Table create and delete operations. However, custom create and delete operations must handle the refreshing of flexfields. |
Descriptive flexfield segments appear on a form as a widget with a customer-defined label, just as core fields do. In tabular layout, the label of the flexfield segment is the column header and the values are within each cell of the column.
Figure 22-18 shows an example of a descriptive flexfield used in a form on an application page.
Figure 22-19 shows an example of a descriptive flexfield used in a table on an application page:
Note: Descriptive flexfield segments always appear as form fields or table columns in the same order that their corresponding attributes appear in the underlying view object. |
You can control your descriptive flexfield's behavior in the application UI by modifying properties at the flexfield level and the segment level, configuring descriptive flexfield parameters, and configuring the flexfield to handle value change events.
You configure flexfield-level behavior by configuring the UI component's properties.
Before you begin:
Add the descriptive flexfield to the page as described in Section 22.7, "Adding Descriptive Flexfield UI Components to a Page".
To configure flexfield-level properties:
The significant properties on the Common, Data, Style and Behavior property tabs are listed in Table 22-1:
Table 22-1 Descriptive Flexfield Properties
Tab > Property | Description |
---|---|
Common > Id | The ID of the flexfield. |
Common > Rendered | Indicates whether the flexfield is rendered on the page. Values can be |
Common > Value | The value of the flexfield. This should be an EL expression pointing to an iterator object. The iterator value must be statically declared in the page definition. This field is also visible on the Data tab. |
Data > Accessor | The name of the accessor between the product team view object and the flexfield view object. |
Data > Category | Defines which category will be rendered on the page. The category can be set on each attribute's custom property. |
Style > StyleClass | The style class of the flexfield. |
Style > InlineStyle | The inline style of the component. |
Behavior > Read-Only | Indicates whether the flexfield is rendered as read-only. Values can be |
Behavior > Mode | Defines the UI mode of the descriptive flexfield component, to render all of the segments or just some of them. Values can be:
|
Behavior > partialTriggers | The IDs of the components that should trigger a partial update in the flexfield (|
Behavior > valueChangeListener | A method reference to a value change listener (|
Behavior > binding | An EL reference that will store the component instance on a bean (|
Footnote 1 For a descriptive flexfield that was added as table columns, you cannot control this property on a row by row basis. It must be set to apply to the entire column.
Descriptive flexfields support finer control of segments in the UI through the following segment-level boolean properties:
rendered
— Indicates whether the segment is visible on the application page.required
— Indicates whether the segment must have a value.readOnly
— Indicates whether users can modify the segment.The default values of these properties are derived from the flexfield metadata, but you can override them by inserting customization elements into the UI metadata. You can set these properties in the flexfield XML with literal values or EL expressions in most cases.
Note: If you set a segment's required property to True in the flexfield metadata, for validation purposes you cannot override this by resetting it to False in the page metadata. You can, however, do the reverse: change a non-required segment to required in the page metadata. |
For information about using EL expressions, see the "Creating ADF Data Binding EL Expressions" section in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
Before you begin:
Add the descriptive flexfield to the page as described in Section 22.7, "Adding Descriptive Flexfield UI Components to a Page".
To configure segment-level UI properties:
Use to configure the descriptive flexfield context segment. This component must be inserted as a child of the Descriptive Flexfield component.
You can configure any combination of the ReadOnly, Rendered, and Required properties.
Use to configure global segments, or as a wrapper for the Flexfield Segment Hint component to configure individual segments. This component must be inserted as a child of the Descriptive Flexfield component. Apply the properties as follows:
Caution: For a descriptive flexfield that was added as table columns, you cannot configure the Rendered property of global segments on a row by row basis. It must be set to apply to the entire column. |
Note: This property does not affect the descriptive flexfield context segment. For context segment configuration, see the entry for Flexfield Context Segment Hints. |
Use to configure individual global or context-sensitive segments. This element must be inserted as a child of the Flexfield Segment Hints component.
Specify the SegmentCode, which should identify a context-sensitive segment within a particular context if the parent element contains a ContextCode value, or a global segment if not.
You can configure any combination of the Rendered, Required, or ReadOnly properties. The ReadOnly property is generally set when there is a default value assigned to that segment, and you do not want users to choose a value other than the default. You only should set both Required and ReadOnly to true if the segment has a default value
Caution: For a descriptive flexfield that was added as table columns, you cannot configure the Rendered property of global segments on a row by row basis. It must be set to apply to the entire column. |
To determine the correct value for the SegmentCode property, examine the FND_ACFF_SegmentName
attribute of the context-sensitive segment's viewAttribute
element in your descriptive flexfield view object.
Example 22-6 shows various combinations of the segment-level display properties in the flexfield XML
Example 22-6 Segment-Level Display Properties in Descriptive Flexfield Metadata
You must add all the parameters that you have registered for the flexfield to the partialTriggers list so that each parameter's associated UI component is refreshed when its attribute is changed.
Before you begin:
To configure descriptive flexfield parameters:
For example, say you mapped the Customer
parameter to the entity object Customer_Name
attribute, which in turn has a corresponding view object attribute called Customer_Name
and is displayed on the page using an inputText field with the prompt "Customer Name
". You would ensure that this UI component has an ID, say, customerInputText
.
In the previously introduced example, you would add customerInputText
to the PartialTriggers list. Example 22-7 shows the source view of the partialTriggers
attribute.
Example 22-7 Adding the UI Component ID to the partialTriggers List
Any implementation of flexfields in Oracle Fusion Applications typically requires application seed data, which is the essential data to enable flexfields to work properly in applications. Flexfield seed data can be uploaded and extracted using Seed Data Loader.
After you complete the registration process described in Section 22.2.2, "How to Register and Define Descriptive Flexfields," your flexfield seed data consists of the information that you registered for your flexfield, such as the tables and columns reserved for your flexfield. For a customer flexfield, the seed data contains only this registration data.
If your flexfield is a developer flexfield, you also serve the role of the implementer. In addition to the registration data, your flexfield seed data might include contexts, segments, and value sets that you have defined for your flexfield.
For information about extracting and loading seed data, see Chapter 55, "Initializing Oracle Fusion Application Data Using the Seed Data Loader".
When working with descriptive flexfields programmatically, you might need to know how to do the following tasks:
When you update a flexfield programmatically, you must obtain the same flexfield view row that is used by the UI. You use the getFlexfieldVORowFromEvent
method to get a handle to flexfield view row from the ValueChangeEvent
instance.
Update the context value on the flexfield, not the master view row. Otherwise, the structure will not change. Do not update the entity object directly. The flexfield's structure logic is in the setter of the view row, so do not bypass it.
Your application might find it useful to know if any global or context-sensitive segments exist in a descriptive flexfield's metadata before deciding whether to invoke a UI that includes the flexfield.
There is a view attribute in the descriptive flexfield view object, _FLEX_NumOfSegments
, that contains the combined total number of global segments and context-sensitive segments in the flexfield. Its value is in the java.lang.Integer
data format. This value may vary depending on the context.
The value of this view attribute is the number of segments defined in the metadata. For a given descriptive flexfield view row, a value of 0
means that only the context segment is available. Whether a segment is displayed is not taken into consideration.
You can configure your application to recognize and respond to changes in individual descriptive flexfield segment values.
You register a value change listener to capture any ValueChangeEvent that occurs. When an end user changes a segment value, the input components associated with the flexfield segments on the application page deliver a ValueChangeEvent, and the listener is called.
Before you begin:
Add the descriptive flexfield to the page as described in Section 22.7, "Adding Descriptive Flexfield UI Components to a Page".
To Configure a Descriptive Flexfield to Handle Value Change Events
Example 22-8 Sample Listener Handler
valueChangeListener
property (described in Table 22-1). In the Property Inspector, click the Edit button for valueChangeListener
, and a wizard appears to help you select an existing event listener or create a new listener. Example 22-9 is an example of the metadata as an EL expression that identifies the dffChangeListener
listener from the Java method in Example 22-8.Example 22-9 Sample EL Expression Identifying dffChangeListener
For more information about handling value change events, see the "Using Input Components and Defining Forms" chapter in the Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework.
You can include descriptive flexfield view object attributes as search criteria in an advanced query search form. This form enables end users to define ad hoc criteria to search for data in the application's master view object and its linked descriptive flexfield view object. End users can select which attributes of the descriptive flexfield view object to use as search criteria.
You use the Edit Query Criteria tab to add view criteria to a view object instance and then drop the view criteria onto the page as a Query Panel with results to incorporate a descriptive flexfield into a search form.
To add a descriptive flexfield to a search form:
Tip: JDeveloper names the user interface project ViewController by default. |
For more information about working with search forms, see the "Creating ADF Databound Search Forms" chapter of Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
Oracle Business Intelligence is a comprehensive collection of enterprise business intelligence functionality that provides the full range of business intelligence capabilities including interactive dashboards, full ad hoc, proactive intelligence and alerts, enterprise and financial reporting, real-time predictive intelligence, and more.
While descriptive flexfields are modeled using polymorphic view objects, flexfield technology is not compatible with Oracle Business Intelligence, which also requires reference data, such as lookups, to be modeled as view-linked child view objects. To enable a descriptive flexfield to be used by Oracle Business Intelligence, it must be flattened into a usable static form. To flatten the flexfield into a static form you enable the flexfield and its segments for business intelligence (BI), you create the flexfield business components, and you create the flexfield view links and application modules using a slightly modified process.
If you want customers to be able to do business intelligence queries on whatever segments they configure for a flexfield, you must enable the flexfield and its segments.
You can set the business intelligence–enabled flag at registration time using the fnd_flex_df_setup_apis.create_flexfield(...)
procedure, or you can set the flag later using the fnd_flex_df_setup_apis.update_flexfield(...)
procedure. For information about using these procedures see Section 22.2.2.2.1, "What You May Need to Know about the Descriptive Flexfield Setup API."
You can enable the segments for business intelligence using the Manage Descriptive Flexfields task, which is accessed from the Oracle Fusion Applications Setup and Maintenance work area, as described in the "Configuring Descriptive Flexfields" section in Oracle Fusion Applications Extensibility Guide.
An alternative method to business intelligence–enable a descriptive flexfield and its segments is to set the BIEnableFlag
to Y
at both the descriptive flexfield level and the segment level in the descriptive flexfield seed data file (SDF), as shown in Example 22-10.
Example 22-10 BI-Enabled Descriptive Flexfield
When you create business components for a business intelligence–enabled descriptive flexfield, the business component modeler recognizes the business intelligence-enabled setting, and a view object that is flattened for Oracle Business Intelligence is generated alongside the standard descriptive flexfield polymorphic view object. You must also slightly modify the process of creating descriptive flexfield view links and application modules.
Note: When you make changes to a business intelligence-enabled flexfield, you use the Import Metadata Wizard to import the changes into the Oracle Business Intelligence repository as described in the "Using Incremental Import to Propagate Flex Object Changes" section in the Oracle Fusion Middleware Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition (Oracle Fusion Applications Edition). |
Before you begin:
For more information, see Section 59.8.1, "Designing a Column-Flattened View Object for Oracle Business Intelligence."
To produce a business intelligence–enabled flattened descriptive flexfield model:
For a flexfield that is business intelligence-enabled, the Create Flexfield Business Components wizard generates a business intelligence-specific view object and other business components under a directory called analytics
in the package root directory. These are generated in addition to the normal descriptive flexfield view object.
BI:
" as shown in Figure 22-24.analytics
subpackage under the package root.Note: If you already have a product Oracle Business Intelligence application module, you may use it. |
This is done on the General tab of the nested business intelligence-enabled flexfield application module instance definition, as shown in Figure 22-25.
As you do this, keep the following points in mind:
DefaultFlexViewUsage
.BI_VIEW_LINK_
mypropertyname
source_viewobjectinstance_name
,
viewlink_definition_name
,
destination_viewobjectinstance_name
.You can make access to a descriptive flexfield available through web services, which will enable you to perform CRUD (create, retrieve, update and delete) operations on the flexfield data rows. You accomplish this by exposing the descriptive flexfield application module as a web service and adding flexfield service data object support utility methods to the product application module.
When you generate a flexfield business component, the descriptive flexfield business components and other artifacts are developed based on the information in the flexfield metadata. As illustrated in Figure 22-6, a base view object is created for the context and global segments. If any contexts have been configured, subtype view objects are generated for each configured context.
The example in Figure 22-26 shows an application module tester view of a descriptive flexfield.
To complete the development process to publish descriptive flexfields as web services:
You make web service access to descriptive flexfields available by adding a custom property to the view link, service-enabling the master view object, exposing the application module as a web service, exposing operations on the master view object, and adding utility methods for the flexfield to the product application module. You can then deploy the service and run Java client programs to test the service as described in Section 22.13.2, "How to Test the Web Service."
For more information about service enabling an application module, see "Integrating Service-Enabled Application Modules" in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework
Before you begin:
Note: When you generate a flexfield business component, the IDE automatically service enables the business component by generating a Service Data Object (SDO) for the base view object and for every subtype view object. |
To expose a descriptive flexfield as a web service:
ServiceImpl.java
.FlexfieldSdoSupport
objects to access flexfield information.Replace Flexfield with the appropriate string for the flexfield that you are working with.
In the getFlexfieldSdoSupport
method, replace getDffAM with the name of the getter method for the nested flexfield application module.
Example 22-11 Utility Methods for Flexfield Service Data Object Support
The application module's remote server implementation class will be modified to expose these methods.
You can test the service by adding StringRefAddr
elements to the Reference
element for the project application module's service to the connections.xml
file, deploying and manually testing the service, and optionally creating and running Java client programs to test the service.
Before you begin:
To test the web service:
connections.xml
file.Reference
element for the project application module's service (DFF1MasterApplicationModuleService in this example).StringRefAddr
elements that are shown in bold in Example 22-12 to the Reference
element for the project application module's service. Modify the host and port number in the jndiProviderURL
entry to point to your WebLogic Server. The port number is typically 7101.Example 22-12 StringRefAddr Elements to Add to Service Reference in connections.xml
Note: The remote server class was generated when you exposed the descriptive flexfield as a web service in Section 22.13.1, "How to Expose a Descriptive Flexfield as a Web Service." This class has a name that ends with ServiceImpl.java |
The following examples demonstrate how to write programs to test the web service.
Example 22-13 Web Service Get Operation
Example 22-14 Example XML Payload Output of Web Service Get Operation
Example 22-15 Web Service Create Operation
Example 22-16 Web Service Update Operation
ADF Desktop Integration makes it possible to combine desktop productivity applications with Oracle Fusion Applications, so you can use a program like Microsoft Excel as an interface to access application data.
Using ADF Desktop Integration, you can incorporate descriptive flexfields into an integrated Excel workbook, so you can work with the flexfield data from within the workbook.
The Oracle Fusion Middleware Desktop Integration Developer's Guide for Oracle Application Development Framework provides most of the information you need to complete the required activities, including the following:
The Oracle Fusion Middleware Desktop Integration Developer's Guide for Oracle Application Development Framework does not make explicit reference to flexfields. In addition to the standard implementation steps covered in that guide, you must modify your implementation to accommodate flexfields.
There are two ways to access a descriptive flexfield in Excel:
A web page picker popup dialog can be associated with a dynamic column, enabling users to pick flexfield segment values. Alternatively, users can enter values directly into the segment fields. No custom code is required in either case.
This is the most typical scenario. Each descriptive flexfield segment is displayed as a distinct column in the ADF Table component.
In addition to using the popup dialog, users can enter values directly into the segment field, with the values separated by an appropriate delimiter that you specify.
Note: A static column is any column for which the DynamicColumn property is set to False . |
Individual flexfield segments do not appear in the worksheet. Instead, ADF Desktop Integration invokes a separate JSPX page on which the flexfield will be visible. You can use this scenario with an ADF Form component, or either table type.
The descriptive flexfield's segments are part of your database table, so the flexfield is generated against the same entity object on which your worksheet view object is based.
To complete the process for accessing descriptive flexfields from and ADF Desktop Integration Excel Workbook:
When you configure the ADF Table component, make the following changes:
For more information about how to create a page definition file for an ADF Desktop Integration project, see the "Working with Page Definition Files for an Integrated Excel Workbook" section of the Oracle Fusion Middleware Desktop Integration Developer's Guide for Oracle Application Development Framework.
True
. A dynamic column in the TableColumn array is a column that is bound to a tree binding or tree node binding whose attribute names are not known at design time. A dynamic column can expand to more than a single worksheet column at runtime.For more information about the binding syntax for dynamic columns, see the "Adding a Dynamic Column to Your ADF Table Component" section of the Oracle Fusion Middleware Desktop Integration Developer's Guide for Oracle Application Development Framework.
Inputtext
OutputText
ModelDrivenColumnComponent
ADF Desktop Integration requires that to use a dynamic column implementation, the structure of the descriptive flexfield remain constant for all rows in a given result set. However, each time a new result set is downloaded into the table, the context value (and thus the structure) can be changed.
If the context value is set globally for the user of the workbook, changes are not an issue. However, if the user can control the context value (for example, using an LOV in a "header" form), your application must be able to respond appropriately to update the descriptive flexfield structure.
After the user specifies a context value, you must invoke the worksheet UpSync
method to get the new value into the model. Then you can use the ADF Table component Download
method to get fresh data with the new descriptive flexfield structure.
Note: For an insert-only table, the Download method is undesirable. For these cases, use either the ADF Table component DownloadForInsert method or the Initialize method to enable the Table component to reconfigure to accommodate the new flexfield structure. |
If the structure of your descriptive flexfield varies from row to row in a given result set, you cannot implement the flexfield as a dynamic column — it will produce errors. You must use a static column with a popup dialog.
Note: If a specific dialog title cannot be provided because the configuration of the flexfield will not be known until implementation, use "Additional Information" for the title, which is the standard generic label in such a case for Oracle Fusion Applications. |
ADF Desktop Integration supports descriptive flexfields by using tree bindings in an ADF Table component. If you are adding your descriptive flexfield as a static column, you can alternatively use an ADF Read-only Table component. Keep in mind that ADF Read-only Table components support static columns, but not dynamic columns. Popup dialogs support both types.
Note: A descriptive flexfield appears as a node in the tree binding at design time. Because flexfields are built up dynamically at runtime, you will not see any attributes under the flexfield node in the page definition, but the node itself is present. |
When you configure the popup dialog, make the following changes:
DoubleClickActionSet
of an InputText
or OutputText
component, then connect the Dialog action to a JSPX page that will display the descriptive flexfield.For more information about how to create a page definition file for an ADF Desktop Integration project, see the "Working with Page Definition Files for an Integrated Excel Workbook" section of the Oracle Fusion Middleware Desktop Integration Developer's Guide for Oracle Application Development Framework.
For static display of a descriptive flexfield in an ADF Desktop Integration workbook, you must create an updatable transient attribute in the view object on which the ADF Desktop Integration table is based. This transient attribute will hold the concatenated value of the descriptive flexfield segments, separated by a delimiter. If one purpose of the worksheet is to display existing data from the database, the transient attribute should be populated using custom application module methods upon returning from a popup dialog or opening the worksheet.
To handle update or insert of a data row containing a descriptive flexfield in an ADF Desktop Integration table, you call a custom application module method which contains appropriate code, as follows:
The context value should be set before calling the application module method, which gets called in the doubleclickactionset
of the table's UpdateComponent or InsertComponent properties. This is applicable for both dynamic column and static column display of descriptive flexfields. Setting the context value appropriately is important, since this controls the structure of the flexfield.
The following examples demonstrate the code needed to accomplish these tasks. Example 22-17 and Example 22-18 apply to an ADF Desktop Integration implementation with the descriptive flexfield exposed as a static column. Example 22-19 presents the isSegmentDisplayable()
method that is used in the other two examples.
Example 22-17 Updating or Inserting a Row with a Descriptive Flexfield Static Column
Example 22-18 Applying Modified Segment Values to a Cell in a Descriptive Flexfield Static Column
You add this code as an application module method which will be invoked from the OK button of a popup dialog. This method can also be used to populate transient attribute values used for single cell display upon opening the worksheet, if the worksheet is intended to display existing records from the database.
Example 22-19 isSegmentDisplayable() Helper Method Used in the Previous Examples
The input parameters for this method are the segment attribute definition and the descriptive flexfield row.
The script content on this page is for navigation purposes only and does not alter the content in any way.
This chapter discusses how to use key flexfields in Oracle Fusion applications to access data that is represented by different organizations using different combinations of fields, and to customize the presentation of that information to end users in a way that is most appropriate for their organizations. This chapter also discusses the development activities for taking advantage of key flexfield partial usages, code combination filters, and other advanced features.
This chapter includes the following sections:
A key flexfield is an intelligent key comprised of segments, in which one or more segments may have a meaning. An intelligent key, or code, uniquely identifies an object such as an account, an asset, a part, or a job, that implementers can configure to validate any way they wish. The definition of a key flexfield provides a list of possible combinations of key flexfield segment values, known as code combinations. Each type of code combination is called a structure. Each structure is identified by a string that you provide called the structure code. Much like the context values in descriptive flexfields, a key flexfield structure code indicates how database columns are organized to store the code combinations.
Key flexfields provide a way for Oracle Fusion applications to represent objects such as accounting codes, part numbers, or job descriptions, which combine multiple fields (or segments) into a single object of concatenated segments.
Most businesses use codes made up of meaningful segments (intelligent keys) to identify various business objects. For example, a company might have a part number "PAD-NR-YEL-8 1/2x14" indicating a notepad, narrow-ruled, yellow, and 14" by 8 1/2". A key flexfield lets you provide your users with a flexible code data structure that users can set up however they like using key flexfield segments. Key flexfields let your users customize your application to show their codes any way they want them. For example, a different company might have a different code for the same notepad, such as "8x14-PD-Y-NR", and they can easily customize your application to meet that different need. Key flexfields let you satisfy different customers without having to reprogram your application.
You can use key flexfields in many applications. For example, you could use a Part flexfield in an inventory application to uniquely identify parts. Your Part flexfield could contain such segments as product class, product code, size, color and packaging code. You could define valid values for the color segment, for example, to range from 01 to 10, where 01 means red, 02 means blue, and so on. You could even specify cross validation rules to describe valid combinations of segment values. For example, products with a specific product code may only be available in certain colors.
Flexfields are modeled as a collection of Oracle Application Development Framework (ADF) polymorphic view rows. In a polymorphic collection, each view row can have its own set of attributes, and all rows have at least one common attribute, the discriminator. The discriminator determines which view row type should be used. Given a collection of polymorphic view rows, each row can be a different type.
The attribute sets associated with the discriminator are predefined. In fact, the Oracle Application Development Framework enables each view row to have its own view definition. When a polymorphic collection is created, the framework selects a view definition for the row to be added based on the value of the discriminator attribute.
With flexfields, this behavior is exposed using the terminology of segments and structures in place of attributes and view row types, respectively. The attributes in each view row definition are exposed as a set of segments with a predefined structure (or segment inclusion and ordering). The structure can include the discriminator attribute; common attributes that are unaffected by the discriminator value; and variable attributes that are included based on the discriminator value.
For key flexfields, the structure instance number (SIN) segment is the discriminator attribute, and the code combination ID (CCID) segment is the common attribute.
Flexfields use a context switching mechanism similar to that of polymorphic view objects. You use a wizard to generate a flexfield polymorphic view object based on the key flexfield definition, then create a view link to connect your product view object and the flexfield view object. You can then use the view object to add the flexfield to an application page.
Because flexfield view objects are modeled as polymorphic view objects, you can use key flexfield view objects in the same manner that you use any other polymorphic view objects, and they will behave in the same way. This includes support for flexfields in ADF Desktop Integration. For more information, see the Oracle Fusion Middleware Desktop Integration Developer's Guide for Oracle Application Development Framework.
A key flexfield configuration can be shared with other application tables through the the partial usage feature. To share a configuration with another application table, you reuse the key flexfield definition over the application table by including one or all of the master usage segment columns in the application table. The table that contains the redefined segment columns is referred to as a partial table. The master usage is sometimes referred to as reference mode and partial usage is referred to as partial mode.
There are two types of partial usages:
As mentioned Section 21.2, "Participant Roles," this document uses the owner and implementer roles to clarify and group flexfield development activities. This chapter breaks the owner role into two categories:
The key flexfield producer is the developer who determines that a particular flexfield is needed or would be useful within a particular application, and makes available a flexfield of the appropriate design. The producer's product owns the combinations table for that flexfield.
A key flexfield consumer incorporates a flexfield into their application, which is typically different from the producer's application. The consumer typically stores the CCID on a transaction table, and works with the structural and seed data and the business components that have been configured by the key flexfield producer.
Before you start to incorporate key flexfields into your application, you need to determine whether you should complete the producer portion or the consumer portion of the key flexfield development process.
To incorporate key flexfield partial usages into your application, see Section 23.5, "Completing the Development Tasks for Key Flexfields in Partial Mode".
To employ key flexfield code combination filters in your application, see Section 23.6, "Working with Key Flexfield Combination Filters".
Figure 23-1 provides an overview of producer and consumer roles as they apply to the creation and configuration of the necessary key flexfield business components and associated artifacts. Section 23.1.5.3, "Understanding the Key Flexfield Producer Development Tasks" and Section 23.1.5.4, "Understanding the Key Flexfield Consumer Development Tasks" define the producer phases and summarize the steps for creating the components and artifacts shown in this figure. Note that the maintenance application module should be registered in the flexfield metadata if the key flexfield is configured for dynamic combination insertion.
Oracle Fusion Middleware Extensions for Applications provides key flexfield information such as combinations table structure. You can use this information to integrate your custom applications with key flexfields that are delivered with Oracle Fusion applications. For example, you can build foreign key pages that call an Oracle Fusion application's key flexfields.
By default, key flexfield user interface elements do not allow new code combination values entered into the application user interface to be saved. However, you might want to enable the entry of new code combinations in either of the following ways:
For example, when entering a transaction, a General Ledger user can enter a new expense account code combination for an account that does not yet exist. Your application creates the new account by inserting the new combination into the combinations table behind the scenes.
The key flexfield producer builds the appropriate models to support maintenance mode and dynamic combination insertion.
When you decide to support maintenance mode or dynamic combination insertion for a key flexfield, you can also implement advanced validation capability for the new code combinations that are entered, as follows:
Cross validation rules leverage the code combination filter infrastructure to apply a pair of filters to new code combinations that are proposed for a key flexfield by administrators or end users.
At registration time, you need to enable the key flexfield for cross validation. Then you create a maintenance user interface that administrators of your application can subsequently use to define each cross validation rule as a pair of code combination filters: one to establish the condition for evaluating the rule, and the other to specify which code combinations are valid under that condition.
There are two PL/SQL custom validation callout procedures that can be defined for a given key flexfield: one for application development use, and one reserved for customers. These callouts can be used to enforce any custom validation logic that you want to apply to new code combinations beyond what has been defined for cross validation rules.
You define custom validation logic with a standard signature for the customer callout. You then register your callout with the key flexfield. The custom validation callout will automatically be called before any new combination is inserted using dynamic insert in C and PL/SQL.
If you have determined that a particular key flexfield is needed within an application, and there are not yet columns in the application table to support it, you need to define the necessary metadata and provide the appropriate business components so that flexfield consumers can make use of your flexfield.
To complete the producer development tasks:
See Section 23.2.1, "How to Develop Key Flexfields".
Optionally, you can also do the following at registration time:
For more information, see Section 23.2.2, "How to Implement Key Flexfield Segment Labels".
For more information, see Section 23.2.3, "How to Implement Cross Validation Rules and Custom Validation".
As shown in Figure 23-1, the producer activities occur in two phases. The first phase produces a writable maintenance model, and the second phase produces a read-only reference model:
See Section 23.2.4, "How to Create Key Flexfield Business Components".
Tip: After completing this task, you can regenerate the flexfield business components programmatically at runtime to update your key flexfield implementation without manual intervention. For more information, see Section 25.4, "Regenerating Flexfield Business Components Programmatically". |
For more information, see Section 23.2.5, "How to Share Key Flexfield Business Components".
For more information, see Section 23.2.6, "How to Build a Key Flexfield Maintenance User Interface".
For more information, see Section 23.4, "Using Key Flexfield Advanced Features in Reference Mode".
For more information, see Section 23.6, "Working with Key Flexfield Combination Filters".
You can incorporate a producer's flexfields in your own application. For example, you might have an expenses table that references an account key flexfield in the General Ledger application.
If there are already columns in your application table to support the key flexfield that you want to implement, and the flexfield producer who owns that metadata has provided you with the appropriate business components, you can proceed to incorporate the flexfield into your application. You should have already created a foreign key entity object and view object for your application.
To complete the consumer development tasks:
See Section 23.3.1, "How to Create Key Flexfield View Links."
See Section 23.3.3, "How to Add a Key Flexfield View Object Instance to the Application Module."
See Section 23.3.4, "How to Employ Key Flexfield UI Components on a Page."
See Section 23.3.5, "How to Configure Key Flexfield UI Components."
After completing these tasks, you can define seed or test value sets for the flexfield, and you can create a model that you can use to test it. For more information, see Section 25.1.2, "How to Test Flexfields."
Once you have completed the key flexfield development process and delivered your application, implementers can use the Manage Key Flexfields task flow to define and configure the structures, structure instances, segments and segment instances for each key flexfield. This will determine how the flexfield's segments will be populated, organized, and made available to end users within the application.
To make the Manage Key Flexfields task flow available to application implementers and administrators, you register it with Oracle Fusion Functional Setup Manager. For more information, see Section 25.5, "Integrating Flexfield Task Flows into Oracle Fusion Functional Setup Manager."
To prepare key flexfields for modeling in JDeveloper, you must ensure that columns for the flexfields you require are defined in your application database. You also might need to define more advanced features such as key flexfield partial usages, code combination filters, or the enabling of cross validation rules and custom validation callouts. All of these features require you to modify your application database.
Note: To incorporate a key flexfield partial usage into your application, you must have already defined and registered the key flexfield master usage on which it is based. See Section 23.2.1.5, "Registering and Defining Key Flexfields Using the Setup APIs", then continue to Section 23.5, "Completing the Development Tasks for Key Flexfields in Partial Mode". To employ key flexfield code combination filters in your application, see Section 23.6, "Working with Key Flexfield Combination Filters". |
The application table and its key flexfield columns must be registered in the Applications Core Data Dictionary before a flexfield can be defined on it.You accomplish this by deploying XDF files in the database. For more information, see Chapter 56, "Using the Database Schema Deployment Framework."
Any implementation of flexfields in Oracle Fusion applications typically requires application seed data, which is the essential data to enable flexfields to work properly in applications. Flexfield seed data can be uploaded and extracted using Seed Data Loader.
After you complete the registration process described in Section 23.2.1, "How to Develop Key Flexfields," your flexfield seed data consists of the information that you registered for your flexfield, such as the tables and columns reserved for your flexfield. For a customer flexfield, the seed data contains only this registration data.
If your flexfield is a developer flexfield, you also serve the role of the implementer. In addition to the registration data, your flexfield seed data might include structures and value sets that you have defined for your flexfield.
For information about extracting and loading seed data, see Chapter 55, "Initializing Oracle Fusion Application Data Using the Seed Data Loader".
Key flexfields enable you to represent objects such as accounting codes, part numbers, or job descriptions, that combine multiple columns (or segments) into a single object of concatenated segments.
To develop a key flexfield:
Each key flexfield must have one corresponding table known as the combinations table. This table is also referred to as the master table.
Note: The application table and its key flexfield columns must be registered in the Applications Core Data Dictionary before a flexfield can be defined on it. You accomplish this by deploying XDF files in the database. For more information, see Chapter 56, "Using the Database Schema Deployment Framework." |
The combinations table must have a code combination ID (CCID) column (type NUMBER) that identifies each data row.
The combinations table can have an optional structure instance number (SIN) column (type NUMBER) with generated values that identify different validation sources for a given structure. These generated values are unique within a given flexfield. Multiple SINs exist for a key flexfield if you elect to define the flexfield with multiple alternate structure instances.
A given structure (arrangement of segments) can have several structure instances. The structure instances share the same arrangement of segments but use different value sets to validate the segments (for example, one group of value sets for the U.S. and another for France). Each structure instance is identified by an SIN.
The combinations table might also have a data set number (DSN) column (type NUMBER), but only if you have elected to data set-enable your key flexfield code combinations. This is a way of adding simple striping to the combinations table. You insert the DSN column to enable you to tag sets of combination codes with your own numeric IDs, and ADF Business Components supports the DSN by including it as part of the table's primary key. Your SQL code can then select code combinations from this table using a more qualified primary key.
Note: Data sets are used by specific application-development teams. If your team does not use data sets, you can ignore the references to DSNs in this documentation. A DSN is not the same thing as a set ID. Set ID partitioning is not supported by flexfields. For information about set IDs, see Chapter 8, "Managing Reference Data with SetIDs". |
The table's primary key is composed of a combination of the CCID, SIN, and DSN columns depending on the conditions listed in Table 23-1.
Table 23-1 Primary Key Configuration
Column | Include in the Primary Key |
---|---|
CCID | Always |
SIN | When the flexfield is multiple structure–enabled or is multiple structure instance–enabled |
DSN | When the flexfield is DSN-enabled |
The combinations table must include the columns listed in Table 23-2. These columns indicate whether a combination is enabled and active. The column names and data types must match exactly.
Table 23-2 Required Combinations Table Columns
Column | Data Type | Description |
---|---|---|
ENABLED_FLAG | VARCHAR2(1) NOT NULL | A 'Y' value indicates that the combination is enabled. Any other value indicates that the combination is not enabled. |
START_DATE_ACTIVE | DATE | If a date is specified and the current validation date is earlier than the specified date, the combination is not active. There must not be a default database value for this column. |
END_DATE_ACTIVE | DATE | If a date is specified and the current validation date is later than the specified date, the combination has expired. There must not be a default database value for this column. |
Include one column for each flexfield segment that you or your customers might wish to customize. You need at least as many columns as the maximum number of segments a user would ever want in a single key flexfield structure. The columns must be of type VARCHAR2 or NUMBER. If the type is VARCHAR2, the length must be at least 30 characters.
Tip: There are no constraints on how to name the segment columns. However, these columns are typically named using the patterns SEGMENTn_VARCHAR2 and SEGMENTn_NUMBER. This convention makes it easy to identify the key flexfield segments. It also makes it easier to name the columns for partial usages of the key flexfield. |
If the key flexfield defines value attributes, you must include one derived value attribute column of type VARCHAR2 for each value attribute. For more information about value attributes, see Section 23.2.2, "How to Implement Key Flexfield Segment Labels."
Note: The combinations table may contain other columns than those described here. If the key flexfield is dynamic insert–enabled, these other columns should either be nullable or they should have default database values. |
To permit the use of flexfield combinations on different application pages, you must include foreign key references to your combinations table's primary key configuration, as shown in Table 23-1, in other application tables. That way, you can display or enter valid combinations using forms not based on your combinations table. When you build a custom application that uses key flexfields, you include foreign key references in your custom application tables wherever you reference the flexfield.
Note: Pages whose underlying entity objects contain a foreign key reference to the combinations table are referred to as foreign key pages, while pages whose underlying entity objects use the combinations table itself are referred to as combinations pages or maintenance pages. |
You can reuse a key flexfield definition over a product table by including some or all of the key flexfield's segment columns in the product table. The product table that contains the redefined segment columns is referred to as a partial table. If a SIN or DSN is used, the partial table must either include those columns or a column from which the SIN or DSN can be derived.
You can use the key flexfield filter feature to represent a subset of combinations. For each filter that you want to include in the application user interface, you define a dedicated column of type XMLType. You can define the column in an existing reference table or you can create one or more dedicated tables just to store filter columns.
For more information, see Section 23.6, "Working with Key Flexfield Combination Filters."
Before you can use a key flexfield in an application, you must first define and register the flexfield using procedures from the FND_FLEX_KF_SETUP_APIS
PL/SQL package. This package also has procedures for updating, deleting, and querying about flexfield definitions.
The definition of a key flexfield includes the following information:
Before you begin:
Create the combinations table as described in Section 23.2.1.1, "Creating the Combinations Table."
To learn how to access documentation about using the procedures in the following steps, see Section 23.2.1.6, "What You May Need to Know About the Key Flexfield Setup API."
To register and define a key flexfield:
fnd_flex_kf_setup_apis.create_flexfield(...)
procedure to register the key flexfield and its master usage.fnd_flex_kf_setup_apis.create_segment_column_usage(...)
procedure for each segment column to register the segment columns.In the key flexfield development process, you use the FND_FLEX_KF_SETUP_APIS PL/SQL package to manage flexfield registration data.
You can learn about the FND_FLEX_KF_SETUP_APIS
PL/SQL package by running the following command, which outputs package documentation and usage examples to the <db_name>_<user_name>_FND_FLEX_KF_SETUP_APIS_<date>.plsqldoc
file.
In order to enable the multiple structure, multiple structure instance, or data set features for a registered key flexfield, you must run the enable_feature(...)
procedure from the FND_FLEX_KF_SETUP_APIS
PL/SQL package. To enable the multiple structure feature or multiple structure instance feature, you provide the SIN column name. To enable the data set feature, you provide the DSN column name.
To learn how to access documentation about using the enable_feature(...)
procedure, see Section 23.2.1.6, "What You May Need to Know About the Key Flexfield Setup API."
Key flexfield partial usage enables you to capture the values of a key flexfield's segments in an application table. You can capture all of the flexfield's segments, or just one.
For information about partial reuse of a key flexfield, see Section 23.5, "Completing the Development Tasks for Key Flexfields in Partial Mode."
When you build the flexfield business components and create flexfield-specific application module instances, the flexfield modeler requires the following information about the flexfield usage:
You register entity details using the create_adfbc_usage(...)
procedure from the FND_FLEX_KF_SETUP_APIS
PL/SQL package.
Before you begin:
To learn how to access documentation about using the create_adfbc_usage(...)
procedure, see Section 23.2.1.6, "What You May Need to Know About the Key Flexfield Setup API."
To register the entity details using the registration application:
fnd_flex_kf_setup_apis.create_adfbc_usage(...)
procedure to register the entity object, package name, and object name prefix for the flexfield usage.A segment label identifies the purpose of a particular segment in a key flexfield.
Usually an application needs some method of identifying a particular segment for some application purpose such as security or computations. However, because a key flexfield can be customized so that segments appear in any order with any prompts, the application needs a mechanism other than the segment name or order to use for segment identification. Segment labels serve this purpose.
You can think of a segment label as an identification tag for a segment. It identifies a segment that application implementers and administrators should include when customizing the key flexfield. By defining segment labels when you define your key flexfield, you ensure that implementers customize the flexfield to include the segments that your application needs.
For example, the General Ledger application needs to be able to identify which segment in the Accounting Flexfield contains the primary balance information and which segment contains natural account information. Because you can customize the Accounting flexfield so segments appear in any order with any prompts, General Ledger needs a segment label to internally specify the correct segment for each purpose. When you define your Accounting flexfield, you must specify which segment labels apply to which segments.
You ensure that the implementer or administrator will define these key segments by defining two segment labels, GL_BALANCING and GL_ACCOUNT. When customizing your accounting flexfield, the implementer ties the GL_BALANCING and GL_ACCOUNT segment labels to particular key segments. As the developer, you need not know which key segment becomes the natural account or primary balance segment, because the key flexfield takes care of returning natural account and primary balance information to your application at runtime.
General Ledger also uses key flexfields that have segment labels identifying the cost center segment (FA_COST_CTR), management segment (GL_MANAGEMENT), and intercompany segment (GL_INTERCOMPANY). Other applications, such as Human Resources, use segment labels as well. Human Resources uses segment labels to control who has access to confidential information in its flexfield segments.
When you use segment labels with a key flexfield, you might also need to define value attributes in which you qualify a value by applying a value attribute to it when the value set is used with a segment that has a segment label.
Note: For information about retrieving segment label information, see Section 23.4.2, "How to Access Segment Labels Using the Java API". |
You should define and register segment labels if you want to ensure that the application implementer or administrator customizes your key flexfield to include the segments that your application needs. For example, General Ledger defines "account" and "balancing" segment labels in the Accounting flexfield to ensure that implementers define the account and balancing segments.
When you register a key flexfield, you can define segment labels for it.
Segment labels can be unique
, required
, or global
. You specify a segment label as unique
if you want the implementer to tie it to at most one segment of the flexfield. You specify a segment label as required
if you want the implementer to tie it to at least one segment. You specify a segment label as global
if you want it to apply to all segments. Any key flexfield segment can have any number of segment labels applied.
Table 23-3 presents the results of setting these flags on a segment label in various combinations.
Table 23-3 Segment Label Flag Combinations
Global Flag | Required Flag | Unique Flag | Result |
---|---|---|---|
N | N | N | 0+ (Zero or more segments) |
N | N | Y | 0,1 (Zero or one segment) |
N | Y | N | 1+ (One or more segments) |
N | Y | Y | 1 (Exactly one segment) |
Y | - | - | ALL (All segments; global flag overrides the other flags) |
For example, in General Ledger's Accounting flexfield, the Account segment label is required and unique because General Ledger requires one and only one account segment.
You create segment labels using the create_segment_label(...)
procedure from the FND_FLEX_KF_SETUP_APIS
PL/SQL package.
Before you begin:
Define the key flexfield as described in Section 23.2.1.5, "Registering and Defining Key Flexfields Using the Setup APIs."
To learn how to access documentation about using the create_segment_label(...)
procedure, see Section 23.2.1.6, "What You May Need to Know About the Key Flexfield Setup API."
To define key flexfield segment labels:
fnd_flex_kf_setup_apis.create_segment_label(...)
procedure to register the label and label code for the key flexfield.When you use segment labels with a key flexfield, you might also need to define value attributes.
Every value in a value set has accompanying properties that provide supplemental information about the value, such as a description, an internal code, and start and end dates. In addition to these standard properties, you can further qualify a value by applying a value attribute to it when the value set is used with a segment that has a segment label. There are three types of value attributes:
FLEX_VALUE_ATTRIBUTE1
through FLEX_VALUE_ATTRIBUTE20
, which are globally defined across all Oracle Fusion applications.CUSTOM_VALUE_ATTRIBUTE1
through CUSTOM_VALUE_ATTRIBUTE10
. Customers cannot modify or reassign the standard value attribute columns, but they can use these custom columns for their own implementations of value attributes.You create value attributes using a procedure from the FND_FLEX_KF_SETUP_APIS
PL/SQL package.
Before you begin:
To define key flexfield segment labels
fnd_flex_kf_setup_apis.create_value_attribute(...)
procedure to register the value attribute and attribute code for the segment label.You use procedures from the FND_FLEX_KF_SETUP_APIS
PL/SQL API to prepare the application database for cross validation rules and custom validation. When you register a key flexfield in your application database, you can also enable cross validation rules and register a customer custom validation callout for the flexfield, so new code combinations entered on a maintenance page or using dynamic combination insertion can be validated.
At runtime, when a new code combination is entered, the validation APIs are called in the following order:
To implement a cross validation rule for a key flexfield, you use a procedure from the FND_FLEX_KF_SETUP_APIS
PL/SQL package to enable the flexfield to use cross validation rules in your application database. Then you build a maintenance user interface that administrators can use to maintain their own rule definitions.
Before you begin:
Before you can build a cross validation rule maintenance user interface, you must first have created and configured the business components for the key flexfield to which the rule will apply.
For more information, see Section 23.2.4, "How to Create Key Flexfield Business Components."
To learn how to access documentation about using the FND_FLEX_KF_SETUP_APIS
PL/SQL package, see Section 23.2.1.6, "What You May Need to Know About the Key Flexfield Setup API."
To implement cross validation rules:
CVR_ENABLED_FLAG
column in the FND_KF_FLEXFIELDS_B
table to Y
. This flag is a required VARCHAR2(1)
.Note: Setting the value of CVR_ENABLED_FLAG to Y enables support for any cross validation rules you define for the flexfield. Support for cross validation is somewhat resource-intensive, so assess each key flexfield to determine whether cross validation is really necessary.For example, if the creation of new code combinations for a given key flexfield will be a tightly controlled process that requires organizational oversight, cross validation might be redundant. |
FND_KF_CROSS_VAL_RULES
, as shown in Table 23-4.Table 23-4 FND_KF_CROSS_VAL_RULES Cross Validation Repository Table
Column | Type | Nullable? | Description |
---|---|---|---|
|
| No | (PK) Enterprise ID. |
|
| No | (PK) Structure Instance ID. |
|
| No | (PK) Developer key for this rule. |
|
| Yes | Rule description. |
|
| Yes | Flexfield filter defining where the rule should be applied. NULL means globally applied. |
|
| YesFoot 1 | Flexfield filter defining the validation that must be true. |
|
| Yes | Message application. |
|
| Yes | Message to display if rule is violated. If NULL, display default message. |
|
| No |
|
|
| Yes | Standard start date. |
|
| Yes | Standard end date. |
WHO Columns | WHO | WHO | Standard WHO Columns. |
Footnote 1 Although the validation filter must be made nullable in the data model, it is still a required value that is logically necessary for cross validation to work.
The primary key for this table is the combination of ENTERPRISE_ID, STRUCTURE_INSTANCE_ID, and RULE_CODE.
The cross validation rule itself is the combination of a condition filter and a validation filter in the corresponding XMLType columns of the repository table. These filters are compatible with, and supported by, the key flexfield combination filter infrastructure.
The value of each of these filters should be a logical combination of boolean expressions. At runtime, all filters from this table that match the application, key flexfield, and SIN of the newly submitted code combination are retrieved, converted into SQL fragments, and used to validate the proposed code combination.
The condition filter establishes the condition that a proposed new code combination must fulfill to qualify for validation. If it qualifies, the code combination is evaluated against the validation filter. This is demonstrated by the pseudocode in Example 23-1.
Example 23-1 Applying a Cross Validation Rule
The condition filter specifies a value range for one segment:
If the condition is met, the validation filter is applied:
If the proposed code combination is three segments with the following values, the validation will succeed:
If the proposed values are as follows, the condition is not met, and the code combination will not be subject to the validation filter:
This means that even though this combination would have failed the validation filter, it is still considered valid because the validation filter was not applied. A code combination fails cross validation only if it passes the condition filter, but fails the validation filter.
Note: There are no artificial restrictions on what each filter can contain. If you set the condition filter to NULL, all new code combinations for the flexfield will qualify to be evaluated with the validation filter. |
You use the key flexfield combination filter infrastructure to create a separate maintenance page for each key flexfield that supports cross validation rules.
For more information, see Section 23.6.2, "How to Add Combination Filters to Your Application", Section 23.6.6, "How to Remove Combination Filters from Your Application", and Section 23.6.3, "How to Employ Combination Filters on an Application Page".
To implement custom validation, you register a PL/SQL validation procedure.
To implement custom validation with the custom validation callout:
The PL/SQL validation procedure must have the signature shown in Example 23-2.
Example 23-2 PL/SQL Validation Procedure Signature
my_comb_table
is the name of the combinations table for this key flexfield. When passed, every column in the NEW_CODE_COMBINATION
record will be populated with the values of the combination that is about to be inserted. Payload columns in the combinations table that are not related to the flexfield will be passed as null.
VALIDATION_CONTEXT
is a record containing any additional usage specific context that may be useful. Currently this record contains only a VALIDATION_DATE
field. If there is no validation date, a null value will be passed for VALIDATION_DATE
.
The API is expected to raise an exception (with an error message) if validation fails. If an exception is raised then dynamic insert will be aborted, and the message in the exception displayed to the user. The log will also record the entire call stack, including the fact that the exception was raised from a custom callout. If the API returns without exception it will be considered a success.
Once you have written the custom validation callout procedure, you can register it with the key flexfield. The custom validation callouts are registered in the FND_KEY_FLEXFIELDS_B
key flexfield registration table as shown in Table 23-5.
Table 23-5 Key Flexfield Custom Validation Callouts
Column | Type | Nullable? | Description |
---|---|---|---|
DEVELOPER_VAL_CALLOUT |
| Yes | PL/SQL validation callout procedure for development use. |
CUSTOMER_VAL_CALLOUT |
| Yes | PL/SQL validation callout procedure for customer use. |
To learn how to access documentation about using the FND_FLEX_KF_SETUP_APIS
PL/SQL package, see Section 23.2.1.6, "What You May Need to Know About the Key Flexfield Setup API."
You need to define view objects based on each key flexfield combinations table. The base key flexfield view object has the code combination ID (CCID) column and the optional structure instance number (SIN) column as its only attributes. The SIN, if applicable, is also the discriminator.
Figure 23-2 shows a sample configuration of an application view object using key flexfields.
The base view object is extended to define view object rows of different structure codes. Each structure code corresponds to a view object definition that includes the appropriate flexfield columns for that structure, in addition to the inherited CCID and SIN columns. Although flexfield view objects carry both SINs and structure codes, only SINs are used to link to the application view object.
If the combinations table has other fixed (non-flexfield) columns, they are not included in these view objects.
No Java implementation classes are generated for key flexfield view objects. The application view object may or may not have Java implementation classes.
When you create and configure your key flexfield business components, you can decide whether to support maintenance mode (for administrators) or dynamic combination insertion (for end users). For most implementations of a key flexfield, there are two major tasks that you will typically need to complete:
This model supports building a maintenance mode application, and it supports dynamic combination insertion. It is always required unless you want all user access to code combinations to be strictly read-only.
This is needed so that you or a consumer of your key flexfield can build a page with a foreign key reference to the combinations table, which is the most likely way that end users will access the key flexfield.
You can build this model in one of the following ways:
To accomplish this, you simply build your read-only reference model.
To accomplish this, you must enable dynamic combination insertion in the maintenance model and then build the read-only reference model.
Before you begin:
One or more required libraries might have not been automatically included in your application project. You must ensure that all required libraries, notably the BC4J Service Runtime
, Java EE 1.5
and Java EE 1.5 API
libraries, are included.
Using the standard wizard, create application entity objects based on the combinations tables you have defined. Make sure of the following:
adf-config.xml
. This inclusion serves to ensure correct application behavior. It does not matter which customization class you include.For information about customization layers, see the "Understanding Customization Layers" section in the Oracle Fusion Applications Extensibility Guide.
java.lang.Long
.java.lang.Long
.java.lang.Long
.java.math.BigDecimal
.java.lang.String
.A writable maintenance model is the first element required to support a code combination maintenance page and dynamic combination insertion in your application.
To build a writable maintenance model:
The first element in a writable maintenance model is a set of business components.
To implement this model, you must be sure to select the Maintenance Mode checkbox when you encounter it on the Usage Settings page, as described in the following procedure.
Before you begin:
The entity object that you select must allow maintenance operations such as Update or Insert. The entity object class must extend oracle.apps.fnd.applcore.oaext.model.KFFMEntityImpl
, and the entity definition class must extend oracle.apps.fnd.applcore.oaext.model.KFFMEntityDefImpl
.
Caution: You should disable the delete capability for the code combinations table, as the deletion of previously created combinations might invalidate foreign key references. If you want to disallow the use of a combination, you should disable the combination instead of deleting it. |
This view object typically contains your payload attributes, and should not include flexfield attributes.
In the master view object, ensure that the CCID attribute's Display control hint is set to Hide
.
To create key flexfield business components:
For more information about testing flexfields, see Chapter 25, "Testing and Deploying Flexfields". For more information about sharing and importing shared flexfields, see Section 23.2.5, "How to Share Key Flexfield Business Components".
Note: This is not a role in the security sense. It exists only during this procedure, for the purpose of specifying where your generated flexfield business components should be stored. |
You can browse for the name, and filter by ID, Short Name, or Name.
You can browse for and filter by Code.
To identify the master usage, the Usage Code field for this type is typically the same as the flexfield code. The Table Name field displays the name of the combinations table, and the Description field does not contain the prefix (Partial)
or (Partial Single)
in parentheses.
You must select the master usage in this procedure because you are generating key flexfield business components over your combinations table for your maintenance model.
Click Next. The Entity Object page appears, as shown in Figure 23-4.
Select the entity object for the combinations table. It must allow maintenance operations such as update or insert, and include all of the attributes that will be referenced by the flexfield. For the master key flexfield usage, this includes attributes that represent the CCID, SIN, and segment columns, and the DSN column if it exists in the combinations table.
You might wish to select an entity object for which the key flexfield attributes are defined as transient (not based on database table columns). If you need to do this, select the checkbox labeled Use the entity attributes named after their corresponding flexfield database columns. This checkbox is unselected by default.
When a key flexfield entity object attribute is transient, there is no matching underlying column name. When you select this checkbox, the system will match the entity object attribute names to the key flexfield column names, and use the matching attributes to access the flexfield data. Make sure that the entity object has a full set of attributes with matching names before you select this option.
This entity object must be registered under the base table usage. There is no need to register another table for this purpose, even if the entity object is based on some other table. See Section 23.2.1.9, "Registering Entity Details Using the Setup APIs," for more information about registering ADF Business Components usage.
Caution: The Create Flexfield Business Components wizard is case-sensitive. All column names — and the names of the flexfield entity object attributes associated with them — must be upper case. |
Because you specified the master usage of the key flexfield on the Flexfield page of this wizard, this page contains a Maintenance Mode checkbox.
Select Maintenance Mode to build your maintenance model.
To create business components, the package name and the object name prefix for the selected entity object must first be registered with the key flexfield master usage. Text on the Naming page indicates whether this is the case:
On the Summary page, review your choices and click Finish.
The business components generated will replace any existing ones that are based on the same flexfield.
Note: This wizard might fail with a "ClassNotFound" exception message. This indicates that one or more required libraries have not been automatically included in your application project, notably the BC4J Service Runtime , Java EE 1.5 and Java EE 1.5 API libraries. You can resolve this issue by manually adding any missing libraries; then you can complete this procedure successfully. |
Refresh the project to see the newly created flexfield business components in the Application Navigator.
You need to create a flexfield view link from your code combination master view object to the maintenance key flexfield business components. This enables your maintenance user interface to access all of the combinations table columns using the linked view objects over the combinations table entity object.
The master view object and the base key flexfield view object are linked through the combination of a CCID, and SIN, and if present, a DSN.
To create a key flexfield maintenance model view link:
Note: For key flexfields in maintenance mode, the Source Attributes page is informational only. The primary key attributes of the source view object will be used to define the view link. If you see any controls on this page for selecting source attributes, you are not using maintenance mode business components. Return to Section 23.2.4.1, "Building a Writable Maintenance Model" and recreate your maintenance mode business components according to the instructions. |
Note: You can skip the Properties page because view link-specific properties are not supported. |
On the Summary page, review the summary, then click Finish.
You need to create the maintenance application module for the key flexfield. The application module contains the combination view object, the maintenance model view link, and the key flexfield's application module that was created when you created the business components in Section 23.2.4.1.1, "How to Create Key Flexfield Business Components for a Maintenance Model."
For more information about creating application modules and nesting application model instances, see the "Implementing Business Services with Application Modules" chapter in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
Before you begin:
To create the maintenance application module:
Tip: The object name prefix and package name are used to name the flexfield business components, and are defined in the database along with the key flexfield. |
Note: For each key flexfield, only one instance of the application module is needed. For example, even though two view links may have been created to access the same flexfield, only one instance of the flexfield application module is needed in the project application module. |
Note: The master application module must have a configuration named < appmodule_name >Shared . By default, this is created for you. For example, if the application module is called MyKffMaintAM , then a configuration named MyKffMaintAMShared must exist. |
Tip: You can publish a key flexfield application module instance as a web service. For more information about creating and testing a key flexfield service interface, see Section 23.4.4, "How to Publish Key Flexfield Application Modules as Web Services." |
Automatic combination locking is enabled by default in oracle.apps.fnd.applcore.oaext.model.KFFMEntityImpl
, which is extended by your code combination entity object class. The method doDML(int, TransactionEvent)
is overridden to lock the combination to be inserted or updated. The lock is removed when the transaction is committed or rolled back.
If you wish to completely overwrite doDML
with your own implementation, you can turn the automatic locking off by calling setAutoCombinationLockEnabled(false)
, then calling lockCombination(DBTransaction)
on your own. For more information, refer to the Java documentation of oracle.apps.fnd.applcore.oaext.model.KFFMEntityImpl
.
This task is necessary only if you want to permit end users to create new code combinations extemporaneously on an application page. You must have already built a writable key flexfield maintenance model. For more information, see Section 23.2.4, "How to Create Key Flexfield Business Components."
To enable this feature, you define an application module that you configure for dynamic combination insertion, then implement the appropriate Java class in the user interface. You can create a basic implementation of dynamic combination insertion under the simplest conditions, craft a more sophisticated version that includes added combination attributes, or, if custom validation procedures or cross validation rules are registered with the flexfield, create a version that makes information available to the custom validation procedures.
To enable dynamic combination insertion, the key flexfield must be set to allow dynamic combination insertion, and the full name of the master application module that will implement KFFCombinationCreator
must be registered with the key flexfield.
To enable dynamic combination insertion:
Set the :app_id
to the application_id
that was specified when the flexfield was created, and set :kff_code
to the flexfield's key_flexfield_code
. For more information, see Section 23.2.1.6, "What You May Need to Know About the Key Flexfield Setup API."
The name of the application module must be fully qualified; for example, oracle.apps.fnd.applcore.flex.test.flex.kff1.applicationModule.Kff1AM
.
Set the :app_id
to the application_id
that was specified when the flexfield was created, and set :kff_code
to the flexfield's key_flexfield_code
. For more information, see Section 23.2.1.6, "What You May Need to Know About the Key Flexfield Setup API."
In the simplest case, you need only replace the existing base object class, oracle.apps.fnd.applcore.oaext.model.OAApplicationModuleImpl
, with oracle.apps.fnd.applcore.oaext.model.KFFCombinationCreatorImpl
. KFFCombinationCreatorImpl
extends OAApplicationModuleImpl
.
This implementation is possible only under the following conditions:
To insert a code combination with added combinations, you implement the Java class oracle.apps.fnd.applcore.oaext.model.KFFCombinationCreator
in the master application module, and you create a Java implementation of the maintenance application module. You can optionally initialize the columns.
oracle.apps.fnd.applcore.oaext.model.KFFCombinationCreator
.The class has only one method defined:
This method has the following parameters:
sin
— the structure instance number. This should be null if this key flexfield does not allow multiple structures.dsn
— the data set number. This should be null if this key flexfield does not use data set numbers.segValues
— a read-only list of segment values.If an error occurs during creation, throw the exception FlexfieldJboException
.
oracle.apps.fnd.applcore.oaext.model.OAApplicationModuleImpl
. An example of an application module class is shown in Example 23-3.Example 23-3 Implementing KFFCombinationCreator
By default, JDeveloper creates accessor methods (such as getMyKffAM1()
) to all of your nested application modules. You can make use of these accessor methods to access the key flexfield application module, as shown in bold in Example 23-3.
If you do not need to update any combination attributes, the implementation in the example is sufficient; otherwise you can use the KFFCombinationAttributes
object to update the value attribute columns, or use the master view object to update any other columns of the combinations table, as described in the next steps.
Optionally, initialize value attribute columns using KFFCombinationAttributes
.
The KFFCombinationAttributes
object enables you to:
By default, the standard value attribute columns such as START_DATE_ACTIVE
, END_DATE_ACTIVE
, and ENABLED_FLAG
are initialized in the insertCombination
call. The ENABLED_FLAG
is initialized to Y
. The START_DATE_ACTIVE
value is set to the maximum of the START_DATE_ACTIVE
values for the segments, or NULL
if all values are null. The END_DATE_ACTIVE
value is set to the minimum of the END_DATE_ACTIVE
values for the segments, or NULL
if all values are null. You have full access to these value-attribute values and can update these columns of the combinations table if you wish.
Example 23-4 demonstrates how to use the KFFCombinationAttributes
object to access the value-attribute values and update the value attribute columns of the combinations table.
Example 23-4 Using the KFFCombinationAttributes Object
If you want to initialize other columns of the combinations table, first include them in the master view object. After insertCombination
is called, the new entity will be available to the master view object as well, as shown in the following example, an alternative version of MyKffMaintenanceAM.java
.
Example 23-5 Calling insertCombination to Make the New Entity Available to the Master View Object
If custom validation procedures or cross validation rules are registered with the flexfield, you must create a Java class for the maintenance application module that implements oracle.apps.fnd.applcore.oaext.model.KFFCombinationCreatorProxy
. This makes the information in the KFFCombinationCreatorProxy.Context
object, such as validation date, available to the custom validation procedures.
oracle.apps.fnd.applcore.oaext.model.KFFCombinationCreatorProxy
and extends your existing base object class. By default, the base class is oracle.apps.fnd.applcore.oaext.model.OAApplicationModuleImpl
. An example of an application module class is shown in Example 23-3.Note: KFFCombinationCreatorProxy is a sub-interface of KFFCombinationCreator . |
Example 23-6 Implementing KFFCombinationCreatorProxy
A set of business components that constitute a read-only reference model is needed so that you or a consumer developer can build a page with a foreign key reference to the code combinations table.
Note: If you want to permit end users to create new code combinations extemporaneously on an application page, you must have already built a writable key flexfield maintenance model and have enabled dynamic combination insertion. For more information, see Section 23.2.4, "How to Create Key Flexfield Business Components." |
Before you begin:
Create a read-only entity object over your combinations table and add it as an ADF Business Components usage for your key flexfield, as described in Section 23.2.1.9, "Registering Entity Details Using the Setup APIs."
To create key flexfield business components for a read-only reference model:
The entity object you select must include all of the attributes that will be referenced by the flexfield. For the master key flexfield usage, this includes attributes that represent the CCID, SIN, and segment columns, and the DSN column if it exists in the combinations table.
Sharing flexfield business components is just like sharing any other ADF Business Components objects. You can share the objects through an ADF library JAR file. The developers then can import the business components that are contained in the JAR file.
For more information, see the "Packaging a Reusable ADF Component into an ADF Library" section in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
If you are the owner of the flexfield business components you want to share, you can create a JAR file containing those business components. Generally, an entire JDeveloper project is deployed as an ADF Library JAR file.
Create your shared ADF library containing the business components from the read-only reference model you just built, then add the business components from the writable maintenance model as well.
To create an ADF Library JAR file:
If you do not already have an appropriate deployment profile, you can create one:
The JAR file is created in your project's deploy
directory as deployment_profile_name
.jar
. You can send it to other developers for use in their projects.
Once an ADF Library JAR file has been created by one developer, another developer can import the business components that are contained in the file.
For more information, see the "Adding ADF Library Components into Projects" section in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
To Import business components from an ADF library:
The business components in the JAR file are imported into your project.
You can use the business components from a writable maintenance model to build a key flexfield code combination maintenance page. Building a maintenance page is fairly straightforward. If you have already inserted a key flexfield component into a page in either form or table layout, building a maintenance page follows a similar pattern.
Before you begin:
Create a maintenance application module over the combinations table and a writable maintenance model for the flexfield usage as described in Section 23.2.4.1, "Building a Writable Maintenance Model."
To build a key flexfield maintenance page:
For more information, see Section 23.3.4, "How to Employ Key Flexfield UI Components on a Page".
At runtime, an instance of the registered application module is created. Whenever a new combination needs to be created, the following happens:
createKeyFlexfieldCombination
method is invoked. When KFFApplicationModuleImpl.insertCombination
is called in the implementation, a lock is created to ensure that no one else can insert the same combination.You can reference flexfields from another (producer) application into your (consumer) application. The consumer tasks for a key flexfield master usage (also referred to as reference mode) are:
If you want changes in your key flexfield to trigger a partial update of another component, set the AutoSubmit UI property of the flexfield to True
, and add the key flexfield ID to the PartialTriggers UI property of the other component.
Caution: To ensure that the trigger works, you must append " CS " to the key flexfield ID. For example, if you want changes in the MyKeyFlex01 flexfield to trigger an update in another component, add "MyKeyFlex01CS " to that component's PartialTriggers property. |
For more information about setting user interface properties, see Section 23.3.5.1, "Configuring Flexfield-Level User Interface Properties."
A view link is needed whenever one of your application view objects references the producer's key flexfield. The application view object and the base key flexfield view object are linked through the combination of a CCID, an SIN, and if present, a DSN. The key flexfield view object can have many incoming view links from various application view objects, as a key flexfield is usually referenced by many application tables. For example an ExpenseLines view object might have a foreign key reference to the GLKff view object.
By default, when a value set is security-enabled, any key flexfield code combination segment that uses that value set will automatically be secured. Security rules defined on the value set are propagated automatically to the combinations table, and also to any application table that references the combinations table. This means that when a user does a search on the application table, the results shown are limited to the data referencing the code combination entries to which the user has access. You can add a custom property to the view link to disable the propagation of the security rules to the application table.
Before you begin:
Ensure that the view object does not include flexfield attributes such as SEGMENT1_VARCHAR2, SEGMENT2_NUMBER, and so on. Ensure that you include the attributes that are needed for the foreign key reference, such as CCID, SIN, and, if present, DSN. Ensure that the CCID attribute's Display control hint is set to Hide.
To create a key flexfield view link:
The CCID must be mapped to type java.lang.Long
.
The SIN must be mapped to type java.lang.Long
.
Note: The source attribute must be an entity attribute that is either persistent or is SQL-derived. |
The DSN must be mapped to type java.lang.Long
.
Click Finish to go to the Summary page.
Note: You can skip the Properties page because view link-specific properties are not supported. |
On the Summary page, review the summary, then click Finish to create the view link.
You use the overview editor for your application module to nest the key flexfield application module instance. This is the application module instance that was created when you created the flexfield business component and was named using the prefix that you specified when you defined the usage's entity details. The nested key flexfield application module instance shares the same transaction and entity object caches as the application module.
Before you begin:
You should have already created an application module for your application.
To Nest the Key Flexfield Application Module Instance in the Application Module
The New App Module Instance field below the list shows the name that will be used to identify the next instance that you add. You can change this name.
You need to add a flexfield view object instance that reflects the hierarchy of the view link that you created in Section 23.3.1, "How to Create Key Flexfield View Links" to the application module for your application. You can use the data model that the application module overview editor displays to create the master-detail hierarchy of view instances. The master view object is the view object for your foreign key application table, and the detail view object is the view object for the flexfield. For example if you created a view link from the ExpenseLines view object to the GLKff view object, ExpenseLines is the master and GLKff is the detail.
For more information about creating a hierarchy of view instances, see "Adding Master-Detail View Object Instances to an Application Module" in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
Before you begin:
To Add a Key Flexfield View Object Instance to the Application Module
Figure 23-9 Flexfield View Instance Nested Under Master View Instance
To employ a key flexfield UI component on an application page, you add the flexfield to a form component or a table component, then configure the properties of the flexfield.
Note: This section assumes you are using the data-first method of adding flexfields to your application, in which you build the data model first, then create the user interface by dragging data controls onto a page. The UI-first method is also available, but is not documented here. |
Key flexfields can be implemented on the following types of pages:
The base table (or view) for this type of page contains a foreign key reference to a combinations table that contains the actual flexfield segment columns. You create a page with a foreign key reference if you want to use your page to manipulate rows containing code combination IDs.
The primary purpose of foreign key pages is generally unrelated to the fact that some fields might be key flexfields. That is, the purpose of the page is to accomplish whatever business function is required (such as entering orders, receiving parts, and so on). You might have many foreign key pages that use a given key flexfield.
You can invoke the partial usage feature of key flexfields on a page. Partial usage occurs when one or all segments of a key flexfield that have already been defined over a combinations table are redefined over a product table. In this way you can reuse a key flexfield definition over a transactional table as if it is a descriptive flexfield.
The only purpose of a code combination maintenance page (often referred to as a combinations page) is to create and maintain code combinations. This page is typically built by the producer. The combinations table (or a view of it) is the base table of this page and contains all the key flexfield segment columns. The combinations table also contains a unique ID column. For information about creating a code combination maintenance page, see Section 23.2.6, "How to Build a Key Flexfield Maintenance User Interface."
A typical application has one and only one combinations page. An application might not have a combinations page if it does not support maintenance mode for administrators.
An advanced search form enables end users to define criteria to search for metadata in the application's master view object and its linked key flexfield view object. End users can select which attributes of the key flexfield view object to use as criteria. See Section 23.3.6, "How to Incorporate Key Flexfields Into a Query Search Form" for information about using key flexfields in a search form.
Note: You cannot use a key flexfield in a tree table component. |
In a typical application, you would have one combinations page that maintains the key flexfield, where the key flexfield is the representation of an entity in your application. You would also have one or more pages with foreign key references to the same key flexfield. For example, in an order entry/inventory application, you might have a combinations page where you define new parts with a key flexfield for the part numbers.
You would also have a page with a foreign key reference where you enter orders for parts, using the key flexfield to indicate what parts are included in the order. The page might also contain a key flexfield combination filter, which you use to determine the acceptable values of your part numbers. This combination filter references the same key flexfield as the combinations page and the foreign key page.
The order of key flexfield segments in the application user interface corresponds to the order in which they were defined in the key flexfield metadata. You cannot reliably change that order at runtime. The user interface dynamically reads the displayed attributes from the view object and displays them in the same order that they occur in the view object. There are no attribute UI hints that you can use to override this behavior.
Reordering key flexfield segments is not supported and can potentially create data integrity issues for code combinations, which are sequence aware. Because of this, it is important that you plan the segment order of your key flexfields in advance.
The tasks to employ a key flexfield on a page include:
To incorporate a key flexfield into a UI form or table, you add the master view object to the page as a form or a table, and you drop the key flexfield view object onto the form or table.
Note that when the page creates a new row for the master view object, the value of the primary key of the row that references the key flexfield must be generated automatically, and this value cannot not be changed.
To add a key flexfield UI component to a form or a table:
In the Data Controls panel, select the master view object and drag it onto the page.
For an ADF Table component, select the Row Selection option in the Edit Table Columns dialog.
Caution: You cannot use the code combination ID as part of the generated primary key. |
If you select clickToEdit, the editable row displays the concatenated flexfield segment values in an input text component. The user can click an icon that is next to the editable flexfield to open a dialog box that has an input field for each segment. The flexfield values in the non-editable rows are displayed as read-only values. The user can click the icon that is next to a read-only flexfield value to open a window that displays the segment labels, values, and descriptions.
When a new row that contains key flexfield columns is added on an application page, every Structure Instance Number attribute must contain a valid value, so that the key flexfield user interface can be rendered with appropriate structures. Without default structures in reference mode, end users will not be able to select key combinations for the new row. Without default structures in partial mode, end users will not be able to select segment values for the new row.
You can prevent application errors by defining a default value for each Structure Instance Number. Edit the foreign key entity object Structure Instance Number attribute or the foreign key view object Structure Instance Number attribute, and do one of the following:
Literal
, and specify the static value as the default.Expression
, and enter a Groovy expression to retrieve the appropriate Structure Instance Number value and set it as the default.Note: For partial flexfields in table components, you can use the defaultSIN attribute in the JSPX file to define the default Structure Instance Number value for situations where no rows exist. |
For an Applications Table component in reference mode, the default Structure Instance Number and structure for a new or modified row is just a starting point. You can always allow for runtime selection of a new structure by LOV or input field.
Caution: For key flexfield partial usages, the Structure Instance Number value of the first row of a user interface table that contains partial mode columns determines the partial mode column structure to be used for the table. For any additional row that contains a different Structure Instance Number, the partial mode columns that are not also part of the first row's structure will not render in the table. If there are no rows, the value of the defaultSIN tag attribute from the JSPX file, if set, determines the partial mode column structure.For an Applications Table component, if the end user deletes all rows from the table, your application can once again set a new default Structure Instance Number value for the first new row, and the partial mode column structure corresponding to that Structure Instance Number will be the valid structure for the table. For an ADF Table component, the partial mode column structure (determined by the initial Structure Instance Number value) cannot be changed after the table has been created, even if all rows are deleted. |
For more information about setting attribute defaults, see the discussion about defining default values in the "Setting Attribute Properties" section of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
It is best to not display the CCID or, if it is displayed, to make it a read-only field. When the user clicks the popup icon, the popup requires the user to select a code combination whenever the SIN is changed for a row, and the CCID is set based on the user's selection.
If the CCID is not displayed in the user interface or if it is displayed as a read-only value, the developer must ensure that the CCID for the current row in the view object is set to null whenever the SIN is changed by the end user.
If the form does display the CCID in an editable mode, then the application must force the user to set the CCID to null, change the SIN value, and then enter the CCID value in order for the concatenated value to be updated.
When an end user makes changes to an existing ADF Form row that contains key flexfield partial usage attributes, it might result in the need for that row to use a different structure instance. The row's underlying view object retains the old SIN value, which produces a mismatch with the data and generates runtime errors. Your application must change the SIN value in the row so it uses the new structure instance. You add code to your page to ensure that this happens, as shown in Example 23-7.
Example 23-7 Code for Updating Modified SIN Values
Caution: You cannot use this solution in an ADF Table component or an Applications Table component. Dynamically changing the SIN at runtime is supported only for an ADF Form component. |
If you have segments on a combinations page or partial flexfield segments, and those segments are in an ADF Table component that is wrapped in an Applications Table component that is refreshed by another component, such as a button or a search query, You must add functionality to dynamically refresh the segment columns.
To refresh the flexfield segments based on the current iterator rowset data, create a listener handler method in the flexfield's backing bean and bind the listener to the component that is initiating the table refresh. The listener must first call the default listener and then call DescriptiveFlexfield.updateFlexColumns(RichTable)
, where RichTable
is the binding for the table that contains the flexfield.
Example 23-8 shows an example of a custom flexfield handler for a query event. The method first calls invokeMethodExpression
to call the original query listener, and then calls updateFlexColumns
with the table component that contains the flexfield as the parameter. Example 23-9 shows the binding of the custom flexfield handler to the query component.
Example 23-8 Flexfield Listener
Example 23-9 Binding the Flexfield Listener to the Search Query
Note: You do not need to handle flexfield refresh for standard Applications Table create and delete operations. However, custom create and delete operations must handle the refreshing of flexfields. |
Key flexfields are implemented in the user interface as code combination LOVs rather than as individual segments on the page. You can type a combination code directly into the code combination LOV input.
Figure 23-11 shows an example of a key flexfield used in a form on an application page:
Figure 23-12 shows an example of a key flexfield used in a table on an application page:
Caution: When your flexfield is in a table that is displayed within a popup, and the table's contentDelivery attribute is set to immediate , you must also set the popup's contentDelivery attribute to immediate to ensure that the key flexfield UI component renders in the table. For any other value of the popup's contentDelivery attribute, the flexfield column in the table will be blank.For more information about tables and popups, see the "Using Tables and Trees" and "Using Popup Dialogs, Menus, and Windows" chapters of the Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework. |
Key flexfield segments always appear as form fields or table columns in the same order that their corresponding attributes appear in the underlying view object.
In screenreader mode, a labeled icon of three horizontal bars appears next to the key flexfield input text field. When the user clicks the icon, instead of the standard popup, a page displays that shows the segment details. The user clicks Done to return to the prior page.
For key flexfields in forms and in tables, you can click the search icon to select a valid new flexfield code combination using individual segment values as criteria, as shown in Figure 23-13.
Note: You do not need to enter values for all segments when searching for a key flexfield code combination. |
You can configure various aspects of a key flexfield UI component to customize the behavior of the flexfield as a whole, or on a segment by segment basis. You can control your key flexfield's behavior in the application user interface by modifying properties at the flexfield level, at the segment label level, and at the partial usage level.
Right-click a key flexfield's UI component on the page, then select Properties from the context menu to view and modify its properties in the Property Inspector, as shown in Figure 23-14.
The significant properties on the Common, Data, Style, Behavior and Other property tabs are listed in Table 23-6.
Table 23-6 Key Flexfield Properties
Tab > Property | Description |
---|---|
Common > Id | The ID of the flexfield. |
Common > Rendered | Indicates whether the flexfield is rendered on the application page. Values can be When this property is set to EL expressions are allowed on ADF Form components and ADF Table components. On ADF Table components, you use expressions to control this property on a row by row basis. |
Common > Label | The prompt that should be rendered on the page. Also used for the title of popup components. Note that if the Label property does not have a value, the title of a popup component defaults to |
Common > Value | The value of the flexfield. This should be an EL pointing to an iterator object. This field is also visible on the Data tab. |
Data > Accessor | The name of the accessor between the (consumer) application view object and the flexfield view object. |
Style > StyleClass | The style class of the flexfield. |
Style > InlineStyle | The inline style of the component. |
Style > Width | The width in characters of the text field in which the key flexfield value is displayed on the page. This value is 30 by default. |
Behavior > Required | Indicates whether the key flexfield must have a value. Values of this property can be When this property is set to EL expressions are allowed on ADF Form components and ADF Table components. On ADF Table components, you use expressions to control this property on a row by row basis. |
Behavior > ReadOnly | Indicates whether the key flexfield is rendered as read-only. Values can be When this property is set to EL expressions are allowed on ADF Form components and ADF Table components. On ADF Table components, you use expressions to control this property on a row by row basis. |
Behavior > Disabled | Indicates whether the UI control associated with this key flexfield can be operated. Values can be When this property is set to EL expressions are allowed on ADF Form components and ADF Table components. On ADF Table, you use expressions to control this property on a row by row basis. Note that flexfield will be disabled if the current master row for the flexfield does not have a valid SIN value defined. |
Behavior > PartialTriggers | The IDs of the components that should trigger a partial update in the flexfield (|
Behavior > ValueChangeListener | A method reference to a value change listener (The value change listener takes effect if the value of the key flexfield is changed either manually in the key flexfield text field, or by using the key flexfield LOV popup. |
Behavior > Binding | An EL reference that will store the component instance on a bean (|
Other > AutoSubmit | Indicates whether key flexfield values entered by the user should automatically be submitted directly upon entry. Values can be When this property is set to EL expressions are allowed on ADF Form components and ADF Table components. On ADF Table components, you use expressions to control this property on a row by row basis. |
Other > DefaultSIN | For partial key flexfields only. Defines the default SIN value to use to define the structure when no rows exist. |
Other > Changed | Indicates whether the changed indicator icon is displayed on the component. Values can be When this property is set to True, the changed indicator icon is displayed. EL expressions are allowed on ADF Form components and ADF Table components. On ADF Table components, you use expressions to control this property on a row by row basis. |
Other > Simple | Indicates whether the key flexfield's label should be hidden. Values of this property can be When this property is set to EL expressions are allowed on ADF Form components and ADF Table components. On ADF Table components, you use expressions to control this property on a row by row basis. |
Other > Visible | Indicates whether key flexfield appears on the page. Values can be When this property is set to EL expressions are allowed on ADF Form components and ADF Table components. On ADF Table components, you use expressions to control this property on a row by row basis. |
Footnote 1 If you want changes in your key flexfield to trigger a partial update of another component, set the AutoSubmit UI property of the flexfield to True
, and add the key flexfield ID to the PartialTriggers UI property of the other component. Note — to ensure that the trigger works, you must append "CS
" to the key flexfield ID. For example, if you want changes in the MyKeyFlex01
flexfield to trigger a partial update in another component, add "MyKeyFlex01CS
" to that component's PartialTriggers property.
Note: The Behavior > Mode property defines the user interface mode of the key flexfield component. Only the |
Key flexfields support finer control of segments in the user interface based on their segment labels, using a number of additional properties that you can set in the flexfield XML with literal values or EL expressions. These properties are attributes of the flexfieldLabeledSegmentHint
element.
Note: This element can be used only to configure the segment UI properties of key flexfield partial usages, and only if a segment label is applied. |
The following properties can be used to define usage specific behavior for one or more key flexfield segments, identified by segment label. These property settings apply to all segments that have the specified segment label assigned.
SegmentLabel
— This string property specifies the segment label of the segment being configured. This string property is required.Rendered
— This boolean property indicates whether the segment is visible on the application page.Required
— This boolean property indicates whether the segment must have a value.Readonly
— This boolean property indicates whether users can modify the segment.Label
— This string property provides a display label for the UI component.ShortDesc
— This string property provides a short description of the UI component. This text is commonly used by user agents to display tooltip help text, in which case the behavior for the tooltip is controlled by the user agent.Columns
— This integer specifies the width of the text control, in terms of the number of characters shown. The number of columns is estimated based on the default font size of the browser.Note: If you set a segment's required property to True in the flexfield metadata, for validation purposes you cannot override this by resetting it to False in the page metadata. You can, however, do the reverse: change a non-required segment to required in the page metadata.The |
The default values of these properties are derived from the flexfield metadata, but you can override them by inserting customization elements into the UI metadata.
For information about using EL expressions, see the "Creating ADF Data Binding EL Expressions" section in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
You apply these properties by dragging and dropping the following element from the Component Palette into the key flexfield element, as a child of the keyFlexfieldpartial
element:
<fnd:flexfieldLabeledSegmentHint propertyname1="value" [propertyname2="value" [propertyname3="value" [propertyname4="value" [propertyname5="value" [propertyname6="value" [propertyname7="value"]]]]]]>
Key flexfields support finer control of partial usages in the user interface with a number of additional properties that you can set in the flexfield XML with literal values or EL expressions. These properties are attributes of the keyFlexfieldPartial
element. By using EL expressions at the .jspx
page level, you can programmatically override the key flexfield metadata at runtime.
For example, Oracle Assets has a single page that is used for both the Create Asset and Update Asset activities. When creating an asset, the Asset Category key flexfield on this page should be updatable; when updating an asset, the flexfield should be read-only. This setting can be programmatically managed using the readonly
property based on a page parameter that indicates whether the page is in Create mode or Update mode.
The following boolean properties can be used to specify usage specific behavior for the entire key flexfield partial usage:
rendered
— Indicates whether the flexfield is visible on the application page.required
— Indicates whether the flexfield must have a value.readonly
— Indicates whether users can modify the flexfield.The default values of these properties are derived from the flexfield metadata, but you can override them by inserting customization elements into the UI metadata.
Note: If you set a segment's required property to True in the flexfield metadata, for validation purposes you cannot override this by resetting it to False in the page metadata. You can, however, do the reverse: change a non-required segment to required in the page metadata. |
For information about using EL expressions, see the "Creating ADF Data Binding EL Expressions" section in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
You apply these properties by dragging and dropping the following element from the Component Palette into the key flexfield element:
<fnd:keyFlexfieldPartial propertyname1="value" [propertyname2="value" [propertyname3="value"]]>
In reference mode, you can include key flexfield view object attributes as search criteria in an advanced mode query search form. This form enables end users to define extemporaneously the criteria to search for metadata in the foreign key view object and its linked key flexfield view object. End users can select which attributes of the key flexfield view object to use as search criteria.
To incorporate key flexfields into a query search form:
To set up the business component model layer for the search form, you define the view criteria in the foreign key view object, generate the row implementation class for the foreign key view object, and override the getCriteriaItemClause()
method in that row implementation class.
For more information about defining view criteria, see the "Defining SQL Queries Using View Objects" chapter of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
Before you begin:
For information about enabling a list of values for an attribute and setting control hints, see the "Defining SQL Queries Using View Objects" chapter of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
To set up the business component model layer:
VOImpl
.getCriteriaItemClause()
method from the oracle.jbo.ViewCriteriaItem
package as shown in Example 23-10.Set VIEW_CRITERIA_NAME
to the name of the view criteria that you just created, and set KFF_ACCESSOR_NAME
to the view accessor from the view link between the foreign key view object and the key flexfield polymorphic view object.
Note: If the foreign key view object contains more than one key flexfield, the getCriteriaItemClause() method must call getCriteriaItemClauseWhenKffExposedinQueryPanel() for each key flexfield, passing the appropriate criteria name and KFF Accessor Name. |
Example 23-10 getCriteriaItemClause() Method
To create a query search form that contains a key flexfield, you add an ADF Query Panel with Table component to the page and drop the key flexfield into the table. You then create a custom bean and attach the bean to the query.
For more information about working with search forms, see the "Creating ADF Databound Search Forms" chapter in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
Before you begin:
To create the query search form:
oracle.adf.view.rich.event.QueryOperationListener
as shown in Example 23-11.Set VIEW_CRITERIA_NAME
to the name of the view criteria, and set KFF_ACCESSOR_NAME
to the view accessor from the view link between the foreign key view object and the key flexfield view object.
Example 23-11 Custom Listener Java Class
This custom bean will be triggered when a value is selected from the LOV component for the discriminator attribute, such as the LOV for the SIN attribute. When invoked, the processQueryOperation()
method is called. The JUFormBinding
that is associated with the view criteria is accessed to extract the view criteria.
The applyDiscriminator()
method extracts the ViewCriteriaItem
for the discriminator attribute, gets the value that was selected from the discriminator's LOV component, and loads into the query panel the key flexfield's subtypes with a matching discriminator value.
processQueryOperation()
method, such as #{CustomBean.processQueryOperation}
.Key flexfield advanced features include code combination constraints, programmatic access to segment labels, making key flexfields available for use in Oracle Business Intelligence, and working with flexfields from a worksheet using ADF Desktop Integration.
Code combination constraints are criteria for filtering the list of code combinations that can be referenced in a given combinations table. While the set of code combinations in the table is not changed, each table with foreign key references to these code combinations can have its own associated code combination constraints.
For example, the key flexfield MTL_SYSTEM_ITEMS has a Purchasable flag, which can be set to the value Y
or N
. You can implement an extra WHERE
clause on the Oracle Purchasing application view object that enables Order Management to restrict the displayed items to only those with Purchasable set to Y
.
Code combination constraints are applied in the following situations:
Code combination constraints are not applied when an existing foreign key reference to a code combination is resolved into individual segments (or a concatenated string) for display.
Combination constraints are view object properties and are not applied on any entity objects.
You create a view accessor to define a code combination constraint. You can define the following types of code combination constraints:
WHERE
clauseIn a key flexfield ADF Business Components model, the code combination constraints are defined in a view object (the foreign key view object) that references the code combinations. Although these constraints are, in a way, validation rules for code combinations, they are not ADF Business Components validators.
You define code combination constraints as bind parameter values in a view accessor. The name of this view accessor is derived from the name of the view link accessor to the key flexfield view object for which you want to constrain code combinations.
To define a code combination constraint:
The destination of the view accessor is the base key flexfield view object. The name of the view accessor must be derived from the name of the view link accessor to the key flexfield view object, and must take the following form:
For example, for a view link accessor named AcctKff
, Figure 23-18 shows the accessor name AcctKffConstraints
.
Note: You do not need to select any view criteria for this activity. Only the bind parameter values are needed to define a code combination constraint. If you do not see any bind parameters, it is likely that you have just recreated the business components and overwritten the old ones. You can close the application and remove it from JDeveloper. When you open the application again, JDeveloper should load the latest definitions, including the bind parameters. |
There are four types of code combination constraints. You apply a constraint type by providing a value for the appropriate bind parameter for the constraint type. If no value is provided, that constraint type is not enabled.
Bind_ExtraWhereClause
. You can also incorporate the predefined bind parameters BindVar0
through BindVar9
.For information about how to provide a value for this bind parameter, see Section 23.4.1.2, "Constraining Code Combinations by an Extra WHERE Clause."
Bind_ValidationDate
.For information about how to provide a value for this bind parameter, see Section 23.4.1.3, "Constraining Code Combinations by Validation Date."
Bind_ValidationRules
.For information about how to provide a value for this bind parameter, see Section 23.4.1.4, "Constraining Code Combinations by Validation Rules."
Bind_DynamicCombinationCreationAllowed
.For information about how to provide a value for this bind parameter, see Section 23.4.1.5, "Enabling or Disabling Dynamic Combination Creation for a Specific Usage."
Edit only the bind parameters that you need, and leave the others blank. You can use Groovy expressions as bind-parameter values. This means that the constraints can come indirectly from a view attribute, the view object, or a Java method.
Note: You can ignore the Row-level bind values exist option, because the frequency of evaluation of bind parameters is predetermined, as follows:
|
You can use the view accessor's Bind_ExtraWhereClause
parameter to filter the list of code combinations that can be referenced in a given combinations table. The extra WHERE
clause is appended to the existing WHERE
clause of the key flexfield view object.
To set the Bind_ExtraWhereClause parameter
Bind_ExtraWhereClause
value.The extra WHERE
clause can use bind parameters. The value of Bind_ExtraWhereClause
should be a SQL fragment that may contain references to columns of the combinations table, or the predefined bind parameters.
To refer to the combinations table, use ${COMBINATION_TABLE}
]; for example, ${COMBINATION_TABLE}.MY_COLUMN
.
To refer to one of the ten pre-defined bind parameters, BindVar0
to BindVar9
, use a colon and the bind parameter name; for example, :BindVar3
.
Following is an example of an extra WHERE
clause code combination constraint as a SQL expression:
You can also express this as a Groovy string constant. Be sure to escape the dollar sign with a backslash:
You can use the view accessor's Bind_ValidationDate
parameter to filter the list of code combinations that can be referenced in a given combinations table. If you provide a value for Bind_ValidationDate
, this validation date is used instead of the current database date when searching for a code combination. The code combinations returned are those that are active on the specified date.
If a code combination's start_date_active
attribute is NULL, it is considered to have always been active in the past, up to its end_date_active
date. If a code combination's end_date_active
attribute is NULL, it is considered to be active starting from its start_date_active
date indefinitely into the future.
Note: Note that a date constraint is always required when searching for a code combination. If you don't supply a validation date, the current database date will be used. |
To set the Bind_ValidationDate parameter
Bind_ValidationDate
value.The value of Bind_ValidationDate
should be a normalized java.sql.Date
object; that is, the hour, minute, second and millisecond should be set to zero. You can use the method oracle.apps.fnd.applcore.oaext.model.OAUtility#getSQLDate
to normalize the date.
One way to construct a normalized date for testing purposes is to use java.sql.Date.valueOf(String s)
with the date as a literal string in the form yyyy
-
mm
-
dd
.
In a search user interface, the supplied validation date also affects the list of values of a segment. For example, the user may pick a value for a segment from a list of values, then use the segment value to search for a code combination. The list of values of the segment will be constrained by the supplied validation date.
You use validation rules to constrain code combinations. The validation rules for a given key flexfield are authored by the product team that owns the flexfield. They are valid only for use as code combination constraints, and should not be confused with other types of validation rules. Validation rules are stored in the flexfield metadata table FND_KF_VRULES
and are delivered in the loader file along with the key flexfield definition. The rule authors are your best source of information about the applicability of the validation rules for a flexfield, and the rule codes you should use to reference them.
You can use the view accessor's Bind_ValidationRules
parameter to filter the list of code combinations that can be referenced in a given combinations table. If you provide a value for Bind_ValidationRules
, the validation rules are translated into a SQL fragment, and the SQL fragment is appended to the WHERE
clause of the key flexfield view object.
Note: Because key flexfield partial usages do not include a code combination, and validation rule constraints currently apply only to code combinations, they do not apply in the case of key flexfield partial usages. |
You use the create_vrule(...)
procedure from the FND_FLEX_KF_SETUP_APIS
PL/SQL package to register a flexfield segment's validation rule. Validation rules only apply to segments that are validated against a list-validated value set. If the segment is validated against a format-only value set, the validation rules are ignored.
Note that when a segment is labeled with multiple segment labels, its validation rules are joined with an AND
in the where clause.
When the ALWAYS_APPLIED_FLAG
is set to Y
, the validation rule is always applied, such as when a combination is validated by C or PL/SQL validation APIs or a combination is validated by a business component. When the ALWAYS_APPLIED_FLAG
is set to N
, the validation rule is applied only when the rule is included in the list of validation rules as an argument to C or PL/SQL validation APIs or as a Bind_ValidationRules
parameter as described in Section 23.4.1.4.2, "How to Set the Bind_ValidationRules Parameter."
Because the names of the segment columns that the customer will use for the code combinations are not known during development, you must use the lexical references listed in Table 23-7 to refer to the segment column and value attributes in the rule's where clause. In addition to the lexical references, the FLEXFIELD.VALIDATION_DATE
bind variable can be used in validation rule where clauses. No other flexfield bind variables can be used.
Table 23-7 Lexical References
Lexical Type	Lexical Code	Example	Notes
Represents the VALUE column in segment lists of values and represents the segment column in combination lists of values.			
value attribute code			
Represents the value table value attribute column in segment lists of values and represents the combination table value attribute column in combination lists of values.			
For example, if the following where clause was registered as a validation rule for a segment, the derived SQL query to retrieve the segment's list of values would be similar to Example 23-12, and the derived SQL query to retrieve the combination list of values would be similar to Example 23-13.			
Example 23-12 SQL Query to Retrieve Segment's List of Values			
Example 23-13 SQL Query to Retrieve Combination List of Values			
Tip: To learn how to access documentation about using the FND_FLEX_KF_SETUP_APIS PL/SQL package, see Section 23.2.1.6, "What You May Need to Know About the Key Flexfield Setup API."			
You edit the view accessor's Bind_ValidationRules			
parameter to specify the validation rules to be applied to constrain the code combination filters.			
To set the Bind_ValidationRules Parameter:			
Bind_ValidationRules			
value.The value of Bind_ValidationRules			
should be a semicolon-separated list of rule codes; for example:			
The validation rules are pre-defined as part of the key flexfield definition. The supplied list is the list of rules that need to be applied when searching for a code combination.			
Note the following caveats when constructing this list:			
VRULE1; VRULE2			
" will be parsed into "VRULE1			
" and " VRULE2			
" (with a leading space).In a search user interface, the supplied validation rules also affect the list of values of a segment. For example, the user may pick a value for a segment from a list of values, then use the segment value to search for a code combination. The list of values of the segment will be constrained by the supplied validation rules.			
You can use the Bind_DynamicCombinationCreationAllowed			
parameter to control the runtime entry of new code combinations for a key flexfield usage. This constraint type takes effect only when the key flexfield allows dynamic combination insertion. For more information, see Section 23.2.4.2, "Enabling Dynamic Combination Insertion".			
To set the Bind_DynamicCombinationCreationAllowed parameter			
Bind_DynamicCombinationCreationAllowed			
value.The value of Bind_DynamicCombinationCreationAllowed			
can be TRUE			
, FALSE			
or null			
.			
By setting this value to TRUE			
or FALSE			
, you can control whether your specific usage of the key flexfield allows dynamic insertion even though the key flexfield as a whole is enabled for dynamic insertion. Set the value to TRUE			
if you want your usage of the key flexfield to allow dynamic insertion. Set the value to FALSE			
if you do not want your usage of the key flexfield to allow dynamic insertion. Set the value to null			
to indicate that the key flexfield itself should determine whether dynamic combination insertion is allowed or not.			
If the key flexfield does not allow dynamic combination insertion, this constraint is ignored. Bind_DynamicCombinationCreationAllowed			
is a row-level bind parameter.			
Segment labels (previously known as key flexfield qualifiers) that have been assigned to segments by customers can be accessed programmatically. The information can be access using the flexfield application module or the flexfield view row.			
Example 23-14 is an example of Java code that retrieves segment label information from a deployed flexfield using the flexfield application module.			
Example 23-14 Retrieving Segment Label Information Using the Flexfield Application Module			
Example 23-15 is an example of Java code that retrieves segment label information from a deployed flexfield using the flexfield view row.			
Example 23-15 Retrieving Segment Label Information Using the View Row			
For more information about segment labels, see Section 23.2.2, "How to Implement Key Flexfield Segment Labels." For more information about the Java API, refer to the Javadoc.			
Oracle Business Intelligence is a comprehensive collection of enterprise business intelligence functionality that provides the full range of business intelligence capabilities including interactive dashboards, full ad hoc, proactive intelligence and alerts, enterprise and financial reporting, real-time predictive intelligence, and more.			
While key flexfields are modeled using polymorphic view objects, flexfield technology is not compatible with Oracle Business Intelligence, which also requires reference data, such as lookups, to be modeled as view-linked child view objects. For a key flexfield to be used by Oracle Business Intelligence, it must be flattened into a usable static form. To make this possible you must designate the flexfield as business intelligence–enabled. When you create business components for this key flexfield, the business component modeler recognizes the business intelligence–enabled setting, and a view object that is flattened for business intelligence (BI) is generated alongside the standard key flexfield polymorphic view object. You must also slightly modify the process of creating key flexfield view links and application modules.			
When the business intelligence–enabled and flattened key flexfield is configured as part of an application, the implementer or administrator can select which individual flexfield segments to make available for use with Oracle Business Intelligence.			
If you want customers to be able to do business intelligence queries on whatever segments they configure for a flexfield, you must enable the flexfield and its segments.			
You can set the business intelligence–enabled flag at registration time using the fnd_flex_kf_setup_apis.create_flexfield(...)			
procedure, or you can set the flag later using the fnd_flex_kf_setup_apis.update_flexfield(...)			
procedure. To learn how to access documentation about using these procedures, see Section 23.2.1.6, "What You May Need to Know About the Key Flexfield Setup API."			
You can enable the segments for business intelligence using the Manage Key Flexfields task, which is accessed from the Oracle Fusion Applications Setup and Maintenance work area.			
An alternative method to business intelligence–enable a key flexfield and its segments is to set the BIEnableFlag			
to Y			
at both the key flexfield level and the segment level in the key flexfield seed data file (SDF), as shown in Example 23-16.			
Example 23-16 BI Enabled Key Flexfield			
When you create business components for a business intelligence–enabled key flexfield, the business component modeler recognizes the business intelligence–enabled setting, and a view object that is flattened for Oracle Business Intelligence is generated alongside the standard key flexfield polymorphic view object. You must also slightly modify the process of creating key flexfield view links and application modules.			
Note: When you make changes to a business intelligence-enabled flexfield, you use the Import Metadata Wizard to import the changes into the Oracle Business Intelligence repository as described in the "Using Incremental Import to Propagate Flex Object Changes" section in the Oracle Fusion Middleware Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition (Oracle Fusion Applications Edition).			
Before you begin:			
If the flattened tree view objects are not in your project, the Create Flexfield Business Components wizard will report the missing view objects as errors.			
For more information, see Section 59.8.1, "Designing a Column-Flattened View Object for Oracle Business Intelligence."			
To produce a business intelligence–enabled flattened key flexfield model:			
When a flexfield is business intelligence–enabled, the Create Flexfield Business Components wizard generates a business intelligence–specific view object and other business components under a directory called analytics			
in the package root directory. These are generated in addition to the normal key flexfield view object.			
BI:			
" as shown in Figure 23-20.analytics			
subpackage under the package root.Note: If you already have a product Oracle Business Intelligence application module, you may use it.			
This is done on the General tab of the nested business intelligence–enabled flexfield application module instance definition, as shown in Figure 23-21.			
As you do this, keep the following points in mind:			
DefaultFlexViewUsage			
.BI_VIEW_LINK_			
mypropertyname.			
source_viewobjectinstance_name			
,			
viewlink_definition_name			
,			
destination_viewobjectinstance_name			
.You can make access to a key flexfield available through web services, which will enable you to perform create, read, update, and delete (CRUD) operations on the flexfield data rows. You accomplish this by exposing a key flexfield application module as a web service and adding flexfield service data object support utility methods to the product application module.			
When you generate a flexfield business component, the key flexfield business component and other artifacts are developed based on the information in the flexfield metadata. As illustrated in Figure 23-2, a base view object is created for the context and global segments. If any contexts have been configured, subtype view objects are generated for each configured context.			
As an example, suppose that an application module has the master view object Fkt1			
and a view link from the master view object to the detailed key flexfield view object, Global1			
, which is a polymorphic view object.			
The application module tester view shown in Figure 23-22 corresponds to a particular row in the master view object, displaying the segment structure in the key flexfield with SIN of 11			
.			
The application module tester view shown in Figure 23-23 corresponds to a different row in the master view object, displaying the segment structure in the key flexfield with SIN of 25			
.			
To make a key flexfield accessible through a web service:			
You make key flexfield access available through web services by setting a custom property for the flexfield view link, adding a transient attribute to the master view object to store the concatenated flexfield key, service-enabling the master view object, creating the service interface for the project application module within which the key flexfield application module is nested, and adding flexfield service data object support utility methods to the product application module.			
Note: In this section, master view object refers to the application foreign key view object as illustrated by Figure 23-1.			
Before you begin:			
Note: When you generate a flexfield business component, the IDE automatically service enables the business component by generating a Service Data Object (SDO) for the base view object and for every subtype view object.			
To expose a key flexfield application module as a web service:			
.xsd			
files exist for all flexfield subtype view objects..xsd			
file for the base flexfield view object and verify that <include>			
elements exist for all the flexfield subtype view objects.Figure 23-24 Include Elements for the Flexfield Subtype SDOs			
In the Select Java Options dialog shown in Figure 23-25, select Generate Service Data Object Class, ensure that the namespace is the same location that contains the flexfield view object XML files, and click OK.			
When the SDO is generated for the base view object of the key flexfield polymorphic view object, generic SDOs are automatically generated for all the base view object subtypes.			
String			
.A transient attribute does not include a SQL expression.			
viewAccessorName			
to the name of the view accessor from the view link between the master view object and the key flexfield view object.The added code stores the key flexfield concatenated string.			
Example 23-17 Setter Method for the Transient Attribute			
Click Next to continue.			
Select the checkbox for each operation of the view object that you want to expose in the service interface and clear the rest.			
The generated service interface components appear below the application module in the Application Navigator, as shown in Figure 23-30.			
FlexfieldSdoSupport			
objects to access the flexfield's information.Replace Flexfield with the appropriate string for the flexfield that you are working with. Use a string that describes how the flexfield will be used by the customers. For example, getLedgerSdoNamespaceAndName			
is better than getGLSubtypeSdoNamespaceAndName			
.			
In the get			
FlexfieldSdoSupport			
and get			
FlexfieldStructureInstanceNumber			
methods, replace getKffMAM1 with the name of the getter method for the nested maintenance application module instance.			
Example 23-18 Utility Methods for Flexfield Service Data Object Support			
The application module's remote server implementation class will be modified to expose these methods.			
You can test the key flexfield web service access by providing web server connection information, deploying and manually testing the web service, and optionally writing Java client programs to call the flexfield service data object support utility methods to test the service.			
Before you begin:			
To test the web service:			
connections.xml			
file.Reference			
element for the project application module's service (ApplicationService			
in this example).This is the service that you created in Section 23.4.4.1, "Exposing a Key Flexfield Application Module as a Web Service" for the project application module in which the key flexfield maintenance application module instance, master view object instance, and flexfield view object instance are nested.			
StringRefAddr			
elements that are shown in bold in Example 23-19. Modify the host and port number in the jndiProviderURL			
entry to point to your WebLogic Server. The port number is typically 7101			
.Example 23-19 StringRefAddr Elements to Add to Application Module Reference in connections.xml			
Note: The remote server class was generated when you exposed the descriptive flexfield as a web service in Section 23.4.4.1, "Exposing a Key Flexfield Application Module as a Web Service." This class has a name that ends with ServiceImpl.java			
Example 23-20 is an example of how a client test program would use the flexfield service data object support utility methods that you added in Section 23.4.4.1, "Exposing a Key Flexfield Application Module as a Web Service."			
Example 23-20 Sample Java Code to Test the Web Service			
ADF Desktop Integration makes it possible to combine desktop productivity applications with Oracle Fusion applications, so you can use a program such as Microsoft Excel as an interface to access application data.			
Using ADF Desktop Integration, you can incorporate key flexfields into an integrated Excel workbook, so you can work with the flexfield data from within the workbook.			
For more general information about integrating Oracle Fusion applications with desktop applications, see the Oracle Fusion Middleware Desktop Integration Developer's Guide for Oracle Application Development Framework. This guide provides most of the information you need to complete the required activities, including the following:			
Note: The Oracle Fusion Middleware Desktop Integration Developer's Guide for Oracle Application Development Framework does not make explicit reference to technologies documented in this Oracle Fusion Applications Developer's Guide, and this guide does not repeat the content in the, Oracle Fusion Middleware Desktop Integration Developer's Guide for Oracle Application Development Framework so you must read the Oracle Fusion Middleware Desktop Integration Developer's Guide for Oracle Application Development Framework for a full understanding of how to use ADF Desktop Integration technology in general. In addition to the standard implementation steps covered in that guide, you must modify your implementation to accommodate flexfields, as discussed in the following sections.			
There are two ways to access a key flexfield in Excel:			
A web page picker popup dialog can be associated with a dynamic column, enabling users to pick flexfield segment values. Alternatively, users can enter values directly into the segment fields. No custom code is required in either case.			
This is the most typical scenario. Each key flexfield segment is displayed as a distinct column in the ADF Table component. First you configure ADF Desktop Integration with a dynamic column key flexfield, and then, if necessary, you handle user-initiated structure code changes.			
In addition to using the popup dialog, users can enter values directly into the segment field, with the values separated by an appropriate delimiter that you specify.			
Note: A static column is any column for which the DynamicColumn property is set to False .			
Individual flexfield segments do not appear in the worksheet. Instead, ADF Desktop Integration invokes a separate JSPX page on which the flexfield will be visible. You can use this scenario with an ADF Desktop Integration form, or either table type, by configuring ADF Desktop Integration with a static column key flexfield.			
Note: The titles of the popup dialog components must be set to the name of the key flexfield, such as "Account," to be consistent across Oracle Fusion Applications.			
The key flexfield's segments are part of your database table, so the flexfield is generated against the same entity object on which your worksheet view object is based.			
In addition to configuring ADF Desktop Integration with the dynamic or static column key flexfield, you might also need to call a custom application module to handle the update or insert of a key flexfield data row.			
When you configure the ADF Table component, make the following changes:			
ADF Desktop Integration Model API			
library to your data model project.For more information about how to create a page definition file for a desktop integration project, see the "Working with Page Definition Files for an Integrated Excel Workbook" section of the Oracle Fusion Middleware Desktop Integration Developer's Guide for Oracle Application Development Framework.			
True			
. A dynamic column in the TableColumn array is a column that is bound to a tree binding or tree node binding whose attribute names are not known at design time. A dynamic column can expand to more than a single worksheet column at runtime.For more information about the binding syntax for dynamic columns, see the "Adding a Dynamic Column to Your ADF Table Component" section of the Oracle Fusion Middleware Desktop Integration Developer's Guide for Oracle Application Development Framework.			
Inputtext			
OutputText			
ModelDrivenColumnComponent			
ADF Desktop Integration requires that to use a dynamic column implementation, the structure of the key flexfield should remain constant for all rows in a given result set. However, each time a new result set is downloaded into the table, the structure code value (and thus the structure) can be changed.			
If the structure code value is set globally for the user of the workbook, changes are not an issue. However, if the user can control the structure code value (for example, using an LOV in a "header" form), your application must be able to respond appropriately to update the key flexfield structure.			
After the user specifies a structure code value, you must invoke the worksheet UpSync			
method to get the new value into the model. Then you can use the ADF Table component Download			
method to get fresh data with the new key flexfield structure.			
Note: For an insert-only table, the Download method is undesirable. For these cases, use either the ADF Table component DownloadForInsert method or the Initialize method to enable the Table component to reconfigure to accommodate the new flexfield structure.			
ADF Desktop Integration supports key flexfields by using tree bindings in an ADF Table component. If you are adding your key flexfield as a static column, you can alternatively use an ADF Read-only Table component. Keep in mind that ADF Read-only Table components support static columns, but not dynamic columns. Popup dialogs support both types.			
Note: A key flexfield appears as a node in the tree binding at design time. Because flexfields are built up dynamically at runtime, you will not see any attributes under the flexfield node in the page definition, but the node itself is present.			
When you configure the popup dialog, make the following changes:			
DoubleClickActionSet			
of an InputText			
or OutputText			
component, then connect the Dialog action to a JSPX page that will display the key flexfield.For more information about how to create a page definition file for a desktop integration project, see the "Working with Page Definition Files for an Integrated Excel Workbook" section of the Oracle Fusion Middleware Desktop Integration Developer's Guide for Oracle Application Development Framework.			
For static display of a key flexfield in an ADF Desktop Integration workbook, you must create an updatable transient attribute in the view object on which the ADF Desktop Integration table is based. This transient attribute will hold the concatenated value of the key flexfield segments, separated by a delimiter. If one purpose of the worksheet is to display existing data from the database, the transient attribute should be populated using custom application module methods upon returning from a popup dialog or opening the worksheet.			
To handle update or insert of a data row containing a key flexfield in an ADF Desktop Integration table, you call a custom application module method which contains appropriate code, as follows:			
The following examples demonstrate the code needed to accomplish these tasks. Example 23-21 and Example 23-22 apply to an ADF Desktop Integration implementation with the key flexfield exposed as a dynamic column. Example 23-23 and Example 23-24 apply to an ADF Desktop Integration implementation with the key flexfield exposed as a static column.			
Example 23-21 Updating an Existing Row with a Key Flexfield Dynamic Column			
You add this code as an application module method which will be invoked from the UpdateRowActionId property of an ADF Table component. This code will be invoked for every row that is updated.			
Example 23-22 Inserting a New Row with a Key Flexfield Dynamic Column			
You add this code as an application module method which will be invoked from the InsertAfterRowActionId property of an ADF Table component. This code will be invoked for every row that is inserted.			
Example 23-23 Updating or Inserting a Row with a Key Flexfield Static Column			
This code should be added to the setter of the transient attribute in your view object RowImpl.			
Example 23-24 Applying Modified Segment Values to a Cell in a Key Flexfield Static Column			
You add this code as a custom application module method which will be invoked from the ActionListener property of the OK button in the popup dialog JSPX page.			
The most common use of a key flexfield is for a product table to have a foreign key to the primary key of the combinations table. This provides the flexibility of storing all the combinations in a single table and having references to these combinations from the product tables. However, there are circumstances where application developers might need to capture segment values in a transaction table or a setup table. In this case, the key flexfield becomes a data capturing tool, and the captured data is stored in a product table. There is no direct relationship between the product table and the key flexfields combinations table. This type of usage is called partial usage.			
There are two types of partial usage:			
Note: To incorporate a key flexfield partial usage into your application, you must have already defined and registered the key flexfield master usage on which it is based. See Section 23.2.1.5, "Registering and Defining Key Flexfields Using the Setup APIs," before continuing.			
The development tasks for key flexfields in partial mode consist of the following steps:			
Note: This section contains additional information specific to key flexfield partial usages.			
Note: This section contains additional information specific to key flexfield partial usages.			
All-segment partial usages have a column in the application table for every segment column in the combinations table.			
To register an all-segment partial usage:			
Furthermore, the column names must also be exactly the same as in the combinations table, with the exception of an optional prefix.			
For example, if the column names are A1			
and A2			
in the combinations table, then in the partial usage they could again be A1			
and A2			
, respectively, or with a prefix they could be X_A1			
and X_A2			
. They cannot be B1			
and Y_B2			
, nor any variation that does not end in the names of the combinations table columns.			
FND_FLEX_KF_SETUP_APIS			
package to register the partial usage.To learn how to access documentation about using the APIs, see Section 23.2.1.6, "What You May Need to Know About the Key Flexfield Setup API."			
To implement a key flexfield partial usage, you select the usage at design time. For more information, see Section 23.2.4, "How to Create Key Flexfield Business Components".			
If you need to change a table usage after creating it, you must delete the table usage, then re-create it.			
Single-segment partial usages have one column in the application table to capture a single segment column in the combinations table.			
To register a single-segment partial usage:			
The segment label must be defined as Unique			
to ensure that only one segment in a given structure can be associated with this label.			
For more information about segment labels, see Section 23.2.2, "How to Implement Key Flexfield Segment Labels."			
FND_FLEX_KF_SETUP_APIS			
package to register the partial usage.You must supply the SEGMENT_LABEL_CODE to identify the unique segment label, and COLUMN_NAME to identify the column in your table in which the segment value will be stored.			
To learn how to access documentation about using the APIs, see Section 23.2.1.6, "What You May Need to Know About the Key Flexfield Setup API."			
To implement a key flexfield partial usage, you select the usage at design time. For more information, see Section 23.2.4, "How to Create Key Flexfield Business Components."			
If you need to change a table usage after creating it, you must delete the table usage, then re-create it.			
Zero or more partial usages can be defined for a given flexfield, each one potentially on a different application table.			
Before you begin:			
One or more required libraries might have not been automatically included in your application project. You must ensure that all required libraries, notably the BC4J Service Runtime			
, Java EE 1.5			
and Java EE 1.5 API			
libraries, are included.			
Using the standard wizard, create application entity objects based on the combinations tables you have defined. Make sure of the following:			
adf-config.xml			
.Note: This serves to ensure correct application behavior. It does not matter which customization class you include.			
For information about customization layers, see the "Understanding Customization Layers" section in the Oracle Fusion Applications Extensibility Guide.			
java.lang.Long			
.java.lang.Long			
.Caution: The SIN attribute cannot be transient with a calculated value. It can be based on a database table column, or it can be SQL-derived.			
java.math.BigDecimal			
.java.lang.String			
.To create partial mode key flexfield business components:			
For more information about testing flexfields, see Chapter 25, "Testing and Deploying Flexfields." For more information about sharing and importing shared flexfields, see Section 23.2.5, "How to Share Key Flexfield Business Components."			
Note: This is not a role in the security sense. It exists only during this procedure, for the purpose of specifying where your generated flexfield business components should be stored.			
You can browse for the name, and filter by ID, Short Name, or Name.			
You can browse for and filter by Code.			
(Partial)			
in the Description field.(Partial Single)			
in the Description field.Do not select a flexfield usage without a prefix in the Description field. For more information about key flexfield partial usages, see Section 23.5.1, "How to Register a Key Flexfield All-Segment Partial Usage."			
Because you selected a partial usage on the Flexfield page, you must select the entity object for the table where that usage is defined.			
The entity object you select must include all of the attributes that will be referenced by the flexfield. For partial usages, this includes attributes that represent the SIN column, the DSN column if it exists in the combinations table, and all of the flexfield segment columns.			
Caution: The Create Flexfield Business Components wizard is case-sensitive. All column names — and the names of the flexfield entity object attributes associated with them — must be upper case.			
When a key flexfield entity object attribute is transient, there is no matching underlying column name. When you select this checkbox, the system will match the entity object attribute names to the key flexfield column names, and use the matching attributes to access the flexfield data. Make sure that the entity object has a full set of attributes with matching names before you select this option.			
Caution: The transient SIN attribute cannot be a calculated value; it must be SQL derived (computed using a SQL expression).			
This entity object must be registered under the base table usage as described in Section 23.2.1.9, "Registering Entity Details Using the Setup APIs." There is no need to register another table for this purpose, even if the entity object is based on some other table.			
Note: If the entity object with transient key flexfield attributes is not based on the base table usage, the transient attributes must be named using the same prefix as the other attributes of that entity object (and the corresponding table columns). For more information, see Section 23.5.1, "How to Register a Key Flexfield All-Segment Partial Usage."			
This page contains a Structure Instance Number dropdown list, as shown in Figure 23-33. From the dropdown list, select the entity attribute that corresponds to the key flexfield SIN for the partial usage. The SIN must be an attribute of type java.lang.Long			
.			
If the key flexfield is data set–enabled, this page will also contain a Data Set Number dropdown list. From the dropdown list, select the entity attribute that corresponds to the DSN for the partial usage. The DSN must be an attribute of type java.lang.Long			
.			
To create business components for the key flexfield partial usage that you previously selected, the package name and the object name prefix for the selected entity object must first be registered with that flexfield usage. Text on the Naming page indicates whether this is the case:			
On the Summary page, review your choices and click Finish.			
The business components generated will replace any existing ones that are based on the same flexfield.			
Note: This wizard might fail with a "ClassNotFound" exception message. This indicates that one or more required libraries have not been automatically included in your application project, notably the BC4J Service Runtime , Java EE 1.5 and Java EE 1.5 API libraries. You can resolve this issue by manually adding any missing libraries; then you can complete this procedure successfully.			
A view link is needed whenever an application view object references your key flexfield. The base view object can have many incoming view links from various application view objects, as a key flexfield is usually shared by many application tables.			
Before you begin:			
You should have already created a master view object over your entity object using the standard wizard.			
Ensure that the view object does not include flexfield attributes such as SEGMENT1_VARCHAR2, SEGMENT2_NUMBER, and so on. Ensure that you include the attributes that are needed for the foreign key reference, such as CCID, SIN, and, if present, DSN. Ensure that the CCID attribute's Display control hint is set to Hide.			
To create a partial mode key flexfield view link:			
Figure 23-36 Create Flexfield View Link Wizard — Source Attributes Page for Partial Mode Key Flexfields			
This page is informational only. The key attributes of the source view object will be used to define the view link. The primary key attribute should be listed for this selection.			
Note: You can skip the Properties page because view link-specific properties are not supported.			
On the Summary page, review the summary, then click Finish.			
The partial mode key flexfield view link is generated.			
A key flexfield combination filter is a set of query criteria that can be applied to a combinations table to specify a subset of code combinations. Once you incorporate a key flexfield combination filter into your application, end users can select key flexfield values in the user interface from the subset produced by the filter.			
For example, consider the rows that are listed in Table 23-8:			
Table 23-8 Example Combinations Table			
SIN	CCID	Summary_Flag	Enabled_Flag
---	---	---	---
You could define a filter with the following conditional logic:			
When you apply this filter condition to the combinations table, the result listed in Table 23-9 is presented:			
Table 23-9 Example Filter Result			
SIN	CCID	Summary_Flag	Enabled_Flag
---	---	---	---
Key flexfield combination filter conditions are stored in an XMLType database column.			
There are three types of combination filters that you can use in your application — standard combination filters, combination filters for Oracle Business Intelligence (BI) Publisher reports, and cross-validation filters.			
Standard Combination Filters			
With standard combination filters, you determine which key flexfields your end users should be able to filter, and define a dedicated column in your application database for each filter that you want to include in the application user interface. This column can be defined in an existing reference table. You can also create one or more dedicated tables just to store filter columns.			
The filter condition is stored in the database column as XML. At runtime, the filter condition in the XML is converted to a ViewCriteria			
object and applied over the appropriate base key flexfield view object so that when the view object is executed, the filter condition is applied and the filtered query results are produced.			
In JDeveloper, you prepare business objects based on the table containing the filter column, then you associate a combination filter view object attribute with the key flexfield. You can associate zero, one, or many combination filters with a given key flexfield, but only one flexfield can be addressed by a given filter.			
To make the combination filter accessible to application implementers or administrators, you add a key flexfield combination filter UI component to an application page. Each row contains a different filter definition that can be applied to the associated key flexfield. The implementers or administrators will be responsible for populating the table with filter criteria using a provided utility.			
Key flexfield combination filters are supported by the XML schema FndFilter.xsd			
. This XML schema binds the filter XML that is defined. This schema is registered with the FUSION database schema at the following URI:			
The XML schema is registered to the database as BINARY_XML.			
You can test the filter definitions by inserting predefined XML filter criteria into the XMLType filter column.			
Note: A PL/SQL API is provided so that you can apply filters to your SQL statements as WHERE clause conditions rather than applying them to the user interface. For more information, see Section 23.6.5, "How to Apply Combination Filters Using the PL/SQL Filter APIs."			
Combination filters are removed from an application by removing their accessors.			
Combination Filters for Oracle BI Publisher Reports			
The Applications Core key flexfield filter repository enables Oracle Fusion Applications developers to include selected key flexfield segments as available parameters in an Oracle BI Publisher report submission user interface. The filter-repository mechanism translates report parameters for those segments into key flexfield combination filter criteria, which are then translated into SQL for inclusion in the report. You accomplish this by creating a flexfield filter view object over the public entity object FndKfEssFiltersPEO			
to access a provided common filter repository table, then adding to the report submission page a filter UI component that is based on the filter view object.			
When the report job is submitted, the flexfield filter XML definition produced by the filter input criteria is saved to the filter repository. Oracle Enterprise Scheduler Service (ESS) launches the reporting job with the report parameters including the filter key. The filter key is passed to the flexfield lexical API, which returns the filter criteria as a SQL where clause, which Oracle BI Publisher integrates into the SQL statement for its report.			
To incorporate combination filters for Oracle BI Publisher reports into a maintenance user interface, you follow much of the same process as you would to implement standard filters. The combination filter procedures that follow note which procedures do not apply to these types of filters.			
The kff_filter_purge(...)			
procedure from the fnd_flex_xml_publisher_apis			
PL/SQL package enables you to remove unused filters from the filter repository.			
Cross-Validation Filters			
Cross validation rules leverage the code combination filter infrastructure to apply a pair of filters to new code combinations that are proposed for a key flexfield by administrators or end users, when you have enabled them to work with maintenance mode or dynamic combination insertion.			
After enabling cross validation for a key flexfield at registration time, you must build a maintenance user interface that administrators can use to maintain the implementation-specific filters that comprise each rule. All filter combinations that an administrator defines for a given key flexfield are applied automatically to cross validate new code combinations as they are input.			
Note: Cross-validation rule criteria should generally be created and modified only by application implementers and administrators. For end users, these rules automatically validate new code combinations in the same way that value sets automatically validate new segment values.			
To incorporate cross-validation filters, you follow much of the same process as you would to implement standard filters. The combination filter procedures that follow note which procedures do not apply to these types of filters.			
For more information about implementing cross validation rules, see Section 23.2.3, "How to Implement Cross Validation Rules and Custom Validation."			
An XMLType column is required to store filter data in your database. For standard combination filters, you must define an XMLType column for the filter data in your database before you can associate combination filters with key flexfields in your application.			
Note: If you are implementing combination filters to support cross validation rules, the required XMLType columns already exist in the FND_KF_CROSS_VAL_RULES repository table. If you are implementing combination filters for use in the key flexfield filter repository for Oracle BI Publisher reports, these columns exist in the repository.			
To prepare a standard key flexfield combination filter for modeling:			
To create a table called, for example, FND_MYFILTER_KFF1			
, execute the following script:			
Filter			
) of type XMLType to your table:Note: Your new filter column must be configured as nullable. This script is necessary because XDF does not support the XMLType data type.			
To add combination filters to your application, you complete the following tasks:			
For standard filters, you must create a filter-specific entity object over the table containing the filter column.			
Note: You do not need to create a filter view object if you are implementing one of the following types of filters:			
Before you begin:			
To create the filter entity object:			
Kff1Fltr1EO			
) over the table containing your filter column.FND_FILTER			
property with a value of Y			
.This property enables the base classes (OAEntityImpl			
) to recognize that the entity object contains a filter attribute.			
Click the Attributes navigation tab, select the filter attribute, and click the Edit icon to open the Edit Attribute dialog.			
Note: GetClobVal() is needed to manage the XMLType column in the database because ADF Business Components currently does not support the XMLType data type natively.			
Table 23-10 Custom Filter Properties			
Name	Value	Description	
---	---	---	
A			
table-name	Indicates the name of the underlying table on which this filter attribute is based.		
column-name	Indicates the name of the column on which this attribute is based in the filter table. This is needed because the entity object could be based on a database view.		
primary-key-column-id	Indicates the primary key column of the underlying filter table. If the table has a composite primary key (for example: FND_FILTER_TABLE_COL_PK1=ID1 FND_FILTER_TABLE_COL_PK2=ID2		
view-object-attribute-name	Indicates the name of the view object attribute that corresponds to the attribute in the entity object that represents the filter table primary key. If the view object has attributes that correspond to multiple entity object primary key attributes, you must add an entry for each key. For example: FND_FILTER_TABLE_ATTR_PK1=ID1 FND_FILTER_TABLE_ATTR_PK2=ID2		
You need to create a filter view object (for example, Kff1Fltr1VO			
) over the filter entity object.			
oracle.apps.fnd.applcore.flex.kff.model.publicEntity.FndKfEssFiltersPEO			
.In the view object for the cross validation rules, define view criteria to set the APPLICATION_ID			
and KEY_FLEXFIELD_CODE			
attributes to static values for your application and key flexfield.			
You use the Create Flexfield Filter wizard to create a view accessor from the filter view object's combination filter attribute to a key flexfield view object definition.			
Note: If you are implementing filters to support cross validation rules, you must complete this procedure twice — once for the condition filter attribute and once for the validation filter attribute.			
To associate a combination filter with a key flexfield:			
The final task is to configure the view object, add it to a new application module for the filter, and test it.			
To configure, deploy and test a combination filter:			
This property enables the base classes (OAViewRowImpl			
) to recognize that the view object row contains a filter attribute.			
FND_FILTER			
with the Value set to Y			
.FND_ACFF_SIN			
for the selected filter attribute. Set the Value to the structure instance number (SIN).This property indicates the view object's SIN attribute that associates with this filter attribute.			
Tip: You also can add the flexfield application module from the Application Module Instances section in the Data Model navigation tab for the application module.			
You need to add the filter view accessors that you created to an application page. This procedure applies to conventional key flexfield filters as well as to filters that you are implementing for use in the filter repository.			
You add a key flexfield filter to an application page by dropping the filter view object on the page and modifying the XML code for the filter component.			
Note: This procedure is also used to produce a user interface for defining and maintaining cross validation rules. Complete the procedure twice — once for the accessor of the condition filter and once for the accessor of the validation filter. Both filters can be exposed on the same page.			
Before you begin:			
To add your key flexfield filter to an application page:			
Note: These actions enable extemporaneous creation of new filter definitions at runtime; they also enable you to insert new records into the filter repository.			
Note: The sorting of filter columns is not supported.			
Example 23-25 Modified Form-Based Filter Code			
Example 23-26 Modified Table-Based Filter Code			
When this property is set to true, the Filter dialog box does not display the Match options, as shown in Figure 23-43, and the conditions are automatically joined with an AND conjunction.			
When you add a filter based on the public entity object FndKfEssFiltersPEO			
to your application page as an ADF Form component, the resulting Oracle BI Publisher report submission user interface appears as shown in Figure 23-44.			
When you add a filter-repository filter to the application page as an ADF Table component, the report submission user interface appears as shown in Figure 23-45.			
When you click CreateInsert, a new row is added which includes the filter XML and other required input, along with the default values for some of the columns. Your application must provide defaults for the columns as described in Table 23-11.			
Table 23-11 Filter Repository Filter Attribute Columns			
Column	Description		
---	---		
KeyFlexfieldCode	The code identifying the key flexfield to which this filter will be applicable.This is a read-only value.		
StructureInstanceNumber	This is the SIN, the discriminator attribute for the key flexfield which is used in the key flexfield filter. While creating a new filter definition or submitting a new job, a valid value should be defaulted for this attribute at the view object level. The SIN is required for capturing the filter XML. This is a read-only attribute.		
DataSetNumber	The data set number (DSN) is a secondary discriminator to the SIN. If the key flexfield is data set–enabled, a valid DSN value should be defaulted in the filter view object. This is a read-only attribute.		
FilterId	The FilterId is the primary key attribute and is a unique identifier for each filter that is inserted in the filter repository. This value can be generated using a sequence or other methods for generating unique identifiers.		
ApplicationShortName	This is the application short name of the application with which the flexfield filter is associated. You should set the default value to be the application with which your key flexfield is associated. For example, if you are using flexfield KFF1, which is associated with the Application Object Library application, your filter repository should set the default value for ApplicationShortName to be This is a read-only attribute.		
Filter	This is the XML attribute containing the WHERE condition that is set for a particular FilterId. The WHERE condition has to be populated by using the filter user interface. Depending on the SIN, the filter user interface displays the related segments for a particular key flexfield structure. Various conditions for each of the segments can be applied to generate the WHERE condition.		
When you click Commit, the new row is inserted in the FND_KF_ESS_FILTERS			
database table.			
For testing, you can use INSERT scripts to insert predefined XML filter criteria into the XMLType filter column of your application table.			
Note: You can insert this data at any time after the XMLType column has been added to the application table, and before the filter is invoked.			
Use the following form to build an INSERT script:			
The operators supported for key flexfield combination filters are the operators supported in the Query panel. This includes the following data types and their operators:			
STRING			
data type — EQUALTO			
, NOTEQUALTO			
, CONTAINS			
, DOESNOTCONTAIN			
, LIKE			
, STARTSWITH			
, ENDSWITH			
, ISNULL			
, ISNOTNULL			
NUMBER			
data type — EQUALTO			
, NOTEQUALTO			
, NULL			
, ISNOTNULL			
, GREATERTHAN			
, LESSTHAN			
, GREATERTHANEQUALTO			
, LESSTHANEQUALTO			
, BETWEEN			
, NOTBETWEEN			
DATE			
data type — ISNULL			
, ISNOTNULL			
You can also use the following hierarchical operators to query tree structures in your filter: IS_CHILD_OF			
, IS_DESCENDENT_OF			
, IS_LAST_DESCENDENT_OF			
, IS_PARENT_OF			
, IS_ANCESTOR_OF			
, IS_FIRST_ANCESTOR_OF			
, IS_SIBLING_OF			
.			
For more information about trees, see Chapter 19, "Organizing Hierarchical Data with Tree Structures."			
Example 23-27 shows some example scripts. The first one inserts a filter condition that selects for SEGMENT1_VARCHAR2 = 'Value04'			
, and the second one selects for the inequality SEGMENT1_VARCHAR2 != 'Value02'			
.			
Example 23-27 Scripts for Inserting Filter Conditions into the Application Database			
Example of EQUALTO			
filter:			
Example of NOTEQUALTO			
filter:			
Note: You might want to test these scripts to ensure that the database is, in fact, performing schema validation on the XML document, by attempting to insert XML that does not conform to this schema.			
You can take advantage of key flexfield combination filters (including filter-repository filters) without using them in your application user interface. You use the WHERE clause API for standard and cross-validation combination filters, and you use the XML Publisher API for filter repository filters.			
Applications Core Technology has provided a PL/SQL API for filtering at the back end. This API takes a filter condition as an input parameter in XMLType format, converts it to a SQL WHERE clause snippet, and provides the clause as an output parameter for the segments upon which the filter condition has been defined. You use this API to integrate the where clause snippet into your SQL statements to include the filter conditions within your SQL scripts.			
The PL/SQL combination filter WHERE clause API is based on the signature shown in Example 23-28.			
Example 23-28 WHERE Clause Signature			
The bind values are defined as shown in Example 23-29.			
Example 23-29 Bind Values Definition			
Example 23-30, Example 23-31, and Example 23-32 demonstrate how to use the WHERE clause API for an EQUALTO condition, a BETWEEN condition, and multiple conditions.			
Example 23-30 Using the WHERE Clause API for an EQUALTO Condition			
Suppose that a filter condition has been defined in a combinations table as follows:			
FND_KF_TEST_CCT1			
SEGMENT1_VARCHAR2			
123			
You would call the filter API as follows:			
The tableAlias			
value should be used in WHERE			
clause snippets to represent the combinations table name, so in this example,			
should be entered as			
Similarly, the bindPrefix			
value should be used as a prefix when referencing individual bind values, for example, :BND1			
, :BND2			
, or :BND3			
.			
When invoked, the filter API in this example might produce the following values for its output parameters:			
With this output you can assemble the following WHERE clause for an EQUALTO			
filter condition:			
Example 23-31 Using the WHERE Clause API for a BETWEEN Condition			
The following listing shows an example of a BETWEEN operator used as part of a filter expression of the form "attribute BETWEEN value1 AND value2".			
The Filter expression captured in the preceding XML resolves to the following:			
You would call the filter API as follows:			
When invoked, the filter API in this example might produce the following values for its output parameters:			
With this output you can assemble the following WHERE clause for a BETWEEN filter condition:			
Example 23-32 Using the WHERE Clause API for Multiple Conditions			
The following listing shows an example of multiple operators used as part of a filter expression of the form "attribute1 EQUALTO value1 AND attribute2 EQUALTO value2."			
The Filter expression captured in the preceding XML resolves to the following:			
You would call the filter API as follows:			
When invoked, the filter API in this example might produce the following values for its output parameters:			
With this output you can assemble the following WHERE clause for a BETWEEN			
filter condition:			
The kff_filter			
PL/SQL procedure in the fnd_flex_xml_publisher_apis.pkb			
package is the public procedure for processing key flexfield repository filter lexicals. The signature is shown in Example 23-33.			
Example 23-33 kff_filter Signature			
Example 23-34 demonstrates how to use this API to obtain the where clause and bind variable information for a filter in the filter repository.			
Example 23-34 Using the Filter Repository API			
To remove a key flexfield combination filter, you remove the accessor that was previously created to associate the filter with a particular key flexfield.			
In your project, right-click the view object that contains the filter and select Remove Flexfield Filters from the menu.			
If the filter view object has more than one filter attribute with an accessor defined, you will be presented with a list of those filter accessors. Select the one that you want to remove.			
The filter XML is stored in the FND_KF_ESS_FILTERS			
table. The number of rows in a filter repository can become large. You use the kff_filter_purge(...)			
procedure from the fnd_flex_xml_publisher_apis			
PL/SQL package to purge unused filters from the filter repository. This procedure takes the filter's id, as shown in Example 23-35.			
Example 23-35 Removing a Filter From the Filter Repository			
This chapter discusses how to use extensible flexfields to enable customers to add additional attributes to application business objects in Oracle Fusion Applications.			
This chapter includes the following sections:			
An extensible flexfield is similar to a descriptive flexfield in that it provides a customizable expansion space that implementers, such as Oracle Fusion Applications customers, can use to configure additional attributes (segments) without additional programming. As with descriptive flexfields, each segment is represented in the database as a single column. However, with extensible flexfields the context values and context-sensitive segments are stored in a child table. For a general introduction to flexfields, segments, and contexts see Chapter 21, "Getting Started with Flexfields." For more details about the differences between descriptive flexfields and extensible flexfields, see Section 24.1.2, "The Benefits of Extensible Flexfields."			
Implementers can combine and arrange the segments into contexts (attribute groups) that are tailored to a company's specific needs. For example, they can group related segments so that they appear together on the page. In addition, you can optionally set up an extensible flexfield to enable implementers to group contexts into categories. To understand how implementers configure extensible flexfields to meet a company's specific needs, see the "Using Flexfields for Custom Attributes" in the Oracle Fusion Applications Extensibility Guide.			
Extensible flexfields are comprised of the following key artifacts:			
Extensible flexfield contexts are a data grouping mechanism that implementers can use to arrange segments into meaningful groups. Each context is a group of attributes that displays in its own subregion of the user interface page at runtime. Implementers create and configure the contexts. After creating a context, an implementer must associate the context with the categories for which that group of attributes is relevant. For example, a Parts flexfield might have a Fax category and an All-in-One Printers category. A Fax context would be associated with both categories, while a Copy context would be relevant only to the All-in-One Printers category. You learn about categories in Section 24.1.1.4, "About Categories."			
Figure 24-1 shows the user interface page for the Positions business object. The Positions flexfield is embedded in the Additional Position Details region on the page. This region contains the Educational Requirements, Certification and License Requirements, and Travel contexts for the Positions flexfield.			
Figure 24-2 and Figure 24-3 show user interface pages for the Parts business object. The developer has enabled multiple categories for the Parts flexfield, so the page displays the category to which the part shown belongs. In Figure 24-2 the part belongs to the All-in-One Printers category and Figure 24-2 the part belongs to the Fax category. In these pages, the Parts flexfield is embedded in the Additional Information region. For the All-in-One Printers category in Figure 24-2, the Additional Information region contains the Copy, Fax, and Scan contexts for the Parts flexfield, while on the Parts page for the Fax category in Figure 24-3, the region contains just the Fax context.			
Note: A flexfield region is empty until the custom configures the extensible flexfield that is embedded in it.			
Extensible flexfields allow implementers to configure contexts as either single row or multiple row. That is, either one set of segments is stored for a business object instance, or multiple sets of segments are stored for the instance. For example, a position requires only one set of educational requirements, but can require more than one certificate or license.			
For single-row contexts, the segments appear as fields in a form. With multiple-row contexts, the segments appear as columns in a table, thus allowing end users to capture a list. In Figure 24-1, Educational Requirements and Travel are single-row contexts, so end users can specify only a single value for each context-sensitive segment, such as the percent of travel time required for the position. Certification and License Requirements is a multi-row context, so end users can enter multiple rows, one for each certificate or license required for the position.			
With extensible flexfields, every segment is a member of a context (attribute group). That is, all segments are context-sensitive. Implementers define the contexts and their context-sensitive segments. Context-sensitive segments are the lowest-level data points that implementers can define for an extensible flexfield, and each segment is mapped to a column in an extension table. Just as with descriptive flexfields, the segments render as ADF Faces rich client components, such as text box, text area, LOV choice list, date picker, check box, and radio button group.			
In Figure 24-1, the Educational Requirements context contains the High School, Bachelor, Master, J.D., M.D., and Ph.D. context-sensitive segments, and the Certification and License Requirements context contains the Type and Certificate/License context-sensitive segments.			
Extensible flexfields enable implementers to define logical pages with which to group contexts for display purposes. Each page can contain one or more contexts along with their respective context-sensitive segments. There is no limit to the number of contexts on a logical page. The implementers associate the logical pages with categories on a flexfield usage basis. You learn about usages in Section 24.1.1.6, "About Usages (Data Levels)."			
In the Parts user interface page shown in Figure 24-2, an implementer has defined two logical pages for this category — Printers and All-in-One. The implementer defined the Printers logical page to contain all contexts related to the printing capabilities of the printer, and the All-in-One page to contain all contexts related to the other capabilities of the printer, such as the scanning, copying, and faxing capabilities			
The Parts page that is shown in Figure 24-2 displays the list of logical pages for the category in the left pane. End users view a logical page in the right pane by selecting it from the list. In this figure, the end user has chosen to view the All-in-One logical page. You can see the Printers logical page in Figure 24-4.			
Note that you have different layout options for the logical pages. For example, in Figure 24-1, the developers chose to hide the entire left section because their customers will add attributes to a single page that is known at the time of development. However, in Figure 24-4, developers chose to display the list of logical pages in the left pane. For more information about layout options, see Section 24.6, "Employing Extensible Flexfields on an Application Page."			
Categories enable applications to dynamically display different sets of logical pages and contexts at runtime. In the simplest case, you create a single category for a flexfield, and the same extensible flexfield contexts and logical pages appear for every instance of the business object. In some cases, you might need the application to display different sets of logical pages and contexts depending on a runtime differentiator, such as an instance value. In these cases, you can create multiple categories for the flexfield, or you can provide application-specific logic that enables implementers to define their own categories.			
The Positions flexfield in Figure 24-1 has a single category. The same flexfield segments appear in the Additional Position Details region regardless of which position is displayed. In this page, the developer has hidden the name of the category, because there is only one category.			
In Figure 24-2 and Figure 24-3 the segments that the region displays depend on which category the part belongs to. In Figure 24-2, the part belongs to the All-in-One Printers category, and, in Figure 24-3, the part belongs to the Fax category.			
You can choose to support multiple categories for your flexfield. When you do so, the extensible flexfield respects any hierarchical relationship that is defined for the categories, whether created by developers or defined by implementers. Figure 24-5 shows an example of categories defined in a hierarchical fashion. In this example, the root category is Computers and Office. One of its child categories is Printers and Ink. The Printers and Ink category, in turn, has a child category Printers. The Printers category has two children categories — All-in-One Printers and Single Function Printers.			
Each child category inherits the contexts and pages from its parent categories. For example, the Printers category contains the Print, Printer Functions, and Supported Operating Systems contexts. The All-in-One Printers category inherits these contexts from the Printers category. It also inherits all logical pages that are defined for its parent categories. Additional contexts can be assigned directly to the All-in-One-Printers category, such as Copy, Fax, and Scan, which are relevant only to All-in-One printers.			
When you create an extensible flexfield, you create one flexfield usage for each set of tables in the application that uses the flexfield. In the simplest case, you will have one flexfield usage. For example, in Figure 24-1, the Positions application requires a single Positions table with its associated extension tables to store the extensible flexfield values. Implementers simply associate their contexts with that one usage to make them available to the Positions application.			
When you have several objects in the application that should be extended using the same extensible flexfield, you need to create multiple usages for the flexfield. For example, in the case of an Items application there might be different data levels, such as items and item revisions. In this case, you create one usage per data level. By defining separate usages for each set of tables, you enable your implementers to reuse the same extensible flexfield configuration for all data levels.			
When deciding whether to use a descriptive flexfield or an extensible flexfield to extend a business object, consider the following features that you make available for implementers by using extensible flexfields:			
Another advantage of using extensible flexfields is that you can create your own custom modeler classes for adding application-specific logic for generating ADF Business Components artifacts and user interface task flows.			
Unlike descriptive flexfields which are mapped to extension columns in the base application table, extensible flexfields are mapped to extension columns in extension tables that are separate from the base application table. You create the extension tables at design time.			
How Extensible Flexfields are Modeled in Oracle Application Development Framework			
Extensible flexfields are modeled as a collection of Oracle Application Development Framework (ADF) polymorphic view rows. The category hierarchy translates into a hierarchy of polymorphic view objects with view links to associated context view objects. A CategoryCode attribute acts as the discriminator that determines which category view row type should be used. At application runtime, the category in the base category view object row determines what pages and contexts are displayed. Given a collection of polymorphic view rows, each row can be a different type based upon the category. An application module, which holds the category view object, is generated for each category.			
For more information about polymorphic view rows, see the "Working with Polymorphic View Rows" section in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.			
Note: Because flexfield view objects are modeled as polymorphic view objects, you can use extensible flexfield view objects in the same manner that you use any other polymorphic view objects, and they will behave in the same way.			
The process of developing an extensible flexfield and integrating it in an application comprises several different activities, such as creating the flexfield tables, creating business components, and adding the flexfield to the appropriate application pages. This section identifies the major tasks for incorporating an extensible flexfield and points to the sections that provide the details for completing the tasks.			
Before you begin:			
Before you begin developing an extensible flexfield, you must first complete the following tasks:			
To complete the development tasks for an extensible flexfield:			
See Section 24.3, "Creating Extensible Flexfield Data Tables."			
See Section 24.4, "Defining and Registering Extensible Flexfields."			
See Section 24.5, "Defining and Registering Extensible Flexfield Business Components."			
See Section 24.6, "Employing Extensible Flexfields on an Application Page."			
See Section 24.7, "Loading Seed Data."			
See Section 24.8, "Customizing the Extensible Flexfield Runtime Business Component Modeler" and Section 24.9, "Customizing the Extensible Flexfield Runtime User Interface Modeler."			
See Section 24.10, "Testing the Flexfield."			
Once you have completed the extensible flexfield development process and delivered your application, implementers can use the Manage Extensible Flexfields task flow to define contexts, categories, and pages, and to configure the segments for each extensible flexfield. These task flows determine how the flexfield's segments will be populated, organized, and made available to end users within the application. For information about planning and implementing flexfield configuration, such as defining attributes, labels, behavior, and associated value sets, see the "Using Flexfields for Custom Attributes" chapter in the Oracle Fusion Applications Extensibility Guide.			
Note: An extensible flexfield is not displayed at runtime unless at least one context and context-sensitive segment has been configured and associated with a category.			
To make the Manage Extensible Flexfields task flow available to application implementers, you register it with Oracle Fusion Functional Setup Manager. For more information, see Section 25.5, "Integrating Flexfield Task Flows into Oracle Fusion Functional Setup Manager".			
Before you can define an extensible flexfield, you must create one set of dedicated database tables for each of the flexfield's usages. Each set must be composed of at least a base extension table. If you want to enable customers to store translated values for the segments, the set must include a translation extension table and a view of the translation extension table. An extensible flexfield must have at least one set of tables, which defines the master usage. The implementers will expose only the flexfield attribute columns that they require.			
Note: The steps in this section assume that the base application table that the flexfield is extending already exists.			
Each flexfield usage requires a base extension table. This table stores non-translatable contexts and their segment values. Table 24-1 lists the fields that you must include in a base extension table. You can add as many attribute columns — ATTRIBUTE_CHARn, ATTRIBUTE_NUMBERn, ATTRIBUTE_NUMBERn_UOM, and ATTRIBUTE_TIMESTAMPn, as you feel is necessary. The numbers of attribute columns shown in the table should be adequate for most cases. The table name should have a suffix of _B to identify it as the base table.			
If you plan to allow customers to store translations for some contexts on a locale-by-locale basis, then you must also create a translation extension table and a view over the translation extension table. The translation extension table stores the translatable contexts and their segment values. The translation extension view returns the rows in the current user locale. Table 24-2 lists the required translation extension table columns and Table 24-3 lists the required translation extension view columns. The translation table name should have a suffix of _TL to identify it as a translation table, and the name of the view of the translation table should have a suffix of _VL.			
Create one VARCHAR2			
type attribute column of the same name in the translation extension table for each corresponding ATTRIBUTE_CHARn column in the base extension table, such as ATTRIBUTE_CHAR1. The translation extension view should contain the same set of ATTRIBUTE_CHARn columns as the translation extension table.			
At runtime, as end users enter attribute values for each context, the context and its attribute values are stored as a row in the base extension table if the context is not translatable, or as a row in the translation extension table if the context is translatable. When the flexfield is deployed, each context is translated into a business component view object over the columns in the extension table.			
You must use the Database Schema Deployment Framework tools to create the application table and columns. Using these tools ensures that the table and its columns are registered in the Applications Core Data Dictionary. For more information, see Chapter 56, "Using the Database Schema Deployment Framework."			
Note: To avoid any compatibility and interoperability problems, you should format the column names as indicated.			
Table 24-1 Extensible Flexfield Base Extension Table (_B) Specification			
Column	Type	Nullable?	
---	---	---	
No			
No			
Primary key columns of the application table for which this extensible flexfield is being defined.	Same as the column in the application.	No	
No			
No			
No			
No			
No			
Yes			
Yes			
Yes			
Yes			
Yes			
.			
Yes			
Yes			
Yes			
...			
Yes			
Yes			
Yes			
Yes			
Table 24-2 Extensible Flexfield Translation Extension Table (_TL) Specification			
Column	Type	Nullable?	
---	---	---	
No			
No			
Primary key columns of the application table for which this extensible flexfield is being defined.	Same as the column in the application.	No	
No			
No			
No			
No			
No			
Yes			
No			
No			
Yes			
...			
Yes			
Yes			
Yes			
Yes			
Table 24-3 Extensible Flexfield Translation Extension View (_VL) Specification			
Column	Type	Nullable?	
---	---	---	
No			
Primary key columns of the application table for which this extensible flexfield is being defined.	Same as the column in the application.	No	
No			
Yes			
Yes			
Yes			
Yes			
After you create a set of dedicated tables for a flexfield's usage, you use procedures from the FND_FLEX_DF_SETUP_APIS
PL/SQL package to register the flexfield usage and define its metadata in seed tables.
The definition of an extensible flexfield usage includes the following information:
fnd_df_flexfields_b.ADFBC_MODELER
.After the implementers configure the flexfield, the definition of an extensible flexfield also contains the following information:
ContextCode
values that can appear in the flexfield context segment.ContextCode
values. Each ContextCode
value is associated with its own set of these segments.CategoryCode
values belonging to the extensible flexfield, and the contexts associated with each category, page and usage.You use the FND_FLEX_DF_SETUP_APIS
PL/SQL API package to register new extensible flexfield usages and to add the specified flexfield metadata to the following global configuration metadata.
Add the extensible flexfield's code name to both tables.
Add the extensible flexfield usages.
Add the display names for the flexfield usages.
For each usage, add the base application table name for which the flexfield is implemented and set the table type to BASE. Also add the usage base table name with a type of EXTENSION, and add the usage translation table name with a type of EXTENSION_TL. Set the table usage code to the flexfield's usage code.
If the consumers want to support interface loading of extensible flexfield data, also add entries for the BASE_INTERFACE, EXTENSION_INTERFACE, and EXTENSION_INTERFACE_TL table types.
Add one row for the extensible flexfield with CONTEXT_CODE set to "Context Data Element" and SEGMENT_CODE set to "Context Segment."
For each usage, add an entry for each context-specific column in the EXTENSION and EXTENSION_TL tables. For example, add entries for all the ATTRIBUTE_CHARn columns, for all the ATTRIBUTE_NUMBERn columns, and so forth.
An extensible flexfield requires at least one entry in this table. Add additional entries only if you are shipping your application with some categories already defined.
After you create the flexfield's business components, you must complete the registration process by adding entity details, as described in Section 24.4.1, "How to Register Extensible Flexfields." You must have at least one entity usage per base extension table. If you require parallel sets of extensible flexfield artifacts generated for different uses (for example, public view objects and private view objects), you can replicate the entity usage entries with a different group name. The flexfield business component modeler generates a separate set of components for each group.
For more information, refer to the package specification.
To incorporate an extensible flexfield into your application, you must define and configure entity objects and view objects for each set of database tables that are defined for each flexfield usage.
Figure 24-6 shows the extensible flexfield business components for a base application table. In this example, the flexfield is not translatable. The developer creates an entity object and view object over the base extension table to support contexts.
If the flexfield is translatable, the developer would also create an entity object and view object over the translation extension table and the translation extension view.
When an implementer deploys flexfield configurations, the deployment process creates the extended context entity objects, context view objects, category view objects, and category-to-context view links. Notice that in this example, the C2 context is a member of two categories.
To define an extensible flexfield business component:
EFF_LINE_ID
attribute for each extensible flexfield entity object as a unique ID.createDetailRowIfNotExist
method.Tip: After completing these steps, you can regenerate the flexfield business components programmatically at runtime to update your extensible flexfield implementation without manual intervention. For more information, see Section 25.4, "Regenerating Flexfield Business Components Programmatically." |
For each extensible flexfield usage, you must create entity objects over the base extension table. If you created a translation extension table and a translation extension view for a usage, you must create entity objects for them as well.
For more information about creating entity objects, see the "Creating a Business Domain Layer Using Entity Objects" chapter in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
Note: The packages in which these entity objects are created must not fall under the packages allocated for runtime generated business components (which are specified in adf-config.xml and the flexfield usage metadata). |
Before you begin:
adf-config.xml
. This serves to ensure correct application behavior. It does not matter which customization class you include.For information about defining the customization layers, see the "Understanding Customization Layers" section in the Oracle Fusion Applications Extensibility Guide.
For each extensible flexfield usage, use the standard wizard to create an entity object over the base extension table that is described in Table 24-1, but apply the changes described in the following procedure to support the extensible flexfield.
To create and configure an entity object over the base extension table:
EFF_LINE_ID
OBJECT_VERSION_NUMBER
CONTEXT_CODE
CREATED_BY
CREATION_DATE
LAST_UPDATED_BY
LAST_UPDATE_DATE
LAST_UPDATE_LOGIN
EFF_LINE_ID
attribute to be a unique primary key.CONTEXT_CODE
attribute to be a discriminator, with a default value of 0
.objectname
BEOImpl
entity object class to be generated extends oracle.apps.fnd.applcore.oaext.model.OAEntityImpl
.On the UI Hints tab of the Property Inspector for each attribute, set the Display Hint property to Hide
.
If you created a translation extension table for the flexfield usage, as described in Table 24-2, use the standard wizard to create an entity object over the translation extension table, but apply the changes described in the following procedure to support the extensible flexfield.
To create and configure an entity object over the extensible flexfield translation extension table:
EFF_LINE_ID
OBJECT_VERSION_NUMBER
CONTEXT_CODE
SOURCE_LANG
LANGUAGE
CREATED_BY
CREATION_DATE
LAST_UPDATED_BY
LAST_UPDATE_DATE
LAST_UPDATE_LOGIN
EFF_LINE_ID
attribute to be a unique primary key.CONTEXT_CODE
attribute to be a discriminator, with a default value of 0
.objectname
TlEOImpl
entity object class to be generated extends oracle.apps.fnd.applcore.oaext.model.OAEntityImpl
.On the UI Hints tab of the Property Inspector for each attribute, set the Display Hint property to Hide
.
String
to be translatable.On the Applications tab of the Property Inspector for each non-key, String
type attribute, set the OA Translatable property to True
.
If you created a translation extension table and view for the flexfield usage, use the standard wizard to create an entity object over the translation extension view that is described in Table 24-3, but apply the changes described in the following procedure to support the extensible flexfield.
To create and configure an entity object over the extensible flexfield translation extension view:
EFF_LINE_ID
CONTEXT_CODE
EFF_LINE_ID
attribute to be a unique primary key.CONTEXT_CODE
attribute to be a discriminator, with a default value of 0
.objectname
VlEOImpl
entity object class to be generated extends oracle.apps.fnd.applcore.oaext.model.OAEntityImpl
.On the UI Hints tab of the Property Inspector for each attribute, set the Display Hint property to Hide
.
After you create and configure entity objects over the base extension table, translation extension table, and view of the translation extension table as described in Section 24.5.1, "How to Create and Configure Extensible Flexfield Entity Objects," you must configure the EFF_LINE_ID
attribute for each entity object as a unique ID.
The Unique ID Generator provides a way for your application to generate unique IDs for entity object attributes of type BigDecimal
. The unique IDs generated are also of type BigDecimal
, and meet certain required criteria for uniqueness across database instances.
To configure EFF_LINE_ID as a unique ID:
EFF_LINE_ID
that will invoke the Unique ID Generator when needed.For more information, see Section 9.6, "Using Unique ID."
For each extensible flexfield usage, use the standard wizard (not the Flexfield Business Components wizard) to create the following types of view objects:
Note: No view objects are required over the translation table entity object. |
For more information about creating view objects, see the "Defining SQL Queries Using View Objects" chapter in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
Before you begin:
EFF_LINE_ID
attribute as a unique ID as described in Section 24.5.2, "How to Configure the EFF_LINE_ID Attribute as a Unique ID."To support contexts for an extensible flexfield usage, the usage must have a view object over its base extension table entity object. If you created a translation extension table for the usage, you must also create a view object over the translation extension view entity object.
To create and configure the context view objects:
vo_name
Impl
extends EFFViewObjectImpl
vo_name
RowImpl
extends EFFViewRowImpl
vo_name
DefImpl
extends EFFViewDefImpl
These base classes are in the oracle.apps.fnd.applcore.oaext.model
package.
To support categories for the flexfield, there must be a view object over the base application table entity object for which you are developing the extensible flexfield.
To create and configure the category view object:
This view object must include an attribute called CategoryCode
, which is used to identify the category to which each row of data belongs. This attribute can be entity-based, SQL-derived, or a transient attribute. This attribute should be a VARCHAR2 with a maximum of 800 characters.
Set the CategoryCode
attribute to be a discriminator, with a default value of 0
.
You must ensure that the correct category code is returned for this attribute at runtime.
Create a method called queryCategoryRowByPrimaryKey
that will take in up to five primary key values and return the correct row of the product view object as demonstrated in Example 24-1.
For this example, the view object has a view criteria defined called getItemByKey
, and bind parameters defined for two primary key attributes, called OrganizationIdBind
and InventoryItemIdBind
.
Example 24-1 Query Category Row Method
This method queries the correct category row based on up to five primary key values passed into the method.
To enable searching, there must be a declarative view object for searching over the base application table for which you are implementing the extensible flexfield.
To create declarative view objects for searching:
objectname
VOImpl
view object class to be generated extends the following class:The EFFCategoryViewObjectImpl
class adds the additional WHERE
clause that provides security.
To enable application pages that contain a flexfield usage to display the flexfield's segments, you must configure an application module to support that flexfield usage.
You can use the application module that you have already created for your application, or you can use the standard wizard to create a new application module dedicated to your extensible flexfield.
To the application module's Java client interface, add a method called createDetailRowIfNotExist
, as shown in Example 24-2.
Example 24-2 Java Source for createDetailRowIfNotExist Method
At implementation, the extensible flexfield runtime business component modeler creates a personalization on this application module, and generates an application module instance for each category that the implementer defines.
After you configure business components to support the extensible flexfield, you must complete the flexfield registration process by providing the names of the flexfield's entity object and view object. If you created a translation table for the flexfield, you must also register the entity object over the translation table.
You use procedures from the FND_FLEX_DF_SETUP_APIS
PL/SQL package to register the flexfield entity details. For information about using the procedures, refer to the package specification.
To register extensible flexfield entity details:
Add the flexfield metadata to the FND_DF_ADFBC_USAGES table as specified by the package specification.
For each table defined in FND_DF_TABLE_USAGES, specify the name of the entity object and view object. For the translation table, also specify the name of the entity object over the translation table.
If the consumers want to generate a different set of artifacts for both private and public groups, create an additional set of rows with a different extensible flexfield group name.
Figure 24-7 shows example entries for a flexfield usage. As described in Section 24.4.1, "How to Register Extensible Flexfields," the FND_DF_TABLE_USAGES table contains rows for the base application table (USGA_BASE), the usage base extension table (USGA_EFF_B), and the usage translation table (USGA_EFF_TL). The FND_DF_ADFBC_USAGES table contains two entries for each entry in the FND_DF_TABLE_USAGES table — one for the Private group and one for the Public group. Each row names the entity object and the view object. The rows for the usage translation table also name the entity object over the translation table. Note that not all columns are shown.
Note: In this example, the Public group is necessary because the consuming product requires a parallel set of extensible flexfield artifacts generated for public view objects. If the consumers wanted to support interface loading of extensible flexfield data, you would also add entries for the BASE_INTERFACE, EXTENSION_INTERFACE, and EXTENSION_INTERFACE_TL table types. |
You can incorporate an extensible flexfield into an application with several user interface variations:
Note: When it is not clear what type of data will be seeded for the extensible flexfield, name the containing region, such as a page or a dialog, "Additional Information" or "Additional Information: Object Name" for view-only data, and "Edit Additional Information" or "Edit Additional Information: Object Name" for editable data. If the containing region is a tab, name the tab "Additional Information" or "Edit Additional Information," as appropriate. This convention ensures consistency across Oracle Fusion applications. |
You can incorporate an extensible flexfield into an application as a list of the extensible flexfield pages for a single usage, combined with the contexts for the selected page, and integrated into a single task flow.
To expose the pages and contexts that are associated with one extensible flexfield usage:
Create a task flow to be added to the page that will display the page lists and contexts.
Before you begin:
Create and configure business components to support the extensible flexfield as described in Section 24.5, "Defining and Registering Extensible Flexfield Business Components."
To create the task flow:
EffCategoryPagesBean
managed bean with the class oracle.apps.fnd.applcore.flex.eff.runtime.EffCategoryPagesBean
to the task flow. The scope should be pageFlow
.EffCatPageListContainer
seeded task flow from the ViewController FlexModeler-View library._eff_application_id
: Provide the FND_EF_UI_PAGES_B.APPLICATION_ID
value; for example 10010
_eff_descriptive_flexfield_code
: Provide the FND_EF_UI_PAGES_B.DESCRIPTIVE_FLEXFIELD_CODE
value; for example EGO_ITEM_EFF
_eff_category_code
: Provide the FND_EF_UI_PAGES_B.CATEGORY_CODE
value; for example ELECTRONICS
_eff_usage_code
: Provide the FND_EF_UI_PAGES_B.FLEXFIELD_USAGE_CODE
value; for example, EGO_ITEM_DL
_eff_containerBean
: Provide #{pageFlowScope.EffCategoryPagesBean}
_eff_application_id
: Provide #{pageFlowScope._eff_application_id}
_eff_descriptive_flexfield_code
: Provide #{pageFlowScope._eff_descriptive_flexfield_code}
_eff_category_code
: Provide #{pageFlowScope._eff_category_code}
_eff_usage_code
: Provide #{pageFlowScope._eff_usage_code}
_eff_page_code
: Provide #{pageFlowScope._eff_page_code}
_eff_containerBean
: Provide #{pageFlowScope.EffCategoryPagesBean}
_eff_category_pk1
: (optional) Provide the value for the category's first primary key column, if applicable. For example if the first primary key column is INVENTORY_ITEM_ID, and its value is 149, provide 149
._eff_category_pk2
- (optional) Provide the value for the category's second primary key column, if applicable. For example if the second primary key column is ORGANIZATION_ID, and its value is 204, provide 204
._eff_category_pk3
through pk5
: Provide the value for that primary key column, if applicableAdd the task flow for the extensible flexfield usage to the page that will display the page lists and contexts.
Before you begin:
Create the task flow for the extensible usage as described in Section 24.6.1.1, "Creating a Task Flow for a Single Extensible Flexfield Usage."
To add the task flow to the page:
Render the page to view the user interface.
Before you begin:
To render the page:
Databindings.cpx
file for the project that is consuming the generated extensible flexfield task flows and add the EFFRuntimeAM
data control:inf
directory in the flexfield usage's package directory. For example, if the usage's package is oracle.apps.fnd.applcore.crmdemo.flex
, then create the /oracle/apps/fnd/applcore/crmdemo/flex/inf
directory.FlexfieldPkgInf.xml
in the package's inf
directory and add the following contents to the file.Note: Ensure that this directory only contains the automatically generated flexfield MDS files and the inf directory with the FlexfieldPkgInf.xml file. When you deploy the application, the ANT script that is run by the deployment process will add the required name spaces for the identified package directory to the adf-config file, as shown in the following example.<namespace path="/persdef" metadata-store-usage="mdsRepos"/> <namespace path="/oracle/apps/scm/productCatalogManagement/items/protectedModel/itemRevisionEff"metadata-store-usage="mdsRepos"/> <namespace path="oracle/apps/scm/productCatalogManagement/"items/protectedModel/itemsEffmetadata-store-usage="mdsRepos"/> |
FlexfieldViewController
and that contains flexfield user interface packages, or reference the flexfield user interface packages through a library JAR file. Do not include this deployment profile in the application EAR file. This is just a marker profile.ViewController/public_html
directory and add an inf
subdirectory to the flexfield user interface package directory.FlexfieldViewPkgInf.xml
in the package's inf
directory and add the following contents to the file.Note: The package directory will be added to the adf-config file and thus only should contain the automatically generated flexfield MDS files and the inf directory with this file.Do not repeat these steps for the corresponding |
Application
tag at the top of Databindings.cpx
in order for the application to find the page definitions for the generated user interface artifacts:To expose the complete set of usages, pages, and associated contexts, build an application page comprised of a splitter with two task flows: one containing the list of extensible flexfield usages and their associated flexfield pages on the left, and the other containing the contexts associated with the selected flexfield page on the right.
To build the application page:
The page requires two task flows: one containing the list of extensible flexfield usages and their associated flexfield pages, and the other containing the contexts associated with the selected flexfield page.
Before you begin:
Create and configure business components to support the extensible flexfield as described in Section 24.5, "Defining and Registering Extensible Flexfield Business Components."
To create the two task flows:
PageListTF
.Add the following parameter to the task flow:
ContainerBean
oracle.apps.fnd.applcore.flex.eff.runtime.EffCategoryPagesBean
#{pageFlowScope.ContainerBean}
ContextPageTF
.Create a left fragment for the list of flexfield usages and a right fragment for contexts.
Before you begin:
Create the page list task flow and context container task flow as described in Section 24.6.2.1, "Creating the Task Flows".
To create the fragments:
PageListFrag.jsff
and ContextPageFrag.jsff
.EffCatPageListContainer
seeded task flow from the ViewController Flex-View library to the page list fragment using the parameters listed in Section 24.6.1.1, "Creating a Task Flow for a Single Extensible Flexfield Usage," with the exception that the value for _eff_containerBean
should be pageFlowScope.ContainerBean
instead of pageFlowScope.EffCategoryPagesBean
.EffContextsPageContainer
seeded task flow from the ViewController Flex-View library to the context page fragment using the parameters described in Section 24.6.1.1, "Creating a Task Flow for a Single Extensible Flexfield Usage," with the exception that the value for _eff_containerBean
should be pageFlowScope.ContainerBean
instead of pageFlowScope.EffCategoryPagesBean
.Use the task flows that you just created in Section 24.6.1.1, "Creating a Task Flow for a Single Extensible Flexfield Usage" to add the usage and context lists to the page.
Before you begin:
PageListFrag.jsff
and ContextPageFrag.jsff
as described in Section 24.6.2.2, "Creating the Fragments."To use the task flows in the page:
pageFlowScope.EffCategoryPagesBean
for the ContainerBean parameter to the task flows.You can incorporate an extensible flexfield into an application as a single task flow that presents a set of contexts associated with a specified extensible flexfield page, which will be identified before the application page initializes.
To expose one extensible flexfield page and its contexts, build an application page including a splitter with a single task flow as a dynamic region on the right, containing the contexts associated with a selected flexfield page. This variation does not present an extensible flexfield usage or page list task flow in the user interface.
Build an application page with a single task flow as a dynamic region on the right, and containing the context that was passed. This variation does not present an extensible flexfield usage or page-list task flow in the user interface.
Before you begin:
Create and configure business components to support the extensible flexfield as described in Section 24.5, "Defining and Registering Extensible Flexfield Business Components."
To expose the extensible flexfield context:
PageListTF.xml
.EffCategoryPagesBean
, to this task flow. It should have a class of pageFlowScope.EffCategoryPagesBean
and a scope of pageFlow
.PageListFrag.jsff
, and put the EffCatPageListContainer on the fragment using the parameters described in previous sections.Place the task flow on any page on which you want the page list to appear.
ContextsTF.xml
.ContextsFrag.jsff
.ContextsTF.xml
as a dynamic region onto this page at the correct location.ContextsRenderingBean.java
, and allow it to remain as a backing bean.taskFlowId
with the appropriate string:This provides the call back and the conditions for the refresh of the contexts region.
When you run the page and click on the page link, the call back to refreshRegion
will look up the contexts task flow ID and enable a refresh of the dynamic region.
Any implementation of flexfields in Oracle Fusion Applications typically requires application seed data, which is the essential data to enable flexfields to work properly in applications. Flexfield seed data can be uploaded and extracted using Seed Data Loader.
After you complete the registration process described in Section 24.4.1, "How to Register Extensible Flexfields," your flexfield seed data consists of the information that you registered for your flexfield, such as the tables and columns reserved for your flexfield. For a customer flexfield, the seed data contains only this registration data.
If your flexfield is a developer flexfield, you also serve the role of the implementer. In addition to the registration data, your flexfield seed data might include contexts, segments, and value sets that you have defined for your flexfield.
For information about extracting and loading seed data, see Chapter 55, "Initializing Oracle Fusion Application Data Using the Seed Data Loader".
Teams can customize the extensible flexfields base business component modeler and user interface modeler to add additional product-specific logic.
To extend the extensible flexfield runtime business component modeler, override the EFFBCModelerFactory.getCustomEFFBCModeler
method, shown in Example 24-3, in the custom extensible flexfield runtime business component modeler factory.
Example 24-3 getCustomEFFBCModeler Method
An example of the PIMBCModelerFactory.java
override for this method is shown in Example 24-4.
Example 24-4 PIMBCModelerFactory.java Override
If the user interface artifacts that are generated for an extensible flexfield business component do not fulfill application requirements, you can create wrapper implementation classes for the framework's customizer interfaces. These wrapper implementation classes enable some control over the XML that the modeler generates for the user interface artifacts just before it persists the generated task flows and JSF fragments. The implementation classes are in the oracle.apps.fnd.applcore.flex.uimodeler.customizers
package.
To customize an extensible flexfield business component's generated user interface artifacts:
You can extend the default customizer implementation classes from the oracle.apps.fnd.applcore.flex.uimodeler.customizers
package to customize the following user interface artifacts:
To customize the JSF fragment for a single row context, create a wrapper class for the SingleRowContextRegionCustomizerImpl
implementation class and override the customizeGeneratedSingleRowContextFragment
method.
To customize the JSF fragment for a multiple row context, create a wrapper class for the MultiRowContextRegionCustomizerImpl
implementation class and override the customizeGeneratedMultiRowContextFragment
method.
To customize which segment components in the generated context task flow are read-only for single and multi-row contexts, create a wrapper class for the ContextComponentsCustomizerImpl
implementation class and override the getAtributeComponentReadonlyELExpression
method. This method returns the value the readOnly
property a given segment component in the context task flow, as shown in Example 24-5.
Example 24-5 Sample getAtributeComponentReadonlyELExpression Method
To customize which page links in a generated links task flow are rendered, create a wrapper class for the PageListCustomizerImpl
implementation class and override the getPageLinkRenderedProperty
method. This method returns the value of the rendered
property for a page link.
To customize which context task flows are rendered in a page task flow, create a wrapper class for the ContainerPageCustomizerImpl
implementation class and override the getContextTFRenderedELExpression
method. This method returns the value of the region
tag for a context task flow.
To customize the search task flow, create a wrapper class for the SearchRegionCustomizerImpl
implementation class. Example 24-5 shows the ways in which you can customize the search task flow and the methods to override to perform the customizations.
Table 24-4 Methods to Override to Customize the Search Task Flow
Customization | Method to Override | Notes |
---|---|---|
Set the list of actions required in the search results table. |
| Use the |
Set the managed bean for the generated task flow. |
| The manage bean must extend |
Alter properties in the application table component for search results. |
| The method returns a hashmap of name-value pairs of the properties to be set. |
Alter properties in the ADF table component that is in the application table component for search results. |
| The method returns a hashmap of name-value pairs of the properties to be set, as shown in Example 24-6. |
Customize the query panel properties. |
| The method returns a hashmap of name-value pairs of the properties. |
Get a handle to the DOM object of the generated search region and its |
| You only should use DOM objects to customize generated artifacts if there is no other way to perform for the customization. |
Customize the |
| This method returns a JSP Expression Language (EL) expression. |
Customize the properties on the search results table column for an |
| The method returns a hashmap of name-value pairs of the properties |
Set the task flow data control scope to shared. |
| The task flow can be generated with either a SHARED scope or a ISOLATED scope. The default is ISOLATED. Override this method to set the scope to SHARED. |
Add custom toolbar components. |
| Use the |
Set the default search criteria on the search page as it is loaded. |
| |
Customize the generated search task flow XML. |
| This method returns a handle to the DOM object for the generated task flow XML. You only should use DOM objects to customize generated artifacts if there is no other way to perform the customization. |
Example 24-6 Sample getADFTablePropertiesMap Method
If you have created customizer wrapper classes for a flexfield business component, you must create a wrapper of the default UIModelerMetadataProviderImpl
implementation for that business component. This class is in the oracle.apps.fnd.applcore.flex.uimodeler
package.
Override the appropriate methods in the following list to return the names of the custom wrapper classes. For example, if you created a custom wrapper class to customize the search task flow, you would override the getSearchRegionCustomizerClassName
method, as shown in Example 24-7. You only need to override the methods that correspond to the classes for which you have created custom wrappers. In the case of a SearchRegionCustomizerImpl
custom wrapper, the method that you override depends on whether the wrapper customizes the interface search UI or the regular search UI. If the wrapper customized the interface search UI, override the getInterfaceSearchRegionCustomizer
method. Otherwise, override the getSearchRegionCustomizerClassName
.
getContextComponentCustomizerClassName
getContainerPageCustomizerClassName
getPageListCustomizerClassName
getSearchRegionCustomizerClassName
getInterfaceSearchRegionCustomizer
getSingleRowContextRegionCustomizerClassName
getMultiRowContextRegionCustomizerClassName
Example 24-7 Sample getSearchRegionCustomizerClassName Method
In order for the user interface modeler to use your custom wrapper classes at runtime, you must register the metadata provider class. To register the class, set the ADFUI_MODELER column for the business component's row in the FND_DF_FLEXFIELDS_B table to the name of the UIMetadataProviderImpl
implementation class that you created for the business component.
After implementing a flexfield, you can define seed or test value sets for the flexfield, and you can create a model that you can use to test it. For more information, see Section 25.1.2, "How to Test Flexfields".
The consumers of an extensible flexfield might need to programmatically access an extensible flexfield, such as to further process the data that has been entered for an extensible flexfield, to add additional validation, or to perform change control. The oracle.apps.fnd.applcore.flex.runtime.util.common.ExtensibleFlexfieldUtil
package provides methods for obtaining the handles to the artifacts that are generated in a customer's instance.
You can use the APIs in oracle.apps.fnd.applcore.flex.runtime.util.common.ExtensibleFlexfieldUtil
to get the names of the following generated extensible flexfield Java business objects (JBOs):
getContextEoName
, which is shown in Example 24-8.getContextVoName
, which is shown in Example 24-9.getCategoryContextAssocName
, which is shown in Example 24-10.getContextAttributeName
, which is shown in Example 24-11.getSearchVoAttributeNames
, which is shown in Example 24-13.Example 24-8 Get EFF Context Entity Object Name
Example 24-9 Get EFF Context View Object Name
Example 24-10 Get Name for EFF Context Entity Association Between Base and Extension Entity Objects
Example 24-11 Get Attribute Name for EFF Context Entity/View Object Given Segment Code (FND_DF_SEGMENTS_VL.SEGMENT_CODE)
Example 24-12 EFF Category APIs
Example 24-13 Get Hash Map of View Object Attribute Names for EFF Search View Object
This chapter discusses how to test your flexfield business components in Oracle Fusion applications using Integrated WebLogic Server (WebLogic Server), how to deploy your flexfield application to a standalone WebLogic Server instance in order to test the full lifecycle, how to regenerate flexfield business components programmatically, and how to make flexfield setup task flows accessible from Oracle Fusion Functional Setup Manager.
This chapter includes the following sections:
Once your flexfields are available for testing, you can generate test business components and use a Metadata Archive (MAR) profile to run the application.
Before testing a flexfield in your application, you must ensure that the ADF Business Components model underlying the flexfield is complete. All required entities, view links, application modules, and so on must exist either in your project, or in a library that is included in your project. Ensure that the ApplicationDB connection points to the database that contains the metadata for the flexfield that you want to test.
You can make a flexfield available for testing by doing one of the following:
If you use the Create Flexfield Business Components wizard, select the Tester role on the Role page of the wizard, and specify a location for the generated business components. For more information about using the Create Flexfield Business Components wizard, see the appropriate section for the type of flexfield that want to test:
It is assumed that the flexfield entity usage has been configured with the settings required to create the business components without developer inputs. In this case, only the following information is needed:
You test a flexfield by running the application using a MAR profile. The MAR profile that you use points to the test business component artifacts.
Before you begin:
Create the test business component artifacts for the flexfield, as described in Section 25.1.1, "How to Make Flexfields Available for Testing."
To test a flexfield:
Caution: Be sure to select the correct item. You must click the root package of the flexfield to be tested, so that only the objects below the level of that package come from the test directory. The root package should match the package that you previously registered with your ADF Business Components usage. As soon as you select the package, JDeveloper automatically selects the parents all the way to the top of the folder hierarchy, but that does not mean everything under |
Note: You will not be able to run application module testers with the test business components because deployment is not needed to run a tester. If you want to run application module testers with the business components that you created for testing, you can create a temporary user library that points to the test components, and include the library in your project as the first library. |
Once you have completed the ADF Business Components models underlying the flexfields, and all required entities, view links, application modules, and so on exist either in your project, or in a library that is included in your project, and you have tested your flexfields, you are ready to package and deploy the application to a standalone WebLogic Server environment for full lifecycle testing.
To complete the deployment process for an application that has flexfields:
Just as with other Oracle Fusion applications, you must generate an EAR file for deployment to a standalone WebLogic Sever. Before generating the EAR file, you must enable the flexfield packaging plugin.
The flexfield packaging plugin is required to package flexfields from either JDeveloper or the command line. This plugin maps name spaces to the MDS partition.
You enable the flexfield packaging plugin for your working environment by setting the FLEX_DEPLOY_ADDIN_ENABLED
environment variable set to true
. For example, in a C shell environment you would run the following command:
To make the flexfield artifacts available at runtime, you package them into the application's application enterprise archive (EAR) file, which subsequently can be installed on the target server.
Before you begin:
Enable the flexfield packaging plugin as described in Section 25.2.1.1, "Enabling the Flexfield Packaging Plugin."
To generate an EAR file:
FLEX_DEPLOY_ADDIN_ENABLED
environment variable has been set to true
, complete one of the following steps:Note: You might need to restart JDeveloper to ensure that the FLEX_DEPLOY_ADDIN_ENABLED environment variable has taken effect and that the flexfield packaging plugin is enabled.When the plugin is enabled in JDeveloper, you will see log entries with a |
For more information about generating EAR files from JDeveloper, see "Deploying Fusion Web Applications" in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
ojdeploy
command:adf-config.xml
file to verify that the flexfield packaging plugin added the flexfield packages to the sessiondef-config
tag and mapped all the flexfield ADF Business Components packages to a metadata-store-usages
tag. Example 25-1 shows sample tag entries.Example 25-1 adf-config.xml Flexfield Tag Entries
Deploying a flexfield application to a standalone WebLogic Server environment requires additional steps to ensure that all the flexfields' customization metadata is stored in the proper MDS partition.
The process for deploying a flexfield application includes the following tasks:
The Metadata Services (MDS) repository is used to store information that enables user customization of applications. The flexfield packaging process requires a partition in the MDS repository that is associated with the application. You can create a partition specifically for flexfields or you can use the partition for other purposes as well. However, all Oracle Fusion applications and setup applications must use the same MDS partition for all flexfield artifacts.
If the application's MDS repository does not have the desired partition, you use the WebLogic Scripting Tool (WLST) to create one.
For more information about creating and registering MDS repositories and working with the WebLogic Scripting Tool, see the Managing the Metadata Repository chapter in the Oracle Fusion Middleware Administrator's Guide.
Before you begin:
Log into the administration console for the WebLogic Server instance and verify that a JDBC data source exists for the MDS repository. This data source is typically named mds-ApplicationDBDS
. Note that the URL for administration is commonly set to http://localhost:7101/console
.
For more information about managing JDBC data sources, see the "Creating and Managing JDBC Data Sources" section in the Oracle Fusion Middleware Administrator's Guide.
To Create an MDS Partition:
On Windows, use wlst.cmd
.
The values must be wrapped in single-quotes. The wls_uri value is typically T3://localhost:7101
.
The mds_jdbc_data_source is the JDBC data source for the MDS repository. The partition_name can be any string. You might want to consult with your operations team or release team for suggested partition names.
To configure the application to store the flexfield customization metadata in the desired MDS partition, you use the flexfield packaging plugin to update the application's adf-config.xml
file with the partition name.
Before you begin:
FLEX_DEPLOY_ADDIN_ENABLED
environment variable is set to true
in your working environment, as described in Section 25.2.1.1, "Enabling the Flexfield Packaging Plugin."To map the EAR file to the MDS partition:
On Windows, use wlst.cmd
.
The values must be wrapped in single-quotes. The wls_uri value is typically T3://localhost:7101
.
The mds_jdbc_data_source is the JDBC data source for the MDS repository. The partition_name is the name of the MDS partition that you are using to store the flexfield customization metadata for all your Oracle Fusion applications. You might need to ask your operations team or release team for the partition name. The mds_datasource_JNDI is the JNDI name for the MDS data source, such as jdbc/mds/mds-ApplicationMDSDBDS
.
adf-config.xml
file to verify that the flexfield packaging plugin updated the metadata-store-usage
tags to add the partition name. Example 25-2 shows sample tag entries.Example 25-2 adf-config.xml metadata-store-usage tags with Added Partition Name
In order to perform a full lifecycle test, you need to configure the flexfields in the same manner as an implementer would configure them. You use the ApplCore Setup application to complete the flexfield configurations. Just as with the product application's EAR file, you must configure the ApplCore Setup application to store the flexfield customization metadata in the desired MDS partition.
Before you begin:
FLEX_DEPLOY_ADDIN_ENABLED
environment variable is set to true
in your working environment, as described in Section 25.2.1.1, "Enabling the Flexfield Packaging Plugin."FndSetup.ear
file. This file can typically be found in the $JDEV_HOME/jdeveloper/jdev/oaext/external
directory.To map the ApplCore Setup EAR file to the MDS partition:
On Windows, use wlst.cmd
.
The values must be wrapped in single-quotes. The wls_uri value is typically T3://localhost:7101
.
The mds_jdbc_data_source is the JDBC data source for the MDS repository. The partition_name is the name of the MDS partition that you are using to store the flexfield customization metadata for all your Oracle Fusion applications. You might need to ask your operations team or release team for the partition name. The mds_datasource_JNDI is the JNDI name for the MDS data source, such as jdbc/mds/mds-ApplicationMDSDBDS
.
Before you deploy the ApplCore Setup EAR file, ensure that it contains all the model libraries that are required for your product application.
To include the product application model libraries in the ApplCore Setup EAR file:
FndSetup.ear
file. This file can typically be found in the $JDEV_HOME/jdeveloper/jdev/oaext/external
directory.APP-INF/lib
folder does not exist, execute the following commands to create it.APP-INF/lib
folder.tmpDir
folder.Once you have mapped the applications as described in Section 25.2.2.2, "Mapping the EAR File to the MDS Partition" and Section 25.2.2.3, "Mapping the ApplCore Setup Application to the MDS Partition" and you have included the project model libraries in the ApplCore Setup Application as described in Section 25.2.2.4, "Including Product Application Model Libraries in the ApplCore Setup EAR File," you can deploy the applications to the appropriate domains for your topology.
For information about creating domains, see "Creating a WebLogic Domain" in Oracle Fusion Middleware Creating Domains Using the Configuration Wizard. For information about installing EAR files, see "Install an Enterprise Application" in the Oracle Fusion Middleware Oracle WebLogic Server Administration Console Online Help.
The flexfield application is configured to obtain the flexfield customization metadata from the MDS partition. However, no one can log into the application until the application has gone through an initial process to translate the flexfield metadata into artifacts that are stored in the partition. This task must be completed, even if there is no customization metadata yet. You use the WLST tool to perform this task.
Before you begin:
Deploy the product and setup applications, as described in Section 25.2.2.5, "Deploying the Product and Setup Applications to the Server Domains."
To prime the MDS partition with flexfield metadata artifacts:
deployFlexForApp
WLST command as described in Section 25.3.2, "How to Use the deployFlexForApp Command."Customers will use the Manage Flexfields tasks to configure the flexfields. For testing purposes, you can use the same tasks in the ApplCore Setup application. For information about using these tasks to configure the flexfields, see the "Using Flexfields for Custom Attributes" chapter in the Oracle Fusion Applications Extensibility Guide.
When you have configured a flexfield, click the Deploy button to deploy the configuration to the product application. Because flexfield artifacts are cached per user session, you must log out and log back in to see the deployed configuration.
You can use the Manage Key Flexfields, Manage Descriptive Flexfields, and Manage Extensible Flexfields tasks to deploy flexfields, as described in the "Using Flexfields for Custom Attributes" chapter in Oracle Fusion Applications Extensibility Guide. In addition, the following WebLogic Server Tool commands are available for priming the MDS repository with seeded flexfield artifacts and for deploying flexfields:
deployFlexForApp
: Use to prime the MDS repository with seeded flexfield artifacts. Deploys all flexfields that do not have a status of DEPLOYED. You can also use this comment to deploy all flexfields regardless of their status by setting the force parameter to 'true'
.deployFlex
: Use to deploy a single flexfield. Deploys the flexfield regardless of status.deleteFlexPatchingLabels
: Use to inquire about or delete all flexfield patching labels.For information about using the WLST command-line scripting interface, see Oracle Fusion Middleware Oracle WebLogic Scripting Tool.
Upon completion, the WLST flexfield commands output a report. As shown in Example 25-3, the report provides the following information for every flexfield that is processed:
Example 25-3 WLST Flexfield Command Output
If errors are encountered, the report provides a deployment error message for the flexfield and lists the usages for which the errors were encountered, as shown in Example 25-4.
Example 25-4 WLST Flexfield Command Output with Errors
If a runtime exception occurs, the output displays the traceback information.
Before you can use the WLST flexfield commands, you must prepare your environment. The commands will not work until these steps are completed.
To prepare your environment for WLST flexfield commands:
The deployFlexForApp
command translates the product application's seeded flexfield metadata into artifacts in the MDS repository. This command must be run after you configure your application to read the flexfield artifacts from the MDS repository and before you log into the application for the first time, even if there is no seeded flexfield metadata. For more information, see Section 25.2.2.6, "Priming the MDS Partition with Configured Flexfield Artifacts."
This command does not deploy flexfields that have a status of DEPLOYED unless the force parameter is set to 'true'
.
Before you begin:
To use the deployFlexForApp command:
On Windows, use wlst.cmd
.
The values must be wrapped in single-quotes. The wls_uri value is typically T3://localhost:7101
.
Replace product_application_shortname with the application's short name wrapped in single-quotes. In a multi-tenant environment, replace enterprise_id with the Enterprise ID to which the flexfield is mapped. Otherwise, replace with 'None'
or do not provide a second argument.
To deploy all flexfields regardless of their deployment status, set force to 'true'
(the default is 'false'
). If you want to deploy all flexfields in a single-tenant environment, you either can set enterprise_id to 'None'
, or you can use the following signature:
Tip: The application's short name is the same as the application's module name. For more information, see Appendix A, "Working with the Application Taxonomy." |
The deployFlex
command deploys the specified flexfield to the specified product application. Deploys the flexfield regardless of status.
Before you begin:
Prepare your environment as described in Section 25.3.1, "How to Prepare Your Environment to Use the WLST Flexfield Commands."
To use the deployFlex command:
On Windows, use wlst.cmd
.
The values must be wrapped in single-quotes. The wls_uri value is typically T3://localhost:7101
.
Set the command parameters as follows:
DFF
, KFF
, or EFF
.The values must be wrapped in single-quotes.
Whenever a deployPatchedFlex()
WLST command is used to deploy flexfield changes to MDS, an MDS label is created in the format FlexPatchingWatermark
date+time. You use the deleteFlexPatchingLabels
command to inquire about and delete these labels.
Before you begin:
Prepare your environment as described in Section 25.3.1, "How to Prepare Your Environment to Use the WLST Flexfield Commands."
To use the deleteFlexPatchingLabels command:
On Windows, use wlst.cmd
.
The values must be wrapped in single-quotes. The wls_uri value is typically T3://localhost:7101
.
infoOnly
argument to output a list of flexfield patching labels.The command outputs a list of patching labels similar to the following example.
Example 25-5 deleteFlexPatchingLabels Information Only Output
After you complete the flexfield development activities to incorporate a flexfield into your application, you might need to update the descriptive flexfield implementation in your application at a later time by repeating the process of creating the flexfield business components.
Rather than recreate the flexfield business components manually using the Create Flexfield Business Components wizard, you can instead invoke the flexfield business component modeler programmatically using a Java program. In this way the creation of the business components can be automated without user interaction.
The flexfield business component modeler can be invoked trough the Java API only in a deployed web application. You must have the following:
You can either create a new application to invoke the modeler, or if you already have a web application for testing, you can include the Java code required for invoking the modeler in your application. The deployment process is the same as any other web application.
Your project must be set up correctly for the program to run successfully. The project configuration requirements are the same as that for the Create Flexfield Business Components wizard.
Example 25-6 demonstrates appropriate Java code for updating the business components for a descriptive flexfield.
Example 25-6 Java Code for Invoking the Flexfield Business Component Modeler
Examine BCModeler.Option
for usage-specific settings.
Every Oracle Fusion application registers ADF task flows for setup activities with a product called Oracle Fusion Functional Setup Manager. For example, an HR application can register setup activities such as "Create Employees" and "Manage Employee Tree Structure." Implementers and administrators use these registered task flows, which are accessed from the Fusion Applications Setup and Maintenance work area, to configure the applications by defining custom configuration templates or tasks based on their business needs.
Note: The registration application task flow is not available for extensible flexfields and key flexfields. You must use the FND_FLEX_DF_SETUP_APIS PL/SQL to register extensible flexfields as described in Chapter 24, "Defining and Registering Extensible Flexfields." You must use the FND_FLEX_KF_SETUP_APIS PL/SQL API to register key flexfields as described in Section 23.2.1, "How to Develop Key Flexfields." |
Table 25-1 lists the flexfield setup task flows. To make these task flows available to developers, implementers, or administrators, you register the appropriate task. For more information, see the Oracle Fusion Applications Common Implementation Guide.
For information about using the tasks for managing the flexfields, see the "Using Flexfields for Custom Attributes" chapter in the Oracle Fusion Applications Extensibility Guide. For more information about the Register Descriptive Flexfields task, see Section 22.2.2, "How to Register and Define Descriptive Flexfields."
Table 25-1 Flexfields Task Flows and Parameters
Task Flow Name | Task Flow XML | Parameters Passed | Behavior |
---|---|---|---|
Register Descriptive Flexfields | /WEB-INF/oracle/apps/fnd/applcore/flex/dff/ui/publicFlow/RegisterDescriptiveFlexfieldsTF.xml#RegisterDescriptiveFlexfieldsTF | To invoke search mode: mode='search' To restrict search mode to descriptive flexfields belonging to a particular product module: mode='search' moduleType='moduletype' moduleKey='modulekey' To invoke edit mode for a specific descriptive flexfield: mode='edit' descriptiveFlexfieldCode=dffcode applicationId=appid To optionally specify a page heading for the task flow: pageTitle='titlestring' | Search and edit descriptive flexfield registration metadata. |
Manage Descriptive Flexfields | /WEB-INF/oracle/apps/fnd/applcore/flex/dff/ui/publicFlow/ManageDescriptiveFlexfieldsTF.xml#ManageDescriptiveFlexfieldsTF | To invoke search mode: mode='search' To restrict search mode to descriptive flexfields belonging to a particular product module: mode='search' moduleType='moduletype' moduleKey='modulekey' To invoke edit mode for a specific descriptive flexfield: mode='edit' descriptiveFlexfieldCode=dffcode applicationId=appid To optionally specify a page heading for the task flow: pageTitle='titlestring' | Search and edit descriptive flexfield configuration. |
Manage Extensible Flexfields | /WEB-INF/oracle/apps/fnd/applcore/flex/dff/ui/publicFlow/ManageExtensibleFlexfieldsTF.xml#ManageExtensibleFlexfieldsTF | To invoke search mode: mode='search' To restrict search mode to extensible flexfields belonging to a particular product module: mode='search' moduleType='moduletype' moduleKey='modulekey' To invoke edit mode for a specific extensible flexfield: mode='edit' extensibleFlexfieldCode=effcode applicationId=appid To optionally specify a page heading for the task flow: pageTitle='titlestring' | Search and edit extensible flexfield configuration. |
Manage Key Flexfields | /WEB-INF/oracle/apps/fnd/applcore/flex/kff/ui/publicFlow/ManageKeyFlexfieldsTF.xml#ManageKeyFlexfieldsTF | To invoke search mode: mode='search' To restrict search mode to key flexfields belonging to a particular product module: mode='search' moduleType='moduletype' moduleKey='modulekey' To invoke edit mode for a specific key flexfield: mode='edit' keyFlexfieldCode=kffcode applicationId=appid To optionally specify a page heading for the task flow: pageTitle='titlestring' | Search and edit key flexfield configuration. |
Manage Value Sets | /WEB-INF/oracle/apps/fnd/applcore/flex/vst/ui/publicFlow/ManageValueSetsTF.xml#ManageValueSetsTF | To invoke search mode for any value set: mode='search' To restrict search mode to value sets belonging to a particular product module: mode='search' moduleType=moduletype moduleKey=modulekey To invoke edit mode for a specific value set: mode='edit' valueSetCode=vscode To optionally specify a page heading for the task flow: pageTitle='titlestring' | Search and edit flexfield value sets. |
For related information about functional security actions and roles based on task flows, see Chapter 49, "Implementing Function Security".
This part of the Developer's Guide provides information about the Oracle Enterprise Crawl and Search Framework (ECSF). Oracle Enterprise Crawl and Search Framework (ECSF) is an Oracle Fusion Middleware search framework that enables you to quickly expose application context information on various business objects to enable full-text transactional search.
The Getting Started with Oracle Enterprise Crawl and Search Framework chapter discusses how to set up ECSF.
The Creating Searchable Objects chapter discusses how to create sets of data that make view objects available for full text search.
The Configuring ECSF Security chapter discusses how to configure security for ECSF.
The Validating and Testing Search Metadata chapter discusses how to validate and test the search metadata.
The Deploying and Crawling Searchable Objects chapter discusses how to deploy the sets of data to the ECSF application and verify the crawl.
The Advanced Topics for ECSF chapter discusses the additional functionality that ECSF offers to enhance the search experience.
This part contains the following chapters:
This chapter provides an introduction to Oracle Enterprise Crawl and Search Framework (ECSF). It also describes how to set up ECSF.
This chapter includes the following sections:
Oracle Enterprise Crawl and Search Framework (ECSF) is an Oracle Fusion Middleware search framework that enables you to quickly expose application context information on various business objects to enable full-text transactional search.
For more information, see the "Managing Search with Oracle Enterprise Crawl and Search Framework" chapter in the Oracle Fusion Applications Administrator's Guide.
The ECSF framework abstracts an underlying search engine and provides a common set of application programming interfaces (APIs) for developing search functionalities. ECSF serves as an integration layer between the search engine and the Oracle Fusion applications. Figure 26-1 illustrates the architecture of the ECSF framework.
ECSF includes the following high-level components:
ECSF integrates with the Oracle Secure Enterprise Search (Oracle SES) engine to support application search. Oracle SES provides capabilities for crawling and indexing the metadata and objects exposed by ECSF. The Security Plug-in and Crawler Plug-in are modules on Oracle SES that interface with ECSF.
Searchable Object Manager, serving as a metadata manager, manages searchable objects and provides the runtime interface for accessing these objects. At runtime, the Searchable Object Manager loads the searchable objects from persistent storage, validates the searchable object definitions, and provides the searchable objects to the Crawlable Factory component of the Data Service.
The Searchable Object Manager is also responsible for the life cycle management of searchable objects, which administrators can deploy, customize, and enable or disable via the Fusion Applications Control or the ECSF Command Line Administration Utility.
The Search Designer is a page in Oracle JDeveloper 11g that provides the interface for defining the metadata that describes the business objects to be indexed. You can also use this design interface to specify the security mechanism used to protect the data, as well as define the searchable object search characteristics, which include Advanced Search, Faceted Navigation, and Actionable Results.
The Semantic Engine leverages the semantic information of searchable object definitions to create context around the search. It achieves this by interpreting the searchable object definitions with relation to the runtime user information during both crawl and query time. Runtime user information may include the following:
The Fusion Applications Control is an Oracle Enterprise Manager extension that provides a user interface for registering searchable objects in the ECSF schema in the Oracle Fusion Applications database, as well as for administering the runtime parameters of ECSF, the target search engine, and the configuration of parameters.
The ECSF Command Line Administration Utility is a standalone command line interface that provides a user interface for registering searchable objects in the ECSF schema in the Oracle Fusion Applications database. You can also use this tool for configuring and administering ECSF without external dependencies on Oracle Enterprise Manager.
The Security Service is the runtime server component responsible for providing security information to SES. During query time, this service retrieves the security keys of the user performing the search and passes them to Oracle SES, where they are used to filter the query results.
The Security Service server component is also invoked during crawl time to add security information (access control lists) to data before inserting or creating indexes on the search engine (Oracle SES). An access control list (ACL) is a list that identifies the users who can access the associated object and that specifies the user's access rights to that object. The ACL values generated by the Security Service during crawl time should match the corresponding keys generated during query time.
Note: In ECSF, the generic term ACL (access control list) is used to describe how Oracle SES and ECSF pass security information and perform security checks by using the information described in the ACL. |
The Security Service component is implemented as a security engine with a plug-in interface. The security plug-in determines the format of the ACL keys. For all custom security models, a new Security Plug-in must be implemented. Security Service uses Oracle Platform Security for Java to authenticate users and call the Security Plug-in to retrieve security values for a given searchable object.
For more information about security for ECSF, see Chapter 28, "Configuring ECSF Security".
Data Service is the primary data interface, based on a proprietary Really Simple Syndication (RSS) feed format, between ECSF and the search engine. In addition to supporting the flow of metadata between ECSF and the search engine, Data Service supports attachments, batching, and error handling.
Data Service authenticates each Oracle SES crawl request by using Oracle Platform Security for Java to validate the user credentials and permissions for crawling the data source.
The Crawlable Factory component, part of Data Service, determines how searchable objects are broken down and manages the construction of RSS feeds to the search engine.
The Query Service provides a search interface for the applications UI and handles all search requests. This service performs query rewrite, parameter substitution, and other preprocessing operations before invoking the underlying configured search engine.
Search results are also serviced via this service. Hooks are provided to preprocess and postprocess data, which facilitates the capability to filter search results.
Oracle SES enables a secure, uniform search across multiple enterprise repositories. ECSF integrates with Oracle SES technology to provide full-text search functionality in Oracle Fusion Applications.
For more information about Oracle SES, see Oracle Secure Enterprise Search Administrator's Guide.
Note: The application server space is demarcated to identify that ECSF runs in a separate application server, outside the search engine. It is recommended, for performance reasons, that each search engine instance runs on separate hardware. |
Oracle SES provides an API for writing security plug-ins (or connectors) in Java. With this API, you can create a security plug-in to meet your requirements. ECSF Security Service interfaces with this security plug-in. The Security Plug-in invokes the Security Service to retrieve keys, to which the user has access, for filtering the results that are delivered to the ECSF query service. A proxy user must be set up on the search engine in order to invoke the Security Service. The proxy user must have security privileges for the Oracle Fusion applications. For more information about security for ECSF, see Chapter 28, "Configuring ECSF Security".
The Crawler Plug-in is a search engine (Oracle SES) module that implements the modified RSS feed format between ECSF and Oracle SES. This component deserializes the data sent from ECSF, via the Data Service component, and interfaces with the Oracle SES components that creates the indexes.
You can use the ECSF Command Line Administration Utility to quickly test and manage the searchable objects without having to use Oracle Enterprise Manager Fusion Applications Control.
Note: Administrators should use Fusion Applications Control to manage the life cycle of searchable objects in the production environment. |
Before you can run the utility, you must complete the following setup requirements:
deploy
, start schedule
, etc.), the engine instance must be set up correctly so that its parameters have the required information. For more information, see the "Managing Search with Oracle Enterprise Crawl and Search Framework" chapter in the Oracle Fusion Applications Administrator's Guide.After you have set up the ECSF Command Line Administration Utility, you can run the utility by any of the following ways:
runCmdLineAdmin.bat
script (Windows)runCmdLineAdmin.sh
script (Linux)java oracle.ecsf.cmdlineadmin.CmdLineAdmin
Enter a username and password when prompted.
Note: If you enter an invalid username and password, you can either reconnect manually by using the connect command, or exit the ECSF Command Line Administration Utility (type exit or press Ctrl-C) and try again.When you update passwords in the Lightweight Directory Access Protocol (LDAP) credential store from the ECSF Command Line Administration Utility, the |
All commands, responses, and error messages in the ECSF Command Line Administration Utility are logged.
To exit the ECSF Command Line Administration Utility, enter the exit
command at the prompt.
Make the searchable objects accessible to the ECSF Command Line Administration Utility by adding the ADF library JAR file containing the view object and entity object definitions to its class path.
The ECSF Command Line Administration Utility needs the path of the JAR file containing the searchable objects. These metadata objects are validated during register and unregister operations.
You can find the unpacked EAR files containing the searchable object JAR files for the search applications in the following locations:
/net/mount1/appbase/fusionapps/applications/fscm/deploy/EarFscmSearch.ear/APP-INF/lib/
searchable_object_jar_file
/net/mount1/appbase/fusionapps/applications/crm/deploy/EarCrmSearch.ear/APP-INF/lib/
searchable_object_jar_file
/net/mount1/appbase/fusionapps/applications/hcm/deploy/EarHcmSearch.ear/APP-INF/lib/
searchable_object_jar_file
To add the ADF library JAR file containing the view object and entity object definitions to the class path for the ECSF Command Line Administration Utility, you must first create the ADF library. For information, see the "Adding ADF Library Components into Projects" section in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
The application JAR file, which contains the searchable objects that are defined in your application, is written to the deploy
directory of the project.
In order to deploy or undeploy a searchable object, a JAR file containing the searchable object must be specified in the class path of the ECSF Command Line Administration Utility. For information, see Section 26.2.2, "How to Set the Class Path".
If you are deploying searchable objects from multiple applications, you must create a JAR file for each of those applications in order to add the searchable objects to the class path.
In order for the ECSF Command Line Administration Utility to run, the class path must contain the required Oracle classes. Modify and run scripts to set the class path, as well as optional connection information, and run the ECSF Command Line Administration Utility.
Note: If you receive a java.lang.ClassNotFoundException exception, then add the JAR file containing that class to ADMIN_CP in the script. |
The ECSF Command Line Administration Utility references the class path to obtain the location of Oracle Library home, Java home, Oracle WebLogic Server home, and the JAR files needed for the ECSF Command Line Administration Utility operations.
Modify and run the runCmdLineAdmin.bat
script to set the class path in a Windows environment.
To set the class path in Windows:
runCmdLineAdmin.bat
script from MW_HOME
/Oracle_atgpf1/ecsf/modules/oracle.ecsf_11.1.1/admin
.set ORACLE_LIBRARY_HOME=SET_ORACLE_LIBRARY_HOME
and replace SET_ORACLE_LIBRARY_HOME
with the ATGPF shiphome directory, for example, set ORACLE_LIBRARY_HOME=C:\mw_home\oracle_common
.set ATGPF_LIBRARY_HOME=SET_ATGPF_LIBRARY_HOME
and replace SET_ATGPF_LIBRARY_HOME
with the ATGPF shiphome directory, for example, set ATGPF_LIBRARY_HOME=C:\mw_home\Oracle_atgpf1
.Specify the ATGPF Library home directory path by locating the line set ATGPF_LIBRARY_HOME=SET_ATGPF_LIBRARY_HOME
and replace SET_ATGPF_LIBRARY_HOME
with the ATGPF Library directory, for example, set ATGPF_LIBRARY_HOME=c:\fmwtools_view\fmwtools\mw_home\jdeveloper
.
set WLS_HOME=SET_WLS_HOME
SET_WLS_HOME
with the Oracle WebLogic Server home directory path, for example, set WLS_HOME= C:/MW_HOME/wlserver_10.3
set JAVA_HOME=SET_JAVA_HOME
SET_JAVA_HOME
with the Java home directory path (where the Java executable should be located), for example, set JAVA_HOME=C:\Java\jdk\bin
.The version of Java used must match the version required by the Oracle build.
set APP_JAR=SET_APP_JAR
SET_APP_JAR
with the directory path of the application JAR file you created in Section 26.2.1, "How to Make Searchable Objects Accessible to the ECSF Command Line Administration Utility", for example, set APP_JAR=C:\Jdeveloper\mywork\Application1\runtime\deploy\archive1.jar
.Modify and run the runCmdLineAdmin.sh
script to set the class path in a Linux environment.
To set the class path in Linux:
runCmdLineAdmin.sh
script from MW_HOME
/Oracle_atgpf1/ecsf/modules/oracle.ecsf_11.1.1/admin
.export ORACLE_LIBRARY_HOME=SET_ORACLE_LIBRARY_HOME
and replace SET_ORACLE_LIBRARY_HOME
with the ATGPF shiphome directory, for example, export ORACLE_LIBRARY_HOME="/scratch/mw_home/Oracle_atgpf1"
.Specify the Oracle Library home directory path by locating the line export ORACLE_LIBRARY_HOME=SET_ORACLE_LIBRARY_HOME
and replace SET_ORACLE_LIBRARY_HOME
with the Oracle Common Library directory, for example, export ORACLE_LIBRARY_HOME="/scratch/login/view_storage/login_fmwtools_view/fmwtools/mw_home/oracle_common"
.
export ATGPF_LIBRARY_HOME=SET_ATGPF_LIBRARY_HOME
and replace SET_ATGPF_LIBRARY_HOME
with the ATGPF shiphome directory, for example, set ATGPF_LIBRARY_HOME="/scratch/fmwtools/mw_home/Oracle_atgpf1"
.export JAVA_HOME="set_java_home"
set_java_home
with the Java home directory path (where the Java executable should be located), for example, export JAVA_HOME="/Java/jdk/bin"
.The version of Java used must match the version required by the Oracle build.
export APP_JAR="set_app_jar"
set_app_jar
with the directory path of the application JAR file you created in Section 26.2.1, "How to Make Searchable Objects Accessible to the ECSF Command Line Administration Utility", for example, export APP_JAR="/Jdeveloper/mywork/Application1/runtime/deploy/archive1.jar"
.The ECSF Command Line Administration Utility requires an Oracle Fusion Applications database, to which it can either be directly connected or connected through a remote MBean. In order to use the ECSF Command Line Administration Utility, you must supply the connection information.
Set the connection information in the runCmdLineAdmin
script so that the ECSF Command Line Administration Utility automatically connects to the specified database or MBean server during startup. If you do not include the connection information in the script, then you must manually create the connection to the Oracle Fusion Applications database after you start the ECSF Command Line Administration Utility. For information, see Section 26.2.4, "How to Manually Connect to the Oracle Fusion Applications Database".
The information for connecting to the database or MBean server is saved in the runCmdLineAdmin
script for the ECSF Command Line Administration Utility to use for connecting to the Oracle Fusion Applications database at startup. You are prompted to enter a password after you start the ECSF Command Line Administration Utility.
Modify the runCmdLineAdmin.bat
script to set the connection information in a Windows environment.
To set the connection information in Windows:
runCmdLineAdmin.bat
script, located in JDEV_INSTALL
/ecsf
, in a text editor.set CONNECT_INFO=
and specify the database or MBean server, using one of the following formats:connect to mbeanserver
hostname port
connect to database
hostname port SID
For example,
set CONNECT_INFO=connect to database fusionhost123 1566 fh123
.
connect to database service
hostname
port
servicename
For example,
set CONNECT_INFO=connect to database service fusionhost123 5521 myservice
connect to database descriptor '
descriptor
'
The descriptor
argument must be enclosed in quotation marks and can contain either the SID or service name. For example:
set CONNECT_INFO=connect to database descriptor '(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=fusionhost123)(PORT=5521))(CONNECT_DATA=(SID=dbmsdb2)))'
set CONNECT_INFO=connect to database descriptor '(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=fusionhost123)(PORT=5521))(CONNECT_DATA=(SERVICE NAME=myservice)))'
Modify and run the runCmdLineAdmin.sh
script to set the connection information in a Linux environment.
To set the connection information in Linux:
runCmdLineAdmin.sh
script, located in ORACLE_HOME
/jdeveloper/ecsf
, in a text editor.export CONNECT_INFO=""
and specify the database or MBean server, using one of the following formats:connect to mbeanserver
hostname port
connect to database
hostname port SID
For example,
connect to database service
hostname
port
servicename
For example,
connect to database descriptor '
descriptor
'
The descriptor
argument must be enclosed in quotation marks and can contain either the SID or service name. For example:
The ECSF Command Line Administration Utility requires an Oracle Fusion Applications database, to which it can either be directly connected or connected through a remote MBean, for command execution. In order to use the ECSF Command Line Administration Utility, you must supply the connection information.
You can supply connection information either before or after starting the ECSF Command Line Administration Utility. Supplying the connection information before startup allows the ECSF Command Line Administration Utility to automatically connect to the specified database or MBean server during startup. For information, see Section 26.2.3, "How to Set the Connection Information".
If you choose not to supply the connection information before startup, you must manually create the connection to the Oracle Fusion Applications database after you start the ECSF Command Line Administration Utility.
To create the connection to the Oracle Fusion Applications database:
To create a connection to the Oracle Fusion Applications database directly, enter one of the following commands at the ECSF Command Line Administration prompt, then press Enter:
connect to database
The ECSF Command Line Administration Utility prompts you for the host name, port, and SID.
connect to database service
The ECSF Command Line Administration Utility prompts you for the host name, port, and service name.
connect to database descriptor
The ECSF Command Line Administration Utility prompts you for the descriptor.
The descriptor
argument must be enclosed in quotation marks and can contain either the SID or service name. For example:
connect to database
hostname port SID
You can directly pass the required values as arguments into the command.
connect to database service
hostname port servicename
You can directly pass the required values as arguments into the command.
connect to database descriptor '
descriptor
'
You can directly pass the required value as an argument into the command. The descriptor
argument must be enclosed in quotation marks and can contain either the SID or service name. For example:
To create a connection to the Oracle Fusion Applications database through a remote MBean, enter one of the following commands at the ECSF Command Line Administration prompt, then press Enter:
connect to mbeanserver
The ECSF Command Line Administration Utility prompts you for the required values.
connect to mbeanserver
hostname port
You can directly pass the required values as arguments into the command.
The ECSF Command Line Administration Utility prompts you to enter a username and password.
The JPS Config file (jps-config-jse.xml
) contains the credential store information needed for running the ECSF Command Line Administration scripts. You must provide the path of the JPS Config file by modifying the ECSF Command Line Administration scripts.
To set the JPS Config file path:
runCmdLineAdmin.bat
(Windows) or runCmdLineAdmin.sh
(Linux) script, located in ORACLE_HOME
/jdeveloper/ecsf
, in a text editor.JPS_CONFIG
parameter to point to the location of jps-config-jse.xml
(usually at DOMAIN_HOME
/config/fmwconfig/jps-config-jse.xml
).The scripts for the ECSF Command Line Administration Utility point to the logging configuration file (ecsfcla-logging.xml
), where you can configure log settings, such as log level and log file location. The ecsfcla-logging.xml
file is located in the same directory as the ECSF Command Line Administration scripts (JDEV_INSTALL
/ecsf/
). To configure log settings, modify the property values in ecsfcla-logging.xml
and save the file.
The location of ecsfcla-logging.xml
can be changed by modifying the ODL_CONFIG
parameter in the ECSF Command Line Administration scripts.
All commands, responses, and error messages in the ECSF Command Line Administration Utility are logged. The generated log files follow the format ecsfCmdLineAdminLog*.txt
, and its default location is JDEV_INSTALL
/ecsf/log/
.
You can set the ECSF Command Line Administration Utility to automatically execute a defined sequence of commands when you run the utility. To automate the ECSF Command Line Administration Utility in this way, you must configure the startup script to take inputs from a text file that you create.
The input file must contain one command per line. Any values that are not passed in with a command and are typically prompted for (for example, username and password) must occupy their own lines in the file. You must include a connect
command since this is not passed in during the automated startup, and you must also include the exit
command as the last command in the file in order to exit the ECSF Command Line Administration Utility. Example 26-1 illustrates a sample list of commands for an input file.
Example 26-1 Sample Input File
You must know all of the object IDs when you create the input file. Using the input file, you cannot create a new object and then manage it in one automation.
To configure the startup script to automatically run the commands you defined in the input file, you must modify the startup script to include the AUTOMATE
command in the STARTUP_PARAMS
parameter.
To set the JPS Config file path:
runCmdLineAdmin.bat
(Windows) or runCmdLineAdmin.sh
(Linux) script, located in ORACLE_HOME
/jdeveloper/ecsf
, in a text editor.STARTUP_PARAMS
parameter to AUTOMATE
and point to the location of input file. For example,STARTUP_PARAMS="AUTOMATE /scratch/commands.txt"
where commands.txt
is the input filename.
The output of the ECSF Command Line Administration Utility is displayed on the screen (or can be redirected), and errors are logged in the log file as usual. If the input file cannot be found, the ECSF Command Line Administration Utility runs in its usual mode and waits for the user to input a command through the prompt.
While the ECSF Command Line Administration Utility can be used to quickly test and manage the searchable objects, Oracle Enterprise Manager Fusion Applications Control should be used to manage the life cycle of searchable objects in the production environment.
The ECSF runtime application needs to register its MBean to WebLogic's Domain Runtime MBean server, and the Oracle Enterprise Manager Fusion Applications Control needs to invoke all ECSF runtime operations through the MBean.
To access the Fusion Applications Control, you must install and configure Oracle Enterprise Manager (EM) to work with ECSF. You do not need to set up Oracle Enterprise Manager if you plan to use the ECSF Command Line Administration Utility to administer search.
To set up Oracle Enterprise Manager for ECSF, you must perform the following tasks:
Multiple developers can share one single Oracle Enterprise Manager application with the Fusion Applications Control.
The ECSF runtime application registers an MBean (oracle.ecsf.mbean.SearchRuntimeAdminMXBean
) in WebLogic's Domain Runtime MBean server through a listener class (oracle.ecsf.mbean.RegisterMbeanContextListener
). All ECSF runtime operations are invoked through the MBean.
To register the MBean:
web.xml
.Registering the ECSF runtime MBean to the Integrated WebLogic Server makes the MBean available to remote clients such as Fusion Applications Control in Oracle Enterprise Manager.
Add the MBean listener by modifying web.xml
to include oracle.ecsf.mbean.RegisterMbeanContextListener
.
To add the MBean listener:
web.xml
.<listener>
element in web.xml
:<listener>
<listener-class>oracle.ecsf.mbean.RegisterMbeanContextListener</listener-class>
</listener>
Create the application EAR file to be deployed. Right-click the application name and navigate to Deploy > ECSF application deployment profile
> to EAR file. When the deployment is complete, you can find the generated EAR file in the JDeveloper log message window.
You must configure data sources in Oracle WebLogic Server for MBean integration. For information, see Oracle Fusion Middleware Configuring Server Environments for Oracle WebLogic Server.
Search for a data source with the JNDI name SearchDBDS
. If any exist, make sure to look at the connection and validate that SearchDBDS
is pointing to the correct database. If SearchDBDS
is not listed, you must create a data source with jdbc/SearchDBDS
as the JNDI name and with the connection information to the database against which the Fusion web application is running.
Make the MBean available by deploying the EAR file you created to Integrated WebLogic Server. For information, see Oracle Fusion Middleware Configuring Server Environments for Oracle WebLogic Server.
Make sure that the EAR file is deployed and the application status is active in the final step.
When the MBean is available after you deploy the enterprise archive (EAR) file, you can start the Oracle WebLogic Server instance by selecting Start Server Instance from the Run menu.
You must install Oracle Enterprise Manager in order to access the Fusion Applications Control. Installing Enteprise Manager allows you to then enable it to discover the ECSF custom application target in Oracle WebLogic Server.
In order to use Fusion Applications Control in Oracle Enterprise Manager, you must first enable Oracle Enterprise Manager to discover the ECSF custom application target in Oracle WebLogic Server. When you discover ECSF in Oracle Enterprise Manager, you enable Oracle Enterprise Manager to detect and display the Fusion Applications Control. You only need to discover the ECSF custom application target in Oracle WebLogic Server once. Once it is discovered, you can directly launch EM with the following URL:
http://
your machine name
:
port
/em
To discover ECSF in Oracle Enterprise Manager:
http://
your machine name
:
port
/em/faces/as/discovery/addWeblogic
7101
)weblogic
)weblogic
)Note: You can discover multiple Oracle WebLogic Servers by specifying a value for Farm Name Prefix (for example, Farm). |
http://
your machine name
:
port
/em
), log in with the following credentials:weblogic
weblogic
Note: You only need to discover the ECSF custom application target in Oracle WebLogic Server once. Once it is discovered, you can directly launch EM with the following URL:
|
In order to access the ECSF pages in Fusion Applications Control, users must be created and added to the Operator group and above on Oracle WebLogic Server. For information, see Oracle Fusion Middleware Securing Oracle WebLogic Server.
This chapter describes how to create searchable objects in Oracle Fusion Applications.
This chapter includes the following sections:
Searchable objects are sets of data that make view objects available for full text search. They are used in an abstract way for exposing business data to search engines. For example, a purchase order as a searchable object would be defined as a set of searchable properties and its relationship to other searchable objects. Business data can be both structured and unstructured, such as data residing in a database, file attachments (including images), and documents.
The abstraction allows searchable objects to be bound to different contexts at runtime and to be described and used within that context. Since the binding information describes how a searchable object behaves in a given context, it is sometimes called search metadata.
To create searchable object, you must perform the following tasks:
Oracle Enterprise Crawl and Search Framework is used to integrate search functionality in Oracle Fusion Applications by defining searchable objects and its attributes. Defining the searchable objects enables the corresponding view objects and its attributes for search and creates the necessary metadata for ECSF. The ECSF metadata can be packaged into an application archive and subsequently be used by ECSF runtime to deploy data sources into Oracle Secure Enterprise Search (Oracle SES) to perform crawling and index operations. All artifacts (for example, Java archive files, Oracle Application Development Framework objects, and so on), on which the view objects depend, must be packaged in the enterprise archive (EAR) file in order to make the searchable objects usable during runtime for both crawl and query.
Note: You can also package ECSF metadata into metadata archive (MAR) files. |
Consider the following when you define searchable objects and searchable attributes:
If the value of an attribute needs to be searchable, place it in the body of the searchable object.
oracle.ecsf.impl.DefaultSearchPlugin
) as much as possible. Use of the default security plug-in ensures that the searchable objects are secured properly.ECSF supports two mechanisms to identify newly added or modified data. You must choose and implement at least one of the following mechanisms:
If neither mechanism is implemented, the data that has been added or modified since the initial crawl will not be indexed, and therefore will not be searchable.
To define searchable objects and searchable attributes, use the Search navigation tab of the overview editor in Oracle JDeveloper to complete the following tasks:
Note: You must choose the Oracle Fusion Applications Customization role when you launch JDeveloper. You can also switch to the Oracle Fusion Applications Customization role from within JDeveloper by selecting Tools > Preferences > Roles from the main menu and restarting JDeveloper. |
Before you begin:
Before you can define searchable objects, you must be familiar with the following:
ECSF indexes data based on a view object, which represents the top level view object to crawl. Many business objects are hierarchical, and ECSF leverages Oracle Application Development Framework's (Oracle ADF) methods of describing such hierarchies by using view links. ECSF supports multiple levels of a view hierarchy. By defining additional view objects and linking the top level view object to the additional view objects through a view link, parent, child, grandchild, and so on relationships are formed. Once a view link is set, you can reference data in those successive objects for indexing by using Groovy, a Java-like scripting language that is dynamically compiled and evaluated at runtime.
Note: When you design your view object for search, make sure that you configure view links to generate only the Destination Accessor and not the Source Accessor. When querying for root records during crawl time, ECSF also traverses the view link accessors to query child view objects. ECSF follows the parent view link accessors until it reaches the limit for the number of view accessor levels to be crawled. The default limit is set to 5 levels. If a parent view object has a view link accessor to its child view object, and the child view object also has a view link accessor pointing back to the parent view object, then the code cycles. It is not necessary to index the data in both parent and child view objects. When creating a view link object in Oracle JDeveloper, generate the view link accessors in either end of the view link. Only generate the view link accessor in the parent view object and not in the child view object. |
When defining search metadata, Groovy expressions are used to reference the attributes of view objects and the attributes of their child, grandchild, and so on view objects so that the attribute (string) values can be added into the ECSF index. You are required to enter Groovy expressions for fields such as Title, Body, and Keyword.
You can also use Groovy expressions to localize ECSF. For information, see Section 31.10, "Localizing ECSF Artifacts".
Groovy expressions can reference view object attributes (voAttrName
) as variables. For example, you can enter the following Groovy expression in the Title field:
"Purchase Order " +
RowId
+ " created for " +
Customer
+ " on " +
CreatedDate
Note: View object attribute names are case sensitive. |
If the value for RowId
is "1234", the value for Customer
is "ABC Inc", and the value for CreatedDate
is "1/1/2007", then a search would return the title value:
Purchase Order 1234 created for ABC Inc on 1/1/2007
The ECSF runtime code parses, then evaluates the expressions in the context of a view object, and returns the title with values for the variables.
Note: To reference a stored view object attribute whose alias corresponds with an Oracle SES default search attribute (for example, Language), you must make sure to change the alias of the view object attribute to something other than any name of the Oracle SES default search attributes (for example, use alias Lang , instead of Language). Changing the alias prevents conflicts between Oracle SES and ECSF stored view object attributes. Alternatively, you can create view object transient attributes and reference them in the expressions. For more information, see Section 27.2.9, "What You May Need to Know about Preventing Conflicts with Oracle SES Default Search Attributes". |
Groovy expressions can also reference child view object attributes (viewLinkAccessorName.voAttrName
) as variables by using the view link accessor names to access child attributes.
For example, you can enter the following Groovy expression in the Title field:
"Product Codes: " +
ProductsView.ProdCode
Note: View object attribute names are case sensitive. |
If the view object represented by the ProductsView
view link accessor contains one record, and the value of its ProdCode
attribute is 1XYZ, then a search would return the title value:
Product Codes: 1XYZ
If a child view object referenced by an expression contains more than one record, then the values of all the child records are concatenated together. For example, if the ProductsView
view link accessor contains three records, and the values of its ProdCode
attribute are 1XYZ
, 2ABC
, and 3STU
, then a search would return the title value:
Product Codes: 1XYZ 2ABC 3STU
.
The view link accessor name for a child view object is available on the view link that points to the child view object. The name of the view link accessor is the Destination value. In Figure 27-1, which shows the accessors information on the Relationship navigation tab of the view link editor, the name of the view link accessor is ZipLov
.
You can also find the name of view link accessors in the <ViewLinkAccessor>
tags of the XML source mode of the view object.
Alternatively, you can use the curdoc
keyword to access the current document, as shown in Example 27-1.
Example 27-1 Using curdoc to Access Child Documents and Their Attributes
The curdoc
keyword is used to access child documents and their attributes.
Groovy expressions can also reference view object attributes (viewLinkAccessorName.voAttrName
, viewLinkAccessorName.viewLinkAccessorName.voAttrName
, and so on) in searchable objects with a multilevel structure.
By default, the view link depth is set to 5
. To index fewer or more than five levels of data in the view hierarchy, you must set the oracle.ecsf.max.links.depth
property in system properties to the desired value. Figure 27-2 illustrates a searchable object with a 5 level structure.
The figure shows a representation of the PurchaseOrder
searchable object with 5 levels.
Using Groovy expressions in the search metadata, you can access attributes in PO Line Detail
, Line Item Product
, and Product Doc
. For example, you can enter the following Groovy expression in the Title field:
POLine.LineDetail.AttributeX + POLine.LineDetail.LineProduct.AttributeY + POLine.LineDetail.LineProduct.ProductDoc.AttributeZ
If a grandchild view object referenced by an expression contains more than one record, then the values of all the grandchild records are concatenated together. For example, if you reference view object attributes with viewLinkAccessorName.viewLinkAccessorName.voAttrName
, the result of the expression POLine.LineDetail.AttributeX
is the concatenation of all AttributeX
values for the LineDetail
of all POLines
of the current PurchaseOrder
.
When writing Groovy expressions, it can be useful to generate strings that contain formatted versions of view object attribute values. For example, you may want to generate formatted strings such as "01/30/07"
or "Jan 30, 2007"
for an attribute value of type java.sql.Date
.
To format attribute values you must first determine the Java data types. The data types of view object attributes can vary. For example, some attributes may return simple strings, while others may return java.sql.Date
, java.sql.Timestamp
, or numbers like java.lang.Long
.
One way to determine the types is to write a test Groovy expression that displays the type names. For example, if the view object has an attribute called Hiredate
, then you can use the Groovy expression, as shown in Example 27-2, in the Body field.
Example 27-2 Sample Groovy Expression to Determine Attribute's Java Data Type
The class name of the Hiredate
attribute's value is displayed and can be viewed in the Data Feed:
Hiredate type: java.sql.Date
.
Once you determine the Java data type of a view object attribute, you can apply standard Java formatting techniques to format its value. Example 27-3 shows a sample Groovy expression for formatting a date.
Example 27-3 Sample Groovy Expression for Formatting Dates
The Groovy expression evaluates to:
Hire date: 01/30/2007
To format a number attribute named Qty
of data type java.lang.Long
using comma separators, write a Groovy expression, such as the one shown in Example 27-4.
Example 27-4 Sample Groovy Expression for Formatting Numbers
The Groovy expression evaluates to:
Quantity: 2,450
The Groovy expressions are compiled and evaluated at runtime to display the desired string value in the crawl data feeds.
Use the Search page of the overview editor in JDeveloper, as shown in Figure 27-3, to set search property values for view objects.
Note: The Search page is not editable if the view object or existing searchable object is read-only. |
Make view objects searchable by setting search property values for them.
Caution: Do not modify the Oracle Fusion Applications Help searchable object named TopicSearchPVO . |
To set search property values for view objects:
DATABASE_SCHEMA.TABLENAME TABLE_ALIAS_NAME
(for example, fusion.Emp Employee
).You can either type directly in the text box or use the Select Primary Table dialog. For more information, see Section 27.2.3.2, "Using the Select Primary Table Dialog".
Note: The table alias name you enter must match the table alias name used in the view object's SQL statement. You can view the SQL statement by selecting the view object's Query tab. |
The Title field allows for multiple lines of text.
You can also click the Edit icon to open the Edit Expression Editor, where you can enter Groovy expressions for the desired title of the search result. Click OK to save.
Note: Do not include attributes of type Character Large Object (CLOB) or Binary Large Object (BLOB) in the Groovy expressions for the Title, Body, and Keywords fields, or you will receive an error. All columns with type CLOB or BLOB in a view object or its child view objects are processed as Oracle SES attachments. |
You can also click the Edit icon to open the Edit Expression Editor, where you can enter Groovy expressions for the desired title of the search result. Click OK to save.
You can also click the Edit icon to open the Edit Expression Editor, where you can enter Groovy expressions for the desired title of the search result. Click OK to save.
The values of the keywords are evaluated at crawl time using Groovy, and sent to Oracle SES as part of the document for indexing. Once indexed, the values of the keywords are searchable for the document with which they are associated.
Note: Currently, ECSF provides a way for you to specify whether an attribute is a language field. ECSF will assume that the value of this field for each instance is the language for this instance. ECSF initially supports the Oracle Fusion Applications language code. If no language field is specified for a given searchable object, ECSF uses the language preference of the crawler user. |
Note: In order to save the changes made to the Primary Table, Title, Body, and Keywords fields, you must move the focus from those attributes (that is, click outside each field as you complete them). |
Note: If the view object is open in JDeveloper when you update the corresponding searchable object file (view_object_name _ECSF.xml), you must close and reopen the view object to view the updates. |
Use the Select Primary Table dialog to specify the primary table for the searchable object if the view object is not based on an entity object.
To use the Select Primary Table dialog
The Select Primary Table dialog appears, as shown in Figure 27-4.
Note: The table alias entered must match the table alias used in the view object's SQL statement. You can view the SQL statement by selecting the view object's Query tab. |
Note: You must select a primary table from the Available Objects list in order to save. |
ECSF provides an extension model to allow you to extend ECSF functionality. Implement a search extension to implement any number of the following Java interfaces to extend or customize ECSF functionality:
oracle.ecsf.Securable
, used to implement a security extension.oracle.ecsf.PreIndexProcessor
, used to customize or manipulate data before it is sent to the search engine for indexing, such as for enabling advanced search on child objects (that is, attribute filtering).oracle.ecsf.PostQueryProcessor
, used to customize results before search results are returned.Use the Search PlugIn dialog to specify the extension you wish to use for the searchable object.
Note: If you do not specify a search extension for your searchable object, then the default security extension is used. The default security extension requires you to identify a secure attribute. For information, see Section 27.2.6.1, "Making View Object Attributes Searchable". |
Note: If the search extension is in the Oracle WebLogic Server shared library, then the ECSF library (ecsf.jar) must be present in the shared library in order for ECSF to load the interface. |
To use the Search PlugIn dialog:
The Search PlugIn dialog appears, as shown in Figure 27-5.
Note: If there is no plug-in defined in the searchable object, and you are not using a custom security extension, then this value is null and by default is set to oracle.ecsf.impl.DefaultSearchPlugin which is used at runtime. |
JDeveloper captures the search metadata for each view object and writes it to an external XML file (searchable object) for consumption by the runtime component. Each searchable object corresponds to a view object. The file naming convention is view_object_name
_ECSF.xml
, and the file is created in the same location as its corresponding view object.
Note: Manually deleting an ECSF file removes the search functionality from the corresponding view object. |
Caution: Do not manually modify the contents of the view_object_name _ECSF.xml file. If you manually modify the search metadata in the XML file, the changes appear in the editor window when it is closed and reopened in JDeveloper, but metadata changes are not validated. Instead, use the Search navigation tab of the overview editor in JDeveloper to modify the search metadata. |
ECSF metadata can be packaged into an EAR file or a MAR file for consumption during crawl time and query time.
The searchable object reflects any change in the search metadata only after you save the view object. Until then, the changes are in memory. When you save the view object, the search metadata is saved to the searchable object. If there is no existing searchable object corresponding to the view object, then a new searchable object is created and stored in the same location as the view object.
In addition, if you rename or delete a view object with a corresponding searchable object, then the searchable object is likewise renamed or removed from the project.
Making view object attributes searchable creates the necessary metadata for:
Note: The more attributes you make searchable, the larger the index becomes, which slows the performance of the queries. |
Use the Search page of the overview editor in JDeveloper, shown in Figure 27-6, to set property values for view object attributes.
Using the Search page, you can perform the following tasks on view object attributes:
Make view object attributes searchable by setting search property values for them.
To set search property values for view object attributes:
Note: Before creating new stored attributes, check the list of Oracle SES attribute names and types to avoid conflicts. See Oracle Fusion Applications Reference for Oracle SES Attributes. |
Table 27-1 Searchable Attribute Properties
Property | Description |
---|---|
| Select this checkbox to store the view object attribute in Oracle SES as a separate custom search attribute. The view object attribute's Alias property will be used as the name of the custom search attribute. The Alias property can be updated and renamed to avoid name and type conflicts. See Section 27.2.10, "What You May Need to Know about Preventing Search Attribute Naming Conflicts." Attributes stored in Oracle SES are used for Advanced Search, Actionable Results, and Faceted Navigation. For more information, see Section 27.4.1, "How to Define Search Result Actions"and Section 27.4.4, "How to Implement Faceted Navigation". Selecting this checkbox enables the Weight field. |
| Select this checkbox to use the attribute's value to secure the document at crawl time and to determine which users can access the indexed object at query time. |
| These are date columns that are checked during incremental crawls to see if that record should be recrawled. Select this checkbox to enable the crawler to detect changes to the searchable object based on the date column. You must be able to reference the Crawl Date Column in a SQL predicate for ECSF to detect added or changed data. During incremental crawls, scheduled using either the Fusion Applications Control for ECSF or ECSF Command Line Administration Utility, only objects that have been modified since the last crawl are sent to Oracle SES. If Crawl Date Column is specified for multiple searchable attributes, then all the date columns are used in the SQL query to retrieve data that has been modified since the last crawl. The SQL query uses the OR condition to get the incremental set of data. For example, if the Crawl Date Column checkbox is selected for Select * from EMP where (CREATED_DATE between LAST_CRAWL_TIME and CURRENT_TIME) or (LAST_UPDATE_DATE between LAST_CRAWL_TIME and CURRENT_TIME) ECSF will check the values of all attributes in the Searchable View Object (SVO) that are marked as Crawl Date columns, find the most recent one, and use the value of that column as the LastModifiedDate stored attribute's value. In other words, ECSF will pick the most recent Crawl Date column value to use as the LastModifiedDate value. This allows users to perform queries using Advanced Search for documents that were modified within a certain date range. |
| This field is enabled only when you select the Stored checkbox. Enter a value 1 to 10 (low to high), or select from the dropdown menu, to attach a weight to the stored attribute. Weights affect the ranking of the search results. If the weight is set to 1, the stored attribute gets no boost. If the weight is set to 2 or 3, the stored attribute gets very low boost (added to custom attribute Headline2). If the weight is set to 4 or 5, the stored attribute gets low boost (added to custom attribute Headline1).If the weight is set to 6 or higher, the stored attribute gets high boost (added to custom attribute Reference Text). |
| The Override Source property supports allowing facets to be based on child VO attributes. This feature lets a Stored Attribute be defined against a child VO attribute and for a facet to be defined against this stored attribute. This allows users to filter search results such that only results whose child VO attribute matches a certain value will be returned. The Override Source property will support values of the format |
Note: Only stored and secured view object attributes are available for advanced search (that is, the Stored and Secure Attribute checkboxes are selected). |
Note: If the view object is open in JDeveloper when you update the corresponding searchable object file (view_object_name _ECSF.xml), you must close and reopen the view object to view the updates. |
Modify a searchable attribute by editing the search property values for the view object attribute.
To edit search property values for view object attributes:
The attribute you selected on the Search navigation tab is displayed in the Attribute Name field.
Deleting the searchable attributes removes the search metadata for the view object attribute.
To delete searchable attributes:
The attribute you selected on the Search navigation tab is removed from the table of searchable attributes.
JDeveloper captures the search metadata for each view object, including its attributes, and writes it to an external XML file (searchable object) for consumption by the runtime component. Each searchable object corresponds to a view object and includes the view object attributes. The file naming convention is view_object_name
_ECSF.xml
, and the file is created in the same location as its corresponding view object.
During crawl time, the ECSF runtime server uses the view attributes that are annotated for search to construct documents for indexing.
Caution: Do not manually modify the contents of the view_object_name _ECSF.xml file. If you manually modify the search metadata in the XML file, the changes appear in the editor window when it is closed and reopened in JDeveloper, but metadata changes are not validated. Instead, use the Search navigation tab of the overview editor in JDeveloper to modify the search metadata. |
ECSF implicitly adds the following attributes to Oracle SES indexes:
ECSF_SO_NAME
. This attribute stores the fully qualified searchable object name that corresponds to the searchable object on which the Oracle SES data source is based.ECSF_TAGS
. This attribute is created if Oracle WebCenter tags are associated with the searchable object. For information, see Section 31.3, "Enabling Search on WebCenter Tags".DEFAULT_ACL_KEY
. ECSF uses this attribute to store access control list (ACL) keys for the document.The searchable object reflects any change in the search metadata only after you save the view object. Until then, the changes are in memory. When you save the view object, the search metadata is saved to the searchable object. If there is no existing searchable object corresponding to the view object, then a new searchable object is created and stored in the same location as the view object.
In addition, if you rename or delete a view object with a corresponding searchable object, then the searchable object is likewise renamed or removed from the project.
Note: Manually deleting an attribute that has a corresponding search attribute from a view object causes unexpected search results. |
Oracle SES supports system-defined default search attributes that may conflict with ECSF stored view object attributes. For example, for Purchase Order 123 you define a stored view object attribute with the alias Language
and value US
. However, Oracle SES contains a default search attribute also named Language
, but it has en
as its value. When you reference the view object attribute in a Groovy expression, such as when you define a search result action of URL type where target="http://example.com/q=dj&lang="+Language
, you expect the search result action to display as http://example.com/q=dj&lang=US
.
However, the search result action displays as http://example.com/q=dj&lang=en
because the Oracle SES default search attribute value overrides the value of the ECSF stored view object attribute of the same name.
Note: The attribute conflict does not consider case. For example, a conflict still occurs if the stored view object attribute's alias is LANGUAGE (all caps) and the Oracle SES default search attribute name is Language . |
Following are the Oracle SES default search attributes:
Author
Description
Headline1
Headline2
Headline3
Host
Infosource
Infosource Path
Keywords
Language
LastModifiedDate
Mimetype
Reference Text
Subject
Title
Url
Urldepth
Author
, LastModifiedDate
, and Subject
are the exceptions, and can be used to enhance usability of the Oracle SES UI and to decrease the number of custom attributes in Oracle SES.
To prevent a conflict between Oracle SES default search attributes and ECSF stored view object attributes, you can either change the alias of the stored view object attribute to something other than any name of the Oracle SES default search attributes, or you can create a view object transient attribute and set it as a stored attribute, then reference the transient attribute in the expressions.
To resolve the conflict in the given example, you can change the alias value of the Language
view object attribute from Language
(default) to Lang
. The view object attribute alias is used to retrieve the value of the view object attribute in expressions.
Alternatively, you can resolve the conflict by creating a view object transient attribute, such as one named Lang
, and use it in the expressions (for example, target="http://example.com/q=dj&lang="+Lang
). By default, when the values of transient attributes are sent to Oracle SES, ECSF assigns the transient attribute a unique alias. When their values return as part of query results, they won't conflict with any default search attributes in Oracle SES. When expressions containing transient attributes are evaluated, ECSF converts the transient attribute names to the aliases and retrieves the data correctly.
Because Oracle SES only supports facets on attributes of type STRING
, if a facet is defined on a non-string attribute ECSF automatically converts the stored attribute type to a string before sending the attribute to Oracle SES.
However, a conflict may occur when a stored attribute of the same name is generated for a view object with no facets. Searchable attributes in Oracle SES are unique across the entire instance, so if multiple searchable objects contain the same attribute name of different types, then only the attribute (regardless of type) of the first searchable object crawled is used by Oracle SES. ECSF does check for stored attribute conflicts. See Section 27.2.10.1, "Checking for Stored Attribute Conflicts." Take the following example:
You create a view object oracle.apps.crm.cutomer360.CustomerPVO
with a set of attributes and types that are based on the underlying tables that use the Oracle ADF standard UI. The view object attribute contains the following information stored as Oracle ADF metadata:
Attribute Name | Attribute Alias | Attribute Type |
---|---|---|
Name | NAME | VARCHAR2 |
OrganizationId | ORGANIZATION_ID | NUMBER |
Description | DESCRIPTION | VARCHAR2 |
You use the Search Designer to annotate a subset of these attributes (Name
and OrganizationId
) to store in Oracle SES for search purposes.
When Oracle SES crawls oracle.apps.crm.cutomer360.CustomerPVO
, ECSF sends a document for each customer in the table. Each document contains the following attribute details:
Attribute Alias | Attribute Type |
---|---|
NAME | VARCHAR2 |
ORGANIZATION_ID | NUMBER |
In Oracle SES, NAME
and ORGANIZATION_ID
are created as customer attributes with the respective types. Due to the global nature of custom attributes in Oracle SES, if an attribute of the same name already exists, no new attribute is created even if its type is different. Values for the attributes with conflicting name and type pairs are not stored in Oracle SES.
The issue surfaces when ORGANIZATION_ID
is used as a facet (to enable users to narrow down the results per organization tree). ECSF implements a logic that detects if an attribute is used for a facet or not. If it is used for a facet, ECSF automatically changes the attribute type from NUMBER
to VARCHAR2
because Oracle SES does not support facets on attributes with type NUMBER
. This causes a conflict with the already existing ORGANIZATION_ID
stored attribute of type NUMBER
.
To prevent this conflict and allow Oracle SES to index both attributes, you must change the alias of the stored attribute that is used for facets. Navigate to the JDeveloper ADF view object attribute editor and update the Alias property value, as shown in Figure 27-8. For example, in the view object attribute editor, change the Alias value from PARTY_ID to PARTY_ID_FACET.
Before creating new stored attributes, check the list of Oracle SES attribute names and types to avoid conflicts. See Oracle Fusion Applications Reference for Oracle SES Attributes.
ECSF checks for stored attribute conflicts during Search Object deployment. If ECSF detects that the SO has attributes in it that will cause a conflict in SES, an error message will be shown that describes the error. Depending on the situation, the message will appear similar to one of these:
You will have to change the SO so that the conflicting attribute either has a new name or has the same type as the attributes already defined in SES.
ECSF determines if a user has access to a search category depending on whether or not the user has permission to access the searchable objects in the category. Search categories, also called search groups, are the logical collections of searchable objects that facilitate group search on related items. Search categories are directly used for querying. If all of the searchable objects in a search category are not accessible to the user, then that category does not appear in the user's category list. In this case, ECSF runtime does not return that category when SearchCtrl.getSearchGroups()
is called. However, if any one of the searchable objects in a search category is accessible to the user, then that category does appear in the user's category list.
To secure searchable objects:
Set permissions for searchable objects by using the Search PlugIn dialog to enter the permissions parameters. For information, see Section 27.2.3.3, "Using the Search PlugIn Dialog".
To set permissions for searchable objects:
oracle.ecsf.impl.DefaultSearchPlugin
.FUNCTION_PERMISSION_NAME
Value: PURCHASE_ORDER_VIEW_DETAILS
FUNCTION_PERMISSION_ACTION
Value: view
FUNCTION_PERMISSION_CLASS
Value: RegionPermission
Note: The value of FUNCTION_PERMISSION_NAME and FUNCTION_PERMISSION_ACTION must be the same as the value of the permission name and action in the jazn-data.xml file. |
The parameters are used to validate permissions in the ECSF security classes. Searchable objects with no permissions set are accessible by all users.
The user in the security realm is deployed to the Oracle WebLogic Server security realm. Add a jazn.com
realm to jazn-data.xml
.
To add a security realm:
jazn-data.xml
file.jazn.com
.Name: scott
Credentials: weblogic
The jazn-data.xml
file is updated with the security realm, as shown in Example 27-5.
Example 27-5 jazn.com Security Realm
The user Scott
is associated to the jazn.com
security realm.
The policy store is used to determined which users have access to which objects. Add an application policy store to jazn-data.xml
.
To add an application policy store:
jazn-data.xml
file.TestPermission
for the display name.admin
.scott
from the Available section to the Selected section.View Orders
for the display name.Name: admin
Class: oracle.security.jps.service.policystore.ApplicationRole
Type: role
Leave the Realm Name field blank.
Name: PURCHASE_ORDER_VIEW_DETAILS
Class: oracle.adf.share.security.authorization.RegionPermission
Actions: view
The jazn-data.xml
file is updated with the application policy store, as shown in Example 27-6.
Example 27-6 Application Policy Store
The application policy store includes the values that you specified.
In addition to basic and advanced search, ECSF allows you to further improve the search experience with the Actionable Results and Faceted Navigation search features, which you must configure.
Note: No configuration is required for integrating Saved Search functionality. |
To configure search features, you can complete the following tasks:
Associating actions with the searchable objects and exposing the action links in the search results allows Oracle Fusion Applications users to run specific actions on a given search result. You can either define actions as URLs so the user can then either go to a specific web page related to the search result, or define actions as references to ADF task flow definitions so the user can then launch a specific task on the search result. For more information, see Section 14.2.3, "How to Add Dynamic Main Area and Regional Area Task Flows to a Page". Figure 27-9 illustrates an example of the results of a filtered search.
Clicking the title (default action URL) opens the Sonoma - Elites page. An additional action link allows the user to e-mail the owner.
You can perform the following tasks to define search result actions:
Use the Search navigation tab of the overview editor in JDeveloper, shown in Figure 27-3, to define actions for search results.
To define search result actions for Oracle Fusion Applications Search, you must complete additional configuration tasks. For information, see Section 14.15.6, "How to Use the Actionable Results API with Oracle Fusion Applications Search".
During runtime, the Access URL allows Oracle SES and the end user to access the applications from the Query page. The Access URL contains the view object name, the row's primary keys, and the action name, the values of which are used to look up the action definition, query for the record, evaluate action parameters, and construct target URLs. The Access URL also points to the Redirect Service.
The Redirect Service is used for resolving URLs and redirecting users to the resolved URL. Invoking the Redirect Service improves performance when attributes referenced in the action definition not stored in the index.
The redirect logic includes the following steps following a request:
Attribute values are obtained from search attributes. If an action refers to unstored attributes, primary keys are used to obtain their values during redirect.
For task action type:
TaskFlowID
.ControllerContext.getTaskFlowURL
API.For URL action type:
Add search result actions to associate actions to searchable objects. The action links you define display with the search results.
To add search result actions:
Note: No two actions can share the same name. This comparison is case insensitive. |
Note: Only bounded task flows can be launched through the URL mechanism. |
URL
for Action Type in Step 4, then in the Action Target field, define the action by entering a Groovy expression that generates the URL that is invoked when the user clicks the action.For URLs that point to an external site, you must configure the target expression to generate a fully qualified URL, which includes both the protocol (such as http://
) and the host name (for example, example.com
).
For internal link URLs that point to pages on the same application from which the search is performed, configure the target expression to generate a relative URL (for example, "/EmployeeDetailPage?empId=" + EmpId
). Relative URLs are invoked relative to the current host name and port number. This allows for the action to succeed on any application server on which the search is running.
You can also click the Edit icon next to the Action Target field to use the Edit Expression Editor dialog for entering the Groovy expression. For more information, see Section 27.2.1, "How to Use Groovy Expressions in ECSF".
The URL must be no longer than 32,000 in length. You can reference only stored attributes. For example, you can enter "http://www.example.com/search?hl=en&q=" + SRCompanyZip
.
Caution: Using unstored attributes results in an exception at query time when the action is resolved. Also, do not refer to child documents when defining the action definition. |
Task
for Action Type in Step 4, then leave the Action Target field blank. However, you must define the TaskName
and TaskFile
properties in the Action definition. For information, see Section 27.4.1.4, "Defining Properties for Bounded Task Flows".You can also click the Edit icon next to the Title field to use the Edit Expression Editor dialog for entering a Groovy expression.
Note: You can set only one action as the default action. |
Enter parameter values as Groovy expressions. You can use only stored attributes (for example, SRNumber
) as parameters.
Note: Using unstored attributes results in an exception at query time when the action is resolved. Also, do not refer to child documents when defining the action definition. |
You can also click the Edit icon next to the Value field to use the Edit Expression Editor dialog for entering a Groovy expression.
Minimally, the TaskName
and TaskFile
parameters must be provided. The value of the TaskName
parameter is a Groovy expression that returns the name of the task (that is, a name surrounded by double quotation marks). The value of the TaskFile
parameter is a Groovy expression that returns the name of the task definition file. Values of other parameters are Groovy expressions that return the desired value. These parameters are passed into the task. For more information, see Section 27.2.1, "How to Use Groovy Expressions in ECSF".
For bounded task flows, you must define the TaskName
and TaskFile
properties in the Action definition of the searchable object file (view_object_name
_ECSF.xml
). The task definition file, containing the value for TaskName
, is usually located in the WEB-INF
folder.
Edit the TaskFile
parameter to point to the bounded task flow task definition XML file, located in the WEB-INF
folder. For example, \WEB-INF\
filename
.
To define the TaskName and TaskFile properties:
\WEB-INF\task-flow-definition.xml
.<task-flow-definition>
element, for example, <task-flow-definition id='task-flow-definition'>
and note the value of the id
attribute.TaskFile
parameter, then edit the value to reflect the location and filename of the task definition file, for example, \WEB-INF\task-flow-definition.xml
.TaskName
parameter and edit the value to reflect the id
attribute value of the <task-flow-definition>
element of the task definition file, for example, 'task-flow-definition'
.You can modify search result actions as needed to change the action links that display with the search results.
To modify search result actions:
The information of the action you selected is displayed.
Note: You must recrawl the data if you reference a new attribute that is marked as stored. |
You can delete search result actions to remove action links that display with the search results.
To delete search result actions:
The action you selected on the Search navigation tab is removed from the table of actions.
JDeveloper captures the search metadata for each view object, including the search result actions you define, and writes it to an external XML file (searchable object) for consumption by the runtime component. Each searchable object corresponds to a view object and includes the search result actions. The file naming convention is view_object_name
_ECSF.xml
, and the file is created in the same location as its corresponding view object.
Caution: Do not manually modify the contents of the view_object_name _ECSF.xml file. If you manually modify the search metadata in the XML file, the changes appear in the editor window when it is closed and reopened in JDeveloper, but metadata changes are not validated. Instead, use the Search page of the overview editor in JDeveloper to modify the search metadata. |
The search result actions you define during design time is parsed at runtime and appear in a table on the search results page.
The Name, Action Type, Action Target, and Title fields are required fields. You must input values for all three fields in order to save the action.
Facets are used to filter search results by attribute. A facet must point to an attribute that contains a list of values (LOV) definition. The LOV defines a way to get a list of values that make up the potential values for the attribute and can be used to filter results. To implement faceted navigation, you must perform the following tasks:
While defining the facet hierarchy, you can constrain the LOV object by the stored attribute.
To better illustrate the process of defining LOVs for facets, consider the following scenario: You want to create facet relationships for the EmpView
base object. EmpView
contains two stored attributes, StateID
and CityID
, on which you want to create facets. "City" is the child facet of "State." The values shown in the "City" facet are constrained by the value selected for "State." This scenario is used in the tasks listed in this section.
You can also configure stored transient attributes on the view object to define:
For more information, see the "Working with List of Values (LOV) in View Object Attributes" section in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
Defining LOVs for stored view object attributes creates facet relationships for the base object and its stored attributes. The following procedure uses the example of the EmpView
base object and its two stored attributes, StateID
and CityID
.
To define list of values for stored view object attributes:
StatesView
) to represent a list of values for a view attribute (StateID
).StatesView
(StatesView1
) on EmpView
.The view accessor lets you obtain the full list of possible values from the row set of the parent view object.
Note: When you design your view object for search, make sure that you configure view links to generate only the Destination Accessor and not the Source Accessor. |
StateID
), select List of Values and select Enable List of Values.Values from the child attribute are used to filter the parent view object.
CitiesView
) to represent the stored attribute that is defined as the child facet.Constraining the CitiesView
object by StateID
makes sure that only the cities of the selected state are returned. Configure the CitiesView1
view accessor on EmpView
so that the view criteria on CitiesView
is applied when the user queries using CitiesView1
. Based on the view criteria, only cities where its parent StateId
is equal to the value of EmpView.StateId
(that is, the currently selected state) is returned.
To constrain CitiesView by State:
CitiesView
(StId
).CitiesViewCriteria
) on CitiesView
.ParStateId
equal to
Bind Variable
StId
Required
CitiesView1
) for CitiesView
on EmpView
.In the Edit View Accessor dialog, select the view criteria (CitiesViewCriteria
) in the Available list and click the Move icon to add it to the Selected list, as shown in Figure 27-11.
StId
bind variable on CitiesView
to the StateId
attribute of EmpView
.Faceted navigation allows Oracle Fusion Applications users to narrow their search results by setting filters, based on a set of predefined facets. For example, users can narrow their search results first by country, then by state, and then by city.
Search facets follow a tree structure. The root facet appears above the tree control, followed by child facets. All facets contain a name and an attribute, and can contain a child facet.
Note: If you require both custom SQL query and facets for a view object, you must create the view object with the Updateable object through entity objects option and select Expert for Query Mode on the Query page. |
You can define facets by creating search facets, modifying search facets, deleting root search facets, and deleting child search facets. Use the Search navigation tab of the overview editor in JDeveloper, shown in Figure 27-3, to define facets for faceted navigation.
You can create search facets to specify the root facet, facet name, an attribute, and child facets. Use the Facets dialog to add search facets.
Before you begin:
Define LOVs for stored view object attributes. For information, see Section 27.4.4.1, "Defining Lists of Values".
To add search facets:
Note: No two facets can share the same name at the searchable object level. This comparison is case insensitive. |
Note: If no facet display name is specified, the label text of the view attribute corresponding to the facet is used as the display name. If there is no label text, then the view attribute name is used as the display name. |
You can use resource bundles to localize ECSF. For information, see Section 31.10, "Localizing ECSF Artifacts".
Note: The Attribute Name dropdown menu lists only the searchable attributes whose isStored property is set to true . For information, see Section 27.2.6.1, "Making View Object Attributes Searchable".No two facets can share the same attribute at the searchable object level. |
The new child facet is inserted below the selected facet in the tree structure. Any existing child facets are moved below it to the next level down in the structure.
Note: No two facets can share the same name. This comparison is case insensitive. |
Note: No two facets can share the same attribute. |
You can use this feature to define facets to filter result records against a child VO attribute. Without this feature, facets could only allow users to filter search results to those results where an attribute in the result record matches a certain value, such as Color="Red", or Status="Open". This feature allows a Stored Attribute to be defined against a child VO attribute and for a facet to be defined against this stored attribute. Thus, users will be able to filter search results such that only results whose child VO attribute matches a certain value will be returned.
ECSF design time uses transient attributes to allow child VO attributes as searchable attributes by allowing them in the facet definitions.
The Override Source property value is expressed at the view attribute level and it is resolved at both the query time and crawl time. The Override Source drop-down list (see Figure 27-7) is populated with all the attribute names from the view links that are associated with the current VO.
The code for querying for facets will not change.
At query time, a FacetPath will be converted to filters against the corresponding Stored Attributes in the facet path. With this feature, some stored attributes will contain multiple values, and the filter will select a search document if any of the values in its stored attribute matches the value in the filter.
Facet counts will work without any changes. When a stored attribute contains more than one value, each value will contribute to incrementing the count for that value.
To set up a View Object with support for child attributes in facets:
Use the Select Text Resource dialog to select a text resource from an existing resource bundle.
To select a matching text resource:
Note: If there is no resource bundle associated with the view object, then an external resource bundle is created in the application. Save the new resource bundle externally. |
Use the Select Text Resource dialog to create and select a new text resource.
To create and select a new text resource:
Note: If there is no resource bundle associated with the view object, then an external resource bundle is created in the application. Save the new resource bundle externally. |
You can modify existing search facets by changing the values of the facet attribute fields, adding child facets, or deleting child facets. Use the Facets dialog to modify search facets.
To modify search facets:
You can delete root search facets to remove them from the table on the Search navigation tab.
To delete root search facets:
The root facet you selected on the Search navigation tab is removed from the table of root facets.
You can delete child search facets to remove them from the facet tree.
To delete child search facets:
"Are you sure you want to delete the facets?"
The facet you selected is removed from the tree.
You can define facets to support ranges for numbers and dates.
To define facets that support ranges
AmountRange
that contains the following Groovy expression for the number attribute:For a date attribute, you can create a transient attribute named HireDate
that contains the following Groovy expression:
You can define facets that are based on the values of multiple attributes. For example, Project Status=Active
if Status
is not Closed
AND Start Date
is after Today
.
To define facets that support ranges
Status
that contains the following Groovy expression for the number attribute:JDeveloper captures the search metadata for each view object, including the search facets you define, and writes it to an external XML file (searchable object) for consumption by the runtime component. Each searchable object corresponds to a view object and includes the search facets. The file naming convention is view_object_name
_ECSF.xml
, and the file is created in the same location as its corresponding view object.
At runtime, the search interfaces provided by ECSF allow users to iterate through facets and further filter the query by selecting facet values.
Caution: Do not manually modify the contents of the view_object_name _ECSF.xml file. If you manually modify the search metadata in the XML file, the changes appear in the editor window when it is closed and reopened in JDeveloper, but metadata changes are not validated. Instead, use the Search navigation tab of the overview editor in JDeveloper to modify the search metadata. |
Facets can only be defined on attributes in the parent or top-level view object because only attributes on the parent or top level view object can be created as index attributes in the underlying Oracle SES index. For example, if you want to create an "address" facet consisting of the following tree, Country > State > City > Zip Code
, all four attributes (country, state, city, zip code) must be view object attributes in the parent or top level view object. Attributes that are used for facets must exist on the parent view object, not on a child view object linked to the parent through a view link. If any of the information is in a child attribute, then the attribute must be joined into the parent view object.
Since facets can filter against only a single search category, faceted navigation is not supported with federated search.
You can configure custom properties for searchable objects to modify default runtime behavior or to make searchable object public.
The following custom properties can be set for searchable objects through the overview editor to modify default runtime behavior:
oracle.ecsf.crawl.batch.size
oracle.ecsf.crawl.datafeed.size
oracle.ecsf.max.links.depth
oracle.ecsf.split.mode
oracle.ecsf.split.threshold
These properties, described in Table 30-1, can also be set as system parameters to apply the values to all searchable objects. For information, see Section 30.2.4, "How to Modify the Run Configuration of the View-Controller Project".
To configure customer properties for searchable objects:
Making searchable objects public allows users to perform searches without needing to log in first. Public data sources do not require any user authentication and can support anonymous users.
To make a searchable object public, define the custom property oracle.ecsf.searchableobject.public
, as shown in Example 27-7, in the view_object_name
.xml
file.
Example 27-7 Custom Property for Making Searchable Objects Public
When this value is set to true
, the Security attribute values for anonymous user
property of the data source deployed to Oracle SES from this searchable object is set to the ACL value or values retrieved from the searchable object's plug-in class.
This chapter describes how to configure security for ECSF.
This chapter includes the following sections:
ECSF secures credentials and searchable application data. The credentials are required for the ECSF engine to communicate with Oracle Secure Enterprise Search (Oracle SES) administration service, Oracle SES query service, and ECSF Security Service. ECSF also uses Secure Socket Layer (SSL) to secure the connections through which the credentials are transmitted. ECSF stores the credentials in the Credential Store Framework (CSF) of the Oracle WebLogic Server domain.
Configure the HTTP protocol to restrict the maximum post and message size in order to prevent denial-of-service (DoS) attacks, which makes the servlets unavailable. For information, see Oracle Fusion Middleware Configuring Server Environments for Oracle WebLogic Server.
Passwords are stored in the Credential Store Framework (CSF) of the Oracle WebLogic Server domain. These passwords are used to perform secure interaction between the ECSF engine and the Oracle SES server. For more information about CSF in Oracle WebLogic Server, see Oracle Fusion Middleware Securing Oracle WebLogic Server.
When the ECSF Runtime Server or the ECSF Client library is added to the projects in Oracle JDeveloper, the permission policy, shown in Example 28-1, is automatically added within the <jazn-policy>
tag of the application's jazn-data.xml
file located in src/META-INF
.
Example 28-1 Permission Policy
Credentials are stored under mapName oracle.ecsf
, oracle.apps.security
, and oracle.wsm.security
with a key in the format: username
#
engineInstanceId
(for example, scott#1
, where scott
is the user on engine instance 1
).
When the application is deployed, the policies in jazn-data.xml
are merged into the system-jazn-data.xml
file in WebLogic_domain
/config/fmwconfig
on Oracle WebLogic Server.
Note: The following security deployment options for the application must be configured in JDeveloper for the policies to merge: policies, credentials, and users/groups. |
Make sure that the policy migrates to the target Oracle WebLogic Server domain. For more information, see Oracle Fusion Middleware Application Security Guide.
Oracle Fusion Applications include six search-related application identities that are seeded and are stored in the identity store:
FUSION_APPS_CRM_SES_CRAWL_APPID
FUSION_APPS_FSCM_SES_CRAWL_APPID
FUSION_APPS_HCM_SES_CRAWL_APPID
FUSION_APPS_CRM_ECSF_SEARCH_APPID
FUSION_APPS_FSCM_ECSF_SEARCH_APPID
FUSION_APPS_HCM_ECSF_SEARCH_APPID
FUSION_APPS_ECSF_SES_ADMIN_APPID
Each pair of application identities, one pair for each product family, are used to integrate ECSF with Oracle Fusion Applications. The Credential Store Framework (CSF) stores the credentials to access the identities.
However, if you are developing applications on the Integrated WebLogic Server instance, then you must manually configure the application identities to integrate ECSF for the crawl users: SES_ADMIN_USERNAME
, SES_QUERY_PROXY_USERNAME
, and ECSF_SECURITY_USERNAME
.
Note: To prevent duplication of crawls, crawling and indexing of searchable object data into Oracle SES must be performed by one crawler user. The single crawler user, specified in the search engine instance parameter ECSF_SECURITY_USERNAME , must have access to all searchable object data to be indexed.The required setup of a user depends on the application setup and is not controlled by ECSF. For example, Oracle Fusion Applications includes three application IDs that are created for crawling data: |
To configure the application identities, you must complete the following tasks:
FusionSearchContextImpl
.jazn-data.xml
file.In order for ECSF to handle the application identities of Oracle Fusion applications, the SearchContext must be set to FusionSearchContextImpl
. The SearchContext is automatically set at runtime based on the runtime environment. If the SearchContext is not set properly, then set the context using the oracle.ecsf.context
system property, for example:
-Doracle.ecsf.context='oracle.ecsf.fusion.FusionSearchContextImpl'
For more information, see Section 30.2.4, "How to Modify the Run Configuration of the View-Controller Project".
Each of the crawl users (SES_ADMIN_USERNAME
, SES_QUERY_PROXY_USERNAME
, and ECSF_SECURITY_USERNAME
) must correspond to an application identity. Use Oracle Enterprise Manager Fusion Applications Control for ECSF to set the crawl user names and their corresponding passwords. For information, see the "Managing Search with Oracle Enterprise Crawl and Search Framework" chapter in the Oracle Fusion Applications Administrator's Guide.
For example, set the user names for Oracle Fusion Customer Relationship Management to:
SES_ADMIN_USERNAME=eqsys
SES_QUERY_PROXY_USERNAME=FUSION_APPS_CRM_ECSF_SEARCH_APPID
ECSF_SECURITY_USERNAME=FUSION_APPS_CRM_SES_CRAWL_APPID
Once the user names are set, you can update the corresponding password parameters for those users to the key names for the application identities. The format of the key name is fullAPPID
-KEY
.
This creates entries in the cwallet with the correct map/key pairs for the users.
In order for ECSF to read and write to the application identity maps in the keystore and access the JPS IdentityAssertion API, permissions must be granted to the three crawl users. The permission policies, shown in Example 28-2, are seeded in the jazn-data.xml
file for Oracle Fusion applications and can be managed in Fusion Applications Control.
Example 28-2 Permission Policies for Application Identities
The permissions allow ECSF to read and write credential store entries that are not part of the oracle.ecsf
map.
New grants are needed in order to authorize users for the search feeds. You must manually update the application's jazn-data.xml
file located in src/META-INF
to enable authorization for users. Add the grant, shown in Example 28-3, inside the <application>
section in the <jazn-policy>
section.
Example 28-3 Grant for Search Feeds User Authorization
The grantee should be the users or roles that you want to authorize to use the search feeds, as shown in Example 28-4.
Example 28-4 Granting Permission to a Role
The example shows how jazn-data.xml
is modified to grant the permission to a role.
ECSF secures the searchable application data by authenticating and authorizing users who use ECSF to perform searches.
Secure the searchable application data by enabling the use of the security model for authenticating and authorizing users.
To enable the use of the security model:
SES_QUERY_PROXY_USERNAME
and SES_QUERY_PROXY_PASSWORD
. For more information, see the "Managing Search with Oracle Enterprise Crawl and Search Framework" chapter in the Oracle Fusion Applications Administrator's Guide.Note: ECSF also supports allowing authenticated users to search business objects with no security policies attached to them. |
This chapter describes how to validate and test search metadata.
This chapter includes the following sections:
Search metadata is dependent on view object metadata, which is used in such areas as title, body expression, and searchable attributes. However, changes made to the view object metadata are not automatically reflected in the search metadata. To identify those changes, you must validate the search metadata by using the Validate button in the Search page of the Oracle JDeveloper overview editor for Oracle Enterprise Crawl and Search Framework (ECSF).
Testing the searchable objects ensures that they can be registered in the Oracle Fusion Applications database without issues.
To make sure that you are creating correct and valid search metadata on view object metadata, you must validate the metadata before applying changes. When you run validation on the search metadata, ECSF checks for the following:
Use the Search navigation tab of the overview editor in JDeveloper, shown in Figure 27-3, to validate search metadata. If you identify any errors (changes to the view object metadata that are not reflected in the search metadata), you must manually fix them.
To validate search metadata through the Validate button:
If validation errors occur, the Search Validation Results dialog, shown in Figure 29-1, appears.
The dialog shows a list of validation errors.
Before you register searchable objects in the Oracle Fusion Applications database, you should test the searchable objects by testing the Config Feed, Control Feed, and Data Feed.
ECSF prohibits multiple feeds per searchable object, so after achieving the desired results for the Config Feed, Control Feed, and Data Feed, you must reset the state of the feeds.
Before you begin:
-Doracle.ecsf.crawl.mode.debug=true
. For more information, see Section 30.2.4, "How to Modify the Run Configuration of the View-Controller Project".Running the ECSF feed servlet in debug mode provides the servlet access to HTTP GET
, the method that allows you to input URLs with arguments directly into the browser.
The web.xml
file is automatically updated with the ECSF feed servlet, feed servlet mapping, and filter mappings as shown in Example 29-1 when the ECSF Runtime Server library is added to the project.
Example 29-1 ECSF Feed Servlet, Feed Servlet Mapping, and Filter Mappings
Run the ECSF feed servlet to make sure it runs properly.
To run the ECSF feed servlet:
ECSF Runtime Server
library.oracle.ecsf.feed
package.SearchFeedServlet.class
file and select Run to start the Integrated WebLogic Server instance. A browser opens to the following feed URL:http://localhost:7101/approot/searchfeedservlet/%2A
Note: The web page is an RSS feed. Depending on the browser you use, you may not be able to view the contents of the web page. If you cannot view the RSS feed, navigate to View > Source in the browser to view the feed. |
You can click the Terminate (red square) button to stop the ECSF feed servlet.
To test the Config Feed, run the ECSF feed servlet with a modified URL.
To test the Config Feed:
http://localhost:7101/approot/searchfeedservlet/%2A
by:localhost
with the server name of the IP address.%2A
with the fully qualified name of the view object, including the package path./ConfigFeed
to the end of the URL.For example, if JDeveloper is running on the Linux server wlsserver.com
, and the fully qualified package path of EmpVO
is oracle.ecsf.EmpVO
(case sensitive), the resulting Config Feed URL would be http://wlsserver.com:8988/approot/searchfeedservlet/oracle.ecsf.EmpVO/ConfigFeed
.
The resulting RSS feed, the Config Feed, should resemble the feed in Example 29-2.
Example 29-2 Sample Results of the Config Feed
If the RSS feed does not appear, then either the runtime server is not set up properly or the path to the view object is incorrect. The URL is case sensitive.
If no attribute exists for the <securityAttribute>
tag, you must mark at least one searchable attribute as a Secure Attribute. For information, see Section 27.2.3, "How to Make View Objects Searchable".
To test the Control Feed, run the ECSF feed servlet with a modified URL.
To test the Control Feed:
<feedLocation>
tag of the Config Feed. For information, see Section 29.3.2, "How to Test the Config Feed".In the Config Feed shown in Example 29-2, the URL is http://localhost:8988/approot/searchfeedservlet/runtime.EmpView/ControlFeed
.
localhost
with the server name of the IP address.For example, if JDeveloper is running on the Linux server example.com
, the resulting Control Feed URL would be http://example.com:8988/approot/searchfeedservlet/runtime.EmpView/ControlFeed
.
The resulting RSS feed, the Control Feed, should resemble the feed in Example 29-3.
Example 29-3 Sample Results of the Control Feed
This chapter describes how to deploy searchable objects to the Oracle Enterprise Crawl and Search Framework (ECSF) application.
This chapter includes the following sections:
The ECSF application must include the searchable objects before you deploy it to the application server.
Searchable objects and their dependencies must be deployed as part of the ECSF application's data model and user interface projects (Model
and ViewController
respectively) to make the searchable objects available for search. In order to deploy searchable objects, you must complete the following tasks:
Model
and ViewController
.The ECSF shared library eliminates the need for ECSF libraries to be packaged into each application. Instead, applications that depend on ECSF libraries can reference the ECSF shared library that is deployed to the Oracle WebLogic Server. The ECSF shared library contains the following Java archive (JAR) files:
ecsf.jar
search_admin_wsclient.jar
search_client.jar
ses_admin_ows_proxy.jar
soap.jar
The ECSF extension in JDeveloper controls the reference to the ECSF shared library that is deployed to Oracle WebLogic Server. When you add the ECSF Runtime Server or ECSF Client library to a project, the reference to the ECSF shared library, shown in Example 30-1, is automatically added to the WebLogic deployment descriptor file (weblogic-application.xml
).
Example 30-1 Reference to the ECSF Shared Library
The ECSF shared library is oracle.ecsf
.
If the weblogic-application.xml
file does not exist, one is created and updated with the reference to the ECSF shared library.
In addition, when you deploy an application to a Oracle WebLogic Server instance and the project contains ECSF libraries, the code checks the descriptor for the ECSF shared library reference. If no ECSF shared library reference is detected in the descriptor, one is added. The WebLogic deployment descriptor also contains a list of library dependencies for the application to be deployed to the Oracle WebLogic Server instance.
The ECSF shared library is automatically deployed to the Integrated WebLogic Server instance by the ECSF extension in JDeveloper through the JDeveloper Application Development Runtime Service (ADRS). However, you must manually deploy the ECSF shared library to the standalone WebLogic Server.
The ECSF shared library is automatically deployed to the Integrated WebLogic Server instance by the ECSF extension in JDeveloper through the JDeveloper Application Development Runtime Service (ADRS). When the Integrated WebLogic Server instance is first started and the ECSF shared library is automatically deployed to it, the ECSF shared library creates a SearchDB data source in the Oracle WebLogic Server domain. The data source initially contains placeholder database connection information. You must manually update the data source after the Integrated WebLogic Server instance is started to include the correct connection information.
To update the SearchDB data source:
You must manually deploy the ECSF shared library to the standalone WebLogic Server instance. The ECSF shared library creates a SearchDB data source in the Oracle WebLogic Server domain. During the process of deploying the ECSF shared library, you must provide the database connection information for the SearchDB data source, which is deployed together with the shared library.
To deploy the ECSF shared library to the standalone WebLogic Server instance:
WL_HOME
/common/bin/config.sh
).For more information, see Oracle Fusion Middleware Configuring Server Environments for Oracle WebLogic Server.
oracle.ecsf_11.1.1_template.jar
), which is located in oracle/jdeveloper/common/templates/applications
.For more information, see Oracle Fusion Middleware Configuring Server Environments for Oracle WebLogic Server.
oracle.ecsf
library.For information, see Oracle Fusion Middleware Oracle WebLogic Server Administration Console Online Help.
oracle/jdeveloper/ecsf/modules/oracle.ecsf_11.1.1/oracle.ecsf.ear
) with the name set as oracle.ecsf
.For information, see Oracle Fusion Middleware Oracle WebLogic Server Administration Console Online Help.
Note: You can also redeploy the ECSF shared library by using the Oracle Fusion Middleware Configuration Wizard. For more information, see Oracle Fusion Middleware Configuring Server Environments for Oracle WebLogic Server. |
Creating the application creates Model
and ViewController
, which must include the searchable objects and their dependencies.
To create a new application:
If desired, change the application name and context root of the view-controller project by modifying the Java EE application settings.
To change the Java EE Application settings:
EcsfApp
.approot
.The view-controller application name is set to EcsfApp
, and the context root is set to approot
.
Modify the run configuration of the view-controller project to run ECSF in debug mode.
To modify the run configuration:
Note: The parameters in Table 30-1 can be set in two ways:
|
These parameters values can also be specified at the searchable object level. For information, see Section 27.5, "Configuring Custom Properties for Searchable Objects".
Table 30-1 ECSF System Parameters
Parameter Name	Java Command-Line Entry	Description
Defines the interval (
Defines the time (
Specifies the name of the database connection to be used. If not specified,		
Defines the ECSF context to be used. The value can be set to		
Defines the data batch size within a data feed. The value determines the number of database rows (n) that are processed per batch within a data feed. The default size is 200.		
Defines the size for the data feed. The value determines the number of documents (n) per data feed. The default size is 1000.		
Specifies the Java Database Connectivity (JDBC) data source name, such as		
Defines the algorithm used to split the records in the table since the last crawled time. The value can be set to		
Specifies the maximum number of values (n) that a facet may contain. ECSF does not return the values if a facet (for example, Country) contains a number of values (for example, USA, Canada, and so on) that exceeds the maximum. The default value is 1000.		
Specifies the maximum number of view object hierarchy levels to limit the depth of search.		
Specifies the ECSF web service invocation timeout (
or		
or		
Defines batching strategy. When the model is simple, no batching is used. Use for simple testing. The key is defined in		
Sets the splitting algorithm threshold to the percentage you specify (n). If the percentage of records returned by the searchable object SQL query versus the total number of records in the searchable object's primary table is less than the threshold percentage, then the view object		
The run configuration is set to debug mode, and other ECSF system parameters are set.		
You must add the ECSF Runtime Server library and one of the following sets of required Java archive (JAR) files to both the Model and view-controller projects:		
oracle/jdeveloper/soa/modules/oracle.soa.fabric_11.1.1/fabric-runtime.jar		
oracle/wlserver_10.3/server/lib/wls-api.jar		
oracle/jdeveloper/webservices/lib/soap.jar		
Caution: Make sure that cwallet.sso and jazn-data.xml are part of your application before adding the Java archive (JAR) files. You can do so through the Application Navigator by navigating to Application Resources, then Descriptors, then META-INF. The cwallet.sso file is created when you create a database connection. To create jazn-data.xml , right-click the META-INF folder select New Oracle Deployment Descriptor, select jazn-data.xml , and click Finish.		
You do not need to add the Java archive (JAR) files that are included in a library that you have already added.		
After you update the Model and view-controller projects to include the searchable objects and dependencies, you must deploy the ECSF application. For information, see Chapter 3, "Setting Up Your JDeveloper Workspace and Projects".		
Make sure that the Oracle Secure Enterprise Search (Oracle SES) engine successfully crawls the searchable objects in the Oracle Fusion applications and indexes them as documents.		
Use the Oracle Enterprise Manager Fusion Applications Control and Oracle SES administration user interface to verify the crawl.		
Note: The feed servlet must be running for Oracle SES to successfully crawl the data.		
To verify the crawl:		
For information, see the "Deploy the Index Schedules" task in Oracle Fusion Applications Administrator's Guide.		
For information, see the "Start the Index Schedules" task in Oracle Fusion Applications Administrator's Guide.		
For information, see the Oracle Secure Enterprise Search Administrator's Guide.		
This chapter provides information on advanced topics for Oracle Enterprise Crawl and Search Framework (ECSF), including enabling and managing search, and troubleshooting ECSF.		
This chapter includes the following sections:		
ECSF offers additional functionality to enhance the search experience. In addition to search on business objects, ECSF supports search on Fusion file attachments, WebCenter tags, and tree structure-based source systems. ECSF also allows you to set up federated search so that users can search across Oracle Fusion Applications product families or across multiple Oracle Secure Enterprise Search (Oracle SES) instances.		
Advanced topics also include using the external ECSF web service to integrate ECSF with Oracle Fusion Applications, localizing ECSF artifacts for international users, and information for troubleshooting ECSF.		
ECSF supports the capability to crawl Oracle Fusion Applications file attachments that are associated with ECSF searchable objects and stored in the Oracle Enterprise Content Management Suite repository.		
References to files in the content repository are stored in a special database table and are retrieved by using a view object named oracle.apps.fnd.applcore.attachments.uiModel.view.AttachmentsVO		
. Using a view link, you can make the AttachmentsVO		
a child of another view object. If a searchable object has a child AttachmentsVO		
, then ECSF automatically makes sure that the attachments are crawled when the searchable object is crawled.		
At the time the searchable object is crawled, ECSF includes a content link in the document that is sent to Oracle SES for each attachment. When Oracle SES receives the data feed and finds the content link, it calls back to ECSF to retrieve the content of the attachment. ECSF then invokes an application programming interface (API) method that retrieves the attachment content from the content server and returns it to Oracle SES. Oracle SES indexes the searchable object and attachment content as one item.		
The API handles authentication and authorization.		
To make file attachments crawlable:		
This adds the Attachment-Model.jar		
and Common-Model.jar		
files, located in JDEV_HOME		
\jdeveloper\jdev\oaext\adflib		
, to your projects.		
AttachmentsVO		
to make AttachmentsVO		
a child of the searchable object.Note: When you design your view object for search, make sure that you configure view links to generate only the Destination Accessor and not the Source Accessor.		
ECSF supports the capability to crawl searchable objects with Oracle WebCenter tags so that tags can be used as keywords or filters for search in Oracle Fusion Applications. A tag is a meaningful term attached to an object. Tags can be used for various purposes such as categorization, to-dos, and priorities. For more information, see the "Integrating the Tags Service" chapter in Oracle Fusion Middleware Developer's Guide for Oracle WebCenter.		
Note: ECSF does not support search using private tags.		
Tags are single words stored as space-separated strings in the application database and are retrieved by using a view object called TagSVO		
(service view object). You must create a view link to make TagSVO		
a child object. At crawl time, the view link is used to locate TagSVO		
. Figure 31-1 illustrates crawl time with tags.		
Purchase Order 123 has two tags, Computer		
and Dell		
. ECSF adds the tags for each record of the searchable object to the indexable document before the document is sent to Oracle SES for indexing. ECSF also creates a reserved attribute (of type string) called ECSF_TAGS		
to store tags in Oracle SES.		
At query time, users can specify tag values as keywords or as filters. When tag values are input as keywords, the tag value is treated as a query string and returns results that include the objects with the specified tag. When tag values are used as filters, the tags are added to QueryMetaData		
and the query is run with filters on ECSF_TAGS		
. Only the objects with the specified tags are returned. Figure 31-2 and Figure 31-3 illustrates the difference between query time without a tag and query time with a tag.		
Note: Tags cannot be searched as individual entities.		
In Figure 31-2, the indexed document for Purchase Order 123 contains two tags, Computer		
and Dell		
. The query on John		
returns all the documents that contain John		
. The results display the title, body, and all tags for the documents.		
In Figure 31-3, query on the Purchase Order John		
and tag Dell		
returns only the documents that contain John		
AND the Dell		
tag. The results display the title, body, and all tags for the documents. If both Dell		
and Computer		
were specified as tags, then the query would return only the documents that contain both tags (that is, Dell		
AND Computer		
). You cannot specify tags using the OR condition (that is, Dell		
OR Computer		
), so the query cannot return documents that contain either the Dell		
tag or the Computer		
tag.		
Enabling search on WebCenter tags allows tags to be added to indexable documents and stored in the reserved attribute called ECSF_TAGS		
in Oracle SES. Tags can then be used as keywords or filters for search.		
Perform the following tasks to enable search on WebCenter tags:		
TagSVO		
. For information, see Section 14.15.5, "How to Implement Tags in Oracle Fusion Applications Search".Note: When you design your view object for search, make sure that you configure view links to generate only the Destination Accessor and not the Source Accessor.		
The view link must use the accessor name tagSVO		
so that the search extension can navigate to the child object when it crawls.		
You can also perform the following tasks to customize search on WebCenter tags:		
In order to crawl tags, you must use Tag APIs to add tags to indexable documents. You can use Tag APIs in the search extension code.		
To add tags to indexable documents:		
DefaultSearchPlugin		
, implements PreIndexProcessor		
, and includes a method called preIndexProcess		
that adds tags to some objects.Note: If you place the search extension in the Oracle WebLogic Server shared library, then the ECSF library (ecsf.jar) must be present in the shared library in order for ECSF to load the PreIndexProcessor interface.		
You can implement code, such as the sample code shown in Example 31-1, in the search extension to extend DefaultSearchPlugin		
.		
Example 31-1 Sample Code for Adding Tags to Indexable Documents		
This extension adds three tags (Black		
, White		
, and Stripes		
) to a user named Zebra		
.		
After tags are crawled into Oracle SES, you can perform keyword searches on tags or filter on tags. QueryMetaData		
accepts tags for querying. When one or more tags are added to QueryMetaData		
, the query runs with filters on ECSF_TAGS		
.		
Example 31-2 illustrates how tags are used for querying.		
Example 31-2 Sample API for Querying With Tags		
Adding tags for querying forces the query to find results where indexed documents contain the added tags. When more than one tag is added, the resulting documents must contain both tags. Documents containing only one of the tags are not returned.		
Query SES retrieves tags all the time. The searcher adds tags to IndexedDocument		
by using setTags		
. In case of null		
in the attribute, no tags are added. IndexedDocument.getTags		
returns all the tags in the document.		
You can override tags in the lifecycle methods provided by ECSF. For example, if required, you can add tags to an indexable document in the IndexablePostProcess		
by using the APIs provided on the IndexableDocument		
:		
void addTags(String[] tags)		
adds a list of strings as tags to the document. Duplicates are removed.Collection<String> getTags()		
returns a list of tags associated with the document.void clearTags()		
clears tags associated with the document.You can extend the incremental crawling mechanism by registering change listeners, which use the WebCenter tagging framework to identify objects that need to be updated in the search engine. Implement the oracle.ecsf.ChangeListener		
interface in a search extension to customize the runtime logic that detects changes in the searchable objects. Example 31-3 illustrates a sample implementation of ChangeListener		
.		
Example 31-3 Sample Implementation of ChangeListener		
The method Iterator getChangeList (SearchContext ctx, String changeType)		
returns an iterator (ChangeIterator		
) over a list of primary keys for the searchable object (ctx.getSearchableObject		
).		
The primary keys returned from the change listener are logged in the ECSF change log table before an incremental control feed is constructed.		
In addition to supporting the crawling and searching of relational-based objects through view objects or Java Database Connectivity (JDBC), ECSF supports the capability to crawl data in hierarchical tree-based data structures, or tree structures, and to identify items for indexing to enable full-text search. A tree structure is a common data structure, such as a file system on a computer hard disk, used to organize a large number of items. Oracle Business Intelligence is an example of a source system that is organized in a tree structure. For more information about Oracle Business Intelligence Suite Enterprise Edition and its supported search functionality, see the "Managing Objects in the Oracle BI Presentation Catalog" chapter in Oracle Business Intelligence Suite Enterprise Edition User's Guide.		
By default, ECSF supports database crawling using Oracle ADF technology. To support crawling data that is organized in tree structures, you can extend the abstract implementation of the CrawlableFactory oracle.ecsf.data.tree.AbstractTreeWalker		
. The extension converts the data stored at tree nodes into documents that Oracle SES receives through Really Simple Syndication (RSS) feeds and indexes.		
Note: Crawling relies on the integrator's implementation that is based on their underlying data structures and accessibility of the items to be indexed.		
Note: ECSF currently does not provide an interface for converting information in source systems to indexable documents. It is assumed that data structures of an indexable item are proprietary to the source system, and the interface for converting an item pertaining such a structure to indexable document are the responsibility of the integrator.		
A searchable object holds metadata about the source system. It can be either an Oracle ADF view object with ECSF annotation or a class that extends oracle.ecsf.meta.SearchableObject		
. For tree structure-based source systems, the searchable object is not view object-based, so ECSF does not load the view object. Instead, it loads a Java class that extends and implements the searchable object. When requested with a ConfigFeed		
URL, ECSF identifies the searchable object that holds the search metadata required by ECSF. Non-view object-based searchable objects can be grouped into search categories. Figure 31-4 illustrates the data flow for search on tree structure-based source systems.		
The integration of ECSF with the source system allows an Oracle SES instance to crawl the source system data. The Source System DataNode		
, which is exposed to the ECSF tree crawler, formulates the data structure and pulls data from the source system server using web services. ECSF converts the tree nodes into documents that Oracle SES receives through RSS feeds and indexes. The source system implements a security service. When data from the source system is indexed in the Oracle SES, it is guarded against access by the security service.		
A security extension is needed to implement source and document-level security. A searchable object has a method of getting a search extension instance based on the metadata. To associate a search extension with a searchable object, configure it from the Search navigation tab of the overview editor in JDeveloper. For more information, see Section 27.2.3, "How to Make View Objects Searchable".		
ECSF also extends its attachment implementation to enable the implementer to open the stream for data pulling attachments that are associated with a particular node. For more information, see Section 31.2, "Enabling Search on Fusion File Attachments".		
Enable search on tree structure-based source systems by:		
ECSF offers Java classes that provide support for traversing tree structure-based data sources and identifying items for indexing. To implement search for these data sources, complete the following tasks:		
oracle.ecsf.data.tree.SearchableTreeObject		
class.AbstractTreeWalker		
to traverse the tree.Before you begin:		
Install the ECSF seed data records in the ECSF schema of the Oracle Fusion Applications database using Seed Data Framework (SDF). For information, see Chapter 55, "Initializing Oracle Fusion Application Data Using the Seed Data Loader".		
Create a searchable object by extending the oracle.ecsf.data.tree.SearchableTreeObject		
class, as shown in Example 31-4. When you create a searchable object for a tree object, you create a Java class, the SearchableTreeDirectory		
class, that is part of your implementation Java archive (JAR) file.		
Example 31-4 Sample Code for SearchableTreeDirectory Class		
You must override the initializeConfig		
method to create search metadata dynamically for your searchable object, including adding a custom attribute, setting the security plug-in class name, and so on.		
You must override getCrawlableFactoryName()		
to return the class name of your extension of AbstractTreeWalker		
.		
Override getFileName		
if you want to persist the last crawled timestamp in a particular location.		
For information, see Section 31.4.1.3, "Extending AbstractTreeWalker".		
A crawlable tree node represents a node in your tree structure. When crawled, each node on the tree structure is wrapped in this object. This node is created by the extension of AbstractTreeWalker		
. For more details on each method, see the Javadoc for ECSF.		
Implement a crawlable tree node by extending the oracle.ecsf.data.tree.CrawlableTreeNode		
class to create a tree node class called CrawlableTreeNodeImpl		
, as shown in Example 31-5, for extracting document metadata. The tree node class models the tree structure repository.		
Example 31-5 Sample Code for CrawlableTreeNodeImpl Class		
In the processNode		
method, you must extract any metadata information about the document (for example, setTitle		
, setKeyword		
, setContent		
) and populate the indexable document that is passed in. You can also add any custom attributes to the indexable documents, such as the isLeaf		
method that determines whether a node is a folder or a document. This method is used by the crawlable factory to determine how to traverse the tree.		
To provide the methods that enables Oracle SES to traverse tree structures and index the content items, extend AbstractTreeWalker		
by creating the abstract tree crawler class, called FileTreeCrawler		
, as shown in Example 31-6. FileTreeCrawler		
is invoked as a factory to create a crawlable tree node as defined in Section 31.4.1.2, "Implementing a Crawlable Tree Node". The tree walker works with CrawlableTreeNode		
to provide the generic framework for traversing a tree structure and indexing the content items in the repository. It also uses TreeSplitter		
to divide the repository into branches to enhance the crawling performance.		
Example 31-6 Sample Code for FileTreeCrawler Class		
When Oracle SES crawls the searchable object, an instance of FileTreeCrawler		
is created by ECSF. It traverses the tree structure by calling the methods defined in the FileTreeCrawler		
class. It goes through two passes. First, it collects only the structure information, and based on that, it forms a control feed that contains all the folders that need to be visited for collecting documents. The isIndexable		
method determines whether or not a particular node is indexed by Oracle SES. You can also use it to place filters to control the type of document to be indexed.		
When creating the FileTreeCrawler		
class, you must implement two constructors. One takes no parameters, and the other takes a searchable object where you can perform configurations specific to your application, if required.		
Security rules on the documents indexed by Oracle SES is controlled by access control lists (ACLs). This is achieved by creating a search plug-in that implements the oracle.ecsf.Secure		
interface for the searchable object. When you implement a security extension for the searchable object, it is used to serve as the authorization module for indexed content in Oracle SES.		
Note: ECSF uses the generic term ACL to describe how Oracle SES and ECSF pass security information and perform security checks by using the information described in the ACL.		
ECSF is secured by a plugable security service, which is called when users try to search the indexed content. By default, ECSF provides an implementation based on Oracle Platform Security for Java. It is mainly used for authenticating and authorizing users into the system. However, if you have a non-Oracle security provider, or you want to use your own security implementation, you must extend the ECSF security service. Example 31-7 illustrates the skeleton of a security extension.		
Example 31-7 Sample of Security Service		
The security extension is a Java class that implements a securable interface. There are five methods available. Example 31-8 illustrates the skeleton of such class.		
Example 31-8 Sample Security Extension		
Your search plug-in must be assigned to the searchable object, as shown in Example 31-4.		
Implementing the attachments interface, shown in Example 31-9, allows you to index binary files such as Word documents, Excel spreadsheets, PDF files, and so on.		
Example 31-9 Attachments Interface Implementation		
Once you implement this class, you can add any number of attachments to an indexable document in the processNode		
method of CrawlableTreeNode		
. The attachment must contain enough information in its primary key for you to open the attachment when requested by the read method, where you simply use the information stored in the primary key to read the document and write to the output stream passed to you.		
Before Oracle SES can crawl your file system, you need an Oracle WebLogic Server instance to which you can deploy the ECSF servlet. For example, you can use the Integrated WebLogic Server container.		
To deploy and start the ECSF server:		
ecsf.jar		
to its class path.web.xml		
to add the servlet mapping in Example 31-10.Example 31-10 SearchFeedServlet Mapping		
-Doracle.ecsf.security.service=		
classnameOfSecurityService		
. Otherwise, Oracle Platform Security for Java security service is used.ecsf.jar		
, right-click oracle.ecsf.feed.SearchFeedServlet		
, and select Run. The ECSF servlet starts, and the system is ready to be crawled.Oracle SES must be installed, then configured to crawl ECSF. Install Oracle SES 11.2.1, then perform the following steps to configure Oracle SES with the necessary information for crawling tree structure-based data sources and identifying items for indexing.		
To configure Oracle SES:		
For General, complete the following:		
your data source name		
Oracle SES supports string values of up to 100 characters.		
http://		
yourhost:port/appname/pathname/searchableObjectName		
/ConfigFeed		
NATIVE		
username		
password		
/tmp		
or c:\tmp		
or empty3		
For Authentication, complete the following:		
ACLs Controlled by the Source		
http://		
yourhost:port/appname/pathname		
/SecurityService?engineInstID=		
EngineInstanceID		
username		
password		
searchableObjectName		
prefix of url for Oracle SES UI		
http://		
yourhost:port/appname/pathname		
/SecurityService		
.Example 31-11 Class Path with Oracle SES Client Java Archive		
In the ECSF architecture, search related artifacts can be stored in any persistent storage. The metadata manager obtains these artifacts via configuration store abstraction. For Oracle Fusion Applications, a database-based configuration store is developed that is capable of loading configuration from the ECSF tables in the Oracle Fusion Applications database.		
If you decide not to use the ECSF database-based configuration store for the metadata, you can implement your own configuration store by implementing the oracle.ecsf.meta.Configuration		
interface.		
The search related artifacts are loaded into memory through VOConfiguration		
during runtime to be used for crawling, query, and administration. If information is not stored in a database, as in the case of Oracle Business Intelligence that stores its information in a tree structure-based source system, ECSF provides a flexible way to load the runtime objects through an interface (Configuration		
) placed between MetaDataManager		
and your configuration storage so that runtime objects are not restricted to being loaded from the database. Figure 31-5 illustrates the runtime architecture that includes the Configuration		
interface, which provides an alternative mechanism for loading runtime objects.		
A system property determines which configuration, VOConfiguration		
or a custom configuration, to use during runtime. In Figure 31-5, the BIConfiguration		
class is an example of a custom configuration that extends the existing AbstractConfiguration		
class.		
Integrate search functionality for tree structures by extending the AbstractConfiguration		
class and using your configuration class.		
The MetaDataManager		
class determines which configuration to call based on how you set the oracle.ecsf.configuration.class		
system property. For example,		
sets the property to use BIConfiguration		
. If this property is not set, or an implementation class does not exist for this property, MetaDataManager		
calls VOConfiguration		
by default.		
The Configuration		
interface, shown in Example 31-12, contains the methods implemented by VOConfiguration		
or a custom configuration to load runtime objects.		
Example 31-12 Configuration Interface		
The Configuration		
interface includes the getEngineParameters()		
method so you can get and set the search engine parameters needed for ECSF runtime in the absence of a database.		
The AbstractConfiguration		
class implements the necessary functionalities common to all non-database uptakers regardless of where the runtime object information is stored. You must complete the implementation by using your own custom class that extends AbstractConfiguration		
. For information, see Section 31.4.2.5, "Extending AbstractConfiguration".		
Example 31-13 illustrates the implementation of AbstractConfiguration		
. In this implementation, getSearchableGroups()		
loads the available groups from the Oracle SES instance. These groups are treated as external groups, and therefore advanced search and facets are not supported in this scenario.		
Example 31-13 Sample AbstractConfiguration Implementation		
In this implementation, there is only one engine instance but following MetaDataManager		
convention, a list of engine instances is returned.		
Since the searchable objects are not stored in the database, you must implement a Java class to define each searchable object. Example 31-14 shows the sample implementation for EmpView.java		
.		
Example 31-14 Sample Searchable Object Class		
Each searchable object is loaded using a class of the same name.		
You can extend the AbstractConfiguration		
class with the BIConfiguration		
class, as shown in Example 31-15, to define your own way of loading runtime objects that is specific to your environment.		
Example 31-15 Sample Implementation for BIConfiguration		
Recent Searches will save the user's top 10 most recent searches. The maximum number of recent searches that are saved can be configured. Recent Searches will display in the UI with the search keywords as their name and the user can use the recent search to requery. Recent Searches can be deleted one at a time, or all Recent Searches for a specified user can be deleted.		
The Recent Search feature uses the SaveSearch database table and dataobjects, which already exist. The SEARCH_TYPE column added to the ECSF_SVSEARCH table specifies whether or not a search is SAVED or RECENT. If necessary, make sure to update the SavedSearchManager so that it handles this column.		
Recent Searches uses these components:		
The RecentSearchManager will manage the creation, deletion and retrieval of recent searches from the database.		
When a Saved Search is created, the SEARCH_TYPE column in the ECSF_SVSEARCH database table will be set to the appropriate value, and the SavedSearchManager will retrieve only searches that are of type SAVED.		
The existing ECSF_SVSearch database table will store the information for recent searches, using the SEARCH_TYPE column to store the Search Type.		
This class, shown in Example 31-16, manages the Recent Searches.		
Example 31-16 RecentSearchManager API		
Recent Searches are managed only from the current application container, so the RecentSearchManager only handles recent searches that are found in the local application database, regardless of the ECSF Scope (LOCAL/GLOBAL). RecentSearchManager will not call to other search applications for recent searches.		
Important: When a RecentSsearch query is run, the query is run as usual using the defined Scope and Federation, so a federated query will go across the wire to the search applications if required.		
Recent Searches are not implicitly created by ECSF. For a Recent Search to be saved, the RecentSearchManager.createRecentSearch API must be called.		
The call to get the Recent Searches will return a list ordered from most recent to oldest recent search.		
For performance, the list of recent searches returned will not contain the RecentSearchDetails information for the Recent Searches. The fact that this information is not available in the Recent Search dataobject is transparent to the client. When the client wants the details and calls RecentSearch.getRecentSearchDetails() on the Recent Search, the dataobject automatically will retrieve the RecentSearchDetails from the database.		
By default, the maximum number of Recent Searches for each user is limited to 10. This number can be configured using a Java system property:		
This property can be set using the Java -D option or the ecsf.properties file.		
Note: If the oracle.ecsf.recent.search.max.num property is set to an invalid number or 0, recent searches are disabled and a message is printed to the log. The isEnabled(SearchContext ctx) API indicates whether or not Recent Search functionality is enabled. If Recent Search is disabled, calling the other methods in RecentSearchManager will result in an UnsupportedOperationException.		
When Recent Search records are retrieved from the database, the SQL limits the number of records based on the system property (or the default of 10), so that only the most recent records are returned.		
When the RecentSearchManager creates a new Recent Search, it first checks if the user already has the maximum number of Recent Searches stored in the database. If the user does not, a new Recent Search is created. If the user has exceeded the maximum number of Recent Searches allowed, the oldest Recent Search record is deleted and then the new Recent Search is saved into the database.		
During the creation of a new Recent Search, at most one older Recent Search record may be deleted. Because the maximum number of Recent Searches is configurable, if this property is changed, there may be more Recent Search records in the database than allowed per user, and the Recent Search records should be manually cleaned from the database to clean up any extra records.		
When a new Recent Search is created, due to the ECSF_SVSEARCH database table constraint on the NAME being unique per user, the RecentSearchManager will generate a unique name for the Recent Search using the database RowId for the new record and the queryString input by the user:		
This will maintain the constraint of having a unique name for each recent SavedSearch record. The UI will want to display the keyword string as the Recent Search name. The keyword string can be obtained from the SavedSearch dataobject using its getKeywordSrchStr method:		
To run a Recent Search, the RecentSearchDetails can be retrieved from the RecentSearch object and then SearchCtrl.runQuery can be used to run the query on the queryMetaData in the RecentSearchDetails. If the query is federated, it will run as usual using federation. All of the necessary details for this are stored in the queryMetaData object:		
The callerCtx passed into some of the RecentSearchManager methods is a column used by the UI to tag searches. For example, the Global Search UI will only want to display recent searches that were performed inside the Global Search UI, so the callerCtx will be used when creating and retrieving searches.		
Database Schema for Recent Searches		
Recent Search uses the ECSF_SVSEARCH and ECSF_SVSEARCH_DETAILS database tables. To support Recent Search, these schema changes have been made:		
RecentSearch Dataobject		
The RecentSeach and RecentSearchDetails dataobjects are used. A RecentSearch dataobject is just like SavedSearch except for the details method:		
ECSF provides the services and federation to enable users to search across Oracle Fusion Applications product families or across multiple Oracle SES instances. For more information, see the "Managing Search with Oracle Enterprise Crawl and Search Framework" chapter in the Oracle Fusion Applications Administrator's Guide.		
Set up ECSF services and federation by:		
SearchContext		
scope to GLOBAL		
The Oracle WebLogic Server instance to which the application is deployed must have a SearchDB		
connection. The application deployment descriptors are set so that the application does not automatically generate and synchronize weblogic-jdbc.xml		
descriptors during deployment. This setting prevents you from receiving the deployment error No credential mapper entry found for password indirection		
when you package or deploy from the command line or from Oracle JDeveloper. Because of this, you must manually create the SearchDB		
connection on Oracle WebLogic Server instance.		
To create the SearchDB connection:		
jdbc/SearchDBDS		
. If not, proceed to the next step.jdbc/SearchDBDS		
Oracle		
Oracle Driver (Thin) 901,92,10,11		
All searchable objects and their dependencies must be packaged within the Search application enterprise archive (EAR) file for each product family. You must set the target directory for the Java archive (JAR) files containing the searchable objects and their dependencies in the application deployment descriptor so that they are packaged with the enterprise archive.		
To set the target directory for searchable objects:		
The deployment descriptor file (for example, Search_Application1.ear		
, where Search		
is your application name) appears in the left pane.		
{FULL_PATH_TO_BUILD_FILE}/deploy/lib/		
, for example, /ade/view_name/fusionapps/crm/deploy/lib		
.This directory is empty, but during the pre-enterprise archive step in the build file the directory becomes populated with all of the dependent Java archive (JAR) files. Including this directory in the application deployment descriptor ensures that these dependent Java archive (JAR) files are packaged with the enterprise archive.		
The ECSF Service shared library eliminates the need for ECSF libraries to be packaged into the Search application for each product family. Instead, applications that depend on ECSF libraries can reference the ECSF shared library that is deployed to the Oracle WebLogic Server instance. The ECSF Service shared library contains the following Java archive (JAR) files:		
ecsf_MiddleTier.war		
ecsf_MiddleTier.jar		
ecsf_Common.jar		
You must update the Oracle WebLogic Server deployment descriptor file (weblogic-application.xml		
) by adding the reference to the ECSF Service shared library (oracle.ecsf.service		
), as shown in Example 31-17.		
Example 31-17 Reference to the ECSF Service Shared Library		
Replace REPLACE _CONTEXT_ROOT		
with the context root that is desired for the Search application's ECSF Service.		
The ECSF Service shared library is automatically deployed to the Integrated WebLogic Server instance by the ECSF extension in JDeveloper through the JDeveloper Application Development Runtime Service (ADRS). However, you must manually deploy the ECSF Service shared library to the standalone Oracle WebLogic Server.		
After you update the application deployment profile, update the project by adding the ECSF Runtime Library.		
To add the ECSF Runtime Library:		
ECSF Runtime Server		
from the list of available libraries.Set the oracle.ecsf.service.ws.timeout		
system parameter to specify the web service timeout value in milliseconds. If no value is specified, then 90,000 milliseconds is used. You can set the system parameter in either the Java system properties or in the ecsf.properties		
file.		
Set the oracle.ecsf.service.ws.timeout		
system parameter in Java System Properties to specify the web service timeout value.		
To set the system parameter using Java system properties:		
-Doracle.ecsf.service.ws.timeout=		
n (where n is the desired value in milliseconds) in the Java Options field, then click OK.Set the oracle.ecsf.service.ws.timeout		
system parameter in the ecsf.properties		
file to specify the web service timeout value by adding the following line to the ecsf.properties		
file available in the application classpath:		
oracle.ecsf.service.ws.timeout=		
n		
where n is the desired value in milliseconds.		
When the application deployment descriptor points to the right directory you can run the ant		
targets to package and deploy the EAR file. You can run the ant		
targets from the command line or from Oracle JDeveloper.		
Package and deploy the Search application by issuing the following commands in the directory where the build file is located:		
ant -f build-crmsearch.xml ear		
ant -Ddeployenvfile=/scratch/deploy.xml -f build-crmsearch.xml deploy		
where build-crmsearch.xml		
is the build file for the Search application.		
The enterprise archive step in the build file includes the pre-enterprise archive step, so there is no need to manually run the pre-enterprise archive step. The enterprise archive target also runs a postenterprise archive step that deletes all the files from the deploy/lib		
directory after the enterprise archive is packaged, resulting in a clean folder.		
You can use Oracle JDeveloper to package and deploy the Search application.		
To package and deploy the Search application from Oracle JDeveloper:		
This step runs the pre-enterprise archive steps that are required for copying required Java archive (JAR) files to the directory specified in the Search application deployment descriptor. All the files in that directory is packaged into the enterprise archive file in the APP-INF/lib		
file where the ECSF WAR can locate them.		
The Search application must be updated if there are new searchable objects to add to the application or if any of the dependencies for existing searchable objects change.		
If there are no new searchable objects but dependencies have changed, you only need to run the dependentJar		
ant target and package and deploy the enterprise archive (for information, see Section 31.6.6, "How to Package and Deploy the Search Application").		
However, if you are adding new searchable objects to the application, then you must add the new searchable objects to the Search application build file and run the dependentJar		
ant target, then repackage and redeploy the enterprise archive (for information, see Section 31.6.6, "How to Package and Deploy the Search Application").		
In order to connect to the Search application for each Oracle Fusion Applications product family (collectively called global search applications), you must configure the client application so that when it sends the Search application server a request, it also sends valid encrypted proxy user credentials to the server.		
The client that calls the Search application must be configured with information on where to find the global Search applications. This information is stored in the connections.xml		
of the client application. The connections.xml file of the client application must contain a reference name element corresponding to each remote ECSF component to which the client application connects.		
Set up the ECSF client application by:		
cwallet.sso		
and default-keystore.jks		
jps-config.xml		
connections.xml		
The security header is encrypted before being sent to the server, so the cwallet and default-keystore files for both the client and server must be configured for the encryption to function properly. Use the Oracle Weblogic Scripting Tool to create the encryption keys in cwallet.sso		
and default-keystore.jks		
. For more information, see Oracle Fusion Middleware Oracle WebLogic Scripting Tool.		
The following four new entries appear in cwallet.sso		
and default-keystore.jks		
:		
Oracle Weblogic Scripting Tool updates the files directly on the server you specify, so no redeployment is necessary.		
In order for the client to be able to use the encryption keystore entries, you must configure the jps-config.xml		
file for the client application.		
Add the following entries to jps-config.xml		
:		
serviceProviders		
:serviceInstances		
:jpsContext		
:<serviceInstanceRef ref="keystore"/>		
For more information, see Oracle Fusion Middleware Oracle WebLogic Scripting Tool.		
The proxy user must exist on both the client and server. The client's cwallet.sso		
must also include an entry for the proxy user so that the username and password can be encrypted when they are placed in the security header before being sent to the server. Use Oracle Weblogic Scripting Tool to create an entry for the user in cwallet.sso		
, as shown in Example 31-18.		
Example 31-18 Sample Proxy User Entry		
The key (in this example, test.user		
) for the new entry is used in connections.xml		
.		
The connection between the ECSF client and each of the remote ECSF service components is defined in the connections.xml		
file in the ECSF client. The connections.xml		
file contains a list of reference name elements that correspond to each ECSF service component. You must edit the connections.xml		
file to define the application server connection parameters.		
To define the connection parameters:		
connections.xml		
file.Example 31-19 Sample Reference Element		
Web service security must be enforced by policy at the domain or instance level by configuration. For information, see Oracle Fusion Middleware Oracle WebLogic Server Administration Console Online Help.		
ECSF Query APIs can either invoke the ECSF service component internally (GLOBAL		
) or locally (LOCAL		
). In order to set the ECSF calls to be routed to the ECSF service component, you must set the scope of the search context to GLOBAL		
, as shown in Example 31-20.		
Example 31-20 Client Methods		
When the SearchContext		
scope is set to GLOBAL		
, the parameters defined for the remote engine instance in the database are used to access metadata objects and perform query related functions on the remote engine instance. For more information, see the "Managing Search with Oracle Enterprise Crawl and Search Framework" chapter in the Oracle Fusion Applications Administrator's Guide.		
Use the ECSF API, as shown in Example 31-21, to integrate federation across Oracle Fusion Applications product families.		
Example 31-21 Sample API for Implementing Federated Search		
In the example, ECSF runtime gets the runtime.EmpView		
search category (search group) from an engine instance.		
ECSF supports federation across Oracle SES instances, which allows users to query across multiple Oracle SES instances defined in the client's own ECSF component. In Figure 31-6, the ECSF client is connected to one ECSF service component, which depends on one database and two Oracle SES instances.		
Federation occurs on the client through the Searcher		
class. For each Oracle SES instance, ECSF runtime groups the search categories belonging to an Oracle SES instance and creates a federation node for it. Separate queries are issued in separate threads for each Oracle SES instance. The results from these queries are merged by ECSF runtime and returned to the user.		
Note: You cannot federate both Oracle SES instances and ECSF service components in the same query. ECSF runtime can only create federation nodes for either each Oracle SES instance (for federated Oracle SES) or each ECSF service component (for federated search).		
Example 31-22 illustrates how you can integrate federation across Oracle SES instances.		
Example 31-22 Sample API for Integrating Federated Oracle SES		
In the example, two Oracle SES search engine instances are defined.		
You can use a Java API to raise change events synchronously with asynch flag = false		
when searchable object records are modified. Raising events using SQL writes records to the ECSF_SEARCHABLE_CHANGE_LOG		
table of the database.		
You can raise change events synchronously by implementing code like the sample code in Example 31-23.		
Example 31-23 Sample Code for Raising Events Using SQL		
You can use the following ChangeType		
parameters:		
IndexableDocument.DELETE		
IndexableDocument.UPDATE		
IndexableDocument.INSERT		
When using the SearchEventInvocation.raiseEvent(PrimaryKey eventPK, boolean useFabric)		
method to create change log records, the keys in the eventPK		
map must be aliases of view object attributes. A view object's alias can be found by opening the view object in JDeveloper, or by calling the getBinding()		
method of the appropriate oracle.ecsf.meta.FieldDefinition		
instance. Also, the eventPK		
map must contain an entry for every attribute that is part the primary key makeup. Otherwise, the raiseEvent		
method throws an exception.		
For more information, see the Javadoc for ECSF.		
In addition to Java APIs, Oracle Enterprise Crawl and Search Framework (ECSF) provides an external web service for you to integrate ECSF with Oracle Fusion Applications. This web service allows you to build a custom search user interface that enables Oracle Fusion Applications users to search across multiple ECSF service components through a web service client. As an alternative to using Java APIs, you can invoke the external ECSF web service from Oracle Fusion Applications to perform query related functions in both LOCAL		
and GLOBAL		
scopes. Using a web service client, users can query across multiple Oracle SES instances in LOCAL		
scope or across multiple ECSF service components in GLOBAL		
scope.		
The external ECSF web service reuses the web service already provided by an ECSF component and exposes the methods described in Table 31-1.		
Table 31-1 ECSF Web Service Methods		
Method	Description	
---	---	
Returns a saved search based on the name passed in to the		
Returns the saved searches based on the caller context passed in to the		
Saves the search passed in to the		
Deletes the saved search passed in to the		
Returns the saved search details based on the saved search passed in to the		
Returns search hits based on the request passed in to the		
Returns the engine instances based on the engine type ID passed in to the		
The Web Service Description Language (WSDL), shown in Example 31-24, defines the message endpoints and the request and reply messages of the ECSF web service. The XSD, shown in Example 31-25, defines the XML schema of the ECSF web service. Refer to the WSDL and XSD to understand and interact with the ECSF web service.		
Example 31-24 ECSF Web Service WSDL		
Example 31-25 ECSF Web Service XSD		
Each of the web service methods takes in a username and a request XML. The username is used to bind to the SearchContext. The request XML is passed to the SearchService to perform query related functions.		
The request XMLs for the web service methods are based on the following request XSDs:		
The request XMLs for the getSavedSearch()		
, getSavedSearches()		
, saveSearch()		
, deleteSearch()		
, and getSavedSearchDetails()		
methods are based on the SavedSearch request XSD, shown in Example 31-26.		
Example 31-26 SavedSearch Request XSD		
The SavedSearch request XSD describes the set of rules that the request XMLs must follow in order to be valid. Examples of valid request XMLs include the following:		
getSavedSearch()		
getSavedSearches()		
saveSearch()		
This part of the developer's guide describes the fundamental patterns that Oracle Fusion application developers should use when building applications involving Oracle Application Development Framework (Oracle ADF) and the Oracle SOA platform. The majority of these use cases fall into three basic patterns:		
In addition to these three core categories, other chapters within this part provide guidance on a few less common patterns that might be useful to applications developers.		
Each chapter in this section describes a use case and its associated recommended design pattern, along with procedures for implementing the design pattern, recommended validation procedures, and troubleshooting tips.		
Note: When carrying out the procedures described in the following chapters, use the Default/All technologies role for any SOA-related activity.		
This part contains the following chapters:		
This chapter describes what a user action or other activity in an Oracle ADF web application needs to do to invoke a SOA composite. The invocation is asynchronous and does not require a response. Inside the SOA composite, an Oracle Mediator component can provide routing and transformation, a BPEL component can provide business process orchestration, a human task service can provide workflows, and a decision service can provide complex business rules based decision making.		
When to implement: A user action or other activity in an Oracle ADF web application needs to invoke a SOA composite. The invocation is asynchronous and does not require a response. Inside the SOA composite, an Oracle Mediator component can provide routing and transformation, a BPEL component can provide business process orchestration, a human task service can provide workflows, and a decision service can provide complex business rules based decision making.		
Design Pattern Summary: A business component in the ADF Business Components Framework publishes a business event to execute a SOA composite application. The SOA composite application subscribes to the event using the Oracle Mediator component, and from there it can be routed to any other service component, such as BPEL.		
Involved components:		
Oracle Fusion applications initiate business processes in response to user actions. Oracle ADF provides a change notification framework that is triggered at the end of a transaction involving ADF Business Components. This notification can be declaratively configured to raise business events that conform to an Event Description Language (EDL) definition. When an event is raised, it is published on the Event Delivery Network (EDN). For more information about the EDN, see the chapter "Using Business Events and the Event Delivery Network" in the Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.		
Process flows are implemented using a BPEL process service component as a bridge from EDN to the BPEL process. Because the events raised by the ADF Business Components are not a native BPEL construct, you use a mediator service component to subscribe to the event and to then invoke the BPEL process service component. The mediator service component acts as a binding between the EDN and the BPEL process service component. Whenever the event is raised by ADF Business Components (whether through a GUI action or programatically), the BPEL process service component is invoked. Figure 32-1 illustrates how these work together.		
This approach is recommended for the following reasons:		
Events raised by ADF Business Components are asynchronous with no return value. The event infrastructure leverages the WLS JMS provider, so any unconsumed events can be de-queued by the SOA platform at some later time if the platform isn't running, assuming the JMS implementation leverages Oracle Advanced Queuing. For information about integrating Oracle Advanced Queuing with Oracle BPEL Process Manager or Oracle Mediator, see the chapter "Oracle JCA Adapter for AQ" in the Oracle Fusion Middleware User's Guide for Technology Adapters.		
Instead of using ADF Business Components, and the change notification publisher in entity objects to invoke a BPEL service component, you could use one of the following approaches. These development approaches should be used only when the recommended approach cannot be implemented.		
WARNING: The following approaches should not be used:		
A mediator service component subscribes to the event and accepts the event payload. A routing rule is configured for the mediator service component that routes the payload for the event to a BPEL process service component. This component then sends an email that contains the information from the payload to the bug's creator.		
There are some cases in which one might need to propagate the end user ID of the event raiser across the invoked services for auditing purposes. It is recommended to propagate this information in the event payload. When raising events for CUD operations (create, update, delete), include the last_updated_by		
history column in the event definition. As this column exists in every Oracle Fusion Applications table, the user raising the event will always be propagated.		
The sample code for this use case can be downloaded from Oracle SOA Suite samples.		
To initiate a BPEL process service component from a web application, you first need to create the web application using ADF Business Components and Oracle ADF Faces. You then create a SOA composite application that contains a mediator service component to pass the event payload created by ADF Business Components, and execute a BPEL process service component.		
To invoke a BPEL process service component from an Oracle ADF web application:		
For more information on creating events on entity objects, see the chapter "Creating a Business Domain Layer Using Entity Objects" in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework. For more information about using business events, see the chapter "Using Business Events and the Event Delivery Network" in the Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.		
When you create the event, ensure the following:		
Note:		
When data is included in events or a BPEL flow, it is potentially exposed. While the transport may be encrypted on the SOA side, the data is not. The data in events, payload and BPEL variables is not secured by the security restrictions for business objects. Consider what data is to be exposed in the payload so as to prevent unauthorized access.		
Defining an event generates an Event Definition Language (.edl		
) file and XML schema definition (.xsd		
). The EDL file contains all event definitions for the entity and the XSD file defines the contents of an event's payload, in addition to other objects needed by the BPEL process service component. These files together define the contract between the Oracle ADF application and the SOA composite application, as for a particular event, they identify the elements the SOA composite expects. Both these files are placed in the events		
directory for the project, and can be found in the Application Navigator as children to the associated entity object.		
In the example bug application, the BugReport		
entity object contains the BugCreated		
event. This event carries all the attributes on the entity object as its payload, and is published using the create		
operation as its event point.		
commit		
operation or through the implicit call to the commit		
operation as a task flow return activity).In the example bug application, this is a UI command component bound to the Commit		
operation on the BugReport		
entity object. Because this operation commits the data to the database, and the Commit		
operation's corresponding DML operation (create		
) is used to sync the ADF Business Components cache with the database, the ADF Business Components framework raises the event.		
For more information about creating the view, see "Part IV: Creating a Databound Web User Interface" in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.		
For verification purposes, you can either run the Oracle ADF web application from the Integrated Oracle WebLogic Server container included with Oracle JDeveloper, or you can deploy the Oracle ADF web application to a standalone container. This step includes procedures for running the Oracle ADF web application within the embedded container and the SOA composite on a standalone Oracle WebLogic Server container. See Step 4 for procedures on deploying to a standalone container.		
EDNDataSource		
and EDNLocalTxDataSource		
have been configured.Note: Oracle ADF and SOA data sources for EDN must point to the same schema. The EDN schema cannot be shared by more than one SOA runtime environment (such as outside a cluster).		
EDNDataSource		
and click New. Enter the following details:Name: EDNDataSource		
JNDI Name: jdbc/EDNDataSource		
Database Type: Oracle and Database Driver > Oracle Thin Driver XA: Versions 9.0.1.9.2.0.10.11.		
Driver Class Name: oracle.jdbc.xa.client.OracleXADataSource		
.		
Click Next. In the next window, uncheck Supports Global Transactions.		
Click Next and configure the following:		
Database Name: DB_NAME_FUSION_EDN		
Host Name/Port: Enter the host name and port for server running the FUSION_EDN		
database		
Database User Name/Password: Enter a username and password.		
Test the data source. Set as DefaultServer and click Finish.		
Define EDNLocalTxDataSource as above, but use EDNLocalTxDataSource		
for the data source and jdbc/EDNLocalTxDataSource		
for the JNDI name.		
web.xml		
and weblogic.xml		
files associated with the event publishing application. Add the lines shown in Example 32-1to the WEB-INF/web.xml		
file.Example 32-1 Editing the web.xml File		
weblogic.xml		
with the following contents, and save it in the WEB-INF directory. This maps the global JMS resources to local JNDI names. The names in this file are the defaults expected by the remote connection factory, so you do not need to specify them. An example is shown in Example 32-2.Example 32-2 Mapping Global JMS Resources to Local JNDI Names		
Add event-related SOA runtime libraries, specifically ADF Business Components uses Event Publishing APIs bundled in fabric-runtime.jar. Add a library reference to oracle.soa.workflow.wc		
in order to include the event publishing APIs bundled in the relevant JAR files.		
Add the code shown in Example 32-3 to the weblogic-application.xml		
file.		
Example 32-3 Add a Reference to oracle.soa.workflow.wc to the weblogic-application.xml File		
For detailed procedures on creating SOA composite application projects, see the chapters "Developing SOA Composite Applications with Oracle SOA Suite" and "Getting Started with Oracle Mediator" in the Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.		
When you create the project, ensure the following:		
In the following example application, a mediator service component named BugCreatedRouter		
is subscribed to the BugCreated		
event, as shown in Figure 32-2.		
For detailed procedures, see the chapter "Getting Started with Oracle BPEL Process Manager" in the Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.		
When you create the component, ensure the following:		
In the example application, the input element would be the BugCreatedInfo		
payload under the BugReport.xsd		
node, as shown in Figure 32-3.		
initiate		
operation on the client of the BPEL process service component as the target service, as shown in Figure 32-4.Following are alternative approaches to the use case pattern:		
You can programmatically raise events following an ADF Business Components CUD operation using the publishEvent		
API.		
Before you begin:		
oracle.soa.workflow.wc		
.To publish events using the Java event API:		
Example 32-4 Importing Files into Your Application		
Example 32-5 Publishing Events Using the Java Event API		
Another way to invoke a SOA composite as a web service from an Oracle ADF web application is to use a JAX-WS proxy.		
Use this pattern only for synchronously invoking BPEL processes where the calling application waits for a response. As such, any BPEL processes called using this pattern must be synchronous and brief so as to avoid any time out issues.		
Caution:		
For more information about this approach, see the chapter "Integrating Web Services Into an Oracle Fusion Web Application" in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
In this pattern, SOA composite services are exposed as web services. You generate a JAX-WS proxy client to invoke the SOA composite exposed as a web service from your ADF Business Components application module.
You use the web services wizard to generate a web service proxy, and then call the web service using method calls.
An indirection for the web service proxy node enables retrieving the location of the web service WSDL, username and password from connections.xml
. To use the indirection, access the proxy via oracle.adf.model.connections.webservice.WebServiceConnection
.
An example is shown in Example 32-6.
Example 32-6 Using WebServiceConnection
Use the username or SAML token policies for identity propagation and security. For more information, see Chapter 50, "Securing Web Services Use Cases."
To secure this pattern, it is recommended that you secure the Oracle ADF web application. For more information about securing the pattern, see Chapter 50, "Securing Web Services Use Cases."
To make the mediator run as an event publisher:
runAsRoles="$publisher"
' attribute to the composite subscriptions. Example 32-7 shows the composite subscription for the sample application.Example 32-7 runAsRoles Attribute in a Composite Subscription
Note: Currently, the only option for runAsRoles is $publisher . |
Example 32-8 Using bplex:exec to Print Out Subject Information
This chapter describes what a PL/SQL stored procedure needs to do to initiate a SOA composite application.
When to implement:.When a PL/SQL stored procedure needs to initiate a SOA composite application.
Design Pattern Summary: A PL/SQL stored procedure raises an event through the Event Delivery Network within the database. A mediator in the SOA composite application subscribes to the event and routes it as appropriate.
Involved components:
Oracle Fusion applications may contain stored procedures that need to invoke a component within a SOA composite application, such as a BPEL process service component. A stored procedure can use the Event Delivery Network database API to publish an event whose payload is xmltype
. An Oracle Mediator service component subscribes to the event by event name or by using a XPath expression on the event payload. The.edl
file (event definition file) for the event can be supplied in the composite or deployed separately in a MAR (metadata archive). When the stored procedure publishes the event, the subscribed Oracle Mediator service component forwards the payload to the BPEL process service component.
This chapter explains how to implement the recommended approach.
Instead of using an event to invoke an Oracle Mediator service component from a PL/SQL stored procedure, you could use one of the following implementations.
WARNING: This approach is prohibited. |
To invoke a SOA composite application component from a stored procedure, you must first create the event within the SOA composite application. The stored procedure must then raise the event and pass any required data via the EDN database API.
To invoke a SOA composite application component using PL/SQL:
The event filter can be by event name or using an XPath expression on the event payload and the EDL for the event can either be supplied in the composite.xml
or deployed separately in a MAR.
publish_event
with the event namespace and the event payload as a CLOB type. An example is shown in Example 33-1.Example 33-1 Calling the publish_event Method
Secure Oracle Mediator by configuring the property runAsRoles=$publisher
. For details on securing the Oracle Mediator, see Section 32.6, "Securing the Design Pattern."
When the database connection is established from the middle tier so as to invoke the PL/SQL stored procedure, a session is established with the appropriate identity. This identity is propagated through EDN back to the middle tier for the subscription. The subscription runs as the identity of the publisher.
To secure this pattern, follow the instructions described in Chapter 50, "Securing Web Services Use Cases."
Verifying the deployment involves the following:
Testing and deploying the use case involves the following main steps:
"Automating Testing SOA Composite Applications" in the Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.
You can use Oracle Enterprise Manager Fusion Middleware Control Console to verify that the SOA composite was successfully deployed. In Oracle Enterprise Manager Fusion Middleware Control Console, you can select the SOA composite instance and display the result of the event.
Using Oracle Enterprise Manager Fusion Middleware Control Console, you can:
To verify that the SOA composite was successfully deployed and the event was received:
A window displays, showing the event results, as shown in Figure 33-3.
Following are tips that may help resolve common issues that arise when developing or running this use case.
logging.xml
. See the troubleshooting section in the chapter "Deploying SOA Composite Applications" of the Oracle SOA Suite Developer's Guide for more information.FUSION_EDN
.Before you implement these design patterns, be aware of the following:
Following are known issues:
This chapter describes how to use a SOA composite application to invoke business methods within an Oracle ADF web application. In this pattern, the Oracle ADF web application business methods make changes to data, whereas the SOA composite does not.
When to implement: This pattern describes how to use a SOA composite application to invoke business methods within an Oracle ADF web application. In this pattern, the Oracle ADF web application business methods make changes to data, whereas the SOA composite does not. For example:
See Chapter 35, "Manipulating Back-End Data from a SOA Composite" for information regarding patterns in which both the Oracle ADF web application and SOA composite must update data without conflicting.
Design Pattern Summary: A BPEL process service component uses an invoke activity to invoke a partner link that accesses a SOAP service created for a business component.
Involved components:
Oracle Fusion applications may require that a BPEL process service component access data values from ADF Business Components in an Oracle ADF web application. Oracle Fusion applications may also require that a BPEL process service component invoke a method contained in ADF Business Components. Instead of directly accessing the ADF Business Components, you can publish the component as a web service. The composite then accesses the published component over SOAP using an invoke activity and partner link in the BPEL process service component. Figure 34-1 shows a high-level overview of this design pattern.
This approach is recommended because SOAP bindings do not require that the Oracle ADF web application and the SOA components be co-located in the same container.
There are no other approaches to implementing this use case. The only supported way to invoke ADF Business Components services is to use a web service SOAP binding.
WARNING: Using the Oracle ADF binding to invoke ADF Business Components services is prohibited due to topology and security requirements. (Oracle ADF services and SOA composites must be collocated; there are no application roles and privileges cannot be escalated.) |
To invoke ADF Business Components using a SOAP binding, you first publish the business component as a web service. You then create a BPEL process service component that contains a partner link to the ADF Business Components service. The partner link is accessed from an invoke activity. An assign activity is used to populate data into a variable used to pass data to the ADF Business Components service.
To invoke ADF Business Components from a BPEL process service component:
Any top-level view objects referenced in a service interface created from an application module will automatically be service-enabled. However, creating the SDO classes for individual view and entity objects allows you to configure the SDO name or namespace, or selectively service-enable child view objects.
You can elect to include in your service interface custom methods, top-level service view instances, and any find operations based on view criteria.
At the end of this step, Oracle JDeveloper creates the WSDL files that will be used by the BPEL process service component to access any required methods or data. Figure 34-2 shows the WSDL created for the StoreFrontService in the sample application. This service accesses the customer and order information needed by the SOA composite application.
oracle.soa.workflow.wc
. Add the following entry to the file in MW_HOME
/user_projects/domains/
<
domain name
>
/config/config.xml
directory, and add the line shown in Example 34-1 to oracle.adf.domain.loader
.Example 34-1 Shared Library Name
Note: Skip this step if deploying the profile to the WLS container included in the SOA installation. |
host
:7101/ApplicationName
-ProjectName
-context-root/AppModuleService Name
The URL for the embedded server is generated at the bottom of the WSDL file. Alternatively, you can open the file and copy the soap:address
URI.
If you have deployed the Oracle ADF web application to a standalone server, then create a new Application Server connection in the Resource Palette. For more information about using the Resource Palette, see the Oracle JDeveloper Online Help.
Note: The ADF Business Components service must be running in order for it to be discoverable. |
Figure 34-3 shows the composite.xml
file for the sample application.
A Partner Link for the ADF Business Components is automatically created when the reference is wired to the BPEL process.
For more information about creating bindings, see the chapter "Developing SOA Composite Applications with Oracle SOA Suite" in the Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.
Use a web service binding so that the ADF Business Components service can be remotely deployed.
For more information about wiring references, see the chapter "Developing SOA Composite Applications with Oracle SOA Suite" in the Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.
For more information about creating Invoke activities, see the chapter "Getting Started with Oracle BPEL Process Manager" in the Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.
For more information about creating Assign activities, see the chapter "Getting Started with Oracle BPEL Process Manager" in the Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.
You need to secure the following:
For information about securing the design pattern, see Section 50, "Securing Web Services Use Cases."
To properly verify this design pattern, you should test your ADF Business Components, then deploy and verify the SOA composite application.
To verify this design pattern:
Following are tips that may help resolve common issues that arise when developing or running this use case.
Use Oracle Enterprise Manager Fusion Middleware Control Console to troubleshoot the use case:
You can test your SOA composite using Fusion Middleware Control Console. For more information, see the section "Automating Testing for SOA Composite Applications" in the chapter "Managing SOA Composite Applications" in the Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.
Before you implement these design patterns, you should be aware of the following:
Any time you invoke an ADF Business Components service, the database transaction for that operation is committed when it completes.
There is no session propagation between the BPEL process and Oracle ADF. While the identity is passed in when security policies are in place, a new Oracle Fusion Data Security session is created with each invocation of the ADF Business Components service operations.
If you invoke ADF Business Components service operations that use event-raising entities, those events are not raised.
This chapter describes what updates created in a SOA composite application need to do to perform create, read, update, or delete (CRUD) operations on back-end data stored in a database.
When to implement: When updates created in a SOA composite application need to perform create, read, update, or delete (CRUD) operations on back-end data stored in a database.
Design Pattern Summary: Entity variables within a BPEL process service component access ADF Business Components view objects through a service to fetch data on the back end. The BPEL process service component then manipulates the data, and the changes synchronize with the ADF Business Components service when the BPEL service dehydrates. This is also known as master detail with indexing.
An example of master detail with indexing is entity variables created on master detail records such as an order header with lines, accessing the lines individually with array subscripting.
Involved components:
When a BPEL process service component needs to perform CRUD operations on back-end data stored in a database, you use BPEL entity variables. Entity variables can fetch data from an ADF Business Components view object through a web service interface, and manipulate the data using common BPEL assign and XPath constructs. These changes automatically synchronize with the ADF Business Components service when the BPEL instance dehydrates. Using entity variables provides the following:
The transaction locking strategy for SDO is optimistic. If the BPEL engine tries to update an SDO or entity variable and the current revision number is out of date, an exception will be thrown by the ADF Business Components service.
To manipulate data, first you create an ADF Business Components entity object that accesses and updates the data. You then publish the business component as a web service. Next, you create a SOA composite application that includes a BPEL service component to which you add entity variables that can manipulate the data.
To manipulate data from a BPEL process service component:
When modeling your view objects, it is important to determine which may need to be available for binding to SOA composite entities. It is possible to automatically enable services in top-level view objects referenced in a service interface create from an application module. However, you must create the SDO classes for individual view objects so as to configure the SDO name or namespace, or selectively service-enable child view objects.
You can elect to include in your service interface custom methods, top-level service view instances, and any find operations based on view criteria.
At the end of this step, JDeveloper creates the WSDL files that will be used by the BPEL process service component to access any required methods or data.
name
ServiceImpl
class and selecting Run. Alternatively, define an ADF Business Components service interface profile and deploy it to the standalone Oracle WebLogic Server. For more information, see the sections "How to Test the Web Service Using Integrated Oracle WebLogic Server" and "How to Deploy Web Services to Oracle WebLogic Server" in the chapter "Integrating Service-Enabled Application Modules" in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.localhost
:7001/ApplicationName
-ProjectName
-context-root/AppModuleService Name
The URL for the embedded server is generated at the bottom of the WSDL file. Alternatively, you can open the file and copy the soap:address
URI.
If you have deployed the Oracle ADF web application to a standalone server, then create a new Application Server connection in the Resource Palette. For more information about using the Resource Palette, see JDeveloper Online Help.
Note: The ADF Business Components service must be running in order for it to be discoverable. |
Note: The ADF Business Components service must be running in order for it to be discoverable. |
For more information about creating bindings, see the section "Adding Service Binding Components" in the chapter "Developing SOA Composite Applications with Oracle SOA Suite" in the Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite and "Using ADF Model in a Fusion Web Application" in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
For more information about creating entity variables, see the chapter "Manipulating XML Data in a BPEL Process" of the Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite
When you create the entity variable, ensure that you select the business component as the Partner Link.
Example 35-1 shows the XML for a bind activity that establishes OrderId
as the key that will be passed to retrieve orders.
Example 35-1 Bind Activity Establishes the Key
For more information about Bind activities, see the section "Adding Service Binding Components" in the chapter "Developing SOA Composite Applications with Oracle SOA Suite" in the Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite and "Using ADF Model in a Fusion Web Application" in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
Example 35-2 shows the XML for an assign activity that first assigns the value from the entity variable to another variable, then takes the value of the entity variable and manipulates it using an XPath expression. The change operations are mapped back to the SDO automatically. For more information about using XPath operations, see Section 35.7.2, "Support for XPath Operations."
Example 35-2 Assign Activity Manipulates an Entity Variable Value
Once the BPEL process service component hits a breakpoint activity (receive
, onMessage
, wait
, onAlarm
) the instance is dehydrated. When dehydration happens, or the scope where entity variables are declared completes, all related entity variables that have been loaded flush their changes back to the business component, and from there to the database. For more information, see Section 35.7.1, "When Entity Variables Flush Changes Back to ADF Business Components."
You can use sensor variables to monitor the service data object. For more information, see the following links:
To secure this pattern, it is recommended that you follow the same steps as described in Section 34.5, "Securing the Design Pattern."
To properly verify this design pattern, you should test your ADF Business Components service, then deploy and test the SOA composite application.
To verify this design pattern:
Tip: The use of entity variables greatly affects the ability to unit test the process in an isolated environment. Unit tests of processes that use entity variables usually require managing the backend database state. |
Following are tips that may help resolve common issues that arise when developing or running this use case.
To get more logging information, add logger reference oracle.soa.bpel.entity
.
Before you implement these design patterns, you may want to know more about when variables flush changes back to the business component, how to test variables without invoking ADF Business Components, support for XPath operations, and how to invoke multiple services.
There are three points within the flow when an entity variable flushes its changes back to the ADF Business Components service:
receive
, onMessage
, wait
, onAlarm
) or execution reaches the end of the flow definition.dspMaxRequestDepth
in the file bpel-config.xml
sets the threshold.To illustrate, Example 35-3 includes a locally declared entity variable.
Example 35-3 Local Entity Variable
Because the variable was defined locally within the scope myScope
, once that scope completes, the variable declaration is no longer accessible from the outer enclosing scope. At this point, changes made to the variable from the Assign activity will be flushed to the ADF Business Components service.
Example 35-4 shows an entity variable defined globally, hence its scope will complete when the instance completes.
Example 35-4 Global Entity Variable
XPath operations can be used in Assign activities to manipulate data. Most XPath operations are supported. Following are noted limitations:
-nameStep1[x1[y1>3]]
are not supported.-nameStep1[x1/y1>3]
are not supported.All entity variables are stored in the BPEL dehydration store. However, BPEL only stores the key data required for the variable and not the variable in its entirety. When loading these variables upon re-hydration, BPEL runs a find request on the variable to reload the variable data. However, the Oracle ADF web application may have changed the variable, leading to potential loss of data integrity.
You can check the variable for data integrity by running bpelx:entity.doVersionCheck = "true"
.
doVersionCheck
checks for ObjectVersionId
. If this returns a different value from that in the BPEL store, a fault is raised.
Example 35-5 illustrates the verification of variable data integrity.
Example 35-5 Checking Variable Data Integrity
Note: The version fields must exist in the data object returned. If the Xpath query fails, an exception is thrown. Make sure the custom version fields are defined in the XSD and that the names match. |
The pattern described in this chapter and the pattern described in Chapter 34, "Orchestrating ADF Business Components Services" can be easily combined.
This chapter describes what a SOA composite application needs to do to access logic implemented as PL/SQL in the database.
When to implement: A SOA composite application needs to access logic implemented as PL/SQL in the database.
Design Pattern Summary: The SOA composite application accesses an ADF Business Components service, which in turn accesses the PL/SQL stored procedure.
Involved components:
Oracle Fusion applications may contain stored procedures in the database that a SOA composite application needs to access. The stored procedure must be wrapped by an ADF Business Components service; the BPEL process then accesses the ADF Business Components service.
Instead of accessing the stored procedure through an ADF Business Components service, you could use a SOA database binding component. However, this is not allowed because the SOA database binding component does not handle data changes or database schema changes gracefully. In addition, a PL/SQL stored procedure definition cannot be considered a service contract, as there is often some needed extrapolation.
Another alternative is to create a Web service directly on top of PL/SQL. This is not allowed because of security issues in the PL/SQL Web service.
Instead of directly accessing the stored procedure, you create a business component that accesses the procedure, you then publish the business component as a SOAP service. The SOA composite application component accesses the ADF Business Components service, which in turn invokes the stored procedure.
To invoke a PL/SQL stored procedure from a SOA composite application:
You secure this design pattern in the same way you secure a pattern with an ADF Business Components service invoked from a SOA composite application. For details, see Section 34.5, "Securing the Design Pattern."
Identity propagation is enabled using Application User Sessions. When the application module initializes, an Application User Session is created with the user who is currently logged in (assuming no such Application User Session yet exists). The Application User Session is pushed to the database, making it accessible from PL/SQL.
For information about accessing the Application User Session, see Section 47, "Implementing Application User Sessions."
For information about securing the design pattern, see Section 50, "Securing Web Services Use Cases."
To properly verify this design pattern, test your business component, then deploy and test the SOA composite application.
To verify this design pattern:
"Automating Testing SOA Composite Applications" in the Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.
This chapter describes what a SOA composite application needs to do to invoke logic implemented by a Java class.
When to implement: A SOA composite application needs to invoke logic implemented by a Java class.
Design Pattern Summary: The logic is accessed using a web service that the SOA composite component accesses directly. The logic can be placed within an existing ADF Business Components service, or the Java class can be published as a web service.
Involved components:
While the most common implementation of business logic will either be inside the application module of a business component or in a SOA composite application, Oracle Fusion applications may contain business logic implemented in a separate Java class. A SOA composite component within the application may need to access this logic. When the logic has some relation to the entity or view objects defined in a business component, it is best to implement the logic as another service method on the component. You can publish the business component as a service, and the SOA component can access the logic through that service.
In some cases, the application does not contain a business component that accesses the same data as the logic in the Java class. In this case, you can publish the class as a web service, allowing the SOA component to directly access the logic through the service.
Instead of accessing the logic through a SOAP binding, you could use a BPEL component with a Java activity to invoke some custom Java code.
An alternative is to use the bpelx:exec
command to programmatically call Java methods. This is the same as using a Java activity, only without a UI. It is recommended to use the bpelx:exec
command to complete light tasks such as the following:
auditTrail
component, and so on.WARNING: Do not use the |
To access the application database, use a JCA database adapter. To access a SOAP service, use a BPEL Invoke activity.
For more information about using the bpelx:exec
command, see the chapter "Incorporating Java and Java EE Code in a BPEL Process" in the Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.
Another alternative is to call custom Java classes using custom XPath functions. For more information about using XPath functions to call a Java class, see the sub-section "Creating User-Defined XPath Extension Functions" in the appendix "XPath Extension Functions" in the Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.
Download the sample code for this use case from the following location. Oracle SOA Suite samples.
Instead of directly accessing the Java class, you can add the logic to a business component and then publish the business component as a SOAP service. The SOA composite application component accesses the ADF Business Components service, which in turn invokes the Java code.
To use a business component:
You secure this design pattern in the same way as you secure a pattern that has an ADF Business Components service invoked from a SOA composite application. For details, see Section 34.5, "Securing the Design Pattern."
To properly verify this design pattern, you should test your business component, then deploy and test the SOA composite application.
To verify this design pattern:
"Automating Testing SOA Composite Applications" in the Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.
Following are tips that may help resolve common issues that arise when developing or running this use case.
When writing custom Java code, you may need to use logging messages for debugging. You can then monitor the log files for troubleshooting information.
For more information about testing and debugging, see the following chapter:
"Testing and Debugging ADF Components" in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
If you have already created a business component and the method semantics of the needed logic fit with the other service methods already implemented in the application module, you should add another method for the needed logic to the application module. If the method relies on entity and or view objects on the business component, then adding the method to the business component is the only approach available.
If you have not created a business component or the method semantics do not fit with the other service methods already implemented in the application module, you may want to create a Java web service instead.
This chapter describes what your ADF application needs to do to assign tasks to users or groups.
When to implement: When your ADF application needs to assign tasks to users or groups.
Design Pattern Summary: An ADF task flow in a web application contains a page where a user action invokes an ADF Business Components object that performs some logic. Because of this user action, a task must be assigned to another user. For example, an employee uses an ADF web application to submit an expense report. The page used to create the expense report is within an ADF task flow. When the expense report is submitted, a task needs to be raised to the employee's manager so that he or she can approve or reject the expense report. To make this happen, when the ADF Business Components object is invoked, it invokes a BPEL process service component that uses a human task service component to assign the task to the manager. Once the human task service component is invoked, the manager uses the Worklist application to complete the task, in this case the approval or rejection of the expense report. The Worklist application also uses an ADF task flow to present those pages to the manager.
This design pattern uses BPEL so as to enable orchestration after the task is submitted.
Involved components:
Note: BPEL is not a requirement for working with human tasks. However, BPEL is used when orchestrating tasks after the end-user submits the human task, for example to approve or reject forms filled out by the end-user. |
Instead of using the worklist application, you could use a custom task application or APIs.
Oracle Fusion applications may need to assign users tasks that they need to complete. The application needs to notify users of assigned tasks, then provide a way for them to complete the tasks. The SOA composite project may include a BPEL process that assigns tasks to users as part of the process flow. The human workflow service can be used to accomplish this. The workflow component also includes an out of the box worklist application displaying all the tasks assigned to a particular user or group. You can use the ADF task flow to create UI pages listing pending tasks. These are displayed upon logging in to the worklist application.
To develop this pattern, an ADF application can invoke an SOA composite application, as described in Chapter 32, "Initiating a SOA Composite from an Oracle ADF Web Application." A human task service component can be included in the composite that assigns tasks to users or roles. This component includes a task editor used to design the metadata for the task, an ADF task flow for creating task forms for the human interaction, and the out-of-the-box Worklist application for users to access tasks and act on them. The Worklist application can use an ADF task flow to manage the pages needed to complete the tasks.
This pattern is recommended for the following reasons:
Figure 38-1 shows the recommended pattern.
This chapter explains how to implement the recommended pattern.
Following is an example that illustrates the design pattern.
An Expense application contains an ADF task flow used to create an expense report and submit it for approval. When the user submits the expense report, a BPEL process service component is invoked that contains a human task service component, which assigns the task of approving expense report to the user's supervisor. The human task service component notifies the supervisor that an expense report needs to be approved. When the supervisor logs into the Worklist application, he sees notification of an expense report that requires approval. The Worklist application contains an ADF task flow that allows the supervisor to either approve or reject the expense report.
The sample code for this use case can be downloaded from Oracle SOA Suite samples.
There are three high-level steps needed to invoke a human task flow from an ADF web application:
These procedures are detailed in the remainder of this section.
To invoke a human work flow from an ADF application:
In the SOA composite application, create a human task service component that uses the payload of the message received from the mediator service component to provide any parameters needed to create the task in the workflow.
For detailed procedures on creating a human task service, see the chapter "Designing Human Tasks" in the Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.
When creating the human task service, note the following:
For example, in the expense report sample application, you might create parameters for the expense report number, the "submitted by" value, and optionally the amount. This would be the only information needed to dynamically assign the task to the submitter's manager.
Once you create the human task activity, a switch statement is automatically inserted that contains various branches based on the previously specified outcome of the human task. Based on how the outcome impacts the specific use case, additional business logic should be inserted inside the branches.
For example, in the expense report example, you might include a branch that calls the ADF Business Components object to update the state of the expense report to Approved
. This can be done by exposing the ADF Business Components application module as a service and then invoking it from BPEL as a SOAP service. For more information, see Chapter 35, "Manipulating Back-End Data from a SOA Composite."
For detailed procedures, see the chapter "Designing Human Tasks" in the Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.
Note the following:
.task
file created in Step 3. This automatically generates a task data control that can access the task parameters and perform actions on the task such as Approve and Reject.Deploy the task from the application menu and the SOA composite from the project menu.
You can deploy the human task flow to a remote server without SOA infrastructure.
For more information, see the section "How To Deploy a Task Display Form to a non-SOA Oracle WebLogic Server" in the chapter "Designing Task Forms for Human Tasks" in the Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.
Note: In order to use the ADF Security Wizard, developers must start up JDeveloper with a role profile that supports JAAS-XS security, such as the Oracle CRM Application Developer Role. To deploy an SOA composite to a WLS container, the application deployer must start up JDeveloper using the default role. |
The human task service uses Java platform security (JPS) for accessing user/role profile information. JPS supports multiple providers, such as XML and XS.
The default authentication provider in Oracle WebLogic Server is WLSAuthenticator
, while the authorization provider is based on the JPS policy store.
The default security configuration uses the Oracle WebLogic Server embedded LDAP as the identity store and system-jazn-data.xml
as the policy store. This configuration is held in the workflow-identity-config.xml
file, as shown in Example 38-1.
Example 38-1 Identity Service Configuration
Fore more information regarding configuring or updating the human workflow Identity Service, see the section "Configuring the Identity Service" in the chapter "Configuring Human Workflow Service Components and Engines" in the Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.
For more information, see the chapter "Configuring the OPSS Security Store" in the Oracle Fusion Middleware Application Security Guide.
Note: As other applications plan to use XS database as a repository, XML-based providers must synchronize with the XS database whenever changes occur to user or role related data. |
To properly verify this design pattern, you should test and deploy your ADF application, deploy the SOA composite application and the ADF task from for the Worklist application, and then run the ADF application.
To verify this design pattern:
jbo.debugoutput=console
. Doing so logs the event and its payload in the JDeveloper log console.Alternatively, you can use the Composite initiate page in Enterprise Manager to send a test message to the BPEL process service component. Note that this bypasses the mediator service component and directly calls the BPEL process service component which in turn invokes the human task service component.
The web service ending point for each of the services in the composite is
HOST_NAME
:PORT
/fabric/application name/composite_name
/service_name
For example:
running
state and waiting at the human task step.For more information about Fusion Middleware Control Console, see the chapter "Deploying SOA Composite Applications" of the Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.
http://
hostname
/integration/worklistapp/
Click Approve or Reject to complete this task.
If successful, the status of the task will be updated on the home page the Worklist application.
Following are tips that may help resolve common issues that arise when developing or running this use case.
If you are not able to find the task in the worklist application, try the following:
weblogic
as the user. Navigate to the Administration Tasks tab. This will list all the tasks in the system. Locate the task that was created and validate the state (it should be ASSIGNED) and the assignees.http://
HOST_NAME:PORT
/em
and click the instance ID to display an audit track window. In the audit track view, click the BPEL instance and select the Flow-Debug tab to display the BPEL audit trail. Check the following values in the initiateTaskResponse
:task:task/task:systemAttributes/task:state:
This should be ASSIGNEDtask:task/task:systemAttributes/task:assignees:
This displays the assignees of the taskMW_HOME
/user_projects/domains/
<
domain name
>
/config/config.xml
MW_HOME/user_projects/domains/soainfra/logs/startsoa.log
MW_HOME/user_projects/domains/soainfra/servers/AdminServer/tmp/_WL_user/soa-infra/77op2b/war/WEB-INF/application.log
Any exception where the exception stack trace has classes from package oracle/bpel/services/workflow
indicates a workflow exception.
http://
HOST_NAME:PORT
/integration/services/IdentityService/identity
to check user and group properties. Users and groups may be seeded differently from what is assumed and may therefore cause unexpected results.If you are not able to see the human task details when you click on the task in the worklist application, try the following:
jdev.exe
instead of jdevw.exe
in a Windows environment. This brings up a console window in the background that shows any error messages or stack traces.taskflow.properties
file exists in your project and has the following settings:adf.oracle.domain, adf.oracle.domain.webapp
, JSF, JSTL and oracle.soa.workflow
or any shared library specified in weblogic-application.xml
. You can verify this by logging into Oracle WebLogic Server Console as an administrator, and clicking Deployments.MW_HOME/user_projects/domains/DOMAIN_NAME/servers/ADMIN_SERVER_NAME/logs/DOMAIN_NAME.logl
MW_HOME/user_projects/domains/DOMAIN_NAME/servers/SERVER_NAME/logs/SERVER_NAME.log
You can set logging for the Workflow application and for the ADF task flow.
To enable debug logging for the workflow service, add a new log_handler
and logger
for oracle.bpel.services in ORACLE_HOME/j2ee/home/config/j2ee-logging.xml
as shown in Example 38-2. After these changes are made, you must restart the server. When this logger is added, the logs will be found in MW_HOME
/user_projects/domains/
<
domain name
>
/config/config.xml
.
Example 38-2 Adding a New Log Handler
To enable ADF logging for the task flow, add fragments shown in Example 38-3 to MW_HOME/user_projects/domains/DOMAIN/soainfra/config/fmwconfig/servers/AdminServer/logging.xml
and restart the server.
MW_HOME
/user_projects/DOMAIN/domains/
<
domain name
>
/config/config.xml
Example 38-3 Adding Fragments to the Logging File
Tasks are linked to the composite instance that created them. When a new version of the BPEL process service component or workflow service component is deployed, any existing composite and associated task instances are marked stale. You can clean up stale composites using Oracle Enterprise Manager Fusion Middleware Control Console. Cleaning up stale composite instances automatically deletes the associated task instances as well.
For more information, please refer to the chapter "Managing SOA Composite Applications" in the Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.
This chapter describes what to do when you need to work with data from a remote Oracle ADF Fusion Business Service in the format of an ADF Business Components component, such as rendering the data in a UI table, or creating a view link to it.
When to implement: When you need to work with data from a remote Oracle ADF Fusion Business Service in the format of an ADF Business Components component, such as rendering the data in a UI table, or creating a view link to it.
Design Pattern Summary: Create service-based entity objects and view objects and use these entity objects and view objects as normal ADF Business Components either in your business logic or for rendering on UI pages to simplify the task.
Involved components:
When you want to work with data from a remote ADF Business Components service, you can create service-based entity objects and view objects to simplify the task. A service-based entity object is an entity object that encapsulates the details of accessing and modifying a row of data from a remote ADF Business Components service. The service-based entity object then can be used in the same way as a normal database-table-based entity object.
If the data that you need to work with is always local to you, that is, available in the same database, then a table-based entity object should be used instead. The service-based entity object or view object will have additional performance overhead since each has an extra service layer.
Instead of wrapping with a service-based entity object or view object, you always can invoke the ADF Business Components service directly. For more information, see Chapter 41, "Synchronously Invoking an ADF Business Components Service from an Oracle ADF Application." Since UI components cannot be bound to Service Data Objects (SDOs) directly and an ADF Business Components service only accesses SDOs, using service-based entity objects and view objects is a simpler approach, especially if you just need to invoke a method as part of your business logic and you do not need to bind the input/output of the method to UI components.
Instead of creating an entity object on top of a database schema, you create it based on a WSDL.
To create service-based entity objects and view objects:
Note: Instead of using a database schema object for the entity's data source, select Service Interface. For more information see the section "Accessing Remote Data Over the Service-Enabled Application Module" in the chapter "Integrating Service-Enabled Application Modules" in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework. |
connections.xml
file (found in Application Resources > Descriptors > ADF META-INF). This entry is needed during runtime to invoke the service. Note that this also requires that the targeted service be hosted and running, since the registration requires the URL of where the service is deployed. Example 39-1 shows sample code used in the connections.xml
file.Example 39-1 Sample connections.xml Code
.jar
file from the service provider, and add the file to your library. This is also required during runtime. The common.jar file is generated when the service provider uses an ADF Business Component Service Interface deployment profile to deploy.For more information about securing the use case, see Chapter 50, "Securing Web Services Use Cases."
To properly verify this design pattern, test your service-based view object in an application module tester, then deploy and test the application that uses the service-based entity object and view object.
To verify this design pattern:
Test your Oracle ADF application using the various testing and debugging methods described in the chapter "Testing and Debugging ADF Components" in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
Note that the underlying data source for service-based entity objects and view objects is an ADF Business Components service, which is stateless and in a different transaction. When you commit your transaction of your local application module, a service call will be made if there is any change in the service-based entity object that is not part of your local transaction. If the service invocation fails, then the local transaction also will fail. However, if the service invocation succeeds and then later your local transaction fails, it is your error handling code that must perform a compensating transaction against the remote service to "undo" the previous change made.
Known limitations are the following:
These limitations mean that you cannot create a flattened join of multiple entities if one of them is a service-based entity object. The workaround is to use a view link to traverse from one view object to another.
This chapter describes what a SOA composite application needs to do to invoke an asynchronous service such as an Oracle ADF service or another SOA composite application.
When to implement: A SOA composite application needs to invoke an asynchronous service such as an Oracle ADF service or another SOA composite application.
Design Pattern Summary: A SOA composite is designed with a Mediator or BPEL component that invokes an asynchronous service endpoint, after which goes into a state of rest until the asynchronous endpoint calls back with the response payload.
Involved components:
Oracle Fusion web applications often include services with long-running computation that are exposed through service interfaces. When invoking services through a synchronous service interface, the service may not execute as desired due to time outs or lack of resources as a result of blocked, waiting threads. To solve this problem, service are exposed through asynchronous interfaces that wait for a response when invoking long-running services.
The recommended approach to asynchronous invocation is to create an asynchronous SOA composite with a BPEL process that invokes the asynchronous service.
Note: Per Oracle Fusion Applications standards, a composite that exposes a synchronous interface must not invoke an asynchronous service. |
Figure 40-1 illustrates the process flow of BPEL process invoking an asynchronous service.
The client BPEL process invokes an asynchronous service through the WSDL partner link. The service runs as required, and returns a response to the waiting client BPEL process.
Following are alternative, unsupported approaches to the use case.
Caution: These approaches are not supported and should not be implemented. |
An interface table is populated by third-party entities using legacy interfaces, such as FTP and files. Once the interface table is populated, a periodic Oracle Enterprise Scheduler job runs, checking for new interface table rows. If the job finds new table rows, it raises a business event that initiates a BPEL process. The BPEL process orchestrates any required services such as those used to import and notify users, obtain necessary approvals, and so on.
In this scenario, one or more services or tasks require several minutes or even hours to complete, as is typical among asynchronous service interfaces. The BPEL process invokes the service and enters a dormant state in which the process progress and variable data are stored in the database, which frees memory and thread resources for other BPEL processes. When the long-running service completes, the asynchronous callback revives the process. The BPEL process continues from where it left off.
You can find the sample code for this use case here:
To initiate an asynchronous service from a BPEL process, do the following:
Before defining the service reference, create your composite and BPEL process with the requisite input and output payload types. Figure 40-2 shows an example of a minimalist composite with a new BPEL process.
Defining the service reference to the asynchronous web service endpoint involves the following tasks:
Define the service that the composite is to invoke.
To define the new web service reference, do the following:
The Create Web Service dialog opens.
Figure 40-3 shows an example of a completed Create Web Service dialog.
In order to invoke a web service, a BPEL process must include a local partner link definition. You can define a partner link in one of two ways.
Defining a partner link involves additional work as compared to the alternative approach of dragging the interface pins. However, when creating a partner link for a web service that has not yet been defined as a service reference in the composite, Oracle JDeveloper automatically creates the composite service reference and wires the BPEL process to that service.
Dragging the interface pin from a component to a service is a quick and easy way to automatically create partner links and other service component integrations, such as wiring a Mediator to a Business Rule component. Wiring components by clicking and dragging automatically generates the metadata files and entries used to support the interaction between the components.
To define a partner link in the BPEL process editor:
The Create Partner Link dialog displays, as shown in Figure 40-4.
ServiceName
Provider
role. This is the role of the producer service for which you entered the WSDL.ServiceName
Requester
role. This is the role of the BPEL process as the consumer of the asynchronous service.By default, an asynchronous BPEL flow contains two activities: the receive activity that starts the process and the invoke activity that initiates the callback response.
Asynchronous services do not throw faults, such that they must always return a valid payload whenever possible. In the event of a business failure at the endpoint service, services should return a payload that contains a failed status.
Invoking the asynchronous web service from the BPEL flow involves the following steps:
To invoke the asynchronous web service from the BPEL flow:
Note: For Oracle ADF Services, the operation names end with Async. |
Figure 40-6 shows a completed Invoke Activity dialog.
Figure 40-7 shows a completed Receive Activity dialog.
Double-click the activity, click the General tab and enter a meaningful name such as AssignInputforAsync<ServiceName> or CopyOutputfrom<ServiceName>.
In the Create Copy Operation dialog, select Copy Operation.
Note: If you receive an "Invalid XML" error message, ensure that all elements are namespace qualified within the context of the fragment as BPEL process namespaces are not scoped into fragments. |
Defining the web service reference generates a local, abstract WSDL (.wsdl
) file named after the service for which it was created. This WSDL file contains partner link information used by BPEL, as well as a reference to the asynchronous web service WSDL URL for looking up message type and schema information. Typically, the WSDL file name is the same as the service name, with the suffix .wsdl appended at the end.
At runtime, the following occurs within the BPEL process:
To secure this pattern, add the Oracle Web Services Manager policies to both the service endpoint and service reference components in the composite.
For more information, see Chapter 50, "Securing Web Services Use Cases."
To properly test this pattern, deploy this SOA composite to the SOA domain and initiate the composite through the service test client page.
To verify the deployment:
http://host:port/em
Note: Use the HTTPS protocol instead of HTTP if your server is configured to use SSL. |
You will see a list of all successfully deployed composites in this SOA environment.
http://host:port/em
The Audit Flow view displays the activities that were executed in the BPEL process, along with payload details that you can view by clicking the activity.
Following are tips that may help resolve common issues that arise when deploying or running this use case.
If failures occur during compilation or deployment, observe the Oracle JDeveloper console and compiler output to resolve any issues.
If deployment is successful but the composite does not display in the soa-infra composites list, check the server's diagnostic log and console output for any exceptions and resolve them.
If faults occur when invoking the composite, the logging activities and fault-handling branches should provide meaningful content in the applications diagnostic log (defined in logging.xml
) or be present in the callback payload.
Use the Audit Flow view to diagnose the problem and correct your BPEL process, then redeploy. For more information about using the Audit Flow view, see the deployment steps in Section 40.6, "Verifying the Deployment."
Make sure to finalize the XML schemas before implementing the design pattern and defining payload types and variables.
This chapter describes what to do when you need to invoke an ADF Business Components service either from an ADF Business Components object or from a UI. Use only with synchronous processes with an immediate response.
When to implement: When you need to invoke an ADF Business Components service either from an ADF Business Components object or from a UI. Use only with synchronous processes with an immediate response.
Design Pattern Summary: Use ServiceFactory
to generate a dynamic proxy to the target ADF Business Components service, then use the proxy to invoke the desired service method.
Involved components:
When you need to invoke an ADF Business Components service from an Oracle ADF application, use oracle.jbo.client.svc.ServiceFactory
to invoke the service.
One alternative is to use JAX-WS to generate static proxy classes. This is prohibited for ADF Business Components services because:
oracle.jbo.client.svc.ServiceFactory
uses a local Java call if the service is co-located, which offers performance benefits.The other alternative is to use a dynamic invocation interface. This is not recommended as it requires much more coding.
If you need to bind the input or output of the service to UI components, consider using service-based entity objects and view objects. For more information, see Chapter 39, "Working with Data from a Remote ADF Business Components Service."
On the service provider side, you must create an ADF Business Components service interface deployment profile. This profile generates two JAR files: one common JAR file that contains only the service interface, and another file that contains the implementation. For more information, see the chapter "Integrating Service-Enabled Application Modules" in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
To invoke an ADF Business Components service from an Oracle ADF application:
connections.xml
file.This entry is needed to invoke the service during runtime.
Note: The targeted service must be hosted and running, as registration requires the URL of the service deployment location. |
connections.xml
, as shown in Example 41-1.Example 41-1 Sample Code for the File connections.xml
This file is required during runtime. The common JAR file is generated when the service provider uses a ADF Business Components service interface deployment profile for deployment.
For more information, see the chapter "Integrating Service-Enabled Application Modules" in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
ServiceFactory
, as shown in Example 41-2.Example 41-2 ServiceFactory Code
Sample queries are shown in Example 41-3.
Example 41-3 Query Samples
For more information about securing the use case, see Chapter 50, "Securing Web Services Use Cases."
To properly verify this design pattern, test your ADF Business Components object in an application module tester or a UI.
To verify this design pattern:
Test your Oracle ADF application using the various testing and debugging methods described in the chapter "Testing and Debugging ADF Components" in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
This chapter describes what to do when initiating asynchronous or long-running functionality from an Oracle ADF UI and, on completion, notifying users of the completion of that process by dynamically updating the UI. This provides a more dynamic experience for the end user and eliminates the need to constantly click a refresh button.
Notes:
|
When to implement: When initiating asynchronous or long-running functionality from an Oracle ADF UI and, on completion, notifying users of the completion of that process by dynamically updating the UI. This provides a more dynamic experience for the end user and eliminates the need to constantly click a refresh button.
Design Pattern Summary: Oracle ADF UI registers an Active Data control subscriber on top of a JMS queue. The Oracle ADF UI then raises a business event either via the default CRUD operations on the entity or programmatically via Java. This event initiates a BPEL process that performs work and, when completed, invokes a synchronous ADF Business Components service method to trigger pushing the message on the JMS queue, which then causes the Active Data Service control to refresh the component or area of the component.
Involved components:
Asynchronous services cannot be invoked from Java code in Oracle Fusion applications. When notification of completion of asynchronous, long-running functionality is required in a UI, business events can be used for asynchrony. In addition, ADS triggered over JMS will cause the UI update when the BPEL process completes and invokes the ADF Business Components service to signal its completion.
This approach is recommended because supported technology is used. The approach also supports dynamic page updates if the user navigates away and later returns.
Other than the Oracle ADF UI > Event > BPEL > ADF Business Components > ADS approach, following are the potential approaches:
The following is an example that illustrates the design pattern.
In an order workbench, an end user selects an order and submits it to a scheduling system for fulfillment. The scheduling system services take several seconds to several minutes to acknowledge scheduling and when the user clicks the button to initiate the scheduling process, needs to be notified in the UI upon successful scheduling for fulfillment without the need to repeatedly refresh the page by hand.
In this implementation, entering the UI data and clicking Schedule programmatically raises a business event, initiates a BPEL process which goes through processing and approvals as needed, then finally invokes an order ADF Business Components service to complete the process and publish the JMS message to trigger the ADS UI update.
To enable the UI for dynamic update via ADS, you must first create the ADS handler, which uses a common set of JMS Queue handlers to broker the updates coming from the call to ADF Business Components services.
The main steps are as follows, as shown in Figure 42-1:
ActiveDataCollectionModel
.ActiveDataCollectionModel
decodes the message and updates the UI.Prerequisites (for Prototyping Only)
Create the JMS queue in your development environment. Use the prototype common library to build this functionality into your application with minimal changes once the dependent functionality is consumed by the infrastructure.
For prototyping only, take the following steps to set up JMS using Oracle WebLogic Server Console:
Note: This procedure assumes that the JMS Module does not already exist. |
The classes shown in Example 42-1, Example 42-2, and Example 42-3 are common to every implementation of this pattern, and are responsible for handling JMS integration with ADS supported events.
Example 42-1 DemoDataChangeEntry.java
Example 42-2 DemoDataUpdateEvent.java
Example 42-3 JMSHelper.java
To implement the Active Data Collection Model:
The Active Data Collection Model, driven by the ADS infrastructure, manages the messages coming from the queue and propagates them to the UI as Oracle ADF Rich Events. Implement the Active Data Collection Model by extending the CollectionModel
class in the org.apache.myfaces.trinidad.model
package and overriding the startActiveData
, stopActiveData
and onMessage
methods. The class must implement ActiveDataModel
and MessageListener
as the onMessage
method accepts JMS messages (which is a list of update events) and runs them through the active data listener.
Note: Instead of implementing all the logic for CollectionModel , delegate to the collection model returned by the tree binding. |
What you need to know before you begin:
ActiveDataModel
:getActiveDataPolicy()
always returns ActiveDataPolicy.ACTIVE
;startActiveData(Collection<Object> rowKeys, int startChangeCount, ActiveDataListener listener)
is where you create a queue receiver of the topic subscriber in JMS. If you are not using JMS, this is where you register yourself with the event source as listener.stopActiveDate(Collection<Object> rowKeys, ActiveDataListener listener)
removes the queue receiver of the topic subscriber in JMS.getCurrentChangeCount()
: ADS expects the events to arrive in order. Keep a counter in the JavaBean, so that the counter increments when a new event is pushed.ActiveDataCollectionModel
to be the queue receiver or topic subscriber, ActiveDataCollectionModel
must implement the MessageListener
interface using the onMessage
method. Do the following:DataUpdateEvent
.DataUpdateEvent
to ActiveDataEvent
. so that ADS can process the event.ActiveDataEvent
to ADS.Example 42-4 shows a collection model returned by a tree binding.
Example 42-4 Collection Model Returned by Tree Binding
There are two reasons for implementing the getModel()
method this way:
ActiveDataEvent
through ADS, only the UI is updated with the new value. The binding layer is not aware that the underlying data source has changed. If the page is refreshed at this time, the UI displays the old data from the binding layer. A workaround is to keep a refreshBinding
flag on the ActiveDataCollectionModel
to indicate whether the binding requires refreshing. The flag is initially set to false. When an event is received, the flag is set to true. When getting the collection model, check for this flag first. If the flag is set to true, programmatically refresh the related binding before returning the collection model. Example 42-5 shows sample ActiveDataCollectionHandler
code.Example 42-5 From the ActiveDataCollectionHandler Code
The ActiveDataCollectionHandler
uses Oracle ADF Rich Events to propagate the data updates and UI refresh in response to JMS queue updates. You must implement these event classes and register them as events from the CollectionHandler
.
To create the Active Data Entry implementation:
The class shown in Example 42-6 extends the Oracle ADF class oracle.adf.view.rich.event.ActiveDataEntry
and implements several methods in that interface.
Example 42-6 Active Data Entry Class
To implement the Active Data Update Event:
The Active Data update event takes a list of Active Data entry events and performs them at once. The class extends from oracle.adf.view.rich.event.ActiveDataUpdateEvent
and implements several methods, as shown in Example 42-7.
Example 42-7 Active Data Update Event
In order to enable the active data feature and "hook" your collection model, you need to register the class as a managed JavaBean.
ADS requires UI components to have the same model across requests. Therefore, register the ActiveDataCollectionModel
as a view scoped managed JavaBean. As long as you stay on the same page, the table is based on the same model.
To register your collection model as a managed JavaBean:
adfc-config.xml
.adsBean
and provide the package to your collection model class, as shown in Example 42-8.Example 42-8 adsBean Managed JavaBean
To trigger the synchronous functionality of the use case pattern, raise a business event in response to the click of an Oracle ADF button. In order to support a response to the click of a button, create a managed JavaBean with which you can associate methods as the action for these buttons.
To build your Oracle ADF component managed JavaBean:
In the prototype use case, there is a table that contains a list of employees and their entity object attributes. Add two buttons at the top of the table in a panel collection toolbar which, when clicked, uses the selected employee to initiate an approval process. When completed, the approval process dynamically updates the table, as shown in Figure 42-2.
The table component requires the managed JavaBean shown in Example 42-9.
Example 42-9 Table Component Managed JavaBean
To register the component managed JavaBean:
As with the collection model, register the component managed JavaBean by adding an entry to adfc-config.xml
, as shown in Example 42-10.
Example 42-10 adfc-config.xml Registration Code
Modify the page component to reference the managed JavaBean from the earlier steps, as shown in Example 42-11.
Note: You may notice that selectedRowKeys is not bound to any method. By default, it is bound to #{bindings.treeBinding.collectionModel.selectedRowKeys} . It will no longer work after using ActiveDataCollectionModel . |
Example 42-11 Referencing the Managed JavaBean
The data model should exist before the page is built in order to simplify laying out the components required to display the data contained in that model. The application module needs additional methods to support incoming service methods and, optionally, the methods for raising the business event.
For more information about creating a data model with application modules, see the chapter "Implementing Business Services with Application Modules" in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
.
To extend the methods of your application module for the service interface:
Make sure to expose one or more application module methods in the application module service. This facilitates the callback from BPEL upon completion of the process, triggering the ADS UI update. These methods publish the message to the JMS queue following the message structure shown here.
The message payload should take the format of DataUpdateEvent
, which comprises one or more DataChangeEntry
items.
changeType
: enum (UPDATE, REFRESH). Currently, there is no use case for INSERT.key
: Object[]insertKey
: Object[]attributeNames
: String[], a list of names of changed attributesattributeValues
: Object[], a list of new values for the changed attributesIn this pattern, payRaise
and payCommision
are supported for one or more selected employees. Use methods with simple string interfaces invoked by BPEL to complete the payRaise
or payCommision
event for each particular employee. Call the sendMessage
method to publish the JMS message to notify ADS of the UI update. Sample BPEL methods are shown in Example 42-12.
Example 42-12 BPEL Methods
To define structure and compose event metadata:
The code that programmatically creates business event payloads and raises them through the business event APIs should be deliberately built around the namespace and event attributes defined in the appropriate EDL and XSD files.
For this pattern, a single event is used that supports multiple event types through an attribute value such as payRaise
and payComission
. However, support for additional event types only requires adding the UI facet, the programmatic method to raise that new event type and a conditional branch in BPEL. If the pattern requires completely separate event definitions, the code becomes more complex, the number of managed metadata source files increases, and the composite becomes more complex as well.
While this is a simpler approach, it is not as flexible from an integration perspective. Define your event types such that they support your current use case and potentially support additional integration in the future. Example 42-13 shows a simplified event definition, while Example 42-14 shows an event schema definition.
Example 42-13 Simplified Event Definition
Example 42-14 Event Schema Definition
To extend the application module with publishEvent and supporting methods:
In the page bindings, add the method publishEvent
that binds to the application module method of the same name. Use this binding in the handleRaise
and handleCommission
methods of the TableHandlerBean
to publish the event for each employee to be updated.
For more information about extending the application module with the publishEvent
method, see Section 32.5.1, "Using the Java Event API to Publish Events."
Note: It is critical that the event name and namespace are consistent throughout the code and metadata definitions in the subscribing SOA composite. |
The creation of a SOA composite that subscribes to an event is covered in Section 32, "Initiating a SOA Composite from an Oracle ADF Web Application." A sample pattern composite is shown in Figure 42-3.
The creation of a BPEL process and human task activities is described in other sections. For more information, see Chapter 38, "Managing Tasks from an Oracle ADF Application."
A sample BPEL process is shown in Figure 42-4.
Invoking an ADF Business Components service from a BPEL process is covered in another section. For more information, see Chapter 34, "Orchestrating ADF Business Components Services."
The process of securing this design pattern is the same as that of securing an Oracle ADF UI application.
For more information, see Chapter 50, "Securing Web Services Use Cases."
Do the following to test functionality:
http://host:port/soa-infra/events/edn-db-log
and ensure it reads "Log is Enabled." If it is not, click Enable.The event should immediately display in the EDN-DB-LOG page.
Example 42-15 Event Payload
$DOMAIN_HOME/as.log
) or soa-diagnostic logs ($DOMAIN_HOME/servers/<serverName>logs/<serverName>.log
) to see any Mediator activity that results from your event.http://host:port/em
for an instance of your SOA composite, and check for errors.http://host:port/integration/worklistapp
.At this point, the BPEL process should complete and invoke the ADF Business Components service to trigger the ADS push. The UI should promptly update. Check the Oracle ADF UI runtime console and diagnostic logs for stack traces and log messages.
For the Oracle ADF UI functionality, use Fusion Middleware Control, Oracle Fusion Applications Logger, and server diagnostic logs for information about what is failing.
For the events functionality, use the Event Delivery Network database log page at http://host:port/soa-infra/events/edn-db-log.
For the SOA functionality, use the Oracle Enterprise Manager console for diagnostics and Oracle Fusion Applications Logger sensor variables for logging.
For the ADF Business Components service functionality, use BPEL fault handling and logging via Oracle Fusion Applications Logger sensor variables as well as the console, Oracle Fusion Applications Logger and server diagnostic logs for more detailed error messages.
Known issues are as follows:
This chapter describes what to do when you need to programmatically create, set an outcome for, or query task information that resides in one or more SOA domains.
When to implement: When you need to programmatically create, set an outcome for, or query task information that resides in one or more SOA domains.
Design Pattern Summary: The design pattern involves programmatic interaction with human task client services by an application with the following requirements: displaying task status information, providing UI facets to enable setting task outcomes without navigating through the worklist, and submitting new tasks without initiating a BPEL process.
In addition, the human task services support federated task queries across several SOA domains so as to obtain an aggregated task list across several product families.
Involved components:
Some Oracle Fusion web applications have use cases that require programmatically interacting with the human workflow layer to approve, reject and display lists of tasks using specific search criteria. All SOA runtime environments that are configured as part of the topology are stored in the Oracle Fusion Middleware Extensions for Applications taxonomy schema and accessed at runtime using APIs. In the taxonomy schema, each SOA runtime environment has an entry with a unique identifying name that maps to a corresponding endpoint URL. For example, a SOA runtime environment called FIN_SOA_RMI has a corresponding endpoint URL t3://fpp-02.mycompany.com:7001/.
At runtime, the taxonomy schema is queried to construct a list of servers and their respective endpoints. This list of servers and endpoints passes to the human workflow client service APIs as a JAXB object. In the context of the federated task query service, some or all of these servers can be referenced. One of these servers is set as the default, and is used in the context of non-federated task services such as the task and task query services.
Alternatively, servers can be excluded from the list of federated servers, and exist only in the JAXB object. This allows servers to be used only when named explicitly in the list of requested servers. In this case, the excluded servers will not be used when the list of requested servers is empty.
Oracle Fusion Middleware Extensions for Applications maintains the list of servers in the taxonomy tables. An API enables building the JAXB object based on the list of SOA domains in the Oracle Fusion Applications topology.
This pattern is recommended as it provides the following features:
The Expenses team has an Expenses Manager role with administrator privileges to approve or reject expenses that belong to other users. The Expenses team must provide a workbench that collectively scans all SOA domains for open expense notifications and provide a consolidated UI to set their outcome, potentially all at once. This UI would comprise a table listing notifications matching certain filter criteria with buttons to select and set the appropriate outcome of the expense. This is done through RMI interaction with the appropriate SOA domain.
These are two main high-level steps involved in this process:
The human workflow APIs provide three types of task services: single, query and federated query. The type of service you use depends on the product use case. The RMI endpoint for these services must be derived at runtime and compiled into a server list. The server list is contained by a JAXB object, which can be passed to the human workflow client service APIs. In order to support this runtime lookup, the Oracle Fusion Middleware Extensions for Applications taxonomy schema and APIs must be seeded during provisioning. You need only provide an ArrayList (java.util.ArrayList
) of server names to be used in the federated query.
Note: Consider performance requirements when using the query or federated query service APIs. It is recommended to page the result sets in batches, for example, in sets of 10-25. |
Services are as follows:
Use the following guidelines to determine the type of task or query service to use.
If your use case requires connecting to one SOA domain and obtaining the details of a single task via a primary key such as task number or task ID, take the following steps. Once obtained, configure the task detail display or set the task outcome.
Add the following libraries to the Oracle JDeveloper project:
Import the code packages shown in Example 43-1 into the Java source.
Example 43-1 Importing Code Packages to Enable Using the Single Server Task Service API
Create the query and task service references by invoking the WorkflowServiceClientFactory
API getWorkflowServiceClient
method, which provides the JAXB object containing the server list and a logger object reference. The human workflow task service connects to the server marked as the default in the JAXB object. When calling the APIs to craft the JAXB object, be sure to specify the name of the server you want to call. Example 43-2 shows sample code used to declare and obtain task service object references.
Example 43-2 Declaring and Obtaining Task Service Object References
Note: Previously, developers would populate the properties for EJB_PROVIDER and EJB_SECURITY to provide the RMI endpoint and credentials. Instead, RMI identity propagation uses the current user context for authentication. In Oracle Fusion Applications, most UI and services require authentication that provides the appropriate user context. If no current user context exists, create one. |
In order to sustain performance in all interactions to the workflow client service APIs, pass the workflow service context object to any applicable APIs. To obtain the context using the current user's identity, call the getWorkflowContextForAuthenticatedUser()
method, as shown in Example 43-3.
Example 43-3 Getting the Workflow Service Context Object
Note: For performance reasons, be sure to pass this context to all subsequent calls to the APIs. |
When interacting with the task service, you must first obtain the task number or ID for the task in order to retrieve the task details. Use the task number or task ID to invoke the getTaskDetailsById
or getTaskDetailsByNumber
methods of the task query service object.
Note: This approach assumes that you have obtained the task number or task ID (either through the task query service or otherwise). |
Example 43-4 shows the approval of a task with the ID 0a6d287a-9849-4e5e-914b-805706d6b9d9
.
Example 43-4 Getting the Single Task Object with the Task ID
Example 43-5 shows how to use STDOUT
calls to display the various task attributes through the task API.
Example 43-5 Using STDOUT Calls to Display Task Attributes
If your use case involves connecting to a single SOA domain and querying for all tasks that match certain criteria, take the following steps. Once you have queried for the relevant tasks, you can display them in an ordered list in the UI or programmatically set task outcome all at once.
Import the libraries described in Section 43.4.2.1, "Import Libraries into the Java Project."
Import the code packages described in Section 43.4.2.2, "Import Code Packages into the Java Project."
Create the query and task service references by invoking the WorkflowServiceClientFactory
API getWorkflowServiceClient
method, which provides the JAXB object containing the server list and a logger object reference. The human workflow task service connects to the server marked as the default in the JAXB object. When calling the APIs to craft the JAXB object, be sure to specify the name of the server you want to call.
Example 43-6 shows sample code in which task query service object references are declared and obtained.
Example 43-6 Declaring and Obtaining Task Query Service Object References
Note: Previously, developers would populate the properties for EJB_PROVIDER and EJB_SECURITY to provide the RMI endpoint and credentials. Instead, RMI identity propagation uses the current user context for authentication. In Oracle Fusion Applications, most UI and services require authentication that provides the appropriate user context. If no current user context exists, create one. |
Performing queries and interacting with the task result set is similar for both the federated and non-federated task query services. For more information about this process, see Section 43.4.5, "How to Query and Traverse Federated and Non-federated Query Result Sets."
Using the federated server task query service API involves the following main steps:
Import the libraries described in Section 43.4.2.1, "Import Libraries into the Java Project."
Import the code packages described in Section 43.4.2.2, "Import Code Packages into the Java Project."
In addition, import the code package shown in Example 43-7.
Example 43-7 Importing the Code Package IFederatedWorkflowContext
To leverage the federated query service, decide whether to query all human workflow services in Oracle Fusion Applications or just a subset of those services. The servers are named according to standards and are populated in a JAXB object which contain the service endpoints for lookup at runtime. You need only know the name or names of the product services you want to poll or provide a list
To use a subset of the human workflow services, construct a Java list of those service names and pass that list to getFederatedTaskQueryService
.
Note: Be sure to provide a list of requested servers, as all servers in the list are polled. Failing to provide a list of servers results in all the servers being polled, which has significant performance implications. |
Example 43-8 shows sample code in which a list of servers is created for a parallel federated query.
Example 43-8 Creating a List of Servers for a Parallel Federated Query
After constructing the server list, obtain the query service object reference by invoking the getFederatedTaskQueryService
API of the WorkflowServiceClientFactory
, as shown in Example 43-9.
Example 43-9 Declaring Task and Query Service References and Creating the Workflow Client Service Object
Note: Previously, developers would populate the properties for EJB_PROVIDER and EJB_SECURITY to provide the RMI endpoint and credentials. Instead, RMI identity propagation uses the current user context for authentication. In Oracle Fusion Applications, most UI and services require authentication that provides the appropriate user context. If no current user context exists, create one. |
Obtain the workflow service context from the query service, as shown in Example 43-10. This improves performance with all workflow client service API interactions.
Example 43-10 Obtaining the Workflow Service Context
Note: This context is cast as IFederatedWorkflowContext . For performance reasons, the context must be passed to all subsequent API calls. |
When performing queries on federated task query services, exceptions in communicating with any servers in the list of servers do not cause the query to fail. Instead, the context has a boolean isFailed()
operation which can be interrogated to determine whether any failures occurred. Exceptions can be obtained from the context's getExceptionMap()
method as shown in Example 43-11.
Example 43-11 Implementing Exception Handling
Performing queries and interacting with the task result set is similar for both the federated and non-federated task query services. For more information about this process, see Section 43.4.5, "How to Query and Traverse Federated and Non-federated Query Result Sets."
Querying and traversing federated and non-federated query result sets involves the following main steps:
queryTasks()
method.queryTasks()
method.queryTasks()
method.OptionalInfo
items for the results of the queryTasks
() method.queryTasks()
method with the attribute lists.This section assumes you have implemented the task query service for either single or federated queries by following the instructions in Section 43.4.3, "How to Use the Single Server Task Query Service API" and Section 43.4.4, "How to Use the Federated Server Task Query Service API."
For example, creating a human task in a composite produces a TASK file containing the metadata that defines the task behavior for approval hierarchy as well as possible outcomes. Examining the source of this TASK file reveals the task name, target namespace, possible outcomes, and so on. When deploying the composite containing this task, the WFTASK
tables are updated with task-related data that supports the human workflow infrastructure, as shown in Example 43-12.
Example 43-12 Sample *.task File Snippet
The task metadata includes a value for targetNamespace
, in this case http://xmlns.oracle.com/WFClientPatternSOAApp/WFClientPatternTaskComposite/Humantask1
.
If you can access the SOAInfra
schema of your runtime environment, you can query the details of this task with the query shown in Example 43-13.
Example 43-13 Query task details
This query results in the WFTASKMETADATA
row, shown in Table 43-1 and Table 43-2.
Table 43-1 WFTASKMETADATA Row Part One
ID	URI	Name	Title	Component Name
Humantask1				
Humantask1				
Table 43-2 WFTASKMETADATA Row Part Two				
CompositeDN	CompositeName	Composite Version	Namespace	
---	---	---	---	
SOAComposite1	1.0			
You can then query the WFTASK				
table using the task ID shown in the first column of Table 43-1, as shown in Example 43-14.				
Example 43-14 Query the WFTASK table using the task ID				
The results of the entire table are too large to print, but the selected columns shown in Table 43-3 may be useful.				
Table 43-3 Useful Columns				
Column Name	Column Value			
---	---			
State				
TaskID				
TaskNumber				
WorkflowDescriptorURI				
TaskDefinitionID				
TaskDefinitionName				
CorrelationID				
This example focuses on tasks belonging to the current user identity, obtained automatically from the session context and passed using a SAML token in the SOAP header. These tasks that bear the ASSIGNED				
state and match the namespace http://xmlns.oracle.com/WFClientPatternSOAApp/WFClientPatternTaskComposite/Humantask1				
.				
Predicate construction is the instantiation of objects which define an expression to model the conditional part of the underlying where				
clause. For example, a conditional statement such as TASKNUMBER = 200140				
equates to the predicate constructor shown in Example 43-15.				
Example 43-15 Constructing the Predicate				
For this case, a predicate is required to match the WFTASKMETA_NAMESPACE_COLUMN				
and the WFTASK_STATE_COLUMN				
columns to the appropriate values. First create the namespace column predicate, then the state column predicate, followed by a predicate combining these two predicates with a conditional, as shown in Example 43-16.				
Example 43-16 Creating Namespace, State and Combination Predicates				
An additional way to construct a predicate is shown in Example 43-17, as specified in the ITaskQueryService				
documentation.				
Example 43-17 Another Way to Construct a Predicate				
This step is optional.				
The Ordering parameter facilitates implementing an ORDER_BY				
clause in the task list query.				
In Example 43-18, the TITLE_COLUMN				
and PRIORITY_COLUMN				
properties are added to the ORDER_BY				
clause.				
Example 43-18 Constructing the Ordering of queryTasks()				
By default, the queryTasks()				
method returns only a list of tasks with their TASKID				
value. If you require additional columns, such as TASKNUMBER				
, TITLE				
, PRIORITY				
, STATE				
, ENDDATE				
, ASSIGNEE				
, COMPOSITEINSTANCEID				
, ROOTTASKID				
, and so on, construct an ArrayList of String objects containing the names of the additional columns you want returned in the result set. Example 43-19 shows sample code that constructs a list of display columns for queryTasks()				
.				
Example 43-19 Constructing the List of Display Columns for queryTasks()				
This step is optional.				
Per the API documentation, the OptionalInfo				
enumeration consists of additional, optional values that can be obtained with the task in the result set. These optional values include the available actions for a task, attachments, user comments, and so on. An example is shown in Example 43-20.				
Example 43-20 Constructing a List of OptionalInfo Items				
Now that the attribute classes have been constructed to constrain, order and specify the attributes returned in the query, invoke the queryTasks()				
method.				
The query service API has the method signature shown in Example 43-21.				
Example 43-21 Query Service API				
The queryTasks()				
method returns a list of tasks that match the predicate and ordering criterion.				
Example 43-22 shows how to invoke queryTasks()				
using the previously constructed attribute lists.				
Example 43-22 Invoking queryTasks() with the Previously Constructed Attribute Lists				
More information on paging is available in the API documentation. (Look for the text "How to use paging.")				
The method queryTasks				
returns a list of task objects. Use standard Java iteration to iterate through the list. Then, invoke various accessors to obtain the attributes specified in the query column list. Example 43-23 shows how to iterate through the result set.				
Example 43-23 Iterating through the Result Set				
Once you have obtained one or more task objects through the query service, approve or reject the tasks by calling the task service updateTaskOutcome				
method from the ITaskService				
API, as shown in the following examples:				
Example 43-24 Programmatically Setting the Task Outcome				
Example 43-25 Setting the Outcome of the Task Reference on the Single Server Task Service				
Example 43-26 Setting the Outcome of the Task Reference on the Single Server Task Service				
Example 43-27 Obtaining a Single Task Reference Using the Non-Federated Query Service				
Example 43-28 Obtaining a Single Task Reference Using the Non-Federated Query Service				
Example 43-29 Updating a Single Task Outcome on the Federated Query Service				
Programmatically, it is possible to use a SOAP-based client interface and manually set endpoint and credential information in the code from a product-specific table. This approach is not recommended as the SOAP interface may negatively affect performance liability. Furthermore, managing endpoint or credential information yourself is not recommended. Endpoint implementation and credential provisioning are best facilitated by centralized endpoint management and identity propagation.				
Secure your human workflow client service in the manner appropriate for the type of code you are developing. For more information about securing your application, see Chapter 50, "Securing Web Services Use Cases."				
Validating your implementation involves deploying human tasks to a SOA domain, in the following steps.				
Upon deployment of the SOA composite containing the human task metadata, the human workflow infrastructure registers the task by name and namespace. Once the task is deployed and registered, your code or BPEL can initiate the task and facilitate task resolution through the code or worklist. For more information, see "Part V: Using the Human Workflow Service Component" in the Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.				
Deploy the application containing the task service client code. Make sure to deploy the SOA composite with a task before deploying the human workflow task client service. This ensures that the SOA composite has been deployed before creating a task instance. For more information, see "Deploying SOA Composite Applications" in the Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.				
You can use Oracle ADF UI, an ADF Business Components service or an Oracle Enterprise Scheduler Java job to implement the task client service functionality. Submit or invoke the task functionality as you normally would, and use the Worklist application to confirm that tasks have been created and updated. You can access the Worklist application at the following URL.				
http://host:port/integration/worklistapp				
Following are some suggestions for troubleshooting task data and the Java code in the use case.				
In some cases, tasks may have been initiated but the attributes required for the task have not been set. When this happens, the task may not display in the worklist. Alternatively, it may be assigned to the wrong user, or to no user at all.				
Check the WFTASK				
table for tasks such as these.				
Use Oracle Fusion Middleware Extensions for Applications AppsLogger				
APIs to write execution and exception details to the diagnostic logs. You can also use the Oracle JDeveloper remote debugger to remotely connect to the runtime JVM and step through your code.				
This chapter describes what to do if your SOA composite includes a human task, and you need to define an Oracle ADF task flow for a human workflow for users to interact with the task.				
When to implement: If your SOA composite includes a human task, then you need to define an Oracle ADF task flow for a human workflow for users to interact with the task.				
Design Pattern Summary: If your SOA composite includes a human task, then you need a way for users to interact with the task. The integrated development environment of Oracle SOA Suite includes Oracle Application Development Framework (Oracle ADF) for this purpose. With Oracle ADF, you can design a task display form that depicts the human task in the SOA composite.				
Involved components:				
When invoking a human task from a SOA composite, an interface is required so that end users can interact with the task. You can use Oracle ADF to develop an interface that displays the human task within the SOA composite.				
This section describes the procedure used to invoke an Oracle ADF task flow for a human task. The procedure includes tasks that are detailed in the following sections:				
Implementing an Oracle ADF task flow for a human task involves the following tasks:				
Before You Begin:				
Ensure that you do the following:				
<Context>				
to differentiate them.The first step in the use case is to create an Oracle ADF task flow.				
To create an Oracle ADF task flow:				
This creates the data control definition.				
Note: There is no established task flow file-naming standard.				
This creates the task flow containing a View component with the default name taskDetails1_jspx				
, as shown in Figure 44-1. Rename the view activity to something meaningful to you.				
Use the template with the ID ExceptionHandlerTaskFlowTemplate				
in the JSPX page to avoid any unpredictable behavior. The template is located in the UIComponents-View.jar				
, as follows: /oracle/apps/fnd/applcore/patterns/uishell/templates/ExceptionHandlerTaskFlowTemplate.xml				
.				
Use the drop handler template to create a user interface for the human task.				
To create a user interface:				
The Edit Action Binding (getTaskDetails				
) dialog displays, as shown in Figure 44-4.				
getTaskDetails				
) dialog, click OK.The Edit Action Binding (UpdateActions				
) dialog displays, as shown in Figure 44-5.				
UpdateActions				
) dialog, click OK.Product-specific sections include the following:				
Note: Do not modify anything in the portion of the template that includes the following:				
You can add instructions just before the Details section.				
To include instructions in the panelHeader:				
Add the component <af:outputText>				
before the Details section, as shown in Example 44-1.				
Example 44-1 Adding instructions above the Details section				
The Details section, as shown in Figure 44-7, contains the required human task information displayed in the Approvals, Request for Action, and FYI patterns in the first column and displays optional product-specific header information for the task.				
Do not modify the code in the first column, which corresponds to the first <trh:cellFormat>				
with id="cf1"				
, as shown in Figure 44-7.				
Do any or all of the following:				
<af:showDetailHeader>				
component. The default is set to "#{resources.DETAILS}"				
, for example, Details.<trh:cellFormat>				
component, which corresponds to the <trh:cellFormat>				
with id="cf6"				
shown in Example 44-2.Example 44-2 Modify the third <trh:cellFormat> component				
Note: Based on the UX specification, the task information displayed in the first column should only be displayed in the first column and should not wrap into the third column.				
Add an additional column for spacing, <trh:cellFormat id="cf7">				
. Add an additional column to display the product-specific information, <trh:cellFormat id="cf8">				
. Change the width to 33%, for <trh:cellFormat>				
components with id="cf1"				
, id="cf6"				
, and id="cf8"				
as shown in Example 44-3.				
Example 44-3 Adding product-specific information				
The Recommended Actions section, as shown in Figure 44-8, is used in the Information Only pattern.				
The Oracle ADF code for the Recommended Actions <af:showDetailHeader>				
component is shown in Example 44-4.				
Example 44-4 Code for Recommended Actions				
<af:showDetailHeader>				
component with text="#{resources.RECOMMENDED_ACTIONS}"				
and continue to the next section.Note: Translation and accessibility standards state that individual words should not be implemented as links.				
The <PLACE APPLICATION SPECIFIC CONTENT HERE> section is a place holder for product-specific information such as the Purchasing Line section in the Approval Page Details pattern.				
The Oracle ADF code for the <PLACE APPLICATION SPECIFIC CONTENT HERE> <af:showDetailHeader>				
component is shown in Example 44-5.				
Example 44-5 Oracle ADF code for the application specific content section				
Do any or all of the following:				
<af:showDetailHeader>				
component with text="<PLACE APPLICATION SPECIFIC CONTENT HERE>"				
and continue to the next section.<af:showDetailHeader>				
component.af:showDetailHeader>				
component to meet your requirements.Note: The Complete Task with Payload drop handler adds an <af:inputText> component for each of the task payload fields by default. Remove these fields if they are not required.				
<af:showDetailHeader>				
section. Ensure that the size of the additional <af:showDetailHeader>				
components is set to 1.Use the af:goLink				
component and specify targetFrame="_blank"				
to implement the related link.				
To construct the target URL, use the API oracle.apps.fnd.applcore.patterns.uishell.context.UIShellContext.getURL				
. This API can still be used even though the task detail page does not implement the UI Shell. Enter a non-null webApp				
parameter to generate the full URL including the host name and port.				
The resulting code should be similar to that displayed in Example 44-6.				
Example 44-6 Code that Results from Implementing Links				
The Comments and Attachment sections are used to store comments and attachments associated with the Approval and Request for Action patterns.				
Do any of the following:				
<af:switcher>				
component with facetName="#{pageFlowScope.bpmClientType}"				
and its facets and continue to the next section.<af:showDetailHeader>				
component with text=#{resources.COMMENTS}				
from the switcher facet with name="notificationClient"				
so that it is a peer of the switcher with facetName="#{pageFlowScope.bpmClientType}"				
. Then delete the <af:switcher>				
component with facetName="#{pageFlowScope.bpmClientType}"				
and its facets. The resulting code is shown in Example 44-7.Example 44-7 Modifying comments and attachments				
<af:outputText>				
component after <af:outputText>				
with value="#{resources.UPLOAD_FILE_CAVEAT}"				
, as shown in Example 44-8.Example 44-8 Adding additional instructions to the Attachments dialog				
The Related Links section is used in the Information Only pattern.				
Example 44-9 shows the Oracle ADF code for the Related Links <af:showDetailHeader>				
component.				
Example 44-9 Modifying Related Links				
<af:showDetailHeader>				
component with text="#{resources.RELATED_LINKS}"				
and continue to the next section.The History section displays the tabular and graphical displays of the task history.				
Do any of the following:				
<af:showDetailHeader>				
component and its facets and child components, as shown in Example 44-10.Example 44-10 Modifying task history				
If you are implementing a task detail page with a contextual area, do not use the UIShellMainArea				
template when creating the JSF page. Instead, create the JSF page without a template.				
Use <trh:tableLayout>				
, <trh:rowLayout>				
and <trh:cellFormat>				
to configure the layout of the local and contextual areas. For the local area, follow the steps outlined in the following sections:				
The email version of the task details are often called notifications, task notifications or email notifications. Email notifications are viewed in email clients.				
The goal in implementing the email version of the task detail page is to use the same Oracle ADF task flow for human tasks definition for both the online and email versions. As both versions are nearly identical, you can implement both as a single page to avoid dual maintenance.				
Ensure that the TASK file is configured so that email notifications are actionable and task attachments are added to the email as email attachment, as shown in Figure 44-9.				
Select an implementation approach from the following:				
helpTopicId				
attribute for instructions)Introduce a switcher component in your JSPX page when you have components that are not supported in the email notification.				
To use a switcher component in your JSPX page:				
<f:facet>				
with name="online".				
<f:facet>				
where name="notificationClient"				
, as shown in Example 44-11.Example 44-11 Using a switcher component				
notificationClient				
, the value of bpmClientType				
is null. Continue to Section 44.4.5.5, "Fine-Tuning the Emailable Page."You can enable separate views for online and email versions for notifications.				
To enable separate views for online and email notifications:				
Outcome				
attribute to online				
.Example 44-12 Adding two cases to the switcher				
online				
.email				
.In order to correctly render your JSPX page in email mode, you may need to take any or all of following steps to fine-tune the email page.				
<af:outputText>				
component to render the instruction text, as there is no style class for instruction text based on the helpTopicId				
of <af:panelHeader>				
or <af:showDetailHeader>				
.<af:showDetailHeader>				
component, if the disclose property is set to false, the disclosure is closed in the page to be emailed.Add an EL expression to the disclosed				
property so that the property is true when in email mode, as shown in Example 44-13.				
Example 44-13 Adding an EL expression to the disclosed property				
af:table>				
is acceptable. If the table is not wide enough, set the <af:column>				
width attribute.If you are adding product-specific code to the template, ensure that your product-specific code adheres to the localization standards for Oracle ADF user interfaces. For more information, see the chapter "Internationalizing and Localizing Pages" in the Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework.				
If you are displaying a task payload attribute in your JSPX page, you must override the EL expression for the label attribute for each of the payload attributes. For example, in the automatically generated Oracle ADF code shown in Example 44-14, replace the "#{bindings.PayloadInput1.hints.label}"				
so that it refers to translated text in the Xliff resource bundle associated with your UI project.				
Example 44-14 Label attributes for the payload				
Note: Two strings in the Oracle ADF code template that store their translations in the resource bundle associated with the TASK file (as opposed to the UI project). Do not define the translations in the resource bundle associated with your UI.				
For more information about translation resource bundles, see the section entitled "How to set up Resource Bundles for Translation of Your Customizations" in Chapter 61, "Creating Customizable Applications."				
If you want to display the rows in the business object that are included in the approval task, use the collection target data in the task data control to determine the rows to be included. Render that information within your product-specific regions.				
To use a collection target:				
Regardless of whether aggregation is enabled, the collection target contains information on the rows that are being approved or rejected by the approver.				
Create a deployment profile as you would for any other Oracle ADF UI project. For more information about configuring a deployment profile, see the section entitled "How to Create Deployment Profiles for Standalone WebLogic Server Deployment" in Chapter 3, "Setting Up Your JDeveloper Workspace and Projects."				
To configure a deployment profile:				
Open the web.xml				
file for the SuperWeb project and add the code shown in Example 44-15.				
Example 44-15 Adding the Oracle ADF library to the SuperWeb project				
hwtaskflow.xml				
file and merge all the notification task flow details.To secure this pattern, follow the instructions described in Chapter 50, "Securing Web Services Use Cases."				
You may want to implement the following security tasks:				
Verifying the deployment involves defining JNDI and foreign JNDI for the non-SOA Oracle WebLogic Server, as well as defining a grant for bpm-services.jar				
.				
In this use case, the Oracle ADF task flow for human tasks is deployed to a non-SOA server as described here, including configuring foreign JNDI providers. Alternatively, you can define a connection to the Oracle SOA Suite server using a deployment script. For more information about using a deployment script to define a connection to the SOA server, see the section describing the workflow client configuration file (wf_client_config.xml				
) in the chapter "Introduction to Human Workflow Services" in the Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.				
If you want to deploy the Oracle ADF task flow for human task to a SOA server, deploy your application as described in the chapter "Deploying SOA Composite Applications" in Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.				
To verify the deployment:				
oracle.soa.workflow				
shared library to the non-SOA Oracle WebLogic Server.http://remote_hostname:remote_port/console				
, where remote_hostname and remote_port are the host name and port for the remote non-SOA WebLogic server.oracle.soa.workflow.jar				
and click Finish.oracle.soa.workflow(11.1.1,11.1.1)				
library is active.http://remote_hostname:remote_port/console				
, where remote_hostname and remote_port are the host name and port for the remote non-SOA WebLogic server.ForeignJNDIProvider-SOA				
, and click OK.Initial Context Factory: weblogic.jndi.WLInitialContextFactory				
Provider URL: Enter the URL of the soa-infra				
application, using the following format: t3://				
SOA_hostname:SOA_port/soa-infra				
User/Password: Enter an administrator username and password for the server.				
Note: The provider URL refers to the soa-infra application, not the domain. Do not change soa-infra .				
http://remote_hostname:remote_port/console				
, where remote_hostname and remote_port are the host name and port for the remote non-SOA Oracle WebLogic Server.Select the Link tab and click New.				
Press Enter and click OK. Enter the following values:				
Name: RuntimeConfigService				
Local JNDI Name: RuntimeConfigService				
Remote JNDI Name: RuntimeConfigService				
Specify ejb/bpel/services/workflow/				
for ejb/bpel/services/workflow/TaskServiceBean				
and ejb/bpel/services/workflow/TaskMetadataServiceBean				
only.				
Name/Local JNDI Name/Remote JNDI Name: ejb/bpel/services/workflow/TaskServiceBean				
Name/Local JNDI Name/Remote JNDI Name: ejb/bpel/services/workflow/TaskMetadataServiceBean				
Name/Local JNDI Name/Remote JNDI Name: TaskReportServiceBean				
Name/Local JNDI Name/Remote JNDI Name: TaskEvidenceServiceBean				
Name/Local JNDI Name/Remote JNDI Name: TaskQueryService				
Name/Local JNDI Name/Remote JNDI Name: UserMetadataService				
jazn-data.xml				
(not system-jazn-data.xml				
) to include the grant for bpm-services.jar				
, as shown in Example 44-16.Example 44-16 Grant for bpm-services.jar				
Tips: When accessing the task in the Oracle Business Process Management Worklist, you may get the following message: "Details not available for this task." If so, take the following steps:				
Following are some steps you can take to fix known issues.				
oracle.soa.workflow.wc				
in weblogic-application.xml				
.FRAME_BUSTING				
attribute in web.xml.By default, the drop handler generates a reference to the oracle.soa.workflow				
shared library in weblogic-application.xml				
. Override the entry in the weblogic-application.xml				
file so that it references oracle.soa.workflow.wc				
instead.				
Example 44-17 shows a snippet of a sample weblogic-application.xml				
file with the correct reference to oracle.soa.workflow.wc				
.				
Example 44-17 Reference oracle.soa.workflow.wc				
If you receive a warning message about frame content not loading, modify web.xml				
to include the code shown in Example 44-18.				
Example 44-18 Set the FRAME_BUSTING attribute in web.xml				
If your SOA runtime and task detail UI are running on different domains during development, set the value to never				
for testing purposes only.				
If your page is created using an earlier version of the drop handler template (which used fnd:applicationPanel				
and af:panelStretchLayout				
), take the following steps to migrate fnd:applicationsPanel				
to af:panelHeader				
.				
To migrate from an earlier version of the drop handler template:				
Open your JSPX page and, in the Structure pane, locate af:panelStretchLayout				
under af:form				
.				
When you have found af:panelStretchLayout				
, add af:panelHeader				
above af:panelStretchLayout				
and set the text attribute to text="#{binding.title.inputValue}"				
.				
fnd:applicationsPanel				
, find the actionButtonBar				
facet and select the af:toolbar				
below it.Move af:toolbar				
under the toolbar facet of af:panelHeader				
added in the previous step.				
fnd:applicationsPanel				
, find af:panelGroupLayout				
and move it under af:panelHeader				
.af:panelStretchLayout				
and delete it.Override shortDesc				
EL for the Create button in the Comments section:				
To override the EL for the Create button:				
<af:commandImageLink>				
and find the action property value #{popupBean.showCommentDialog}				
.For <af:table>				
, overwrite the shortDesc				
property value as follows: shortDesc="#{resources.CREATE}"				
.				
<af:commandImageLink>				
with the action property value #{popupBean.showCommentDialog}				
. Example 44-19 shows a sample illustrating <af:commandImageLink>				
after modifying the action property value.Example 44-19 Modifying the action property value for <af:commandImageLink>				
This chapter describes what to do when you require your SOA composite to subscribe to a business event published on another Oracle SOA Suite cluster.				
When to implement: When you require your SOA composite to subscribe to a business event published on another Oracle SOA Suite cluster.				
Design Pattern Summary: The Event Delivery Network (EDN) infrastructure supports business event publishing and subscription within a single Oracle SOA Suite cluster. To propagate a business event from one Oracle SOA Suite cluster to another, you must build a mediator-to-mediator bridge. The bridge queues the event message in a global aqueue from the Oracle SOA Suite cluster. The Oracle SOA Suite cluster publishes the event and then dequeues the event message from the Oracle SOA Suite cluster that subscribes to the event.				
Involved components:				
You can use business event publishing and subscription for asynchronous, loosely-coupled integration between two components such as an Oracle ADF UI application and a SOA composite. In most cases, the two components to be integrated are within the same family, and the same Oracle SOA Suite cluster is used to both raise and subscribe to the event. However, in some cases component integration goes across domains. This pattern is used to implement business event propagation from one Oracle SOA Suite cluster to another.				
There are two other possible approaches to this use case.				
WARNING: This approach is not recommended.				
CRM Subscribes to Event Published by HCM				
HcmUsersSpmlComposite				
deployed in the HCM SOA cluster publishes a post-processing event to report the success or failure of the process of creating a new user or assigning roles to a user. In order for CRM to perform additional actions based on the user request, the post-processing event must be propagated from HCM to CRM.				
Table 45-1 lists the HCM composite components and values.				
Table 45-1 HCM Composite Components and Values				
Composite Components	Values			
---	---			
Publishing Product				
Subscribing Product				
Owning Product				
XFamilyPub composite name				
XFamilySub composite name				
Recipient/Consumer				
SOA workspace				
Financials Subscribes to CRM Event				
When the ImportPartyData				
event is raised in the customer or supplier import program in TCA, the Financials PartyImportForTCALocService				
service must be invoked. The service creates a tax profile for a party which must be involved in financial transactions.				
HCM Subscribes to Event Published by CRM				
The resource directory feature in CRM raises the ActiveLdapRequestEvent				
event to make an LDAP request for provisioning the abstract role and security roles for newly provisioned user accounts to existing resources. Without processing these requests, resources will not be able to login to the resource directory used to maintain resource information such as phone numbers, email addresses, mail addresses, and so on. The HcmUsersSpmlComposite				
deployed to the HCM Oracle SOA Suite cluster subscribes to the event and processes the request.				
Table 45-2 lists the CRM composite components and values.				
Table 45-2 CRM Composite Components and Values				
Composite Components	Values			
---	---			
Publishing Product				
Subscribing Product				
Owning Product				
XFamilyPub composite name				
XFamilySub composite name				
Recipient/Consumer				
SOA workspace				
The sample code for this use case can be downloaded from Oracle SOA Suite samples.
To support cross-family event subscriptions, a global aqueue resides in the Oracle Fusion Applications schema to enqueue messages from one Oracle SOA Suite cluster and dequeue to another Oracle SOA Suite cluster. The messages contain information about the event as well as the publisher's identity and application context information.
In addition to the aqueue, this pattern includes an XFamilyPub
composite deployed to the Oracle SOA Suite cluster which publishes the cross-family event, and an XFamilySub
composite deployed to the Oracle SOA Suite cluster which subscribes to the cross-family event. The XFamilyPub
composite contains a mediator and an Aqueue adapter configured for the enqueue operation. The mediator subscribes to the event, transforms the event information and payload and enqueues a message to the Aqueue with the recipient set to the family subscribing to the event. The XFamilySub
composite contains an Aqueue adapter configured for the dequeue operation with itself specified as the recipient. The mediator dequeues the message, filters the message based on the Namespace
and LocalName
elements in the message, transforms the payload and raises the event locally.
Your installation of Oracle JDeveloper must include the following database objects, Oracle WebLogic Server configurations and so on:
ACR_XFAMILY_EVENT_Q
is defined in the FUSION schema. Verify that the database object exists by navigating to the Database Navigator in Oracle JDeveloper, defining a connection to the FUSION schema and double-clicking Queues.Following are the components to be defined for the pattern:
XFamilyPub
and XFamilySub
composites.The product team requiring the cross-family subscription owns both the XFamilySub
and XFamilyPub
composites. This pattern assumes the composites are defined at the product level. It is also possible to define the XFamilySub
and XFamilyPub
at the family level instead.
Determine whether an XFamilySub
or XFamilyPub
composite has been defined for your product. If they have not been defined, then follow these guidelines for naming the XFamilySub
and XFamilyPub
composites. The naming guidelines help make cross-family event composites easily identifiable and self-descriptive.
These composites can reside in any LBA in your product.
Composite Naming Conventions
The composite names must adhere to the following guidelines:
XFamilySub
A product can have more than one XFamilyPub
composite.
Using the naming conventions specified in Composite Naming Conventions, the sample composite name is as follows:
XFamilyPub
A product can have more than one XFamilyPub
composite. There should only be one XFamilyPub
composite for each publisher product and subscriber product combination.
Using the naming conventions specified in Composite Naming Conventions, sample composite names are as follows:
A recipient or consumer is specified in the Aqueue Adapter defined in the XFamilyPub
and XFamilySub
composites. The recipient in the XFamilyPub
is used to indicate which Aqueue Adapter should receive the enqueued message. The consumer in the XFamilySub
is used to identify the Aqueue Adapter. For example, if the XFamilyPub
specifies ZX as the recipient for the enqueued message, then the XFamilySub
with the consumer set to ZX dequeues the message from the aqueue.
The recipient is the name of the XFamilyPub
composite without the suffix XFamilyPubComposite
, in the format <LBA short name><Publisher product>To
<Subscriber product>.
For example:
FinInfrHzToZx
for FinInfrHzToZxXFamilyPubCompositeFinInfrPerToZx
for FinInfrPerToZxXFamilyPubCompositePrcInfrPoToB2B
for PrcInfrPoToB2BXFamilyPubCompositeThis step defines the composite which subscribes to an event on a remote family's Oracle SOA Suite cluster and enqueues a corresponding message in the ACR_XFAMILY_EVENT_Q
aqueue.
eis/AQ/XFamilyEventAqueueInterface
.In the Interface field, define the operation and schema.FusionXFamilyEvent.xsd
from MDS, take the following steps.Click the search icon next to the URL field.
In the Type Chooser dialog box, select Import Schema File.
Click the search icon next to the URL field.
At the top of the SOA Resource Browser window, select the Resource Palette.
Under IDE Connections, navigate to SOA-MDS > SOA-MDS connection Name > oracle > common > acr > events > FusionXFamilyEvent.xsd and click OK.
In the Import Schema File window, uncheck Copy to Project and click OK.
In the Type Chooser window, select FusionXFamilyEvent and click OK.
In the Copy-of Type dialog, select Replace the children of the selected node with the results of the copy-of. If an error message displays to the right of the copy-of element, you can ignore it.
<sources>
. Drag-and-drop the element to the copy-of
in the far right column in the XSL design tab. Once you complete this step, the error icon that displayed in the previous step disappears.Example 45-1 shows a sample XSL file.
Example 45-1 Sample XSL File
apps.context.header
property into the ApplicationContext
element in the aqueue message. The Assign Value window is shown in Figure 45-1.Use the Expression builder to generate an expression for the To region. Select Variables > out > FusionXFamilyEvent > msg_out:FusionXFamilyEvent > msg_out:ApplicationContext, click Insert into Expression and then click OK.
The mediator source code is shown in Example 45-2.
Example 45-2 Mediator Source Code
binding.jca
element with the code shown in Example 45-3.Example 45-3 Replace the JCA Binding
<component>
elements in the composite.xml file, as shown in Example 45-4.Example 45-4 Add Fault Policies to the composite.xml File
This step defines the composite which will dequeue messages from ACR_XFAMILY_EVENT_Q
and raise the event locally in your family's SOA cluster.
To define an XFamilySub composite:
XFamilySub
composite name determined in Section 45.4.2, "Determining the Composites to Be Defined."fusionapps/soa_shared/soa-infra
before proceeding.From the Database Schema dropdown list, select Fusion.
In the Queue Name field, enter ACR_XFAMILY_EVENT_Q.
In the URL field, browse for the message schema URL.
From the Schema Element dropdown list, select FusionXFamilyEvent.
Draw a wire between the aqueue adapter and mediator, as shown in Figure 45-2.
oramds
to reference the EDL file rather than copying the EDL file into your composite.For example, if the namespace of the event is http://xmlns.oracle.com/apps/crm/hz/bulkImport/FoundationBulkImportEventsComposite
and the local name is ImportPartyData
, then the following filter is defined, as shown in Example 45-5.
Example 45-5 A Filter Expression for the Mediator Rule
<target>
element./child:node()
element after <xsl:copy-of select="/msg_out:FusionXFamilyEvent/msg_out:Payload>
.The XSL file should look similar to that shown in Example 45-6.
Example 45-6 XSL File
ApplicationContext
element in the aqueue message into the apps.context.header
property, as shown in Figure 45-3.<binding.jca config="EnqueueEventMessage_aq.jca"/>
with the code shown in Example 45-7.Example 45-7 Replacing the binding.jca Element
Example 45-8 Adding Standard Fault Policies
You can verify the deployment of the use case by confirming that the event was successfully raised by checking the Event Delivery Network database log.
To verify the deployment of XFamilyPub composite:
XFamilyPub
composite to the SOA cluster which receives the cross family business event.initialize_session
with the appropriate GUID and user.hcm_edn_publish_event
with the relevant event name, such as fin_edn_publish_event
or crm_edn_publish_event
, and so on.content.begin
with the relevant business event.Example 45-9 shows sample PL/SQL code used to raise a business event.
Example 45-9 Raise a Business Event by Invoking the PL/SQL Code
http://
<SOA SERVER>
:<SOA PORT>
/soa-infra/events/edn-db-log
.XFamilySub
composite is not deployed) by looking at the contents of the FUSION.ACR_XFAMILY_EVENTS_QT
table. The body of the message displays in the USER_DATA
column. For example:select user_data from fusion.acr_xfamily_event_qt;
To verify the deployment of XFamilySub composite:
XFamilySub
composite to the SOA cluster that subscribes to the cross-family event.The composite should pick up the message in the aqueue.
http://
<SOA SERVER>
:<SOA PORT>
/soa-infra/events/edn-db-log
.This part of the Developer's Guide provides information about Oracle Fusion Applications security. It discusses how to implement Oracle Fusion Data Security and user sessions, and how to secure specific use cases for Oracle ADF application artifacts, Web services, and portlet applications.
Getting Started with Security introduces security concepts and features, namely authentication and authorization. Authentication establishes the identity of the user. Authorization ensures that users only have access to resources to which they have been granted access.
Implementing Oracle Fusion Data Security describes how to enforce authorization for access and modification of specific data records. The goal of Oracle Fusion Data Security is to authorize a user to perform specified actions on selected data. Data security can secure rows and attributes of a database object and addresses the question "Who can do what on which set of data."
Implementing Application User Sessions describes how to allow applications to store security and application context on the user session, and to allow for an enhanced security implementation. An application can easily reconnect to the same user session for each request, maintaining the user context over the duration of the user's session without the overhead of having to obtain and initiate a database connection each time. The actual connection used is not guaranteed to be the same between requests. User session roles can be enabled for a user, and dictate what privileges that user has.
Implementing Function Security describes how to authorize end users to access securable application artifacts created using Oracle ADF.
Securing Web Services Use Cases describes best practices for for securing Web services in Oracle Fusion Applications and specifically explains the difference between global policy attachment and local policy attachment and when to use each.
Securing End-to-End Portlet Applications describes how to authenticate and authorize portlet services, as well as how to configure key stores and credential stores.
This part contains the following chapters:
This chapter describes the components that developers use to secure Oracle Fusion applications and web services by enforcing authentication and authorization.
This chapter includes the following sections:
Oracle Fusion Applications security consists of two main components, namely authentication and authorization. Authentication establishes the identity of the user. Authorization ensures that users only have access to resources to which they have been granted access.
When developing an Oracle Fusion application, it is necessary to ensure that authentication and authorization polices are properly enforced throughout the application. The implementation details may vary depending on the technology used in the application.
For complete details about the Oracle Fusion security approach, including concepts and best practices, see the Oracle Fusion Applications Security Guide.
Additionally, for information about security and extending Oracle Fusion applications, see the Oracle Fusion Applications Extensibility Guide.
Oracle Fusion applications are built on top of a fixed set of internal and third-party technologies. This set of technologies defines what may be used to develop, build, package, and run all Oracle Fusion applications. Each technology and component may have its own specific requirements for security implementation.
Figure 46-1 depicts the components in the Oracle Fusion Applications security approach.
The Oracle Fusion Applications key technologies and features include:
Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
Oracle Fusion Middleware Application Security Guide.
Oracle Fusion Middleware Security and Administrator's Guide for Web Services.
jazn-data.xml
file). For more information, see:Oracle Fusion Middleware Application Security Guide.
Some of the technologies have an additional layer of security on top of the main security technologies.
OPSS security framework provides security to Oracle Fusion Middleware, including Oracle WebLogic Server, Oracle SOA Suite applications, Oracle WebCenter, Oracle ADF applications, and Oracle Entitlements Server. OPSS is designed to be portable to third-party application servers. Developers can therefore use OPSS as the single security framework for both Oracle and third-party environments, thus decreasing application development, administration, and maintenance costs.
OPSS comprises Oracle WebLogic Server security and Oracle Fusion Middleware security. Figure 46-2 illustrates the layered architecture that combines these two security frameworks.
Figure 46-2 depicts the various security components as layers. The uppermost layer includes the Oracle WebLogic Server and the Java applications running on the server; under it, is the layer consisting of APIs for Authentication, Authorization, Credential Store Framework, User and Role, and identity virtualization; the bottom layer includes the Security Service Provider Interface (SSPI) layer and the service providers. The bottom layer interacts with security data repositories, such as LDAP and database servers.
In addition to the list of providers shown in Figure 46-2, other providers include the role mapping and audit providers.
For more information about OPSS, see the "Understanding Security Concepts" part in the Oracle Fusion Middleware Application Security Guide.
The Security Service Provider Interface (SSPI) layer is accessed through OPSS APIs and provides Java EE container security in permission-based (JACC) mode and in resource-based (non-JACC) mode. It also provides resource-based authorization for the environment, thus allowing customers to choose their security model.
Oracle Web Services Manager (Oracle WSM) provides a policy framework to consistently secure Web services. Application developers attach policies using JDeveloper to the clients and services. Authentication and authorization are enforced on the services by Oracle WSM based on the policies attached to the service. The policies determine how the client and service communicate. For the predefined policies the naming convention indicates the behavior of the policy.
For example, given a policy called:
oracle/wss11_saml_token_with_message_protection_client_policy
oracle
is the path of the policy,ws11
indicates the Web services standard,saml_token
is the authentication token,with_message_protection
indicates whether message protection is enabled,client_policy
indicates the type of policy, server or client.For more information about Oracle WSM, see Oracle Fusion Middleware Security and Administrator's Guide for Web Services.
How Policies are Executed
When a request is made from a service consumer (also known as a client) to a service provider (also known as a Web service), the request is intercepted by one or more policy interceptors. These interceptors execute policies that are attached to the client and to the Web service. There are five types of interceptors (reliable messaging, management, WS-Addressing, security, and MTOM) that together form a policy interceptor chain. Each interceptor executes policies of the same type. The security interceptor intercepts and executes security policies, the MTOM interceptor intercepts and executes MTOM policies, and so on.
Policies attached to a client or Web service are executed in a specific order via the Policy Interceptor Pipeline, as shown in Figure 46-3.
When the interceptor encounters a policy that deals with authentication or authorization, it delegates the task to OPSS. If the authentication using OPSS is successful, a security subject with the identity is established. Similarly, processing continues only if the authorization using OPSS for the established identity is successful.
Oracle ADF security framework is the provider of authentication and authorization services to Oracle Fusion Applications. Oracle ADF security is built on top of OPSS architecture, and provides declarative, permissions-based protection for ADF bounded task flows and top-level web pages that use ADF bindings.
Oracle ADF security and Oracle JDeveloper provide the tools to interact with the file-based identity and policy store, as well as the architecture to enforce the security definitions on the secured resources.
For more information about ADF Security, see the "Enabling ADF Security in a Fusion Web Application" chapter in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
Application user sessions allow applications to store the security and application context for Oracle Fusion Applications. Session attributes contain common information such as the current user and the user's associated roles, current language, date and number formatting, as well as application-specific attributes.
A session is created after the security subject has been established. In the context of Oracle ADF, a session is created using a filter, while a context is created in Oracle SOA Suite using an interceptor. When a session is created, information about the user's associated roles are stored in the session.
Oracle Fusion Data Security relies on the security context in the session when deciding whether a user is allowed to access particular data. If the session is not established, the user cannot access any secured data.
Application user sessions are associated with pillars and, ideally, there should be only one session per pillar. In the case of web services, if the client and server are on the same pillar then they share the same session. Subsequently, session context is specific to a particular pillar. That is, everything running on that same pillar should see the same context.
For details about application user sessions, see Chapter 47, "Implementing Application User Sessions."
Oracle Fusion Data Security implementation is a solution specifically for Oracle Fusion Applications. The security definitions for who can access what data are stored in the Oracle Fusion Data Security model in the Oracle Fusion Middleware schema. Developers create these definitions through SQL scripts, APIs or UIs. The definitions are then extracted and version controlled as seed data.
Oracle Fusion Data Security definitions are enforced either declaratively or programmatically in their application. In the context of an Oracle Fusion application, developers can do the following:
The data security implementation relies on the security context defined in the application user session. Even if OPSS authenticates the user and the security subject is established, the user cannot access any data unless the application user session is established.
For details about Oracle Fusion Data Security, see Chapter 48, "Implementing Oracle Fusion Data Security."
Oracle Virtual Private Database (VPD) enables controlling access to data on the database level using security policies associated with database objects. Use VPD when securing Personally Identifiable Information (PII) on the database level, for example.
For more information about VPD, see the "Using Oracle Virtual Private Database to Control Data Access" chapter in the Oracle Database Security Guide.
Oracle Data Integrator (ODI) is used to move and transform data among systems using specific features for authentication and authorization. Authentication is based on Oracle Platform Security Services (OPSS). Following authentication, processing specific to ODI occurs in which OPSS principals are mapped to definitions stored in ODI to determine identity access rights. The security definitions controlling authorization decisions are stored in an ODI master repository.
For more information about ODI, see the "Understanding Oracle Data Integrator" part in the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator.
Oracle Fusion applications reside in containers that automatically handle authentication. The container intercepts all requests entering the system, and ensures that users are properly authenticated and the security context propagated.
Invoking the ADF Security wizard when developing an application configures the application to enforce security at runtime.
When a request is received with no subject defined, Oracle Platform Security Services creates a subject containing the anonymous user principal
and the anonymous role role principal
. Oracle Platform Security Services is configured by the JPSFilter
. With this security subject, unauthenticated users can access public resources. When accessing secure resources, the adfAuthentication
servlet forces users to authenticate. The security configuration determines the login module to be used for authentication.
By default, Oracle WebLogic Server is the authenticator used when developing applications with Oracle ADF. Different configurations can also be used, such as an Oracle Single Sign-On solution.
Oracle Identity Management Repository stores users, enterprise roles and their relationships. During development the identities exist in two places; the jazn-data.xml
file in Oracle JDeveloper and the embedded LDAP of JDeveloper's Integrated WebLogic Server. In staging environments, these definitions reside in LDAP on standalone Oracle WebLogic Server.
Test users created during development within Oracle JDeveloper enable testing applications in development. These test users are not migrated with the completed application. Rather, they are for testing purposes only. Enterprise users are added by a system administrator who defines users/groups in the enterprise identity store.
Users are not assigned permissions directly, rather access is assigned to roles. Roles group particular permissions required to accomplish a task; instead of assigning individual permissions, roles match users with the permissions required to complete their particular task.
There are two main types of roles, enterprise and application. Oracle Identity Management Repository contains enterprise roles that are available across applications. These are created as groups in LDAP, making them available across applications. Application roles are stored in the application-specific policy store.
Functional roles include job, duty, data, abstract and privilege roles. Role are enforced by a role hierarchy. In Oracle Identity Management Repository, these logical roles are translated into technical Oracle Platform Security Services roles.
Segregation of Duties (SOD) ensures that no single individual has control over two or more phases of a business transaction or operation. The goal of segregation of duties is to prevent information misuse such that the same user cannot both create and approve transactions.
Oracle Applications Access Controls Governor (AACG) is used to manage, remediate and enforce user access policies. AACG ensures effective segregation of duties at the implementation site.
The data in the file-based identity store (jazn-data.xml
file) is used when authenticating within Oracle JDeveloper running Integrated WebLogic Server. The identity data in the jazn-data.xml
file should not be synchronized with the identities in the LDAP staging server. By default, the deployment configuration disables data synchronization between the jazn-data.xml
file and the LDAP server. This setting should not be modified.
The data in the file-based security policy store (jazn-data.xml
file) is used when authorizing within Oracle JDeveloper running Integrated WebLogic Server. Changes to the security policies in the jazn-data.xml
file must be migrated to the LDAP staging server by an IT security manager. By default, the deployment configuration disables data synchronization between the jazn-data.xml
file and the LDAP server. This setting should not be modified.
ODI has its own concept of identities such as ODI role and stores in the ODI schema. For authentication, OPSS is used and the OPSS principals are mapped to the ODI identities.
Identity propagation is a fundamental requirement for securing Oracle Fusion Applications. It provides that the same user identity is visible across different processes and technologies boundaries. While there some cases where the identity is implicitly propagated, in several scenarios explicit configuration is required.
Web Services and SOA
In the case of Web services and SOA applications, you can propagate identities by attaching Oracle Web Services Manager policies to the client and service. When a client sends a request to a service, a policy interceptor intercepts the request. On the client side, the policy interceptor packages the identity to be transported according to the policy attached to the client. On the service side, the interceptor processes the request based on the policy and delegates authentication to Oracle Platform Security Services. If the authentication succeeds, a security subject with the identity is established.
Remote Method Invocation (RMI)
The executing user is automatically propagated when using RMI. If a different identity than the executing user needs to be propagated, it has to be explicitly passed through Java Naming and Directory Interface (JNDI) context.
Oracle WebCenter
Oracle Fusion applications deploy Web Services for Remote Portlets (WSRP). As web services, they rely on Oracle Web Services Manager for Identity Propagation.
Oracle Data Integrator (ODI)
In a OPSS-enabled environment (Oracle Platform Security Services), ODI authentication happens in two phases.
Figure 46-4 depicts the first phase is OPSS authentication, during which time a subject is created using the OPSS framework. The second phase is the ODI authentication itself, which is based on the previously created subject. ODI lists the ODI roles having one or more OPSS principals of the subject as members. Users will need to choose one ODI role from here. ODI will then create an ODI security token based on this role. This ODI security token contains an ODI role and the list of principals associated with the current OPSS subject.
Audit Identity
When switching to the application identity, in order to preserve the submitting identity for auditing purposes, you must propagate the identity to be audited.
Auditing is based on who
columns, which are populated with session data. When the session is established, it is initialized using the current identity. The session APIs expose a method to manipulate the identity to be used for auditing. This method allows teams to control which identity is stored as the audit identity. Example 46-1 illustrates the syntax of this method.
Example 46-1 Controlling which Identity Is Stored as the Audit Identity
The session is not propagated, rather only the identity is propagated. As the session is initialized using the identity, any application specific values are lost. To prevent this, you must pass the audit identity and override the audit identity on the session.
It is recommended for the service provider to add an extra parameter to the service so as to store the original user ID (historyOverrideUserName
, of type String). In order to invoke the service, the service method consumer must fill in the original user ID as part of the payload. Within the service, the value passed is populated on the session as shown in Example 46-2.
Example 46-2 Storing the Original Identity
Application user sessions are associated with pillars and, ideally, there should be only one session per pillar. In the case of web services, if the client and server are on the same pillar then they share the same session. Subsequently, session context is specific to a particular pillar. That is, everything running on that same pillar should see the same context.
Authorization ensures that users only have access to the resources to which they have been granted access. Authorization decisions are based on policies stored in a policy store. There are two main types of policy stores: OPSS application security repository and Oracle Fusion Data Security repository. The OPSS repository contains the security definitions that control access to applications. The Oracle Fusion Data Security repository contains the security definitions controlling data access.
The enterprise IT security manager exports the OPSS application security repository to the jazn-data.xml
file policy store. The security definitions in these repositories control access to application functions. The policies defined in the jazn-data.xml
file are used during development. For testing and implementation, the file-based policy store content is migrated into LDAP.
Policy Store Content
Enterprise IT security managers are responsible for managing application security policies. Oracle Fusion Applications developers can add new application security policies, but must not modify existing application security policies.
Roles
The jazn-data.xml
file identity store contains the application roles specific to a given application. These roles are not visible outside the application. The policies are created against an application role. Permissions are grouped into a permission sets for administrative purposes. And permission sets are granted to the application roles. Developers must not allowed to modify role hierarchy or remove privileges defined by the permission sets granted to existing application roles.
Design Time
During development, you can interact with the jazn-data.xml
file policy store using the tools and user interfaces provided in Oracle JDeveloper.
For more information, see the "Enabling ADF Security in a Fusion Web Application" chapter in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
Runtime
When Oracle ADF security is enabled in an application, the Web container uses the policies in OPSS application policy store for authorization. Oracle ADF security enforcement logic checks whether the user, represented by the JAAS subject, has the correct permissions to access the resource.
The subject contains the user's principals, which include a user principal with the user's name and list of role principals, as well as enterprise roles and application roles obtained from the policy and identity stores. The principal is created to represent all of the user's memberships in application roles defined in the policy store. In turn, each application role may have multiple granted permissions in OPSS application policy store.
At runtime, the page context determines whether the current user has view permissions for the page being accessed. If the page includes an activity of a bounded task flow, the task flow controller determines the permissions. If the page is a top-level page with an associated page definition file, the Oracle ADF model determines the permissions for the page.
The OPSS service provider interface checks whether the subject includes the roles with the relevant permissions required to access the page. If the user is authorized to access the page, then the task flow is initiated. If the user is not authorized, ADF Controller throws an exception and passes control to an exception handler specified by the task flow configuration.
It is also possible to include an API that checks whether the current user has access to a resource.
Developer created additions to the policy store must be migrated to LDAP by a IT security manager.
Oracle Fusion Data Security repository is used to control access to data.
Policy Store Content
Enterprise IT security managers are responsible for managing data security policies. Oracle Fusion Applications developers can add new data security policies, but must not modify existing data security policies.
For more information about Oracle Fusion Data Security, see Chapter 48, "Implementing Oracle Fusion Data Security."
Design Time
During development, developers can interact with the Oracle Fusion Data Security repository through the Oracle Authorization Policy Manager.
Runtime
Data security relies on session information for the user identity. When a user session is created at runtime, the user information for that session and the flattened list of roles for the user are propagated to the database. This information is used to identify the user and the user's access level based on the policies in Oracle Fusion Data Security repository.
Data security is not automatically enforced, rather developers must enforce data security either declaratively on the entity object or view object, or programmatically, using API calls.
There are some cases in which you must implement authentication from an external source or using a different identity. You can implement authentication using APIs, Expression Language or a non-browser based login.
You can implement authentication by using user and role APIs. For more information, see the "Developing with the User and Role API" chapter in the Oracle Fusion Middleware Application Security Guide.
You can use the security subject APIs to run an application under an identity different from the current user.
You can use Expression Language to access security context information. Some useful expressions are as follows:
securityContext.userName
securityContext.authenticated
securityContext.userInRole
securityContext.userInAllRoles
securityContext.userGrantedPermission
securityContext.userGrantedResource
securityContext.taskflowViewable
securityContext.regionViewable
Note that decisions about user's access rights should not rely on the user's role information since role definitions may be changed. Instead access should be based on available permissions.
For more information, see the "Enabling ADF Security in a Fusion Web Application" chapter in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
For information about using non-browser based security, see the "Securing Your Integrated Excel Workbook" chapter in the Oracle Fusion Middleware Desktop Integration Developer's Guide for Oracle Application Development Framework.
Authorization is implemented using function security policies that control access to application functions. At the most fundamental level, authorization is based on standard JAAS (Java Authentication and Authorization Services) permissions and OPSS permission sets (also called entitlements) which may be granted to secure specific application artifacts. Oracle ADF defines the JAAS permissions needed to secure certain Oracle ADF application artifacts, including ADF bounded task flows and, in the case of top-level web pages, ADF page definitions files.
Security is automatically enforced on all ADF bounded task flows and top-level web pages that use ADF bindings and are not contained in a bounded task flow.
Security is not automatically enforced on web service methods. You can use API calls to define permissions in the policy store and enforce security based on these permissions.
Implementing function security requires the following main steps:
jazn-data.xml
file.jazn-data.xml
file into the application workspace.After running the ADF Security wizard, any web page associated with a bounded ADF task flow will be protected. Therefore before running the application and testing security, developers must first create security policies that grant end users access.
For more information, see Chapter 49, "Implementing Function Security."
In general, the JAAS permission determines the allowed operations that the end user may perform on the application resource. However, from the standpoint of Oracle Fusion Applications, end users typically need to interact with multiple resources to complete the duties designated by their provisioned roles. To simplify the task of creating function security policies, developers work with entitlement grants (defined as OPSS permission sets) to grant privileges for a variety of securable resources, including ADF task flows, web services, and SOA work flows to a role.
Developers use the Oracle JDeveloper to create the entitlements (with one or more resource-action pairs) and then grant one or more entitlements to the desired application roles (the grantee).
For details about creating entitlement-based security policies, see Chapter 49, "Implementing Function Security."
Task flow, page definition, and web service resource permissions are tightly coupled with code artifacts. These permissions are assumed to be associated with concrete code artifacts. In some circumstances, permissions are required, but no code artifacts exist with which the permissions could be associated. For example, suppose the same page is used to view and update tasks. The same code artifact is used for both actions such that one cannot control access to both view and update tasks separately. Resource permissions enable creating abstract permissions which can be referred to with API calls.
For details about resource permissions and using APIs, see the "Understanding Security Concepts" part in the Oracle Fusion Middleware Application Security Guide.
You can use Expression Language to access security context information. Following are some useful expressions:
securityContext.taskflowViewable
securityContext.regionViewable
securityContext.userGrantedPermission
For more information, see the "Enabling ADF Security in a Fusion Web Application" chapter in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
Implementing data security requires the following main steps:
For more information about implementing Oracle Fusion Data Security, see Chapter 48, "Implementing Oracle Fusion Data Security."
For more information about using Oracle Authorization Policy Manager, see the Oracle Fusion Middleware Oracle Authorization Policy Manager Administrator's Guide (Oracle Fusion Applications Edition).
For information about using APIs and Expression Language to secure data, see Chapter 48, "Implementing Oracle Fusion Data Security."
Oracle Virtual Private Database (VPD) enables creating security policies to control database access at the row and column level. Access is controlled at the database level. VPD adds a dynamic WHERE
clause to a SQL statement issued against an object to which an VPD security policy has been applied.
VPD can be useful for enforcing security when a development team must enforce security at the database level. Using VPD affects performance. As such, make sure to evaluate your performance requirements prior to implementing the VPD solution.
For more information regarding VPD implementation, see the "Using Oracle Virtual Private Database to Control Data Access" chapter in the Oracle Database Security Guide.
PII (Personally Identifiable Information) is any information that can be used to uniquely identify a person. This information is considered sensitive and must be protected from misuse for the purposes of legal regulation, financial liability and personal reputation. For example, only authorized users should be allowed access to the social security numbers of people stored in a system. PII authorization is only implemented on data identified by the PII working group in the data privacy Oracle Fusion uptake document.
PII authorization is implemented using one or more of the following technologies:
The security requirements for the PII attribute determine the technologies to be used.
Installations of Oracle Fusion Applications may require a large number of roles that must be provisioned. For data security purposes, it is often necessary to create the roles as the data security rules are not known at design time.
For more information regarding data role templates, see the "Data Security" chapter in the Oracle Fusion Applications Security Guide.
This chapter describes how to implement application user sessions in an Oracle Fusion application to allow applications to store security and application context on the user session.
This chapter includes the following sections:
Configuring your user interface project for an application user session is a requirement whenever you want to secure data and interact with Oracle Fusion Data Security. Additionally, before you can run and test your application from a task flow or web page, you should configure your user interface project to use an application user session.
The application user session is used to store user and application context from the time the user logs in until log out. When the application user session is implemented, the Oracle Fusion application can easily reconnect to the same user session for each request, maintaining the user context over the duration of the user's session without the overhead of having to obtain and initiate a database connection each time. The actual connection used is not guaranteed to be the same between requests. Application user session roles can be enabled for a user, and dictate what actions that user has.
The application user session stores common information used in Oracle Fusion Applications as session attributes and includes basic information about user identity and language preferences, as well as context important to particular applications. Specifically, session information includes the session ID, current user information, current language, date and number formatting, and other similar properties. Session attributes can also be used to track application specific information such as, the current user's shopping cart, the country selection, or the currently selected operating unit.
Application user session namespaces are where attributes on the session are stored. These attributes are then available over multiple requests whenever the session is attached.
Oracle Fusion Applications maintains its own namespaces - one for tracking security information, and another that developers can use to store attributes that they need to track over the life of a session.
Additionally, developers can create their own namespaces for any product specific attributes that they need to track over the life of a session. For example, when a large number of attributes exists, developers may want to create their own namespaces to group the attributes together more cleanly.
Oracle Fusion Middleware Extensions for Applications provides covers on top of the routines for getting attributes. To access the attributes of the application context, APIs exist in both PL/SQL and Java, as described in Section 47.3, "Accessing Properties of the Applications Context."
When you create a user interface project to test or run a task flow (anything that contains a .jspx
file) you need to enable application user sessions for any JSPX pages or task flows that you have created in your user interface project.
If the user interface project provides task flows that are only called from a page in another project, then there is no need to configure your project to use sessions.
By default, application user sessions are not enabled for your project. If you wish to access this functionality, you must configure your project.
To configure your project to use application user sessions:
Filter Name: Enter ApplSessionFilter
Filter Class: Enter oracle.apps.fnd.applcore.common.ApplSessionFilter
ApplSessionFilter
mapping definition into the same section where other filters are defined—immediately after the JpsFilter
mapping definition and before any other definitions.Example 47-1 shows the ApplSessionFilter
mapping definition to add.
Example 47-1 Creating a New Filter Mapping Definition
It is important that you add this filter mapping immediately after the JpsFilter
mapping definition and before any other definitions. This is to ensure that the ApplSessionFilter
servlet filter executes immediately after the JpsFilter
servlet handles authentication. Normally, this does not make a difference, however there are cases, such as customization code, where this is required.
You can create the above through the Filter Mappings tab (with Mapping Type set to Servlet, and Mapping set to Faces Servlet, and Dispatcher Type set to Forward, Request) but in order to change the ordering of the filter mapping, you must modify the web.xml file directly.
You should also stop and restart any server processes that you have running to make sure JDeveloper notices this new change. At this point you can run your page with application user sessions enabled, but you will always be running as the anonymous user. If you wish to require that users to authenticate, you will need to enable authentication and define some users and roles, as described in Section 49.3, "Adding Function Security to the Application."
The steps in Section 47.2.1, "How to Configure Your Project to Use Application User Sessions" can be used to configure the ADF Business Component Browser to run in a mode that supports application user sessions.
If you are running a standalone Java program or a JUnit test, you must explicitly call the ApplSessionUtil.initializeSession
API at the beginning of your program to create an applications context object. For more information about how to call the ApplSession.initializeSession
API, see Section 47.3.2.1, "Initializing Sessions."
When you run your page, an authentication dialog displays. Login as OPERATIONS / welcome1. An application user session for the OPERATIONS user is created and associated with your application user session. Your page can access this application user session through the ApplSessionUtil
class, as described in Section 47.3, "Accessing Properties of the Applications Context."
For details about enforcing security and granting access to application resources while testing the applications, see Section 49.3, "Adding Function Security to the Application."
The applications context is a set of properties relevant to applications that is stored on the application user session as a series of name-value pairs. You can access the core application security context in one of two ways:
ApplSession.java
class in the oracle.apps.fnd.applcore.common
packageFND_GLOBAL
package in PLSQLThe list of context attributes includes information such as current user name and the current language. The core attributes that are now supported were derived from the following:
The following is the list of context attributes that are automatically captured and maintained in the ApplSession
context. The values listed are the exact names of the attributes as they are defined in the session context. Note that developers can add their own custom attributes as well.
Security and Customization attributes:
USER_GUID
- The unique GUID that identifies the currently logged in user.USER_NAME
- The name of the currently logged in user.PRODUCT_FAMILY
- The current active product family.PRODUCT
- The current active product.INDUSTRY
- The current active industry.TERRITORY
- The current active territory.SITE
- Returns the constant value SITE.GLOBAL
- Returns the constant value GLOBAL.ADDTL_CUSTOM_LEVEL
- Additional customization level is a context property that can be customized by developers.INDUSTRY_IN_TERRITORY
- The current active industry in a particular territory.ROLES
- A list of roles that are currently active. (Assigned to the currently logged in user).Language attributes:
LANGUAGE
- The language tag representing the current language.NLS_LANG
- The two-letter database language code. Derived from the language.NLS_LANGUAGE
- The database language. Derived from the language.NLS_SORT
- String sorting logic in database. This is from linguistic sorting support project.TERRITORY
- Listed above as part of the customization context.DATE_FORMAT
- Format mask pattern for date parsing and formatting.TIME_FORMAT
- Format mask pattern for time parsing and formatting. This includes time zone formatting.GROUPING_SEPARATOR
- Grouping separator for number formatting.DECIMAL_SEPARATOR
- Decimal separator for number formatting.TIME_ZONE
- User's preferred time zone in Oracle E-Business Suite (EBS) R12.CURRENCY
- The current currency code.CLIENT_ENCODING
- Client native encoding used for file uploading, downloading, export, and attachment.Note: All language context attributes are handled using Java conventions, except for those that are explicitly prefixed with NLS . For example, getLanguage() returns en-US (corresponding to "AMERICAN" in the database) and getDateFormat() returns dd-MMM-yy (corresponding to DD-MON-RR in the database). |
Miscellaneous attributes:
TRACE_LEVEL
- The current tracing level when tracing is turned on.MODULE
- Stores the current module for tracing purposes.ACTION
- Stores the current action, such as page, being taken for tracing.ACCESSIBILITY_MODE
- The current accessibility mode.The stored name-value pairs are partitioned into separate namespaces. Oracle Fusion Applications creates namespaces to store the context attributes.
Note: The actual names of these namespaces and which attributes are used in which namespace is an implementation detail that you do not need to be aware of. |
Developers can access the attribute-storage namespaces through the standard APIs that are detailed below.
Developers may also choose to define their own namespaces, especially if they have a number of attributes they wish to store on the session. Developer may currently choose among the following APIs for initializing namespaces:
ApplSession.initializeNamespace(String namespaceName)
fnd_global.initialize_namespace (namespace_name IN VARCHAR2);
The Java and PL/SQL initializeNamespace
routines are identical, just invoked from different layers—these will dynamically create a new namespace associated with the currently attached session, which you can then access and retrieve session attributes from for the duration of that session.
In Java, the applications context is accessed through the ApplSession.java
and ApplSessionUtil.java
classes, which can be found in the oracle.apps.fnd.applcore.common
package. Each of the attributes listed above have corresponding APIs in the ApplSession
class, along with a corresponding static API in the ApplSessionUtil
class for easier access.
For more information, see the javadoc included with Oracle Fusion Middleware Extensions for Applications libraries.
Because it is not possible to authenticate users in the PLSQL layer, the API to initialize a session in PS/SQL is only expected to be called for testing. In order to use sessions, you must first configure your project to use application user sessions. For more information about configuring your project, see Section 47.2, "Configuring Your Project to Use Application User Sessions."
After you have configured your project to use application user sessions, you should be able to access sessions automatically if you are running a J2EE page.
For J2SE programs, such as JUnit tests, you must call an explicit API to initialize your session. As Example 47-2 shows, for JUnit tests in particular, this is most likely your setUp()
or setUpBeforeClass()
method along with a terminateSession
call in the corresponding tearDown()
or tearDownAfterClass()
method.
Example 47-2 Initializing Your Session
Caution: Remember, every call to initializeSession should have a corresponding terminateSession invoked after the code completes. |
Accessing a context attribute is simple. First, make sure your project is configured to use application user sessions and then import the ApplSession
and ApplSessionUtil
classes. As Example 47-3 shows, after you complete those tasks you can access the session and its properties using the static APIs that are provided.
Example 47-3 Accessing the Session
Using the example, guid1 and guid2 should both return the same value. The ApplSessionUtil
API is a convenience method that essentially calls the same code as the first two lines. One difference is that ApplSessionUtil.getUserGuid()
raises an exception if the session is not available. This is true for all the ApplSessionUtil
get methods, except for getSession()
, which just returns null if there is no session.
All of the centrally maintained attributes listed above have corresponding get APIs available. Example 47-4 shows a mechanism for getting generic attributes.
Example 47-4 Getting Generic Attributes
Example 47-5 shows the API you use to fetch attributes from a particular namespace.
Example 47-5 Fetching Attributes From A Particular Namespace
In addition to providing getters for all of the context attributes listed above, there are corresponding set APIs directly available in the ApplSession
class. Attributes like the user name or the language are set automatically on the context at creation time, but the set APIs can also be called if an attribute needs to be changed in the middle of the request.
Example 47-6 sets the PRODUCT_FAMILY
attribute to FND and also sets a generic attribute called ATTRIBUTE1
to VALUE1 on both the session and a private namespace using the Java APIs.
Example 47-6 Setting Context Attributes
Note: Sets of ApplSession attributes get cached in the middle tier, and only written to the database when the session is detached or the ApplSession.synchronize() method is explicitly called. If the set operation takes place from within a request, synchronization will happen automatically. However, if you are running standalone java or need the attributes to get written to the database immediately, you should add a call to session.synchronize() . |
The applications context does not hold onto connections, instead it obtains and releases them as needed. As Example 47-7 shows, if your application explicitly obtains a connection via the ApplSession.getConnection()
API, you will need to add a finally
block that releases that connection. It is recommended that you call the newly provided ApplSession.releaseConnection(Connection conn)
API as it takes care of clearing out session-specific PL/SQL state in the connection before closing it.
Example 47-7 Accessing the Connection of the Current ApplSession
To access the context in your Java code, just call any of the static methods in the ApplSessionUtil
class. As long as you are running from an environment where application user sessions are enabled, there should not be anything else you need to do aside from importing the ApplSessionUtil
class.
Tip: If you are running without application user sessions enabled, an exception will be thrown when any of the above calls are made with the exception of the getSession() API. This API returns a null if sessions are not enabled. |
The following is a more complex example of how you might use this:
You have a view object (TestVO
) where you want to always display the current user name as one of the fields.
To always display the current user name as one of the fields:
UserName
attribute to the TestVO
object.getUserName()
. As shown in Example 47-8, change it to return the value of the call to ApplSessionUtil.getUserName()
in the TestVORowImpl.java
that gets autogenerated.Example 47-8 Changing the getUserName() Value
Whenever the TestVO
view object is displayed, by default it will include the current user name field.
Example 47-9 uses the SysadminInfo
field that was added to the TestVO
view object to display a value when running the FND product.
Example 47-9 TestVO Example
The applications context can also be accessed through APIs that are provided in the FND_GLOBAL
package. As in Java, functions exist to get and to set each of the core attributes listed in Section 47.3, "Accessing Properties of the Applications Context," assuming you have initialized the connection to use sessions properly. For detailed information about the FND_GLOBAL
package, see the javadoc.
The FND_GLOBAL.INITIALIZE_SESSION
takes in the user GUID, the user name, and two lists of roles. The first represents the list of role GUIDs, and the second represents the list of corresponding role names. As Example 47-10 shows, the lists must be of the same length.
Example 47-10 Initializing Sessions
As an example, you can retrieve the current user by calling FND_GLOBAL.USER_NAME
, and you can get a generic attribute by calling FND_GLOBAL.GET_SESSION_ATTRIBUTE
.
As an example, you can set the language by calling FND_GLOBAL.SET_LANGUAGE
, and you can set a generic attribute by calling FND_GLOBAL.SET_SESSION_ATTRIBUTE
.
This chapter describes how to use Oracle Fusion Data Security to enforce security authorization for access and modification of specific data records in an Oracle Fusion application.
This chapter includes the following sections:
Oracle Fusion Data Security is the technology that implements data security in Oracle Fusion Applications and is not used by function security (Oracle Platform Security Services (OPSS) is used for function security). Oracle Fusion Data Security integrates with Oracle Platform Security Services (OPSS) by granting actions to an OPSS principal. The grant defines who (the principal) can do what (the actions) on a given resource. A grant in Oracle Fusion Data Security can use any enterprise user or enterprise group as principals.
Note: Oracle Platform Security Services (OPSS) principal information is not stored in the Oracle Fusion Data Security schema. The OPSS principal may be stored in any third-party system. Only the necessary information (user/user-role mapping) for the current user session is propagated to the database at runtime during session creation to determine the various actions granted for that user session. |
The goal of Oracle Fusion Data Security is to authorize a user to perform specified actions on selected data. It can secure rows and attributes of a database object and relies on OPSS to provide the authentication services for OPSS principals (users, groups, or roles). It answers the question "Who can do what on which set of data". Who refers to the OPSS user or group (or role), what is the action, and which is the subset of data that can be accessed.
You can use Oracle Fusion Data Security to either restrict the rows that are returned by a given query based on the intended business operation or restrict the actions that are available for a given row.
Note: Oracle Fusion Data Security assumes that the connection or session provided to it has been initialized properly with the appropriate user session user context, as described in Chapter 47, "Implementing Application User Sessions." In this chapter, the user session is specifically an application user session (ApplCore). The application user session is the session that Oracle Fusion Data Security expects to see. |
The purpose of data security is to model and enforce security authorization for a specific data record or a set of records. Data security provides access control within Oracle Fusion applications on the data a user can access and the actions a user can perform on that data. Oracle Fusion application rely on data security to restrict access to individual data that is displayed on a page that may display after the user has selected a menu or menu option.
For additional information about Oracle Fusion Data Security, see the Oracle Fusion Applications Security Guide.
The following are some use cases where Oracle Fusion Data Security can be utilized:
In Oracle Fusion Data Security, data that needs to be secured is identified as resources. These resources are database tables or views. Policies that control which data that a user has access and can perform actions, can be made on a row instance or condition. Figure 48-1 illustrates the logical data model implemented by Oracle Fusion Data Security.
An instance is a row of data and is identified by the primary key value of the row in the resource's storage table. A condition is a group of row instances whose membership is determined by a rule in the form of a SQL predicate, which must be applicable to the WHERE
clause of a single-table query against the resource's storage table.
For example, each row in the Purchase Order table is an instance of the Purchase Order resource. The purchase order number is the primary key that identifies a particular purchase order instance. You can create an condition with the predicate "PO_NUMBER=100"
, which contains just one row of data. Purchase orders from the West region can be put into a condition that is defined by the predicate "REGION='WEST'"
. A condition that contains all the rows of data in the resource's storage table can be defined by the predicate "1=1"
.
Memberships of a condition are dynamic in many ways, such as:
"REGION='WEST'"
, new purchase orders in the region of West will automatically become a member of the condition."REGION=&PARAM"
where the parameter PARAM
is associated with different regions. When an action is granted on a condition, it may be done for a particular value of the parameter, such as a sales manager in the West region may have an action granted on a Region condition with the parameter value West.WHERE
clause to filter rows based on runtime user session variables.To grant data security actions to a user, you must first identify the resources that you want to secure, define conditions on those resources, and then grant specific actions on these conditions to the application role to which the user belongs.
Resource: A resource on which data security is enforced, such as a purchase order. Resources are stored in the Oracle Fusion Applications FND_OBJECTS
table. Note that Oracle Fusion Applications database tables are sometimes called FND tables, where FND refers to resources in the "foundation" tables.
Instance: A particular item of an resource, such as PO_NUMBER 100. An instance generally corresponds to a row in the database. Row instances have one or more primary key values.
Condition: A group of row instances that are determined by a SQL predicate (WHERE
clause expression) that queries the attributes of the resource itself. The WHERE
clause can reference values from the database context to implement relative conditions where the condition members depend on the security context of the current user. The conditions may also be parameterized, meaning that the WHERE
clause references PARAMETER
values from the policies for parameterized conditions, as described in Section 48.4.2, "How to Use Parameterized Conditions When Securing a Business Object."
Conditions are stored in FND_OBJECT_INSTANCE_SETS
table.
Action: Secures an action (also called a function) that can be performed on a resource. You typically build features using multiple implementation strategies, including various ADF Business Components operations through Java code. These features must be secured to prevent unauthorized execution of the code. These features generally perform events on resources and actions are what is used to secure these events. An action must be associated with a resource.
Note: The action name alone is not unique on the table; the combination of an action name and resource is what makes it unique. |
Actions are stored in FND_FORM_FUNCTIONS
table.
Aggregate Action: A group of actions. Roles specify the combination of actions necessary to perform a particular role on a row instance. For example, a Project Administrator role may include the View, Update, Slip, and Delete actions and a Project Worker role may include only the View and Update actions. Aggregate actions (also called a menu) are stored in FND_MENU
and FND_MENU_ENTRIES
tables.
Principal (Grantee): A user or a role in Oracle Platform Security Services (OPSS) to which Oracle Fusion Data Security has a reference. The grantee key in the FND_GRANTS
table holds the GUID of the OPSS user or role.
User (OPSS User): Any person or application that accesses information in the database.
Role (OPSS Role): Composed of users, groups, and possibly other roles. Roles are used to associate users with actions.
Policy: Authorization for the grantee (OPSS user or role) of an aggregate action may be done on the specified row instance, all instances, or condition. The condition for a policy may be static or parameterized. A policy logically joins a principal, aggregate action, and condition. This has the following effects:
Resource access can be tested using the Oracle Fusion Data Security authorization checking API. Policies are stored in FND_GRANTS
table.
VPD - Virtual Private Database: Provides the ability to dynamically attach a predicate at runtime to all queries issued against a database object (table or view). This feature is available in Oracle RDBMS. For more information about implementing VPD, see Section 48.1.5, "Integrating Oracle Fusion Data Security with Virtual Private Database (VPD)".
Security Policy: A PL/SQL function developed to return a predicate added by VPD to a query. This function is bound to a table or view for some or all of DML statement types: SELECT
, INSERT
, UPDATE
, DELETE
.
When integrating Oracle Fusion Data Security with Oracle Platform Security Services (OPSS) to support making policies to OPSS principals, it is important to understand that OPSS principals may be defined in third-party systems and this data does not exist in the database. At runtime when a user session is created, the user information for that session and the flattened list of roles (to include role hierarchies) for the user of that session is propagated to the database. The roles available in a user session may be different from all the roles that a user may potentially have based on the authentication mechanism used, such as password vs. biometrics, authentication level of DMZ vs. non-DMZ, and so on.
Every Oracle Fusion application registers ADF task flows for setup activities with a product called Oracle Fusion Functional Setup Manager. These task flows are available from the Fusion Applications Setup and Maintenance work area and enable customers and implementers to set up and configure business processes and products. For more information about data security tasks, see the Oracle Fusion Applications Common Implementation Guide.
If data security task flows are used in a web application, that web application must be configured to use ADF Security in order to enable authentication and authorization so that the correct data security predicates are generated.
Additionally, ADF Security controls access to a specific task flow, and users who do not have the required privilege cannot view the task flow. For more information about how to implement function security privileges and roles, see Chapter 49, "Implementing Function Security."
Table 48-1 lists the task flows and their parameters.
Table 48-1 Data Security Task Flows and Parameters
Task Flow Name | Task Flow XML | Parameters Passed | Behavior | Comments |
---|---|---|---|---|
Manage Database Resources | /WEB-INF/oracle/apps/fnd/ applcore/dataSecurity/ui/ taskflow/DBResourceTF.xml |
| Goes to the Search page for database resources. | None. |
Manage Database Resource | /WEB-INF/oracle/apps/fnd/ applcore/dataSecurity/ui/ taskflow/CreateDBResourceTF.xml |
| Goes to the Edit page for a database resource. | None. |
Manage Database Resource Conditions | /WEB-INF/oracle/apps/fnd/ applcore/dataSecurity/ui/ taskflow/CreateDBResourceTF.xml |
| Goes to the Conditions tab of the database resource Edit page. | Conditions are a child entity of database resource. There is no Search page for conditions across all database resources; therefore, DB resource ID is mandatory. |
Manage Database Resource Actions | /WEB-INF/oracle/apps/fnd/ applcore/dataSecurity/ui/ taskflow/CreateDBResourceTF.xml |
| Goes to the Actions tab of the database resource edit page. | Actions are a child entity of database resource. There is no Search page for actions across all database resources; therefore, DB resource ID is mandatory. |
Manage Policy | /WEB-INF/oracle/apps/fnd/ applcore/dataSecurity/ui/ taskflow/PolicyTF.xml |
| This is the Create/Edit Policy page | There is no Search here, except to pick a specific database resource and pick a specific role. |
Oracle Fusion Data Security integrates with user sessions and relies on session context to be implemented properly.
For information about implementing user sessions, see Chapter 47, "Implementing Application User Sessions."
If a session has been created successfully, you will see the session created in the FND_SESSIONS
table and the user session roles in the FND_SESSION_ROLES
view.
When making policies to an OPSS principal, the GRANTEE_KEY
must be a valid User / Role GUID as identified in the jazn-data.xml
file. At runtime, the list of roles available to the user is determined by the roles granted to the user in the jazn-data.xml
file and is populated in the FND_SESSION_ROLES
view.
Note that integrating with VPD is optional.
The database has a feature called Virtual Private Database (VPD). VPD allows an arbitrary WHERE
clause to be appended to a table, view, or synonym. By doing so, the WHERE
clause restricts the rows available. A PL/SQL function is written that returns the WHERE
clause and a policy is enabled on a particular view or synonym that references that policy function. Policy functions based on fnd_data_security.get_security_predicate()
are used to enforce data security rules.
To integrate with VPD:
Create an action on the database resource that you want to secure. Using the Functions form, set the object column of the action to point to the data security object. This column is fnd_form_functions.object_id
.
Create a view or synonym with the exact same name as the action.
Add a policy in the database that will associate the policy function with the view.
At runtime, in LOVs or UIs, wherever you want to display the rows that the user has select access to, they simply select off that view.
Oracle Fusion Data Security artifacts include resources, row instances, conditions, actions, aggregate actions, and so on. Data security artifacts are stored in the Oracle Fusion Data Security repository and are customized using Oracle Authorization Policy Manager, which can be accessed by the developer through Oracle Fusion Functional Setup Manager, from the Manage Data Security task available in the Setup and Maintenance work area of any Oracle Fusion Setup application.
Note: After the developer selects the Manage Data Security task in Oracle Fusion Functional Setup Manager, the environment redirects to the data security customization user interface provided by Oracle Authorization Policy Manager. In this document, although the data security customization tool is identified as Oracle Authorization Policy Manager, be aware that the tool must be accessed through Oracle Fusion Functional Setup Manager. For details about managing data security, see the "Managing Oracle Fusion Applications Data Security Policies" chapter in the Oracle Fusion Middleware Oracle Authorization Policy Manager Administrator's Guide (Oracle Fusion Applications Edition). |
The user who logs in to view and manage database resources and policies must be authorized based on one of the roles described in Table 48-2. The Oracle Fusion reference implementation predefines an Application Developer job role that inherits all the roles described in Table 48-2. It also seeds a user APPLICATION_DEVELOPER
that inherits the Application Developer job role.
To use the standard Application Developer role:
If you have your own Product Family Administration role:
Use cases:
Solution based on the above use cases:
Reasoning:
Data security policies are made to duty roles as the default approach. This makes it possible for the security manager to quickly assemble the duties to an enterprise role and use the Oracle Fusion reference implementation quickly. Granting them to an enterprise role means that the security manager must duplicate the policies to any new enterprise roles they create. Enterprise roles are highly guarded and should be created and used only if absolutely needed.
The data security administration UI is secured so that only administrators are permitted to create and manage security policies.
Note: You cannot view the database resources or manage policies from the Functional Setup Manager if you have not granted the appropriate data security manage privileges to your administrators. |
Table 48-2 lists the duty roles that have been predefined by the Oracle Fusion security reference implementation to allow access to users to manage data security. These roles are administered at the product family level to manage resources and policies for that specific product family.
Table 48-2 Duty Roles to Manage Data Security Policies
#	Family	Duty Role
1 | CRM | Customer Relationship Management Database Resource Administration Duty |
2 | HCM | Human Capital Management Database Resource Administration Duty |
3 | FSCM | Financials and Supply Chain Manufacturing Database Resource Management Duty |
4 | APM - CRM | APM - CRM Database Resource Administration Duty |
5 | APM - HCM | APM - HCM Database Resource Administration Duty |
6 | APM - FSCM | APM - FSCM Database Resource Administration Duty |
In Oracle Fusion applications, the data to be secured is typically defined in the application's data model project by an ADF Business Components entity object. Oracle Fusion Data Security integrates with ADF Business Components so that when you are defining an ADF Business Components entity object you can:
The authorization check is done automatically by ADF Business Components for standard operations, such as read
, update
, and removeCurrentRow
. To perform a security check on non-standard operations you must call Oracle Fusion Data Security APIs directly.
You must identify your actions on the entity object. You cannot identify actions directly on an ADF Business Components view object; however, when a view object references an entity whose operations have been secured, the entity security policies also apply to the view object.
Oracle Fusion Data Security provides an implementation of a data security provider interface defined by ADF Business Components to perform the authorization check.
To make the Oracle Fusion Data Security Provider as your data model project's data security provider, you can edit the Oracle Fusion application's adf-config.xml
file to define the dataSecurityProviderClass
attribute for the sec:JaasSecurityContext
element, as shown in Example 48-1.
Example 48-1 Making the Oracle Fusion Data Security Provider the Data Security Provider
For example, the adf-config.xml
file would contain the sec:JaasSecurityContext
element definition shown in Example 48-2.
Example 48-2 sec:JaasSecurityContext Element Example
In Oracle JDeveloper, the design time tools for ADF Business Components are shaped so that the Oracle Fusion Data Security Provider will be automatically registered as the default when you launch JDeveloper with the Oracle Fusion Applications Developer role selected. This occurs once the developer runs the Configure ADF Security wizard for the ADF data model project.
At runtime, the ADF Business Components invocation of Oracle Fusion Data Security Provider happens automatically only for standard operations. For custom operations that are available on the entity object, you must invoke the Oracle Fusion Data Security authorization checking API manually, as described in Section 48.3.4, "How to Perform Authorization Checks for Custom Operations."
There may be other reasons to invoke Oracle Fusion Data Security APIs manually to determine the SQL predicate for a given action or to do an authorization check. For example, you might query VPD policies written based on fnd_data_security.getSecurityPredicate()
to enforce data security rules.
At design time, you can identify the various operations on a given entity object to be secured by using the entity's overview editor and going to the Security section, as shown in Figure 48-2. The overview editor exposes a set of standard operations (read
, update
, removeCurrentRow
) as checkboxes that you can select. Based on the operations that you select, the appropriate checks are done at runtime.
This means that when you define actions in Oracle Fusion Data Security, the actions for those objects should be named as read
, update
, or delete
to correspond to the entity object security operations that get enabled.
Oracle Fusion Data Security Provider only implements row-level authorization check. It does not implement a column-level authorization checking API. Even though Oracle Fusion Data Security can be used to perform column-level security using custom actions, it is not integrated with ADF Business Components directly using the data security provider interface. Wherever column-level security needs to be done, you must use a custom action.
Note: The default Oracle Fusion Data Security provider implementation assumes that the object name in FND_OBJECTS for the entity being secured is the database table/view name backing this entity. If the entity is a translatable entity (MLS entity), then the backing database table/view name is identified by Oracle Fusion Middleware Extensions for Applications custom property fnd:OA_BASE_TABLE . If the default behavior is not sufficient, one can set a custom property on the entity object to identify an object name from the Oracle Fusion Data Security repository that should be used to secure this entity. The custom property OA_DS_BASE_TABLE should be set to accomplish this. |
At runtime, for the read operation, ADF Business Components automatically invokes the Oracle Fusion Data Security Provider (which is registered with ADF Business Components in adf-config.xml
when you secure the read operation on the entity object), to identify the WHERE
clause (if any) that needs to be added to the SQL statement for the entity object. This is done prior to executing the query.
Once the query has been executed, ADF Business Components invokes the Oracle Fusion Data Security Provider again to perform the authorization check for standard operations, (update
and removeCurrentRow
), to see if the user has update and delete access to that row.
In the case of custom privilege that you define, you must create a view criteria and apply it to the view instance that you want the application module data model to filter. In either case, the user must have sufficient privileges to view the filtered rows. The action name that you define in Oracle Fusion Data Security must match the custom action specified on the entity object.
To secure the rows displayed to a user for read privilege:
To secure rows displayed to a user based on a custom privilege:
Figure 48-3 shows a dummy view criteria that has been added in the overview editor for the view object.
where:
privilegeName
is the privilege name that is used to filter the data.
objectName
is the name of the secured database resource in the FND_OBJECTS
table.
objectAlias
is optional and is the alias for the resource.
Note: The delimiter is "__" (double underscore characters). This is because no other special character is allowed in a view criteria name. |
The query execution mode for the dummy view criteria must be set to Both. If you leave the default setting Database selected, then the ADF Business Components association consistency feature will not work properly.
Alternatively, you can apply the view criteria at runtime in your code by calling the view object's applyViewCriteria(viewCriteriaName)
API.
The implementation for securing data by applying a view criteria on the view object instance is handled in the Oracle Fusion Middleware Extensions for Applications layer. It requires the use of Oracle Fusion Middleware Extensions for Applications base classes to achieve this behavior. The OAViewCriteriaAdapter
class is the default view criteria adapter class set as the ADF Business Components application module in the OAApplicationModuleImpl
class. This functionality is provided in the OAViewCriteriaAdapter.getCriteriaClause()
method to fetch the security predicate. In this implementation, the method uses the metadata on the view criteria to invoke Oracle Fusion Data Security APIs in order to fetch the security predicate.
In the case of a custom operation secured by a custom action, multiple data security view criteria can be applied to the view object. When multiple view criteria are applied, the WHERE
clause corresponding to each view criteria is AND'ed. This is standard behavior for ADF Business Components. However, when a single data security view criteria for a given privilege is applied, the instance sets corresponding to that privilege are OR'ed. When multiple privilege checks are applied, the instance sets of a privilege are AND'ed with the instance sets of another privilege. For example, for an object, for privilege priv1
, the user has instance sets IS1, IS2. For the same object for privilege priv2
, the user has instance sets IS3, IS4. If both priv1
and priv2
checks are applied simultaneously (using view criteria), the WHERE
clause would be (IS1 OR IS2) AND (IS3 OR IS4)
.
At runtime, the ADF Business Components invocation of Oracle Fusion Data Security Provider happens automatically only for standard operations. For custom operations that are available on the entity object, you must invoke the authorization check API manually as shown in Example 48-3.
Example 48-3 Manually Invoking the Authorization Checking API
There may be other reasons to invoke Oracle Fusion Data Security APIs manually to determine either the SQL predicate for a given action or to do an authorization check. For example, VPD policies written based on fnd_data_security.getSecurityPredicate()
to enforce data security rules.
You can test data security actions for standard (read, update, delete) or custom actions on an entity row using Expression Language or Groovy expression exposed on the entity row.
The Expression Language and Groovy expressions described below work by default when the view object is an updateable view object based on an entity object. If the view object is a read-only view object (based on an entity object) or an expert mode view object, then Expression Language or Groovy expression will not work unless you create a transient attribute with a custom Groovy expression that invokes Data Security to check action. The transient attribute can be used to control the rendering of some other attribute in the read-only view object on the page.
Example 48-4 Using Expression Language on View Object Attributes
For example, your UI might have a button to control the grant for the UpdateEmployeeSalary
privilege; the Expression Language expression on the button may be defined as shown in Example 48-5.
Example 48-5 Correct Expression Language Expression Example
When this expression is invoked, Oracle Fusion Data Security Provider checks to see if the user identified by the PersonId
attribute has access to the current row for UpdateEmployeeSalary
privilege. Note that even though the attribute name is included in the Expression Language expression, it is really doing a row-level security check.
Do not use the expression shown in Example 48-6 as Oracle Fusion Data Security Provider does not implement a column-level security check interface. If you want to perform a column-level security, use the expression shown in Example 48-5 with a custom action.
Example 48-6 Incorrect Expression Language Expression Example
Example 48-7 Using Expression Language for Table Iterators Example
Do not use the expression shown in Example 48-8 as Oracle Fusion Data Security Provider does not implement column-level security check interface. If you want to do column-level security, use the expression shown in Example 48-7 with a custom action.
Example 48-8 Incorrect Expression Language Expression Example
rendered
attribute. When PPR is enabled, ADF Faces does not handle the rendered
attribute on a UI component well.Tip: PPR is enabled by default in Oracle Fusion Applications. |
If you want to use Data Security expressions on the rendered
attribute, you must manually identify the partial trigger UI components on the page and then set the partialTriggers
attribute on the parent UI component of the UI component that has the data security Expression Language expression. Do not use visible
attribute on the UI component as this could potentially be a security hole when the UI component and its data is rendered by the server and sent to the client. The visible
attribute is a client-side attribute to show or hide the UI component on the browser.
Example 48-9 Groovy Expression Example
Example 48-10 Groovy Expression if View Object is Read-Only Example
For example, you have a read-only view object with the attributes PersonId
, Name
, Gender
, and Age
and you want to control the rendering of the Gender
attribute on the UI. First, you should create a transient attribute by name TransientGenderAttr
and set the Groovy expression as mentioned above. Example 48-11 shows an EL expression to conditionally render the UI component for the Gender
attribute:
Example 48-11 Implementing Attribute Security Example
You must make sure that the parent UI component of this UI component has the partialTriggers
set to the appropriate UI component IDs. Also, in this scenario, make sure to have the binding available for the transient attribute in the view object, and to set the rendered="false"
on the UI component for the transient attribute, or comment out the UI component in the JSF page.
The general process for defining Oracle Fusion Data Security policies to secure business resources that you add to your Oracle Fusion application is as follows.
FND_OBJECTS
and FND_OBJECTS_TL
tables appropriately.Tip: Conditions may be static or parameterized. For details about parameterizing conditions, see Section 48.4.2, "How to Use Parameterized Conditions When Securing a Business Object." |
FND_OBJECT_INSTANCE SETS
and FND_OBJECT_INSTANCE_SETS_TL
tables appropriately.FND_FORM_FUNCTIONS
and FND_FORM_FUNCTIONS_TL
tables appropriately.You must do this to avoid hierarchical queries against the FND_MENU_ENTRIES
table as aggregate actions may nest other aggregate actions. To compile the menus, invoke fnd_function.fast_compile
or fnd_function.compile_all_from_scratch
.
Note: Menu hierarchies, such as sub-menus, are currently not supported. Menus may only include functions. This is because Seed Data Loaders do not support hierarchies at this time. However, this step is still required as runtime queries are fired against the |
FND_MENUS
, FND_MENUS_TL
, and FND_MENU_ENTRIES
tables appropriately.OPSS principals do not exist in the database and are managed by OPSS Policy Store, which may be a third-party system.
Policies can be made on a row instance, on the resource globally, or for a condition, which may be parameterized.
FND_GRANTS
table appropriately.This example shows how to secure a document categories business resource. The document categories business data is stored in the FND_DEMO_DOC_CATEGORIES
table. Table 48-3 lists the document category definitions for the table.
Table 48-3 FND_DEMO_DOC_CATEGORIES Table Definition
Name | Value |
---|---|
CATEGORY_ID | NOT NULL NUMBER |
APPLICATION_ID | NUMBER |
CREATION_DATE | NOT NULL DATE |
CREATED_BY | NOT NULL NUMBER |
LAST_UPDATE_DATE | NOT NULL DATE |
LAST_UPDATED_BY | NOT NULL NUMBER |
LAST_UPDATE_LOGIN | NUMBER |
NAME | NOT NULL VARCHAR2(30) |
START_DATE_ACTIVE | DATE |
END_DATE_ACTIVE | DATE |
ATTRIBUTE_CATEGORY | VARCHAR2(30) |
ATTRIBUTE1 thru ATTRIBUTE15 | VARCHAR2(150) |
DEFAULT_DATATYPE_ID | NUMBER |
Before you begin:
You must have configured your user interface project to use application user sessions to support the data security runtime. For more information about implementing application user sessions, see Section 47.2, "Configuring Your Project to Use Application User Sessions."
You must enable security on your application. For more information about enabling security, see Section 49.3.5, "How to Enforce Authorization for Securable ADF Artifacts."
To secure a business object:
FND_DEMO_DOC_CATEGORIES
and identify its primary key as category_id
.DMS_STATIC_INSTANCE_SET
, which secures categories 33, 34, and 35.The predicate for this condition is 'category_id in (33,34,35)'
.
DMS_PARAMETERIZED_IS
to secure categories, which can be identified at grant time.The predicate for this condition is 'category_id in (&GRANT_ALIAS.PARAMETER1,&GRANT_ALIAS.PARAMETER2)'
, where &GRANT_ALIAS
refers to the Policies table.
FND_DEMO_ATTACHMENT_VIEW
, FND_DEMO_ATTACHMENT_UPD
, and FND_DEMO_ATTACHMENT_DEL
may be created for testing.FND_DEMO_ATTACHMENT_VIEW
for the read operation, which contains actions named read
and FND_DEMO_ATTACHMENT_VIEW
.FND_DEMO_ATTACHMENT_ADMIN
, which allows a user to administer this resource. It has read, update, and delete actions. This aggregate action contains read, update, delete, FND_DEMO_ATTACHMENT_VIEW
, FND_DEMO_ATTACHMENT_UPD
, and FND_DEMO_ATTACHMENT_DEL
actions.For this example the user names created are joeUser
and admin
. The role names created are regularUserRole
and admin
.
admin
and regularUserRole
for the FND_DEMO_DOC_CATEGORIES
business resource.FND_DEMO_ATTACHMENT_ADMIN
aggregate action on the resource globally to OPSS admin
role.FND_DEMO_ATTACHMENT_VIEW
aggregate action to regularUserRole
for static DMS_STATIC_INSTANCE_SET
and dynamic (DMS_PARAMAETERIZED_IS
with parameters 37 and 38) conditions.Parameterized conditions allow conditions to be specified generally but granted specifically. Parameterized conditions should be used whenever possible because they reduce the number of predicates that the database must parse, as well as reducing the number of conditions that the administrator needs to manage.
Example 48-12 shows how a parameterized condition can be reused.
Example 48-12 Reusing Parameterized Conditions
An administrator can reuse the first condition for several different policies granted to different locations and the second condition can be reused for policies granted to different titles. For example, one policy might use OIS1 to grant to 'WEST'
by putting 'WEST'
in FND_GRANTS.PARAMETER1
, while another policy would reuse the same OIS1 to grant to 'EAST'
. At runtime, the FND_DATA_SECURITY
package substitutes the PARAMETER
values from the FND_GRANTS
table to the OISs granted.
When the data security system runs the predicates that have been defined in the conditions, it does a simple replace-style parsing of the predicate. For example, &TABLE_ALIAS
is replaced by the table alias of the resource table, if it was passed to the get_security_predicate()
call, and &GRANT_ALIAS
is replaced by the policy table alias.
Caution: The &TABLE_ALIAS and &GRANT_ALIAS column qualifiers must be included in the predicates of all conditions in order to keep possible duplicate column names from causing collisions. |
The policy parameters hold only string values so you must convert non-string values into character values.
To convert non-string values into character values:
NUMBER
with no decimal point. For example, 123.To store the number in the policy PARAMETER
column, use to_char()
without a format mask.
NUMBER
that can have a decimal point. For example, 123.456.This should be stored in the canonical format, using FND_NUMBER.NUMBER_TO_CANONICAL()
. (The canonical format is based on the FND_NUMBER
package 'FM999999999999999999999.99999999999999999999'
.)
You should use canonical format because the string must be stored in a format that doesn't need to be converted if the data is passed between systems that use different decimal characters or other number formatting.
DATE
calendar date, optional time. For example, 2009/04/30 11:32:32.This should be stored in canonical format, using FND_DATE.DATE_TO_CANONICAL()
. (The canonical format is based on the FND_DATE
package, 'YYYY/MM/DD HH24:MI:SS'
.
You should use canonical format because the string must be stored in a format that doesn't need to be converted if the data is passed between systems that use different date formats.
VARCHAR2
character string. For example, FND_THING_NAME.This can be stored without any conversion.
However, translated values should not be stored here. This is for internal developer key values. There is no facility for having different multilingual values in different languages because predicates should not be comparing translated values.
Use the following rules when writing performance type conversions in your predicates.
Integer Equality:
Example 48-13 shows the correct Integer equality format to use.
Example 48-14 shows Integer equality formats that you should NOT use.
Example 48-14 Incorrect Integer Equality Formats
You must use to_char()
as it is built-in and performs much faster than fnd_data_security.to_init()
.
When used with data security parameters, to_number()
causes Invalid Number exceptions. This in turn, will make SQL statements abort if the to_number()
gets run on policy parameters, which store non-numeric data such as DATE
or VARCHAR2
data. The policies table will almost certainly contain some non-numeric data in a policy.
It may be decided to run a to_number(&GRANT_ALIAS.PARAMETER1)
in a big statement on more policy rows than intended, and filter the rest of the rows later in the execution. This will definitely cause your SQL statement to fail so therefore, you must not have to_number()
around any of the policy parameters in your predicate.
Tip: The routine fnd_data_security.to_init() was written to avoid this problem; it is basically a wrapper over to_number() , which traps the Invalid Number exception. Therefore, if the execution plan involves operating against policies that don't apply, they won't cause the whole statement to fail. However, because of performance issues, to_char() is the preferred solution. |
Integer Range:
Example 48-15 shows the correct Integer range format to use.
Example 48-15 Integer Range Format
Example 48-16 shows Integer range formats that you should NOT use.
Example 48-16 Incorrect Integer Range Formats
As explained previously, to_number()
can fail with an Invalid Number exception if other policy rows are processed that have non-numeric parameters. to_char()
does not produce the correct ordering. For example, '3' > '25'
.
Float Equality:
Example 48-17 shows the correct Float equality format to use.
Example 48-17 Float Equality Format
Example 48-18 shows Float equality formats that you should NOT use.
Example 48-18 Incorrect Float Equality Formats
Using to_number()
without a format could fail if the environment is set up to use comma as the decimal character and the parameter is stored with a period as the decimal character. Using to_char()
without an explicit format could convert to a comma-format number, which would not match the period-format number. Because of these potential problems, you must explicitly provide the canonical format.
Float Range:
Example 48-19 shows the correct Float range format to use.
Example 48-19 Float Range Format
Example 48-20 shows Float range formats that you should NOT use.
Example 48-20 Incorrect Float Range Formats
You should not use to_char()
because it does not order correctly.
You should use fnd_data_security.to_decimal()
instead of fnd_data_security.to_init()
because the data may contain decimals, which to_init()
cannot handle.
Date Equality:
Example 48-21 shows the correct Date equality format to use.
Example 48-21 Date Equality Format
Example 48-22 shows Date equality formats that you should NOT use.
Example 48-22 Incorrect Date Equality Formats
As mentioned previously, to_char()
performs best because it is built-in. The format mask is also required to make sure the canonical format is used.
Date Range:
Example 48-23 shows the correct Date range format to use.
Example 48-23 Date Range Format
Example 48-24 shows Date range formats that you should NOT use.
Example 48-24 Incorrect Date Range Formats
In this case, you can use to_char()
with a format mask because the canonical format maintains proper ordering of the character domain.
For development purposes, you can use the OPSS jazn-data.xml
flat file to create users and roles for testing.
Example 48-25 shows an example of the identity store in the flat file used by JDeveloper.
Example 48-25 Oracle Platform Security Services (OPSS) XML Policy Store
Before testing the application in the staging environment, any custom application roles that you created will need to be created in the LDAP application policy store. These new application roles will receive new GUIDs and any data security policies defined for application roles of the same name must have their GUIDs reconciled. For details about reconciling GUIDs in the data security repository, see the "Securing Oracle Fusion Applications" chapter in the Oracle Fusion Applications Administrator's Guide.
Oracle Fusion Data Security is part of Oracle Platform Security Services. Hence data security information can be obtained from security context as required while developing the application.
The DataSecurityAMImpl
class is in the oracle.apps.fnd.applcore.dataSecurity.dataSecurityService.applicationModule
package. It is the container for all data security resources provided by Oracle Fusion Middleware Extensions for Applications. This class contains core methods to:
Example 48-26 Check Action Method
Where DataContext
is a container class that represents the resource and optionally the primary keys of that resource for which data security check needs to be done. It has the following attributes: ObjectName
, PK1
, PK2
, PK3
, PK4
, PK5
.
Note: Privilege and DataContext classes are in the oracle.apps.fnd.applcore.dataSecurity.util package. |
If the action is granted to an Oracle Platform Security Services (OPSS) role in FND_GRANTS
table, then the system retrieves all the OPSS roles that the user has access to, and checks if one of them matches with the OPSS role to which the action has been granted.
Example 48-27 Get Security Predicate Method
Example 48-28 Get All Actions Available Method
Example 48-29 Get All Aggregate Actions Method
As shown in Example 48-30, static APIs are also provided in the DataSecurityAMImpl
class for the above core methods that take in a DBTransaction
object.
Example 48-30 Static API Examples
Oracle Fusion Middleware Extensions for Applications provides the FND_DATA_SECURITY
PL/SQL package for the data security system.
FUNCTION check_privilege
determines whether the user is granted a particular action for a particular row instance, as shown in Example 48-31. The user is determined from the user session context.
Example 48-31 FUNCTION check_privilege API
This API returns a 1 byte result code:
T - Action is granted.
F - Action is not granted.
E - Error
U - Unexpected error.
PROCEDURE get_security_predicate
gets the union of all predicates for the user on an action, as shown in Example 48-32. The user is determined from the user session context.
Example 48-32 PROCEDURE get_security_predicate
p_grant_instance_type
can take on one of the following values:
INSTANCE - Returns predicate for policies with instance_type
= 'INSTANCE' or 'GLOBAL'.
SET - Returns predicate for policies with instance_type
= 'SET'.
Note: 'SET' mode does not support aliases. |
UNIVERSAL - (Default) Returns predicate for policies with any instance_type.
p_table_alias
is appended in front of the column references in the returned x_predicate
. It is normally used when two security predicates are going to be ANDed together to use with a select
that joins two secured tables. The value passed here should correspond to the table alias that the statement uses for the p_object_name
passed to this routine. The default, NULL, means there is no table alias so none is appended.
p_statement_type
can take on one of the following values:
OTHER - (Default). The predicate returned is not attached by policy to the base table as is done for VPD. In practice, this allows the predicate to have a sub select against the base table, which allows aliases and may improve performance.
VPD - Pass this type if the predicate is attached by policy to the base table. Use this when VPD uses the returned predicate to control access. In practice, this means the predicate cannot have sub selects against the base table, prevents aliases and may lower performance.
EXISTS - Pass this type if the predicate is simply used to determine if there are any rows at all that are available. The predicate returned is in the format like 'EXISTS...'.
X_return_status
is the result of all the operations:
T - Successfully got predicate
E - Error
U - Unexpected error
L - Value too long - predicate too large for database VPD
The return value is all the available predicates from the policies on this action for this user. They are OR'ed together to form a SQL predicate that can be dropped into the WHERE
clause to limit rows returned to those that are allowed by the security. Does not include WHERE
.
The WHERE
clause associated with a given resource is constructed by doing an OR
of all the predicates associated with the conditions granted to a user or role. Therefore, it is important that the predicate for a condition be efficient so that it returns as small a number of rows as possible and it also makes use of an index.
Data security should only be used when the combined predicates (Applications Code + Data Security Predicates) are efficient, and return only relevant rows. Most queries should only return either one row or just a few rows. The maximum number of rows that data security should consider operating on is 100 rows. If you are seeing performance problems with queries that apply data security to more than 100 rows, the query needs to be made more selective. Blind queries against tables secured with data security are not allowed.
Note: Data security is not designed as a means to limit the number of rows returned; there must always be another selective WHERE clause before the data security predicate. |
Condition predicates must be as fast as possible. All predicates that apply to a particular context must go into the SQL statement that gets executed, therefore, all predicates need to be efficient, whether they reject no rows, a few rows, or many rows. Any sub selects in predicates should be on well-indexed columns. Predicates must execute in linear time, doing simply indexed selects. Predicates that involve connect-by or other network, hierarchical operations are not supported. The suggested approach to hierarchical data representations is building and selecting against a compiled representation of the data.
You should use conditions rather than row instance policies. Row instance policies are policies where each policy maps to exactly one row in the resource table. They generally don't scale well because they require one policy row for every resource table row. Performance is best when the number of policies that apply in any particular context is low. Condition policies involve just one policy, which specifies an unlimited number of rows. If the normal use case would involve more than a few row instance policies, then you probably need to be change the design to use conditions.
Note: There are no plans to provide any APIs to answer the question "What users have access to a particular function on a particular row instance?" The reason being is that the condition predicates can reference context that can be driven by the user, like profiles. The only way to answer that question would be to loop through every user and set up their context (including profiles, and so on), and then see if they had access. That is not practical given the large number of users that are possible. For the same reason, data security does not try to answer the question "Does a particular user have access to a particular function?" |
Oracle Fusion Applications provides WLST (Oracle WebLogic Scripting Tool) scripts written in the Python programming language to help administrators verify that data security setup and configuration definitions are correct for a newly deployed application. Other WLST scripts help administrators verify that applications context setup and configuration definitions are correct for a newly deployed application and that the applications context is created for a logged-in user.
Note: The data security diagnostic scripts may be run in the WLST scripting environment or from the Diagnostic Dashboard application of any Oracle Fusion application. The Diagnostic Dashboard provides administrators with a graphical user interface to execute and monitor diagnostic tests. For more information about the Diagnostic Dashboard, see the "Standard Diagnostic Testing Administration Tasks and Tools" section in the Oracle Fusion Applications Administrator's Guide. |
The WLST script datasecurityDiagnostics.py
is provided to help administrators verify that data security setup and configuration definitions are correct for a newly deployed application. Additionally, the script generates a report that system integrators, developers and security managers can further use to diagnose runtime issues related to a logged-in user's ability to access data.
To accomplish these tasks, the script performs these specific functions:
adf-config.xml
file, which is archived in the application EAR file. The scripts checks the configuration values of the <sec:JaasSecurityContext>
element to verify that the data security provider is properly configured and outputs the result to the output file DataSecurityDiagResults.out
.weblogic-application.xml
file. The script checks the value of the jps.approle.preserveguid
application parameter and outputs the result to the output file DataSecurityDiagResults.out
. The application parameter must be set to TRUE
to support deploying the policy store from a test to a production environment. This ensures the GUID for each application role remain the same when migrated from XML to LDAP or LDAP to LDA.DataSecurityDiagResults.out
. Using the session cookie, the script gets role information corresponding to the session's logged-in user, along with their access privileges to various database objects and outputs it to the output file DataSecurityDiagResults.out
.Note: If you only want the script to perform the application configuration validation checks, you can skip this step by pressing Enter when prompted to enter the value for session cookie.
Important Note
Before invoking a WLST script you must run the following wlst.sh
script on Oracle WebLogic Server to ensure that the required JARs are added to the class path.
>sh $ORACLE_HOME/common/bin/wlst.sh
After you invoke the wlst.sh
script, you can connect to Oracle WebLogic Server in offline mode, that is, the data security script does not require a connection to a running server to operate.
To invoke the data security diagnostic script:
At the offline prompt, enter the following command:
>wls:/offline> execfile('datasecurityDiagnostics.py')
The script prompts you for the following information before outputting the results:
SalesApp#V3.0
. Note that the version part of the application name is specified with a #
symbol: for example, #V3.0
in SalesApp#V3.0
./scratch/myself/view_storage/myself_main_gene_testing/system11.1.1.4.37.56.69/DefaultDomain/servers/DefaultServer/upload/DemoSecurity/V2.0/app/DemoSecurity.ear
. The source path can be obtained from Oracle WebLogic Server Administration Console, under the Deployments section for the application.oracle.com
, locate the cookie named <DATABASE_SID>
_FND_SESSION
and copy the value, which is the required session cookie. If you do not find this named session cookie, it means that the applications context is not created for your application.Tip: You can run the application context diagnostic script by pressing Enter when the data security script prompt you to enter the value for session cookie for your application. This will invoke the applications context script and validate the applications context configuration. For details about the applications context script, see Section 48.7.2, "How to Validate Applications Context." |
The WLST script applsessionDiagnostics.py
is provided to help administrators verify that applications context setup and configuration definitions are correct for a newly deployed application and that the applications context is created for a logged-in user. Additionally, the script generates a report that system integrators, developers and security managers can further use to diagnose the runtime issues related to an Application Session.
To accomplish these tasks, the script performs these specific functions:
web.xml
file, which is archived in the application EAR file. The scripts checks for the presence of the <filter-name>ApplSessionFilter</filter-name>
element and verifies that the ApplSessionFilter
mapping definition appears immediately after the JpsFilter
mapping definition, and then outputs the result to the output file ApplsessionDiagResults.out
.Name
, Datatype
, Precision
, and isNullable
attributes for each column in the tables, validates the database schema for each table, and then outputs the result to the output file ApplsessionDiagResults.out
.ApplsessionDiagResults.out
. Using the session cookie, the script gets the applications context properties corresponding to the session's logged-in user, determines whether ApplSession
is created properly, and outputs the result to the output file ApplsessionDiagResults.out
.Note: If you only want the script to perform the application configuration validation and the database metadata validation checks, you can skip this step by pressing Enter when prompted to enter the value for session cookie.
FUSION.FND_SESSION_MGMT
PL/SQL package to check for its consistency. The script checks whether a valid package header and package body is defined for the package and outputs the result to the output file ApplsessionDiagResults.out
.Before you begin:
Before invoking a WLST script you must run the following wlst.sh
script on Oracle WebLogic Server to ensure that the required JARs are added to the class path. Use the following command:
>sh $ORACLE_HOME/common/bin/wlst.sh
After you invoke the wlst.sh
script, you can connect to Oracle WebLogic Server in offline mode, that is, the data security script does not require a connection to a running server to operate.
To invoke the application context diagnostic script:
At the offline prompt, enter the following command:
>wls:/offline> execfile('applsessionDiagnostics.py')
The script prompts you for the following information before outputting the results:
SalesApp#V3.0
. Note that the version part of the application name is specified with a #
symbol: for example, #V3.0
in SalesApp#V3.0
./scratch/myself/view_storage/myself_main_gene_testing/system11.1.1.4.37.56.69/DefaultDomain/servers/DefaultServer/upload/DemoSecurity/V2.0/app/DemoSecurity.ear
. The source path can be obtained from Oracle WebLogic Server Administration Console, under the Deployments section for the application.oracle.com
, locate the cookie named <DATABASE_SID>
_FND_SESSION
and copy the value, which is the required session cookie. If you do not find this named session cookie, it means that the applications context is not created for your application.The Oracle Fusion Middleware Extensions for Applications data security task flows are a set of four task flows that provide a simplified user interface for implementing role-based security in Fusion applications. Consider integrating data security task flows into an Oracle Fusion application when your application needs to support an authorized end user's ability to secure business objects in their business domain. For example, these task flows can give Human Resources managers the ability to secure employee records to grant HR representatives access to defined groups of employee records.
Oracle Fusion Middleware Extensions for Applications data security task flows use Oracle Fusion Applications security technology to implement data security policies in Oracle Fusion Applications FND tables and function security policies in the LDAP policy store. At runtime, the task flows implementation performs the necessary backend operations to both secure data exposed by a business object (data security) and to secure the user interface (function security) that displays the business objects.
The following task flows are available and may be integrated using Oracle JDeveloper:
Note that the role-centric task flow and the object-centric task flow present the end user with different views of the same security functionality. Both enable data security and functionality security policies for permissions that the end user selects across business objects.
The process of integrating the data security task flows into an Oracle Fusion application involves understanding the input parameters of the task flow. Your application will use a managed bean to initialize the task flow's parameters before the application displays the task flow to the end user. The way your application references the values of the input parameters on the bean depends on how you want to display the task flow. Your application can display the data security task flow one of two ways:
For example, the object instance task flow user interface is well-suited to run in a dialog. When you run this task flow in a dialog, the user can select an object in the primary browser window, make grants on the selection in the secondary window, and repeat for other objects without needing to reopen the primary window. The other task flows, including the object-centric task flow, profile (role-centric) task flow, and role management task flow, are large enough that you may want to display them in the primary window.
The steps to integrate the data security task flows into your application will depend on the method you choose to display the task flow. However, review the following general steps for an overview of the process.
Before you begin:
Add the data security task flows to your project.
To integrate the data security task flows, follow these general steps.
In JDeveloper, the reference will be generated for you when you drag and drop the data security task flow. The way you drag and drop the data security task flow depends on the way your application displays the task flow.
Page flow scope will allow the values to be passed into the task flow from a managed bean. The ADF Model layer component that you use to define the parameters depends on the way your application displays the task flow.
The method you define will initialize the values before your application displays the task flow. When displaying the page inside your application's primary window, the initialization method must also return the value of the flow control outcome you configure in your application's task flow to invoke the data security task flow. The outcome return value is not needed when displaying a dialog, since the dialog is not invoked the same way.
The ADF Faces component you use to create the button depends on how you want the data security task flow to display.
Table 48-4 describes the input parameters that your managed bean must initialize for each task flow.
Table 48-4 Data Security Task Flows and Their Input Parameters
Task Flow Name | Task Flow XML | Parameters Passed | Behavior |
---|---|---|---|
Object-centric task flow (also referred to as (| /WEB-INF/oracle/apps/fnd/ applcore/dataSecurity/ui/ taskflow/ObjectLevelFT.xml | Specify the name of the object for which the grant will be managed: objectName Specify the list of role categories from which the available application roles will be fetched: roleCategories Specify the list of securable actions to be displayed in the UI for the object: actions Specify disableViewAll Specify disableUpdateAll | Create and manage grants to multiple application roles for a single business object. |
Role-centric task flow (also referred to as | /WEB-INF/oracle/apps/fnd/ applcore/dataSecurity/ui/ taskflow/ProfileTF.xml | Specify the list of role categories from which the available application roles will be fetched: roleCategories Specify the list of securable actions to be displayed in the UI for the object: actions Specify disableViewAll Specify disableUpdateAll | Create and manage grants to a single application role profile for multiple business objects. |
Instance-level task flow (also referred to as | /WEB-INF/oracle/apps/fnd/ applcore/dataSecurity/ui/ taskflow/ObjectInstTF.xml | Specify the name of the parent object from which the object instance will be fetched: objectName Specify the primary key of the object instance for which grants will be shared: instancePk1 instancePk2 instancePk3 instancePk4 instancePk5 Specify the list of securable actions to be displayed in the UI for the object: actions Specify the ID of the customized task flow: taskflowId Specify the holder of the customized task flow parameters: parameterMap | Confer existing grants for a single instance of a business object to another user (or user group). |
Role management task flow (also referred to as | /WEB-INF/oracle/apps/fnd/ applcore/dataSecurity/ui/ taskflow/RoleManagementTF.xml | Specify the list of role categories from which the available application roles will be fetched: roleCategories Specify the title of the task flow UI: title | Create and edit custom application roles. |
When you integrate the task flow as a primary window, your application's task flow invokes the data security task flow using a task flow call activity. A control flow case defines the transition (identified with a particular outcome value) between your application's view activity (for the calling web page) and the call activity. A navigation button in the calling web page invokes a method on the managed bean that initializes the task flow's input parameters and returns the expected value of the control flow case outcome. Your application's task flow invokes the data security task flow through the call activity reference that matches the returned outcome.
To integrate a data security task flow with your application so it appears in the primary browser window of the application:
The calling web page is the page in your application where you want the end user to launch the data security UI. This is the page that will be replaced in the browser window when the data security UI is displayed.
You can use a task flow call activity to call any one of the data security task flows from your application's unbounded or bounded task flow. The task flow call activity allows you to call the data security task flows located within the same or a different application.To pass parameters into the data security task flow, you specify input parameter values on the task flow call activity. These values must correspond to the input parameter definitions on the called data security task flow.
Example 48-33 shows the task flow call activity definition with a reference to the object-centric data security task flow. The task flow call activity also defines the input parameter values required by the object-centric task flow.
Example 48-33 ObjectLevelTF Reference in Calling Task Flow Configuration File
Example 48-34 shows the task flow call activity definition with a reference to the role-centric data security task flow. The task flow call activity also defines the input parameter values required by the role-centric task flow.
Example 48-34 ProfileTF Reference in Calling Task Flow Configuration File
Example 48-35 shows task flow call activity definition with a reference to the role management data security task flow. The task flow call activity also defines the input parameter values required by the role management task flow.
Example 48-35 RoleManagementTF Reference in Calling Task Flow Configuration File
To create the task flow call activity:
The value of the outcome must match the return value of the task flow initialization method you create in the managed bean. For details about the managed bean, see Section 48.8.2.2, "Initializing the Data Security Task Flow Using a Managed Bean."
This action references the data security task flow as the called task flow in the <task-flow-call>
definition. JDeveloper adds the task flow reference to the calling task flow's configuration file.
<task-flow-call>
element and create the input parameter definitions by copying and pasting from the sample code:<id>ObjectLevelTF</id>
), add the input parameter values from Example 48-33.<id>ProfileTF</id>
), add the input parameter values from Example 48-34.<id>RoleManagementTF</id>
), add the input parameter values from Example 48-35.Instead of copying and pasting the input parameter values from the samples, you can also use the Property Inspector to define each input parameter value. However, it is important that the input parameter values you create match the parameter names specified by the called task flow. Copying from the samples ensures the names match exactly.
Managed beans are Java classes that you register with the application in your calling task flow's configuration file. You will create a method on a managed bean to:
When your application runs, and the end user clicks the button in the calling web page, the method is invoked and the properties are declared, allowing the called data security task flow input parameters to be populated with the declared values.
Example 48-36 shows the additional source code that your managed bean must include to initialize the object-centric (ObjectLevelTF) task flow.
Example 48-36 Source for Populating the ObjectLevelTF Input Parameters
Example 48-37 shows the additional source code that your managed bean must include to initialize the role-centric (ProfileTF) task flow.
Example 48-37 Source for Populating the ProfileTF Input Parameters
Example 48-38 shows the additional source code that your managed bean must include to initialize the role management (RoleManagementTF) task flow.
Example 48-38 Source for Populating the RoleManagementTF Input Parameters
Before you begin:
Create an ADF command button component in the web page associated with the source activity of the control flow case you create in the calling task flow. When the end user clicks the button, the button will cause the data security task flow to display. You will need to configure the Action attribute of the button so a click by the end user invokes the initialization method of your managed bean.
Example 48-39 shows a command button component with an Action attribute that invokes the method initializeRoleManagement()
on the bean referenced by the bean identifier roleManageBean
. The name of the identifier corresponds to the managed bean declaration you create when you edit the calling task flow configuration file, as described in Section 48.8.2.3, "Registering the Managed Bean with Your Application's Task Flow."
Example 48-39 Button Component with Action Attribute to Invoke Bean Method
To populate task flow input parameters with a managed bean:
For example, you might create a bean named DSRoleManage.java
for the RoleManagementTF task flow.
For example, you might create a method for the RoleManagementTF task flow, initializeRoleManagement()
.
Copying from the samples ensures the input parameters names match those defined by the data security task flow.
For example, for the outcome value "start", your method should show:
For details about creating the control flow case in your application's task flow, see Section 48.8.2.1, "Creating a Task Flow Call Activity in Your Application's Task Flow."
To declare the manage bean in the calling task flow's configuration file, you must enter a bean identifier name, the class path for the bean, and you must specify backing bean scope. Example 48-40 uses the bean identifier roleManageBean
to match the Action attribute definition specified on the button component shown in Example 48-39.
Example 48-40 Managed Bean Declaration in Calling Task Flow Configuration File
To register the managed bean with the calling task flow:
<managed-bean>
element similar to the sample shown in Example 48-40.When you integrate a data security task flow as a dialog, your application's task flow invokes the task flow using an executable in the ADF Model layer. This executable is defined by JDeveloper when you drop the data security task flow as region onto a dialog component that you add to your application's calling web page. The web page the defines the region is associated with a view activity in your application task flow; no task flow control flow case is needed to invoke the data security task flow.
A popup button in the calling web page defines a listener that invokes a method on the managed bean to initialize the task flow's input parameters. The button then displays the dialog with a region that invokes the task flow using the executable defined on the calling page's definition. When the user clicks the dialog close button, a listener (for the dialog's close button) saves the end user's sections from data security UI.
To integrate the object instance task flow (ObjectInstTF
) with your application so it appears in a dialog (as a secondary browser window):
When you drop a data security task flow onto a web page to create an ADF region, JDeveloper adds an af:region
tag to the page. The af:region
tag references an object that implements RegionModel
, as shown in Example 48-42.JDeveloper also adds a task flow binding to the <executables>
element of the page definition file for the page that defines the ADF region. The task flow binding provides a bridge between the ADF region and the data security task flow. It binds a specific instance of an ADF region to the data security task flow and maintains all information specific to the task flow. The taskFlowId attribute specifies the directory path and the name of the source file for the bounded task flow.To pass parameters into the data security task flow, you must specify input parameter values on the task flow binding. These values must correspond to the input parameter definitions on the called data security task flow.
Example 48-41 shows task flow binding in the page definition file with a reference to the object-instance data security task flow. The task flow binding also defines the input parameter values required by the object-instance task flow.
Example 48-41 ObjectInstTF Call Entry in Page Definition File
Before you begin:
Create an ADF command button component in the web page associated with the view activity of the calling task flow. Then drop an ADF popup component in the panel that contains the button. Then drop an ADF showPopupBehavior operation onto the button and set it to the ID of the popup component. Finally, drag a dialog onto the popup component. When the end user clicks the button, the button will invoke the show popup operation. You will also need to specify a listener for both the popup component and the dialog component. These listeners invoke methods on the managed bean to initialize the input parameters and save the user selections.
Example 48-42 shows a command button component with the showPopupBehavior operation nested on the button. The popup component appears in the same panel as the button and defines the popupFetchListener property to identify the launchPolicy()
method on the bean referenced by the bean identifier objectInstanceBean
. The dialog component defines the dialogListener property to identify the okCreatePolicy()
method on the bean referenced by the same bean identifier. The name of the identifier corresponds to the managed bean declaration you create when you edit the calling task flow configuration file.
Note that the ADF region component element shown in the example will be created when you drop the data security object instance task flow as a region.
Example 48-42 Button Component with Show Popup Operation to Invoke Dialog
To create the task flow binding definition:
The value of the outcome should match the return value of the initialization method you create in the managed bean used to populate the data security input parameters. For details about the managed bean, see Section 48.8.2.2, "Initializing the Data Security Task Flow Using a Managed Bean."
This action defines the data security task flow as the called task flow using a <task-flow-call>
definition. The task flow call definition appears in the calling task flow configuration file.
<task-flow-call>
element and create the input parameter definitions by copying and pasting from the sample code:<id>ObjectLevelTF</id>
), add the input parameter values from Example 48-33.<id>ProfileTK</id>
), add the input parameter values from Example 48-34.<id>RoleManagementTF</id>
), add the input parameter values from Example 48-35.Instead of copying and pasting the input parameter definitions from the samples, you could also use the Property Inspector to define each input parameter. However, it is important that the input parameter definitions you create match the parameter names specified by the called task flow. Copying from the samples ensures the names match exactly.
Managed beans are Java classes that you register with the application in your calling task flow's configuration file. You will define two methods on a managed bean:
When your application runs, and the end user clicks the button in the calling web page, the popup fetch listener method is invoked and the properties are declared, allowing the called data security task flow input parameters to be populated with the declared values.
Example 48-43 shows additional source code that your managed bean must include to initialize the object-instance (ObjectInstlTF
) task flow.
Example 48-43 Source for Populating the ObjectInstTF Input Parameters
Example 48-44 shows the source code you must add for the method your dialog listener invokes. In this case, the method is named okCreatePolicy()
to match the method invoked by the dialog listener in Example 48-42.
Example 48-44 Source for Saving the ObjectInstTF Grants
To populate task flow input parameters with a managed bean:
For example, you might create a bean named DSObjectInstance.java
for the object instance task flow.
For example, you might create a method launchPolicy()
named for the method invoked by the popup listener (shown in Example 48-42).
Copying from the sample ensures the input parameters names match those defined by the object instance task flow.
For example, you might create a method okCreatePolicies()
named for the method invoked by the dialog listener (shown in Example 48-42).
Copying from the sample ensures the method saveInstanceGrants()
is called exactly as shown.
To declare the manage bean in the calling task flow's configuration file, you must enter a bean identifier name, the class path for the bean, and you must specify backing bean scope. Example 48-45 uses the bean identifier objectInstanceBean
to match the bean references specified in the listener properties shown in Example 48-42.
Example 48-45 Managed Bean Definition in Calling Task Flow Configuration File
To register the managed bean with the calling task flow:
<managed-bean>
element similar to the sample shown in Example 48-45.The data security task flows, once integrated into your application, behave like other web application resources secured by ADF Security. By default, ADF Security locks down application resources and therefore requires that you grant access rights to the members of the application roles for the task flows.
To grant view
access to the task flows, you define a OPSS permission grant defined by the oracle.adf.controller.security.TaskFlowPermission
class. Example 48-46 shows the permission definition that grants the users (identified by <grantee>
in your application) view access rights to the task flows.
Note that the resources in the permission grant are identified by regular expression metacharacters .*
(dot followed by an asterisk). This expression denote any number of arbitrary characters and effectively grants view rights on all task flows in the Oracle Fusion Applications data security path /WEB-INF/oracle/apps/fnd/applcore/dataSecurity/ui/taskflow/
.
Example 48-46 Grant to View Data Security Task Flows
The grantee of the permission are the application roles that your application specifies. If you are using custom application roles not defined by Oracle Fusion Applications, a security manager will need to configure these application roles using Authorization Policy Manager. For example, an application role requires a role category definition.
To enable function security for the data security task flows:
jazn-data.xml
file in the overview editor.jazn-data.xml
file, add the permission definition shown in Example 48-46 to the policy store and define the grantee.Grantee are typically application roles that your application defines. A grant is always made to a single grantee. When you need to grant view permission to more than one grantee, create duplicate grants and name the grantee in each.
jazn-data.xml
file.A grant must be added to the jazn-data.xml
policy store to allow your application to provision the LDAP policy store. The LDAP policy store is secured so that only authorized applications can make API calls needed to create and update grants in the store. For this purpose, a code source grant must be made to authorize the implementation code of the data security task flows to make credential store and policy store API calls. Example 48-47 shows the code source grant where <application-name>
is the application name specified in the jazn-data.xml
policy store.
Example 48-47 Grant to Enable Policy Store Provisioning by Data Security Task Flow Source Code
To enable the application to access and update the domain policy store:
jazn-data.xml
file in the overview editor.jazn-data.xml
file, add the code source grant shown in Example 48-47 to the policy store and enter the name of your application in the <url>
and <name>
definitions.The application name you enter must match the application name identified in the policy store definition.
jazn-data.xml
file.Before you deploy the application, you need to identify the application stripe in the production environment. Once deployed, the application will make use of the application roles and security policies defined by the application stripe. Example 48-48 shows the web.xml
entry to identify the existing application stripe.
Example 48-48 web.xml Parameter Identifies Deployed Application Stripe
To map the application to the deployed application stripe:
web.xml
file in the overview editor.web.xml
file, add the web application initialization parameter shown in Example 48-48 beneath the JPS filter.The application name you enter must match the application name identified in the policy store definition.
web.xml
file.This chapter describes how to enforce security to authorize access to securable application artifacts created using Oracle Application Development Framework (Oracle ADF) in Oracle Fusion applications.
This chapter contains the following sections:
An important principle of Oracle Fusion function security ensures that end users do not have unintended access to web pages and application resources in an application that is created using Oracle Application Development Framework (Oracle ADF).
To enable access to application resources, you can use JDeveloper to create security policies to specify "who can perform what operations on what specific application artifacts."
To create the security policy, you must consider the additional duties the end users of the application will perform and then grant the desired roles specific rights to:
Note: Securing the data of the application requires creating data security policies. For details about creating data security policies, see Chapter 48, "Implementing Oracle Fusion Data Security." |
Function security controls access to securable application artifacts including ADF task flows and top-level web pages backed by ADF page definition files. Users who do not have the required privilege cannot view the task flow. For example, in a sales organization, duties such as Manage_Accounts
and Manage_Invoices
exist for roles, such as Sales_Manager
or Sales_Associate
. A function security policy might give end users who belong to the Sales_Manager
role the ability to view and edit customer invoices. Whereas, end users who do not belong to the Sales_Manager
role, may not enter the task flow.
Before you can implement function security for custom application resources, an IT security manager must export the function security definitions from an LDAP-based policy store (typically from a staging environment) into a file-based policy store that you can work with in JDeveloper. The exported file will contain the function security artifacts that will enable you to run your application and access the resources that may otherwise have been secured by predefined function security policies.
The file you receive is formatted as XML and named jazn-data.xml
. The XML definitions of the exported file comprise two major sections: an identity store to define valid end users of the application and a policy store to define the security policies that are specific to the application. Initially, only the policy store will be populated with security artifacts from the LDAP stores. The exported jazn-data.xml
file will not contain the end user identities of the enterprise, thus the identity store section will initially appear empty.
Important: As an Oracle Fusion security guideline, do not modify the predefined function security definitions contained in the jazn-data.xml file. Predefined security definitions include the security definitions of the Oracle security reference implementation and must not be modified. You should always add custom application roles to grant access rights. For details about restrictions when working with the file-based policy store, see Section 49.3.7, "What You May Need to Know About Actions That Developers Must Not Perform." |
As an security implementation guideline, you should only use Oracle JDeveloper tools to work on the exported file-based policy store, and you should not edit the security definitions directly. JDeveloper supports iterative development of security so you can easily create, test, and edit security policies that you create for Oracle ADF application artifacts.
After you customize security, you use JDeveloper to add end user identities to the identity store of the exported file for the purpose of running and testing the application in JDeveloper's Integrated WebLogic Server. You provision a few test end user identities by defining user groups and then assign those groups to application roles to simulate how the actual end users of the enterprise will access the secured application artifacts. When you deploy the application in your development environment, JDeveloper migrates the identity store you created to the embedded LDAP of Integrated WebLogic Server. The application policy store is migrated to a system-jazn-data.xml
file that aggregates the security policies definitions of all applications in your workspace.
After testing in JDeveloper, you must consult with the IT security manager to merge the LDAP-based application policy store in the staging environment with the security policies that you added to the exported jazn-data.xml
file. The staging environment is an LDAP-based Oracle WebLogic Server configured to use Oracle Internet Directory (OID) for the enterprise's application policy store and identity store (note that the stores of the staging server are LDAP-based and not file-based). Initially, the staging environment allows further testing using that server's identity store before deploying to the production environment. Thus, end user identities created in JDeveloper are not migrated to standalone Oracle WebLogic Server and are used only in Integrated WebLogic Server to test the extended application.
As an Oracle Fusion security guideline, when you secure the functions of your application, you should not modify the predefined security definitions specified by the Oracle Fusion security reference implementation. When you modify the file-based policy store, always create new security definitions.
Note: The term protected in this chapter refers to the default Oracle Fusion application condition that denies end users access to database resources and application artifacts. In contrast, the term secured refers to resources that have been made accessible to end users through security policies created for this purpose. Therefore, a security policy specifically enables access to the resource based on the access rights it confers to the end user. |
To gather background information about function security, refer to these documents:
The main document addressing how to customize and extend Oracle Fusion applications. For details about how data security and function security work together to control access to the data and functions of the application, see the "Customizing Security for Business Objects and Application Artifacts" chapter.
The main document addressing the concepts and best practices of the Oracle Fusion security approach.
The main document addressing the concepts and best practices of Oracle Platform Security Services (OPSS) upon which Oracle Fusion security is based.
Describes ADF Security, through which ADF components interact with OPSS.
Table 49-1 summarizes the function security scenarios that Oracle Fusion security supports. The "Application Developer Tasks" column of the table provides a brief description of the security artifacts involved in each scenario.
Table 49-1 Oracle Fusion Function Security Use Cases
Security Goal | Security Policy Requirement | Application Developer Tasks |
---|---|---|
Control whether the end user associated with a particular role may access a new task flow and view all the web pages of the flow. | Create a new entitlement grant. The new task flow will be inaccessible by default (also called protected) and will require a new function security policy to grant end users access. Because the end user duty being secured is rarely addressed by grants to a single resource, the Oracle Fusion security best practice is to create entitlement grants. Entitlement grants provide the means to aggregate multiple securable resources into a named security group so that privileges for the entire group can be granted to application roles through a single statement. | Enable ADF Security on the user interface project to protect all task flows (and the web pages they contain). Then, in the file-based policy store, create a resource definition for the task flow and assign the definition as a member of an entitlement (defined in the policy store as a permission set) that you name. Then, create the security policy by granting the entitlement to a custom application role that you either created or consulted with an IT security manager to create for you. For more information, see Section 49.3.1, "How to Create Entitlement Grants for Custom Application Roles." |
Control whether the end user associated with a particular role may access a new top-level web page. In Oracle Fusion applications, a top-level web page is one that is not contained by a task flow. | Create a new entitlement grant. The new top-level web page will be inaccessible by default (also called protected) and will require a new function security policy to grant end users access. The ability to secure individual web pages in Oracle Fusion applications is reserved for top-level web pages backed by an ADF page definition file only. | Enable ADF Security on the user interface project to protect all top-level web pages backed by ADF page definition files. Then, in the file-based policy store, create a resource definition for the web page and assign the definition as a member of an entitlement (defined in the policy store as a permission set) that you name. Then, create the security policy by granting the entitlement to a custom application role that you either created or consulted with an IT security manager to create for you. For more information, see Section 49.3.1, "How to Create Entitlement Grants for Custom Application Roles." |
Control whether a new task flow or a new top-level web page is publicly accessible. Publicly accessible means the application resource may accessed by guest users (those who do not need to log into the application) or it can mean to all authenticated users who are not provisioned with the privileges conferred by a custom application role. | Create a new resource grant. The new ADF artifact will be inaccessible by default (also called protected) and will require a new function security policy to grant end users access. Because the publicly accessible artifact is a single resource, the Oracle Fusion security best practice is to create resource grants (rather than entitlement grants) for publicly accessible artifacts. | Enable ADF Security on the user interface project to protect all ADF-backed application artifacts. Then, in the file-based policy store, grant an action (defined in the policy store as a permission) directly to the artifact. Then, create the security policy by granting the permission to a built-in OPSS application role. For more information, see Section 49.3.3, "How to Define Resource Grants for OPSS Built-In Roles." |
Determine whether the end user associated with a particular role has the right to select create, edit, or delete buttons in the displayed web page. | Do not create a security policy. Access to user interface components, such as buttons, is not controlled by a security policy, but can be controlled by rendering the button in the user interface based on the end user's role. | Conditionally render the component by entering ADF Security Expression Language (EL) utility methods on the For more information about rendering components using EL utility methods, see the "Enabling ADF Security in a Fusion Web Application" chapter in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework. |
When you create a Fusion web application, JDeveloper creates specific files that are needed to secure the application. Additionally, when you run the Configure ADF Security wizard, JDeveloper updates these files to reflect the selections you make in the wizard.
Table 49-2 lists the file related to Oracle Fusion security that are created for you when you secure your application in JDeveloper. For more information about the security-related files, see the Oracle Fusion Middleware Application Security Guide.
Table 49-2 Oracle Fusion Application Security-Related Files
File Name | Location | Security Purpose |
---|---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
An ADF bounded task flow that you add to your application is one of the main ADF artifacts that you that you can secure. You can also directly secure top-level web pages that are backed by ADF page definitions to specify data bindings. Although you can secure a variety of application resources, implementing function security follows a similar pattern.
To implement function security:
For information about application roles, see the "Understanding Security Concepts" part of the Oracle Fusion Middleware Application Security Guide.
If a security manager creates the application roles you identify, then those custom application roles will already appear in the policy store section of the exported jazn-data.xml
file. For details about how the IT security manager creates application roles using Oracle Authorization Policy Manager, see the "Managing Security Artifacts" chapter in the Oracle Fusion Middleware Oracle Authorization Policy Manager Administrator's Guide (Oracle Fusion Applications Edition).
If you do not ask the security manager to create custom application roles, then you must create them in JDeveloper before you define security policies.
jazn-data.xml
file.For details about how the security manager exports the application policy store, see the "Securing Oracle Fusion Applications" chapter in the Oracle Fusion Applications Administrator's Guide.
jazn-data.xml
file into your application workspace.This is the file that JDeveloper will update when you create function security policies. In order for JDeveloper to use the file, copy the file to your application workspace in the <JDevAppHome>/src/META-INF
folder.
Although ADF Security permits you to define function security policies for ADF artifacts using only resource privilege grants, an Oracle Fusion security best practice is to define access policies using entitlement grants except for publicly accessible application artifacts.
For details about securing application functions, see Section 49.3.1, "How to Create Entitlement Grants for Custom Application Roles."
For details about making application functions public, see Section 49.3.3, "How to Define Resource Grants for OPSS Built-In Roles."
For details about enabling security on the user interface project, see Section 49.3.5, "How to Enforce Authorization for Securable ADF Artifacts."
ADF does not enforce security on user interface components, such as buttons or links that navigate to securable artifacts (pages and task flows). For details about using EL utility methods, see the "Enabling ADF Security in a Fusion Web Application" chapter in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
For details about adding test user in JDeveloper, see Section 49.3.6, "How to Enable Authentication and Test the Application in JDeveloper."
jazn-data.xml
file and provide the updated jazn-data.xml
file to the IT security manager to merge the file-based policy store with the application policy store in the staging environment.JDeveloper must not be used as an identity store provisioning tool, and you must be careful not to deploy the application with user identities that you create for testing purposes. Deploying user identities with the application introduces the risk that malicious users may gain unintended access.
For information about how the IT security manager merges the policies using Oracle Authorization Policy Manager, see the "Upgrading Oracle Fusion Applications Policies" chapter in the Oracle Fusion Middleware Oracle Authorization Policy Manager Administrator's Guide (Oracle Fusion Applications Edition).
For information about how the IT security manager provisions enterprise users using Oracle Authorization Policy Manager, see the "Managing Security Artifacts" chapter in the Oracle Fusion Middleware Oracle Authorization Policy Manager Administrator's Guide (Oracle Fusion Applications Edition).
When the file-based policy store is merged, the GUIDs of application roles are not preserved. For information about how the IT security manager reconciles GUIDs using a WLST command, see the "Securing Oracle Fusion Applications" chapter in the Oracle Fusion Applications Administrator's Guide.
For details about how to modify the application to use the identity store and policy store of the staging environment, see Section 49.3.8, "What You May Need to Know About Testing."
You implement function security by identifying the type of resource that corresponds to the ADF artifact whose function you intend to secure. You then select a resource instance of that type and select the action that corresponds to the artifact function you intend to grant to end users. Function security aggregates these resource / action pairs as an entitlement that serves as the grantable entity. Each entitlement can include as many resource / action pairs as needed to describe a particular duty to be performed by the end user. To support this goal, entitlements can include resources of different types. To create a function security policy, you then grant the entitlement to a custom application role, also called a duty role in Oracle Fusion applications.
In cases where a resource should be publicly accessible, you will not need to aggregate multiple resources to define a particular duty. Instead, you can create a resource-based function security policy with a single resource /action pair defined as the grantable entity.
Best Practice: Although ADF Security permits you to define function security policies for ADF artifacts using only resource privilege grants, an Oracle Fusion security best practice is to define access policies using entitlement grants except for publicly accessible application artifacts. |
To simplify the task of securing the functions of your application, ADF provides the ADF Security framework. ADF Security defines a containment hierarchy that lets you define a single security policy for the ADF bounded task flow and its contains web pages. In other words, the security policy defined at the level of the bounded task flow, secures the flow's entry point and then all pages within that flow are secured by the same policy. For example, a series of web pages may guide new end users through a registration process and the bounded task flow controls page navigation for the process.
Specifically, the ADF artifacts that you may secure are:
The ADF unbounded task flow is not a securable application artifact and thus does not participate in OPSS authorization checks. When you need to secure the constituent pages of an unbounded task flow, you define policies for the page definition files associated with the pages instead.
For example, a page may display a summary of products with data coordinated by the ADF bindings of the page's associated ADF page definition file.
Best Practice: Do not create entitlement grants for the individual web pages of an ADF bounded task flow. When the end user accesses the bounded task flow, security for all pages will be managed by the entitlements you create for the task flow. This supports a well-defined security model for task flows that enforces a single entry point for all end users. For additional best practice information about ADF and function security, see Section 49.3.9, "What You May Need to Know About Security Best Practices." |
To add function security to the application:
ADF does not enforce security on user interface components, such as buttons or links that navigate to securable artifacts (pages and task flows). For details about using EL utility methods, see the "Enabling ADF Security in a Fusion Web Application" chapter in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
Because the particular end user duty you want to secure is rarely addressed by grants to a single resource, you define the access policy for securable ADF artifacts by creating entitlement grants. Resource grants should be used only to define publicly accessible application artifacts, as described in Section 49.3.3, "How to Define Resource Grants for OPSS Built-In Roles."
You create entitlement grants in the Entitlements Grants page of the jazn-data.xml
file overview editor. The grants you create will appear as metadata in the policy store section of the jazn-data.xml
file. This metadata defines an entitlement (identified in the XML definition as <permission-set>
) comprised of resource instance /action pairs that you select. This entitlement is a grantable entity that you then grant to a custom application role.
The list of resource types appears in the security policy overview editor. The resource type you select filters the resource instances defined within the projects of your application's workspace. The resource type selection also determines the list of available actions displayed by the overview editor. For example, when you select the Task Flow Permission resource type, the overview editor will display all of the task flows in the user interface projects that you select and also displays the view action that you can associate with the available ADF bounded task flow resources.
Table 49-3 lists the resource types displayed in JDeveloper and identifies the associated resource and actions.
Table 49-3 Resource Types of Securable ADF Artifacts
Resource Type | Supports These Resources and Actions |
---|---|
| Defines personalize, customize, grant, edit, and view actions on ADF bounded task flows in a Fusion Web application. |
| Defines personalize, customize, grant, edit, and view actions on regions and web pages backed by an ADF page definition file in a Fusion Web application. |
| Not used by Oracle Fusion Applications. Data security is provided by Oracle Fusion Data Security, as described in Chapter 50, "Securing Web Services Use Cases." |
| Defines execute, invoke, and view actions on ADF methods in a Fusion web application. |
| Defines invoke actions on Fusion Web services. For more details about securing Web services, see Section 50.5, "Authorizing the Web Service with Entitlement Grants." |
To define an entitlement grant for a securable ADF artifact, use the Entitlement Grants page of the overview editor for the jazn-data.xml
file. This editor is also called the security policy overview editor.
Before you begin:
It may be helpful to have an understanding of ADF Security. For more information, see the "Understanding Users and Roles" chapter in the Oracle Fusion Middleware Application Security Guide.
It may also be helpful to understand the details of the ADF Security containment model. For more information, see Section 49.3.9, "What You May Need to Know About Security Best Practices."
You will need to complete these tasks:
jazn-data.xml
file that contains the predefined function security policies for your application. You must add the file to your application workspace, as explained in Section 49.2, "Function Security Implementation Process Overview."To define an entitlement grant for an ADF artifact:
The overview editor displays all the resources that your application defines.
The dialog displays all the projects in your application workspace.
The dialog displays all the resources define by your selected project.
Figure 49-1 shows the overview editor with the View action selected for the task flow and added to MyEntitlement.
The dialog displays all the application roles from the jazn-data.xml
file. You must not add a grant to a predefined application role (also called duty roles in the terminology of Oracle Fusion Applications). Only select custom application roles that either you created in JDeveloper or that were created by an IT security manager for this purpose.
When you use the security policy editor in JDeveloper to create an entitlement grant, JDeveloper modifies the source for the application policy store in the jazn-data.xml
file. The policy store section of the file contains a <resource-type>
definition (that identifies the actions supported for resources of the selected type), a <resource>
definition (to identify the resource instance that you selected from your application and mapped to a resource type), a <permission-set>
definition (to define the resources and actions to be granted as an entitlement), and a <grant>
definition with one or more entitlements (defined in the XML as a permission set) granted to the desired application roles (the grantee).
As Example 49-1 shows, entitlement-based security policies in the Oracle Fusion application are defined in the <jazn-policies>
element and consist of one or more entitlements granted to a single application role.
Example 49-1 Entitlement-Based Policy Definition in the jazn-data.xml File
A common requirement of the application is that some web pages be available to all end users, regardless of their specific access privileges. For example, the home page should be seen by all visitors to the site, while a corporate site should be available only to those who have identified themselves through authentication.
In both cases, the page may be considered public, because the ability to view the page is not defined by the end users' specific privileges. Rather, the difference is whether the end user is anonymous or a known identity.
In the OPSS security model, you differentiate between the absence of security and public access to content by granting access privileges to the anonymous-role
principal. The anonymous-role
allows access to a resource by unauthenticated users, for example, guest users. To provide access to authenticated users only, the policy must be defined for the authenticated-role
principal.
The built-in OPSS role authenticated-role
stands for any authenticated user and is useful to implement authorization checks for end users who do not need to be explicitly assigned to specific custom application roles to get access to a resource. The authenticated-role
can be directly granted any resource grants.
Before you begin:
It may be helpful to have an understanding of OPSS support for public, unprotected resources. For more information, see the "Understanding Users and Roles" chapter in the Oracle Fusion Middleware Application Security Guide.
It may also be helpful to understand the details of the ADF Security containment model. For more information, see Section 49.3.9, "What You May Need to Know About Security Best Practices."
You will need to complete this task:
jazn-data.xml
file that contains the predefined function security policies for your application. You must add the file to your application workspace, as explained in Section 49.2, "Function Security Implementation Process Overview."To grant public access to securable ADF artifact:
The overview editor displays all the projects in your application workspace.
Tip: Click the lock icon to show only those resources that do not yet have grants.
anonymous-role
for an ADF bounded task flow that manages customer registration.authenticated-role
for an ADF bounded task flow that manages employee registration.Figure 49-2 shows the overview editor with the View action selected for the task flow and granted to authenticated-role.
When you use the security policy editor in JDeveloper to create a resource grant, JDeveloper modifies the source for the application policy store in the jazn-data.xml
file.
Example 49-2 shows a resource-based security policy in the jazn-data.xml
file that makes a customer registration task flow public to all authenticated users. The grant to the OPSS built-in role authenticated-role
contains a single view permission for a bounded task flow, customer-registration-task-flow
. With this grant, any authenticated user will be able to enter the employee registration task flow.
Example 49-2 Resource-Based Policy Definition in the jazn-data.xml File
You run the Configure ADF Security wizard to enable authorization and make the function security policies you define effective. When you run the Configure ADF Security wizard, it has the following affect:
Once you run the wizard, you are effectively enforcing authorization checking for all securable ADF artifacts. The wizard also enables the ADF authentication servlet to require the end user to log in the first time a page in the application is accessed.
This configuration requires a valid user in order to access the pages of your application. This assumes that you will define custom application roles and assign explicit grants to those roles to manage access to securable ADF artifacts, as described in Section 49.3.1, "How to Create Entitlement Grants for Custom Application Roles." Alternatively, when you want to make a page pubic and accessible by unauthenticated user, you must explicitly grant to a built-in OPSS role, as described in Section 49.3.3, "How to Define Resource Grants for OPSS Built-In Roles."
Before you begin:
It may be helpful to have an understanding of the configuration changes made by the Configure ADF Security wizard. For more information, see the "Enabling ADF Security in a Fusion Web Application" chapter in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
To enforce authorization:
ADF Security: Select ADF Authentication and Authorization (default), as shown in Figure 49-3. Click Next.
Authentication Type: Select HTTP Basic Authentication (default). Click Next.
Automatic Policy Grant: Select No Automatic Grants (default), as shown in Figure 49-4. Click Next.
Note: When you select No Automatic Grants, you must define explicit grants that are specific to your application. The test-all application role provides a convenient way to run and test application resources without the restricted access that ADF authorization enforces. For more information about the test-all role, see the "Enabling ADF Security in a Fusion Web Application" chapter in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework. |
Authenticated Welcome: Do not make a selection. (The Redirect Upon Successful Authentication option should not be selected). Click Next.
Summary: Review your selections. Click Finish.
Authentication is enabled when you run the Configure ADF Security wizard, as described in Section 49.3.5, "How to Enforce Authorization for Securable ADF Artifacts." This means you when you run your application, you will be prompted to log in upon accessing any page backed by securable ADF artifacts.
To test your application, you will need to create test user identities and provision them with the custom application roles that you defined. The end user's membership in an application role defines their access privileges to the resources. If you prefer to be consistent with the Oracle Fusion standard for provisioning users and simulate how the actual end users of the enterprise access resources, you can optionally provision test users by defining enterprise roles consisting of groups of users (called job roles in Oracle Fusion applications) and then assign those groups to application roles (called duty roles in Oracle Fusion applications).
For details about creating test users, see the "Enabling ADF Security in a Fusion Web Application" chapter in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
Note that if you enabled the option to grant to a test role when you run the Configure ADF Security wizard, your grants may be of the following two types:
test-all
role. You will need to remove these grants and create valid grants to your custom application roles. For each entitlement granted to a specific role, the equivalent grant to the test-all
role must be removed.test-all
role automatically. You need to manually grant the entitlements for the new task flows to your custom application roles.Security definitions that are predefined in the Oracle Fusion security reference implementation must not be changed by developers. When modifying the file-based policy store, always create custom application roles and define new entitlement grants.
Specifically, developers must not make the following changes to the predefined security definitions of the Oracle Fusion security reference implementation.
For more information about the Oracle Fusion security reference implementation, see Oracle Fusion Applications Security Guide.
When the application needs to undergo testing either in your local environment or on a staging server, the following changes will ensure that the application uses the LDAP-based identity and policy stores configured on the staging server.
To configure the deployed application to use the security repositories on the target server:
web.xml
file to point to the application stripe on the target server.jps.policystore.applicationid
in the weblogic-application.xml
file to point to the application stripe on the target server.jps.policystore.removal
flag in the weblogic-application.xml
file.jps-config.xml
file in the application does not need to be modified. When the application is deployed, the staging server will have its own instance of the jps-config.xml
file which is configured through a WLST command (the reassociateSecurityStore
command). Therefore, the application jps-config.xml
file can remain unchanged.If you use JDeveloper to deploy to the application to standalone Oracle WebLogic Server, then you must ensure the Users and Groups checkbox is not selected in the application deployment properties (Menu Application > Secure > Configure Security Deployment…), as shown in Figure 49-5.
As a security best practice, you should not migrate users and groups that you create in JDeveloper. If the Users and Groups checkbox is selected, test users and groups in jazn-data.xml
will be merged into the target server with different GUIDs than those used to grant data security privileges.
Note: JDeveloper must not be used as an identity store provisioning tool, and you must be careful not to deploy the application with user identities that you create for testing purposes. Deploying user identities with the application introduces the risk that malicious users may gain unintended access. Instead, rely on the system administrator to configure user identities through the tools provided by the domain-level identity management system. |
Before testing the application in the staging environment, any custom application roles that you created will need to be created in the LDAP application policy store. These new application roles will receive new GUIDs and any data security policies defined for application roles of the same name must have their GUIDs reconciled. For details about reconciling GUIDs in the data security repository, see the "Securing Oracle Fusion Applications" chapter in the Oracle Fusion Applications Administrator's Guide.
ADF implements a particular security model. Follow these rules to address problems you encounter when adding security to the application:
test-all
role is just a means of not breaking the application once ADF Security is enabled. Therefore, it should never be deployed, since it grants access to the application for non-authenticated users.This chapter describes the best practices for securing Web services in an Oracle Fusion application using an Oracle Web Services Manager (Oracle WSM) feature called global policy attachments (GPA).
This chapter contains the following sections:
The service use case patterns described in Part VI, "Common Service Use Cases and Design Patterns" must be secured. Security requirements vary depending on service and client implementations.
The following use case pattern represents an example of a typical pattern. The pattern includes some possible variations that require different security implementations. The use case example highlights the security implementation requirements of each service component.
An example service use case:
Alternatively, you can trigger or call a SOA composite by any one of the following:
The Mediator can invoke various BPEL processes based on the incoming event. It can also transform the event to the payload that BPEL process takes.
While event generation typically begins with ADF Business Components, it is also possible to generate events from another SOA composite, Java PL/SQL code, or Java code and either directly or indirectly invoke the ADF Business Components Web service. However, when the event is triggered from the user interface and ADF Business Components, the ADF Business Components Web service can be invoked synchronously using the ServiceFactory
interface (using either RMI or SOAP).
Figure 50-1 illustrates the possible event generation use cases for Oracle Fusion applications. The main use case flow—ADF Business Components-generated events—is illustrated in the center, along with numbers (enclosed in circles) illustrating the corresponding steps of the above use case. Possible alternative flows are represented by dashed lines and numbers (enclosed in boxes, again corresponding to the steps of the above use case).
Oracle Fusion applications typically use SOAP services. Use Oracle Web Services Manager (Oracle WSM) to secure these services. Following are the main recommendations when using Oracle WSM with Oracle Fusion Applications.
You can secure Web services and clients used in your Oracle Fusion application with Oracle Web Services Manager (Oracle WSM). A component of Oracle SOA Suite, Oracle Web Services Manager provides security policies that you can declaratively attach to SOAP services and clients.
Oracle Fusion Applications make use of an Oracle WSM feature called global policy attachments (GPA). Using GPA, policies are not attached locally, but are specified at a global level. At runtime, components simply inherit the global policy and Oracle WSM enforces it.
Unlike local policy attachments (LPA), which need to be added at every Web service client and server, global policy attachment (GPA) can be attached at a domain level. This makes it easy for the system administrator to have a uniform policy for all Web services across the domain.
Note: All Oracle Fusion application Web services should use global policy attachment wherever possible. For complete details about how a system administrator attaches policies globally, see the "Understanding Oracle WSM Policy Framework" chapter in Oracle Fusion Middleware Security and Administrator's Guide for Web Services. |
Certain scenarios exist in which GPA cannot be used:
But GPA policies do not allow configuration overrides, which means you must use LPA to attach a username password policy on the client side. Note that even though configuration overrides require that you implement LPA on the client side, you still can allow the system administrator to define GPA on the server side for username password policies. Unlike the client side, the server side need not specify a particular username and password, instead it will accept any username and password.
The Oracle Fusion Applications provisioning script generates a single keypair (public key and self signed certificate) with the alias orakey
and stores the keypair in all Oracle Fusion Applications domains. All GPA policies will use this key by default unless you use LPA and specify a different key.
You should use LPA whenever you want to override the globally attached policy. The user name and specifying an alternate key are common examples of overriding a globally attached policy.
In summary, use LPA when the Web service is a public service, when the service requires elevated privileges to connect using a particular user name and password, or when the service requires additional security hardening.
All Oracle Fusion application Web services and Web service clients should use global policy attachment wherever possible. The developer and system administrator work together to enable GPA.
To enable global policy attachment:
A system administrator can do this using either Oracle Enterprise Manager Fusion Middleware Control or using WebLogic Scripting Tool (WLST).
For details about creating global policy sets, see the "Managing Web Service Policies" chapter in Oracle Fusion Middleware Security and Administrator's Guide for Web Services.
no_authentication_service_policy
policy to those services that do not need authentication.Note that unless you attach a no behavior policy (oracle/no_authentication_service_policy
or oracle/no_authentication_client_policy
), public Web services will inherit GPA and will no longer be accessible.
Developers can do this in Oracle JDeveloper directly in the ADF Business Components Web service implementation class file, as described in Section 50.4, "Attaching Policies Locally." Also, a system administrator can do this either using Oracle Enterprise Manager Fusion Middleware Control or using WebLogic Scripting Tool (WLST).
For details about attaching local policies on Oracle WebLogic Server, see the "Attaching Policies to Web Services" chapter in Oracle Fusion Middleware Security and Administrator's Guide for Web Services.
Profile choices are Authentication (AuthN), SSL and Message protection. Oracle Fusion Applications are configured to use the AuthN profile by default. For background about profiles choices, see Table 50-1.
For a summary of the predefined policies, see the "Predefined Policies" appendix in Oracle Fusion Middleware Security and Administrator's Guide for Web Services.
A system administrator does this using either Oracle Enterprise Manager Fusion Middleware Control or using WLST. They will need to define a separate GPA policy set for each kind of service–SOA service, SOA reference, ADF Business Components Web service, and so on.
For details about creating global policy sets, see the "Creating and Managing Policy Sets" chapter in Oracle Fusion Middleware Security and Administrator's Guide for Web Services.
A system administrator does this using either Oracle Enterprise Manager Fusion Middleware Control or using WLST.
For details about creating global policy sets, see the "Creating and Managing Policy Sets" chapter in the Oracle Fusion Middleware Security and Administrator's Guide for Web Services.
Because certain scenarios exist in which GPA cannot be used, Oracle Fusion application developers may need to use local policy attachment (LPA) for Web services and Web service clients. In some cases, LPA must be used on the service side and client side, while other cases exist where only the client side requires LPA.
You should use local policy attachment:
Table 50-1 shows the recommended Oracle WSM policies and the components to which they apply.
Table 50-1 Recommended Oracle Web Services Manager Policies for Oracle Fusion Applications
Profile | Service Side Policy | Client Side Policy | Features |
---|---|---|---|
Authentication (AuthN) | wss_saml_or_username_ token_service_policy | Username: wss10_saml_token_ client_policy SAML: wss10_saml_token_ client_policy | Performance: High Security: Low - Authentication: password in clear, SAML token is unsigned. - Wire level security: No - Hardening: no Configuration: Easy. No key stores to set up. Interoperability: - Username: High interoperates easily with many different stacks, including .NET, SOAP-UI, and more. - SAML: Low. Unsigned SAML SV does not interoperate with most stacks. |
SSL Profile | wss_saml_or_username_ token_over_ssl_ service_policy | Username: wss10_saml_token_ client_policy SAML: wss10_saml_token_ client_policy | Performance: Medium Security: Medium - Authentication: passwords encrypted because of 1-way-SSL, SAML token is signed by virtue of 2-way-SSL. - Wire level security: Transport level, using 1-way-SSL for username, and 2-way-SSL for SAML. - Hardening: Medium. Each application server can have its own separate key. Configuration: Hard. The same OHS URI must be set up for both 1-way and 2-way-SSL and the client certificate needs to be set propagated from OHS to Oracle WLS. For details, see the Oracle Fusion Middleware Security and Administrator's Guide for Web Services. Interoperatiblity: - Username: High - SAML: Medium |
Message Security | wss11_saml_or_ username_token_with_ message_protection_ service_policy | Username: wss10_saml_token_ client_policy SAML: wss10_saml_token_ client_policy | Performance: Medium Security: High - Wire level security: Transport level - Hardening: High. Not only each server, but each Web service can have its own separate key. Configuration: Medium. Key stores need to be set up. Interoperatiblity: - Username: Medium - SAML: Medium |
No Behavior | oracle/no_ authentication_ service_policy | oracle/no_ authentication_ client_policy | No security. Service will be accessible. |
One side effect of enabling GPA is that even public Web services (those that do not need any authentication) will now suddenly prompt for security credentials. To prevent this, all such Web services should use LPA to locally attach the oracle/no_authentication_client_policy
on the client side and oracle/no_authentication_service_policy
on the service side. Once this is done, these clients and Web services will ignore any global policy, and will work without authentication as before.
For example, suppose there is a non-Oracle external client calling a Fusion Web service. If this Web service did not have any security policy, and you turned on GPA, then this service will inherit the GPA setting, but because the client is an external client, it will not. Consequently, the service will be expecting secure messages that the client will not be sending, and the service will reject those messages.
For more information about directly attaching the no behavior policy to a Web service endpoint, see the "Creating and Managing Policy Sets" chapter in the Oracle Fusion Middleware Security and Administrator's Guide for Web Services.
In the case of an ADF Business Components Web service, you can enter service annotations in the Web service implementation class to specify the no behavior policy, as shown in Example 50-1.
Example 50-1 Enabling No Behavior Policy for an ADF Business Components Web Service
For more information about ADF Business Components Web services, see the "Integrating Service-Enabled Application Modules" chapter in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
For details about locally attaching the no behavior policy on Oracle WebLogic Server using Fusion Middleware Control and the WebLogic Scripting Tool (WLST), see the "Attaching Policies to Web Services" chapter in the Oracle Fusion Middleware Security and Administrator's Guide for Web Services.
By default, GPA supports identity propagation on the client side. However, because GPA is attached globally it is not possible to do any local configuration overrides. For example, if you have a Web service client that needs to connect using a particular user name and password (this is known as elevated privileges or identity escalation), then you cannot use GPA. With GPA you cannot specify this user name/password on a per client basis.
Note: Even though you need to use LPA on the client side to perform configuration overrides, you can still use GPA on the service side. This is because on the service side you do not need a configuration override to set up a particular user name, instead you just attach the saml_or_username policy which will accept either user names (for identity escalation) or saml (for identity propagation). |
Oracle Fusion Applications can use either RMI or SOAP to invoke the service. An RMI invocation of the service does not require security configuration. A SOAP invocation of the service can support identity propagation or identity switch.
To support identity propagation by the client, use the SAML token policy. To support identity switch, use the user name policy.
In the case of an ADF Business Components Web service, you can enter service annotations in the Web service implementation class to specify the locally attached policy, as shown in Example 50-2
Example 50-2 Attaching a Local Policy for an ADF Business Components Web Service
Note that Fusion Web services should have asynchronous method calls enabled.
Typically, Fusion Web services use a common domain wide key, which should be used both for encryption and signing. Since this key is global it works very well with GPA. However, if certain Web services requires additional security hardening, because, for example, they want to use a key that is different from the domain key, then those services would need to use LPA and specify this key using a configuration override.
Another use case that would require LPA to provide additional security hardening exists when a non-Oracle Fusion application invokes an Oracle Fusion application Web service. In this case, because Fusion Web services do not use message protection by default, additional protection will be required to comply with the invoking application security policies.
For details about locally attaching Web service client policy and configuring override properties on Oracle WebLogic Server, see the "Attaching Policies to Web Services" chapter in the Oracle Fusion Middleware Security and Administrator's Guide for Web Services.
Fusion Web service clients that need to connect to external non-Fusion Web services will most likely need to use policies that are different from the globally set policy. Because the Oracle Fusion default for GPA is no message protection, this might not be sufficient for external services. In this case, clients should also use LPA.
For details about locally attaching Web service client policy on Oracle WebLogic Server, see the "Attaching Policies to Web Services" chapter in the Oracle Fusion Middleware Security and Administrator's Guide for Web Services.
When you want to secure an ADF Business Components Web service to require user authorization, you use JDeveloper to define entitlement-based function security policies directly in the file-based security repository for your Oracle Fusion application.
Before you begin:
You will need to complete the following tasks.
jazn-data.xml
file.For details about how the security manager exports the application policy store, see the "Securing Oracle Fusion Applications" chapter in the Oracle Fusion Applications Administrator's Guide.
jazn-data.xml
file into your application workspace.This is the file that JDeveloper will update when you create function security policies. In order for JDeveloper to use the file, copy the file to your application workspace in the <JDevAppHome>/src/META-INF
folder.
To secure an ADF Business Components Web service:
jazn-data.xml
file, grant access to the Web service using the JDeveloper security policy editor.Oracle ADF Security is responsible for authorizing Web services, that is, Oracle ADF Security decides whether a Web service is available to a given user by checking against the Oracle Platform Security Services (OPSS) policy store.
To grant access:
In the Oracle Fusion Applications environment, the basic security artifact for entitlement-based security polices is the entitlement (an entitlement is defined by an OPSS permission set).
The entitlement grant to the role specifies that the end user must be a member of the role to access the resources specified by the entitlement. You should use custom duty roles and you should not grant entitlements to predefined duty roles.
For details about creating entitlement-based security policies using JDeveloper tools, see Section 49.3.1, "How to Create Entitlement Grants for Custom Application Roles."
Example 50-3 shows a complete set of required grants enabling Web service authorization.
Example 50-3 Entitlement-Based Policy Definition in the jazn-data.xml File
For details about the ADF Security, see the "Enabling ADF Security in a Fusion Web Application" chapter in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
In the case of ADF Business Components Web services, there is no need to run the ADF Security wizard to enforce authorization checking on the defined Web service security policies. Additionally, Oracle Fusion applications do not use Oracle WSM policies for authorization. Instead, the Oracle Fusion application uses the policy interceptor defined by the ADF Business Components to enforce authorization checking. The service factory is used to invoke an ADF Business Components service synchronously within a domain. Security information is passed from the calling program to the service automatically. And, whether the service is invoked by the service factory directly or through a BPEL process, authorization is enforced by the EJB implementation of the ADF Business Components Web service.
Table 50-2 shows the recommended policy interceptor used to enforce entitlement-based policies for Oracle Fusion applications and the components to which they apply.
Table 50-2 Recommended ADF Business Components Policy Interceptor
On this component... | Use this interceptor... |
---|---|
ADF Business Components Web services (at the service or operation level) | Use |
The ADF Business Components policy interceptor works for both RMI and SOAP cases and supports the EJB implementation of ADF Business Components Web services. Therefore, as long as ServicePermissionCheckInterceptor
is specified in the ADF Business Components Web service implementation class, an Oracle WSM authorization policy is not required for Fusion Web services.
In the case of an ADF Business Components Web service, you enter the @Interceptors
annotation and import statements in the Web service implementation class to specify the policy interceptor, as shown in Example 50-4.
Example 50-4 Enforcing Authorization with ADF Business Components Policy Interceptor
In order for this interceptor to work, you need to configure the policy interceptor in your ejb-jar.xml
file. In the Application Navigator, expand the META-INF node of the Web service project and double-click the ejb-jar.xml node. In the source editor, add the JpsInterceptor
definition required by the EJB for authorization checking, as shown in Example 50-5.
Example 50-5 Configuring the JPSInterceptor for the Application in the ejb-jar.xml File
For details about the ADF Business Components ServiceFactory
class, see the "Integrating Service-Enabled Application Modules" chapter in the Oracle Fusion Middleware Developer's Guide for Oracle Application Development Framework.
When a service is invoked there is security for the client side (caller) and for the server side (callee).
The client side can invoke the service through a SOAP service invocation, where the client can be a JAX-WS proxy or a SOA composite (service factory via SOAP is still JAX-WS proxy). Before passing the service to the server side, the client side will either propagate the current user credential or switch identity, based on the client side authentication policy.
Alternatively, the client side can invoke the service through an RMI invocation. This type of invocation applies only to the ADF Business Component Web service. In this case, there is no client side authentication policy, since the client side always just propagates the identity to the server side.
Security for the server side is based on the Oracle WSM authentication policy. The server side first authenticates the user. A SOA composite service will not perform authorization, but ADF Business Components Web services will check whether the user is authorized to invoke the service. This type of service performs the authorization check using the EJB ServicePermissionCheckInterceptor
interceptor before executing any service method.
Figure 50-2 illustrates how Oracle WSM policies are enforced within the Oracle Fusion Applications use case described in Section 50.1, "Introduction to Securing Web Services Use Cases."
This example use case illustrates the following:
For more information about Oracle Web Services Manager policies, see the "Understanding Oracle WSM Policy Framework" chapter in Oracle Fusion Middleware Security and Administrator's Guide for Web Services.
This chapter describes how to authenticate and authorize portlet services, as well as configure key and credential stores. The process of securing portlet services is similar to that of securing web services.
In Oracle Fusion Applications, portlets are WSRP portlets, therefore, web services. Oracle Web Services Manager (WSM) policies secure portlets, in the same way that they secure ordinary web services.
Oracle Web Services Manager implements web service security, and allows for run time enforcement and declarative policy attachment within Oracle Fusion Middleware.
Oracle Fusion applications make use of an Oracle WSM feature called global policy attachment (GPA). In GPA, policies are not attached locally, but specified at a global level. At runtime, components inherit the global policy and Oracle WSM enforces it.
For each portlet, these four ports require Oracle WSM policies:
WSRP_v2_Markup_Service
WSRP_v2_PortletManagement_Service
WSRP_v2_Registration_Service
WSRP_v2_ServiceDescription_Service
Only the WSRP_v2_Markup_Service
markup port requires an authentication policy. By default, no policy should be locally attached to the markup port; this port will inherit the policy from GPA.
However, if the WSRP_v2_Markup_Service
port has unique requirements not fulfilled by GPA, then a locally attached policy will be necessary. Additionally, if the locally attached policy specifies message protection or SSL, the necessary key store setup must be in place.
The three non-markup ports are anonymous and therefore you will need to locally attach a "no behavior" policy (defined by oracle/no_authentication_service_policy
) in order to override GPA.
The requirements for the client counterparts for each of these ports is exactly the same. Clients of the WSRP_v2_Markup_Service
port inherit GPA, and clients of the three non-markup ports propagate an anonymous token defined by the oracle/no_authentication_client_policy
policy.
Table 51-1 summarizes the policies attached to the portlet service and the client.
Table 51-1 Recommended Oracle Web Services Manager Policies for Oracle Fusion Portlets
Port | Service Side Policy | Client Side Policy |
---|---|---|
| No local policy. Inherits from GPA, which by default is | No local policy. Inherits from GPA, which by default is |
| Local anonymous policy:
| Local anonymous policy:
|
| Local anonymous policy:
| Local anonymous policy:
|
| Local anonymous policy:
| Local anonymous policy:
|
To override GPA and secure end-to-end portlet applications with a locally attached policy:
Securing the portlet service with a locally attached policy that overrides GPA involves the following main steps:
Authenticating the service is necessary only in two cases:
WSRP_v2_Markup_Service
port.When a policy is attached locally, Oracle ADF must authenticate the portlet service against an Oracle Web Services Manager policy, such as wss10_saml_token_with_message_protection_service_policy
. In addition, it is necessary to configure security for the Oracle Fusion web application EAR file.
Authenticating the services involves the following main steps:
wss10_saml_token_with_message_protection_service_policy
) to the provider. You can do this in one of the following ways:oracle-webservices.xml
. This is a packaging artifact, meaning it is not available in Oracle JDeveloper during design time. To edit the file, deploy your application to an EAR file. Extract the oracle-webservices.xml file, update it and repackage it into the EAR file.To edit the oracle-webservices.xml file when overriding GPA:
Open the oracle-webservices.xml
file, find port-component name="WSRP_v2_Markup_Service"
and add the code shown in Example 51-1.
Example 51-1 Edit the oracle-webservices.xml File
By default, a globally attached policy profile specifies (authentication [AuthN]) and there is no need to use Oracle Enterprise Manager to configure a key store or a credential store. You only need to perform this task when a policy has a message protection or a SSL profile.
The key store contains the signing and encryption keys used to encrypt and decrypt messages. The key store itself and all the keys are password protected. The keys are also referred to using aliases, which are stored, along with their corresponding passwords, in the credential store. When accessing the key store, query the credential store first for the necessary aliases and passwords.
You can verify the creation of the key store and credential store as follows.
To verify the creation of the key store and credential store:
$DOMAIN_HOME/config/fmwconfig/jps-config.xml
.Example 51-2 Verify the credstore and keystore serviceInstance Elements
credstore
">keystore
" provider="keystore.provider" location="./default-keystore.jks
">Example 51-3 Default Context References to the Credential Store and Key Store
credstore
"/>keystore
"/>Note: There is no need to restart your domain if this configuration is already in place. |
Oracle ADF Security is responsible for authorizing portlets, that is, Oracle ADF Security decides whether a portlet is available to a given user by checking it against the Oracle Platform Security Services (OPSS) policy store. Portlets are just one way of exposing local task flows to remote applications. A component called a portlet bridge is responsible for bridging between portlets and task flows. A portlet bridge enables exposing a task flow as a portlet.
Once you create an entitlement grant for the desired task flow in jazn-data.xml
, you must create a resource grant for the portlet bridge component to the authenticated role, as shown in Example 51-4.
Example 51-4 Resource Grant to the Authenticated Role
Example 51-5 shows an entitlement grant enabling access to the task flow.
Example 51-5 Entitlement-Based Policy Definition in the jazn-data.xml File
Note when the Oracle Fusion application needs to provide anonymous access to a portlet, the bridge wrapper task flow needs a grant to the anonymous-role
, and the markup port needs a no_authentication
policy, or it can use GPA, but needs to specify a Default User in the producer registration, using a valid guest user account, as described in Section 51.3, "Securing the Portlet Client."
Securing the portlet client is necessary only when applying the "no behavior" policy to the anonymous ports.
Securing a portlet consumer, or client, means enabling identity propagation. You can enable identity propagation while registering the portlet producer in Oracle JDeveloper. When registering the portlet producer, make sure you select following values in the WSRP Portlet Producer Registration wizard.
In the Configure Security Attributes window, select the following:
Note that Default User is only used when the consumer identity is in fact anonymous. In this case, the Default User field lets you specify some valid identity that should be used to propagate to the portlet, when the consumer is anonymous, and the producer needs to receive a valid identity.
Within the portlet consumer domain, make sure the key store and credential store are the same ones used by the portlet producer or service. The key store and credential store are located at $DOMAIN_HOME/config/fmwconfig
. For more information, see the section about verifying the creation of the key store and credential store under Section 51.2.2, "How to Configure the Key Store and Credential Store."
By default, globally attached policy profile specifies (authentication [AuthN]) and there is no need to use Oracle Enterprise Manager to register a key store or create a credential store. You only need to perform this task when a policy profile offers message protection or SSL.
However, if you need to configure another key store for your domain, use Oracle Enterprise Manager to register the key store and write to the credential store.
To register the key store and write to the credential store:
oracle.wsm.security
, create one. If the map exists, skip this step. Figure 51-1 displays the Create Map window.oracle.wsm.security
.Do not create any keys. Keys are created when configuring the domain's service provider.
./default-keystore.jks
, follow the instructions here. Otherwise, skip this step.Uncheck the Configure KeyStore Management box and click OK. This displays the window shown in Figure 51-2.
Under the Keystore section, click Configure again and enter the following information. The file producer.jks
is assumed to be located under the directory path $DOMAIN_HOME/config/fmwconfig
which contains a certificate alias called producer
. Figure 51-3 displays the Keystore Configuration page.
./producer.jks
.Signature Key
Encryption Key
Entering this information enables the creation of keystore-csf-key
, sign-csf-key
and enc-csf-key
in the credential store of the domain. You can verify that the keys have been created by viewing the credential store page of the domain in Oracle Enterprise Manager.
This part of the Developer's Guide provides information about some of the advanced features that are part of Oracle Fusion. These advanced features include the Oracle WebLogic Server, repositories used in Oracle Fusion, profiles, Oracle Fusion application seed data, and the Oracle Fusion Database Schema Deployment Framework. Also included in this part, are procedures for debugging Oracle Application Development Framework (Oracle ADF) and service-oriented architecture (SOA) applications.
Oracle WebLogic Server: Deployment is the process of packaging application files as an archive file and transferring it to a target application server. You can use JDeveloper to deploy your ADF applications directly to the WebLogic Server or indirectly to an archive file as the deployment target. You can then install this archive file to the target server. You can also run applications in JDeveloper using the Integrated WebLogic Server.
The Creating Repository Connections chapter provides information about the repositories that are used in Oracle Fusion and describes how to connect to each of these repositories using JDeveloper. The repositories include Oracle Universal Content Management, the Oracle Data Integrator (ODI), and Oracle Business Activity Monitoring (Oracle BAM).
A profile is a set of changeable options that affect the way your application looks and behaves. Profiles control how applications operate for users by the values that are set. Profiles can be set at different levels depending on how the profiles are defined.
Oracle Fusion Middleware Application Seed Data is the essential data to enable Oracle Fusion Middleware applications. Some examples include static lists of values, functional or error messages, and lookup values. The Seed Data Utility, which runs under JDeveloper, provides data extraction from the development instances of Oracle Fusion Applications. It also loads the extracted data to the customer database instances of Oracle Fusion Applications by integrating with Oracle ADF TaskManager. This part discusses how to set up your seed data environment, and how to extract and upload seed data.
The Using the Oracle Fusion Database Schema Deployment Framework (applxdf) includes JDeveloper plugins that handle applications-specific metadata, datamodeling standards for applications database modeling, and deployment of database schema objects to a target application database. The database schema deployment component can be invoked standalone outside of JDeveloper, such as from the command line, Build scripts, or a Patching Tool like Task Director. The Database Schema Deployment Framework is packaged and delivered to Oracle Fusion Applications and technology teams.
The Improving Performance chapter contains performance, scalability, and reliability (PSR) best practices documented based on performance analysis of several prototypical Oracle Fusion Applications as well as various tests conducted by the Oracle Fusion middleware performance team. The outcome of this analysis is captured in this chapter. It includes best practices for coding and tuning ADF Business Components-based applications with performance, scalability, and reliability in mind.
The Debugging Oracle ADF and Oracle SOA Suite chapter describes the process of debugging your Oracle Application Development Framework (Oracle ADF) and Oracle SOA Suite applications. It describes how to diagnose and correct errors and how to use the debugging tools.
Designing and Securing View Objects for Oracle Business Intelligence Applications provides guidelines and best practices for designing and securing view objects and other supporting ADF Business Components objects for use by Oracle Fusion Business Intelligence (BI) Applications.
Implementing ADF Desktop Integration describes how Oracle Application Development Framework Desktop Integration makes it possible to combine third party desktop productivity applications with Oracle Fusion web applications, so you can use a program like Microsoft Excel as an interface to access Oracle Fusion web application data. Currently, ADF Desktop Integration supports using an Excel workbook to access descriptive and key flexfield data in your application.
The Oracle Metadata Services (MDS) framework allows you to create customizable applications. The Creating Customizable Applications chapter describes how to configure your application at design time so that it can be customized. It also provides information about how to customize your applications using JDeveloper and WebCenter Composer.
This part contains the following chapters:
This chapter provides a basic overview of the Oracle WebLogic Server environment and information about how to run your applications on Integrated WebLogic Server. It also provides information about how to deploy your applications to the Administration Server instance of WebLogic Server for the purpose of performing end-to end testing of new applications. If you are deploying customizations or extensions, see the Oracle Fusion Applications Extensibility Guide.
This chapter includes the following sections:
The scope of this chapter is limited to what is unique in the Oracle Fusion Applications environment. For general details about Oracle WebLogic Server, references are made to the generic Oracle Fusion Middleware guides.
Deployment is the process of packaging application files as an archive file and transferring it to a target application server. You can use JDeveloper to deploy your Oracle Applications Development Framework (Oracle ADF) applications or SOA applications directly to Oracle WebLogic Server or indirectly to an archive file as the deployment target, and then install this archive file to the target server. You also can run Oracle ADF applications (but not SOA applications) in JDeveloper using Integrated WebLogic Server.
If you are using Integrated WebLogic Server, JDeveloper already provides the environment to run the application using the Run command. You do not need to create deployment descriptors or create standalone WebLogic Server domains. For more information on using Integrated WebLogic Server, see Section 52.2, "Running Applications on Integrated WebLogic Server."
If you are deploying the application to a standalone WebLogic Server instance, you must perform several tasks to prepare the application for deployment. You may need to create or edit deployment descriptors and deployment profiles to prepare the application.
Whether you are using standalone or Integrated WebLogic servers to host the application, you will need to configure the WebLogic domains for Oracle Fusion Applications. You must run the Configure Fusion Domain Wizard from JDeveloper to configure the Integrated WebLogic Server or create a property file that is used to configure standalone WebLogic Server instances. For more information about the wizard, see Chapter 2, "Setting Up Your Development Environment."
Table 52-1 describes some common deployment techniques that you can use during the application development and deployment cycle.
Table 52-1 Deployment Techniques for Development Environments
Deployment Technique | Environment | When to Use |
---|---|---|
Run directly from JDeveloper | Test or Development | When you are developing your application. You want deployment to be quick because you will be repeating the editing and deploying process many times. JDeveloper contains Integrated WebLogic Server, on which you can run and test your application. |
Use JDeveloper to directly deploy to the target application server | Test or Development | When you are ready to deploy and test your application on an application server in a test environment. For example, you can also use the test environment to develop your deployment scripts. |
Use JDeveloper to deploy to an EAR file, then use the Oracle WebLogic Server Administration console, WLST commands, or Enterprise Manager for deployment. | Test or Development | When you are ready to deploy and test your application on an application server in a test environment. As an alternative to deploying directly from JDeveloper, you can deploy to an EAR file. and then use other tools to deploy to the WebLogic Server instance. You can also use the test environment to develop your deployment scripts. |
All WebLogic Server instances within the same domain must be at the same major and minor version. Servers within a domain can be at different maintenance pack levels as long as the Administration Server Weblogic Server instance is at the same maintenance pack level or higher than WebLogic Server instances called Managed Servers. For more information about the tasks that are required, see Section 52.3, "Preparing to Deploy Oracle ADF Applications to an Administration Server Instance of WebLogic Server."
After you have performed the tasks required for standalone deployment, you can use JDeveloper to deploy directly to a WebLogic Server instance or to create an Enterprise Archive (EAR) file and deploy the EAR file using WebLogic Server Administration Console, Enterprise Manager, or WebLogic Scripting Tool (WLST) commands.
For more information on how to deploy an application directly using JDeveloper, see Section 52.4, "Deploying Your Oracle ADF Applications to an Administration Server Instance of WebLogic Server."
For more information about deploying the application using WebLogic Server Administration Console, or WLST, see the Oracle Fusion Middleware Administrator's Guide and the Oracle Fusion Middleware Administrator's Guide for Oracle Application Development Framework.
Note: This chapter discusses deploying applications. If you are deploying customizations or extension, see the "Deploying ADF Customizations and Extensions" and the "Deploying SOA Composite Customizations and Extensions" sections of the Oracle Fusion Applications Extensibility Guide. |
Before you deploy an application, you should perform the following tasks:
Example 52-1 Setting Environment Variable
A Weblogic Server instance is a configured instance to host applications, such as Web applications, Enterprise applications, and Web services, and resources, such as Java Message Service (JMS), and JDBC, Diagnostics.
There are two types of WebLogic Server instances: Administration Server and Managed Server.
The Administration Server instance is the central configuration controller for the entire domain. Its purpose is to:
Figure 52-2 Administration Server Configuration
There is only one Administration Server WebLogic Server instance in a domain, and an Administration Server WebLogic Server instance controls only one domain.
A Managed Server WebLogic Server instance is a running instance that hosts the applications and the resources that are needed by those applications. Each Managed Server WebLogic Server instance is independent of all other Managed Server WebLogic Server instances in the domain, unless they are in a cluster. You can have as many Managed Server WebLogic Server instances as you need in a domain.
The Administration Server WebLogic Server instance stores the master copy of the domain configuration, including the configuration for all Managed Server WebLogic Server instances in the domain. Each Managed Server WebLogic Server instance stores a local copy of its configuration. When a Managed Server WebLogic Server instance starts, it connects to the Administration Server WebLogic Server instance to synchronize the configuration.
In most cases, a single server environment is used for development purposes. This is where a single server acts as the Administration Server WebLogic Server instance and as the host for applications, as illustrated in Figure 52-3.
However, there are some teams that use a Managed Server for either Oracle Enterprise Scheduler (ESS) runtime or Service-Oriented Architecture (SOA). When you are setting up your standalone WebLogic server, you can choose one of the following options:
Figure 52-4 illustrates the structure of the domain directory:
You deploy applications to the Administration Server WebLogic Server instance. Only Administration Servers and Managed Servers are used in a production environment. Therefore, all your end-to-end testing should be done using the Administration Server.
There are two types of Administration Servers:
Not all components are available in both. For example, WebCenter libraries are not available in SOA and SOA libraries are not available in non-SOA. Oracle ADF applications containing UI must be deployed to the non-SOA WebLogic server, and SOA composites must be deployed to the SOA-configured WebLogic Server.
Some services have a SDO co-location requirement and need to be deployed to the SOA container. If the service must be deployed to the SOA-configured WebLogic Server, create a new EAR profile containing only that service or services from your application workspace.
For information about how to configure the SOA WebLogic Server, see Section 2.3, "Setting Up the Personal Environment for Standalone WebLogic Server."
Integrated WebLogic Server is a single server that is included within JDeveloper. You can run your applications directly on this server without needing to deploy. Integrated WebLogic Server is sufficient to run your application to make sure it displays correctly in browsers, or for testing and debugging portions of the application. However, real end-to-end testing should be done in an Administration Server instance of WebLogic Server because that is what will be used in a production environment.
Note: You cannot use Integrated WebLogic Server to run SOA applications. You must deploy SOA applications to a standalone WebLogic Server instance. For more information, see Section 52.5, "Deploying Your SOA Projects to an Administration Server Instance of WebLogic Server." |
Integrated WebLogic Server has already been configured with the Oracle Fusion Middleware Extensions for Applications (ApplCore) domain extension templates so all of the Oracle Fusion applications will run on Integrated WebLogic Server as they would in an Administration Server instance of WebLogic Server.
JDeveloper has a default connection to Integrated WebLogic Server and does not require any deployment profiles or descriptors.
When you run your application in JDeveloper using the run or debug commands, Integrated WebLogic Server starts automatically and your application runs in the target browser.
When you use JDeveloper to run an application for the first time, it automatically creates the Integrated WebLogic Server instance.
You can also start the server directly from within JDeveloper. To do this, go to the main menu and select Run > Start Server Instance.
Tip: The first time Integrated WebLogic Server starts, it tries to use the first available port in the 7101 - 7105 range. The following message appears as the first line in the Default server log in JDeveloper. You should use the alternate port for all access: HTTP port conflict detected. The HTTP port will be reassigned to port 7102. |
The server and the application are considered separate entities, so even if you stop the application, it does not stop the server. To terminate the application, select the application name from the terminate button dropdown menu in the Server Instance Log page, as shown in Figure 52-5.
To terminate the server, select the server name, as shown in Figure 52-6.
When an application is running in Integrated WebLogic Server, the Metadata Archive (MAR) profile itself will not be deployed to a repository. Instead, a simulated Oracle Metadata Services (MDS) repository will be configured for the application that reflects the metadata information contained in the MAR. This metadata information is simulated and the application runs based on their location in source control.
Any customizations or documents created by the application are written to this simulated MDS repository directory. You can keep the default location for this directory or you can set it to a different directory. You also have the option to preserve customizations across different application runs or to delete the customizations before each application run.
Before you begin, you must first create your MAR deployment profile. For information about how to create a MAR deployment profile, see Section 52.3.2, "How to Create Deployment Profiles for Standalone WebLogic Server Deployment".
To deploy a MAR deployment profile to Integrated WebLogic Server:
You must prepare the application and the WebLogic Server instance before you deploy applications to an Administration Server instance of WebLogic Server.
Before you begin:
Before you deploy the application to a standalone WebLogic Server instance, you need to:
Shared libraries are available in the integrated and standalone WebLogic Server container and your projects must be updated so that they can use a shared library.
When you create your WebLogic Server domain, all the required shared libraries should be automatically created for you. When you choose a new technology or library in JDeveloper, the weblogic.xml
and weblogic-application.xml
files are automatically updated to reference these shared libraries. If, for some reason, the required references are not created automatically, you must update the weblogic.xml
and weblogic-application.xml
files manually.
The process below shows how to reference a sample oracle.shared.library shared library in a project.
To reference a shared library into a project:
weblogic-application.xml
:weblogic-application.xml
file.library-ref
element.You can either accomplish this manually in the editor, or you can right-click the existing library-ref
element to use the copy and paste options.
library-name
element to oracle.shared.library. Leave the specification and implementation version values blank.Caution: Make sure that there are no blank spaces between the tag <library-ref> and the actual entry as they will cause problems. |
weblogic.xml
using the same steps.The deployment profiles determine how the application is bundled and deployed to Standalone WebLogic Server. When running an application within JDeveloper using Integrated WebLogic Server, these deployment profiles are not used.
Tip: When you run your application in JDeveloper Integrated WebLogic Server, these deployment profiles are not used. Instead, JDeveloper scans the entire workspace or the current working set, (if the Run Working Set option is enabled), to construct the class loader classpaths. If the data model project is eligible to be an EJB then the Libraries and Classpath entries from that project contribute to the application root class loader. The user interface project contributes to the web application class loader. |
To deploy the application, you must create deployment profiles applicable to the project or projects. The deployment profiles you need depend on your application requirements. For example, an application may include Business Components Service Interface, Web Application Archive (WAR), and MAR profiles. Once you have defined these, create an EAR deployment profile for the application.
You can only deploy the application as an EAR file at the application level. Creating EAR files from the project level are incomplete and this option is disabled. The project level deployment profiles should be included in the EAR deployment profile.
Depending on the type of projects in your application, you may need to create the following deployment profiles:
You can deploy your Oracle ADF applications to a standalone WebLogic Server instance using JDeveloper or Ant commands.
Any necessary MDS repositories must be registered with the WebLogic Server instance. If the MDS repository is a database, the repository maps to a WebLogic Server system data source with MDS-specific requirements. Before you deploy the application, make sure to target this data source to the Administration Server instance of WebLogic Server. For more information about registering MDS, see the Oracle Fusion Middleware Administrator's Guide.
Note: If you are using the WebLogic Server Administrative Console or WLST scripts to deploy an application packaged as an EAR file that requires MDS repository configuration in adf-config.xml , you must run the getMDSArchiveConfig WLST command to configure MDS before deploying the EAR file. MDS configuration is required if the EAR file contains a MAR file or if the application is enabled for Design Time at Runtime. For more information about WLST commands, see the Oracle Fusion Middleware WebLogic Scripting Tool Command Reference. |
To deploy your application using JDeveloper, you create a connection to the application server and then deploy the application.
To create an application server connection:
You can:
.jar,.war,.ear
) will be deployed..jar,.war,.ear
) will be deployed..jar,.war,.ear
) will be deployed.After you have created an application server connection and an EAR deployment profile, you can deploy the application to a standalone application server.
To deploy an application:
If the adf-config.xml
file in the EAR file requires MDS repository configuration, the Deployment Configuration dialog appears for you to choose the target metadata repository or shared metadata repositories, as shown in Figure 52-8.
The Repository Name dropdown list allows you to choose a target metadata repository from a list of metadata repositories registered with the Administration Server instance of WebLogic Server. The Partition Name dropdown list allows you to choose the metadata repository partition to which the application's metadata will be imported during deployment. For more information about managing the MDS repository, see the Oracle Fusion Middleware Administrator's Guide.
Note: If you are deploying an Oracle ADF application, do not use the Deploy to all instances in the domain option. |
http://httpHost:httpPORT/<CONTEXT>/faces/<landing jspx
For example, http://server06.us.company.com:7001/UIPatternsDemo/faces/ServiceRequest
http://server12.company.com:7001/D7Build1-ViewController-context-root/faces/TreeHomePage.jspx
You can also use the deployment profile to create an archive file (EAR file). You can then deploy the archive file using Enterprise Manager, WLST, or the Oracle WebLogic Server Administration Console.
Although an application is encapsulated in an EAR file (which usually includes WAR, MAR, and JAR components), it may have parts that are not deployed with the EAR. For instance, ADF Business Services can be deployed as a JAR.
To create an EAR archive file:
You can deploy your SOA projects using either JDeveloper or the other administration tools described in Table 52-1.
This section discusses how to deploy your SOA projects into the Administration Server instance of WebLogic Server using JDeveloper.
The basic steps to deploying your SOA project from within JDeveloper are:
You can check and run your deployed SOA project from two locations:
From Enterprise Manager on port 7001 by opening the Weblogic Hostname (Administration Server) URL for which you created the Connection, such as:
http://xyzzy-on.us.oracle.com:7001/em
After you log in, a screen similar to Figure 52-9 displays (the SOA tree in the left pane has been expanded and the first deployment has been selected):
This chapter provides information about the Oracle Content Server, Oracle Data Integrator (ODI), and Oracle Business Activity Monitoring Server repositories, which are used in Oracle Fusion Applications, and describes how to connect to each of these repositories using Oracle JDeveloper.
This chapter includes these sections:
Oracle Content Server, which serves as the base for the Oracle Universal Content Management (Oracle UCM) system, provides a web-based repository that manages all phases of the content lifecycle from creation and approval to publishing, searching, expiration, and archiving or disposition. The Attachment component enables you to add attachments to the user interface (UI) pages that you create for Fusion web applications. Before you can implement attachments at design time in JDeveloper, you must set up a content server-based content repository connection.
For more information about Attachment components, see Chapter 18, "Implementing Attachments."
For more information about Oracle Content Server, see Oracle Fusion Middleware User's Guide for Oracle Content Server.
For more information about content integration, see the "Introduction to Integrating and Publishing Content" chapter of the Oracle Fusion Middleware Developer's Guide for Oracle WebCenter.
How you create a content repository connection depends upon whether your connection is for Oracle Fusion Applications development or for ad hoc development.
To set up a content server-based repository connection from an Oracle Fusion application, you run WebLogic Server Tool (WLST) commands to synchronize the Oracle WebLogic server credential store with the Oracle Content Server credential store, and then you use the Create Content Repository Connection wizard to set up a content server-based content repository connection.
For information about using the WLST command-line scripting interface, see Oracle Fusion Middleware Oracle WebLogic Scripting Tool.
Before you begin:
Attachments-Model.jar
file exists in the application's jazn-data.xml
file, as described in Section 18.2, "Creating Attachments." When the application is deployed, the policies in jazn-data.xml
are merged into the system-jazn-data.xml
file in $DOMAIN_HOME/config/fmwconfig
on Oracle WebLogic Server.To create a connection for Oracle Fusion Applications development:
<WLS DOMAIN HOME>/config/fmwconfig/default-keystore.jks
.<WLS DOMAIN HOME>/config/fmwconfig/default-keystore.jks
file with a copy of the Oracle UCM server's domain default key store, which is located at <Oracle UCM DOMAIN HOME>/config/fmwconfig/default-keystore.jks
.On Windows, use wlst.cmd
.
The values must be wrapped in single-quotes. The wls_uri value is typically T3://localhost:7101
.
When executing the commands, replace user name and password for user with the user names and passwords that are used in the Oracle UCM credentials.
Note: If the keys do not exist, use the following commands instead: createCred(map="oracle.wsm.security", key="keystore-csf-key", user="user name", password="password for user", desc="Keystore key") createCred(map="oracle.wsm.security", key="enc-csf-key", user="user name", password="password for user", desc="Encryption key") createCred(map="oracle.wsm.security", key="sign-csf-key", user="user name", password="password for user", desc="Signing key") exit() |
Create Connection In: Select Application Resources.
Connection Name: Enter FusionAppsContentRepository
.
Repository Type: Select Oracle Content Server.
Set as Primary Connection for Document Library: Select this check box.
Configuration Parameters: Enter values for the parameters listed in Table 53-1. If a parameter is not listed in the table, leave the value blank.
Contact your system administrator to obtain the correct information.
Table 53-1 Example Configuration Parameters
Parameter | Value |
---|---|
RIDC Socket Type |
|
Admin Username | The name of a user who has been granted administration privileges on the Oracle UCM server. |
Web Server Plugin | The idcnativews web service that is defined on the Oracle UCM server. This is typically |
Authentication Method: Select Identity propagation.
Success!
Note: If the test is unsuccessful, verify that the values that you entered are correct and try again. |
Sometimes you might need a quick connection for prototyping or assessment purposes and you do not want to use the central Oracle UCM environment. In this situation, you use the Create Content Repository Connection wizard to create a connection in your own environment.
Before you begin:
Attachments-Model.jar
file exists in the application's jazn-data.xml
file, as described in Section 18.2, "Creating Attachments." When the application is deployed, the policies in jazn-data.xml
are merged into the system-jazn-data.xml
file in $DOMAIN_HOME/config/fmwconfig
on Oracle WebLogic Server.Contact your system administrator to obtain this information.
To set up a content repository connection for ad hoc development:
The Create Content Repository Connection wizard is displayed, as shown in Figure 53-3.
Create Connection In: Select Application Resources.
Connection Name: Enter the appropriate name for this connection.
Repository Type: Select Oracle Content Server.
Set as Primary Connection for Document Library: Select this check box.
Configuration Parameters: Enter values for the parameters shown in Table 53-2. With the exception of the RIDC Socket Type parameter, all values shown are examples only. If a parameter is not listed in the table, leave the value blank.
Contact your system administrator to obtain the correct information.
Table 53-2 Example Configuration Parameters
Parameter | Value |
---|---|
RIDC Socket Type | socket |
Server Hostname | abc.example.com |
Content Server Listener Port | 4444 |
Authentication: Select External Application. Click the Add icon and complete the following information to create a new External Application:
Login URL: Paste the URL for the Oracle UCM Server login page. (Contact your system administrator for this information). For example:
http://abc.example.com:2244/abc/abcplg?AbcService=LOGIN&Action=GetTemplatePage&Page=HOME_PAGE&Auth=Internet
User Name/ID Field Name: Enter the field name for the user name or ID, such as username
.
Password Field Name: Enter the field name for the password, such as password
.
Tip: The User Name and Password field names are derived from the HTML input field names. |
Complete the following information:
Specify Shared Credentials: Select this checkbox.
User Name and Password: Enter the Shared Credentials user name and password. (Contact your system administrator for this information).
Click Next to continue to Step 5.
Complete the following information:
Specify Public Credentials: Select this checkbox.
User Name and Password: Enter the Shared Credentials user name and password. (Contact your system administrator for this information).
Click Finish to save your entries, create the External Application, close the wizard, and return to the Create Content Repository Connection page.
Authentication: Choose the newly created External Application from the dropdown list.
Note: If the test is unsuccessful, verify that the values that you entered are correct and try again. |
Exceptions can occur when the connection is improperly configured. The three most common exceptions are the following errors:
For more information, see the "Diagnosing Problems" chapter in the Oracle Fusion Middleware Security and Administrator's Guide for Web Services.
If you are sure that the user is a member of the AttachmmentsUser role, then you must consult logs for the cause of the insufficient privileges error message. The most common cause is a blank or invalid signature, but this exception can be the consequence of several different misconfiguration issues.
To diagnose the problem, enable applications logging for the oracle.apps.fnd.applcore.attachments.model.%
module with a logging level of FINEST. Search the application log files for the string "Unable to generate digital signature". The stack trace might indicate the cause. For example, if it reports that the "Key store has been tampered with, or the password is wrong", verify that the password in credentials store for the application's server domain matches the password in the credentials for the content server's domain. If the stack trace reports "Access Denied", verify that the code grants described in Section 18.2, "Creating Attachments" have been added to the jazn-data.xml
file. For information about applications logging, see the "Introduction to Troubleshooting Using Incidents, Logs, QuickTrace, and Diagnostic Tests" chapter in the Oracle Fusion Applications Administrator's Guide.
If your search through the application logs does not find an "Unable to generate digital signature" string, the cause might be that the content server cannot verify the digital signature. To diagnose the problem, set up tracing for fusionappsattachments
, as described in the "System Audit Tracing Sections Information" section in the Oracle Fusion Middleware System Administrator's Guide for Oracle Content Server. Be sure to enable full verbose tracking and enable save. Access the system audit information server output and search for XFND_SIGNATURE
, as described in the "System Audit Information" section in the Oracle Fusion Middleware System Administrator's Guide for Oracle Content Server. A blank signature indicates that the signature was not generated by the Oracle Fusion application. If the signature is not blank and the "$DefaultCheckinSigningScheme: Signature Verification Failed" message exists, the cause might be that the credentials for the application's server domain do not match the credentials for the content server's domain and you need to repeat the connection steps described in this section for the appropriate application type.
The common cause for the WS-Security header processing exception is that global policy attachment (GPA) has not been set up.
The following exception typically indicates that the code grants described in Section 18.2, "Creating Attachments" have not been added to the jazn-data.xml
file or have not been merged into the system-jazn-data.xml
file in WebLogic_domain/config/fmwconfig
on Oracle WebLogic Server.
Oracle Data Integrator (ODI) combines all the elements of data integration—data movement, data synchronization, data quality, data management, and data services—to ensure that information is timely, accurate, and consistent across complex systems.
ODI is built on several components all working together around a centralized metadata repository. The ODI architecture is organized around a modular repository, which is accessed in client-server mode by components.
The Oracle Fusion Applications ODI repository consists of a master repository and and a work repository. The master repository contains the security information, the topology information (definitions of technologies and servers), and the versions of the objects. A work repository stores information for:
You use Oracle Data Integrator Studio to access the repositories; administer the infrastructure; reverse-engineer the metadata; develop projects; and perform scheduling, operating, and monitoring executions.
To learn how to connect to the ODI master and work repositories, see the "Administering the Oracle Data Integrator Repositories" chapter in the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator.
For information about the role of ODI in securing Oracle Fusion applications, see Section 46.1.1.7, "Oracle Data Integrator,"
Oracle Business Activity Monitoring (Oracle BAM) provides an active data architecture that dynamically moves real-time data to end users through every step of the process. This solution actively collects data, applies rules designed to monitor changes, and delivers the information in reports to users.
For more information about Oracle Business Activity Monitoring, see Oracle Fusion Middleware User's Guide for Oracle Business Activity Monitoring.
You must create a connection to an Oracle BAM Server to browse the available data objects and construct transformations while you are designing your applications. When the application is running, the Oracle BAM Server connection is used to publish data to the Oracle BAM data objects. Only one Oracle BAM Server connection per BPEL project is currently supported.
When building an application in JDeveloper, the methods of connecting to the Oracle BAM server are:
You use the BAM Connection wizard to create an Oracle BAM connection.
Note: Do not create an Oracle BAM Server connection through the Resource Palette that displays when you select View > Resource Palette. Create Oracle BAM Server connections from the Application Resources panel, either directly or by copying an existing connection from the Resource Catalog. |
To create an Oracle BAM connection:
BAM Web Host: Enter the name of the host on which the Oracle BAM Report Server and web server are installed. In most cases, the Oracle BAM web host and Oracle BAM server host are the same.
BAM Server Host: Enter the name of the host on which the Oracle BAM Server is installed.
User Name / Password: Enter the Oracle BAM Server user name and password. The user name is typically bamadmin.
HTTP Port: Enter the port number or accept the default value of 9001
. This is the HTTP port for the Oracle BAM Web Host.
JNDI Port: Enter the port number or accept the default value of 9001
. The Java Naming and Directory Interface (JNDI) port is for the Oracle BAM report cache, which is part of the Oracle BAM Server.
Use HTTPS: Select this option if you want to use HTTP with Secure Sockets Layer (HTTPS) to connect to the Oracle BAM Server during design time.
The Oracle BAM Adapter is a (Java EE Connector Architecture) JCA-compliant adapter, which can be used from a J2EE client to send data and events to the Oracle BAM Server. The Oracle BAM Adapter supports the following operations on Oracle BAM data objects: inserts, updates, upserts, and deletes. The Oracle BAM Adapter can perform these operations over EJB calls or over Simple Object Access Protocol (SOAP), all configurable in Oracle JDeveloper.
The Oracle BAM Adapter supports batching of operations, but behavior with batching is different from behavior without batching. In general, the Oracle BAM sensor action is not part of the BPEL transaction. When batching is enabled, BPEL does not wait for an Oracle BAM operation to complete. It is an asynchronous call.
When batching is disabled, BPEL waits for the Oracle BAM operation to complete before proceeding with the BPEL process, but it will not roll back or stop when there is an exception from Oracle BAM. The Oracle BAM sensor action logs messages to the same sensor action logger as BPEL.
The Oracle BAM adapter provides three mechanisms by which you can send data to an Oracle BAM server in your SOA composite application as you develop it in Oracle JDeveloper.
For more information about the Oracle BAM Adapter in a SOA composite application, see the "Integrating Oracle BAM With SOA Composite Applications" chapter in the Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.
You can create sensor actions in Oracle BPEL Process Manager to publish sensor data as data objects on an Oracle BAM Server. When you create the sensor action, you can select an Oracle Application BPEL Process Manager variable sensor or activity sensor that you want to get the data from, and also the data object in Oracle BAM Server in which you want to publish the sensor data.
For more information about integrating sensors with Oracle BAM, see the "Integrating Oracle BAM With SOA Composite Applications" chapter in the Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.
This chapter describes how to define a profile, which is a set of changeable options that affect the way your application looks and behaves. Profiles control how Oracle Fusion Applications operate for users by the values that are set. Profiles can be set at different levels depending on how the profiles are defined.
This chapter includes the following sections:
Profiles are permanent user preferences and system configuration options. They allow for the centralized management of configuration data but with sophisticated, customized user, security, and session-context access to the values. The Profile Service application programming interface (API) provides the access to profile values.
Hierarchies enable system administrators to group and set profiles according to their business needs. The hierarchy is fixed in the profile definition, you cannot just randomly mix and match the levels. For more information about profile levels, see Section 54.4, "Managing Profile Definitions."
Users may be able to set their own profile options, depending on settings in the profile definition. However, not all profiles are visible to end-users, and some profiles, while visible, may not be updated by end-users.
Categories can be used to group profiles based on their functional area. Administrators can categorize profiles and then easily search on profiles by category.
When to define a profile:
Every Oracle application registers task flows with a product called Oracle Fusion Functional Setup Manager. Functional Setup Manager provides a single, unified user interface that allows customers and implementers to configure all Oracle applications by defining custom configuration templates or tasks based on their business needs.
The Functional Setup Manager user interface (UI) enables customers and implementers to select the business processes or products that they want to implement.
Function Security controls your privileges to a specific task flow, and users who do not have the required privilege cannot view the task flow. For more information about how to implement function security privileges and roles, see Chapter 49, "Implementing Function Security."
For more information about task flows, see theOracle Fusion Applications Common Implementation Guide.
Table 54-1 lists the task flows related to profiles and their parameters.
Table 54-1 Profiles Task Flows and Parameters
Task Flow Name | Task Flow XML | Parameters Passed | Behavior | Comments |
---|---|---|---|---|
Manage Administrator Profile Values | /WEB-INF/oracle/apps/fnd/applcore/profiles/ui/flow/ManageAdminProfileValuesTF.xml#profileValues_task-flow-definition | mode='search' [moduleType] [moduleKey] [categoryName] [categoryApplicationId] mode='edit' profileOptionName [pageTitle] | Search and edit all profile values for a system administrator. To search all profiles, do not pass any parameters. To search all profiles in a module, pass moduleType/moduleKey To search all profiles in a category, pass categoryName/categoryApplicationId. moduleType/moduleKey and categoryName/categoryApplicationId are mutually exclusive and cannot be passed in together. | Search and edit all profile values for a system administrator. To search all profiles, do not pass any parameters. To search all profiles in a module, pass moduleType/moduleKey To search all profiles in a category, pass categoryName/categoryApplicationId. moduleType/moduleKey and categoryName/categoryApplicationId are mutually exclusive and cannot be passed in together. |
Manage Profile Categories | /WEB-INF/oracle/apps/fnd/applcore/profiles/ui/flow/ManageProfileCategoriesTF.xml#profileCategories_task-flow-definition | mode='search' [moduleType] [moduleKey] mode='edit' name applicationId [pageTitle] | Search and edit profile categories. To search all profile categories, do not pass any parameters. To search all profile categories in a module, pass in moduleType/moduleKey. To edit a specific profile category, pass in name/applicationId. | Search and edit profile categories. To search all profile categories, do not pass any parameters. To search all profile categories in a module, pass in moduleType/moduleKey. To edit a specific profile category, pass in name/applicationId. |
Manage Profile Options | /WEB-INF/oracle/apps/fnd/applcore/profiles/ui/flow/ManageProfilesTF.xml#profiles_task-flow-definition | mode='search' [moduleType] [moduleKey] mode='edit' profileOptionName [pageTitle] | Search and edit profile definitions. In 'search' mode: To search all profile options, do not pass any parameters. To search all profile options in a module, pass in moduleType/moduleKey. In 'edit' mode: To edit a specific profile option, pass in profileOptionName. If mode is not explicitly passed, the default is 'search'. | Search and edit profile definitions. In 'search' mode: To search all profile options, do not pass any parameters. To search all profile options in a module, pass in moduleType/moduleKey. In 'edit' mode: To edit a specific profile option, pass in profileOptionName. If mode is not explicitly passed, the default is 'search'. |
You can set profile values using the Setup UI, and access them programmatically or by using expression language.
You can use the Profile Option Values page to view the profile values. The page is shown in Figure 54-1.
Notes:
|
To view or edit profile values:
Note: You can also select Reset to clear your entries and start again, or Save to save the entries for a future search. |
Create a new row for every value set for this profile for every level/level value pair. The Profile Value is the value that has been defined in the profile definition's SQL Validation.
The ProfileServiceAM
API can be found in the following package:
Before you can use this profile, you must add the Applications Core library to your Model project. For more information, see Section 3.3, "Adding the Applications Core Library to Your Data Model Project."
To access profile values programmatically:
Import the Profile class and call the Profile.get()
method to get the values for the profile name provided.
For example:
Accessing a profile value using expression language (EL) simply requires defining the oracle.apps.fnd.applcore.Profile
managed bean with the name Profile
in the adfc-config.xml file at requestScope
. See Figure 54-2.
Once the bean is defined, you can refer to any profile value as:
You can update profile definitions using either Functional Setup, or a standalone "super-web" type UI Shell page that embeds calls to the task flow directly in the menu.
When defining profile definitions you also define profile levels, which are part of a hierarchy. When working with profile levels, carefully consider the levels you enable for your profiles. Only enable them at the levels that make sense. You do not want end-users changing settings for profiles that they do not understand. At this time, only the following hierarchy is available:
As most profiles are user preferences and can potentially be set at these three levels, this is the default hierarchy. Profiles can be set at one or more levels.
Note: A higher-level profile value overrides a lower-level value. |
Table 54-2 describes how profile settings are used:
Table 54-2 Profile Settings
Hierarchy | Level | Profile Setting |
---|---|---|
1 (Lowest) | Site | All users at an installation site. |
2 | Product | This level is intended to be the product owning the current code module. The product level is only available if it has been set on the session. Typically this is in a servlet filter, but it may be in other places in other technologies. |
3 (Highest) | User | An individual user, identified by their UserID (UserGUID) for the current session. |
When a profile is set at more than one level, Site has the lowest priority, superseded by Product, with User having the highest priority. A value entered at the Site level may be overridden by values entered at any other level. A value entered at the User level has the highest priority and overrides values at any other level.
For example, assume the Printer profile is set only at the Site and Product levels. When a user logs on, the Printer profile assumes the value set at the Product level, since it is the highest -level setting for the profile.
Tips:
|
You can use the Profile editor to update profile definitions. Figure 54-3 shows the Manage Profiles Options page.
To edit profile definitions:
Enabling the profile for end-user access allows the user to set their own values.
Note: The Enabled and Updateable check boxes determine whether or not you can read or write (respectively) values at that level. |
Note: Deleting a Profile Option level (or never creating one) is effectively the same as disabling it. |
When registering a new profile option for a profile definition, one of the key properties is the SQL validation property. If the values for a profile option are limited to a discrete list from which to choose, the SQL validation property must be set.
Grouping profiles into categories makes them easier to find because Category is the main driver when searching for profiles. Group profiles into categories that make sense, such as categories based on their functional areas. Categories can be used to search for related profiles in the Administration UIs and also for defining data security rules. You can use the Manage Profile Categories editor to add new categories or add profiles to an existing category.
The grouping is many to many, which means that profiles can be in more than one category and categories can have more than one profile. The basic guideline for grouping profiles is that profiles affecting the same feature, or profiles an Administrator would likely want to see at the same time, should all be in the same category. Oracle seeds a number categories out of the box; customers are free to create their own or edit those that are shipped.
Like profile definitions, you can manage profile categories using either Functional Setup, or a standalone "super-web" type UI Shell page that embeds calls to the task flow directly in the menu.
To manage profile categories:
This chapter discusses the Seed Data Loader and using it from within Oracle JDeveloper.
This chapter includes the following sections:
Application Seed Data is the essential data to enable Oracle Fusion applications. Some examples include static lists of values, functional or error messages and lookup values. Seed data is generally static in nature, although it is possible for customers to customize some seed data values after delivery. Any non-transactional data values loaded into a database at customer delivery time can be considered seed data.
Seed data is extracted from Oracle development databases at design time into external files. These files are delivered to the customer and uploaded to the customer's database. Seed data can be delivered and installed at any point in the application lifecycle, such as for a new installation, a major or minor release upgrade, or a patch/change delivery.
Applications that manage seed data need to have a certain amount of knowledge about the seed data. This is so that data to be recreated on the target database is loaded to the correct tables, while preserving referential integrity. This seed data knowledge, or seed meta-data, also needs to be delivered in some form along with the extracted seed data files. This meta-data drives how the data is extracted and uploaded.
The Seed Data Utility, which runs only under JDeveloper, will provide data extraction from the development instances of Oracle Fusion applications. It will also load the extracted data to the customer database instances of Oracle Fusion applications, by integrating with Oracle Fusion Applications Patch Manager.
Note: Each entity type, such as Profile and Messages, will have its own dedicated utility. See Table 55-1, "Available Seed Data Loaders". |
The Seed Data Extract and Upload processes are run directly from the Seed Data-configured Oracle Application Development Framework (Oracle ADF) Business Components Application Modules. The Seed Data Configuration, Extract, and Upload processes are all run from within JDeveloper, the same development environment in which the Business Object components are defined.
The Seed Data Framework is delivered as a plug-in extension to the JDeveloper environment. The Seed Data Framework is installed by default; there are no other installation or setup steps to perform to begin using the Seed Data Framework tasks. There are support libraries that need to be present in the Business Component project class path before running the Seed Data tasks See Section 55.2.2, "How to Set Up the Seed Data Environment".
Available Seed Data Loaders
The loaders and view objects listed in Table 55-1 are supported.
Legend
Table 55-1 Available Seed Data Loaders
Loader | View Object | Is the Module Striped? |
---|---|---|
| FndDocumentEntitiesVL | N |
| FndDocumentCategoriesVL | Y |
Note: Before running this loader, you need to run the first two loaders listed in this table that have the FndDocumentEntitiesVL and the FndDocumentCategoriesVL view objects. | FndDocCategoriesToEntitiesVO | N |
| FndMenus | Y |
| FndGrants | Y |
| FndObjects | Y |
| FndFormFunctions | Y |
| There are four separate VOs for this, one for each determinant type:
Use the loader appropriate for the determinant type of your sequence, or all four if you want to download all document sequences for all determinant types. | Y |
| DocSequenceCategories | Y |
| DocSequenceAudit | N |
| DocSequenceUsers | N |
| Category | N |
| DescriptiveFlexfield | Y |
| DescriptiveFlexfieldSecondaryUsage | Y |
| KeyFlexfield | Y |
| KeyFlexfieldSecondaryTableUsage | Y |
| ValueSet | Y |
| LookupView1 | Y |
| StandardLookupType1 | Y |
| CommonLookupType1 | Y |
| SetIdLookupType1 | Y |
| Message | Y |
| Currency | N |
| IsoLanguage | N |
| Language | N |
| NaturalLanguage | N |
| Territory | N |
| Timezone | N |
| ProfileCategory | Y |
| ProfileHierarchy | N |
| ProfileLevel | N |
| ProfileOption | Y |
| Industry | N |
| SetIdSet | N |
| SetIdSummary | Y |
| SetIdAssignment | N |
| SetIdReferenceGroup | Y |
| FndTreeStructure | Y |
| ApplTaxonomyVO | Special case - all the data extracted into a single file. |
| ApplTaxonomyHierarchyVO | Special case - all the data extracted into a single file |
| ApplTaxonomyPVO | |
| ApplTaxonomySeedDataVO | |
| ApplTaxonomySeedDataPVO | |
| ApplTaxonomyComponentsVO | Y |
| ApplTaxonomyNodeComponentsVO | Y |
| FndTree | N |
| FndDiagTag | Y |
| FndDiagTest1 | Y |
To set up the Seed Data environment:
Follow these steps in JDeveloper before starting the Seed Data Framework tasks:
Seed Data user interface tasks are run from within a JDeveloper Business Components project.
The wizard is the graphical user interface tool used to configure Application Modules for Seed Data.
To launch the Seed Data Configuration Wizard, right-click the application module name in the Application Navigator tree view, and select Seed Data > Configuration > Edit as shown in Figure 55-1.
Note: If the seed application module in use is derived from a subclass of OAApplicationModuleImpl , that sub-class and its dependencies, if any, should be made available in compiled form using the Libraries/Classpath feature of JDeveloper. If this step is not done, extract/upload will fail. |
The Seed Data Configuration wizard launches and displays the Driver Definition Panel.
This panel, shown in Figure 55-2, initially shows the available view objects in the root level of the application module data model that can serve as Driver view objects.
The Container Panel, as shown in Figure 55-3, shows the contained and reference relationships of the Driver view object. Also shown are the underlying table names that will be extracted from and updated to during the Extract and Upload processes.
View object relationships: The tree displays the model of the Seed Data Configuration. Relationships between the view objects are displayed. The relationship is either contained or just a reference. View links between the view objects that are based on Associations marked explicitly as Composition Association are shown as contained. Seed Data operations will be performed for all the view objects that are identified as contained.
Foreign key relationships are called reference relationships. They are identified by the existence of a view link between view objects backed by non-composite entity associations, or no entity associations at all, or a join between two entity objects (the referred entity object is marked as Reference in the View Definition) and a List of Values on the name field.
Tables Information: The list shows the tables that are updated during Seed Data upload. A non-editable list of tables is generated based on the declared data model indicated by a Source column value of Model. The Type column indicates whether the table is just Referenced or Updated. These tables and the explicitly added tables with Type Updated will be frozen for (near) Zero-Downtime patching.
Table Freeze involves making the table in the Production edition read-only and creating a replacement table in the Patch edition. The list of seed tables that will be inserted, updated or referenced during seed data upload is provided as metadata to the patching utility. This is auto-generated by the Configuration wizard by inspecting the underlying entity objects and base tables for a given driver view object.
If the entity objects of the configuration are not ADF Business Components-based, or custom insert/updates exist (such as through PL/SQL code), the seed data framework will not be able to accurately determine the set of tables participating in the seed data upload. In such cases, the seed data framework will not be able to accurately determine the set of tables to be frozen. The owner of the seed application module is required to declare the additional tables in the container panel. Failure to review and declare tables (such as by specifying a list that is incorrect or incomplete) that are participating in seed data upload is likely to cause data invalidation or corruption, as some tables will not be frozen and the Production Instance will directly be aware of seed data upload changes that should be limited to Patch Instance. Patch rollback could also leave orphan records in these cases.
Use the Add and Remove buttons to add or remove additional tables that are affected from the list. The list of updated tables is for information only. This information is used during patch application.
Table Name: This column shows the name of the table that is affected during Seed Data upload.
View Name: Name of the ADF Business Components view object where this table is declared. This column can also contain the name of the Java class or PL/SQL procedure which would be used for seed data upload.
Source: Shows the source of this definition. The value of M is reserved to indicate that the Table Name is derived from the ADF Business Components Model. You can define your own definitions for additional table entries.
Type: This column shows the update type of the definition. A value of Updated indicates that the definition table will be Updated at Seed Data Upload time. A value of Referenced indicates that this is a Referenced table only, and will not be updated by Seed Data Upload.
Click the Surrogate Panel.
Use the Surrogate Panel, shown in Figure 55-4, to declare surrogate attributes of the view objects of the Seed Data Configuration.
The tree displays the model of the Seed Data Configuration. View objects can be selected in the tree to declare a surrogate attribute of the selected view object.
Note: If you have an entity object with a Surrogate Id that is involved in a parent-child relationship, but you are not able to view/select that Surrogate Id on the Surrogate panel, check the data model and confirm that you have checked the composition check box for that association. See the "Creating and Configuring Associations" section of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework |
Surrogate Attribute – Available: The left panel lists the attributes of the selected view object that can possibly be a surrogate attribute. The list will include primary key (PK) attributes that are of data type numeric.
Surrogate Attribute: The list on the right contains the attribute of the view object that has been identified as a Surrogate Attribute.
Alternate Key: Select the Alternate Key that will be used as the unique row identifier for the selected view object. The Alternate Key choice is based on the Alternate Keys available on the entity object of the selected view object. If the PK has many attributes and one of them is being marked as a surrogate, all the other attributes in the PK, except the one being marked as surrogate, must be included in the alternate key for that alternate key to be displayed in the list.
For Date Effective models, the above rule has been relaxed so that Effective Start Date, Effective End Date, Date Effective Sequence and Date Effective Flag are not required to be in the alternate key, even if they happen to be in the PK to appear in the list.
To declare an attribute as a Surrogate Attribute:
Click Reference Panel.
Use the Reference Panel, shown in Figure 55-5, to declare the Data Upload Mode for the Seed Data Configuration. Provide reference information on reference view objects.
The tree displays the model of the Seed Data Configuration. Reference view objects can be selected in the tree to declare information about the Seed Data Configuration of the referred view object. All the external references must be specified for the patch to succeed.
Note: If there are any Service Foreign Key LOVs defined in your model, review the different scenarios in Table 55-2, "Service Foreign Key LOV Scenarios" and verify that the steps listed for the scenario corresponding to your FK LOV are followed. Failure to follow the instructions in the document can cause problems during Seed Data Extract and Upload processes. |
Table 55-2 Service Foreign Key LOV Scenarios
Scenario | What needs to be done |
---|---|
#1: Single attribute Foreign Key and single attribute Alternate Key (Example: PersonVO has Deptno and Dname. Deptno is the foreign key ID, and Dname is the foreign alternate key.) | An LOV should be defined on the alternate key attribute, with the foreign key ID as a derived attribute.
|
#2: Single attribute Foreign Key and multiple attribute Alternate Key (Example: PersonVO has OrganizationId as foreign key ID, and OrganizationName+BusinessGroupName as the composite alternate key.) | Each alternate key attribute needs to have an LOV defined, and each LOV should have all the alternate key attributes as the driving attribute, and the foreign key ID as the derived attribute.
|
#3: Single attribute Foreign Key and multiple attribute Alternate Key and one of the alternate key attributes is another foreign key. (Example: PersonVO has BirthOfCountry as foreign key ID, and BirthOfCity as another foreign key ID. BirthOfCity has BirthOfCountry+CityName as a composite alternate key.) | The first foreign key (BirthOfCountry) needs to be resolved first, either based on Scenario #1 or #2. Then the second alternate key should filter by the first alternate key.
|
#4: Composite foreign key | Each foreign key ID will be dealt with individually. For example, the foreign key id is OrgId+SourceId, then orgId and SourceId should be resolved based on solution in #1 or #2 or #3 separately. Then a validator needs to be defined to make sure combination of OrgId and SourceId is valid. This has the assumption that each individual attribute are a primary key itself. |
Note: A UI-only LOV can be defined without a derived attribute. The Seed Data Framework normally would ignore such an LOV and no external reference metadata would be generated for it. In some cases, it might be desirable to let the Seed Data Framework treat such an LOV as a regular LOV with derived attribute(s). To do this, you need a "fake" derived attribute defined on the LOV. For example: LinesStatusEO(LineStatusId, StatusCode) StatusEO(StatusCode)
|
Use the Seed Data Extract Manager tool to extract seed data from the pre-configured Application Modules. The generated extract files are partitioned by the module owner. Data can be filtered during extract time to limit the number of data files generated.
Note: If you change the name of a seed data file after Extract, you also must manually update any references to that file name also. Otherwise, proper ordering for Upload during patching run time for the files will not work as expected. So long as the physical file names and the names in task references match, the patching utilities will sequence the seed data tasks correctly. |
The Seed Data Extract is driven off the Driver view object, as defined in the application module Configuration. This Driver view object serves as the root of the extract, and any contained child objects are extracted as containing data. Only one Driver view object is active during the Extract process.
There are two methods of starting a Seed Data Extract process:
To launch the Seed Data Framework Console from JDeveloper:
The Seed Data Console is the graphical user interface (GUI) tool used to run both Extract and Upload Seed Data tasks. The Console also can be used to view the underlying table data for the view objects of the application module data model.
Right-click the application module name in the Application Navigator tree view and select Seed Data > Extract to launch the Seed Data Framework Console, as shown in Figure 55-6.
If there are multiple database connections in the workspace, the Seed Data Console – Select Database dialog, shown in Figure 55-7, displays.
Although this is not the normal case, if a developer needs to debug data on two different databases, this lets him or her choose which one to use.
Select from the list of database connections available to the project. The default selected database is the default connection set on the Project Properties, under Business Components.
Click OK to launch the Seed Data Console with the selected connection information.
The Seed Data Console main page, as shown in Figure 55-8, displays.
The tree view shows the selected application module name as the root node, and each of the configured Driver view objects as child nodes under the root. Only Driver view objects as configured by the Seed Data Configuration wizard will show in this view.
The right side of Console is the output area, where processing messages of Seed Data tasks are displayed.
Note: The Seed Data Console does not specify the last applied version of the seed data file. As a result, users always will see a warning message indicating incremental uploads have been turned off. This is harmless and can be ignored. In the log, the warning will appear similar to:
|
To start a Seed Data Extract operation, right-click the Driver view object from which you want to extract and select Extract Seed Data from the context menu, as shown in Figure 55-9.
The Select Extract Path dialog, shown in Figure 55-10, displays.
Type a directory path location in the File Name text box, or browse to an existing location using the directory browser. The directory location need not necessarily exist when typing a new name, as the directory paths will be created as needed during the Extract process. The Extract directory path selected is used as the Seed Data Extract Root for the generated extract files.
Seed Data Extract uses selection dialogs for Taxonomy partitions.
Functional Design
When starting the Extract process, if a Taxonomy Partition Attribute is found in the Driver view object, Extract will show the Taxonomy Partition selection dialogs. See "Determining the Taxonomy Partitioning Attribute" for steps taken by Extract to find the Taxonomy partition attribute, if any.
Taxonomy Products Dialog
The Select Application Taxonomy Product Modules, as shown in Figure 55-11, will display a fixed list of all the Taxonomy products enabled for use with the Seed Data Framework. If the list of products for which seed data extract needs to happen is known beforehand, users can pick them from the list of available products. Optionally, click Filter to filter the list of products to show only those products and Logical Business Area (LBA) modules for which records exist in the selected view object. Occasionally, when there are a large number of records involved, the it might take a while to filter the list of products.
If any Products or LBAs are selected that are not actually available in the view object, no attempt is made to extract for that partition. This is done by applying implicit Partition criteria, binding for each selected partition, and verifying at least one row exists for the Partition row set before attempting to extract.
For internal development test cases and debugging for Extract, you will need to know which partitions are available. To do so, you have to select the ModuleIds from the driver and discover which Product that ModuleId equates to from the Taxonomy table. If the driver view object moduleId is an LBA, you also will need to know under which Product that LBA falls; this involves selecting from the Taxonomy hierarchy table.
An alternate method is to just select all the Products and all the LBAs when prompted by the dialog. Then extract files are created for only those modules that actually exist. This will be a little slower, since building the complete LBA list from all Products can take a few seconds or longer. Then each selected partition is bound to determine the availability. This will not be the typical Applications use case, as developers will know which Products to select. It is necessary in a development case in which the Products are not known.
LBA Taxonomy Partitions
After selecting the Products, the second dialog, Select Application Taxonomy LBA Modules, may or may not be shown. If the selected Products were parents of explicitly available seed-enabled LBA modules, all the available LBAs for the selected Products are shown. Again, only LBA module types found in the driver view object rows, and set as Seed Enabled in the Taxonomy Service, are shown in the list.
If the selected Products were not parents, or there are no LBAs available, no LBA selection dialog is shown, and Extract is started for all the selected Products.
For the LBA selection dialog, the full LBA taxonomy path is shown, showing any parents of subLBAs, and the parent Product short name. Again, the user selects the desired LBA values by shuttling values to Selected.
Figure 55-12 shows the Select LBA Taxonomy Partitions dialog showing all the available LBAs found for the previously selected Receivables (AR), Payments (IBY), and Human Resources (PER) Products.
Extract Processing
After selecting LBAs, Extract proceeds to extract selected LBAs and selected base (non-parent) Product types, if any. Each Product and LBA type name value corresponds to a unique Extract file. Each Extract file will contain all rows containing the Taxonomy Partition Attribute (ModuleId or ApplicationId) value corresponding to each selected type.
Extract files are placed in folders according to the taxonomy path, starting at the Product short name, and including any LBAs and subLBAs as subdirectories. All the Extract file names follow the same pattern: <driver view object name>SD.xml
.
Figure 55-13 shows a sample output selecting the three Receivable (AR) LBAs, creditCardErrors, customerProfileClasses, and miscellaneousReceipts, and General Ledger (AR) and Opportunity Management (MOO) Applications. The applications, AR and MOO, were explicitly defined in the entity, and contained no child LBAs.
Determining the Taxonomy Partitioning Attribute
The Taxonomy Partition Attribute on the Seed Driver view object is determined in the following manner, in order of precedence:
ModuleId
attributeApplicationId
attributeSingle File Implicit Partitioning
If no driver view object attributes pass above, single file implicit partitioning will be used and all rows will be extracted to a single extract file. In this case, no taxonomy partitioning dialogs will be shown.
The taxonomy owner for the corresponding file path is determined from the ApplicationModule package name.
For example, extracting from oracle.apps.fnd.lookups.service.FndLookupsAM will create the extract file in the FND folder under the user-specified extract root path.
Extract Manager Support for Seed Data File Dependencies
The Extract function adds metadata of the file on which the current file is dependent.
For example, the metadata shown in Figure 55-13 would be added using adxml comments for the case where the current file is dependent on it.
Example 55-1 Sample Metadata Using ADXML Comments
adxml are the comments added to the extract file at the beginning of the file. They are the same as normal xml comments except they have adxml:
prepended to the commented text.
Extract gathers this information by using the Reference view object from Reference application module. Reference application module is configured by the user in the Reference panel of Seed Data Configuration. See Figure 55-5.
This information is used by the Patching Utility to create the order in which the files need to be uploaded so that the Reference data is available before the Referring data is loaded.
Static File Dependencies
For the cases where dynamically finding the file dependencies is not possible, or dynamic dependencies are not complete, you can set static file dependencies using an application module custom property for a view object instance, as shown in Table 55-3.
All files extracted from that view object would have the dependencies stamped in adxml comments.
Table 55-3 Application Module Custom Property for a View Object Instance
Application Module Custom Property Name | Value | Example |
---|---|---|
| <product>:<path>:<filename>, <product>:<path>:<filename>,.. The static dependent file location consists of three parts separated by colons:
Multiple static external references should be separated by a comma. | Property: SD_DEPENDENT_FILES_TimeDefinition1 Value: HCM:HCM/Per:LookupsSD.xml,FND:FND:ValueSetSD.xml |
Turning Off Dynamic File Dependency Generation
You can turn off the dynamic file dependency generation by defining the custom property shown in Table 55-4 on the application module.
Table 55-4 Property to Turn Off Dynamic File Dependency
Application Module Custom Property Name | Value | Example |
---|---|---|
| true | Property: SD_NO_DYNAMIC_EXT_REFS_FndObjects Value: true |
Output Log Level
The Log Level for the Seed Data tasks is used to increase or decrease the amount and type of log messages generated during processing. The default Log Level is set to INFO. This will display generated severe errors, warnings, and informational processing messages. To limit the number of log messages generated, set the log level higher, to Severe or Warning. To see more processing messages generated for debugging purposes, set the Log Level to a lower level. Set the Log Level to FINEST to see the most processing messages generated. These messages will generally only be useful to developers.
The Seed Data Extract process can also be initiated externally from JDeveloper using the Command Line Interface (CLI). Seed Data Extract command line parameters can be passed using one of two methods:
Extract Seed Data Java Command Line Syntax
Command Property File
The command property file is an external file that contains the command line properties in standard Java Properties format for each of the required and optional Extract command line properties. The format can be name=value, or name:value.
Seed Data Extract Command Line Parameters
The available Seed Data Extract parameters are listed in Table 55-5.
Table 55-5 Available Seed Data Parameters
Property | Value | Required? | Example |
---|---|---|---|
| database connection URL in JDBC format without username and password | Yes | jdbc:oracle:thin:@stbcy06-4.us.oracle.com:1991:atgd7dm |
| database user to be used for extract | Yes | fusion |
| Application module name, fully package qualified | Yes | oracle.apps.fnd.applcore.flex.dff.descriptiveFlexfieldService. applicationModule.DescriptiveFlexfieldServiceAM |
| Driver ViewObject instance name | Yes | DescriptiveFlexfield |
| Path to extract seed data files | No | /home/seed/data |
| Comma delimited Taxonomy Id values to extract, either ModuleId or ApplicationId, depending on partition strategy. | No | Taxonomy Module Ids: 4F1F0DFC58F87DB4E04044981FC62F46, 47110F64AC8F08E2E040449823C60DB6 Application Ids: 250, 667, 10047 |
| Comma delimited Taxonomy name values to extract, either Product codes, or LBA names, or combination thereof | No | FND, HCM, invoices, receivables, cashManagement |
| The Log Level (SEVERE to FINEST). | No | -loglevel FINE |
| The location of the log file. | No | -log /home/seed/ex.log |
| Enterprise Id numeric value. | No | -entid 1 |
Note: The database password would be prompted. To avoid prompting, pipe it on the command line. The password must be piped in when output is redirected. For example, to pipe a password from the $FUSION_PASS environment variable to the Extract command line: java Extract cmdline... <<! $FUSION_PASS |
PartitionKey<Ids|Names> Properties
The PartitionKey properties drive how the seed data extract derives the data file partitions, which is the number of files generated. Each partition key will equate to a single extracted seed file, with all the rows that are owned by that particular module being extracted to its seed file.
You can use either the PartitionKeyIds or the PartitionKeyNames property, or a combination of both, to supply to the extract each of the unique file partitions that will be created. If no PartitionKey properties are specified, the default behavior is to extract all file partitions found from the driver view object, and all rows extracted to each corresponding seed data file.
You should use one of the PartitionKey parameters to limit the amount of files generated. Otherwise, the expected partitions will need to be determined from executing the driver view object query and perform a complete table scan of all rows. For very large tables with many thousands of rows, this could be a potentially large performance hit, and, depending on the complexity of the view object query and its joins, could take several minutes to hours to determine.
Property File Comments
In the command property file, any lines beginning with a pound sign (#) will be considered comments, and not processed in any way by the Extract tool.
You also can comment out specific entries in the multi-value comma delimited properties. For example:
This will ignore the FCM value entry, but keep others intact. A sample PartitionKeyNames
command line option is shown in Example 55-2.
Example 55-2 Sample Command Line
Example 55-3 shows the contents of the sample Seed Extract Command Property File, located at /home/extract.properties
:
Example 55-3 Sample Command Property File
Sample command line showing command line parameter to /home/extract.properties
command property file.
To launch the Seed Data Framework Console, refer to "To launch the Seed Data Framework Console from JDeveloper:" but select Seed Data > Upload.
When you right-click a Driver view object in the tree list, the menu shown in Figure 55-14 displays so you can select the Load Seed Data option.
In addition to the Load Seed Data option, discussed in Section 55.2.5.1, "Uploading Seed Data," three other options are available:
Set Log Level
Set how much information you want written to the log file. The least amount of information will be if this is set to Severe, and the largest amount of information will be is this is set to Finest. The default setting is Info, which will log Information, Warning and Severe messages.
Clean Mode
The default setting is Disabled. If Clean Mode is Enabled, it basically deletes all the existing records before proceeding to upload the given file. This option is exposed both through the command line interface for upload (-clean) and here.
Caution: This option should be used extremely carefully as it might lead to irreversible data loss. |
Customization Mode
The default setting is Do Not Preserve.
Seed Data Loader always sets the last_updated_by and created_by to zero when it inserts new records, and it always sets the last_updated_by to zero when it updates existing records.
Customers who have customized some of the Seed Data records are expected to set last_updated_by to a non-zero value.
By default when using the Seed Data Console, customizations are not preserved. They are overwritten.
However, on the command line, which is primarily intended for use at the customer site and for automated uploads, customizations are preserved by default. To override this, use the -nocust
option.
To upload Seed Data, right-click the desired Driver view object from the Consoleview object tree list. Select Load Seed Data.
Important: When you upload files, if the row already exists in the database and if it has been customized (last_updated_by <> 0), a "Skipped" message will be placed in the log and the row will not be updated. To correct this, change last_updated_by to 0 in both the database and the file before uploading. |
The Select a file to load dialog, shown in Figure 55-15, displays.
Select either an XML file or its corresponding translation xliff file to initiate a National Language Support (NLS) upload.
Click OK to begin the Upload process on the selected file.
Upload Output
When the Seed Data upload finishes, the processing messages are shown in the output tabbed view window, in the tab corresponding to the view object against which the upload was run. See Figure 55-16.
You may see warning messages about columns being not updateable. Review these messages to determine if you can ignore them for your specific case.
The Seed Data Upload process can be initiated externally from JDeveloper using the Command Line Interface (CLI).
To run the command line version of the Seed Data Loader from within an ADE view, ensure the JDEV_HOME environment variable, shown in Table 55-6, is set to a valid JDeveloper installation directory. Include the jdeveloper sub folder if you are using JDeveloper integrated with WebLogic Server.
Table 55-6 Environment Variables for the Seed Data Upload CLI
Variable name | Required? | Purpose |
---|---|---|
| No | Should point to the full path to the JDeveloper installation. |
| No | Used to add additional classpath entries to the loader (in addition to the regular CLASSPATH setting which might not be modifiable in certain circumstances). This parameter is expected to include folders where Apps EAR archives are available in an exploded format (typically the product family level deploy folders). If the same ADF library is available from multiple locations, only one will be added to the classpath. |
| No | Used to add additional classpath entries to the loader (in addition to the regular CLASSPATH setting which might not be modifiable in certain circumstances). This parameter is expected to include folders where techstack libraries are made available. On a provisioned system, it should include at least these directories: fmw1/atgpf/atgpf/modules/oracle.applcore.model_11.1.1 fmw1/oracle_common/modules fmw1/atgpf/modules Note: The primary difference between APPLSEED_CLASSPATH and APPLSEED_TS_CLASSPATH is that the JAR files coming from APPLSEED_CLASSPATH are put through a unique filter that filters unique JAR files by file name. This is possible because ADF libraries follow a naming convention. On the other hand, there is no common naming convention across techstack libraries (there could be a util.jar from JDBC and another from the XML parser). Therefore, the JAR files coming from APPLSEED_TS_CLASSPATH are not filtered by filename. |
| No | Used to specify a file path, each line of which will be treated as a classpath entry similar to the entries in APPLSEED_CLASSPATH. |
| No | Used to specify a file path, each line of which will be treated as a classpath entry similar to the entries in APPLSEED_TS_CLASSPATH. |
Command Line Syntax
Example 55-4 shows a sample Seed Data upload command entered on the CLI, and Example 55-5 shows a sample command line command for a Key Flexfield application module.
Example 55-4 Sample Seed Data Upload Command on the CLI
Note: The database password would be prompted. To avoid prompting, pipe it on the command line. The password must be piped in when output is redirected. For example, to pipe a password from the $FUSION_PASS environment variable to the Loader command line: java Loader cmdline... <<! $FUSION_PASS |
Example 55-5 Sample Command Line Invocation for a KFF Application Module
Three modes can be invoked when running a Seed Data Upload from the command line.
Important Points
Example
Using the Messages model from the Oracle Fusion Middleware Extensions for Applications, when PER/SomePerLba developers extract their messages, they will receive a set of Messages owned by that LBA. The seed data file captures this metadata that is used during -clean to determine the set of records to remove. In this case, all the messages owned by PER/SomePerLba will be removed.
Example
If PER/SomePerLba owns 10 messages in the database and an incoming MessageSD.xml brings in only six messages, which might be the same as or different from those in the database, the 10 messages in the database are all removed and the ones from the file are all loaded. If the loading succeeds, the database should have only six records owned by PER/SomePerLba - exactly what the seed data file brought in.
The -clean mode currently does not preserve customizations. The seed framework identifies customized records by a non-zero last_updated_by. Such records are not updated by the seed framework and a warning is issued that the record has been customized in the database. The clean mode, however, does not currently honor this principle and deletes even the customized records.
The cleanup and the subsequent loading run in a single transaction. Therefore, a failure during the loading will roll back the deletes. Because the seed framework - by default - commits after every top level record, the cleanup - by default - is committed or rolled back along with the very first top level record. If subsequent top level records fail, they all will be left out of the database. Therefore, only a subset of the records that came in the file will remain. This behavior changes when using the -atomic flag. This flag essentially says "make sure all the records, or none of the records, in the file are loaded." In this case, the cleanup and the loading are committed only once towards the end of the file. Even if one record fails, the deletes and any intervening loads are rolled back.
In some cases, Application Modules developed and owned by one team might have to be shared by some other team. In such cases, the team that developed the application module owns the module and the data-model associated with it, but the team that is consuming it owns the seed data and the relevant extract files.
In Figure 55-17, the team that is developing the application module packages the module into an ADF Business Components library.
The consuming team includes these libraries in the project using the Libraries/Classpath feature of JDeveloper. Once imported, developers can use these libraries to extract and upload seed data, but cannot edit the Seed Data configuration.
The imported Business Components can be seen using the Business Components Import feature of JDeveloper. Once imported, developers can use these libraries to extract and upload seed data, but cannot edit the Seed Data configuration.
Figure 55-18 Importing Business Components
Since Application Modules shared using an ADF Business Components library are not shown by JDeveloper in the Application Navigator, users must right-click the Business Components project into which they imported the shared libraries. The Seed Data menus would also be available on any Business Components project node in the Applications Navigator tree of JDeveloper.
Figure 55-19 Accessing Seed Data from Business Components Project
Clicking any of the Seed Framework menu items will display a tree structure showing all the Seed Framework-enabled Application Modules (those that have at least one Seed Data driver view object configured within them) available to that project.
Figure 55-20 Selecting an Application Module
Users can choose an available application module and click OK to display the familiar Seed Data console to perform and extract or upload activities.
The Seed Data Loader supports incremental updates and Java Database Connectivity-based National Language Support updates. These are summarized in Table 55-7.
Table 55-7 Summary of Seed Data Update Features
Feature | Applicable to | Default Setting | Design time Control | Runtime Control |
---|---|---|---|---|
Incremental Updates | Only US language seed data files | Off | Enabled by setting SD_INCR_MIDTIER_<ViewDefinitionName> to true | Disabled by using optional command line parameter -noincr Disabled by setting APPLSEED_NO_INCREMENTAL to true |
JDBC Mode | Only translation seed data files | On for newly extracted files | Disabled by setting SD_NLS_USE_ADF_<ViewDefinitionName> to true | Disabled by setting APPLSEED_NLS_USE_ADF to true |
The Seed Data Loader always updates all the records from the seed data file, even if those records are already present in the target database. For certain kinds of seed data (such as large volumes of slowly changing data), it is desirable to be able to update only those records from the seed data file that have changed since the file was last loaded on a given database. The Seed Data Framework provides an optional feature that allows product teams to incrementally update their seed data.
During extract, the Seed Data Framework computes MD5 checksums on the source record by taking all the fields that make up the record (excluding key attributes, history columns and non persistent fields). This checksum is embedded in the seed data file as additional record level metadata. At load time, if the record is found existing in the target database, the same algorithm is used to compute the checksum on the target record. By comparing the two checksum values, the seed data loader identifies if the record has undergone a change and needs an update. Updates are triggered only for those records for which the checksums do not match.
This incremental update feature is applicable only to US language seed data XML files and is not enabled by default. For translated seed data, there is no provision to do incremental updates.
To enable this feature for a particular seed data driver view object and all its child view objects, the SD_INCR_MIDTIER_<ViewDefinitionName>
property should be added to the application module.
Set the value of this property to true to turn on incremental updates.
Note that the incremental updates feature requires new metadata, in the form of checksums, to be embedded into the seed data file. As a result, only newer seed data files can take advantage of this feature. With older seed data files, the seed data loader shall continue to update all the records, even if the application module has the feature enabled using the SD_INCR_MIDTIER
property.
As a debugging aid, the seed data loader also allows for incremental updates to be conditionally turned off at run time. Use the -noincr
optional command line parameter to the loader or set the APPLSEED_NO_INCREMENTAL
environment variable to true
.
The Seed Data Loader loads seed data using the ADF components developed by product teams. As a result, all the business rules, validation logic, and custom code built into Oracle Fusion Applications ADF components also are invoked. Translation seed data delivery usually involves only simple updates to existing records. Using plain JDBC calls, instead of ADF, to update existing records allows for much faster loads of translated seed data.
Newer translation seed data files have additional metadata that signal the loader to use the JDBC mode wherever possible. This additional metadata includes SQL fragments that the loader uses at load time to trigger JDBC updates, instead of the well-known ADF-based loads. This JDBC mode is designed to achieve functional parity with the existing ADF mode, and is the preferred way to deliver translation seed data.
It is enabled by default for newly-created translation seed data files, with the exception of date effective translation seed data, which rely on additional logic built into the ADF. It should be noted that US language (XML) seed data files continue to be loaded through ADF. The JDBC mode is tailored only for translation (XLF) seed data files. If certain kinds of translated seed data need to be always loaded using ADF, it is possible to do so using one of these ways:
SD_NLS_USE_ADF_<ViewDefinitionName>
and set its value to true
.APPLSEED_NLS_USE_ADF
and set its value to true
.The Seed Data Framework will handle localized data stored in translation tables in a consistent manner. Translatable attribute data will be extracted separately for only the US base language into Ora-XLIFF compliant format files.
Translation teams will translate the base US language XLIFF into the various language translation files, one file for each supported language. The files are to be stored in a separate language folder, named for its language code.
At upload time, Seed Data Loader will recognize an incoming translation language XLIFF file automatically, and perform the necessary updates to the language tables.
Ora-XLIFF format files are automatically generated for those data models which have translatable data. Only the US language data is extracted. The XLIFF file is created in a language sub-folder, named US, and the file name is named the same as the base seed data XML file, with an extension of .xlf.
The seed data base and XLIFF files must be treated as a single entity. Any changes to either base or translated attributes that would require a re-extract, would necessitate that both the re-extracted base XML and US XLIFF files be delivered as single unit. There is metadata in the files to ensure that the base and XLIFF files match and were extracted together.
Translation teams will create the translation XLIFF files starting from the initial US file. Each supported language will have its own XLIFF file. The files will be stored in a separate language sub-folder, named for the language code. The files will be named the same as the base XML name, with the .xlf extension.
At upload time, the Seed Data Loader will recognize an incoming translation language XLIFF file automatically, and perform the necessary updates to the language tables, based on the target language value from the XLIFF file.
Each translated language XLIFF file is loaded individually as a separate entity.
Base XML Must Be Loaded First
The base seed data XML file must be successfully loaded prior to loading any language translation XLIFF files. No new inserts of language rows are performed, only updates to existing rows.
When loading the base seed XML file, the language rows are initially created using the US translation values. Then when loading the language translation files, the rows are updated using the incoming language values. This way, it is not necessary to have translations for every single row. If no translations exist, the fall back is then to use the US language row.
It is not necessary to upload the US language XLIFF file, as US translation data is already saved in the base seed data XML file.
For the Seed Data Framework to work with translated data and perform the necessary read and updates to the language translation tables, the application data model must conform to the Oracle Applications Multi-language support guidelines.
See Section 9.2, "Using Multi-Language Support Features" for more information on creating translatable data models.
This chapter discusses database modeling and database schema deployment in Oracle Fusion Middleware.
When designing an application to interact with the database, you will need to understand the database schema and be able to modify the schema as needed. This chapter contains information regarding database modeling and database schema deployment in Oracle Fusion Middleware. Developers should not use SQL DDL scripts for deployment and source control of database objects, because they tend to be error-prone and do not serve as a single accurate source. Instead, developers should use the JDeveloper offline database schema object files in SXML persistence mode.
Note: Prior to SXML migration, these were referred to as XDF (extension) files. |
This chapter includes the following sections:
The Oracle Fusion Schema Deployment framework includes JDeveloper plugins that handle applications-specific metadata, data modeling standards for applications database modeling, and deployment of database schema objects to a target application database. The database schema deployment component can be invoked standalone outside of JDeveloper, such as from the command line, build scripts, or a patching tool.
Oracle uses source-controlled schema metadata files produced from JDeveloper. The Offline Database is a way to persist database object definitions in a JDeveloper project using SXML files, rather than accessing the database directly. It provides an abstract layer that can be used to access a store of database object definitions. Therefore, it is possible to create, edit, delete and manipulate aspects of a database schema offline and access database objects in a database through JDeveloper's connections.
All schema modeling can be done through JDeveloper. The XDF extension provides developers with a set of tools to do the data physical modeling, such as create, edit, deploy, and import the schema objects used in applications. The extension also provides Application Data Modeling Standard validation, modification, and template object plugins in JDeveloper to help users to follow the Data Model standards.
Developers will use XDF extensions for their database modeling development.
Information covered here includes:
JDeveloper provides the tools you need to create and edit database objects, such as tables and constraints, outside the context of a database, using the offline Database model. You can create new tables and views, and generate the information to a database, or you can import database objects from a database schema, make the changes you want, and generate the changes back to the same database schema, to a new database schema, or to a file that you can run against a database at a later date.
Follow these directions to create an offline database.
To create an offline database:
The following types of objects are modeled using offline database objects.
JDeveloper offline database objects do not support these objects. However, SXML persistence files for these object types can be imported using the applxdf extension.
See Section 56.2.9.1, "Deploying in SXML Persistence Format."
A Framework plug-in on the JDeveloper database object editor provides warnings and errors to enforce Data Modeling standards and XDF deployment requirements.
Additional Validations for Schema Object Deployment
To better service the Schema Deployment on Application Data Model, these validations have been added on some User Defined Property (UDP) and other object properties in the plugin.
For a table object, if the User Property Table Owner is not defined, an error will be displayed.
All schema objects:
If the short name is not null or empty, check if the length of the short name is greater than the length standard. If it is, display a warning message.
If the short name is not null or empty, check if the length of the short name is greater than the length standard. If it is, display a warning message.
The name length standard for a Table is 24; for all others, it is 27.
The UDP adxml is set automatically for these schema object types:
The content of the UDP adxml will be determined by the current value of the UDP adxml and the UDP useExistingAdxml.
For table type only, automatically set the UDP adxmlFk according to the values of the UDP adxmlFk and useExistingAdxml.
For table and MaterializedView.type only, automatically set the UDP adxmlDeferredIndexes according to the current value of this UDP and the value of UDP useExistingAdxml.
Check the status of a column to which an active constraint or index refers. If its value is obsolete, an error message be displayed and block the work flow.
Check if an index of unique constraint exists. If not, add one automatically.
If a constraint is defined as disabled, but its UDP isLogical is set to N, a warning message will be displayed, because this case will cause a deployment error.
This feature uses JDeveloper's Offline database APIs and therefore has a dependency on all the offline database JAR files. The risk for this feature is some enforcement of standards may fire wrongly due to potential bugs preventing developers from modeling their objects as needed.
JDeveloper provides a large number of User Defined Properties (UDP). Their mapping with the tables in the dictionary are detailed in:
Table 56-1 shows the User Defined Properties that are defined for the tables.
Table 56-1 User Defined Properties for Tables
UDP | Display Name | Values in JDeveloper | Definition in FND_TABLES |
---|---|---|---|
This property indicates whether flashback of the table is allowed. This UDP is mandatory. | Is Flashback Allowed | Y: Flashback of the table is allowed. That is, you can use Flashback Query to examine the state of a table at a previous time, or use the FLASHBACK TABLE statement to restore an earlier state of a table in the event of human or application error. N (default): Flashback of the table is not allowed. | FLASHBACK_ALLOWED |
The value of this UDP indicates whether the deployment program will create an editioning view for this table or not. This UDP is required. | Editioning View | Y (default): The deployment program will create an editioning view for this table. N: The deployment program will not create an editioning view for this table. | LOGICAL VARCHAR2(1) Not Null |
| Run Deployment Twice | Y: Specifies that the table needs to be deployed twice and the appropriate patching metadata will be stamped in the file. This is typically used when a product team adds or modifies a column as a not-null column to a existing table, and does not want to use a RBMS default value. The column will be populated with an upgrade script having a more complex logic. The column needs to exist in the target database before the upgrade script is run. Also, the upgrade script cannot enforce the not-null constraint since it is against the standards to have DDL in scripts. Setting this UDP to Y will accommodate this.N (default). | N/A |
The short name of the table is used by the Zero Downtime programs to uniquely identify the table. The maximum length of this UDP is 24 characters. | Table Short Name | N/A The value of this UDP is defaulted to the table name when the length of the table name is less than 24 characters. When the length of the table name is greater than 24 characters, this UDP is required. | SHORT_NAME VARCHAR2(30) Null |
This UDP stores the Short Name of the application that the table belongs to. This UDP is required. | Table Owner | N/A | APPLICATION_SHORT_NAME VARCHAR2(10) |
This UDP stores the Tablespace Classification for this table. This value is used to derive the tablespace for the table but it is not equivalent to the tablespace. This UDP is mandatory. | Tablespace Classification | TRANSACTION TABLES (default) REFERENCE INTERFACE SUMMARY NOLOGGING TRANSACTION_INDEXES ARCHIVE TOOLS MEDIA | N/A |
The value of this UDP indicates the language data model for the table. This UDP is required. | MLS Support Model | Not MLS (default): The table is not an MLS table. Fully Synched: For Standard MLS (pair of _B and _TL tables) or Single MLS (single _TL) tables. A record will exist in the _TL table for each licensed language in the instance. The _TL table must have LANGUAGE and SOURCE_LANG columns. Partially Synched: For Partially Synchronized MLS tables. These tables have a LANGUAGE column but do not have a SOURCE_LANG column. A record may or may not exist in the table for the licensed languages in the instance. Single Language: For Single Language tables. These tables do not have either a LANGUAGE or a SOURCE_LANG column. The language of the data in the translatable columns in the table is considered to be the language classified as the default or base language of the instance. | MLS_SUPPORT_MODEL VARCHAR2(30) |
The value of this UDP indicates the status of the table. This UDP is required. | Status | Active (default): The table is active. Obsolete: The table is obsolete and can be deleted from the database. | STATUS VARCHAR2(30) |
This UDP stores the name of the base table that is extended by this table. | Extension of Table | N/A | EXTENSION_OF_TABLE VARCHAR2(30) |
The value of this UDP indicates the deployment mode of the table for the Oracle Fusion Disconnected Mobile Framework. This UDP is required. | Deploy To | Server DB Only (default): The table is deployed on the server database but not on the mobile database. All: The table is deployed both on the server database and on the mobile database. Mobile DB Only: The table is deployed on the mobile database but not on the server database. | DEPLOY_TO VARCHAR2(30) |
The value of this UDP indicates how the Oracle Fusion Disconnected Mobile Framework should resolve the conflicts about duplicate rows. This UDP is required. | Conflict Resolution | Duplicate (default): A new duplicate record is added and the conflict will be handled during the next synchronization. This value should be used for non-intersection tables. Merge: The records are merged. This value should be used for intersection tables. | CONFLICT_RESOLUTION VARCHAR2(30) |
The value of this UDP indicates whether the table is accessed by external products. | Shared Object | Y: The table can be accessed directly by external products, other than the owning product. N (default): The table cannot be accessed directly by external products. | SHARED_OBJECT VARCHAR2(30) |
The value of this UDP is patch metadata used by the patching tool. | ADXML | N/A | N/A |
The value of this UDP is patch metadata used by the foreign key portion of the patching tool. | ADXML for Foreign Keys | N/A | N/A |
The value of this UDP is patch metadata used by the deferred indexes portion of the patching tool. | ADXML for Deferred Indexes | N/A | N/A |
This UDP is mandatory. | Use Existing ADXML | Y: Generate ADXML comment using the existing ADXML value from the ADXML UDP N (default): Regenerate the ADXML comment and update the ADXML UDP. | N/A |
This property indicates whether the select on the table is allowed. This is mandatory. | Is Select Allowed | Y (default)N | SELECT_ALLOWED VARCHAR2(1) Not Null |
This property indicates whether update on the table is allowed. This property is mandatory. | Is Update Allowed | Y (default)N | UPDATE_ALLOWED VARCHAR2(1) Not Null |
This property indicates whether the insert on the table is allowed. This property is mandatory. | Is Insert Allowed | Y N (default) | INSERT_ALLOWED VARCHAR2(1) Not Null |
This property indicates whether delete on the table is allowed. This property is mandatory. | Is Delete Allowed | Y (default)N | DELETE_ALLOWED VARCHAR2(1) Not Null |
This property indicates whether truncate on the table is allowed. This property is mandatory. | Is Truncate Allowed | Y N (default) | TRUNCATE_ALLOWED VARCHAR2(1) Not Null |
Indicates whether partitions can be maintained on the table. This property is mandatory. | Maintain Partition | Y N (default) | MAINTAIN_PARTITION VARCHAR2(1) Not Null |
Indicates whether it is possible to exchange partitions on the table. This property is mandatory. | Exchange Partition | Y N (default) | EXCHANGE_PARTITION VARCHAR2(1) Not Null |
This property indicates whether it is possible to maintain indexes on the table. This property is mandatory. | Maintain Index | Y N (default) | MAINTAIN_INDEX VARCHAR2(1) Not Null |
Table 56-2 shows the User Defined Properties that are defined for columns.
Table 56-2 User Defined Properties for Columns
UDP | Display Name | Values in JDeveloper | Definition in FND_COLUMNS |
---|---|---|---|
The short name of the column is used by the Zero Downtime programs to uniquely identify the column within the table. The value of this UDP is defaulted to the column name when the length of the column name is less than 27 characters. When the length of the column name is greater than 27 characters, this UDP is required. | Column Short Name | N/A | SHORT_NAME VARCHAR2(27) Null |
The value of this UDP indicates whether the column is translatable or not. This UDP is required. | Translate | Y: The column is translatable. N (default): The column is not translatable. | TRANSLATE_FLAG VARCHAR2(1) Not Null |
The value of this UDP indicates the status of the column. This UDP is required. | Status | Active (default): The column is active. Obsolete: The column is obsolete and can be deleted from the database. | STATUS VARCHAR2(30) |
| Custom Default Value | N/A | N/A |
The value of this UDP indicates the name of the column that stores the data that should be copied to this column as per the Oracle Fusion Disconnected Mobile Framework. | Denormalization Path | N/A | N/A |
The value of this UDP indicates how this column will be handled during the synchronization between the server and the client database as per the Oracle Fusion Disconnected Mobile Framework. | Routing Mode | Normal (default): The contents of this column must be routed to the destination database. Do Not Route: The contents of this column must not be routed to the destination database. | ROUTING_MODE VARCHAR2(30) |
The value of this UDP indicates if the column is a candidate for histogram. This UDP is required. | Histogram | Y (default): This column is a candidate for histogram. N: This column is not a candidate for histogram. | N/A |
The value of this UDP indicates the number of buckets to be used when the column is defined as a candidate for histograms. | Histogram Size | N/A | |
The value of this UDP indicates the name of the version column used by the Oracle Fusion Disconnected Mobile Framework during synchronization of LOB columns. | Disconnected Mobile Version Column Name | N/A | VERSION_COLUMN VARCHAR2(30 CHAR) |
Table 56-3 shows the User Defined Properties that are defined for the indexes.
Table 56-3 User Defined Properties for Indexes
UDP | Display Name | Values in JDeveloper | Definition in FND_INDEXES |
---|---|---|---|
The short name of the index is used by the Zero Down Time patching programs to uniquely identify the index. The value of this UDP is defaulted to the index name when the length of the index name is less than 28 characters. When the length of the index name is greater than 28 characters, the developer must enter a value that uniquely identifies the index. | Index Short Name | N/A | SHORT_NAME VARCHAR2(30) Null |
The value of this UDP indicates whether the creation of the index will be deferred during deployment. This UDP is required. | Index Deferred (Y/N) | N (default): The creation of the index will not be deferred. Y: The creation of the index will be deferred. | N/A |
The value of this UDP indicates the status of the index. This UDP is required. | Status | Active (default): The index is active. Obsolete: The index is obsolete and can be deleted from the database. | STATUS VARCHAR2(30) |
The value of this UDP indicates the deployment mode of the index for the Oracle Fusion Disconnected Mobile Framework. This UDP is required. | Deploy To | Server DB Only (default): The index is deployed on the server database but not on the mobile database. All: The index is deployed both on the server database and on the mobile database. Mobile DB Only: The index is deployed on the mobile database but not on the server database. | DEPLOY_TO VARCHAR2(30) |
Table 56-4 shows the User Defined Properties that are defined for the constraints.
Table 56-4 User Defined Properties for Constraints
UDP | Display Name | Values in JDeveloper | Definition in FND_PRIMARY_KEYS or FND_FOREIGN_KEYS |
---|---|---|---|
| Logical Constraint | Y (default)N | LOGICAL VARCHAR2(1) |
The short name of the constraint is used by the Zero Down Time patching programs to uniquely identify the constraint. The value of this UDP is defaulted to the constraint name when the length of the constraint name is less than 28 characters. When the length of the constraint name is greater than 28 characters, the developer must enter a value that uniquely identifies the constraint. | Constraint Short Name | SHORT_NAME VARCHAR(30) | |
The value of this UDP indicates whether the creation of the constraint will be deferred during deployment. This UDP is required. | Defer Constraint | N (default): The creation of the constraint will not be deferred. Y: The creation of the constraint will be deferred. | N/A |
The value of this UDP indicates the status of the constraint. This UDP is required. | Status | Active (default): The constraint is active. Obsolete: The constraint is obsolete and can be deleted from the database. | N/A |
Table 56-5 shows the User Defined Properties that are defined for the views.
Table 56-5 User Defined Properties for Views
UDP | Display Name | Values in JDeveloper | Definition in FND_VIEWS |
---|---|---|---|
The value of this UDP is patch metadata used by the patching tool. | ADXML | N/A | N/A |
This property indicates whether flashback of the view is allowed. This UDP is mandatory. | Is Flashback Allowed | Y: Flashback of the view is allowed. That is, you can use Flashback Query to examine the state of a view at a previous time. N (default): Flashback of the view is not allowed. | FLASHBACK_ALLOWED |
useExistingAdxml | Use Existing ADXML | Y: Generate ADXML comment using existing ADXML value from ADXML UDP. N (default): Regenerate ADXML comment and update ADXML UDP. | N/A |
The value of this UDP indicates the status of the view. This UDP is required. | Status | Active (default): The view is active. Obsolete: The view is obsolete and can be deleted from the database. | STATUS VARCHAR2(30) |
This property indicates whether the select on the table is allowed. This is mandatory. | Is Select Allowed | Y (default)N | SELECT_ALLOWED VARCHAR2(1) Not Null |
This property indicates whether update on the table is allowed. This property is mandatory. | Is Update Allowed | Y (default)N | UPDATE_ALLOWED VARCHAR2(1) Not Null |
This property indicates whether the insert on the table is allowed. This property is mandatory. | Is Insert Allowed | Y N (default) | INSERT_ALLOWED VARCHAR2(1) Not Null |
This property indicates whether delete on the table is allowed. This property is mandatory. | Is Delete Allowed | Y (default)N | DELETE_ALLOWED VARCHAR2(1) Not Null |
Table 56-6 shows the User Defined Properties that are defined for Sequence.
Table 56-6 User Defined Properties for Sequence
UDP | Display Name | Values in JDeveloper | Definition in FND_SEQUENCES |
---|---|---|---|
| Sequence Owner | N/A | N/A |
The value of this UDP indicates the status of the sequence. This UDP is required. | Status | Active (default): The sequence is active. Obsolete: The sequence is obsolete and can be deleted from the database. | STATUS VARCHAR2(30) Null |
The value of this UDP is patch metadata used by the patching tool. | ADXML | N/A | N/A |
| Use Existing ADXML | Y: Generate ADXML comment using existing ADXML value from ADXML UDP. N (default): Regenerate ADXML comment and update ADXML UDP. | N/A |
This property indicates whether select on the table is allowed. This UDP is mandatory. | Is Select Allowed | Y (default)N | SELECT_ALLOWED VARCHAR2(1) Not Null |
This property indicates if the sequence can be reset to a specific value. This UDP is mandatory. | Reset Sequence | Y N (default) | RESET_SEQUENCE VARCHAR2(1) Not Null |
Table 56-7 shows the User Defined Properties that are defined for the Materialized View.
Table 56-7 User Defined Properties for Materialized View
UDP | Display Name | Values in JDeveloper | Definition in FND_MVIEWS |
---|---|---|---|
Short Name of the application to which this materialized view belongs. | Mview Owner | N/A | N/A |
Materialized view short name. Max Length is 24. | Materialized View Short Name | N/A | SHORT_NAME VARCHAR2(30) |
The value of this UDP indicates the status of the materialized view. | Status | Active (default): The materialized view is active. Obsolete: The materialized view is obsolete and can be deleted from the database. | STATUS VARCHAR2(30) |
The value of this UDP is patch metadata used by the patching tool. | ADXML | N/A | |
| Tablespace Classification | TRANSACTION_TABLES REFERENCE INTERFACE SUMMARY (default) ARCHIVE TOOLS MEDIA | N/A |
This UDP is mandatory. | Use Existing ADXML | Y: Generate ADXML comment using existing ADXML value from ADXML UDP. N (default): Regenerate ADXML comment and update ADXML UDP. | N/A |
This property indicates whether select on the table is allowed. This UDP is mandatory. | Is Select Allowed | Y (default)N | SELECT_ALLOWED VARCHAR2(1) Not Null |
The value of this UDP is patch metadata used by the deferred indexes portion of the patching tool. | ADXML for Deferred Indexes | N/A | N/A |
Table 56-8 shows the User Defined Properties that are defined for the Materialized View Log.
Table 56-8 User Defined Properties for Materialized View Log
UDP | Display Name | Values in JDeveloper |
---|---|---|
The value of this UDP indicates the status of the materialized view log. This UDP is required. | Status | Active (default): The materialized view log is active. Obsolete: The materialized view log is obsolete and can be deleted from the database. |
Materialized view log owner. | MV Log Owner | N/A |
The value of this UDP is patch metadata used by the patching tool. | ADXML | |
This UDP is mandatory. | Y N (default) | Y: Generate ADXML comment using existing ADXML value from ADXML UDP. N (default): Regenerate ADXML comment and update ADXML UDP. |
Table 56-9 shows the User Defined Properties that are defined for Trigger.
Table 56-9 User Defined Properties for Trigger
UDP | Display Name | Values in JDeveloper |
---|---|---|
The value of this UDP indicates the status of the trigger. This UDP is required. | Status | Active (default): The trigger is active. Obsolete: The trigger is obsolete and can be deleted from the database. |
| Trigger Owner | N/A |
The value of this UDP is patch metadata used by the patching tool. | ADXML | |
This UDP is mandatory. | Use Existing ADXML | Y: Generate ADXML comment using existing ADXML value from ADXML UDP. N (default): Regenerate ADXML comment and update ADXML UDP. |
To create new offline database objects from within JDeveloper, in the Application Navigator:
You also can create an offline database object definition by importing an existing definition from an online database schema.
To edit an offline database object:
The Edit offline database object dialog opens. For more information at any time, press F1 or click Help from within the Edit dialog.
Database objects from a database schema can be imported to an offline database project in JDeveloper. JDeveloper extensions will also handle the additional Oracle Fusion metadata, if available in the target database. The additional metadata will be copied to an offline database object as user-defined properties. For objects not supported by JDeveloper, such as Policy and Advanced queue tables, import of object definitions from the database will be provided. Implementation of unsupported object import process APIs depends on functionality provided by the Metadata team (dbms_metadata).
Using the Import Offline Database Object Wizard
Object definitions can be generated to the Offline Database by right-clicking an Offline Database Source and selecting the Reverse Engineer Fusion Applications Objects option, extended to invoke the relevant import API, as shown in Figure 56-3.
Filters can be applied to select the objects that are displayed as available for import. When there are a large number of objects in the schema, you should apply filters.
In the Object Picker, shown in Figure 56-6, you can:
Once an offline database object is created, it can be deployed to a target database using the deployment extension provided in JDeveloper.
As part of the Oracle Middleware Extensions for Applications (Applications Core) labels, the applxdf
extensions for the JDeveloper offline database include a deployment program that operates on JDeveloper offline database objects in SXML format. It checks for and compares the object definitions in SXML format with the object definitions in the target database, and then executes the necessary create/alter DDL to deploy the objects. This deployment program is available in two forms:
To start the deployment wizard in JDeveloper, you need to choose APPS: Deploy DB Object from the context menu on the offline object definition in the Application Navigator.
This can be used to deploy an offline database to a target online database. These options are available for deployment:
The Generate Fusion Applications Objects wizard will prompt for the following information:
Figure 56-12 shows how the Deployment Parameters dialog appears for multiple database deployment parameters.
For Single Database Object deployment, this is optional. For bulk Database Object and schema deployment, it is mandatory to provide a directory for saving log files.
In case of bulk and schema deployment, the database objects first will be deployed in table mode and then tablefk mode, by default.
This is standard for bulk and schema deployment; therefore, the Db Object Mode is not displayed on the wizard.
Use this command and parameters shown in Example 56-1 to deploy a database object from the command line.
Example 56-1 Sample Database Object Deployment Using the CLI
Mandatory Arguments
Note that in the consolidated fusion schema model, owner_un will be the same as apps_un. These parameters are maintained for cases where they could be different.
Password Arguments
The command line deployment tool will prompt to get the database password from the user in an interactive mode. The password cannot be a parameter, because it is against Security guidelines. If you have a script in which you are invoking schema deployment, you can pipe the password in the script, such as:
Optional Parameters
idxnolog=y
to add a NOLOGGING clause in the Index creation to improve the performance of creation. The default value is "n."The XdfSchemaDeploy tool requires JDK 1.6, the standard Oracle JDBC driver, the XML parser, and the applxdf JAR file.
Set the CLASSPATH environment variable to contain these JAR files:
Example 56-2 shows the set of commands to set the CLASSPATH.
Example 56-2 Example of Setting CLASSPATH
The JDeveloper installation directory could potentially change with newer versions of JDeveloper being available. Check the JDeveloper installation directory to make sure that it exists. You could also use the XML parser and JDBC driver that comes with the database. Note that so far XDF has been tested with the same JAR files with which it has been compiled. It should not be a problem setting the CLASSPATH with a higher version of these JAR files and testing them. If you encounter any issues, try using 11g JDBC and xmlparsers.
Bootstrap mode for XDF Schema deployment is available using the parameter xdf_mode=bootstrap. XDF currently depends on several database components, such as pl/sql and tables, for it to work completely in all modes. The bootstrap mode can be used to make sure that the XDF database dependencies are set up correctly and to avoid any manual steps to get XDF working on a particular database.
In bootstrap mode, the mandatory parameter xdf_file_name
becomes optional and only the remaining mandatory parameters are applicable.
To run XDF in bootstrap mode, use the command shown in Example 56-3.
Example 56-3 Sample of Running XDF in Bootstrap Mode
Examining these frequently-asked questions about deployment will help you prevent and fix problems.
To add a not-null column to an existing table with data, or change a null column to a not-null column:
There are two options to add a not-null column to an existing table with data, or change a null column to a not-null column.
Product teams can specify an RDBMS default value for the column which will be used by the databases to successfully alter the table to add the not-null column.
Product teams can specify an RDBMS default value for the column. This default value will be used by schema deployment utility to update the existing null rows with that value before changing the column to not null.
If a product team does not want to use a RDBMS default value, it can add or modify a column as a not-null column to an existing table by using a script having a more complex logic. The column needs to exist in the target database before the script is run. The script cannot enforce the not-null constraint because it is against the standards to have DDL in scripts.
To use a script to populate the column, the UDP named runTwice must be set to Yes. This UDP will be used by XDF to ensure that the required patch metadata is present in XDF to run it twice in a patch. In the first run, the script will not error out if it is not able to enforce the not-null constraint, but it will error out in the second run if it still is not able to enforce the not-null constraint.
If the user does not set this UDP, the default behavior of the deployment utility is to error out if it is not able to enforce the not-null constraint while adding or modifying the column.
To remove a table, column or view:
See Section 56.2.9.5.3, "How to Use fnd_cleanup_pkg and fnd_drop_obsolete_objects."
To rename a table, column or view:
Deployment does not support renaming a table, column or view. The workaround that can be used is to make the object obsolete and introduce a new renamed object. The development team must separately handle data migration and update information in the Automatic Diagnostic Repository (ADR), if required.
To implement a non-additive change to the data type of a column, such as varchar2 to number:
Developers can create a script that runs before deployment of the object to rename or drop the column, based on whether or not data needs to be preserved or migrated. Once the deployment successfully adds the column with the correct data type, another script may be needed to make sure that data is migrated and that the renamed column is dropped. This is applicable only if the initial script renames the column.
To add or change the unique constraints or indexes on a populated table:
If the populated table does not meet the criteria for creating unique constraint or unique index, to remove the invalid data create a script to clean the table before deploying a unique index or constraint.
To maintain efficiency, database objects should be cleaned of no-longer-used data. As part of that process, it is important to keep the FND data dictionary synchronized with existing objects (it can be table, sequence or view) in the database. The XDF team provides packages to make this process easier.
Use this information to correctly make a database object obsolete. It is applicable after the release of the initial version of the product to customers.
Modeling database schema for new releases or upgrades to new releases may involve making certain database objects or certain attributes of the database object, such as Columns, obsolete. Doing this may make a significant effect to existing customizations or extensions currently implemented on the system. Making obsolete database objects that contain data, such as Tables, requires particularly close analysis for potential effects. Development teams should take the necessary steps to review and understand the implications of such updates in these areas.
Making obsolete certain database objects or certain attributes of a database object may require those objects to be dropped as part of clean up. Considering any existing customization or extensions to such objects, the act of making obsolete and dropping the object should be kept separate. Dropping the obsolete database objects or columns should be an optional step that is invoked at the demand of customers. The Patching (AD) utilities will provide such an option as a post-patching step.
Follow these steps to make obsolete a database object or attribute.
These steps ensure that:
During the initial development of the product before release, product teams may not want to mark the object as obsolete and may prefer directly dropping the object; that is, removing the definition from the offline database file. To support this, the force_mode=y parameter can be passed to the schema deployment tool. The additional input parameter which, when specified, will drop any additional column, index or constraints that are present in a target database and not present in the offline object file definition. The XDF dictionary metadata stored for the object is also updated to be synchronized with the new definition. Note that this option, in certain cases, will not change the definition of the table to exactly match the definition in the file. For example, if the database does not allow some changes, such as changing of certain column datatype, or changing an unpartitioned table to a partitioned table, force mode will not override the database.
Force mode only handles the removal of column, index and constraints, and synchronizing the corresponding definition in the XDF dictionary. If the primary object, such as a table, sequence or view, is dropped, the fnd_cleanup_pkg needs to be used to synchronize the XDF dictionary.
Use fnd_cleanup_pkg and fnd_drop_obsolete_objects to clean a database.
Using fnd_cleanup_pkg
Procedure fndcleanup(name): Remove table/sequence/view names that are in fnd_tables/fnd_views/fnd_sequences tables, but not in the database. All the required XDF dictionary tables will be updated when fnd_tables/fnd_views/fnd_sequences is updated.
name: Optional, if it is not defined. Remove all table/view/sequence names that are in fnd_tables/fnd_views/fnd_sequence tables, but not in the database.
Examples
execute fnd_cleanup_pkg.fndcleanup
execute fnd_cleanup_pkg.fndcleanup('table1')
execute fnd_cleanup_pkg.fndcleanup('view1')
execute fnd_cleanup_pkg.fndcleanup('HZ%')
fnd_drop_obsolete_objects
Procedure drop_object(objectname): Drop obsolete objectname from the database. This procedure is used to delete obsolete views, tables and columns marked as Obsolete in the table.
Examples
execute fnd_drop_obsolete_objects.drop_object(table1)
execute fnd_drop_obsolete_objects.drop_object(view1)
execute fnd_drop_obsolete_objects.drop_object('HZ_%')
Use this information when dropping an object in the database.
Only the FND dictionary is updated. Objects in the database are not dropped.
There are three ways this can be done. SQL scripts can be used to achieve the same outcome.
execute fnd_cleanup_pkg.fndcleanup(' obj')
execute fnd_drop_obsolete_objects.drop_object(' obj')
execute fnd_cleanup_pkg.fndcleanup(' obj')
Execute this command from sqlplus or use a SQL script.
execute fnd_cleanup_pkg.fndcleanup
Execute this command from sqlplus or use a SQL script.
execute fnd_cleanup_pkg.fndcleanup
Execute this command from sqlplus.
execute fnd_cleanup_pkg.fndcleanup
Execute this command from sqlplus.
execute fnd_cleanup_pkg.fndcleanup('HZ%')
Execute this command from sqlplus.
execute fnd_drop_obsolete_objects.drop_object('xyz')
Execute this command from sqlplus.
execute fnd_drop_obsolete_objects.drop_object('HZ%')
The application runtime schema could be different from the database object owning schema for security reasons. To support this model as part of schema deployment, there is a mechanism to granularly provide grants on various database objects. These are granted to a set of fixed roles which are eventually available to runtime schema.
Privilege will be granted on the database object to the role based on privilege User defined properties defined for the object. Table 56-10, Table 56-11, Table 56-12, and Table 56-13 present the user defined properties that will be defined for each object type.
Table 56-10 Table Object Type Properties
UDP Name | Description | Values |
---|---|---|
| Grant Insert Privilege on the table to the required role | Y/N Default Y |
| Grant Update Privilege on the table to the required role | Y/N Default Y |
| Grant Delete Privilege on the table to the required role | Y/N Default Y |
| Grant Select Privilege on the table to the required role | Y/N Default Y |
| The value of this UDP indicates whether a TRUNCATE statement is allowed on the table | Y/N Default Y |
| The value of this UDP indicates whether partitions can be maintained on the table. The ADM_DDL program when handling requests for dynamic DDL operations uses this information. | Y/N Default Y |
| The value of this UDP indicates whether it is possible to exchange partitions on the table. The ADM_DDL program when handling requests for dynamic DDL operations uses this information. | Y/N Default Y |
| The value of this UDP indicates whether it is possible to maintain indexes on the table. The ADM_DDL program when handling requests for dynamic DDL operations uses this information. | Y/N Default Y |
Table 56-11 View Object Type Properties
UDP Name | Description | Values |
---|---|---|
| Grant Insert Privilege on the view to the required role | Y/N Default Y |
| Grant Update Privilege on the view to the required role | Y/N Default Y |
| Grant Delete Privilege on the view to the required role | Y/N Default Y |
| Grant Select Privilege on the view to the required role | Y/N Default Y |
Table 56-12 Sequence Object Type Properties
UDP Name | Description | Values |
---|---|---|
| Grant Select Privilege on the sequence to the required role | Y/N Default Y |
| The value of this UDP indicates if the sequence can be reset to a specific value. The ADM_DDL program when handling requests for dynamic DDL operations uses this information. | Y/N Default Y |
Table 56-13 Materialized Views Object Type Properties
UDP Name | Description | Values |
---|---|---|
| Grant Select Privilege on the materialized view to the required role | Y/N Default Y |
This chapter provides guidelines for you to write high-performing, highly scalable, and reliable applications on Oracle Fusion Middleware.
This chapter includes the following sections:
The outcome of performance assessments of several prototypical Oracle Fusion Applications as well as various tests conducted by the Oracle Fusion Middleware performance team are captured in this chapter. It includes best practices for coding and tuning the Oracle Application Development Framework (ADF) Business Components-based applications with performance, scalability, and reliability (PSR) in mind. Other topics discussed include performance improvement guidelines for ADF ViewController layers and Oracle Fusion Middleware Extensions for applications.
This chapter assumes you are familiar with the concepts described in the Oracle Fusion Middleware Performance and Tuning Guide.
To maximize performance while working with ADF Business Components, such as entity objects, view objects, application modules, and services, consider best practices. For more information about tuning Oracle ADF, see the "Oracle Application Development Framework Performance Tuning" chapter in the Oracle Fusion Middleware Performance and Tuning Guide.
When working with entity objects, consider the following suggestions for improving performance. For more information see the "What You May Need to Know About Optimizing View Object Runtime" in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
You can enable batch updates of your entity objects by selecting the Use Update Batching property on the Entity Object Editor - Tuning section as shown in Figure 57-1. You should also set the Threshold property to 1, which is important for _TL
multi language entities.
When enabled, ADF Business Components combines multiple Data Manipulation Language (DML) operations and executes them in a single round trip. Modified rows are grouped into batches.
You should always enable batch updates, except in the following three cases where you should not:
For more information, see the "Batch Processing" section in the Oracle Fusion Middleware Performance and Tuning Guide.
Children entity objects can expect that their parent primary key attribute values are passed through the attributeList
parameter in create(attributeList)
and ADF Business Components calls super.create(attributeList)
to populate these foreign key attribute values. Repopulating the foreign key attribute values in the children entity object unnecessarily decreases performance.
When you use list validator, it scans the values in a linear fashion. Therefore, you should limit the list to not more than 20 to 30 values for frequently used list validators. Instead of using the list validator, you can use either an expression validator or a method validator. If this is a foreign key, then you can use a key exist validator.
There is some cost to getting the parent or children via the association accessor. For example, if you are calling the same association accessor on the same entity object in a loop, then you should move the call to outside the loop.
There are various places in ADF Business Components that loop through all rowsets of a view object. You should call RowSet.closeRowSet
on any rowsets that you no longer need. The typical case where you would have opened a rowset is when you get the "many" end of an association, for example, when retrieving Emp from Dept.
By default, the rowset is cleared when a garbage collection occurs. However, if you can close the rowset as soon as you finish using it, it improves performance and reduces the amount of work done during garbage collection. To close a rowset, call RowSet.closeRowSet
. You should close it only if you know you no longer need it, and would not make calls such as previous()
. If you are getting a row iterator from an association accessor, you can cast it to a RowSet and call closeRowSet
on it.
Caution: If you use the Retain Association Accessor RowSet option, then you should not call closeRowSet . |
By default, the entity object creates a new RowSet
object each time you retrieve an entity association accessor rowset, to allow you to work with the rows. However, creating a new RowSet
object does not imply re-executing the query to produce the results each time, since only a new instance of a RowSet
object is created, with its default iterator reset to the "slot" before the first row. There is some overhead to creating all these new rowsets even though the ones not in use are cleared on Java Virtual Machine (JVM) garbage collections. You may also see additional query executions due to the rowsets (and hence the underlying query collections) not being retained.
For high-traffic entity objects, such as those used for bulk loading, where the same association accessor is called many times, consider using the Retain Association Accessor Rowset option to improve performance. Typically, an association accessor would be used multiple times if:
Using the Retain Association Accessor RowSet option may adversely affect memory usage since it postpones when the retained rowset becomes garbage collectible. Before you enable this option, (as shown in Figure 57-2), you should profile your flow to make sure you would indeed get a noticeable benefit.
If you see the top CPU consumers (sort by exclusive CPU) are related to code that loops through the rowsets, then you would likely get a benefit by using this option. An example where you may want to consider using the Retain Association Accessor RowSet option is if you profile your code and see that oracle.jbo.server.ViewObjectImpl.addRowSet
is using a lot of CPU, and most of the CPU is in a call stack that includes AssociationDefImpl.get
. Figure 57-3 illustrates an example profiler output showing addRowSet
being expensive.
Before you decide to retain association accessor, you should try the guideline Section 57.2.1.5, "Close Unused RowSets."
If you decide to use the Retain Association Accessor RowSet option, you should be aware of the potential behavior changes. For more information, see the Advanced Entity Association Techniques section in the "Advanced Entity Object Techniques" chapter of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
If your table has an OBJECT_VERSION_NUMBER
column, make sure you check the Change Indicator attribute property. Columns marked as Change Indicator are automatically in any view object that includes that particular entity object.
When working with view objects, consider the following suggestions for improving performance.
You should tune both the list of attributes included in the view object as well as the underlying SQL statement. Avoid using the "one-size fits all" view objects which include many other attributes that are not needed for your usage. These additional attributes consume unnecessary memory.
You should capture the SQLs the view object is generating, with relevant view criteria applied, by enabling Java Business Objects (JBO) debug logging. (For expert-mode view objects, you should capture the SQL that you are providing). You should also generate explain plans against a volume database to ensure performance is optimal and the correct indexes are in place.
If you must use hints to get a desirable execution plan for your query, set the Query Optimizer Hint field in the View Object Editor - Tuning section as shown in Figure 57-4.
For user interface (UI) driven queries, the FIRST_ROWS(10)
hint should be used to instruct the optimizer to pick a plan that is optimized to return the first set of rows. You should set this hint for view objects that are used for UI components, which typically just displays the initial set of rows (such as table). If you are fetching all the rows, then do not use the FIRST_ROWS
hint.
To maximize view object performance, the view object should match the intended usage. For more information about correct usage for view objects, see the "Creating View Objects" section in the Oracle Fusion Middleware Performance and Tuning Guide.
How the view object is configured to fetch data plays a large role in the view object performance. For more information about tuning the fetch options for the application, see the "Configuring View Object Data Fetching" section in the Oracle Fusion Middleware Performance and Tuning Guide.
Due to the memory requirements for large batch size, we do not recommend using a fetch size of over 100. For view objects used on UIs, fetch size should not exceed 30.
Caution: Java Database Connectivity (JDBC) pre-allocates memory to hold return data based on fetch size, so the practice of applying a fixed fetch size, such as 30, to all view objects should be avoided. |
If you have a view object that is used in both query and insert, then you should call setMaxFetchSize(0)
programmatically when you know it is being used in insert mode. In this case, you need to unset it when using it in query mode. You cannot set the No Rows option because the same view object is used in both insert and query mode in the same application module.
For view objects used for the List of Values (LOV) combo box, the number of rows fetched by Oracle ADF is controlled by the ListRangeSize
setting in the LOV definition. The default value is 10 and a fetch size of 11 is appropriate. You should modify the value to 11.
For LOV text output, Oracle ADF fetches about 31 rows in the LOV search results window. To simplify retrieval, a fetch size of 11 is acceptable, to make it the same fetch size as the view object used in the LOV combo box. In this case, the data comes back in three round-trips which is also acceptable.
Note: ADF Business Components only recognizes fetch size if the SQL flavor is Oracle, which is what you should be using. |
Fetch size can be set based on the usage of the view object. This is the appropriate place to set the fetch size for view objects that are used in different scenarios and the fetch size cannot be pre-determined when the view object is created. You can edit the setting per view object usage by selecting the view object in the Data Model panel of the Application Module editor, clicking Edit, and then selecting the Tuning panel.
Fetch size can also be set at the view accessor level. This should be used by teams consuming public view objects from other teams, such as for LOVs. The producer team would likely not set a fetch size since they cannot anticipate how their public view object would be used. For more information, see the "Working with List of Values (LOV) in View Object Attributes" section in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
Always use bind variables when setting the WHERE
clause or when defining view criteria, as this allows the SQLs to be shared. However, there are some limited cases where you cannot use bind variables, such as when you need to use histograms. For more information, see the "Additional View Object Configurations" section in the Oracle Fusion Middleware Performance and Tuning Guide.and the "Working with Bind Variables" chapter in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
When creating view criteria, include at least one view criteria item that is required or selectively required, in order to use a database index and avoid a full table scan. Otherwise, the SQL generated will be of the form:
In this example, the query cannot be derived from an index on MyTable.Column_name
due to the presence of the :bvOrgId IS NULL
condition.
Note: The :bind IS NULL condition is generated only if the View Criteria Item (VCI) is against a bind variable and the Ignore Null Values option is selected. |
If a dataset is only traversed going forward, then forward-only mode can help performance when iterating through the dataset. For more information, see the "Configuring View Object Data Fetching" section in the Oracle Fusion Middleware Performance and Tuning Guide.
The setForwardOnly
API is actually defined on the RowSet
interface, which ViewObjectImpl
implements, so you can use it on secondary rowsets that you create via ViewObjectImpl.createRowSet(String name)
as well.
Calling getRowCount
on a view object results in all rows being fetched into memory. Unless you intend to actually fetch all the rows, this call should be avoided. Use a combination of vo.hasNext,hasPrevious,getCurrent
, or vo.getFetchedRowCount,if the row set has been executed and you are attempting to see if there is at least 1 row fetched.
If you really need to find out how many rows are in the result set, and you know the result set is likely going to contain more than 50 rows, you should use getEstimatedRowCount
. This triggers a count query but does not fetch all of the matching rows into memory.
There is also a method on the view object, getCappedRowCount(n)
, which executes a query and a count up to n
number of rows. If the row count is less than n
, it returns a positive number, and it returns a negative number if row count is more than n
.
If your view object is based on entity objects, and you request an attribute that is not fetched in the initial view object query, ADF Business Components must execute a "fault-in" SQL to fetch the entire entity object. This is expensive and can be avoided by initially selecting the list of attributes you are fetching in a view object. For example, if you know your validation logic accesses an attribute that is not displayed in the UI, you should fetch it in the initial view object query.
By default, only the key attributes are selected when executing a Declarative view object programmatically. A "fault-in" query is executed to get the rest of the attributes if they are referenced. To avoid this, you should use the following ViewObjectImpl
methods to specify the columns that need to be selected when executing a Declarative view object programmatically: resetSelectedAttributeDefs
, selectAttributeDefs
, and unselectAttributeDefs
.
If your view object is based on multiple entity objects, restrict the number of Key Attributes to a minimal set that uniquely identifies the row.
Note: By default, the primary key of the view object is the concatenation of the primary key of all the underlying entity objects, which typically will be a lot more columns than what is actually needed to uniquely identify a row. |
For those attributes that do not need to be part of the key, deselect the Key Attribute option in the View Object Attribute Editor.
View objects provide a mechanism to page through large datasets giving users the ability to jump to a specific page in the results. To implement this feature, select Range Paging Incremental from the Access Mode dropdown list in the View Object Editor - Tuning section as shown in Figure 57-5.
For more information, see the "Optimize large data sets" row in the "Additional View Object Configurations" table in the Oracle Fusion Middleware Performance and Tuning Guide.
The setListenToEntityEvents(false)
method instructs the view object not to listen to entity events and therefore, the view object and all its row sets does not receive events generated from changes to entity row data. This is useful for batch processing because suppressing events improves performance.
Note: These events are not related to the business events that you may have defined in the entity object. |
When you call an association accessor, an internal view object is created. If you insert or update via the association accessor, you can call setListenToEntityEvents(false)
for the internal view object by casting it to a RowSet
as shown in Example 57-1.
Example 57-1 Use setListenToEntityEvents(false)
If you have a ViewRowImpl
class generated for your view object, you should call the named getter or setter if possible. For example, getEmployeeName
or setEmployeeName
, rather than the generic getAttribute
or setAttribute
.
Note: Performance alone is not a sufficient reason for creating a custom ViewRowImpl class. |
If you must use the generic getAttribute
or setAttribute
, consider using the index instead of the name for a small performance gain. It may be more troublesome to maintain the numeric attribute indexes, but for cases where you are looping through a large number of attributes, you should consider using getAttribute(int index)
and setAttribute(int index)
.
A view criteria item on a varchar2
column is, by default, marked as case-insensitive. The generated predicate is in the form of UPPER (column_name) operator UPPER (:bindVariable)
. Since the left-hand side is UPPER(column_name)
, the existing non-function-based indexes created based on column_name
is of no use for this kind of clause, and as a result, expensive table scans can result if this view criteria item is supposed to be the driving filter. You should make sure there are appropriate function indexes to support case-insensitive searches.
In general, avoid creating a view object at runtime. You should add the view object instance to the application module and let the framework create it for you. If you have a use case where you must call createViewObject
to create the view object, you should explicitly give it a name and first check if a view object with that name already exists in the application module. If it is already there, you should reuse it rather than create another one. If you no longer intend to use a dynamically created view object, remove it from the application module to avoid memory leaks.
When you define a Combo Box with List of Values, you should provide an additional view criteria using the Filter Combo Box Using option so that the user only sees a list of frequently used choices. It typically does not meet business needs to return something like the first 10 customers in the system.
When you define a LOV for a view object attribute, there is a ListRangeSize
property (visible only in source), which defaults to 10. This controls the number of values to fetch when the combo box is selected on the UI. You should not change the ListRangeSize to a large value. In particular, -1 should never be used as it brings back all the rows.
If your view object includes reference entity objects, they are loaded in via separate queries whenever the key column values are changed. Therefore, if you have a scenario where attributes from the reference entity objects are not needed, you should use a view object that do not include reference entity objects. An example of this is when you are programmatically inserting rows and the reference entity object attributes do not need to be shown.
If you select the "All at Once" view object fetch mode, the view object query returns all rows, even though you are looking at only the first row. Depending on the query, this could cause OutOfMemory errors as the result of too many rows being fetched. Use the default "As Needed" fetch mode instead.
If you use the "Query List Automatically" option in the UI hints panel in the edit LOV screen, a query is executed by default, which could be expensive. This setting impacts only whether a search is executed by default when the LOV search list displays. For LOV combo boxes, regardless of this setting, the smart filter executes when the LOV combo is clicked and the dropdown list displays.
Required or Selectively Required view criteria items should use indexes so that their queries are efficient. If you use the "CONTAINS" or the "ENDSWITH" operator on a view criteria, the indexes cannot be used efficiently, resulting in poor query performance. Use an "Equals" or "Starts With" operator instead.
When working with application modules, consider the following suggestions for improving performance.
When the Lazy Delivery option is enabled, ADF Business Components defers the creation of view object instances and nested application modules until they are requested. For more information, see the "Data Delivery - Lazy versus Immediate" section in the Oracle Fusion Middleware Performance and Tuning Guide.
An application module is an ADF Business Components container that encapsulates business service methods and active data model for a logical unit of work related to an end-user task. It is a wrapper for view objects and entity objects in a business model, handles all database transactions, and performs custom tasks by invoking application module specific service methods. For an ADF Business Components based web application, a HTTP request, if related to data operation, can not be processed without involvement of an application module instance. Figure 57-6 illustrates the application module position in the Oracle ADF applications architecture.
Application module state management and application module pooling are very important features provided out of the box by Oracle ADF. The combination of application module state management and pooling makes ADF Business Components based web application more scalable by multiplexing application module instances in pool to serve large volume concurrent HTTP user sessions, and more reliable (failover) by serializing pending user session state into persistent storage (Database or File system).
Passivation is the process of serializing current states of an active application module instance to persist it to make it passive. Activation is its reverse process to activate a passive application module instance.
After coding and debugging all functional issues of an ADF Business Components based application, it is necessary to disable application module pooling to test and verify the application code is passivation-safe. Disabling application module pooling enforces the application module instance to be released at the end of each request and be immediately removed (destructed), and passivation is triggered before its removal. On subsequent requests made by the same user session, a new application module instance must be created to handle this user request. A pending state must be restored from the passivation storage to activate this application module instance.
To disable application pooling for all application module pools, add -Djbo.ampool.doampooling=false
to the JVM options when you run your page. You can also disable application pooling for select application modules.
To disable application pooling for select application modules:
For more information about application module state management, see the "Application State Management" chapter in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
For more information about application module pooling, see the "Tuning Application Module Pools and Connection Pools" chapter in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
There is performance overhead associated with passivation and activation. It is important to know of cases of where not to use this feature without impacting scalability and reliability. For example, there is no need to passivate LOV view objects and validator view objects where the bind values are coming from the target data row via the view accessor relationship. Similarly, if you have View objects where none of the attribute values are used across requests, such as view objects used only in service calls, then you should disable passivation.
To disable passivation for a view object, uncheck the Passivate State option in the View Object Editor, as shown in Figure 57-8.
In addition to read-only view objects, some transient values of a view object, including transient view object attribute and calculated view object attribute, are read-only or their values are derived from other attributes via getter or groovy logic. There is no need passivate them.
To disable passivation for a subset of view objects' transient values, deselect Include All Transient Values in the View Object Editor - Tuning section as shown in Figure 57-8. Then check the Passivate check box only for the attributes that require passivation in the view object attribute editor.
For more information, see "Managing the State of View Objects" in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
By default, Oracle ADF takes care of passivating all necessary states of an application module instance, but some custom information must be addressed by application code. Some examples of custom information are:
UserData
hash table. Go through:Caution: This is not the user session. This is the Application Module session that ties to an application module and is maintained by ADF Business Components. |
It is easy to confuse an Application Module session object with an HTTPSession
object, which also provides a hash table to cache some session user information. The difference is the HTTPSession
exists at the ADF Controller layer and the state cached in it can be across HTTP requests independent of the application module instance. On the other hand, Application Session exists at the ADF Model layer and is per application module instance, so state cached in it can not be across HTTP requests once the application module instance switching happens.
It is strongly suggested to avoid saving a lot of custom session states in HTTPSession
because it increases memory usage and impacts scalability. This is the exact problem that application module state management and application module pooling is expected to solve.
To handle custom session states, you need to override passivateState()
and activateState()
functions in your ApplicationModuleImpl
class or relevant VOImpl
class.
For more information about how to manage custom user information, see the "Application State Management" chapter in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
The following is sample code from the Pathfinder Application to passivate and activate the UserLoginPrincipal
object. Example 57-2 shows one way that you can passivate custom state.
Note: XML documents can only handle String . Therefore, an object must be serialized before saving. |
Example 57-2 Passivating and Activating UserLoginPrincipal
The default release level is Managed, which implies that the application module's state is relevant and has to be preserved for this data control to span over several HTTP requests. In some cases you can programmatically set the release level to Unmanaged ("Stateless") at run time for particular pages to achieve better performance (no passivation). A classic example is the Logout page. Usually you can programmatically release the application module with the unmanaged level when you want to signal that the user has ended a logical unit of work.
Caution: When using DCDataControl::resetState() to set an Unmanaged release level, it only affects the current application module instance in the current request. For the next request, the application module instance automatically uses the default Managed release level again. |
Setting the release level to Reserved makes Data Control "sticky" to an application module instance and all requests from the same HTTPSession
associated with this Data Control are served by the same application module instance. This is contrary to the initiative of introducing application module state management and application module pooling, so using this release level is strongly discouraged.
Caution: Once the release level is changed to Reserved by calling DCJboDataControl::setReleaseLevel() with input argument ApplicationModule.RELEASE_LEVEL_RESERVED , it stays at this level until explicitly changed. |
Table 57-1 illustrates application module release mode comparisons.
Table 57-1 Application Module Release Mode Comparison
Release Mode | Unmanaged (Stateless) | Managed (Stateful) | Reserved |
---|---|---|---|
Application Module Behavior | Does not preserve the state of the application module instance between page-processing requests. The instance is immediately released when a JavaServer Page (JSP) page terminates. Note: Select this option when you expect many users to access your JSP application simultaneously. The stateless option allows more users to access a JSP application simultaneously at the cost of requiring the user to reconnect to a new application module instance every time a JSP page is invoked (or re-invoked). | Preserves the application module instance's state in the database between page-processing requests. This permits the application to maintain a user's data without involving a single application module instance for long periods of time. Note: Stateful mode provides failover support for the HTTP session and is the preferred choice when the application module uses a standard JDBC connection. | Allocates the application module instance for the duration of the browser session. The instance is released only at the end of the session. This mode is provided primarily for compatibility with certain application module definitions. Failover is not supported in this mode. Note: Reserved mode is primarily useful when the application module requires a non-standard JDBC connection definition. Failover is not supported in this mode. |
DBTransaction & User Action | Oracle ADF automatically posts and commits any changes because the application module state is not maintained between requests in stateless mode. The user is not expected to initiate the commit in stateless mode: the Commit and Rollback buttons are disabled in the JSP page. | Oracle ADF merely saves the application module state, including the data changes, to the database at the end of a page request. In this mode, the user is expected to initiate the commit by clicking the Commit button in the process JSP page. Once the user clicks the Commit button, Oracle ADF immediately initiates a post and commit (together, as one step) on the database. Optionally, the user can click the Rollback button to prevent their changes from entering the database without ever initiating a post. Because the application module state is preserved, the user can initiate the Commit or Rollback at any point during the HTTP session. | Oracle ADF automatically posts any changes to the database (and initiates DML-specified database triggers on the effected tables). In this mode, the user is expected to click either the Commit button or Rollback button in the process JSP page. Because the application module itself is not released for the duration of the HTTP session, the user can initiate the Commit or Rollback at any point. |
Application Module Locking Behavior | In stateless mode, it is recommended that the Business Components property | In stateful mode, it is recommended that the Business Components property | In release mode, you can reliably use pessimistic locking and may set the property |
For more information about application module release level and state management, see the "Application State Management" chapter in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
If you make database updates during a request, using either a DBTransactionImpl.pst changes call or PLSQL, ensure the changes are committed within the same request, or rolled back if there are errors. All exceptions must be caught and rolled back to prevent partial updates from lingering in the database.
If you create an application module using createRootApplicationModule calls, you should call the releaseRootApplicationModule to avoid a memory leak. Oracle ADF internally maintains references to these application modules, so they are not freed until you release them. You must also call releaseRootApplicationModule if you call one of the *AMImpl.getInstance calls for the various Applcore application modules.
Call Configuration.releaseRootApplicationModule(am, false) instead of Configuration.releaseRootApplicationModule(am, true). If true is passed, the application module is destroyed and the next request for this application module will be expensive because it needs to be created. If false is passed, the application module is released back to the application module pool and the next request can simply check out the application module from the pool, thereby avoiding the creation cost.
When working with services, consider the following suggestions for improving performance.
By default, when you call the find service, the child service data objects are also fetched. If you do not need those children, then make sure you set the find criteria to fetch only the attributes you need.
Example 57-3 is sample code showing how to create a find criteria.
Example 57-3 How to Create Find Criteria
If you are doing frequent fetches of a business entity that is not the top level of a business object, it is better to expose a find service for that business entity rather than expose a find service for the highest level. Otherwise, the service call must be made against the topmost level entity, incurring unnecessary cost.
When you are using the processXXX()
method to insert new rows, call the processXXX()
method using ChangeOperation.CREATE
. Do not use ChangeOperation.MERGE
. Calling the processXXX()
method with ChangeOperation.MERGE
issues extra queries to the database to check if the rows already exist.
When creating a list of service data objects to pass for update using the processXXX()
method, if possible, set only the columns that you really need to change. Service data objects with fewer attributes that have been set are updated faster than service data objects with all the attributes set.
Follow the best practices described in this section while working with various ADF ViewController layer components such as geometry management, page templates, and partial page refresh.
When working with ADF ViewController components, consider the following suggestions for improving performance.
For a specific page or page fragment, try to use only one application module data control. You should use nested application modules rather than a separate application module data control because this minimizes the number of database connections your page uses. When using a nested application module, be sure to drag the nested application module from under the root application module in the data control panel.
Note: If you use nested application modules, you can not pull data from different databases. |
All ADF Faces Rich Client display components have two properties that relate to whether the component is displayed on the page. For more information about how to use these properties, see "ADF Faces Component Attributes" in the Oracle Fusion Middleware Performance and Tuning Guide.
If you decide to remove an unused item, such as a column from a table, remove the corresponding item from the tree binding. If you forget to do so for an expensive computed attribute, the logic to compute the attribute still executes even after removing the computed attribute from the table. In addition, remove any unused iterator bindings from the page definition file.
Columns in the table
and treeTable
components can be stretched so that there is no unused space between the end of the last column and the edge of the table
or treeTable
component. This feature is turned off by default due to high performance impact. Turning this feature on has a performance impact on the client rendering time so it should not be used for complex tables.
The default values of the Refresh
and RefreshCondition
properties of iterator binding and action binding are deferred and NULL, which means that the related action binding will be invoked only if needed. The default value is appropriate for most cases. If you select the value ifNeeded for the Refresh
property, the iterator or action may get refreshed twice and therefore impact performance. Figure 57-9 shows how the JavaServer Faces (JSF) and Oracle ADF phases integrate in the lifecycle of a page request.
In particular, the value always should not be used as the Refresh property for invokeAction
bindings. Using ifNeeded is the best option for most cases. Note that if invokeAaction
binds to the methodAction
, which does not accept any parameters, or to any action then it will fire twice per request. To avoid this situation, use the RefreshCondition
attribute on invokeAction
to control when the action needs to fire.
For more information about the Refresh property, see the What You May Need to Know About Using the Refresh Property Correctly section in the "Understanding the Fusion Page Lifecycle" chapter of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
In addition to the query used to fetch the data for display, Oracle ADF issues a count query to calculate the estimated result set size for view objects that are bound to a table on the UI. This is used to size the scroll bar and is capped at a certain threshold to avoid scanning the entire result set. If your query is expensive and this additional query results in your page not meeting your performance target, consider setting the RowCountThreshold
setting to a negative value. This turns off the row count query.
You consider disabling row count completely by setting RowCountThreshold to -1 after extensive tuning. Then you could apply the global RowCountThreshold if your count query still has performance issues.
Caution: When you disable the estimated row count, the scrolling behavior of your table is different. The user can scroll forward only one range at a time. |
HTTPSession
provides a hash table to cache user information. However, all the information is saved in memory, so inappropriate use of HTTPSession
cache causes some scalability issues, including:
Putting critical, large volume information in HTTPSession
cache is not recommended. Instead, you should leverage application module state management and application module pooling. See Section 57.2.3.2, "Make Application Code Passivation-Safe."
Example 57-4 shows how to use HTTPSession
cache in a backing bean.
Example 57-4 HTTPSession Cache in a Backing Bean
Sometimes you must provide an ID for a UI component. For example, an ID is required for a component that is a source of a partial page refresh (PPR) event. Also, Oracle ADF generates default component IDs for certain components, such as when a task flow is added to a page as a region. (The default region ID is the first 5 characters of the task flow name plus a digit). If you have pages with a region ID that is greater than 7 characters, you should shorten the IDs of the task flow regions to 7 characters or fewer (including the digit), with 3 characters being ideal.
If IDs are specified for other naming containers (such as tables), a length of 3 or fewer is best. Using short naming for container IDs helps to reduce the size of each response, as well as network traffic, because the IDs of the parent naming containers are appended to a child's generated ID.
When using Search, follow these UI standards:
In some cases it is possible to find out during the jsp tag execution phase if a particular jsp subtree needs to be executed or not by using the <c:if test...> tag. Example 57-5 is an example for panelAccordion
. (Note the use of $
instead of #
).
Note: Using this technique is not recommended. For other techniques, see Section 57.3.1.20, Section 57.3.1.21, and Section 57.3.1.22. |
Example 57-5 Using the <c:if test...> Tag
Example 57-6 shows how to use this technique with lazy popups.
Example 57-6 Using <c:if test...> Tag with Lazy Popups
ADF Rich Client has a sparse component tree on the client. This means only required components are created on the client. The component instance is instantiated on the client if:
To achieve the best performance, do not set the client component property to true.
ADF Rich Client components have an immediate attribute. There are some cases where setting immediate to true can lead to better performance. For more information, see the "ADF Faces Component Attributes" section in the Oracle Fusion Middleware Performance and Tuning Guide.
By default, the data for Table, Tree and other stamped components uses the lazy data delivery mechanism. This means that page content is delivered with the first response from the server and the next request fetches the data. This option should be used when the page has enough content to be displayed and a table query may be slow. Underneath, the data fetch request uses the table streaming feature, which delivers table data to the client as soon as it is available. Also, it provides the ability to execute data fetch requests on the server in parallel, making them faster. To enable fetching data in parallel, set the RenderHint
property of the iterator to background. This option could increase the number of database connections.
The other option to deliver data is immediate mode, which is set on the table. In this mode, the data is delivered with the initial page. This is better in terms of CPU and memory consumption on the server, and should be used if the table is the main context of the page.
For more information, see "Data Delivery - Lazy versus Immediate" in the Oracle Fusion Middleware Performance and Tuning Guide
Tables have a fetch size which defines the number of rows to be sent to the client in one round-trip. To get the best performance, keep this number low while still allowing enough rows to fulfill the initial table view port. This ensures the best performance while eliminating extra server requests.
In addition, consider keeping the table fetch size and iterator range size in sync. By default, the table fetch size is set to the EL expression #{bindings.<name>.rangeSize} and should be equal to the iterator size. The iterator range size should be set to number of displayed rows + 1. In particular, for auto-height tables, you should set iterator range size to the value of autoHeightRows + 1.
Frozen columns and header columns in the table are very expensive on the client side and should be avoided if possible. Overhead can be 20% to over 100% for a simple page with limited content when there are frozen columns. If frozen columns must be used, make sure the row height of the columns to the left and the right of the frozen column are of the same height.
Regions are very powerful and provide extreme flexibility. However, there is an associated cost with every region. In order to have the best performance, make sure to use the region only when it is needed.
Generally, the Oracle ADF guideline is to not have more the 15 regions on the page.
Set the Data Control Scope to Shared for a task flow to allow sharing of the data control. (This is the default). This reduces the number of database connection. There may be some cases where using Isolated is functionally necessary. For more information, see the "Sharing Data Control Instances" section in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
Select the No Save Point option if you do not need the functionality to roll back changes at the end of the task flow. If you do not use this option, the model state is passivate at the beginning of the task flow, which is expensive.
For tables where most rows are usually view-only and rarely edited, set the Edit mode property to Click-To-Edit. This reduces the response size significantly and improves performance.
By default, task flows that use a region under popups are activated when the page loads, not when the popup displays. This causes unnecessary memory and CPU usage if the user does not use the popup. There are two approaches for activating the task flow region only when the popup displays:
setPropertyListener
executed on popupFetch
. The EL expression must return true as long as the popup is displayed. (A request scope variable will not work in most cases unless you cannot submit any server requests from the popup.)Approach (1) is simpler but you must use approach (2) for these cases:
This recommendation is similar to Section 57.3.1.20, "Avoid Unnecessary Task Flow Activation for Regions Under Popups", but is applicable to popups that do not contain regions. By default, the child components under a popup are created even when the popup is not accessed. This causes unnecessary memory and CPU usage if the user does not use the popup. To avoid this overhead, set the childCreation property on the popup to "deferred".
This approach cannot be used for these cases:
By default, task flows that use an af:region
under switchers are activated regardless of whether the facet displays. This causes unnecessary memory and CPU usage for the facets that do not display. To activate the task flow region only when it displays, set the "activation" property on the task flow binding to "conditional", under the Executables section in the page definition file. Also specify a condition in the "active" to an EL expression that returns true when the facet displays.
Typically, you may already have an EL expression to control the return value for the facetName
property in the switcher. For example, if your switcher looks like this:
The associated binding should have activation set to "conditional", and active set to an EL, as follows:
Creating additional root application modules is expensive when you can reuse the root application module that is associated with the data bindings on your page. For example, do not access an application module instance by calling the Configuration.createRootApplicationModule() API from a backing bean. This results in creating additional application module instances which are distinct from the application module instance that is automatically checked out and in by the Oracle ADF data binding layer, used by UI pages and task flow method call activities. This can lead to performance and memory issues if your backing bean calls Configuration.createRootApplicationModule() API without calling releaseRootApplicationModule().
You should use an ADFM action binding to invoke a client interface method declaratively on an application module instead. This approach requires no code and often prevents the need for a backing bean. It also ensures that any exceptions are handled in a consistent way as if Oracle ADF had invoked the method declaratively. You should also ensure that your backing bean is invoked in a context where a pageDef has been defined.
The following code excerpt is an example that follows our recommendation:
The following example is not recommended:
When the transaction setting of a task flow is "Always Use Existing Transaction" or "Reuse Existing Transaction if Possible", and the "No savepoint on taskflow entry" box is not checked, Oracle ADF automatically creates a savepoint when entering the taskflow. You should check the box to avoid the savepoint cost if you do not have functionality to rollback to this particular savepoint.
The common usage of backing beans is to reference values from EL expressions. Bean getters may also be called from other places in the code, as well as being called multiple times in a request. If you have expensive computations inside the bean getter logic, consider caching the results inside the bean. This should be fairly safe to do for request-scope beans unless you expect the result to change within the request. For view-scope or page flow-scope beans, be careful about when to invalidate the cached results.
If you maintain direct references to UI Component instances from view scope or pageflow scope beans, this could cause both functional errors and impact performance. If you must maintain a reference, use the ComponentReference pattern instead.
ADF Rich Client supports Geometry Management of the browser layout where parent components in the UI explicitly size the children components to stretch and fill up available space in the browser. While this feature makes the UI look better, it has a cost. For more information, see the "Enable ADF rich client geometry management" row in the "Configuration Parameters for ADF Faces" table in the Oracle Fusion Middleware Performance and Tuning Guide.
Page templates allow you to build reusable, data-bound templates that can be used as a shell for any page. For important considerations when using templates, see the "Use page templates" row in the "Configuration Parameters for ADF Faces" table in the Oracle Fusion Middleware Performance and Tuning Guide.
You should always consider using partial page refresh instead of a full page refresh. For more information, see the "Use ADF Rich Client Partial Page Rendering" row in the "Configuration Parameters for ADF Faces" table in the Oracle Fusion Middleware Performance and Tuning Guide.
For best practices while working with Human Workflow and Approval Management extensions (AMX), see the Oracle Human Workflow Performance Tuning chapter in Oracle Fusion Middleware Performance and Tuning Guide.
When working with application modules, consider these best practices related to using a nested service and releasing application modules returned from getInstance
calls.
To get a profile option value, use
This is optimized to first find the profile value in an internal cache, so it checks out an application module only if needed. Avoid calling ProfileServiceAM.getInstance
as it checks out a ProfileService application module instance, which is expensive.
If you have no other option and must use getInstance
to get an application module back, such as ProfileServiceAM.getInstance
, you must release it to avoid a memory leak via a Configuration.releaseRootApplicationModule
call as shown in Example 57-7.
Example 57-7 Release Application Module
When the attachments feature is used, it creates a new taskflow in the page bindings. For example:
or:
This task flow is unnecessarily activated. To avoid this situation, navigate to the bindings tab of the page where the Attachments component was added. Select attachments task flow, attachmentRepositoryBrowseTaskFlow1
, from the list of Executables. Set the following attributes in the property inspector under Common:
Use static APIs from oracle.apps.fnd.applcore.messages.Message
to get message text. Avoid using MessageServiceAMImpl.getInstance,
or calling createRootApplicationModule
to get MessageServiceAM
, as this results in checking out and initializing an instance of MessageServiceAM
from the AM pool, which has a cost.
If the data control scope is shared for taskflows pointed to by certain item nodes, then the life span of these taskflow data controls is tied to the parent, which is either Main TF or Regional TF in the UI shell. This scenario applies to those item nodes with taskType equal to "defaultMain", "dynamicMain", or "defaultRegional". This means that DC frame is no removed for the duration of the session, regardless of any navigation or closing tab. This is due to the fact that Main TF and Regional TF in the UI shell has the DC scope set to shared, due to the requirement to share CE between the regional and main areas.
If there is no requirement to share transactional data between the regional and main areas, then set dataControlScope="isolated" on the page level item node in the menu file. This recommendation assumes that the underlying taskflows used in the regional area or the task menu already have data control scope set to isolated. Note that you should not change the data control scope on the taskflow itself.
When working with Java, consider these best practices related to Strings and StringBuilder, Collections, Synchronization, as well as other Java features.
When working with Strings
and StringBuilder
, consider the following suggestions for improving performance.
When doing String
concatenations inside a loop, see if the operation can be moved outside of the loop. Frequently, the concatenation code is put inside the loop even though the value can never change there.
The String
concatenation operator +
involves the following:
StringBuilder
is created.append()
.toString()
.This increases cost in both space and time, especially if you're appending more than one String
. You should consider using a StringBuilder
directly instead.
StringBuilder
was introduced in Java Development Kit (JDK) 1.5 and is more efficient than StringBuffer
since the methods are not synchronized. When using StringBuilder
(or StringBuffer
), optimally size the StringBuilder
instance based on the expected length of the elements you are appending to it. The default size of a StringBuilder
is 16. When its capacity is exceeded, the JVM has to resize the StringBuilder
which is expensive. For example, instead of:
You should follow this example:
This way, the StringBuilder
object is initialized with the correct capacity so it can hold all the appended strings it needs to resize its internal storage structure.
For the sake of simplicity, it is acceptable to do String
concatenation using "+
" for debug log messages, as long as you follow the logging standard and check log level before constructing the log message.
Avoid unnecessary use of String.substring
calls since it creates new String objects. For example, instead of doing this:
Do this instead:
The hashCode
method is another common place where you do String
concatenation. Example 57-8 uses the hashCode
implementation and requires String concatenation on every call.
Example 57-8 Hashcode with String Concatenation
Example 57-9 does not use String concatenation.
Note: This example was taken from the book Effective Java. |
Plan carefully before deciding to concatenate Strings. There are often alternative ways to implement the intended logic without concatenation.
You should always check the log level before you make a logging call, otherwise, many objects may be constructed unnecessarily. For example, if logging is disabled, but your code still calls the logging API that passes in the log message. This concatenates several String objects together and the String
concatenation is a waste of resources.
The log message is constructed and passed into the logging API, and then discarded since logging is disabled. If you first check if the target log level is enabled, then the log message does not need to be created unless it is actually needed. For more information see the "Set Logging Levels" section in the Oracle Fusion Middleware Performance and Tuning Guide.
Use proper logging APIs, such as AppsLogger, instead of using System.out.println
and System.err.println
for debug logging. This way, log messages are properly formatted with the correct context information.
Avoid instantiating objects until they are needed. For example, if you are coding a method to do String
replacement, do not allocate a StringBuilder
object to do the replacement until you have found a fragment that needs to be replaced. For more information, see the "Application Module Design Considerations" section in the Oracle Fusion Middleware Performance and Tuning Guide.
When working with Collections, consider the following:
Vector
and Hashtable
) are synchronized, whereas new collections (like ArrayList
and HashMap
) are unsynchronized, and must be wrapped via Collections.SynchronizedList
or Collections.synchronizedMap
if synchronization is desired. Do not use synchronized classes collections, including collections from java.util.concurrent
package, that are not shared among threads.hashtables
or hashmaps
.For more information about Collections, see "Configuring Garbage Collection" in the Oracle Fusion Middleware Performance and Tuning Guide.
When working with synchronization methods you should consider the following:
Avoid synchronized methods if possible, because even with the latest versions of the JVM, there is still significant overhead.
Bad candidates for synchronization are:
Minimize the size of the synchronized block of code. For example, instead of synchronizing the entire method, it may be possible to synchronize only part of the method.
In JDK 1.5, there is a new package, java.util.concurrent
, that contains many classes designed to reduce contention. For example, java.util.concurrent.ConcurrentHashMap
provides efficient read access while still maintaining synchronized write access. These new classes should be evaluated instead of simply using a Hashtable
whenever synchronization is required.
When working with Java features, you should consider the following:
Autoboxing is a feature introduced in JDK 1.5, which allows direct assignment of primitive types to the corresponding object type, such as int => Integer
. Avoid using autoboxing in code that is called repeatedly, as shown in this example:
Example 57-10 shows how the compiled code basically creates a new Integer object based on the int value:
Example 57-10 Compiled Code
If this piece of code is called repeatedly, then each call creates one Integer object and could have adverse performance impact.
Exception object and snapshot of stack have to be created. This is expensive especially for typical Oracle ADF applications, which have very deep execution stacks. For example, if your code needs to detect whether a certain object can be casted to a certain type, use instanceOf
instead of doing the cast and catching the exception. In other words, use instanceOf
instead of relying on ClassCastException
.
If using regular expression classes to match against a known pattern, create the Pattern
object only once and reuse it for subsequent matches. Only the Matcher
object needs to be created each time.
Avoided repeated calls to the same APIs that have non-trivial costs. Use a local variable to hold the result instead. For example, instead of:
Use:
To avoid memory leaks, closed unused JDBC statements. Example 57-11 depicts a statement leak in java code.
Example 57-11 Statement Leak in Java Code
There should be a setGrant.close()
call to close the statement.
For every call to createStatement()
, prepareStatement()
, prepareCall()
, createCallableStatement()
, or createPreparedStatement()
there should be a close()
to prevent memory leaks.
In the case of query execution, it is possible that the result set may be closed, but the underlying statement has not been closed, as shown in Example 57-12.
Example 57-12 Underlying Statement Not Closed
In this case, the result set is being closed via rs.close()
. However, the statement (stmt) has not been closed. For every statement opened, you should close it in the final block of a try-catch
, as shown in Example 57-13.
Example 57-13 Close Statement Example
Make sure to catch exceptions around something like stmt.execute()
.
In Java files, whenever a callable statement is fired, such as in a begin-end block, the out bind types and precision have to be specified. This is done after creating the callable statement but before the query is executed. The method call to specify the type is called registerOutParameter()
. This call should exist for every out bind in the callable statement regardless of its return type. There are two overloaded versions of this method call that can be used:
If you are getting a connection directly from Data Source or through ApplSessionUtil.getConnection
, make sure you release the connection in a final block.
Caching is one of the most common approaches for improving the performance of accessing commonly used data. Shared application module and view object provide a mechanism for storing database results and other objects, such as in-memory ADF Business Components objects for repeated usage. This minimizes expensive object initializations and database round-trips, which ultimately results in improved application performance.
It is important to correctly identify the best data to cache. Generally, this is the data that is common to different users, frequently used and infrequently changed, expensive to retrieve from the database or data source, and expensive to create. Data suitable for caching should have some or all of the following characteristics:
Lookup codes are an example of data that meets most of the above criteria.
Cached objects are stored in view objects, which are added to an application module. This application module is configured as shared at the application level so that the cached objects are available to all users. To stripe cached data, view criteria with bind parameters are used. For example, a view accessor on top of a shared DeptVO
with a view criteria such as location=:bindLocation
results in one cache for each distinct value of :bindLocation
.
To add data to cache:
For information about how to create a shared application module, see the "Sharing Application Module View Instances" chapter in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
VOImpl
class for the shared view object and override the create()
function of VOImpl
to fully populate the view object cache as shown in Example 57-14.Example 57-14 Pre-load all Data into Memory
Note: This step is optional as there may be caches, such as profile cache, that you would want to populate lazily. |
In addition to the instructions provided in Section 57.7.2, "How to Add Data to Cache", you must also perform the following steps to cache multi-language support (MLS) data. These steps are required because the shared application module and view object cache only stripes data by bind parameters. Therefore, you must build your MLS view objects for caching differently than other normal MLS view objects. For example, you must add bind parameters to the MLS cache view objects.
The procedure for creating ADF Business Components objects for shared MLS data varies depending on where the shared data requirement exists. The steps you follow are different for sharing data from the base table, from the translatable, or _TL, table or from both the base and the _TL table.
_VL
entity object if you do not require change notification. Otherwise, create a view object on top of the entity object created from the previous step_VL
entity object._TL
table.This is required by MLS Framework. For more information, see Section 9.2, "Using Multi-Language Support Features."
_TL
entity object.Caution: The language must always be part of any view criteria. This is very important. |
_TL
table.This is required by MLS Framework. For more information, see Section 9.2, "Using Multi-Language Support Features."
If you do not need the change notification feature, then you can use the existing _VL
entity object, which should have been created already because it is required by MLS Framework.
_VL
entity object or an entity object based on the base table) and the _TL
entity object. The view object should have all the language dependent attributes from the _VL
entity object excluded, which allows the language dependent attribute to always come from the _TL
entity object.Tip: This is important as it allows different users to see data for their language. |
Caution: The language must always be part of any view criteria. This is very important. |
The procedure for creating ADF Business Components objects that join to MLS tables varies depending on where the data requirement exists. The steps you follow are different if the data is from the base table, from the translatable, or _TL, table, or from both the base and the _TL table.
_VL
entity object if you do not need the change notification feature, or create one that joins to the entity object created in previous step if change notification feature is required._VL
entity object._TL
entity object.Caution: The language must always be part of any view criteria. This is very important. |
_VL
entity object or the entity object created in the previous step, and the _TL
entity object._VL
entity object so that the language dependent attributes always come from the _TL
entity object.Tip: This is important as it allows different users to see data for their language. |
Caution: The language must always be part of any view criteria. This is very important. |
The most common approach for accessing the shared data is to create a view accessor. You can also instantiate a shared application module programmatically if your use case requires it.
Follow these steps to consume shared data using a view accessor:
If the shared view object contains language specific attributes, make sure to include a view criteria that filters by language and bind the language to the current session language when defining your view accessor.
For information about how to create view accessors, see the Accessing View Instances of the Shared Service section of the "Sharing Application Module View Instances" chapter in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
This allows defaulting and derivation, and other business logic to utilize these view accessors.
Tip: If you use entity object target type, it does not use application-level cache. |
If you have an existing local application module, use the findOrCreateSharedApplicationModule
method to create a shared application module. If you do not have a handle to an existing local application module, then use createRootApplicationModuleHandle
from the oracle.jbo.client.Configuration
class. Ensure that you release the application module after you are done, for example:
If you rely upon the database change notification feature to refresh your shared AM cache, then you also need to manually invoke the processChangeNotification
method on the shared AM in order to get the latest data. For more information, see the "Sharing Application Module View Instances" chapter in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
During runtime, only one instance of a shared application module is created in the application module pool. If there is an existing application module in the pool, then the existing application module instance is returned when you request a shared application module. For more information, see the "What Happens at Runtime: When Another Service Accesses the Shared Application Module Cache" section in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
To monitor performance in Oracle Fusion Applications you can use the JDeveloper Profiler and capture SQL Trace for Oracle Fusion Applications. For detailed information about monitoring and debugging techniques, see the "Monitoring Oracle Fusion Middleware" chapter in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
The JDeveloper Profiler is used to provide information about the CPU, elapsed time, and memory metrics, as well as call counts. It can be very helpful when you are dealing with a performance issue or just trying to understand the performance characteristics of your code.
For more information about JDeveloper Profiler, consult the JDeveloper Help documentation.
Useful profiling modes are:
Figure 57-10 Edit Run Configuration — Profiler: CPU
If you find a method with a high elapsed time but low CPU time and that method includes a database call, this could indicate either a slow query or too many database roundtrips between the database and the middle-tier over a slow network. Look for methods with the highest exclusive CPU (sort on the CPUx field), and use the stack trace to determine where they are called from and if they can be optimized.
Caution: Call count profiling has very high overhead and therefore, you should increase Oracle JDeveloper starting memory before using it. To reduce resource consumption, you should set appropriate filters to include only the classes you are interested in. |
If you are interested in where a certain method is called, you can set a breakpoint on that method and capture the stack trace. You can do this either interactively or preferably, you can set up a debug breakpoint at the target line and print the stack automatically.
To set up a debug breakpoint at the target line:
Each time the breakpoint is hit, the stack is written to the console. To capture this, you must log the console output to a file.
To log the console output to a file:
After running your project, you can find the console logged to a file in the specified directory.
This chapter describes the process of debugging your Oracle Application Development Framework (Oracle ADF) and Oracle SOA Suite applications. It describes how to diagnose and correct errors and how to use the debugging tools.
This chapter includes the following sections:
Debugging Oracle Application Development Framework (Oracle ADF) is a process of collecting and isolating factors that contribute to problems that occur when the web page components interact with the ADF Model layer.
You can use diagnostics tools for collecting contextual information for isolating the problem. One of the most useful diagnostic tools is the ADF Logger. You use this logging mechanism in JDeveloper to capture runtime traces messages. With Oracle ADF logging enabled, JDeveloper displays the application trace in the Message Log window. The trace includes runtime messages that may help you to quickly identify the origin of an application error. Another useful diagnostic tool is SQL trace, which enables tracing of the current database session and logs all SQL statements to a server-side trace file.
Once you have gathered the diagnostic information, you can use the JDeveloper debugging tools to investigate where your application failure occurs. These include the JDeveloper Debugger, which is a comprehensive debugger to assess and repair your code, and the ADF Declarative Debugger for declaratively setting breakpoints on ADF task flow activities, page definition executables, method, action, and value bindings, and Oracle ADF lifecycle phases.
Oracle SOA Suite provides a complete set of service infrastructure components for designing, deploying, and managing composite applications. Test cases enable you to simulate the interaction between a SOA composite application and its web service partners before deployment in a production environment. This helps to ensure that a process interacts with web service partners as expected by the time it is ready for deployment to a production environment.
Collecting diagnostics information helps you to obtain more contextual information for isolating the problem.
In the Integrated WebLogic Server environment, you can maximize the availability of diagnostics information by:
You can also enable logging in the development environment by setting the Java system property named jbo.debugoutput
to the value console
. For information, see the "How to Turn On Diagnostic Logging" section in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
Database tracing can be a very useful way of verifying whether the queries executed by ADF Business Components are actually returning any data. The ADF Business Components tracing output (-Djbo.debugoutput=console
) lists the query and the bind variable, but it is not always clear how many rows are fetched or how the fetching takes place, that is, in batches or one row at a time. If you are investigating a suspected bug or performance issue in ADF Business Components, it is always good to have the database trace to help understand the problem.
Database tracing is usually used for performance tuning. You should know how to generate a SQL trace, find the query you are interested in, check the bind variables, and tell how many rows were returned. It is usually the quickest way of telling whether missing data in your application is a middle tier application bug, or missing data in the Relational Database Management System (RDBMS). It is also useful when you are investigating ORA errors being returned from the database.
You should consider the following with database tracing:
fusion_apps_wls.properties
and not from connections.xml
. However, when you use the application module tester to run an application module, the connection details from connections.xml
are used, even when you set your application module configuration to use an Oracle WebLogic Server data source. Since the application module tester does not use Oracle WebLogic Server, it builds a database connection from the information in connections.xml
.fusion_apps_wls.properties
, the updates are not picked up until the Oracle WebLogic Server domain is re-created. Shutting down the Integrated WebLogic Server instance is not enough. The domain for the Integrated WebLogic Server is automatically created when you launch the Integrated WebLogic Server instance for the first time in a new Oracle Fusion Applications ADE view, or re-created the next time you run the Integrated WebLogic Server instance after deleting the domain directory. If in doubt, you can view the ApplicationDBDS JDBC data source in the Oracle WebLogic Server Administration Console to see what database it is pointing to. You can change the database in the Oracle WebLogic Server Administration Console to point to the new database, but the next time the domain is re-created it will be set to the connection defined in fusion_apps_wls.properties
.select userenv('lang') from dual;
returns US
. If it does not, change the language with:If you do not do this, some of the translated view will not return any data. For example, if you are based in the United Kingdom, select userenv('lang')
may return GB
by default, which does not match any of the data in the TL tables. This is particularly important in the development environment where only the US messages are available.
userenv
.You can also enable Oracle ADF tracing. For information, see the "Use SQL Tracing to Identify Ill-Performing Queries" section in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
In the standalone WebLogic Server environment, you can maximize the availability of diagnostics information by:
Use logging profile options to enable diagnostic logging in the provisioned environment so you can view your log statements in the directory configured against your apps-handler.
To enable diagnostic logging in the provisioned environment:
WLS_Users_and_Groups.ldift
file by searching for "uid=". The string for orclguid
is the user GUID.AFLOG_ENABLED USER Y
to enable logging for the user.AFLOG_LEVEL USER 300
to set the level to the lowest severity (FINEST) for the user.AFLOG_MODULE USER %
to enable logging for all modules for the user.For information on setting the profile options for logging, see Chapter 54, "Defining Profiles".
logging.xml
has the oracle.apps
logger configured against a handler. In your standalone server, logging.xml
is located in the standalone domain at <....> / domains/fusion_domain/config/fmwconfig/servers/AdminServer/logging.xml
.The following logger should exist in logging.xml
:
The handler apps-handler
should also exist in the handlers section.
To help you investigate problems in the standalone WebLogic Server instance, you can add debug messages to your code so that messages, such as System.out.println()
, which are normally displayed on the Java console, are written to the server log file (AdminServer.log
) in the default domain.
Since the log file may get rather large, particularly if more than one user is using the environment, you may want to prefix your messages with an identifier that you can easily find through a search.
Log in to the Environment Management System (EMS) WebLogic Server host using the Applmgr username and password. The default password is the username in uppercase letters, but your family environment owner may have changed it, so check with them if necessary. The server log should be in the Applmgr home directory. To locate other log files, use the find . -name "*.log"
command.
Enabling database tracing allows the standalone WebLogic Server instance to write all your actions to an associated trace file. When an internal error is detected by a process, it dumps information about the error to its corresponding trace file.
Enable database tracing before you start your test flow.
To enable database tracing:
This option enables SQL trace for all database connections used by the current user session.
You can also select options to enable the SQL trace option to capture bind variables and wait events.
The trace file can be found in the USER_DUMP_DEST
directory specified by the user_dump_dest init.ora
parameter, which is usually ORACLE_HOME
/log/diag/rdbms/
sid
/
sid
/trace
. The trace filename includes the FND session ID appended to the end, for example, mysid_ora_4473_881497BF7770BEEEE040E40A0D807BB1.trc
. You must identify the session ID to locate your trace file.
Note: From SQL*Plus, you can execute SQL> show parameter user to show user_dump_dest . An operation system login is required to access this directory. |
To identify the session ID in Mozilla Firefox:
Oracle
, then look for a cookie that contains FND_SESSION
in the name.DEFAULT_PILLAR:BsdhOZScx9NeAA..:1249055856737
.Note the middle portion (using :
as separator), for example, BsdhOZScx9NeAA..
.
For example,
The value returned if your session ID, which you can use to locate your trace file.
In addition to reviewing the diagnostics information, you can perform various tasks to diagnose problems in your server environment.
Perform the following tasks to diagnose problems in the Integrated WebLogic Server environment:
While you are diagnosing problems in the Integrated WebLogic Server environment, you may want to verify that the JDBC data source connections are pointing to the correct database connection string.
To test the connections:
weblogic
and weblogic1
.When running on Integrated WebLogic Server, you can view the application module pooling statistics to verify that the domain is properly configured for Oracle ADF. For more information about application module pools, see the "Tuning Application Module Pools and Connection Pools" chapter in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
To view the application module pooling statistics:
http://localhost:7101/dms/Spy
.ampool
metric.Sanity checking your EAR file helps to diagnose problems in the Integrated WebLogic Server environment. Download the EAR file and open it using a decompression utility. You can then drill down into the WAR file and individual Oracle ADF libraries.
While sanity checking your EAR file, verify the following:
WEB-INF/lib
directory of the WAR file.APP-INF/lib
directory of the EAR file.APP-INF/lib
directory, depending on how it was set up.public_html
directory.Perform the following tasks to diagnose problems in the standalone WebLogic Server environment:
The procedure for sanity checking your EAR file in the standalone WebLogic Server environment is the same as the procedure for Integrated WebLogic Server. For information, see Section 58.3.1.3, "Sanity Checking Your EAR File in the Integrated WebLogic Server Environment".
Using a tool called CATX (Classloader Analysis Tool), you can diagnose problems in the standalone WebLogic Server environment by examining the JAR files and loaded classes when your application is running from Oracle WebLogic Server.
CATX is a web application that is deployed by default to every Oracle Fusion Applications Oracle WebLogic Server domain. To launch CATX, run http://
host
:
port
/catx/
.
With CATX, you can identify a duplicate class by determining from which JAR file a class file was loaded. You can also identify any other locations where the class is duplicated in the J2EE application classpath or web application classpath.
As an alternative to CATX, you can add the following code to your custom classes to display in the console the JAR file from which the class was loaded:
This method may be useful if you are actively debugging code from JDeveloper or using the AM Tester.
The following debugging tools are available for debugging in JDeveloper:
For information, see the JDeveloper online help.
For information, see the "Using the ADF Declarative Debugger" section in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
Use JDeveloper to perform remote debugging for your application.
Oracle WebLogic Server logs and Fusion Middleware ODL (Oracle Diagnostic Logging) logs are located in the following directory:
To perform remote debugging of your application:
setenv debugFlag true
Protocol: Attach to (Java Platform Debugger Architecture (JPDA))
Host: Enter the host where Oracle WebLogic Server is running.
Port: Enter the Java Debugger Wire Protocol (JDWP) port number.
The Java Virtual Machine (JVM) is listening for JDPA requests. The default port is 8453. Use the setenv DEBUG_PORT
new port number
command to change the port number.
Note: Alternatively, you can create a profile by selecting your ViewController project, right-click and select Project Properties, Run/Debug/Profile. |
The debugging log file will contain an entry similar to the following:
Set your break points and initiate your program. When you have finished, click the red Stop button, and a dialog will appear asking if you want to Detach, Terminate, or Cancel. Detach detaches from the remote Oracle WebLogic Server, and Terminate terminates the remote Oracle WebLogic Server.
Tip: Only one developer can debug at a given time on a specific port. |
This section describes common problems that you might encounter when using Oracle ADF with Oracle Fusion Applications and explains how to solve them.
The following are common problems you may encounter and solutions that solve them:
You receive an error that indicates that too many files are open.
Problem
The open file limit on local Linux servers has been exceeded.
Solution
Increase the open file limit.
For information, see Section 2.2.1.2, "Increasing Open File Limit on Local Linux Servers".
You encounter a compilation error.
Problem
A reference to an Oracle ADF business component or Java class in an Oracle ADF library cannot be resolved, such that it does not exist or is incompatible with the existing reference.
Solution
All references to components contained in Oracle ADF libraries are resolved when the workspace is loaded in JDeveloper. Refresh the library in one of the following ways:
Note: When you make any changes to the components in a project, where the components are being referenced as an Oracle ADF library by your user interface (UI) project, you must redeploy the Oracle ADF library and refresh the Oracle ADF library dependencies for your UI project. The same applies to one model project referencing from another model project. If you are developing or debugging code in a model project while running the referencing UI project to test it, it may be easier to add the model project as a build output dependency, so you do not need to go through the cycle of redeploying the Oracle ADF library or refreshing the Oracle ADF library references each time you make a change. |
Either a No Def Found
or No Class Def Found
runtime exception occurs.
Problem
Lower level dependency changes were made outside of the design time session.
Solution
Refresh the library in one of the following ways:
Note: When you make any changes to the components in a project, where the components are being referenced as an Oracle ADF library by your user interface (UI) project, you must redeploy the Oracle ADF library and refresh the Oracle ADF library dependencies for your UI project. The same applies to one model project referencing from another model project. If you are developing or debugging code in a model project while running the referencing UI project to test it, it may be easier to add the model project as a build output dependency, so you do not need to go through the cycle of redeploying the Oracle ADF library or refreshing the Oracle ADF library references each time you make a change. |
Execution stops before or after the line with the breakpoint, depending on whether you have added or removed lines of code from the source.
Problem
If you consume the components from another project in the same workspace and run in debug mode, you can open the source Java classes from the referenced project in the JDeveloper edit window and set breakpoints. However, if you consume the components at runtime through an Oracle ADF library, the compiled objects from the Oracle ADF library may not be synchronized with the source if you made changes since you last deployed the Oracle ADF library. If you are using a build output dependency, then you are not affected by this issue.
Solution
Redeploy the Oracle ADF library to synchronize the source code.
The Applications Core wizards display an empty list of data controls after you make changes to an application model and add additional view object instances or additional view criteria to the view objects.
Problem
The Data Controls panel in JDeveloper was not opened in a new view or refreshed following changes made to the data bound Applications Core component.
Solution
If using the Applications Core wizards to create an applications panel, applications table, or other data bound Applications Core component, you must open the Data Controls panel in JDeveloper at least once in a new view, or at least once after deleting the system directory, before launching the Applications Core wizards. If necessary you should refresh from the Data Controls panel before launching the Applications Core component wizards.
A runtime error occurs while the runtime model is being located using the information in the DataBindings.cpx
file.
Problem
You have more than one UI project (for example, task flows referenced from an Oracle ADF library) when the DataBindings.cpx
files are merged at runtime.
Solution
Make sure that each instance of DataBindings.cpx
resides in its own package.
An Application module not found
error occurs.
Problem
The DataBindings.cpx
file was moved because the default package was set incorrectly.
Solution
Make sure that the package defined in the Application
tag of DataBindings.cpx
matches the current package location.
You get unexpected behavior, blank components, or unexpected exceptions when you hot reload in either of the following ways:
?_adf.ctrl-state=ku8guslcz_4
) and reload the page.Problem
Changes were made to the page binding definition file (PageDef
), the resource (XLF
) files, or the Oracle ADF libraries.
Solution
Generally if the change you make is contained within a page or page fragment of the current project, you do not need to redeploy your application. However, if changes are made to the page binding definition file (PageDef), the resource (XLF) files, or the Oracle ADF libraries then you must redeploy your application.
You discover a missing ADF component at runtime in Oracle WebLogic Server.
Problem
There is a second version of the ADF component erroneously included when the Oracle ADF libraries and WAR or EAR files were built.
Solution
Check the EAR file to make sure that the missing component is actually present in the expected location.
You receive odd errors related to an ADF component that suggests a recent change was not picked up.
Problem
A second copy of that component is incorrectly referenced in another Oracle ADF library via a build output reference.
Solution
Perform one of the following tasks to resolve the problem:
Note: When you make any changes to the components in a project, where the components are being referenced as an Oracle ADF library by your user interface (UI) project, you must redeploy the Oracle ADF library and refresh the Oracle ADF library dependencies for your UI project. The same applies to one model project referencing from another model project. If you are developing or debugging code in a model project while running the referencing UI project to test it, it may be easier to add the model project as a build output dependency, so you do not need to go through the cycle of redeploying the Oracle ADF library or refreshing the Oracle ADF library references each time you make a change. |
The Oracle WebLogic Server instance may seem unresponsive.
Problem
The Oracle WebLogic Server Java process may be CPU intensive.
Solution
Use kill –3
pid
to write a Java thread dump to the administration console for Integrated WebLogic Server or to the server log file for standalone WebLogic Server.
kill –3
pid
is the same as kill –QUIT
pid
, which sends SIGQUIT
to the process.
The Java process implements a signal.
The base class is missing when you test the Model project in the Oracle Business Component Browser.
Problem
The Model project is missing the Applications Core library.
Solution
Add the Applications Core library to the Model project.
The FND components are not available when you add components to your page or page fragment.
Problem
The Applications Core (ViewController) tag library is missing.
Solution
Add the Applications Core (ViewController) library to your project to automatically add the Applications Core (ViewController) tag library. You may need to close the Project Properties dialog, save the changes, and reopen the Project Properties dialog before you see all the dependent changes made when adding the Applications Core library.
You get JavaServer Pages (JSP) compilation errors or other JSP errors.
Problem
The page or page fragment is invalid. In the source editor, you can see that there are errors in the page, often because of malformed XML (for example, missing or mismatched XML tags) or some other error reported by the design time audits. This can occur if you cut and paste directly into the XML source. JDeveloper allows you to run the page even though it is invalid.
Solution
In the Preferences option of the Tools menu, you can set an audit to run during compilation. If there are failures, it will prevent the run. However, the audit only executes during compilation. The first time you try to run, it may need to compile and the audit kicks in and it fails, which causes the run to stop. The second time you try to run, everything that needs to compile may have already successfully compiled. In this case, there is no compilation, so there is no audit.
You get errors related to ApplicationDB when you are running the Integrated WebLogic Server.
Problem
The settings for ApplicationDB are not configured correctly.
Solution
Check the settings for the ApplicationDB in the Oracle WebLogic Server Administration Console.
You get the following Metadata Services (MDS) runtime exception:
Problem
The CHANGE_PERSISTENCE
parameter value is incorrect.
Solution
Locate the following context parameter in web.xml
:
Change the value of CHANGE_PERSISTENCE
to oracle.adf.view.page.editor.change.ComposerChangeManager
.
Your application is unable to fetch data from the Oracle Fusion Applications database.
Problem
The fusion_apps_wls.properties
file does not contain the correct connection strings for the application's data source.
Solution
Run the Configure Fusion Domain Wizard to create or update the fusion_apps_wls.properties
file with the correct connection information. For instructions on using the wizard, see Chapter 2, "Setting Up Your Development Environment."
You get the following message:
Problem
You modified the configuration of the server and did not activate the changes.
Solution
Go to the Administration Console (http://localhost:7101/console). Check the upper left hand corner regarding messages about changes not being activated.
You get the following exception:
Problem
Service logic is taking longer than the default 300 seconds defined for Java Transaction API (JTA). Services may have heavy validation which will take more time to create row.
Solution
Set the JTA timeout condition to more than 300.
http://localhost:7101/console
).300
.For more information about testing and troubleshooting SOA composite applications, see the "Testing and Troubleshooting" section in Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.
You can also automate the SOA composite applications testing. For information, see the "Automating Testing of SOA Composite Applications" section in Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.
This chapter provides guidelines and best practices for designing and securing Oracle Application Development Framework (Oracle ADF) view objects and other supporting business component objects for use by Oracle Business Intelligence Applications.
This chapter includes the following sections:
The view objects that are designed and created for Oracle Business Intelligence Applications (Oracle BI Applications) are shared between Oracle Transactional Business Intelligence and Oracle BI Applications.
The Oracle BI Applications warehouse is populated from Fusion application databases using an ETL (extract, transform, and load) process. The ETL process uses the tool to source data from the source system (Oracle Fusion Applications) to the target Oracle BI Applications tables. The extract from the source system is done using the Oracle Application Development Framework (Oracle ADF) view objects.
Figure 59-1 illustrates the Oracle Business Intelligence architecture.
Oracle BI Enterprise Edition (Oracle BI EE) needs to efficiently access data from two or more master/detail-linked view objects in order to aggregate, present, or report on that combined data set. An essential requirement is to efficiently retrieve the multiple-levels of related information as a single, flattened query result, in order to perform subsequent aggregation or transformation on it. Oracle ADF Composite View Object API allows the caller to create a new view object at runtime that composes the hierarchical results from two or more existing view-linked view objects into a single, flattened query retrieving the same effective set of data.
From a performance perspective, such queries would need to be performed on low-level data in Oracle BI EE, since the Oracle ADF layer does not directly support aggregation. This would generally slow query performance down. Also, going through additional servers (that is, JavaHost and Oracle ADF) in the network would also be slower than directly querying the database. Therefore, the SQL Bypass feature has been introduced to directly query the database and push aggregations and other transformations down to the database server, where possible, thereby reducing the amount of data streamed and worked on by Oracle BI EE.
The SQL Bypass functionality in Oracle BI EE utilizes the Composite View Object API feature to construct and return a flattened SQL Bypass query that incorporates all of the required columns, filters, and joins required by the Oracle Business Intelligence query. Oracle BI EE then executes this query directly against the database.
When designing view objects for Oracle Business Intelligence Applications, you should use the following guidelines with regards to entity objects, associations, view objects, view links, and view criteria.
An entity object represents a row in a database table and simplifies modifying its data by handling all data manipulation language (DML) operations for you. It can encapsulate business logic for the row to ensure that your business rules are consistently enforced. Entity objects are required for all Oracle Business Intelligence view objects to support SQL pruning of declarative view objects and to leverage many Fusion specific features. For more information see "Creating a Business Domain Layer Using Entity Objects" in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
All attributes from the physical table (with the exception of special, highly sensitive attributes) should be exposed on the entity objects.
An association reflects relationships between entity objects and can be by either reference or composition. All view objects composed of multiple entity objects are flattened using entity object associations.
For more information about associations, see "Creating Entity Objects and Associations" in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework. For more information about flattening, see Section 59.3.1, "Understanding Flattened View Objects."
A view object represents a SQL query. You use the full power of the familiar SQL language to join, filter, sort, and aggregate data into exactly the shape required by the end-user task. For more information, see "Defining SQL Queries Using View Objects" in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
This section includes some technical requirements, how to use declarative SQL mode, and guidelines regarding view object attributes and outer joins.
The following are the technical requirements driven by use of the Composite View Object API, SQL Bypass, and SQL Pruning.
Composite View Object API
TRUNC
and BETWEEN
.BI_JOINTYPE
custom view link property to define outer joins on view links.SQL Bypass
vo.getQuery()
.For more information, see "About Specifying a SQL Bypass Database" in Oracle Fusion Middleware Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition.
SQL Pruning
For more information about Declarative SQL Mode, see "Working with View Objects in Declarative SQL Mode" in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
Flex attributes are an exception from this rule. These attributes are not required because they are exposed using the Flex Extender utility.
Who
Columns from all participating entity objects on your view objects for Oracle Business Intelligence Applications. This is to support Oracle BI Applications's Change Data Capture requirements.Exceptions include entity objects that are only included to resolve ID and Codes into meaningful descriptions. For example, entity objects included to only resolve Business Transactional Intelligence-only attributes into a view object using entity object associations.
Table 59-1 shows the Standard Who Columns.
Table 59-1 Standard Who Columns
Standard Who Columns | Description |
---|---|
| The user who created the row. |
| The date and time the row was created. |
| The user who last updated the row. |
| The date and time the row was last updated. |
| The session login associated to the user who last updated the row. |
Use an alias property as both the table alias and column alias in the SQL as well as the view object attribute prefix. For example:
POLinesVO
includes both the HeaderEO
and the LinesEO
.LinesEO
is specified as the primary entity on POLinesVO
. The HeaderEO
is specified as a reference entity.HeaderId
attributes from both HeaderEO
and LinesEO
.HeaderEO
and LinesEO
respectively.POLinesVO
is then created using Header as the prefix for all Header attributes, and Lines as the prefix for all Lines attributes. For example, HeaderHeaderId
and LinesHeaderId
; HeaderBusinessUnitId
and LinesBusinessUnitId
._VL
views.An outer join is generally required when creating a view object based on multiple entity objects, so as to handle situations when not all of the reference entities' values are present. The specific outer join type (left, right, or full) used should be determined based on the expected data relationships between the primary and reference entities. Note, however, that in some cases, security considerations will require an inner join, instead. (For an example, see Section 59.4.1, "Designing Fact View Objects.") If a join is required to resolve an ID or Code attribute, use a _VL
view instead.
View links are required to flatten view objects using the Composite View Object API.
To define outer joins on view links, you must add the BI_JOINTYPE
custom property on the view link definition. Valid values for this custom property include:
LEFTOUTER
RIGHTOUTER
FULLOUTER
INNER
(default)For more information, see "Working with Multiple Tables in a Master-Detail Hierarchy" in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
A view criteria identifies filter information for the rows of a view object collection.
Required filters for view objects for Oracle BI Applications should be created using named view criteria. This includes:
For more information about security filters, see Section 59.3.4, "Understanding Business Intelligence Filters."
Only filters required by both Transactional Business Intelligence and Oracle BI Applications should be created for view objects that are shared by both products.
For more information, see "Working with Named View Criteria" in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
This section discusses Oracle Business Intelligence design patterns including flattened view objects, fact-dimension relationships, self referencing entities, filters, and translations.
The grain of a fact table represents the most atomic level by which the facts may be defined. The fact or dimension grain required for Oracle Business Intelligence modeling should determine the flattening required for view objects. You should only create flattened view objects for fact or dimension levels required for either Transactional Business Intelligence or Oracle BI Applications. For example, if neither Transactional Business Intelligence nor Oracle BI Applications requires (purchase order) PO Shipments, then do not create a flattened POShipmentsVO
.
When flattening entity objects in a view object, include only entity objects that do not change the grain of the fact or dimension. For example:
If attributes from a backing requisition line are needed on the POLinesVO
, then the Requisition Line
entity object should only be included in the flattened POLinesVO
if the join does not change the grain of the POLinesVO
to Requisition Line
.
A 1:n relationship requires two view objects only if you want to aggregate attributes from the child and store the result at the grain of the parent.
Flattened view objects should be modeled in the Oracle Business Intelligence layer as a single logical table with multiple logical table sources.
You should follow these rules when designing and creating fact and dimension view objects:
FactVO
and the DimensionVO
.FactVO
as the source of the view link.DimensionVO
as the target of the view link.In the case of a fact view object where the self-joins represent two different but functionally important objects, you should create separate view object instances that represent the two objects. You should then define a view link between them.
If the self-join does not need to be represented as separate objects, you should resolve the Foreign Key ID column to a more meaningful column. For example:
The InvoiceheaderVO
contains the following attributes:
InvoiceId
InvoiceNum
TaxRelatedInvoiceId
CreditedInvoiceId
If you decide that these should be modeled as three separate facts, then you create two additional view instances, TaxRelatedInvoicesVO
and CreditdInvoicesVO
, with view links to the InvoiceHeaderVO
.
If you decide that they do not need to be modeled as separate objects, then you should create the two additional joins inside the InvoiceHeaderVO
to bring in TaxRelatedInvoiceNum
and CreditedInvoiceNum
.
Row and Column flattening is required for view objects with self-joins that are modeled as dimensions in Oracle Business Intelligence Applications. You should determine the level of flattening required on a case-by-case basis.
Only filters that are common to both Transactional Business Intelligence and Oracle BI Applications should be defined on shared view objects. If Transactional Business Intelligence requires additional filtering for an Transactional Business Intelligence specific application then it should be defined on the Oracle BI EE layer. If Oracle BI Applications needs to filter data from a shared view object for extraction, these filters need to be defined in the ETL layer.
Also note that view criteria cannot be pruned from the SQL at runtime.
All Fusion translatable entities with a corresponding _TL
table require entity objects based on both _B
and _TL
entity objects. You should create a flattened view object to join _B
and _TL
entity objects.
Oracle BI Applications performs ETL (extract, transform, and load) processes from the flattened view object with no additional filters. However, Transactional Business Intelligence requires an additional session language filter in Oracle Business Intelligence layer.
Note: The entity object associations required for ID and Code resolutions to Multi-Language Support-enabled entities should use a _VL view. |
All date effective entities for a logical fact or dimension should be flattened and adhere to the following:
PersonsVO
should be flattened to include both PersonEO
and PersonDetailEO
and should also be marked as Date Effective.In other words, there should be a single current person details record for each person record.
For more information, see "How to Store Data Pertaining to a Specific Point in Time" in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
Oracle BI Applications identifies any date effective entity objects from which historical information is needed; single view object flattening does not meet their requirements. To compensate, you need to:
You should still mark view objects as date effective so that Transactional Business Intelligence can share and date effective predicate can be applied in the Oracle Business Intelligence layer.
Separate view objects should be created for fact entities and dimension entities. Relationships between facts and dimensions should not be flattened into a single view object. Instead, you should create a separate FactVO
and DimensionVO
and then create a view link between them. Specify the FactVO
as the source of the view link, and the DimensionVO
as the target of the view link.
A flattened view object should be created for each logical fact grain in Transactional Business Intelligence and Oracle BI Applications. For example:
A purchase order contains four fact levels: Header, Lines, Shipments, Distributions. Flattened view objects should be created to represent each of the four fact grains, as shown in Table 59-2.
Table 59-2 Flattened View Objects Based on Fact Grains Example
Flattened View Objects | Fact Grains |
---|---|
POHeaderVO | Header |
POLinesVO | Header + Lines |
POShipmentsVO | Header + Lines + Shipments |
PODistributionsVO | header + Lines + Shipments + Distributions |
Entity objects can be included in flattened view objects as required, as long as the view object grain does not change.
Note: View links are not required between these view objects. |
Join Type for Multi-Level Facts
Join types on entity associations between multi-level facts should be inner joins. This is because there are some security impacts if entity associations are modeled as outer joins. For example:
To support the query "Show me all PO headers with no associated distributed rows". If an outer join is used, you would need to implement security on both the header and the distribution entities in the DistributionVO
. This would prevent pruning of the header entity from the DistributionVO
; it is also a change from current guidelines to only secure the primary entity.
The following are general guidelines for securing fact view objects. The sub-sections describe different design patterns that may arise for Oracle Business Intelligence use cases. Also included are solutions for each design pattern.
Fusion Data Security view criteria should be applied to the fact view object.
For more information about Fusion Data Security view criteria, see Section 48.3.2, "How to Secure Rows Queried By Entity-Based View Objects."
The data security view criteria should contain:
For Multi-Organization Access Control (MOAC) style grants, the object being secured is Business Unit, based on the way MOAC grants are authored. For other grants, it can be the transactional object.
Alias is mandatory for view objects for Oracle Business Intelligence Applications privileges.
For example, For Payment Invoices fact view object using Business Unit security (MOAC style), the privilege is:
The fact view object requires an entity object for securing the table. (BU in this example). The join between the fact and the securing table should be properly resolved. The alias used in the view criteria should be that of the entity object corresponding to the Object in privilege (BU in this example).
If a non-MOAC grant is made for a transaction object, such as, for example, the Payment fact of the Fusion Incentive Compensation Management (ICM) Application, the object and alias refer to the ICM Payment entity. For example:
In Oracle Fusion Applications, transaction data can be secured by more than one entity, based on the role used to access the transaction data. For example, consider the case of the Fusion Incentive Compensation Management (ICM) Application, in which:
In the above case, because the view object for the transaction object implements single data security privilege, the privilege should be able to provide access based on business unit as well as participants. Building this privilege provides a logical filter similar to:
"for the participants for who they are responsible" OR "for business units for which they are authorized"
You can achieve this by creating a new privilege and having two policies created using the same privilege. One policy should be created using instance set to provide "for business units for which they are authorized", and the second policy should be created using instance set to provide "for the participants for who they are responsible". The policies should be granted to existing roles.
To secure transaction by more than one entity:
The following steps are based on the Fusion ICM Paysheet use case.
<Incentive Compensation Paysheet Management Duty> can <view> <Incentive Compensation Paysheets> <for the participants for who they are responsible>
<Incentive Compensation Process Management Duty> can <view> <Incentive Compensation Paysheets> <for business units for which they are authorized>
For this data security policy, you should attach the View Incentive Compensation Paysheet Data data privilege to the same FND_MENU
that contains the grant for the Manage data privilege. This grants VIEW
privileges to the same roles that have Manage
privilege, reducing the number of grants to be managed.
For this data security policy, you would create a non-MOAC grant against the Incentive Compensation Paysheet object against the business unit (BU) data role. This grant is parameterized instance set based, with the instance set returning Paysheet data by BU, using BU on the data role as the parameter value. This grant carries only the VIEW
data privilege.
Note: This is a data role grant and the role and grant is generated during the implementation phase using the data role template. |
IC_INCENTIVE_COMPENSATION_PAYSHEET
is the object registered in FND_OBJECT
and ICPAY
is the alias used for the entity object.Example 59-1 Data Security View Criteria Example
Caution: With regards to the above proposal, if a user happens to have both Incentive Compensation Paysheet Management Duty and Incentive Compensation Process Management Duty roles granted; the Business Intelligence report will show the UNION of data, such as data for authorized business units *** AND *** data for responsible participants.Whether such reporting behavior is acceptable should be decided on a case by case basis. |
For Oracle BI Applications, the UNION
effect for the above example, based on Oracle Fusion Incentive Compensation Management reporting (Access by Participants and access by business units), must be achieved in Oracle BI EE based on the OR
join for individual dimensions. This can potentially be achieved by using two separate groups (one for business unit and another for participants) and having a user access to both groups (since predicates are ORed across Oracle BI EE groups).
There are other use cases that fall into same design pattern of a transaction being secured by multiple entities and Oracle Business Intelligence implementation needing UNION
access. For example, in Oracle Fusion Projects, the transaction table Expenditure Item is secured by Business Unit as well as by Project. For Oracle Business Intelligence reporting, the query on Expenditure Item should return rows for authorized business units for a user as well as authorized project for user.
In general, while the Oracle Business Intelligence use cases for transaction being secured by multiple entities will be similar; application teams can make their own decisions about how they implement an Oracle Business Intelligence solution. For example, in the case of the Oracle Fusion Incentive Compensation Management and Oracle Fusion Projects applications, you can implement different solutions for achieving the same end results by having different styles of grants and roles. Therefore, application teams should choose their own implementation based on their existing roles and privileges, and the approach they want to take for Oracle Business Intelligence solution.
When transactions are analyzed in context of dimensions, sometimes the dimensions have their own security, which is not applicable for usage with the transaction.
For example, Grade data is secured using Fusion data security. When analyzing Assignment data, relevant information from the Grade dimension is required; however, the data security for the Grade dimension is not applicable when being used for analyzing assignments. Instead, the Grade dimension behaves as an unsecured source of data when used with assignment fact.
A solution for this use case is to create two view objects for the dimensions for which security is not required when analyzing fact. The two view objects should form two logical table sources (LTS) for the dimensions:
Caution: Dimensions, for which unsecured view objects are created, may contain sensitive attributes. If this is the case, then you must make sure that the unsecured view object does not contain these sensitive attributes. |
Dual (secured and unsecured) view objects are only required for entities that fall in this design pattern. Entities not requiring both secured and unsecured access do not require dual view objects.
Analysis of a fact may need reference information from another fact. In Transactional Business Intelligence, this is handled by creating a degenerate dimension for a fact whose attribute information is used in other facts. The degenerate dimension is just a logical layer entity in the RPD and it uses the same view object as the underlying fact. As a result, the data security for degenerate fact is the same as that of underlying fact table.
This may create a problem when the degenerate dimension is used in another fact that has different security than the degenerate dimension (or more accurately, the fact underlying the degenerate dimension). For example:
In such cases, the security of both Fact B and Fact A should be applied; where as the desired result was just to apply security of Fact B.
Multi-Org Access Control (MOAC) ADF infrastructure enables Fusion transaction applications to implement business unit based data security. Because the Oracle Business Intelligence technical stack works on the view definitions, the ADF Business Components MOAC infrastructure does not work for view objects for Oracle Business Intelligence Applications. These view objects should instead use underlying Fusion Data Security to support business unit based security.
This section discusses how to design and secure dimensions.
A flattened view object should be created for each logical dimension grain in Transactional Business Intelligence and Oracle BI Applications. For example, for the Geography dimension, the following view objects are required to represent each dimension grain:
These should be modeled as a single Geography logical dimension table with multiple logical table sources, one for each of the dimension grains.
Create a view link between the Transactional Business Intelligence fact view objects that have Business Unit dimensionality to the common business unit dimension view object based on Business Unit ID.
If the dimension needs to be secured, then the FND view criteria should be applied on the dimension view object.
The following use case, is an example of how you should secure dimensions that are composed of multiple entities.
The Dimension Inventory Organization is composed of the following three entities:
InventoryOrgParameters
HrOrganizationUnits
HrLocations
Human Resources (HR) entities may have their own security. However, for the InventoryOrgParameters
entity, only the security defined by inventory product Manage Inventory Org Parameters should be used. In other words, data security on HR entities should be ignored when consumed in InvOrg
.
This use case is similar to Section 59.4.2.2, "Securing Transactions Different from Securing Dimensions," where unsecured view objects are used for dimensions.
The Dimension Business Unit is used to secure transaction data. When used in conjuction with transaction data, a secured version of the Business Unit, which can return business units allowed for a user for a function, is required. For example, a secured version of Business Unit is required to populate init block security variables for Oracle BI Applications.
However, if a user needs to browse only the business unit data, the user is allowed to see all dimensions. Therefore, it is deemed an unsecured dimension when dimension browsing in Oracle BI Applications. To use an unsecured view object for dimension browsing, make sure it is higher up in the list of LTSs than the unsecured one.
Separate view objects should be created for primary dimension entity and multi-valued dimension attribute entities. For example:
Using the Person model, the following view objects should be created:
PersonVO
— Person OnlyPersonAddressesVO
— Addresses OnlyPersonPhonesVO
— Phones Only.The following view links establish relationships between view objects:
ersonToAddressesVL
— PersonVO
-> PersonAddressesVO
PersonToPhonesVL
— PersonVO
-> PersonPhonesVO
Note: The above example uses the Person model with a person having address and phone. Keep in mind that Transactional Business Intelligence models only the primary address and phone number while Oracle BI Applications can model more than one address and phone number per person. |
Junk dimensions should not be directly sourced from view objects. Oracle BI Applications should build them from Fact Stage tables. Transactional Business Intelligence should build them from the degenerate attributes in Fact tables.
Mini dimensions should not be sourced from view objects. Oracle BI Applications should build them from Dimension tables.
There are a number of situations in which a secured dimension view object must be deployed with an accompanying unsecured dimension view object. In this case, the term unsecured does not simply mean that security is disabled, but also that a subset of the column set of the secured dimension view object may also be excluded from the unsecured version.
Generally, the strategy for developing and deploying a pair of corresponding dimension view objects, where one is secured and the other unsecured, consists of the following:
The unsecured dimension view object is named <VO Name>ListPVO
, where <VO Name>
is the name of the base dimension view object.
The unsecured dimension view object is deployed in the same application module as its associated secured dimension view object.
Consuming applications must build View Links to both the secured and unsecured dimension view object definitions. Once the secured and unsecured dimension view objects have been deployed, you can begin developing models based upon them in Oracle Business Intelligence.
This section discusses the gregorian calendar as well as the special handling that is required for fiscal calendar, projects calendar, Timestamp columns, and role-playing data dimensions.
Date dimension view objects for the gregorian calendar are delivered through the ATG libraries.
You should create a view link between the gregorian calendar day level view object and all the facts that join with the date dimension. Create the view link with the Fact view object as the source and the day level view object as the target.
For all other calendars needed for the fact in a particular functional area, a view link should be created to the time dimension at the day level of the fact. For example, if the fact is at day level in Financials and the reporting calendar is fiscal (in addition to gregorian), view links should be created to the day level of the fiscal calendar.
If the fact is at the day level, you should create view links to the day level of the fiscal calendar only.
For all facts at the day level, the view link between the Fact view object to the Day Level flattened view object should include the ADJUSTMENT_PERIOD_FLAG = N
condition to avoid double counting if the same day belongs to a normal period as well as an adjusting period.
Projects facts that need to be analyzed by the fiscal calendar requires a view link between the fact and the day level of the fiscal calendar on the date. Also required is a view link between the fact and the General Ledger on the Ledger ID column using the Fun_all_business_units_V
table that is present in the fact side.
Projects facts that need to be analyzed by the projects calendar requires a view link between the fact and the day level of the projects calendar on the date. Also required is a view link between the fact and the pjf_bu_impl_all_v
table on the Business Unit Id.
If the date column of a fact view object involves timestamp then teams will need to create a new SQL derived attribute to populate the date without the timestamp. A view link will also need to be created using the new date column of the fact view object and day level time dimension view object.
If the fact view object date column does not have the timestamp then it can be used for creating the view link.
If role-playing date dimensions are required, Transactional Business Intelligence is required to create aliases of the date view object in the Oracle BI EE physical layer. Duplicate view object instances should not be included in the model.
If a lookup type is used as a dimension in Transactional Business Intelligence, you must deliver the dimension view object as follows:
<Product short name>LookupsVO
.FND_LOOKUPS
.If a view to FND_LOOKUPS
is not available or not required for online transaction processing, the view object should be based on FND_LOOKUPS
directly with an additional filter on all included Application IDs for the product.
Foreign keys to low cardinality lookups, such as FND_LOOKUPS
, should not be resolved in fact or dimension view objects. These should be resolved in the logical layer through the lookup function.
Business Transactional Intelligence-only low cardinality lookups should be resolved using entity object associations based on a _VL
view.
Lookup data can be striped by set ID. However, no use cases have been brought forward to date where the lookup data has been secured by explicit data security policies.
Application trees managed by Fusion tree management infrastructure may be exposed to Oracle Business Intelligence systems, such as Oracle BI EE, for analysis. This is done by providing a view object that contains a column-flattened version of tree data joined with tree data sources. Such a view object is called a column-flattened view object for Business Intelligence (BICVO).
Designing and securing tree data for Oracle Business Intelligence involves the following activities:
Column-flattening is generally available for level-based trees. For those trees that may be exposed to Oracle Business Intelligence systems, such as Oracle BI EE, column-flattening for value-based trees also is available.
Figure 59-2 illustrates a generic example of a value-based tree.
Each node has a unique identity, in this case denoted by dot-separated numbers that correspond to the node's relative ordering in the overall parent-child structure. Such value hierarchies may be arbitrarily recursive (in terms of recurring node types), and are usually ragged, or unbalanced. There is only a general concept of "level" in these hierarchies, which refers to the path distance (or depth) from the root node to some specified node.
Two nodes the same distance from the root are thought of as being at the same level. However, unlike true level-based trees, there is no requirement for nodes at the same level to possess a common set of properties. In fact, a node in a value-based tree may have any arbitrary collection of properties. When these trees are used to represent dimensional hierarchies, facts, metrics, or transactions, values may be joined to any node. There is no constraint that facts or transactions only be joined to lowest-level nodes, as is usually the case with level-based trees.
The example value-based tree shown in Figure 59-2, also has multiple top-level or root-level nodes. Since it has five levels (or equivalently, a maximum depth of four), a column-flattened representation of this tree requires a minimum of five columns. This is illustrated in Table 59-3.
Note: In practice, you would never have single node trees. However, root nodes 2.0 and 3.0 are in Figure 59-2 to simply illustrate multiple top-nodes. |
Table 59-3 Column-Flattened Representation of the Value-Based Tree Example
C0 | C1 | C2 | C3 | C4 | Distance |
---|---|---|---|---|---|
1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0 |
1.1 | 1.1 | 1.1 | 1.1 | 1.0 | 1 |
1.2 | 1.2 | 1.2 | 1.2 | 1.0 | 1 |
1.2.1 | 1.2.1 | 1.2.1 | 1.2 | 1.0 | 2 |
1.2.1.1 | 1.2.1.1 | 1.2.1 | 1.2 | 1.0 | 3 |
1.2.1.1.1 | 1.2.1.1 | 1.2.1 | 1.2 | 1.0 | 4 |
1.2.2 | 1.2.2 | 1.2.2 | 1.2 | 1.0 | 2 |
1.2.2.1 | 1.2.2.1 | 1.2.2 | 1.2 | 1.0 | 3 |
1.2.2.2 | 1.2.2.2 | 1.2.2 | 1.2 | 1.0 | 3 |
2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 0 |
3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 0 |
The following conventions apply to the logical column-flattened representation shown in Table 59-3.
Having the unique identity of each node of the hierarchy represented exactly once in the C0 column means that it is always possible to directly address each node, such as for purposes of joining with a transaction or measure, or for performing a calculation on that node.
Having the complete ancestral path, with unused columns padded toward the C0 node value, facilitates more efficient drill down operations.
As far as Fusion tree management is concerned, the column-flattened representation always consists of a number of columns greater than, or equal to, the depth of the tree. If this were not the case, you would need a strategy for pruning or condensing the tree (for example, removal of intermediate nodes from the ancestral paths). On the other hand, having the number of columns exceed the depth of the tree is never problematic, because of the repeated padding of C0 node values.
ATG services allows you to specify some fixed maximum depth of up to 32 levels when defining a tree. For example, if you specify a 20-level tree, your column-flattened representation will contain 20 columns, C0 through C19, with padding of values toward the leaf, as shown in Table 59-4.
Table 59-4 Column-Flattened Value-Based Tree Fixed at 20 Levels
C0 | ... | C15 | C16 | C17 | C18 | C19 | Distance |
---|---|---|---|---|---|---|---|
1.0 | ... | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0 |
1.1 | ... | 1.1 | 1.1 | 1.1 | 1.1 | 1.0 | 1 |
1.2 | ... | 1.2 | 1.2 | 1.2 | 1.2 | 1.0 | 1 |
1.2.1 | ... | 1.2.1 | 1.2.1 | 1.2.1 | 1.2 | 1.0 | 2 |
1.2.1.1 | ... | 1.2.1.1 | 1.2.1.1 | 1.2.1 | 1.2 | 1.0 | 3 |
1.2.1.1.1 | ... | 1.2.1.1.1 | 1.2.1.1 | 1.2.1 | 1.2 | 1.0 | 4 |
1.2.2 | ... | 1.2.2 | 1.2.2 | 1.2.2 | 1.2 | 1.0 | 2 |
1.2.2.1 | ... | 1.2.2.1 | 1.2.2.1 | 1.2.2 | 1.2 | 1.0 | 3 |
1.2.2.2 | ... | 1.2.2.2 | 1.2.2.2 | 1.2.2 | 1.2 | 1.0 | 3 |
2.0 | ... | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 0 |
3.0 | ... | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 0 |
Think of the tree in Figure 59-2 as a true level-based tree, with fixed levels, single top-nodes, and all leaf nodes residing at the same lowest level of the tree (such as level zero, represented by column C0). In this case, you would actually have three separate trees, and the tree rooted at node 1.0 would have the logical column-flattened representation shown in Table 59-5, assuming the same "pad toward leaf values" scheme as with the value-based tree.
Table 59-5 Column-Flattened Level-Based Tree Rooted at Node 1.0
C0 | C1 | C2 | C3 | C4 | Distance |
---|---|---|---|---|---|
1.1 | 1.1 | 1.1 | 1.1 | 1.0 | 1 |
1.2.1.1.1 | 1.2.1.1 | 1.2.1 | 1.2 | 1.0 | 4 |
1.2.2.1 | 1.2.2.1 | 1.2.2 | 1.2 | 1.0 | 3 |
1.2.2.2 | 1.2.2.2 | 1.2.2 | 1.2 | 1.0 | 3 |
The notion of distance from the root is still relevant, even though all of the leaf nodes are assumed to reside at the same level (level zero, or C0).
Attributes from the column-flattened version of the tree data use standard ADF Business Components attribute naming conventions. Attributes from the tree data sources also use the same naming convention, but are prefixed with DepN, where N is the zero-based height of the node within the tree; for example, Dep7EmployeeName or Dep13ProjectName. The Dep0 prefix is used for leaf nodes.
The following procedure is a summary of the overall process of defining and generating declarative BICVOs for trees. For more detailed information about the strategy for creating these BICVOs, see Section 59.8.4, "Guidelines for ATG-Registration and BICVO Generation" and Section 59.8.6, "Securing ADF Business Components View Objects for Trees."
To generate BICVO automatically using Tree Management:
/oracle/apps/fnd/applcore/trees/analytics
is configured in Oracle Metadata Service (MDS). Example 59-2 shows a sample MDS configuration.Example 59-2 MDS Configuration
Note: By default, only primary key attributes are "BI Relevant". For performance reasons, it is recommended that only those attributes that are really relevant to Oracle Business Intelligence be marked as such to avoid generating very large BICVOs. |
The tree management infrastructure then generates the BICVO for the tree structure into MDS.
The generated BICVO includes a special view criteria named FNDDS__BICVO
. In order to secure access to data through the BICVO, this view criteria must be enabled for instances of the BICVO in any application module. At runtime, data security rules affecting access to the tree data source view objects are automatically carried over to the BICVO.
Note: In Oracle Fusion Applications V1, only filter-based data security rules are supported. In addition, only the "is descendant of" operator is supported. |
When using Oracle Fusion tree management to create and manage your trees, you should create and register its own, custom versions of the FND_TREE_NODE
and FND_TREE_NODE_CF
tables. This prevents applications from competing for use of the FND
tables. Your custom tables must comply to the following rules:
PJF_PROJ_ELEMENTS_CF
is currently being used by the Projects team to implement a column-flattened table for the Task Hierarchy.FND
table.FND_TREE_NODE_CF
can define an index on each of the level-based foreign key references to support efficient drill-downs. However, it is understood that certain application query patterns do not necessitate this degree of indexing. Indexing is also not necessary if the column-flattened table is guaranteed to be relatively small.FND_TREE_NODE_CF
should not include the ENTERPRISE_ID
column as part of the primary key index defined on the custom table. This is because this column is not currently used by Oracle Fusion tree management.All view objects for Oracle Business Intelligence Applications should be constructed in declarative SQL mode. This ensures that correct SQL pruning can be applied to any composite view object incorporating the Oracle Business Intelligence view object. This requirement also applies to the BICVO generated by Oracle Fusion tree management. However, of all the possible configurations of ADF Business Components objects defining a tree data source, only two configurations in particular actually lend themselves to the generation of declarative-mode BICVOs by Oracle Fusion tree management.
These configurations have been formalized as two distinct design patterns:
Although either pattern can be used in the realization of either tree type, the first pattern is generally better suited to value-based trees, while the second pattern is more natural for level-based trees. However, the patterns are aimed primarily at supporting the automated generation of declarative-mode BICVOs, rather than supporting either particular type of tree.
This pattern ensures that Oracle Fusion tree management is capable of generating a declarative-mode BICVO from an Oracle Applications Technology (ATG)-registered data source. Figure 59-3 illustrates the ADF Business Components object configuration defining declarative BICVO pattern #1.
Figure 59-3 Declarative BICVO Based on Single Data Source View Object, Single Data Source Entity Object
In this pattern, there is a single data source entity object and a single data source view object based on that entity object. The data source view object is a declarative-mode view object built by developers and registered with Oracle Fusion tree management. The data source entity object in turn is based on a _VL
database view that joins the data source base table (_B
) with a table of translated values (_TL
).
A second entity object is defined for the column-flattened table. Currently, the column-flattened table entity object must be created manually and made known to the generated BICVO via a manual workaround. Additionally, a collection of entity object associations, each joining the column-flattened entity object with the data source entity object for a unique level or depth of the tree, must also be created manually. If the application design requires that the base data source table expose multiple entity objects for any reason, then a _VL
database view must be defined to join the multiple entity objects (possibly along with any translated attribute values), and that _VL
database view must support the single data source entity object.
Once the data source view object is registered with Oracle Fusion tree management as part of the tree structure definition process, and the required manually-created objects are all in place, a declarative BICVO may then be generated by Oracle Fusion tree management.
This declarative-mode BICVO pattern is well-suited for value-based trees, since value-based trees are most often represented at the data source level by a single table with a recursive self-join. However, there is nothing about the pattern that strictly requires its use in value-based hierarchies, nor prohibits its use from other types of hierarchies (such as level-based or hybrid). The primary objective of this pattern is to facilitate the automatic generation of a declarative-mode BICVO from an ATG-registered tree.
This pattern ensures that Oracle Fusion tree management is capable of generating a declarative-mode BICVO from an ATG-registered tree. Figure 59-4 illustrates the ADF Business Components object configuration defining declarative BICVO Pattern #2.
Figure 59-4 Declarative BICVO Based on Multiple Data Source View Objects, Unique Data Source View Object per Level, Single Data Source Entity Object per Data Source View Object
In this pattern, there are multiple data source view objects, with a unique data source view object representing each level or depth of the tree. Each data source view object is based on a single, unique data source entity object. Each data source view object is a declarative-mode view object built by developers and registered with Oracle Fusion tree management. All of the data source view objects must be declarative-mode view objects; otherwise, a declarative-mode BICVO can not be generated. As with the previous pattern, each data source entity object in turn is based on a _VL
database view that joins some data source base table (_B
) with a table of translated values (_TL
). While multiple _VL
database views are represented in the diagram, there is no hard-and-fast requirement that each data source entity object actually be built on top of a unique _VL
database view. The diagram simply admits the possibility of multiple such views, presumably one per level or depth of the tree.
The same as with design pattern #1, an entity object is also defined for the column-flattened table, and must also be created manually, and is made known to the generated BICVO via a manual workaround. This column-flattened table entity object is also joined to the data source entity objects via a collection of entity object associations. However, each entity object association relates the column-flattened table entity object to a unique data source entity object representing a particular level or depth of the tree.
If the application design requires that the base data source table expose multiple entity objects per tree level or depth, then a _VL
database view must be defined to join the multiple entity objects (possibly along with any translated attribute values) at that tree level or depth, and that _VL
database view must support the single data source entity object for that tree level or depth.
Once the data source view objects have been registered with Oracle Fusion tree management as part of the tree structure definition process, and the required manually-created objects have all been put in place, a declarative BICVO may be generated by Oracle Fusion tree management.
This declarative-mode BICVO pattern is well-suited for level-based trees, since level-based trees are often built on top of multiple data sources, with a unique data source per level. However, there is nothing about the pattern that strictly requires its use in level-based hierarchies, nor prohibits its use from other types of hierarchies (such as value-based or hybrid). The primary objective of this pattern is to facilitate the automatic generation of a declarative-mode BICVO from an ATG-registered tree.
In order to ensure correct SQL pruning, you must set the property values of the generated declarative-mode BICVO as follows:
selectedInQuery
property of any non-primary key attribute of the generated BICVO to false.The Oracle Fusion Applications team that owns the tree is responsible for creating a custom tree node (parent-child relationship) table that is structurally equivalent to FND_TREE_NODE
. Once the tree node table has been created, it is registered with ATG via the Oracle Fusion tree management tree creation UI.
The Oracle Fusion Applications team is also responsible for creating a custom column-flattened table that is structurally equivalent to FND_TREE_NODE_CF
. This custom table is depicted in Figure 59-3. Once created, it is also registered with Oracle Fusion tree management as the column-flattened table associated with the tree in the Oracle Fusion tree management creation UI.
The Oracle Fusion Applications team must then create both data source view objects and associated data source entity objects, according to either of the structural patterns illustrated in Figure 59-3 and Figure 59-4. As with the tree node and column-flattened tables, the data source view object is also registered with Oracle Fusion tree management, via the Oracle Fusion tree creation UI. During the registration process, the developer may specify a custom property on any of the data source columns, indicating to Oracle Fusion tree management that these columns are relevant to Oracle Business Intelligence and need to be exposed at each level within the BICVO. This collection of Oracle Business Intelligence attributes is represented by the set of view attributes attached to the data source view object. As a result, the generated BICVO will join these columns in from the data source entity object at each level of the tree, immediately following the level-specific data source foreign key references; that is, the sequence of DEP*_PK*
columns are followed by a set of columns representing each of the BI-relevant attributes.
In addition to view attributes representing the Oracle Business Intelligence-relevant columns of the data source, the data source view object may also be configured with one or more view criteria filters. In particular, a view criteria must be defined to enforce data security if there's a requirement for data security at the source level. Any other relevant filters required by reporting may also be specified and attached to the data source view object. Each of these view criteria must specify a logical AND
condition as its connective to other defined view criteria.
Next, using the Oracle Fusion trees creation UI, the developer automatically generates the BICVO; that is, the column-flattened BICVO based on the column-flattened table. In Figure 59-3 and Figure 59-4, dashed lines represent joins on the underlying entities that are automatically added by Oracle Fusion tree management to the BICVO definition at runtime. These joins are inferred by ATG internal generation logic via inspection of the data source view object and its attendant view attributes and view criteria, as well as inspection of the registered column-flattened table.
The BICVO, as generated by Oracle Fusion tree management, also includes a placeholder view criteria that is otherwise empty and specifies a logical OR
condition as its connective to any other view criteria that might be defined as part of the BICVO. This placeholder view criteria is defined for data security purposes, and at the current time, simply directs ATG logic to invoke the data security view criteria defined on the data source view object.
Note: There may also be a requirement to supply Oracle Data Integrator (ODI) with translations via a view object that is separate from the base data source table or _VL database view. In this case, you must develop a view object and entity object pair that directly goes against the translations table (_TL). |
You must take this entire collection of ADF Business Components objects, both hand-crafted and generated alike, and package them for deployment as part of an appropriate application module. Note that any ATG-generated artifacts, such as the BICVO, is generated to reside within the Oracle Fusion Middleware Extensions for Applications package namespace, which is:
Most of the Oracle Business Intelligence view objects and other artifacts are packaged under the Oracle Business Intelligence analytics namespace, which is:
However, the Oracle Fusion Middleware Extensions for Applications package namespace is acceptable for ATG-generated objects seeing as they are artifacts of the ATG-Oracle Fusion Middleware Extensions for Applications services infrastructure. As long as the interfaces of these objects are publicly visible, this should not present any problems to clients of these objects.
It is possible for an inconsistency to arise between the three realizations of a particular application hierarchy across the application, and the Transactional Business Intelligence and Oracle BI Applications technologies.
Hierarchies on the Oracle BI EE server are necessarily limited to a maximum of 15 levels. However, Oracle BI Applications uses data warehouse tables to represent these hierarchies, and although the tables are not inherently bounded in size, restrictions on the number of levels of a given hierarchy being imported into the data warehouse are enforced by the ETL process. The majority of Oracle BI Applications hierarchies are fixed at eight levels plus a top-level for a total of nine fixed levels. A very small number of Oracle BI Applications hierarchies have greater than eight levels, plus a top-level and a base-level, with the largest of these hierarchies consisting of 21 fixed levels.
Trees, especially value-based trees, are generally unbounded in size. However, trees that have been implemented using Oracle Fusion tree management services are limited to 32 levels by the ATG infrastructure.
Problems can potentially arise when an application tree exceeds 15 levels. When this occurs, the corresponding Oracle BI EE representation of the tree, such as a Oracle Business Intelligence hierarchy stored within the repository (RPD), must be compressed to 15 levels. This is accomplished by retaining the leaf-level of the source tree (base-level), as well as the root-level (top-level), and pruning the tree starting with the base-1 level and working up the tree until enough levels have been removed.
Table 59-6 illustrates the general mapping of levels on the Oracle Business Intelligence hierarchy to levels or depths of application trees. The logical representation of the application tree is expressed in terms of the columns of the column-flattened Oracle Business Intelligence view object for that tree, which has a maximum of 32 levels. In this case the 15-level (maximum) Oracle Business Intelligence RPD representation of the hierarchy is mapped to the 32-level (maximum) application BICVO representation of the tree by pruning the levels of the source tree designated by columns C1 through c17 of the BICVO.
Table 59-6 Mapping Oracle Business Intelligence Hierarchy Levels to Application Tree Levels
BI (RPD) | Application (BICVO) |
---|---|
Top | C31 |
Level Top +1 | C30 |
..... | |
Level Base - 1 | C18 |
Base | C0 |
When mapping application trees to Oracle Business Intelligence hierarchies, there are two types of problems that may arise:
The following are two possible consequences that may result from the problems outlined:
There are basically two choices for either completely resolving, or at least mitigating, the potential problems.
Note: Neither of the following resolutions require any actual implementation work. However, they do require a combination of policy and documentation. |
Any application tree that has a realization on the Oracle Business Intelligence side (Transactional Business Intelligence or Oracle BI Applications) must be restricted to no more than 15 levels.
Ensure that, if any application tree exceeds 15 levels, and that tree has realizations on both Transactional Business Intelligence and Oracle BI Applications, that both technologies maintain pruned realizations of this tree and have the same number of levels (such as 15 or less).
For this resolution, it will be necessary that these situations be investigated and documented on a case-by-case basis. You must decide how you want to adjust the security privileges of metrics that had previously been joined to the pruned levels, and then revise your Oracle Business Intelligence models accordingly.
Data security privileges are effectively applied to the column-flattened representation of the tree (as described in Table 59-3) in the form of a filter based on an OR
condition on the columns. For example, a reporting client has viewing privileges on nodes 1.1 and 1.2.2. This means that any row that contains either node in any of its columns (at any level in the tree) is viewable to the client, but the other rows are not. The viewable rows are shown in Table 59-7 in bold.
Table 59-7 Column-Flattened Result Set with Data Security
C0 | C1 | C2 | C3 | C4 | Distance |
---|---|---|---|---|---|
1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0 |
1.1 | 1.1 | 1.1 | 1.1 | 1.0 | 1 |
1.2 | 1.2 | 1.2 | 1.2 | 1.0 | 1 |
1.2.1 | 1.2.1 | 1.2.1 | 1.2 | 1.0 | 2 |
1.2.1.1 | 1.2.1.1 | 1.2.1 | 1.2 | 1.0 | 3 |
1.2.1.1.1 | 1.2.1.1 | 1.2.1 | 1.2 | 1.0 | 4 |
1.2.2 | 1.2.2 | 1.2.2 | 1.2 | 1.0 | 2 |
1.2.2.1 | 1.2.2.1 | 1.2.2 | 1.2 | 1.0 | 3 |
1.2.2.2 | 1.2.2.2 | 1.2.2 | 1.2 | 1.0 | 3 |
2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 0 |
3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 0 |
If the use of the DescendantOf
hierarchical referencing operator is also available, enabling the display of rows that contain either 1.1, 1.2.2, or any descendant of either of these two nodes, then the viewable rows include the rows that are displayed in bold in Table 59-8.
Table 59-8 Column-Flattened Result Set with Data Security and DescendantOf Operator
C0 | C1 | C2 | C3 | C4 | Distance |
---|---|---|---|---|---|
1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0 |
1.1 | 1.1 | 1.1 | 1.1 | 1.0 | 1 |
1.2 | 1.2 | 1.2 | 1.2 | 1.0 | 1 |
1.2.1 | 1.2.1 | 1.2.1 | 1.2 | 1.0 | 2 |
1.2.1.1 | 1.2.1.1 | 1.2.1 | 1.2 | 1.0 | 3 |
1.2.1.1.1 | 1.2.1.1 | 1.2.1 | 1.2 | 1.0 | 4 |
1.2.2 | 1.2.2 | 1.2.2 | 1.2 | 1.0 | 2 |
1.2.2.1 | 1.2.2.1 | 1.2.2 | 1.2 | 1.0 | 3 |
1.2.2.2 | 1.2.2.2 | 1.2.2 | 1.2 | 1.0 | 3 |
2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 0 |
3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 0 |
Note: The generalized OR filter can be restricted. For example, to apply only to the C0 column. This ensures that only nodes and optionally their descendants, for which a client has sufficient privileges, are viewable from the column-flattened result set. |
The base table view object and column-flattened view objects (BICVO) are separate view objects. However, the data security definition must be consistently applied to both the base table view object and BICVO. For example, BICVOs must not have different data security behavior than the base entity on which security has been defined by Oracle Fusion Applications. This is achieved by Fusion tree management using the following process:
FNDDS__BICVO
). You must not change this view criteria's name but must ensure that it is enabled for the application module for the Transactional Business Intelligence.There may be situations in which a tree must support both secured and unsecured access. In this case, the BICVO that exposes the tree structure is deployed as both secured and unsecured versions.
The generated BICVO already has a security mechanism associated with it that is based on its data source view object. An unsecured version of the BICVO can be created by manually making a copy of the generated BICVO and editing it to exclude sensitive columns. Then, secured access to this edited BICVO is turned-off by de-activating the dummy FNDDS__BICVO
view criteria associated with the BICVO. This causes the data source security view criteria to not be enforced. Again, both the secured and unsecured versions of the BICVO for the tree are to be deployed together in the same application module.
You must do the following to allow the Flexfields ADF Modeler to generate a flattened view object containing only those attributes marked as BI Enabled:
For information on how to perform these tasks, see the following sections in this book:
To properly resolve meanings for set-enabled attributes, the setID attribute must be exposed to the Oracle Business Intelligence layer. The setID attribute should be exposed using the appropriate method for the following reference types:
The setID is required to retrieve appropriate meaning if the lookup is set-enabled. The Set Assignments Query is required to retrieve the setID.
To expose the setID attribute:
Set-enabled lookups (shared and Transactional Business Intelligence) are registered as warehouse domains and the SetAssignment entity object is already provided by ATG.
Fact
entity object and the SetAssignment
entity object for each set-enabled lookup on the fact.FactVO
for each set-enabled lookup type on the FactVO
.The Lookup function is used to retrieve the translated meaning from the warehouse using setID parameter.
The setID is stored on set-enabled reference tables. A Unique ID is used as the primary key of the reference table; ID and language form the unique key of the translated reference table. The determinant value is not stored on the reference table; the foreign key used to reference the table is stored on transaction tables.
To expose the setID attribute:
Because the foreign key to the reference table already exists on the transaction, meanings for set-enabled attributes should be resolved depending on usage.
Resolve meaning on the base view object using entity object association, bringing in the setID attribute.
A separate view object is required. Build a view link from the base view object to the reference view object. The setID attribute exists on the reference table view object.
Oracle Fusion Middleware Extensions for Applications provides special MLS Currency view objects for Oracle Business Intelligence.
To support multi-currency, create view links from the primary entity currency code fields on transaction view objects to the new currency view object.
This chapter describes how to combine third party desktop applications with Oracle Fusion web applications.
The chapter includes these sections:
ADF Desktop Integration makes it possible to combine third party desktop productivity applications with Oracle Fusion web applications, so you can use a program like Microsoft Excel as an interface to access Oracle Fusion web application data. Currently, ADF Desktop Integration supports using an Excel workbook to access descriptive and key flexfield data in your application.
ADF Desktop Integration is intended to provide integrated access across a variety of Oracle Fusion products from a variety of third-party interfaces. As a result, it is important that you apply consistent standards for deployment and for look and feel to your implementation of ADF Desktop Integration.
For more general information about integrating Oracle Fusion web applications with desktop applications, see Oracle Fusion Middleware Desktop Integration Developer's Guide for Oracle Application Development Framework.
For information about using ADF Desktop Integration technology with flexfields, see Section 22.14, "Accessing Descriptive Flexfields from an ADF Desktop Integration Excel Workbook" and Section 23.4.5, "How to Access Key Flexfields from an ADF Desktop Integration Excel Workbook".
Important: The Desktop Integration Developer's Guide does not make explicit reference to technologies documented in this book, and this book does not repeat the content in the Desktop Integration Developer's Guide, so you must read the Desktop Integration Developer's Guide for a full understanding of how to use ADF Desktop Integration technology in general. |
Standards for Naming and Organization
ADF Desktop Integration projects have many of the same code artifacts as standard ADF application UI projects. As such, the directory and naming standards for ADF Desktop Integration projects already have a good example to follow.
ADF Desktop Integration artifacts shall follow the same set of directory and naming standards as core ADF UI artifacts. However, you are also encouraged to distinguish your business component names as appropriate. For example, for the General Ledger Journal Entry functionality, the core ADF page has an application module called "JournalEntryAM
." For the ADF Desktop Integration Journal Entry, the application module should be given a name similar to "DesktopJournalEntryAM
" to prevent duplicate names.
The way that you code backing beans, page definitions and JSPX pages for ADF Desktop Integration will be different from the way you code core ADF UIs. For example, JSPX dialogs for ADF Desktop Integration require JavaScript. It is desirable to be able to distinguish between core UI artifacts and UI artifacts used by ADF Desktop Integration workbooks. Therefore, instead of checking in ADF Desktop Integration web picker artifacts into a "ui
" package, it is recommended that you instead use a "di
" (Desktop Integration) folder. Note that "di
" and "ui
" are the same length, so path string lengths will not change.
Following is an example of such a directory structure:
A major benefit to putting ADF Desktop Integration web picker dialog artifacts into a di
folder is that automated standards checks can easily distinguish Desktop Integration-related objects and adjust their logic as needed. The directory structure under di
will be organized the same way as the directory structure under the ui
folder. For example, the bean
, controller
, page
and util
folders under di
will be found in the same relative locations as the equivalent folders under ui
.
The Excel Microsoft Office Open XML Format (XLSX) workbooks (and XLSM files, if required) should be checked into an excel
folder within the public_html
directory structure:
Example 60-1 shows some full directory paths for the ADF Desktop Integration artifacts on a Windows system, for a project in a leaf LBA called desktopJournalEntry
. The folders contain page definitions, Excel and JSPX files, and beans, respectively:
Example 60-1 Directory Structure in WIndows
Example 60-2 shows some directory paths for the ADF Desktop Integration artifacts in source control, for a project in a leaf LBA called desktopJournalEntry
. The folders contain page definitions, [excel] and JSPX files, and beans, respectively:
Example 60-2 Directory Structure in Source Control
Because users can download workbooks to their desktops, providing each workbook with a unique name across applications is advisable. Make an effort to incorporate either the name of your product or the name of the primary Logical Business Object (LBO) involved, to create a meaningful name for your workbook. For example, the expenses workbook could be called ExpensesEntry.xlsx
; the General Ledger journal entry workbook could be called JournalEntry.xlsx
. However, because there is no current runtime or release requirement for unique names, the ADF Desktop Integration team will not coordinate this.
There is an open question regarding which workbook to source control and release: the design time version or the published version. For now, assume that both versions are source controlled. To that end, the published version should have the final name and the design time version should include the suffix "DT
" in its filename. So in the expenses example, two workbooks will be source controlled: ExpensesEntry.xlsx
and ExpensesEntryDT.xlsx
, where the former is the published version and the latter is the design time version.
The main function of the Dialog Attributes declarative component is to render the ADFDi reserved elements (ADFdi_CloseWindow, ADFdi_AbortUploadOnFailure and ADFdi_DownLoadAfterUpload) in the ADF pages that are used as dialogs in the spreadsheet.
This component replaces the ADFdi_CloseWindow
, ADFdi_AbortUploadOnFailure
and ADFdi_DownLoadAfterUpload
span tags/outputText/JavaScript elements used in JSPX pages to render them as DI dialogs.
Since the component needs to render the value of the span tags (such as ADFdi_CloseWindow) based on the user's use case, it takes as an input the values to be rendered for these tags. To implement this, three properties are exposed on the component, one for each tag (ADFdi_CloseWindow
, ADFdi_AbortUploadOnFailure
and ADFdi_DownLoadAfterUpload
). These properties need to be set based on how the page is used as a dialog in the spreadsheet. An overview of the properties is described in Table 60-1.
Table 60-1 Tag Properties Exposed on the Declarative Component
Component Property | Data Type | Description |
---|---|---|
| String | This property maps to the DI Dom element: The value supplied for this property will be set as the value of the You can bind the property to a backing bean. Example: where |
| Boolean | This property maps to the DI Dom element: This value usually is a constant, such as true or false. It appears in the component property inspector as a list from which you can choose a true/false value. This property needs to be specified only if you are using the dialog as a custom upload dialog. Example: |
| Boolean | This property maps to: This value usually is a constant, such as true or false. It appears in the component property inspector as a list from which you can choose a true/false value. This property needs to be specified only if you are using the dialog as a custom upload dialog. Example: |
Note: If you are using the page as a simple dialog (a basic web picker that only needs ADFdi_CloseWindow), you only need to specify the closeWindowBinding . Do not specify values for the downloadAfterUpload and abortUploadOnFailure properties, which only need to be specified for a custom upload dialog. |
Before you can add the component to a web page, you need to add its containing JAR file as a library reference.
To add the JAR file as a library reference:
/ade/<view name>/fusionapps/jlib
.AdfFinFunPublicDeclarativeComponentsDi.jar
and select Add to Project.AdfFinFunPublicDeclarativeComponentsDi.jar
.Once you add the library as a library reference to your project, the component palette will contain the Di Components option that lists all the DI components available for use.
To add the component to the web page:
DialogAttributes
component and drag it onto the desired web page.The DI component namespace is added to the jsp:root
tag at the top of your page:
The component is rendered as:
You can view the available properties on this component by looking at the property inspector. Set the properties as required. The component tag will look like:
You are now ready to run your project.
Oracle Fusion ADF Desktop Integration workbooks share a common set of style definitions. This enables them to easily apply required changes to the look and feel. The various style definitions that are needed by applications developers are defined in a common Excel styles template file, which is the accurate source for ADF Desktop Integration styles in Oracle Fusion. Figure 60-1 shows an example of the ADF Desktop Integration styles in use; keep in mind that the look and feel is subject to change at any time.
When ADF Desktop Integration sends a spreadsheet to the client, it embeds the server public callback address. Then, when the spreadsheet is opened, it is able to authenticate and perform operations on the address.
To set the Frontend URL for the Administration Console:
admin.mycompany.com
(your LBR address).To eliminate redirections, you should disable the Administration Console's "Follow changes" feature. To do this, log on to the Administration Console and click Preferences and then Shared Preferences. Clear the Follow Configuration Changes check box and click Save.
To configure HTTP settings for a cluster:
Oracle Metadata Services (MDS) framework allows you to create customizable Oracle Fusion applications. This chapter describes how to configure your application at design time so that it can be customized by end users.
This chapter also provides information about how to perform runtime customizations.
This chapter includes the following sections:
With the customization features provided by Oracle Metadata Services (MDS), both developers and customers can customize Oracle Fusion applications. Customizing an application involves taking a generalized application and making modifications to suit the needs of a particular group, such as a specific industry or site.
A customized application contains a base application and one or more layers of customized metadata content. MDS stores the customized metadata objects in a metadata repository and retrieves them at run time to reveal the customized application. When a customized application is launched, the customized content is applied over the base content.
For more information about MDS repositories (database and file-based) and metadata archives (MAR), see the "Managing the Metadata Repository" chapter in the Oracle Fusion Applications Administrator's Guide. For more information about customization, see the "Customizing Applications with MDS" chapter in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework. For information about the ways in which developers and end users can customize the application, see the "Customizing and Extending Oracle Fusion Applications" chapter in the Oracle Fusion Applications Extensibility Guide.
You must perform the following tasks in the order shown in your JDeveloper application workspace to ensure that your pages can be customized by customers. You must complete all the non-optional tasks.
Once the application is configured to enable customizations, customizations can be created in two different ways:
Design-time customizations that are created and shipped with Oracle Fusion Applications are known as seeded customizations.
End users are also able to customize the navigator menu that displays in the UI Shell global area.
To allow JDeveloper-based and Oracle Composer-based customizations for your application, you must enable user and seeded customizations.
To enable user customization, you must configure the view project to allow user customizations, and you must configure the view project to persist the customized metadata objects to a MDS repository so that the objects are available across sessions. You must also enable seeded customizations so that the page fragments and JSPX pages that you create will be configured to allow customizations.
Note: ADF components (such as controller, model, and business components objects) must have a unique identifier so that they can be customized. ADF components that are generated by JDeveloper are created with identifiers by default, with the exception of fragments and pages in your user interface projects. To cause JDeveloper to generate identifiers for components on pages that you create in your user interface projects, you must explicitly specify this at the project level by enabling seeded customizations. |
To set project properties for your view project:
Before you can define customization layers, you must configure the persistence change manager parameter to use the composer change manger
When you enabled user customizations across sessions using MDS by completing the procedure in Section 61.2, "Setting Project Properties to Enable User and Seeded Customizations," the IDE added the CHANGE_PERSISTENCE
context parameter to the view project's web.xml
file, and set the parameter to use the filtered persistence change manager. You must modify this parameter to use the composer change manager, and you must add the composer filter and its mapping.
Before you begin:
Modify your view project's properties to enable user customizations across sessions using MDS as described in Section 61.2, "Setting Project Properties to Enable User and Seeded Customizations."
To configure the persistence change manager:
org.apache.myfaces.trinidad.CHANGE_PERSISTENCE
context parameter value to oracle.adf.view.page.editor.change.ComposerChangeManager
, as shown in the following code.WebCenterComposerFilter
class, as shown in bold in Example 61-1.Note: Filters must be configured in the following order.
|
Example 61-1 composerFilter and Mappings in web.xml
This step, among other modifications, adds the Applications Core and Web Service Data Control libraries to your project, which you need to complete the tasks to prepare your application for customization.
A customizable application can have multiple customization layers, such as Global, Site, and User. You need to define the application's customization layers and their order of precedence.
For information about customization layers, see the "Understanding Customization Layers" section in the Oracle Fusion Applications Extensibility Guide.
When a user opens an application page in a browser, the page opens in view mode. Additionally, Oracle Composer provides access to another mode that enables users with appropriate privileges to customize and personalize application pages and to save the changes as customizations that are available for all users accessing the page. Users can also be granted the privilege to edit a task flow at runtime.
For information about using Oracle Composer to customize pages, see the "Customizing Existing Pages" chapter of the Oracle Fusion Applications Extensibility Guide.
You modify the resource grants in the jazn-data.xml
file to authorize runtime customization of pages and task flows.
To authorize pages and task flows for runtime customizations:
jazn-data.xml
file, which is located in Application Resources > Descriptors > META-INF.Tip: If the jazn-data.xml file does not exist, you can create it by right-clicking the META-INF folder, selecting New Oracle Deployment Descriptor, selecting jazn-data.xml , and clicking Finish. |
ViewController
.For more information, see the "Implementing Task Flow Security" section in the Oracle Fusion Middleware Developer's Guide for Oracle WebCenter.
Customization is enabled for all components on a page by default. However, there might be situations where you want to prevent customization for some of the components on a page.
You can specify at the component level whether customizations for the component are permitted at runtime and who is permitted to customize that component.
How to restrict customization for a page component:
false
.For more information about these attributes, see the "Extended Metadata Properties" section in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
The resource string editor enables runtime editing of strings. The changes made using the resource string editor are saved into an application override bundle, which can be translated and imported back into the application.
You must configure your application to enable runtime resource string editing of translated values for customizations.
To set up runtime resource string editing for customizations:
oracle.adf.view.page.editor.resource.ComposerOverrideBundle.xlf
, and click Open.adf-config.xml
file, which is located in the Application Resources > Descriptors > ADF META_INF folder.resource-string-editor
element shown in Example 61-2 to the page-editor-config
section to enable resource string editing.Example 61-2 Configuration to Turn On Resource Picker
This setting only enables resource string editing if the changes are customizations and not user personalizations, as user personalizations do not need to be translated.
For more information about configuring the runtime resource string editor, see the "Configuring Runtime Resource String Editing" section in the Oracle Fusion Middleware Developer's Guide for Oracle WebCenter.
Pages can be customized at runtime using Oracle Composer.
You must perform the following steps to enable runtime customization of a web page using Oracle Composer:
You must add the Oracle Composer technology scope in order to access the technologies for consuming Oracle Composer components and enabling runtime customization.
To add Oracle Composer technology scope:
You control whether an end user can personalize a page by setting the page's isPersonalizableInComposer
property.
Note: You must enable personalizations for all your dashboards. However, workareas should have personalizations enabled only if absolutely required. |
To enable end-user personalizations:
af:pageTemplate
node.Page definition files define the binding objects that populate data the data in UI components at runtime. A page definition is required for runtime customizations that add additional components such as task flows and portlets. Page definition files can be found under Projects > View Controller > Application Sources > oracle.apps.view. If a required page definition file does not exist, complete the following steps to create one.
To create a page definition file for a JSPX page:
To make a JSPX document editable at runtime, you add Oracle Composer components to the page at design time. You use the Panel Customizable component to define an area of the page onto which users can add components at runtime. You use the Layout Customizable component to enable users to lay out its child components in several predefined ways, such as two-column or three-column.
The Layout Customizable and Panel Customizable components are from the Oracle Composer technology scope, which you added when you completed the steps in Section 61.8.1.1, "Adding Oracle Composer Technology Scope to Your Project," and which are available from the Oracle Composer page in the Component Palette.
For more information about the Panel Customizable and Layout Customizable components, see the "Oracle Composer Components" section in the Oracle Fusion Middleware Developer's Guide for Oracle WebCenter.
If you have a Panel Customizable component on your page to enable the runtime addition of content, you must set up a resource catalog to list the available content.
To learn how to create a custom resource catalog, see the "Creating and Managing Resource Catalogs" chapter in the Oracle Fusion Middleware Developer's Guide for Oracle WebCenter.
A considerable amount of work is involved in setting up a resource catalog. If you want to test runtime customizations before you finish setting up your catalog, you can use the default catalog definition file.
To use the default catalog for testing:
<application-root>/ViewController/src/oracle/adf/rc/metadata
directory structure.default-catalog.xml
to the newly created <application-root>/ViewController/src/oracle/adf/rc/metadata
directory.Caution: The Oracle WebCenter default catalog should only be used for testing purposes. You must create your own catalog for production purposes. |
Certain ADF Faces components have attributes that can be saved during a user session. For example, whether the user left a panel box component expanded or collapsed. This type of change is referred to as implicit customization.
In Section 61.2, "Setting Project Properties to Enable User and Seeded Customizations," you configured the application to persist user customizations across sessions. This enables you to configure attributes to be saved across sessions. For information about how to configure the persistence of component attribute values, see the "Allowing User Customizations at Runtime" chapter in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
You can configure the UI Shell template so that it can be customizable out-of-the-box. This functionality enables customers to use Oracle Composer to customize UI Shell pages, as described in the "Customizing Existing Pages" chapter in the Oracle Fusion Applications Extensibility Guide.
To enable users to customize the UI shell template, you add a link or button to the page fragment that launches the UI Shell template that allows the UI Shell template to be customized from Oracle Composer.
To add a link to a page fragment:
Example 61-3 Sample custClass List
Each of the customization classes supplied in the list must be valid and configured in the adf-config.xml
file, as shown in Figure 61-3.
If any of the classes cannot be instantiated, or if they are not pre-configured in the adf-config.xml
file, an exception is thrown at runtime.
The last customization class specified is the tip customization layer and the modifications to the UI Shell is written to this layer. In Example 61-3, the customization of the UI Shell takes place in SiteCC. The purpose of the earlier customization in the list is to view the UI Shell with any other customizations applied.
<methodAction>
element shown in Example 61-4 to the <bindings>
element. If you are enabling the customization of a UI Shell page other than TemplateCustomizationUIShell
, change the viewID
value to the view ID for that page.Example 61-4 custNavigate methodAction Binding
viewId
, webApp
, and pageParametersList
, as shown in Example 61-5. For more information about these values, see Table 14-15.Example 61-5 Example of viewId, webApp, and pageParametersList Values
In addition to the application level connection to your application database, you might also need to create an IDE level connection.
The IDE level connection is required when implementing design-time customizations from JDeveloper, as described in the "Using JDeveloper for Customizations" chapter in the Oracle Fusion Applications Extensibility Guide.
You create the IDE level connection from the Database Navigator.
To create a database connection at the IDE level
Make a note of the settings and click Cancel.
The database connection appears under the IDE Connections node.
While Oracle Composer enables user interface customizations, other customizations, such as changes to the model or task flow roles, must be done from JDeveloper. For information about implementing design-time customizations from JDeveloper, see the "Using JDeveloper for Customizations" chapter in the Oracle Fusion Applications Extensibility Guide.
You can implement the following types of runtime customizations:
For information about implementing implicit runtime customizations, see the "Allowing User Customizations at Runtime" chapter in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
For information about saving user customizations across sessions, see Section 61.8.1.7, "Configuring the Persistence of Implicit Runtime Customizations."
For information about building editable pages, see the "Allowing User Customizations at Runtime" chapter in the Oracle Fusion Middleware Developer's Guide for Oracle WebCenter.
Note: When you run your page in JDeveloper, all customizations created at runtime are, by default, written to a simulated MDS repository directory, which is stored at a temporary location in your system directory. The simulated MDS repository that is configured for the application reflects the metadata information that is contained in the Metadata Archive (MAR). |
The navigator menu is the global menu that displays in the UI Shell global area, and is displayed when you click Navigator buttons or links in the UI Shell, as shown in Figure 61-4.
A user with the required privileges can perform the following tasks to customize the menu at the Site level:
Note: You cannot customize the Home menu or the Preferences menu. |
For more information, see the "Customizing the Navigator Menu" chapter in the Oracle Fusion Applications Extensibility Guide.
The appendices provide information about how to work with the Oracle Fusion application taxonomy, and a reference for the commands available for the Oracle Enterprise Crawl and Search (ECSF) Command Line Administration Utility.
The Oracle Fusion Applications taxonomy organizes the components and functions of Oracle Fusion Applications into a hierarchical structure. Every Oracle Fusion development artifact or file is tagged with an owning functional component. Components are grouped hierarchically into larger units, such as more general components, products and product families.
ECSF Command Line Administration Utilities provides a reference for the commands available for the Oracle Enterprise Crawl and Search (ECSF) Command Line Administration Utility. You can use the ECSF Command Line Administration Utility to quickly test and manage the searchable objects without having to use Oracle Enterprise Manager Fusion Applications Control for ECSF.
This part contains the following appendices:
This appendix describes the theory of the Oracle Fusion application taxonomy, how to view the taxonomy, and how to extract taxonomy data from a table and how to insert taxonomy data into a table.
This appendix describes:
This appendix includes the following sections:
It is important to note that there is no tool for working with the taxonomy; developers use public business objects and do all work within JDeveloper. In general, only developers who are referring to modules, such as Application, will need to work with the taxonomy.
The Oracle Fusion application taxonomy organizes the artifacts and functions of Oracle Fusion Applications into a hierarchical structure. Every Oracle Fusion development artifact or file is tagged. The structure starts with the Application Line and extends through the Logical Business Area.
In the taxonomy user interface, the hierarchy would appear similar to the example shown in Figure A-1:
The taxonomy hierarchy provides a map of the dependencies that exist within an application and across applications.
Seed Data
The Oracle Fusion Applications Design Repository (ADR) team has provided Taxonomy seed data for the following levels in the hierarchy: Application Line, Family, Application, and Logical Business Area (LBA).
You can create as fine-grained an application taxonomy as you wish. You can break up an application into sub-applications or pseudo applications. For example, there are many setup use cases where an overall process is made up of many smaller subordinate processes.
The applications taxonomy is especially useful in managing various phases of the application lifecycle. These phases include:
Patches and patch sets can be constructed based on the data defined in the taxonomy. You can choose any node of the taxonomy as the source for a patch file manifest. That starting node can scale all the way up to the top of the application taxonomy tree for a new release for the entire suite.
System administrators monitoring performance, processes, system use, and so on, can use the application taxonomy to organize information and navigate to the level of detail they require. Administrator dashboards will start at higher levels of the taxonomy to provide broad overview of system status. When trouble is detected, the taxonomy can be used to drill down to where attention is required.
Patches will be tagged with the versions they contain. When a patch is applied, dependency information in the taxonomy can be used to determine which parts of the system will be affected. This can be used to assess system testing requirements after the patch is applied, or to schedule partial downtimes while patching is in progress.
Diagnostic tests, logging, error messages, online help, support bulletins, and other artifacts are tagged with the module and version in the taxonomy to which they pertain. When trouble is detected, information from the customer's system can be matched with these tags to direct them to appropriate assistance.
If the problem cannot be resolved through diagnostics and help, the taxonomy can be used to search for patches available for a particular module and version. Patches could be available at any level of the hierarchy, from one-offs, through larger roll-ups. The taxonomy can be used to follow the troublesome module up through the hierarchy to search for larger roll-ups that might be relevant.
If support is required, the taxonomy can be used to automatically construct Support Information Bundles, containing version information, with the results of diagnostics registered for these components.
The organization of the application taxonomy does not need to match the physical file directory structure, which is unlikely to consistently correspond to the functionality provided by those files. File directory structures often serve to group files according to a high level file type (such as all seed data files in one directory, all Java files in another directory, and so on), rather than by their functionality.
The applications' Java EE package structure is a simple physical hierarchy based on the directory structure into which you organize your runtime files on disk. It is identical to the package structure that you use when defining Java class file packages. The concept has been expanded to also support metadata files, such as JSPX files. However, the information maintained by the application taxonomy supports many functional capabilities that cannot be supported by the standard Java EE package hierarchy.
Many of the artifacts that comprise a given application are shared among various applications and modules. The relationships among applications and artifacts constitute a network rather than a simple hierarchy, and are essential when interrogating and modeling dependencies. There is no support for such an integrated map of relationships in Java EE package structures.
There are other critical business requirements that cannot be satisfied by using a physical directory structure to organize an application hierarchy. Customers will often extend or subclass various runtime components to customize the application behavior to meet their specific business needs. Over time, application teams will wish to refine or refactor their application hierarchies as they add more features and functionality. Teams will want to refine or reorganize modules that leverage various artifacts. The application taxonomy's logical definition of applications and their related runtime components saves customers from having to modify their references to these packages if the logical hierarchy is changed.
In the application taxonomy, the delivery hierarchy is the master source for all the directories and files that comprise an application.
The delivery hierarchy represents the relationships between files and the application team that is responsible for the development, maintenance, and delivery of those files. Nodes within the delivery hierarchy have unique parents, so there is one path through the delivery hierarchy to any given file.
Every application registers task flows with the Functional Setup Manager that provides a single, unified user interface that allows customers and implementers to configure all Oracle applications by defining custom configuration templates or tasks based on their business needs.
The Functional Setup Manager UI enables customers and implementers to select the business processes or applications that they want to implement. For example, a Human Resources application can register setup activities like "Create Employees" and "Manage Employee Tree Structure" with the Functional Setup Manager. Trees task flows then provide the mechanism for an application team to register an activity such as "Manage Employee Tree Structure," which in this case, is a tree structure task flow with the tree structure code parameter set to some HR tree structure. Table A-1 lists the task flow and its parameters.
Table A-1 Taxonomy Task Flow and Parameters
Task Flow Name | Task Flow XML | Patterns Passed | Behavior | Comments |
---|---|---|---|---|
Manage Taxonomy Hierarchy |
| [pageTitle] | The Manage Taxonomy Hierarchy accepts the optional parameter [pageTitle] and navigates to the Taxonomy Delivery Hierarchy page. | This page serves as the starting point from which a user can select a particular node and perform the available actions, such as create, update, and view components for a selected node. From this page, a user can navigate to other task flows, such as Search Hierarchy, View Components and Search Components. |
You can use the application taxonomy at a lower level by using the public entity objects and view objects.
For example, you can create an association between the application team entity object, which has a foreign key reference to alternative_id
in ApplTaxonomyPEO, and provided service methods to either join to the taxonomy table or to traverse through the taxonomy hierarchy using an API (for instance, to which Family does a given Application belong?) or for other lookup information about the nodes (for instance, what is the short name for a given application?).
These items are applicable to some Oracle Fusion Middleware Extensions for Applications (Applications Core) tables.
Who Columns
All tables containing seeded or transaction data must include the Who columns shown in Table A-2:
Table A-2 Who Columns
Column Name | Type | Null? |
---|---|---|
|
| Not Null |
|
| Not Null |
|
| Not Null |
|
| Not Null |
|
|
If the table has "extended Who" columns used to track updates by Oracle Enterprise Scheduler Service programs, the columns must be changed to those shown in Table A-3. You do not need to add extended Who columns if the table does not already have them.
Table A-3 Extended Who Columns
Column Name | Type | Null? |
---|---|---|
|
| NULL |
|
| NULL |
|
| NULL |
Replace RAW Columns with VARCHAR2
Raw columns may only be used in internal tables that are never directly exposed in Oracle Application Development Framework (Oracle ADF).
The ApplicationLine column of the Taxonomy table has been denormalized to allow data for multiple application lines to prevent hierarchical queries against the taxonomy table.
By default, the ApplicationLineCriteria will be applied on the view objects exposed on the view object by taxonomy (public and private) with the value of 1 for the Oracle Fusion application line. If you need to get data for another application line, you can set the appropriate value for the bind variable bProductLine
.
The service methods use the default Oracle Fusion application line value of 1. The application module APIs that do not accept an application line id assume that the data is being queried for the Oracle Fusion application line.
If you query directly against the taxonomy tables, you must take into account the application line denormalization. You will have to add the filter product_line = <appropriate application line id>
to prevent returning multiple rows for a given module key or id.
The following public entity objects are located in the oracle.apps.fnd.applcore.model.publicEntity
package and are exposed by Applications Core:
The following public view objects are located in the oracle.apps.fnd.applcore.model.publicView
package and are exposed by Applications Core:
ApplTaxonomyPEO
. It has these view criteria exposed:bProductLine
. By default, the ProductLineCriteria will be applied on the view objects exposed on the view object by Taxonomy (public and private) with the value of 1 for the Oracle Fusion application line. If you need to get data for another application line, you can set the appropriate value for the bind variable bProductLine
.ApplTaxonomyEO.IS_SEED_DATA_ALLOWED=:bIsSeedDataAllowed
, where :bIsSeedDataAllowed
is a named bind variable with a default value of N
.bModuleId
.bModuleType
.ApplTaxonomyTranslationPEO
. It has these view criteria exposed:ApplTaxonomyEO.PRODUCT_LINE=:bProductLine
where :bProductLine
is a named bind variable with a default value of 1
– the Oracle Fusion Productline.ApplTaxonomyEO.IS_SEED_DATA_ALLOWED=:bIsSeedDataAllowed
, where :bIsSeedDataAllowed
is a named bind variable with a default value of N
.ApplTaxonomyHierarchyPEO
. It has these view criteria exposed:ApplTaxonomyEO.PRODUCT_LINE=:bProductLine
where :bProductLine
is a named bind variable with a default value of 1
– the Oracle Fusion Productline.ApplTaxonomyEO.IS_SEED_DATA_ALLOWED=:bIsSeedDataAllowed
, where :bIsSeedDataAllowed
is a named bind variable with a default value of N
.ApplTaxonomyEO.PRODUCT_LINE=:bProductLine
where :bProductLine
is a named bind variable with a default value of 1
– the Oracle Fusion Productline.ApplTaxonomyEO.IS_SEED_DATA_ALLOWED=:bIsSeedDataAllowed
, where :bIsSeedDataAllowed
is a named bind variable with a default value of N
.ApplTaxonomyEO.PRODUCT_LINE=:bProductLine
where :bProductLine
is a named bind variable with a default value of 1
– the Oracle Fusion Productline.ApplTaxonomyEO.IS_SEED_DATA_ALLOWED=:bIsSeedDataAllowed
, where :bIsSeedDataAllowed
is a named bind variable with a default value of N
.ApplTaxonomyFullDeliveryVO
and its view link. It has these view criteria exposed:ApplTaxonomyEO.PRODUCT_LINE=:bProductLine
where :bProductLine
is a named bind variable with a default value of 1
– the Oracle Fusion Productline.ApplTaxonomyEO.IS_SEED_DATA_ALLOWED=:bIsSeedDataAllowed
, where :bIsSeedDataAllowed
is a named bind variable with a default value of N
.ApplTaxonomyEO.PRODUCT_LINE=:bProductLine
where :bProductLine
is a named bind variable with a default value of 1
– the Oracle Fusion Productline.ApplTaxonomyEO.IS_SEED_DATA_ALLOWED=:bIsSeedDataAllowed
, where :bIsSeedDataAllowed
is a named bind variable with a default value of N
.ApplTaxonomyEO.PRODUCT_LINE=:bProductLine
where :bProductLine
is a named bind variable with a default value of 1
– the Oracle Fusion Productline.ApplTaxonomyEO.IS_SEED_DATA_ALLOWED=:bIsSeedDataAllowed
, where :bIsSeedDataAllowed
is a named bind variable with a default value of Y
.To access the Entity and View objects, and other taxonomy components, create a new File System Connection to adflib
:
Notes:
|
Two methods are exposed in the ApplTaxonomyAMImpl
class:
To access a taxonomy application module:
Note: The ApplTaxonomyAMImpl package is oracle.apps.fnd.applcore.taxonomy.taxonomyService.applicationModule . |
Where myAM
is the application module that you are working with. You can also create an instance of the ApplTaxonomyAMImpl
class directly as needed.
To access a taxonomy node for a given application module, you can call the getTaxonomyModule()
API on the module ID:
To access the module name for that node, you can make a call to getModuleName()
:
To access a set of taxonomy nodes for a given module type, you can call the getTaxonomyModules()
API:
The following methods also are exposed:
These APIs work if the existing data in FND_APPLICATIONS has been migrated to the Oracle Application Taxonomy tables.
The taxonomy delivery hierarchy can be navigated using the accessors for the children and parents.
To obtain the children of the current node, call getChildApplTaxonomyFullDeliveryVO()
, as shown in Example A-1:
Example A-1 Obtaining the Children of the Current Node
To obtain the parent of the current node, call getParentApplTaxonomyFullDeliveryVO()
, as shown in Example A-2.
Example A-2 Obtaining the Parent of the Current Row
Taxonomy MBeans are useful for obtaining information about Oracle Fusion taxonomy, such as domain, application family, application, modules (UI, SOA, Webservices), and admin log configuration. These MBeans are available as Domain Runtime MBeans in WebLogic Server and expose several APIs, each of which provides specific information about the taxonomy of a deployed Oracle Fusion environment. These MBeans are consumed by application teams as utility APIs to verify information about their applications, and are also integrated with other applications. For instance Enterprise Manager for Oracle Fusion uses these APIs for building the discovery user interfaces. Taxonomy MBeans are registered into the application-defined MBeans after the administration server startup.
Types of Taxonomy MBeans
Two types of Taxonomy MBeans are available:
MBeans as viewed from Enterprise Manager are shown in Figure A-6.
Topology MBean
Topology MBean Details:
Attributes exposed by Topology MBeans are shown in Table A-4.
Table A-4 Attributes Exposed by Topology MBeans
Name | Description | Access |
---|---|---|
AllProductFamilyAndDomains | Gets all domains and product families of an Oracle Fusion instance. | R |
ConfigMBean | If true, it indicates that this is a Config MBean. | R |
CurrentDomain | Gets the current domain. | R |
CurrentPillarInfo | Get the current pillar. | R |
CurrentPillarInstanceInfo | Returns all information about current PillarInstanceName. | R |
CurrentProductFamily | Gets the current product family module key list. | R |
CurrentProductFamilyInfo | Gets the current product family list information. | R |
eventProvider | If true, it indicates that this MBean is an event provider as defined by JSR-77. | R |
eventTypes | All the event types emitted by this MBean. | R |
ListOfProducts | Gets the list of products for the current product family. | R |
objectName | The MBean's unique JMX name. | R |
PillarDBInfo | Get the database information for a particular pillar. | R |
Pillars | Get all the pillars. | R |
ProductFromEachProductFamily | Gets list of products for each product family. | R |
ReadOnly | If true, this MBean is read-only. | R |
RestartNeeded | Indicates whether a restart is needed. | R |
stateManageable | If true, it indicates that this MBean provides state management capabilities as defined by JSR-77. | R |
statisticsProvider | If true, it indicates that this MBean in a statistic provider as defined by JSR-77. | R |
SystemMBean | If true, it indicates that this MBean is a System MBean. | R |
The operations exposed by Topology MBeans are shown in Table A-5.
Table A-5 Operations Exposed by Topology MBeans
Name | Description | Parameters | Return Type |
---|---|---|---|
getAllDeployedAppsInfo | Complete information on the deployed application for a particular product. | 1 | Array of javax.management.openmbean.TabularData |
getAllEnterpriseAppsInfo | Gets the list of application information for a given product. | 2 | Array of javax.management.openmbean.TabularData |
getAppListFromDeployedDomain | Get the application information from the deployed domain name. | 1 | Array of javax.management.openmbean.TabularData |
getDependentApps | Returns dependent applications information on an application from its AppShortName. | 1 | Array of javax.management.openmbean.TabularData |
getDependentMWComponents | Gets Dependent MW Components for the AppShortName. | 1 | Array of javax.management.openmbean.TabularData |
getDeployedAppInfo | Complete information on the deployed application given for an Application Short Name. | 1 | Array of javax.management.openmbean.TabularData |
getDeployedDomainFromLogicalDomain | Gets DeployedDomain information from the LogicalDomain name. | 1 | Array of javax.management.openmbean.TabularData |
getDeployedDomainFromPillar | Get the deployed domain information of a particular type for a pillar. | 2 | Array of javax.management.openmbean.TabularData |
getDeployedDomainInfo | Returns a map of domain information for a given domain name. | 1 | javax.management.openmbean.TabularData |
getDeployedDomainByCompositeName | Get the deployed domain list for a given composite name. | 1 | Array of javax.management.openmbean.TabularData |
getDeployedDomainsByEnvironment | Returns the list of domains for a particular environment. If the EnvironmentShortName is null, it will return all the deployed domains. | 1 | javax.management.openmbean.TabularData |
getDomainnames | Gets the list of domain names for a given application short name. | 1 | Array of java.lang.String |
getEndPointInfo | Gets the external and internal end points for a given application short name. | 1 | Array of javax.management.openmbean.TabularData |
getEndPointInfoFromModule | Gets the domain external and internal domain end points for a Logical Module Name. | 1 | Array of javax.management.openmbean.TabularData |
getEnterpriseAppInfo | Gets the list of application information for a given application short name. | 1 | javax.management.openmbean.TabularData |
getEssApplicationInfo | Gets ESS application information for a given product family module id. | 1 | javax.management.openmbean.TabularData |
getLbasInfo | Gets the list of LBA information for the given product family. | 1 | Array of javax.management.openmbean.TabularData |
getListOfDeployedApps | Gets the list of deployed applications for a particular product. | 1 | Array of java.lang.String |
getListOfDomains | Gets the list of domain names for a given product family | 1 | Array of java.lang.String |
getListOfEnterpriseApps | Gets the list of applications for a given product. | 2 | Array of java.lang.String |
getListOfLbas | Gets the list of LBA (module names) for the given product family. | 1 | Array of java.lang.String |
Log Configuration MBeans
Log Configuration MBean Details:
Attributes exposed by Log Configuration MBeans are shown in Table A-6.
Table A-6 Attributes Exposed by Log Configuration MBeans
Name | Description | Access |
---|---|---|
ConfigMBean | If true, it indicates that this is a Config MBean. | R |
eventProvider | If true, it indicates that this MBean is an event provider as defined by JSR-77. | R |
eventTypes | All the event types emitted by this MBean. | R |
LogConfigInformation | Gets the log configuration information at Site level. | R |
objectname | The MBean's unique JMX name. | R |
ReadOnly | If true, this MBean is read-only. | R |
RestartNeeded | Indicates whether a restart is needed. | R |
stateManageable | If true, it indicates that this MBean provides State Management capabilities as defined by JSR-77. | R |
statisticsProvider | If true, it indicates that this MBean in a statistic provider as defined by JSR-77. | R |
SystemMBean | If true, it indicates that this MBean is a System MBean. | R |
Operations exposed by Log Configuration MBeans are shown in Table A-7.
Table A-7 Operations Exposed by Log Configuration MBeans
Name | Description | Parameters | Return Type |
---|---|---|---|
addUserLogConfig | Adds the log configuration information for a particular user. | 8 | boolean |
deleteUserLogConfig | Delete the log configuration information for a particular user. | 1 | void |
editUserLogConfig | Edit the log configuration information for a particular user. | 8 | boolean |
getUserInfo | Gets the user information (the GUID) for users either having or not having the log configuration information. | 2 | javax.management.openmbean.TabularData |
getUserLogConfigInformation | Gets the log configuration information for a particular user. | 1 | Array of javax.management.openmbean.TabularData |
updateLogConfigInformation | Update the log configuration information at Site level. | 8 | void |
Sample Code to Invoke MBean APIs
Sample code is shown in Example A-3.
Example A-3 Sample Code to Invoke MBean APIs
This appendix provides a reference for the commands available for the Oracle Enterprise Crawl and Search (ECSF) Command Line Administration Utility. You can use the ECSF Command Line Administration Utility to quickly test and manage the searchable objects without having to use Oracle Enterprise Manager Fusion Applications Control for ECSF.
Note: Administrators should use Fusion Applications Control for ECSF to manage the life cycle of searchable objects in the production environment. |
Table B-1 shows the commands you can use to administer search. The commands appear in alphabetical order.
Table B-1 ECSF Command Line Administration Utility Commands
Command | Description |
---|---|
| Activates a searchable object so that a query of it returns results. Specify the ID number corresponding to the searchable object you want to activate. Only a searchable object that has been deployed can be activated. Customized searchable objects cannot be activated using the ECSF Command Line Administration Utility. You must activate customized searchable objects by using the Fusion Applications Control for ECSF. |
| Associates the searchable object you specify with the search category you specify. Specify the ID number corresponding to the searchable object you want to add to the search category, and specify the ID number corresponding to the search category to which you want to add the searchable object. Searchable objects must be deployed before you can associate them with search categories. Search categories must be undeployed before you can associate searchable objects with them. You can associate the same searchable object with multiple search categories. You must issue the command while managing the search engine instance with which the search category is associated. |
| Associates a searchable object with the search category you specify. Specify the ID number corresponding to the search category to which you want to add the searchable object. The ECSF Command Line Administration Utility displays a list of available searchable objects and prompts you to enter the ID corresponding to the searchable object you want to associate with the search category. Searchable objects must be deployed before you can associate them with search categories. Search categories must be undeployed before you can associate searchable objects with them. You can associate the same searchable object with multiple search categories. You must issue the command while managing the search engine instance with which the search category is associated. |
| Associates the searchable object you specify with the index schedule you specify. Specify the ID number corresponding to the searchable object you want to add to the index schedule, and specify the ID number corresponding to the index schedule to which you want to add the searchable object. Searchable objects must be deployed before you can associate them with index schedules. You can only associate each searchable object with one index schedule. Only a searchable object that is not already associated with an index schedule can be added to an index schedule. Index schedules must be undeployed before you can associate searchable objects with them. You must issue the command while managing the search engine instance with which the index schedule is associated. |
| Associates the searchable object you specify with the index schedule you specify. Specify the ID number corresponding to the index schedule to which you want to add the searchable object. The ECSF Command Line Administration Utility displays a list of available searchable objects and prompts you to enter the ID corresponding to the searchable object you want to associate with the index schedule. Searchable objects must be deployed before you can associate them with index schedules. You can only associate each searchable object with one index schedule. Only a searchable object that is not already associated with an index schedule can be added to an index schedule. Index schedules must be undeployed before you can associate searchable objects with them. You must issue the command while managing the search engine instance with which the index schedule is associated. |
| Associates a searchable object with the specified search engine instance. The ECSF Command Line Administration Utility displays a list of available searchable objects and prompts you to enter the ID corresponding to the searchable object you want to add to the search engine instance. You must issue the command while managing the search engine instance to which you want to add the searchable object. A searchable object can only be associated with one search engine instance at a time. |
| Associates a searchable object with the specified search engine instance. Specify the ID corresponding to the searchable object you want to add to the search engine instance. You must issue the command while managing the search engine instance to which you want to add the searchable object. A searchable object can only be associated with one search engine instance at a time. |
| Creates the connection to a database using a system identifier (SID). Follow the prompts to enter a username and password, as well as field values. |
| Creates the connection to a database using a system identifier (SID). Specify the host name, port number, and SID. Follow the prompts to enter a username and password. |
| Creates the connection to a database using a database descriptor. Follow the prompts to enter a username and password, as well as field values. |
| Creates the connection to a database using a database descriptor. Specify the descriptor, enclosing it in quotes, with either the system identifier (SID) or service name, for example: Using SID:
Using service name:
Follow the prompts to enter a username and password. |
| Creates the connection to a database using a service name. Follow the prompts to enter a username and password, as well as field values. |
| Creates the connection to a database using a service name. Specify the host name, port number, and service name. Follow the prompts to enter a username and password. |
| Creates the connection to an MBean server. Follow the prompts to enter a username and password, as well as field values. |
| Creates the connection to an MBean server. Specify the host name and port number. Follow the prompts to enter a username and password. |
| Adds a new search category to the If you issue the command while managing a search engine instance, the search category is automatically associated with the search engine instance you are managing. If you issue the command outside a search engine instance context, the ECSF Command Line Administration Utility displays a list of the available search engine instances and prompts you to choose a search engine instance for the search category you want to create. |
| Adds a new search category to the The field names and values must be enclosed in quotes. If the field name or value contains a quote, escape it with a backslash, for example, If you issue the command while managing a search engine instance, the search category is automatically associated with the search engine instance you are managing. If you issue the command outside of a search engine instance context, the ECSF Command Line Administration Utility displays a list of the available search engine instances and prompts you to choose a search engine instance for the search category you want to create. |
| Adds a new search engine instance to the specified search engine type. Follow the prompts to enter field values. You must issue the command while not managing a search engine instance. |
| Adds a new search engine instance to the specified search engine type. Directly pass in field name-value pairs with the command. The field names and values must be enclosed in quotes. If the field name or value contains a quote, escape it with a backslash, for example, You must issue the command while not managing a search engine instance. |
| Adds a new searchable object to the specified search engine type. Follow the prompts to enter field values. If you issue the command while managing a search engine instance, the searchable object is automatically associated with the search engine instance you are managing. If you issue the command outside a search engine instance context, the ECSF Command Line Administration Utility displays a list of the available search engine instances and prompts you to choose a search engine instance for the searchable object you want to create. |
| Adds a new index schedule to the If you issue the command while managing a search engine instance, the index schedule is automatically associated with the search engine instance you are managing. If you issue the command outside a search engine instance context, the ECSF Command Line Administration Utility displays a list of the available search engine instances and prompts you to choose a search engine instance for the index schedule you want to create. |
| Adds a new index schedule to the The field names and values must be enclosed in quotes. If the field name or value contains a quote, escape it with a backslash, for example, If you issue the command while managing a search engine instance, the index schedule is automatically associated with the search engine instance you are managing. If you issue the command outside a search engine instance context, the ECSF Command Line Administration Utility displays a list of the available search engine instances and prompts you to choose a search engine instance for the index schedule you want to create. |
| Adds a new searchable object to the specified search engine type. Follow the prompts to enter field values. The searchable object is not associated with a search engine instance. |
| Deactivates a searchable object so that a query of it does not return results. Specify the ID number corresponding to the searchable object you want to deactivate. Only an activated searchable object can be deactivated. Deactivated searchable objects are still available for the search engine instance to crawl. |
| Disassociates the specified search category from the search engine instance and removes it from the You must issue the command while managing the search engine instance with which the search category is associated. |
| Removes the specified external search category from the |
| Removes the specified search engine instance. You cannot delete search engine instances while you are managing an engine instance. You cannot delete a search engine instance if there are any deployed objects, categories, or schedules associated with it. |
| Removes the specified assigned searchable object (associated with a search engine instance) from the ECSF schema in the Oracle Fusion Applications database. You must issue the command while managing the search engine instance with which the searchable object is associated. If the searchable object has been deployed, you must undeploy it before you can delete its record from the database. |
| Disassociates the specified index schedule from the search engine instance and removes it from the You must issue the command while managing the search engine instance with which the index schedule is associated. |
| Removes the specified unassigned searchable object (not associated with a search engine instance) from the ECSF schema in the Oracle Fusion Applications database. |
| Deploys the specified search category to the search engine instance. Specify the ID number corresponding to the search category you want to deploy. Searchable objects must be associated with the search category before you can deploy it. You must issue the command while managing the search engine instance with which the search category is associated. |
| Deploy the searchable object you specify to the search engine instance to make the objects available for the search engine instance to crawl. Specify the ID number corresponding to the searchable object you want to deploy. The searchable objects deployed to the search engine instance must have a unique and fully qualified name, for example, |
| Collectively updates all deployed searchable objects with the latest search engine instance parameters. |
| Updates the specified searchable object with the latest search engine instance parameters. |
| Deploys the specified index schedule to the search engine instance. Specify the ID number corresponding to the index schedule you want to deploy. Searchable objects must be associated with the index schedule before you can deploy it. You must issue the command while managing the search engine instance with which the index schedule is associated. |
| Disconnects you from the current database or MBean server connection. |
| Closes the ECSF Command Line Administration Utility. |
| Lists all the available |
| Lists the valid syntax for the |
| Lists the valid syntax for the |
| Lists the commands that can be used for search categories. |
| Lists the valid syntax for the |
| Lists the fields available for the |
| Lists the fields available for the |
| Lists the fields available for the |
| Lists the fields available for the |
| Lists the fields available for the |
| Lists the fields available for the |
| Lists the valid syntax for the |
| Lists the valid syntax for the |
| Lists the valid syntax for the |
| Lists the valid syntax for the |
| Lists the commands that can be used for search engine instances. |
| Lists the valid syntax for the |
| Lists the valid syntax for the |
| Lists the commands that can be used for searchable objects. |
| Lists the commands that can be used for search engine instance parameters. |
| Lists the valid syntax for the |
| Lists the commands that can be used for index schedules. |
| Lists the valid syntax for the set commands. |
| Lists the valid syntax for the |
| Lists the valid syntax for the |
help stop | Lists the valid syntax for the |
| Lists the commands that can be used for unassigned searchable objects. |
| Lists the valid syntax for the |
| Lists the valid syntax for the |
| Lists the fields available for the |
| Lists the fields available for the |
| Lists the fields available for the |
| Lists the fields available for the |
| Lists one by one all the external categories of the search engine instance you are managing and prompts you to confirm whether or not you want to import each external category. Enter All external search categories that have been previously imported will be replaced by the latest import from Oracle Secure Enterprise Search (Oracle SES). If you had previously deleted any of the records corresponding to the external search categories, you must delete them again to make them unavailable for querying. |
| Lists one by one all the external categories of the search engine instance you specify and prompts you to confirm whether or not you want to import each external category. Enter All external search categories that have been previously imported will be replaced by the latest import from Oracle Secure Enterprise Search (Oracle SES). If you had previously deleted any of the records corresponding to the external search categories, you must delete them again to make them unavailable for querying. |
| Lists the search categories and their corresponding ID numbers for the search engine instance you are managing. |
| Lists the search categories and their corresponding ID numbers for the search engine instance you specify. Specify the ID number corresponding to the desired search engine instance. |
| Lists the external search categories and their corresponding ID numbers for the search engine instance you are managing. |
| Lists the external search categories and their corresponding ID numbers for the search engine instance you specify. Specify the ID number corresponding to the desired search engine instance. |
| Lists the search engine instances and their corresponding ID numbers |
| Lists a summary of the searchable objects associated with the search engine instance you are managing. |
| Lists a summary of the searchable objects associated with the search category you specify. Specify the ID number corresponding to the desired search category. |
| Lists a summary of the searchable objects associated with the search engine instance you specify. Specify the ID number corresponding to the desired search engine instance. |
| Lists a summary of the searchable objects associated with the index schedule you specify. Specify the ID number corresponding to the desired index schedule. |
| Lists the parameters that are available for the |
| Lists the parameters that are available for the |
| Lists the index schedules associated with the search engine instance you are managing. |
| Lists the index schedules associated with the search engine instance you specify. Specify the ID number corresponding to the desired search engine instance. |
| Lists the unassigned searchable objects (not associated with a search engine instance) and their corresponding ID numbers. |
| Sets the context to the specified search engine instance. The ECSF Command Line Administration Utility lists all the search engine instances and their corresponding ID numbers and prompt you for the ID number of the search engine instance you want to manage. |
| Sets the context to the search engine instance you specify. Specify the ID number corresponding to the search engine instance you want to manage. |
| Registers an identity plug-in for the instance you are managing. The deployment of the Federated Trust Entity occurs when the identity plug-in is registered. |
| Registers an identity plug-in for the search engine instance you specify. Specify the ID number corresponding to the desired search engine instance. The deployment of the Federated Trust Entity occurs when the identity plug-in is registered. |
| Associates the specified searchable object with the search engine instance you are managing and creates a new record for the searchable object in the ECSF schema of the Oracle Fusion Applications database. Follow the prompts to enter field values. For BO Name, you must enter a fully qualified view object name defined in your application. |
| Associates the specified searchable object with the search engine instance you are managing and creates a new record for the searchable object in the Oracle Fusion Applications database. Directly pass in field name-value pairs with the command. The field names and values must be enclosed in quotes. If the field name or value contains a quote, escape it with a backslash, for example, |
| Creates a new record of an unassigned searchable object (not associated with a search engine instance) in the Oracle Fusion Applications database. Follow the prompts to enter field values. For BO Name, you must enter a fully qualified view object name defined in your application. |
| Creates a new record of an unassigned searchable object (not associated with a search engine instance) in the Oracle Fusion Applications database. Directly pass in field name-value pairs with the command. The field names and values must be enclosed in quotes. If the field name or value contains a quote, escape it with a backslash, for example, |
| Disassociates a searchable object from the search category you specify. Specify the ID number corresponding to the search category from which you want to disassociate the searchable object. The ECSF Command Line Administration Utility displays a list of searchable objects and prompts you to enter the ID corresponding to the searchable object you want to remove from the search category. You must issue the command while managing the search engine instance with which the search category is associated. The searchable object is still available for association to other search categories. |
| Disassociates the specified searchable object from the search category you specify. Specify the ID number corresponding to the searchable object you want to remove from the search category. Specify the ID number corresponding to the search category from which you want to disassociate the searchable object. You must issue the command while managing the search engine instance with which the search category is associated. The searchable object is still available for association to other search categories. |
| Disassociates a searchable object from the specified search engine instance and makes it available for association to another search engine instance. The ECSF Command Line Administration Utility displays a list of searchable objects and prompts you to enter the ID corresponding to the searchable object you want to remove from the search engine instance. In order to disassociate a searchable object from a search engine instance, both the object and the instance must be undeployed. |
| Disassociates a searchable object from the specified search engine instance and makes it available for association to another search engine instance. Specify the ID number corresponding to the search engine instance from which you want to remove the searchable object. The ECSF Command Line Administration Utility displays a list of searchable objects and prompts you to enter the ID corresponding to the searchable object you want to remove from the search engine instance. In order to disassociate a searchable object from a search engine instance, both the object and the instance must be undeployed. |
| Disassociates the specified searchable object from the search engine instance and makes it available for association to another search engine instance. Specify the ID number corresponding to the searchable object you want to remove. In order to disassociate a searchable object from a search engine instance, both the object and the instance must be undeployed. |
| Disassociates the searchable object from the search engine instance and makes it available for association to another search engine instance. Specify the ID number corresponding to the searchable object you want to remove and the ID number corresponding to the search engine instance from which you want to remove the searchable object. In order to disassociate a searchable object from a search engine instance, both the object and the instance must be undeployed. |
| Disassociates a searchable object from the specified index schedule and makes it available to be added to another index schedule. Specify the ID number corresponding to the index schedule from which you want to disassociate the searchable object. The ECSF Command Line Administration Utility displays a list of searchable objects and prompts you to enter the ID corresponding to the searchable object you want to remove from the index schedule. In order to disassociate a searchable object from an index schedule, the index schedule must not be deployed. You must issue the command while managing the search engine instance with which the index schedule is associated. |
| Disassociates the searchable object you specify from the specified index schedule and makes it available to be added to another index schedule. Specify the ID number corresponding to the searchable object you want to disassociate and the ID number corresponding to the index schedule from which you want to disassociate the searchable object. In order to disassociate a searchable object from an index schedule, the index schedule must not be deployed. You must issue the command while managing the search engine instance with which the index schedule is associated. |
| Sets parameter values for the search engine instance. Use the following command syntax to directly pass in one parameter name-value pair at a time: See the "Managing Search with Oracle Enterprise Crawl and Search Framework" chapter in the Oracle Fusion Applications Administrator's Guide for a list of known engine instance parameters. The parameter name and value must be enclosed in quotes. If the parameter name or value contains a quote, escape it with a backslash, for example, You must issue the command while managing the search engine instance whose password parameters you want to set. |
| Sets password parameter values for the search engine instance. Pass in one password parameter and its password. See the "Managing Search with Oracle Enterprise Crawl and Search Framework" chapter in the Oracle Fusion Applications Administrator's Guide for a list of known engine instance parameters. The password parameter name must be enclosed in quotes. If the parameter parameter name contains a quote, escape it with a backslash, for example, You must issue the command while managing the search engine instance whose password parameters you want to set. |
| Lists detailed information about the specified search category and the searchable objects associated with it. |
| Lists the detailed information about the specified unassigned searchable object. |
| Lists the detailed information for the search engine instance being managed. You must issue the command while managing a search engine instance. |
| Lists the detailed information about the specified search engine instance. |
| Lists the detailed information about the specified searchable object. |
| Lists the detailed information about the specified search engine instance parameter. |
| Lists detailed information about the specified index schedule and the searchable objects associated with it. |
| Launches the index schedule you specify and causes Oracle SES to create the full-text search indexes. Specify the ID corresponding to the index schedule you want to start. Index schedules must be deployed to the search engine instance before you can start it. You must issue the command while managing the search engine instance with which the index schedule is associated. |
| Stops the specified index schedule that has been started and aborts the index process. Specify the ID number of the index schedule you want to stop. You must issue the command while managing the search engine instance with which the index schedule is associated. |
| Removes a search category from the search engine instance. Specify the ID number corresponding to the search category you want to undeploy. You must issue the command while managing the search engine instance with which the search category is associated. |
| Removes a searchable object from the search engine instance to make the object unavailable for the search engine instance to crawl. Specify the ID number corresponding to the searchable object you want to undeploy. Only deployed and deactivated searchable objects can be undeployed. |
| Removes the specified index schedule from the search engine instance. Specify the ID number corresponding to the index schedule you want to undeploy. You must issue the command while managing the search engine instance with which the index schedule is associated. |
| Resets or exits the search engine instance context. |
| Resets or exits the search engine instance context. |
| Modifies the properties of the specified search category. Specify the ID number corresponding to the search category you want to modify. Follow the prompts to enter field values. Set the scope of the search category to You must issue the command while managing the search engine instance with which the search category is associated. |
| Modifies the properties of the specified search category. Use the following command syntax to directly pass in field name-value pairs with the command: The field names and values must be enclosed in quotes. If the field name or value contains a quote, escape it with a backslash, for example, Set the scope of the search category to You must issue the command while managing the search engine instance with which the search category is associated. |
| Modifies the application identity of the specified external search category. Specify the ID number corresponding to the external search category you want to modify. Follow the prompts to enter field values. Set the scope of the search category to You must issue the command while managing the search engine instance with which the external search category is associated. |
| Modifies the application identity of the specified external search category. Use the following command syntax to directly pass in a field name-value pair with the command: The field name and value must be enclosed in quotes. If the field name or value contains a quote, escape it with a backslash, for example, Set the scope of the search category to You must issue the command while managing the search engine instance with which the external search category is associated. |
| Modifies the properties of the search engine instance you are currently managing. If you are not currently managing a search engine instance, the ECSF Command Line Administration Utility lists all the search engine instances and their corresponding ID numbers and prompt you for the ID number of the search engine instance you want to modify. Follow the prompts to enter field values. |
| Modifies the properties of the search engine instance you specify. Specify the ID number corresponding to the search engine instance you want to modify. Follow the prompts to enter field values. |
| Modifies the properties of the search engine instance you are currently managing. Directly pass in field name-value pairs with the command. The field names and values must be enclosed in quotes. If the field name or value contains a quote, escape it with a backslash, for example, |
| Modifies the properties of the search engine instance you specify. Specify the ID number corresponding to the search engine instance you want to modify and directly pass in field name-value pairs with the command. The field names and values must be enclosed in quotes. If the field name or value contains a quote, escape it with a backslash, for example, |
| Modifies the display name and application ID of a deployed searchable object without first having to deactivate and undeploy the searchable object. Specify the ID number of the searchable object you want to modify. Follow the prompts to enter field values for the display name and application ID. You must issue the command while managing the search engine instance with which the searchable object is associated. |
| Modifies the display name and application ID of a deployed searchable object without first having to deactivate and undeploy the searchable object. Specify the ID number corresponding to the searchable object you want to modify and directly pass in field name-value pairs with the command. The field names and values must be enclosed in quotes. If the field name or value contains a quote, escape it with a backslash, for example, You must issue the command while managing the search engine instance with which the searchable object is associated. |
| Modifies the properties of the index schedule you specify. Specify the ID number corresponding to the index schedule you want to modify. Follow the prompts to enter new field values. |
| Modifies the properties of the index schedule you specify. Specify the ID number corresponding to the index schedule you want to modify and directly pass in field name-value pairs with the command. The field names and values must be enclosed in quotes. If the field name or value contains a quote, escape it with a backslash, for example, You must issue the command while managing the search engine instance with which the index schedule is associated. |
 Copyright © 2011, Oracle and/or its affiliates. All rights reserved. |